Quantitative patterns of stylistic influence in the evolution of literature.
Hughes, James M; Foti, Nicholas J; Krakauer, David C; Rockmore, Daniel N
2012-05-15
Literature is a form of expression whose temporal structure, both in content and style, provides a historical record of the evolution of culture. In this work we take on a quantitative analysis of literary style and conduct the first large-scale temporal stylometric study of literature by using the vast holdings in the Project Gutenberg Digital Library corpus. We find temporal stylistic localization among authors through the analysis of the similarity structure in feature vectors derived from content-free word usage, nonhomogeneous decay rates of stylistic influence, and an accelerating rate of decay of influence among modern authors. Within a given time period we also find evidence for stylistic coherence with a given literary topic, such that writers in different fields adopt different literary styles. This study gives quantitative support to the notion of a literary "style of a time" with a strong trend toward increasingly contemporaneous stylistic influence.
NASA Astrophysics Data System (ADS)
Neubauer, Jürgen; Mergell, Patrick; Eysholdt, Ulrich; Herzel, Hanspeter
2001-12-01
This report is on direct observation and modal analysis of irregular spatio-temporal vibration patterns of vocal fold pathologies in vivo. The observed oscillation patterns are described quantitatively with multiline kymograms, spectral analysis, and spatio-temporal plots. The complex spatio-temporal vibration patterns are decomposed by empirical orthogonal functions into independent vibratory modes. It is shown quantitatively that biphonation can be induced either by left-right asymmetry or by desynchronized anterior-posterior vibratory modes, and the term ``AP (anterior-posterior) biphonation'' is introduced. The presented phonation examples show that for normal phonation the first two modes sufficiently explain the glottal dynamics. The spatio-temporal oscillation pattern associated with biphonation due to left-right asymmetry can be explained by the first three modes. Higher-order modes are required to describe the pattern for biphonation induced by anterior-posterior vibrations. Spatial irregularity is quantified by an entropy measure, which is significantly higher for irregular phonation than for normal phonation. Two asymmetry measures are introduced: the left-right asymmetry and the anterior-posterior asymmetry, as the ratios of the fundamental frequencies of left and right vocal fold and of anterior-posterior modes, respectively. These quantities clearly differentiate between left-right biphonation and anterior-posterior biphonation. This paper proposes methods to analyze quantitatively irregular vocal fold contour patterns in vivo and complements previous findings of desynchronization of vibration modes in computer modes and in in vitro experiments.
Quantification of EEG reactivity in comatose patients
Hermans, Mathilde C.; Westover, M. Brandon; van Putten, Michel J.A.M.; Hirsch, Lawrence J.; Gaspard, Nicolas
2016-01-01
Objective EEG reactivity is an important predictor of outcome in comatose patients. However, visual analysis of reactivity is prone to subjectivity and may benefit from quantitative approaches. Methods In EEG segments recorded during reactivity testing in 59 comatose patients, 13 quantitative EEG parameters were used to compare the spectral characteristics of 1-minute segments before and after the onset of stimulation (spectral temporal symmetry). Reactivity was quantified with probability values estimated using combinations of these parameters. The accuracy of probability values as a reactivity classifier was evaluated against the consensus assessment of three expert clinical electroencephalographers using visual analysis. Results The binary classifier assessing spectral temporal symmetry in four frequency bands (delta, theta, alpha and beta) showed best accuracy (Median AUC: 0.95) and was accompanied by substantial agreement with the individual opinion of experts (Gwet’s AC1: 65–70%), at least as good as inter-expert agreement (AC1: 55%). Probability values also reflected the degree of reactivity, as measured by the inter-experts’ agreement regarding reactivity for each individual case. Conclusion Automated quantitative EEG approaches based on probabilistic description of spectral temporal symmetry reliably quantify EEG reactivity. Significance Quantitative EEG may be useful for evaluating reactivity in comatose patients, offering increased objectivity. PMID:26183757
NASA Astrophysics Data System (ADS)
Lee, Jae-Seung; Im, In-Chul; Kang, Su-Man; Goo, Eun-Hoe; Kwak, Byung-Joon
2013-07-01
This study aimed to quantitatively analyze data from diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) in patients with brain disorders and to assess its potential utility for analyzing brain function. DTI was obtained by performing 3.0-T magnetic resonance imaging for patients with Alzheimer's disease (AD) and vascular dementia (VD), and the data were analyzed using Matlab-based SPM software. The two-sample t-test was used for error analysis of the location of the activated pixels. We compared regions of white matter where the fractional anisotropy (FA) values were low and the apparent diffusion coefficients (ADCs) were increased. In the AD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right sub-lobar insula, and right occipital lingual gyrus whereas the ADCs were significantly increased in the right inferior frontal gyrus and right middle frontal gyrus. In the VD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right limbic cingulate gyrus, and right sub-lobar caudate tail whereas the ADCs were significantly increased in the left lateral globus pallidus and left medial globus pallidus. In conclusion by using DTI and SPM analysis, we were able to not only determine the structural state of the regions affected by brain disorders but also quantitatively analyze and assess brain function.
