Sample records for quantitative taqman real-time

  1. Taqman real-time quantitative PCR for identification of western flower thrip (Frankliniella occidentalis) for plant quarantine

    PubMed Central

    Huang, K. S.; Lee, S. E.; Yeh, Y.; Shen, G. S.; Mei, E.; Chang, C. M.

    2010-01-01

    Western flower thrip (Frankliniella occidentalis) is a major global pest of agricultural products. It directly damages crops through feeding, oviposition activity or transmission of several plant viruses. We describe a Taqman real-time quantitative PCR detection system, which can rapidly identify F. occidentalis from thrips larvae to complement the traditional morphological identification. The data showed that our detection system targeted on the ribosomal RNA gene regions of F. occidentalis has high sensitivity and specificity. The rapid method can be used for on-site testing of samples at ports-of-entry in the future. PMID:20129946

  2. Taqman real-time quantitative PCR for identification of western flower thrip (Frankliniella occidentalis) for plant quarantine.

    PubMed

    Huang, K S; Lee, S E; Yeh, Y; Shen, G S; Mei, E; Chang, C M

    2010-08-23

    Western flower thrip (Frankliniella occidentalis) is a major global pest of agricultural products. It directly damages crops through feeding, oviposition activity or transmission of several plant viruses. We describe a Taqman real-time quantitative PCR detection system, which can rapidly identify F. occidentalis from thrips larvae to complement the traditional morphological identification. The data showed that our detection system targeted on the ribosomal RNA gene regions of F. occidentalis has high sensitivity and specificity. The rapid method can be used for on-site testing of samples at ports-of-entry in the future.

  3. [Comparative analysis of real-time quantitative PCR-Sanger sequencing method and TaqMan probe method for detection of KRAS/BRAF mutation in colorectal carcinomas].

    PubMed

    Zhang, Xun; Wang, Yuehua; Gao, Ning; Wang, Jinfen

    2014-02-01

    To compare the application values of real-time quantitative PCR-Sanger sequencing and TaqMan probe method in the detection of KRAS and BRAF mutations, and to correlate KRAS/BRAF mutations with the clinicopathological characteristics in colorectal carcinomas. Genomic DNA of the tumor cells was extracted from formalin fixed paraffin embedded (FFPE) tissue samples of 344 colorectal carcinomas by microdissection. Real-time quantitative PCR-Sanger sequencing and TaqMan probe method were performed to detect the KRAS/BRAF mutations. The frequency and types of KRAS/BRAF mutations, clinicopathological characteristics and survival time were analyzed. KRAS mutations were detected in 39.8% (137/344) and 38.7% (133/344) of 344 colorectal carcinomas by using real-time quantitative PCR-Sanger sequencing and TaqMan probe method, respectively. BRAF mutation was detected in 4.7% (16/344) and 4.1% (14/344), respectively. There was no significant correlation between the two methods. The frequency of the KRAS mutation in female was higher than that in male (P < 0.05). The frequency of the BRAF mutation in colon was higher than that in rectum. The frequency of the BRAF mutation in stage III-IV cases was higher than that in stageI-II cases. The frequency of the BRAF mutation in signet ring cell carcinoma was higher than that in mucinous carcinoma and nonspecific adenocarcinoma had the lowest mutation rate. The frequency of the BRAF mutation in grade III cases was higher than that in grade II cases (P < 0.05). The overall concordance for the two methods of KRAS/BRAF mutation detection was 98.8% (kappa = 0.976). There was statistic significance between BRAF and KRAS mutations for the survival time of colorectal carcinomas (P = 0.039). There were no statistic significance between BRAF mutation type and BRAF/KRAS wild type (P = 0.058). (1) Compared with real-time quantitative PCR-Sanger sequencing, TaqMan probe method is better with regard to handling time, efficiency, repeatability, cost

  4. Detection of KIT Genotype in Pigs by TaqMan MGB Real-Time Quantitative Polymerase Chain Reaction.

    PubMed

    Li, Xiuxiu; Li, Xiaoning; Luo, Rongrong; Wang, Wenwen; Wang, Tao; Tang, Hui

    2018-05-01

    The dominant white phenotype in domestic pigs is caused by two mutations in the KIT gene: a 450 kb duplication containing the entire KIT gene together with flanking sequences and one splice mutation with a G:A substitution in intron 17. The purpose of this study was to establish a simple, rapid method to determine KIT genotype in pigs. First, to detect KIT copy number variation (CNV), primers for exon 2 of the KIT gene, along with a TaqMan minor groove binder (MGB) probe, were designed. The single-copy gene, estrogen receptor (ESR), was used as an internal control. A real-time fluorescence-based quantitative PCR (FQ-PCR) protocol was developed to accurately detect KIT CNVs. Second, to detect the splice mutation ratio of the G:A substitution in intron 17, a 175 bp region, including the target mutation, was amplified from genomic DNA. Based on the sequence of the resulting amplified fragment, an MGB probe set was designed to detect the ratio of splice mutation to normal using FQ-PCR. A series of parallel amplification curves with the same internal distances were obtained using gradually diluted DNA as templates. The CT values among dilutions were significantly different (p < 0.001) and the coefficients of variation from each dilution were low (from 0.13% to 0.26%). The amplification efficiencies for KIT and ESR were approximately equal, indicating ESR was an appropriate control gene. Furthermore, use of the MGB probe set resulted in detection of the target mutation at a high resolution and stability; standard curves illustrated that the amplification efficiencies of KIT1 (G) and KIT2 (A) were approximately equal (98.8% and 97.2%). In conclusion, a simple, rapid method, with high specificity and stability, for the detection of the KIT genotype in pigs was established using TaqMan MGB probe real-time quantitative PCR.

  5. Comparison of real-time SYBR green dengue assay with real-time taqman RT-PCR dengue assay and the conventional nested PCR for diagnosis of primary and secondary dengue infection

    PubMed Central

    Paudel, Damodar; Jarman, Richard; Limkittikul, Kriengsak; Klungthong, Chonticha; Chamnanchanunt, Supat; Nisalak, Ananda; Gibbons, Robert; Chokejindachai, Watcharee

    2011-01-01

    Background: Dengue fever and dengue hemorrhagic fever are caused by dengue virus. Dengue infection remains a burning problem of many countries. To diagnose acute dengue in the early phase we improve the low cost, rapid SYBR green real time assay and compared the sensitivity and specificity with real time Taqman® assay and conventional nested PCR assay. Aims: To develop low cost, rapid and reliable real time SYBR green diagnostic dengue assay and compare with Taqman real-time assay and conventional nested PCR (modified Lanciotti). Materials and Methods: Eight cultured virus strains were diluted in tenth dilution down to undetectable level by the PCR to optimize the primer, temperature (annealing, and extension and to detect the limit of detection of the assay. Hundred and ninety three ELISA and PCR proved dengue clinical samples were tested with real time SYBR® Green assay, real time Taqman® assay to compare the sensitivity and specificity. Results: Sensitivity and specificity of real time SYBR® green dengue assay (84% and 66%, respectively) was almost comparable to those (81% and 74%) of Taqman real time PCR dengue assay. Real time SYBR® green RT-PCR was equally sensitive in primary and secondary infection while real time Taqman was less sensitive in the secondary infection. Sensitivity of real time Taqman on DENV3 (87%) was equal to SYBR green real time PCR dengue assay. Conclusion: We developed low cost rapid diagnostic SYBR green dengue assay. Further study is needed to make duplex primer assay for the serotyping of dengue virus. PMID:22363089

  6. Detection of Food Allergens by Taqman Real-Time PCR Methodology.

    PubMed

    García, Aina; Madrid, Raquel; García, Teresa; Martín, Rosario; González, Isabel

    2017-01-01

    Real-time PCR (polymerase chain reaction) has shown to be a very effective technology for the detection of food allergens. The protocol described herein consists on a real-time PCR assay targeting the plant ITS (Internal Transcribed Spacer) region, using species-specific primers and hydrolysis probes (Taqman) dual labeled with a reporter fluorophore at the 5' end (6-carboxyfluorescein, FAM) and a quencher fluorophore at the 3' end (Blackberry, BBQ). The species-specific real-time PCR systems (primers/probe) described in this work allowed the detection of different nuts (peanut, hazelnut, pistachio, almond, cashew, macadamia, walnut and pecan), common allergens present in commercial food products, with a detection limit of 0.1 mg/kg.

  7. Sensitive detection of porcine DNA in processed animal proteins using a TaqMan real-time PCR assay.

    PubMed

    Pegels, N; González, I; Fernández, S; García, T; Martín, R

    2012-01-01

    A TaqMan real-time PCR method was developed for specific detection of porcine-prohibited material in industrial feeds. The assay combines the use of a porcine-specific primer pair, which amplifies a 79 bp fragment of the mitochondrial (mt) 12 S rRNA gene, and a locked nucleic acid (LNA) TaqMan probe complementary to a target sequence lying between the porcine-specific primers. The nuclear 18 S rRNA gene system, yielding a 77 bp amplicon, was employed as a positive amplification control to monitor the total content of amplifiable DNA in the samples. The specificity of the porcine primers-probe system was verified against different animal and plant species, including mammals, birds and fish. The applicability of the real-time PCR protocol to detect the presence of porcine mt DNA in feeds was determined through the analysis of 190 industrial feeds (19 known reference and 171 blind samples) subjected to stringent processing treatments. The performance of the method allows qualitative and highly sensitive detection of short fragments from porcine DNA in all the industrial feeds declared to contain porcine material. Although the method has quantitative potential, the real quantitative capability of the assay is limited by the existing variability in terms of composition and processing conditions of the feeds, which affect the amount and quality of amplifiable DNA.

  8. Development of an on-site rapid real-time polymerase chain reaction system and the characterization of suitable DNA polymerases for TaqMan probe technology.

    PubMed

    Furutani, Shunsuke; Naruishi, Nahoko; Hagihara, Yoshihisa; Nagai, Hidenori

    2016-08-01

    On-site quantitative analyses of microorganisms (including viruses) by the polymerase chain reaction (PCR) system are significantly influencing medical and biological research. We have developed a remarkably rapid and portable real-time PCR system that is based on microfluidic approaches. Real-time PCR using TaqMan probes consists of a complex reaction. Therefore, in a rapid real-time PCR, the optimum DNA polymerase must be estimated by using actual real-time PCR conditions. In this study, we compared the performance of three DNA polymerases in actual PCR conditions using our rapid real-time PCR system. Although KAPA2G Fast HS DNA Polymerase has the highest enzymatic activity among them, SpeedSTAR HS DNA Polymerase exhibited better performance to rapidly increase the fluorescence signal in an actual real-time PCR using TaqMan probes. Furthermore, we achieved rapid detection of Escherichia coli in 7 min by using SpeedSTAR HS DNA Polymerase with the same sensitivity as that of a conventional thermal cycler.

  9. Comparative evaluation of new TaqMan real-time assays for the detection of hepatitis A virus.

    PubMed

    Houde, Alain; Guévremont, Evelyne; Poitras, Elyse; Leblanc, Danielle; Ward, Pierre; Simard, Carole; Trottier, Yvon-Louis

    2007-03-01

    Three novel real-time TaqMan RT-PCR assays targeting the 5'-UTR, the viral protease and the viral polymerase regions of the hepatitis A virus (HAV) were developed, evaluated and compared against a new published 5'-UTR TaqMan assay (JN) and a widely used conventional RT-PCR assay (HAVc). All conventional RT-PCR (HAV, SH-Prot and SH-Poly systems) and TaqMan (SH-Prot, SH-Poly, JN and SH-5U systems) assays evaluated were consistent for the detection of the three different HAV strains (HM-175, HAS-15 and LSH/S) used and reproducible for both RNA duplicates with the exception of two reproducibility discrepancies observed with both 5'-UTR real-time systems (JN and SH-5U). Limits of detection for conventional HAV, SH-Prot and SH-Poly RT-PCR systems were found to be equivalent when tested with serially diluted suspensions of the HM-175 strain. Although the four real-time RT-PCR TaqMan assays evaluated herein produced similar and consistent quantification data down to the level of one genomic equivalent copy with their respectively cloned amplicons, significant and important differences were observed for the detection of HAV genomic RNA. Results showed that the new real-time TaqMan SH-Poly and SH-Prot primer and probe systems were more consistent and sensitive by 5 logs as compared to both 5'-UTR designs (JN and SH-5U) used for the detection of HAV genomic RNA as well as for the detection in cell culture by cytopathic effect. Considering their higher analytical sensitivity, the proposed SH-Poly and SH-Prot amplification systems could therefore represent valuable tools for the detection of HAV in clinical, environmental and food samples.

  10. Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay.

    PubMed

    Boyle, D G; Boyle, D B; Olsen, V; Morgan, J A T; Hyatt, A D

    2004-08-09

    Batrachochytrium dendrobatidis is a major pathogen of frogs worldwide, associated with declines in amphibian populations. Diagnosis of chytridiomycosis to date has largely relied upon histological and immunohistochemical examination of toe clips. This technique is invasive and insensitive particularly at early stages of infection when treatment may be possible. We have developed a real-time PCR Taqman assay that can accurately detect and quantify one zoospore in a diagnostic sample. This assay will assist the early detection of B. dendrobatidis in both captive and wild populations, with a high degree of sensitivity and specificity, thus facilitating treatment and protection of endangered populations, monitoring of pristine environments and preventing further global spread via amphibian trade.

  11. New design, development, and optimization of an in-house quantitative TaqMan Real-time PCR assay for HIV-1 viral load measurement.

    PubMed

    Noorbazargan, Hassan; Nadji, Seyed Alireza; Samiee, Siamak Mirab; Paryan, Mahdi; Mohammadi-Yeganeh, Samira

    2018-04-01

    Background Viral load measurement is commonly applicable to monitor HIV infection in patients to determine the number of HIV-RNA in serum samples of individuals. The aim of the present study was to set up a highly specific, sensitive, and reproducible home-brewed Real-time PCR assay based on TaqMan chemistry to quantify HIV-1 RNA genome. Methods In this study, three sets of primer pairs and a TaqMan probe were designed for HIV subtypes conserved sequences. An internal control was included in this assay to evaluate the presence of inhibition. Standard curve and threshold cycle values were determined using in vitro transcribed RNA from int region of HIV-1. A serial dilution of RNA standards was generated by in vitro transcription, from 10 to 10 9 copies/ml to find the sensitivity and the limit of detection (LOD) of the assay and to evaluate its performance in a quantitative RT-PCR assay. Results The assay has a low LOD equivalent to 33.13 copies/ml of HIV-1 RNA and a linear range of detection from 10 to 10 9 copies/ml. The coefficient of variation (CV) for Inter and Intra-assay precision of this in-house HIV Real-time RT-PCR ranged from 0.28 to 2.49% and 0.72 to 4.47%, respectively. The analytical and clinical specificity was 100%. Conclusions The results indicate that the developed method has a suitable specificity and sensitivity and is highly reproducible and cost-benefit. Therefore, it will be useful to monitor HIV infection in plasma samples of individuals.

  12. Identification and quantification of three genetically modified insect resistant cotton lines using conventional and TaqMan real-time polymerase chain reaction methods.

    PubMed

    Yang, Litao; Pan, Aihu; Zhang, Kewei; Guo, Jinchao; Yin, Changsong; Chen, Jianxiu; Huang, Cheng; Zhang, Dabing

    2005-08-10

    As the genetically modified organisms (GMOs) labeling policies are issued in many countries, qualitative and quantitative polymerase chain reaction (PCR) techniques are increasingly used for the detection of genetically modified (GM) crops in foods. Qualitative PCR and TaqMan real-time quantitative PCR methods to detect and identify three varieties of insect resistant cotton, i.e., Mon531 cotton (Monsanto Co.) and GK19 and SGK321 cottons (Chinese Academy of Agricultural Sciences), which were approved for commercialization in China, were developed in this paper. Primer pairs specific to inserted DNAs, such as Cowpea trypsin inhibitor (CpTI) gene of SGK321 cotton and the specific junction DNA sequences containing partial Cry1A(c) gene and NOS terminator of Mon531, GK19, and SGK321 cotton varieties were designed to conduct the identified PCR assays. In conventional specific identified PCR assays, the limit of detection (LOD) was 0.05% for Mon531, GK19, or SGK321 in 100 ng of cotton genomic DNA for one reaction. Also, the multiplex PCR method for screening the three GM cottons was also established, which could save time and cost in practical detection. Furthermore, a real-time quantitative PCR assay based on TaqMan chemistry for detection of insect resistant gene, Cry1A(c), was developed. This assay also featured the use of a standard plasmid as a reference molecule, which contained both a specific region of the transgene Cry1A(c) and an endogenous stearoyl-acyl carrier protein desaturase (Sad1) gene of the cotton. In quantitative PCR assay, the quantification range was from 0.01 to 100% in 100 ng of the genome DNA template, and in the detection of 1.0, 3.0, and 5.0% levels of three insect resistant cotton lines, respectively, all of the relative standard deviations (RSDs) were less than 8.2% except for the GM cotton samples with 1.0% Mon531 or GK19, which meant that our real-time PCR assays involving the use of reference molecule were reliable and practical for GM

  13. EVALUATION OF RAPID, QUANTITATIVE REAL-TIME PCR METHOD FOR ENUMERATION OF PATHOGENIC CANDIDA CELLS IN WATER

    EPA Science Inventory

    Quantitative Real-Time PCR (QRT-PCR) technology, incorporating fluorigenic 5' nuclease (TaqMan (trademark)) chemistry, was developed for the specific detection and quantification of six pathogenic species of Candida (C. albicans, C. tropicalis, C. krusei, C. parapsilosis, C. glab...

  14. Quantitative Tetraplex Real-Time Polymerase Chain Reaction Assay with TaqMan Probes Discriminates Cattle, Buffalo, and Porcine Materials in Food Chain.

    PubMed

    Hossain, M A Motalib; Ali, Md Eaqub; Sultana, Sharmin; Asing; Bonny, Sharmin Quazi; Kader, Md Abdul; Rahman, M Aminur

    2017-05-17

    Cattle, buffalo, and porcine materials are widely adulterated, and their quantification might safeguard health, religious, economic, and social sanctity. Recently, conventional polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism (RFLP) assays have been documented but they are just suitable for identification, cannot quantify adulterations. We described here a quantitative tetraplex real-time PCR assay with TaqMan Probes to quantify contributions from cattle, buffalo, and porcine materials simultaneously. Amplicon-sizes were very short (106-, 90-, and 146-bp for cattle, buffalo, and porcine) because longer targets could be broken down, bringing serious ambiguity in molecular diagnostics. False negative detection was eliminated through an endogenous control (141-bp site of eukaryotic 18S rRNA). Analysis of 27 frankfurters and 27 meatballs reflected 84-115% target recovery at 0.1-10% adulterations. Finally, a test of 36 commercial products revealed 71% beef frankfurters, 100% meatballs, and 85% burgers contained buffalo adulteration, but no porcine was found in beef products.

  15. Comparison of nested-multiplex, Taqman & SYBR Green real-time PCR in diagnosis of amoebic liver abscess in a tertiary health care institute in India

    PubMed Central

    Dinoop, K.P.; Parija, Subhash Chandra; Mandal, Jharna; Swaminathan, R.P.; Narayanan, P.

    2016-01-01

    Background & objectives: Amoebiasis is a common parasitic infection caused by Entamoeba histolytica and amoebic liver abscess (ALA) is the most common extraintestinal manifestation of amoebiasis. The aim of this study was to standardise real-time PCR assays (Taqman and SYBR Green) to detect E. histolytica from liver abscess pus and stool samples and compare its results with nested-multiplex PCR. Methods: Liver abscess pus specimens were subjected to DNA extraction. The extracted DNA samples were subjected to amplification by nested-multiplex PCR, Taqman (18S rRNA) and SYBR Green real-time PCR (16S-like rRNA assays to detect E. histolytica/E. dispar/E. moshkovskii). The amplification products were further confirmed by DNA sequence analysis. Receiver operator characteristic (ROC) curve analysis was done for nested-multiplex and SYBR Green real-time PCR and the area under the curve was calculated for evaluating the accuracy of the tests to dignose ALA. Results: In all, 17, 19 and 25 liver abscess samples were positive for E. histolytica by nested-multiplex PCR, SYBR Green and Taqman real-time PCR assays, respectively. Significant differences in detection of E. histolytica were noted in the real-time PCR assays evaluated (P<0.0001). The nested-multiplex PCR, SYBR Green real-time PCR and Taqman real-time PCR evaluated showed a positivity rate of 34, 38 and 50 per cent, respectively. Based on ROC curve analysis (considering Taqman real-time PCR as the gold standard), it was observed that SYBR Green real-time PCR was better than conventional nested-multiplex PCR for the diagnosis of ALA. Interpretation & conclusions: Taqman real-time PCR targeting the 18S rRNA had the highest positivity rate evaluated in this study. Both nested multiplex and SYBR Green real-time PCR assays utilized were evaluated to give accurate results. Real-time PCR assays can be used as the gold standard in rapid and reliable diagnosis, and appropriate management of amoebiasis, replacing the

  16. Comparison of nested-multiplex, Taqman & SYBR Green real-time PCR in diagnosis of amoebic liver abscess in a tertiary health care institute in India.

    PubMed

    Dinoop, K P; Parija, Subhash Chandra; Mandal, Jharna; Swaminathan, R P; Narayanan, P

    2016-01-01

    Amoebiasis is a common parasitic infection caused by Entamoeba histolytica and amoebic liver abscess (ALA) is the most common extraintestinal manifestation of amoebiasis. The aim of this study was to standardise real-time PCR assays (Taqman and SYBR Green) to detect E. histolytica from liver abscess pus and stool samples and compare its results with nested-multiplex PCR. Liver abscess pus specimens were subjected to DNA extraction. The extracted DNA samples were subjected to amplification by nested-multiplex PCR, Taqman (18S rRNA) and SYBR Green real-time PCR (16S-like rRNA assays to detect E. histolytica/E. dispar/E. moshkovskii). The amplification products were further confirmed by DNA sequence analysis. Receiver operator characteristic (ROC) curve analysis was done for nested-multiplex and SYBR Green real-time PCR and the area under the curve was calculated for evaluating the accuracy of the tests to dignose ALA. In all, 17, 19 and 25 liver abscess samples were positive for E. histolytica by nested-multiplex PCR, SYBR Green and Taqman real-time PCR assays, respectively. Significant differences in detection of E. histolytica were noted in the real-time PCR assays evaluated ( P<0.0001). The nested-multiplex PCR, SYBR Green real-time PCR and Taqman real-time PCR evaluated showed a positivity rate of 34, 38 and 50 per cent, respectively. Based on ROC curve analysis (considering Taqman real-time PCR as the gold standard), it was observed that SYBR Green real-time PCR was better than conventional nested-multiplex PCR for the diagnosis of ALA. Taqman real-time PCR targeting the 18S rRNA had the highest positivity rate evaluated in this study. Both nested multiplex and SYBR Green real-time PCR assays utilized were evaluated to give accurate results. Real-time PCR assays can be used as the gold standard in rapid and reliable diagnosis, and appropriate management of amoebiasis, replacing the conventional molecular methods.

  17. TaqMan probe real-time polymerase chain reaction assay for the quantification of canine DNA in chicken nugget.

    PubMed

    Rahman, Md Mahfujur; Hamid, Sharifah Bee Abd; Basirun, Wan Jefrey; Bhassu, Subha; Rashid, Nur Raifana Abdul; Mustafa, Shuhaimi; Mohd Desa, Mohd Nasir; Ali, Md Eaqub

    2016-01-01

    This paper describes a short-amplicon-based TaqMan probe quantitative real-time PCR (qPCR) assay for the quantitative detection of canine meat in chicken nuggets, which are very popular across the world, including Malaysia. The assay targeted a 100-bp fragment of canine cytb gene using a canine-specific primer and TaqMan probe. Specificity against 10 different animals and plants species demonstrated threshold cycles (Ct) of 16.13 ± 0.12 to 16.25 ± 0.23 for canine DNA and negative results for the others in a 40-cycle reaction. The assay was tested for the quantification of up to 0.01% canine meat in deliberately spiked chicken nuggets with 99.7% PCR efficiency and 0.995 correlation coefficient. The analysis of the actual and qPCR predicted values showed a high recovery rate (from 87% ± 28% to 112% ± 19%) with a linear regression close to unity (R(2) = 0.999). Finally, samples of three halal-branded commercial chicken nuggets collected from different Malaysian outlets were screened for canine meat, but no contamination was demonstrated.

  18. EVALUATION OF A RAPID, QUANTITATIVE REAL-TIME PCR METHOD FOR ENUMERATION OF PATHOGENIC CANDIDA CELLS IN WATER

    EPA Science Inventory

    Quantitative Real-Time PCR (QRT-PCR) technology, incorporating fluorigenic 5' nuclease (TaqMan?) chemistry, was developed for the specific detection and quantification of six pathogenic species of Candida (C. albicans, C. tropicalis, C. krusei, C. parapsilosis, C. glabrata and C....

  19. Development of SYBR Green and TaqMan quantitative real-time PCR assays for hepatopancreatic parvovirus (HPV) infecting Penaeus monodon in India.

    PubMed

    Yadav, Reena; Paria, Anutosh; Mankame, Smruti; Makesh, M; Chaudhari, Aparna; Rajendran, K V

    2015-12-01

    Hepatopancreatic parvovirus (HPV) infects Penaeus monodon and causes mortality in the larval stages. Further, it has been implicated in the growth retardation in cultured P. monodon. Though different geographical isolates of HPV show large sequence variations, a sensitive PCR assay specific to Indian isolate has not yet been reported. Here, we developed a sensitive SYBR Green-based and TaqMan real-time PCR for the detection and quantification of the virus. A 441-bp PCR amplicon was cloned in pTZ57 R/T vector and the plasmid copy number was estimated. A 10-fold serial dilution of the plasmid DNA from 1 × 10(9) copies to 1 copy was prepared and used as the standard. The primers were tested initially using the standard on a conventional PCR format to determine the linearity of detection. The standards were further tested on real-time PCR format using SYBR Green and TaqMan chemistry and standard curves were generated based on the Ct values from three well replicates for each dilution. The assays were found to be sensitive, specific and reproducible with a wide dynamic range (1 × 10(9) to 10 copies) with coefficient of regression (R(2)) > 0.99, calculated average slope -3.196 for SYBR Green assay whereas, for TaqMan assay it was >0.99 and -3.367, respectively. The intra- and inter-assay variance of the Ct values ranged from 0.26% to 0.94% and 0.12% to 0.81%, respectively, for SYBR Green assay, and the inter-assay variance of the Ct values for TaqMan assay ranged from 0.07% to 1.93%. The specificity of the assays was proved by testing other DNA viruses of shrimp such as WSSV, IHHNV and MBV. Standardized assays were further tested to detect and quantify HPV in the post-larvae of P. monodon. The result was further compared with conventional PCR to test the reproducibility of the test. The assay was also used to screen Litopeneaus vannamei, Macrobrachium rosenbergii and Scylla serrata for HPV. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. One step screening of retroviral producer clones by real time quantitative PCR.

    PubMed

    Towers, G J; Stockholm, D; Labrousse-Najburg, V; Carlier, F; Danos, O; Pagès, J C

    1999-01-01

    Recombinant retroviruses are obtained from either stably or transiently transfected retrovirus producer cells. In the case of stably producing lines, a large number of clones must be screened in order to select the one with the highest titre. The multi-step selection of high titre producing clones is time consuming and expensive. We have taken advantage of retroviral endogenous reverse transcription to develop a quantitative PCR assay on crude supernatant from producing clones. We used Taqman PCR technology, which, by using fluorescence measurement at each cycle of amplification, allows PCR product quantification. Fluorescence results from specific degradation of a probe oligonucleotide by the Taq polymerase 3'-5' exonuclease activity. Primers and probe sequences were chosen to anneal to the viral strong stop species, which is the first DNA molecule synthesised during reverse transcription. The protocol consists of a single real time PCR, using as template filtered viral supernatant without any other pre-treatment. We show that the primers and probe described allow quantitation of serially diluted plasmid to as few as 15 plasmid molecules. We then test 200 GFP-expressing retroviral-producing clones either by FACS analysis of infected cells or by using the quantitative PCR. We confirm that the Taqman protocol allows the detection of virus in supernatant and selection of high titre clones. Furthermore, we can determine infectious titre by quantitative PCR on genomic DNA from infected cells, using an additional set of primers and probe to albumin to normalise for the genomic copy number. We demonstrate that real time quantitative PCR can be used as a powerful and reliable single step, high throughput screen for high titre retroviral producer clones.

  1. Quantitative detection method of Enterocytozoon hepatopenaei using TaqMan probe real-time PCR.

    PubMed

    Liu, Ya-Mei; Qiu, Liang; Sheng, An-Zhi; Wan, Xiao-Yuan; Cheng, Dong-Yuan; Huang, Jie

    2018-01-01

    A TaqMan probe and a pair of specific primers were selected from the small subunit ribosomal DNA (SSU rDNA) sequence of Enterocytozoon hepatopenaei (EHP); this real-time PCR assay was developed and optimized. It showed a good linearity in detecting standards of EHP SSU rDNA fragments from 4 × 10 2 to 4 × 10 8 copies/reaction using the established method. The detection limit of the qPCR method was as low as 4 × 10 1 copies per reaction, which was higher than the conventional PCR and SYBR Green I-based EHP qPCR reported. Using the qPCR assay, EHP was detected in four batches of slow-growing Penaeus vannamei specimens collected from Tianjin and Zhejiang Province in China was detected using qPCR. The results showed that all the hepatopancreas from the slow-growing P. vannamei specimens were detected as EHP-positive. EHP copies of hepatopancreas in some batches had a negative correlation with the body mass index (BMI) of shrimps; however, not all batches of specimens had this negative correlation between EHP copies of hepatopancreas and BMI. This qPCR technique is sensitive, specific and easy to perform (96 tests in <3 h), which provides technical support for the detection and prevention of EHP. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Comparison of nine different real-time PCR chemistries for qualitative and quantitative applications in GMO detection.

    PubMed

    Buh Gasparic, Meti; Tengs, Torstein; La Paz, Jose Luis; Holst-Jensen, Arne; Pla, Maria; Esteve, Teresa; Zel, Jana; Gruden, Kristina

    2010-03-01

    Several techniques have been developed for detection and quantification of genetically modified organisms, but quantitative real-time PCR is by far the most popular approach. Among the most commonly used real-time PCR chemistries are TaqMan probes and SYBR green, but many other detection chemistries have also been developed. Because their performance has never been compared systematically, here we present an extensive evaluation of some promising chemistries: sequence-unspecific DNA labeling dyes (SYBR green), primer-based technologies (AmpliFluor, Plexor, Lux primers), and techniques involving double-labeled probes, comprising hybridization (molecular beacon) and hydrolysis (TaqMan, CPT, LNA, and MGB) probes, based on recently published experimental data. For each of the detection chemistries assays were included targeting selected loci. Real-time PCR chemistries were subsequently compared for their efficiency in PCR amplification and limits of detection and quantification. The overall applicability of the chemistries was evaluated, adding practicability and cost issues to the performance characteristics. None of the chemistries seemed to be significantly better than any other, but certain features favor LNA and MGB technology as good alternatives to TaqMan in quantification assays. SYBR green and molecular beacon assays can perform equally well but may need more optimization prior to use.

  3. A TaqMan real-time PCR-based assay for the identification of Fasciola spp.

    PubMed

    Alasaad, Samer; Soriguer, Ramón C; Abu-Madi, Marawan; El Behairy, Ahmed; Jowers, Michael J; Baños, Pablo Díez; Píriz, Ana; Fickel, Joerns; Zhu, Xing-Quan

    2011-06-30

    Real time quantitative PCR (qPCR) is one of the key technologies of the post-genome era, with clear advantages compared to normal end-point PCR. In this paper, we report the first qPCR-based assay for the identification of Fasciola spp. Based on sequences of the second internal transcribed spacers (ITS-2) of the ribosomal rRNA gene, we used a set of genus-specific primers for Fasciola ITS-2 amplification, and we designed species-specific internal TaqMan probes to identify F. hepatica and F. gigantica, as well as the hybrid 'intermediate'Fasciola. These primers and probes were used for the highly specific, sensitive, and simple identification of Fasciola species collected from different animal host from China, Spain, Niger and Egypt. The novel qPCR-based technique for the identification of Fasciola spp. may provide a useful tool for the epidemiological investigation of Fasciola infection, including their intermediate snail hosts. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Evaluation of the Abbott RealTime HCV assay for quantitative detection of hepatitis C virus RNA.

    PubMed

    Michelin, Birgit D A; Muller, Zsofia; Stelzl, Evelyn; Marth, Egon; Kessler, Harald H

    2007-02-01

    The Abbott RealTime HCV assay for quantitative detection of HCV RNA has recently been introduced. In this study, the performance of the Abbott RealTime HCV assay was evaluated and compared to the COBAS AmpliPrep/COBAS TaqMan HCV test. Accuracy, linearity, interassay and intra-assay variations were determined, and a total of 243 routine clinical samples were investigated. When accuracy of the new assay was tested, the majority of results were found to be within +/-0.5 log(10) unit of the results obtained by reference laboratories. Determination of linearity resulted in a quasilinear curve up to 1.0 x 10(6)IU/ml. The interassay variation ranged from 15% to 32%, and the intra-assay variation ranged from 5% to 8%. When clinical samples were tested by the Abbott RealTime HCV assay and the results were compared with those obtained by the COBAS AmpliPrep/COBAS TaqMan HCV test, the results for 93% of all samples with positive results by both tests were found to be within +/-1.0 log(10) unit. The viral loads for all patients measured by the Abbott and Roche assays showed a high correlation (R(2)=0.93); quantitative results obtained by the Abbott assay were found to be lower than those obtained by the Roche assay. The Abbott RealTime HCV assay proved to be suitable for use in the routine diagnostic laboratory. The time to results was similar for both of the assays.

  5. Development of a non invasion real-time PCR assay for the quantitation of chicken parvovirus in fecal swabs

    USDA-ARS?s Scientific Manuscript database

    The present study describes the development of a real time Taqman polymerase chain reaction (PCR) assay using a fluorescent labeled probe for the detection and quantitation of chicken parvovirus (ChPV) in feces. The primers and probes were designed based on the nucleotide sequence of the non struct...

  6. A comparative evaluation between real time Roche COBas TAQMAN 48 HCV and bDNA Bayer Versant HCV 3.0.

    PubMed

    Giraldi, Cristina; Noto, Alessandra; Tenuta, Robert; Greco, Francesca; Perugini, Daniela; Spadafora, Mario; Bianco, Anna Maria Lo; Savino, Olga; Natale, Alfonso

    2006-10-01

    The HCV virus is a common human pathogen made of a single stranded RNA genome with 9600nt. This work compared two different commercial methods used for HCV viral load, the bDNA Bayer Versant HCV 3.0 and the RealTime Roche COBAS TaqMan 48 HCV. We compared the reproducibility and linearity of the two methods. Seventy-five plasma samples with genotypes 1 to 4, which represent the population (45% genotype 1; 24% genotype 2; 13% genotype 3; 18% genotype 4) were directly processed with the Versanto method based upon signal amplification; the same samples were first extracted (COBAS Ampliprep - TNAI) and then amplified using RealTime PCR (COBAS TaqMan 48). The results obtained indicate the same performance for both methods if they have genotype 1, but in samples with genotypes 2, 3 and 4 the RealTime PCR Roche method gave an underestimation in respect to the Bayer bDNA assay.

  7. Real-time quantitative PCR detection of genetically modified Maximizer maize and Roundup Ready soybean in some representative foods.

    PubMed

    Vaïtilingom, M; Pijnenburg, H; Gendre, F; Brignon, P

    1999-12-01

    A fast and quantitative method was developed to detect transgenic "Maximizer" maize "event 176" (Novartis) and "Roundup Ready" soybean (Monsanto) in food by real-time quantitative PCR. The use of the ABI Prism 7700 sequence detection system allowed the determination of the amplified product accumulation through a fluorogenic probe (TaqMan). Fluorescent dyes were chosen in such a way as to coamplify total and transgenic DNA in the same tube. Using real-time quantitative PCR, 2 pg of transgenic or total DNA per gram of starting sample was detected in 3 h after DNA extraction and the relative amounts of "Maximizer" maize and "Roundup Ready" soybean in some representative food products were quantified.

  8. Simultaneous detection and differentiation of three Potyviridae viruses by a multiplex TaqMan real time RT-PCR assay

    USDA-ARS?s Scientific Manuscript database

    A multiplex TaqMan real time RT-PCR was developed for detection and differentiation of Sweet potato virus G, Sweet potato latent virus and Sweet potato mild mottle virus in one tube. Amplification and detection of a fluorogenic cytochrome oxidase gene was included as an internal control. The assay w...

  9. Quantification of rice brown leaf spot through Taqman real-time PCR specific to the unigene encoding Cochliobolus miyabeanus SCYTALONE DEHYDRATASE1 involved in fungal melanin biosynthesis.

    PubMed

    Su'udi, Mukhamad; Park, Jong-Mi; Kang, Woo-Ri; Park, Sang-Ryeol; Hwang, Duk-Ju; Ahn, Il-Pyung

    2012-12-01

    Rice brown leaf spot is a major disease in the rice paddy field. The causal agent Cochliobolus miyabeanus is an ascomycete fungus and a representative necrotrophic pathogen in the investigation of rice-microbe interactions. The aims of this research were to identify a quantitative evaluation method to determine the amount of C. miyabeanus proliferation in planta and determine the method's sensitivity. Real-time polymerase chain reaction (PCR) was employed in combination with the primer pair and Taqman probe specific to CmSCD1, a C. miyabeanus unigene encoding SCYTALONE DEHYDRATASE, which is involved in fungal melanin biosynthesis. Comparative analysis of the nucleotide sequences of CmSCD1 from Korean strains with those from the Japanese and Taiwanese strains revealed some sequence differences. Based on the crossing point (CP) values from Taqman real-time PCR containing a series of increasing concentrations of cloned amplicon or fungal genomic DNA, linear regressions with a high level of reliability (R(2)>0.997) were constructed. This system was able to estimate fungal genomic DNA at the picogram level. The reliability of this equation was further confirmed using DNA samples from both resistant and susceptible cultivars infected with C. miyabeanus. In summary, our quantitative system is a powerful alternative in brown leaf spot forecasting and in the consistent evaluation of disease progression.

  10. Bat white-nose syndrome: a real-time TaqMan polymerase chain reaction test targeting the intergenic spacer region of Geomyces destructanstructans.

    USGS Publications Warehouse

    Muller, Laura K.; Lorch, Jeffrey M.; Lindner, Daniel L.; O'Connor, Michael; Gargas, Andrea; Blehert, David S.

    2013-01-01

    The fungus Geomyces destructans is the causative agent of white-nose syndrome (WNS), a disease that has killed millions of North American hibernating bats. We describe a real-time TaqMan PCR test that detects DNA from G. destructans by targeting a portion of the multicopy intergenic spacer region of the rRNA gene complex. The test is highly sensitive, consistently detecting as little as 3.3 fg of genomic DNA from G. destructans. The real-time PCR test specifically amplified genomic DNA from G. destructans but did not amplify target sequence from 54 closely related fungal isolates (including 43 Geomyces spp. isolates) associated with bats. The test was further qualified by analyzing DNA extracted from 91 bat wing skin samples, and PCR results matched histopathology findings. These data indicate the real-time TaqMan PCR method described herein is a sensitive, specific, and rapid test to detect DNA from G. destructans and provides a valuable tool for WNS diagnostics and research.

  11. Identification and quantification of genetically modified Moonshade carnation lines using conventional and TaqMan real-time polymerase chain reaction methods.

    PubMed

    Li, Peng; Jia, Junwei; Bai, Lan; Pan, Aihu; Tang, Xueming

    2013-07-01

    Genetically modified carnation (Dianthus caryophyllus L.) Moonshade was approved for planting and commercialization in several countries from 2004. Developing methods for analyzing Moonshade is necessary for implementing genetically modified organism labeling regulations. In this study, the 5'-transgene integration sequence was isolated using thermal asymmetric interlaced (TAIL)-PCR. Based upon the 5'-transgene integration sequence, conventional and TaqMan real-time PCR assays were established. The relative limit of detection for the conventional PCR assay was 0.05 % for Moonshade using 100 ng total carnation genomic DNA, corresponding to approximately 79 copies of the carnation haploid genome, and the limits of detection and quantification of the TaqMan real-time PCR assay were estimated to be 51 and 254 copies of haploid carnation genomic DNA, respectively. These results are useful for identifying and quantifying Moonshade and its derivatives.

  12. Development of real-time PCR for detection and quantitation of Streptococcus parauberis.

    PubMed

    Nguyen, T L; Lim, Y J; Kim, D-H; Austin, B

    2016-01-01

    Streptococcus parauberis is an increasing threat to aquaculture of olive flounder, Paralichthys olivaceus Temminck & Schlegel, in South Korea. We developed a real-time polymerase chain reaction (PCR) method using the TaqMan probe assay to detect and quantify S. parauberis by targeting the gyrB gene sequences, which are effective for molecular analysis of the genus Streptococcus. Our real-time PCR assay is capable of detecting 10 fg of genomic DNA per reaction. The intra- and interassay coefficient of variation (CV) values ranged from 0.42-1.95%, demonstrating that the assay has good reproducibility. There was not any cross-reactivity to Streptococcus iniae or to other streptococcal/lactococcal fish pathogens, such as S. agalactiae and Lactococcus garvieae, indicating that the assay is highly specific to S. parauberis. The results of the real-time PCR assay corresponded well to those of conventional culture assays for S. parauberis from inoculated tissue homogenates (r = 0.957; P < 0.05). Hence, this sensitive and specific real-time PCR is a valuable tool for diagnostic quantitation of S. parauberis in clinical samples. © 2014 John Wiley & Sons Ltd.

  13. Development of a Real-Time, TaqMan Reverse Transcription-PCR Assay for Detection and Differentiation of Lyssavirus Genotypes 1, 5, and 6

    PubMed Central

    Wakeley, P. R.; Johnson, N.; McElhinney, L. M.; Marston, D.; Sawyer, J.; Fooks, A. R.

    2005-01-01

    Several reverse transcription-PCR (RT-PCR) methods have been reported for the detection of rabies and rabies-related viruses. These methods invariably involve multiple transfers of nucleic acids between different tubes, with the risk of contamination leading to the production of false-positive results. Here we describe a single, closed-tube, nonnested RT-PCR with TaqMan technology that distinguishes between classical rabies virus (genotype 1) and European bat lyssaviruses 1 and 2 (genotypes 5 and 6) in real time. The TaqMan assay is rapid, sensitive, and specific and allows for the genotyping of unknown isolates concomitant with the RT-PCR. The assay can be applied quantitatively and the use of an internal control enables the quality of the isolated template to be assessed. Despite sequence heterogeneity in the N gene between the different genotypes, a universal forward and reverse primer set has been designed, allowing for the simplification of previously described assays. We propose that within a geographically constrained area, this assay will be a useful tool for the detection and differentiation of members of the Lyssavirus genus. PMID:15956398

  14. Application of TaqMan fluorescent probe-based quantitative real-time PCR assay for the environmental survey of Legionella spp. and Legionella pneumophila in drinking water reservoirs in Taiwan.

    PubMed

    Kao, Po-Min; Hsu, Bing-Mu; Hsu, Tsui-Kang; Ji, Wen-Tsai; Huang, Po-Hsiang; Hsueh, Chih-Jen; Chiang, Chuen-Sheue; Huang, Shih-Wei; Huang, Yu-Li

    2014-08-15

    In this study, TaqMan fluorescent quantitative real-time PCR was performed to quantify Legionella species in reservoirs. Water samples were collected from 19 main reservoirs in Taiwan, and 12 (63.2%) were found to contain Legionella spp. The identified species included uncultured Legionella spp., L. pneumophila, L. jordanis, and L. drancourtii. The concentrations of Legionella spp. and L. pneumophila in the water samples were in the range of 1.8×10(2)-2.6×10(3) and 1.6×10(2)-2.4×10(2) cells/L, respectively. The presence and absence of Legionella spp. in the reservoir differed significantly in pH values. These results highlight the importance that L. pneumophila, L. jordanis, and L. drancourtii are potential pathogens in the reservoirs. The presence of L. pneumophila in reservoirs may be a potential public health concern that must be further examined. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. [Quantitative fluorogenic real-time PCR assay for respiratory syncytial virus detection].

    PubMed

    Zhang, Qi-wei; You, Shang-you; Sun, Ji-min; Wu, Qi; Yu, Chun-hua; Zhang, Chu-yu

    2005-07-01

    To Establish a rapid and objective quantitative fluorogenic real-time PCR assay for early detection of human respiratory syncytial virus (hRSV). Two pairs of primers and one TaqMan Fluorogenic probe that are specific for the recognition of the most conservative N gene of hRSV for virus detection with LighCycler PCR in 93 nasopharyngeal secretion specimens collected from infants and young children. The assay was compared with virus isolation, routine PCR, nested PCR, and enzyme-linked immunosorbent assay (ELISA). This TaqMan assay had a sensitivity of 1 x 10(2) cDNA copies/microl with a dynamic range between 1 x 10(2) and 1 x 10(7) cDNA copies/microl, which was the same as that of nested PCR, but 10 times more sensitive than routine PCR. The specificity of the assay was evaluated by comparing hRSV with polivirus type 1, coxsackie virus type 2, influenza A, influenza B and adenovirus type 7. A PCR product of the expected size (195 bp) was produced and fluorescence signal detected for hRSV, but not for any of the other viruses. The results in LightCycler and Rotor-Gene instrument were consistent. Forty-four specimens (43.9%) were hRSV-positive with this assay and 4 (4/93,4.3%) were hRSV-positive with ELISA, showing rather low correlation between the two methods. No visible relation was found between the concentration of hRSV RNA and severity of the disease. This assay is rapid, sensitive, specific and quantitative, and has the potential of wide application for early diagnosis of hRSV infection and evaluation of the therapeutic effect.

  16. [Multiplex real-time PCR method for rapid detection of Marburg virus and Ebola virus].

    PubMed

    Yang, Yu; Bai, Lin; Hu, Kong-Xin; Yang, Zhi-Hong; Hu, Jian-Ping; Wang, Jing

    2012-08-01

    Marburg virus and Ebola virus are acute infections with high case fatality rates. A rapid, sensitive detection method was established to detect Marburg virus and Ebola virus by multiplex real-time fluorescence quantitative PCR. Designing primers and Taqman probes from highly conserved sequences of Marburg virus and Ebola virus through whole genome sequences alignment, Taqman probes labeled by FAM and Texas Red, the sensitivity of the multiplex real-time quantitative PCR assay was optimized by evaluating the different concentrations of primers and Probes. We have developed a real-time PCR method with the sensitivity of 30.5 copies/microl for Marburg virus positive plasmid and 28.6 copies/microl for Ebola virus positive plasmids, Japanese encephalitis virus, Yellow fever virus, Dengue virus were using to examine the specificity. The Multiplex real-time PCR assays provide a sensitive, reliable and efficient method to detect Marburg virus and Ebola virus simultaneously.

  17. Development of a real-time TaqMan assay to detect mendocina sublineage Pseudomonas species in contaminated metalworking fluids.

    PubMed

    Saha, Ratul; Donofrio, Robert S; Bagley, Susan T

    2010-08-01

    A TaqMan quantitative real-time polymerase chain reaction (qPCR) assay was developed for the detection and enumeration of three Pseudomonas species belonging to the mendocina sublineage (P. oleovorans, P. pseudoalcaligenes, and P. oleovorans subsp. lubricantis) found in contaminated metalworking fluids (MWFs). These microbes are the primary colonizers and serve as indicator organisms of biodegradation of used MWFs. Molecular techniques such as qPCR are preferred for the detection of these microbes since they grow poorly on typical growth media such as R2A agar and Pseudomonas isolation agar (PIA). Traditional culturing techniques not only underestimate the actual distribution of these bacteria but are also time-consuming. The primer-probe pair developed from gyrase B (gyrB) sequences of the targeted bacteria was highly sensitive and specific for the three species. qPCR was performed with both whole cell and genomic DNA to confirm the specificity and sensitivity of the assay. The sensitivity of the assay was 10(1) colony forming units (CFU)/ml for whole cell and 13.7 fg with genomic DNA. The primer-probe pair was successful in determining concentrations from used MWF samples, indicating levels between 2.9 x 10(3) and 3.9 x 10(6) CFU/ml. In contrast, the total count of Pseudomonas sp. recovered on PIA was in the range of <1.0 x 10(1) to 1.4 x 10(5) CFU/ml for the same samples. Based on these results from the qPCR assay, the designed TaqMan primer-probe pair can be efficiently used for rapid (within 2 h) determination of the distribution of these species of Pseudomonas in contaminated MWFs.

  18. Identification of four squid species by quantitative real-time polymerase chain reaction.

    PubMed

    Ye, Jian; Feng, Junli; Liu, Shasha; Zhang, Yanping; Jiang, Xiaona; Dai, Zhiyuan

    2016-02-01

    Squids are distributed worldwide, including many species of commercial importance, and they are often made into varieties of flavor foods. The rapid identification methods for squid species especially their processed products, however, have not been well developed. In this study, quantitative real-time PCR (qPCR) systems based on specific primers and TaqMan probes have been established for rapid and accurate identification of four common squid species (Ommastrephes bartramii, Dosidicus gigas, Illex argentinus, Todarodes pacificus) in Chinese domestic market. After analyzing mitochondrial genes reported in GenBank, the mitochondrial cytochrome b (Cytb) gene was selected for O. bartramii detection, cytochrome c oxidase subunit I (COI) gene for D. gigas and T. Pacificus detection, ATPase subunit 6 (ATPase 6) gene for I. Argentinus detection, and 12S ribosomal RNA (12S rDNA) gene for designing Ommastrephidae-specific primers and probe. As a result, all the TaqMan systems are of good performance, and efficiency of each reaction was calculated by making standard curves. This method could detect target species either in single or mixed squid specimen, and it was applied to identify 12 squid processed products successfully. Thus, it would play an important role in fulfilling labeling regulations and squid fishery control. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Development of a real-time quantitative PCR assay to enumerate Yersinia pestis in fleas.

    PubMed

    Gabitzsch, Elizabeth S; Vera-Tudela, Rommelle; Eisen, Rebecca J; Bearden, Scott W; Gage, Kenneth L; Zeidner, Nordin S

    2008-07-01

    A real-time quantitative polymerase chain reaction (qPCR) assay was developed for Yersina pestis. The qPCR assay was developed utilizing a conserved region of the Y. pestis ferric iron uptake regulator gene (fur) to design primers and a fluorescent (FAM-labeled) TaqMan probe. The assay was optimized using cultured Y. pestis (UG05-0454) and was confirmed to work with strains from 3 Y. pestis biovars. The optimized assay was capable of detecting a single organism of cultured Y. pestis and as little as 300 bacteria in infected flea triturates. This qPCR assay enables rapid enumeration of Y. pestis bacterium in laboratory-infected fleas when compared with conventional serial dilution plating.

  20. Real-time quantitative PCR for retrovirus-like particle quantification in CHO cell culture.

    PubMed

    de Wit, C; Fautz, C; Xu, Y

    2000-09-01

    Chinese hamster ovary (CHO) cells have been widely used to manufacture recombinant proteins intended for human therapeutic uses. Retrovirus-like particles, which are apparently defective and non-infectious, have been detected in all CHO cells by electron microscopy (EM). To assure viral safety of CHO cell-derived biologicals, quantification of retrovirus-like particles in production cell culture and demonstration of sufficient elimination of such retrovirus-like particles by the down-stream purification process are required for product market registration worldwide. EM, with a detection limit of 1x10(6) particles/ml, is the standard retrovirus-like particle quantification method. The whole process, which requires a large amount of sample (3-6 litres), is labour intensive, time consuming, expensive, and subject to significant assay variability. In this paper, a novel real-time quantitative PCR assay (TaqMan assay) has been developed for the quantification of retrovirus-like particles. Each retrovirus particle contains two copies of the viral genomic particle RNA (pRNA) molecule. Therefore, quantification of retrovirus particles can be achieved by quantifying the pRNA copy number, i.e. every two copies of retroviral pRNA is equivalent to one retrovirus-like particle. The TaqMan assay takes advantage of the 5'-->3' exonuclease activity of Taq DNA polymerase and utilizes the PRISM 7700 Sequence Detection System of PE Applied Biosystems (Foster City, CA, U.S.A.) for automated pRNA quantification through a dual-labelled fluorogenic probe. The TaqMan quantification technique is highly comparable to the EM analysis. In addition, it offers significant advantages over the EM analysis, such as a higher sensitivity of less than 600 particles/ml, greater accuracy and reliability, higher sample throughput, more flexibility and lower cost. Therefore, the TaqMan assay should be used as a substitute for EM analysis for retrovirus-like particle quantification in CHO cell

  1. Comparison of the COBAS TAQMAN HIV-1 HPS with VERSANT HIV-1 RNA 3.0 assay (bDNA) for plasma RNA quantitation in different HIV-1 subtypes.

    PubMed

    Gomes, Perpétua; Palma, Ana Carolina; Cabanas, Joaquim; Abecasis, Ana; Carvalho, Ana Patrícia; Ziermann, Rainer; Diogo, Isabel; Gonçalves, Fátima; Lobo, Céu Sousa; Camacho, Ricardo

    2006-08-01

    Quantitation of HIV-1 RNA levels in plasma has an undisputed prognostic value and is extremely important for evaluating response to antiretroviral therapy. The purpose of this study was to evaluate the performance of the real-time PCR COBAS TaqMan 48 analyser, comparing it to the existing VERSANT 3.0 (bDNA) for HIV-1 RNA quantitation in plasma of individuals infected with different HIV-1 subtypes (104 blood samples). A positive linear correlation between the two tests (r2 = 0.88) was found. Quantitation by the COBAS TaqMan assay was approximately 0.32log10 higher than by bDNA. The relationship between the two assays was similar within all subtypes with a Deming regression of <1 and <0 for the Bland-Altman plots. Overall, no significant differences were found in plasma viral load quantitation in different HIV-1 subtypes between both assays; therefore these assays are suitable for viral load quantitation of highly genetically diverse HIV-1 plasma samples.

  2. Bat white-nose syndrome: A real-time TaqMan polymerase chain reaction test targeting the intergenic spacer region of Geomyces destructans

    Treesearch

    Laura K Muller; Jeffrey M. Lorch; Daniel L. Lindner; Michael O' Connor; Andrea Gargas; David S. Blehert

    2013-01-01

    The fungus Geomyces destructans is the causative agent of white-nose syndrome (WNS), a disease that has killed millions of North American hibernating bats. We describe a real-time TaqMan PCR test that detects DNA from G. destructans by targeting a portion of the multicopy intergenic spacer region of the rRNA gene complex. The...

  3. Rapid Quantitative Detection of Lactobacillus sakei in Meat and Fermented Sausages by Real-Time PCR

    PubMed Central

    Martín, Belén; Jofré, Anna; Garriga, Margarita; Pla, Maria; Aymerich, Teresa

    2006-01-01

    A quick and simple method for quantitative detection of Lactobacillus sakei in fermented sausages was successfully developed. It is based on Chelex-100-based DNA purification and real-time PCR enumeration using a TaqMan fluorescence probe. Primers and probes were designed in the L. sakei 16S-23S rRNA intergenic transcribed spacer region, and the assay was evaluated using L. sakei genomic DNA and an artificially inoculated sausage model. The detection limit of this technique was approximately 3 cells per reaction mixture using both purified DNA and the inoculated sausage model. The quantification limit was established at 30 cells per reaction mixture in both models. The assay was then applied to enumerate L. sakei in real samples, and the results were compared to the MRS agar count method followed by confirmation of the percentage of L. sakei colonies. The results obtained by real-time PCR were not statistically significantly different than those obtained by plate count on MRS agar (P > 0.05), showing a satisfactory agreement between both methods. Therefore, the real-time PCR assay developed can be considered a promising rapid alternative method for the quantification of L. sakei and evaluation of the implantation of starter strains of L. sakei in fermented sausages. PMID:16957227

  4. Rapid quantitative detection of Lactobacillus sakei in meat and fermented sausages by real-time PCR.

    PubMed

    Martín, Belén; Jofré, Anna; Garriga, Margarita; Pla, Maria; Aymerich, Teresa

    2006-09-01

    A quick and simple method for quantitative detection of Lactobacillus sakei in fermented sausages was successfully developed. It is based on Chelex-100-based DNA purification and real-time PCR enumeration using a TaqMan fluorescence probe. Primers and probes were designed in the L. sakei 16S-23S rRNA intergenic transcribed spacer region, and the assay was evaluated using L. sakei genomic DNA and an artificially inoculated sausage model. The detection limit of this technique was approximately 3 cells per reaction mixture using both purified DNA and the inoculated sausage model. The quantification limit was established at 30 cells per reaction mixture in both models. The assay was then applied to enumerate L. sakei in real samples, and the results were compared to the MRS agar count method followed by confirmation of the percentage of L. sakei colonies. The results obtained by real-time PCR were not statistically significantly different than those obtained by plate count on MRS agar (P > 0.05), showing a satisfactory agreement between both methods. Therefore, the real-time PCR assay developed can be considered a promising rapid alternative method for the quantification of L. sakei and evaluation of the implantation of starter strains of L. sakei in fermented sausages.

  5. Novel TaqMan real-time polymerase chain reaction assay for verifying the authenticity of meat and commercial meat products from game birds.

    PubMed

    Rojas, María; González, Isabel; Pavón, Miguel Angel; Pegels, Nicolette; Lago, Adriana; Hernández, Pablo E; García, Teresa; Martín, Rosario

    2010-06-01

    Species-specific real-time polymerase chain reaction (PCR) assays using TaqMan probes have been developed for verifying the labeling of meat and commercial meat products from game birds, including quail, pheasant, partridge, guinea fowl, pigeon, Eurasian woodcock and song thrush. The method combines the use of species-specific primers and TaqMan probes that amplify small fragments (amplicons <150 base pairs) of the mitochondrial 12S rRNA gene, and an endogenous control primer pair that amplifies a 141-bp fragment of the nuclear 18S rRNA gene from eukaryotic DNA. Analysis of experimental raw and heat-treated binary mixtures as well as of commercial meat products from the target species demonstrated the suitability of the assay for the detection of the target DNAs.

  6. Use of the Genomic Subtractive Hybridization Technique To Develop a Real-Time PCR Assay for Quantitative Detection of Prevotella spp. in Oral Biofilm Samples

    PubMed Central

    Nagashima, Shiori; Yoshida, Akihiro; Suzuki, Nao; Ansai, Toshihiro; Takehara, Tadamichi

    2005-01-01

    Genomic subtractive hybridization was used to design Prevotella nigrescens-specific primers and TaqMan probes. Based on this technique, a TaqMan real-time PCR assay was developed for quantifying four oral black-pigmented Prevotella species. The combination of real-time PCR and genomic subtractive hybridization is useful for preparing species-specific primer-probe sets for closely related species. PMID:15956428

  7. Application of quantitative real-time PCR compared to filtration methods for the enumeration of Escherichia coli in surface waters within Vietnam.

    PubMed

    Vital, Pierangeli G; Van Ha, Nguyen Thi; Tuyet, Le Thi Hong; Widmer, Kenneth W

    2017-02-01

    Surface water samples in Vietnam were collected from the Saigon River, rural and suburban canals, and urban runoff canals in Ho Chi Minh City, Vietnam, and were processed to enumerate Escherichia coli. Quantification was done through membrane filtration and quantitative real-time polymerase chain reaction (PCR). Mean log colony-forming unit (CFU)/100 ml E. coli counts in the dry season for river/suburban canals and urban canals were log 2.8 and 3.7, respectively, using a membrane filtration method, while using Taqman quantitative real-time PCR they were log 2.4 and 2.8 for river/suburban canals and urban canals, respectively. For the wet season, data determined by the membrane filtration method in river/suburban canals and urban canals samples had mean counts of log 3.7 and 4.1, respectively. While mean log CFU/100 ml counts in the wet season using quantitative PCR were log 3 and 2, respectively. Additionally, the urban canal samples were significantly lower than those determined by conventional culture methods for the wet season. These results show that while quantitative real-time PCR can be used to determine levels of fecal indicator bacteria in surface waters, there are some limitations to its application and it may be impacted by sources of runoff based on surveyed samples.

  8. TaqMan based real time PCR assay targeting EML4-ALK fusion transcripts in NSCLC.

    PubMed

    Robesova, Blanka; Bajerova, Monika; Liskova, Kvetoslava; Skrickova, Jana; Tomiskova, Marcela; Pospisilova, Sarka; Mayer, Jiri; Dvorakova, Dana

    2014-07-01

    Lung cancer with the ALK rearrangement constitutes only a small fraction of patients with non-small cell lung cancer (NSCLC). However, in the era of molecular-targeted therapy, efficient patient selection is crucial for successful treatment. In this context, an effective method for EML4-ALK detection is necessary. We developed a new highly sensitive variant specific TaqMan based real time PCR assay applicable to RNA from formalin-fixed paraffin-embedded tissue (FFPE). This assay was used to analyze the EML4-ALK gene in 96 non-selected NSCLC specimens and compared with two other methods (end-point PCR and break-apart FISH). EML4-ALK was detected in 33/96 (34%) specimens using variant specific real time PCR, whereas in only 23/96 (24%) using end-point PCR. All real time PCR positive samples were confirmed with direct sequencing. A total of 46 specimens were subsequently analyzed by all three detection methods. Using variant specific real time PCR we identified EML4-ALK transcript in 17/46 (37%) specimens, using end-point PCR in 13/46 (28%) specimens and positive ALK rearrangement by FISH was detected in 8/46 (17.4%) specimens. Moreover, using variant specific real time PCR, 5 specimens showed more than one EML4-ALK variant simultaneously (in 2 cases the variants 1+3a+3b, in 2 specimens the variants 1+3a and in 1 specimen the variant 1+3b). In one case of 96 EML4-ALK fusion gene and EGFR mutation were detected. All simultaneous genetic variants were confirmed using end-point PCR and direct sequencing. Our variant specific real time PCR assay is highly sensitive, fast, financially acceptable, applicable to FFPE and seems to be a valuable tool for the rapid prescreening of NSCLC patients in clinical practice, so, that most patients able to benefit from targeted therapy could be identified. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Fast real-time polymerase chain reaction for quantitative detection of Lactobacillus delbrueckii bacteriophages in milk.

    PubMed

    Martín, Maria Cruz; del Rio, Beatriz; Martínez, Noelia; Magadán, Alfonso H; Alvarez, Miguel A

    2008-12-01

    One of the main microbiological problems of the dairy industry is the susceptibility of starter bacteria to virus infections. Lactobacillus delbrueckii, a component of thermophilic starter cultures used in the manufacture of several fermented dairy products, including yogurt, is also sensitive to bacteriophage attacks. To avoid the problems associated with these viruses, quick and sensitive detection methods are necessary. In the present study, a fast real-time quantitative polymerase chain reaction assay for the direct detection and quantification of L. delbrueckii phages in milk was developed. A set of primers and a TaqMan MGB probe was designed, based on the lysin gene sequence of different L. delbrueckii phages. The results show the proposed method to be a rapid (total processing time 30 min), specific and highly sensitive technique for detecting L. delbrueckii phages in milk.

  10. TaqMan Real-Time PCR Assays To Assess Arbuscular Mycorrhizal Responses to Field Manipulation of Grassland Biodiversity: Effects of Soil Characteristics, Plant Species Richness, and Functional Traits▿ †

    PubMed Central

    König, Stephan; Wubet, Tesfaye; Dormann, Carsten F.; Hempel, Stefan; Renker, Carsten; Buscot, François

    2010-01-01

    Large-scale (temporal and/or spatial) molecular investigations of the diversity and distribution of arbuscular mycorrhizal fungi (AMF) require considerable sampling efforts and high-throughput analysis. To facilitate such efforts, we have developed a TaqMan real-time PCR assay to detect and identify AMF in environmental samples. First, we screened the diversity in clone libraries, generated by nested PCR, of the nuclear ribosomal DNA internal transcribed spacer (ITS) of AMF in environmental samples. We then generated probes and forward primers based on the detected sequences, enabling AMF sequence type-specific detection in TaqMan multiplex real-time PCR assays. In comparisons to conventional clone library screening and Sanger sequencing, the TaqMan assay approach provided similar accuracy but higher sensitivity with cost and time savings. The TaqMan assays were applied to analyze the AMF community composition within plots of a large-scale plant biodiversity manipulation experiment, the Jena Experiment, primarily designed to investigate the interactive effects of plant biodiversity on element cycling and trophic interactions. The results show that environmental variables hierarchically shape AMF communities and that the sequence type spectrum is strongly affected by previous land use and disturbance, which appears to favor disturbance-tolerant members of the genus Glomus. The AMF species richness of disturbance-associated communities can be largely explained by richness of plant species and plant functional groups, while plant productivity and soil parameters appear to have only weak effects on the AMF community. PMID:20418424

  11. Quantitative real-time imaging of glutathione

    USDA-ARS?s Scientific Manuscript database

    Glutathione plays many important roles in biological processes; however, the dynamic changes of glutathione concentrations in living cells remain largely unknown. Here, we report a reversible reaction-based fluorescent probe—designated as RealThiol (RT)—that can quantitatively monitor the real-time ...

  12. Detection of viable Salmonella in ice cream by TaqMan real-time polymerase chain reaction assay combining propidium monoazide.

    PubMed

    Wang, Yuexia; Yang, Ming; Liu, Shuchun; Chen, Wanyi; Suo, Biao

    2015-09-01

    Real-time polymerase chain reaction (PCR) allows rapid detection of Salmonella in frozen dairy products, but it might cause a false positive detection result because it might amplify DNA from dead target cells as well. In this study, Salmonella-free frozen ice cream was initially inoculated with heat-killed Salmonella Typhimurium cells and stored at -18°C. Bacterial DNA extracted from the sample was amplified using TaqMan probe-based real-time PCR targeting the invA gene. Our results indicated that DNA from the dead cells remained stable in frozen ice cream for at least 20 days, and could produce fluorescence signal for real-time PCR as well. To overcome this limitation, propidium monoazide (PMA) was combined with real-time PCR. PMA treatment can effectively prevent PCR amplification from heat-killed Salmonella cells in frozen ice cream. The PMA real-time PCR assay can selectively detect viable Salmonella at as low as 10 3  CFU/mL. Combining 18 hours of pre-enrichment with the assay allows for the detection of viable Salmonella at 10 0  CFU/mL and avoiding the false-positive result of dead cells. The PMA real-time PCR assay provides an alternative specifically for detection of viable Salmonella in ice cream. However, when the PMA real-time PCR assay was evaluated in ice cream subjected to frozen storage, it obviously underestimated the contamination situation of viable Salmonella, which might lead to a false negative result. According to this result, the use of enrichment prior to PMA real-time PCR analysis remains as the more appropriate approach. Copyright © 2015. Published by Elsevier B.V.

  13. Rapid detection of Enterovirus and Coxsackievirus A10 by a TaqMan based duplex one-step real time RT-PCR assay.

    PubMed

    Chen, Jingfang; Zhang, Rusheng; Ou, Xinhua; Yao, Dong; Huang, Zheng; Li, Linzhi; Sun, Biancheng

    2017-06-01

    A TaqMan based duplex one-step real time RT-PCR (rRT-PCR) assay was developed for the rapid detection of Coxsackievirus A10 (CV-A10) and other enterovirus (EVs) in clinical samples. The assay was fully evaluated and found to be specific and sensitive. When applied in 115 clinical samples, a 100% diagnostic sensitivity in CV-A10 detection and 97.4% diagnostic sensitivity in other EVs were found. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Sensitive and specific detection of potentially allergenic almond (Prunus dulcis) in complex food matrices by Taqman(®) real-time polymerase chain reaction in comparison to commercially available protein-based enzyme-linked immunosorbent assay.

    PubMed

    Röder, Martin; Vieths, Stefan; Holzhauser, Thomas

    2011-01-24

    Currently, causative immunotherapies are lacking in food allergy. The only option to prevent allergic reactions in susceptible individuals is to strictly avoid the offending food. Thus, reliable labelling of allergenic constituents is of major importance, but can only be achieved if appropriate specific and sensitive detection techniques for foods with allergenic potential are available. Almond is an allergenic food that requires mandatory labelling on prepackaged foods and belongs to the genus Prunus. Species of this genus are phylogenetically closely related. We observed commercially available almond specific ELISA being highly cross-reactive with other foods of the Prunoideae family, resulting in a false-positive detection of up to 500,000 mg kg(-1) almond. Previously published PCR methods were reported to be cross-reactive with false positive results >1200 mg kg(-1). We describe the development of a novel almond specific real-time PCR, based on mutated mismatch primers and sequence specific Taqman(®) probe detection, in comparison with two quantitative commercially available ELISA. PCR sensitivity was investigated with chocolate, chocolate coating and cookies spiked between 5 and 100,000 mg kg(-1) almond. In all matrices almond was reproducibly detected by real-time PCR at the lowest spike level of 5 mg kg(-1). Further, between 100 and 100,000 mg kg(-1) spiked almond, the method featured good correlation between quantified copy numbers and the amount of spiked almond. Within this range a similar relation between detectable signal and amount of almond was observed for both PCR and ELISA. In contrast to ELISA the Taqman(®) real-time PCR method was highly specific in 59 food items with negligible cross-reactivity for a very limited number of Prunoideae foods. The real-time PCR analysis of 24 retail samples was in concordance with ELISA results: 21% (n=5) contained undeclared almond. This is the first completely disclosed real-time PCR method for a specific and

  15. High-throughput real-time quantitative reverse transcription PCR.

    PubMed

    Bookout, Angie L; Cummins, Carolyn L; Mangelsdorf, David J; Pesola, Jean M; Kramer, Martha F

    2006-02-01

    Extensive detail on the application of the real-time quantitative polymerase chain reaction (QPCR) for the analysis of gene expression is provided in this unit. The protocols are designed for high-throughput, 384-well-format instruments, such as the Applied Biosystems 7900HT, but may be modified to suit any real-time PCR instrument. QPCR primer and probe design and validation are discussed, and three relative quantitation methods are described: the standard curve method, the efficiency-corrected DeltaCt method, and the comparative cycle time, or DeltaDeltaCt method. In addition, a method is provided for absolute quantification of RNA in unknown samples. RNA standards are subjected to RT-PCR in the same manner as the experimental samples, thus accounting for the reaction efficiencies of both procedures. This protocol describes the production and quantitation of synthetic RNA molecules for real-time and non-real-time RT-PCR applications.

  16. Rapid Detection of Ceratocystis platani Inoculum by Quantitative Real-Time PCR Assay

    PubMed Central

    Ghelardini, Luisa; Belbahri, Lassaâd; Quartier, Marion; Santini, Alberto

    2013-01-01

    Ceratocystis platani is the causal agent of canker stain of plane trees, a lethal disease able to kill mature trees in one or two successive growing seasons. The pathogen is a quarantine organism and has a negative impact on anthropogenic and natural populations of plane trees. Contaminated sawdust produced during pruning and sanitation fellings can contribute to disease spread. The goal of this study was to design a rapid, real-time quantitative PCR assay to detect a C. platani airborne inoculum. Airborne inoculum traps (AITs) were placed in an urban setting in the city of Florence, Italy, where the disease was present. Primers and TaqMan minor groove binder (MGB) probes were designed to target cerato-platanin (CP) and internal transcribed spacer 2 (ITS2) genes. The detection limits of the assay were 0.05 pg/μl and 2 fg/μl of fungal DNA for CP and ITS, respectively. Pathogen detection directly from AITs demonstrated specificity and high sensitivity for C. platani, detecting DNA concentrations as low as 1.2 × 10−2 to 1.4 × 10−2 pg/μl, corresponding to ∼10 conidia per ml. Airborne inoculum traps were able to detect the C. platani inoculum within 200 m of the closest symptomatic infected plane tree. The combination of airborne trapping and real-time quantitative PCR assay provides a rapid and sensitive method for the specific detection of a C. platani inoculum. This technique may be used to identify the period of highest risk of pathogen spread in a site, thus helping disease management. PMID:23811499

  17. Clinical evaluation of a quantitative real time polymerase chain reaction assay for diagnosis of primary Epstein-Barr virus infection in children.

    PubMed

    Pitetti, Raymond D; Laus, Stella; Wadowsky, Robert M

    2003-08-01

    Epstein-Barr virus (EBV) infectious mononucleosis is often diagnosed based on characteristic clinical features and either a positive heterophil antibody test or serology, both of which can be unreliable in young children. Real time quantitative PCR assays that measure EBV DNA load in serum or plasma are highly sensitive in young children, but serum and plasma contain inhibitors of PCR which must be removed by DNA extraction techniques. A real time TaqMan PCR assay was designed and evaluated for simultaneously measuring EBV DNA load and validating the removal of PCR inhibitors from serum samples. A serum sample was available from patients classified serologically as primary EBV infection (n = 28), EBV-seronegative (n = 25) and EBV-seropositive (n = 26). Patients were classified as having EBV infectious mononucleosis if they had specified clinical findings and > or =10% atypical lymphocytes in peripheral blood or had a positive Monospot test result. DNA was purified by a spin column method and tested in PCR reactions with primers for EBV DNA polymerase gene and internal control targets. Amplification of the two PCR products was measured in real time with separate TaqMan DNA probes labeled with various fluorescent reporters. The mean age of study patients was 9 years, 4 months. Twenty-one (75%) of the patients in the primary EBV infection group, one (4%) of the seronegatives and none of the seropositives had detectable EBV DNA. Within the primary infection group, those with detectable virus were more likely than those without detectable virus to have evidence of lymphadenopathy (14 of 16 vs.1 of 5; P = 0.011), higher mean atypical (11.7 vs.0.9%; P = 0.002) and absolute atypical (1.5 vs.0.1 x 109/l; P = 0.004) lymphocyte count, higher mean absolute lymphocyte count (4.7 vs.2.3 x 109/l; P = 0.026) and higher mean aspartate aminotransferase value (119.8 vs.37.3 IU/l; P = 0.036). Ten patients, all in the primary infection group, had EBV infectious mononucleosis, and all

  18. Detection of rabbit and hare processed material in compound feeds by TaqMan real-time PCR.

    PubMed

    Pegels, N; López-Calleja, I; García, T; Martín, R; González, I

    2013-01-01

    Food and feed traceability has become a priority for governments due to consumer demand for comprehensive and integrated safety policies. In the present work, a TaqMan real-time PCR assay targeting the mitochondrial 12S rRNA gene was developed for specific detection of rabbit and hare material in animal feeds and pet foods. The technique is based on the use of three species-specific primer/probe detection systems targeting three 12S rRNA gene fragments: one from rabbit species, another one from hare species and a third fragment common to rabbit and hare (62, 102 and 75 bp length, respectively). A nuclear 18S rRNA PCR system, detecting a 77-bp amplicon, was used as positive amplification control. Assay performance and sensitivity were assessed through the analysis of a batch of laboratory-scale feeds treated at 133°C at 3 bar for 20 min to reproduce feed processing conditions dictated by European regulations. Successful detection of highly degraded rabbit and hare material was achieved at the lowest target concentration assayed (0.1%). Furthermore, the method was applied to 96 processed commercial pet food products to determine whether correct labelling had been used at the market level. The reported real-time PCR technique detected the presence of rabbit tissues in 80 of the 96 samples analysed (83.3%), indicating a possible labelling fraud in some pet foods. The real-time PCR method reported may be a useful tool for traceability purposes within the framework of feed control.

  19. A TaqMan real-time PCR method based on alternative oxidase genes for detection of plant species in animal feed samples.

    PubMed

    Campos, Maria Doroteia; Valadas, Vera; Campos, Catarina; Morello, Laura; Braglia, Luca; Breviario, Diego; Cardoso, Hélia G

    2018-01-01

    Traceability of processed food and feed products has been gaining importance due to the impact that those products can have on human/animal health and to the associated economic and legal concerns, often related to adulterations and frauds as it can be the case for meat and milk. Despite mandatory traceability requirements for the analysis of feed composition, few reliable and accurate methods are presently available to enforce the legislative frame and allow the authentication of animal feeds. In this study, nine sensitive and species-specific real-time PCR TaqMan MGB assays are described for plant species detection in animal feed samples. The method is based on selective real-time qPCR (RT-qPCR) amplification of target genes belonging to the alternative oxidase (AOX) gene family. The plant species selected for detection in feed samples were wheat, maize, barley, soybean, rice and sunflower as common components of feeds, and cotton, flax and peanut as possible undesirable contaminants. The obtained results were compared with end-point PCR methodology. The applicability of the AOX TaqMan assays was evaluated through the screening of commercial feed samples, and by the analysis of plant mixtures with known composition. The RT-qPCR methodology allowed the detection of the most abundant species in feeds but also the identification of contaminant species present in lower amounts, down to 1% w/w. AOX-based methodology provides a suitable molecular marker approach to ascertain plant species composition of animal feed samples, thus supporting feed control and enforcement of the feed sector and animal production.

  20. Universal detection of phytoplasmas and Xylella spp. by TaqMan singleplex and multiplex real-time PCR with dual priming oligonucleotides.

    PubMed

    Ito, Takao; Suzaki, Koichi

    2017-01-01

    Phytoplasmas and Xylella spp. are bacteria that cause many economically important plant diseases worldwide. TaqMan probe-based quantitative real-time polymerase chain reaction (qPCR) assays have been utilized to universally detect phytoplasmas or Xylella fastidiosa. To develop a superior universal qPCR method, we used a dual priming oligonucleotide (DPO) with two annealing sites as a reverse primer to target the well-conserved bacterial 16S rDNA. The new qPCR assays universally detected various species of phytoplasmas and subspecies of X. fastidiosa as well as Xylella taiwanensis, and generally showed superior threshold cycle values when amplifying specific or non-specific products compared to current universal qPCR assays. The proposed qPCR assays were integrated to develop a multiplex qPCR assay that simultaneously detected phytoplasmas, Xylella spp., and an internal plant DNA positive control within 1 hour. This assay could detect a minimum of ten bacterial cells and was compatible with crude extractions used in the rapid screening of various plants. The amplicons were of sufficient lengths to be directly sequenced for preliminary identification, and the primers could be used in universal conventional PCR assays. Additionally, reverse DPO primers can be utilized to improve other probe-based qPCR assays.

  1. Universal detection of phytoplasmas and Xylella spp. by TaqMan singleplex and multiplex real-time PCR with dual priming oligonucleotides

    PubMed Central

    Suzaki, Koichi

    2017-01-01

    Phytoplasmas and Xylella spp. are bacteria that cause many economically important plant diseases worldwide. TaqMan probe-based quantitative real-time polymerase chain reaction (qPCR) assays have been utilized to universally detect phytoplasmas or Xylella fastidiosa. To develop a superior universal qPCR method, we used a dual priming oligonucleotide (DPO) with two annealing sites as a reverse primer to target the well-conserved bacterial 16S rDNA. The new qPCR assays universally detected various species of phytoplasmas and subspecies of X. fastidiosa as well as Xylella taiwanensis, and generally showed superior threshold cycle values when amplifying specific or non-specific products compared to current universal qPCR assays. The proposed qPCR assays were integrated to develop a multiplex qPCR assay that simultaneously detected phytoplasmas, Xylella spp., and an internal plant DNA positive control within 1 hour. This assay could detect a minimum of ten bacterial cells and was compatible with crude extractions used in the rapid screening of various plants. The amplicons were of sufficient lengths to be directly sequenced for preliminary identification, and the primers could be used in universal conventional PCR assays. Additionally, reverse DPO primers can be utilized to improve other probe-based qPCR assays. PMID:28957362

  2. Development and validation of a real-time TaqMan assay for the detection and enumeration of Pseudomonas fluorescens ATCC 13525 used as a challenge organism in testing of food equipments.

    PubMed

    Saha, Ratul; Bestervelt, Lorelle L; Donofrio, Robert S

    2012-02-01

    Pseudomonas fluorescens ATCC 13525 is used as the challenge organism to evaluate the efficacy of the clean-in-place (CIP) process of food equipment (automatic ice-maker) as per NSF/ANSI Standard 12. Traditional culturing methodology is presently used to determine the concentration of the challenge organism, which takes 48 h to confirm the cell density. Storage of the challenge preparation in the refrigerator might alter the cell density as P. fluorescens is capable of growing at 4 °C. Also, background organism can grow on the Pseudomonas F agar (PFA) used for the recovery of P. fluorescens thus affecting the results of the test. Real-time TaqMan assay targeting the cpn60 gene was developed for the enumeration and the identification of P. fluorescens because of its specificity, accuracy, and shorter turnaround time. The TaqMan primer-probe pair developed using the Allele ID® 7.0 probe design software was highly specific and sensitive for the target organism. The sensitivity of the assay was 10 colony forming units (CFU)/mL. The assay was also successful in determining the concentration of the challenge preparation within 2 h. Based on these observations, TaqMan assay targeting the cpn60 gene can be efficiently used for strain level identification and enumeration of bacteria. Pseudomonas fluorescens ATCC 13525 is used as a challenge organism in the efficacy testing of clean-in-place process of food equipments. Currently, culturing technique is used for its identification and estimation, which is not only time-consuming but also prone to error. Real-time TaqMan assay is more specific, sensitive, and accurate along with a shorter turnaround time compared to culturing techniques, thereby increasing the overall quality of the testing methodology to evaluate the clean-in-place process critical for the food industry to protect public health and safety. © 2012 Institute of Food Technologists®

  3. Results of the Abbott RealTime HIV-1 assay for specimens yielding "target not detected" results by the Cobas AmpliPrep/Cobas TaqMan HIV-1 Test.

    PubMed

    Babady, N Esther; Germer, Jeffrey J; Yao, Joseph D C

    2010-03-01

    No significantly discordant results were observed between the Abbott RealTime HIV-1 assay and the COBAS AmpliPrep/COBAS TaqMan HIV-1 Test (CTM) among 1,190 unique clinical plasma specimens obtained from laboratories located in 40 states representing all nine U.S. geographic regions and previously yielding "target not detected" results by CTM.

  4. Detection and quantification of Renibacterium salmoninarum DNA in salmonid tissues by real-time quantitative polymerase chain reaction analysis

    USGS Publications Warehouse

    Chase, D.M.; Elliott, D.G.; Pascho, R.J.

    2006-01-01

    Renibacterium salmoninarum is an important salmonid pathogen that is difficult to culture. We developed and assessed a real-time, quantitative, polymerase chain reaction (qPCR) assay for the detection and enumeration of R. salmoninarum. The qPCR is based on TaqMan technology and amplifies a 69-base pair (bp) region of the gene encoding the major soluble antigen (MSA) of R. salmoninarum. The qPCR assay consistently detected as few as 5 R. salmoninarum cells per reaction in kidney tissue. The specificity of the qPCR was confirmed by testing the DNA extracts from a panel of microorganisms that were either common fish pathogens or reported to cause false-positive reactions in the enzyme-linked immunosorbent assay (ELISA). Kidney samples from 38 juvenile Chinook salmon (Oncorhynchus tshawytscha) in a naturally infected population were examined by real-time qPCR, a nested PCR, and ELISA, and prevalences of R. salmoninarum detected were 71, 66, and 71%, respectively. The qPCR should be a valuable tool for evaluating the R. salmoninarum infection status of salmonids.

  5. Quantitative real-time RT-PCR assay for research studies on enterovirus infections in the central nervous system.

    PubMed

    Volle, Romain; Nourrisson, Céline; Mirand, Audrey; Regagnon, Christel; Chambon, Martine; Henquell, Cécile; Bailly, Jean-Luc; Peigue-Lafeuille, Hélène; Archimbaud, Christine

    2012-10-01

    Human enteroviruses are the most frequent cause of aseptic meningitis and are involved in other neurological infections. Qualitative detection of enterovirus genomes in cerebrospinal fluid is a prerequisite in diagnosing neurological diseases. The pathogenesis of these infections is not well understood and research in this domain would benefit from the availability of a quantitative technique to determine viral load in clinical specimens. This study describes the development of a real-time RT-qPCR assay using hydrolysis TaqMan probe and a competitive RNA internal control. The assay has high specificity and can be used for a large sample of distinct enterovirus strains and serotypes. The reproducible limit of detection was estimated at 1875 copies/ml of quantitative standards composed of RNA transcripts obtained from a cloned echovirus 30 genome. Technical performance was unaffected by the introduction of a competitive RNA internal control before RNA extraction. The mean enterovirus RNA concentration in an evaluation series of 15 archived cerebrospinal fluid specimens was determined at 4.78 log(10)copies/ml for the overall sample. The sensitivity and reproducibility of the real time RT-qPCR assay used in combination with the internal control to monitor the overall specimen process make it a valuable tool with applied research into enterovirus infections. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Quantification of the biocontrol agent Trichoderma harzianum with real-time TaqMan PCR and its potential extrapolation to the hyphal biomass.