Spatio-temporal models of mental processes from fMRI.
Janoos, Firdaus; Machiraju, Raghu; Singh, Shantanu; Morocz, Istvan Ákos
2011-07-15
Understanding the highly complex, spatially distributed and temporally organized phenomena entailed by mental processes using functional MRI is an important research problem in cognitive and clinical neuroscience. Conventional analysis methods focus on the spatial dimension of the data discarding the information about brain function contained in the temporal dimension. This paper presents a fully spatio-temporal multivariate analysis method using a state-space model (SSM) for brain function that yields not only spatial maps of activity but also its temporal structure along with spatially varying estimates of the hemodynamic response. Efficient algorithms for estimating the parameters along with quantitative validations are given. A novel low-dimensional feature-space for representing the data, based on a formal definition of functional similarity, is derived. Quantitative validation of the model and the estimation algorithms is provided with a simulation study. Using a real fMRI study for mental arithmetic, the ability of this neurophysiologically inspired model to represent the spatio-temporal information corresponding to mental processes is demonstrated. Moreover, by comparing the models across multiple subjects, natural patterns in mental processes organized according to different mental abilities are revealed. Copyright © 2011 Elsevier Inc. All rights reserved.
Remmersmann, Christian; Stürwald, Stephan; Kemper, Björn; Langehanenberg, Patrik; von Bally, Gert
2009-03-10
In temporal phase-shifting-based digital holographic microscopy, high-resolution phase contrast imaging requires optimized conditions for hologram recording and phase retrieval. To optimize the phase resolution, for the example of a variable three-step algorithm, a theoretical analysis on statistical errors, digitalization errors, uncorrelated errors, and errors due to a misaligned temporal phase shift is carried out. In a second step the theoretically predicted results are compared to the measured phase noise obtained from comparative experimental investigations with several coherent and partially coherent light sources. Finally, the applicability for noise reduction is demonstrated by quantitative phase contrast imaging of pancreas tumor cells.
Quantification of EEG reactivity in comatose patients.
Hermans, Mathilde C; Westover, M Brandon; van Putten, Michel J A M; Hirsch, Lawrence J; Gaspard, Nicolas
2016-01-01
EEG reactivity is an important predictor of outcome in comatose patients. However, visual analysis of reactivity is prone to subjectivity and may benefit from quantitative approaches. In EEG segments recorded during reactivity testing in 59 comatose patients, 13 quantitative EEG parameters were used to compare the spectral characteristics of 1-minute segments before and after the onset of stimulation (spectral temporal symmetry). Reactivity was quantified with probability values estimated using combinations of these parameters. The accuracy of probability values as a reactivity classifier was evaluated against the consensus assessment of three expert clinical electroencephalographers using visual analysis. The binary classifier assessing spectral temporal symmetry in four frequency bands (delta, theta, alpha and beta) showed best accuracy (Median AUC: 0.95) and was accompanied by substantial agreement with the individual opinion of experts (Gwet's AC1: 65-70%), at least as good as inter-expert agreement (AC1: 55%). Probability values also reflected the degree of reactivity, as measured by the inter-experts' agreement regarding reactivity for each individual case. Automated quantitative EEG approaches based on probabilistic description of spectral temporal symmetry reliably quantify EEG reactivity. Quantitative EEG may be useful for evaluating reactivity in comatose patients, offering increased objectivity. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Maddalena, Damian; Hoffman, Forrest; Kumar, Jitendra; Hargrove, William
2014-08-01
Sampling networks rarely conform to spatial and temporal ideals, often comprised of network sampling points which are unevenly distributed and located in less than ideal locations due to access constraints, budget limitations, or political conflict. Quantifying the global, regional, and temporal representativeness of these networks by quantifying the coverage of network infrastructure highlights the capabilities and limitations of the data collected, facilitates upscaling and downscaling for modeling purposes, and improves the planning efforts for future infrastructure investment under current conditions and future modeled scenarios. The work presented here utilizes multivariate spatiotemporal clustering analysis and representativeness analysis for quantitative landscape characterization and assessment of the Fluxnet, RAINFOR, and ForestGEO networks. Results include ecoregions that highlight patterns of bioclimatic, topographic, and edaphic variables and quantitative representativeness maps of individual and combined networks.