    PubMed

    López-Mondéjar, Rubén; Antón, Anabel; Raidl, Stefan; Ros, Margarita; Pascual, José Antonio

    2010-04-01

    The species of the genus Trichoderma are used successfully as biocontrol agents against a wide range of phytopathogenic fungi. Among them, Trichoderma harzianum is especially effective. However, to develop more effective fungal biocontrol strategies in organic substrates and soil, tools for monitoring the control agents are required. Real-time PCR is potentially an effective tool for the quantification of fungi in environmental samples. The aim of this study consisted of the development and application of a real-time PCR-based method to the quantification of T. harzianum, and the extrapolation of these data to fungal biomass values. A set of primers and a TaqMan probe for the ITS region of the fungal genome were designed and tested, and amplification was correlated to biomass measurements obtained with optical microscopy and image analysis, of the hyphal length of the mycelium of the colony. A correlation of 0.76 between ITS copies and biomass was obtained. The extrapolation of the quantity of ITS copies, calculated based on real-time PCR data, into quantities of fungal biomass provides potentially a more accurate value of the quantity of soil fungi. Copyright 2009 Elsevier Ltd. All rights reserved.

  7. Computing Quantitative Characteristics of Finite-State Real-Time Systems

    DTIC Science & Technology

    1994-05-04

    Current methods for verifying real - time systems are essentially decision procedures that establish whether the system model satisfies a given...specification. We present a general method for computing quantitative information about finite-state real - time systems . We have developed algorithms that...our technique can be extended to a more general representation of real - time systems , namely, timed transition graphs. The algorithms presented in this

  8. Detection, quantitation and identification of enteroviruses from surface waters and sponge tissue from the Florida Keys using real-time RT-PCR

    USGS Publications Warehouse

    Donaldson, K.A.; Griffin, Dale W.; Paul, J.H.

    2002-01-01

    A method was developed for the quantitative detection of pathogenic human enteroviruses from surface waters in the Florida Keys using Taqman (R) one-step Reverse transcription (RT)-PCR with the Model 7700 ABI Prism (R) Sequence Detection System. Viruses were directly extracted from unconcentrated grab samples of seawater, from seawater concentrated by vortex flow filtration using a 100kD filter and from sponge tissue. Total RNA was extracted from the samples, purified and concentrated using spin-column chromatography. A 192-196 base pair portion of the 5??? untranscribed region was amplified from these extracts. Enterovirus concentrations were estimated using real-time RT-PCR technology. Nine of 15 sample sites or 60% were positive for the presence of pathogenic human enteroviruses. Considering only near-shore sites, 69% were positive with viral concentrations ranging from 9.3viruses/ml to 83viruses/g of sponge tissue (uncorrected for extraction efficiency). Certain amplicons were selected for cloning and sequencing for identification. Three strains of waterborne enteroviruses were identified as Coxsackievirus A9, Coxsackievirus A16, and Poliovirus Sabin type 1. Time and cost efficiency of this one-step real-time RT-PCR methodology makes this an ideal technique to detect, quantitate and identify pathogenic enteroviruses in recreational waters. Copyright ?? 2002 Elsevier Science Ltd.

  9. Comparison of Two Commercial Automated Nucleic Acid Extraction and Integrated Quantitation Real-Time PCR Platforms for the Detection of Cytomegalovirus in Plasma

    PubMed Central

    Tsai, Huey-Pin; Tsai, You-Yuan; Lin, I-Ting; Kuo, Pin-Hwa; Chen, Tsai-Yun; Chang, Kung-Chao; Wang, Jen-Ren

    2016-01-01

    Quantitation of cytomegalovirus (CMV) viral load in the transplant patients has become a standard practice for monitoring the response to antiviral therapy. The cut-off values of CMV viral load assays for preemptive therapy are different due to the various assay designs employed. To establish a sensitive and reliable diagnostic assay for preemptive therapy of CMV infection, two commercial automated platforms including m2000sp extraction system integrated the Abbott RealTime (m2000rt) and the Roche COBAS AmpliPrep for extraction integrated COBAS Taqman (CAP/CTM) were evaluated using WHO international CMV standards and 110 plasma specimens from transplant patients. The performance characteristics, correlation, and workflow of the two platforms were investigated. The Abbott RealTime assay correlated well with the Roche CAP/CTM assay (R2 = 0.9379, P<0.01). The Abbott RealTime assay exhibited higher sensitivity for the detection of CMV viral load, and viral load values measured with Abbott RealTime assay were on average 0.76 log10 IU/mL higher than those measured with the Roche CAP/CTM assay (P<0.0001). Workflow analysis on a small batch size at one time, using the Roche CAP/CTM platform had a shorter hands-on time than the Abbott RealTime platform. In conclusion, these two assays can provide reliable data for different purpose in a clinical virology laboratory setting. PMID:27494707

  10. A Quantitative Approach to the Formal Verification of Real-Time Systems.

    DTIC Science & Technology

    1996-09-01

    Computer Science A Quantitative Approach to the Formal Verification of Real - Time Systems Sergio Vale Aguiar Campos September 1996 CMU-CS-96-199...ptisiic raieaiSI v Diambimos Lboiamtad _^ A Quantitative Approach to the Formal Verification of Real - Time Systems Sergio Vale Aguiar Campos...implied, of NSF, the Semiconduc- tor Research Corporation, ARPA or the U.S. government. Keywords: real - time systems , formal verification, symbolic

  11. High resolution TaqMan real-time PCR approach to detect hazelnut DNA encoding for ITS rDNA in foods.

    PubMed

    López-Calleja, Inés María; de la Cruz, Silvia; Pegels, Nicolette; González, Isabel; García, Teresa; Martín, Rosario

    2013-12-01

    A broad range of foods have been described as causing allergies, but the majority of allergic reactions can be ascribed to a limited number of food components. Recent extensive surveys showed how tree nuts, particularly hazelnut (Corylus avellana L.) seeds, rank amongst the most important sources of food allergy. In order to protect the allergic consumer, efficient and reliable methods are required for the detection of allergenic ingredients. For this purpose, we have developed a real-time polymerase chain reaction (PCR) for detection of hazelnut in commercial food products. In this way a specific hazelnut primer pair based on the ITS marker (70 bp) and a nuclease (TaqMan) probe labelled with FAM and BHQ were designed. Sensibility of real-time PCR was determined by analysis of raw and heat treated hazelnut-wheat flour mixtures with a range of detection of 0.1-100,000 ppm. Practical applicability of the real-time PCR assay developed for determining hazelnut in different food matrices was investigated by analyzing 179 commercial foodstuffs comprising snacks, biscuits, chocolates, bonbons, creams, nut bars, ice creams, precooked meals, breads, beverages, yogurts, cereals, meat products, rice cake and nougat. From the total of samples analyzed, 40 commercial food products that didn't declare hazelnut nor traces on the label were found to contain hazelnut. The real-time PCR method proposed herein due to its high sensitivity facilitates the detection of hazelnut traces in commercial food products and can also be useful for monitoring the effectiveness of cleaning processes and as consequence, can help to prevent the food allergic consumer from unintentional ingestion of hidden allergens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Development a of multiplex TaqMan real-time RT-PCR assay for simultaneous detection of Asian prunus viruses, plum bark necrosis stem pitting associated virus, and peach latent mosaic virus

    USDA-ARS?s Scientific Manuscript database

    Asian prunus viruses (APV 1, APV 2 and APV 3) and Plum bark necrosis stem pitting associated virus (PBNSPaV) are two recently described viruses infecting Prunus spp., and Peach latent mosaic viroid (PLMVd) is a viroid that infects the same species. A single-tube multiplex, TaqMan real-time RT-PCR as...

  13. A real-time, quantitative PCR protocol for assessing the relative parasitemia of Leucocytozoon in waterfowl

    USGS Publications Warehouse

    Smith, Matthew M.; Schmutz, Joel A.; Apelgren, Chloe; Ramey, Andy M.

    2015-01-01

    Microscopic examination of blood smears can be effective at diagnosing and quantifying hematozoa infections. However, this method requires highly trained observers, is time consuming, and may be inaccurate for detection of infections at low levels of parasitemia. To develop a molecular methodology for identifying and quantifying Leucocytozoon parasite infection in wild waterfowl (Anseriformes), we designed a real-time, quantitative PCR protocol to amplify Leucocytozoon mitochondrial DNA using TaqMan fluorogenic probes and validated our methodology using blood samples collected from waterfowl in interior Alaska during late summer and autumn (n = 105). By comparing our qPCR results to those derived from a widely used nested PCR protocol, we determined that our assay showed high levels of sensitivity (91%) and specificity (100%) in detecting Leucocytozoon DNA from host blood samples. Additionally, results of a linear regression revealed significant correlation between the raw measure of parasitemia produced by our qPCR assay (Ct values) and numbers of parasites observed on blood smears (R2 = 0.694, P = 0.003), indicating that our assay can reliably determine the relative parasitemia levels among samples. This methodology provides a powerful new tool for studies assessing effects of haemosporidian infection in wild avian species.

  14. EQUAL-quant: an international external quality assessment scheme for real-time PCR.

    PubMed

    Ramsden, Simon C; Daly, Sarah; Geilenkeuser, Wolf-Jochen; Duncan, Graeme; Hermitte, Fabienne; Marubini, Ettore; Neumaier, Michael; Orlando, Claudio; Palicka, Vladimir; Paradiso, Angelo; Pazzagli, Mario; Pizzamiglio, Sara; Verderio, Paolo

    2006-08-01

    Quantitative gene expression analysis by real-time PCR is important in several diagnostic areas, such as the detection of minimum residual disease in leukemia and the prognostic assessment of cancer patients. To address quality assurance in this technically challenging area, the European Union (EU) has funded the EQUAL project to develop methodologic external quality assessment (EQA) relevant to diagnostic and research laboratories among the EU member states. We report here the results of the EQUAL-quant program, which assesses standards in the use of TaqMan probes, one of the most widely used assays in the implementation of real-time PCR. The EQUAL-quant reagent set was developed to assess the technical execution of a standard TaqMan assay, including RNA extraction, reverse transcription, and real-time PCR quantification of target DNA copy number. The multidisciplinary EQA scheme included 137 participating laboratories from 29 countries. We demonstrated significant differences in performance among laboratories, with 20% of laboratories reporting at least one result lacking in precision and/or accuracy according to the statistical procedures described. No differences in performance were observed for the >10 different testing platforms used by the study participants. This EQA scheme demonstrated both the requirement and demand for external assessment of technical standards in real-time PCR. The reagent design and the statistical tools developed within this project will provide a benchmark for defining acceptable working standards in this emerging technology.

  15. Comparative evaluation of the performance of the Abbott RealTime HIV-1 assay for measurement of HIV-1 plasma viral load on genetically diverse samples from Greece

    PubMed Central

    2011-01-01

    Background HIV-1 is characterized by increased genetic heterogeneity which tends to hinder the reliability of detection and accuracy of HIV-1 RNA quantitation assays. Methods In this study, the Abbott RealTime HIV-1 (Abbott RealTime) assay was compared to the Roche Cobas TaqMan HIV-1 (Cobas TaqMan) and the Siemens Versant HIV-1 RNA 3.0 (bDNA 3.0) assays, using clinical samples of various viral load levels and subtypes from Greece, where the recent epidemiology of HIV-1 infection has been characterized by increasing genetic diversity and a marked increase in subtype A genetic strains among newly diagnosed infections. Results A high correlation was observed between the quantitative results obtained by the Abbott RealTime and the Cobas TaqMan assays. Viral load values quantified by the Abbott RealTime were on average lower than those obtained by the Cobas TaqMan, with a mean (SD) difference of -0.206 (0.298) log10 copies/ml. The mean differences according to HIV-1 subtypes between the two techniques for samples of subtype A, B, and non-A/non-B were 0.089, -0.262, and -0.298 log10 copies/ml, respectively. Overall, differences were less than 0.5 log10 for 85% of the samples, and >1 log10 in only one subtype B sample. Similarly, Abbott RealTime and bDNA 3.0 assays yielded a very good correlation of quantitative results, whereas viral load values assessed by the Abbott RealTime were on average higher (mean (SD) difference: 0.160 (0.287) log10 copies/ml). The mean differences according to HIV-1 subtypes between the two techniques for subtype A, B and non-A/non-B samples were 0.438, 0.105 and 0.191 log10 copies/ml, respectively. Overall, the majority of samples (86%) differed by less than 0.5 log10, while none of the samples showed a deviation of more than 1.0 log10. Conclusions In an area of changing HIV-1 subtype pattern, the Abbott RealTime assay showed a high correlation and good agreement of results when compared both to the Cobas TaqMan and bDNA 3.0 assays, for all

  16. Detection and quantification of genetically modified organisms using very short, locked nucleic acid TaqMan probes.

    PubMed

    Salvi, Sergio; D'Orso, Fabio; Morelli, Giorgio

    2008-06-25

    Many countries have introduced mandatory labeling requirements on foods derived from genetically modified organisms (GMOs). Real-time quantitative polymerase chain reaction (PCR) based upon the TaqMan probe chemistry has become the method mostly used to support these regulations; moreover, event-specific PCR is the preferred method in GMO detection because of its high specificity based on the flanking sequence of the exogenous integrant. The aim of this study was to evaluate the use of very short (eight-nucleotide long), locked nucleic acid (LNA) TaqMan probes in 5'-nuclease PCR assays for the detection and quantification of GMOs. Classic TaqMan and LNA TaqMan probes were compared for the analysis of the maize MON810 transgene. The performance of the two types of probes was tested on the maize endogenous reference gene hmga, the CaMV 35S promoter, and the hsp70/cryIA(b) construct as well as for the event-specific 5'-integration junction of MON810, using plasmids as standard reference molecules. The results of our study demonstrate that the LNA 5'-nuclease PCR assays represent a valid and reliable analytical system for the detection and quantification of transgenes. Application of very short LNA TaqMan probes to GMO quantification can simplify the design of 5'-nuclease assays.

  17. TaqMan real-time RT-PCR detection of infectious salmon anaemia virus (ISAV) from formalin-fixed paraffin-embedded Atlantic salmon Salmo salar tissues.

    PubMed

    Godoy, M G; Kibenge, F S; Kibenge, M J; Olmos, P; Ovalle, L; Yañez, A J; Avendaño-Herrera, R

    2010-05-18

    The objective of this study was to evaluate the application of a TaqMan real-time reverse transcriptase PCR (RT-PCR) assay for the detection of infectious salmon anaemia virus (ISAV) in formalin-fixed paraffin-embedded (FFPE) fish tissues from Atlantic salmon Salmo salar with and without clinical signs of infection, and to compare it with histological and immunohistochemical (IHC) techniques. Sixteen fish samples obtained in 2007 and 2008 from 4 different farms in Chile were examined. The real-time RT-PCR allowed the detection of ISAV in FFPE samples from 9 of 16 fish, regardless of the organs analyzed, whereas 4 of the real-time RT-PCR negative fish were positive as indicated by histological examination and 3 of the real-time RT-PCR positive fish were negative as indicated by immunohistochemistry evaluation. The presence of ISAV in RT-PCR positive samples was confirmed by amplicon sequencing. This work constitutes the first report on the use of real-time RT-PCR for the detection of ISAV in FFPE sections. The assay is very useful for the examination of archival wax-embedded tissues, and allows for both prospective and retrospective evaluation of tissue samples for the presence of ISAV. However, the method only confirms the presence of the pathogen and should be used in combination with histopathology, which is a more precise tool. The combination of both techniques would be invaluable for confirmatory diagnosis of infectious salmon anaemia (ISA), which is essential for solving salmon farm problems.

  18. Analytical Performance of a Multiplex Real-Time PCR Assay Using TaqMan Probes for Quantification of Trypanosoma cruzi Satellite DNA in Blood Samples

    PubMed Central

    Abate, Teresa; Cayo, Nelly M.; Parrado, Rudy; Bello, Zoraida Diaz; Velazquez, Elsa; Muñoz-Calderon, Arturo; Juiz, Natalia A.; Basile, Joaquín; Garcia, Lineth; Riarte, Adelina; Nasser, Julio R.; Ocampo, Susana B.; Yadon, Zaida E.; Torrico, Faustino; de Noya, Belkisyole Alarcón; Ribeiro, Isabela; Schijman, Alejandro G.

    2013-01-01

    Background The analytical validation of sensitive, accurate and standardized Real-Time PCR methods for Trypanosoma cruzi quantification is crucial to provide a reliable laboratory tool for diagnosis of recent infections as well as for monitoring treatment efficacy. Methods/Principal Findings We have standardized and validated a multiplex Real-Time quantitative PCR assay (qPCR) based on TaqMan technology, aiming to quantify T. cruzi satellite DNA as well as an internal amplification control (IAC) in a single-tube reaction. IAC amplification allows rule out false negative PCR results due to inhibitory substances or loss of DNA during sample processing. The assay has a limit of detection (LOD) of 0.70 parasite equivalents/mL and a limit of quantification (LOQ) of 1.53 parasite equivalents/mL starting from non-boiled Guanidine EDTA blood spiked with T. cruzi CL-Brener stock. The method was evaluated with blood samples collected from Chagas disease patients experiencing different clinical stages and epidemiological scenarios: 1- Sixteen Venezuelan patients from an outbreak of oral transmission, 2- Sixty three Bolivian patients suffering chronic Chagas disease, 3- Thirty four Argentinean cases with chronic Chagas disease, 4- Twenty seven newborns to seropositive mothers, 5- A seronegative receptor who got infected after transplantation with a cadaveric kidney explanted from an infected subject. Conclusions/Significance The performing parameters of this assay encourage its application to early assessment of T. cruzi infection in cases in which serological methods are not informative, such as recent infections by oral contamination or congenital transmission or after transplantation with organs from seropositive donors, as well as for monitoring Chagas disease patients under etiological treatment. PMID:23350002

  19. mcrA-Targeted Real-Time Quantitative PCR Method To Examine Methanogen Communities▿

    PubMed Central

    Steinberg, Lisa M.; Regan, John M.

    2009-01-01

    Methanogens are of great importance in carbon cycling and alternative energy production, but quantitation with culture-based methods is time-consuming and biased against methanogen groups that are difficult to cultivate in a laboratory. For these reasons, methanogens are typically studied through culture-independent molecular techniques. We developed a SYBR green I quantitative PCR (qPCR) assay to quantify total numbers of methyl coenzyme M reductase α-subunit (mcrA) genes. TaqMan probes were also designed to target nine different phylogenetic groups of methanogens in qPCR assays. Total mcrA and mcrA levels of different methanogen phylogenetic groups were determined from six samples: four samples from anaerobic digesters used to treat either primarily cow or pig manure and two aliquots from an acidic peat sample stored at 4°C or 20°C. Only members of the Methanosaetaceae, Methanosarcina, Methanobacteriaceae, and Methanocorpusculaceae and Fen cluster were detected in the environmental samples. The three samples obtained from cow manure digesters were dominated by members of the genus Methanosarcina, whereas the sample from the pig manure digester contained detectable levels of only members of the Methanobacteriaceae. The acidic peat samples were dominated by both Methanosarcina spp. and members of the Fen cluster. In two of the manure digester samples only one methanogen group was detected, but in both of the acidic peat samples and two of the manure digester samples, multiple methanogen groups were detected. The TaqMan qPCR assays were successfully able to determine the environmental abundance of different phylogenetic groups of methanogens, including several groups with few or no cultivated members. PMID:19447957

  20. A real-time, quantitative PCR protocol for assessing the relative parasitemia of Leucocytozoon in waterfowl.

    PubMed

    Smith, Matthew M; Schmutz, Joel; Apelgren, Chloe; Ramey, Andrew M

    2015-04-01

    Microscopic examination of blood smears can be effective at diagnosing and quantifying hematozoa infections. However, this method requires highly trained observers, is time consuming, and may be inaccurate for detection of infections at low levels of parasitemia. To develop a molecular methodology for identifying and quantifying Leucocytozoon parasite infection in wild waterfowl (Anseriformes), we designed a real-time, quantitative PCR protocol to amplify Leucocytozoon mitochondrial DNA using TaqMan fluorogenic probes and validated our methodology using blood samples collected from waterfowl in interior Alaska during late summer and autumn (n=105). By comparing our qPCR results to those derived from a widely used nested PCR protocol, we determined that our assay showed high levels of sensitivity (91%) and specificity (100%) in detecting Leucocytozoon DNA from host blood samples. Additionally, results of a linear regression revealed significant correlation between the raw measure of parasitemia produced by our qPCR assay (Ct values) and numbers of parasites observed on blood smears (R(2)=0.694, P=0.003), indicating that our assay can reliably determine the relative parasitemia levels among samples. This methodology provides a powerful new tool for studies assessing effects of haemosporidian infection in wild avian species. Published by Elsevier B.V.

  1. Detection of exogenous gene doping of IGF-I by a real-time quantitative PCR assay.

    PubMed

    Zhang, Jin-Ju; Xu, Jing-Feng; Shen, Yong-Wei; Ma, Shi-Jiao; Zhang, Ting-Ting; Meng, Qing-Lin; Lan, Wen-Jun; Zhang, Chun; Liu, Xiao-Mei

    2017-07-01

    Gene doping can be easily concealed since its product is similar to endogenous protein, making its effective detection very challenging. In this study, we selected insulin-like growth factor I (IGF-I) exogenous gene for gene doping detection. First, the synthetic IGF-I gene was subcloned to recombinant adeno-associated virus (rAAV) plasmid to produce recombinant rAAV2/IGF-I-GFP vectors. Second, in an animal model, rAAV2/IGF-I-GFP vectors were injected into the thigh muscle tissue of mice, and then muscle and blood specimens were sampled at different time points for total DNA isolation. Finally, real-time quantitative PCR was employed to detect the exogenous gene doping of IGF-I. In view of the characteristics of endogenous IGF-I gene sequences, a TaqMan probe was designed at the junction of exons 2 and 3 of IGF-I gene to distinguish it from the exogenous IGF-I gene. In addition, an internal reference control plasmid and its probe were used in PCR to rule out false-positive results through comparison of their threshold cycle (Ct) values. Thus, an accurate exogenous IGF-I gene detection approach was developed in this study. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  2. Quantitative detection method for Roundup Ready soybean in food using duplex real-time PCR MGB chemistry.

    PubMed

    Samson, Maria Cristina; Gullì, Mariolina; Marmiroli, Nelson

    2010-07-01

    Methodologies that enable the detection of genetically modified organisms (GMOs) (authorized and non-authorized) in food and feed strongly influence the potential for adequate updating and implementation of legislation together with labeling requirements. Quantitative polymerase chain reaction (qPCR) systems were designed to boost the sensitivity and specificity on the identification of GMOs in highly degraded DNA samples; however, such testing will become economically difficult to cope with due to increasing numbers of approved genetically modified (GM) lines. Multiplexing approaches are therefore in development to provide cost-efficient solution. Construct-specific primers and probe were developed for quantitative analysis of Roundup Ready soybean (RRS) event glyphosate-tolerant soybean (GTS) 40-3-2. The lectin gene (Le1) was used as a reference gene, and its specificity was verified. RRS- and Le1-specific quantitative real-time PCR (qRTPCR) were optimized in a duplex platform that has been validated with respect to limit of detection (LOD) and limit of quantification (LOQ), as well as accuracy. The analysis of model processed food samples showed that the degradation of DNA has no adverse or little effects on the performance of quantification assay. In this study, a duplex qRTPCR using TaqMan minor groove binder-non-fluorescent quencher (MGB-NFQ) chemistry was developed for specific detection and quantification of RRS event GTS 40-3-2 that can be used for practical monitoring in processed food products.

  3. Taqman Real-Time PCR Detects Avipoxvirus DNA in Blood of Hawaìi `Amakihi (Hemignathus virens)

    PubMed Central

    Farias, Margaret E. M.; LaPointe, Dennis A.; Atkinson, Carter T.; Czerwonka, Christopher; Shrestha, Rajesh; Jarvi, Susan I.

    2010-01-01

    Background Avipoxvirus sp. is a significant threat to endemic bird populations on several groups of islands worldwide, including Hawaìi, the Galapagos Islands, and the Canary Islands. Accurate identification and genotyping of Avipoxvirus is critical to the study of this disease and how it interacts with other pathogens, but currently available methods rely on invasive sampling of pox-like lesions and may be especially harmful in smaller birds. Methodology/Principal Findings Here, we present a nested TaqMan Real-Time PCR for the detection of the Avipoxvirus 4b core protein gene in archived blood samples from Hawaiian birds. The method was successful in amplifying Avipoxvirus DNA from packed blood cells of one of seven Hawaiian honeycreepers with confirmed Avipoxvirus infections and 13 of 28 Hawaìi `amakihi (Hemignathus virens) with suspected Avipoxvirus infections based on the presence of pox-like lesions. Mixed genotype infections have not previously been documented in Hawaìi but were observed in two individuals in this study. Conclusions/Significance We anticipate that this method will be applicable to other closely related strains of Avipoxvirus and will become an important and useful tool in global studies of the epidemiology of Avipoxvirus. PMID:20523726

  4. TaqMan RT-PCR and VERSANT HIV-1 RNA 3.0 (bDNA) assay Quantification of HIV-1 RNA viral load in breast milk.

    PubMed

    Israel-Ballard, Kiersten; Ziermann, Rainer; Leutenegger, Christian; Di Canzio, James; Leung, Kimmy; Strom, Lynn; Abrams, Barbara; Chantry, Caroline

    2005-12-01

    Transmission of HIV via breast milk is a primary cause of pediatric HIV infection in developing countries. Reliable methods to detect breast milk viral load are important. To correlate the ability of the VERSANT HIV 3.0 (bDNA) assay to real-time (RT) TaqMan PCR in quantifying breast milk HIV-1 RNA. Forty-six breast milk samples that had been spiked with cell-free HIV-1 and eight samples spiked with cell-associated HIV-1 were assayed for HIV-1 RNA by both VERSANT HIV 3.0 and TaqMan RNA assays. Only assays on the cell-free samples were statistically compared. Both a Deming regression slope and a Bland-Altman slope indicated a linear relationship between the two assays. TaqMan quantitations were on average 2.6 times higher than those of HIV 3.0. A linear relationship was observed between serial dilutions of spiked cell-free HIV-1 and both the VERSANT HIV 3.0 and the TaqMan RNA assays. The two methods correlated well although the VERSANT HIV 3.0 research protocol quantified HIV-1 RNA slightly lower than TaqMan.

  5. Comparison of the Roche COBAS Amplicor Monitor, Roche COBAS Ampliprep/COBAS Taqman and Abbott RealTime Test assays for quantification of hepatitis C virus and HIV RNA.

    PubMed

    Wolff, Dietmar; Gerritzen, Andreas

    2007-01-01

    We have evaluated the performance of two newly developed automated real-time PCR assays, the COBAS Ampliprep/COBAS TaqMan (CAP/CTM) and the Abbott RealTime tests, in the quantification of human immunodeficiency virus (HIV) and hepatitis C virus (HCV) RNA. The widely used semi-automated COBAS Amplicor Monitor (CAM) assay served as the reference test. Several specimens were analyzed, including 102 plasma samples from HCV patients and 109 from HIV patients and 10 samples from negative donors, as well as Quality Control in Molecular Diagnostics (QCMD) and National Institute for Biological Standards and Controls (NIBSC) proficiency program panels. Good correlation was observed among the three assays, with correlation coefficients (R2) of 0.8 (CAM-CAP/CTM), 0.89 (CAM-RealTime) and 0.91 (CAP/CTM-RealTime) for HCV and 0.83 (CAM-RealTime), 0.85 (CAM-CAP/CTM) and 0.89 (CAP/CTM-RealTime) for HIV. The overall concordance for negative/positive results was 100% for HCV and 98% for HIV. All assays were equally able to quantify HCV genotypes 1, 3, 5 and HIV group M (subtypes A-H) and N from QCMD and NIBSC panels. In terms of workflow, the RealTime assay requires more hands-on-time than the CAP/CTM assay. The results indicate that real-time PCR assays can improve the efficiency of end-point PCR tests by better covering viral dynamic ranges and providing higher throughput and automation.

  6. Detection of minute virus of mice using real time quantitative PCR in assessment of virus clearance during the purification of Mammalian cell substrate derived biotherapeutics.

    PubMed

    Zhan, Dejin; Roy, Margaret R; Valera, Christine; Cardenas, Jesse; Vennari, Joann C; Chen, Janice W; Liu, Shengjiang

    2002-12-01

    A real time quantitative PCR assay has been developed for detecting minute virus of mice (MVM). This assay directly quantifies PCR product by monitoring the increase of fluorescence intensity emitted during enzymatic hydrolysis of an oligonucleotide probe labelled covalently with fluorescent reporting and quenching dyes via Taq polymerase 5'-->3' exonuclease activity. The quantity of MVM DNA molecules in the samples was determined using a known amount of MVM standard control DNA fragment cloned into a plasmid (pCR-MVM). We have demonstrated that MVM TaqMan PCR assay is approximately 1000-fold more sensitive than the microplate infectivity assay with the lowest detection limit of approximately one particle per reaction. The reliable detection range is within 100 to 10(9) molecules per reaction with high reproducibility. The intra assay variation is <2.5%, and the inter assays variation is <6.5% when samples contain >100 particles/assay. When we applied the TaqMan PCR to MVM clearance studies done by column chromatography or normal flow viral filtration, we found that the virus removal factors were similar to that of virus infectivity assay. It takes about a day to complete entire assay processes, thus, the TaqMan PCR assay is at least 10-fold faster than the infectivity assay. Therefore, we concluded that this fast, specific, sensitive, and robust assay could replace the infectivity assay for virus clearance evaluation. Copyright 2002 The International Association for Biologicals. Published by Elsevier Science Ltd. All rights reserved.

  7. Development of a TaqMan based real-time PCR assay for detection of Clonorchis sinensis DNA in human stool samples and fishes.

    PubMed

    Cai, Xian-Quan; Yu, Hai-Qiong; Bai, Jian-Shan; Tang, Jian-Dong; Hu, Xu-Chu; Chen, Ding-Hu; Zhang, Ren-Li; Chen, Mu-Xin; Ai, Lin; Zhu, Xing-Quan

    2012-03-01

    Clonorchiasis caused by the oriental liver fluke Clonorchis sinensis is a fish-borne zoonosis endemic in a number of countries. This article describes the development of a TaqMan based real-time PCR assay for detection of C. sinensis DNA in human feces and in fishes. Primers targeting the first internal transcribed spacer (ITS-1) sequence of the fluke were highly specific for C. sinensis, as evidenced by the negative amplification of closely related trematodes in the test with the exception of Opisthorchis viverrini. The detection limit of the assay was 1pg of purified genomic DNA, 5EPG (eggs per gram feces) or one metacercaria per gram fish filet. The assay was evaluated by testing 22 human fecal samples and 37 fish tissues microscopically determined beforehand, and the PCR results were highly in agreement with the microscopic results. This real-time PCR assay provides a useful tool for the sensitive detection of C. sinensis DNA in human stool and aquatic samples in China and other endemic countries where O. viverrini and Opisthorchis felineus are absent. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Detection of hepatitis B virus core antigen by phage display mediated TaqMan real-time immuno-PCR.

    PubMed

    Monjezi, Razieh; Tan, Sheau Wei; Tey, Beng Ti; Sieo, Chin Chin; Tan, Wen Siang

    2013-01-01

    The core antigen (HBcAg) of hepatitis B virus (HBV) is one of the markers for the identification of the viral infection. The main purpose of this study was to develop a TaqMan real-time detection assay based on the concept of phage display mediated immuno-PCR (PD-IPCR) for the detection of HBcAg. PD-IPCR combines the advantages of immuno-PCR (IPCR) and phage display technology. IPCR integrates the versatility of enzyme-linked immunosorbent assay (ELISA) with the sensitivity and signal generation power of PCR. Whereas, phage display technology exploits the physical association between the displayed peptide and the encoding DNA within the same phage particle. In this study, a constrained peptide displayed on the surface of an M13 recombinant bacteriophage that interacts tightly with HBcAg was applied as a diagnostic reagent in IPCR. The phage displayed peptide and its encoding DNA can be used to replace monoclonal antibody (mAb) and chemically bound DNA, respectively. This method is able to detect as low as 10ng of HBcAg with 10(8)pfu/ml of the recombinant phage which is about 10,000 times more sensitive than the phage-ELISA. The PD-IPCR provides an alternative means for the detection of HBcAg in human serum samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Quantitative real-time PCR method with internal amplification control to quantify cyclopiazonic acid producing molds in foods.

    PubMed

    Rodríguez, Alicia; Werning, María L; Rodríguez, Mar; Bermúdez, Elena; Córdoba, Juan J

    2012-12-01

    A quantitative TaqMan real-time PCR (qPCR) method that includes an internal amplification control (IAC) to quantify cyclopiazonic acid (CPA)-producing molds in foods has been developed. A specific primer pair (dmaTF/dmaTR) and a TaqMan probe (dmaTp) were designed on the basis of dmaT gene which encodes the enzyme dimethylallyl tryptophan synthase involved in the biosynthesis of CPA. The IAC consisted of a 105 bp chimeric DNA fragment containing a region of the hly gene of Listeria monocytogenes. Thirty-two mold reference strains representing CPA producers and non-producers of different mold species were used in this study. All strains were tested for CPA production by high-performance liquid chromatography-mass spectrometry (HPLC-MS). The functionality of the designed qPCR method was demonstrated by the high linear relationship of the standard curves relating to the dmaT gene copy numbers and the Ct values obtained from the different CPA producers tested. The ability of the qPCR protocol to quantify CPA-producing molds was evaluated in different artificially inoculated foods. A good linear correlation was obtained over the range 1-4 log cfu/g in the different food matrices. The detection limit in all inoculated foods ranged from 1 to 2 log cfu/g. This qPCR protocol including an IAC showed good efficiency to quantify CPA-producing molds in naturally contaminated foods avoiding false negative results. This method could be used to monitor the CPA producers in the HACCP programs to prevent the risk of CPA formation throughout the food chain. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Detection of Bordetella avium by TaqMan real-time PCR in tracheal swabs from wildlife birds.

    PubMed

    Stenzel, T; Pestka, D; Tykałowski, B; Śmiałek, M; Koncicki, A; Bancerz-Kisiel, A

    2017-03-28

    Bordetella avium, the causing agent of bordetellosis, a highly contagious infection of the respiratory tract in young poultry, causes significant losses in poultry farming throughout the world. Wildlife birds can be a reservoir of various pathogens that infect farm animals. For this reason the studies were conducted to estimate the prevalence of Bordetella avium in wildlife birds in Poland. Tracheal swab samples were collected from 650 birds representing 27 species. The bacterial DNA was isolated directly from the swabs and screened for Bordetella avium by TaqMan real-time PCR. The assay specificity was evaluated by testing DNA isolated from 8 other bacteria that can be present in avian respiratory tract, and there was no amplification from non-Bordetella avium agents. Test sensitivity was determined by preparing standard tenfold serial dilutions of DNA isolated from positive control. The assay revealed to be sensitive, with detection limit of approximately 4.07x10^2 copies of Bordetella avium DNA. The genetic material of Bordetella avium was found in 54.54% of common pheasants, in 9.09% of Eurasian coots, in 3.22% of black-headed gulls and in 2.77% of mallard ducks. The results of this study point to low prevalence of Bordetella avium infections in wildlife birds. The results also show that described molecular assay proved to be suitable for the rapid diagnosis of bordetellosis in the routine diagnostic laboratory.

  11. Development and evaluation of a Quadruplex Taq Man real-time PCR assay for simultaneous detection of clinical isolates of Enterococcus faecalis, Enterococcus faecium and their vanA and vanB genotypes.

    PubMed

    Naserpour Farivar, Taghi; Najafipour, Reza; Johari, Pouran; Aslanimehr, Masoumeh; Peymani, Amir; Jahani Hashemi, Hoasan; Mirzaui, Baman

    2014-10-01

    We developed and evaluated the utility of a quadruplex Taqman real-time PCR assay that allows simultaneous identification of vancomycin-resistant genotypes and clinically relevant enterococci. The specificity of the assay was tested using reference strains of vancomycin-resistant and susceptible enterococci. In total, 193 clinical isolates were identified and subsequently genotyped using a Quadruplex Taqman real-time PCR assay and melting curve analysis. Representative Quadruplex Taqman real-time PCR amplification curve were obtained for Enterococcus faecium, Enterococcus faecalis, vanA-containing E. faecium, vanB-containing E. faecalis. Phenotypic and genotypic analysis of the isolates gave same results for 82 enterococcal isolates, while in 5 isolates, they were inconsistent. We had three mixed strains, which were detected by the TaqMan real-time PCR assay and could not be identified correctly using phenotypic methods. Vancomycin resistant enterococci (VRE) genotyping and identification of clinically relevant enterococci were rapidly and correctly performed using TaqMan real-time multiplex real-time PCR assay.

  12. Real-time quantitative PCR of Staphylococcus aureus and application in restaurant meals.

    PubMed

    Berrada, H; Soriano, J M; Mañes, J; Picó, Y

    2006-01-01

    Staphylococcus aureus is considered the second most common pathogen to cause outbreaks of food poisoning, exceeded only by Campylobacter. Consumption of foods containing this microorganism is often identified as the cause of illness. In this study, a rapid, reliable, and sensitive real-time quantitative PCR was developed and compared with conventional culture methods. Real-time quantitative PCR was carried out by purifying DNA extracts of S. aureus with a Staphylococcus sample preparation kit and quantifying it in the LightCycler system with hybridization probes. The assay was linear from a range of 10 to 10(6) S. aureus cells (r2 > 0.997). The PCR reaction presented an efficiency of >85%. Accuracy of the PCR-based assay, expressed as percent bias, was around 13%, and the precision, expressed as a percentage of the coefficient of variation, was 7 to 10%. Intraday and interday variability were studied at 10(2) CFU/g and was 12 and 14%, respectively. The proposed method was applied to the analysis of 77 samples of restaurant meals in Valencia (Spain). In 11.6% of samples S. aureus was detected by real-time quantitative PCR, as well as by the conventional microbiological method. An excellent correspondence between real-time quantitative PCR and microbiological numbers (CFU/g) was observed with deviations of < 28%.

  13. Design and Development of a Quantitative TaqMan Real-Time PCR Assay for Evaluation of HIV-1 (group M) Viral Load in Plasma Using Armored RNA Standard.

    PubMed

    Gholami, Mohammad; Baesi, Kazem; Rouzbahani, Negin H; Mohraz, Minoo

    2018-06-01

    Human immunodeficiency virus-1 (HIV-1) is a viral infectious agent that gradually extinguishes the immune system, resulting in the acquired immune deficiency syndrome (AIDS). The aim of this study was to develop a TaqMan based detection assay to evaluate HIV-1 plasma viral load and to construct a stable internal positive control (IPC) and external positive control (EPC) RNA based on Armored RNA (AR) technology. The MS2 maturase, coat protein gene and HIV-1 pol gene were cloned in pET-32a plasmid. The recently fabricated recombinant plasmid was transformed into Escherichia coli strain BL2 (DE3) and protein expression and Armored RNA was fabricated in presence of isopropyl-L-thio-D-galactopyranoside (IPTG). The Armored RNA was precipitated and purified by polyethylene glycol (PEG) and sephacryl S-200 chromatography. The stability of Armored RNA was evaluated by treatment with DNase I and RNase A and confirmed by transmission electron microscopy (TEM) and gel agarose electrophoresis. The specificity, sensitivity, inter- and intra-day precision, and the dynamic range of the assay were experimentally determined. The AR was stable in presence of ribonuclease, and the assay had a dynamic detection range from 101 to 105 copies of AR. The coefficient of variation (CV) was 4.8% for intra-assay and 5.8% for inter-assay precision. Clinical specificity and sensitivity of the assay were assessed at 100% and 96.66%, respectively. The linear regression analysis confirmed a high correlation between the in-house and the commercial assay, Real Star HIV-1-qRTPCR, respectively (R2 = 0.888). The AR standard is non-infectious and highly resistant in the presence of ribonuclease. The TaqMan assay developed is able to quantify HIV viral load based on a novel conserved region of HIV-1 pol gene which has minimal sequence inconsistency.

  14. Human fecal source identification with real-time quantitative PCR

    EPA Science Inventory

    Waterborne diseases represent a significant public health risk worldwide, and can originate from contact with water contaminated with human fecal material. We describe a real-time quantitative PCR (qPCR) method that targets a Bacteroides dori human-associated genetic marker for...

  15. Real-time PCR to determine transgene copy number and to quantitate the biolocalization of adoptively transferred cells from EGFP-transgenic mice.

    PubMed

    Joshi, Molishree; Keith Pittman, H; Haisch, Carl; Verbanac, Kathryn

    2008-09-01

    Quantitative real-time PCR (qPCR) is a sensitive technique for the detection and quantitation of specific DNA sequences. Here we describe a Taqman qPCR assay for quantification of tissue-localized, adoptively transferred enhanced green fluorescent protein (EGFP)-transgenic cells. A standard curve constructed from serial dilutions of a plasmid containing the EGFP transgene was (i) highly reproducible, (ii) detected as few as two copies, and (iii) was included in each qPCR assay. qPCR analysis of genomic DNA was used to determine transgene copy number in several mouse strains. Fluorescent microscopy of tissue sections showed that adoptively transferred vascular endothelial cells (VEC) from EGFP-transgenic mice specifically localized to tissue with metastatic tumors in syngeneic recipients. VEC microscopic enumeration of liver metastases strongly correlated with qPCR analysis of identical sections (Pearson correlation 0.81). EGFP was undetectable in tissue from control mice by qPCR. In another study using intra-tumor EGFP-VEC delivery to subcutaneous tumors, manual cell count and qPCR analysis of alternating sections also strongly correlated (Pearson correlation 0.82). Confocal microscopy of the subcutaneous tumor sections determined that visual fluorescent signals were frequently tissue artifacts. This qPCR methodology offers specific, objective, and rapid quantitation, uncomplicated by tissue autofluorescence, and should be readily transferable to other in vivo models to quantitate the biolocalization of transplanted cells.

  16. DETECTION OF FECAL ENTEROCOCCI USING A REAL TIME PCR METHOD

    EPA Science Inventory

    In spite of their importance in public health, the detection of fecal enterococci is performed via culturing methods that are time consuming and that are subject to inaccuracies that relate to their culturable status. In order to address these problems, a real time PCR (TaqMan) ...

  17. Comparison of Versant HBV DNA 3.0 and COBAS AmpliPrep-COBAS TaqMan assays for hepatitis B DNA quantitation: Possible clinical implications.

    PubMed

    Garbuglia, A R; Angeletti, C; Lauria, F N; Zaccaro, P; Cocca, A M; Pisciotta, M; Solmone, M; Capobianchi, M R

    2007-12-01

    We compared two commercial assays for HBV DNA quantitation, Versant HBV 3.0, System 340 (bDNA; Bayer Diagnostics) and COBAS AmpliPrep-COBAS TaqMan HBV Test (TaqMan; Roche Diagnostics). Analytical sensitivity, calculated on WHO International Standard, predicted 95% detection rate at 11.4 and 520.2IU/ml for TaqMan and bDNA, respectively. Specificity, established on 50 blood donor samples, was 100% and 84% for TaqMan and bDNA, respectively. When using clinical samples, HBV DNA was detected by TaqMan in 21/55 samples negative to bDNA. Mean values of HBV DNA obtained with bDNA were higher than those obtained with TaqMan (4.09log(10)+/-1.90 versus 3.39log(10)+/-2.41, p<0.001), and 24.4% of samples showed differences in viral load values >0.5log(10), without association with HBV genotype. There was a good correlation for HBV DNA concentrations measured by the two assays (r=0.94; p<0.001) within the overlapping range, and the distribution of results with respect to relevant clinical threshold recently confirmed (20,000 and 2000IU/ml) was similar. Approximately 50% of samples with low HBV DNA, appreciated by TaqMan but not by bDNA, were successfully sequenced in pol region, where drug resistance mutations are located.

  18. Development of a quantitative real-time PCR assay for sapovirus in children under 5-years-old in Regina Margherita Hospital of Turin, Italy.

    PubMed

    Bergallo, Massimiliano; Galliano, Ilaria; Montanari, Paola; Brusin, Martina Rosa; Finotti, Serena; Paderi, Giulia; Gabiano, Clara

    2017-04-01

    Gastroenteritis is a common disease in children. It is characterized by diarrhea, vomiting, abdominal pain, and fever. Sapovirus (SaV) is a causative agent of acute gastroenteritis, but it causes milder illness than do rotavirus and norovirus. There is high variability in the analytical performance of quantitative PCR-based assays among clinical laboratories. This study developed a reverse transcription real-time PCR method to detect SaV in fecal specimens collected from children under 5-years-old with acute gastroenteritis. Of 137 episodes of acute gastroenteritis, 15 (10.9%) were associated with SaV genomic detection, with a median viral load of 6.6(log 10 ) ± 7.1(log 10 ) genomes/mg fecal specimens. There was a significant difference in detection rate between males and females (9.48% (13/15) vs. 1.46% (2/15), p = 0.0232). Among the 15 SaV-positive cases, 6 were also positive for rotavirus. Viral RNA recovery rate ranged from 46% to 77% in the manual RNAzol protocol and from 31% to 90% in the automated Maxwell protocol. We also studied whether human genomic DNA influences the sensitivity of the assay: its presence caused a decrease in PCR sensitivity. The development of a laboratory-designed real-time PCR TaqMan assay for quantitative detection of SaV and the optimization and standardization of this assay, using stools of children with acute gastroenteritis, are described.

  19. Improved safety for molecular diagnosis of classical rabies viruses by use of a TaqMan real-time reverse transcription-PCR "double check" strategy.

    PubMed

    Hoffmann, B; Freuling, C M; Wakeley, P R; Rasmussen, T B; Leech, S; Fooks, A R; Beer, M; Müller, T

    2010-11-01

    To improve the diagnosis of classical rabies virus with molecular methods, a validated, ready-to-use, real-time reverse transcription-PCR (RT-PCR) assay was developed. In a first step, primers and 6-carboxyfluorescien-labeled TaqMan probes specific for rabies virus were selected from the consensus sequence of the nucleoprotein gene of 203 different rabies virus sequences derived from GenBank. The selected primer-probe combination was highly specific and sensitive. During validation using a sample set of rabies virus strains from the virus archives of the Friedrich-Loeffler-Institut (FLI; Germany), the Veterinary Laboratories Agency (VLA; United Kingdom), and the DTU National Veterinary Institute (Lindholm, Denmark), covering the global diversity of rabies virus lineages, it was shown that both the newly developed assay and a previously described one had some detection failures. This was overcome by a combined assay that detected all samples as positive. In addition, the introduction of labeled positive controls (LPC) increased the diagnostic safety of the single as well as the combined assay. Based on the newly developed, alternative assay for the detection of rabies virus and the application of LPCs, an improved diagnostic sensitivity and reliability can be ascertained for postmortem and intra vitam real-time RT-PCR analyses in rabies reference laboratories.

  20. A broadly reactive one-step real-time RT-PCR assay for rapid and sensitive detection of hepatitis E virus.

    PubMed

    Jothikumar, Narayanan; Cromeans, Theresa L; Robertson, Betty H; Meng, X J; Hill, Vincent R

    2006-01-01

    Hepatitis E virus (HEV) is transmitted by the fecal-oral route and causes sporadic and epidemic forms of acute hepatitis. Large waterborne HEV epidemics have been documented exclusively in developing countries. At least four major genotypes of HEV have been reported worldwide: genotype 1 (found primarily in Asian countries), genotype 2 (isolated from a single outbreak in Mexico), genotype 3 (identified in swine and humans in the United States and many other countries), and genotype 4 (identified in humans, swine and other animals in Asia). To better detect and quantitate different HEV strains that may be present in clinical and environmental samples, we developed a rapid and sensitive real-time RT-PCR assay for the detection of HEV RNA. Primers and probes for the real-time RT-PCR were selected based on the multiple sequence alignments of 27 sequences of the ORF3 region. Thirteen HEV isolates representing genotypes 1-4 were used to standardize the real-time RT-PCR assay. The TaqMan assay detected as few as four genome equivalent (GE) copies of HEV plasmid DNA and detected as low as 0.12 50% pig infectious dose (PID50) of swine HEV. Different concentrations of swine HEV (120-1.2PID50) spiked into a surface water concentrate were detected in the real-time RT-PCR assay. This is the first reporting of a broadly reactive TaqMan RT-PCR assay for the detection of HEV in clinical and environmental samples.

  1. Quantitation of O6-methylguanine-DNA methyltransferase gene messenger RNA in gliomas by means of real-time RT-PCR and clinical response to nitrosoureas.

    PubMed

    Tanaka, Satoshi; Oka, Hidehiro; Fujii, Kiyotaka; Watanabe, Kaoru; Nagao, Kumi; Kakimoto, Atsushi

    2005-09-01

    1. O6-methylguanine-DNA methyltransferase (MGMT) mRNA was measured in 50 malignant gliomas that had received 1-(4-amino-2-methyl-5-pyrimidynyl) methyl-3-(2-chloroethyl)-3-nitrosourea hydrochloride (ACNU) after the resection of the tumor by real-time reverse transcription-polymerase chain reaction (RT-PCR) using TaqMan probe. 2. The mean absolute value of MGMTmRNA normalized to the level of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) for 50 tumors was 1.29 x 10(4)+/- 1.28 x 10(4) copy/microg RNA (mean +/- SD). The amount of MGMTmRNA less than 6 x 10(3) copy/microg RNA was the most significant factor in predicting the initial effect of treatment with ACNU by multi-variant regression analysis (p = 0.0157). 3. These results suggest that quantitation of MGMTmRNA is the excellent method for predicting for the effect of ACNU in glioma therapy.

  2. TaqMan real-time polymerase chain reaction for detection of Ophidiomyces ophiodiicola, the fungus associated with snake fungal disease.

    PubMed

    Bohuski, Elizabeth; Lorch, Jeffrey M; Griffin, Kathryn M; Blehert, David S

    2015-04-15

    Fungal skin infections associated with Ophidiomyces ophiodiicola, a member of the Chrysosporium anamorph of Nannizziopsis vriesii (CANV) complex, have been linked to an increasing number of cases of snake fungal disease (SFD) in captive snakes around the world and in wild snake populations in eastern North America. The emergence of SFD in both captive and wild situations has led to an increased need for tools to better diagnose and study the disease. We developed two TaqMan real-time polymerase chain reaction (PCR) assays to rapidly detect O. ophiodiicola in clinical samples. One assay targets the internal transcribed spacer region (ITS) of the fungal genome while the other targets the more variable intergenic spacer region (IGS). The PCR assays were qualified using skin samples collected from 50 snakes for which O. ophiodiicola had been previously detected by culture, 20 snakes with gross skin lesions suggestive of SFD but which were culture-negative for O. ophiodiicola, and 16 snakes with no clinical signs of infection. Both assays performed equivalently and proved to be more sensitive than traditional culture methods, detecting O. ophiodiicola in 98% of the culture-positive samples and in 40% of the culture-negative snakes that had clinical signs of SFD. In addition, the assays did not cross-react with a panel of 28 fungal species that are closely related to O. ophiodiicola or that commonly occur on the skin of snakes. The assays did, however, indicate that some asymptomatic snakes (~6%) may harbor low levels of the fungus, and that PCR should be paired with histology when a definitive diagnosis is required. These assays represent the first published methods to detect O. ophiodiicola by real-time PCR. The ITS assay has great utility for assisting with SFD diagnoses whereas the IGS assay offers a valuable tool for research-based applications.

  3. Assessment of Legionella pneumophila in recreational spring water with quantitative PCR (Taqman) assay.

    PubMed

    Shen, Shu-Min; Chou, Ming-Yuan; Hsu, Bing-Mu; Ji, Wen-Tsai; Hsu, Tsui-Kang; Tsai, Hsiu-Feng; Huang, Yu-Li; Chiu, Yi-Chou; Kao, Erl-Shyh; Kao, Po-Min; Fan, Cheng-Wei

    2015-07-01

    Legionella spp. are common in various natural and man-made aquatic environments. Recreational hot spring is frequently reported as an infection hotspot because of various factors such as temperature and humidity. Although polymerase chain reaction (PCR) had been used for detecting Legionella, several inhibitors such as humic substances, calcium, and melanin in the recreational spring water may interfere with the reaction thus resulting in risk underestimation. The purpose of this study was to compare the efficiencies of conventional and Taqman quantitative PCR (qPCR) on detecting Legionella pneumophila in spring facilities and in receiving water. In the results, Taqman PCR had much better efficiency on specifying the pathogen in both river and spring samples. L. pneumophila was detected in all of the 27 river water samples and 45 of the 48 hot spring water samples. The estimated L. pneumophela concentrations ranged between 1.0 × 10(2) and 3.3 × 10(5) cells/l in river water and 72.1-5.7 × 10(6) cells/l in hot spring water. Total coliforms and turbidity were significantly correlated with concentrations of L. pneumophila in positive water samples. Significant difference was also found in water temperature between the presence/absence of L. pneumophila. Our results suggest that conventional PCR may be not enough for detecting L. pneumophila particularly in the aquatic environments full of reaction inhibitors.

  4. Novel approach to quantitative polymerase chain reaction using real-time detection: application to the detection of gene amplification in breast cancer.

    PubMed

    Bièche, I; Olivi, M; Champème, M H; Vidaud, D; Lidereau, R; Vidaud, M

    1998-11-23

    Gene amplification is a common event in the progression of human cancers, and amplified oncogenes have been shown to have diagnostic, prognostic and therapeutic relevance. A kinetic quantitative polymerase-chain-reaction (PCR) method, based on fluorescent TaqMan methodology and a new instrument (ABI Prism 7700 Sequence Detection System) capable of measuring fluorescence in real-time, was used to quantify gene amplification in tumor DNA. Reactions are characterized by the point during cycling when PCR amplification is still in the exponential phase, rather than the amount of PCR product accumulated after a fixed number of cycles. None of the reaction components is limited during the exponential phase, meaning that values are highly reproducible in reactions starting with the same copy number. This greatly improves the precision of DNA quantification. Moreover, real-time PCR does not require post-PCR sample handling, thereby preventing potential PCR-product carry-over contamination; it possesses a wide dynamic range of quantification and results in much faster and higher sample throughput. The real-time PCR method, was used to develop and validate a simple and rapid assay for the detection and quantification of the 3 most frequently amplified genes (myc, ccndl and erbB2) in breast tumors. Extra copies of myc, ccndl and erbB2 were observed in 10, 23 and 15%, respectively, of 108 breast-tumor DNA; the largest observed numbers of gene copies were 4.6, 18.6 and 15.1, respectively. These results correlated well with those of Southern blotting. The use of this new semi-automated technique will make molecular analysis of human cancers simpler and more reliable, and should find broad applications in clinical and research settings.

  5. Real-time PCR for type-specific identification of herpes simplex in clinical samples: evaluation of type-specific results in the context of CNS diseases.

    PubMed

    Meylan, Sylvain; Robert, Daniel; Estrade, Christine; Grimbuehler, Valérie; Péter, Olivier; Meylan, Pascal R; Sahli, Roland

    2008-02-01

    HSV-1 and HSV-2 cause CNS infections of dissimilar clinico-pathological characteristics with prognostic and therapeutic implications. To validate a type-specific real-time PCR that uses MGB/LNA Taqman probes and to review the virologico-clinical data of 25 eligible patients with non-neonatal CNS infections. This real-time PCR was evaluated against conventional PCR (26 CSF and 20 quality controls), and LightCycler assay (51 mucocutaneous, 8 CSF and 32 quality controls) and culture/immunofluorescence (75 mucocutaneous) to assess typing with independent methods. Taqman real-time PCR detected 240 HSV genomes per ml CSF, a level appropriate for the management of patients, and provided unambiguous typing for the 104 positive (62 HSV-1 and 42 HSV-2) out the 160 independent clinical samples tested. HSV type diagnosed by Taqman real-time PCR predicted final diagnosis (meningitis versus encephalitis/meningoencephalitis, p<0.001) in 24/25 patients at time of presentation, in contrast to clinical evaluation. Our real-time PCR, as a sensitive and specific means for type-specific HSV diagnosis, provided rapid prognostic information for patient management.

  6. Clinical evaluation of the COBAS Ampliprep/COBAS TaqMan for HCV RNA quantitation in comparison with the branched-DNA assay.

    PubMed

    Pittaluga, Fabrizia; Allice, Tiziano; Abate, Maria Lorena; Ciancio, Alessia; Cerutti, Francesco; Varetto, Silvia; Colucci, Giuseppe; Smedile, Antonina; Ghisetti, Valeria

    2008-02-01

    Diagnosis and monitoring of HCV infection relies on sensitive and accurate HCV RNA detection and quantitation. The performance of the COBAS AmpliPrep/COBAS TaqMan 48 (CAP/CTM) (Roche, Branchburg, NJ), a fully automated, real-time PCR HCV RNA quantitative test was assessed and compared with the branched-DNA (bDNA) assay. Clinical evaluation on 576 specimens obtained from patients with chronic hepatitis C showed a good correlation (r = 0.893) between the two test, but the CAP/CTM scored higher HCV RNA titers than the bDNA across all viral genotypes. The mean bDNA versus CAP/CTM log10 IU/ml differences were -0.49, -0.4, -0.54, -0.26 for genotype 1a, 1b, 2a/2c, 3a, and 4, respectively. These differences reached statistical significance for genotypes 1b, 2a/c, and 3a. The ability of the CAP/CTM to monitor patients undergoing antiviral therapy and correctly identify the weeks 4 and 12 rapid and early virological responses was confirmed. The broader dynamic range of the CAP/CTM compared with the bDNA allowed for a better definition of viral kinetics. In conclusion, the CAP/CTM appears as a reliable and user-friendly assay to monitor HCV viremia during treatment of patients with chronic hepatitis. Its high sensitivity and wide dynamic range may help a better definition of viral load changes during antiviral therapy. (Copyright) 2007 Wiley-Liss, Inc.

  7. Improved Safety for Molecular Diagnosis of Classical Rabies Viruses by Use of a TaqMan Real-Time Reverse Transcription-PCR “Double Check” Strategy▿ †

    PubMed Central

    Hoffmann, B.; Freuling, C. M.; Wakeley, P. R.; Rasmussen, T. B.; Leech, S.; Fooks, A. R.; Beer, M.; Müller, T.

    2010-01-01

    To improve the diagnosis of classical rabies virus with molecular methods, a validated, ready-to-use, real-time reverse transcription-PCR (RT-PCR) assay was developed. In a first step, primers and 6-carboxyfluorescien-labeled TaqMan probes specific for rabies virus were selected from the consensus sequence of the nucleoprotein gene of 203 different rabies virus sequences derived from GenBank. The selected primer-probe combination was highly specific and sensitive. During validation using a sample set of rabies virus strains from the virus archives of the Friedrich-Loeffler-Institut (FLI; Germany), the Veterinary Laboratories Agency (VLA; United Kingdom), and the DTU National Veterinary Institute (Lindholm, Denmark), covering the global diversity of rabies virus lineages, it was shown that both the newly developed assay and a previously described one had some detection failures. This was overcome by a combined assay that detected all samples as positive. In addition, the introduction of labeled positive controls (LPC) increased the diagnostic safety of the single as well as the combined assay. Based on the newly developed, alternative assay for the detection of rabies virus and the application of LPCs, an improved diagnostic sensitivity and reliability can be ascertained for postmortem and intra vitam real-time RT-PCR analyses in rabies reference laboratories. PMID:20739489

  8. Real time quantitative phase microscopy based on single-shot transport of intensity equation (ssTIE) method

    NASA Astrophysics Data System (ADS)

    Yu, Wei; Tian, Xiaolin; He, Xiaoliang; Song, Xiaojun; Xue, Liang; Liu, Cheng; Wang, Shouyu

    2016-08-01

    Microscopy based on transport of intensity equation provides quantitative phase distributions which opens another perspective for cellular observations. However, it requires multi-focal image capturing while mechanical and electrical scanning limits its real time capacity in sample detections. Here, in order to break through this restriction, real time quantitative phase microscopy based on single-shot transport of the intensity equation method is proposed. A programmed phase mask is designed to realize simultaneous multi-focal image recording without any scanning; thus, phase distributions can be quantitatively retrieved in real time. It is believed the proposed method can be potentially applied in various biological and medical applications, especially for live cell imaging.

  9. A novel specific duplex real-time RT-PCR method for absolute quantitation of Grapevine Pinot gris virus in plant material and single mites.

    PubMed

    Morán, Félix; Olmos, Antonio; Lotos, Leonidas; Predajňa, Lukáš; Katis, Nikolaos; Glasa, Miroslav; Maliogka, Varvara; Ruiz-García, Ana B

    2018-01-01

    Grapevine Pinot gris virus (GPGV) is a widely distributed grapevine pathogen that has been associated to the grapevine leaf mottling and deformation disease. With the aim of better understanding the disease epidemiology and providing efficient control strategies a specific and quantitative duplex TaqMan real-time RT-PCR assay has been developed. This method has allowed reliable quantitation of the GPGV titer ranging from 30 up to 3 x 108 transcript copies, with a detection limit of 70 viral copies in plant material. The assay targets a grapevine internal control that reduces the occurrence of false negative results, thus increasing the diagnostic sensitivity of the technique. Viral isolates both associated and non-associated to symptoms from Greece, Slovakia and Spain have been successfully detected. The method has also been applied to the absolute quantitation of GPGV in its putative transmission vector Colomerus vitis. Moreover, the viral titer present in single mites has been determined. In addition, in the current study a new polymorphism in the GPGV genome responsible for a shorter movement protein has been found. A phylogenetic study based on this genomic region has shown a high variability among Spanish isolates and points to a different evolutionary origin of this new polymorphism. The methodology here developed opens new possibilities for basic and epidemiological studies as well as for the establishment of efficient control strategies.

  10. Real-time quantitative fluorescence imaging using a single snapshot optical properties technique for neurosurgical guidance

    NASA Astrophysics Data System (ADS)

    Valdes, Pablo A.; Angelo, Joseph; Gioux, Sylvain

    2015-03-01

    Fluorescence imaging has shown promise as an adjunct to improve the extent of resection in neurosurgery and oncologic surgery. Nevertheless, current fluorescence imaging techniques do not account for the heterogeneous attenuation effects of tissue optical properties. In this work, we present a novel imaging system that performs real time quantitative fluorescence imaging using Single Snapshot Optical Properties (SSOP) imaging. We developed the technique and performed initial phantom studies to validate the quantitative capabilities of the system for intraoperative feasibility. Overall, this work introduces a novel real-time quantitative fluorescence imaging method capable of being used intraoperatively for neurosurgical guidance.

  11. New approaches for the standardization and validation of a real-time qPCR assay using TaqMan probes for quantification of yellow fever virus on clinical samples with high quality parameters.

    PubMed

    Fernandes-Monteiro, Alice G; Trindade, Gisela F; Yamamura, Anna M Y; Moreira, Otacilio C; de Paula, Vanessa S; Duarte, Ana Cláudia M; Britto, Constança; Lima, Sheila Maria B

    2015-01-01

    The development and production of viral vaccines, in general, involve several steps that need the monitoring of viral load throughout the entire process. Applying a 2-step quantitative reverse transcription real time PCR assay (RT-qPCR), viral load can be measured and monitored in a few hours. In this context, the development, standardization and validation of a RT-qPCR test to quickly and efficiently quantify yellow fever virus (YFV) in all stages of vaccine production are extremely important. To serve this purpose we used a plasmid construction containing the NS5 region from 17DD YFV to generate the standard curve and to evaluate parameters such as linearity, precision and specificity against other flavivirus. Furthermore, we defined the limits of detection as 25 copies/reaction, and quantification as 100 copies/reaction for the test. To ensure the quality of the method, reference controls were established in order to avoid false negative results. The qRT-PCR technique based on the use of TaqMan probes herein standardized proved to be effective for determining yellow fever viral load both in vivo and in vitro, thus becoming a very important tool to assure the quality control for vaccine production and evaluation of viremia after vaccination or YF disease.

  12. New approaches for the standardization and validation of a real-time qPCR assay using TaqMan probes for quantification of yellow fever virus on clinical samples with high quality parameters

    PubMed Central

    Fernandes-Monteiro, Alice G; Trindade, Gisela F; Yamamura, Anna MY; Moreira, Otacilio C; de Paula, Vanessa S; Duarte, Ana Cláudia M; Britto, Constança; Lima, Sheila Maria B

    2015-01-01

    The development and production of viral vaccines, in general, involve several steps that need the monitoring of viral load throughout the entire process. Applying a 2-step quantitative reverse transcription real time PCR assay (RT-qPCR), viral load can be measured and monitored in a few hours. In this context, the development, standardization and validation of a RT-qPCR test to quickly and efficiently quantify yellow fever virus (YFV) in all stages of vaccine production are extremely important. To serve this purpose we used a plasmid construction containing the NS5 region from 17DD YFV to generate the standard curve and to evaluate parameters such as linearity, precision and specificity against other flavivirus. Furthermore, we defined the limits of detection as 25 copies/reaction, and quantification as 100 copies/reaction for the test. To ensure the quality of the method, reference controls were established in order to avoid false negative results. The qRT-PCR technique based on the use of TaqMan probes herein standardized proved to be effective for determining yellow fever viral load both in vivo and in vitro, thus becoming a very important tool to assure the quality control for vaccine production and evaluation of viremia after vaccination or YF disease. PMID:26011746

  13. Real-time PCR based on SYBR-Green I fluorescence: an alternative to the TaqMan assay for a relative quantification of gene rearrangements, gene amplifications and micro gene deletions.

    PubMed

    Ponchel, Frederique; Toomes, Carmel; Bransfield, Kieran; Leong, Fong T; Douglas, Susan H; Field, Sarah L; Bell, Sandra M; Combaret, Valerie; Puisieux, Alain; Mighell, Alan J; Robinson, Philip A; Inglehearn, Chris F; Isaacs, John D; Markham, Alex F

    2003-10-13

    Real-time PCR is increasingly being adopted for RNA quantification and genetic analysis. At present the most popular real-time PCR assay is based on the hybridisation of a dual-labelled probe to the PCR product, and the development of a signal by loss of fluorescence quenching as PCR degrades the probe. Though this so-called 'TaqMan' approach has proved easy to optimise in practice, the dual-labelled probes are relatively expensive. We have designed a new assay based on SYBR-Green I binding that is quick, reliable, easily optimised and compares well with the published assay. Here we demonstrate its general applicability by measuring copy number in three different genetic contexts; the quantification of a gene rearrangement (T-cell receptor excision circles (TREC) in peripheral blood mononuclear cells); the detection and quantification of GLI, MYC-C and MYC-N gene amplification in cell lines and cancer biopsies; and detection of deletions in the OPA1 gene in dominant optic atrophy. Our assay has important clinical applications, providing accurate diagnostic results in less time, from less biopsy material and at less cost than assays currently employed such as FISH or Southern blotting.

  14. Detection of adulterated murine components in meat products by TaqMan© real-time PCR.

    PubMed

    Fang, Xin; Zhang, Chi

    2016-02-01

    Using murine meat to substitute mutton has been identified as a new type of meat fraud in China, yet no detection method for murine species has been reported. Here, three kinds of rodent were used as target species to establish a murine-specific real-time PCR method of detection. The mitochondrial cytochrome b gene (cytb) of each target was sequenced and a TaqMan probe was designed based on the cytb. Simultaneously, an internal positive control (IPC) plasmid along with its respective probe were designed to monitor the PCR reaction. As a result, the duplex real-time PCR system was verified to be specific. The limit of detection (LOD) was lower than 1 pg of DNA per reaction and 0.1% murine contamination in meat mixtures. Standard curves were generated for a quantitative analysis. Thus, this study provided a new tool to control the quality of meat products for official and third-party laboratories. Copyright © 2015. Published by Elsevier Ltd.

  15. Quantitative real-time monitoring of dryer effluent using fiber optic near-infrared spectroscopy.

    PubMed

    Harris, S C; Walker, D S

    2000-09-01

    This paper describes a method for real-time quantitation of the solvents evaporating from a dryer. The vapor stream in the vacuum line of a dryer was monitored in real time using a fiber optic-coupled acousto-optic tunable filter near-infrared (AOTF-NIR) spectrometer. A balance was placed in the dryer, and mass readings were recorded for every scan of the AOTF-NIR. A partial least-squares (PLS) calibration was subsequently built based on change in mass over change in time for solvents typically used in a chemical manufacturing plant. Controlling software for the AOTF-NIR was developed. The software collects spectra, builds the PLS calibration model, and continuously fits subsequently collected spectra to the calibration, allowing the operator to follow the mass loss of solvent from the dryer. The results indicate that solvent loss can be monitored and quantitated in real time using NIR for the optimization of drying times. These time-based mass loss values have also been used to calculate "dynamic" vapor density values for the solvents. The values calculated are in agreement with values determined from the ideal gas law and could prove valuable as tools to measure temperature or pressure indirectly.

  16. Multiplex Real-Time PCR Assay Using TaqMan Probes for the Identification of Trypanosoma cruzi DTUs in Biological and Clinical Samples.

    PubMed

    Cura, Carolina I; Duffy, Tomas; Lucero, Raúl H; Bisio, Margarita; Péneau, Julie; Jimenez-Coello, Matilde; Calabuig, Eva; Gimenez, María J; Valencia Ayala, Edward; Kjos, Sonia A; Santalla, José; Mahaney, Susan M; Cayo, Nelly M; Nagel, Claudia; Barcán, Laura; Málaga Machaca, Edith S; Acosta Viana, Karla Y; Brutus, Laurent; Ocampo, Susana B; Aznar, Christine; Cuba Cuba, Cesar A; Gürtler, Ricardo E; Ramsey, Janine M; Ribeiro, Isabela; VandeBerg, John L; Yadon, Zaida E; Osuna, Antonio; Schijman, Alejandro G

    2015-05-01

    Trypanosoma cruzi has been classified into six Discrete Typing Units (DTUs), designated as TcI-TcVI. In order to effectively use this standardized nomenclature, a reproducible genotyping strategy is imperative. Several typing schemes have been developed with variable levels of complexity, selectivity and analytical sensitivity. Most of them can be only applied to cultured stocks. In this context, we aimed to develop a multiplex Real-Time PCR method to identify the six T. cruzi DTUs using TaqMan probes (MTq-PCR). The MTq-PCR has been evaluated in 39 cultured stocks and 307 biological samples from vectors, reservoirs and patients from different geographical regions and transmission cycles in comparison with a multi-locus conventional PCR algorithm. The MTq-PCR was inclusive for laboratory stocks and natural isolates and sensitive for direct typing of different biological samples from vectors, reservoirs and patients with acute, congenital infection or Chagas reactivation. The first round SL-IR MTq-PCR detected 1 fg DNA/reaction tube of TcI, TcII and TcIII and 1 pg DNA/reaction tube of TcIV, TcV and TcVI reference strains. The MTq-PCR was able to characterize DTUs in 83% of triatomine and 96% of reservoir samples that had been typed by conventional PCR methods. Regarding clinical samples, 100% of those derived from acute infected patients, 62.5% from congenitally infected children and 50% from patients with clinical reactivation could be genotyped. Sensitivity for direct typing of blood samples from chronic Chagas disease patients (32.8% from asymptomatic and 22.2% from symptomatic patients) and mixed infections was lower than that of the conventional PCR algorithm. Typing is resolved after a single or a second round of Real-Time PCR, depending on the DTU. This format reduces carryover contamination and is amenable to quantification, automation and kit production.

  17. A real-time TaqMan polymerase chain reaction for the identification of Culex vectors of West Nile and Saint Louis encephalitis viruses in North America.

    PubMed

    Sanogo, Yibayiri O; Kim, Chang-Hyun; Lampman, Richard; Novak, Robert J

    2007-07-01

    In North America, West Nile and St. Louis encephalitis viruses have been detected in a wide range of vector species, but the majority of isolations continue to be from pools of mixed mosquitoes in the Culex subgenus Culex. Unfortunately, the morphologic identification of these important disease vectors is often difficult, particularly in regions of sympatry. We developed a sensitive real-time TaqMan polymerase chain reaction assay that allows reliable identification of Culex mosquitoes including Culex pipiens pipiens, Cx. p. quinquefasciatus, Cx. restuans, Cx. salinarius, Cx. nigripalpus, and Cx. tarsalis. Primers and fluorogenic probes specific to each species were designed based on sequences of the acetylcholinesterase gene (Ace2). Both immature and adult mosquitoes were successfully identified as individuals and as mixed species pools. This identification technique provides the basis for a rapid, sensitive, and high-throughput method for expounding the species-specific contribution of vectors to various phases of arbovirus transmission.

  18. Use of real-time qPCR to quantify members of the unculturable heterotrophic bacterial community in a deep sea marine sponge, Vetulina sp.

    PubMed

    Cassler, M; Peterson, C L; Ledger, A; Pomponi, S A; Wright, A E; Winegar, R; McCarthy, P J; Lopez, J V

    2008-04-01

    In this report, real-time quantitative PCR (TaqMan qPCR) of the small subunit (SSU) 16S-like rRNA molecule, a universal phylogenetic marker, was used to quantify the relative abundance of individual bacterial members of a diverse, yet mostly unculturable, microbial community from a marine sponge. Molecular phylogenetic analyses of bacterial communities derived from Caribbean Lithistid sponges have shown a wide diversity of microbes that included at least six major subdivisions; however, very little overlap was observed between the culturable and unculturable microbial communities. Based on sequence data of three culture-independent Lithistid-derived representative bacteria, we designed probe/primer sets for TaqMan qPCR to quantitatively characterize selected microbial residents in a Lithistid sponge, Vetulina, metagenome. TaqMan assays included specificity testing, DNA limit of detection analysis, and quantification of specific microbial rRNA sequences such as Nitrospira-like microbes and Actinobacteria up to 172 million copies per microgram per Lithistid sponge metagenome. By contrast, qPCR amplification with probes designed for common previously cultured sponge-associated bacteria in the genera Rheinheimera and Marinomonas and a representative of the CFB group resulted in only minimal detection of the Rheiheimera in total DNA extracted from the sponge. These data verify that a large portion of the microbial community within Lithistid sponges may consist of currently unculturable microorganisms.

  19. Towards real-time quantitative optical imaging for surgery

    NASA Astrophysics Data System (ADS)

    Gioux, Sylvain

    2017-07-01

    There is a pressing clinical need to provide image guidance during surgery. Currently, assessment of tissue that needs to be resected or avoided is performed subjectively leading to a large number of failures, patient morbidity and increased healthcare cost. Because near-infrared (NIR) optical imaging is safe, does not require contact, and can provide relatively deep information (several mm), it offers unparalleled capabilities for providing image guidance during surgery. In this work, we introduce a novel concept that enables the quantitative imaging of endogenous molecular information over large fields-of-view. Because this concept can be implemented in real-time, it is amenable to provide video-rate endogenous information during surgery.

  20. Use of the MagNA Pure LC Automated Nucleic Acid Extraction System followed by Real-Time Reverse Transcription-PCR for Ultrasensitive Quantitation of Hepatitis C Virus RNA

    PubMed Central

    Cook, Linda; Ng, Ka-Wing; Bagabag, Arthur; Corey, Lawrence; Jerome, Keith R.

    2004-01-01

    Hepatitis C virus (HCV) infection is an increasing health problem worldwide. Quantitative assays for HCV viral load are valuable in predicting response to therapy and for following treatment efficacy. Unfortunately, most quantitative tests for HCV RNA are limited by poor sensitivity. We have developed a convenient, highly sensitive real-time reverse transcription-PCR assay for HCV RNA. The assay amplifies a portion of the 5′ untranslated region of HCV, which is then quantitated using the TaqMan 7700 detection system. Extraction of viral RNA for our assay is fully automated with the MagNA Pure LC extraction system (Roche). Our assay has a 100% detection rate for samples containing 50 IU of HCV RNA/ml and is linear up to viral loads of at least 109 IU/ml. The assay detects genotypes 1a, 2a, and 3a with equal efficiency. Quantitative results by our assay correlate well with HCV viral load as determined by the Bayer VERSANT HCV RNA 3.0 bDNA assay. In clinical use, our assay is highly reproducible, with high and low control specimens showing a coefficient of variation for the logarithmic result of 2.8 and 7.0%, respectively. The combination of reproducibility, extreme sensitivity, and ease of performance makes this assay an attractive option for routine HCV viral load testing. PMID:15365000

  1. Rapid diagnosis of sepsis with TaqMan-Based multiplex real-time PCR.

    PubMed

    Liu, Chang-Feng; Shi, Xin-Ping; Chen, Yun; Jin, Ye; Zhang, Bing

    2018-02-01

    The survival rate of septic patients mainly depends on a rapid and reliable diagnosis. A rapid, broad range, specific and sensitive quantitative diagnostic test is the urgent need. Thus, we developed a TaqMan-Based Multiplex real-time PCR assays to identify bloodstream pathogens within a few hours. Primers and TaqMan probes were designed to be complementary to conserved regions in the 16S rDNA gene of different kinds of bacteria. To evaluate accurately, sensitively, and specifically, the known bacteria samples (Standard strains, whole blood samples) are determined by TaqMan-Based Multiplex real-time PCR. In addition, 30 blood samples taken from patients with clinical symptoms of sepsis were tested by TaqMan-Based Multiplex real-time PCR and blood culture. The mean frequency of positive for Multiplex real-time PCR was 96% at a concentration of 100 CFU/mL, and it was 100% at a concentration greater than 1000 CFU/mL. All the known blood samples and Standard strains were detected positively by TaqMan-Based Multiplex PCR, no PCR products were detected when DNAs from other bacterium were used in the multiplex assay. Among the 30 patients with clinical symptoms of sepsis, 18 patients were confirmed positive by Multiplex real-time PCR and seven patients were confirmed positive by blood culture. TaqMan-Based Multiplex real-time PCR assay with highly sensitivity, specificity and broad detection range, is a rapid and accurate method in the detection of bacterial pathogens of sepsis and should have a promising usage in the diagnosis of sepsis. © 2017 Wiley Periodicals, Inc.

  2. An intra-laboratory cultural and real-time PCR method comparison and evaluation for the detection of subclinical paratuberculosis in dairy herds.

    PubMed

    Heuvelink, Annet; Hassan, Abdulwahed Ahmed; van Weering, Hilmar; van Engelen, Erik; Bülte, Michael; Akineden, Ömer

    2017-05-01

    Mycobacterium avium subsp. paratuberculosis (MAP) is a vigorous microorganism which causes incurable chronic enteritis, Johne's disease (JD) in cattle. A target of control programmes for JD is to accurately detect MAP-infected cattle early to reduce disease transmission. The present study evaluated the efficacy of two different cultural procedures and a TaqMan real-time PCR assay for detection of subclinical paratuberculosis in dairy herds. Therefore, sixty-one faecal samples were collected from two Dutch dairy herds (n = 40 and n = 21, respectively) which were known to be MAP-ELISA positive. All individual samples were assessed using two different cultural protocols in two different laboratories. The first cultural protocol (first laboratory) included a decontamination step with 0.75% hexadecylpyridinium chloride (HPC) followed by inoculation on Herrold's egg yolk media (HEYM). The second protocol (second laboratory) comprised of a decontamination step using 4% NaOH and malachite green-oxalic acid followed by inoculation on two media, HEYM and in parallel on modified Löwenstein-Jensen media (mLJ). For the TaqMan real-time PCR assay, all faecal samples were tested in two different laboratories using TaqMan® MAP (Johne's) reagents (Life Technologies). The cultural procedures revealed positive reactions in 1.64% of the samples for cultivation protocol 1 and 6.56 and 8.20% of the samples for cultivation protocol 2, respectively. The results of the TaqMan real-time PCR performed in two different laboratories yielded 13.11 and 19.76% positive reaction. The kappa test showed proportional agreement 0.54 between the mLJ media (second laboratory) and TaqMan® real-time PCR method (second laboratory). In conclusion, the TaqMan real-time PCR could be a strongly useful and efficient assay for the detection of subclinical paratuberculosis in dairy cattle leading to an improvement in the efficiency of MAP control strategies.

  3. Real-time PCR detection chemistry.

    PubMed

    Navarro, E; Serrano-Heras, G; Castaño, M J; Solera, J

    2015-01-15

    Real-time PCR is the method of choice in many laboratories for diagnostic and food applications. This technology merges the polymerase chain reaction chemistry with the use of fluorescent reporter molecules in order to monitor the production of amplification products during each cycle of the PCR reaction. Thus, the combination of excellent sensitivity and specificity, reproducible data, low contamination risk and reduced hand-on time, which make it a post-PCR analysis unnecessary, has made real-time PCR technology an appealing alternative to conventional PCR. The present paper attempts to provide a rigorous overview of fluorescent-based methods for nucleic acid analysis in real-time PCR described in the literature so far. Herein, different real-time PCR chemistries have been classified into two main groups; the first group comprises double-stranded DNA intercalating molecules, such as SYBR Green I and EvaGreen, whereas the second includes fluorophore-labeled oligonucleotides. The latter, in turn, has been divided into three subgroups according to the type of fluorescent molecules used in the PCR reaction: (i) primer-probes (Scorpions, Amplifluor, LUX, Cyclicons, Angler); (ii) probes; hydrolysis (TaqMan, MGB-TaqMan, Snake assay) and hybridization (Hybprobe or FRET, Molecular Beacons, HyBeacon, MGB-Pleiades, MGB-Eclipse, ResonSense, Yin-Yang or displacing); and (iii) analogues of nucleic acids (PNA, LNA, ZNA, non-natural bases: Plexor primer, Tiny-Molecular Beacon). In addition, structures, mechanisms of action, advantages and applications of such real-time PCR probes and analogues are depicted in this review. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Development of an efficient real-time quantitative PCR protocol for detection of Xanthomonas arboricola pv. pruni in Prunus species.

    PubMed

    Palacio-Bielsa, Ana; Cubero, Jaime; Cambra, Miguel A; Collados, Raquel; Berruete, Isabel M; López, María M

    2011-01-01

    Xanthomonas arboricola pv. pruni, the causal agent of bacterial spot disease of stone fruit, is considered a quarantine organism by the European Union and the European and Mediterranean Plant Protection Organization (EPPO). The bacterium can undergo an epiphytic phase and/or be latent and can be transmitted by plant material, but currently, only visual inspections are used to certify plants as being X. arboricola pv. pruni free. A novel and highly sensitive real-time TaqMan PCR detection protocol was designed based on a sequence of a gene for a putative protein related to an ABC transporter ATP-binding system in X. arboricola pv. pruni. Pathogen detection can be completed within a few hours with a sensitivity of 10(2) CFU ml(-1), thus surpassing the sensitivity of the existing conventional PCR. Specificity was assessed for X. arboricola pv. pruni strains from different origins as well as for closely related Xanthomonas species, non-Xanthomonas species, saprophytic bacteria, and healthy Prunus samples. The efficiency of the developed protocol was evaluated with field samples of 14 Prunus species and rootstocks. For symptomatic leaf samples, the protocol was very efficient even when washed tissues of the leaves were directly amplified without any previous DNA extraction. For samples of 117 asymptomatic leaves and 285 buds, the protocol was more efficient after a simple DNA extraction, and X. arboricola pv. pruni was detected in 9.4% and 9.1% of the 402 samples analyzed, respectively, demonstrating its frequent epiphytic or endophytic phase. This newly developed real-time PCR protocol can be used as a quantitative assay, offers a reliable and sensitive test for X. arboricola pv. pruni, and is suitable as a screening test for symptomatic as well as asymptomatic plant material.

  5. Intra-laboratory validation of chronic bee paralysis virus quantitation using an accredited standardised real-time quantitative RT-PCR method.