EEG in children with spelling disabilities.
Byring, R F; Salmi, T K; Sainio, K O; Orn, H P
1991-10-01
A total of 23 13-year-old boys with spelling disabilities and 21 matched controls were studied. EEG was recorded for visual and quantitative analysis, including FFT band powers and normalized slope descriptors (NSD). Visual analysis showed general excess of slow activity, as well as an excess of temporal slow wave activity in the index group. Quantitative analysis showed low alpha and beta powers, and low "activity" and high "complexity" (NSD) in parieto-occipital derivations in the index group. Quantitative EEG (qEEG) parameter ratios between temporal and parieto-occipital derivations were increased in the index group, implying a lack of spatial differentiation in these EEGs. In covariance analysis the qEEG parameter differences between the index group and controls were partly explained by the neurotic traits made evident in psychological tests. This implies that psychopathological artifacts should be considered in qEEG examinations of children with cognitive handicaps. Differences in anterior/posterior qEEG ratios were, however, little affected by any confounding factors. Thus these qEEG ratios seem potentially useful in clinical assessments of children with learning disabilities.
Quantitative and temporal proteome analysis of butyrate-treated colorectal cancer cells.
Tan, Hwee Tong; Tan, Sandra; Lin, Qingsong; Lim, Teck Kwang; Hew, Choy Leong; Chung, Maxey C M
2008-06-01
Colorectal cancer is one of the most common cancers in developed countries, and its incidence is negatively associated with high dietary fiber intake. Butyrate, a short-chain fatty acid fermentation by-product of fiber induces cell maturation with the promotion of growth arrest, differentiation, and/or apoptosis of cancer cells. The stimulation of cell maturation by butyrate in colonic cancer cells follows a temporal progression from the early phase of growth arrest to the activation of apoptotic cascades. Previously we performed two-dimensional DIGE to identify differentially expressed proteins induced by 24-h butyrate treatment of HCT-116 colorectal cancer cells. Herein we used quantitative proteomics approaches using iTRAQ (isobaric tags for relative and absolute quantitation), a stable isotope labeling methodology that enables multiplexing of four samples, for a temporal study of HCT-116 cells treated with butyrate. In addition, cleavable ICAT, which selectively tags cysteine-containing proteins, was also used, and the results complemented those obtained from the iTRAQ strategy. Selected protein targets were validated by real time PCR and Western blotting. A model is proposed to illustrate our findings from this temporal analysis of the butyrate-responsive proteome that uncovered several integrated cellular processes and pathways involved in growth arrest, apoptosis, and metastasis. These signature clusters of butyrate-regulated pathways are potential targets for novel chemopreventive and therapeutic drugs for treatment of colorectal cancer.