    PubMed

    Blanchard, Philippe; Regnault, Julie; Schurr, Frank; Dubois, Eric; Ribière, Magali

    2012-03-01

    Chronic bee paralysis virus (CBPV) is responsible for chronic bee paralysis, an infectious and contagious disease in adult honey bees (Apis mellifera L.). A real-time RT-PCR assay to quantitate the CBPV load is now available. To propose this assay as a reference method, it was characterised further in an intra-laboratory study during which the reliability and the repeatability of results and the performance of the assay were confirmed. The qPCR assay alone and the whole quantitation method (from sample RNA extraction to analysis) were both assessed following the ISO/IEC 17025 standard and the recent XP U47-600 standard issued by the French Standards Institute. The performance of the qPCR assay and of the overall CBPV quantitation method were validated over a 6 log range from 10(2) to 10(8) with a detection limit of 50 and 100 CBPV RNA copies, respectively, and the protocol of the real-time RT-qPCR assay for CBPV quantitation was approved by the French Accreditation Committee. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Real-time label-free quantitative fluorescence microscopy-based detection of ATP using a tunable fluorescent nano-aptasensor platform

    NASA Astrophysics Data System (ADS)

    Shrivastava, Sajal; Sohn, Il-Yung; Son, Young-Min; Lee, Won-Il; Lee, Nae-Eung

    2015-11-01

    Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (rGO) surfaces, thereby providing cytotoxicity assessment. Compared with conventional fluorescence spectrometry methods, our highly efficient, universally applicable, and rational approach will facilitate broader implementation of imaging-based biosensing platforms for the quantitative evaluation of a range of target molecules.Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (r

  7. Event-specific plasmid standards and real-time PCR methods for transgenic Bt11, Bt176, and GA21 maize and transgenic GT73 canola.

    PubMed

    Taverniers, Isabel; Windels, Pieter; Vaïtilingom, Marc; Milcamps, Anne; Van Bockstaele, Erik; Van den Eede, Guy; De Loose, Marc

    2005-04-20

    Since the 18th of April 2004, two new regulations, EC/1829/2003 on genetically modified food and feed products and EC/1830/2003 on traceability and labeling of GMOs, are in force in the EU. This new, comprehensive regulatory framework emphasizes the need of an adequate tracing system. Unique identifiers, such as the transgene genome junction region or a specific rearrangement within the transgene DNA, should form the basis of such a tracing system. In this study, we describe the development of event-specific tracing systems for transgenic maize lines Bt11, Bt176, and GA21 and for canola event GT73. Molecular characterization of the transgene loci enabled us to clone an event-specific sequence into a plasmid vector, to be used as a marker, and to develop line-specific primers. Primer specificity was tested through qualitative PCRs and dissociation curve analysis in SYBR Green I real-time PCRs. The primers were then combined with event-specific TaqMan probes in quantitative real-time PCRs. Calibration curves were set up both with genomic DNA samples and the newly synthesized plasmid DNA markers. It is shown that cloned plasmid GMO target sequences are perfectly suitable as unique identifiers and quantitative calibrators. Together with an event-specific primer pair and a highly specific TaqMan probe, the plasmid markers form crucial components of a unique and straighforward tracing system for Bt11, Bt176, and GA21 maize and GT73 canola events.

  8. Novel Bioluminescent Quantitative Detection of Nucleic Acid Amplification in Real-Time

    PubMed Central

    Gandelman, Olga A.; Church, Vicki L.; Moore, Cathy A.; Kiddle, Guy; Carne, Christopher A.; Parmar, Surendra; Jalal, Hamid; Tisi, Laurence C.; Murray, James A. H.

    2010-01-01

    Background The real-time monitoring of polynucleotide amplification is at the core of most molecular assays. This conventionally relies on fluorescent detection of the amplicon produced, requiring complex and costly hardware, often restricting it to specialised laboratories. Principal Findings Here we report the first real-time, closed-tube luminescent reporter system for nucleic acid amplification technologies (NAATs) enabling the progress of amplification to be continuously monitored using simple light measuring equipment. The Bioluminescent Assay in Real-Time (BART) continuously reports through bioluminescent output the exponential increase of inorganic pyrophosphate (PPi) produced during the isothermal amplification of a specific nucleic acid target. BART relies on the coupled conversion of inorganic pyrophosphate (PPi) produced stoichiometrically during nucleic acid synthesis to ATP by the enzyme ATP sulfurylase, and can therefore be coupled to a wide range of isothermal NAATs. During nucleic acid amplification, enzymatic conversion of PPi released during DNA synthesis into ATP is continuously monitored through the bioluminescence generated by thermostable firefly luciferase. The assay shows a unique kinetic signature for nucleic acid amplifications with a readily identifiable light output peak, whose timing is proportional to the concentration of original target nucleic acid. This allows qualitative and quantitative analysis of specific targets, and readily differentiates between negative and positive samples. Since quantitation in BART is based on determination of time-to-peak rather than absolute intensity of light emission, complex or highly sensitive light detectors are not required. Conclusions The combined chemistries of the BART reporter and amplification require only a constant temperature maintained by a heating block and are shown to be robust in the analysis of clinical samples. Since monitoring the BART reaction requires only a simple light

  9. Visualisation and quantitative analysis of the rodent malaria liver stage by real time imaging.

    PubMed

    Ploemen, Ivo H J; Prudêncio, Miguel; Douradinha, Bruno G; Ramesar, Jai; Fonager, Jannik; van Gemert, Geert-Jan; Luty, Adrian J F; Hermsen, Cornelus C; Sauerwein, Robert W; Baptista, Fernanda G; Mota, Maria M; Waters, Andrew P; Que, Ivo; Lowik, Clemens W G M; Khan, Shahid M; Janse, Chris J; Franke-Fayard, Blandine M D

    2009-11-18

    The quantitative analysis of Plasmodium development in the liver in laboratory animals in cultured cells is hampered by low parasite infection rates and the complicated methods required to monitor intracellular development. As a consequence, this important phase of the parasite's life cycle has been poorly studied compared to blood stages, for example in screening anti-malarial drugs. Here we report the use of a transgenic P. berghei parasite, PbGFP-Luc(con), expressing the bioluminescent reporter protein luciferase to visualize and quantify parasite development in liver cells both in culture and in live mice using real-time luminescence imaging. The reporter-parasite based quantification in cultured hepatocytes by real-time imaging or using a microplate reader correlates very well with established quantitative RT-PCR methods. For the first time the liver stage of Plasmodium is visualized in whole bodies of live mice and we were able to discriminate as few as 1-5 infected hepatocytes per liver in mice using 2D-imaging and to identify individual infected hepatocytes by 3D-imaging. The analysis of liver infections by whole body imaging shows a good correlation with quantitative RT-PCR analysis of extracted livers. The luminescence-based analysis of the effects of various drugs on in vitro hepatocyte infection shows that this method can effectively be used for in vitro screening of compounds targeting Plasmodium liver stages. Furthermore, by analysing the effect of primaquine and tafenoquine in vivo we demonstrate the applicability of real time imaging to assess parasite drug sensitivity in the liver. The simplicity and speed of quantitative analysis of liver-stage development by real-time imaging compared to the PCR methodologies, as well as the possibility to analyse liver development in live mice without surgery, opens up new possibilities for research on Plasmodium liver infections and for validating the effect of drugs and vaccines on the liver stage of

  10. Visualisation and Quantitative Analysis of the Rodent Malaria Liver Stage by Real Time Imaging

    PubMed Central

    Douradinha, Bruno G.; Ramesar, Jai; Fonager, Jannik; van Gemert, Geert-Jan; Luty, Adrian J. F.; Hermsen, Cornelus C.; Sauerwein, Robert W.; Baptista, Fernanda G.; Mota, Maria M.; Waters, Andrew P.; Que, Ivo; Lowik, Clemens W. G. M.; Khan, Shahid M.; Janse, Chris J.; Franke-Fayard, Blandine M. D.

    2009-01-01

    The quantitative analysis of Plasmodium development in the liver in laboratory animals in cultured cells is hampered by low parasite infection rates and the complicated methods required to monitor intracellular development. As a consequence, this important phase of the parasite's life cycle has been poorly studied compared to blood stages, for example in screening anti-malarial drugs. Here we report the use of a transgenic P. berghei parasite, PbGFP-Luccon, expressing the bioluminescent reporter protein luciferase to visualize and quantify parasite development in liver cells both in culture and in live mice using real-time luminescence imaging. The reporter-parasite based quantification in cultured hepatocytes by real-time imaging or using a microplate reader correlates very well with established quantitative RT-PCR methods. For the first time the liver stage of Plasmodium is visualized in whole bodies of live mice and we were able to discriminate as few as 1–5 infected hepatocytes per liver in mice using 2D-imaging and to identify individual infected hepatocytes by 3D-imaging. The analysis of liver infections by whole body imaging shows a good correlation with quantitative RT-PCR analysis of extracted livers. The luminescence-based analysis of the effects of various drugs on in vitro hepatocyte infection shows that this method can effectively be used for in vitro screening of compounds targeting Plasmodium liver stages. Furthermore, by analysing the effect of primaquine and tafenoquine in vivo we demonstrate the applicability of real time imaging to assess parasite drug sensitivity in the liver. The simplicity and speed of quantitative analysis of liver-stage development by real-time imaging compared to the PCR methodologies, as well as the possibility to analyse liver development in live mice without surgery, opens up new possibilities for research on Plasmodium liver infections and for validating the effect of drugs and vaccines on the liver stage of

  11. Multiplex Real-Time PCR Assay Using TaqMan Probes for the Identification of Trypanosoma cruzi DTUs in Biological and Clinical Samples

    PubMed Central

    Cura, Carolina I.; Duffy, Tomas; Lucero, Raúl H.; Bisio, Margarita; Péneau, Julie; Jimenez-Coello, Matilde; Calabuig, Eva; Gimenez, María J.; Valencia Ayala, Edward; Kjos, Sonia A.; Santalla, José; Mahaney, Susan M.; Cayo, Nelly M.; Nagel, Claudia; Barcán, Laura; Málaga Machaca, Edith S.; Acosta Viana, Karla Y.; Brutus, Laurent; Ocampo, Susana B.; Aznar, Christine; Cuba Cuba, Cesar A.; Gürtler, Ricardo E.; Ramsey, Janine M.; Ribeiro, Isabela; VandeBerg, John L.; Yadon, Zaida E.; Osuna, Antonio; Schijman, Alejandro G.

    2015-01-01

    Background Trypanosoma cruzi has been classified into six Discrete Typing Units (DTUs), designated as TcI–TcVI. In order to effectively use this standardized nomenclature, a reproducible genotyping strategy is imperative. Several typing schemes have been developed with variable levels of complexity, selectivity and analytical sensitivity. Most of them can be only applied to cultured stocks. In this context, we aimed to develop a multiplex Real-Time PCR method to identify the six T. cruzi DTUs using TaqMan probes (MTq-PCR). Methods/Principal Findings The MTq-PCR has been evaluated in 39 cultured stocks and 307 biological samples from vectors, reservoirs and patients from different geographical regions and transmission cycles in comparison with a multi-locus conventional PCR algorithm. The MTq-PCR was inclusive for laboratory stocks and natural isolates and sensitive for direct typing of different biological samples from vectors, reservoirs and patients with acute, congenital infection or Chagas reactivation. The first round SL-IR MTq-PCR detected 1 fg DNA/reaction tube of TcI, TcII and TcIII and 1 pg DNA/reaction tube of TcIV, TcV and TcVI reference strains. The MTq-PCR was able to characterize DTUs in 83% of triatomine and 96% of reservoir samples that had been typed by conventional PCR methods. Regarding clinical samples, 100% of those derived from acute infected patients, 62.5% from congenitally infected children and 50% from patients with clinical reactivation could be genotyped. Sensitivity for direct typing of blood samples from chronic Chagas disease patients (32.8% from asymptomatic and 22.2% from symptomatic patients) and mixed infections was lower than that of the conventional PCR algorithm. Conclusions/Significance Typing is resolved after a single or a second round of Real-Time PCR, depending on the DTU. This format reduces carryover contamination and is amenable to quantification, automation and kit production. PMID:25993316

  12. The development of a real-time reverse transcription-polymerase chain reaction (rRT-PCR) assay using TaqMan technology for the pan detection of bluetongue virus (BTV).

    PubMed

    Mulholland, Catherine; McMenamy, Michael J; Hoffmann, Bernd; Earley, Bernadette; Markey, Bryan; Cassidy, Joseph; Allan, Gordon; Welsh, Michael D; McKillen, John

    2017-07-01

    Bluetongue virus (BTV) is an infectious, non-contagious viral disease of domestic and wild ruminants that is transmitted by adult females of certain Culicoides species. Since 2006, several serotypes including BTV-1, 2, 4, 6, 8, 9 and 16, have spread from the Mediterranean basin into Northern Europe for the first time. BTV-8 in particular, caused a major epidemic in northern Europe. As a result, it is evident that most European countries are at risk of BTV infection. The objective of this study was to develop and validate a real-time reverse transcriptase-polymerase chain reaction (rRT-PCR) assay based on TaqMan technology for the detection of representative strains of all BTV serotypes. Primers and probes were based on genome segment 10 of the virus, the NS3 gene. The assay was tested for sensitivity, and specificity. The analytical sensitivity of the rRT-PCR assay was 200 copies of RNA per reaction. The assay did not amplify the closely related orbivirus epizootic hemorrhagic disease virus (EHDV) but successfully detected all BTV reference strains including clinical samples from animals experimentally infected with BTV-8. This real time RT-PCR assay offers a sensitive, specific and rapid alternative assay for the pan detection of BTV that could be used as part of a panel of diagnostic assays for the detection of all serotypes of BTV. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  13. Real time blood testing using quantitative phase imaging.

    PubMed

    Pham, Hoa V; Bhaduri, Basanta; Tangella, Krishnarao; Best-Popescu, Catherine; Popescu, Gabriel

    2013-01-01

    We demonstrate a real-time blood testing system that can provide remote diagnosis with minimal human intervention in economically challenged areas. Our instrument combines novel advances in label-free optical imaging with parallel computing. Specifically, we use quantitative phase imaging for extracting red blood cell morphology with nanoscale sensitivity and NVIDIA's CUDA programming language to perform real time cellular-level analysis. While the blood smear is translated through focus, our system is able to segment and analyze all the cells in the one megapixel field of view, at a rate of 40 frames/s. The variety of diagnostic parameters measured from each cell (e.g., surface area, sphericity, and minimum cylindrical diameter) are currently not available with current state of the art clinical instruments. In addition, we show that our instrument correctly recovers the red blood cell volume distribution, as evidenced by the excellent agreement with the cell counter results obtained on normal patients and those with microcytic and macrocytic anemia. The final data outputted by our instrument represent arrays of numbers associated with these morphological parameters and not images. Thus, the memory necessary to store these data is of the order of kilobytes, which allows for their remote transmission via, for example, the cellular network. We envision that such a system will dramatically increase access for blood testing and furthermore, may pave the way to digital hematology.

  14. Real-time PCR for simultaneous detection and genotyping of bovine viral diarrhea virus.

    PubMed

    Letellier, C; Kerkhofs, P

    2003-12-01

    Since two genotypes of bovine viral diarrhea viruses (BVDV) occur in Belgian herds, their differentiation is important for disease surveillance. A quantitative real-time PCR assay was developed to detect and classify bovine viral diarrhea viruses in genotype I and II. A pair of primers specific for highly conserved regions of the 5'UTR and two TaqMan probes were designed. The FAM and VIC-labeled probe sequences differed by three nucleotides, allowing the differentiation between genotype I and II. The assay detectability of genotype I and II real-time PCR assay was 1000 and 100 copies, respectively. Highly reproducible data were obtained as the coefficients of variation of threshold cycle values in inter-runs were less than 2.2%. The correct classification of genotype I and II viruses was assessed by using reference strains and characterized field isolates of both genotypes. The application to clinical diagnosis was evaluated on pooled blood samples by post run measurement of the FAM- and VIC-associated fluorescence. The 100% agreement with the conventional RT-PCR method confirmed that this new technique could be used for routine detection of persistently infected immunotolerant animals.

  15. Real-time label-free quantitative fluorescence microscopy-based detection of ATP using a tunable fluorescent nano-aptasensor platform.

    PubMed

    Shrivastava, Sajal; Sohn, Il-Yung; Son, Young-Min; Lee, Won-Il; Lee, Nae-Eung

    2015-12-14

    Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (rGO) surfaces, thereby providing cytotoxicity assessment. Compared with conventional fluorescence spectrometry methods, our highly efficient, universally applicable, and rational approach will facilitate broader implementation of imaging-based biosensing platforms for the quantitative evaluation of a range of target molecules.

  16. Real-time quantitative fluorescence measurement of microscale cell culture analog systems

    NASA Astrophysics Data System (ADS)

    Oh, Taek-il; Kim, Donghyun; Tatosian, Daniel; Sung, Jong Hwan; Shuler, Michael

    2007-02-01

    A microscale cell culture analog (μCCA) is a cell-based lab-on-a-chip assay that, as an animal surrogate, is applied to pharmacological studies for toxicology tests. A μCCA typically comprises multiple chambers and microfluidics that connect the chambers, which represent animal organs and blood flow to mimic animal metabolism more realistically. A μCCA is expected to provide a tool for high-throughput drug discovery. Previously, a portable fluorescence detection system was investigated for a single μCCA device in real-time. In this study, we present a fluorescence-based imaging system that provides quantitative real-time data of the metabolic interactions in μCCAs with an emphasis on measuring multiple μCCA samples simultaneously for high-throughput screening. The detection system is based on discrete optics components, with a high-power LED and a charge-coupled device (CCD) camera as a light source and a detector, for monitoring cellular status on the chambers of each μCCA sample. Multiple samples are characterized mechanically on a motorized linear stage, which is fully-automated. Each μCCA sample has four chambers, where cell lines MES-SA/DX- 5, and MES-SA (tumor cells of human uterus) have been cultured. All cell-lines have been transfected to express the fusion protein H2B-GFP, which is a human histone protein fused at the amino terminus to EGFP. As a model cytotoxic drug, 10 μM doxorubicin (DOX) was used. Real-time quantitative data of the intensity loss of enhanced green fluorescent protein (EGFP) during cell death of target cells have been collected over several minutes to 40 hours. Design issues and improvements are also discussed.

  17. A new TaqMan method for the reliable diagnosis of Ehrlichia spp. in canine whole blood.

    PubMed

    Thomson, Kirsty; Yaaran, Tal; Belshaw, Alex; Curson, Lucia; Tisi, Laurence; Maurice, Sarah; Kiddle, Guy

    2018-06-18

    Ehrlichiosis is an important emerging infectious disease of the canid family and humans worldwide. To date, no extensive evaluation or validation of a molecular diagnostic test for ehrlichiosis has been published. Here, we present data for a newly designed TaqMan assay and compare its performance to a commercial technology (PCRun®). Both of these real-time methods of analysis were evaluated using a comprehensive number of prospective and retrospective samples collected from dogs exhibiting symptoms of ehrlichiosis. Whole blood samples collected from dogs, retrospectively in the United Kingdom and prospectively in Israel, were analysed for the presence of Ehrlichia canis and Ehrlichia minasensis DNA using the TaqMan PCR, developed specifically for this study. The results were compared to those of a real time commercial isothermal amplification method (PCRun® system developed by Biogal Galed Labs ACS, Galed, Israel). The sensitivity and specificity (CI: 95%) of the TaqMan PCR and PCRun® were both determined to be 100% and absolute, for all of the samples tested. Interestingly, both tests were demonstrated to be highly comparable, irrespective of differences in amplification chemistry or sequences targeted. Host differences, incidence of disease and geographical location of the isolates had little impact on the positivity recorded by each of the diagnostic methods. It was evident that both amplification methods were equally suited for diagnosing canine ehrlichiosis and while the PCRun® clearly amplified all clinically relevant Ehrlichia species known to infect dogs and humans, the TaqMan method was more specific for E. canis and E. minasensis. This work demonstrates that despite good analytical sensitivities and specificities for Ehrlichia spp. neither method could fully account for the clinical diagnosis of thrombocytopenia.

  18. Quantitative real-time in vivo detection of magnetic nanoparticles by their nonlinear magnetization

    NASA Astrophysics Data System (ADS)

    Nikitin, M. P.; Torno, M.; Chen, H.; Rosengart, A.; Nikitin, P. I.

    2008-04-01

    A novel method of highly sensitive quantitative detection of magnetic nanoparticles (MP) in biological tissues and blood system has been realized and tested in real time in vivo experiments. The detection method is based on nonlinear magnetic properties of MP and the related device can record a very small relative variation of nonlinear magnetic susceptibility up to 10-8 at room temperature, providing sensitivity of several nanograms of MP in 0.1ml volume. Real-time quantitative in vivo measurements of dynamics of MP concentration in blood flow have been performed. A catheter that carried the blood flow of a rat passed through the measuring device. After an MP injection, the quantity of MP in the circulating blood was continuously recorded. The method has also been used to evaluate the MP distribution between rat's organs. Its sensitivity was compared with detection of the radioactive MP based on isotope of Fe59. The comparison of magnetic and radioactive signals in the rat's blood and organ samples demonstrated similar sensitivity for both methods. However, the proposed magnetic method is much more convenient as it is safe, less expensive, and provides real-time measurements in vivo. Moreover, the sensitivity of the method can be further improved by optimization of the device geometry.

  19. Development of a rapid, sensitive TaqMan real-time RT-PCR assay for the detection of Rose rosette virus using multiple gene targets.

    PubMed

    Babu, Binoy; Jeyaprakash, Ayyamperumal; Jones, Debra; Schubert, Timothy S; Baker, Carlye; Washburn, Brian K; Miller, Steven H; Poduch, Kristina; Knox, Gary W; Ochoa-Corona, Francisco M; Paret, Mathews L

    2016-09-01

    Rose rosette virus (RRV), belonging to the genus Emaravirus, is a highly destructive pathogen that causes rose rosette disease. The disease is a major concern for the rose industry in the U.S. due to the lack of highly sensitive methods for early detection of RRV. This is critical, as early identification of the infected plants and eradication is necessary in minimizing the risks associated with the spread of the disease. A highly reliable, specific and sensitive detection assay is thus required to test and confirm the presence of RRV in suspected plant samples. In this study a TaqMan real-time reverse transcription-polymerase chain reaction (RT-PCR) assay was developed for the detection of RRV from infected roses, utilizing multiple gene targets. Four pairs of primers and probes; two of them (RRV_2-1 and RRV_2-2) based on the consensus sequences of the glycoprotein gene (RNA2) and the other two (RRV_3-2 and RRV_3-5) based on the nucleocapsid gene (RNA3) were designed. The specificity of the primers and probes was evaluated against other representative viruses infecting roses, belonging to the genera Alfamovirus, Cucumovirus, Ilarvirus, Nepovirus, Tobamovirus, and Tospovirus and one Emaravirus (Wheat mosaic virus). Dilution assays using the in vitro transcripts (spiked with total RNA from healthy plants, and non-spiked) showed that all the primers and probes are highly sensitive in consistently detecting RRV with a detection limit of 1 fg. Testing of the infected plants over a period of time (three times in monthly intervals) indicated high reproducibility, with the primer/probe RRV_3-5 showing 100% positive detection, while RRV_2-1, RRV_2-2 and RRV_3-2 showed 90% positive detection. The developed real-time RT-PCR assay is reliable, highly sensitive, and can be easily used in diagnostic laboratories for testing and confirmation of RRV. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Event specific qualitative and quantitative polymerase chain reaction detection of genetically modified MON863 maize based on the 5'-transgene integration sequence.

    PubMed

    Yang, Litao; Xu, Songci; Pan, Aihu; Yin, Changsong; Zhang, Kewei; Wang, Zhenying; Zhou, Zhigang; Zhang, Dabing

    2005-11-30

    Because of the genetically modified organisms (GMOs) labeling policies issued in many countries and areas, polymerase chain reaction (PCR) methods were developed for the execution of GMO labeling policies, such as screening, gene specific, construct specific, and event specific PCR detection methods, which have become a mainstay of GMOs detection. The event specific PCR detection method is the primary trend in GMOs detection because of its high specificity based on the flanking sequence of the exogenous integrant. This genetically modified maize, MON863, contains a Cry3Bb1 coding sequence that produces a protein with enhanced insecticidal activity against the coleopteran pest, corn rootworm. In this study, the 5'-integration junction sequence between the host plant DNA and the integrated gene construct of the genetically modified maize MON863 was revealed by means of thermal asymmetric interlaced-PCR, and the specific PCR primers and TaqMan probe were designed based upon the revealed 5'-integration junction sequence; the conventional qualitative PCR and quantitative TaqMan real-time PCR detection methods employing these primers and probes were successfully developed. In conventional qualitative PCR assay, the limit of detection (LOD) was 0.1% for MON863 in 100 ng of maize genomic DNA for one reaction. In the quantitative TaqMan real-time PCR assay, the LOD and the limit of quantification were eight and 80 haploid genome copies, respectively. In addition, three mixed maize samples with known MON863 contents were detected using the established real-time PCR systems, and the ideal results indicated that the established event specific real-time PCR detection systems were reliable, sensitive, and accurate.

  1. Detection of medically important Candida species by absolute quantitation real-time polymerase chain reaction.

    PubMed

    Than, Leslie Thian Lung; Chong, Pei Pei; Ng, Kee Peng; Seow, Heng Fong

    2015-01-01

    The number of invasive candidiasis cases has risen especially with an increase in the number of immunosuppressed and immunocom promised patients. The early detection of Candida species which is specific and sensitive is important in determining the correct administration of antifungal drugs to patients. This study aims to develop a method for the detection, identification and quantitation of medically important Candida species through quantitative polymerase chain reaction (qPCR). The isocitrate lyase (ICL) gene which is not found in mammals was chosen as the target gene of real-time PCR. Absolute quantitation of the gene copy number was achieved by constructing the plasmid containing the ICL gene which is used to generate standard curve. Twenty fungal species, two bacterial species and human DNA were tested to check the specificity of the detection method. All eight Candida species were successfully detected, identified and quantitated based on the ICL gene. A seven-log range of the gene copy number and a minimum detection limit of 10(3) copies were achieved. A one-tube absolute quantification real-time PCR that differentiates medically important Candida species via individual unique melting temperature was achieved. Analytical sensitivity and specificity were not compromised.

  2. An Alu-based, MGB Eclipse real-time PCR method for quantitation of human DNA in forensic samples.

    PubMed

    Nicklas, Janice A; Buel, Eric

    2005-09-01

    The forensic community needs quick, reliable methods to quantitate human DNA in crime scene samples to replace the laborious and imprecise slot blot method. A real-time PCR based method has the possibility of allowing development of a faster and more quantitative assay. Alu sequences are primate-specific and are found in many copies in the human genome, making these sequences an excellent target or marker for human DNA. This paper describes the development of a real-time Alu sequence-based assay using MGB Eclipse primers and probes. The advantages of this assay are simplicity, speed, less hands-on-time and automated quantitation, as well as a large dynamic range (128 ng/microL to 0.5 pg/microL).

  3. Multiplex real-time PCR assays for the identification of the potato cyst and tobacco cyst nematodes

    USDA-ARS?s Scientific Manuscript database

    TaqMan primer-probe sets were developed for the detection and identification of potato cyst nematodes (PCN) Globodera pallida and G. rostochiensis using two-tube, multiplex real-time PCR. One tube contained a primer-probe set specific for G. pallida (pale cyst nematode) multiplexed with another prim...

  4. Multicenter evaluation of the new Abbott RealTime assays for quantitative detection of human immunodeficiency virus type 1 and hepatitis C virus RNA.

    PubMed

    Schutten, M; Peters, D; Back, N K T; Beld, M; Beuselinck, K; Foulongne, V; Geretti, A-M; Pandiani, L; Tiemann, C; Niesters, H G M

    2007-06-01

    The analytical performances of the new Abbott RealTime hepatitis C virus (HCV) and human immunodeficiency virus type 1 viral load assays were compared at nine laboratories with different competitor assays. These included the Abbott LcX, Bayer Versant bDNA, Roche COBAS Amplicor, and Roche COBAS TaqMan assays. Two different protocols used during the testing period with and without a pre-m1000 RNA isolation spin were compared. The difference proved to be nonsignificant. A uracil-N-glycosylase (UNG) contamination control option in the HCV test for previous Roche COBAS Amplicor users was evaluated. It proved to decrease amplicon carryover by 100-fold independent of the amplicon input concentration. The protocol including UNG proved to overcome problems with false-positive negative controls. Comparison with other assays revealed only minor differences. The largest difference was observed between the Abbott HCV RealTime assay and the Roche COBAS Amplicor HCV Monitor version 2.0 assay.

  5. Real-time PCR and its application to mumps rapid diagnosis.

    PubMed

    Jin, L; Feng, Y; Parry, R; Cui, A; Lu, Y

    2007-11-01

    A real-time polymerase chain reaction assay was initially developed in China to detect mumps genome. The primers and TaqMan-MGB probe were selected from regions of the hemagglutinin gene of mumps virus. The primers and probe for the real-time PCR were evaluated by both laboratories in China and in the UK using three different pieces of equipment, LightCycler (Roche), MJ DNA Engine Option 2 (BIO-RAD) and TaqMan (ABI Prism) on different samples. The reaction was performed with either a one-step (China) or two-step (UK) process. The sensitivity (10 copies) was estimated using a serial dilution of constructed mumps-plasmid DNA and a linear standard curve was obtained between 10 and 10(7) DNA copies/reaction, which can be used to quantify viral loads. The detection limit on cell culture-grown virus was approximately 2 pfu/ml with a two-step assay on TaqMan, which was equivalent to the sensitivity of the nested PCR routinely used in the UK. The specificity was proved by testing a range of respiratory viruses and several genotypes of mumps strains. The concentration of primers and probe is 22 pmol and 6.25 or 7 pmol respectively for a 25 microl reaction. The assay took 3 hr from viral RNA extraction to complete the detection using any of the three pieces of equipment. Three hundred forty-one (35 in China and 306 in the UK) clinical specimens were tested, the results showing that this real-time PCR assay is suitable for rapid and accurate detection of mumps virus RNA in various types of clinical specimens. (c) 2007 Wiley-Liss, Inc.

  6. Evaluation of the clinical sensitivity for the quantification of human immunodeficiency virus type 1 RNA in plasma: Comparison of the new COBAS TaqMan HIV-1 with three current HIV-RNA assays--LCx HIV RNA quantitative, VERSANT HIV-1 RNA 3.0 (bDNA) and COBAS AMPLICOR HIV-1 Monitor v1.5.

    PubMed

    Katsoulidou, Antigoni; Petrodaskalaki, Maria; Sypsa, Vana; Papachristou, Eleni; Anastassopoulou, Cleo G; Gargalianos, Panagiotis; Karafoulidou, Anastasia; Lazanas, Marios; Kordossis, Theodoros; Andoniadou, Anastasia; Hatzakis, Angelos

    2006-02-01

    The COBAS TaqMan HIV-1 test (Roche Diagnostics) was compared with the LCx HIV RNA quantitative assay (Abbott Laboratories), the Versant HIV-1 RNA 3.0 (bDNA) assay (Bayer) and the COBAS Amplicor HIV-1 Monitor v1.5 test (Roche Diagnostics), using plasma samples of various viral load levels from HIV-1-infected individuals. In the comparison of TaqMan with LCx, TaqMan identified as positive 77.5% of the 240 samples versus 72.1% identified by LCx assay, while their overall agreement was 94.6% and the quantitative results of samples that were positive by both methods were strongly correlated (r=0.91). Similarly, in the comparison of TaqMan with bDNA 3.0, both methods identified 76.3% of the 177 samples as positive, while their overall agreement was 95.5% and the quantitative results of samples that were positive by both methods were strongly correlated (r=0.95). Finally, in the comparison of TaqMan with Monitor v1.5, TaqMan identified 79.5% of the 156 samples as positive versus 80.1% identified by Monitor v1.5, while their overall agreement was 95.5% and the quantitative results of samples that were positive by both methods were strongly correlated (r=0.96). In conclusion, the new COBAS TaqMan HIV-1 test showed excellent agreement with other widely used commercially available tests for the quantitation of HIV-1 viral load.

  7. Development and comparative evaluation of SYBR Green I-based one-step real-time RT-PCR assay for detection and quantification of West Nile virus in human patients.

    PubMed

    Kumar, Jyoti S; Saxena, Divyasha; Parida, Manmohan

    2014-01-01

    The recent outbreaks of West Nile Virus (WNV) in the Northeastern American continents and other regions of the world have made it essential to develop an efficient protocol for surveillance of WN virus. Nucleic acid based techniques like, RT-PCR have the advantage of sensitivity, specificity and rapidity. A one step single tube Env gene specific real-time RT-PCR was developed for early and reliable clinical diagnosis of WNV infection in clinical samples. The applicability of this assay for clinical diagnosis was validated with 105 suspected acute-phase serum and plasma samples from the recent epidemic of mysterious fever in Tamil Nadu, India in 2009-10. The comparative evaluation revealed the higher sensitivity of real-time RT-PCR assay by picking up 4 additional samples with low copy number of template in comparison to conventional RT-PCR. All the real-time positive samples further confirmed by CDC reported TaqMan real-time RT-PCR and quantitative real-time RT-PCR assays for the simultaneous detection of WNV lineage 1 and 2 strains. The quantitation of the viral load samples was done using a standard curve. These findings demonstrated that the assay has the potential usefulness for clinical diagnosis due to detection and quantification of WNV in acute-phase patient serum samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Escherichia coli DNA contamination in AmpliTaq Gold polymerase interferes with TaqMan analysis of lacZ.

    PubMed

    Koponen, Jonna K; Turunen, Anna-Mari; Ylä-Herttuala, Seppo

    2002-03-01

    Real-time PCR is a powerful method for the quantification of gene expression in biological samples. This method uses TaqMan chemistry based on the 5' -exonuclease activity of the AmpliTaq Gold DNA polymerase which releases fluorescence from hybridized probes during synthesis of each new PCR product. Many gene therapy studies use lacZ, encoding Escherichia coli beta-galactosidase, as a marker gene. Our results demonstrate that E. coli DNA contamination in AmpliTaq Gold polymerase interferes with TaqMan analysis of lacZ gene expression and decreases sensitivity of the method below the level required for biodistribution and long-term gene expression studies. In biodistribution analyses the contamination can lead to false-negative results by masking low-level lacZ expression in target and ectopic tissues, and false-positive results if sufficient controls are not used. We conclude that, to get reliable TaqMan results with lacZ, adequate controls should be included in each run to rule out contamination from AmpliTaq Gold polymerase.

  9. Analytical characteristics and comparative evaluation of Aptima HCV quant Dx assay with the Abbott RealTime HCV assay and Roche COBAS AmpliPrep/COBAS TaqMan HCV quantitative test v2.0.

    PubMed

    Worlock, A; Blair, D; Hunsicker, M; Le-Nguyen, T; Motta, C; Nguyen, C; Papachristou, E; Pham, J; Williams, A; Vi, M; Vinluan, B; Hatzakis, A

    2017-04-04

    The Aptima HCV Quant Dx assay (Aptima assay) is a fully automated quantitative assay on the Panther® system. This assay is intended for confirmation of diagnosis and monitoring of HCV RNA in plasma and serum specimens. The purpose of the testing described in this paper was to evaluate the performance of the Aptima assay. The analytical sensitivity, analytical specificity, precision, and linearity of the Aptima assay were assessed. The performance of the Aptima assay was compared to two commercially available HCV assays; the Abbott RealTime HCV assay (Abbott assay, Abbott Labs Illinois, USA) and the Roche COBAS Ampliprep/COBAS Taqman HCV Quantitative Test v2.0 (Roche Assay, Roche Molecular Systems, Pleasanton CA, USA). The 95% Lower Limit of Detection (LoD) of the assay was determined from dilutions of the 2nd HCV WHO International Standard (NIBSC 96/798 genotype 1) and HCV positive clinical specimens in HCV negative human plasma and serum. Probit analysis was performed to generate the 95% predicted detection limits. The Lower Limit of Quantitation (LLoQ) was established for each genotype by diluting clinical specimens and the 2nd HCV WHO International Standard (NIBSC 96/798 genotype 1) in HCV negative human plasma and serum. Specificity was determined using 200 fresh and 536 frozen HCV RNA negative clinical specimens including 370 plasma specimens and 366 serum specimens. Linearity for genotypes 1 to 6 was established by diluting armored RNA or HCV positive clinical specimens in HCV negative serum or plasma from 8.08 log IU/mL to below 1 log IU/mL. Precision was tested using a 10 member panel made by diluting HCV positive clinical specimens or spiking armored RNA into HCV negative plasma and serum. A method comparison was conducted against the Abbott assay using 1058 clinical specimens and against the Roche assay using 608 clinical specimens from HCV infected patients. In addition, agreement between the Roche assay and the Aptima assay using specimens with low

  10. Quantitative analysis of periodontal pathogens by ELISA and real-time polymerase chain reaction.

    PubMed

    Hamlet, Stephen M

    2010-01-01

    The development of analytical methods enabling the accurate identification and enumeration of bacterial species colonizing the oral cavity has led to the identification of a small number of bacterial pathogens that are major factors in the etiology of periodontal disease. Further, these methods also underpin more recent epidemiological analyses of the impact of periodontal disease on general health. Given the complex milieu of over 700 species of microorganisms known to exist within the complex biofilms found in the oral cavity, the identification and enumeration of oral periodontopathogens has not been an easy task. In recent years however, some of the intrinsic limitations of the more traditional microbiological analyses previously used have been overcome with the advent of immunological and molecular analytical methods. Of the plethora of methodologies reported in the literature, the enzyme-linked immunosorbent assay (ELISA), which combines the specificity of antibody with the sensitivity of simple enzyme assays and the polymerase chain reaction (PCR), has been widely utilized in both laboratory and clinical applications. Although conventional PCR does not allow quantitation of the target organism, real-time PCR (rtPCR) has the ability to detect amplicons as they accumulate in "real time" allowing subsequent quantitation. These methods enable the accurate quantitation of as few as 10(2) (using rtPCR) to 10(4) (using ELISA) periodontopathogens in dental plaque samples.

  11. Evaluation and utilization of preassembled frozen commercial fast real-time qPCR master mixes for detection of cytomegalovirus and BK virus.

    PubMed

    Glover, William A; Atienza, Ederlyn E; Nesbitt, Shannon; Kim, Woo J; Castor, Jared; Cook, Linda; Jerome, Keith R

    2016-01-01

    Quantitative DNA detection of cytomegalovirus (CMV) and BK virus (BKV) is critical in the management of transplant patients. Quantitative laboratory-developed procedures for CMV and BKV have been described in which much of the processing is automated, resulting in rapid, reproducible, and high-throughput testing of transplant patients. To increase the efficiency of such assays, the performance and stability of four commercial preassembled frozen fast qPCR master mixes (Roche FastStart Universal Probe Master Mix with Rox, Bio-Rad SsoFast Probes Supermix with Rox, Life Technologies TaqMan FastAdvanced Master Mix, and Life Technologies Fast Universal PCR Master Mix), in combination with in-house designed primers and probes, was evaluated using controls and standards from standard CMV and BK assays. A subsequent parallel evaluation using patient samples was performed comparing the performance of freshly prepared assay mixes versus aliquoted frozen master mixes made with two of the fast qPCR mixes (Life Technologies TaqMan FastAdvanced Master Mix, and Bio-Rad SsoFast Probes Supermix with Rox), chosen based on their performance and compatibility with existing PCR cycling conditions. The data demonstrate that the frozen master mixes retain excellent performance over a period of at least 10 weeks. During the parallel testing using clinical specimens, no difference in quantitative results was observed between the preassembled frozen master mixes and freshly prepared master mixes. Preassembled fast real-time qPCR frozen master mixes perform well and represent an additional strategy laboratories can implement to reduce assay preparation times, and to minimize technical errors and effort necessary to perform clinical PCR. © 2015 Wiley Periodicals, Inc.

  12. Complementary techniques: validation of gene expression data by quantitative real time PCR.

    PubMed

    Provenzano, Maurizio; Mocellin, Simone

    2007-01-01

    Microarray technology can be considered the most powerful tool for screening gene expression profiles of biological samples. After data mining, results need to be validated with highly reliable biotechniques allowing for precise quantitation of transcriptional abundance of identified genes. Quantitative real time PCR (qrt-PCR) technology has recently reached a level of sensitivity, accuracy and practical ease that support its use as a routine bioinstrumentation for gene level measurement. Currently, qrt-PCR is considered by most experts the most appropriate method to confirm or confute microarray-generated data. The knowledge of the biochemical principles underlying qrt-PCR as well as some related technical issues must be beard in mind when using this biotechnology.

  13. Comparison of the Abbott RealTime HCV and Roche COBAS Ampliprep/COBAS TaqMan HCV assays for the monitoring of sofosbuvir-based therapy.

    PubMed

    Ogawa, Eiichi; Furusyo, Norihiro; Murata, Masayuki; Shimizu, Motohiro; Toyoda, Kazuhiro; Hotta, Taeko; Uchiumi, Takeshi; Hayashi, Jun

    2017-01-01

    On-treatment HCV kinetics play an invaluable role in evaluating the efficacy of interferon-based therapies. However, the importance of HCV RNA monitoring has not been well discussed concerning treatment with sofosbuvir (SOF)-based regimens, especially for the utility of the Abbott RealTime HCV (ART) assay. This study consisted of 151 patients infected with HCV genotype-1 or -2, including patients with prior treatment-experience or cirrhosis. HCV genotype-1 patients were treated with SOF/ledipasvir and genotype-2 patients with SOF/ribavirin, both for 12 weeks. Serial measurements of HCV RNA were performed with both the ART and COBAS AmpliPrep/COBAS TaqMan v2.0 (CAP/CTM) assays simultaneously at weeks 0, 1, 2, 4, 6, 8, 10 and 12 of treatment. The rates of HCV RNA target not detected (TND) by ART were significantly lower than those by CAP/CTM between weeks 2 and 12 (end of treatment [EOT]), irrespective of prior treatment-experience or cirrhosis. 11 (11.6%) genotype-1 and 8 (14.3%) genotype-2 patients did not achieve HCV RNA TND by ART at EOT, in contrast to all having HCV RNA TND by CAP/CTM; however, all achieved sustained virological response. The time at which HCV RNA became TND or unquantifiable was not associated with treatment outcome by either the ART or CAP/CTM assay. Over 10% of the patients continued to have detectable HCV RNA by ART at EOT, irrespective of HCV genotype, prior treatment-experience and/or cirrhosis. However, prolonged residual HCV RNA was not associated with treatment failure.

  14. Quantitative Real-Time PCR Analysis of Total Propidium Monazide -Resistant Fecal Indicator Bacteria in Wastewater

    EPA Science Inventory

    A real-time quantitative PCR (qPCR) method and a modification of this method incorporating pretreatment of samples with propidium monoazide (PMA) were evaluated for respective analyses of total and presumptively viable Enterococcus and Bacteroidales fecal indicator bacteria. Thes...

  15. Gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of Japanese encephalitis virus

    NASA Astrophysics Data System (ADS)

    Huang, Su-Hua; Yang, Tsuey-Ching; Tsai, Ming-Hong; Tsai, I.-Shou; Lu, Huang-Chih; Chuang, Pei-Hsin; Wan, Lei; Lin, Ying-Ju; Lai, Chih-Ho; Lin, Cheng-Wen

    2008-10-01

    Virus isolation and antibody detection are routinely used for diagnosis of Japanese encephalitis virus (JEV) infection, but the low level of transient viremia in some JE patients makes JEV isolation from clinical and surveillance samples very difficult. We describe the use of gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of JEV from its RNA genome. We tested the effect of gold nanoparticles on four different PCR systems, including conventional PCR, reverse-transcription PCR (RT-PCR), and SYBR green real-time PCR and RT-PCR assays for diagnosis in the acute phase of JEV infection. Gold nanoparticles increased the amplification yield of the PCR product and shortened the PCR time compared to the conventional reaction. In addition, nanogold-based real-time RT-PCR showed a linear relationship between Ct and template amount using ten-fold dilutions of JEV. The nanogold-based RT-PCR and real-time quantitative RT-PCR assays were able to detect low levels (1-10 000 copies) of the JEV RNA genomes extracted from culture medium or whole blood, providing early diagnostic tools for the detection of low-level viremia in the acute-phase infection. The assays described here were simple, sensitive, and rapid approaches for detection and quantitation of JEV in tissue cultured samples as well as clinical samples.

  16. Quantification Bias Caused by Plasmid DNA Conformation in Quantitative Real-Time PCR Assay

    PubMed Central

    Lin, Chih-Hui; Chen, Yu-Chieh; Pan, Tzu-Ming

    2011-01-01

    Quantitative real-time PCR (qPCR) is the gold standard for the quantification of specific nucleic acid sequences. However, a serious concern has been revealed in a recent report: supercoiled plasmid standards cause significant over-estimation in qPCR quantification. In this study, we investigated the effect of plasmid DNA conformation on the quantification of DNA and the efficiency of qPCR. Our results suggest that plasmid DNA conformation has significant impact on the accuracy of absolute quantification by qPCR. DNA standard curves shifted significantly among plasmid standards with different DNA conformations. Moreover, the choice of DNA measurement method and plasmid DNA conformation may also contribute to the measurement error of DNA standard curves. Due to the multiple effects of plasmid DNA conformation on the accuracy of qPCR, efforts should be made to assure the highest consistency of plasmid standards for qPCR. Thus, we suggest that the conformation, preparation, quantification, purification, handling, and storage of standard plasmid DNA should be described and defined in the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) to assure the reproducibility and accuracy of qPCR absolute quantification. PMID:22194997

  17. A novel quantitative real-time polymerase chain reaction method for detecting toxigenic Pasteurella multocida in nasal swabs from swine.

    PubMed

    Scherrer, Simone; Frei, Daniel; Wittenbrink, Max Michael

    2016-12-01

    Progressive atrophic rhinitis (PAR) in pigs is caused by toxigenic Pasteurella multocida. In Switzerland, PAR is monitored by selective culture of nasal swabs and subsequent polymerase chain reaction (PCR) screening of bacterial colonies for the P. multocida toxA gene. A panel of 203 nasal swabs from a recent PAR outbreak were used to evaluate a novel quantitative real-time PCR for toxigenic P. multocida in porcine nasal swabs. In comparison to the conventional PCR with a limit of detection of 100 genome equivalents per PCR reaction, the real-time PCR had a limit of detection of 10 genome equivalents. The real-time PCR detected toxA-positive P. multocida in 101 samples (49.8%), whereas the conventional PCR was less sensitive with 90 toxA-positive samples (44.3%). In comparison to the real-time PCR, 5.4% of the toxA-positive samples revealed unevaluable results by conventional PCR. The approach of culture-coupled toxA PCR for the monitoring of PAR in pigs is substantially improved by a novel quantitative real-time PCR.

  18. Detection of the free living amoeba Naegleria fowleri by using conventional and real-time PCR based on a single copy DNA sequence.

    PubMed

    Régoudis, Estelle; Pélandakis, Michel

    2016-02-01

    The amoeba-flagellate Naegleria fowleri is a causative agent of primary amoebic meningoencephalitis (PAM). This thermophilic species occurs worldwide and tends to proliferate in warm aquatic environment. The PAM cases remain rare but this infection is mostly fatal. Here, we describe a single copy region which has been cloned and sequenced, and was used for both conventional and real-time PCR. Targeting a single-copy DNA sequence allows to directly quantify the N. fowleri cells. The real-time PCR results give a detection limit of 1 copy per reaction with high reproducibility without the need of a Taqman probe. This procedure is of interest as compared to other procedures which are mostly based on the detection of multi-copy DNA associated with a Taqman probe. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Data Acceptance Criteria for Standardized Human-Associated Fecal Source Identification Quantitative Real-Time PCR Methods

    EPA Science Inventory

    There is a growing interest in the application of human-associated fecal sourceidentification quantitative real-time PCR (qPCR) technologies for water quality management. The transition from a research tool to a standardized protocol requires a high degree of confidence in data q...

  20. Single Laboratory Comparison of Quantitative Real-time PCR Assays for the Detection of Fecal Pollution

    EPA Science Inventory

    There are numerous quantitative real-time PCR (qPCR) assays available to detect and enumerate fecal pollution in ambient waters. Each assay employs distinct primers and probes that target different rRNA genes and microorganisms leading to potential variations in concentration es...

  1. Diagnosis of aerobic vaginitis by quantitative real-time PCR.

    PubMed

    Rumyantseva, T A; Bellen, G; Savochkina, Y A; Guschin, A E; Donders, G G G

    2016-07-01

    To evaluate a real-time PCR-based technique to quantify bacteria associated with aerobic vaginitis (AV) as a potential test. Vaginal samples from 100 women were tested by wet-mount microscopy, gram stain and quantitative real-time PCR targeting Enterobacteriacea, Staphylococcus spp., Streptococcus spp., Enterococcus spp., Escherichia coli, Streptococcus agalactiae, S. aureus; Lactobacillus spp. AV diagnosis obtained by wet-mount microscopy was used as reference. Some level of AV was diagnosed in 23 (23.7 %) cases. Various concentrations of Enterobacteriacea, Staphylococcus spp., Streptococcus spp. were detected an all patients. Enterococcus spp. were detected in 76 (78.3 %) cases. Summarized concentrations of aerobes were tenfold higher in AV-positive compared to AV-negative cases [7.30lg vs 6.06lg (p = 0.02)]. Concentrations of aerobes in severe, moderate and light AV cases did not vary significantly (p = 0.14). Concentration of lactobacilli was 1000-fold lower in AV-positive cases compared to normal cases (5.3lg vs 8.3lg, p < 0.0001). Streptococcus spp. dominated in the majority of AV-positive cases [19/22 (86.4 %) samples]. The relation of high loads of aerobes to the low numbers of Lactobacilli are a reliable marker for the presence of AV and could substitute microscopy as a test. PCR may be a good standardized substitution for AV diagnosis in settings where well-trained microscopists are lacking.

  2. Analytical Validation of Quantitative Real-Time PCR Methods for Quantification of Trypanosoma cruzi DNA in Blood Samples from Chagas Disease Patients

    PubMed Central

    Ramírez, Juan Carlos; Cura, Carolina Inés; Moreira, Otacilio da Cruz; Lages-Silva, Eliane; Juiz, Natalia; Velázquez, Elsa; Ramírez, Juan David; Alberti, Anahí; Pavia, Paula; Flores-Chávez, María Delmans; Muñoz-Calderón, Arturo; Pérez-Morales, Deyanira; Santalla, José; Guedes, Paulo Marcos da Matta; Peneau, Julie; Marcet, Paula; Padilla, Carlos; Cruz-Robles, David; Valencia, Edward; Crisante, Gladys Elena; Greif, Gonzalo; Zulantay, Inés; Costales, Jaime Alfredo; Alvarez-Martínez, Miriam; Martínez, Norma Edith; Villarroel, Rodrigo; Villarroel, Sandro; Sánchez, Zunilda; Bisio, Margarita; Parrado, Rudy; Galvão, Lúcia Maria da Cunha; da Câmara, Antonia Cláudia Jácome; Espinoza, Bertha; de Noya, Belkisyole Alarcón; Puerta, Concepción; Riarte, Adelina; Diosque, Patricio; Sosa-Estani, Sergio; Guhl, Felipe; Ribeiro, Isabela; Aznar, Christine; Britto, Constança; Yadón, Zaida Estela; Schijman, Alejandro G.

    2015-01-01

    An international study was performed by 26 experienced PCR laboratories from 14 countries to assess the performance of duplex quantitative real-time PCR (qPCR) strategies on the basis of TaqMan probes for detection and quantification of parasitic loads in peripheral blood samples from Chagas disease patients. Two methods were studied: Satellite DNA (SatDNA) qPCR and kinetoplastid DNA (kDNA) qPCR. Both methods included an internal amplification control. Reportable range, analytical sensitivity, limits of detection and quantification, and precision were estimated according to international guidelines. In addition, inclusivity and exclusivity were estimated with DNA from stocks representing the different Trypanosoma cruzi discrete typing units and Trypanosoma rangeli and Leishmania spp. Both methods were challenged against 156 blood samples provided by the participant laboratories, including samples from acute and chronic patients with varied clinical findings, infected by oral route or vectorial transmission. kDNA qPCR showed better analytical sensitivity than SatDNA qPCR with limits of detection of 0.23 and 0.70 parasite equivalents/mL, respectively. Analyses of clinical samples revealed a high concordance in terms of sensitivity and parasitic loads determined by both SatDNA and kDNA qPCRs. This effort is a major step toward international validation of qPCR methods for the quantification of T. cruzi DNA in human blood samples, aiming to provide an accurate surrogate biomarker for diagnosis and treatment monitoring for patients with Chagas disease. PMID:26320872

  3. EVALUATION OF QUANTITATIVE REAL TIME PCR FOR THE MEASUREMENT OF HELICOBATER PYLORI AT LOW CONCENTRATIONS IN DRINKING WATER

    EPA Science Inventory

    Aims: To determine the performance of a rapid, real time polymerase chain reaction (PCR) method for the detection and quantitative analysis Helicobacter pylori at low concentrations in drinking water.

    Methods and Results: A rapid DNA extraction and quantitative PCR (QPCR)...

  4. Real-time PCR in detection and quantitation of Leishmania donovani for the diagnosis of Visceral Leishmaniasis patients and the monitoring of their response to treatment

    PubMed Central

    Ghosh, Prakash; Khan, Md. Anik Ashfaq; Duthie, Malcolm S.; Vallur, Aarthy C.; Picone, Alessandro; Howard, Randall F.; Reed, Steven G.

    2017-01-01

    Sustained elimination of Visceral Leishmaniasis (VL) requires the reduction and control of parasite reservoirs to minimize the transmission of Leishmania donovani infection. A simple, reproducible and definitive diagnostic procedure is therefore indispensable for the early and accurate detection of parasites in VL, Relapsed VL (RVL) and Post Kala-azar Dermal Leishmaniasis (PKDL) patients, all of whom are potential reservoirs of Leishmania parasites. To overcome the limitations of current diagnostic approaches, a novel quantitative real-time polymerase chain reaction (qPCR) method based on Taqman chemistry was devised for the detection and quantification of L. donovani in blood and skin. The diagnostic efficacy was evaluated using archived peripheral blood buffy coat DNA from 40 VL, 40 PKDL, 10 RVL, 20 cured VL, and 40 cured PKDL along with 10 tuberculosis (TB) cases and 80 healthy endemic controls. Results were compared to those obtained using a Leishmania-specific nested PCR (Ln-PCR). The real time PCR assay was 100% (95% CI, 91.19–100%) sensitive in detecting parasite genomes in VL and RVL samples and 85.0% (95% CI, 70.16–94.29%) sensitive for PKDL samples. In contrast, the sensitivity of Ln-PCR was 77.5% (95% CI, 61.55–89.16%) for VL samples, 100% (95%CI, 69.15–100%) for RVL samples, and 52.5% (95% CI, 36.13–68.49%) for PKDL samples. There was significant discordance between the two methods with the overall sensitivity of the qPCR assay being considerably higher than Ln-PCR. None of the assay detected L. donovani DNA in buffy coats from cured VL cases, and reduced infectious burdens were demonstrated in cured PKDL cases who remained positive in 7.5% (3/40) and 2.5% (1/40) cases by real-time PCR and Ln-PCR, respectively. Both assays were 100% (95% CI, 95.98–100) specific with no positive signals in either endemic healthy control or TB samples. The real time PCR assay we developed offers a molecular tool for accurate detection of circulating L

  5. Improving clinical laboratory efficiency: a time-motion evaluation of the Abbott m2000 RealTime and Roche COBAS AmpliPrep/COBAS TaqMan PCR systems for the simultaneous quantitation of HIV-1 RNA and HCV RNA.

    PubMed

    Amendola, Alessandra; Coen, Sabrina; Belladonna, Stefano; Pulvirenti, F Renato; Clemens, John M; Capobianchi, M Rosaria

    2011-08-01

    Diagnostic laboratories need automation that facilitates efficient processing and workflow management to meet today's challenges for expanding services and reducing cost, yet maintaining the highest levels of quality. Processing efficiency of two commercially available automated systems for quantifying HIV-1 and HCV RNA, Abbott m2000 system and Roche COBAS Ampliprep/COBAS TaqMan 96 (docked) systems (CAP/CTM), was evaluated in a mid/high throughput workflow laboratory using a representative daily workload of 24 HCV and 72 HIV samples. Three test scenarios were evaluated: A) one run with four batches on the CAP/CTM system, B) two runs on the Abbott m2000 and C) one run using the Abbott m2000 maxCycle feature (maxCycle) for co-processing these assays. Cycle times for processing, throughput and hands-on time were evaluated. Overall processing cycle time was 10.3, 9.1 and 7.6 h for Scenarios A), B) and C), respectively. Total hands-on time for each scenario was, in order, 100.0 (A), 90.3 (B) and 61.4 min (C). The interface of an automated analyzer to the laboratory workflow, notably system set up for samples and reagents and clean up functions, are as important as the automation capability of the analyzer for the overall impact to processing efficiency and operator hands-on time.

  6. A BAYESIAN METHOD FOR CALCULATING REAL-TIME QUANTITATIVE PCR CALIBRATION CURVES USING ABSOLUTE PLASMID DNA STANDARDS

    EPA Science Inventory

    In real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA concentration. However, potential differences in the amplification performance of plasmid DNA compared to genomic DNA standards are often ignore...

  7. Evaluation of an Improved U.S. Food and Drug Administration Method for the Detection of Cyclospora cayetanensis in Produce Using Real-Time PCR.

    PubMed

    Murphy, Helen R; Lee, Seulgi; da Silva, Alexandre J

    2017-07-01

    Cyclospora cayetanensis is a protozoan parasite that causes human diarrheal disease associated with the consumption of fresh produce or water contaminated with C. cayetanensis oocysts. In the United States, foodborne outbreaks of cyclosporiasis have been linked to various types of imported fresh produce, including cilantro and raspberries. An improved method was developed for identification of C. cayetanensis in produce at the U.S. Food and Drug Administration. The method relies on a 0.1% Alconox produce wash solution for efficient recovery of oocysts, a commercial kit for DNA template preparation, and an optimized TaqMan real-time PCR assay with an internal amplification control for molecular detection of the parasite. A single laboratory validation study was performed to assess the method's performance and compare the optimized TaqMan real-time PCR assay and a reference nested PCR assay by examining 128 samples. The samples consisted of 25 g of cilantro or 50 g of raspberries seeded with 0, 5, 10, or 200 C. cayetanensis oocysts. Detection rates for cilantro seeded with 5 and 10 oocysts were 50.0 and 87.5%, respectively, with the real-time PCR assay and 43.7 and 94.8%, respectively, with the nested PCR assay. Detection rates for raspberries seeded with 5 and 10 oocysts were 25.0 and 75.0%, respectively, with the real-time PCR assay and 18.8 and 68.8%, respectively, with the nested PCR assay. All unseeded samples were negative, and all samples seeded with 200 oocysts were positive. Detection rates using the two PCR methods were statistically similar, but the real-time PCR assay is less laborious and less prone to amplicon contamination and allows monitoring of amplification and analysis of results, making it more attractive to diagnostic testing laboratories. The improved sample preparation steps and the TaqMan real-time PCR assay provide a robust, streamlined, and rapid analytical procedure for surveillance, outbreak response, and regulatory testing of foods for

  8. Effects of DNA extraction and purification methods on real-time quantitative PCR analysis of Roundup Ready soybean.

    PubMed

    Demeke, Tigst; Ratnayaka, Indira; Phan, Anh

    2009-01-01

    The quality of DNA affects the accuracy and repeatability of quantitative PCR results. Different DNA extraction and purification methods were compared for quantification of Roundup Ready (RR) soybean (event 40-3-2) by real-time PCR. DNA was extracted using cetylmethylammonium bromide (CTAB), DNeasy Plant Mini Kit, and Wizard Magnetic DNA purification system for food. CTAB-extracted DNA was also purified using the Zymo (DNA Clean & Concentrator 25 kit), Qtip 100 (Qiagen Genomic-Tip 100/G), and QIAEX II Gel Extraction Kit. The CTAB extraction method provided the largest amount of DNA, and the Zymo purification kit resulted in the highest percentage of DNA recovery. The Abs260/280 and Abs260/230 ratios were less than the expected values for some of the DNA extraction and purification methods used, indicating the presence of substances that could inhibit PCR reactions. Real-time quantitative PCR results were affected by the DNA extraction and purification methods used. Further purification or dilution of the CTAB DNA was required for successful quantification of RR soybean. Less variability of quantitative PCR results was observed among experiments and replications for DNA extracted and/or purified by CTAB, CTAB+Zymo, CTAB+Qtip 100, and DNeasy methods. Correct and repeatable results for real-time PCR quantification of RR soybean were achieved using CTAB DNA purified with Zymo and Qtip 100 methods.

  9. Real-time PCR quantification of six periodontal pathogens in saliva samples from healthy young adults.

    PubMed

    Zhou, Xiaodong; Liu, Xiaoli; Li, Jing; Aprecio, Raydolfo M; Zhang, Wu; Li, Yiming

    2015-05-01

    The use of saliva as a diagnostic fluid for the evaluation of periodontal health has gained attention recently. Most published real-time PCR assays focused on quantification of bacteria in subgingival plaque, not in saliva. The aims of this study were to develop a real-time PCR assay for quantification of six periodontal pathogens in saliva and to establish a relationship between the amount of DNA (fg) and colony-forming unit (CFU). TaqMan primers/probe sets were used for the detection of Aggregatibacter actinomycetemcomitans (Aa), Eikenella corrodens (Ec), Fusobacterium nucleatum (Fn), Porphyromonas gingivalis (Pg), Prevotella intermedia (Pi), Tannerella forsythia (Tf), and total bacteria. Six periodontal pathogens and total bacteria in saliva from 24 periodontally healthy individuals were determined. The relationship between the amount of DNA (fg) and CFU was established by measuring the concentrations of extracted bacterial DNA and CFU per milliliter of bacteria on agar plates. Fn, Ec, and Pi were detected in all saliva samples, while 58.5, 45.8, and 33.3% were detected for Tf, Pg, and Aa, respectively. Numbers of Ec and Fn in saliva were highly correlated (R(2) = 0.93, P < 0.01). The values of DNA (fg) per CFU ranged from 64 for Ec to 121 for Pg. The real-time PCR assay in combination with the relationship between DNA (fg) and CFU can be used to quantitate periodontal pathogens in saliva and estimate the number of live bacteria (CFU). This real-time PCR assay in combination with the relationship between DNA (fg) and CFU has the potential to be an adjunct in evaluation of periodontal health status.

  10. A novel duplex real time quantitative reverse transcription polymerase chain reaction for rubella virus with armored RNA as a noncompetitive internal positive control.

    PubMed

    Zhao, Lihong; Li, Ruiying; Liu, Aihua; Zhao, Shuping

    2015-07-01

    The objective of this study was to build and apply a duplex real time quantitative reverse transcription-polymerase chain reaction (RT-PCR) for rubella virus. Firstly, a 60-bp-long armored RV RNA was constructed in the laboratory. Secondly, a duplex real time RT-PCR assay was established. Thirdly, the 60-bp-long armored RV RNA was used as an internal positive control (IPC) for the duplex real time RT-PCR. And finally the duplex real time RT-PCR assay was applied to detect RV RNA in clinical specimens. The in-house assay has a high amplification efficiency (0.99), a high analytical sensitivity (200 copies/mL), and a good reproducibility. The diagnostic specificity and sensitivity of the in-house assay were both 100%, due to the monitoring of the armored RV RNA IPC. Therefore, the in-house duplex real time quantitative RT-PCR assay is a specific, sensitive, reproducible and accurate assay for quantitation of RV RNA in clinical specimens. And noncompetitive armored RV RNA IPC can monitor RT-PCR inhibition and prevent false-negative and inaccurate results in the real time detection system. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Single Laboratory Comparison of Quantitative Real-Time PCR Assays for the Detection of Human Fecal Pollution

    EPA Science Inventory

    There are numerous quantitative real-time PCR (qPCR) methods available to detect and enumerate human fecal pollution in ambient waters. Each assay employs distinct primers and/or probes and many target different genes and microorganisms leading to potential variations in method ...

  12. Evaluation of a rapid, quantitative real-time PCR method for enumeration of pathogenic Candida cells in water

    USGS Publications Warehouse

    Brinkman, Nichole E.; Haugland, Richard A.; Wymer, Larry J.; Byappanahalli, Muruleedhara N.; Whitman, Richard L.; Vesper, Stephen J.

    2003-01-01

    Quantitative PCR (QPCR) technology, incorporating fluorigenic 5′ nuclease (TaqMan) chemistry, was utilized for the specific detection and quantification of six pathogenic species of Candida (C. albicans, C. tropicalis, C. krusei, C. parapsilosis, C. glabrata and C. lusitaniae) in water. Known numbers of target cells were added to distilled and tap water samples, filtered, and disrupted directly on the membranes for recovery of DNA for QPCR analysis. The assay's sensitivities were between one and three cells per filter. The accuracy of the cell estimates was between 50 and 200% of their true value (95% confidence level). In similar tests with surface water samples, the presence of PCR inhibitory compounds necessitated further purification and/or dilution of the DNA extracts, with resultant reductions in sensitivity but generally not in quantitative accuracy. Analyses of a series of freshwater samples collected from a recreational beach showed positive correlations between the QPCR results and colony counts of the corresponding target species. Positive correlations were also seen between the cell quantities of the target Candida species detected in these analyses and colony counts of Enterococcus organisms. With a combined sample processing and analysis time of less than 4 h, this method shows great promise as a tool for rapidly assessing potential exposures to waterborne pathogenic Candida species from drinking and recreational waters and may have applications in the detection of fecal pollution.

  13. Quantitative analysis of diet structure by real-time PCR, reveals different feeding patterns by two dominant grasshopper species

    PubMed Central

    Huang, Xunbing; Wu, Huihui; McNeill, Mark Richard; Qin, Xinghu; Ma, Jingchuan; Tu, Xiongbing; Cao, Guangchun; Wang, Guangjun; Nong, Xiangqun; Zhang, Zehua

    2016-01-01

    Studies on grasshopper diets have historically employed a range of methodologies, each with certain advantages and disadvantages. For example, some methodologies are qualitative instead of quantitative. Others require long experimental periods or examine population-level effects, only. In this study, we used real-time PCR to examine diets of individual grasshoppers. The method has the advantage of being both fast and quantitative. Using two grasshopper species, Oedaleus asiaticus and Dasyhippus barbipes, we designed ITS primer sequences for their three main host plants, Stipa krylovii, Leymus chinensis and Cleistogenes squarrosa and used real-time PCR method to test diet structure both qualitatively and quantitatively. The lowest detection efficiency of the three grass species was ~80% with a strong correlation between actual and PCR-measured food intake. We found that Oedaleus asiaticus maintained an unchanged diet structure across grasslands with different grass communities. By comparison, Dasyhippus barbipes changed its diet structure. These results revealed why O. asiaticus distribution is mainly confined to Stipa-dominated grassland, and D. barbipes is more widely distributed across Inner Mongolia. Overall, real-time PCR was shown to be a useful tool for investigating grasshopper diets, which in turn offers some insight into grasshopper distributions and improved pest management. PMID:27562455

  14. Quantification of M13 and T7 bacteriophages by TaqMan and SYBR green qPCR.

    PubMed

    Peng, Xiujuan; Nguyen, Alex; Ghosh, Debadyuti

    2018-02-01

    TaqMan and SYBR Green quantitative PCR (qPCR) methods were developed as DNA-based approaches to reproducibly enumerate M13 and T7 phages from phage display selection experiments individually and simultaneously. The genome copies of M13 and T7 phages were quantified by TaqMan or SYBR Green qPCR referenced against M13 and T7 DNA standard curves of known concentrations. TaqMan qPCR was capable of quantifying M13 and T7 phage DNA simultaneously with a detection range of 2.75*10 1 -2.75*10 8 genome copies(gc)/μL and 2.66*10 1 -2.66*10 8 genome copies(gc)/μL respectively. TaqMan qPCR demonstrated an efficient amplification efficiency (E s ) of 0.97 and 0.90 for M13 and T7 phage DNA, respectively. SYBR Green qPCR was ten-fold more sensitive than TaqMan qPCR, able to quantify 2.75-2.75*10 7 gc/μL and 2.66*10 1 -2.66*10 7 gc/μL of M13 and T7 phage DNA, with an amplification efficiency E s of 1.06 and 0.78, respectively. Due to its superior sensitivity, SYBR Green qPCR was used to enumerate M13 and T7 phage display clones selected against a cell line, and quantified titers demonstrated accuracy comparable to titers from traditional double-layer plaque assay. Compared to enzyme linked immunosorbent assay, both qPCR methods exhibited increased detection sensitivity and reproducibility. These qPCR methods are reproducible, sensitive, and time-saving to determine their titers and to quantify a large number of phage samples individually or simultaneously, thus avoiding the need for time-intensive double-layer plaque assay. These findings highlight the attractiveness of qPCR for phage enumeration for applications ranging from selection to next-generation sequencing (NGS). Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Interlaboratory validation of quantitative duplex real-time PCR method for screening analysis of genetically modified maize.

    PubMed

    Takabatake, Reona; Koiwa, Tomohiro; Kasahara, Masaki; Takashima, Kaori; Futo, Satoshi; Minegishi, Yasutaka; Akiyama, Hiroshi; Teshima, Reiko; Oguchi, Taichi; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi

    2011-01-01

    To reduce the cost and time required to routinely perform the genetically modified organism (GMO) test, we developed a duplex quantitative real-time PCR method for a screening analysis simultaneously targeting an event-specific segment for GA21 and Cauliflower Mosaic Virus 35S promoter (P35S) segment [Oguchi et al., J. Food Hyg. Soc. Japan, 50, 117-125 (2009)]. To confirm the validity of the method, an interlaboratory collaborative study was conducted. In the collaborative study, conversion factors (Cfs), which are required to calculate the GMO amount (%), were first determined for two real-time PCR instruments, the ABI PRISM 7900HT and the ABI PRISM 7500. A blind test was then conducted. The limit of quantitation for both GA21 and P35S was estimated to be 0.5% or less. The trueness and precision were evaluated as the bias and reproducibility of the relative standard deviation (RSD(R)). The determined bias and RSD(R) were each less than 25%. We believe the developed method would be useful for the practical screening analysis of GM maize.

  16. Comprehensive Multiplex One-Step Real-Time TaqMan qRT-PCR Assays for Detection and Quantification of Hemorrhagic Fever Viruses

    PubMed Central

    Li, Jiandong; Qu, Jing; He, Chengcheng; Zhang, Shuo; Li, Chuan; Zhang, Quanfu; Liang, Mifang; Li, Dexin

    2014-01-01

    Background Viral hemorrhagic fevers (VHFs) are a group of animal and human illnesses that are mostly caused by several distinct families of viruses including bunyaviruses, flaviviruses, filoviruses and arenaviruses. Although specific signs and symptoms vary by the type of VHF, initial signs and symptoms are very similar. Therefore rapid immunologic and molecular tools for differential diagnosis of hemorrhagic fever viruses (HFVs) are important for effective case management and control of the spread of VHFs. Real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) assay is one of the reliable and desirable methods for specific detection and quantification of virus load. Multiplex PCR assay has the potential to produce considerable savings in time and resources in the laboratory detection. Results Primers/probe sets were designed based on appropriate specific genes for each of 28 HFVs which nearly covered all the HFVs, and identified with good specificity and sensitivity using monoplex assays. Seven groups of multiplex one-step real-time qRT-PCR assays in a universal experimental system were then developed by combining all primers/probe sets into 4-plex reactions and evaluated with serial dilutions of synthesized viral RNAs. For all the multiplex assays, no cross-reactivity with other HFVs was observed, and the limits of detection were mainly between 45 and 150 copies/PCR. The reproducibility was satisfactory, since the coefficient of variation of Ct values were all less than 5% in each dilution of synthesized viral RNAs for both intra-assays and inter-assays. Evaluation of the method with available clinical serum samples collected from HFRS patients, SFTS patients and Dengue fever patients showed high sensitivity and specificity of the related multiplex assays on the clinical specimens. Conclusions Overall, the comprehensive multiplex one-step real-time qRT-PCR assays were established in this study, and proved to be specific, sensitive

  17. Decay Of Bacterial Pathogens, Fecal Indicators, And Real-Time Quantitative PCR Genetic Markers In Manure-Amended Soils

    EPA Science Inventory

    This study examined persistence and decay of bacterial pathogens, fecal indicator bacteria (FIB), and emerging real-time quantitative PCR (qPCR) genetic markers for rapid detection of fecal pollution in manure-amended agricultural soils. Known concentrations of transformed green...

  18. Decay Of Bacterial Pathogen, Fecal Indicators, And Real-Time Quantitative PCR Genetic Markers In Manure Amended Soils

    EPA Science Inventory

    This study examined persistence and decay of bacterial pathogens, fecal indicator bacteria, and emerging real-time quantitative PCR (qPCR) genetic markers for rapid detection of fecal pollution in manre-amended agricultural soils. Known concentrations of transformed green fluore...

  19. Use of armored RNA as a standard to construct a calibration curve for real-time RT-PCR.

    PubMed

    Donia, D; Divizia, M; Pana', A

    2005-06-01

    Armored Enterovirus RNA was used to standardize a real-time reverse transcription (RT)-PCR for environmental testing. Armored technology is a system to produce a robust and stable RNA standard, trapped into phage proteins, to be used as internal control. The Armored Enterovirus RNA protected sequence includes 263 bp of highly conserved sequences in 5' UTR region. During these tests, Armored RNA has been used to produce a calibration curve, comparing three different fluorogenic chemistry: TaqMan system, Syber Green I and Lux-primers. The effective evaluation of three amplifying commercial reagent kits, in use to carry out real-time RT-PCR, and several extraction procedures of protected viral RNA have been carried out. The highest Armored RNA recovery was obtained by heat treatment while chemical extraction may decrease the quantity of RNA. The best sensitivity and specificity was obtained using the Syber Green I technique since it is a reproducible test, easy to use and the cheapest one. TaqMan and Lux-primer assays provide good RT-PCR efficiency in relationship to the several extraction methods used, since labelled probe or primer request in these chemistry strategies, increases the cost of testing.

  20. Comparison of Hybrid Capture 2 Assay with Real-time-PCR for Detection and Quantitation of Hepatitis B Virus DNA

    PubMed Central

    Jahan, Munira; Lutful Moben, Ahmed; Tabassum, Shahina

    2014-01-01

    ABSTRACT Background Both real-time-polymerase chain reaction (PCR) and hybrid capture 2 (HC2) assay can detect and quantify hepatitis B virus (HBV) DNA. However, real-time-PCR can detect a wide range of HBV DNA, while HC2 assay could not detect lower levels of viremia. The present study was designed to detect and quantify HBV DNA by real-time-PCR and HC2 assay and compare the quantitative data of these two assays. Materials and methods A cross-sectional study was conducted in between July 2010 and June 2011. A total of 66 serologically diagnosed chronic hepatitis B (CHB) patients were selected for the study. Real-time-PCR and HC2 assay was done to detect HBV DNA. Data were analyzed by statistical Package for the social sciences (SPSS). Results Among 66 serologically diagnosed chronic hepatitis B patients 40 (60.61%) patients had detectable and 26 (39.39%) had undetectable HBV DNA by HC2 assay. Concordant results were obtained for 40 (60.61%) out of these 66 patients by real-time-PCR and HC2 assay with mean viral load of 7.06 ± 1.13 log10 copies/ml and 6.95 ± 1.08 log10 copies/ml, respectively. In the remaining 26 patients, HBV DNA was detectable by real-time-PCR in 20 patients (mean HBV DNA level was 3.67 ± 0.72 log10 copies/ml. However, HBV DNA could not be detectable in six cases by the both assays. The study showed strong correlation (r = 0.915) between real-time-PCR and HC2 assay for the detection and quantification of HBV DNA. Conclusion HC2 assay may be used as an alternative to real-time-PCR for CHB patients. How to cite this article: Majid F, Jahan M, Moben AL, Tabassum S. Comparison of Hybrid Capture 2 Assay with Real-time-PCR for Detection and Quantitation of Hepatitis B Virus DNA. Euroasian J Hepato-Gastroenterol 2014;4(1):31-35. PMID:29264316

  1. Comparison of Hybrid Capture 2 Assay with Real-time-PCR for Detection and Quantitation of Hepatitis B Virus DNA.

    PubMed

    Majid, Farjana; Jahan, Munira; Lutful Moben, Ahmed; Tabassum, Shahina

    2014-01-01

    Both real-time-polymerase chain reaction (PCR) and hybrid capture 2 (HC2) assay can detect and quantify hepatitis B virus (HBV) DNA. However, real-time-PCR can detect a wide range of HBV DNA, while HC2 assay could not detect lower levels of viremia. The present study was designed to detect and quantify HBV DNA by real-time-PCR and HC2 assay and compare the quantitative data of these two assays. A cross-sectional study was conducted in between July 2010 and June 2011. A total of 66 serologically diagnosed chronic hepatitis B (CHB) patients were selected for the study. Real-time-PCR and HC2 assay was done to detect HBV DNA. Data were analyzed by statistical Package for the social sciences (SPSS). Among 66 serologically diagnosed chronic hepatitis B patients 40 (60.61%) patients had detectable and 26 (39.39%) had undetectable HBV DNA by HC2 assay. Concordant results were obtained for 40 (60.61%) out of these 66 patients by real-time-PCR and HC2 assay with mean viral load of 7.06 ± 1.13 log 10 copies/ml and 6.95 ± 1.08 log 10 copies/ml, respectively. In the remaining 26 patients, HBV DNA was detectable by real-time-PCR in 20 patients (mean HBV DNA level was 3.67 ± 0.72 log 10 copies/ml. However, HBV DNA could not be detectable in six cases by the both assays. The study showed strong correlation (r = 0.915) between real-time-PCR and HC2 assay for the detection and quantification of HBV DNA. HC2 assay may be used as an alternative to real-time-PCR for CHB patients. How to cite this article: Majid F, Jahan M, Moben AL, Tabassum S. Comparison of Hybrid Capture 2 Assay with Real-time-PCR for Detection and Quantitation of Hepatitis B Virus DNA. Euroasian J Hepato-Gastroenterol 2014;4(1):31-35.

  2. Real-time quantitative polymerase chain reaction analysis of patients with refractory chronic periodontitis.

    PubMed

    Marconcini, Simone; Covani, Ugo; Barone, Antonio; Vittorio, Orazio; Curcio, Michele; Barbuti, Serena; Scatena, Fabrizio; Felli, Lamberto; Nicolini, Claudio

    2011-07-01

    Periodontitis is a complex multifactorial disease and is typically polygenic in origin. Genes play a fundamental part in each biologic process forming complex networks of interactions. However, only some genes have a high number of interactions with other genes in the network and may, therefore, be considered to play an important role. In a preliminary bioinformatic analysis, five genes that showed a higher number of interactions were identified and termed leader genes. In the present study, we use real-time quantitative polymerase chain reaction (PCR) technology to evaluate the expression levels of leader genes in the leukocytes of 10 patients with refractory chronic periodontitis and compare the expression levels with those of the same genes in 24 healthy patients. Blood was collected from 24 healthy human subjects and 10 patients with refractory chronic periodontitis and placed into heparinized blood collection tubes by personnel trained in phlebotomy using a sterile technique. Blood leukocyte cells were immediately lysed by using a kit for total RNA purification from human whole blood. Complementary DNA (cDNA) synthesis was obtained from total RNA and then real-time quantitative PCR was performed. PCR efficiencies were calculated with a relative standard curve derived from a five cDNA dilution series in triplicate that gave regression coefficients >0.98 and efficiencies >96%. The standard curves were obtained using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and growth factor receptor binding protein 2 (GRB2), casitas B-lineage lymphoma (CBL), nuclear factor-KB1 (NFKB1), and REL-A (gene for transcription factor p65) gene primers and amplified with 1.6, 8, 40, 200, and 1,000 ng/μL total cDNA. Curves obtained for each sample showed a linear relationship between RNA concentrations and the cycle threshold value of real-time quantitative PCR for all genes. Data were expressed as mean ± SE (SEM). The groups were compared to the analysis of variance. A

  3. Single Laboratory Comparison of Quantitative Real-Time PCR Assays for the Detection of Human Fecal Pollution - Poster

    EPA Science Inventory

    There are numerous quantitative real-time PCR (qPCR) methods available to detect and enumerate human fecal pollution in ambient waters. Each assay employs distinct primers and/or probes and many target different genes and microorganisms leading to potential variations in method p...

  4. Quantitation of hepatitis B virus DNA in plasma using a sensitive cost-effective "in-house" real-time PCR assay.

    PubMed

    Daniel, Hubert Darius J; Fletcher, John G; Chandy, George M; Abraham, Priya

    2009-01-01

    Sensitive nucleic acid testing for the detection and accurate quantitation of hepatitis B virus (HBV) is necessary to reduce transmission through blood and blood products and for monitoring patients on antiviral therapy. The aim of this study is to standardize an "in-house" real-time HBV polymerase chain reaction (PCR) for accurate quantitation and screening of HBV. The "in-house" real-time assay was compared with a commercial assay using 30 chronically infected individuals and 70 blood donors who are negative for hepatitis B surface antigen, hepatitis C virus (HCV) antibody and human immunodeficiency virus (HIV) antibody. Further, 30 HBV-genotyped samples were tested to evaluate the "in-house" assay's capacity to detect genotypes prevalent among individuals attending this tertiary care hospital. The lower limit of detection of this "in-house" HBV real-time PCR was assessed against the WHO international standard and found to be 50 IU/mL. The interassay and intra-assay coefficient of variation (CV) of this "in-house" assay ranged from 1.4% to 9.4% and 0.0% to 2.3%, respectively. Virus loads as estimated with this "in-house" HBV real-time assay correlated well with the commercial artus HBV RG PCR assay ( r = 0.95, P < 0.0001). This assay can be used for the detection and accurate quantitation of HBV viral loads in plasma samples. This assay can be employed for the screening of blood donations and can potentially be adapted to a multiplex format for simultaneous detection of HBV, HIV and HCV to reduce the cost of testing in blood banks.

  5. [Quantitative PCR in the diagnosis of Leishmania].

    PubMed

    Mortarino, M; Franceschi, A; Mancianti, F; Bazzocchi, C; Genchi, C; Bandi, C

    2004-06-01

    fluorescent dsDNA intercalator and it is applicable to all potential targets. TaqMan technology is more specific since performs the direct assessment of the amount of amplified DNA using a fluorescent probe specific for the target sequence flanked by the primer pair. This probe is an oligonucleotide labelled with a reporter dye (fluorescent) and a quencher (which absorbs the fluorescent signal generated by the reporter). The thermic protocol of amplification allows the binding of the fluorescent probe to the target sequence before the binding of the primers and the starting of the polymerization by Taq polymerase. During polymerization, 5'-3' exonuclease activity of Taq polymerase digests the probe and in this way the reporter dye is released from the probe and a fluorescent signal is detected. The intensity of the signal accumulates at the end of each cycle and is related to the amount of the amplification product. In recent years, quantitative PCR methods based either on SYBR Green or TaqMan technology have been set up for the quantification of Leishmania in mouse liver, mouse skin and human peripheral blood, targeting either single-copy chromosomal or multi-copy minicircle sequences with high sensitivity and reproducibility. In particular, real-time PCR seems to be a reliable, rapid and noninvasive method for the diagnosis and follow up of visceral leishmaniasis in humans. At present, the application of real-time PCR for research and clinical diagnosis of Leishmania infection in dogs is still foreseable. As for standard PCR, the high sensitivity of real-time PCR could allow the use of blood sampling that is less invasive and easily performed for monitoring the status of the dogs. The development of a real-time PCR assay for Leishmania infantum infection in dogs could support the standard and optimized serological and PCR methods currenly in use for the diagnosis and follow-up of canine leishmaniasis, and perhaps prediction of recurrences associated with tissue loads of

  6. Quantitative analysis of the cutaneous Malassezia microbiota in 770 healthy Japanese by age and gender using a real-time PCR assay.

    PubMed

    Sugita, Takashi; Suzuki, Miho; Goto, Seiko; Nishikawa, Akemi; Hiruma, Masataro; Yamazaki, Takashi; Makimura, Koichi

    2010-03-01

    Although the lipophilic yeasts of the genus Malassezia are part of the cutaneous microbiota in healthy individuals, they are also associated with several skin diseases, such as seborrheic dermatitis. However, the effects of age and gender on the Malassezia microbiota have not been completely elucidated. We analyzed the cutaneous Malassezia microbiota of 770 healthy Japanese using the highly accurate real-time PCR with a TaqMan probe to investigate the effects of age and gender on the Malassezia population. The numbers of Malassezia cells increased in males up to 16-18 years of age and in females to 10-12 years old, and subsequently decreased gradually in both genders until senescence. Malassezia restricta overwhelmingly predominated at ages over 16-18 years in males and 23-29 years in females. M. globosa and M. restricta together accounted for more than 70% of Malassezia spp. recovered regardless of gender. The total colonization of Malassezia and the ratio of the two major species change with age and gender in humans.