Bade, Richard; White, Jason M; Gerber, Cobus
2018-01-01
The combination of qualitative and quantitative bimonthly analysis of pharmaceuticals and illicit drugs using liquid chromatography coupled to mass spectrometry is presented. A liquid chromatography-quadrupole time of flight instrument equipped with Sequential Window Acquisition of all THeoretical fragment-ion spectra (SWATH) was used to qualitatively screen 346 compounds in influent wastewater from two wastewater treatment plants in South Australia over a 14-month period. A total of 100 compounds were confirmed and/or detected using this strategy, with 61 confirmed in all samples including antidepressants (amitriptyline, dothiepin, doxepin), antipsychotics (amisulpride, clozapine), illicit drugs (cocaine, methamphetamine, amphetamine, 3,4-methylenedioxymethamphetamine (MDMA)), and known drug adulterants (lidocaine and tetramisole). A subset of these compounds was also included in a quantitative method, analyzed on a liquid chromatography-triple quadrupole mass spectrometer. The use of illicit stimulants (methamphetamine) showed a clear decrease, levels of opioid analgesics (morphine and methadone) remained relatively stable, while the use of new psychoactive substances (methylenedioxypyrovalerone (MDPV) and Alpha PVP) varied with no visible trend. This work demonstrates the value that high-frequency sampling combined with quantitative and qualitative analysis can deliver. Graphical abstract Temporal analysis of licit and illicit drugs in South Australia.
Ehrhardt, J; Säring, D; Handels, H
2007-01-01
Modern tomographic imaging devices enable the acquisition of spatial and temporal image sequences. But, the spatial and temporal resolution of such devices is limited and therefore image interpolation techniques are needed to represent images at a desired level of discretization. This paper presents a method for structure-preserving interpolation between neighboring slices in temporal or spatial image sequences. In a first step, the spatiotemporal velocity field between image slices is determined using an optical flow-based registration method in order to establish spatial correspondence between adjacent slices. An iterative algorithm is applied using the spatial and temporal image derivatives and a spatiotemporal smoothing step. Afterwards, the calculated velocity field is used to generate an interpolated image at the desired time by averaging intensities between corresponding points. Three quantitative measures are defined to evaluate the performance of the interpolation method. The behavior and capability of the algorithm is demonstrated by synthetic images. A population of 17 temporal and spatial image sequences are utilized to compare the optical flow-based interpolation method to linear and shape-based interpolation. The quantitative results show that the optical flow-based method outperforms the linear and shape-based interpolation statistically significantly. The interpolation method presented is able to generate image sequences with appropriate spatial or temporal resolution needed for image comparison, analysis or visualization tasks. Quantitative and qualitative measures extracted from synthetic phantoms and medical image data show that the new method definitely has advantages over linear and shape-based interpolation.
Temporal lobe epilepsy: quantitative MR volumetry in detection of hippocampal atrophy.
Farid, Nikdokht; Girard, Holly M; Kemmotsu, Nobuko; Smith, Michael E; Magda, Sebastian W; Lim, Wei Y; Lee, Roland R; McDonald, Carrie R
2012-08-01
To determine the ability of fully automated volumetric magnetic resonance (MR) imaging to depict hippocampal atrophy (HA) and to help correctly lateralize the seizure focus in patients with temporal lobe epilepsy (TLE). This study was conducted with institutional review board approval and in compliance with HIPAA regulations. Volumetric MR imaging data were analyzed for 34 patients with TLE and 116 control subjects. Structural volumes were calculated by using U.S. Food and Drug Administration-cleared software for automated quantitative MR imaging analysis (NeuroQuant). Results of quantitative MR imaging were compared with visual detection of atrophy, and, when available, with histologic specimens. Receiver operating characteristic analyses were performed to determine the optimal sensitivity and specificity of quantitative MR imaging for detecting HA and asymmetry. A linear classifier with cross validation was used to estimate the ability of quantitative MR imaging to help lateralize the seizure focus. Quantitative MR imaging-derived hippocampal asymmetries discriminated patients with TLE from control subjects with high sensitivity (86.7%-89.5%) and specificity (92.2%-94.1%). When a linear classifier was used to discriminate left versus right TLE, hippocampal asymmetry achieved 94% classification accuracy. Volumetric asymmetries of other subcortical structures did not improve classification. Compared with invasive video electroencephalographic recordings, lateralization accuracy was 88% with quantitative MR imaging and 85% with visual inspection of volumetric MR imaging studies but only 76% with visual inspection of clinical MR imaging studies. Quantitative MR imaging can depict the presence and laterality of HA in TLE with accuracy rates that may exceed those achieved with visual inspection of clinical MR imaging studies. Thus, quantitative MR imaging may enhance standard visual analysis, providing a useful and viable means for translating volumetric analysis into clinical practice.