  7. Real-Time PCR Analysis of Vibrio vulnificus from Oysters

    PubMed Central

    Campbell, Mark S.; Wright, Anita C.

    2003-01-01

    Vibrio vulnificus is an opportunistic human pathogen commonly found in estuarine environments. Infections are associated with raw oyster consumption and can produce rapidly fatal septicemia in susceptible individuals. Standard enumeration of this organism in shellfish or seawater is laborious and inaccurate; therefore, more efficient assays are needed. An oligonucleotide probe derived from the cytolysin gene, vvhA, was previously used for colony hybridizations to enumerate V. vulnificus. However, this method requires overnight growth, and vibrios may lack culturability under certain conditions. In the present study, we targeted the same locus for development of a TaqMan real-time PCR assay. Probe specificity was confirmed by amplification of 28 V. vulnificus templates and by the lack of a PCR product with 22 non-V. vulnificus strains. Detection of V. vulnificus in pure cultures was observed over a 6-log-unit linear range of concentration (102 to 108 CFU ml−1), with a lower limit of 72 fg of genomic DNA μl of PCR mixture−1 or the equivalent of six cells. Similar sensitivity was observed in DNA extracted from mixtures of V. vulnificus and V. parahaemolyticus cells. Real-time PCR enumeration of artificially inoculated oyster homogenates correlated well with colony hybridization counts (r2 = 0.97). Numbers of indigenous V. vulnificus cells in oysters by real-time PCR showed no significant differences from numbers from plate counts with probe (t test; P = 0.43). Viable but nonculturable cells were also enumerated by real-time PCR and confirmed by the BacLight viability assay. These data indicate that real-time PCR can provide sensitive species-specific detection and enumeration of V. vulnificus in seafood. PMID:14660359

  8. Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process

    PubMed Central

    Expósito-Rodríguez, Marino; Borges, Andrés A; Borges-Pérez, Andrés; Pérez, José A

    2008-01-01

    Background The elucidation of gene expression patterns leads to a better understanding of biological processes. Real-time quantitative RT-PCR has become the standard method for in-depth studies of gene expression. A biologically meaningful reporting of target mRNA quantities requires accurate and reliable normalization in order to identify real gene-specific variation. The purpose of normalization is to control several variables such as different amounts and quality of starting material, variable enzymatic efficiencies of retrotranscription from RNA to cDNA, or differences between tissues or cells in overall transcriptional activity. The validity of a housekeeping gene as endogenous control relies on the stability of its expression level across the sample panel being analysed. In the present report we describe the first systematic evaluation of potential internal controls during tomato development process to identify which are the most reliable for transcript quantification by real-time RT-PCR. Results In this study, we assess the expression stability of 7 traditional and 4 novel housekeeping genes in a set of 27 samples representing different tissues and organs of tomato plants at different developmental stages. First, we designed, tested and optimized amplification primers for real-time RT-PCR. Then, expression data from each candidate gene were evaluated with three complementary approaches based on different statistical procedures. Our analysis suggests that SGN-U314153 (CAC), SGN-U321250 (TIP41), SGN-U346908 ("Expressed") and SGN-U316474 (SAND) genes provide superior transcript normalization in tomato development studies. We recommend different combinations of these exceptionally stable housekeeping genes for suited normalization of different developmental series, including the complete tomato development process. Conclusion This work constitutes the first effort for the selection of optimal endogenous controls for quantitative real-time RT-PCR studies of gene

  9. Quantitative assessment of hematopoietic chimerism by quantitative real-time polymerase chain reaction of sequence polymorphism systems after hematopoietic stem cell transplantation.

    PubMed

    Qin, Xiao-ying; Li, Guo-xuan; Qin, Ya-zhen; Wang, Yu; Wang, Feng-rong; Liu, Dai-hong; Xu, Lan-ping; Chen, Huan; Han, Wei; Wang, Jing-zhi; Zhang, Xiao-hui; Li, Jin-lan; Li, Ling-di; Liu, Kai-yan; Huang, Xiao-jun

    2011-08-01

    Analysis of changes in recipient and donor hematopoietic cell origin is extremely useful to monitor the effect of hematopoietic stem cell transplantation (HSCT) and sequential adoptive immunotherapy by donor lymphocyte infusions. We developed a sensitive, reliable and rapid real-time PCR method based on sequence polymorphism systems to quantitatively assess the hematopoietic chimerism after HSCT. A panel of 29 selected sequence polymorphism (SP) markers was screened by real-time PCR in 101 HSCT patients with leukemia and other hematological diseases. The chimerism kinetics of bone marrow samples of 8 HSCT patients in remission and relapse situations were followed longitudinally. Recipient genotype discrimination was possible in 97.0% (98 of 101) with a mean number of 2.5 (1-7) informative markers per recipient/donor pair. Using serial dilutions of plasmids containing specific SP markers, the linear correlation (r) of 0.99, the slope between -3.2 and -3.7 and the sensitivity of 0.1% were proved reproducible. By this method, it was possible to very accurately detect autologous signals in the range from 0.1% to 30%. The accuracy of the method in the very important range of autologous signals below 5% was extraordinarily high (standard deviation <1.85%), which might significantly improve detection accuracy of changes in autologous signals early in the post-transplantation course of follow-up. The main advantage of the real-time PCR method over short tandem repeat PCR chimerism assays is the absence of PCR competition and plateau biases, with demonstrated greater sensitivity and linearity. Finally, we prospectively analyzed bone marrow samples of 8 patients who received allografts and presented the chimerism kinetics of remission and relapse situations that illustrated the sensitivity level and the promising clinical application of this method. This SP-based real-time PCR assay provides a rapid, sensitive, and accurate quantitative assessment of mixed chimerism that can

  10. Development and validation of a novel hydrolysis probe real-time polymerase chain reaction for agamid adenovirus 1 in the central bearded dragon (Pogona vitticeps).

    PubMed

    Fredholm, Daniel V; Coleman, James K; Childress, April L; Wellehan, James F X

    2015-03-01

    Agamid adenovirus 1 (AgAdv-1) is a significant cause of disease in bearded dragons (Pogona sp.). Clinical manifestations of AgAdv-1 infection are variable and often nonspecific; the manifestations range from lethargy, weight loss, and inappetence, to severe enteritis, hepatitis, and sudden death. Currently, diagnosis of AgAdv-1 infection is achieved through a single published method: standard nested polymerase chain reaction (nPCR) and sequencing. Standard nPCR with sequencing provides reliable sensitivity, specificity, and validation of PCR products. However, this process is comparatively expensive, laborious, and slow. Probe hybridization, as used in a TaqMan assay, represents the best option for validating PCR products aside from the time-consuming process of sequencing. This study developed a real-time PCR (qPCR) assay using a TaqMan probe-based assay, targeting a highly conserved region of the AgAdv-1 genome. Standard curves were generated, detection results were compared with the gold standard conventional PCR and sequencing assay, and limits of detection were determined. Additionally, the qPCR assay was run on samples known to be positive for AgAdv-1 and samples known to be positive for other adenoviruses. Based on the results of these evaluations, this assay allows for a less expensive, rapid, quantitative detection of AgAdv-1 in bearded dragons. © 2015 The Author(s).

  11. Quantitative Detection of Streptococcus pneumoniae in Nasopharyngeal Secretions by Real-Time PCR

    PubMed Central

    Greiner, Oliver; Day, Philip J. R.; Bosshard, Philipp P.; Imeri, Fatime; Altwegg, Martin; Nadal, David

    2001-01-01

    Streptococcus pneumoniae is an important cause of community-acquired pneumonia. However, in this setting the diagnostic sensitivity of blood cultures is below 30%. Since during such infections changes in the amounts of S. pneumoniae may also occur in the upper respiratory tract, quantification of these bacteria in nasopharnygeal secretions (NPSs) may offer a suitable diagnostic approach. Real-time PCR offers a sensitive, efficient, and routinely reproducible approach to quantification. Using primers and a fluorescent probe specific for the pneumolysin gene, we were able to detect DNA from serial dilutions of S. pneumoniae cells in which the quantities of DNA ranged from the amounts extracted from 1 to 106 cells. No difference was noted when the same DNA was mixed with DNA extracted from NPSs shown to be deficient of S. pneumoniae following culture, suggesting that this bacterium can be detected and accurately quantitated in clinical samples. DNAs from Haemophilus influenzae, Moraxella catarrhalis, or alpha-hemolytic streptococci other than S. pneumoniae were not amplified or were only weakly amplified when there were ≥106 cells per reaction mixture. When the assay was applied to NPSs from patients with respiratory tract infections, the assay performed with a sensitivity of 100% and a specificity of up to 96% compared to the culture results. The numbers of S. pneumoniae organisms detected by real-time PCR correlated with the numbers detected by semiquantitative cultures. A real-time PCR that targeted the pneumolysin gene provided a sensitive and reliable means for routine rapid detection and quantification of S. pneumoniae present in NPSs. This assay may serve as a tool to study changes in the amounts of S. pneumoniae during lower respiratory tract infections. PMID:11526140

  12. Detection and quantitation of HPV in genital and oral tissues and fluids by real time PCR

    PubMed Central

    2010-01-01

    Background Human papillomaviruses (HPVs) remain a serious world health problem due to their association with anogenital/oral cancers and warts. While over 100 HPV types have been identified, a subset is associated with malignancy. HPV16 and 18 are the most prevalent oncogenic types, while HPV6 and 11 are most commonly responsible for anogenital warts. While other quantitative PCR (qPCR) assays detect oncogenic HPV, there is no single tube assay distinguishing the most frequent oncogenic types and the most common types found in warts. Results A Sybr Green-based qPCR assay was developed utilizing degenerate primers to the highly conserved HPV E1 theoretically detecting any HPV type. A single tube multiplex qPCR assay was also developed using type-specific primer pairs and TaqMan probes that allowed for detection and quantitation of HPV6,11,16,18. Each HPV type was detected over a range from 2 × 101 to 2 × 106copies/reaction providing a reliable method of quantitating type-specific HPV in 140 anogenital/cutaneous/oral benign and malignant specimens. 35 oncogenic and low risk alpha genus HPV types were detected. Concordance was detected in previously typed specimens. Comparisons to the gold standard detected an overall sensitivity of 89% (95% CI: 77% - 96%) and specificity of 90% (95%CI: 52% - 98%). Conclusion There was good agreement between the ability of the qPCR assays described here to identify HPV types in malignancies previously typed using standard methods. These novel qPCR assays will allow rapid detection and quantitation of HPVs to assess their role in viral pathogenesis. PMID:20723234

  13. EVALUATION OF RAPID DNA EXTRACTION PROCEDURES FOR THE QUANTITATIVE DETECTION OF FUNGAL CELLS USING REAL TIME PCR ANALYSIS

    EPA Science Inventory

    The ease and rapidity of quantitative DNA sequence detection by real-time PCR instruments promises to make their use increasingly common for the microbial analysis many different types of environmental samples. To fully exploit the capabilities of these instruments, correspondin...

  14. Specific and straightforward molecular investigation of β-thalassemia mutations in the Malaysian Malays and Chinese using direct TaqMan genotyping assays.

    PubMed

    Kho, S L; Chua, K H; George, E; Tan, J A M A

    2013-07-15

    Beta-thalassemia is a life-threatening inherited blood disorder. Rapid characterization of β-globin gene mutations is necessary because of the high frequency of Malaysian β-thalassemia carriers. A combination real-time polymerase chain reaction genotyping assay using TaqMan probes was developed to confirm β-globin gene mutations. In this study, primers and probes were designed to specifically identify 8 common β-thalassemia mutations in the Malaysian Malay and Chinese ethnic groups using the Primer Express software. "Blind tests" using DNA samples from healthy individuals and β-thalassemia patients with different genotypes were performed to determine the specificity and sensitivity of this newly designed assay. Our results showed 100% sensitivity and specificity for this novel assay. In conclusion, the TaqMan genotyping assay is a straightforward assay that allows detection of β-globin gene mutations in less than 40 min. The simplicity and reproducibility of the TaqMan genotyping assay permit its use in laboratories as a rapid and cost-effective diagnostic tool for confirmation of common β-thalassemia mutations in Malaysia.

  15. New approach to real-time nucleic acids detection: folding polymerase chain reaction amplicons into a secondary structure to improve cleavage of Förster resonance energy transfer probes in 5′-nuclease assays

    PubMed Central

    Kutyavin, Igor V.

    2010-01-01

    The article describes a new technology for real-time polymerase chain reaction (PCR) detection of nucleic acids. Similar to Taqman, this new method, named Snake, utilizes the 5′-nuclease activity of Thermus aquaticus (Taq) DNA polymerase that cleaves dual-labeled Förster resonance energy transfer (FRET) probes and generates a fluorescent signal during PCR. However, the mechanism of the probe cleavage in Snake is different. In this assay, PCR amplicons fold into stem–loop secondary structures. Hybridization of FRET probes to one of these structures leads to the formation of optimal substrates for the 5′-nuclease activity of Taq. The stem–loop structures in the Snake amplicons are introduced by the unique design of one of the PCR primers, which carries a special 5′-flap sequence. It was found that at a certain length of these 5′-flap sequences the folded Snake amplicons have very little, if any, effect on PCR yield but benefit many aspects of the detection process, particularly the signal productivity. Unlike Taqman, the Snake system favors the use of short FRET probes with improved fluorescence background. The head-to-head comparison study of Snake and Taqman revealed that these two technologies have more differences than similarities with respect to their responses to changes in PCR protocol, e.g. the variations in primer concentration, annealing time, PCR asymmetry. The optimal PCR protocol for Snake has been identified. The technology’s real-time performance was compared to a number of conventional assays including Taqman, 3′-MGB-Taqman, Molecular Beacon and Scorpion primers. The test trial showed that Snake supersedes the conventional assays in the signal productivity and detection of sequence variations as small as single nucleotide polymorphisms. Due to the assay’s cost-effectiveness and simplicity of design, the technology is anticipated to quickly replace all known conventional methods currently used for real-time nucleic acid detection

  16. A human fecal contamination index for ranking impaired recreational watersusing the HF183 quantitative real-time PCR method

    EPA Science Inventory

    Human fecal pollution of surface water remains a public health concern worldwide. As a result, there is a growing interest in the application of human-associated fecal source identification quantitative real-time PCR (qPCR) technologies for recreational water quality risk managem...

  17. Analysis of Enterococci and Bacteriodales Fecal Indicator Bacteria in a Lake Michigan Tributary by Real-Time Quantitative PCR

    EPA Science Inventory

    The Salt Creek watershed in northwest Indiana drains into Lake Michigan near several heavily used recreational beaches. This study aimed to investigate the levels of fecal indicator bacteria, enterococci and Bacteroidales, in Salt Creek using real-time quantitative PCR (qPCR) an...

  18. Real time quantitative imaging for semiconductor crystal growth, control and characterization

    NASA Technical Reports Server (NTRS)

    Wargo, Michael J.

    1991-01-01

    A quantitative real time image processing system has been developed which can be software-reconfigured for semiconductor processing and characterization tasks. In thermal imager mode, 2D temperature distributions of semiconductor melt surfaces (900-1600 C) can be obtained with temperature and spatial resolutions better than 0.5 C and 0.5 mm, respectively, as demonstrated by analysis of melt surface thermal distributions. Temporal and spatial image processing techniques and multitasking computational capabilities convert such thermal imaging into a multimode sensor for crystal growth control. A second configuration of the image processing engine in conjunction with bright and dark field transmission optics is used to nonintrusively determine the microdistribution of free charge carriers and submicron sized crystalline defects in semiconductors. The IR absorption characteristics of wafers are determined with 10-micron spatial resolution and, after calibration, are converted into charge carrier density.

  19. Concordance of HIV-1 RNA Values by Amplicor and TaqMan 2.0 in Patients With Confirmed Suppression in Clinical Trials

    PubMed Central

    Garner, Will; White, Kirsten; Szwarcberg, Javier; McCallister, Scott; Zhong, Lijie; Wulfsohn, Mike

    2016-01-01

    Background. The COBAS AMPLICOR HIV-1 MONITOR Test, version 1.5 (Amplicor) has been replaced with the COBAS AmpliPrep/COBAS TaqMan HIV-1 Test, version 2.0 (TaqMan 2.0), a real-time polymerase chain reaction human immunodeficiency virus type 1 (HIV-1) assay with higher sensitivity and broader dynamic range. HIV-1 RNA values at the 50 copies/mL cutoff drive major patient management decisions and clinical study outcomes. Methods. A total of 2217 samples were collected from 1922 HIV-1–infected subjects taking antiretroviral therapy for at least 48 weeks and had at least 2 consecutive samples with HIV-1 RNA <50 copies/mL by Amplicor from 7 recent clinical trials. HIV-1 RNA results were obtained from the Amplicor and TaqMan 2.0 assays in parallel by a reference laboratory. Results. The overall concordance between assay results was 96% at the cutoff of 50 copies/mL. However, statistically significant discordance at the 50 copies/mL cutoff was found between the assays for 3.9% of samples (n = 87). By TaqMan 2.0, virologic failure defined as HIV-1 RNA ≥50 copies/mL was reported for 2.8% more samples than Amplicor. Of these 87 samples, 68 samples fell within the predicted range of assay variability. Retesting of HIV-1 RNA by TaqMan 2.0 confirmed the discordance in only 28 of the 87 samples. Conclusions. The TaqMan 2.0 assay reports fewer subjects below the clinical endpoint of HIV-1 RNA <50 copies/mL in HIV clinical trials than the Amplicor assay. This difference must be considered when assessing disease progression, designing clinical trials, and comparisons with historical trials that used the Amplicor assay. PMID:26689956

  20. Real-time PCR for rapidly detecting aniline-degrading bacteria in activated sludge.

    PubMed

    Kayashima, Takakazu; Suzuki, Hisako; Maeda, Toshinari; Ogawa, Hiroaki I

    2013-05-01

    We developed a detection method that uses quantitative real-time PCR (qPCR) and the TaqMan system to easily and rapidly assess the population of aniline-degrading bacteria in activated sludge prior to conducting a biodegradability test on a chemical compound. A primer and probe set for qPCR was designed by a multiple alignment of conserved amino acid sequences encoding the large (α) subunit of aniline dioxygenase. PCR amplification tests showed that the designed primer and probe set targeted aniline-degrading strains such as Acidovorax sp., Gordonia sp., Rhodococcus sp., and Pseudomonas putida, thereby suggesting that the developed method can detect a wide variety of aniline-degrading bacteria. There was a strong correlation between the relative copy number of the α-aniline dioxygenase gene in activated sludge obtained with the developed qPCR method and the number of aniline-degrading bacteria measured by the Most Probable Number method, which is the conventional method, and a good correlation with the lag time of the BOD curve for aniline degradation produced by the biodegradability test in activated sludge samples collected from eight different wastewater treatment plants in Japan. The developed method will be valuable for the rapid and accurate evaluation of the activity of inocula prior to conducting a ready biodegradability test. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. A quantitative TaqMan PCR assay for the detection of Ureaplasma diversum.

    PubMed

    Marques, Lucas M; Amorim, Aline T; Martins, Hellen Braga; Rezende, Izadora Souza; Barbosa, Maysa Santos; Lobão, Tassia Neves; Campos, Guilherme B; Timenetsky, Jorge

    2013-12-27

    Ureaplasma diversum in veterinary studies is an undesirable microbe, which may cause infection in bulls and may result in seminal vesiculitis, balanopostitis, and alterations in spermatozoids, whereas in cows, it may cause placentitis, fetal alveolitis, abortion, and birth of weak calves. U. diversum is released through organic secretions, especially semen, preputial and vaginal mucus, conjunctival secretion, and milk. The aim of the present study was to develop a TaqMan probe, highly sensitive and specific quantitative PCR (qPCR) assay for the detection and quantification of U. diversum from genital swabs of bovines. Primers and probes specific to U. diversum 16S rRNA gene were designed. The specificity, detection limit, intra- and inter-assay variability of qPCR to detect this ureaplasma was compared with the results of the conventional PCR assay (cPCR). Swabs of vaginal mucus from 169 cows were tested. The qPCR assay detected as few as 10 copies of U. diversum and was 100-fold more sensitive than the cPCR. No cross-reactivity with other Mollicutes or eubacteria was observed. U. diversum was detected in 79 swabs (46.42%) by qPCR, while using cPCR it was detected in 42 (25%) samples. The difference in cPCR and qPCR ureaplasma detection between healthy and sick animals was not statistically significant. But the U. diversum load in samples from animals with genital disorders was higher than in healthy animals. The qPCR assay developed herein is highly sensitive and specific for the detection and quantification of U. diversum in vaginal bovine samples. Copyright © 2013. Published by Elsevier B.V.

  2. Comparison of droplet digital PCR with quantitative real-time PCR for determination of zygosity in transgenic maize.

    PubMed

    Xu, Xiaoli; Peng, Cheng; Wang, Xiaofu; Chen, Xiaoyun; Wang, Qiang; Xu, Junfeng

    2016-12-01

    This study evaluated the applicability of droplet digital PCR (ddPCR) as a tool for maize zygosity determination using quantitative real-time PCR (qPCR) as a reference technology. Quantitative real-time PCR is commonly used to determine transgene copy number or GMO zygosity characterization. However, its effectiveness is based on identical reaction efficiencies for the transgene and the endogenous reference gene. Additionally, a calibrator sample should be utilized for accuracy. Droplet digital PCR is a DNA molecule counting technique that directly counts the absolute number of target and reference DNA molecules in a sample, independent of assay efficiency or external calibrators. The zygosity of the transgene can be easily determined using the ratio of the quantity of the target gene to the reference single copy endogenous gene. In this study, both the qPCR and ddPCR methods were used to determine insect-resistant transgenic maize IE034 zygosity. Both methods performed well, but the ddPCR method was more convenient because of its absolute quantification property.

  3. Quantitative real-time single particle analysis of virions.

    PubMed

    Heider, Susanne; Metzner, Christoph

    2014-08-01

    Providing information about single virus particles has for a long time been mainly the domain of electron microscopy. More recently, technologies have been developed-or adapted from other fields, such as nanotechnology-to allow for the real-time quantification of physical virion particles, while supplying additional information such as particle diameter concomitantly. These technologies have progressed to the stage of commercialization increasing the speed of viral titer measurements from hours to minutes, thus providing a significant advantage for many aspects of virology research and biotechnology applications. Additional advantages lie in the broad spectrum of virus species that may be measured and the possibility to determine the ratio of infectious to total particles. A series of disadvantages remain associated with these technologies, such as a low specificity for viral particles. In this review we will discuss these technologies by comparing four systems for real-time single virus particle analysis and quantification. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Hepatitis C Virus RNA Real-Time Quantitative RT-PCR Method Based on a New Primer Design Strategy.

    PubMed

    Chen, Lida; Li, Wenli; Zhang, Kuo; Zhang, Rui; Lu, Tian; Hao, Mingju; Jia, Tingting; Sun, Yu; Lin, Guigao; Wang, Lunan; Li, Jinming

    2016-01-01

    Viral nucleic acids are unstable when improperly collected, handled, and stored, resulting in decreased sensitivity of currently available commercial quantitative nucleic acid testing kits. Using known unstable hepatitis C virus RNA, we developed a quantitative RT-PCR method based on a new primer design strategy to reduce the impact of nucleic acid instability on nucleic acid testing. The performance of the method was evaluated for linearity, limit of detection, precision, specificity, and agreement with commercial hepatitis C virus assays. Its clinical application was compared to that of two commercial kits--Cobas AmpliPrep/Cobas TaqMan (CAP/CTM) and Kehua. The quantitative RT-PCR method delivered a good performance, with a linearity of R(2) = 0.99, a total limit of detection (genotypes 1 to 6) of 42.6 IU/mL (95% CI, 32.84 to 67.76 IU/mL), a CV of 1.06% to 3.34%, a specificity of 100%, and a high concordance with the CAP/CTM assay (R(2) = 0.97), with a means ± SD value of -0.06 ± 1.96 log IU/mL (range, -0.38 to 0.25 log IU/mL). The method was superior to commercial assays in detecting unstable hepatitis C virus RNA (P < 0.05). This quantitative RT-PCR method can effectively eliminate the influence of RNA instability on nucleic acid testing. The principle of primer design strategy may be applied to the detection of other RNA or DNA viruses. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  5. Clinical evaluation of β-tubulin real-time PCR for rapid diagnosis of dermatophytosis, a comparison with mycological methods.

    PubMed

    Motamedi, Marjan; Mirhendi, Hossein; Zomorodian, Kamiar; Khodadadi, Hossein; Kharazi, Mahboobeh; Ghasemi, Zeinab; Shidfar, Mohammad Reza; Makimura, Koichi

    2017-10-01

    Following our previous report on evaluation of the beta tubulin real-time PCR for detection of dermatophytosis, this study aimed to compare the real-time PCR assay with conventional methods for the clinical assessment of its diagnostic performance. Samples from a total of 853 patients with suspected dermatophyte lesions were subjected to direct examination (all samples), culture (499 samples) and real-time PCR (all samples). Fungal DNA was extracted directly from clinical samples using a conical steel bullet, followed by purification with a commercial kit and subjected to the Taq-Man probe-based real-time PCR. The study showed that among the 499 specimens for which all three methods were used, 156 (31.2%), 128 (25.6%) and 205 (41.0%) were found to be positive by direct microscopy, culture and real-time PCR respectively. Real-time PCR significantly increased the detection rate of dermatophytes compared with microscopy (288 vs 229) with 87% concordance between the two methods. The sensitivity, specificity, positive predictive value, and negative predictive value of the real-time PCR was 87.5%, 85%, 66.5% and 95.2% respectively. Although real-time PCR performed better on skin than on nail samples, it should not yet fully replace conventional diagnosis. © 2017 Blackwell Verlag GmbH.

  6. Synthesis of O-serogroup specific positive controls and real-time PCR standards for nine clinically relevant non-O157 STECs.

    PubMed

    Conrad, Cheyenne C; Gilroyed, Brandon H; McAllister, Tim A; Reuter, Tim

    2012-10-01

    Non-O157 Shiga toxin producing Escherichia coli (STEC) are gaining recognition as human pathogens, but no standardized method exists to identify them. Sequence analysis revealed that STEC can be classified on the base of variable O antigen regions into different O serotypes. Polymerase chain reaction is a powerful technique for thorough screening and complex diagnosis for these pathogens, but requires a positive control to verify qualitative and/or quantitative DNA-fragment amplification. Due to the pathogenic nature of STEC, controls are not readily available and cell culturing of STEC reference strains requires biosafety conditions of level 2 or higher. In order to bypass this limitation, controls of stacked O-type specific DNA-fragments coding for primer recognition sites were designed to screen for nine STEC serotypes frequently associated with human infection. The synthetic controls were amplified by PCR, cloned into a plasmid vector and transferred into bacteria host cells. Plasmids amplified by bacterial expression were purified, serially diluted and tested as standards for real-time PCR using SYBR Green and TaqMan assays. Utility of synthetic DNA controls was demonstrated in conventional and real-time PCR assays and validated with DNA from natural STEC strains. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Validation of endogenous internal real-time PCR controls in renal tissues.

    PubMed

    Cui, Xiangqin; Zhou, Juling; Qiu, Jing; Johnson, Martin R; Mrug, Michal

    2009-01-01

    Endogenous internal controls ('reference' or 'housekeeping' genes) are widely used in real-time PCR (RT-PCR) analyses. Their use relies on the premise of consistently stable expression across studied experimental conditions. Unfortunately, none of these controls fulfills this premise across a wide range of experimental conditions; consequently, none of them can be recommended for universal use. To determine which endogenous RT-PCR controls are suitable for analyses of renal tissues altered by kidney disease, we studied the expression of 16 commonly used 'reference genes' in 7 mildly and 7 severely affected whole kidney tissues from a well-characterized cystic kidney disease model. Expression levels of these 16 genes, determined by TaqMan RT-PCR analyses and Affymetrix GeneChip arrays, were normalized and tested for overall variance and equivalence of the means. Both statistical approaches and both TaqMan- and GeneChip-based methods converged on 3 out of the 4 top-ranked genes (Ppia, Gapdh and Pgk1) that had the most constant expression levels across the studied phenotypes. A combination of the top-ranked genes will provide a suitable endogenous internal control for similar studies of kidney tissues across a wide range of disease severity. Copyright 2009 S. Karger AG, Basel.

  8. Field evaluation of Abbott Real Time HIV-1 Qualitative test for early infant diagnosis using dried blood spots samples in comparison to Roche COBAS Ampliprep/COBAS TaqMan HIV-1 Qual Test in Kenya

    PubMed Central

    Chang, Joy; Omuomo, Kenneth; Anyango, Emily; Kingwara, Leonard; Basiye, Frank; Morwabe, Alex; Shanmugam, Vedapuri; Nguyen, Shon; Sabatier, Jennifer; Zeh, Clement; Ellenberger, Dennis

    2016-01-01

    Timely diagnosis and treatment of infants infected with HIV are critical for reducing infant mortality. High-throughput automated diagnostic tests like Roche COBAS AmpliPrep/COBAS TaqMan HIV-1 Qual Test (Roche CAPCTM Qual) and the Abbott Real Time HIV-1 Qualitative (Abbott Qualitative) can be used to rapidly expand early infant diagnosis testing services. In this study, the performance characteristics of the Abbott Qualitative were evaluated using two hundred dried blood spots (DBS) samples (100 HIV-1 positive and 100 HIV-1 negative) collected from infants attending the antenatal facilities in Kisumu, Kenya. The Abbott Qualitative results were compared to the diagnostic testing completed using the Roche CAPCTM Qual in Kenya. The sensitivity and specificity of the Abbott Qualitative were 99.0% (95% CI: 95.0–100.0) and 100.0% (95% CI: 96.0–100.0), respectively, and the overall reproducibility was 98.0% (95% CI: 86.0–100.0). The limits of detection for the Abbott Qualitative and Roche CAPCTM Qual were 56.5 and 6.9 copies/mL at 95% CIs (p = 0.005), respectively. The study findings demonstrate that the Abbott Qualitative test is a practical option for timely diagnosis of HIV in infants. PMID:24726703

  9. Field evaluation of Abbott Real Time HIV-1 Qualitative test for early infant diagnosis using dried blood spots samples in comparison to Roche COBAS Ampliprep/COBAS TaqMan HIV-1 Qual test in Kenya.

    PubMed

    Chang, Joy; Omuomo, Kenneth; Anyango, Emily; Kingwara, Leonard; Basiye, Frank; Morwabe, Alex; Shanmugam, Vedapuri; Nguyen, Shon; Sabatier, Jennifer; Zeh, Clement; Ellenberger, Dennis

    2014-08-01

    Timely diagnosis and treatment of infants infected with HIV are critical for reducing infant mortality. High-throughput automated diagnostic tests like Roche COBAS AmpliPrep/COBAS TaqMan HIV-1 Qual Test (Roche CAPCTM Qual) and the Abbott Real Time HIV-1 Qualitative (Abbott Qualitative) can be used to rapidly expand early infant diagnosis testing services. In this study, the performance characteristics of the Abbott Qualitative were evaluated using two hundred dried blood spots (DBS) samples (100 HIV-1 positive and 100 HIV-1 negative) collected from infants attending the antenatal facilities in Kisumu, Kenya. The Abbott Qualitative results were compared to the diagnostic testing completed using the Roche CAPCTM Qual in Kenya. The sensitivity and specificity of the Abbott Qualitative were 99.0% (95% CI: 95.0-100.0) and 100.0% (95% CI: 96.0-100.0), respectively, and the overall reproducibility was 98.0% (95% CI: 86.0-100.0). The limits of detection for the Abbott Qualitative and Roche CAPCTM Qual were 56.5 and 6.9copies/mL at 95% CIs (p=0.005), respectively. The study findings demonstrate that the Abbott Qualitative test is a practical option for timely diagnosis of HIV in infants. Published by Elsevier B.V.

  10. Quantitative phenotyping of X-disease resistance in chokecherry using real-time PCR.

    PubMed

    Huang, Danqiong; Walla, James A; Dai, Wenhao

    2014-03-01

    A quantitative real-time SYBR Green PCR (qPCR) assay has been developed to detect and quantify X-disease phytoplasmas in chokecherry. An X-disease phytoplasma-specific and high sensitivity primer pair was designed based on the 16S rRNA gene sequence of X-disease phytoplasmas. This primer pair was specific to the 16SrIII group (X-disease) phytoplasmas. The qPCR method can quantify phytoplasmas from a DNA mix (a mix of both chokecherry and X-disease phytoplasma DNA) at as low as 0.001 ng, 10-fold lower than conventional PCR using the same primer pair. A significant correlation between the copy number of phytoplasmas and visual phenotypic rating scores of X-disease resistance in chokecherry plants was observed. Disease resistant chokecherries had a significantly lower titer of X-disease phytoplasmas than susceptible plants. This suggests that the qPCR assay provides a more objective tool to phenotype phytoplasma disease severity, particularly for early evaluation of host resistance; therefore, this method will facilitate quantitative phenotyping of disease resistance and has great potential in enhancing plant breeding. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Avian-specific real-time PCR assay for authenticity control in farm animal feeds and pet foods.

    PubMed

    Pegels, Nicolette; González, Isabel; García, Teresa; Martín, Rosario

    2014-01-01

    A highly sensitive TaqMan real-time PCR assay targeting the mitochondrial 12S rRNA gene was developed for detection of an avian-specific DNA fragment (68bp) in farm animal and pet feeds. The specificity of the assay was verified against a wide representation of animal and plant species. Applicability assessment of the avian real-time PCR was conducted through representative analysis of two types of compound feeds: industrial farm animal feeds (n=60) subjected to extreme temperatures, and commercial dog and cat feeds (n=210). Results obtained demonstrated the suitability of the real-time PCR assay to detect the presence of low percentages of highly processed avian material in the feed samples analysed. Although quantification results were well reproducible under the experimental conditions tested, an accurate estimation of the target content in feeds is impossible in practice. Nevertheless, the method may be useful as an alternative tool for traceability purposes within the framework of feed control. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Improved HF183 quantitative real-time PCR assay for characterization of human fecal pollution in ambient surface water samples

    EPA Science Inventory

    Real-time quantitative PCR assays that target the human-associated HF183 bacterial cluster are considered to be some of the top performing methods for the characterization of human fecal pollution in ambient surface waters. In response, the United States Environmental Protectio...

  13. Diagnosis of feline leukaemia virus infection by semi-quantitative real-time polymerase chain reaction.

    PubMed

    Pinches, Mark D G; Helps, Christopher R; Gruffydd-Jones, Tim J; Egan, Kathy; Jarrett, Oswald; Tasker, Séverine

    2007-02-01

    In this paper the design and use of a semi-quantitative real-time polymerase chain reaction assay (RT-PCR) for feline leukaemia virus (FeLV) provirus is described. Its performance is evaluated against established methods of FeLV diagnosis, including virus isolation and enzyme-linked immunoassay (ELISA) in a population of naturally infected cats. The RT-PCR assay is found to have both a high sensitivity (0.92) and specificity (0.99) when examined by expectation maximisation methods and is also able to detect a large number of cats with low FeLV proviral loads that were negative by other conventional test methods.

  14. Comparative evaluation of a laboratory developed real-time PCR assay and the RealStar® HHV-6 PCR Kit for quantitative detection of human herpesvirus 6.

    PubMed

    Yip, Cyril C Y; Sridhar, Siddharth; Cheng, Andrew K W; Fung, Ami M Y; Cheng, Vincent C C; Chan, Kwok-Hung; Yuen, Kwok-Yung

    2017-08-01

    HHV-6 reactivation in immunocompromised patients is common and may be associated with serious morbidity and mortality; therefore, early detection and initiation of therapy might be of benefit. Real-time PCR assays allow for early identification of HHV-6 reactivation to assist in providing a timely response. Thus, we compared the performance of an in-house developed HHV-6 quantitative PCR assay with a commercially available kit, the RealStar ® HHV-6 PCR Kit. The analytical sensitivity, analytical specificity, linearity, precision and accuracy of the in-house developed HHV-6 qPCR assay were evaluated. The diagnostic performance of the in-house HHV-6 qPCR assay was compared with the RealStar ® HHV-6 PCR Kit, using 72 clinical specimens and 17 proficiency testing samples. Linear regression analysis of the quantitative results showed a dynamic range from 2 to 10 log 10 copies/ml and a coefficient of determination (R 2 ) of 0.999 for the in-house assay. A dilution series demonstrated a limit of detection and a limit of quantification of 1.7 log 10 and 2 log 10 copies/ml, respectively. The precision of the assay was highly reproducible among runs with coefficients of variance (CV) ranging from 0.27% to 4.37%. A comparison of 27 matched samples showed an excellent correlation between the quantitative viral loads measured by the in-house HHV-6 qPCR assay and the RealStar ® HHV-6 PCR Kit (R 2 =0.926; P<0.0001), with an average bias of -0.24 log 10 copies/ml. The in-house developed HHV-6 qPCR method is a sensitive and reliable assay with lower cost for the detection and quantification of HHV-6 DNA when compared to the RealStar ® HHV-6 PCR Kit. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Quantitative detection of pork in commercial meat products by TaqMan® real-time PCR assay targeting the mitochondrial D-loop region.

    PubMed

    Kim, Miju; Yoo, Insuk; Lee, Shin-Young; Hong, Yeun; Kim, Hae-Yeong

    2016-11-01

    The TaqMan® real-time PCR assay using the mitochondrial D-loop region was developed for the quantitative detection of pork in processed meat products. The newly designed primers and probe specifically amplified pork without any cross-reactivity with non-target animal species. The limit of detection of the real-time PCR assay was 0.1pg of heat-treated pork meat and 0.1% (w/w) pork meat in beef and chicken meat mixtures. The quantitative real-time PCR assay was applied to analyze the pork meat content in 22 commercial processed meat products including jerkies, press hams, sausages, hamburger patties and steaks, grilled short rib patties, and nuggets. The developed real-time PCR method was able to detect pork meat in various types of processed meat products that declared the use of pork meat on their label. All processed meat products that declared no use of pork meat showed a negative result in the assay. The method developed in this study showed sensitivity and specificity in the quantification of pork meat in commercial processed meat products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Real-Time Reverse-Transcription Quantitative Polymerase Chain Reaction Assay Is a Feasible Method for the Relative Quantification of Heregulin Expression in Non-Small Cell Lung Cancer Tissue.

    PubMed

    Kristof, Jessica; Sakrison, Kellen; Jin, Xiaoping; Nakamaru, Kenji; Schneider, Matthias; Beckman, Robert A; Freeman, Daniel; Spittle, Cindy; Feng, Wenqin

    2017-01-01

    In preclinical studies, heregulin ( HRG ) expression was shown to be the most relevant predictive biomarker for response to patritumab, a fully human anti-epidermal growth factor receptor 3 monoclonal antibody. In support of a phase 2 study of erlotinib ± patritumab in non-small cell lung cancer (NSCLC), a reverse-transcription quantitative polymerase chain reaction (RT-qPCR) assay for relative quantification of HRG expression from formalin-fixed paraffin-embedded (FFPE) NSCLC tissue samples was developed and validated and described herein. Test specimens included matched FFPE normal lung and NSCLC and frozen NSCLC tissue, and HRG -positive and HRG -negative cell lines. Formalin-fixed paraffin-embedded tissue was examined for functional performance. Heregulin distribution was also analyzed across 200 NSCLC commercial samples. Applied Biosystems TaqMan Gene Expression Assays were run on the Bio-Rad CFX96 real-time PCR platform. Heregulin RT-qPCR assay specificity, PCR efficiency, PCR linearity, and reproducibility were demonstrated. The final assay parameters included the Qiagen FFPE RNA Extraction Kit for RNA extraction from FFPE NSCLC tissue, 50 ng of RNA input, and 3 reference (housekeeping) genes ( HMBS, IPO8 , and EIF2B1 ), which had expression levels similar to HRG expression levels and were stable among FFPE NSCLC samples. Using the validated assay, unimodal HRG distribution was confirmed across 185 evaluable FFPE NSCLC commercial samples. Feasibility of an RT-qPCR assay for the quantification of HRG expression in FFPE NSCLC specimens was demonstrated.

  17. Monitoring of Viral Induced Cell Death Using Real Time Cell Analysis

    DTIC Science & Technology

    2016-11-01

    studies have shown that real- time cell analysis (RTCA) platforms such as the xCELLigence can be used to gather quantitative measurements of viral...Teng, Z., Kuang, X., Wang, J., Zhang, X. Real- time cell analysis – A new method for dynamic, quantitative measurement of infectious viruses and...cytopathogenicity. A) Real- time monitoring of BSR cells infected with a 1:10 dilution series of Gan Gan virus. The curve is an average of eight

  18. Establishment of a multiplex real-time RT-PCR assay for rapid identification of H6 subtype avian influenza viruses.

    PubMed

    Yang, Fan; Wu, Haibo; Liu, Fumin; Lu, Xiangyun; Peng, Xiuming; Wu, Nanping

    2018-06-01

    The H6 subtype avian influenza viruses (AIVs) possess the capacity for zoonotic transmission from avian species to humans. Establishment of a specific, rapid and sensitive method to screen H6 AIVs is necessary. Based on the conserved domain of the matrix and H6 AIV hemagglutinin genes, two TaqMan minor-groove-binder probes and multiplex real-time RT-PCR primers were designed in this study. The multiplex real-time RT-PCR assay developed in this study had high specificity and repeatability and a detection limit of 30 copies per reaction. This rapid diagnostic method will be useful for clinical detection and surveillance of H6 AIVs in China.

  19. Chemisorption of iodine-125 to gold nanoparticles allows for real-time quantitation and potential use in nanomedicine.

    PubMed

    Walsh, Adrian A

    2017-01-01

    Gold nanoparticles have been available for many years as a research tool in the life sciences due to their electron density and optical properties. New applications are continually being developed, particularly in nanomedicine. One drawback is the need for an easy, real-time quantitation method for gold nanoparticles so that the effects observed in in vitro cell toxicity assays and cell uptake studies can be interpreted quantitatively in terms of nanoparticle loading. One potential method of quantifying gold nanoparticles in real time is by chemisorption of iodine-125, a gamma emitter, to the nanoparticles. This paper revisits the labelling of gold nanoparticles with iodine-125, first described 30 years ago and never fully exploited since. We explore the chemical properties and usefulness in quantifying bio-functionalised gold nanoparticle binding in a quick and simple manner. The gold particles were labelled specifically and quantitatively simply by mixing the two items. The nature of the labelling is chemisorption and is robust, remaining bound over several weeks in a variety of cell culture media. Chemisorption was confirmed as potassium iodide can remove the label whereas sodium chloride and many other buffers had no effect. Particles precoated in polymers or proteins can be labelled just as efficiently allowing for post-labelling experiments in situ rather than using radioactive gold atoms in the production process. We also demonstrate that interparticle exchange of I-125 between different size particles does not appear to take place confirming the affinity of the binding.

  20. Development and validation of a real-time PCR assay for the detection of anguillid herpesvirus 1.

    PubMed

    van Beurden, S J; Voorbergen-Laarman, M A; Roozenburg, I; van Tellingen, J; Haenen, O L M; Engelsma, M Y

    2016-01-01

    Anguillid herpesvirus 1 (AngHV1) causes a haemorrhagic disease with increased mortality in wild and farmed European eel, Anguilla anguilla (L.) and Japanese eel Anguilla japonica, Temminck & Schlegel). Detection of AngHV1 is currently based on virus isolation in cell culture, antibody-based typing assays or conventional PCR. We developed, optimized and concisely validated a diagnostic TaqMan probe based real-time PCR assay for the detection of AngHV1. The primers and probe target AngHV1 open reading frame 57, encoding the capsid protease and scaffold protein. Compared to conventional PCR, the developed real-time PCR is faster, less labour-intensive and has a reduced risk of cross-contamination. The real-time PCR assay was shown to be analytically sensitive and specific and has a high repeatability, efficiency and r(2) -value. The diagnostic performance of the assay was determined by testing 10% w/v organ suspensions and virus cultures from wild and farmed European eels from the Netherlands by conventional and real-time PCR. The developed real-time PCR assay is a useful tool for the rapid and sensitive detection of AngHV1 in 10% w/v organ suspensions from wild and farmed European eels. © 2015 John Wiley & Sons Ltd.

  1. Comparative Evaluation of Four Real-Time PCR Methods for the Quantitative Detection of Epstein-Barr Virus from Whole Blood Specimens.

    PubMed

    Buelow, Daelynn; Sun, Yilun; Tang, Li; Gu, Zhengming; Pounds, Stanley; Hayden, Randall

    2016-07-01

    Monitoring of Epstein-Barr virus (EBV) load in immunocompromised patients has become integral to their care. An increasing number of reagents are available for quantitative detection of EBV; however, there are little published comparative data. Four real-time PCR systems (one using laboratory-developed reagents and three using analyte-specific reagents) were compared with one another for detection of EBV from whole blood. Whole blood specimens seeded with EBV were used to determine quantitative linearity, analytical measurement range, lower limit of detection, and CV for each assay. Retrospective testing of 198 clinical samples was performed in parallel with all methods; results were compared to determine relative quantitative and qualitative performance. All assays showed similar performance. No significant difference was found in limit of detection (3.12-3.49 log10 copies/mL; P = 0.37). A strong qualitative correlation was seen with all assays that used clinical samples (positive detection rates of 89.5%-95.8%). Quantitative correlation of clinical samples across assays was also seen in pairwise regression analysis, with R(2) ranging from 0.83 to 0.95. Normalizing clinical sample results to IU/mL did not alter the quantitative correlation between assays. Quantitative EBV detection by real-time PCR can be performed over a wide linear dynamic range, using three different commercially available reagents and laboratory-developed methods. EBV was detected with comparable sensitivity and quantitative correlation for all assays. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  2. Quantitation of Mycotoxins Using Direct Analysis in Real Time Mass Spectrometry (DART-MS).

    PubMed

    Busman, Mark

    2018-05-01

    Ambient ionization represents a new generation of MS ion sources and is used for the rapid ionization of small molecules under ambient conditions. The combination of ambient ionization and MS allows the analysis of multiple food samples with simple or no sample treatment or in conjunction with prevailing sample preparation methods. Two ambient ionization methods, desorptive electrospray ionization (DESI) and direct analysis in real time (DART) have been adapted for food safety application. Both ionization techniques provide unique advantages and capabilities. DART has been used for a variety of qualitative and quantitative applications. In particular, mycotoxin contamination of food and feed materials has been addressed by DART-MS. Applications to mycotoxin analysis by ambient ionization MS and particularly DART-MS are summarized.

  3. Multiplex real-time RT-PCR assay for bovine viral diarrhea virus type 1, type 2 and HoBi-like pestivirus.

    PubMed

    Mari, Viviana; Losurdo, Michele; Lucente, Maria Stella; Lorusso, Eleonora; Elia, Gabriella; Martella, Vito; Patruno, Giovanni; Buonavoglia, Domenico; Decaro, Nicola

    2016-03-01

    HoBi-like pestiviruses are emerging pestiviruses that infect cattle causing clinical forms overlapping to those induced by bovine viral diarrhea virus (BVDV) 1 and 2. As a consequence of their widespread distribution reported in recent years, molecular tools for rapid discrimination among pestiviruses infecting cattle are needed. The aim of the present study was to develop a multiplex real-time RT-PCR assay, based on the TaqMan technology, for the rapid and unambiguous characterisation of all bovine pestiviruses, including the emerging HoBi-like strains. The assay was found to be sensitive, specific and repeatable, ensuring detection of as few as 10(0)-10(1) viral RNA copies. No cross-reactions between different pestiviral species were observed even in samples artificially contaminated with more than one pestivirus. Analysis of field samples tested positive for BVDV-1, BVDV-2 or HoBi-like virus by a nested PCR protocol revealed that the developed TaqMan assay had equal or higher sensitivity and was able to discriminate correctly the viral species in all tested samples, whereas a real-time RT-PCR assay previously developed for HoBi-like pestivirus detection showed cross-reactivity with few high-titre BVDV-2 samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Detection and semi-quantification of Strongylus vulgaris DNA in equine faeces by real-time quantitative PCR.

    PubMed

    Nielsen, Martin K; Peterson, David S; Monrad, Jesper; Thamsborg, Stig M; Olsen, Susanne N; Kaplan, Ray M

    2008-03-01

    Strongylus vulgaris is an important strongyle nematode with high pathogenic potential infecting horses world-wide. Several decades of intensive anthelmintic use has virtually eliminated clinical disease caused by S. vulgaris, but has also caused high levels of anthelmintic resistance in equine small strongyle (cyathostomin) nematodes. Recommendations aimed at limiting the development of anthelmintic resistance by reducing treatment intensity raises a simultaneous demand for reliable and accurate diagnostic tools for detecting important parasitic pathogens. Presently, the only means available to differentiate among strongyle species in a faecal sample is by identifying individual L3 larvae following a two week coproculture procedure. The aim of the present study is to overcome this diagnostic obstacle by developing a fluorescence-based quantitative PCR assay capable of identifying S. vulgaris eggs in faecal samples from horses. Species-specific primers and a TaqMan probe were designed by alignment of published ribosomal DNA sequences of the second internal transcribed spacer of cyathostomin and Strongylus spp. nematodes. The assay was tested for specificity and optimized using genomic DNA extracted from identified male worms of Strongylus and cyathostomin species. In addition, eggs were collected from adult female worms and used to evaluate the quantitative potential of the assay. Statistically significant linear relationships were found between egg numbers and cycle of threshold (Ct) values. PCR results were unaffected by the presence of cyathostomin DNA in the sample and there was no indication of PCR inhibition by faecal sources. A field evaluation on faecal samples obtained from four Danish horse farms revealed a good agreement with the traditional larval culture (kappa-value=0.78), but with a significantly higher performance of the PCR assay. An association between Ct values and S. vulgaris larval counts was statistically significant. The present assay can

  5. A Quantitative Real-Time PCR-Based Strategy for Molecular Evaluation of Nicotine Conversion in Burley Tobacco.

    PubMed

    Sun, Bo; Xue, Sheng-Ling; Zhang, Fen; Luo, Zhao-Peng; Wu, Ming-Zhu; Chen, Qing; Tang, Hao-Ru; Lin, Fu-Cheng; Yang, Jun

    2015-11-17

    Nornicotine production in Nicotiana tabacum is undesirable because it is the precursor of the carcinogen N'-nitrosonornicotine. In some individual burley tobacco plants, a large proportion of the nicotine can be converted to nornicotine, and this process of nicotine conversion is mediated primarily by enzymatic N-demethylation of nicotine which is controlled mainly by CYP82E4. Here we report a novel strategy based on quantitative real-time polymerase chain reaction (qPCR) method, which analyzed the ratio of nicotine conversion through examining the transcript level of CYP82E4 in burley leaves and do not need ethylene induction before detected. The assay was linear in a range from 1 × 10¹ to 1 × 10⁵ copies/mL of serially diluted standards, and also showed high specificity and reproducibility (93%-99%). To assess its applicability, 55 plants of burley cultivar Ky8959 at leaf maturing stage were analyzed, and the results were in accordance with those from gas chromatograph-mass spectrometry (GC-MS) method. Moreover, a linear correlation existed between conversion level and CYP82E4 transcript abundance. Taken together, the quantitative real-time PCR assay is standardized, rapid and reproducible for estimation of nicotine conversion level in vivo, which is expected to shed new light on monitoring of burley tobacco converter.

  6. Real-Time PCR for the Detection of Precise Transgene Copy Number in Wheat.

    PubMed

    Giancaspro, Angelica; Gadaleta, Agata; Blanco, Antonio

    2017-01-01

    Despite the unceasing advances in genetic transformation techniques, the success of common delivery methods still lies on the behavior of the integrated transgenes in the host genome. Stability and expression of the introduced genes are influenced by several factors such as chromosomal location, transgene copy number and interaction with the host genotype. Such factors are traditionally characterized by Southern blot analysis, which can be time-consuming, laborious, and often unable to detect the exact copy number of rearranged transgenes. Recent research in crop field suggests real-time PCR as an effective and reliable tool for the precise quantification and characterization of transgene loci. This technique overcomes most problems linked to phenotypic segregation analysis and can analyze hundreds of samples in a day, making it an efficient method for estimating a gene copy number integrated in a transgenic line. This protocol describes the use of real-time PCR for the detection of transgene copy number in durum wheat transgenic lines by means of two different chemistries (SYBR ® Green I dye and TaqMan ® probes).

  7. Real-Time Quantitative Analysis of Valproic Acid in Exhaled Breath by Low Temperature Plasma Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Gong, Xiaoxia; Shi, Songyue; Gamez, Gerardo

    2017-04-01

    Real-time analysis of exhaled human breath is a rapidly growing field in analytical science and has great potential for rapid and noninvasive clinical diagnosis and drug monitoring. In the present study, an LTP-MS method was developed for real-time, in-vivo and quantitative analysis of γ-valprolactone, a metabolite of valproic acid (VPA), in exhaled breath without any sample pretreatment. In particular, the effect of working conditions and geometry of the LTP source on the ions of interest, protonated molecular ion at m/z 143 and ammonium adduct ion at m/z 160, were systematically characterized. Tandem mass spectrometry (MS/MS) with collision-induced dissociation (CID) was carried out in order to identify γ-valprolactone molecular ions ( m/z 143), and the key fragment ion ( m/z 97) was used for quantitation. In addition, the fragmentation of ammonium adduct ions to protonated molecular ions was performed in-source to improve the signal-to-noise ratio. At optimum conditions, signal reproducibility with an RSD of 8% was achieved. The concentration of γ-valprolactone in exhaled breath was determined for the first time to be 4.83 (±0.32) ng/L by using standard addition method. Also, a calibration curve was obtained with a linear range from 0.7 to 22.5 ng/L, and the limit of detection was 0.18 ng/L for γ-valprolactone in standard gas samples. Our results show that LTP-MS is a powerful analytical platform with high sensitivity for quantitative analysis of volatile organic compounds in human breath, and can have potential applications in pharmacokinetics or for patient monitoring and treatment.

  8. Real-time PCR assays for the quantitation of rDNA from apricot and other plant species in marzipan.

    PubMed

    Haase, Ilka; Brüning, Philipp; Matissek, Reinhard; Fischer, Markus

    2013-04-10

    Marzipan or marzipan raw paste is a typical German sweet which is consumed directly or is used as an ingredient in the bakery industry/confectionery (e.g., in stollen) and as filling for chocolate candies. Almonds (blanched and pealed) and sugar are the only ingredients for marzipan production according to German food guidelines. Especially for the confectionery industry, the use of persipan, which contains apricot or peach kernels instead of almonds, is preferred due to its stronger aroma. In most of the companies, both raw pastes are produced, in most cases on the same production line, running the risk of an unintended cross contamination. Additionally, due to high almond market values, dilutions of marzipan with cheaper seeds may occur. Especially in the case of apricot and almond, the close relationship of both species is a challenge for the analysis. DNA based methods for the qualitative detection of apricot, peach, pea, bean, lupine, soy, cashew, pistachio, and chickpea in marzipan have recently been published. In this study, different quantitation strategies on the basis of real-time PCR have been evaluated and a relative quantitation method with a reference amplification product was shown to give the best results. As the real-time PCR is based on the high copy rDNA-cluster, even contaminations <1% can be reliably quantitated.

  9. One-step multiplex quantitative RT-PCR for the simultaneous detection of viroids and phytoplasmas of pome fruit trees.

    PubMed

    Malandraki, Ioanna; Varveri, Christina; Olmos, Antonio; Vassilakos, Nikon

    2015-03-01

    A one-step multiplex real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) based on TaqMan chemistry was developed for the simultaneous detection of Pear blister canker viroid and Apple scar skin viroid along with universal detection of phytoplasmas, in pome trees. Total nucleic acids (TNAs) extraction was performed according to a modified CTAB protocol. Primers and TaqMan MGB probes for specific detection of the two viroids were designed in this study, whereas for phytoplasma detection published universal primers and probe were used, with the difference that the later was modified to carry a MGB quencher. The pathogens were detected simultaneously in 10-fold serial dilutions of TNAs from infected plant material into TNAs of healthy plant up to dilutions 10(-5) for viroids and 10(-4) for phytoplasmas. The multiplex real-time assay was at least 10 times more sensitive than conventional protocols for viroid and phytoplasma detection. Simultaneous detection of the three targets was achieved in composite samples at least up to a ratio of 1:100 triple-infected to healthy tissue, demonstrating that the developed assay has the potential to be used for rapid and massive screening of viroids and phytoplasmas of pome fruit trees in the frame of certification schemes and surveys. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. A novel method of multiple nucleic acid detection: Real-time RT-PCR coupled with probe-melting curve analysis.

    PubMed

    Han, Yang; Hou, Shao-Yang; Ji, Shang-Zhi; Cheng, Juan; Zhang, Meng-Yue; He, Li-Juan; Ye, Xiang-Zhong; Li, Yi-Min; Zhang, Yi-Xuan

    2017-11-15

    A novel method, real-time reverse transcription PCR (real-time RT-PCR) coupled with probe-melting curve analysis, has been established to detect two kinds of samples within one fluorescence channel. Besides a conventional TaqMan probe, this method employs another specially designed melting-probe with a 5' terminus modification which meets the same label with the same fluorescent group. By using an asymmetric PCR method, the melting-probe is able to detect an extra sample in the melting stage effectively while it almost has little influence on the amplification detection. Thus, this method allows the availability of united employment of both amplification stage and melting stage for detecting samples in one reaction. The further demonstration by simultaneous detection of human immunodeficiency virus (HIV) and hepatitis C virus (HCV) in one channel as a model system is presented in this essay. The sensitivity of detection by real-time RT-PCR coupled with probe-melting analysis was proved to be equal to that detected by conventional real-time RT-PCR. Because real-time RT-PCR coupled with probe-melting analysis can double the detection throughputs within one fluorescence channel, it is expected to be a good solution for the problem of low-throughput in current real-time PCR. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Diagnosis of ocular toxoplasmosis by two polymerase chain reaction (PCR) examinations: qualitative multiplex and quantitative real-time.

    PubMed

    Sugita, Sunao; Ogawa, Manabu; Inoue, Shizu; Shimizu, Norio; Mochizuki, Manabu

    2011-09-01

    To establish a two-step polymerase chain reaction (PCR) diagnostic system for ocular toxoplasmosis. A total of 13 ocular fluid samples (11 aqueous humor and 2 vitreous fluid) were collected from 13 patients with clinically suspected ocular toxoplasmosis. Ten ocular samples from other uveitis patients and 20 samples from subjects without ocular inflammation were used as controls. Two polymerase chain reaction (PCR) methods, i.e., qualitative multiplex PCR and quantitative real-time PCR, were used to measure the toxoplasma genome (T. gondii B1 gene). Qualitative multiplex PCR detected T. gondii B1 gene in the ocular fluids of 11 out of 13 patients with clinically suspected ocular toxoplasmosis. In real-time PCR, we detected high copy numbers of T. gondii DNA (5.1 × 10(2)-2.1 × 10(6) copies/mL) in a total of 10 patients (10/13, 77%). Only ocular toxoplasmosis scar lesions were observed in the three real-time PCR-negative patients. PCR assay results for the samples from the two control groups were all negative. The two-step PCR examination to detect toxoplasma DNA is a useful tool for diagnosing ocular toxoplasmosis.

  12. Real-time and quantitative isotropic spatial resolution susceptibility imaging for magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Pi, Shiqiang; Liu, Wenzhong; Jiang, Tao

    2018-03-01

    The magnetic transparency of biological tissue allows the magnetic nanoparticle (MNP) to be a promising functional sensor and contrast agent. The complex susceptibility of MNPs, strongly influenced by particle concentration, excitation magnetic field and their surrounding microenvironment, provides significant implications for biomedical applications. Therefore, magnetic susceptibility imaging of high spatial resolution will give more detailed information during the process of MNP-aided diagnosis and therapy. In this study, we present a novel spatial magnetic susceptibility extraction method for MNPs under a gradient magnetic field, a low-frequency drive magnetic field, and a weak strength high-frequency magnetic field. Based on this novel method, a magnetic particle susceptibility imaging (MPSI) of millimeter-level spatial resolution (<3 mm) was achieved using our homemade imaging system. Corroborated by the experimental results, the MPSI shows real-time (1 s per frame acquisition) and quantitative abilities, and isotropic high resolution.

  13. Use of internally controlled real-time genome amplification for detection of variola virus and other orthopoxviruses infecting humans.

    PubMed

    Fedele, C G; Negredo, A; Molero, F; Sánchez-Seco, M P; Tenorio, A

    2006-12-01

    Smallpox, once a devastating disease caused by Variola virus, a member of the Orthopoxvirus genus, was eradicated in 1980. However, the importance of variola virus infections has been stressed widely in the last few years, particularly following recent social events in the world. Today, variola virus is considered to be one of the most significant agents with potential use as a biological weapon. In this study we developed an internally controlled real-time PCR assay for rapid detection and simultaneous differentiation of variola virus from other orthopoxviruses. The assay is based on TaqMan 3'-minor groove binder (MGB) chemistry and uses generic primers, designed in highly conserved genomic regions of the crmB gene, and three TaqMan MGB probes designed to identify orthopoxviruses, variola virus, and an internal control. The results obtained suggest that the assay is rapid, sensitive, specific, and suitable for the generic detection of orthopoxviruses and the identification of variola virus and avoids false-negative results in a single reaction tube.

  14. [A quantitative real time polymerase chain reaction for detection of HBV covalently closed circular DNA in livers of the HBV infected patients].

    PubMed

    Wang, Mei-Rong; Qiu, Ning; Lu, Shi-Chun; Xiu, Dian-Rong; Yu, Jian-Guo; Li, Tong; Liu, Xue-En; Zhuang, Hui

    2011-05-01

    To establish and optimize a sensitive and specific quantitative real-time polymerase chain reaction (PCR) method for detection of hepatitis B virus covalently closed circular DNA (HBV cccDNA) in liver tissue. Specific primers and probes were designed to detect HBV DNA (tDNA) and cccDNA. A series of plasmids (3.44 × 10(0) - 3.44 × 10(9) copies/µl) containing a full double-stranded copies of HBV genome (genotype C) were used to establish the standard curve of real-time PCR. Liver samples of 33 patients with HBV related hepatocellular carcinoma (HCC), 13 Chronic hepatitis B patients (CHB) and 10 non-HBV patients were collected to verify the sensitivity and specificity of the assay. A fraction of extracted DNA was digested with a Plasmid-Safe ATP-dependent Dnase (PSAD) for HBV cccDNA detection and the remaining was used for tDNA and β-globin detection. The amount (copies/cell) of HBV cccDNA and tDNA were measured by a real-time PCR, using β-globin housekeeping gene as a quantitation standard. The standard curves of real-time PCR with a linear range of 3.44 × 10(0) to 3.44 × 10(9) copies/µl were established for detecting HBV cccDNA and tDNA, and both of the lowest detection limits of HBV cccDNA and tDNA were 3.44 × 10(0) copies/µl. The lowest quantitation levels of HBV cccDNA in liver tissues tested in 33 HBV related HCC patients and 13 CHB patients were 0.003 copies/cell and 0.031 copies/cell, respectively. HBV cccDNA and tDNA in liver tissue of 10 non-HBV patient appeared to be negative. The true positive rate was increasing through the digestion of HBV DNA by PSAD, and the analytic specificity of cccDNA detection improved by 7.24 × 10(2) times. Liver tissues of 2 patients were retested 5 times in the PCR for detecting cccDNA and the coefficient of variations on cycle threshold (Ct) were between 0.224% - 0.609%. A highly sensitive and specific quantitative real time PCR method for the detection of HBV cccDNA in liver tissue was established and could be used

  15. A Novel Real-Time PCR for Listeria monocytogenes That Monitors Analytical Performance via an Internal Amplification Control

    PubMed Central

    Rodríguez-Lázaro, David; Pla, Maria; Scortti, Mariela; Monzó, Héctor J.; Vázquez-Boland, José A.

    2005-01-01

    We describe a novel quantitative real-time (Q)-PCR assay for Listeria monocytogenes based on the coamplification of a target hly gene fragment and an internal amplification control (IAC). The IAC is a chimeric double-stranded DNA containing a fragment of the rapeseed BnACCg8 gene flanked by the hly-specific target sequences. This IAC is detected using a second TaqMan probe labeled with a different fluorophore, enabling the simultaneous monitoring of the hly and IAC signals. The hly-IAC assay had a specificity and sensitivity of 100%, as assessed using 49 L. monocytogenes isolates of different serotypes and 96 strains of nontarget bacteria, including 51 Listeria isolates. The detection and quantification limits were 8 and 30 genome equivalents, and the coefficients for PCR linearity (R2) and efficiency (E) were 0.997 and 0.80, respectively. We tested the performance of the hly-IAC Q-PCR assay using various broth media and food matrices. Fraser and half-Fraser media, raw pork, and raw or cold-smoked salmon were strongly PCR-inhibitory. This Q-PCR assay for L. monocytogenes, the first incorporating an IAC to be described for quantitative detection of a food-borne pathogen, is a simple and robust tool facilitating the identification of false negatives or underestimations of contamination loads due to PCR failure. PMID:16332910

  16. Flow cytometry and real-time quantitative PCR as tools for assessing plasmid persistence.

    PubMed

    Loftie-Eaton, Wesley; Tucker, Allison; Norton, Ann; Top, Eva M

    2014-09-01

    The maintenance of a plasmid in the absence of selection for plasmid-borne genes is not guaranteed. However, plasmid persistence can evolve under selective conditions. Studying the molecular mechanisms behind the evolution of plasmid persistence is key to understanding how plasmids are maintained under nonselective conditions. Given the current crisis of rapid antibiotic resistance spread by multidrug resistance plasmids, this insight is of high medical relevance. The conventional method for monitoring plasmid persistence (i.e., the fraction of plasmid-containing cells in a population over time) is based on cultivation and involves differentiating colonies of plasmid-containing and plasmid-free cells on agar plates. However, this technique is time-consuming and does not easily lend itself to high-throughput applications. Here, we present flow cytometry (FCM) and real-time quantitative PCR (qPCR) as alternative tools for monitoring plasmid persistence. For this, we measured the persistence of a model plasmid, pB10::gfp, in three Pseudomonas hosts and in known mixtures of plasmid-containing and -free cells. We also compared three performance criteria: dynamic range, resolution, and variance. Although not without exceptions, both techniques generated estimates of overall plasmid loss rates that were rather similar to those generated by the conventional plate count (PC) method. They also were able to resolve differences in loss rates between artificial plasmid persistence assays. Finally, we briefly discuss the advantages and disadvantages for each technique and conclude that, overall, both FCM and real-time qPCR are suitable alternatives to cultivation-based methods for routine measurement of plasmid persistence, thereby opening avenues for high-throughput analyses. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. Real-time quasi-3D tomographic reconstruction

    NASA Astrophysics Data System (ADS)

    Buurlage, Jan-Willem; Kohr, Holger; Palenstijn, Willem Jan; Joost Batenburg, K.

    2018-06-01

    Developments in acquisition technology and a growing need for time-resolved experiments pose great computational challenges in tomography. In addition, access to reconstructions in real time is a highly demanded feature but has so far been out of reach. We show that by exploiting the mathematical properties of filtered backprojection-type methods, having access to real-time reconstructions of arbitrarily oriented slices becomes feasible. Furthermore, we present , software for visualization and on-demand reconstruction of slices. A user of can interactively shift and rotate slices in a GUI, while the software updates the slice in real time. For certain use cases, the possibility to study arbitrarily oriented slices in real time directly from the measured data provides sufficient visual and quantitative insight. Two such applications are discussed in this article.

  18. Development of a Rickettsia bellii-Specific TaqMan Assay Targeting the Citrate Synthase Gene.

    PubMed

    Hecht, Joy A; Allerdice, Michelle E J; Krawczak, Felipe S; Labruna, Marcelo B; Paddock, Christopher D; Karpathy, Sandor E

    2016-11-01

    Rickettsia bellii is a rickettsial species of unknown pathogenicity that infects argasid and ixodid ticks throughout the Americas. Many molecular assays used to detect spotted fever group (SFG) Rickettsia species do not detect R. bellii, so that infection with this bacterium may be concealed in tick populations when assays are used that screen specifically for SFG rickettsiae. We describe the development and validation of a R. bellii-specific, quantitative, real-time PCR TaqMan assay that targets a segment of the citrate synthase (gltA) gene. The specificity of this assay was validated against a panel of DNA samples that included 26 species of Rickettsia, Orientia, Ehrlichia, Anaplasma, and Bartonella, five samples of tick and human DNA, and DNA from 20 isolates of R. bellii, including 11 from North America and nine from South America. A R. bellii control plasmid was constructed, and serial dilutions of the plasmid were used to determine the limit of detection of the assay to be one copy per 4 µl of template DNA. This assay can be used to better determine the role of R. bellii in the epidemiology of tick-borne rickettsioses in the Western Hemisphere. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the US.

  19. Sexing chick mRNA: A protocol based on quantitative real-time polymerase chain reaction.

    PubMed

    Wan, Z; Lu, Y; Rui, L; Yu, X; Li, Z

    2017-03-01

    The accurate identification of sex in birds is important for research on avian sex determination and differentiation. Polymerase chain reaction (PCR)-based methods have been widely applied for the molecular sexing of birds. However, these methods have used genomic DNA. Here, we present the first sexing protocol for chick mRNA based on real-time quantitative PCR. We demonstrate that this method can accurately determine sex using mRNA from chick gonads and other tissues, such as heart, liver, spleen, lung, and muscle. The strategy of this protocol also may be suitable for other species in which sex is determined by the inheritance of sex chromosomes (ZZ male and ZW female). © 2016 Poultry Science Association Inc.

  20. Real-time PCR in virology.

    PubMed

    Mackay, Ian M; Arden, Katherine E; Nitsche, Andreas

    2002-03-15

    The use of the polymerase chain reaction (PCR) in molecular diagnostics has increased to the point where it is now accepted as the gold standard for detecting nucleic acids from a number of origins and it has become an essential tool in the research laboratory. Real-time PCR has engendered wider acceptance of the PCR due to its improved rapidity, sensitivity, reproducibility and the reduced risk of carry-over contamination. There are currently five main chemistries used for the detection of PCR product during real-time PCR. These are the DNA binding fluorophores, the 5' endonuclease, adjacent linear and hairpin oligoprobes and the self-fluorescing amplicons, which are described in detail. We also discuss factors that have restricted the development of multiplex real-time PCR as well as the role of real-time PCR in quantitating nucleic acids. Both amplification hardware and the fluorogenic detection chemistries have evolved rapidly as the understanding of real-time PCR has developed and this review aims to update the scientist on the current state of the art. We describe the background, advantages and limitations of real-time PCR and we review the literature as it applies to virus detection in the routine and research laboratory in order to focus on one of the many areas in which the application of real-time PCR has provided significant methodological benefits and improved patient outcomes. However, the technology discussed has been applied to other areas of microbiology as well as studies of gene expression and genetic disease.

  1. Verus: A Tool for Quantitative Analysis of Finite-State Real-Time Systems.

    DTIC Science & Technology

    1996-08-12

    Symbolic model checking is a technique for verifying finite-state concurrent systems that has been extended to handle real - time systems . Models with...up to 10(exp 30) states can often be verified in minutes. In this paper, we present a new tool to analyze real - time systems , based on this technique...We have designed a language, called Verus, for the description of real - time systems . Such a description is compiled into a state-transition graph and

  2. Identification of suitable reference genes for hepatic microRNA quantitation.

    PubMed

    Lamba, Vishal; Ghodke-Puranik, Yogita; Guan, Weihua; Lamba, Jatinder K

    2014-03-07

    MicroRNAs (miRNAs) are short (~22 nt) endogenous RNAs that play important roles in regulating expression of a wide variety of genes involved in different cellular processes. Alterations in microRNA expression patterns have been associated with a number of human diseases. Accurate quantitation of microRNA levels is important for their use as biomarkers and in determining their functions. Real time PCR is the gold standard and the most frequently used technique for miRNA quantitation. Real time PCR data analysis includes normalizing the amplification data to suitable endogenous control/s to ensure that microRNA quantitation is not affected by the variability that is potentially introduced at different experimental steps. U6 (RNU6A) and RNU6B are two commonly used endogenous controls in microRNA quantitation. The present study was designed to investigate inter-individual variability and gender differences in hepatic microRNA expression as well as to identify the best endogenous control/s that could be used for normalization of real-time expression data in liver samples. We used Taqman based real time PCR to quantitate hepatic expression levels of 22 microRNAs along with U6 and RNU6B in 50 human livers samples (25 M, 25 F). To identify the best endogenous controls for use in data analysis, we evaluated the amplified candidates for their stability (least variability) in expression using two commonly used software programs: Normfinder and GeNormplus, Both Normfinder and GeNormplus identified U6 to be among the least stable of all the candidates analyzed, and RNU6B was also not among the top genes in stability. mir-152 and mir-23b were identified to be the two most stable candidates by both Normfinder and GeNormplus in our analysis, and were used as endogenous controls for normalization of hepatic miRNA levels. Measurements of microRNA stability indicate that U6 and RNU6B are not suitable for use as endogenous controls for normalizing microRNA relative quantitation

  3. Incidence of pulmonary aspergillosis and correlation of conventional diagnostic methods with nested PCR and real-time PCR assay using BAL fluid in intensive care unit patients.

    PubMed

    Zarrinfar, Hossein; Makimura, Koichi; Satoh, Kazuo; Khodadadi, Hossein; Mirhendi, Hossein

    2013-05-01

    Although the incidence of invasive aspergillosis in the intensive care unit (ICU) is scarce, it has emerged as major problems in critically ill patients. In this study, the incidence of pulmonary aspergillosis (PA) in ICU patients has evaluated and direct microscopy and culture has compared with nested polymerase chain reaction (PCR) and real-time PCR for detection of Aspergillus fumigatus and A. flavus in bronchoalveolar lavage (BAL) samples of the patients. Thirty BAL samples obtained from ICU patients during a 16-month period were subjected to direct examinations on 20% potassium hydroxide (KOH) and culture on two culture media. Nested PCR targeting internal transcribed spacer ribosomal DNA and TaqMan real-time PCR assay targeting β-tubulin gene were used for the detection of A. fumigatus and A. flavus. Of 30 patients, 60% were men and 40% were women. The diagnosis of invasive PA was probable in 1 (3%), possible in 11 (37%), and not IPA in 18 (60%). Nine samples were positive in nested PCR including seven samples by A. flavus and two by A. fumigatus specific primers. The lowest amount of DNA that TaqMan real-time PCR could detect was ≥40 copy numbers. Only one of the samples had a positive result of A. flavus real-time PCR with Ct value of 37.5. Although a significant number of specimens were positive in nested PCR, results of this study showed that establishment of a correlation between the conventional methods with nested PCR and real-time PCR needs more data confirmed by a prospective study with a larger sample group. © 2013 Wiley Periodicals, Inc.

  4. Real-time PCR assays using internal controls for quantitation of HPV-16 and beta-globin DNA in cervicovaginal lavages.

    PubMed

    Lefevre, Jonas; Hankins, Catherine; Pourreaux, Karina; Voyer, Hélène; Coutlée, François

    2003-12-01

    High-risk human papillomavirus 16 (HPV-16) DNA viral load has been measured with real-time PCR assays by amplifying HPV-16 and a human gene. However, these assays have not used internal controls (ICs) to screen for the presence of inhibitors contained in samples. To quantitate HPV-16 DNA and cell content with real-time PCR, ICs for HPV-16 DNA and beta-globin were synthesised and used to control for inhibition. The assays were sensitive and linear over 5 logs. Good reproducibility was achieved with inter-run coefficients of variation of 23% (10(2) HPV-16 copies), 12% (10(4) HPV-16 copies), 17% (274 beta-globin DNA copies) and 7% (27,400 beta-globin DNA copies). Samples containing 56,800,000, 306,000, 18,000, and 4,070 HPV-16 copies/microg of cellular DNA were tested blindly and estimated to contain 48,800,000, 479,000, 20,300, and 6,620 HPV-16 copies/microg of DNA (mean ratio of measured to expected viral load of 1.27+/-0.32). Inhibition of amplification of HPV-16 and beta-globin ICs by six samples known to contain PCR inhibitors was variable: four inhibited both ICs while two inhibited only the HPV-16 IC. The use of internal controls with real-time PCR for HPV-16 quantitation allows to screen for the presence of inhibitors that do not affect equally primer-driven genomic amplification.

  5. Species identification of Cannabis sativa using real-time quantitative PCR (qPCR).

    PubMed

    Johnson, Christopher E; Premasuthan, Amritha; Satkoski Trask, Jessica; Kanthaswamy, Sree

    2013-03-01

    Most narcotics-related cases in the United States involve Cannabis sativa. Material is typically identified based on the cystolithic hairs on the leaves and with chemical tests to identify of the presence of cannabinoids. Suspect seeds are germinated into a viable plant so that morphological and chemical tests can be conducted. Seed germination, however, causes undue analytical delays. DNA analyses that involve the chloroplast and nuclear genomes have been developed for identification of C. sativa materials, but they require several nanograms of template DNA. Using the trnL 3' exon-trnF intragenic spacer regions within the C. sativa chloroplast, we have developed a real-time quantitative PCR assay that is capable of identifying picogram amounts of chloroplast DNA for species determination of suspected C. sativa material. This assay provides forensic science laboratories with a quick and reliable method to identify an unknown sample as C. sativa. © 2013 American Academy of Forensic Sciences.

  6. Evaluation of Legionella pneumophila contamination in Italian hotel water systems by quantitative real-time PCR and culture methods.

    PubMed

    Bonetta, Sa; Bonetta, Si; Ferretti, E; Balocco, F; Carraro, E

    2010-05-01

    This study was designed to define the extent of water contamination by Legionella pneumophila of certain Italian hotels and to compare quantitative real-time PCR with the conventional culture method. Nineteen Italian hotels of different sizes were investigated. In each hotel three hot water samples (boiler, room showers, recycling) and one cold water sample (inlet) were collected. Physico-chemical parameters were also analysed. Legionella pneumophila was detected in 42% and 74% of the hotels investigated by the culture method and by real-time PCR, respectively. In 21% of samples analysed by the culture method, a concentration of >10(4) CFU l(-1) was found, and Leg. pneumophila serogroup 1 was isolated from 10.5% of the hotels. The presence of Leg. pneumophila was significantly influenced by water sample temperature, while no association with water hardness or residual-free chlorine was found. This study showed a high percentage of buildings colonized by Leg. pneumophila. Moreover, real-time PCR proved to be sensitive enough to detect lower levels of contamination than the culture method. This study indicates that the Italian hotels represent a possible source of risk for Legionnaires' disease and confirms the sensitivity of the molecular method. To our knowledge, this is the first report to demonstrate Legionella contamination in Italian hotels using real-time PCR and culture methods.

  7. A Human Fecal Contamination Score for Ranking Recreational Sites using the HF183/BacR287 Quantitative Real-Time PCR Method

    EPA Science Inventory

    Human fecal pollution of recreational waters remains a public health concern worldwide. As a result, there is a growing interest in the application of human-associated fecal source identification quantitative real-time PCR (qPCR) technologies for water quality research and manag...

  8. Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze)

    USDA-ARS?s Scientific Manuscript database

    Quantitative real-time polymerase chain reaction (qRT-PCR) is a commonly used technique for measuring gene expression levels due to its simplicity, specificity, and sensitivity. Reliable reference selection for the accurate quantification of gene expression under various experimental conditions is a...

  9. Development of duplex SYBR Green I-based real-time quantitative reverse-transcription PCR for detection and discrimination of grapevine viruses

    USDA-ARS?s Scientific Manuscript database

    A SYBR® Green-based real-time quantitative reverse transcription PCR (qRT-PCR) assay in combination with melt curve analysis (MCA) was developed for the detection of nine grapevine viruses. The detection limits for singleplex qRT-PCR for all nine grapevine viruses were determined to be in the range ...

  10. Development and validation of a real-time PCR assay for specific and sensitive detection of canid herpesvirus 1.

    PubMed

    Decaro, Nicola; Amorisco, Francesca; Desario, Costantina; Lorusso, Eleonora; Camero, Michele; Bellacicco, Anna Lucia; Sciarretta, Rossana; Lucente, Maria Stella; Martella, Vito; Buonavoglia, Canio

    2010-10-01

    A TaqMan-based real-time PCR assay targeting the glycoprotein B-encoding gene was developed for diagnosis of canid herpesvirus 1 (CHV-1) infection. The established assay was highly specific, since no cross-reactions were observed with other canine DNA viruses, including canine parvovirus type 2, canine minute virus, or canine adenovirus types 1 and 2. The detection limit was 10(1) and 1.20 x 10(1) DNA copies per 10 microl(-1) of template for standard DNA and a CHV-1-positive kidney sample, respectively: about 1-log higher than a gel-based PCR assay targeting the thymidine kinase gene. The assay was also reproducible, as shown by satisfactory low intra-assay and inter-assay coefficients of variation. CHV-1 isolates of different geographical origins were recognised by the TaqMan assay. Tissues and clinical samples collected from three pups which died of CHV-1 neonatal infection were also tested, displaying a wide distribution of CHV-l DNA in their organs. Unlike other CHV-1-specific diagnostic methods, this quantitative assay permits simultaneous detection and quantitation of CHV-1 DNA in a wide range of canine tissues and body fluids, thus providing a useful tool for confirmation of a clinical diagnosis, for the study of viral pathogenesis and for evaluation of the efficacy of vaccines and antiviral drugs. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  11. Multiplex Real-Time PCR Assay for Rapid Detection of Methicillin-Resistant Staphylococci Directly from Positive Blood Cultures

    PubMed Central

    Wang, Hye-young; Kim, Sunghyun; Kim, Jungho; Park, Soon-Deok

    2014-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is the most prevalent cause of bloodstream infections (BSIs) and is recognized as a major nosocomial pathogen. This study aimed to evaluate a newly designed multiplex real-time PCR assay capable of the simultaneous detection of mecA, S. aureus, and coagulase-negative staphylococci (CoNS) in blood culture specimens. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays (M&D, Republic of Korea) use the TaqMan probes 16S rRNA for Staphylococcus spp., the nuc gene for S. aureus, and the mecA gene for methicillin resistance. The detection limit of the multiplex real-time PCR assay was 103 CFU/ml per PCR for each gene target. The multiplex real-time PCR assay was evaluated using 118 clinical isolates from various specimen types and a total of 350 positive blood cultures from a continuous monitoring blood culture system. The results obtained with the multiplex real-time PCR assay for the three targets were in agreement with those of conventional identification and susceptibility testing methods except for one organism. Of 350 positive bottle cultures, the sensitivities of the multiplex real-time PCR kit were 100% (166/166 cultures), 97.2% (35/36 cultures), and 99.2% (117/118 cultures) for the 16S rRNA, nuc, and mecA genes, respectively, and the specificities for all three targets were 100%. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays are very useful for the rapid accurate diagnosis of staphylococcal BSIs. In addition, the Real-MRSA and Real-MRCoNS multiplex real-time PCR assays could have an important impact on the choice of appropriate antimicrobial therapy, based on detection of the mecA gene. PMID:24648566

  12. Trace-Level Volatile Quantitation by Direct Analysis in Real Time Mass Spectrometry following Headspace Extraction: Optimization and Validation in Grapes.

    PubMed

    Jastrzembski, Jillian A; Bee, Madeleine Y; Sacks, Gavin L

    2017-10-25

    Ambient ionization mass spectrometric (AI-MS) techniques like direct analysis in real time (DART) offer the potential for rapid quantitative analyses of trace volatiles in food matrices, but performance is generally limited by the lack of preconcentration and extraction steps. The sensitivity and selectivity of AI-MS approaches can be improved through solid-phase microextraction (SPME) with appropriate thin-film geometries, for example, solid-phase mesh-enhanced sorption from headspace (SPMESH). This work improves the SPMESH-DART-MS approach for use in food analyses and validates the approach for trace volatile analysis for two compounds in real samples (grape macerates). SPMESH units prepared with different sorbent coatings were evaluated for their ability to extract a range of odor-active volatiles, with poly(dimethylsiloxane)/divinylbenzene giving the most satisfactory results. In combination with high-resolution mass spectrometry (HRMS), detection limits for SPMESH-DART-MS under 4 ng/L in less than 30 s acquisition times could be achieved for some volatiles [3-isobutyl-2-methoxypyrazine (IBMP) and β-damascenone]. A comparison of SPMESH-DART-MS and SPME-GC-MS quantitation of linalool and IBMP demonstrates excellent agreement between the two methods for real grape samples (r 2 ≥ 0.90), although linalool measurements appeared to also include isobaric interference.