Masci, Ilaria; Vannozzi, Giuseppe; Bergamini, Elena; Pesce, Caterina; Getchell, Nancy; Cappozzo, Aurelio
2013-04-01
Objective quantitative evaluation of motor skill development is of increasing importance to carefully drive physical exercise programs in childhood. Running is a fundamental motor skill humans adopt to accomplish locomotion, which is linked to physical activity levels, although the assessment is traditionally carried out using qualitative evaluation tests. The present study aimed at investigating the feasibility of using inertial sensors to quantify developmental differences in the running pattern of young children. Qualitative and quantitative assessment tools were adopted to identify a skill-sensitive set of biomechanical parameters for running and to further our understanding of the factors that determine progression to skilled running performance. Running performances of 54 children between the ages of 2 and 12 years were submitted to both qualitative and quantitative analysis, the former using sequences of developmental level, the latter estimating temporal and kinematic parameters from inertial sensor measurements. Discriminant analysis with running developmental level as dependent variable allowed to identify a set of temporal and kinematic parameters, within those obtained with the sensor, that best classified children into the qualitative developmental levels (accuracy higher than 67%). Multivariate analysis of variance with the quantitative parameters as dependent variables allowed to identify whether and which specific parameters or parameter subsets were differentially sensitive to specific transitions between contiguous developmental levels. The findings showed that different sets of temporal and kinematic parameters are able to tap all steps of the transitional process in running skill described through qualitative observation and can be prospectively used for applied diagnostic and sport training purposes. Copyright © 2012 Elsevier B.V. All rights reserved.
Spectral and Temporal Laser Fluorescence Analysis Such as for Natural Aquatic Environments
NASA Technical Reports Server (NTRS)
Chekalyuk, Alexander (Inventor)
2015-01-01
An Advanced Laser Fluorometer (ALF) can combine spectrally and temporally resolved measurements of laser-stimulated emission (LSE) for characterization of dissolved and particulate matter, including fluorescence constituents, in liquids. Spectral deconvolution (SDC) analysis of LSE spectral measurements can accurately retrieve information about individual fluorescent bands, such as can be attributed to chlorophyll-a (Chl-a), phycobiliprotein (PBP) pigments, or chromophoric dissolved organic matter (CDOM), among others. Improved physiological assessments of photosynthesizing organisms can use SDC analysis and temporal LSE measurements to assess variable fluorescence corrected for SDC-retrieved background fluorescence. Fluorescence assessments of Chl-a concentration based on LSE spectral measurements can be improved using photo-physiological information from temporal measurements. Quantitative assessments of PBP pigments, CDOM, and other fluorescent constituents, as well as basic structural characterizations of photosynthesizing populations, can be performed using SDC analysis of LSE spectral measurements.
Temporal Data Set Reduction Based on D-Optimality for Quantitative FLIM-FRET Imaging.
Omer, Travis; Intes, Xavier; Hahn, Juergen
2015-01-01
Fluorescence lifetime imaging (FLIM) when paired with Förster resonance energy transfer (FLIM-FRET) enables the monitoring of nanoscale interactions in living biological samples. FLIM-FRET model-based estimation methods allow the quantitative retrieval of parameters such as the quenched (interacting) and unquenched (non-interacting) fractional populations of the donor fluorophore and/or the distance of the interactions. The quantitative accuracy of such model-based approaches is dependent on multiple factors such as signal-to-noise ratio and number of temporal points acquired when sampling the fluorescence decays. For high-throughput or in vivo applications of FLIM-FRET, it is desirable to acquire a limited number of temporal points for fast acquisition times. Yet, it is critical to acquire temporal data sets with sufficient information content to allow for accurate FLIM-FRET parameter estimation. Herein, an optimal experimental design approach based upon sensitivity analysis is presented in order to identify the time points that provide the best quantitative estimates of the parameters for a determined number of temporal sampling points. More specifically, the D-optimality criterion is employed to identify, within a sparse temporal data set, the set of time points leading to optimal estimations of the quenched fractional population of the donor fluorophore. Overall, a reduced set of 10 time points (compared to a typical complete set of 90 time points) was identified to have minimal impact on parameter estimation accuracy (≈5%), with in silico and in vivo experiment validations. This reduction of the number of needed time points by almost an order of magnitude allows the use of FLIM-FRET for certain high-throughput applications which would be infeasible if the entire number of time sampling points were used.