  13. Statistical aspects of quantitative real-time PCR experiment design.

    PubMed

    Kitchen, Robert R; Kubista, Mikael; Tichopad, Ales

    2010-04-01

    Experiments using quantitative real-time PCR to test hypotheses are limited by technical and biological variability; we seek to minimise sources of confounding variability through optimum use of biological and technical replicates. The quality of an experiment design is commonly assessed by calculating its prospective power. Such calculations rely on knowledge of the expected variances of the measurements of each group of samples and the magnitude of the treatment effect; the estimation of which is often uninformed and unreliable. Here we introduce a method that exploits a small pilot study to estimate the biological and technical variances in order to improve the design of a subsequent large experiment. We measure the variance contributions at several 'levels' of the experiment design and provide a means of using this information to predict both the total variance and the prospective power of the assay. A validation of the method is provided through a variance analysis of representative genes in several bovine tissue-types. We also discuss the effect of normalisation to a reference gene in terms of the measured variance components of the gene of interest. Finally, we describe a software implementation of these methods, powerNest, that gives the user the opportunity to input data from a pilot study and interactively modify the design of the assay. The software automatically calculates expected variances, statistical power, and optimal design of the larger experiment. powerNest enables the researcher to minimise the total confounding variance and maximise prospective power for a specified maximum cost for the large study. Copyright 2010 Elsevier Inc. All rights reserved.

  14. Investigation of Legionella Contamination in Bath Water Samples by Culture, Amoebic Co-Culture, and Real-Time Quantitative PCR Methods.

    PubMed

    Edagawa, Akiko; Kimura, Akio; Kawabuchi-Kurata, Takako; Adachi, Shinichi; Furuhata, Katsunori; Miyamoto, Hiroshi

    2015-10-19

    We investigated Legionella contamination in bath water samples, collected from 68 bathing facilities in Japan, by culture, culture with amoebic co-culture, real-time quantitative PCR (qPCR), and real-time qPCR with amoebic co-culture. Using the conventional culture method, Legionella pneumophila was detected in 11 samples (11/68, 16.2%). Contrary to our expectation, the culture method with the amoebic co-culture technique did not increase the detection rate of Legionella (4/68, 5.9%). In contrast, a combination of the amoebic co-culture technique followed by qPCR successfully increased the detection rate (57/68, 83.8%) compared with real-time qPCR alone (46/68, 67.6%). Using real-time qPCR after culture with amoebic co-culture, more than 10-fold higher bacterial numbers were observed in 30 samples (30/68, 44.1%) compared with the same samples without co-culture. On the other hand, higher bacterial numbers were not observed after propagation by amoebae in 32 samples (32/68, 47.1%). Legionella was not detected in the remaining six samples (6/68, 8.8%), irrespective of the method. These results suggest that application of the amoebic co-culture technique prior to real-time qPCR may be useful for the sensitive detection of Legionella from bath water samples. Furthermore, a combination of amoebic co-culture and real-time qPCR might be useful to detect viable and virulent Legionella because their ability to invade and multiply within free-living amoebae is considered to correlate with their pathogenicity for humans. This is the first report evaluating the efficacy of the amoebic co-culture technique for detecting Legionella in bath water samples.

  15. Investigation of Legionella Contamination in Bath Water Samples by Culture, Amoebic Co-Culture, and Real-Time Quantitative PCR Methods

    PubMed Central

    Edagawa, Akiko; Kimura, Akio; Kawabuchi-Kurata, Takako; Adachi, Shinichi; Furuhata, Katsunori; Miyamoto, Hiroshi

    2015-01-01

    We investigated Legionella contamination in bath water samples, collected from 68 bathing facilities in Japan, by culture, culture with amoebic co-culture, real-time quantitative PCR (qPCR), and real-time qPCR with amoebic co-culture. Using the conventional culture method, Legionella pneumophila was detected in 11 samples (11/68, 16.2%). Contrary to our expectation, the culture method with the amoebic co-culture technique did not increase the detection rate of Legionella (4/68, 5.9%). In contrast, a combination of the amoebic co-culture technique followed by qPCR successfully increased the detection rate (57/68, 83.8%) compared with real-time qPCR alone (46/68, 67.6%). Using real-time qPCR after culture with amoebic co-culture, more than 10-fold higher bacterial numbers were observed in 30 samples (30/68, 44.1%) compared with the same samples without co-culture. On the other hand, higher bacterial numbers were not observed after propagation by amoebae in 32 samples (32/68, 47.1%). Legionella was not detected in the remaining six samples (6/68, 8.8%), irrespective of the method. These results suggest that application of the amoebic co-culture technique prior to real-time qPCR may be useful for the sensitive detection of Legionella from bath water samples. Furthermore, a combination of amoebic co-culture and real-time qPCR might be useful to detect viable and virulent Legionella because their ability to invade and multiply within free-living amoebae is considered to correlate with their pathogenicity for humans. This is the first report evaluating the efficacy of the amoebic co-culture technique for detecting Legionella in bath water samples. PMID:26492259

  16. Rapid Screening for Deleted Form of β-thalassemia by Real-Time Quantitative PCR.

    PubMed

    Ke, Liang-Yin; Chang, Jan-Gowth; Chang, Chao-Sung; Hsieh, Li-Ling; Liu, Ta-Chih

    2017-01-01

    Thalassemia is the most common single gene disease in human beings. The prevalence rate of β-thalassemia in Taiwan is approximately 1-3%. Previously methods to reveal and diagnose severe deleted form of α- or β-thalassemia were insufficient and inappropriate for prenatal diagnosis. A real-time quantitative PCR method was set up for rapid screening of the deleted form of β-thalassemia. Our results show that ΔΔCt between deleted form of β-thalassemia and normal individuals were 1.0674 ± 0.0713. On the contrary, mutation form β-thalassemia showed no difference with normal healthy control. The HBB/CCR5 ratio for deleted form of β-thalassemia patients was 0.48, whether normal individuals and mutation form of β-thalassemia was 1.0. This RQ-PCR technique is an alternative rapid screening assay for deleted form of β-thalassemia. In addition, it could also identify undefined type. Our technique by using RQ-PCR to quantify gene copies is a reliable and time-saving method that can screen deleted form of β-thalassemia. © 2016 Wiley Periodicals, Inc.

  17. Development of quantitative real-time PCR for detection and enumeration of Enterobacteriaceae.

    PubMed

    Takahashi, Hajime; Saito, Rumi; Miya, Satoko; Tanaka, Yuichiro; Miyamura, Natsumi; Kuda, Takashi; Kimura, Bon

    2017-04-04

    The family Enterobacteriaceae, members of which are widely distributed in the environment, includes many important human pathogens. In this study, a rapid real-time PCR method targeting rplP, coding for L16 protein, a component of the ribosome large subunit, was developed for enumerating Enterobacteriaceae strains, and its efficiency was evaluated using naturally contaminated food products. The rplP-targeted real-time PCR amplified Enterobacteriaceae species with Ct values of 14.0-22.8, whereas the Ct values for non-Enterobacteriaceae species were >30, indicating the specificity of this method for the Enterobacteriaceae. Using a calibration curve of Ct=-3.025 (log CFU/g)+37.35, which was calculated from individual plots of the cell numbers in different concentrations of 5 Enterobacteriaceae species, the rplP-targeted real-time PCR was applied to 51 food samples. A <1log difference between the real-time PCR and culture methods was obtained in a majority of the food samples (81.8%), with good correlation (r 2 =0.8285). This study demonstrated that the rplP-targeted real-time PCR method could detect and enumerate Enterobacteriaceae species in foods rapidly and accurately, and therefore, it can be used for the microbiological risk analysis of foods. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A handheld real time thermal cycler for bacterial pathogen detection.

    PubMed

    Higgins, James A; Nasarabadi, Shanavaz; Karns, Jeffrey S; Shelton, Daniel R; Cooper, Mary; Gbakima, Aiah; Koopman, Ronald P

    2003-08-15

    The handheld advanced nucleic acid analyzer (HANAA) is a portable real time thermal cycler unit that weighs under 1 kg and uses silicon and platinum-based thermalcycler units to conduct rapid heating and cooling of plastic reaction tubes. Two light emitting diodes (LED) provide greater than 1 mW of electrical power at wavelengths of 490 nm (blue) and 525 nm (green), allowing detection of the dyes FAM and JOE/TAMRA. Results are displayed in real time as bar graphs, and up to three, 4-sample assays can be run on the charge of the 12 V portable battery pack. The HANAA was evaluated for detection of defined Escherichia coli strains, and wild-type colonies isolated from stream water, using PCR for the lac Z and Tir genes. PCR reactions using SYBR Green dye allowed detection of E. coli ATCC 11775 and E. coli O157:H7 cells in under 30 min of assay time; however, background fluorescence associated with dye binding to nonspecific PCR products was present. DNA extracted from three isolates of Bacillus anthracis Ames, linked to a bioterrorism incident in Washington DC in October 2001, were also successfully tested on the HANAA using primers for the vrrA and capA genes. Positive results were observed at 32 and 22 min of assay time, respectively. A TaqMan probe specific to the aroQ gene of Erwinia herbicola was tested on the HANAA and when 500 cells were used as template, positive results were observed after only 7 min of assay time. Background fluorescence associated with the use of the probe was negligible. The HANAA is unique in offering real time PCR in a handheld format suitable for field use; a commercial version of the instrument, offering six reaction chambers, is available as of Fall 2002.

  19. Development of duplex real-time RT-PCR based on Taqman technology for detecting simultaneously the genome of pan-enterovirus and enterovirus 71.

    PubMed

    Hwang, Seoyeon; Kang, Byunghak; Hong, Jiyoung; Kim, Ahyoun; Kim, Hyejin; Kim, Kisang; Cheon, Doo-Sung

    2013-07-01

    Human enterovirus (EV) 71 is the main etiological agent of hand, foot, and mouth disease (HFMD). It is associated with neurological complications, and caused fatalities during recent outbreaks in the Asia-Pacific region. Infections caused by EV71 could lead to many complications, ranging from brainstem encephalitis to pulmonary oedema, resulting in high mortality. In this study, a duplex real-time RT-PCR assay was developed in order to simultaneously detect pan-EV and EV71. EV71-specific primers and probes were designed based on the highly conserved VP1 region of EV71. Five EV71 strains were detected as positive, and no positive fluorescence signal was observed in the duplex real-time RT-PCR for other viral RNA, which showed 100% specificity for the selected panel, and no cross-reactions were observed in this duplex real-time RT-PCR. The EV71-specific duplex real-time RT-PCR was more sensitive than conventional RT-PCR, and detected viral titers that were 10-fold lower than those measured by the latter. Of the 381 HFMD clinical specimens, 196 (51.4%) cases were pan-EV-positive, of which 170 (86.7%) were EV71-positive when tested by pan-EV and EV71-specific duplex real-time RT-PCR. EV71-specific duplex real-time RT-PCR offers a rapid and sensitive method to detect EV71 from clinical specimens, and will allow quarantine measures to be taken more effectively during outbreaks. Copyright © 2013 Wiley Periodicals, Inc.

  20. Multichannel series piezoelectric quartz crystal cell sensor for real time and quantitative monitoring of the living cell and assessment of cytotoxicity.

    PubMed

    Tong, Feifei; Lian, Yan; Zhou, Huang; Shi, Xiaohong; He, Fengjiao

    2014-10-21

    A new multichannel series piezoelectric quartz crystal (MSPQC) cell sensor for real time monitoring of living cells in vitro was reported in this paper. The constructed sensor was used successfully to monitor adhesion, spreading, proliferation, and apoptosis of MG63 osteosarcoma cells and investigate the effects of different concentrations of cobalt chloride on MG63 cells. Quantitative real time and dynamic cell analyses data were conducted using the MSPQC cell sensor. Compared with methods such as fluorescence staining and morphology observation by microscopy, the MSPQC cell sensor is noninvasive, label free, simple, cheap, and capable of online monitoring. It can automatically record the growth status of cells and quantitatively evaluate cell proliferation and the apoptotic response to drugs. It will be a valuable detection and analysis tool for the acquisition of cellular level information and is anticipated to have application in the field of cell biology research or cytotoxicity testing in the future.

  1. [Real time 3D echocardiography

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  2. The applicability of TaqMan-based quantitative real-time PCR assays for detecting and enumeratIng Cryptosporidium spp. oocysts in the environment

    EPA Science Inventory

    Molecular detection methods such as PCR have been extensively used to type Cryptosporidium oocysts detected in the environment. More recently, studies have developed quantitative real-time PCR assays for detection and quantification of microbial contaminants in water as well as ...

  3. Real-time PCR detection of Vibrio vulnificus in oysters: comparison of oligonucleotide primers and probes targeting vvhA.

    PubMed

    Panicker, Gitika; Bej, Asim K

    2005-10-01

    We compared three sets of oligonucleotide primers and two probes designed for Vibrio vulnificus hemolysin A gene (vvhA) for TaqMan-based real-time PCR method enabling specific detection of Vibrio vulnificus in oysters. Two of three sets of primers with a probe were specific for the detection of all 81 V. vulnificus isolates by TaqMan PCR. The 25 nonvibrio and 12 other vibrio isolates tested were negative. However, the third set of primers, F-vvh1059 and R-vvh1159, with the P-vvh1109 probe, although positive for all V. vulnificus isolates, also exhibited positive cycle threshold (C(T)) values for other Vibrio spp. Optimization of the TaqMan PCR assay using F-vvh785/R-vvh990 or F-vvh731/R-vvh1113 primers and the P-vvh874 probe detected 1 pg of purified DNA and 10(3) V. vulnificus CFU/ml in pure cultures. The enriched oyster tissue homogenate did not exhibit detectable inhibition to the TaqMan PCR amplification of vvhA. Detection of 3 x 10(3) CFU V. vulnificus, resulting from a 5-h enrichment of an initial inoculum of 1 CFU/g of oyster tissue homogenate, was achieved with F-vvh785/R-vvh990 or F-vvh731/R-vvh1113 primers and P-vvh875 probe. The application of the TaqMan PCR using these primers and probe, exhibited detection of V. vulnificus on 5-h-enriched natural oysters harvested from the Gulf of Mexico. Selection of appropriate primers and a probe on vvhA for TaqMan-PCR-based detection of V. vulnificus in post-harvest-treated oysters would help avoid false-positive results, thus ensuring a steady supply of safe oysters to consumers and reducing V. vulnificus-related illnesses and deaths.

  4. Comparison of three-way and four-way calibration for the real-time quantitative analysis of drug hydrolysis in complex dynamic samples by excitation-emission matrix fluorescence.

    PubMed

    Yin, Xiao-Li; Gu, Hui-Wen; Liu, Xiao-Lu; Zhang, Shan-Hui; Wu, Hai-Long

    2018-03-05

    Multiway calibration in combination with spectroscopic technique is an attractive tool for online or real-time monitoring of target analyte(s) in complex samples. However, how to choose a suitable multiway calibration method for the resolution of spectroscopic-kinetic data is a troubling problem in practical application. In this work, for the first time, three-way and four-way fluorescence-kinetic data arrays were generated during the real-time monitoring of the hydrolysis of irinotecan (CPT-11) in human plasma by excitation-emission matrix fluorescence. Alternating normalization-weighted error (ANWE) and alternating penalty trilinear decomposition (APTLD) were used as three-way calibration for the decomposition of the three-way kinetic data array, whereas alternating weighted residual constraint quadrilinear decomposition (AWRCQLD) and alternating penalty quadrilinear decomposition (APQLD) were applied as four-way calibration to the four-way kinetic data array. The quantitative results of the two kinds of calibration models were fully compared from the perspective of predicted real-time concentrations, spiked recoveries of initial concentration, and analytical figures of merit. The comparison study demonstrated that both three-way and four-way calibration models could achieve real-time quantitative analysis of the hydrolysis of CPT-11 in human plasma under certain conditions. However, it was also found that both of them possess some critical advantages and shortcomings during the process of dynamic analysis. The conclusions obtained in this paper can provide some helpful guidance for the reasonable selection of multiway calibration models to achieve the real-time quantitative analysis of target analyte(s) in complex dynamic systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Use of Internally Controlled Real-Time Genome Amplification for Detection of Variola Virus and Other Orthopoxviruses Infecting Humans▿

    PubMed Central

    Fedele, C. G.; Negredo, A.; Molero, F.; Sánchez-Seco, M. P.; Tenorio, A.

    2006-01-01

    Smallpox, once a devastating disease caused by Variola virus, a member of the Orthopoxvirus genus, was eradicated in 1980. However, the importance of variola virus infections has been stressed widely in the last few years, particularly following recent social events in the world. Today, variola virus is considered to be one of the most significant agents with potential use as a biological weapon. In this study we developed an internally controlled real-time PCR assay for rapid detection and simultaneous differentiation of variola virus from other orthopoxviruses. The assay is based on TaqMan 3′-minor groove binder (MGB) chemistry and uses generic primers, designed in highly conserved genomic regions of the crmB gene, and three TaqMan MGB probes designed to identify orthopoxviruses, variola virus, and an internal control. The results obtained suggest that the assay is rapid, sensitive, specific, and suitable for the generic detection of orthopoxviruses and the identification of variola virus and avoids false-negative results in a single reaction tube. PMID:17065259

  6. Real-time quantitative polymerase chain reaction methods for four genetically modified maize varieties and maize DNA content in food.

    PubMed

    Brodmann, Peter D; Ilg, Evelyn C; Berthoud, Hélène; Herrmann, Andre

    2002-01-01

    Quantitative detection methods are needed for enforcement of the recently introduced labeling threshold for genetically modified organisms (GMOs) in food ingredients. This labeling threshold, which is set to 1% in the European Union and Switzerland, must be applied to all approved GMOs. Four different varieties of maize are approved in the European Union: the insect-resistant Bt176 maize (Maximizer), Btl 1 maize, Mon810 (YieldGard) maize, and the herbicide-tolerant T25 (Liberty Link) maize. Because the labeling must be considered individually for each ingredient, a quantitation system for the endogenous maize content is needed in addition to the GMO-specific detection systems. Quantitative real-time polymerase chain reaction detection methods were developed for the 4 approved genetically modified maize varieties and for an endogenous maize (invertase) gene system.

  7. Validation of Reference Genes for Relative Quantitative Gene Expression Studies in Cassava (Manihot esculenta Crantz) by Using Quantitative Real-Time PCR

    PubMed Central

    Hu, Meizhen; Hu, Wenbin; Xia, Zhiqiang; Zhou, Xincheng; Wang, Wenquan

    2016-01-01

    Reverse transcription quantitative real-time polymerase chain reaction (real-time PCR, also referred to as quantitative RT-PCR or RT-qPCR) is a highly sensitive and high-throughput method used to study gene expression. Despite the numerous advantages of RT-qPCR, its accuracy is strongly influenced by the stability of internal reference genes used for normalizations. To date, few studies on the identification of reference genes have been performed on cassava (Manihot esculenta Crantz). Therefore, we selected 26 candidate reference genes mainly via the three following channels: reference genes used in previous studies on cassava, the orthologs of the most stable Arabidopsis genes, and the sequences obtained from 32 cassava transcriptome sequence data. Then, we employed ABI 7900 HT and SYBR Green PCR mix to assess the expression of these genes in 21 materials obtained from various cassava samples under different developmental and environmental conditions. The stability of gene expression was analyzed using two statistical algorithms, namely geNorm and NormFinder. geNorm software suggests the combination of cassava4.1_017977 and cassava4.1_006391 as sufficient reference genes for major cassava samples, the union of cassava4.1_014335 and cassava4.1_006884 as best choice for drought stressed samples, and the association of cassava4.1_012496 and cassava4.1_006391 as optimal choice for normally grown samples. NormFinder software recommends cassava4.1_006884 or cassava4.1_006776 as superior reference for qPCR analysis of different materials and organs of drought stressed or normally grown cassava, respectively. Results provide an important resource for cassava reference genes under specific conditions. The limitations of these findings were also discussed. Furthermore, we suggested some strategies that may be used to select candidate reference genes. PMID:27242878

  8. Real-time polymerase chain reaction-based approach for quantification of the pat gene in the T25 Zea mays event.

    PubMed

    Weighardt, Florian; Barbati, Cristina; Paoletti, Claudia; Querci, Maddalena; Kay, Simon; De Beuckeleer, Marc; Van den Eede, Guy

    2004-01-01

    In Europe, a growing interest for reliable techniques for the quantification of genetically modified component(s) of food matrixes is arising from the need to comply with the European legislative framework on novel food products. Real-time polymerase chain reaction (PCR) is currently the most powerful technique for the quantification of specific nucleic acid sequences. Several real-time PCR methodologies based on different molecular principles have been developed for this purpose. The most frequently used approach in the field of genetically modified organism (GMO) quantification in food or feed samples is based on the 5'-3'-exonuclease activity of Taq DNA polymerase on specific degradation probes (TaqMan principle). A novel approach was developed for the establishment of a TaqMan quantification system assessing GMO contents around the 1% threshold stipulated under European Union (EU) legislation for the labeling of food products. The Zea mays T25 elite event was chosen as a model for the development of the novel GMO quantification approach. The most innovative aspect of the system is represented by the use of sequences cloned in plasmids as reference standards. In the field of GMO quantification, plasmids are an easy to use, cheap, and reliable alternative to Certified Reference Materials (CRMs), which are only available for a few of the GMOs authorized in Europe, have a relatively high production cost, and require further processing to be suitable for analysis. Strengths and weaknesses of the use of novel plasmid-based standards are addressed in detail. In addition, the quantification system was designed to avoid the use of a reference gene (e.g., a single copy, species-specific gene) as normalizer, i.e., to perform a GMO quantification based on an absolute instead of a relative measurement. In fact, experimental evidences show that the use of reference genes adds variability to the measurement system because a second independent real-time PCR-based measurement

  9. Basic quantitative polymerase chain reaction using real-time fluorescence measurements.

    PubMed

    Ares, Manuel

    2014-10-01

    This protocol uses quantitative polymerase chain reaction (qPCR) to measure the number of DNA molecules containing a specific contiguous sequence in a sample of interest (e.g., genomic DNA or cDNA generated by reverse transcription). The sample is subjected to fluorescence-based PCR amplification and, theoretically, during each cycle, two new duplex DNA molecules are produced for each duplex DNA molecule present in the sample. The progress of the reaction during PCR is evaluated by measuring the fluorescence of dsDNA-dye complexes in real time. In the early cycles, DNA duplication is not detected because inadequate amounts of DNA are made. At a certain threshold cycle, DNA-dye complexes double each cycle for 8-10 cycles, until the DNA concentration becomes so high and the primer concentration so low that the reassociation of the product strands blocks efficient synthesis of new DNA and the reaction plateaus. There are two types of measurements: (1) the relative change of the target sequence compared to a reference sequence and (2) the determination of molecule number in the starting sample. The first requires a reference sequence, and the second requires a sample of the target sequence with known numbers of the molecules of sequence to generate a standard curve. By identifying the threshold cycle at which a sample first begins to accumulate DNA-dye complexes exponentially, an estimation of the numbers of starting molecules in the sample can be extrapolated. © 2014 Cold Spring Harbor Laboratory Press.

  10. Delayed vaccine virus replication in chickens vaccinated subcutaneously with an immune complex infectious bursal disease vaccine: Quantification of vaccine virus by real-time polymerase chain reaction

    PubMed Central

    2005-01-01

    Abstract The distribution of the immune complex vaccine virus for infectious bursal disease (IBD) in tissue was examined and the viral loads of the organs were quantitatively compared. One-day-old specific pathogen free (SPF) and maternally immune broiler chickens were injected subcutaneously with the vaccine. Lymphoid and non-lymphoid tissues were collected at various time intervals during the experiment to test for infectious bursal disease virus (IBDV)-RNA by using reverse transcriptase-polymerase chain reaction (RT-PCR). Only the bursa of Fabricius was found to be positive with unusually long viral persistence in the broiler group. The positive bursa samples were further investigated by using real-time PCR coupled with a TaqMan probe. The highest amounts of the virus were detected at its first appearance in the bursa: on day 14 post vaccination (PV) in the SPF chickens and on day 17 and day 21 PV in the maternally immune broiler group. The virus then gradually cleared, most likely due to the parallel appearance of the active immune response indicated by seroconversion. PMID:15971678

  11. Rapid Identification and Quantification of Aureococcus anophagefferens by qPCR Method (Taqman) in the Qinhuangdao Coastal Area: A Region for Recurrent Brown Tide Breakout in China.

    PubMed

    Wang, Li-Ping; Lei, Kun

    2016-12-01

    Since 2009, Aureococcus anophagefferens has caused brown tide to occur recurrently in Qinhuangdao coastal area, China. Because the algal cells of A. anophagefferens are so tiny (~3 µm) that it is very hard to identify exactly under a microscope for natural water samples, it is very urgent to develop a method for efficient and continuous monitoring. Here specific primers and Taqman probe are designed to develop a real-time quantitative PCR (qPCR) method for identification and quantification continually. The algal community and cell abundance of A. anophagefferens in the study area (E 119°20'-119°50' and N 39°30'-39°50') from April to October in 2013 are detected by pyrosequencing, and are used to validate the specification and precision of qPCR method for natural samples. Both pyrosequencing and qPCR shows that the targeted cells are present only in May, June and July, and the cell abundance are July > June > May. Although there are various algal species including dinoflagellata, diatom, Cryptomonadales, Chrysophyceae and Chlorophyta living in the natural seawater simultaneously, no disturbance happens to qPCR method. This qPCR method could detect as few as 10 targeted cells, indicating it is able to detect the algal cells at pre-bloom levels. Therefore, qPCR with Taqman probe provides a powerful and sensitive method to monitor the brown tide continually in Qinhuangdao coastal area, China. The results provide a necessary technology support for forecasting the brown tide initiation, in China.

  12. Evaluation of a real-time quantitative PCR method with propidium monazide treatment for analyses of viable fecal indicator bacteria in wastewater samples

    EPA Science Inventory

    The U.S. EPA is currently evaluating rapid, real-time quantitative PCR (qPCR) methods for determining recreational water quality based on measurements of fecal indicator bacteria DNA sequences. In order to potentially use qPCR for other Clean Water Act needs, such as updating cri...

  13. Development of fluorescent glucose bioprobes and their application on real-time and quantitative monitoring of glucose uptake in living cells.

    PubMed

    Lee, Hyang Yeon; Lee, Jae Jeong; Park, Jongmin; Park, Seung Bum

    2011-01-03

    We developed a novel fluorescent glucose bioprobe, GB2-Cy3, for the real-time and quantitative monitoring of glucose uptake in living cells. We synthesized a series of fluorescent glucose analogues by adding Cy3 fluorophores to the α-anomeric position of D-glucose through various linkers. Systematic and quantitative analysis of these Cy3-labeled glucose analogues revealed that GB2-Cy3 was the ideal fluorescent glucose bioprobe. The cellular uptake of this probe competed with the cellular uptake of D-glucose in the media and was mediated by a glucose-specific transport system, and not by passive diffusion. Flow cytometry and fluorescence microscopy analyses revealed that GB2-Cy3 is ten times more sensitive than 2-NBDG, a leading fluorescent glucose bioprobe. GB2-Cy3 can also be utilized for the quantitative flow cytometry monitoring of glucose uptake in metabolically active C2C12 myocytes under various treatment conditions. As opposed to a glucose uptake assay performed by using radioisotope-labeled deoxy-D-glucose and a scintillation counter, GB2-Cy3 allows the real-time monitoring of glucose uptake in living cells under various experimental conditions by using fluorescence microscopy or confocal laser scanning microscopy (CLSM). Therefore, we believe that GB2-Cy3 can be utilized in high-content screening (HCS) for the discovery of novel therapeutic agents and for making significant advances in biomedical studies and diagnosis of various diseases, especially metabolic diseases. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. [Usefulness of a real-time quantitative polymerase-chain reaction (PCR) assay for the diagnosis of congenital and postnatal cytomegalovirus infection].

    PubMed

    Reina, J; Weber, I; Riera, E; Busquets, M; Morales, C

    2014-05-01

    Cytomegalovirus (CMV) is the main virus causing congenital and postnatal infections in the pediatric population. The aim of this study is to evaluate the usefulness of a quantitative real-time PCR in the diagnosis of these infections using urine as a single sample. We studied all the urine samples of newborns (< 7 days) with suspected congenital infection, and urine of patients with suspected postnatal infection (urine negative at birth). Urines were simultaneously studied by cell culture, qualitative PCR (PCRc), and quantitative real-time PCR (PCRq). We analyzed 332 urine samples (270 to rule out congenital infection and 62 postnatal infections). Of the first, 22 were positive in the PCRq, 19 in the PCRc, and 17 in the culture. PCRq had a sensitivity of 100%, on comparing the culture with the rest of the techniques. Using the PCRq as a reference method, culture had a sensitivity of 77.2%, and PCRc 86.3%. In cases of postnatal infection, PCRq detected 16 positive urines, the PCRq 12, and the cell culture 10. The urines showed viral loads ranging from 2,178 to 116,641 copies/ml. The genomic amplification technique PCRq in real time was more sensitive than the other techniques evaluated. This technique should be considered as a reference (gold standard), leaving the cell culture as a second diagnostic level. The low cost and the automation of PCRq would enable the screening for CMV infection in large neonatal and postnatal populations. Copyright © 2013 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  15. Quantitative detection of Streptococcus mutans in the dental plaque of Japanese preschool children by real-time PCR.

    PubMed

    Hata, S; Hata, H; Miyasawa-Hori, H; Kudo, A; Mayanagi, H

    2006-02-01

    To detect quantitatively the total bacteria and Streptococcus mutans in dental plaque by real-time PCR with prbac, Sm and GTF-B primers, and to compare their presence with the prevalence of dental caries in Japanese preschool children. Human dental plaque samples were collected from the labial surfaces of the upper primary central incisors of 107 children. The dental status was recorded as dft by WHO caries diagnostic criteria. Positive dt and dft scores by the Sm or GTF-B primer were significantly higher than negative scores (P < 0.01). The proportions of Strep. mutans to the total bacteria from sound, and sound and/or filled upper primary incisors were significantly lower than those from decayed or filled, and decayed incisors, respectively (P < 0.01). The ratios of Strep. mutans to total bacteria in plaque detected by real-time PCR with Sm and GTF-B primers were closely associated with the prevalence of dental caries in Japanese preschool children. These assays may be useful for the assessment of an individual's risk of dental caries.

  16. Detection of Haemophilus influenzae in respiratory secretions from pneumonia patients by quantitative real-time polymerase chain reaction.

    PubMed

    Abdeldaim, Guma M K; Strålin, Kristoffer; Kirsebom, Leif A; Olcén, Per; Blomberg, Jonas; Herrmann, Björn

    2009-08-01

    A quantitative real-time polymerase chain reaction (PCR) based on the omp P6 gene was developed to detect Haemophilus influenzae. Its specificity was determined by analysis of 29 strains of 11 different Haemophilus spp. and was compared with PCR assays having other target genes: rnpB, 16S rRNA, and bexA. The method was evaluated on nasopharyngeal aspirates from 166 adult patients with community-acquired pneumonia. When 10(4) DNA copies/mL was used as cutoff limit for the method, P6 PCR had a sensitivity of 97.5% and a specificity of 96.0% compared with the culture. Of 20 culture-negative but P6 PCR-positive cases, 18 were confirmed by fucK PCR as H. influenzae. Five (5.9%) of 84 nasopharyngeal aspirates from adult controls tested PCR positive. We conclude that the P6 real-time PCR is both sensitive and specific for identification of H. influenzae in respiratory secretions. Quantification facilitates discrimination between disease-causing H. influenzae strains and commensal colonization.

  17. Cloned plasmid DNA fragments as calibrators for controlling GMOs: different real-time duplex quantitative PCR methods.

    PubMed

    Taverniers, Isabel; Van Bockstaele, Erik; De Loose, Marc

    2004-03-01

    Analytical real-time PCR technology is a powerful tool for implementation of the GMO labeling regulations enforced in the EU. The quality of analytical measurement data obtained by quantitative real-time PCR depends on the correct use of calibrator and reference materials (RMs). For GMO methods of analysis, the choice of appropriate RMs is currently under debate. So far, genomic DNA solutions from certified reference materials (CRMs) are most often used as calibrators for GMO quantification by means of real-time PCR. However, due to some intrinsic features of these CRMs, errors may be expected in the estimations of DNA sequence quantities. In this paper, two new real-time PCR methods are presented for Roundup Ready soybean, in which two types of plasmid DNA fragments are used as calibrators. Single-target plasmids (STPs) diluted in a background of genomic DNA were used in the first method. Multiple-target plasmids (MTPs) containing both sequences in one molecule were used as calibrators for the second method. Both methods simultaneously detect a promoter 35S sequence as GMO-specific target and a lectin gene sequence as endogenous reference target in a duplex PCR. For the estimation of relative GMO percentages both "delta C(T)" and "standard curve" approaches are tested. Delta C(T) methods are based on direct comparison of measured C(T) values of both the GMO-specific target and the endogenous target. Standard curve methods measure absolute amounts of target copies or haploid genome equivalents. A duplex delta C(T) method with STP calibrators performed at least as well as a similar method with genomic DNA calibrators from commercial CRMs. Besides this, high quality results were obtained with a standard curve method using MTP calibrators. This paper demonstrates that plasmid DNA molecules containing either one or multiple target sequences form perfect alternative calibrators for GMO quantification and are especially suitable for duplex PCR reactions.

  18. Detection of sesame seed DNA in foods using real-time PCR.

    PubMed

    Brzezinski, Jennifer L

    2007-04-01

    The detection of potentially allergenic foods, such as sesame seeds, in food products is a major concern for the food-processing industry. A real-time PCR method was designed to determine if sesame seed DNA is present in food products. The PCR reaction amplifies a 66-bp fragment of the sesame seed 2S albumin gene, which is detected with a sesame-specific, dual-labeled TaqMan probe. This reaction will not amplify DNA derived from other seeds present in baked goods, such as pumpkin, poppy, and sunflower seeds. Additionally, this assay will not cross-react with DNA from several tree nut species, such as almond, Brazil nut, cashew, hazelnut, and walnut, as well as four varieties of peanut. This assay is sensitive enough to detect 5 pg of purified sesame seed DNA, as well as sesame seed DNA in a spiked wheat cracker sample.

  19. Recurrent high level parvovirus B19/genotype 2 viremia in a renal transplant recipient analyzed by real-time PCR for simultaneous detection of genotypes 1 to 3.

    PubMed

    Liefeldt, Lutz; Plentz, Annelie; Klempa, Boris; Kershaw, Olivia; Endres, Anne-Sophie; Raab, Ulla; Neumayer, Hans-H; Meisel, Helga; Modrow, Susanne

    2005-01-01

    Organ transplant recipients infected with parvovirus B19 frequently develop persistent viremia associated with chronic anemia and pure red cell aplasia. In this study, a male renal transplant recipient who had been infected with parvovirus B19/genotype 2 after renal transplantation at the age of 34 years is described. The patient was repeatedly treated with high dose intravenous immunoglobulin (IVIG) that resulted in the resolvement of symptoms but not in virus eradication. During an observation period of 33 months after transplantation three phases associated with high parvovirus B19 viremia were observed. Both the first and the second viremic phases were combined with severe anemia. Parvovirus B19 specific IgM-antibodies were initially detected at the beginning of the second phase in continually rising concentrations. Initially eradication of the virus by immunoglobulin therapy was reported after the first viremic phase [Liefeldt et al. (2002): Nephrol Dial Transplant 17:1840-1842]. Retrospectively this statement has to be corrected. It was based on the use of a qualitative PCR assay specific for parvovirus B19 genotype 1 associated with reduced sensitivity for detection of genotype 2. After sequence analysis of the viral DNA and adjustment of a real-time PCR assay (TaqMan) for quantitative detection of all three B19 virus genotypes analysis of consecutive serum samples allowed the demonstration of long lasting phases with reduced viral loads following IVIG-treatment. These results demonstrate that IVIG treatment of parvovirus B19-triggered anemia in transplant recipients offers an opportunity to resolve symptoms, but does not guarantee eradication of the virus. Since reactivation of parvovirus B19 infection can result in high virus load associated with the recurrence of symptoms repeated screening for viral DNA is recommended using the TaqMan system established for quantitative detection of all three genotypes of parvovirus B19. Copyright 2005 Wiley-Liss, Inc.

  20. Continuous, real time microwave plasma element sensor

    DOEpatents

    Woskov, Paul P.; Smatlak, Donna L.; Cohn, Daniel R.; Wittle, J. Kenneth; Titus, Charles H.; Surma, Jeffrey E.

    1995-01-01

    Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury.

  1. Continuous, real time microwave plasma element sensor

    DOEpatents

    Woskov, P.P.; Smatlak, D.L.; Cohn, D.R.; Wittle, J.K.; Titus, C.H.; Surma, J.E.

    1995-12-26

    Microwave-induced plasma is described for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. 3 figs.

  2. Smallpox and pan-orthopox virus detection by real-time 3'-minor groove binder TaqMan assays on the roche LightCycler and the Cepheid smart Cycler platforms.

    PubMed

    Kulesh, David A; Baker, Robert O; Loveless, Bonnie M; Norwood, David; Zwiers, Susan H; Mucker, Eric; Hartmann, Chris; Herrera, Rafael; Miller, David; Christensen, Deanna; Wasieloski, Leonard P; Huggins, John; Jahrling, Peter B

    2004-02-01

    We designed, optimized, and extensively tested several sensitive and specific real-time PCR assays for rapid detection of both smallpox and pan-orthopox virus DNAs. The assays are based on TaqMan 3'-minor groove binder chemistry and were performed on both the rapid-cycling Roche LightCycler and the Cepheid Smart Cycler platforms. The hemagglutinin (HA) J7R, B9R, and B10R genes were used as targets for the variola virus-specific assays, and the HA and DNA polymerase-E9L genes were used as targets for the pan-orthopox virus assays. The five orthopox virus assays were tested against a panel of orthopox virus DNAs (both genomic and cloned) at the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID). The results indicated that each assay was capable of detecting both the appropriate cloned gene and genomic DNA. The assays showed no cross-reactivity to the 78 DNAs in the USAMRIID bacterial cross-reactivity panel. The limit of detection (LOD) of each assay was determined to be between 12 and 25 copies of target DNA. The assays were also run against a blind panel of DNAs at the Centers for Disease Control and Prevention (CDC) on both the LightCycler and the Smart Cycler. The panel consisted of eight different variola virus isolates, five non-variola virus orthopox virus isolates, two varicella-zoster virus isolates, and one herpes simplex virus isolate. Each sample was tested in triplicate at 2.5 ng, 25 pg, 250 fg, and 2.5 fg, which represent 1.24 x 10(7), 1.24 x 10(5), 1.24 x 10(3), and 1.24 x 10(1) genome equivalents, respectively. The results indicated that each of the five assays was 100% specific (no false positives) when tested against both the USAMRIID panels and the CDC blind panel. With the CDC blind panel, the LightCycler was capable of detecting 96.2% of the orthopox virus DNAs and 93.8% of the variola virus DNAs. The Smart Cycler was capable of detecting 92.3% of the orthopox virus DNAs and between 75 and 93.8% of the variola virus DNAs

  3. Quantitative Real-Time PCR using the Thermo Scientific Solaris qPCR Assay

    PubMed Central

    Ogrean, Christy; Jackson, Ben; Covino, James

    2010-01-01

    The Solaris qPCR Gene Expression Assay is a novel type of primer/probe set, designed to simplify the qPCR process while maintaining the sensitivity and accuracy of the assay. These primer/probe sets are pre-designed to >98% of the human and mouse genomes and feature significant improvements from previously available technologies. These improvements were made possible by virtue of a novel design algorithm, developed by Thermo Scientific bioinformatics experts. Several convenient features have been incorporated into the Solaris qPCR Assay to streamline the process of performing quantitative real-time PCR. First, the protocol is similar to commonly employed alternatives, so the methods used during qPCR are likely to be familiar. Second, the master mix is blue, which makes setting the qPCR reactions easier to track. Third, the thermal cycling conditions are the same for all assays (genes), making it possible to run many samples at a time and reducing the potential for error. Finally, the probe and primer sequence information are provided, simplifying the publication process. Here, we demonstrate how to obtain the appropriate Solaris reagents using the GENEius product search feature found on the ordering web site (www.thermo.com/solaris) and how to use the Solaris reagents for performing qPCR using the standard curve method. PMID:20567213

  4. Diagnostic accuracy of quantitative real-time PCR assay versus clinical and Gram stain identification of bacterial vaginosis.

    PubMed

    Menard, J-P; Mazouni, C; Fenollar, F; Raoult, D; Boubli, L; Bretelle, F

    2010-12-01

    The purpose of this investigation was to determine the diagnostic accuracy of quantitative real-time polymerase chain reaction (PCR) assay in diagnosing bacterial vaginosis versus the standard methods, the Amsel criteria and the Nugent score. The Amsel criteria, the Nugent score, and results from the molecular tool were obtained independently from vaginal samples of 163 pregnant women who reported abnormal vaginal symptoms before 20 weeks gestation. To determine the performance of the molecular tool, we calculated the kappa value, sensitivity, specificity, and positive and negative predictive values. Either or both of the Amsel criteria (≥3 criteria) and the Nugent score (score ≥7) indicated that 25 women (15%) had bacterial vaginosis, and the remaining 138 women did not. DNA levels of Gardnerella vaginalis or Atopobium vaginae exceeded 10(9) copies/mL or 10(8) copies/mL, respectively, in 34 (21%) of the 163 samples. Complete agreement between both reference methods and high concentrations of G. vaginalis and A. vaginae was found in 94.5% of women (154/163 samples, kappa value = 0.81, 95% confidence interval 0.70-0.81). The nine samples with discordant results were categorized as intermediate flora by the Nugent score. The molecular tool predicted bacterial vaginosis with a sensitivity of 100%, a specificity of 93%, a positive predictive value of 73%, and a negative predictive value of 100%. The quantitative real-time PCR assay shows excellent agreement with the results of both reference methods for the diagnosis of bacterial vaginosis.

  5. The use of Taqman genotyping assays for rapid confirmation of β-thalassaemia mutations in the Malays: accurate diagnosis with low DNA concentrations.

    PubMed

    Teh, L-K; Lee, T-Y; Tan, J A M A; Lai, M-I; George, E

    2015-02-01

    In Malaysia, β-thalassaemia is a common inherited blood disorder in haemoglobin synthesis with a carrier rate of 4.5%. Currently, PCR-incorporating techniques such as amplification refractory mutation system (ARMS) or reverse dot blot hybridization (RDBH) are used in β-thalassaemia mutation detection. ARMS allows single-mutation identification using two reactions, one for wild type and another for mutant alleles. RDBH requires probe immobilization and optimization of hybridization and washing temperatures which is time consuming. The aim of our study was to investigate whether β-thalassaemia mutations can be identified in samples with low DNA concentrations. Genotype identification of common β-thalassaemia mutations in Malays was carried out using Taqman genotyping assays. Results show that the Taqman assays allow mutation detection with DNA template concentrations as low as 2-100 ng. In addition, consistent reproducibility was observed in the Taqman assays when repeated eight times and at different time intervals. The developed sensitive Taqman assays allow molecular characterization of β-thalassaemia mutations in samples with low DNA concentrations. The Taqman genotyping assays have potential as a diagnostic tool for foetal blood, chorionic villi or pre-implantation genetic diagnosis where DNA is limited and precious. © 2014 John Wiley & Sons Ltd.

  6. Alchemy: A Web 2.0 Real-time Quality Assurance Platform for Human Immunodeficiency Virus, Hepatitis C Virus, and BK Virus Quantitation Assays.

    PubMed

    Agosto-Arroyo, Emmanuel; Coshatt, Gina M; Winokur, Thomas S; Harada, Shuko; Park, Seung L

    2017-01-01

    The molecular diagnostics laboratory faces the challenge of improving test turnaround time (TAT). Low and consistent TATs are of great clinical and regulatory importance, especially for molecular virology tests. Laboratory information systems (LISs) contain all the data elements necessary to do accurate quality assurance (QA) reporting of TAT and other measures, but these reports are in most cases still performed manually: a time-consuming and error-prone task. The aim of this study was to develop a web-based real-time QA platform that would automate QA reporting in the molecular diagnostics laboratory at our institution, and minimize the time expended in preparing these reports. Using a standard Linux, Nginx, MariaDB, PHP stack virtual machine running atop a Dell Precision 5810, we designed and built a web-based QA platform, code-named Alchemy. Data files pulled periodically from the LIS in comma-separated value format were used to autogenerate QA reports for the human immunodeficiency virus (HIV) quantitation, hepatitis C virus (HCV) quantitation, and BK virus (BKV) quantitation. Alchemy allowed the user to select a specific timeframe to be analyzed and calculated key QA statistics in real-time, including the average TAT in days, tests falling outside the expected TAT ranges, and test result ranges. Before implementing Alchemy, reporting QA for the HIV, HCV, and BKV quantitation assays took 45-60 min of personnel time per test every month. With Alchemy, that time has decreased to 15 min total per month. Alchemy allowed the user to select specific periods of time and analyzed the TAT data in-depth without the need of extensive manual calculations. Alchemy has significantly decreased the time and the human error associated with QA report generation in our molecular diagnostics laboratory. Other tests will be added to this web-based platform in future updates. This effort shows the utility of informatician-supervised resident/fellow programming projects as learning

  7. Alchemy: A Web 2.0 Real-time Quality Assurance Platform for Human Immunodeficiency Virus, Hepatitis C Virus, and BK Virus Quantitation Assays

    PubMed Central

    Agosto-Arroyo, Emmanuel; Coshatt, Gina M.; Winokur, Thomas S.; Harada, Shuko; Park, Seung L.

    2017-01-01

    Background: The molecular diagnostics laboratory faces the challenge of improving test turnaround time (TAT). Low and consistent TATs are of great clinical and regulatory importance, especially for molecular virology tests. Laboratory information systems (LISs) contain all the data elements necessary to do accurate quality assurance (QA) reporting of TAT and other measures, but these reports are in most cases still performed manually: a time-consuming and error-prone task. The aim of this study was to develop a web-based real-time QA platform that would automate QA reporting in the molecular diagnostics laboratory at our institution, and minimize the time expended in preparing these reports. Methods: Using a standard Linux, Nginx, MariaDB, PHP stack virtual machine running atop a Dell Precision 5810, we designed and built a web-based QA platform, code-named Alchemy. Data files pulled periodically from the LIS in comma-separated value format were used to autogenerate QA reports for the human immunodeficiency virus (HIV) quantitation, hepatitis C virus (HCV) quantitation, and BK virus (BKV) quantitation. Alchemy allowed the user to select a specific timeframe to be analyzed and calculated key QA statistics in real-time, including the average TAT in days, tests falling outside the expected TAT ranges, and test result ranges. Results: Before implementing Alchemy, reporting QA for the HIV, HCV, and BKV quantitation assays took 45–60 min of personnel time per test every month. With Alchemy, that time has decreased to 15 min total per month. Alchemy allowed the user to select specific periods of time and analyzed the TAT data in-depth without the need of extensive manual calculations. Conclusions: Alchemy has significantly decreased the time and the human error associated with QA report generation in our molecular diagnostics laboratory. Other tests will be added to this web-based platform in future updates. This effort shows the utility of informatician

  8. Development of real-time PCR methods to quantify patulin-producing molds in food products.

    PubMed

    Rodríguez, Alicia; Luque, M Isabel; Andrade, María J; Rodríguez, Mar; Asensio, Miguel A; Córdoba, Juan J

    2011-09-01

    Patulin is a mycotoxin produced by different Penicillium and Aspergillus strains isolated from food products. To improve food safety, the presence of patulin-producing molds in foods should be quantified. In the present work, two real-time (RTi) PCR protocols based on SYBR Green and TaqMan were developed. Thirty four patulin producers and 28 non-producers strains belonging to different species usually reported in food products were used. The patulin production was tested by mycellar electrokinetic capillary electrophoresis (MECE) and high-pressure liquid chromatography-mass spectrometry (HPLC-MS). A primer pair F-idhtrb/R-idhtrb and the probe IDHprobe were designed from the isoepoxydon dehydrogenase (idh) gene, involved in patulin biosynthesis. The functionality of the developed method was demonstrated by the high linear relationship of the standard curves constructed with the idh gene copy number and Ct values for the different patulin producers tested. The ability to quantify patulin producers of the developed SYBR Green and TaqMan assays in artificially inoculated food samples was successful, with a minimum threshold of 10 conidia g(-1) per reaction. The developed methods quantified with high efficiency fungal load in foods. These RTi-PCR protocols, are proposed to be used to quantify patulin-producing molds in food products and to prevent patulin from entering the food chain. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. QUANTITATION OF INTRACELLULAR NAD(P)H IN LIVING CELLS CAN MONITOR AN IMBALANCE OF DNA SINGLE STRAND BREAK REPAIR IN REAL TIME

    EPA Science Inventory

    Quantitation of intracellular NAD(P)H in living cells can monitor an imbalance of DNA single strand break repair in real time.

    ABSTRACT

    DNA single strand breaks (SSBs) are one of the most frequent DNA lesions in genomic DNA generated either by oxidative stress or du...

  10. The Cobas AmpliPrep/Cobas TaqMan HCV test, version 2.0, real-time PCR assay accurately quantifies hepatitis C virus genotype 4 RNA.

    PubMed

    Chevaliez, Stéphane; Bouvier-Alias, Magali; Rodriguez, Christophe; Soulier, Alexandre; Poveda, Jean-Dominique; Pawlotsky, Jean-Michel

    2013-04-01

    Accurate hepatitis C virus (HCV) RNA quantification is mandatory for the management of chronic hepatitis C therapy. The first-generation Cobas AmpliPrep/Cobas TaqMan HCV test (CAP/CTM HCV) underestimated HCV RNA levels by >1-log10 international units/ml in a number of patients infected with HCV genotype 4 and occasionally failed to detect it. The aim of this study was to evaluate the ability of the Cobas AmpliPrep/Cobas TaqMan HCV test, version 2.0 (CAP/CTM HCV v2.0), to accurately quantify HCV RNA in a large series of patients infected with different subtypes of HCV genotype 4. Group A comprised 122 patients with chronic HCV genotype 4 infection, and group B comprised 4 patients with HCV genotype 4 in whom HCV RNA was undetectable using the CAP/CTM HCV. Each specimen was tested with the third-generation branched DNA (bDNA) assay, CAP/CTM HCV, and CAP/CTM HCV v2.0. The HCV RNA level was lower in CAP/CTM HCV than in bDNA in 76.2% of cases, regardless of the HCV genotype 4 subtype. In contrast, the correlation between bDNA and CAP/CTM HCV v2.0 values was excellent. CAP/CTM HCV v2.0 accurately quantified HCV RNA levels in the presence of an A-to-T substitution at position 165 alone or combined with a G-to-A substitution at position 145 of the 5' untranslated region of HCV genome. In conclusion, CAP/CTM HCV v2.0 accurately quantifies HCV RNA in genotype 4 clinical specimens, regardless of the subtype, and can be confidently used in clinical trials and clinical practice with this genotype.

  11. A two-stage method of quantitative flood risk analysis for reservoir real-time operation using ensemble-based hydrologic forecasts

    NASA Astrophysics Data System (ADS)

    Liu, P.

    2013-12-01

    Quantitative analysis of the risk for reservoir real-time operation is a hard task owing to the difficulty of accurate description of inflow uncertainties. The ensemble-based hydrologic forecasts directly depict the inflows not only the marginal distributions but also their persistence via scenarios. This motivates us to analyze the reservoir real-time operating risk with ensemble-based hydrologic forecasts as inputs. A method is developed by using the forecast horizon point to divide the future time into two stages, the forecast lead-time and the unpredicted time. The risk within the forecast lead-time is computed based on counting the failure number of forecast scenarios, and the risk in the unpredicted time is estimated using reservoir routing with the design floods and the reservoir water levels of forecast horizon point. As a result, a two-stage risk analysis method is set up to quantify the entire flood risks by defining the ratio of the number of scenarios that excessive the critical value to the total number of scenarios. The China's Three Gorges Reservoir (TGR) is selected as a case study, where the parameter and precipitation uncertainties are implemented to produce ensemble-based hydrologic forecasts. The Bayesian inference, Markov Chain Monte Carlo, is used to account for the parameter uncertainty. Two reservoir operation schemes, the real operated and scenario optimization, are evaluated for the flood risks and hydropower profits analysis. With the 2010 flood, it is found that the improvement of the hydrologic forecast accuracy is unnecessary to decrease the reservoir real-time operation risk, and most risks are from the forecast lead-time. It is therefore valuable to decrease the avarice of ensemble-based hydrologic forecasts with less bias for a reservoir operational purpose.

  12. A two-step real-time PCR assay for quantitation and genotyping of human parvovirus 4.

    PubMed

    Väisänen, E; Lahtinen, A; Eis-Hübinger, A M; Lappalainen, M; Hedman, K; Söderlund-Venermo, M

    2014-01-01

    Human parvovirus 4 (PARV4) of the family Parvoviridae was discovered in a plasma sample of a patient with an undiagnosed acute infection in 2005. Currently, three PARV4 genotypes have been identified, however, with an unknown clinical significance. Interestingly, these genotypes seem to differ in epidemiology. In Northern Europe, USA and Asia, genotypes 1 and 2 have been found to occur mainly in persons with a history of injecting drug use or other parenteral exposure. In contrast, genotype 3 appears to be endemic in sub-Saharan Africa, where it infects children and adults without such risk behaviour. In this study, a novel straightforward and cost-efficient molecular assay for both quantitation and genotyping of PARV4 DNA was developed. The two-step method first applies a single-probe pan-PARV4 qPCR for screening and quantitation of this relatively rare virus, and subsequently, only the positive samples undergo a real-time PCR-based multi-probe genotyping. The new qPCR-GT method is highly sensitive and specific regardless of the genotype, and thus being suitable for studying the clinical impact and occurrence of the different PARV4 genotypes. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Quantitative Assessment of the CCMC's Experimental Real-time SWMF-Geospace Results

    NASA Astrophysics Data System (ADS)

    Liemohn, Michael; Ganushkina, Natalia; De Zeeuw, Darren; Welling, Daniel; Toth, Gabor; Ilie, Raluca; Gombosi, Tamas; van der Holst, Bart; Kuznetsova, Maria; Maddox, Marlo; Rastaetter, Lutz

    2016-04-01

    Experimental real-time simulations of the Space Weather Modeling Framework (SWMF) are conducted at the Community Coordinated Modeling Center (CCMC), with results available there (http://ccmc.gsfc.nasa.gov/realtime.php), through the CCMC Integrated Space Weather Analysis (iSWA) site (http://iswa.ccmc.gsfc.nasa.gov/IswaSystemWebApp/), and the Michigan SWMF site (http://csem.engin.umich.edu/realtime). Presently, two configurations of the SWMF are running in real time at CCMC, both focusing on the geospace modules, using the BATS-R-US magnetohydrodynamic model, the Ridley Ionosphere Model, and with and without the Rice Convection Model for inner magnetospheric drift physics. While both have been running for several years, nearly continuous results are available since July 2015. Dst from the model output is compared against the Kyoto real-time Dst, in particular the daily minimum value of Dst to quantify the ability of the model to capture storms. Contingency tables are presented, showing that the run with the inner magnetosphere model is much better at reproducing storm-time values. For disturbances with a minimum Dst lower than -50 nT, this version yields a probability of event detection of 0.86 and a Heidke Skill Score of 0.60. In the other version of the SWMF, without the inner magnetospheric module included, the modeled Dst never dropped below -50 nT during the examined epoch.

  14. Real-Time Systems

    DTIC Science & Technology

    1992-02-01

    Postgraduate School Autonomous Under Vehicle (AUV) are then examined. Autonomous underwater vehicle (AUV), hard real-time system, real - time operating system , real-time programming language, real-time system, soft real-time system.

  15. Design of primers and probes for quantitative real-time PCR methods.

    PubMed

    Rodríguez, Alicia; Rodríguez, Mar; Córdoba, Juan J; Andrade, María J

    2015-01-01

    Design of primers and probes is one of the most crucial factors affecting the success and quality of quantitative real-time PCR (qPCR) analyses, since an accurate and reliable quantification depends on using efficient primers and probes. Design of primers and probes should meet several criteria to find potential primers and probes for specific qPCR assays. The formation of primer-dimers and other non-specific products should be avoided or reduced. This factor is especially important when designing primers for SYBR(®) Green protocols but also in designing probes to ensure specificity of the developed qPCR protocol. To design primers and probes for qPCR, multiple software programs and websites are available being numerous of them free. These tools often consider the default requirements for primers and probes, although new research advances in primer and probe design should be progressively added to different algorithm programs. After a proper design, a precise validation of the primers and probes is necessary. Specific consideration should be taken into account when designing primers and probes for multiplex qPCR and reverse transcription qPCR (RT-qPCR). This chapter provides guidelines for the design of suitable primers and probes and their subsequent validation through the development of singlex qPCR, multiplex qPCR, and RT-qPCR protocols.

  16. Identification and quantitative detection of Legionella spp. in various aquatic environments by real-time PCR assay.

    PubMed

    Kao, Po-Min; Tung, Min-Che; Hsu, Bing-Mu; Chiu, Yi-Chou; She, Cheng-Yu; Shen, Shu-Min; Huang, Yu-Li; Huang, Wen-Chien

    2013-09-01

    In this study, a SYBR green quantitative real-time PCR was developed to quantify and detect the Legionella spp. in various environmental water samples. The water samples were taken from watershed, water treatment plant, and thermal spring area in Taiwan. Legionella was detected in 13.6 % (24/176), and the detection rate for river water, raw drinking water, and thermal spring water was 10, 21.4, and 16.6 %, respectively. Using real-time PCR, concentration of Legionella spp. in detected samples ranged between 9.75 × 10(4) and 3.47 × 10(5) cells/L in river water, 6.92 × 10(4) and 4.29 × 10(5) cells/L in raw drinking water, and 5.71 × 10(4) and 2.12 × 10(6) cells/L for thermal spring water samples. The identified species included Legionella pneumophila (20.8 %), Legionella jordanis (4.2 %), Legionella nautarum (4.2 %), Legionella sp. (4.2 %), and uncultured Legionella sp. (66.6 %). The presence of L. pneumophila in aquatic environments suggested a potential public health threat that must be further examined.

  17. A Pan-Lyssavirus Taqman Real-Time RT-PCR Assay for the Detection of Highly Variable Rabies virus and Other Lyssaviruses

    PubMed Central

    Wadhwa, Ashutosh; Wilkins, Kimberly; Gao, Jinxin; Condori Condori, Rene Edgar; Gigante, Crystal M.; Zhao, Hui; Ma, Xiaoyue; Ellison, James A.; Greenberg, Lauren; Velasco-Villa, Andres; Orciari, Lillian

    2017-01-01

    Rabies, resulting from infection by Rabies virus (RABV) and related lyssaviruses, is one of the most deadly zoonotic diseases and is responsible for up to 70,000 estimated human deaths worldwide each year. Rapid and accurate laboratory diagnosis of rabies is essential for timely administration of post-exposure prophylaxis in humans and control of the disease in animals. Currently, only the direct fluorescent antibody (DFA) test is recommended for routine rabies diagnosis. Reverse-transcription polymerase chain reaction (RT-PCR) based diagnostic methods have been widely adapted for the diagnosis of other viral pathogens, but there is currently no widely accepted rapid real-time RT-PCR assay for the detection of all lyssaviruses. In this study, we demonstrate the validation of a newly developed multiplex real-time RT-PCR assay named LN34, which uses a combination of degenerate primers and probes along with probe modifications to achieve superior coverage of the Lyssavirus genus while maintaining sensitivity and specificity. The primers and probes of the LN34 assay target the highly conserved non-coding leader region and part of the nucleoprotein (N) coding sequence of the Lyssavirus genome to maintain assay robustness. The probes were further modified by locked nucleotides to increase their melting temperature to meet the requirements for an optimal real-time RT-PCR assay. The LN34 assay was able to detect all RABV variants and other lyssaviruses in a validation panel that included representative RABV isolates from most regions of the world as well as representatives of 13 additional Lyssavirus species. The LN34 assay was successfully used for both ante-mortem and post-mortem diagnosis of over 200 clinical samples as well as field derived surveillance samples. This assay represents a major improvement over previously published rabies specific RT-PCR and real-time RT-PCR assays because of its ability to universally detect RABV and other lyssaviruses, its high

  18. A Pan-Lyssavirus Taqman Real-Time RT-PCR Assay for the Detection of Highly Variable Rabies virus and Other Lyssaviruses.

    PubMed

    Wadhwa, Ashutosh; Wilkins, Kimberly; Gao, Jinxin; Condori Condori, Rene Edgar; Gigante, Crystal M; Zhao, Hui; Ma, Xiaoyue; Ellison, James A; Greenberg, Lauren; Velasco-Villa, Andres; Orciari, Lillian; Li, Yu

    2017-01-01

    Rabies, resulting from infection by Rabies virus (RABV) and related lyssaviruses, is one of the most deadly zoonotic diseases and is responsible for up to 70,000 estimated human deaths worldwide each year. Rapid and accurate laboratory diagnosis of rabies is essential for timely administration of post-exposure prophylaxis in humans and control of the disease in animals. Currently, only the direct fluorescent antibody (DFA) test is recommended for routine rabies diagnosis. Reverse-transcription polymerase chain reaction (RT-PCR) based diagnostic methods have been widely adapted for the diagnosis of other viral pathogens, but there is currently no widely accepted rapid real-time RT-PCR assay for the detection of all lyssaviruses. In this study, we demonstrate the validation of a newly developed multiplex real-time RT-PCR assay named LN34, which uses a combination of degenerate primers and probes along with probe modifications to achieve superior coverage of the Lyssavirus genus while maintaining sensitivity and specificity. The primers and probes of the LN34 assay target the highly conserved non-coding leader region and part of the nucleoprotein (N) coding sequence of the Lyssavirus genome to maintain assay robustness. The probes were further modified by locked nucleotides to increase their melting temperature to meet the requirements for an optimal real-time RT-PCR assay. The LN34 assay was able to detect all RABV variants and other lyssaviruses in a validation panel that included representative RABV isolates from most regions of the world as well as representatives of 13 additional Lyssavirus species. The LN34 assay was successfully used for both ante-mortem and post-mortem diagnosis of over 200 clinical samples as well as field derived surveillance samples. This assay represents a major improvement over previously published rabies specific RT-PCR and real-time RT-PCR assays because of its ability to universally detect RABV and other lyssaviruses, its high

  19. A triplex quantitative real-time PCR assay for differential detection of human adenovirus serotypes 2, 3 and 7.

    PubMed

    Qiu, Fang-Zhou; Shen, Xin-Xin; Zhao, Meng-Chuan; Zhao, Li; Duan, Su-Xia; Chen, Chen; Qi, Ju-Ju; Li, Gui-Xia; Wang, Le; Feng, Zhi-Shan; Ma, Xue-Jun

    2018-05-02

    Human adenovirus (HAdV) serotypes 2, 3 and 7 are more prevalent than other serotypes and have been associated with severe pneumonia in pediatric children. Molecular typing of HAdV is not routinely performed in clinical diagnostic laboratories as it is time-consuming and labor-intensive. In the present study, we developed a triplex quantitative real-time PCR assay (tq-PCR) in a single closed tube for differential detection and quantitative analysis of HAdV serotypes 2, 3 and 7. The sensitivity, specificity, reproducibility and clinical performance of tq-PCR were evaluated. The analytical sensitivity of the tq-PCR was 100 copies/reaction for each of HAdV serotypes 2, 3 and 7, and no cross-reaction with other common respiratory viruses or HAdV serotypes 1,4,5,6,31,55 and 57 was observed. The coefficients of variation (CV) of intra-assay and inter-assay were between 0.6% to 3.6%. Of 138 previously-defined HAdV-positive nasopharyngeal aspirates samples tested, the detection agreement between tq-PCR and nested PCR was 96.38% (133/138). The proposed tq-PCR assay is a sensitive, specific and reproducible method and has the potential for clinical use in the rapid and differential detection and quantitation of HAdV serotypes 2, 3 and 7.

  20. Species-specific differentiation of variola, monkeypox, and varicella-zoster viruses by multiplex real-time PCR assay.

    PubMed

    Maksyutov, Rinat A; Gavrilova, Elena V; Shchelkunov, Sergei N

    2016-10-01

    A method of one-stage rapid detection and differentiation of epidemiologically important variola virus (VARV), monkeypox virus (MPXV), and varicella-zoster virus (VZV) utilizing multiplex real-time TaqMan PCR assay was developed. Four hybridization probes with various fluorescent dyes and the corresponding fluorescence quenchers were simultaneously used for the assay. The hybridization probes specific for the VARV sequence contained FAM/BHQ1 as a dye/quencher pair; MPXV-specific, JOE/BHQ1; VZV-specific, TAMRA/BHQ2; and internal control-specific, Cy5/BHQ3. The specificity and sensitivity of the developed method were assessed by analyzing DNA of 32 strains belonging to orthopoxvirus and herpesvirus species. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Methods for Real-Time PCR-Based Diagnosis of Chlamydia pneumoniae, Chlamydia psittaci, and Chlamydia abortus Infections in an Opened Molecular Diagnostic Platform.

    PubMed

    Opota, Onya; Brouillet, René; Greub, Gilbert; Jaton, Katia

    2017-01-01

    The advances in molecular biology of the last decades have dramatically improved the field of diagnostic bacteriology. In particular, PCR-based technologies have impacted the diagnosis of infections caused by obligate intracellular bacteria such as pathogens from the Chlamydiacae family. Here, we describe a real-time PCR-based method using the Taqman technology for the diagnosis of Chlamydia pneumoniae, Chlamydia psittaci, and Chlamydia abortus infection. The method presented here can be applied to various clinical samples and can be adapted on opened molecular diagnostic platforms.

  2. Development of a SYBR Green I real-time PCR for detection and quantitation of orthopoxvirus by using Ectromelia virus.

    PubMed

    Cheng, Wenyu; He, Xiaobing; Jia, Huaijie; Chen, Guohua; Wang, Cong; Zhang, Jun; Jing, Zhizhong

    2018-04-01

    Ectromelia virus (ECTV) is the causative agent of mousepox, which has devastating effects in laboratory-mouse colonies and causes economic loss in biomedical research. More importantly, ECTV has been extensively used as an excellent model for studies of the pathogenesis and immunobiology of human smallpox. A rapid and sensitive SYBR Green I-based real-time PCR assay was developed and used for the detection and quantitation of orthopoxvirus by using ECTV in this study. Primers targeted to the highly conserved region of major core protein P4b gene of orthopoxvirus were designed and the standard plasmid was constructed. This assay was able to detect a minimum of 10 copies of standard DNA and 5 TCID 50 units of ECTV. In addition, no cross-reactions were observed with two DNA viruses, such as herpes simplex virus and swine pseudorabies virus, and one RNA virus, vesicular stomatitis virus. Furthermore, intra- and inter-assay variability data showed that this method had a highly reproducibility and reliability. Moreover, the current assay was faster and had a higher sensitivity for detection of ECTV genomic DNA in cell cultured and clinical test samples. Therefore, the high sensitivity and reproducibility of this SYBR Green real-time PCR approach is a more effective method than the conventional PCR for ECTV diagnosis and quantitation. Copyright © 2017. Published by Elsevier Ltd.

  3. Development and validation of a real-time quantitative PCR assay to detect Xanthomonas axonopodis pv. allii from onion seed.

    PubMed

    Robène, Isabelle; Perret, Marion; Jouen, Emmanuel; Escalon, Aline; Maillot, Marie-Véronique; Chabirand, Aude; Moreau, Aurélie; Laurent, Annie; Chiroleu, Frédéric; Pruvost, Olivier

    2015-07-01

    Bacterial blight of onion is an emerging disease threatening world onion production. The causal agent Xanthomonas axonopodis pv. allii is seed transmitted and a reliable and sensitive tool is needed to monitor seed exchanges. A triplex quantitative real-time PCR assay was developed targeting two X. axonopodis pv. allii-specific markers and an internal control chosen in 5.8S rRNA gene from Alliaceae. Amplification of at least one marker indicates the presence of the bacterium in seed extracts. This real-time PCR assay detected all the 79 X. axonopodis pv. allii strains tested and excluded 85.2% of the 135 non-target strains and particularly all 39 saprophytic and pathogenic bacteria associated with onion. Cross-reactions were mainly obtained for strains assigned to nine phylogenetically related X. axonopodis pathovars. The cycle cut-off was estimated statistically at 36.3 considering a risk of false positive of 1%. The limit of detection obtained in at least 95% of the time (LOD 95%) was 5×10(3) CFU/g (colony forming unit/g). The sensitivity threshold was found to be 1 infected seed in 32,790 seeds. This real-time PCR assay should be useful for preventing the long-distance spread of X. axonopodis pv. allii via contaminated seed lots and determining the epidemiology of the bacterium. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Passive Fourier-transform infrared spectroscopy of chemical plumes: an algorithm for quantitative interpretation and real-time background removal

    NASA Astrophysics Data System (ADS)

    Polak, Mark L.; Hall, Jeffrey L.; Herr, Kenneth C.

    1995-08-01

    We present a ratioing algorithm for quantitative analysis of the passive Fourier-transform infrared spectrum of a chemical plume. We show that the transmission of a near-field plume is given by tau plume = (Lobsd - Lbb-plume)/(Lbkgd - Lbb-plume), where tau plume is the frequency-dependent transmission of the plume, L obsd is the spectral radiance of the scene that contains the plume, Lbkgd is the spectral radiance of the same scene without the plume, and Lbb-plume is the spectral radiance of a blackbody at the plume temperature. The algorithm simultaneously achieves background removal, elimination of the spectrometer internal signature, and quantification of the plume spectral transmission. It has applications to both real-time processing for plume visualization and quantitative measurements of plume column densities. The plume temperature (Lbb-plume ), which is not always precisely known, can have a profound effect on the quantitative interpretation of the algorithm and is discussed in detail. Finally, we provide an illustrative example of the use of the algorithm on a trichloroethylene and acetone plume.

  5. Comparison between culture and a multiplex quantitative real-time polymerase chain reaction assay detecting Ureaplasma urealyticum and U. parvum.

    PubMed

    Frølund, Maria; Björnelius, Eva; Lidbrink, Peter; Ahrens, Peter; Jensen, Jørgen Skov

    2014-01-01

    A novel multiplex quantitative real-time polymerase chain reaction (qPCR) for simultaneous detection of U. urealyticum and U. parvum was developed and compared with quantitative culture in Shepard's 10 C medium for ureaplasmas in urethral swabs from 129 men and 66 women, and cervical swabs from 61 women. Using culture as the gold standard, the sensitivity of the qPCR was 96% and 95% for female urethral and cervical swabs, respectively. In male urethral swabs the sensitivity was 89%. The corresponding specificities were 100%, 87% and 99%. The qPCR showed a linear increasing DNA copy number with increasing colour-changing units. Although slightly less sensitive than culture, this multiplex qPCR assay detecting U. urealyticum and U. parvum constitutes a simple and fast alternative to the traditional methods for identification of ureaplasmas and allows simultaneous species differentiation and quantitation in clinical samples. Furthermore, specimens overgrown by other bacteria using the culture method can be evaluated in the qPCR.

  6. Smallpox and pan-Orthopox Virus Detection by Real-Time 3′-Minor Groove Binder TaqMan Assays on the Roche LightCycler and the Cepheid Smart Cycler Platforms

    PubMed Central

    Kulesh, David A.; Baker, Robert O.; Loveless, Bonnie M.; Norwood, David; Zwiers, Susan H.; Mucker, Eric; Hartmann, Chris; Herrera, Rafael; Miller, David; Christensen, Deanna; Wasieloski, Leonard P.; Huggins, John; Jahrling, Peter B.

    2004-01-01

    We designed, optimized, and extensively tested several sensitive and specific real-time PCR assays for rapid detection of both smallpox and pan-orthopox virus DNAs. The assays are based on TaqMan 3′-minor groove binder chemistry and were performed on both the rapid-cycling Roche LightCycler and the Cepheid Smart Cycler platforms. The hemagglutinin (HA) J7R, B9R, and B10R genes were used as targets for the variola virus-specific assays, and the HA and DNA polymerase-E9L genes were used as targets for the pan-orthopox virus assays. The five orthopox virus assays were tested against a panel of orthopox virus DNAs (both genomic and cloned) at the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID). The results indicated that each assay was capable of detecting both the appropriate cloned gene and genomic DNA. The assays showed no cross-reactivity to the 78 DNAs in the USAMRIID bacterial cross-reactivity panel. The limit of detection (LOD) of each assay was determined to be between 12 and 25 copies of target DNA. The assays were also run against a blind panel of DNAs at the Centers for Disease Control and Prevention (CDC) on both the LightCycler and the Smart Cycler. The panel consisted of eight different variola virus isolates, five non-variola virus orthopox virus isolates, two varicella-zoster virus isolates, and one herpes simplex virus isolate. Each sample was tested in triplicate at 2.5 ng, 25 pg, 250 fg, and 2.5 fg, which represent 1.24 × 107, 1.24 × 105, 1.24 × 103, and 1.24 × 101 genome equivalents, respectively. The results indicated that each of the five assays was 100% specific (no false positives) when tested against both the USAMRIID panels and the CDC blind panel. With the CDC blind panel, the LightCycler was capable of detecting 96.2% of the orthopox virus DNAs and 93.8% of the variola virus DNAs. The Smart Cycler was capable of detecting 92.3% of the orthopox virus DNAs and between 75 and 93.8% of the variola virus DNAs. However

  7. Avian influenza virus detection and quantitation by real-time RT-PCR

    USDA-ARS?s Scientific Manuscript database

    Real-time RT-PCR (rRT-PCR) has been used for avian influenza virus (AIV) detection since the early 2000’s for routine surveillance, during outbreaks and for research. Some of the advantages of rRT-PCR are: high sensitivity, high specificity, rapid time-to-result, scalability, cost, and its inherentl...

  8. Development of a fluorescent quantitative real-time polymerase chain reaction assay for the detection of Goose parvovirus in vivo

    PubMed Central

    Yang, Jin-Long; Cheng, An-Chun; Wang, Ming-Shu; Pan, Kang-Cheng; Li, Min; Guo, Yu-Fei; Li, Chuan-Feng; Zhu, De-Kang; Chen, Xiao-Yue

    2009-01-01

    Background Goose parvovirus (GPV) is a Dependovirus associated with latent infection and mortality in geese. Currently, it severely affects geese production worldwide. The objective of this study was to develop a fluorescent quantitative real-time polymerase chain reaction (PCR) (FQ-PCR) assay for fast and accurate quantification of GPV DNA in infected goslings, which can aid in the understanding of the regular distribution pattern and the nosogenesis of GPV in vivo. Results The detection limit of the assay was 2.8 × 101 standard DNA copies, with a sensitivity of 3 logs higher than that of the conventional gel-based PCR assay targeting the same gene. The real-time PCR was reproducible, as shown by satisfactory low intraassay and interassay coefficients of variation. Conclusion The high sensitivity, specificity, simplicity, and reproducibility of the GPV fluorogenic PCR assay, combined with a high throughput, make this method suitable for a broad spectrum of GPV etiology-related applications. PMID:19754946

  9. Sequential processing of quantitative phase images for the study of cell behaviour in real-time digital holographic microscopy.

    PubMed

    Zikmund, T; Kvasnica, L; Týč, M; Křížová, A; Colláková, J; Chmelík, R

    2014-11-01

    Transmitted light holographic microscopy is particularly used for quantitative phase imaging of transparent microscopic objects such as living cells. The study of the cell is based on extraction of the dynamic data on cell behaviour from the time-lapse sequence of the phase images. However, the phase images are affected by the phase aberrations that make the analysis particularly difficult. This is because the phase deformation is prone to change during long-term experiments. Here, we present a novel algorithm for sequential processing of living cells phase images in a time-lapse sequence. The algorithm compensates for the deformation of a phase image using weighted least-squares surface fitting. Moreover, it identifies and segments the individual cells in the phase image. All these procedures are performed automatically and applied immediately after obtaining every single phase image. This property of the algorithm is important for real-time cell quantitative phase imaging and instantaneous control of the course of the experiment by playback of the recorded sequence up to actual time. Such operator's intervention is a forerunner of process automation derived from image analysis. The efficiency of the propounded algorithm is demonstrated on images of rat fibrosarcoma cells using an off-axis holographic microscope. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  10. Real-time PCR: Advanced technologies and applications

    USDA-ARS?s Scientific Manuscript database

    This book brings together contributions from 20 experts in the field of PCR, providing a broad perspective of the applications of quantitative real-time PCR (qPCR). The editors state in the preface that the aim is to provide detailed insight into underlying principles and methods of qPCR to provide ...

  11. Validation of Direct Analysis Real Time source/Time-of-Flight Mass Spectrometry for organophosphate quantitation on wafer surface.

    PubMed

    Hayeck, Nathalie; Ravier, Sylvain; Gemayel, Rachel; Gligorovski, Sasho; Poulet, Irène; Maalouly, Jacqueline; Wortham, Henri

    2015-11-01

    Microelectronic wafers are exposed to airborne molecular contamination (AMC) during the fabrication process of microelectronic components. The organophosphate compounds belonging to the dopant group are one of the most harmful groups. Once adsorbed on the wafer surface these compounds hardly desorb and could diffuse in the bulk of the wafer and invert the wafer from p-type to n-type. The presence of these compounds on wafer surface could have electrical effect on the microelectronic components. For these reasons, it is of importance to control the amount of these compounds on the surface of the wafer. As a result, a fast quantitative and qualitative analytical method, nondestructive for the wafers, is needed to be able to adjust the process and avoid the loss of an important quantity of processed wafers due to the contamination by organophosphate compounds. Here we developed and validated an analytical method for the determination of organic compounds adsorbed on the surface of microelectronic wafers using the Direct Analysis in Real Time-Time of Flight-Mass Spectrometry (DART-ToF-MS) system. Specifically, the developed methodology concerns the organophosphate group. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Detection of Human Cytomegalovirus DNA by Real-Time Quantitative PCR

    PubMed Central

    Nitsche, Andreas; Steuer, Nina; Schmidt, Christian Andreas; Landt, Olfert; Ellerbrok, Heinz; Pauli, Georg; Siegert, Wolfgang

    2000-01-01

    A real-time PCR assay was developed to quantify human cytomegalovirus (CMV) DNA. This assay was used to demonstrate a higher CMV DNA load in plasma of bone marrow transplant patients than in that of blood donors. The CMV load was higher in CMV antigen-positive patients than in antigen-negative patients. PMID:10878073

  13. Improvement in the detection rate of diarrhoeagenic bacteria in human stool specimens by a rapid real-time PCR assay.

    PubMed

    Iijima, Yoshio; Asako, Nahoko T; Aihara, Masanori; Hayashi, Kozaburo

    2004-07-01

    A rapid laboratory system has been developed and evaluated that can simultaneously identify major diarrhoeagenic bacteria, including Salmonella enterica, Vibrio parahaemolyticus, Campylobacter jejuni and Shiga toxin-producing Escherichia coli, in stool specimens by real-time PCR. Specific identification was achieved by using selective TaqMan probes, detecting two targets in each pathogen. A positive result was scored only when both targets of a pathogen were amplified and the difference between threshold cycles for detection was less than five. Diagnosis of enteric bacterial infections using this highly sensitive method, including DNA extraction and real-time PCR, requires only 3 h. Forty stool specimens related to suspected food poisoning outbreaks were analysed: 16 (40%) of these samples were found to be positive for diarrhoeagenic bacteria using a conventional culture method; 28 (70%) were positive using the real-time PCR assay. Of the 12 PCR-positive but culture-negative cases, 11 patients had consumed pathogen-contaminated or high-risk food. Analysis of faecal samples from 105 outpatients who complained of diarrhoea and/or abdominal pain identified 19 (18%) patients as being positive for diarrhoeagenic bacteria using the culture method. An additional six (6%) patients were found to be positive by PCR analysis.

  14. Evaluation of Reference Genes for Quantitative Real-Time PCR in Songbirds

    PubMed Central

    Zinzow-Kramer, Wendy M.; Horton, Brent M.; Maney, Donna L.

    2014-01-01

    Quantitative real-time PCR (qPCR) is becoming a popular tool for the quantification of gene expression in the brain and endocrine tissues of songbirds. Accurate analysis of qPCR data relies on the selection of appropriate reference genes for normalization, yet few papers on songbirds contain evidence of reference gene validation. Here, we evaluated the expression of ten potential reference genes (18S, ACTB, GAPDH, HMBS, HPRT, PPIA, RPL4, RPL32, TFRC, and UBC) in brain, pituitary, ovary, and testis in two species of songbird: zebra finch and white-throated sparrow. We used two algorithms, geNorm and NormFinder, to assess the stability of these reference genes in our samples. We found that the suitability of some of the most popular reference genes for target gene normalization in mammals, such as 18S, depended highly on tissue type. Thus, they are not the best choices for brain and gonad in these songbirds. In contrast, we identified alternative genes, such as HPRT, RPL4 and PPIA, that were highly stable in brain, pituitary, and gonad in these species. Our results suggest that the validation of reference genes in mammals does not necessarily extrapolate to other taxonomic groups. For researchers wishing to identify and evaluate suitable reference genes for qPCR songbirds, our results should serve as a starting point and should help increase the power and utility of songbird models in behavioral neuroendocrinology. PMID:24780145

  15. Characterization of Phytophthora nicotianae isolates in southeast Spain and their detection and quantification through a real-time TaqMan PCR.

    PubMed

    Blaya, Josefa; Lacasa, Carmen; Lacasa, Alfredo; Martínez, Victoriano; Santísima-Trinidad, Ana B; Pascual, Jose A; Ros, Margarita

    2015-04-01

    The soil-borne pathogens Phytophthora nicotianae and P. capsici are the causal agents of root and stem rot of many plant species. Although P. capsici was considered the causal agent in one of the main pepper production areas of Spain to date, evidence of the presence of P. nicotianae was found. We aimed to survey the presence of P. nicotianae and study the variability in its populations in this area in order to improve the management of Tristeza disease. A new specific primer and a TaqMan probe were designed based on the internal transcribed spacer regions of ribosomal DNA to detect and quantify P. nicotianae. Both morphological and molecular analysis showed its presence and confirmed it to be the causal agent of the Phytophthora disease symptoms in the studied area. The genetic characterization among P. nicotianae populations showed a low variability of genetic diversity among the isolates. Only isolates of the A2 mating type were detected. Not only is a specific and early detection of P. nicotianae essential but also the study of genetic variability among isolates for the appropriate management of the disease, above all, in producing areas with favorable conditions for the advance of the disease. © 2014 Society of Chemical Industry.

  16. Development of a TaqMan Array Card for Acute-Febrile-Illness Outbreak Investigation and Surveillance of Emerging Pathogens, Including Ebola Virus.

    PubMed

    Liu, Jie; Ochieng, Caroline; Wiersma, Steve; Ströher, Ute; Towner, Jonathan S; Whitmer, Shannon; Nichol, Stuart T; Moore, Christopher C; Kersh, Gilbert J; Kato, Cecilia; Sexton, Christopher; Petersen, Jeannine; Massung, Robert; Hercik, Christine; Crump, John A; Kibiki, Gibson; Maro, Athanasia; Mujaga, Buliga; Gratz, Jean; Jacob, Shevin T; Banura, Patrick; Scheld, W Michael; Juma, Bonventure; Onyango, Clayton O; Montgomery, Joel M; Houpt, Eric; Fields, Barry

    2016-01-01

    Acute febrile illness (AFI) is associated with substantial morbidity and mortality worldwide, yet an etiologic agent is often not identified. Convalescent-phase serology is impractical, blood culture is slow, and many pathogens are fastidious or impossible to cultivate. We developed a real-time PCR-based TaqMan array card (TAC) that can test six to eight samples within 2.5 h from sample to results and can simultaneously detect 26 AFI-associated organisms, including 15 viruses (chikungunya, Crimean-Congo hemorrhagic fever [CCHF] virus, dengue, Ebola virus, Bundibugyo virus, Sudan virus, hantaviruses [Hantaan and Seoul], hepatitis E, Marburg, Nipah virus, o'nyong-nyong virus, Rift Valley fever virus, West Nile virus, and yellow fever virus), 8 bacteria (Bartonella spp., Brucella spp., Coxiella burnetii, Leptospira spp., Rickettsia spp., Salmonella enterica and Salmonella enterica serovar Typhi, and Yersinia pestis), and 3 protozoa (Leishmania spp., Plasmodium spp., and Trypanosoma brucei). Two extrinsic controls (phocine herpesvirus 1 and bacteriophage MS2) were included to ensure extraction and amplification efficiency. Analytical validation was performed on spiked specimens for linearity, intra-assay precision, interassay precision, limit of detection, and specificity. The performance of the card on clinical specimens was evaluated with 1,050 blood samples by comparison to the individual real-time PCR assays, and the TAC exhibited an overall 88% (278/315; 95% confidence interval [CI], 84% to 92%) sensitivity and a 99% (5,261/5,326, 98% to 99%) specificity. This TaqMan array card can be used in field settings as a rapid screen for outbreak investigation or for the surveillance of pathogens, including Ebola virus. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. The state of RT-quantitative PCR: firsthand observations of implementation of minimum information for the publication of quantitative real-time PCR experiments (MIQE).

    PubMed

    Taylor, Sean C; Mrkusich, Eli M

    2014-01-01

    In the past decade, the techniques of quantitative PCR (qPCR) and reverse transcription (RT)-qPCR have become accessible to virtually all research labs, producing valuable data for peer-reviewed publications and supporting exciting research conclusions. However, the experimental design and validation processes applied to the associated projects are the result of historical biases adopted by individual labs that have evolved and changed since the inception of the techniques and associated technologies. This has resulted in wide variability in the quality, reproducibility and interpretability of published data as a direct result of how each lab has designed their RT-qPCR experiments. The 'minimum information for the publication of quantitative real-time PCR experiments' (MIQE) was published to provide the scientific community with a consistent workflow and key considerations to perform qPCR experiments. We use specific examples to highlight the serious negative ramifications for data quality when the MIQE guidelines are not applied and include a summary of good and poor practices for RT-qPCR. © 2013 S. Karger AG, Basel.

  18. Real-Time Safety Risk Assessment Based on a Real-Time Location System for Hydropower Construction Sites

    PubMed Central

    Fan, Qixiang; Qiang, Maoshan

    2014-01-01

    The concern for workers' safety in construction industry is reflected in many studies focusing on static safety risk identification and assessment. However, studies on real-time safety risk assessment aimed at reducing uncertainty and supporting quick response are rare. A method for real-time safety risk assessment (RTSRA) to implement a dynamic evaluation of worker safety states on construction site has been proposed in this paper. The method provides construction managers who are in charge of safety with more abundant information to reduce the uncertainty of the site. A quantitative calculation formula, integrating the influence of static and dynamic hazards and that of safety supervisors, is established to link the safety risk of workers with the locations of on-site assets. By employing the hidden Markov model (HMM), the RTSRA provides a mechanism for processing location data provided by the real-time location system (RTLS) and analyzing the probability distributions of different states in terms of false positives and negatives. Simulation analysis demonstrated the logic of the proposed method and how it works. Application case shows that the proposed RTSRA is both feasible and effective in managing construction project safety concerns. PMID:25114958

  19. Real-time safety risk assessment based on a real-time location system for hydropower construction sites.

    PubMed

    Jiang, Hanchen; Lin, Peng; Fan, Qixiang; Qiang, Maoshan

    2014-01-01

    The concern for workers' safety in construction industry is reflected in many studies focusing on static safety risk identification and assessment. However, studies on real-time safety risk assessment aimed at reducing uncertainty and supporting quick response are rare. A method for real-time safety risk assessment (RTSRA) to implement a dynamic evaluation of worker safety states on construction site has been proposed in this paper. The method provides construction managers who are in charge of safety with more abundant information to reduce the uncertainty of the site. A quantitative calculation formula, integrating the influence of static and dynamic hazards and that of safety supervisors, is established to link the safety risk of workers with the locations of on-site assets. By employing the hidden Markov model (HMM), the RTSRA provides a mechanism for processing location data provided by the real-time location system (RTLS) and analyzing the probability distributions of different states in terms of false positives and negatives. Simulation analysis demonstrated the logic of the proposed method and how it works. Application case shows that the proposed RTSRA is both feasible and effective in managing construction project safety concerns.

  20. The validation and utility of a quantitative one-step multiplex RT real-time PCR targeting Rotavirus A and Norovirus

    PubMed Central

    Dung, Tran Thi Ngoc; Phat, Voong Vinh; Nga, Tran Vu Thieu; My, Phan Vu Tra; Duy, Pham Thanh; Campbell, James I.; Thuy, Cao Thu; Hoang, Nguyen Van Minh; Van Minh, Pham; Le Phuc, Hoang; Tuyet, Pham Thi Ngoc; Vinh, Ha; Kien, Duong Thi Hue; Huy, Huynh Le Anh; Vinh, Nguyen Thanh; Nga, Tran Thi Thu; Hau, Nguyen Thi Thu; Chinh, Nguyen Tran; Thuong, Tang Chi; Tuan, Ha Manh; Simmons, Cameron; Farrar, Jeremy J.; Baker, Stephen

    2013-01-01

    Rotavirus (RoV) and Norovirus (NoV) are the main causes of viral gastroenteritis. Currently, there is no validated multiplex real-time PCR that can detect and quantify RoV and NoV simultaneously. The aim of the study was to develop, validate, and internally control a multiplex one-step RT real-time PCR to detect and quantify RoV and NoV in stool samples. PCR sensitivity was assessed by comparing amplification against the current gold standard, enzyme immunoassay (EIA), on stool samples from 94 individuals with diarrhea and 94 individuals without diarrhea. PCR detected 10% more RoV positive samples than EIA in stools samples from patients with diarrhea. PCR detected 23% more NoV genogroup II positive samples from individuals with diarrhea and 9% more from individuals without diarrhea than EIA, respectively. Genotyping of the PCR positive/EIA negative samples suggested the higher rate of PCR positivity, in comparison to EIA, was due to increased sensitivity, rather than nonspecific hybridization. Quantitation demonstrated that the viral loads of RoV and NoV in the stools of diarrheal patients were an order of magnitude greater than in individuals without diarrhea. This internally controlled real-time PCR method is robust, exhibits a high degree of reproducibility, and may have a greater utility and sensitivity than commercial EIA kits. PMID:23046990

  1. Quantitative real-time monitoring of multi-elements in airborne particulates by direct introduction into an inductively coupled plasma mass spectrometer

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshinari; Sato, Hikaru; Hiyoshi, Katsuhiro; Furuta, Naoki

    2012-10-01

    A new calibration system for real-time determination of trace elements in airborne particulates was developed. Airborne particulates were directly introduced into an inductively coupled plasma mass spectrometer, and the concentrations of 15 trace elements were determined by means of an external calibration method. External standard solutions were nebulized by an ultrasonic nebulizer (USN) coupled with a desolvation system, and the resulting aerosol was introduced into the plasma. The efficiency of sample introduction via the USN was calculated by two methods: (1) the introduction of a Cr standard solution via the USN was compared with introduction of a Cr(CO)6 standard gas via a standard gas generator and (2) the aerosol generated by the USN was trapped on filters and then analyzed. The Cr introduction efficiencies obtained by the two methods were the same, and the introduction efficiencies of the other elements were equal to the introduction efficiency of Cr. Our results indicated that our calibration method for introduction efficiency worked well for the 15 elements (Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Mo, Sn, Sb, Ba, Tl and Pb). The real-time data and the filter-collection data agreed well for elements with low-melting oxides (V, Co, As, Mo, Sb, Tl, and Pb). In contrast, the real-time data were smaller than the filter-collection data for elements with high-melting oxides (Ti, Cr, Mn, Ni, Cu, Zn, Sn, and Ba). This result implies that the oxides of these 8 elements were not completely fused, vaporized, atomized, and ionized in the initial radiation zone of the inductively coupled plasma. However, quantitative real-time monitoring can be realized after correction for the element recoveries which can be calculated from the ratio of real-time data/filter-collection data.

  2. DNA barcoding and real-time PCR detection of Bactrocera xanthodes (Tephritidae: Diptera) complex.

    PubMed

    Li, D; Waite, D W; Gunawardana, D N; McCarthy, B; Anderson, D; Flynn, A; George, S

    2018-05-06

    Immature fruit fly stages of the family Tephritidae are commonly intercepted on breadfruit from Pacific countries at the New Zealand border but are unable to be identified to the species level using morphological characters. Subsequent molecular identification showed that they belong to Bactrocera xanthodes, which is part of a species complex that includes Bactrocera paraxanthodes, Bactrocera neoxanthodes and an undescribed species. To establish a more reliable molecular identification system for B. xanthodes, a reference database of DNA barcode sequences for the 5'-fragment of COI gene region was constructed for B. xanthodes from Fiji, Samoa and Tonga. To better understand the species complex, B. neoxanthodes from Vanuatu and B. paraxanthodes from New Caledonia were also barcoded. Using the results of this analysis, real-time TaqMan polymerase chain reaction (PCR) assays for the detection of B. xanthodes complex and for the three individual species of the complex were developed and validated. The assay showed high specificity for the target species, with no cross-reaction observed for closely related organisms. Each of the real-time PCR assays is sensitive, detecting the target sequences at concentrations as low as ten copies µl-1 and can be used as either singleplex or multiplex formats. This real-time PCR assay for B. xanthodes has been successfully applied at the borders in New Zealand, leading to the rapid identification of intercepted Tephritidae eggs and larvae. The developed assays will be useful biosecurity tools for rapid detection of species in the B. xanthodes complex worldwide.

  3. [Experimental studies of using real-time fluorescence quantitative PCR and RT-PCR to detect E6 and E7 genes of human papillomavirus type 16 in cervical carcinoma cell lines].

    PubMed

    Chen, Yue-yue; Peng, Zhi-lan; Liu, Shan-ling; He, Bing; Hu, Min

    2007-06-01

    To establish a method of using real-time fluorescence quantitative PCR and RT-PCR to detect the E6 and E7 genes of human papillomavirus type 16 (HPV-16). Plasmids containing HPV-16 E6 or E7 were used to generate absolute standard curves. Three cervical carcinoma cell lines CaSki, SiHa and HeLa were tested by real-time fluorescence quantitative PCR and RT-PCR analyses for the expressions of HPV-16 E6 and E7. The correlation coefficients of standard curves were larger than 0. 99, and the PCR efficiency was more than 90%. The relative levels of HPV-16 E6 and E7 DNA and RNA were CaSki>SiHa>HeLa cell. HPV-16 E6 and E7 quantum by real-time fluorescence quantitative PCR and RT-PCR analyses may serve as a reliable and sensitive tool. This study provides the possibility of further researches on the relationship between HPV-16 E6 or E7 copy number and cervical carcinoma.

  4. Real-Time CORBA

    DTIC Science & Technology

    2000-10-01

    control systems and prototyped the approach by porting the ILU ORB from Xerox to the Lynx real - time operating system . They then provided a distributed...compliant real - time operating system , a real-time ORB, and an ODMG-compliant real-time ODBMS [12]. The MITRE system is an infrastructure for...the server’s local operating system can handle. For instance, on a node controlled by the VXWorks real - time operating system with 256 local

  5. Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae

    PubMed Central

    Teste, Marie-Ange; Duquenne, Manon; François, Jean M; Parrou, Jean-Luc

    2009-01-01

    Background Real-time RT-PCR is the recommended method for quantitative gene expression analysis. A compulsory step is the selection of good reference genes for normalization. A few genes often referred to as HouseKeeping Genes (HSK), such as ACT1, RDN18 or PDA1 are among the most commonly used, as their expression is assumed to remain unchanged over a wide range of conditions. Since this assumption is very unlikely, a geometric averaging of multiple, carefully selected internal control genes is now strongly recommended for normalization to avoid this problem of expression variation of single reference genes. The aim of this work was to search for a set of reference genes for reliable gene expression analysis in Saccharomyces cerevisiae. Results From public microarray datasets, we selected potential reference genes whose expression remained apparently invariable during long-term growth on glucose. Using the algorithm geNorm, ALG9, TAF10, TFC1 and UBC6 turned out to be genes whose expression remained stable, independent of the growth conditions and the strain backgrounds tested in this study. We then showed that the geometric averaging of any subset of three genes among the six most stable genes resulted in very similar normalized data, which contrasted with inconsistent results among various biological samples when the normalization was performed with ACT1. Normalization with multiple selected genes was therefore applied to transcriptional analysis of genes involved in glycogen metabolism. We determined an induction ratio of 100-fold for GPH1 and 20-fold for GSY2 between the exponential phase and the diauxic shift on glucose. There was no induction of these two genes at this transition phase on galactose, although in both cases, the kinetics of glycogen accumulation was similar. In contrast, SGA1 expression was independent of the carbon source and increased by 3-fold in stationary phase. Conclusion In this work, we provided a set of genes that are suitable reference

  6. Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae.

    PubMed

    Teste, Marie-Ange; Duquenne, Manon; François, Jean M; Parrou, Jean-Luc

    2009-10-30

    Real-time RT-PCR is the recommended method for quantitative gene expression analysis. A compulsory step is the selection of good reference genes for normalization. A few genes often referred to as HouseKeeping Genes (HSK), such as ACT1, RDN18 or PDA1 are among the most commonly used, as their expression is assumed to remain unchanged over a wide range of conditions. Since this assumption is very unlikely, a geometric averaging of multiple, carefully selected internal control genes is now strongly recommended for normalization to avoid this problem of expression variation of single reference genes. The aim of this work was to search for a set of reference genes for reliable gene expression analysis in Saccharomyces cerevisiae. From public microarray datasets, we selected potential reference genes whose expression remained apparently invariable during long-term growth on glucose. Using the algorithm geNorm, ALG9, TAF10, TFC1 and UBC6 turned out to be genes whose expression remained stable, independent of the growth conditions and the strain backgrounds tested in this study. We then showed that the geometric averaging of any subset of three genes among the six most stable genes resulted in very similar normalized data, which contrasted with inconsistent results among various biological samples when the normalization was performed with ACT1. Normalization with multiple selected genes was therefore applied to transcriptional analysis of genes involved in glycogen metabolism. We determined an induction ratio of 100-fold for GPH1 and 20-fold for GSY2 between the exponential phase and the diauxic shift on glucose. There was no induction of these two genes at this transition phase on galactose, although in both cases, the kinetics of glycogen accumulation was similar. In contrast, SGA1 expression was independent of the carbon source and increased by 3-fold in stationary phase. In this work, we provided a set of genes that are suitable reference genes for quantitative gene

  7. Real-Time PCR-Based Quantitation Method for the Genetically Modified Soybean Line GTS 40-3-2.

    PubMed

    Kitta, Kazumi; Takabatake, Reona; Mano, Junichi

    2016-01-01

    This chapter describes a real-time PCR-based method for quantitation of the relative amount of genetically modified (GM) soybean line GTS 40-3-2 [Roundup Ready(®) soybean (RRS)] contained in a batch. The method targets a taxon-specific soybean gene (lectin gene, Le1) and the specific DNA construct junction region between the Petunia hybrida chloroplast transit peptide sequence and the Agrobacterium 5-enolpyruvylshikimate-3-phosphate synthase gene (epsps) sequence present in GTS 40-3-2. The method employs plasmid pMulSL2 as a reference material in order to quantify the relative amount of GTS 40-3-2 in soybean samples using a conversion factor (Cf) equal to the ratio of the RRS-specific DNA to the taxon-specific DNA in representative genuine GTS 40-3-2 seeds.

  8. Monitoring the Single-Cell Stress Response of the Diatom Thalassiosira pseudonana by Quantitative Real-Time Reverse Transcription-PCR

    PubMed Central

    Shi, Xu; Gao, Weimin; Chao, Shih-hui

    2013-01-01

    Directly monitoring the stress response of microbes to their environments could be one way to inspect the health of microorganisms themselves, as well as the environments in which the microorganisms live. The ultimate resolution for such an endeavor could be down to a single-cell level. In this study, using the diatom Thalassiosira pseudonana as a model species, we aimed to measure gene expression responses of this organism to various stresses at a single-cell level. We developed a single-cell quantitative real-time reverse transcription-PCR (RT-qPCR) protocol and applied it to determine the expression levels of multiple selected genes under nitrogen, phosphate, and iron depletion stress conditions. The results, for the first time, provided a quantitative measurement of gene expression at single-cell levels in T. pseudonana and demonstrated that significant gene expression heterogeneity was present within the cell population. In addition, different expression patterns between single-cell- and bulk-cell-based analyses were also observed for all genes assayed in this study, suggesting that cell response heterogeneity needs to be taken into consideration in order to obtain accurate information that indicates the environmental stress condition. PMID:23315741

  9. Monitoring the single-cell stress response of the diatom Thalassiosira pseudonana by quantitative real-time reverse transcription-PCR.

    PubMed

    Shi, Xu; Gao, Weimin; Chao, Shih-hui; Zhang, Weiwen; Meldrum, Deirdre R

    2013-03-01

    Directly monitoring the stress response of microbes to their environments could be one way to inspect the health of microorganisms themselves, as well as the environments in which the microorganisms live. The ultimate resolution for such an endeavor could be down to a single-cell level. In this study, using the diatom Thalassiosira pseudonana as a model species, we aimed to measure gene expression responses of this organism to various stresses at a single-cell level. We developed a single-cell quantitative real-time reverse transcription-PCR (RT-qPCR) protocol and applied it to determine the expression levels of multiple selected genes under nitrogen, phosphate, and iron depletion stress conditions. The results, for the first time, provided a quantitative measurement of gene expression at single-cell levels in T. pseudonana and demonstrated that significant gene expression heterogeneity was present within the cell population. In addition, different expression patterns between single-cell- and bulk-cell-based analyses were also observed for all genes assayed in this study, suggesting that cell response heterogeneity needs to be taken into consideration in order to obtain accurate information that indicates the environmental stress condition.

  10. Strategy for Extracting DNA from Clay Soil and Detecting a Specific Target Sequence via Selective Enrichment and Real-Time (Quantitative) PCR Amplification ▿

    PubMed Central

    Yankson, Kweku K.; Steck, Todd R.

    2009-01-01

    We present a simple strategy for isolating and accurately enumerating target DNA from high-clay-content soils: desorption with buffers, an optional magnetic capture hybridization step, and quantitation via real-time PCR. With the developed technique, μg quantities of DNA were extracted from mg samples of pure kaolinite and a field clay soil. PMID:19633108

  11. Quantitative assessment of tumor angiogenesis using real-time motion-compensated contrast-enhanced ultrasound imaging

    PubMed Central

    Pysz, Marybeth A.; Guracar, Ismayil; Foygel, Kira; Tian, Lu; Willmann, Jürgen K.

    2015-01-01

    Purpose To develop and test a real-time motion compensation algorithm for contrast-enhanced ultrasound imaging of tumor angiogenesis on a clinical ultrasound system. Materials and methods The Administrative Institutional Panel on Laboratory Animal Care approved all experiments. A new motion correction algorithm measuring the sum of absolute differences in pixel displacements within a designated tracking box was implemented in a clinical ultrasound machine. In vivo angiogenesis measurements (expressed as percent contrast area) with and without motion compensated maximum intensity persistence (MIP) ultrasound imaging were analyzed in human colon cancer xenografts (n = 64) in mice. Differences in MIP ultrasound imaging signal with and without motion compensation were compared and correlated with displacements in x- and y-directions. The algorithm was tested in an additional twelve colon cancer xenograft-bearing mice with (n = 6) and without (n = 6) anti-vascular therapy (ASA-404). In vivo MIP percent contrast area measurements were quantitatively correlated with ex vivo microvessel density (MVD) analysis. Results MIP percent contrast area was significantly different (P < 0.001) with and without motion compensation. Differences in percent contrast area correlated significantly (P < 0.001) with x- and y-displacements. MIP percent contrast area measurements were more reproducible with motion compensation (ICC = 0.69) than without (ICC = 0.51) on two consecutive ultrasound scans. Following anti-vascular therapy, motion-compensated MIP percent contrast area significantly (P = 0.03) decreased by 39.4 ± 14.6 % compared to non-treated mice and correlated well with ex vivo MVD analysis (Rho = 0.70; P = 0.05). Conclusion Real-time motion-compensated MIP ultrasound imaging allows reliable and accurate quantification and monitoring of angiogenesis in tumors exposed to breathing-induced motion artifacts. PMID:22535383

  12. Quantitative assessment of tumor angiogenesis using real-time motion-compensated contrast-enhanced ultrasound imaging.

    PubMed

    Pysz, Marybeth A; Guracar, Ismayil; Foygel, Kira; Tian, Lu; Willmann, Jürgen K

    2012-09-01

    To develop and test a real-time motion compensation algorithm for contrast-enhanced ultrasound imaging of tumor angiogenesis on a clinical ultrasound system. The Administrative Institutional Panel on Laboratory Animal Care approved all experiments. A new motion correction algorithm measuring the sum of absolute differences in pixel displacements within a designated tracking box was implemented in a clinical ultrasound machine. In vivo angiogenesis measurements (expressed as percent contrast area) with and without motion compensated maximum intensity persistence (MIP) ultrasound imaging were analyzed in human colon cancer xenografts (n = 64) in mice. Differences in MIP ultrasound imaging signal with and without motion compensation were compared and correlated with displacements in x- and y-directions. The algorithm was tested in an additional twelve colon cancer xenograft-bearing mice with (n = 6) and without (n = 6) anti-vascular therapy (ASA-404). In vivo MIP percent contrast area measurements were quantitatively correlated with ex vivo microvessel density (MVD) analysis. MIP percent contrast area was significantly different (P < 0.001) with and without motion compensation. Differences in percent contrast area correlated significantly (P < 0.001) with x- and y-displacements. MIP percent contrast area measurements were more reproducible with motion compensation (ICC = 0.69) than without (ICC = 0.51) on two consecutive ultrasound scans. Following anti-vascular therapy, motion-compensated MIP percent contrast area significantly (P = 0.03) decreased by 39.4 ± 14.6 % compared to non-treated mice and correlated well with ex vivo MVD analysis (Rho = 0.70; P = 0.05). Real-time motion-compensated MIP ultrasound imaging allows reliable and accurate quantification and monitoring of angiogenesis in tumors exposed to breathing-induced motion artifacts.

  13. Real-Time PCR Detection of Dogwood Anthracnose Fungus in Historical Herbarium Specimens from Asia.

    PubMed

    Miller, Stephen; Masuya, Hayato; Zhang, Jian; Walsh, Emily; Zhang, Ning

    2016-01-01

    Cornus species (dogwoods) are popular ornamental trees and important understory plants in natural forests of northern hemisphere. Dogwood anthracnose, one of the major diseases affecting the native North American Cornus species, such as C. florida, is caused by the fungal pathogen Discula destructiva. The origin of this fungus is not known, but it is hypothesized that it was imported to North America with its host plants from Asia. In this study, a TaqMan real-time PCR assay was used to detect D. destructiva in dried herbarium and fresh Cornus samples. Several herbarium specimens from Japan and China were detected positive for D. destructiva, some of which were collected before the first report of the dogwood anthracnose in North America. Our findings further support that D. destructiva was introduced to North America from Asia where the fungus likely does not cause severe disease.

  14. Use of Multiplex Real-Time PCR To Diagnose Scrub Typhus.

    PubMed

    Tantibhedhyangkul, Wiwit; Wongsawat, Ekkarat; Silpasakorn, Saowaluk; Waywa, Duangdao; Saenyasiri, Nuttawut; Suesuay, Jintapa; Thipmontree, Wilawan; Suputtamongkol, Yupin

    2017-05-01

    Scrub typhus, caused by Orientia tsutsugamushi , is a common cause of acute undifferentiated febrile illness in the Asia-Pacific region. However, its nonspecific clinical manifestation often prevents early diagnosis. We propose the use of PCR and serologic tests as diagnostic tools. Here, we developed a multiplex real-time PCR assay using hydrolysis (TaqMan) probes targeting O. tsutsugamushi 47-kDa, groEL , and human interferon beta (IFN-β gene) genes to improve early diagnosis of scrub typhus. The amplification efficiency was higher than 94%, and the lower detection limit was 10 copies per reaction. We used a human gene as an internal DNA quality and quantity control. To determine the sensitivity of this PCR assay, we selected patients with confirmed scrub typhus who exhibited a clear 4-fold increase in the level of IgG and/or IgM. The PCR assay result was positive in 45 of 52 patients, indicating a sensitivity of 86.5% (95% confidence interval [CI]: 74.2 to 94.4). The PCR assessment was negative for all 136 non-scrub typhus patients, indicating a specificity of 100% (95% CI: 97.3 to 100). In addition, this test helped diagnose patients with inconclusive immunofluorescence assay (IFA) results and using single blood samples. In conclusion, the real-time PCR assay proposed here is sensitive and specific in diagnosing scrub typhus. Combining PCR and serologic tests will improve the diagnosis of scrub typhus among patients presenting with acute febrile illness. Copyright © 2017 American Society for Microbiology.

  15. Market analysis of food products for detection of allergenic walnut (Juglans regia) and pecan (Carya illinoinensis) by real-time PCR.

    PubMed

    López-Calleja, Inés María; de la Cruz, Silvia; González, Isabel; García, Teresa; Martín, Rosario

    2015-06-15

    Two real-time polymerase chain reaction (PCR)-based assays for detection of walnut (Juglans regia) and pecan (Carya illinoinensis) traces in a wide range of processed foods are described here. The method consists on a real-time PCR assay targeting the ITS1 region, using a nuclease (TaqMan) probe labeled with FAM and BBQ. The method was positive for walnut and pecan respectively, and negative for all other heterologous plants and animals tested. Using a series of model samples with defined raw walnut in wheat flour and heat-treated walnut in wheat flour with a range of concentrations of 0.1-100,000 mg kg(-1), a practical detection limit of 0.1 mg kg(-1) of walnut content was estimated. Identical binary mixtures were done for pecan, reaching the same limit of detection of 0.1 mg kg(-1). The assay was successfully trialed on a total of 232 commercial foodstuffs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Use of real-time quantitative PCR to detect Chlamydophila felis infection.

    PubMed

    Helps, C; Reeves, N; Tasker, S; Harbour, D

    2001-07-01

    A real-time PCR assay was developed to detect and quantify Chlamydophila felis infection of cats. The assay uses a molecular beacon to specifically identify the major outer membrane protein gene, is highly reproducible, and is able to detect fewer than 10 genomic copies.

  17. Quantitative Detection of the Free-Living Amoeba Hartmannella vermiformis in Surface Water by Using Real-Time PCR†

    PubMed Central

    Kuiper, Melanie W.; Valster, Rinske M.; Wullings, Bart A.; Boonstra, Harry; Smidt, Hauke; van der Kooij, Dick

    2006-01-01

    A real-time PCR-based method targeting the 18S rRNA gene was developed for the quantitative detection of Hartmannella vermiformis, a free-living amoeba which is a potential host for Legionella pneumophila in warm water systems and cooling towers. The detection specificity was validated using genomic DNA of the closely related amoeba Hartmannella abertawensis as a negative control and sequence analysis of amplified products from environmental samples. Real-time PCR detection of serially diluted DNA extracted from H. vermiformis was linear for microscopic cell counts between 1.14 × 10−1 and 1.14 × 104 cells per PCR. The genome of H. vermiformis harbors multiple copies of the 18S rRNA gene, and an average number (with standard error) of 1,330 ± 127 copies per cell was derived from real-time PCR calibration curves for cell suspensions and plasmid DNA. No significant differences were observed between the 18S rRNA gene copy numbers for trophozoites and cysts of strain ATCC 50237 or between the copy numbers for this strain and strain KWR-1. The developed method was applied to water samples (200 ml) collected from a variety of lakes and rivers serving as sources for drinking water production in The Netherlands. Detectable populations were found in 21 of the 28 samples, with concentrations ranging from 5 to 75 cells/liter. A high degree of similarity (≥98%) was observed between sequences of clones originating from the different surface waters and between these clones and the reference strains. Hence, H. vermiformis, which is highly similar to strains serving as hosts for L. pneumophila, is a common component of the microbial community in fresh surface water. PMID:16957190

  18. Real Time Revisited

    NASA Astrophysics Data System (ADS)

    Allen, Phillip G.

    1985-12-01

    The call for abolishing photo reconnaissance in favor of real time is once more being heard. Ten years ago the same cries were being heard with the introduction of the Charge Coupled Device (CCD). The real time system problems that existed then and stopped real time proliferation have not been solved. The lack of an organized program by either DoD or industry has hampered any efforts to solve the problems, and as such, very little has happened in real time in the last ten years. Real time is not a replacement for photo, just as photo is not a replacement for infra-red or radar. Operational real time sensors can be designed only after their role has been defined and improvements made to the weak links in the system. Plodding ahead on a real time reconnaissance suite without benefit of evaluation of utility will allow this same paper to be used ten years from now.

  19. Successful Validation of RNA Purification and Quantitative Real-Time PCR Analysis of Gene Expression on the International Space Station

    NASA Technical Reports Server (NTRS)

    Tran, L.; Parra, Macarena P.; Jung, J.; Boone, T.; Schonfeld, Julie; Almeida, Eduardo

    2017-01-01

    The NASA Ames WetLab-2 system was developed to offer new on-orbit gene expression analysis capabilities to ISS researchers and can be used to conduct on-orbit RNA isolation and quantitative real time PCR (RT-qPCR) analysis of gene expression from a wide range of biological samples ranging from microbes to mammalian tissues. On orbit validation included three quantitative PCR (qPCR) runs using an E. coli genomic DNA template pre-loaded at three different concentrations. The flight Ct values for the DNA standards showed no statistically significant differences relative to ground controls although there was increased noise in Ct curves, likely due to microgravity-related bubble retention in the optical windows. RNA was successfully purified from both E. coli and mouse liver samples and successfully generated singleplex, duplex and triplex data although with higher standard deviations than ground controls, also likely due to bubbles. Using volunteer science activities, a potential bubble reduction strategy was tested and resulted in smooth amplification curves and tighter Cts between replicates. The WetLab-2 validation experiment demonstrates a novel molecular biology workbench on ISS which allows scientists to purify and stabilize RNA, and to conduct RT-qPCR analyses on-orbit with rapid results. This novel ability is an important step towards utilizing ISS as a National Laboratory facility with the capability to conduct and adjust science experiments in real time without sample return, and opens new possibilities for rapid medical diagnostics and biological environmental monitoring on ISS.

  20. Real-time PCR array as a universal platform for the detection of genetically modified crops and its application in identifying unapproved genetically modified crops in Japan.

    PubMed

    Mano, Junichi; Shigemitsu, Natsuki; Futo, Satoshi; Akiyama, Hiroshi; Teshima, Reiko; Hino, Akihiro; Furui, Satoshi; Kitta, Kazumi

    2009-01-14

    We developed a novel type of real-time polymerase chain reaction (PCR) array with TaqMan chemistry as a platform for the comprehensive and semiquantitative detection of genetically modified (GM) crops. Thirty primer-probe sets for the specific detection of GM lines, recombinant DNA (r-DNA) segments, endogenous reference genes, and donor organisms were synthesized, and a 96-well PCR plate was prepared with a different primer-probe in each well as the real-time PCR array. The specificity and sensitivity of the array were evaluated. A comparative analysis with the data and publicly available information on GM crops approved in Japan allowed us to assume the possibility of unapproved GM crop contamination. Furthermore, we designed a Microsoft Excel spreadsheet application, Unapproved GMO Checker version 2.01, which helps process all the data of real-time PCR arrays for the easy assumption of unapproved GM crop contamination. The spreadsheet is available free of charge at http://cse.naro.affrc.go.jp/jmano/index.html .

  1. Utility of a stressed-SNP real-time PCR assay for the rapid identification of measles vaccine strain in patient samples.

    PubMed

    Tran, Thomas; Kostecki, Renata; Catton, Michael; Druce, Julian

    2018-05-09

    Rapid differentiation of wild-type measles virus from measles vaccine strains is crucial during a measles outbreak and in a measles elimination setting. A real-time RT-PCR for the rapid detection of measles vaccine strains was developed with high specificity and greater sensitivity than when compared to traditional measles genotyping methods. The "stressed" minor grove binder TaqMan probe design approach achieves specificity to vaccine strains only, without compromising sensitivity. This assay has proven to be extremely useful in outbreak settings, without requiring sequence genotyping, for over 4 years at the Regional Measles Reference Laboratory for the Western Pacific Region. Copyright © 2018 Tran et al.

  2. Validation and Application of a PCR Primer Set to Quantify Fungal Communities in the Soil Environment by Real-Time Quantitative PCR

    PubMed Central

    Chemidlin Prévost-Bouré, Nicolas; Christen, Richard; Dequiedt, Samuel; Mougel, Christophe; Lelièvre, Mélanie; Jolivet, Claudy; Shahbazkia, Hamid Reza; Guillou, Laure; Arrouays, Dominique; Ranjard, Lionel

    2011-01-01

    Fungi constitute an important group in soil biological diversity and functioning. However, characterization and knowledge of fungal communities is hampered because few primer sets are available to quantify fungal abundance by real-time quantitative PCR (real-time Q-PCR). The aim in this study was to quantify fungal abundance in soils by incorporating, into a real-time Q-PCR using the SYBRGreen® method, a primer set already used to study the genetic structure of soil fungal communities. To satisfy the real-time Q-PCR requirements to enhance the accuracy and reproducibility of the detection technique, this study focused on the 18S rRNA gene conserved regions. These regions are little affected by length polymorphism and may provide sufficiently small targets, a crucial criterion for enhancing accuracy and reproducibility of the detection technique. An in silico analysis of 33 primer sets targeting the 18S rRNA gene was performed to select the primer set with the best potential for real-time Q-PCR: short amplicon length; good fungal specificity and coverage. The best consensus between specificity, coverage and amplicon length among the 33 sets tested was the primer set FR1 / FF390. This in silico analysis of the specificity of FR1 / FF390 also provided additional information to the previously published analysis on this primer set. The specificity of the primer set FR1 / FF390 for Fungi was validated in vitro by cloning - sequencing the amplicons obtained from a real time Q-PCR assay performed on five independent soil samples. This assay was also used to evaluate the sensitivity and reproducibility of the method. Finally, fungal abundance in samples from 24 soils with contrasting physico-chemical and environmental characteristics was examined and ranked to determine the importance of soil texture, organic carbon content, C∶N ratio and land use in determining fungal abundance in soils. PMID:21931659

  3. Development of real-time PCR assay for genetic identification of the mottled skate, Beringraja pulchra.

    PubMed

    Hwang, In Kwan; Lee, Hae Young; Kim, Min-Hee; Jo, Hyun-Su; Choi, Dong-Ho; Kang, Pil-Won; Lee, Yang-Han; Cho, Nam-Soo; Park, Ki-Won; Chae, Ho Zoon

    2015-10-01

    The mottled skate, Beringraja pulchra is one of the commercially important fishes in the market today. However, B. pulchra identification methods have not been well developed. The current study reports a novel real-time PCR method based on TaqMan technology developed for the genetic identification of B. pulchra. The mitochondrial cytochrome oxidase subunit 1 (COI) nucleotide sequences of 29 B. pulchra, 157 skates and rays reported in GenBank DNA database were comparatively analyzed and the COI sequences specific to B. pulchra was identified. Based on this information, a system of specific primers and Minor Groove Binding (MGB) TaqMan probe were designed. The assay successfully discriminated in 29 specimens of B. pulchra and 27 commercial samples with unknown species identity. For B. pulchra DNA, an average Threshold Cycle (Ct) value of 19.1±0.1 was obtained. Among 27 commercial samples, two samples showed average Ct values 19.1±0.0 and 26.7±0.1, respectively and were confirmed to be B. pulchra based on sequencing. The other samples tested showed undetectable or extremely weak signals for the target fragment, which was also consistent with the sequencing results. These results reveal that the method developed is a rapid and efficient tool to identify B. pulchra and might prevent fraud or mislabeling during the distribution of B. pulchra products. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Development of a highly sensitive real-time nested RT-PCR assay in a single closed tube for detection of enterovirus 71 in hand, foot, and mouth disease.

    PubMed

    Niu, Peihua; Qi, Shunxiang; Yu, Benzhang; Zhang, Chen; Wang, Ji; Li, Qi; Ma, Xuejun

    2016-11-01

    Enterovirus 71 (EV71) is one of the major causative agents of outbreaks of hand, foot, and mouth disease (HFMD). A commercial TaqMan probe-based real-time PCR assay has been widely used for the differential detection of EV71 despite its relatively high cost and failure to detect samples with a low viral load (Ct value > 35). In this study, a highly sensitive real-time nested RT-PCR (RTN RT-PCR) assay in a single closed tube for detection of EV71 in HFMD was developed. The sensitivity and specificity of this assay were evaluated using a reference EV71 stock and a panel of controls consisting of coxsackievirus A16 (CVA16) and common respiratory viruses, respectively. The clinical performance of this assay was evaluated and compared with those of a commercial TaqMan probe-based real-time PCR (qRT-PCR) assay and a traditional two-step nested RT-PCR assay. The limit of detection for the RTN RT-PCR assay was 0.01 TCID50/ml, with a Ct value of 38.3, which was the same as that of the traditional two-step nested RT-PCR assay and approximately tenfold lower than that of the qRT-PCR assay. When testing the reference strain EV71, this assay showed favorable detection reproducibility and no obvious cross-reactivity. The testing results of 100 clinical throat swabs from HFMD-suspected patients revealed that 41 samples were positive for EV71 by both RTN RT-PCR and traditional two-step nested RT-PCR assays, whereas only 29 were EV71 positive by qRT-PCR assay.

  5. Detection of cashew nut DNA in spiked baked goods using a real-time polymerase chain reaction method.

    PubMed

    Brzezinski, Jennifer L

    2006-01-01

    The detection of potentially allergenic foods, such as tree nuts, in food products is a major concern for the food processing industry. A real-time polymerase chain reaction (PCR) method was designed to determine the presence of cashew DNA in food products. The PCR amplifies a 67 bp fragment of the cashew 2S albumin gene, which is detected with a cashew-specific, dual-labeled TaqMan probe. This reaction will not amplify DNA derived from other tree nut species, such as almond, Brazil nut, hazelnut, and walnut, as well as 4 varieties of peanut. This assay was sensitive enough to detect 5 pg purified cashew DNA as well as cashew DNA in a spiked chocolate cookie sample containing 0.01% (100 mg/kg) cashew.

  6. Residual eDNA detection sensitivity assessed by quantitative real-time PCR in a river ecosystem.

    PubMed

    Balasingham, Katherine D; Walter, Ryan P; Heath, Daniel D

    2017-05-01

    Several studies have demonstrated that environmental DNA (eDNA) can be used to detect the presence of aquatic species, days to weeks after the target species has been removed. However, most studies used eDNA analysis in lentic systems (ponds or lakes), or in controlled laboratory experiments. While eDNA degrades rapidly in all aquatic systems, it also undergoes dilution effects and physical destruction in flowing systems, complicating detection in rivers. However, some eDNA (i.e. residual eDNA) can be retained in aquatic systems, even those subject to high flow regimes. Our goal was to determine residual eDNA detection sensitivity using quantitative real-time polymerase chain reaction (qRT-PCR), in a flowing, uncontrolled river after the eDNA source was removed from the system; we repeated the experiment over 2 years. Residual eDNA had the strongest signal strength at the original source site and was detectable there up to 11.5 h after eDNA source removal. Residual eDNA signal strength decreased as sampling distance downstream from the eDNA source site increased, and was no longer detectable at the source site 48 h after the eDNA source water was exhausted in both experiments. This experiment shows that residual eDNA sampled in surface water can be mapped quantitatively using qRT-PCR, which allows a more accurate spatial identification of the target species location in lotic systems, and relative residual eDNA signal strength may allow the determination of the timing of the presence of target species. © 2016 John Wiley & Sons Ltd.

  7. Quantitative real-time PCR approaches for microbial community studies in wastewater treatment systems: applications and considerations.

    PubMed

    Kim, Jaai; Lim, Juntaek; Lee, Changsoo

    2013-12-01

    Quantitative real-time PCR (qPCR) has been widely used in recent environmental microbial ecology studies as a tool for detecting and quantifying microorganisms of interest, which aids in better understandings of the complexity of wastewater microbial communities. Although qPCR can be used to provide more specific and accurate quantification than other molecular techniques, it does have limitations that must be considered when applying it in practice. This article reviews the principle of qPCR quantification and its applications to microbial ecology studies in various wastewater treatment environments. Here we also address several limitations of qPCR-based approaches that can affect the validity of quantification data: template nucleic acid quality, nucleic acid extraction efficiency, specificity of group-specific primers and probes, amplification of nonviable DNA, gene copy number variation, and limited number of sequences in the database. Even with such limitations, qPCR is reportedly among the best methods for quantitatively investigating environmental microbial communities. The application of qPCR is and will continue to be increasingly common in studies of wastewater treatment systems. To obtain reliable analyses, however, the limitations that have often been overlooked must be carefully considered when interpreting the results. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Real-time quantitative analysis of H2, He, O2, and Ar by quadrupole ion trap mass spectrometry.

    PubMed

    Ottens, Andrew K; Harrison, W W; Griffin, Timothy P; Helms, William R

    2002-09-01

    The use of a quadrupole ion trap mass spectrometer (QITMS) for quantitative analysis of hydrogen and helium as well as of other permanent gases is demonstrated. Like commercial instruments, the customized QITMS uses mass selective instability; however, this instrument operates at a greater trapping frequency and without a buffer gas. Thus, a useable mass range from 2 to over 50 daltons (Da) is achieved. The performance of the ion trap is evaluated using part-per-million (ppm) concentrations of hydrogen, helium, oxygen, and argon mixed into a nitrogen gas stream, as outlined by the National Aeronautics and Space Administration (NASA), which is interested in monitoring for cryogenic fuel leaks within the Space Shuttle during launch preparations. When quantitating the four analytes, relative accuracy and precision were better than the NASA-required minimum of 10% error and 5% deviation, respectively. Limits of detection were below the NASA requirement of 25-ppm hydrogen and 100-ppm helium; those for oxygen and argon were within the same order of magnitude as the requirements. These results were achieved at a fast data recording rate, and demonstrate the utility of the QITMS as a real-time quantitative monitoring device for permanent gas analysis. c. 2002 American Society for Mass Spectrometry.

  9. Application of TaqMan qPCR for the detection and monitoring of Naegleria species in reservoirs used as a source for drinking water.

    PubMed

    Kao, Po-Min; Hsu, Bing-Mu; Hsu, Tsui-Kang; Chiu, Yi-Chou; Chang, Chung-Liang; Ji, Wen-Tsai; Huang, Shih-Wei; Fan, Cheng-Wei

    2014-10-01

    Naegleria spp. can be found in the natural aquatic environments. Naegleria fowleri can cause fatal infections in the central nervous system in humans and animals, and the most important source of infection is through direct water contact. In this study, PCR of 5.8S ribosomal RNA (rRNA) gene and internal transcribed spacer (ITS) region was performed in order to identify Naegleria isolates and quantify the Naegleria spp. by TaqMan real-time quantitative PCR in reservoir water samples. The occurrence of Naegleria spp. was investigated in 57 water samples from reservoirs with culture and PCR positive in 2 of them (3.5%), respectively. The total detection rate was 7.0% (4/ 57) for Naegleria spp. The identified species included Naegleria spp., Naegleria canariensis, and Naegleria clarki. N. fowleri was not found in Taiwan's reservoirs used for drinking purposes. The concentrations of Naegleria spp. in detected positive reservoir water samples were in the range of 599 and 3.1 × 10(3) cells/L. The presence or absence of Naegleria spp. within the reservoir water samples showed significant difference with the levels of water temperature. The presence of Naegleria spp. in reservoirs considered a potential public health threat if pathogenic species exist in reservoirs.

  10. Identification of Reference Genes for Normalizing Quantitative Real-Time PCR in Urechis unicinctus

    NASA Astrophysics Data System (ADS)

    Bai, Yajiao; Zhou, Di; Wei, Maokai; Xie, Yueyang; Gao, Beibei; Qin, Zhenkui; Zhang, Zhifeng

    2018-06-01

    The reverse transcription quantitative real-time PCR (RT-qPCR) has become one of the most important techniques of studying gene expression. A set of valid reference genes are essential for the accurate normalization of data. In this study, five candidate genes were analyzed with geNorm, NormFinder, BestKeeper and ΔCt methods to identify the genes stably expressed in echiuran Urechis unicinctus, an important commercial marine benthic worm, under abiotic (sulfide stress) and normal (adult tissues, embryos and larvae at different development stages) conditions. The comprehensive results indicated that the expression of TBP was the most stable at sulfide stress and in developmental process, while the expression of EF- 1- α was the most stable at sulfide stress and in various tissues. TBP and EF- 1- α were recommended as a suitable reference gene combination to accurately normalize the expression of target genes at sulfide stress; and EF- 1- α, TBP and TUB were considered as a potential reference gene combination for normalizing the expression of target genes in different tissues. No suitable gene combination was obtained among these five candidate genes for normalizing the expression of target genes for developmental process of U. unicinctus. Our results provided a valuable support for quantifying gene expression using RT-qPCR in U. unicinctus.

  11. "Fast" Is Not "Real-Time": Designing Effective Real-Time AI Systems

    NASA Astrophysics Data System (ADS)

    O'Reilly, Cindy A.; Cromarty, Andrew S.

    1985-04-01

    Realistic practical problem domains (such as robotics, process control, and certain kinds of signal processing) stand to benefit greatly from the application of artificial intelligence techniques. These problem domains are of special interest because they are typified by complex dynamic environments in which the ability to select and initiate a proper response to environmental events in real time is a strict prerequisite to effective environmental interaction. Artificial intelligence systems developed to date have been sheltered from this real-time requirement, however, largely by virtue of their use of simplified problem domains or problem representations. The plethora of colloquial and (in general) mutually inconsistent interpretations of the term "real-time" employed by workers in each of these domains further exacerbates the difficul-ties in effectively applying state-of-the-art problem solving tech-niques to time-critical problems. Indeed, the intellectual waters are by now sufficiently muddied that the pursuit of a rigorous treatment of intelligent real-time performance mandates the redevelopment of proper problem perspective on what "real-time" means, starting from first principles. We present a simple but nonetheless formal definition of real-time performance. We then undertake an analysis of both conventional techniques and AI technology with respect to their ability to meet substantive real-time performance criteria. This analysis provides a basis for specification of problem-independent design requirements for systems that would claim real-time performance. Finally, we discuss the application of these design principles to a pragmatic problem in real-time signal understanding.

  12. [Quantitative real-time PCR for target periodontal bacteria in subgingival plaque before and after local delivery of periocline, scaling and root planning].

    PubMed

    Deng, Shu-li; Wang, Ying; He, Jia-yan; Chen, Zhuo; Chen, Hui

    2013-06-01

    To compare the copy number of Porphyromonas gingivalis (Pg) and Prevotella intermedia (Pi) in subgingival plaque before and after local delivery of periocline (2% minocycline hydrochloride ointment, MO), scaling and root planning (SRP) by quantitative real-time PCR (qRT-PCR) and evaluate the efficacy. Sixty-two adults with moderate to severe chronic periodontitis were selected in the study. Microbial samples were taken from pocket before and after MO and SRP(7d). The samples were evaluated by qRT-PCR for Pg and Pi. Microbiological effectiveness of treatments was assessed using Kruskal-Wallis and Wilcoxon rank-sum test. All tests were two-sided with a significance level of 0.05. All analyses were conducted with SAS 9.1.3 software package. The copy number of Pg and Pi in subgingival plaque was 10(3)-10(6) and 10(2)-10(6). Bacterial loads of Pg were reduced in SPR+ MO, SRP and MO site. The counts of Pi decreased in SRP+ MO sites compared with those in the MO or SRP alone sites significantly (P<0.05). Quantitative real-time PCR (qRT-PCR) is used as a powerful tool with high sensitivity and specificity to quantitatively assess target periodontal bacteria. The results show that subgingival administration of MO and SRP was effective for reducing pathogenic bacteria and improving clinical outcome. Supported by 2011 National Clinical Specialist Construction Project; Natural Science Foundation of Zhejiang Province(LY13H140002); Education Department Funds of Zhejiang Province(20061258) and Medical General Research Project of Zhejiang Province(2012KYB121).

  13. Fast-tracking determination of homozygous transgenic lines and transgene stacking using a reliable quantitative real-time PCR assay.

    PubMed

    Wang, Xianghong; Jiang, Daiming; Yang, Daichang

    2015-01-01

    The selection of homozygous lines is a crucial step in the characterization of newly generated transgenic plants. This is particularly time- and labor-consuming when transgenic stacking is required. Here, we report a fast and accurate method based on quantitative real-time PCR with a rice gene RBE4 as a reference gene for selection of homozygous lines when using multiple transgenic stacking in rice. Use of this method allowed can be used to determine the stacking of up to three transgenes within four generations. Selection accuracy reached 100 % for a single locus and 92.3 % for two loci. This method confers distinct advantages over current transgenic research methodologies, as it is more accurate, rapid, and reliable. Therefore, this protocol could be used to efficiently select homozygous plants and to expedite time- and labor-consuming processes normally required for multiple transgene stacking. This protocol was standardized for determination of multiple gene stacking in molecular breeding via marker-assisted selection.

  14. A real-time RT-PCR assay for molecular identification and quantitation of feline morbillivirus RNA from biological specimens.

    PubMed

    De Luca, Eliana; Crisi, Paolo Emidio; Di Domenico, Marco; Malatesta, Daniela; Vincifori, Giacomo; Di Tommaso, Morena; Di Guardo, Giovanni; Di Francesco, Gabriella; Petrini, Antonio; Savini, Giovanni; Boari, Andrea; Lorusso, Alessio

    2018-05-03

    The aim of this study was to develop a real-time RT-PCR to detect and quantitate feline morbillivirus (FeMV) RNA in biological samples. Primers and probe were targeted on a conserved region of FeMV P/V/C gene. To validate the assay with field samples, a total number of specimens of cats have been recruited including 264 urine and blood samples and compared with a generic RT-PCR targeting the L protein encoding gene of morbilliviruses. In addition, 385 tissue samples from 35 carcasses of cats have been also employed. RNA titres were low in all tested samples. Results also indicated the absence of cross-reaction with related morbilliviruses and existing pathogens of cats. In tissues with low levels of FeMV RNA, the presence of viral antigen was also evidenced by immunohistochemistry targeting the N viral protein. This newly described assay allows for a rapid, accurate and reliable quantitative detection of FeMV RNA that can be applied for diagnostics and research studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Development of a real-time and quantitative thrombus sensor for an extracorporeal centrifugal blood pump by near-infrared light

    PubMed Central

    Sakota, Daisuke; Fujiwara, Tatsuki; Ohuchi, Katsuhiro; Kuwana, Katsuyuki; Yamazaki, Hiroyuki; Kosaka, Ryo; Nishida, Masahiro; Mizuno, Tomohiro; Arai, Hirokuni; Maruyama, Osamu

    2017-01-01

    We developed an optical thrombus sensor for a monopivot extracorporeal centrifugal blood pump. In this study, we investigated its quantitative performance for thrombus detection in acute animal experiments of left ventricular assist using the pump on pathogen-free pigs. Optical fibers were set in the driver unit of the pump. The incident light at the near-infrared wavelength of 810 nm was aimed at the pivot bearing, and the resulting scattered light was guided to the optical fibers. The detected signal was analyzed to obtain the thrombus formation level. As a result, real-time and quantitative monitoring of the thrombus surface area on the pivot bearing was achieved with an accuracy of 3.6 ± 2.3 mm2. In addition, the sensing method using the near-infrared light was not influenced by changes in the oxygen saturation and the hematocrit. It is expected that the developed sensor will be useful for optimal anticoagulation management for long-term extracorporeal circulation therapies. PMID:29359096

  16. Development of a real-time and quantitative thrombus sensor for an extracorporeal centrifugal blood pump by near-infrared light.

    PubMed

    Sakota, Daisuke; Fujiwara, Tatsuki; Ohuchi, Katsuhiro; Kuwana, Katsuyuki; Yamazaki, Hiroyuki; Kosaka, Ryo; Nishida, Masahiro; Mizuno, Tomohiro; Arai, Hirokuni; Maruyama, Osamu

    2018-01-01

    We developed an optical thrombus sensor for a monopivot extracorporeal centrifugal blood pump. In this study, we investigated its quantitative performance for thrombus detection in acute animal experiments of left ventricular assist using the pump on pathogen-free pigs. Optical fibers were set in the driver unit of the pump. The incident light at the near-infrared wavelength of 810 nm was aimed at the pivot bearing, and the resulting scattered light was guided to the optical fibers. The detected signal was analyzed to obtain the thrombus formation level. As a result, real-time and quantitative monitoring of the thrombus surface area on the pivot bearing was achieved with an accuracy of 3.6 ± 2.3 mm 2 . In addition, the sensing method using the near-infrared light was not influenced by changes in the oxygen saturation and the hematocrit. It is expected that the developed sensor will be useful for optimal anticoagulation management for long-term extracorporeal circulation therapies.

  17. Quantitative EEG analysis using error reduction ratio-causality test; validation on simulated and real EEG data.

    PubMed

    Sarrigiannis, Ptolemaios G; Zhao, Yifan; Wei, Hua-Liang; Billings, Stephen A; Fotheringham, Jayne; Hadjivassiliou, Marios

    2014-01-01

    To introduce a new method of quantitative EEG analysis in the time domain, the error reduction ratio (ERR)-causality test. To compare performance against cross-correlation and coherence with phase measures. A simulation example was used as a gold standard to assess the performance of ERR-causality, against cross-correlation and coherence. The methods were then applied to real EEG data. Analysis of both simulated and real EEG data demonstrates that ERR-causality successfully detects dynamically evolving changes between two signals, with very high time resolution, dependent on the sampling rate of the data. Our method can properly detect both linear and non-linear effects, encountered during analysis of focal and generalised seizures. We introduce a new quantitative EEG method of analysis. It detects real time levels of synchronisation in the linear and non-linear domains. It computes directionality of information flow with corresponding time lags. This novel dynamic real time EEG signal analysis unveils hidden neural network interactions with a very high time resolution. These interactions cannot be adequately resolved by the traditional methods of coherence and cross-correlation, which provide limited results in the presence of non-linear effects and lack fidelity for changes appearing over small periods of time. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Development and validation of quantitative PCR for detection of Terrapene herpesvirus 1 utilizing free-ranging eastern box turtles (Terrapene carolina carolina).

    PubMed

    Kane, Lauren P; Bunick, David; Abd-Eldaim, Mohamed; Dzhaman, Elena; Allender, Matthew C

    2016-06-01

    Diseases that affect the upper respiratory tract (URT) in chelonians have been well described as a significant contributor of morbidity and mortality. Specifically, herpesviruses are common pathogens in captive chelonians worldwide, but their importance on free-ranging populations is less well known. Historical methods for the diagnosis of herpesvirus infections include virus isolation and conventional PCR. Real-time PCR has become an essential tool for detection and quantitation of many pathogens, but has not yet been developed for herpesviruses in box turtles. Two quantitative real-time TaqMan PCR assays, TerHV58 and TerHV64, were developed targeting the DNA polymerase gene of Terrapene herpesvirus 1 (TerHV1). The assay detected a viral DNA segment cloned within a plasmid with 10-fold serial dilutions from 1.04 × 10(7) to 1.04 × 10(1) viral copies per reaction. Even though both primers had acceptable levels of efficiency and variation, TerHV58 was utilized to test clinical samples based on less variation and increased efficiency. This assay detected as few as 10 viral copies per reaction and should be utilized in free-ranging and captive box turtles to aid in the characterization of the epidemiology of this disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Real-Time Imaging System for the OpenPET

    NASA Astrophysics Data System (ADS)

    Tashima, Hideaki; Yoshida, Eiji; Kinouchi, Shoko; Nishikido, Fumihiko; Inadama, Naoko; Murayama, Hideo; Suga, Mikio; Haneishi, Hideaki; Yamaya, Taiga

    2012-02-01

    The OpenPET and its real-time imaging capability have great potential for real-time tumor tracking in medical procedures such as biopsy and radiation therapy. For the real-time imaging system, we intend to use the one-pass list-mode dynamic row-action maximum likelihood algorithm (DRAMA) and implement it using general-purpose computing on graphics processing units (GPGPU) techniques. However, it is difficult to make consistent reconstructions in real-time because the amount of list-mode data acquired in PET scans may be large depending on the level of radioactivity, and the reconstruction speed depends on the amount of the list-mode data. In this study, we developed a system to control the data used in the reconstruction step while retaining quantitative performance. In the proposed system, the data transfer control system limits the event counts to be used in the reconstruction step according to the reconstruction speed, and the reconstructed images are properly intensified by using the ratio of the used counts to the total counts. We implemented the system on a small OpenPET prototype system and evaluated the performance in terms of the real-time tracking ability by displaying reconstructed images in which the intensity was compensated. The intensity of the displayed images correlated properly with the original count rate and a frame rate of 2 frames per second was achieved with average delay time of 2.1 s.

  20. Comparative evaluation of laboratory developed real-time PCR assays and RealStar(®) BKV PCR Kit for quantitative detection of BK polyomavirus.

    PubMed

    Hasan, Mohammad R; Tan, Rusung; Al-Rawahi, Ghada; Thomas, Eva; Tilley, Peter

    2016-08-01

    Quantitative, viral load monitoring for BK virus (BKV) by real-time PCR is an important tool in the management of polyomavirus associated nephropathy in renal transplant patients. However, variability in PCR results has been reported because of polymorphisms in viral genes among different subtypes of BKV, and lack of standardization of the PCR assays among different laboratories. In this study we have compared the performance of several laboratory developed PCR assays that target highly conserved regions of BKV genome with a commercially available, RealStar(®) BKV PCR Kit. Three real-time PCR assays (i) VP1 assay: selected from the literature that targets the major capsid protein (VP1) gene (ii) VP1MOD assay: VP1 assay with a modified probe, and (iii) BKLTA assay: newly designed assay that targets the large T antigen gene were assessed in parallel, using controls and clinical specimens that were previously tested using RealStar(®) BKV PCR Kit (Altona Diagnostics GmbH, Hamburg, Germany). Nucleic acid from all samples were extracted using the QIA symphony virus/bacteria kit on an automated DNA extraction platform QIA symphony SP (Qiagen). Primer and probe concentration, and reaction conditions for laboratory developed assays were optimized and the limit of detection of different assays was determined. Positive control for laboratory developed BK assays was prepared through construction of a plasmid carrying respective amplicon sequences. The 95% detection limit of VP1, VP1MOD and BKLTA assays were 1.8×10(2), 3×10(3) and 3.5×10(2) genomic copies/ml, respectively, as determined by Probit regression analysis of data obtained by testing a dilution series of a titered patient specimen, using RealStar(®) BKV PCR Kit. The inter-assay and intra-assay, coefficient of variations of these assays using calibrated, plasmid standards were <1%. All assays, including the RealStar(®) BKV PCR assay, were highly specific when tested against a panel of external proficiency

  1. Real-time imaging of quantum entanglement.

    PubMed

    Fickler, Robert; Krenn, Mario; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton

    2013-01-01

    Quantum Entanglement is widely regarded as one of the most prominent features of quantum mechanics and quantum information science. Although, photonic entanglement is routinely studied in many experiments nowadays, its signature has been out of the grasp for real-time imaging. Here we show that modern technology, namely triggered intensified charge coupled device (ICCD) cameras are fast and sensitive enough to image in real-time the effect of the measurement of one photon on its entangled partner. To quantitatively verify the non-classicality of the measurements we determine the detected photon number and error margin from the registered intensity image within a certain region. Additionally, the use of the ICCD camera allows us to demonstrate the high flexibility of the setup in creating any desired spatial-mode entanglement, which suggests as well that visual imaging in quantum optics not only provides a better intuitive understanding of entanglement but will improve applications of quantum science.

  2. Real-Time Imaging of Quantum Entanglement

    PubMed Central

    Fickler, Robert; Krenn, Mario; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton

    2013-01-01

    Quantum Entanglement is widely regarded as one of the most prominent features of quantum mechanics and quantum information science. Although, photonic entanglement is routinely studied in many experiments nowadays, its signature has been out of the grasp for real-time imaging. Here we show that modern technology, namely triggered intensified charge coupled device (ICCD) cameras are fast and sensitive enough to image in real-time the effect of the measurement of one photon on its entangled partner. To quantitatively verify the non-classicality of the measurements we determine the detected photon number and error margin from the registered intensity image within a certain region. Additionally, the use of the ICCD camera allows us to demonstrate the high flexibility of the setup in creating any desired spatial-mode entanglement, which suggests as well that visual imaging in quantum optics not only provides a better intuitive understanding of entanglement but will improve applications of quantum science. PMID:23715056

  3. Real-time PCR method applied to seafood products for authentication of European sole (Solea solea) and differentiation of common substitute species.

    PubMed

    Herrero, Beatriz; Lago, Fátima C; Vieites, Juan M; Espiñeira, Montserrat

    2012-01-01

    Judged by quality and taste, the European sole (Solea solea) is considered one of the finest flatfish and is, thus, of considerable commercial value. In the present work, a specific fast real-time PCR was developed for the authentication of S. solea, i.e. to distinguish it from other related species and avoid substitution of this species, either deliberately or unintentionally. The method is based on a species-specific set of primers and MGB Taqman probe which amplifies a 116-bp fragment of the internal transcribed spacer 1 (ITS 1) ribosomal DNA region. This assay combines the high specificity and sensitivity of real-time PCR with the rapidity of the fast mode, allowing the detection of S. solea in a short period of time. The present methodology was validated for application to all types of manufactured products for the presence of S. solea, with successful results. Subsequently, the method was applied to 40 commercial samples to determine whether correct labeling had been employed in the market. It was demonstrated that the assay is a useful tool in monitoring and verifying food labeling regulations.

  4. Development Status of the WetLab-2 Project: New Tools for On-orbit Real-time Quantitative Gene Expression.

    NASA Technical Reports Server (NTRS)

    Jung, Jimmy; Parra, Macarena P.; Almeida, Eduardo; Boone, Travis; Chinn, Tori; Ricco, Antonio; Souza, Kenneth; Hyde, Liz; Rukhsana, Yousuf; Richey, C. Scott

    2013-01-01

    The primary objective of NASA Ames Research Centers WetLab-2 Project is to place on the ISS a research platform to facilitate gene expression analysis via quantitative real-time PCR (qRT-PCR) of biological specimens grown or cultured on orbit. The WetLab-2 equipment will be capable of processing multiple sample types ranging from microbial cultures to animal tissues dissected on-orbit. In addition to the logistical benefits of in-situ sample processing and analysis, conducting qRT-PCR on-orbit eliminates the confounding effects on gene expression of reentry stresses and shock acting on live cells and organisms. The system can also validate terrestrial analyses of samples returned from ISS by providing quantitative on-orbit gene expression benchmarking prior to sample return. The ability to get on orbit data will provide investigators with the opportunity to adjust experimental parameters for subsequent trials based on the real-time data analysis without need for sample return and re-flight. Finally, WetLab-2 can be used for analysis of air, surface, water, and clinical samples to monitor environmental contaminants and crew health. The verification flight of the instrument is scheduled to launch on SpaceX-5 in Aug. 2014.Progress to date: The WetLab-2 project completed a thorough study of commercially available qRT-PCR systems and performed a downselect based on both scientific and engineering requirements. The selected instrument, the Cepheid SmartCycler, has advantages including modular design (16 independent PCR modules), low power consumption, and rapid ramp times. The SmartCycler has multiplex capabilities, assaying up to four genes of interest in each of the 16 modules. The WetLab-2 team is currently working with Cepheid to modify the unit for housing within an EXPRESS rack locker on the ISS. This will enable the downlink of data to the ground and provide uplink capabilities for programming, commanding, monitoring, and instrument maintenance. The project is

  5. Development and application of a real-time PCR assay for the detection and quantitation of lymphocystis disease virus.

    PubMed

    Ciulli, Sara; Pinheiro, Ana Cristina de Aguiar Saldana; Volpe, Enrico; Moscato, Michele; Jung, Tae Sung; Galeotti, Marco; Stellino, Sabrina; Farneti, Riccardo; Prosperi, Santino

    2015-03-01

    Lymphocystis disease virus (LCDV) is responsible for a chronic self-limiting disease that affects more than 125 teleosts. Viral isolation of LCDV is difficult, time-consuming and often ineffective; the development of a rapid and specific tool to detect and quantify LCDV is desirable for both diagnosis and pathogenic studies. In this study, a quantitative real-time PCR (qPCR) assay was developed using a Sybr-Green-based assay targeting a highly conserved region of the MCP gene. Primers were designed on a multiple alignment that included all known LCDV genotypes. The viral DNA segment was cloned within a plasmid to generate a standard curve. The limit of detection was as low as 2.6DNA copies/μl of plasmid and the qPCR was able to detect viral DNA from cell culture lysates and tissues at levels ten-times lower than conventional PCR. Both gilthead seabream and olive flounder LCDV has been amplified, and an in silico assay showed that LCDV of all genotypes can be amplified. LCDV was detected in target and non-target tissues of both diseased and asymptomatic fish. The LCDV qPCR assay developed in this study is highly sensitive, specific, reproducible and versatile for the detection and quantitation of Lymphocystivirus, and may also be used for asymptomatic carrier detection or pathogenesis studies of different LCDV strains. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Molecular Detection and Species-Specific Identification of Medically Important Aspergillus Species by Real-Time PCR in Experimental Invasive Pulmonary Aspergillosis ▿

    PubMed Central

    Walsh, Thomas J.; Wissel, Mark C.; Grantham, Kevin J.; Petraitiene, Ruta; Petraitis, Vidmantas; Kasai, Miki; Francesconi, Andrea; Cotton, Margaret P.; Hughes, Johanna E.; Greene, Lora; Bacher, John D.; Manna, Pradip; Salomoni, Martin; Kleiboeker, Steven B.; Reddy, Sushruth K.

    2011-01-01

    Diagnosis of invasive pulmonary aspergillosis (IPA) remains a major challenge to clinical microbiology laboratories. We developed rapid and sensitive quantitative PCR (qPCR) assays for genus- and species-specific identification of Aspergillus infections by use of TaqMan technology. In order to validate these assays and understand their potential diagnostic utility, we then performed a blinded study of bronchoalveolar lavage (BAL) fluid specimens from well-characterized models of IPA with the four medically important species. A set of real-time qPCR primers and probes was developed by utilizing unique ITS1 regions for genus- and species-specific detection of the four most common medically important Aspergillus species (Aspergillus fumigatus, A. flavus, A. niger, and A. terreus). Pan-Aspergillus and species-specific qPCRs with BAL fluid were more sensitive than culture for detection of IPA caused by A. fumigatus in untreated (P < 0.0007) and treated (P ≤ 0.008) animals, respectively. For infections caused by A. terreus and A. niger, culture and PCR amplification from BAL fluid yielded similar sensitivities for untreated and treated animals. Pan-Aspergillus PCR was more sensitive than culture for detection of A. flavus in treated animals (P = 0.002). BAL fluid pan-Aspergillus and species-specific PCRs were comparable in sensitivity to BAL fluid galactomannan (GM) assay. The copy numbers from the qPCR assays correlated with quantitative cultures to determine the pulmonary residual fungal burdens in lung tissue. Pan-Aspergillus and species-specific qPCR assays may improve the rapid and accurate identification of IPA in immunocompromised patients. PMID:21976757

  7. Real-time PCR for detection and quantification of the biocontrol agent Trichoderma atroviride strain SC1 in soil.

    PubMed

    Savazzini, Federica; Longa, Claudia Maria Oliveira; Pertot, Ilaria; Gessler, Cesare

    2008-05-01

    Trichoderma (Hypocreales, Ascomycota) is a widespread genus in nature and several Trichoderma species are used in industrial processes and as biocontrol agents against crop diseases. It is very important that the persistence and spread of microorganisms released on purpose into the environment are accurately monitored. Real-time PCR methods for genus/species/strain identification of microorganisms are currently being developed to overcome the difficulties of classical microbiological and enzymatic methods for monitoring these populations. The aim of the present study was to develop and validate a specific real-time PCR-based method for detecting Trichoderma atroviride SC1 in soil. We developed a primer and TaqMan probe set constructed on base mutations in an endochitinase gene. This tool is highly specific for the detection and quantification of the SC1 strain. The limits of detection and quantification calculated from the relative standard deviation were 6000 and 20,000 haploid genome copies per gram of soil. Together with the low throughput time associated with this procedure, which allows the evaluation of many soil samples within a short time period, these results suggest that this method could be successfully used to trace the fate of T. atroviride SC1 applied as an open-field biocontrol agent.

  8. A multiplex calibrated real-time PCR assay for quantitation of DNA of EBV-1 and 2.

    PubMed

    Gatto, Francesca; Cassina, Giulia; Broccolo, Francesco; Morreale, Giuseppe; Lanino, Edoardo; Di Marco, Eddi; Vardas, Efthiya; Bernasconi, Daniela; Buttò, Stefano; Principi, Nicola; Esposito, Susanna; Scarlatti, Gabriella; Lusso, Paolo; Malnati, Mauro S

    2011-12-01

    Accurate and highly sensitive tests for the diagnosis of active Epstein-Barr virus (EBV) infection are essential for the clinical management of individuals infected with EBV. A calibrated quantitative real-time PCR assay for the measurement of EBV DNA of both EBV-1 and 2 subtypes was developed, combining the detection of the EBV DNA and a synthetic DNA calibrator in a multiplex PCR format. The assay displays a wide dynamic range and a high degree of accuracy even in the presence of 1μg of human genomic DNA. This assay measures with the same efficiency EBV DNA from strains prevalent in different geographic areas. The clinical sensitivity and specificity of the system were evaluated by testing 181 peripheral blood mononuclear cell (PBMCs) and plasma specimens obtained from 21 patients subjected to bone marrow transplantation, 70 HIV-seropositive subjects and 23 healthy controls. Patients affected by EBV-associated post-transplant lymphoprolipherative disorders had the highest frequency of EBV detection and the highest viral load. Persons infected with HIV had higher levels of EBV DNA load in PBMCs and a higher frequency of EBV plasma viremia compared to healthy controls. In conclusion, this new assay provides a reliable high-throughput method for the quantitation of EBV DNA in clinical samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Use of Quantitative Real-Time PCR for Direct Detection of Serratia marcescens in Marine and Other Aquatic Environments

    PubMed Central

    Joyner, Jessica; Wanless, David; Sinigalliano, Christopher D.

    2014-01-01

    Serratia marcescens is the etiological agent of acroporid serratiosis, a distinct form of white pox disease in the threatened coral Acropora palmata. The pathogen is commonly found in untreated human waste in the Florida Keys, which may contaminate both nearshore and offshore waters. Currently there is no direct method for detection of this bacterium in the aquatic or reef environment, and culture-based techniques may underestimate its abundance in marine waters. A quantitative real-time PCR assay was developed to detect S. marcescens directly from environmental samples, including marine water, coral mucus, sponge tissue, and wastewater. The assay targeted the luxS gene and was able to distinguish S. marcescens from other Serratia species with a reliable quantitative limit of detection of 10 cell equivalents (CE) per reaction. The method could routinely discern the presence of S. marcescens for as few as 3 CE per reaction, but it could not be reliably quantified at this level. The assay detected environmental S. marcescens in complex sewage influent samples at up to 761 CE ml−1 and in septic system-impacted residential canals in the Florida Keys at up to 4.1 CE ml−1. This detection assay provided rapid quantitative abilities and good sensitivity and specificity, which should offer an important tool for monitoring this ubiquitous pathogen that can potentially impact both human health and coral health. PMID:24375136

  10. Use of quantitative real-time PCR for direct detection of serratia marcescens in marine and other aquatic environments.

    PubMed

    Joyner, Jessica; Wanless, David; Sinigalliano, Christopher D; Lipp, Erin K

    2014-03-01

    Serratia marcescens is the etiological agent of acroporid serratiosis, a distinct form of white pox disease in the threatened coral Acropora palmata. The pathogen is commonly found in untreated human waste in the Florida Keys, which may contaminate both nearshore and offshore waters. Currently there is no direct method for detection of this bacterium in the aquatic or reef environment, and culture-based techniques may underestimate its abundance in marine waters. A quantitative real-time PCR assay was developed to detect S. marcescens directly from environmental samples, including marine water, coral mucus, sponge tissue, and wastewater. The assay targeted the luxS gene and was able to distinguish S. marcescens from other Serratia species with a reliable quantitative limit of detection of 10 cell equivalents (CE) per reaction. The method could routinely discern the presence of S. marcescens for as few as 3 CE per reaction, but it could not be reliably quantified at this level. The assay detected environmental S. marcescens in complex sewage influent samples at up to 761 CE ml(-1) and in septic system-impacted residential canals in the Florida Keys at up to 4.1 CE ml(-1). This detection assay provided rapid quantitative abilities and good sensitivity and specificity, which should offer an important tool for monitoring this ubiquitous pathogen that can potentially impact both human health and coral health.

  11. Development and validation of a SYBR Green I-based real-time polymerase chain reaction method for detection of haptoglobin gene deletion in clinical materials.

    PubMed

    Soejima, Mikiko; Tsuchiya, Yuji; Egashira, Kouichi; Kawano, Hiroyuki; Sagawa, Kimitaka; Koda, Yoshiro

    2010-06-01

    Anhaptoglobinemic patients run the risk of severe anaphylactic transfusion reaction because they produce serum haptoglobin (Hp) antibodies. Being homozygous for the Hp gene deletion (HP(del)) is the only known cause of congenital anhaptoglobinemia, and clinical diagnosis of HP(del) before transfusion is important to prevent anaphylactic shock. We recently developed a 5'-nuclease (TaqMan) real-time polymerase chain reaction (PCR) method. A SYBR Green I-based duplex real-time PCR assay using two forward primers and a common reverse primer followed by melting curve analysis was developed to determine HP(del) zygosity in a single tube. In addition, to obviate initial DNA extraction, we examined serially diluted blood samples as PCR templates. Allelic discrimination of HP(del) yielded optimal results at blood sample dilutions of 1:64 to 1:1024. The results from 2231 blood samples were fully concordant with those obtained by the TaqMan-based real-time PCR method. The detection rate of the HP(del) allele by the SYBR Green I-based method is comparable with that using the TaqMan-based method. This method is readily applicable due to its low initial cost and analyzability using economical real-time PCR machines and is suitable for high-throughput analysis as an alternative method for allelic discrimination of HP(del).

  12. Development of a taqman-based real-time PCR assay for the rapid and specific detection of novel duck- origin goose parvovirus.

    PubMed

    Wang, Jianchang; Wang, Jinfeng; Cui, Yuan; Nan, Huizhu; Yuan, Wanzhe

    2017-08-01

    A real-time PCR assay was developed for specific detection of novel duck-origin goose parvovirus (N-GPV), the etiological agent of duck beak atrophy and dwarfism syndrome (BADS). The detection limit of the assay was 10 2 copies. The assay was useful in the prevention and control of BADS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Quantitative analysis of SMN1 gene and estimation of SMN1 deletion carrier frequency in Korean population based on real-time PCR.

    PubMed

    Lee, Tae-Mi; Kim, Sang-Wun; Lee, Kwang-Soo; Jin, Hyun-Seok; Koo, Soo Kyung; Jo, Inho; Kang, Seongman; Jung, Sung-Chul

    2004-12-01

    Spinal muscular atrophy (SMA) is an autosomal recessive disorder, caused by homozygous absence of the survival motor neuron gene (SMN1) in approximately 94% of patients. Since most carriers have only one SMN1 gene copy, several SMN1 quantitative analyses have been used for the SMA carrier detection. We developed a reliable quantitative real-time PCR with SYBR Green I dye and studied 13 patients with SMA and their 24 parents, as well as 326 healthy normal individuals. The copy number of the SMN1 gene was determined by the comparative threshold cycle (Ct) method and albumin was used as a reference gene. The homozygous SMN1 deletion ratio of patients was 0.00 and the hemizygous SMN1 deletion ratio of parents ranged from 0.39 to 0.59. The deltadelta Ct ratios of 7 persons among 326 normal individuals were within the carrier range, 0.41-0.57. According to these data, we estimated the carrier and disease prevalence of SMA at 1/47 and 1/8,496 in Korean population, respectively. These data indicated that there would be no much difference in disease prevalence of SMA compared with western countries. Since the prevalence of SMA is higher than other autosomal recessive disorders, the carrier detection method using real-time PCR could be a useful tool for genetic counseling.

  14. Selecting a set of housekeeping genes for quantitative real-time PCR in normal and tetraploid haemocytes of soft-shell clams, Mya arenaria.

    PubMed

    Siah, A; Dohoo, C; McKenna, P; Delaporte, M; Berthe, F C J

    2008-09-01

    The transcripts involved in the molecular mechanisms of haemic neoplasia in relation to the haemocyte ploidy status of the soft-shell clam, Mya arenaria, have yet to be identified. For this purpose, real-time quantitative RT-PCR constitutes a sensitive and efficient technique, which can help determine the gene expression involved in haemocyte tetraploid status in clams affected by haemic neoplasia. One of the critical steps in comparing transcription profiles is the stability of selected housekeeping genes, as well as an accurate normalization. In this study, we selected five reference genes, S18, L37, EF1, EF2 and actin, generally used as single control genes. Their expression was analyzed by real-time quantitative RT-PCR at different levels of haemocyte ploidy status in order to select the most stable genes. Using the geNorm software, our results showed that L37, EF1 and S18 represent the most stable gene expressions related to various ploidy status ranging from 0 to 78% of tetraploid haemocytes in clams sampled in North River (Prince Edward Island, Canada). However, actin gene expression appeared to be highly regulated. Hence, using it as a housekeeping gene in tetraploid haemocytes can result in inaccurate data. To compare gene expression levels related to haemocyte ploidy status in Mya arenaria, using L37, EF1 and S18 as housekeeping genes for accurate normalization is therefore recommended.

  15. Protocol for the use of light upon extension real-time PCR for the determination of viral load in HBV infection.

    PubMed

    Li, Guimin; Li, Wangfeng; Liu, Lixia

    2012-01-01

    Real-time PCR has engendered wide acceptance for quantitation of hepatitis B virus (HBV) DNA in the blood due to its improved rapidity, sensitivity, reproducibility, and reduced contamination. Here we describe a cost-effective and highly sensitive HBV real-time quantitative assay based on the light upon extension real-time PCR platform and a simple and reliable HBV DNA preparation method using silica-coated magnetic beads.

  16. GETPrime: a gene- or transcript-specific primer database for quantitative real-time PCR.

    PubMed

    Gubelmann, Carine; Gattiker, Alexandre; Massouras, Andreas; Hens, Korneel; David, Fabrice; Decouttere, Frederik; Rougemont, Jacques; Deplancke, Bart

    2011-01-01

    The vast majority of genes in humans and other organisms undergo alternative splicing, yet the biological function of splice variants is still very poorly understood in large part because of the lack of simple tools that can map the expression profiles and patterns of these variants with high sensitivity. High-throughput quantitative real-time polymerase chain reaction (qPCR) is an ideal technique to accurately quantify nucleic acid sequences including splice variants. However, currently available primer design programs do not distinguish between splice variants and also differ substantially in overall quality, functionality or throughput mode. Here, we present GETPrime, a primer database supported by a novel platform that uniquely combines and automates several features critical for optimal qPCR primer design. These include the consideration of all gene splice variants to enable either gene-specific (covering the majority of splice variants) or transcript-specific (covering one splice variant) expression profiling, primer specificity validation, automated best primer pair selection according to strict criteria and graphical visualization of the latter primer pairs within their genomic context. GETPrime primers have been extensively validated experimentally, demonstrating high transcript specificity in complex samples. Thus, the free-access, user-friendly GETPrime database allows fast primer retrieval and visualization for genes or groups of genes of most common model organisms, and is available at http://updepla1srv1.epfl.ch/getprime/. Database URL: http://deplanckelab.epfl.ch.

  17. Identification of three internal feeders from Korla fragrant pears by quantitative real-time polymerase chain reaction.

    PubMed

    Wang, Fengjun; Feng, Junli; Ye, Sudan; Li, Xin; Huang, Hannian; Hua, Peng

    2018-04-01

    Cydia pomonella, Euzophera pyriella Yang, and Grapholitha molesta are destructive pest species of Korla fragrant pears in Xinjiang. They are also quarantine pests of concern in a number of countries. Identification of these small pest larvae by morphological characters is difficult, and misidentifications will influence appropriate quarantine decisions. Here, a 520 bp fragment of mitochondrial cytochrome oxidase subunit I (COI) was first amplified and sequenced from each species, and a diagnostic region was observed. Subsequently, the species-specific primer and probe sets of quantitative real-time PCR (qPCR) were designed, which amplified a 114-116 bp fragment of COI genes. This method was validated by amplification DNA extracted from single, multiple, and mixed pest samples. Results indicated that this method allows rapid discrimination and reliable identification of larvae, pupae, and adult specimens of all three species, which could help the international export trading of Korla fragrant pears and related products.

  18. Quantification of Human Fecal Bifidobacterium Species by Use of Quantitative Real-Time PCR Analysis Targeting the groEL Gene

    PubMed Central

    Junick, Jana

    2012-01-01

    Quantitative real-time PCR assays targeting the groEL gene for the specific enumeration of 12 human fecal Bifidobacterium species were developed. The housekeeping gene groEL (HSP60 in eukaryotes) was used as a discriminative marker for the differentiation of Bifidobacterium adolescentis, B. angulatum, B. animalis, B. bifidum, B. breve, B. catenulatum, B. dentium, B. gallicum, B. longum, B. pseudocatenulatum, B. pseudolongum, and B. thermophilum. The bifidobacterial chromosome contains a single copy of the groEL gene, allowing the determination of the cell number by quantification of the groEL copy number. Real-time PCR assays were validated by comparing fecal samples spiked with known numbers of a given Bifidobacterium species. Independent of the Bifidobacterium species tested, the proportion of groEL copies recovered from fecal samples spiked with 5 to 9 log10 cells/g feces was approximately 50%. The quantification limit was 5 to 6 log10 groEL copies/g feces. The interassay variability was less than 10%, and variability between different DNA extractions was less than 23%. The method developed was applied to fecal samples from healthy adults and full-term breast-fed infants. Bifidobacterial diversity in both adults and infants was low, with mostly ≤3 Bifidobacterium species and B. longum frequently detected. The predominant species in infant and adult fecal samples were B. breve and B. adolescentis, respectively. It was possible to distinguish B. catenulatum and B. pseudocatenulatum. We conclude that the groEL gene is a suitable molecular marker for the specific and accurate quantification of human fecal Bifidobacterium species by real-time PCR. PMID:22307308

  19. Calibration-free assays on standard real-time PCR devices

    PubMed Central

    Debski, Pawel R.; Gewartowski, Kamil; Bajer, Seweryn; Garstecki, Piotr

    2017-01-01

    Quantitative Polymerase Chain Reaction (qPCR) is one of central techniques in molecular biology and important tool in medical diagnostics. While being a golden standard qPCR techniques depend on reference measurements and are susceptible to large errors caused by even small changes of reaction efficiency or conditions that are typically not marked by decreased precision. Digital PCR (dPCR) technologies should alleviate the need for calibration by providing absolute quantitation using binary (yes/no) signals from partitions provided that the basic assumption of amplification a single target molecule into a positive signal is met. Still, the access to digital techniques is limited because they require new instruments. We show an analog-digital method that can be executed on standard (real-time) qPCR devices. It benefits from real-time readout, providing calibration-free assessment. The method combines advantages of qPCR and dPCR and bypasses their drawbacks. The protocols provide for small simplified partitioning that can be fitted within standard well plate format. We demonstrate that with the use of synergistic assay design standard qPCR devices are capable of absolute quantitation when normal qPCR protocols fail to provide accurate estimates. We list practical recipes how to design assays for required parameters, and how to analyze signals to estimate concentration. PMID:28327545

  20. Calibration-free assays on standard real-time PCR devices

    NASA Astrophysics Data System (ADS)

    Debski, Pawel R.; Gewartowski, Kamil; Bajer, Seweryn; Garstecki, Piotr

    2017-03-01

    Quantitative Polymerase Chain Reaction (qPCR) is one of central techniques in molecular biology and important tool in medical diagnostics. While being a golden standard qPCR techniques depend on reference measurements and are susceptible to large errors caused by even small changes of reaction efficiency or conditions that are typically not marked by decreased precision. Digital PCR (dPCR) technologies should alleviate the need for calibration by providing absolute quantitation using binary (yes/no) signals from partitions provided that the basic assumption of amplification a single target molecule into a positive signal is met. Still, the access to digital techniques is limited because they require new instruments. We show an analog-digital method that can be executed on standard (real-time) qPCR devices. It benefits from real-time readout, providing calibration-free assessment. The method combines advantages of qPCR and dPCR and bypasses their drawbacks. The protocols provide for small simplified partitioning that can be fitted within standard well plate format. We demonstrate that with the use of synergistic assay design standard qPCR devices are capable of absolute quantitation when normal qPCR protocols fail to provide accurate estimates. We list practical recipes how to design assays for required parameters, and how to analyze signals to estimate concentration.