Hsu, Chia-Fen; Sonuga-Barke, Edmund J S
2016-08-01
fMRI studies have implicated the medial prefrontal cortex and medial temporal lobe, components of the default mode network (DMN), in episodic prospection. This study compared quantitative EEG localized to these DMN regions during prospection and during resting and while waiting for rewards. EEG was recorded in twenty-two adults while they were asked to (i) envision future monetary episodes; (ii) wait for rewards and (iii) rest. Activation sources were localized to core DMN regions. EEG power and phase coherence were compared across conditions. Prospection, compared to resting and waiting, was associated with reduced power in the medial prefrontal gyrus and increased power in the bilateral medial temporal gyrus across frequency bands as well as greater phase synchrony between these regions in the delta band. The current quantitative EEG analysis confirms prior fMRI research suggesting that medial prefrontal and medial temporal gyrus interactions are central to the capacity for episodic prospection. Copyright © 2016 Elsevier B.V. All rights reserved.
Temporal analysis of regional wall motion from cine cardiac MRI
NASA Astrophysics Data System (ADS)
Ratib, Osman M.; Didier, Dominique; Chretien, Anne; Rosset, Antoine; Magnin, Isabelle E.; Ligier, Yves
1996-04-01
The purpose of this work is to develop and to evaluate an automatic analysis technique for quantitative assessment of cardiac function from cine MRI and to identify regional alterations in synchronicity based on Fourier analysis of ventricular wall motion (WM). A temporal analysis technique of left ventricular wall displacement was developed for quantitative analysis of temporal delays in wall motion and applied to gated cine 'dark blood' cardiac MRI. This imaging technique allows the user to saturate the blood both above and below the imaging slice simultaneously by using a specially designed rf presaturation pulse. The acquisition parameters are: TR equals 25 - 60 msec, TE equals 5 - 7 msec, 0 equals 25 degrees, slice thickness equals 10 mm, 16 to 32 frames/cycle. Automatic edge detection was used to outline the ventricular cavities on all frames of a cardiac cycle. Two different segmentation techniques were applied to all studies and lead to similar results. Further improvement in edge detection accuracy was achieved by temporal interpolation of individual contours on each image of the cardiac cycle. Radial analysis of the ventricular wall motion was then performed along 64 radii drawn from the center of the ventricular cavity. The first harmonic of the Fourier transform of each radial motion curve is calculated. The phase of the fundamental Fourier component is used as an index of synchrony (delay) of regional wall motion. Results are displayed in color-coded maps of regional alterations in the amplitude and synchrony of wall motion. The temporal delays measured from individual segments are evaluated through a histogram of phase distribution, where the width of the main peak is used as an index of overall synchrony of wall motion. The variability of this technique was validated in 10 normal volunteers and was used to identify regions with asynchronous WM in 15 patients with documented CAD. The standard deviation (SD) of phase distribution measured in short axis views was calculated and used to identify regions with asynchronous wall motion in patients with coronary artery disease. Results suggest that this technique is more sensitive than global functional parameters such as ejection fraction for the detection of ventricular dysfunction. Color coded parametric display offers a more convenient way for the identification and localization of regional wall motion asynchrony. Data obtained from endocardial wall motion analysis were not significantly different from wall thickening measurements. The innovative approach of evaluating the temporal behavior of regional wall motion anomalies is expected to provide clinically relevant data about subtle alteration that cannot be detected through simple analysis of the extent (amplitude) of wall motion or myocardial thickening. Temporal analysis of regional WM abnormality from cine MRI offers an innovative and promising means for objective quantitative evaluation of subtle regional abnormalities. Color coded parametric maps allowed a better identification and localization of regional WM asynchrony.