  1. Real-time PCR assays for detection and quantification of aflatoxin-producing molds in foods.

    PubMed

    Rodríguez, Alicia; Rodríguez, Mar; Luque, M Isabel; Martín, Alberto; Córdoba, Juan J

    2012-08-01

    Aflatoxins are among the most toxic mycotoxins. Early detection and quantification of aflatoxin-producing species is crucial to improve food safety. In the present work, two protocols of real-time PCR (qPCR) based on SYBR Green and TaqMan were developed, and their sensitivity and specificity were evaluated. Primers and probes were designed from the o-methyltransferase gene (omt-1) involved in aflatoxin biosynthesis. Fifty-three mold strains representing aflatoxin producers and non-producers of different species, usually reported in food products, were used as references. All strains were tested for aflatoxins production by high-performance liquid chromatography-mass spectrometry (HPLC-MS). The functionality of the proposed qPCR method was demonstrated by the strong linear relationship of the standard curves constructed with the omt-1 gene copy number and Ct values for the different aflatoxin producers tested. The ability of the qPCR protocols to quantify aflatoxin-producing molds was evaluated in different artificially inoculated foods. A good linear correlation was obtained over the range 4 to 1 log cfu/g per reaction for all qPCR assays in the different food matrices (peanuts, spices and dry-fermented sausages). The detection limit in all inoculated foods ranged from 1 to 2 log cfu/g for SYBR Green and TaqMan assays. No significant effect was observed due to the different equipment, operator, and qPCR methodology used in the tests of repeatability and reproducibility for different foods. The proposed methods quantified with high efficiency the fungal load in foods. These qPCR protocols are proposed for use to quantify aflatoxin-producing molds in food products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Monitoring airborne molecular contamination: a quantitative and qualitative comparison of real-time and grab-sampling techniques

    NASA Astrophysics Data System (ADS)

    Shupp, Aaron M.; Rodier, Dan; Rowley, Steven

    2007-03-01

    Monitoring and controlling Airborne Molecular Contamination (AMC) has become essential in deep ultraviolet (DUV) photolithography for both optimizing yields and protecting tool optics. A variety of technologies have been employed for both real-time and grab-sample monitoring. Real-time monitoring has the advantage of quickly identifying "spikes" and upset conditions, while 2 - 24 hour plus grab sampling allows for extremely low detection limits by concentrating the mass of the target contaminant over a period of time. Employing a combination of both monitoring techniques affords the highest degree of control, lowest detection limits, and the most detailed data possible in terms of speciation. As happens with many technologies, there can be concern regarding the accuracy and agreement between real-time and grab-sample methods. This study utilizes side by side comparisons of two different real-time monitors operating in parallel with both liquid impingers and dry sorbent tubes to measure NIST traceable gas standards as well as real world samples. By measuring in parallel, a truly valid comparison is made between methods while verifying the results against a certified standard. The final outcome for this investigation is that a dry sorbent tube grab-sample technique produced results that agreed in terms of accuracy with NIST traceable standards as well as the two real-time techniques Ion Mobility Spectrometry (IMS) and Pulsed Fluorescence Detection (PFD) while a traditional liquid impinger technique showed discrepancies.

  3. Detection of Legionella by cultivation and quantitative real-time polymerase chain reaction in biological waste water treatment plants in Norway.

    PubMed

    Lund, Vidar; Fonahn, Wenche; Pettersen, Jens Erik; Caugant, Dominique A; Ask, Eirik; Nysaeter, Ase

    2014-09-01

    Cases of Legionnaires' disease associated with biological treatment plants (BTPs) have been reported in six countries between 1997 and 2010. However, knowledge about the occurrence of Legionella in BTPs is scarce. Hence, we undertook a qualitative and quantitative screening for Legionella in BTPs treating waste water from municipalities and industries in Norway, to assess the transmission potential of Legionella from these installations. Thirty-three plants from different industries were sampled four times within 1 year. By cultivation, 21 (16%) of 130 analyses were positive for Legionella species and 12 (9%) of 130 analyses were positive for Legionella pneumophila. By quantitative real-time polymerase chain reaction (PCR), 433 (99%) of 437 analyses were positive for Legionella species and 218 (46%) of 470 analyses were positive for L. pneumophila. This survey indicates that PCR could be the preferable method for detection of Legionella in samples from BTPs. Sequence types of L. pneumophila associated with outbreaks in Norway were not identified from the BTPs. We showed that a waste water treatment plant with an aeration basin can produce high concentrations of Legionella. Therefore, these plants should be considered as a possible source of community-acquired Legionella infections.

  4. Real-time PCR as an effective technique to assess the impact of phoresy by Paenibacillus sp. bacteria on Steinernema diaprepesi nematodes in nature.

    PubMed

    Campos-Herrera, R; El-Borai, F E; Duncan, L W

    2012-09-01

    Quantitative real-time PCR (qPCR) is a powerful tool to study species of cryptic organisms in complex food webs. This technique was recently developed to detect and quantify several species of entomopathogenic nematodes (EPNs), which are widely used for biological control of insects, and some natural enemies of EPNs such as nematophagous fungi and the phoretic bacteria Paenibacillus sp. and Paenibacillus nematophilus. A drawback to the use of primers and TaqMan probes designed for Paenibacillus sp. is that the qPCR also amplified Paenibacillus thiaminolyticus and Paenibacillus popilliae, two closely related species that are not phoretically associated with EPNs. Here, we report that the detection of Paenibacillus sp. DNA in nematode samples was two orders of magnitude greater (P < 0.001) when the bacterium was added to soil together with its EPN species-specific host Steinernema diaprepesi than when it was added concomitantly with other EPNs or with species of bacterial-feeding nematodes. Just 6% of samples detected trace amounts of P. thiaminolyticus and P. popilliae exposed to the same experimental conditions. Thus, although the molecular assay detects Paenibacillus spp. DNA in nonphoretic associations, the levels are essentially background compared to the detection of Paenibacillus sp. in association with its nematode host. © 2012 Blackwell Publishing Ltd.

  5. Securing Real-Time Sessions in an IMS-Based Architecture

    NASA Astrophysics Data System (ADS)

    Cennamo, Paolo; Fresa, Antonio; Longo, Maurizio; Postiglione, Fabio; Robustelli, Anton Luca; Toro, Francesco

    The emerging all-IP mobile network infrastructures based on 3rd Generation IP Multimedia Subsystem philosophy are characterised by radio access technology independence and ubiquitous connectivity for mobile users. Currently, great focus is being devoted to security issues since most of the security threats presently affecting the public Internet domain, and the upcoming ones as well, are going to be suffered by mobile users in the years to come. While a great deal of research activity, together with standardisation efforts and experimentations, is carried out on mechanisms for signalling protection, very few integrated frameworks for real-time multimedia data protection have been proposed in a context of IP Multimedia Subsystem, and even fewer experimental results based on testbeds are available. In this paper, after a general overview of the security issues arising in an advanced IP Multimedia Subsystem scenario, a comprehensive infrastructure for real-time multimedia data protection, based on the adoption of the Secure Real-Time Protocol, is proposed; then, the development of a testbed incorporating such functionalities, including mechanisms for key management and cryptographic context transfer, and allowing the setup of Secure Real-Time Protocol sessions is presented; finally, experimental results are provided together with quantitative assessments and comparisons of system performances for audio sessions with and without the adoption of the Secure Real-Time Protocol framework.

  6. Identification of five highly priced tuna species by quantitative real-time polymerase chain reaction.

    PubMed

    Liu, Shasha; Xu, Kunhua; Wu, Zhigang; Xie, Xiao; Feng, Junli

    2016-09-01

    Tunas are economically important fishery worldwide, and are often used for commercial processed production. For effective fishery management and protection of consumers' rights, it is important to develop a molecular method to identify species in canned tuna products rapidly and reliably. Here, we have developed a duplex quantitative real-time PCR (qPCR) for identification of five highly priced tuna species (Thunnus maccoyii, Thunnus obesus, Thunnus albacares, Thunnus alalunga and Katsuwonus pelamis) from processed as well as fresh fish. After amplification and sequencing of seven genetic markers commonly used for species identification, 16S rDNA and control region (CR) of mitochondrial DNA were selected as the reference gene markers for genus Thunnus and tuna species identification, respectively. Subsequently, a 73 bp fragment of 16S rDNA and 85-99 bp fragment of CR were simultaneously amplified from each target species by qPCR. The qPCR efficiency of each reaction was calculated according to the standard curves, and the method was validated by amplification DNA extracted from single or mixed tuna specimen. The developed duplex qPCR system was applied to authenticate species of 14 commercial tuna products successfully, which demonstrated it was really a useful and academic technique to identify highly priced tuna species.

  7. Selecting and validating reference genes for quantitative real-time PCR in Plutella xylostella (L.).

    PubMed

    You, Yanchun; Xie, Miao; Vasseur, Liette; You, Minsheng

    2018-05-01

    Gene expression analysis provides important clues regarding gene functions, and quantitative real-time PCR (qRT-PCR) is a widely used method in gene expression studies. Reference genes are essential for normalizing and accurately assessing gene expression. In the present study, 16 candidate reference genes (ACTB, CyPA, EF1-α, GAPDH, HSP90, NDPk, RPL13a, RPL18, RPL19, RPL32, RPL4, RPL8, RPS13, RPS4, α-TUB, and β-TUB) from Plutella xylostella were selected to evaluate gene expression stability across different experimental conditions using five statistical algorithms (geNorm, NormFinder, Delta Ct, BestKeeper, and RefFinder). The results suggest that different reference genes or combinations of reference genes are suitable for normalization in gene expression studies of P. xylostella according to the different developmental stages, strains, tissues, and insecticide treatments. Based on the given experimental sets, the most stable reference genes were RPS4 across different developmental stages, RPL8 across different strains and tissues, and EF1-α across different insecticide treatments. A comprehensive and systematic assessment of potential reference genes for gene expression normalization is essential for post-genomic functional research in P. xylostella, a notorious pest with worldwide distribution and a high capacity to adapt and develop resistance to insecticides.

  8. TaqMan PCR for Detection of Vibrio cholerae O1, O139, Non-O1, and Non-O139 in Pure Cultures, Raw Oysters, and Synthetic Seawater†

    PubMed Central

    Lyon, W. J.

    2001-01-01

    Vibrio cholerae is recognized as a leading human waterborne pathogen. Traditional diagnostic testing for Vibrio is not always reliable, because this bacterium can enter a viable but nonculturable state. Therefore, nucleic acid-based tests have emerged as a useful alternative to traditional enrichment testing. In this article, a TaqMan PCR assay is presented for quantitative detection of V. cholerae in pure cultures, oysters, and synthetic seawater. Primers and probe were designed from the nonclassical hemolysin (hlyA) sequence of V. cholerae strains. This probe was applied to DNA from 60 bacterial strains comprising 21 genera. The TaqMan PCR assay was positive for all of the strains of V. cholerae tested and negative for all other species of Vibrio tested. In addition, none of the other genera tested was amplified with the TaqMan primers and probe used in this study. The results of the TaqMan PCR with raw oysters and spiked with V. cholerae serotypes O1 and O139 were comparable to those of pure cultures. The sensitivity of the assay was in the range of 6 to 8 CFU g−1 and 10 CFU ml−1 in spiked raw oyster and synthetic seawater samples, respectively. The total assay could be completed in 3 h. Quantification of the Vibrio cells was linear over at least 6 log units. The TaqMan probe and primer set developed in this study can be used as a rapid screening tool for the presence of V. cholerae in oysters and seawater without prior isolation and characterization of the bacteria by traditional microbiological methods. PMID:11571173

  9. Evaluation of changes in periodontal bacteria in healthy dogs over 6 months using quantitative real-time PCR.

    PubMed

    Maruyama, N; Mori, A; Shono, S; Oda, H; Sako, T

    2018-03-01

    Porphyromonas gulae, Tannerella forsythia and Campylobacter rectus are considered dominant periodontal pathogens in dogs. Recently, quantitative real-time PCR (qRT-PCR) methods have been used for absolute quantitative determination of oral bacterial counts. The purpose of the present study was to establish a standardized qRT-PCR procedure to quantify bacterial counts of the three target periodontal bacteria (P. gulae, T. forsythia and C. rectus). Copy numbers of the three target periodontal bacteria were evaluated in 26 healthy dogs. Then, changes in bacterial counts of the three target periodontal bacteria were evaluated for 24 weeks in 7 healthy dogs after periodontal scaling. Analytical evaluation of each self-designed primer indicated acceptable analytical imprecision. All 26 healthy dogs were found to be positive for P. gulae, T. forsythia and C. rectus. Median total bacterial counts (copies/ng) of each target genes were 385.612 for P. gulae, 25.109 for T. forsythia and 5.771 for C. rectus. Significant differences were observed between the copy numbers of the three target periodontal bacteria. Periodontal scaling reduced median copy numbers of the three target periodontal bacteria in 7 healthy dogs. However, after periodontal scaling, copy numbers of all three periodontal bacteria significantly increased over time (p<0.05, Kruskal-Wallis test) (24 weeks). In conclusion, our results demonstrated that qRT-PCR can accurately measure periodontal bacteria in dogs. Furthermore, the present study has revealed that qRT-PCR method can be considered as a new objective evaluation system for canine periodontal disease. Copyright© by the Polish Academy of Sciences.

  10. Rapid detection of Cronobacter sakazakii by real-time PCR based on the cgcA gene and TaqMan probe with internal amplification control.

    PubMed

    Hu, Shuangfang; Yu, Yigang; Li, Rong; Wu, Xinwei; Xiao, Xinglong; Wu, Hui

    2016-03-01

    Cronobacter sakazakii is a severe virulent strain that is frequently detected in powdered infant formula (PIF). Therefore, it is necessary to develop a fast and specific detection method. The specificity of our newly developed quantitative real-time PCR (qRT-PCR) was validated with DNA from 46 strains. Among them, 12 C. sakazakii strains were correctly amplified, whereas no positive florescent signal was observed from 34 nontarget controls. The detection limit of C. sakazakii was about 110 CFU/mL in broth and 1100 CFU/g in PIF. After enrichment in buffered peptone water for 6 h, our developed qRT-PCR assay could reliably detect C. sakazakii when the inoculation level was as low as 2 CFU/25 g (0.08 CFU/g) in PIF. The growth of C. sakazakii could be inhibited by the presence of Lactobacillus pentosus and Bacillus cereus, which used a longer enrichment period before the isolation was accomplished. However, at 5 and 50 CFU/25 g inoculation levels of C. sakazakii in the presence of 4 × 10(6) CFU L. pentosus/25 g or of 2 × 10(4) CFU B. cereus/25 g, the qRT-PCR assay could detect the presence of Cronobacter even though these artificially spiked samples were negative in culture. Therefore, our results indicated that the qRT-PCR assay could detect samples containing inhibitors and could avoid false negatives by using an internal amplification control.

  11. Real time non invasive imaging of fatty acid uptake in vivo

    PubMed Central

    Henkin, Amy H.; Cohen, Allison S.; Dubikovskaya, Elena A.; Park, Hyo Min; Nikitin, Gennady F.; Auzias, Mathieu G.; Kazantzis, Melissa; Bertozzi, Carolyn R.; Stahl, Andreas

    2012-01-01

    Detection and quantification of fatty acid fluxes in animal model systems following physiological, pathological, or pharmacological challenges is key to our understanding of complex metabolic networks as these macronutrients also activate transcription factors and modulate signaling cascades including insulin-sensitivity. To enable non-invasive, real-time, spatiotemporal quantitative imaging of fatty acid fluxes in animals, we created a bioactivatable molecular imaging probe based on long-chain fatty acids conjugated to a reporter molecule (luciferin). We show that this probe faithfully recapitulates cellular fatty acid uptake and can be used in animal systems as a valuable tool to localize and quantitate in real-time lipid fluxes such as intestinal fatty acid absorption and brown adipose tissue activation. This imaging approach should further our understanding of basic metabolic processes and pathological alterations in multiple disease models. PMID:22928772

  12. Real-time Social Internet Data to Guide Forecasting Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Valle, Sara Y.

    Our goal is to improve decision support by monitoring and forecasting events using social media, mathematical models, and quantifying model uncertainty. Our approach is real-time, data-driven forecasts with quantified uncertainty: Not just for weather anymore. Information flow from human observations of events through an Internet system and classification algorithms is used to produce quantitatively uncertain forecast. In summary, we want to develop new tools to extract useful information from Internet data streams, develop new approaches to assimilate real-time information into predictive models, validate approaches by forecasting events, and our ultimate goal is to develop an event forecasting system using mathematicalmore » approaches and heterogeneous data streams.« less

  13. Detection of tumor markers in prostate cancer and comparison of sensitivity between real time and nested PCR.

    PubMed

    Matsuoka, Takayuki; Shigemura, Katsumi; Yamamichi, Fukashi; Fujisawa, Masato; Kawabata, Masato; Shirakawa, Toshiro

    2012-06-27

    The objective of this study is to investigate and compare the sensitivity in conventional PCR, quantitative real time PCR, nested PCR and western blots for detection of prostate cancer tumor markers using prostate cancer (PCa) cells. We performed conventional PCR, quantitative real time PCR, nested PCR, and western blots using 5 kinds of PCa cells. Prostate specific antigen (PSA), prostate specific membrane antigen (PSMA), and androgen receptor (AR) were compared for their detection sensitivity by real time PCR and nested PCR. In real time PCR, there was a significant correlation between cell number and the RNA concentration obtained (R(2)=0.9944) for PSA, PSMA, and AR. We found it possible to detect these markers from a single LNCaP cell in both real time and nested PCR. By comparison, nested PCR reached a linear curve in fewer PCR cycles than real time PCR, suggesting that nested PCR may offer PCR results more quickly than real time PCR. In conclusion, nested PCR may offer tumor maker detection in PCa cells more quickly (with fewer PCR cycles) with the same high sensitivity as real time PCR. Further study is necessary to establish and evaluate the best tool for PCa tumor marker detection.

  14. Quantitative Comparison of Enzyme Immobilization Strategies for Glucose Biosensing in Real-Time Using Fast-Scan Cyclic Voltammetry Coupled with Carbon-Fiber Microelectrodes.

    PubMed

    Smith, Samantha K; Lugo-Morales, Leyda Z; Tang, C; Gosrani, Saahj P; Lee, Christie A; Roberts, James G; Morton, Stephen W; McCarty, Gregory S; Khan, Saad A; Sombers, Leslie A

    2018-05-22

    Electrochemical monitoring of non-electroactive species requires a biosensor that is stable and selective, with sensitivity to physiological concentrations of targeted analytes. We have combined glucose oxidase-modified carbon-fiber microelectrodes with fast-scan cyclic voltammetry for real-time measurements of glucose fluctuations in brain tissue. Work presented herein quantitatively compares three approaches to enzyme immobilization on the microelectrode surface-physical adsorption, hydrogel entrapment, and entrapment in electrospun nanofibers. The data suggest that each of these methods can be used to create functional microbiosensors. Immobilization of glucose oxidase by physical adsorption generates a biosensor with poor sensitivity to glucose and unstable performance. Entrapment of glucose oxidase in poly(vinyl alcohol) nanofibers generates microbiosensors that are effective for glucose measurements over a large linear range, and that may be particularly useful when targeting glucose concentrations in excess of 3 mm, such as in blood. Hydrogel entrapment is the most effective in terms of sensitivity and stability. These microbiosensors can be used for simultaneous monitoring of glucose and dopamine in real time. The findings outlined herein should be applicable to other oxidase enzymes, and thus they are broadly important for the development of new tools for real-time measurements of fluctuating molecules that are not inherently electroactive. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A European multicientre study on the comparison of HIV-1 viral loads between VERIS HIV-1 Assay and Roche COBAS® TAQMAN® HIV-1 test, Abbott RealTime HIV-1 Assay, and Siemens VERSANT HIV-1 Assay.

    PubMed

    Braun, Patrick; Delgado, Rafael; Drago, Monica; Fanti, Diana; Fleury, Hervé; Hofmann, Jörg; Izopet, Jacques; Kühn, Sebastian; Lombardi, Alessandra; Mancon, Alessandro; Marcos, Mª Angeles; Mileto, Davide; Sauné, Karine; O'Shea, Siobhan; Pérez-Rivilla, Alfredo; Ramble, John; Trimoulet, Pascale; Vila, Jordi; Whittaker, Duncan; Artus, Alain; Rhodes, Daniel

    2017-07-01

    Viral load monitoring is essential for patients under treatment for HIV. Beckman Coulter has developed the VERIS HIV-1 Assay for use on the novel, automated DxN VERIS Molecular Diagnostics System. ¥ OBJECTIVES: Evaluation of the clinical performance of the new quantitative VERIS HIV-1 Assay at multiple EU laboratories. Method comparison with the VERIS HIV-1 Assay was performed with 415 specimens at 5 sites tested with COBAS ® AmpliPrep/COBAS ® TaqMan ® HIV-1 Test, v2.0, 169 specimens at 3 sites tested with RealTime HIV-1 Assay, and 202 specimens from 2 sites tested with VERSANT HIV-1 Assay. Patient monitoring sample results from 4 sites were also compared. Bland-Altman analysis showed the average bias between VERIS HIV-1 Assay and COBAS HIV-1 Test, RealTime HIV-1 Assay, and VERSANT HIV-1 Assay to be 0.28, 0.39, and 0.61 log 10 cp/mL, respectively. Bias at low end levels below 1000cp/mL showed predicted bias to be <0.3 log 10 cp/mL for VERIS HIV-1 Assay versus COBAS HIV-1 Test and RealTime HIV-1 Assay, and <0.5 log 10 cp/mL versus VERSANT HIV-1 Assay. Analysis on 174 specimens tested with the 0.175mL volume VERIS HIV-1 Assay and COBAS HIV-1 Test showed average bias of 0.39 log 10 cp/mL. Patient monitoring results using VERIS HIV-1 Assay demonstrated similar viral load trends over time to all comparators. The VERIS HIV-1 Assay for use on the DxN VERIS System demonstrated comparable clinical performance to COBAS ® HIV-1 Test, RealTime HIV-1 Assay, and VERSANT HIV-1 Assay. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Friction coefficient of skin in real-time.

    PubMed

    Sivamani, Raja K; Goodman, Jack; Gitis, Norm V; Maibach, Howard I

    2003-08-01

    Friction studies are useful in quantitatively investigating the skin surface. Previous studies utilized different apparatuses and materials for these investigations but there was no real-time test parameter control or monitoring. Our studies incorporated the commercially available UMT Series Micro-Tribometer, a tribology instrument that permits real-time monitoring and calculation of the important parameters in friction studies, increasing the accuracy over previous tribology and friction measurement devices used on skin. Our friction tests were performed on four healthy volunteers and on abdominal skin samples. A stainless steel ball was pressed on to the skin with at a pre-set load and then moved across the skin at a constant velocity of 5 mm/min. The UMT continuously monitored the friction force of the skin and the normal force of the ball to calculate the friction coefficient in real-time. Tests investigated the applicability of Amonton's law, the impact of increased and decreased hydration, and the effect of the application of moisturizers. The friction coefficient depends on the normal load applied, and Amonton's law does not provide an accurate description for the skin surface. Application of water to the skin increased the friction coefficient and application of isopropyl alcohol decreased it. Fast acting moisturizers immediately increased the friction coefficient, but did not have the prolonged effect of the slow, long lasting moisturizers. The UMT is capable of making real-time measurements on the skin and can be used as an effective tool to study friction properties. Results from the UMT measurements agree closely with theory regarding the skin surface.

  17. Quantitative detection of Moraxella catarrhalis in nasopharyngeal secretions by real-time PCR.

    PubMed

    Greiner, Oliver; Day, Philip J R; Altwegg, Martin; Nadal, David

    2003-04-01

    The recognition of Moraxella catarrhalis as an important cause of respiratory tract infections has been protracted, mainly because it is a frequent commensal organism of the upper respiratory tract and the diagnostic sensitivity of blood or pleural fluid culture is low. Given that the amount of M. catarrhalis bacteria in the upper respiratory tract may change during infection, quantification of these bacteria in nasopharyngeal secretions (NPSs) by real-time PCR may offer a suitable diagnostic approach. Using primers and a fluorescent probe specific for the copB outer membrane protein gene, we detected DNA from serial dilutions of M. catarrhalis cells corresponding to 1 to 10(6) cells. Importantly, there was no difference in the amplification efficiency when the same DNA was mixed with DNA from NPSs devoid of M. catarrhalis. The specificity of the reaction was further confirmed by the lack of amplification of DNAs from other Moraxella species, nontypeable Haemophilus influenzae, H. influenzae type b, Streptococcus pneumoniae, Streptococcus oralis, Streptococcus pyogenes, Bordetella pertussis, Corynebacterium diphtheriae, and various Neisseria species. The assay applied to NPSs from 184 patients with respiratory tract infections performed with a sensitivity of 100% and a specificity of up to 98% compared to the culture results. The numbers of M. catarrhalis organisms detected by real-time PCR correlated with the numbers detected by semiquantitative culture. This real-time PCR assay targeting the copB outer membrane protein gene provided a sensitive and reliable means for the rapid detection and quantification of M. catarrhalis in NPSs; may serve as a tool to study changes in the amounts of M. catarrhalis during lower respiratory tract infections or following vaccination against S. pneumoniae, H. influenzae, or N. meningitidis; and may be applied to other clinical samples.

  18. Quantitative Detection of Moraxella catarrhalis in Nasopharyngeal Secretions by Real-Time PCR

    PubMed Central

    Greiner, Oliver; Day, Philip J. R.; Altwegg, Martin; Nadal, David

    2003-01-01

    The recognition of Moraxella catarrhalis as an important cause of respiratory tract infections has been protracted, mainly because it is a frequent commensal organism of the upper respiratory tract and the diagnostic sensitivity of blood or pleural fluid culture is low. Given that the amount of M. catarrhalis bacteria in the upper respiratory tract may change during infection, quantification of these bacteria in nasopharyngeal secretions (NPSs) by real-time PCR may offer a suitable diagnostic approach. Using primers and a fluorescent probe specific for the copB outer membrane protein gene, we detected DNA from serial dilutions of M. catarrhalis cells corresponding to 1 to 106 cells. Importantly, there was no difference in the amplification efficiency when the same DNA was mixed with DNA from NPSs devoid of M. catarrhalis. The specificity of the reaction was further confirmed by the lack of amplification of DNAs from other Moraxella species, nontypeable Haemophilus influenzae, H. influenzae type b, Streptococcus pneumoniae, Streptococcus oralis, Streptococcus pyogenes, Bordetella pertussis, Corynebacterium diphtheriae, and various Neisseria species. The assay applied to NPSs from 184 patients with respiratory tract infections performed with a sensitivity of 100% and a specificity of up to 98% compared to the culture results. The numbers of M. catarrhalis organisms detected by real-time PCR correlated with the numbers detected by semiquantitative culture. This real-time PCR assay targeting the copB outer membrane protein gene provided a sensitive and reliable means for the rapid detection and quantification of M. catarrhalis in NPSs; may serve as a tool to study changes in the amounts of M. catarrhalis during lower respiratory tract infections or following vaccination against S. pneumoniae, H. influenzae, or N. meningitidis; and may be applied to other clinical samples. PMID:12682118

  19. GETPrime: a gene- or transcript-specific primer database for quantitative real-time PCR

    PubMed Central

    Gubelmann, Carine; Gattiker, Alexandre; Massouras, Andreas; Hens, Korneel; David, Fabrice; Decouttere, Frederik; Rougemont, Jacques; Deplancke, Bart

    2011-01-01

    The vast majority of genes in humans and other organisms undergo alternative splicing, yet the biological function of splice variants is still very poorly understood in large part because of the lack of simple tools that can map the expression profiles and patterns of these variants with high sensitivity. High-throughput quantitative real-time polymerase chain reaction (qPCR) is an ideal technique to accurately quantify nucleic acid sequences including splice variants. However, currently available primer design programs do not distinguish between splice variants and also differ substantially in overall quality, functionality or throughput mode. Here, we present GETPrime, a primer database supported by a novel platform that uniquely combines and automates several features critical for optimal qPCR primer design. These include the consideration of all gene splice variants to enable either gene-specific (covering the majority of splice variants) or transcript-specific (covering one splice variant) expression profiling, primer specificity validation, automated best primer pair selection according to strict criteria and graphical visualization of the latter primer pairs within their genomic context. GETPrime primers have been extensively validated experimentally, demonstrating high transcript specificity in complex samples. Thus, the free-access, user-friendly GETPrime database allows fast primer retrieval and visualization for genes or groups of genes of most common model organisms, and is available at http://updepla1srv1.epfl.ch/getprime/. Database URL: http://deplanckelab.epfl.ch. PMID:21917859

  20. Evaluation of p16 hypermethylation in oral submucous fibrosis: A quantitative and comparative analysis in buccal cells and saliva using real-time methylation-specific polymerase chain reaction.

    PubMed

    Kaliyaperumal, Subadra; Sankarapandian, Sathasivasubramanian

    2016-01-01

    The aim of this study was to quantitatively investigate the hypermethylation of p16 gene in buccal cells and saliva of oral submucous fibrosis (OSMF) patients using real-time quantitative methylation-specific polymerase chain reaction (PCR) and to compare the values of two methods. A total of 120 samples were taken from 60 subjects selected for this study, of which 30 were controls and 30 patients were clinically and histopathologically diagnosed with OSMF. In both groups, two sets of samples were collected, one directly from the buccal cells through cytobrush technique and the other through salivary rinse. We analyzed the samples for the presence of p16 hypermethylation using quantitative real-time PCR. In OSMF, the hypermethylation status of p16 in buccal cells was very high (93.3%) and in salivary samples, it was partially methylated (50%). However, no hypermethylation was found in controls suggesting that significant quantity of p16 hypermethylation was present in buccal cells and saliva in OSMF. This study indicates that buccal cell sampling may be a better method for evaluation than the salivary samples. It signifies that hypermethylation of p16 is an important factor to be considered in epigenetic alterations of normal cells to oral precancer, i.e. OSMF.

  1. Detection of different Ikaros isoforms in human leukaemias using real-time quantitative polymerase chain reaction.

    PubMed

    Olivero, S; Maroc, C; Beillard, E; Gabert, J; Nietfeld, W; Chabannon, C; Tonnelle, C

    2000-09-01

    The Ikaros gene is an essential regulator in development and haematopoiesis. Dysregulated Ikaros gene expression participates in leukaemic processes, as evidenced in animal models, and by analyses of blast-cell populations from leukaemic patients. We used real-time quantitative polymerase chain reaction (PCR) to evaluate the relative abundance of several Ikaros transcript isoforms in a variety of leukaemic-cell samples. Total RNA was isolated from bone-marrow or blood-cell samples collected at diagnosis in children or adult patients, 18 of whom had acute myeloblastic leukaemia (AML), 61 of whom had acute lymphoblastic leukaemia (ALL) and 11 of whom had chronic myeloid leukaemia (CML). The ratio (Ik1 + Ik2)/(Ik1 + Ik2 + Ik4 + Ik7 + Ik8) ranged from 13.5% to 85% and was lower (P < 0. 05) in samples from patients with m-bcr-abl ALL. An alternative splicing resulting in the deletion of 30 nucleotides at the end of exon 6 was observed in leukaemic samples, and in normal thymus and bone marrow. Our results are consistent with previous reports and suggest that the pattern of expression of the different human Ikaros isoforms are not homogeneous among different subsets of leukaemias.

  2. Analysis of Gene Expression in Emerald Ash Borer (Agrilus planipennis) Using Quantitative Real Time-PCR

    PubMed Central

    Bhandary, Binny; Rajarapu, Swapna Priya; Rivera-Vega, Loren; Mittapalli, Omprakash

    2010-01-01

    Emerald ash borer (EAB, Agrilus planipennis) is an exotic invasive pest, which has killed millions of ash trees (Fraxinus spp) in North America.EAB continues to spread rapidly and attacks ash trees of different ages, from saplings to mature trees. However, to date very little or no molecular knowledge exists for EAB. We are interested in deciphering the molecular-based physiological processes at the tissue level that aid EAB in successful colonization of ash trees. In this report we show the effective use of quantitative real-time PCR (qRT-PCR) to ascertain mRNA levels in different larval tissues (including midgut, fat bodies and cuticle) and different developmental stages (including 1st-, 2nd-, 3rd-, 4th-instars, prepupae and adults) of EAB. As an example, a peritrophin gene (herein named, AP-PERI1) is exemplified as the gene of interest and a ribosomal protein (AP-RP1) as the internal control. Peritrophins are important components of the peritrophic membrane/matrix (PM), which is the lining of the insect gut. The PM has diverse functions including digestion and mechanical protection to the midgut epithelium. PMID:20445495

  3. Analysis of gene expression in emerald ash borer (Agrilus planipennis) using quantitative real time-PCR.

    PubMed

    Bhandary, Binny; Rajarapu, Swapna Priya; Rivera-Vega, Loren; Mittapalli, Omprakash

    2010-05-04

    Emerald ash borer (EAB, Agrilus planipennis) is an exotic invasive pest, which has killed millions of ash trees (Fraxinus spp) in North America. EAB continues to spread rapidly and attacks ash trees of different ages, from saplings to mature trees. However, to date very little or no molecular knowledge exists for EAB. We are interested in deciphering the molecular-based physiological processes at the tissue level that aid EAB in successful colonization of ash trees. In this report we show the effective use of quantitative real-time PCR (qRT-PCR) to ascertain mRNA levels in different larval tissues (including midgut, fat bodies and cuticle) and different developmental stages (including 1(st)-, 2(nd)-, 3(rd)-, 4(th)-instars, prepupae and adults) of EAB. As an example, a peritrophin gene (herein named, AP-PERI1) is exemplified as the gene of interest and a ribosomal protein (AP-RP1) as the internal control. Peritrophins are important components of the peritrophic membrane/matrix (PM), which is the lining of the insect gut. The PM has diverse functions including digestion and mechanical protection to the midgut epithelium.

  4. [Detection of Plasmodium falciparum by using magnetic nanoparticles separation-based quantitative real-time PCR assay].

    PubMed

    Wang, Fei; Tian, Yin; Yang, Jing; Sun, Fu-Jun; Sun, Ning; Liu, Bi-Yong; Tian, Rui; Ge, Guang-Lu; Zou, Ming-qiang; Deng, Cong-liang; Liu, Yi

    2014-10-01

    To establish a magnetic nanoparticles separation-based quantitative real-time PCR (RT-PCR) assay for fast and accurate detection of Plasmodium falciparum and providing a technical support for improving the control and prevention of imported malaria. According to the conserved sequences of the P. falciparum genome 18SrRNA, the species-specific primers and probe were designed and synthetized. The RT-PCR was established by constructing the plasmid standard, fitting the standard curve and using magnetic nanoparticles separation. The sensitivity and specificity of the assay were evaluated. The relationship between the threshold cycle (Ct) and logarithm of initial templates copies was linear over a range of 2.5 x 10(1) to 2.5 x 10(8) copies/μl (R2 = 0.999). Among 13 subjects of entry frontier, a P. falciparum carrier with low load was detected by using the assay and none was detected with the conventional examinations (microscopic examinations and rapid tests). This assay shows a high sensitivity in detection of P. falciparum, with rapid and accurate characteristics, and is especially useful in diagnosis of P. falciparum infectors with low parasitaemia at entry-exit frontier ports.

  5. Exploring Valid Reference Genes for Quantitative Real-time PCR Analysis in Plutella xylostella (Lepidoptera: Plutellidae)

    PubMed Central

    Fu, Wei; Xie, Wen; Zhang, Zhuo; Wang, Shaoli; Wu, Qingjun; Liu, Yong; Zhou, Xiaomao; Zhou, Xuguo; Zhang, Youjun

    2013-01-01

    Abstract: Quantitative real-time PCR (qRT-PCR), a primary tool in gene expression analysis, requires an appropriate normalization strategy to control for variation among samples. The best option is to compare the mRNA level of a target gene with that of reference gene(s) whose expression level is stable across various experimental conditions. In this study, expression profiles of eight candidate reference genes from the diamondback moth, Plutella xylostella, were evaluated under diverse experimental conditions. RefFinder, a web-based analysis tool, integrates four major computational programs including geNorm, Normfinder, BestKeeper, and the comparative ΔCt method to comprehensively rank the tested candidate genes. Elongation factor 1 (EF1) was the most suited reference gene for the biotic factors (development stage, tissue, and strain). In contrast, although appropriate reference gene(s) do exist for several abiotic factors (temperature, photoperiod, insecticide, and mechanical injury), we were not able to identify a single universal reference gene. Nevertheless, a suite of candidate reference genes were specifically recommended for selected experimental conditions. Our finding is the first step toward establishing a standardized qRT-PCR analysis of this agriculturally important insect pest. PMID:23983612

  6. Sequence Optimized Real-Time RT-PCR Assay for Detection of Crimean-Congo Hemorrhagic Fever Virus

    DTIC Science & Technology

    2017-03-21

    19-23]. Real-56 time reverse-transcription PCR remains the gold standard for quantitative , sensitive, and specific 57 detection of CCHFV; however...five-fold in two different series , and samples were run by real- time RT-PCR 116 in triplicate. The preliminary LOD was the lowest RNA dilution where...1 Sequence optimized real- time RT-PCR assay for detection of Crimean-Congo hemorrhagic fever 1 virus 2 3 JW Koehler1, KL Delp1, AT Hall1, SP

  7. Evaluation of sensitivity of TaqMan RT-PCR for rubella virus detection in clinical specimens.

    PubMed

    Okamoto, Kiyoko; Mori, Yoshio; Komagome, Rika; Nagano, Hideki; Miyoshi, Masahiro; Okano, Motohiko; Aoki, Yoko; Ogura, Atsushi; Hotta, Chiemi; Ogawa, Tomoko; Saikusa, Miwako; Kodama, Hiroe; Yasui, Yoshihiro; Minagawa, Hiroko; Kurata, Takako; Kanbayashi, Daiki; Kase, Tetsuo; Murata, Sachiko; Shirabe, Komei; Hamasaki, Mitsuhiro; Kato, Takashi; Otsuki, Noriyuki; Sakata, Masafumi; Komase, Katsuhiro; Takeda, Makoto

    2016-07-01

    An easy and reliable assay for detection of the rubella virus is required to strengthen rubella surveillance. Although a TaqMan RT-PCR assay for detection of the rubella virus has been established in Japan, its utility for diagnostic purposes has not been tested. To allow introduction of the TaqMan RT-PCR into the rubella surveillance system in Japan, the sensitivity of the assay was determined using representative strains for all genotypes and clinical specimens. The detection limits of the method for individual genotypes were examined using viral RNA extracted from 13 representative strains. The assay was also tested at 10 prefectural laboratories in Japan, designated as local reference laboratories for measles and rubella, to allow nationwide application of the assay. The detection limits and amplification efficiencies of the assay were similar among all the representative strains of the 13 genotypes. The TaqMan RT-PCR could detect approximately 90% of throat swab and urine samples taken up to 5days of illness. These samples were determined positive by a highly sensitive nested RT-PCR. The TaqMan RT-PCR could detect at least 10 pfu of rubella virus. Although the sensitivity was somewhat lower than that of the conventional nested RT-PCR, the TaqMan RT-PCR could be more practical to routine tests for rubella laboratory diagnosis and detection in view of the rapid response and reducing risks of contamination. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Habitat associations of two entomopathogenic nematodes: a quantitative study using real-time quantitative polymerase chain reactions.

    PubMed

    Torr, Peter; Spiridonov, Sergei E; Heritage, Stuart; Wilson, Michael J

    2007-03-01

    1. Despite nematodes being the most abundant animals on earth, very few animal ecologists study them, probably because of the difficulties of identifying them to species by morphological methods. 2. A group of nematodes that are important both ecologically and economically is the entomopathogenic nematodes, which play a key role in regulating soil food webs and are sold throughout the world as biological insecticides, yet for which very little is known of their population ecology. 3. A novel detection and quantification method was developed for soil nematodes using real-time polymerase chain reaction (PCR), and the technique was used to estimate numbers of two closely related species of entomopathogenic nematodes, Steinernema kraussei and S. affine in 50 soil samples from 10 sites in Scotland representing two distinct habitats (woodland and grassland). 4. There was a high degree of correlation between our molecular and traditional morphological estimates of population size and our data clearly showed that Steinernema affine occurred only in grassland areas, whereas S. kraussei was found in grassland and woodland samples to a similar degree. 5. Real-time PCR offers a rapid and accurate method of detecting individual nematode species from soil samples without the need for a specialist taxonomist, and has much potential for use in studies of nematode population ecology.

  9. Development of TaqMan assays for the quantitative detection of Fusarium avenaceum/Fusarium tricinctum and Fusarium poae esyn1 genotypes from cereal grain.

    PubMed

    Kulik, Tomasz; Jestoi, Marika; Okorski, Adam

    2011-01-01

    Fungi of the genus Fusarium are important plant pathogens and contaminants of cereal grains producing different types of mycotoxins. Enniatins are a group of mycotoxins with ionophoric properties frequently detected in North European grains. Within the Fusarium complex responsible for grain infection, Fusarium avenaceum, Fusarium poae and Fusarium tricinctum are the most potential enniatins producers. This study presents the development of two quantitative TaqMan MGB (Minor Groove Binder) assays for the specific quantification of F. avenaceum/F. tricinctum and F. poae esyn1 genotypes, respectively. Two sets of genotype-specific primers/probes were designed on the basis of esyn1 gene homologues encoding multifunctional enzyme enniatin synthetase. The specificity of the assays developed has been tested successfully on 111 Fusarium isolates from different geographical origins. The detection limits for F. avenaceum/F. tricinctum esyn1 genotype and F. poae genotype were 19 and 0.3 pg, respectively. The application of the assays developed on asymptomatic wheat grain samples revealed significant positive correlations between the enniatins levels and the amount of F. avenaceum/F. tricinctum esyn1 genotype (R=0.61) and F. poae esyn1 genotype (R=0.42). © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  10. Cellular chromosome DNA interferes with fluorescence quantitative real-time PCR detection of HBV DNA in culture medium.

    PubMed

    Pan, Xiao-Ben; Wei, Lai; Han, Jin-Chao; Gao, Yan

    2008-01-01

    Fluorescence quantitative real-time PCR (FQ-PCR) is a recently developed technique increasingly used for clinical diagnosis by detection of hepatitis B virus (HBV) DNA in serum. FQ-PCR is also used in scientific research for detection of HBV DNA in cell culture. Understanding potential FQ-PCR interference factors can improve the accuracy of HBV DNA quantification in cell culture medium. HBV positive serum was diluted with culture medium to produce three test groups with HBV DNA levels of 5 x 10(7) copies/ml (high), 5 x 10(5) copies/ml (medium), and 5 x 10(3) copies/ml (low). Chromosome DNA was extracted from HepG2 cells and then added to high, medium, and low group samples at final concentrations of 0, 12.5, 25, 50, and 100 microg/ml. The samples were quantified by FQ-PCR and data were evaluated using statistical software. No marked changes were seen in the quantitative curves for high level HBV DNA samples when the samples were supplemented with 0-100 microg/ml of chromosome DNA. Interference was observed in medium level samples when 50 and 100 microg/ml of chromosome DNA was added. Interference was also observed in low level HBV DNA samples when the concentration of added chromosome DNA was greater than 25 microg/ml. The interference was eliminated when samples were digested by DNase I prior to PCR detection. In Conclusions, the presence of cellular chromosome DNA can interfere with the detection of HBV DNA by FQ-PCR. Removal of cellular chromosome DNA from culture media prior to FQ-PCR is necessary for reliable HBV DNA quantitative detection. (c) 2007 Wiley-Liss, Inc.

  11. Dependable Real-Time Systems

    DTIC Science & Technology

    1991-09-30

    0196 or 413 545-0720 PI E-mail Address: krithi@nirvan.cs.umass.edu, stankovic(ocs.umass.edu Grant or Contract Title: Dependable Real - Time Systems Grant...Dependable Real - Time Systems " Grant or Contract Number: N00014-85-k-0398 L " Reporting Period: 1 Oct 87 - 30 Sep 91 , 2. Summary of Accomplishments ’ 2.1 Our...in developing a sound approach to scheduling tasks in complex real - time systems , (2) developed a real-time operating system kernel, a preliminary

  12. Selection of reference genes for gene expression studies in virus-infected monocots using quantitative real-time PCR.

    PubMed

    Zhang, Kun; Niu, Shaofang; Di, Dianping; Shi, Lindan; Liu, Deshui; Cao, Xiuling; Miao, Hongqin; Wang, Xianbing; Han, Chenggui; Yu, Jialin; Li, Dawei; Zhang, Yongliang

    2013-10-10

    Both genome-wide transcriptomic surveys of the mRNA expression profiles and virus-induced gene silencing-based molecular studies of target gene during virus-plant interaction involve the precise estimation of the transcript abundance. Quantitative real-time PCR (qPCR) is the most widely adopted technique for mRNA quantification. In order to obtain reliable quantification of transcripts, identification of the best reference genes forms the basis of the preliminary work. Nevertheless, the stability of internal controls in virus-infected monocots needs to be fully explored. In this work, the suitability of ten housekeeping genes (ACT, EF1α, FBOX, GAPDH, GTPB, PP2A, SAND, TUBβ, UBC18 and UK) for potential use as reference genes in qPCR were investigated in five different monocot plants (Brachypodium, barley, sorghum, wheat and maize) under infection with different viruses including Barley stripe mosaic virus (BSMV), Brome mosaic virus (BMV), Rice black-streaked dwarf virus (RBSDV) and Sugarcane mosaic virus (SCMV). By using three different algorithms, the most appropriate reference genes or their combinations were identified for different experimental sets and their effectiveness for the normalisation of expression studies were further validated by quantitative analysis of a well-studied PR-1 gene. These results facilitate the selection of desirable reference genes for more accurate gene expression studies in virus-infected monocots. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Novel quantitative real-time LCR for the sensitive detection of SNP frequencies in pooled DNA: method development, evaluation and application.

    PubMed

    Psifidi, Androniki; Dovas, Chrysostomos; Banos, Georgios

    2011-01-19

    Single nucleotide polymorphisms (SNP) have proven to be powerful genetic markers for genetic applications in medicine, life science and agriculture. A variety of methods exist for SNP detection but few can quantify SNP frequencies when the mutated DNA molecules correspond to a small fraction of the wild-type DNA. Furthermore, there is no generally accepted gold standard for SNP quantification, and, in general, currently applied methods give inconsistent results in selected cohorts. In the present study we sought to develop a novel method for accurate detection and quantification of SNP in DNA pooled samples. The development and evaluation of a novel Ligase Chain Reaction (LCR) protocol that uses a DNA-specific fluorescent dye to allow quantitative real-time analysis is described. Different reaction components and thermocycling parameters affecting the efficiency and specificity of LCR were examined. Several protocols, including gap-LCR modifications, were evaluated using plasmid standard and genomic DNA pools. A protocol of choice was identified and applied for the quantification of a polymorphism at codon 136 of the ovine PRNP gene that is associated with susceptibility to a transmissible spongiform encephalopathy in sheep. The real-time LCR protocol developed in the present study showed high sensitivity, accuracy, reproducibility and a wide dynamic range of SNP quantification in different DNA pools. The limits of detection and quantification of SNP frequencies were 0.085% and 0.35%, respectively. The proposed real-time LCR protocol is applicable when sensitive detection and accurate quantification of low copy number mutations in DNA pools is needed. Examples include oncogenes and tumour suppressor genes, infectious diseases, pathogenic bacteria, fungal species, viral mutants, drug resistance resulting from point mutations, and genetically modified organisms in food.

  14. Molecular identification and real-time quantitative PCR (qPCR) for rapid detection of Thelohanellus kitauei, a Myxozoan parasite causing intestinal giant cystic disease in the Israel carp.

    PubMed

    Seo, Jung Soo; Jeon, Eun Ji; Kim, Moo Sang; Woo, Sung Ho; Kim, Jin Do; Jung, Sung Hee; Park, Myoung Ae; Jee, Bo Young; Kim, Jin Woo; Kim, Yi-Cheong; Lee, Eun Hye

    2012-06-01

    Intestinal giant-cystic disease (IGCD) of the Israel carp (Cyprinus carpio nudus) has been recognized as one of the most serious diseases afflicting inland farmed fish in the Republic of Korea, and Thelohanellus kitauei has been identified as the causative agent of the disease. Until now, studies concerning IGCD caused by T. kitauei in the Israel carp have been limited to morphological and histopathological examinations. However, these types of diagnostic examinations are relatively time-consuming, and the infection frequently cannot be detected in its early stages. In this study, we cloned the full-length 18S rRNA gene of T. kitauei isolated from diseased Israel carps, and carried out molecular identification by comparing the sequence with those of other myxosporeans. Moreover, conventional PCR and real-time quantitative PCR (qPCR) using oligonucleotide primers for the amplification of 18S rRNA gene fragment were established for further use as methods for rapid diagnosis of IGCD. Our results demonstrated that both the conventional PCR and real-time quantitative PCR systems applied herein are effective for rapid detection of T. kitauei spores in fish tissues and environmental water.

  15. High-level expression of podoplanin in benign and malignant soft tissue tumors: immunohistochemical and quantitative real-time RT-PCR analysis.

    PubMed

    Xu, Yongjun; Ogose, Akira; Kawashima, Hiroyuki; Hotta, Tetsuo; Ariizumi, Takashi; Li, Guidong; Umezu, Hajime; Endo, Naoto

    2011-03-01

    Podoplanin is a 38 kDa mucin-type transmembrane glycoprotein that was first identified in rat glomerular epithelial cells (podocytes). It is expressed in normal lymphatic endothelium, but is absent from vascular endothelial cells. D2-40 is a commercially available mouse monoclonal antibody which binds to an epitope on human podoplanin. D2-40 immunoreactivity is therefore highly sensitive and specific for lymphatic endothelium. Recent investigations have shown widespread applications of immunohistochemical staining with D2-40 in evaluating podoplanin expression as an immunohistochemical marker for diagnosis and prognosis in various tumors. To determine whether the podoplanin (D2-40) antibody may be useful for the diagnosis of soft tissue tumors, 125 cases, including 4 kinds of benign tumors, 15 kinds of malignant tumors and 3 kinds of tumor-like lesions were immunostained using the D2-40 antibody. Total RNA was extracted from frozen tumor tissue obtained from 41 corresponding soft tissue tumor patients and 12 kinds of soft tissue tumor cell lines. Quantitative real-time PCR reactions were performed. Immunohistochemical and quantitative real-time RT-PCR analyses demonstrated the expression of the podoplanin protein and mRNA in the majority of benign and malignant soft tissue tumors and tumor-like lesions examined, with the exception of alveolar soft part sarcoma, embryonal and alveolar rhabdomyosarcoma, extraskeletal Ewing's sarcoma/peripheral primitive neuro-ectodermal tumor and lipoma, which were completely negative for podoplanin. Since it is widely and highly expressed in nearly all kinds of soft tissue tumors, especially in spindle cell sarcoma, myxoid type soft tissue tumors and soft tissue tumors of the nervous system, podoplanin is considered to have little value in the differential diagnosis of soft tissue tumors.

  16. Identification of suitable internal controls to study expression of a Staphylococcus aureus multidrug resistance system by quantitative real-time PCR.

    PubMed

    Theis, Torsten; Skurray, Ronald A; Brown, Melissa H

    2007-08-01

    Quantitative real-time PCR (qRT-PCR) has become a routine technique for gene expression analysis. Housekeeping genes are customarily used as endogenous references for the relative quantification of genes of interest. The aim of this study was to develop a quantitative real-time PCR assay to analyze gene expression in multidrug resistant Staphylococcus aureus in the presence of cationic lipophilic substrates of multidrug transport proteins. Eleven different housekeeping genes were analyzed for their expression stability in the presence of a range of concentrations of four structurally different antimicrobial compounds. This analysis demonstrated that the genes rho, pyk and proC were least affected by rhodamine 6G and crystal violet, whereas fabD, tpiA and gyrA or fabD, proC and pyk were stably expressed in cultures grown in the presence of ethidium or berberine, respectively. Subsequently, these housekeeping genes were used as internal controls to analyze expression of the multidrug transport protein QacA and its transcriptional regulator QacR in the presence of the aforementioned compounds. Expression of qacA was induced by all four compounds, whereas qacR expression was found to be unaffected, reduced or enhanced. This study demonstrates that staphylococcal gene expression, including housekeeping genes previously used to normalize qRT-PCR data, is affected by growth in the presence of different antimicrobial compounds. Thus, identification of suitable genes usable as a control set requires rigorous testing. Identification of a such a set enabled them to be utilized as internal standards for accurate quantification of transcripts of the qac multidrug resistance system from S. aureus grown under different inducing conditions. Moreover, the qRT-PCR assay presented in this study may also be applied to gene expression studies of other multidrug transporters from S. aureus.

  17. Rapid real-time PCR methods to distinguish Salmonella Enteritidis wildtype field isolates from vaccine strains Salmovac SE/Gallivac SE and AviPro SALMONELLA VAC E.

    PubMed

    Maurischat, Sven; Szabo, Istvan; Baumann, Beatrice; Malorny, Burkhard

    2015-05-01

    Salmonella enterica serovar Enteritidis is a major non-typhoid Salmonella serovar causing human salmonellosis mainly associated with the consumption of poultry and products thereof. To reduce infections in poultry, S. Enteritidis live vaccine strains AviPro SALMONELLA VAC E and Salmovac SE/Gallivac SE have been licensed and used in several countries worldwide. To definitively diagnose a S. Enteritidis contamination in vaccinated herds a reliable and fast method for the differentiation between vaccine and wildtype field isolates is required. In this study, we developed and validated real-time PCR (qPCR) assays to distinguish those variants genetically. Suitable target sequences were identified by whole genome sequencing (WGS) using the Illumina MiSeq system. SNP regions in kdpA and nhaA proved to be most useful for differentiation of AviPro SALMONELLA VAC E and Salmovac SE/Gallivac SE, respectively, from wildtype strains. For each vaccine strain one TaqMan-qPCR assay and one alternative approach using High Resolution Melting (HRM) analysis was designed. All 30 Salmovac SE and 7 AviPro SALMONELLA VAC E vaccine strain reisolates tested were correctly identified by both approaches (100% inclusivity). Furthermore, all 137 (TaqMan) and 97 (HRM) Salmonella non-vaccine and related Enterobacteriaceae strains tested were excluded (100% exclusivity). The analytical detection limits were determined to be approx. 10(2) genome copies/reaction for the TaqMan and 10(4) genome copies/reaction for the HRM approach. The real-time PCR assays proved to be a reliable and fast alternative to the cultural vaccine strain identification tests helping decision makers in control measurements to take action within a shorter period of time. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A novel strategy to obtain quantitative data for modelling: combined enrichment and real-time PCR for enumeration of salmonellae from pig carcasses.

    PubMed

    Krämer, Nadine; Löfström, Charlotta; Vigre, Håkan; Hoorfar, Jeffrey; Bunge, Cornelia; Malorny, Burkhard

    2011-03-01

    Salmonella is a major zoonotic pathogen which causes outbreaks and sporadic cases of gastroenteritis in humans worldwide. The primary sources for Salmonella are food-producing animals such as pigs and poultry. For risk assessment and hazard analysis and critical control point (HACCP) concepts, it is essential to produce large amounts of quantitative data, which is currently not achievable with the standard cultural based methods for enumeration of Salmonella. This study presents the development of a novel strategy to enumerate low numbers of Salmonella in cork borer samples taken from pig carcasses as a first concept and proof of principle for a new sensitive and rapid quantification method based on combined enrichment and real-time PCR. The novelty of the approach is in the short pre-enrichment step, where for most bacteria, growth is in the log phase. The method consists of an 8h pre-enrichment of the cork borer sample diluted 1:10 in non-selective buffered peptone water, followed by DNA extraction, and Salmonella detection and quantification by real-time PCR. The limit of quantification was 1.4 colony forming units (CFU)/20 cm(2) (approximately 10 g) of artificially contaminated sample with 95% confidence interval of ± 0.7 log CFU/sample. The precision was similar to the standard reference most probable number (MPN) method. A screening of 200 potentially naturally contaminated cork borer samples obtained over seven weeks in a slaughterhouse resulted in 25 Salmonella-positive samples. The analysis of salmonellae within these samples showed that the PCR method had a higher sensitivity for samples with a low contamination level (<6.7 CFU/sample), where 15 of the samples negative with the MPN method was detected with the PCR method and 5 were found to be negative by both methods. For the samples with a higher contamination level (6.7-310 CFU/sample) a good agreement between the results obtained with the PCR and MPN methods was obtained. The quantitative real-time

  19. [The validation of kit of reagents for quantitative detection of DNA of human cytomegalovirus in biological material using polymerase chain reaction technique in real time operation mode].

    PubMed

    Sil'veĭstrova, O Iu; Domonova, É A; Shipulina, O Iu

    2014-04-01

    The validation of kit of reagents destined to detection and quantitative evaluation of DNA of human cytomegalovirus in biological material using polymerase chain reaction technique in real time operation mode was implemented. The comparison was made against international WHO standard--The first WHO international standard for human cytomegalovirus to implement measures the kit of reagents "AmpliSens CMV-screen/monitor-FL" and standard sample of enterprise DNA HCMV (The central research institute of epidemiology of Rospotrebnadzor) was applied. The fivefold dilution of international WHO standard and standard sample of enterprise were carried out in concentrations of DNA HCMV from 106 to 102. The arrangement of polymerase chain reaction and analysis of results were implemented using programed amplifier with system of detection of fluorescent signal in real-time mode "Rotor-Gene Q" ("Qiagen", Germany). In the total of three series of experiments, all stages of polymerase chain reaction study included, the coefficient of translation of quantitative evaluation of DNA HCMV from copy/ml to ME/ml equal to 0.6 was introduced for this kit of reagents.

  20. Recombinant plasmid-based quantitative Real-Time PCR analysis of Salmonella enterica serotypes and its application to milk samples.

    PubMed

    Gokduman, Kurtulus; Avsaroglu, M Dilek; Cakiris, Aris; Ustek, Duran; Gurakan, G Candan

    2016-03-01

    The aim of the current study was to develop, a new, rapid, sensitive and quantitative Salmonella detection method using a Real-Time PCR technique based on an inexpensive, easy to produce, convenient and standardized recombinant plasmid positive control. To achieve this, two recombinant plasmids were constructed as reference molecules by cloning the two most commonly used Salmonella-specific target gene regions, invA and ttrRSBC. The more rapid detection enabled by the developed method (21 h) compared to the traditional culture method (90 h) allows the quantitative evaluation of Salmonella (quantification limits of 10(1)CFU/ml and 10(0)CFU/ml for the invA target and the ttrRSBC target, respectively), as illustrated using milk samples. Three advantages illustrated by the current study demonstrate the potential of the newly developed method to be used in routine analyses in the medical, veterinary, food and water/environmental sectors: I--The method provides fast analyses including the simultaneous detection and determination of correct pathogen counts; II--The method is applicable to challenging samples, such as milk; III--The method's positive controls (recombinant plasmids) are reproducible in large quantities without the need to construct new calibration curves. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. WetLab-2: Tools for Conducting On-Orbit Quantitative Real-Time Gene Expression Analysis on ISS

    NASA Technical Reports Server (NTRS)

    Parra, Macarena; Almeida, Eduardo; Boone, Travis; Jung, Jimmy; Schonfeld, Julie

    2014-01-01

    The objective of NASA Ames Research Centers WetLab-2 Project is to place on the ISS a research platform capable of conducting gene expression analysis via quantitative real-time PCR (qRT-PCR) of biological specimens sampled or cultured on orbit. The project has selected a Commercial-Off-The-Shelf (COTS) qRT-PCR system, the Cepheid SmartCycler and will fly it in its COTS configuration. The SmartCycler has a number of advantages including modular design (16 independent PCR modules), low power consumption, rapid ramp times and the ability to detect up to four separate fluorescent channels at one time enabling multiplex assays that can be used for normalization and to study multiple genes of interest in each module. The team is currently working with Cepheid to enable the downlink of data from the ISS to the ground and provide uplink capabilities for programming, commanding, monitoring, and instrument maintenance. The project has adapted commercial technology to design a module that can lyse cells and extract RNA of sufficient quality and quantity for use in qRT-PCR reactions while using a housekeeping gene to normalize RNA concentration and integrity. The WetLab-2 system is capable of processing multiple sample types ranging from microbial cultures to animal tissues dissected on-orbit. The ability to conduct qRT-PCR on-orbit eliminates the confounding effects on gene expression of reentry stresses and shock acting on live cells and organisms or the concern of RNA degradation of fixed samples. The system can be used to validate terrestrial analyses of samples returned from ISS by providing on-orbit gene expression benchmarking prior to sample return. The ability to get on orbit data will provide investigators with the opportunity to adjust experiment parameters for subsequent trials based on the real-time data analysis without need for sample return and re-flight. Researchers will also be able to sample multigenerational changes in organisms. Finally, the system can be

  2. A novel universal real-time PCR system using the attached universal duplex probes for quantitative analysis of nucleic acids.

    PubMed

    Yang, Litao; Liang, Wanqi; Jiang, Lingxi; Li, Wenquan; Cao, Wei; Wilson, Zoe A; Zhang, Dabing

    2008-06-04

    Real-time PCR techniques are being widely used for nucleic acids analysis, but one limitation of current frequently employed real-time PCR is the high cost of the labeled probe for each target molecule. We describe a real-time PCR technique employing attached universal duplex probes (AUDP), which has the advantage of generating fluorescence by probe hydrolysis and strand displacement over current real-time PCR methods. AUDP involves one set of universal duplex probes in which the 5' end of the fluorescent probe (FP) and a complementary quenching probe (QP) lie in close proximity so that fluorescence can be quenched. The PCR primer pair with attached universal template (UT) and the FP are identical to the UT sequence. We have shown that the AUDP technique can be used for detecting multiple target DNA sequences in both simplex and duplex real-time PCR assays for gene expression analysis, genotype identification, and genetically modified organism (GMO) quantification with comparable sensitivity, reproducibility, and repeatability with other real-time PCR methods. The results from GMO quantification, gene expression analysis, genotype identification, and GMO quantification using AUDP real-time PCR assays indicate that the AUDP real-time PCR technique has been successfully applied in nucleic acids analysis, and the developed AUDP real-time PCR technique will offer an alternative way for nucleic acid analysis with high efficiency, reliability, and flexibility at low cost.

  3. Discordances with HIV-1 RNA quantitative determinations by three commercial assays in Pointe Noire, Republic of Congo.

    PubMed

    Bruzzone, Bianca; Bisio, Francesca; Caligiuri, Patrizia; Mboungou, Franc A Mayinda; Nigro, Nicola; Sticchi, Laura; Ventura, Agostina; Saladini, Francesco; Zazzi, Maurizio; Icardi, Giancarlo; Viscoli, Claudio

    2014-07-01

    Accurate HIV-1 RNA quantitation is required to support the scale up of antiretroviral therapy in African countries. Extreme HIV-1 genetic variability in Africa may affect the ability of commercially available assays to detect and quantify HIV-1 RNA accurately. The aim of this study was to compare three real-time PCR assays for quantitation of plasma HIV-1 RNA levels in patients from the Republic of Congo, an area with highly diversified HIV-1 subtypes and recombinants. The Abbott RealTime HIV-1, BioMérieux HIV-1 EasyQ test 1.2 and Cobas AmpliPrep/Cobas TaqMan HIV-1 1.0 were compared for quantitation of HIV-1 RNA in 37 HIV-1 seropositive pregnant women enrolled in the Kento-Mwana project for prevention of mother-to-child transmission in Pointe-Noire, Republic of Congo. The sample panel included a variety of HIV-1 subtypes with as many as 21 (56.8%) putative unique recombinant forms. Qualitative detection of HIV-1 RNA was concordant by all three assays in 33/37 (89.2%) samples. Of the remaining 4 (10.8%) samples, all were positive by Roche, three by Abbott and none by BioMérieux. Differences exceeding 1Log in positive samples were found in 4/31 (12.9%), 10/31 (32.3%) and 5/31 (16.1%) cases between Abbott and BioMérieux, Roche and BioMérieux, and Abbott and Roche, respectively. In this sample panel representative of highly polymorphic HIV-1 in Congo, the agreement among the three assays was moderate in terms of HIV-1 RNA detectability and rather inconsistent in terms of quantitation. Copyright © 2014. Published by Elsevier B.V.

  4. Real-Time Mapping Spectroscopy on the Ground, in the Air, and in Space

    NASA Astrophysics Data System (ADS)

    Thompson, D. R.; Allwood, A.; Chien, S.; Green, R. O.; Wettergreen, D. S.

    2016-12-01

    Real-time data interpretation can benefit both remote in situ exploration and remote sensing. Basic analyses at the sensor can monitor instrument performance and reveal invisible science phenomena in real time. This promotes situational awareness for remote robotic explorers or campaign decision makers, enabling adaptive data collection, reduced downlink requirements, and coordinated multi-instrument observations. Fast analysis is ideal for mapping spectrometers providing unambiguous, quantitative geophysical measurements. This presentation surveys recent computational advances in real-time spectroscopic analysis for Earth science and planetary exploration. Spectral analysis at the sensor enables new operations concepts that significantly improve science yield. Applications include real-time detection of fugitive greenhouse emissions by airborne monitoring, real-time cloud screening and mineralogical mapping by orbital spectrometers, and adaptive measurement by the PIXL instrument on the Mars 2020 rover. Copyright 2016 California Institute of Technology. All Rights Reserved. We acknowledge support of the US Government, NASA, the Earth Science Division and Terrestrial Ecology program.

  5. Evaluation of urine for Leishmania infantum DNA detection by real-time quantitative PCR.

    PubMed

    Pessoa-E-Silva, Rômulo; Mendonça Trajano-Silva, Lays Adrianne; Lopes da Silva, Maria Almerice; da Cunha Gonçalves-de-Albuquerque, Suênia; de Goes, Tayná Correia; Silva de Morais, Rayana Carla; Lopes de Melo, Fábio; de Paiva-Cavalcanti, Milena

    2016-12-01

    The availability of some sorts of biological samples which require noninvasive collection methods has led to an even greater interest in applying molecular biology on visceral leishmaniasis (VL) diagnosis, since these samples increase the safety and comfort of both patients and health professionals. In this context, this work aimed to evaluate the suitability of the urine as a specimen for Leishmania infantum kinetoplast DNA detection by real-time quantitative PCR (qPCR). Subsequent to the reproducibility analysis, the detection limit of the qPCR assay was set at 5fg (~0.025 parasites) per μL of urine. From the comparative analysis performed with a set of diagnostic criteria (serological and molecular reference tests), concordance value of 96.08% was obtained (VL-suspected and HIV/AIDS patients, n=51) (P>0.05). Kappa coefficient (95% CI) indicated a good agreement between the test and the set of diagnostic criteria (k=0.778±0.151). The detection of Leishmania DNA in urine by qPCR was possible in untreated individuals, and in those with or without suggestive renal impairment. Fast depletion of the parasite's DNA in urine after treatment (from one dose of meglumine antimoniate) was suggested by negative qPCR results, thus indicating it as a potential alternative specimen to follow up the efficacy of therapeutic approaches. Even when evaluated in a clinically heterogeneous set of patients, the urine showed good prospect as sample for VL diagnosis by qPCR, also indicating a good negative predictive value for untreated suspected patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Real-time quantitative reverse transcription-PCR assay for renal cell carcinoma-associated antigen G250.

    PubMed

    Chuanzhong, Ye; Ming, Guan; Fanglin, Zhang; Haijiao, Chen; Zhen, Lin; Shiping, Chen; YongKang, Zhang

    2002-04-01

    Gene amplification/expression of G250 is a major event in human renal tumorigenesis. G250-based therapeutic agents and G250-specific gene therapy are under development. These new perspectives call for a sensitive and accurate method to screen G250 alterations in renal cell cancer (RCC) patients and investigate the relationship between G250 mRNA expression and RCC. We developed a quantitative RT-PCR assay for the measurement of G250 mRNA expression using a real-time procedure based on the use of fluorogenic probes and the ABI PRISM 7700 Sequence Detector System. The method has been applied to the measurement of quantitative mRNA level of G250 in 31 cases RCC and 6 normal renal tissues. The dynamic range was 10(3)-10(8). The relationship between Ct and log starting concentration was linear (r=0.99). G250 expression was present in all RCCs with G250 amplification but was absent in normal ones. G250 mRNA expression ranged from 2.9 x 10(3) to 6.5 x 10(7) copy/microg RNA, with a mean value of 3.5 x 10(6) copy/microg RNA. The expression of G250 revealed an inverse correlation to tumor grade. G250 mRNA level did not correlate with the cell types and clinical stages (P>0.05). G250 has the potential to be used as a marker of diagnosis and increasing proliferation in RCC. This new simple, rapid, semi-automated assay was a major alternative to competitive PCR and Northern blot analysis for gene alteration analysis in human tumors and might be a powerful tool for large randomized, prospective cooperative group trials and supporting future G250-based biological and gene therapy approaches.

  7. Detection of Mycobacterium tuberculosis Complex in Paraffin-Embedded Tissues by the New Automated Abbott RealTime MTB Assay.

    PubMed

    Fu, Yung-Chieh; Liao, I-Chuang; Chen, Hung-Mo; Yan, Jing-Jou

    2016-07-01

    The Abbott RealTime MTB assay, launched in June 2014, has been shown to have a competitive performance in the detection of the Mycobacterium tuberculosis (MTB) complex in respiratory specimens. The present study was conducted to investigate the usefulness of the Abbott MTB Realtime assay in the detection of MTB in formalin-fixed paraffin-embedded (FFPE) tissues. A total of 96 FFPE specimens obtained from microbiologically proven MTB cases (N=60) and nontuberculous Mycobacterium cases (N=36) were analyzed. The performance of the Abbott MTB Realtime assay was compared with that of the Roche Cobas TaqMan MTB assay. The overall sensitivity and specificity of the Abbott assay were 63.3% and 97.2%, respectively, compared with 11.7% and 100% for the Cobas assay. The detection rate of the Abbott assay was much higher among 37 acid-fast-positive specimens than among 23 acid-fast-negative specimens (89.3% versus 21.7%, respectively). The detection rate of the assay was higher among 29 resection specimens than among 31 small biopsy specimens (86.2% versus 41.9%, respectively). Our results suggest that the Abbott RealTime MTB assay can be used to differentiate MTB from nontuberculous mycobacterial infections in acid-fast-positive FFPE tissues. © 2016 by the Association of Clinical Scientists, Inc.

  8. A novel universal real-time PCR system using the attached universal duplex probes for quantitative analysis of nucleic acids

    PubMed Central

    Yang, Litao; Liang, Wanqi; Jiang, Lingxi; Li, Wenquan; Cao, Wei; Wilson, Zoe A; Zhang, Dabing

    2008-01-01

    Background Real-time PCR techniques are being widely used for nucleic acids analysis, but one limitation of current frequently employed real-time PCR is the high cost of the labeled probe for each target molecule. Results We describe a real-time PCR technique employing attached universal duplex probes (AUDP), which has the advantage of generating fluorescence by probe hydrolysis and strand displacement over current real-time PCR methods. AUDP involves one set of universal duplex probes in which the 5' end of the fluorescent probe (FP) and a complementary quenching probe (QP) lie in close proximity so that fluorescence can be quenched. The PCR primer pair with attached universal template (UT) and the FP are identical to the UT sequence. We have shown that the AUDP technique can be used for detecting multiple target DNA sequences in both simplex and duplex real-time PCR assays for gene expression analysis, genotype identification, and genetically modified organism (GMO) quantification with comparable sensitivity, reproducibility, and repeatability with other real-time PCR methods. Conclusion The results from GMO quantification, gene expression analysis, genotype identification, and GMO quantification using AUDP real-time PCR assays indicate that the AUDP real-time PCR technique has been successfully applied in nucleic acids analysis, and the developed AUDP real-time PCR technique will offer an alternative way for nucleic acid analysis with high efficiency, reliability, and flexibility at low cost. PMID:18522756

  9. High sensitivity detection and quantitation of DNA copy number and single nucleotide variants with single color droplet digital PCR.

    PubMed

    Miotke, Laura; Lau, Billy T; Rumma, Rowza T; Ji, Hanlee P

    2014-03-04

    In this study, we present a highly customizable method for quantifying copy number and point mutations utilizing a single-color, droplet digital PCR platform. Droplet digital polymerase chain reaction (ddPCR) is rapidly replacing real-time quantitative PCR (qRT-PCR) as an efficient method of independent DNA quantification. Compared to quantative PCR, ddPCR eliminates the needs for traditional standards; instead, it measures target and reference DNA within the same well. The applications for ddPCR are widespread including targeted quantitation of genetic aberrations, which is commonly achieved with a two-color fluorescent oligonucleotide probe (TaqMan) design. However, the overall cost and need for optimization can be greatly reduced with an alternative method of distinguishing between target and reference products using the nonspecific DNA binding properties of EvaGreen (EG) dye. By manipulating the length of the target and reference amplicons, we can distinguish between their fluorescent signals and quantify each independently. We demonstrate the effectiveness of this method by examining copy number in the proto-oncogene FLT3 and the common V600E point mutation in BRAF. Using a series of well-characterized control samples and cancer cell lines, we confirmed the accuracy of our method in quantifying mutation percentage and integer value copy number changes. As another novel feature, our assay was able to detect a mutation comprising less than 1% of an otherwise wild-type sample, as well as copy number changes from cancers even in the context of significant dilution with normal DNA. This flexible and cost-effective method of independent DNA quantification proves to be a robust alternative to the commercialized TaqMan assay.

  10. Development of a sensitive and quantitative diagnostic assay for fish nervous necrosis virus based on two-target real-time PCR.

    PubMed

    Dalla Valle, L; Toffolo, V; Lamprecht, M; Maltese, C; Bovo, G; Belvedere, P; Colombo, L

    2005-10-31

    The aim of the present work was to develop two new independent SYBR Green I-based real-time PCR assays for both detection and quantification of betanodavirus, an RNA virus that infects several species of marine teleost fish causing massive mortalities in larvae and juveniles. The assays utilized two pairs of primers targeting highly conserved regions of both the RNA molecules forming the betanodavirus genome: RNA1 encoding the RNA-dependent RNA polymerase (RdRP) and RNA2 encoding the coat protein (CP). The specificity of amplifications was monitored by the melting analysis and agarose gel electrophoresis of the amplified products. The applicability of these assays was confirmed with 21 betanodavirus strains, covering all the four main clades. In addition, a BLAST (NCBI) search with the primer sequences showed no genomic cross-reactivity with other viruses. The new assays were able to quantify concentrations of betanodavirus genes ranging from 10(1) to 10(8) copies per reaction. The intra-assay coefficients of variation (CV) of threshold cycle (Ct) values of the assays were 1.5% and 1.4% for CP and RdRP RNAs, respectively. The inter-assay CVs of Ct values were 2.3% and 2.4% for CP and RdRP RNAs, respectively. Moreover, regression analysis showed a significant correlation (R2>0.97) between genome number, as determined by real-time PCR assays and the corresponding virus titer expressed as TCID50/ml of two different betanodavirus strains propagated in cell culture. The two assays were compared with a previously established one-step RT-PCR assay and with the classical virus isolation test and found to be more sensitive. In conclusion, the developed real-time RT-PCR assays are a reliable, specific and sensitive tool for the quantitative diagnosis of betanodavirus.

  11. Novel Quantitative Real-Time LCR for the Sensitive Detection of SNP Frequencies in Pooled DNA: Method Development, Evaluation and Application

    PubMed Central

    Psifidi, Androniki; Dovas, Chrysostomos; Banos, Georgios

    2011-01-01

    Background Single nucleotide polymorphisms (SNP) have proven to be powerful genetic markers for genetic applications in medicine, life science and agriculture. A variety of methods exist for SNP detection but few can quantify SNP frequencies when the mutated DNA molecules correspond to a small fraction of the wild-type DNA. Furthermore, there is no generally accepted gold standard for SNP quantification, and, in general, currently applied methods give inconsistent results in selected cohorts. In the present study we sought to develop a novel method for accurate detection and quantification of SNP in DNA pooled samples. Methods The development and evaluation of a novel Ligase Chain Reaction (LCR) protocol that uses a DNA-specific fluorescent dye to allow quantitative real-time analysis is described. Different reaction components and thermocycling parameters affecting the efficiency and specificity of LCR were examined. Several protocols, including gap-LCR modifications, were evaluated using plasmid standard and genomic DNA pools. A protocol of choice was identified and applied for the quantification of a polymorphism at codon 136 of the ovine PRNP gene that is associated with susceptibility to a transmissible spongiform encephalopathy in sheep. Conclusions The real-time LCR protocol developed in the present study showed high sensitivity, accuracy, reproducibility and a wide dynamic range of SNP quantification in different DNA pools. The limits of detection and quantification of SNP frequencies were 0.085% and 0.35%, respectively. Significance The proposed real-time LCR protocol is applicable when sensitive detection and accurate quantification of low copy number mutations in DNA pools is needed. Examples include oncogenes and tumour suppressor genes, infectious diseases, pathogenic bacteria, fungal species, viral mutants, drug resistance resulting from point mutations, and genetically modified organisms in food. PMID:21283808

  12. Real-time Kp predictions from ACE real time solar wind

    NASA Astrophysics Data System (ADS)

    Detman, Thomas; Joselyn, Joann

    1999-06-01

    The Advanced Composition Explorer (ACE) spacecraft provides nearly continuous monitoring of solar wind plasma, magnetic fields, and energetic particles from the Sun-Earth L1 Lagrange point upstream of Earth in the solar wind. The Space Environment Center (SEC) in Boulder receives ACE telemetry from a group of international network of tracking stations. One-minute, and 1-hour averages of solar wind speed, density, temperature, and magnetic field components are posted on SEC's World Wide Web page within 3 to 5 minutes after they are measured. The ACE Real Time Solar Wind (RTSW) can be used to provide real-time warnings and short term forecasts of geomagnetic storms based on the (traditional) Kp index. Here, we use historical data to evaluate the performance of the first real-time Kp prediction algorithm to become operational.

  13. Comparative study of standard space and real space analysis of quantitative MR brain data.

    PubMed

    Aribisala, Benjamin S; He, Jiabao; Blamire, Andrew M

    2011-06-01

    To compare the robustness of region of interest (ROI) analysis of magnetic resonance imaging (MRI) brain data in real space with analysis in standard space and to test the hypothesis that standard space image analysis introduces more partial volume effect errors compared to analysis of the same dataset in real space. Twenty healthy adults with no history or evidence of neurological diseases were recruited; high-resolution T(1)-weighted, quantitative T(1), and B(0) field-map measurements were collected. Algorithms were implemented to perform analysis in real and standard space and used to apply a simple standard ROI template to quantitative T(1) datasets. Regional relaxation values and histograms for both gray and white matter tissues classes were then extracted and compared. Regional mean T(1) values for both gray and white matter were significantly lower using real space compared to standard space analysis. Additionally, regional T(1) histograms were more compact in real space, with smaller right-sided tails indicating lower partial volume errors compared to standard space analysis. Standard space analysis of quantitative MRI brain data introduces more partial volume effect errors biasing the analysis of quantitative data compared to analysis of the same dataset in real space. Copyright © 2011 Wiley-Liss, Inc.

  14. Validation of Endogenous Internal Real-Time PCR Controls in Renal Tissues

    PubMed Central

    Cui, Xiangqin; Zhou, Juling; Qiu, Jing; Johnson, Martin R.; Mrug, Michal

    2009-01-01

    Background Endogenous internal controls (‘reference’ or ‘housekeeping’ genes) are widely used in real-time PCR (RT-PCR) analyses. Their use relies on the premise of consistently stable expression across studied experimental conditions. Unfortunately, none of these controls fulfills this premise across a wide range of experimental conditions; consequently, none of them can be recommended for universal use. Methods To determine which endogenous RT-PCR controls are suitable for analyses of renal tissues altered by kidney disease, we studied the expression of 16 commonly used ‘reference genes’ in 7 mildly and 7 severely affected whole kidney tissues from a well-characterized cystic kidney disease model. Expression levels of these 16 genes, determined by TaqMan® RT-PCR analyses and Affymetrix GeneChip® arrays, were normalized and tested for overall variance and equivalence of the means. Results Both statistical approaches and both TaqMan- and GeneChip-based methods converged on 3 out of the 4 top-ranked genes (Ppia, Gapdh and Pgk1) that had the most constant expression levels across the studied phenotypes. Conclusion A combination of the top-ranked genes will provide a suitable endogenous internal control for similar studies of kidney tissues across a wide range of disease severity. PMID:19729889

  15. Detection of Citrus leprosis virus C using specific primers and TaqMan probe in one-step real-time reverse-transcription polymerase chain reaction assays.

    PubMed

    Choudhary, Nandlal; Wei, G; Govindarajulu, A; Roy, Avijit; Li, Wenbin; Picton, Deric D; Nakhla, M K; Levy, L; Brlansky, R H

    2015-11-01

    Citrus leprosis virus C (CiLV-C), a causal agent of the leprosis disease in citrus, is mostly present in the South and Central America and spreading toward the North America. To enable better diagnosis and inhibit the further spread of this re-emerging virus a quantitative (q) real-time reverse transcription polymerase chain reaction (qRT-PCR) assay is needed for early detection of CiLV-C when the virus is present in low titer in citrus leprosis samples. Using the genomic sequence of CiLV-C, specific primers and probe were designed and synthesized to amplify a 73 nt amplicon from the movement protein (MP) gene. A standard curve of the 73 nt amplicon MP gene was developed using known 10(10)-10(1) copies of in vitro synthesized RNA transcript to estimate the copy number of RNA transcript in the citrus leprosis samples. The one-step qRT-PCR detection assays for CiLV-C were determined to be 1000 times more sensitive when compared to the one-step conventional reverse transcription polymerase chain reaction (RT-PCR) CiLV-C detection method. To evaluate the quality of the total RNA extracts, NADH dehydrogenase gene specific primers (nad5) and probe were included in reactions as an internal control. The one-step qRT-PCR specificity was successfully validated by testing for the presence of CiLV-C in the total RNA extracts of the citrus leprosis samples collected from Belize, Costa Rica, Mexico and Panama. Implementation of the one-step qRT-PCR assays for CiLV-C diagnosis should assist regulatory agencies in surveillance activities to monitor the distribution pattern of CiLV-C in countries where it is present and to prevent further dissemination into citrus growing countries where there is no report of CiLV-C presence. Published by Elsevier B.V.

  16. Validation of Reference Genes for Real-Time Quantitative PCR (qPCR) Analysis of Avibacterium paragallinarum.

    PubMed

    Wen, Shuxiang; Chen, Xiaoling; Xu, Fuzhou; Sun, Huiling

    2016-01-01

    Real-time quantitative reverse transcription PCR (qRT-PCR) offers a robust method for measurement of gene expression levels. Selection of reliable reference gene(s) for gene expression study is conducive to reduce variations derived from different amounts of RNA and cDNA, the efficiency of the reverse transcriptase or polymerase enzymes. Until now reference genes identified for other members of the family Pasteurellaceae have not been validated for Avibacterium paragallinarum. The aim of this study was to validate nine reference genes of serovars A, B, and C strains of A. paragallinarum in different growth phase by qRT-PCR. Three of the most widely used statistical algorithms, geNorm, NormFinder and ΔCT method were used to evaluate the expression stability of reference genes. Data analyzed by overall rankings showed that in exponential and stationary phase of serovar A, the most stable reference genes were gyrA and atpD respectively; in exponential and stationary phase of serovar B, the most stable reference genes were atpD and recN respectively; in exponential and stationary phase of serovar C, the most stable reference genes were rpoB and recN respectively. This study provides recommendations for stable endogenous control genes for use in further studies involving measurement of gene expression levels.

  17. Identification of Reference Genes for Real-Time Quantitative PCR Experiments in the Liverwort Marchantia polymorpha

    PubMed Central

    Dolan, Liam; Langdale, Jane A.

    2015-01-01

    Real-time quantitative polymerase chain reaction (qPCR) has become widely used as a method to compare gene transcript levels across different conditions. However, selection of suitable reference genes to normalize qPCR data is required for accurate transcript level analysis. Recently, Marchantia polymorpha has been adopted as a model for the study of liverwort development and land plant evolution. Identification of appropriate reference genes has therefore become a necessity for gene expression studies. In this study, transcript levels of eleven candidate reference genes have been analyzed across a range of biological contexts that encompass abiotic stress, hormone treatment and different developmental stages. The consistency of transcript levels was assessed using both geNorm and NormFinder algorithms, and a consensus ranking of the different candidate genes was then obtained. MpAPT and MpACT showed relatively constant transcript levels across all conditions tested whereas the transcript levels of other candidate genes were clearly influenced by experimental conditions. By analyzing transcript levels of phosphate and nitrate starvation reporter genes, we confirmed that MpAPT and MpACT are suitable reference genes in M. polymorpha and also demonstrated that normalization with an inappropriate gene can lead to erroneous analysis of qPCR data. PMID:25798897

  18. Real-Time PCR (qPCR) Primer Design Using Free Online Software

    ERIC Educational Resources Information Center

    Thornton, Brenda; Basu, Chhandak

    2011-01-01

    Real-time PCR (quantitative PCR or qPCR) has become the preferred method for validating results obtained from assays which measure gene expression profiles. The process uses reverse transcription polymerase chain reaction (RT-PCR), coupled with fluorescent chemistry, to measure variations in transcriptome levels between samples. The four most…

  19. Real-Time Reverse Transcription-PCR Assay for Detection of Mumps Virus RNA in Clinical Specimens▿

    PubMed Central

    Boddicker, Jennifer D.; Rota, Paul A.; Kreman, Trisha; Wangeman, Andrea; Lowe, Louis; Hummel, Kimberly B.; Thompson, Robert; Bellini, William J.; Pentella, Michael; DesJardin, Lucy E.

    2007-01-01

    The mumps virus is a negative-strand RNA virus in the family Paramyxoviridae. Mumps infection results in an acute illness with symptoms including fever, headache, and myalgia, followed by swelling of the salivary glands. Complications of mumps can include meningitis, deafness, pancreatitis, orchitis, and first-trimester abortion. Laboratory confirmation of mumps infection can be made by the detection of immunoglobulin M-specific antibodies to mumps virus in acute-phase serum samples, the isolation of mumps virus in cell culture, or by detection of the RNA of the mumps virus by reverse transcription (RT)-PCR. We developed and validated a multiplex real-time RT-PCR assay for rapid mumps diagnosis in a clinical setting. This assay used oligonucleotide primers and a TaqMan probe targeting the mumps SH gene, as well as primers and a probe that targeted the human RNase P gene to assess the presence of PCR inhibitors and as a measure of specimen quality. The test was specific, since it did not amplify a product from near-neighbor viruses, as well as sensitive and accurate. Real-time RT-PCR results showed 100% correlation with results from viral culture, the gold standard for mumps diagnostic testing. Assay efficiency was over 90% and displayed good precision after performing inter- and intraassay replicates. Thus, we have developed and validated a molecular method for rapidly diagnosing mumps infection that may be used to complement existing techniques. PMID:17652480

  20. Comparison of droplet digital PCR and quantitative real-time PCR for examining population dynamics of bacteria in soil.

    PubMed

    Kim, Tae Gwan; Jeong, So-Yeon; Cho, Kyung-Suk

    2014-07-01

    The newly developed droplet digital PCR (DD-PCR) has shown promise as a DNA quantification technology in medical diagnostic fields. This study evaluated the applicability of DD-PCR as a quantitative tool for soil DNA using quantitative real-time PCR (qRT-PCR) as a reference technology. Cupriavidus sp. MBT14 and Sphingopyxis sp. MD2 were used, and a primer/TaqMan probe set was designed for each (CupMBT and SphMD2, respectively). Standard curve analyses on tenfold dilution series showed that both qRT-PCR and DD-PCR exhibited excellent linearity (R (2) = 1.00) and PCR efficiency (≥92 %) across their detectable ranges. However, DD-PCR showed a tenfold greater sensitivity than qRT-PCR. MBT14 and MD2 were added to non-sterile soil at 0 ~ 5 × 10(8) and 0 ~ 5 × 10(7) cells per gram of soil, respectively (n = 5). This bacterial load test indicated that DD-PCR was more sensitive and discriminating than qRT-PCR. For instance, DD-PCR showed a gradual DNA increase from 14 to 141,160 MBT14 rDNA copies μL DNA extract(-1) as the bacterial load increased, while qRT-PCR could quantify the DNA (6,432 copies μL DNA(-1)) at ≥5 × 10(5) MBT14 per gram of soil. When temporal DNA changes were monitored for 3 weeks in the amended soils, the two technologies exhibited nearly identical changes over time. Linearity tests (y = a · x) revealed excellent quantitative agreement between the two technologies (a = 0.98, R (2) = 0.97 in the CupMBT set and a = 0.90, R (2) = 0.94 in the SphMD2 set). These results suggest that DD-PCR is a promising tool to examine temporal dynamics of microorganisms in complex environments.

  1. Rapid Real-Time PCR Assay for Detection and Quantitation of Mycobacterium avium subsp. paratuberculosis DNA in Artificially Contaminated Milk

    PubMed Central

    O'Mahony, Jim; Hill, Colin

    2004-01-01

    Using fluorescence resonance energy transfer technology and Lightcycler analysis, we developed a real-time PCR assay with primers and probes designed by using IS900 which allowed rapid detection of Mycobacterium avium subsp. paratuberculosis DNA in artificially contaminated milk. Initially, the PCR parameters (including primer and probe levels, assay volume, Mg2+ concentration, and annealing temperature) were optimized. Subsequently, the quantitative ability of the assay was tested and was found to be accurate over a broad linear range (3 × 106 to 3 × 101 copies). The assay sensitivity when purified DNA was used was determined to be as low as five copies, with excellent reproducibility. A range of DNA isolation strategies was developed for isolating M. avium subsp. paratuberculosis DNA from spiked milk, the most effective of which involved the use of 50 mM Tris HCl, 10 mM EDTA, 2% Triton X-100, 4 M guanidinium isothiocyante, and 0.3 M sodium acetate combined with boiling, physical grinding, and nucleic acid spin columns. When this technique was used in conjunction with the real-time PCR assay, it was possible to consistently detect <100 organisms per ml of milk (equivalent to 2,000 organisms per 25 ml). Furthermore, the entire procedure (extraction and PCR) was performed in less than 3 h and was successfully adapted to quantify M. avium subsp. paratuberculosis in spiked milk from heavily and mildly contaminated samples. PMID:15294786

  2. Digital video timing analyzer for the evaluation of PC-based real-time simulation systems

    NASA Astrophysics Data System (ADS)

    Jones, Shawn R.; Crosby, Jay L.; Terry, John E., Jr.

    2009-05-01

    Due to the rapid acceleration in technology and the drop in costs, the use of commercial off-the-shelf (COTS) PC-based hardware and software components for digital and hardware-in-the-loop (HWIL) simulations has increased. However, the increase in PC-based components creates new challenges for HWIL test facilities such as cost-effective hardware and software selection, system configuration and integration, performance testing, and simulation verification/validation. This paper will discuss how the Digital Video Timing Analyzer (DiViTA) installed in the Aviation and Missile Research, Development and Engineering Center (AMRDEC) provides quantitative characterization data for PC-based real-time scene generation systems. An overview of the DiViTA is provided followed by details on measurement techniques, applications, and real-world examples of system benefits.

  3. Utility of Real-Time PCR for Detection of Exserohilum rostratum in Body and Tissue Fluids during the Multistate Outbreak of Fungal Meningitis and Other Infections

    PubMed Central

    Gade, Lalitha; Grgurich, Dale E.; Kerkering, Thomas M.; Brandt, Mary E.

    2014-01-01

    Exserohilum rostratum was the major cause of the multistate outbreak of fungal meningitis linked to contaminated injections of methylprednisolone acetate produced by the New England Compounding Center. Previously, we developed a fungal DNA extraction procedure and broad-range and E. rostratum-specific PCR assays and confirmed the presence of fungal DNA in 28% of the case patients. Here, we report the development and validation of a TaqMan real-time PCR assay for the detection of E. rostratum in body fluids, which we used to confirm infections in 57 additional case patients, bringing the total number of case patients with PCR results positive for E. rostratum to 171 (37% of the 461 case patients with available specimens). Compared to fungal culture and the previous PCR assays, this real-time PCR assay was more sensitive. Of the 139 identical specimens from case patients tested by all three methods, 19 (14%) were positive by culture, 41 (29%) were positive by the conventional PCR assay, and 65 (47%) were positive by the real-time PCR assay. We also compared the utility of the real-time PCR assay with that of the previously described beta-d-glucan (BDG) detection assay for monitoring response to treatment in case patients with serially collected CSF. Only the incident CSF specimens from most of the case patients were positive by real-time PCR, while most of the subsequently collected specimens were negative, confirming our previous observations that the BDG assay was more appropriate than the real-time PCR assay for monitoring the response to treatment. Our results also demonstrate that the real-time PCR assay is extremely susceptible to contamination and its results should be used only in conjunction with clinical and epidemiological data. PMID:25520443

  4. Portable real-time fluorescence cytometry of microscale cell culture analog devices

    NASA Astrophysics Data System (ADS)

    Kim, Donghyun; Tatosian, Daniel A.; Shuler, Michael L.

    2006-02-01

    A portable fluorescence cytometric system that provides a modular platform for quantitative real-time image measurements has been used to explore the applicability to investigating cellular events on multiple time scales. For a short time scale, we investigated the real-time dynamics of uptake of daunorubicin, a chemotherapeutic agent, in cultured mouse L-cells in a micro cell culture analog compartment using the fluorescent cytometric system. The green fluorescent protein (GFP) expression to monitor induction of pre-specified genes, which occurs on a much longer time scale, has also been measured. Here GFP fluorescence from a doxycycline inducible promoter in a mouse L-cell line was determined. Additionally, a system based on inexpensive LEDs showed performance comparable to a broadband light source based system and reduced photobleaching compared to microscopic examination.

  5. Effectiveness of Quantitative Real Time PCR in Long-Term Follow-up of Chronic Myeloid Leukemia Patients.

    PubMed

    Savasoglu, Kaan; Payzin, Kadriye Bahriye; Ozdemirkiran, Fusun; Berber, Belgin

    2015-08-01

    To determine the use of the Quantitative Real Time PCR (RQ-PCR) assay follow-up with Chronic Myeloid Leukemia (CML) patients. Cross-sectional observational. Izmir Ataturk Education and Research Hospital, Izmir, Turkey, from 2009 to 2013. Cytogenetic, FISH, RQ-PCR test results from 177 CMLpatients' materials selected between 2009 - 2013 years was set up for comparison analysis. Statistical analysis was performed to compare between FISH, karyotype and RQ-PCR results of the patients. Karyotyping and FISH specificity and sensitivity rates determined by ROC analysis compared with RQ-PCR results. Chi-square test was used to compare test failure rates. Sensitivity and specificity values were determined for karyotyping 17.6 - 98% (p=0.118, p > 0.05) and for FISH 22.5 - 96% (p=0.064, p > 0.05) respectively. FISH sensitivity was slightly higher than karyotyping but there was calculated a strong correlation between them (p < 0.001). RQ-PCR test failure rate did not correlate with other two tests (p > 0.05); however, karyotyping and FISH test failure rate was statistically significant (p < 0.001). Besides, the situation needed for karyotype analysis, RQ-PCR assay can be used alone in the follow-up of CMLdisease.

  6. Validation of reference genes for real-time quantitative PCR normalization in soybean developmental and germinating seeds.

    PubMed

    Li, Qing; Fan, Cheng-Ming; Zhang, Xiao-Mei; Fu, Yong-Fu

    2012-10-01

    Most of traditional reference genes chosen for real-time quantitative PCR normalization were assumed to be ubiquitously and constitutively expressed in vegetative tissues. However, seeds show distinct transcriptomes compared with the vegetative tissues. Therefore, there is a need for re-validation of reference genes in samples of seed development and germination, especially for soybean seeds. In this study, we aimed at identifying reference genes suitable for the quantification of gene expression level in soybean seeds. In order to identify the best reference genes for soybean seeds, 18 putative reference genes were tested with various methods in different seed samples. We combined the outputs of both geNorm and NormFinder to assess the expression stability of these genes. The reference genes identified as optimums for seed development were TUA5 and UKN2, whereas for seed germination they were novel reference genes Glyma05g37470 and Glyma08g28550. Furthermore, for total seed samples it was necessary to combine four genes of Glyma05g37470, Glyma08g28550, Glyma18g04130 and UKN2 [corrected] for normalization. Key message We identified several reference genes that stably expressed in soybean seed developmental and germinating processes.

  7. Real-time quantitative PCR detection of circulating tumor cells using tag DNA mediated signal amplification strategy.

    PubMed

    Mei, Ting; Lu, Xuewen; Sun, Ning; Li, Xiaomei; Chen, Jitao; Liang, Min; Zhou, Xinke; Fang, Zhiyuan

    2018-06-05

    The level of circulating tumor cell (CTCs) is a reliable marker for tumor burden and malignant progression. Quantification of CTCs remains technically challenging due to the rarity of these cells in peripheral blood. In the present study, we established a real-time quantitative PCR (Q-PCR) based method for sensitive detection of CTCs without DNA extraction. Blood sample was first turned to erythrocyte lyses and then incubated with two antibodies, tag-DNA modified CK-19 antibody and magnetic beads conjugated EpCAM antibody. Tumor cells were further enriched by magnetic separation. Tag-DNA that immobilized on tumor cells through CK-19 antibodies were also retrieved, which was further quantified by Q-PCR. This assay was able to detect single tumor cell in a 5 mL blood sample. The detection rate of clinical tumor blood sample was 92.3%. Furthermore, CTC count in patient was correlated with tumor stage and tumor status. The signal amplification was based on tag DNA rather than tumor gene, which was independent of nucleic acid extraction. With high sensitivity and convenience, this method can be a good alternative for the determination of cancer progress. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Correlative atomic force microscopy quantitative imaging-laser scanning confocal microscopy quantifies the impact of stressors on live cells in real-time.

    PubMed

    Bhat, Supriya V; Sultana, Taranum; Körnig, André; McGrath, Seamus; Shahina, Zinnat; Dahms, Tanya E S

    2018-05-29

    There is an urgent need to assess the effect of anthropogenic chemicals on model cells prior to their release, helping to predict their potential impact on the environment and human health. Laser scanning confocal microscopy (LSCM) and atomic force microscopy (AFM) have each provided an abundance of information on cell physiology. In addition to determining surface architecture, AFM in quantitative imaging (QI) mode probes surface biochemistry and cellular mechanics using minimal applied force, while LSCM offers a window into the cell for imaging fluorescently tagged macromolecules. Correlative AFM-LSCM produces complimentary information on different cellular characteristics for a comprehensive picture of cellular behaviour. We present a correlative AFM-QI-LSCM assay for the simultaneous real-time imaging of living cells in situ, producing multiplexed data on cell morphology and mechanics, surface adhesion and ultrastructure, and real-time localization of multiple fluorescently tagged macromolecules. To demonstrate the broad applicability of this method for disparate cell types, we show altered surface properties, internal molecular arrangement and oxidative stress in model bacterial, fungal and human cells exposed to 2,4-dichlorophenoxyacetic acid. AFM-QI-LSCM is broadly applicable to a variety of cell types and can be used to assess the impact of any multitude of contaminants, alone or in combination.

  9. Quantification of measles, mumps and rubella viruses using real-time quantitative TaqMan-based RT-PCR assay.

    PubMed

    Ammour, Y; Faizuloev, E; Borisova, T; Nikonova, A; Dmitriev, G; Lobodanov, S; Zverev, V

    2013-01-01

    In this study, a rapid quantitative method using TaqMan-based real-time reverse transcription-polymerase chain reaction (qPCR-RT) has been developed for estimating the titers of measles, mumps and rubella (MMR) viruses in infected cell culture supernatants. The qPCR-RT assay was demonstrated to be a specific, sensitive, efficient and reproducible method. For MMR viral samples obtained during MMR viral propagations in Vero cells at a different multiplicity of infection, titers determined by the qPCR-RT assay have been compared with estimates of infectious virus obtained by a traditional commonly used method for MMR viruses - 50% cell culture infective dose (CCID(50)) assay, in paired samples. Pearson analysis evidenced a significant correlation between both methods for a certain period after viral inoculation. Furthermore, the established qPCR-RT assay was faster and less-laborious. The developed method could be used as an alternative method or a supplementary tool for the routine titer estimation during MMR vaccine production. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Quantitative analysis of herpes virus sequences from normal tissue and fibropapillomas of marine turtles with real-time PCR

    USGS Publications Warehouse

    Quackenbush, S.L.; Casey, R.N.; Murcek, R.J.; Paul, T.A.; Work, Thierry M.; Limpus, C.J.; Chaves, A.; duToit, L.; Perez, J.V.; Aguirre, A.A.; Spraker, T.R.; Horrocks, J.A.; Vermeer, L.A.; Balazs, G.S.; Casey, J.W.

    2001-01-01

    Quantitative real-time PCR has been used to measure fibropapilloma-associated turtle herpesvirus (FPTHV) pol DNA loads in fibropapillomas, fibromas, and uninvolved tissues of green, loggerhead, and olive ridley turtles from Hawaii, Florida, Costa Rica, Australia, Mexico, and the West Indies. The viral DNA loads from tumors obtained from terminal animals were relatively homogenous (range 2a??20 copies/cell), whereas DNA copy numbers from biopsied tumors and skin of otherwise healthy turtles displayed a wide variation (range 0.001a??170 copies/cell) and may reflect the stage of tumor development. FPTHV DNA loads in tumors were 2.5a??4.5 logs higher than in uninvolved skin from the same animal regardless of geographic location, further implying a role for FPTHV in the etiology of fibropapillomatosis. Although FPTHV pol sequences amplified from tumors are highly related to each other, single signature amino acid substitutions distinguish the Australia/Hawaii, Mexico/Costa Rica, and Florida/Caribbean groups.

  11. SOFTWARE DESIGN FOR REAL-TIME SYSTEMS.

    DTIC Science & Technology

    Real-time computer systems and real-time computations are defined for the purposes of this report. The design of software for real - time systems is...discussed, employing the concept that all real - time systems belong to one of two types. The types are classified according to the type of control...program used; namely: Pre-assigned Iterative Cycle and Real-time Queueing. The two types of real - time systems are described in general, with supplemental

  12. Visually estimated ejection fraction by two dimensional and triplane echocardiography is closely correlated with quantitative ejection fraction by real-time three dimensional echocardiography.

    PubMed

    Shahgaldi, Kambiz; Gudmundsson, Petri; Manouras, Aristomenis; Brodin, Lars-Ake; Winter, Reidar

    2009-08-25

    Visual assessment of left ventricular ejection fraction (LVEF) is often used in clinical routine despite general recommendations to use quantitative biplane Simpsons (BPS) measurements. Even thou quantitative methods are well validated and from many reasons preferable, the feasibility of visual assessment (eyeballing) is superior. There is to date only sparse data comparing visual EF assessment in comparison to quantitative methods available. The aim of this study was to compare visual EF assessment by two-dimensional echocardiography (2DE) and triplane echocardiography (TPE) using quantitative real-time three-dimensional echocardiography (RT3DE) as the reference method. Thirty patients were enrolled in the study. Eyeballing EF was assessed using apical 4-and 2 chamber views and TP mode by two experienced readers blinded to all clinical data. The measurements were compared to quantitative RT3DE. There were an excellent correlation between eyeballing EF by 2D and TP vs 3DE (r = 0.91 and 0.95 respectively) without any significant bias (-0.5 +/- 3.7% and -0.2 +/- 2.9% respectively). Intraobserver variability was 3.8% for eyeballing 2DE, 3.2% for eyeballing TP and 2.3% for quantitative 3D-EF. Interobserver variability was 7.5% for eyeballing 2D and 8.4% for eyeballing TP. Visual estimation of LVEF both using 2D and TP by an experienced reader correlates well with quantitative EF determined by RT3DE. There is an apparent trend towards a smaller variability using TP in comparison to 2D, this was however not statistically significant.

  13. Visually estimated ejection fraction by two dimensional and triplane echocardiography is closely correlated with quantitative ejection fraction by real-time three dimensional echocardiography

    PubMed Central

    Shahgaldi, Kambiz; Gudmundsson, Petri; Manouras, Aristomenis; Brodin, Lars-Åke; Winter, Reidar

    2009-01-01

    Background Visual assessment of left ventricular ejection fraction (LVEF) is often used in clinical routine despite general recommendations to use quantitative biplane Simpsons (BPS) measurements. Even thou quantitative methods are well validated and from many reasons preferable, the feasibility of visual assessment (eyeballing) is superior. There is to date only sparse data comparing visual EF assessment in comparison to quantitative methods available. The aim of this study was to compare visual EF assessment by two-dimensional echocardiography (2DE) and triplane echocardiography (TPE) using quantitative real-time three-dimensional echocardiography (RT3DE) as the reference method. Methods Thirty patients were enrolled in the study. Eyeballing EF was assessed using apical 4-and 2 chamber views and TP mode by two experienced readers blinded to all clinical data. The measurements were compared to quantitative RT3DE. Results There were an excellent correlation between eyeballing EF by 2D and TP vs 3DE (r = 0.91 and 0.95 respectively) without any significant bias (-0.5 ± 3.7% and -0.2 ± 2.9% respectively). Intraobserver variability was 3.8% for eyeballing 2DE, 3.2% for eyeballing TP and 2.3% for quantitative 3D-EF. Interobserver variability was 7.5% for eyeballing 2D and 8.4% for eyeballing TP. Conclusion Visual estimation of LVEF both using 2D and TP by an experienced reader correlates well with quantitative EF determined by RT3DE. There is an apparent trend towards a smaller variability using TP in comparison to 2D, this was however not statistically significant. PMID:19706183

  14. Wavelength-dependent backscattering measurements for quantitative real-time monitoring of apoptosis in living cells

    NASA Astrophysics Data System (ADS)

    Mulvey, Christine S.; Sherwood, Carly A.; Bigio, Irving J.

    2009-11-01

    Apoptosis-programmed cell death-is a cellular process exhibiting distinct biochemical and morphological changes. An understanding of the early morphological changes that a cell undergoes during apoptosis can provide the opportunity to monitor apoptosis in tissue, yielding diagnostic and prognostic information. There is avid interest regarding the involvement of apoptosis in cancer. The initial response of a tumor to successful cancer treatment is often massive apoptosis. Current apoptosis detection methods require cell culture disruption. Our aim is to develop a nondisruptive optical method to monitor apoptosis in living cells and tissues. This would allow for real-time evaluation of apoptotic progression of the same cell culture over time without alteration. Elastic scattering spectroscopy (ESS) is used to monitor changes in light-scattering properties of cells in vitro due to apoptotic morphology changes. We develop a simple instrument capable of wavelength-resolved ESS measurements from cell cultures in the backward direction. Using Mie theory, we also develop an algorithm that extracts the size distribution of scatterers in the sample. The instrument and algorithm are validated with microsphere suspensions. For cell studies, Chinese hamster ovary (CHO) cells are cultured to confluence on plates and are rendered apoptotic with staurosporine. Backscattering measurements are performed on pairs of treated and control samples at a sequence of times up to 6-h post-treatment. Initial results indicate that ESS is capable of discriminating between treated and control samples as early as 10- to 15-min post-treatment, much earlier than is sensed by standard assays for apoptosis. Extracted size distributions from treated and control samples show a decrease in Rayleigh and 150-nm scatterers, relative to control samples, with a corresponding increase in 200-nm particles. Work continues to correlate these size distributions with underlying morphology. To our knowledge, this

  15. Performance of the new automated Abbott RealTime MTB assay for rapid detection of Mycobacterium tuberculosis complex in respiratory specimens.

    PubMed

    Chen, J H K; She, K K K; Kwong, T-C; Wong, O-Y; Siu, G K H; Leung, C-C; Chang, K-C; Tam, C-M; Ho, P-L; Cheng, V C C; Yuen, K-Y; Yam, W-C

    2015-09-01

    The automated high-throughput Abbott RealTime MTB real-time PCR assay has been recently launched for Mycobacterium tuberculosis complex (MTBC) clinical diagnosis. This study would like to evaluate its performance. We first compared its diagnostic performance with the Roche Cobas TaqMan MTB assay on 214 clinical respiratory specimens. Prospective analysis of a total 520 specimens was then performed to further evaluate the Abbott assay. The Abbott assay showed a lower limit of detection at 22.5 AFB/ml, which was more sensitive than the Cobas assay (167.5 AFB/ml). The two assays demonstrated a significant difference in diagnostic performance (McNemar's test; P = 0.0034), in which the Abbott assay presented significantly higher area under curve (AUC) than the Cobas assay (1.000 vs 0.880; P = 0.0002). The Abbott assay demonstrated extremely low PCR inhibition on clinical respiratory specimens. The automated Abbott assay required only very short manual handling time (0.5 h), which could help to improve the laboratory management. In the prospective analysis, the overall estimates for sensitivity and specificity of the Abbott assay were both 100 % among smear-positive specimens, whereas the smear-negative specimens were 96.7 and 96.1 %, respectively. No cross-reactivity with non-tuberculosis mycobacterial species was observed. The superiority in sensitivity of the Abbott assay for detecting MTBC in smear-negative specimens could further minimize the risk in MTBC false-negative detection. The new Abbott RealTime MTB assay has good diagnostic performance which can be a useful diagnostic tool for rapid MTBC detection in clinical laboratories.

  16. Fault Tolerant Real-Time Systems

    DTIC Science & Technology

    1993-09-30

    The ART (Advanced Real-Time Technology) Project of Carnegie Mellon University is engaged in wide ranging research on hard real - time systems . The...including hardware and software fault tolerance using temporal redundancy and analytic redundancy to permit the construction of real - time systems whose

  17. Standardization and application of real-time polymerase chain reaction for rapid detection of bluetongue virus.

    PubMed

    Lakshmi, I Karthika; Putty, Kalyani; Raut, Satya Samparna; Patil, Sunil R; Rao, P P; Bhagyalakshmi, B; Jyothi, Y Krishna; Susmitha, B; Reddy, Y Vishnuvardhan; Kasulanati, Sowmya; Jyothi, J Shiva; Reddy, Y N

    2018-04-01

    The present study was designed to standardize real-time polymerase chain reaction (PCR) for detecting the bluetongue virus from blood samples of sheep collected during outbreaks of bluetongue disease in the year 2014 in Andhra Pradesh and Telangana states of India. A 10-fold serial dilution of Plasmid PUC59 with bluetongue virus (BTV) NS3 insert was used to plot the standard curve. BHK-21 and KC cells were used for in vitro propagation of virus BTV-9 at a TCID50/ml of 10 5 ml and RNA was isolated by the Trizol method. Both reverse transcription-PCR and real-time PCR using TaqMan probe were carried out with RNA extracted from virus-spiked culture medium and blood to compare the sensitivity by means of finding out the limit of detection (LoD). The results were verified by inoculating the detected and undetected dilutions onto cell cultures with further cytological (cytopathic effect) and molecular confirmation (by BTV-NS1 group-specific PCR). The standardized technique was then applied to field samples (blood) for detecting BTV. The slope of the standard curve obtained was -3.23, and the efficiency was 103%. The LoD with RT-PCR was 8.269E×10 3 number of copies of plasmid, whereas it was 13 with real-time PCR for plasmid dilutions. Similarly, LoD was determined for virus-spiked culture medium, and blood with both the types of PCR and the values were 10 3 TCID 50/ml and 10 4 TCID 50/ml with RT-PCR and 10° TCID 50/ml and 10 2 TCID 50/ml with real-time PCR, respectively. The standardized technique was applied to blood samples collected from BTV suspected animals; 10 among 20 samples were found positive with Cq values ranging from 27 to 39. The Cq value exhibiting samples were further processed in cell cultures and were confirmed to be BT positive. Likewise, Cq undetected samples on processing in cell cultures turned out to be BTV negative. Real-time PCR was found to be a very sensitive as well as reliable method to detect BTV present in different types of samples

  18. Platform for Automated Real-Time High Performance Analytics on Medical Image Data.

    PubMed

    Allen, William J; Gabr, Refaat E; Tefera, Getaneh B; Pednekar, Amol S; Vaughn, Matthew W; Narayana, Ponnada A

    2018-03-01

    Biomedical data are quickly growing in volume and in variety, providing clinicians an opportunity for better clinical decision support. Here, we demonstrate a robust platform that uses software automation and high performance computing (HPC) resources to achieve real-time analytics of clinical data, specifically magnetic resonance imaging (MRI) data. We used the Agave application programming interface to facilitate communication, data transfer, and job control between an MRI scanner and an off-site HPC resource. In this use case, Agave executed the graphical pipeline tool GRAphical Pipeline Environment (GRAPE) to perform automated, real-time, quantitative analysis of MRI scans. Same-session image processing will open the door for adaptive scanning and real-time quality control, potentially accelerating the discovery of pathologies and minimizing patient callbacks. We envision this platform can be adapted to other medical instruments, HPC resources, and analytics tools.

  19. Assessment of Spectroscopic, Real-time Ion Thruster Grid Erosion-rate Measurements

    NASA Technical Reports Server (NTRS)

    Domonkos, Matthew T.; Stevens, Richard E.

    2000-01-01

    The success of the ion thruster on the Deep Space One mission has opened the gate to the use of primary ion propulsion. Many of the projected planetary missions require throughput and specific impulse beyond those qualified to date. Spectroscopic, real-time ion thruster grid erosion-rate measurements are currently in development at the NASA Glenn Research Center. A preliminary investigation of the emission spectra from an NSTAR derivative thruster with titanium grid was conducted. Some titanium lines were observed in the discharge chamber; however, the signals were too weak to estimate the erosion of the screen grid. Nevertheless, this technique appears to be the only non-intrusive real-time means to evaluate screen grid erosion, and improvement of the collection optics is proposed. Direct examination of the erosion species using laser-induced fluorescence (LIF) was determined to be the best method for a real-time accelerator grid erosion diagnostic. An approach for a quantitative LIF diagnostic was presented.

  20. An immunomagnetic separation-real-time PCR system for the detection of Alicyclobacillus acidoterrestris in fruit products.

    PubMed

    Wang, Zhouli; Cai, Rui; Yuan, Yahong; Niu, Chen; Hu, Zhongqiu; Yue, Tianli

    2014-04-03

    Alicyclobacillus acidoterrestris is the most important spoilage species within the Alicyclobacillus genus and has become a major issue in the pasteurized fruit juice industry. The aim of this study was to develop a method combining immunomagnetic separation (IMS) with real-time PCR system (IMS-PCR) for rapid and specific detection of A. acidoterrestris in fruit products. A real-time PCR with the TaqMan system was designed to target the 16S rDNA genes with specific primer and probe set. The specificity of the assay was confirmed using 9 A. acidoterrestris strains and 21 non-A. acidoterrestris strains. The results indicated that no combination of the designed primers and probe was found in any Alicyclobacillus genus except A. acidoterrestris. The detection limit of the established IMS-PCR was less than 10CFU/mL and the testing process was accomplished in 2-3h. For the three types of samples (sterile water, apple juice and kiwi juice), the correlation coefficient of standard curves was greater than 0.991, and the calculated PCR efficiencies were from 108% to 109%. As compared with the standard culture method performed concurrently on the same set of samples, the sensitivity, specificity and accuracy of IMS-PCR for 196 naturally contaminated fruit products were 90.0%, 98.3% and 97.5%, respectively. The results exhibited that the proposed IMS-PCR method was effective for the rapid detection of A. acidoterrestris in fruit products. Copyright © 2014. Published by Elsevier B.V.

  1. A novel photoinduced electron transfer (PET) primer technique for rapid real-time PCR detection of Cryptosporidium spp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jothikumar, N., E-mail: jin2@cdc.gov; Hill, Vincent R.

    Highlights: •Uses a single-labeled fluorescent primer for real-time PCR. •The detection sensitivity of PET PCR was comparable to TaqMan PCR. •Melt curve analysis can be performed to confirm target amplicon production. •Conventional PCR primers can be converted to PET PCR primers. -- Abstract: We report the development of a fluorescently labeled oligonucleotide primer that can be used to monitor real-time PCR. The primer has two parts, the 3′-end of the primer is complimentary to the target and a universal 17-mer stem loop at the 5′-end forms a hairpin structure. A fluorescent dye is attached to 5′-end of either the forwardmore » or reverse primer. The presence of guanosine residues at the first and second position of the 3′ dangling end effectively quenches the fluorescence due to the photo electron transfer (PET) mechanism. During the synthesis of nucleic acid, the hairpin structure is linearized and the fluorescence of the incorporated primer increases several-fold due to release of the fluorescently labeled tail and the absence of guanosine quenching. As amplicons are synthesized during nucleic acid amplification, the fluorescence increase in the reaction mixture can be measured with commercially available real-time PCR instruments. In addition, a melting procedure can be performed to denature the double-stranded amplicons, thereby generating fluorescence peaks that can differentiate primer dimers and other non-specific amplicons if formed during the reaction. We demonstrated the application of PET-PCR for the rapid detection and quantification of Cryptosporidium parvum DNA. Comparison with a previously published TaqMan® assay demonstrated that the two real-time PCR assays exhibited similar sensitivity for a dynamic range of detection of 6000–0.6 oocysts per reaction. PET PCR primers are simple to design and less-expensive than dual-labeled probe PCR methods, and should be of interest for use by laboratories operating in resource

  2. Specific and quantitative detection of human polyomaviruses BKV, JCV, and SV40 by real time PCR.

    PubMed

    McNees, Adrienne L; White, Zoe S; Zanwar, Preeti; Vilchez, Regis A; Butel, Janet S

    2005-09-01

    The polyomaviruses that infect humans, BK virus (BKV), JC virus (JCV), and simian virus 40 (SV40), typically establish subclinical persistent infections. However, reactivation of these viruses in immunocompromised hosts is associated with renal nephropathy and hemorrhagic cystitis (HC) caused by BKV and with progressive multifocal leukoencephalopathy (PML) caused by JCV. Additionally, SV40 is associated with several types of human cancers including primary brain and bone cancers, mesotheliomas, and non-Hodgkin's lymphoma. Advancements in detection of these viruses may contribute to improved diagnosis and treatment of affected patients. To develop sensitive and specific real time quantitative polymerase chain reaction (RQ-PCR) assays for the detection of T-antigen DNA sequences of the human polyomaviruses BKV, JCV, and SV40 using the ABI Prism 7000 Sequence Detection System. Assays for absolute quantification of the viral T-ag sequences were designed and the sensitivity and specificity were evaluated. A quantitative assay to measure the single copy human RNAse P gene was also developed and evaluated in order to normalize viral gene copy numbers to cell numbers. Quantification of the target genes is sensitive and specific over a 7 log dynamic range. Ten copies each of the viral and cellular genes are reproducibly and accurately detected. The sensitivity of detection of the RQ-PCR assays is increased 10- to 100-fold compared to conventional PCR and agarose gel protocols. The primers and probes used to detect the viral genes are specific for each virus and there is no cross reactivity within the dynamic range of the standard dilutions. The sensitivity of detection for these assays is not reduced in human cellular extracts; however, different DNA extraction protocols may affect quantification. These assays provide a technique for rapid and specific quantification of polyomavirus genomes per cell in human samples.

  3. VERSE - Virtual Equivalent Real-time Simulation

    NASA Technical Reports Server (NTRS)

    Zheng, Yang; Martin, Bryan J.; Villaume, Nathaniel

    2005-01-01

    Distributed real-time simulations provide important timing validation and hardware in the- loop results for the spacecraft flight software development cycle. Occasionally, the need for higher fidelity modeling and more comprehensive debugging capabilities - combined with a limited amount of computational resources - calls for a non real-time simulation environment that mimics the real-time environment. By creating a non real-time environment that accommodates simulations and flight software designed for a multi-CPU real-time system, we can save development time, cut mission costs, and reduce the likelihood of errors. This paper presents such a solution: Virtual Equivalent Real-time Simulation Environment (VERSE). VERSE turns the real-time operating system RTAI (Real-time Application Interface) into an event driven simulator that runs in virtual real time. Designed to keep the original RTAI architecture as intact as possible, and therefore inheriting RTAI's many capabilities, VERSE was implemented with remarkably little change to the RTAI source code. This small footprint together with use of the same API allows users to easily run the same application in both real-time and virtual time environments. VERSE has been used to build a workstation testbed for NASA's Space Interferometry Mission (SIM PlanetQuest) instrument flight software. With its flexible simulation controls and inexpensive setup and replication costs, VERSE will become an invaluable tool in future mission development.

  4. Detection of Echinoderm Microtubule Associated Protein Like 4-Anaplastic Lymphoma Kinase Fusion Genes in Non-small Cell Lung Cancer Clinical Samples by a Real-time Quantitative Reverse Transcription Polymerase Chain Reaction Method.

    PubMed

    Zhao, Jing; Zhao, Jin-Yin; Chen, Zhi-Xia; Zhong, Wei; Li, Long-Yun; Liu, Li-Cheng; Hu, Xiao-Xu; Chen, Wei-Jun; Wang, Meng-Zhao

    2016-12-20

    Objective To establish a real-time quantitative reverse transcription polymerase chain reaction assay (qRT-PCR) for the rapid, sensitive, and specific detection of echinoderm microtubule associated protein like 4-anaplastic lymphoma kinase (EML4-ALK) fusion genes in non-small cell lung cancer. Methods The specific primers for the four variants of EML4-ALK fusion genes (V1, V2, V3a, and V3b) and Taqman fluorescence probes for the detection of the target sequences were carefully designed by the Primer Premier 5.0 software. Then, using pseudovirus containing EML4-ALK fusion genes variants (V1, V2, V3a, and V3b) as the study objects, we further analyzed the lower limit, sensitivity, and specificity of this method. Finally, 50 clinical samples, including 3 ALK-fluorescence in situ hybridization (FISH) positive specimens, were collected and used to detect EML4-ALK fusion genes using this method. Results The lower limit of this method for the detection of EML4-ALK fusion genes was 10 copies/μl if no interference of background RNA existed. Regarding the method's sensitivity, the detection resolution was as high as 1% and 0.5% in the background of 500 and 5000 copies/μl wild-type ALK gene, respectively. Regarding the method's specificity, no non-specific amplification was found when it was used to detect EML4-ALK fusion genes in leukocyte and plasma RNA samples from healthy volunteers. Among the 50 clinical samples, 47 ALK-FISH negative samples were also negative. Among 3 ALK-FISH positive samples, 2 cases were detected positive using this method, but another was not detected because of the failure of RNA extraction. Conclusion The proposed qRT-PCR assay for the detection of EML4-ALK fusion genes is rapid, simple, sensitive, and specific, which is deserved to be validated and widely used in clinical settings.

  5. Quantification of intestinal bacterial populations by real-time PCR with a universal primer set and minor groove binder probes: a global approach to the enteric flora.

    PubMed

    Ott, Stephan J; Musfeldt, Meike; Ullmann, Uwe; Hampe, Jochen; Schreiber, Stefan

    2004-06-01

    The composition of the human intestinal flora is important for the health status of the host. The global composition and the presence of specific pathogens are relevant to the effects of the flora. Therefore, accurate quantification of all major bacterial populations of the enteric flora is needed. A TaqMan real-time PCR-based method for the quantification of 20 dominant bacterial species and groups of the intestinal flora has been established on the basis of 16S ribosomal DNA taxonomy. A PCR with conserved primers was used for all reactions. In each real-time PCR, a universal probe for quantification of total bacteria and a specific probe for the species in question were included. PCR with conserved primers and the universal probe for total bacteria allowed relative and absolute quantification. Minor groove binder probes increased the sensitivity of the assays 10- to 100-fold. The method was evaluated by cross-reaction experiments and quantification of bacteria in complex clinical samples from healthy patients. A sensitivity of 10(1) to 10(3) bacterial cells per sample was achieved. No significant cross-reaction was observed. The real-time PCR assays presented may facilitate understanding of the intestinal bacterial flora through a normalized global estimation of the major contributing species.

  6. Detection of nucleophosmin 1 mutations by quantitative real-time polymerase chain reaction versus capillary electrophoresis: a comparative study.

    PubMed

    Barakat, Fareed H; Luthra, Rajyalakshmi; Yin, C Cameron; Barkoh, Bedia A; Hai, Seema; Jamil, Waqar; Bhakta, Yaminiben I; Chen, Su; Medeiros, L Jeffrey; Zuo, Zhuang

    2011-08-01

    Nucleophosmin 1 (NPM1) is the most commonly mutated gene in acute myeloid leukemia. Detection of NPM1 mutations is useful for stratifying patients for therapy, predicting prognosis, and assessing for minimal residual disease. Several methods have been developed to rapidly detect NPM1 mutations in genomic DNA and/or messenger RNA specimens. To directly compare a quantitative real-time polymerase chain reaction (qPCR) assay with a widely used capillary electrophoresis assay for detecting NPM1 mutations. We adopted and modified a qPCR assay designed to detect the 6 most common NPM1 mutations and performed the assay in parallel with capillary electrophoresis assay in 207 bone marrow aspirate or peripheral blood samples from patients with a range of hematolymphoid neoplasms. The qPCR assay demonstrated a higher analytical sensitivity than the capillary electrophoresis 1/1000 versus 1/40, respectively. The capillary electrophoresis assay generated 10 equivocal results that needed to be repeated, whereas the qPCR assay generated only 1 equivocal result. After test conditions were optimized, the qPCR and capillary electrophoresis methods produced 100% concordant results, 85 positive and 122 negative. Given the higher analytical sensitivity and specificity of the qPCR assay, that assay is less likely to generate equivocal results than the capillary electrophoresis assay. Moreover, the qPCR assay is quantitative, faster, cheaper, less prone to contamination, and well suited for monitoring minimal residual disease.

  7. Terrain modeling for real-time simulation

    NASA Astrophysics Data System (ADS)

    Devarajan, Venkat; McArthur, Donald E.

    1993-10-01

    There are many applications, such as pilot training, mission rehearsal, and hardware-in-the- loop simulation, which require the generation of realistic images of terrain and man-made objects in real-time. One approach to meeting this requirement is to drape photo-texture over a planar polygon model of the terrain. The real time system then computes, for each pixel of the output image, the address in a texture map based on the intersection of the line-of-sight vector with the terrain model. High quality image generation requires that the terrain be modeled with a fine mesh of polygons while hardware costs limit the number of polygons which may be displayed for each scene. The trade-off between these conflicting requirements must be made in real-time because it depends on the changing position and orientation of the pilot's eye point or simulated sensor. The traditional approach is to develop a data base consisting of multiple levels of detail (LOD), and then selecting for display LODs as a function of range. This approach could lead to both anomalies in the displayed scene and inefficient use of resources. An approach has been developed in which the terrain is modeled with a set of nested polygons and organized as a tree with each node corresponding to a polygon. This tree is pruned to select the optimum set of nodes for each eye-point position. As the point of view moves, the visibility of some nodes drops below the limit of perception and may be deleted while new points must be added in regions near the eye point. An analytical model has been developed to determine the number of polygons required for display. This model leads to quantitative performance measures of the triangulation algorithm which is useful for optimizing system performance with a limited display capability.

  8. Comparison of Simplexa HSV 1 & 2 PCR with culture, immunofluorescence, and laboratory-developed TaqMan PCR for detection of herpes simplex virus in swab specimens.

    PubMed

    Gitman, Melissa R; Ferguson, David; Landry, Marie L

    2013-11-01

    The Simplexa HSV 1 & 2 direct PCR assay was compared with conventional cell culture, cytospin-enhanced direct fluorescent antibody (DFA), and a laboratory-developed real-time TaqMan PCR (LDT HSV PCR) using extracted nucleic acid for the detection of herpes simplex virus (HSV) in dermal, genital, mouth, ocular, and other swab samples. One hundred seventy-one swabs were tested prospectively, and 58 were positive for HSV (34 HSV-1 and 24 HSV-2). Cytospin-DFA detected 50 (86.2%), conventional cell culture 51 (87.9%), Simplexa direct 55 (94.8%), and LDT HSV PCR 57 (98.3%) of 58 true positives. Simplexa direct detected more positives than DFA and culture, but the differences were not significant (P = 0.0736 and P = 0.3711, respectively, by the McNemar test). Samples that were positive by all methods (n = 48) were strong positives (LDT cycle threshold [CT] value, 14.4 to 26.1). One strongly positive sample was falsely negative by LDT HSV PCR due to a failure of TaqMan probe binding. Three samples falsely negative by Simplexa direct had high CT values by LDT HSV PCR (LDT CT, 35.8 to 38.2). Omission of the DNA extraction step by Simplexa direct led to a drop in sensitivity compared to the sensitivity of LDT HSV PCR using extracted samples (94.8% versus 98.3%, respectively), but the difference was not significant (P = 0.6171). Simplexa HSV 1 & 2 direct PCR was the most expensive but required the least training of the assays used, had the lowest hands-on time and fastest assay time (75 min, versus 3 h by LDT HSV PCR), and provided the HSV type.

  9. Tendency for interlaboratory precision in the GMO analysis method based on real-time PCR.

    PubMed

    Kodama, Takashi; Kurosawa, Yasunori; Kitta, Kazumi; Naito, Shigehiro

    2010-01-01

    The Horwitz curve estimates interlaboratory precision as a function only of concentration, and is frequently used as a method performance criterion in food analysis with chemical methods. The quantitative biochemical methods based on real-time PCR require an analogous criterion to progressively promote method validation. We analyzed the tendency of precision using a simplex real-time PCR technique in 53 collaborative studies of seven genetically modified (GM) crops. Reproducibility standard deviation (SR) and repeatability standard deviation (Sr) of the genetically modified organism (GMO) amount (%) was more or less independent of GM crops (i.e., maize, soybean, cotton, oilseed rape, potato, sugar beet, and rice) and evaluation procedure steps. Some studies evaluated whole steps consisting of DNA extraction and PCR quantitation, whereas others focused only on the PCR quantitation step by using DNA extraction solutions. Therefore, SR and Sr for GMO amount (%) are functions only of concentration similar to the Horwitz curve. We proposed S(R) = 0.1971C 0.8685 and S(r) = 0.1478C 0.8424, where C is the GMO amount (%). We also proposed a method performance index in GMO quantitative methods that is analogous to the Horwitz Ratio.

  10. The quantification of spermatozoa by real-time quantitative PCR, spectrophotometry, and spermatophore cap size.

    PubMed

    Doyle, Jacqueline M; McCormick, Cory R; DeWoody, J Andrew

    2011-01-01

    Many animals, such as crustaceans, insects, and salamanders, package their sperm into spermatophores, and the number of spermatozoa contained in a spermatophore is relevant to studies of sexual selection and sperm competition. We used two molecular methods, real-time quantitative polymerase chain reaction (RT-qPCR) and spectrophotometry, to estimate sperm numbers from spermatophores. First, we designed gene-specific primers that produced a single amplicon in four species of ambystomatid salamanders. A standard curve generated from cloned amplicons revealed a strong positive relationship between template DNA quantity and cycle threshold, suggesting that RT-qPCR could be used to quantify sperm in a given sample. We then extracted DNA from multiple Ambystoma maculatum spermatophores, performed RT-qPCR on each sample, and estimated template copy numbers (i.e. sperm number) using the standard curve. Second, we used spectrophotometry to determine the number of sperm per spermatophore by measuring DNA concentration relative to the genome size. We documented a significant positive relationship between the estimates of sperm number based on RT-qPCR and those based on spectrophotometry. When these molecular estimates were compared to spermatophore cap size, which in principle could predict the number of sperm contained in the spermatophore, we also found a significant positive relationship between sperm number and spermatophore cap size. This linear model allows estimates of sperm number strictly from cap size, an approach which could greatly simplify the estimation of sperm number in future studies. These methods may help explain variation in fertilization success where sperm competition is mediated by sperm quantity. © 2010 Blackwell Publishing Ltd.

  11. A real-time interferometer technique for compressible flow research

    NASA Technical Reports Server (NTRS)

    Bachalo, W. D.; Houser, M. J.

    1984-01-01

    Strengths and shortcomings in the application of interferometric techniques to transonic flow fields are examined and an improved method is elaborated. Such applications have demonstrated the value of interferometry in obtaining data for compressible flow research. With holographic techniques, interferometry may be applied in large scale facilities without the use of expensive optics or elaborate vibration isolation equipment. Results obtained using holographic interferometry and other methods demonstrate that reliable qualitative and quantitative data can be acquired. Nevertheless, the conventional method can be difficult to set up and apply, and it cannot produce real-time data. A new interferometry technique is investigated that promises to be easier to apply and can provide real-time information. This single-beam technique has the necessary insensitivity to vibration for large scale wind tunnel operations. Capabilities of the method and preliminary tests on some laboratory scale flow fluids are described.

  12. NDBC - NDBC Real-Time Data

    Science.gov Websites

    Subtropical Storm Alberto. NDBC Real-Time Data NDBC moored buoy, C-MAN, and drifting buoy data are available in real-time through selecting either: NDBC Station locator map: a series of regional maps which show : a tabular list of station identifiers. Real-time data are available for the last 45 days (at least

  13. Application of real-time PCR for total airborne bacterial assessment: Comparison with epifluorescence microscopy and culture-dependent methods

    NASA Astrophysics Data System (ADS)

    Rinsoz, Thomas; Duquenne, Philippe; Greff-Mirguet, Guylaine; Oppliger, Anne

    Traditional culture-dependent methods to quantify and identify airborne microorganisms are limited by factors such as short-duration sampling times and inability to count non-culturable or non-viable bacteria. Consequently, the quantitative assessment of bioaerosols is often underestimated. Use of the real-time quantitative polymerase chain reaction (Q-PCR) to quantify bacteria in environmental samples presents an alternative method, which should overcome this problem. The aim of this study was to evaluate the performance of a real-time Q-PCR assay as a simple and reliable way to quantify the airborne bacterial load within poultry houses and sewage treatment plants, in comparison with epifluorescence microscopy and culture-dependent methods. The estimates of bacterial load that we obtained from real-time PCR and epifluorescence methods, are comparable, however, our analysis of sewage treatment plants indicate these methods give values 270-290 fold greater than those obtained by the "impaction on nutrient agar" method. The culture-dependent method of air impaction on nutrient agar was also inadequate in poultry houses, as was the impinger-culture method, which gave a bacterial load estimate 32-fold lower than obtained by Q-PCR. Real-time quantitative PCR thus proves to be a reliable, discerning, and simple method that could be used to estimate airborne bacterial load in a broad variety of other environments expected to carry high numbers of airborne bacteria.

  14. BK virus DNA detection by real-time polymerase chain reaction in clinical specimens.

    PubMed

    Marchetti, Simona; Graffeo, Rosalia; Siddu, Alessia; Santangelo, Rosaria; Ciotti, Marco; Picardi, Alessandra; Favalli, Cartesio; Fadda, Giovanni; Cattani, Paola

    2007-04-01

    The BK polyomavirus (BKV) is widespread in the general population. In transplant recipients, the patients' weakened immune response may encourage reactivation of latent infection, leading to BKV-related diseases. Rapid and quantitative detection might help to delineate viral reactivation patterns and could thus play an important role in their clinical management. In our study we developed an "in-house" quantitative real-time PCR to detect BKV DNA. The effectiveness of this assay was evaluated by a retrospective analysis of 118 plasma specimens from 22 bone marrow transplant (BMT) recipients and 107 samples from immunocompetent subjects. Eight (36.3%) of the 22 bone marrow transplant recipients tested positive for BKV. The viral load varied from specimen to specimen (10 to 10(5) copies/ml). BKV related disease like hemorrhagic cystitis (HC) was diagnosed in three patients. Specimens from the control group all tested negative. Our results showed the high sensitivity of the real-time PCR, allowing accurate and reproducible measuring of the viral load in order to identify patients at risk for BKV-related diseases. With due caution in interpreting threshold values, the real-time PCR could provide a rapid, sensitive and specific tool for detecting BKV and distinguishing latent and active infection.

  15. Real-Time Simulation

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Coryphaeus Software, founded in 1989 by former NASA electronic engineer Steve Lakowske, creates real-time 3D software. Designer's Workbench, the company flagship product, is a modeling and simulation tool for the development of both static and dynamic 3D databases. Other products soon followed. Activation, specifically designed for game developers, allows developers to play and test the 3D games before they commit to a target platform. Game publishers can shorten development time and prove the "playability" of the title, maximizing their chances of introducing a smash hit. Another product, EasyT, lets users create massive, realistic representation of Earth terrains that can be viewed and traversed in real time. Finally, EasyScene software control the actions among interactive objects within a virtual world. Coryphaeus products are used on Silican Graphics workstation and supercomputers to simulate real-world performance in synthetic environments. Customers include aerospace, aviation, architectural and engineering firms, game developers, and the entertainment industry.

  16. Characterization of real-time computers

    NASA Technical Reports Server (NTRS)

    Shin, K. G.; Krishna, C. M.

    1984-01-01

    A real-time system consists of a computer controller and controlled processes. Despite the synergistic relationship between these two components, they have been traditionally designed and analyzed independently of and separately from each other; namely, computer controllers by computer scientists/engineers and controlled processes by control scientists. As a remedy for this problem, in this report real-time computers are characterized by performance measures based on computer controller response time that are: (1) congruent to the real-time applications, (2) able to offer an objective comparison of rival computer systems, and (3) experimentally measurable/determinable. These measures, unlike others, provide the real-time computer controller with a natural link to controlled processes. In order to demonstrate their utility and power, these measures are first determined for example controlled processes on the basis of control performance functionals. They are then used for two important real-time multiprocessor design applications - the number-power tradeoff and fault-masking and synchronization.

  17. Exploiting 16S rRNA gene for the detection and quantification of fish as a potential allergenic food: A comparison of two real-time PCR approaches.

    PubMed

    Fernandes, Telmo J R; Costa, Joana; Oliveira, M Beatriz P P; Mafra, Isabel

    2018-04-15

    Fish is one of the most common allergenic foods that should be accurately labelled to protect the health of allergic consumers. In this work, two real-time PCR systems based on the EvaGreen dye and a TaqMan probe are proposed and compared. New primers were designed to target the 16S rRNA gene, as a universal maker for fish detection, with fully demonstrated specificity for a wide range of fish species. Both systems showed similar absolute sensitivities, down to 0.01 pg of fish DNA, and adequate real-time PCR performance parameters. The probe system showed higher relative sensitivity and dynamic range (0.0001-50%) than the EvaGreen (0.05-50%). They were both precise, but trueness was compromised at the highest tested level with the EvaGreen assay. Therefore, both systems were successful, although the probe one exhibited the best performance. Its application to verify labelling compliance of foodstuffs suggested a high level of mislabelling and/or fraudulent practices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Real-Time Quantitative PCR (QPCR) and Reverse Transcription-QPCR for Detection and Enumeration of Total Yeasts in Wine▿

    PubMed Central

    Hierro, Núria; Esteve-Zarzoso, Braulio; González, Ángel; Mas, Albert; Guillamón, Jose M.

    2006-01-01

    Real-time PCR, or quantitative PCR (QPCR), has been developed to rapidly detect and quantify the total number of yeasts in wine without culturing. Universal yeast primers were designed from the variable D1/D2 domains of the 26S rRNA gene. These primers showed good specificity with all the wine yeasts tested, and they did not amplify the most representative wine species of acetic acid bacteria and lactic acid bacteria. Numerous standard curves were constructed with different strains and species grown in yeast extract-peptone-dextrose medium or incubated in wine. The small standard errors with these replicas proved that the assay is reproducible and highly robust. This technique was validated with artificially contaminated and natural wine samples. We also performed a reverse transcription-QPCR (RT-QPCR) assay from rRNA for total viable yeast quantification. This technique had a low detection limit and was more accurate than QPCR because the dead cells were not quantified. As far as we know, this is the first time that RT-QPCR has been performed to quantify viable yeasts from rRNA. RT-QPCR is a rapid and accurate technique for enumerating yeasts during industrial wine fermentation and controlling the risk of wine spoilage. PMID:17088381

  19. On-Orbit Quantitative Real-Time Gene Expression Analysis Using the Wetlab-2 System

    NASA Technical Reports Server (NTRS)

    Parra, Macarena; Jung, Jimmy; Almeida, Eduardo; Boone, Travis; Tran, Luan; Schonfeld, Julie

    2015-01-01

    NASA Ames Research Center's WetLab-2 Project enables on-orbit quantitative Reverse Transcriptase PCR (qRT-PCR) analysis without the need for sample return. The WetLab-2 system is capable of processing sample types ranging from microbial cultures to animal tissues dissected on-orbit. The project developed a RNA preparation module that can lyse cells and extract RNA of sufficient quality and quantity for use as templates in qRT-PCR reactions. Our protocol has the advantage of using non-toxic chemicals and does not require alcohols or other organics. The resulting RNA is dispensed into reaction tubes that contain all lyophilized reagents needed to perform qRT-PCR reactions. System operations require simple and limited crew actions including syringe pushes, valve turns and pipette dispenses. The project selected the Cepheid SmartCycler (TradeMark), a Commercial-Off-The-Shelf (COTS) qRT-PCR unit, because of its advantages including rugged modular design, low power consumption, rapid thermal ramp times and four-color multiplex detection. Single tube multiplex assays can be used to normalize for RNA concentration and integrity, and to study multiple genes of interest in each module. The WetLab-2 system can downlink data from the ISS to the ground after a completed run and uplink new thermal cycling programs. The ability to conduct qRT-PCR and generate results on-orbit is an important step towards utilizing the ISS as a National Laboratory facility. Specifically, the ability to get on-orbit data will provide investigators with the opportunity to adjust experimental parameters in real time without the need for sample return and re-flight. On orbit gene expression analysis can also eliminate the confounding effects on gene expression of reentry stresses and shock acting on live cells and organisms or the concern of RNA degradation of fixed samples and provide on-orbit gene expression benchmarking prior to sample return. Finally, the system can also be used for analysis of

  20. Real-time individualized training vectors for experiential learning.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willis, Matt; Tucker, Eilish Marie; Raybourn, Elaine Marie

    2011-01-01

    Military training utilizing serious games or virtual worlds potentially generate data that can be mined to better understand how trainees learn in experiential exercises. Few data mining approaches for deployed military training games exist. Opportunities exist to collect and analyze these data, as well as to construct a full-history learner model. Outcomes discussed in the present document include results from a quasi-experimental research study on military game-based experiential learning, the deployment of an online game for training evidence collection, and results from a proof-of-concept pilot study on the development of individualized training vectors. This Lab Directed Research & Development (LDRD)more » project leveraged products within projects, such as Titan (Network Grand Challenge), Real-Time Feedback and Evaluation System, (America's Army Adaptive Thinking and Leadership, DARWARS Ambush! NK), and Dynamic Bayesian Networks to investigate whether machine learning capabilities could perform real-time, in-game similarity vectors of learner performance, toward adaptation of content delivery, and quantitative measurement of experiential learning.« less

  1. Real-time augmented feedback benefits robotic laparoscopic training.

    PubMed

    Judkins, Timothy N; Oleynikov, Dmitry; Stergiou, Nick

    2006-01-01

    Robotic laparoscopic surgery has revolutionized minimally invasive surgery for treatment of abdominal pathologies. However, current training techniques rely on subjective evaluation. There is a lack of research on the type of tasks that should be used for training. Robotic surgical systems also do not currently have the ability to provide feedback to the surgeon regarding success of performing tasks. We trained medical students on three laparoscopic tasks and provided real-time feedback of performance during training. We found that real-time feedback can benefit training if the feedback provides information that is not available through other means (grip force). Subjects that received grip force feedback applied less force when the feedback was removed. Other forms of feedback (speed and relative phase) did not aid or impede training. Secondly, a relatively short training period (10 trials for each task) significantly improved most objective measures of performance. We also showed that robotic surgical performance can be quantitatively measured and evaluated. Providing grip force feedback can make the surgeon more aware of the forces being applied to delicate tissue during surgery.

  2. Acting to gain information: Real-time reasoning meets real-time perception

    NASA Technical Reports Server (NTRS)

    Rosenschein, Stan

    1994-01-01

    Recent advances in intelligent reactive systems suggest new approaches to the problem of deriving task-relevant information from perceptual systems in real time. The author will describe work in progress aimed at coupling intelligent control mechanisms to real-time perception systems, with special emphasis on frame rate visual measurement systems. A model for integrated reasoning and perception will be discussed, and recent progress in applying these ideas to problems of sensor utilization for efficient recognition and tracking will be described.

  3. A real-time PCR approach to detect predation on anchovy and sardine early life stages

    NASA Astrophysics Data System (ADS)

    Cuende, Elsa; Mendibil, Iñaki; Bachiller, Eneko; Álvarez, Paula; Cotano, Unai; Rodriguez-Ezpeleta, Naiara

    2017-12-01

    Recruitment of sardine (Sardina pilchardus Walbaum, 1792) and anchovy (Engraulis encrasicolus Linnaeus, 1758) is thought to be regulated by predation of their eggs and larvae. Predators of sardine and anchovy can be identified by visual taxonomic identification of stomach contents, but this method is time consuming, tedious and may underestimate predation, especially in small predators such as fish larvae. Alternatively, genetic tools may offer a more cost-effective and accurate alternative. Here, we have developed a multiplex real-time polymerase chain reaction (RT-PCR) assay based on TaqMan probes to simultaneously detect sardine and anchovy remains in gut contents of potential predators. The assay combines previously described and newly generated species-specific primers and probes for anchovy and sardine detection respectively, and allows the detection of 0,001 ng of target DNA (which corresponds to about one hundredth of the total DNA present in a single egg). We applied the method to candidate anchovy and sardine egg predators in the Bay of Biscay, Atlantic Mackerel (Scomber scombrus) larvae. Egg predation observed was limited primarily to those stations where sardine and/or anchovy eggs were present. Our developed assay offers a suitable tool to understand the effects of predation on the survival of anchovy and sardine early life stages.

  4. An OPTIMIZE study retrospective analysis for management of telaprevir-treated hepatitis C virus (HCV)-infected patients by use of the Abbott RealTime HCV RNA assay.

    PubMed

    Sarrazin, Christoph; Dierynck, Inge; Cloherty, Gavin; Ghys, Anne; Janssen, Katrien; Luo, Donghan; Witek, James; Buti, Maria; Picchio, Gaston; De Meyer, Sandra

    2015-04-01

    Protease inhibitor (PI)-based response-guided triple therapies for hepatitis C virus (HCV) infection are still widely used. Noncirrhotic treatment-naive and prior relapser patients receiving telaprevir-based treatment are eligible for shorter, 24-week total therapy if HCV RNA is undetectable at both weeks 4 and 12. In this study, the concordance in HCV RNA assessments between the Roche High Pure System/Cobas TaqMan and Abbott RealTime HCV RNA assays and the impacts of different HCV RNA cutoffs on treatment outcome were evaluated. A total of 2,629 samples from 663 HCV genotype 1 patients receiving telaprevir/pegylated interferon/ribavirin in OPTIMIZE were analyzed using the High Pure System and reanalyzed using Abbott RealTime (limits of detection, 15.1 IU/ml versus 8.3 IU/ml; limits of quantification, 25 IU/ml versus 12 IU/ml, respectively). Overall, good concordance was observed between the assays. Using undetectable HCV RNA at week 4, 34% of the patients would be eligible for shorter treatment duration with Abbott RealTime versus 72% with the High Pure System. However, using <12 IU/ml for Abbott RealTime, a similar proportion (74%) would be eligible. Of the patients receiving 24-week total therapy, 87% achieved a sustained virologic response with undetectable HCV RNA by the High Pure System or <12 IU/ml by Abbott RealTime; however, 92% of the patients with undetectable HCV RNA by Abbott RealTime achieved a sustained virologic response. Using undetectable HCV RNA as the cutoff, the more sensitive Abbott RealTime assay would identify fewer patients eligible for shorter treatment than the High Pure System. Our data confirm the <12-IU/ml cutoff, as previously established in other studies of the Abbott RealTime assay, to determine eligibility for shortened PI-based HCV treatment. (The study was registered with ClinicalTrials.gov under registration no. NCT01241760.). Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Evaluation of TaqMan qPCR System Integrating Two Identically Labelled Hydrolysis Probes in Single Assay

    PubMed Central

    Nagy, Alexander; Vitásková, Eliška; Černíková, Lenka; Křivda, Vlastimil; Jiřincová, Helena; Sedlák, Kamil; Horníčková, Jitka; Havlíčková, Martina

    2017-01-01

    Ongoing evolution of viral pathogens is a significant issue in diagnostic virology employing TaqMan qPCR/RT-qPCR. Specific concerns are related to false negativity due to probe binding failure. One option for compensating for such deficiency is to integrate a second identically labelled probe in the assay. However, how this alteration influences the reaction parameters has not been comprehensively demonstrated. In the present study, we evaluate a TaqMan protocol using two identically labelled hydrolysis probes (simple, LNA (locked-nucleic-acid)) and MGB (minor-groove-binder) modified probes and combinations thereof in a single assay. Our results based on a synthetic amplicon suggest that the second probe does not compromise the TaqMan qPCR/RT-qPCR parameters, which repeatedly and reproducibly remained comparable to those of the corresponding single-probe assays, irrespective of the relative probe orientation, whether opposite or tandem, and probe modifications or combinations thereof. On the other hand, the second probe additively contributed to the overall fluorescence signal. The utility of the dual-probe approach was demonstrated on practical examples by using field specimens. We hope that the present study might serve as a theoretical basis for the development or improvement of TaqMan qPCR/RT-qPCR assays for the detection of highly variable nucleic acid templates. PMID:28120891

  6. Real-Time PCR Detection of Paenibacillus spp. in Raw Milk To Predict Shelf Life Performance of Pasteurized Fluid Milk Products

    PubMed Central

    Ranieri, Matthew L.; Ivy, Reid A.; Mitchell, W. Robert; Call, Emma; Masiello, Stephanie N.; Wiedmann, Martin

    2012-01-01

    Psychrotolerant sporeformers, specifically Paenibacillus spp., are important spoilage bacteria for pasteurized, refrigerated foods such as fluid milk. While Paenibacillus spp. have been isolated from farm environments, raw milk, processing plant environments, and pasteurized fluid milk, no information on the number of Paenibacillus spp. that need to be present in raw milk to cause pasteurized milk spoilage was available. A real-time PCR assay targeting the 16S rRNA gene was designed to detect Paenibacillus spp. in fluid milk and to discriminate between Paenibacillus and other closely related spore-forming bacteria. Specificity was confirmed using 16 Paenibacillus and 17 Bacillus isolates. All 16 Paenibacillus isolates were detected with a mean cycle threshold (CT) of 19.14 ± 0.54. While 14/17 Bacillus isolates showed no signal (CT > 40), 3 Bacillus isolates showed very weak positive signals (CT = 38.66 ± 0.65). The assay provided a detection limit of approximately 3.25 × 101 CFU/ml using total genomic DNA extracted from raw milk samples inoculated with Paenibacillus. Application of the TaqMan PCR to colony lysates obtained from heat-treated and enriched raw milk provided fast and accurate detection of Paenibacillus. Heat-treated milk samples where Paenibacillus (≥1 CFU/ml) was detected by this colony TaqMan PCR showed high bacterial counts (>4.30 log CFU/ml) after refrigerated storage (6°C) for 21 days. We thus developed a tool for rapid detection of Paenibacillus that has the potential to identify raw milk with microbial spoilage potential as a pasteurized product. PMID:22685148

  7. Diagnosis of bacteremia in pediatric oncologic patients by in-house real-time PCR.

    PubMed

    Quiles, Milene Gonçalves; Menezes, Liana Carballo; Bauab, Karen de Castro; Gumpl, Elke Kreuscher; Rocchetti, Talita Trevizani; Palomo, Flavia Silva; Carlesse, Fabianne; Pignatari, Antonio Carlos Campos

    2015-07-23

    Infections are the major cause of morbidity and mortality in children with cancer. Gaining a favorable prognosis for these patients depends on selecting the appropriate therapy, which in turn depends on rapid and accurate microbiological diagnosis. This study employed real-time PCR (qPCR) to identify the main pathogens causing bloodstream infection (BSI) in patients treated at the Pediatric Oncology Institute IOP-GRAACC-UNIFESP-Brazil. Antimicrobial resistance genes were also investigated using this methodology. A total of 248 samples from BACTEC® blood culture bottles and 99 whole-blood samples collected in tubes containing EDTA K2 Gel were isolated from 137 patients. All samples were screened by specific Gram probes for multiplex qPCR. Seventeen sequences were evaluated using gender-specific TaqMan probes and the resistance genes bla SHV, bla TEM, bla CTX, bla KPC, bla IMP, bla SPM, bla VIM, vanA, vanB and mecA were detected using the SYBR Green method. Positive qPCR results were obtained in 112 of the blood culture bottles (112/124), and 90 % agreement was observed between phenotypic and molecular microbial detection methods. For bacterial and fungal identification, the performance test showed: sensitivity 87 %; specificity 91 %; NPV 90 %; PPV 89 % and accuracy of 89 % when compared with the phenotypic method. The mecA gene was detected in 37 samples, extended-spectrum β-lactamases were detected in six samples and metallo-β-lactamase coding genes in four samples, with 60 % concordance between the two methods. The qPCR on whole blood detected eight samples possessing the mecA gene and one sample harboring the vanB gene. The bla KPC, bla VIM, bla IMP and bla SHV genes were not detected in this study. Real-time PCR is a useful tool in the early identification of pathogens and antimicrobial resistance genes from bloodstream infections of pediatric oncologic patients.

  8. Quantification of Human Polyomaviruses JC Virus and BK Virus by TaqMan Quantitative PCR and Comparison to Other Water Quality Indicators in Water and Fecal Samples▿

    PubMed Central

    McQuaig, Shannon M.; Scott, Troy M.; Lukasik, Jerzy O.; Paul, John H.; Harwood, Valerie J.

    2009-01-01

    In the United States, total maximum daily load standards for bodies of water that do not meet bacterial water quality standards are set by each state. The presence of human polyomaviruses (HPyVs) can be used as an indicator of human-associated sewage pollution in these waters. We have developed and optimized a TaqMan quantitative PCR (QPCR) assay based on the conserved T antigen to both quantify and simultaneously detect two HPyVs; JC virus and BK virus. The QPCR assay was able to consistently quantify ≥10 gene copies per reaction and is linear over 5 orders of magnitude. HPyVs were consistently detected in human waste samples (57 of 64) and environmental waters with known human fecal contamination (5 of 5) and were not amplified in DNA extracted from 127 animal waste samples from 14 species. HPyV concentrations in sewage decreased 81.2 and 84.2% over 28 days incubation at 25 and 35°C, respectively. HPyVs results were compared to Escherichia coli, fecal coliform, and enterococci concentrations and the presence of three other human-associated microbes: Bacteroidetes, Methanobrevibacter smithii, and adenovirus. HPyVs were the most frequently detected of these in human and contaminated environmental samples and were more human specific than the Bacteroidetes (HF183) or M. smithii. HPyVs and M. smithii more closely mimicked the persistence of adenovirus in sewage than the other microbes. The use of this rapid and quantitative assay in water quality research could help regulatory agencies to identify sources of water pollution for improved remediation of contaminated waters and ultimately protect humans from exposure to pathogens. PMID:19346361

  9. Improved Method for the Detection and Quantification of Naegleria fowleri in Water and Sediment Using Immunomagnetic Separation and Real-Time PCR

    PubMed Central

    Mull, Bonnie J.; Narayanan, Jothikumar; Hill, Vincent R.

    2013-01-01

    Primary amebic meningoencephalitis (PAM) is a rare and typically fatal infection caused by the thermophilic free-living ameba, Naegleria fowleri. In 2010, the first confirmed case of PAM acquired in Minnesota highlighted the need for improved detection and quantification methods in order to study the changing ecology of N. fowleri and to evaluate potential risk factors for increased exposure. An immunomagnetic separation (IMS) procedure and real-time PCR TaqMan assay were developed to recover and quantify N. fowleri in water and sediment samples. When one liter of lake water was seeded with N. fowleri strain CDC:V212, the method had an average recovery of 46% and detection limit of 14 amebas per liter of water. The method was then applied to sediment and water samples with unknown N. fowleri concentrations, resulting in positive direct detections by real-time PCR in 3 out of 16 samples and confirmation of N. fowleri culture in 6 of 16 samples. This study has resulted in a new method for detection and quantification of N. fowleri in water and sediment that should be a useful tool to facilitate studies of the physical, chemical, and biological factors associated with the presence and dynamics of N. fowleri in environmental systems. PMID:24228172

  10. A real-time architecture for time-aware agents.

    PubMed

    Prouskas, Konstantinos-Vassileios; Pitt, Jeremy V

    2004-06-01

    This paper describes the specification and implementation of a new three-layer time-aware agent architecture. This architecture is designed for applications and environments where societies of humans and agents play equally active roles, but interact and operate in completely different time frames. The architecture consists of three layers: the April real-time run-time (ART) layer, the time aware layer (TAL), and the application agents layer (AAL). The ART layer forms the underlying real-time agent platform. An original online, real-time, dynamic priority-based scheduling algorithm is described for scheduling the computation time of agent processes, and it is shown that the algorithm's O(n) complexity and scalable performance are sufficient for application in real-time domains. The TAL layer forms an abstraction layer through which human and agent interactions are temporally unified, that is, handled in a common way irrespective of their temporal representation and scale. A novel O(n2) interaction scheduling algorithm is described for predicting and guaranteeing interactions' initiation and completion times. The time-aware predicting component of a workflow management system is also presented as an instance of the AAL layer. The described time-aware architecture addresses two key challenges in enabling agents to be effectively configured and applied in environments where humans and agents play equally active roles. It provides flexibility and adaptability in its real-time mechanisms while placing them under direct agent control, and it temporally unifies human and agent interactions.

  11. Detection of Leishmania infantum by real-time PCR in a canine blood bank.

    PubMed

    Tabar, M D; Roura, X; Francino, O; Altet, L; Ruiz de Gopegui, R

    2008-07-01

    Risk for transmission of Leishmania infantum from blood products has been largely demonstrated in human and veterinary literature. Appropriate screening of canine blood donors is important especially in an endemic area such as Barcelona (Spain). The purpose of this study was to evaluate the presence of L infantum DNA parasites by real-time quantitative PCR in our canine blood bank. Samples from blood products obtained from 92 canine blood donors were assayed for L infantum by means of real-time PCR amplification and quantification. The prevalence of quantitative PCR-positive blood samples among healthy seronegative blood donors was 19.6 per cent. The results of this study show that L infantum infection is common in canine blood donors and their blood products in an endemic area, despite a negative commercial serological screening for infectious diseases. Therefore, screening by PCR should be included in an integrated approach to evaluate L infantum infection among potential blood donors.

  12. Real Time Conference 2014 Overview

    NASA Astrophysics Data System (ADS)

    Nomachi, Masaharu

    2015-06-01

    This article presents an overview of the 19th Real Time Conference held last May 26-30, 2014, at the Nara Prefectural New Public Hall, Nara, Japan, organized by the Research Center for Nuclear Physics of the Osaka University. The program included many invited talks and oral sessions offering an extensive overview on the following topics: real-time system architectures, intelligent signal processing, fast data transfer links and networks, trigger systems, data acquisition, processing-farms, control, monitoring and test systems, emerging real-time technologies, new standards, real-time safety and security, and some feedback on experiences. In parallel to the oral and poster presentations, industrial exhibits by companies, workshops and short courses also ran through the week.

  13. Real-time flutter identification

    NASA Technical Reports Server (NTRS)

    Roy, R.; Walker, R.

    1985-01-01

    The techniques and a FORTRAN 77 MOdal Parameter IDentification (MOPID) computer program developed for identification of the frequencies and damping ratios of multiple flutter modes in real time are documented. Physically meaningful model parameterization was combined with state of the art recursive identification techniques and applied to the problem of real time flutter mode monitoring. The performance of the algorithm in terms of convergence speed and parameter estimation error is demonstrated for several simulated data cases, and the results of actual flight data analysis from two different vehicles are presented. It is indicated that the algorithm is capable of real time monitoring of aircraft flutter characteristics with a high degree of reliability.

  14. HEVC real-time decoding

    NASA Astrophysics Data System (ADS)

    Bross, Benjamin; Alvarez-Mesa, Mauricio; George, Valeri; Chi, Chi Ching; Mayer, Tobias; Juurlink, Ben; Schierl, Thomas

    2013-09-01

    The new High Efficiency Video Coding Standard (HEVC) was finalized in January 2013. Compared to its predecessor H.264 / MPEG4-AVC, this new international standard is able to reduce the bitrate by 50% for the same subjective video quality. This paper investigates decoder optimizations that are needed to achieve HEVC real-time software decoding on a mobile processor. It is shown that HEVC real-time decoding up to high definition video is feasible using instruction extensions of the processor while decoding 4K ultra high definition video in real-time requires additional parallel processing. For parallel processing, a picture-level parallel approach has been chosen because it is generic and does not require bitstreams with special indication.

  15. A novel duplex real-time reverse transcriptase-polymerase chain reaction assay for the detection of hepatitis C viral RNA with armored RNA as internal control

    PubMed Central

    2010-01-01

    Background The hepatitis C virus (HCV) genome is extremely heterogeneous. Several HCV infections can not be detected using currently available commercial assays, probably because of mismatches between the template and primers/probes. By aligning the HCV sequences, we developed a duplex real-time reverse transcriptase-polymerase chain reaction (RT-PCR) assay using 2 sets of primers/probes and a specific armored RNA as internal control. The 2 detection probes were labelled with the same fluorophore, namely, 6-carboxyfluorescein (FAM), at the 5' end; these probes could mutually combine, improving the power of the test. Results The limit of detection of the duplex primer/probe assay was 38.99 IU/ml. The sensitivity of the assay improved significantly, while the specificity was not affected. All HCV genotypes in the HCV RNA Genotype Panel for Nucleic Acid Amplification Techniques could be detected. In the testing of 109 serum samples, the performance of the duplex real-time RT-PCR assay was identical to that of the COBAS AmpliPrep (CAP)/COBAS TaqMan (CTM) assay and superior to 2 commercial HCV assay kits. Conclusions The duplex real-time RT-PCR assay is an efficient and effective viral assay. It is comparable with the CAP/CTM assay with regard to the power of the test and is appropriate for blood-donor screening and laboratory diagnosis of HCV infection. PMID:20529244

  16. Real time quantitative colourimetric test for methamphetamine detection using digital and mobile phone technology.

    PubMed

    Choodum, Aree; Parabun, Kaewalee; Klawach, Nantikan; Daeid, Niamh Nic; Kanatharana, Proespichaya; Wongniramaikul, Worawit

    2014-02-01

    The Simon presumptive color test was used in combination with the built-in digital camera on a mobile phone to detect methamphetamine. The real-time Red-Green-Blue (RGB) basic color data was obtained using an application installed on the mobile phone and the relationship profile between RGB intensity, including other calculated values, and the colourimetric product was investigated. A wide linear range (0.1-2.5mg mL(-1)) and a low detection limit (0.0110±0.0001-0.044±0.002mg mL(-1)) were achieved. The method also required a small sample size (20μL). The results obtained from the analysis of illicit methamphetamine tablets were comparable to values obtained from gas chromatograph-flame ionization detector (GC-FID) analysis. Method validation indicated good intra- and inter-day precision (2.27-4.49%RSD and 2.65-5.62%RSD, respectively). The results suggest that this is a powerful real-time mobile method with the potential to be applied in field tests. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Effect of ionizing radiation on the quantitative detection of Salmonella using real-time PCR

    NASA Astrophysics Data System (ADS)

    Lim, Sangyong; Jung, Jinwoo; Kim, Minjeong; Ryu, Sangryeol; Kim, Dongho

    2008-09-01

    Food irradiation is an economically viable technology for inactivating foodborne pathogens, but irradiation can mask pathogens in unhygienically prepared food. The aim of this study was to investigate the effect of irradiation treatment on the detection of Salmonella using real-time PCR. Three commercially available kits were tested, of which the InstaGene Matrix procedure was most effective in preparing template DNA from Salmonella exposed to radiation in broth culture. The minimum level of detection by real-time PCR combined with InstaGene Matrix was 3 log units of Salmonella per milliliter. However, when pure cultures of Salmonella were irradiated at 3 and 5 kGy, the cycle threshold ( CT) increased 1-1.5-fold compared to irradiation at 0 and 1 kGy. This indicated that irradiation treatment may result in an underestimation of bacterial counts due to radiation-induced DNA lesions. We also compared CT values in inoculated chicken homogenates before and after irradiation, which in this model caused a 1.3-3.3-fold underestimation of bacterial counts with respect to irradiation dose.

  18. Relationship Between Ebola Virus Real-Time Quantitative Polymerase Chain Reaction-Based Threshold Cycle Value and Virus Isolation From Human Plasma.

    PubMed

    Spengler, Jessica R; McElroy, Anita K; Harmon, Jessica R; Ströher, Ute; Nichol, Stuart T; Spiropoulou, Christina F

    2015-10-01

    We performed a longitudinal analysis of plasma samples obtained from 4 patients with Ebola virus (EBOV) disease (EVD) to determine the relationship between the real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR)-based threshold cycle (Ct) value and the presence of infectious EBOV. EBOV was not isolated from plasma samples with a Ct value of >35.5 or >12 days after onset of symptoms. EBOV was not isolated from plasma samples in which anti-EBOV nucleoprotein immunoglobulin G was detected. These data demonstrate the utility of interpreting qRT-PCR results in the context of the course of EBOV infection and associated serological responses for patient-management decisions. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  19. International ring trial for the validation of an event-specific Golden Rice 2 quantitative real-time polymerase chain reaction method.

    PubMed

    Jacchia, Sara; Nardini, Elena; Bassani, Niccolò; Savini, Christian; Shim, Jung-Hyun; Trijatmiko, Kurniawan; Kreysa, Joachim; Mazzara, Marco

    2015-05-27

    This article describes the international validation of the quantitative real-time polymerase chain reaction (PCR) detection method for Golden Rice 2. The method consists of a taxon-specific assay amplifying a fragment of rice Phospholipase D α2 gene, and an event-specific assay designed on the 3' junction between transgenic insert and plant DNA. We validated the two assays independently, with absolute quantification, and in combination, with relative quantification, on DNA samples prepared in haploid genome equivalents. We assessed trueness, precision, efficiency, and linearity of the two assays, and the results demonstrate that both the assays independently assessed and the entire method fulfill European and international requirements for methods for genetically modified organism (GMO) testing, within the dynamic range tested. The homogeneity of the results of the collaborative trial between Europe and Asia is a good indicator of the robustness of the method.

  20. Direct real-time measurement of intra-oocyte nitric oxide concentration in vivo.

    PubMed

    Goud, Pravin T; Goud, Anuradha P; Najafi, Tohid; Gonik, Bernard; Diamond, Michael P; Saed, Ghassan M; Zhang, Xueji; Abu-Soud, Husam M

    2014-01-01

    Nitric oxide (NO) is reported to play significant a role in oocyte activation and maturation, implantation, and early embryonic development. Previously we have shown that NO forms an important component of the oocyte microenvironment, and functions effectively to delay oocyte aging. Thus, precise information about intra-oocyte NO concentrations [NO] will result in designing more accurate treatment plans in assisted reproduction. In this work, the direct, real-time and quantitative intra-oocyte [NO] was measured utilizing an L-shaped amperometric integrated NO-selective electrode. This method not only provides an elegant and convenient approach to real-time the measurement of NO in physiological environments, but also mimics the loss of NO caused by rapid NO diffusion combined with its reactivity in the biological milieu. This experiment suggests that the NO levels of oocytes obtained from young animals are significantly higher than those of oocytes obtained from old animals. Additionally the NO levels stay constant during the measurements; however, the intra-oocyte [NO] is reduced significantly (70-75% reduction) in response to L-NAME incubation, suggesting that NO measurements are truly NOS based rather than caused by an unknown interfering substance in our system. We believe this first demonstration of the direct quantitative measurement of [NO] in situ in an intact cellular complex should be useful in tracking real-time and rapid changes at nanomolar levels. Moreover, this finding confirms and extends our previous work showing that supplementation with NO delays the oocyte aging process.