Lui, Justin T; Hoy, Monica Y
2017-06-01
Background The increasing prevalence of virtual reality simulation in temporal bone surgery warrants an investigation to assess training effectiveness. Objectives To determine if temporal bone simulator use improves mastoidectomy performance. Data Sources Ovid Medline, Embase, and PubMed databases were systematically searched per the PRISMA guidelines. Review Methods Inclusion criteria were peer-reviewed publications that utilized quantitative data of mastoidectomy performance following the use of a temporal bone simulator. The search was restricted to human studies published in English. Studies were excluded if they were in non-peer-reviewed format, were descriptive in nature, or failed to provide surgical performance outcomes. Meta-analysis calculations were then performed. Results A meta-analysis based on the random-effects model revealed an improvement in overall mastoidectomy performance following training on the temporal bone simulator. A standardized mean difference of 0.87 (95% CI, 0.38-1.35) was generated in the setting of a heterogeneous study population ( I 2 = 64.3%, P < .006). Conclusion In the context of a diverse population of virtual reality simulation temporal bone surgery studies, meta-analysis calculations demonstrate an improvement in trainee mastoidectomy performance with virtual simulation training.
Very high elevation water ice clouds on Mars: Their morphology and temporal behavior
NASA Technical Reports Server (NTRS)
Jaquin, Fred
1988-01-01
Quantitative analysis of Viking images of the martian planetary limb has uncovered the existence and temporal behavior of water ice clouds that form between 50 and 90 km elevation. These clouds show a seasonal behavior that may be correlated with lower atmosphere dynamics. Enhanced vertical mixing of the atmosphere as Mars nears perihelion is hypothesized as the cause of the seasonal dependence, and the diurnal dependence is explained by the temporal behavior of the martian diurnal thermal tide. Viking images also provide a data set of the vertical distribution of aerosols in the martian atmosphere. The temporal and spatial distribution of aerosols are characterized.
Investigation of Portevin-Le Chatelier band with temporal phase analysis of speckle interferometry
NASA Astrophysics Data System (ADS)
Jiang, Zhenyu; Zhang, Qingchuan; Wu, Xiaoping
2003-04-01
A new method combining temporal phase analysis with dynamic digital speckle pattern interferometry is proposed to study Portevin-Le Chatelier effect quantitatively. The principle bases on that the phase difference of interference speckle patterns is a time-dependent function related to the object deformation. The interference speckle patterns of specimen are recorded with high sampling rate while PLC effect occurs, and the 2D displacement map of PLC band and its width are obtained by analyzing the displacement of specimen with proposed method.
Temporal Lobe Epilepsy: Quantitative MR Volumetry in Detection of Hippocampal Atrophy
Farid, Nikdokht; Girard, Holly M.; Kemmotsu, Nobuko; Smith, Michael E.; Magda, Sebastian W.; Lim, Wei Y.; Lee, Roland R.
2012-01-01
Purpose: To determine the ability of fully automated volumetric magnetic resonance (MR) imaging to depict hippocampal atrophy (HA) and to help correctly lateralize the seizure focus in patients with temporal lobe epilepsy (TLE). Materials and Methods: This study was conducted with institutional review board approval and in compliance with HIPAA regulations. Volumetric MR imaging data were analyzed for 34 patients with TLE and 116 control subjects. Structural volumes were calculated by using U.S. Food and Drug Administration–cleared software for automated quantitative MR imaging analysis (NeuroQuant). Results of quantitative MR imaging were compared with visual detection of atrophy, and, when available, with histologic specimens. Receiver operating characteristic analyses were performed to determine the optimal sensitivity and specificity of quantitative MR imaging for detecting HA and asymmetry. A linear classifier with cross validation was used to estimate the ability of quantitative MR imaging to help lateralize the seizure focus. Results: Quantitative MR imaging–derived hippocampal asymmetries discriminated patients with TLE from control subjects with high sensitivity (86.7%–89.5%) and specificity (92.2%–94.1%). When a linear classifier was used to discriminate left versus right TLE, hippocampal asymmetry achieved 94% classification accuracy. Volumetric asymmetries of other subcortical structures did not improve classification. Compared with invasive video electroencephalographic recordings, lateralization accuracy was 88% with quantitative MR imaging and 85% with visual inspection of volumetric MR imaging studies but only 76% with visual inspection of clinical MR imaging studies. Conclusion: Quantitative MR imaging can depict the presence and laterality of HA in TLE with accuracy rates that may exceed those achieved with visual inspection of clinical MR imaging studies. Thus, quantitative MR imaging may enhance standard visual analysis, providing a useful and viable means for translating volumetric analysis into clinical practice. © RSNA, 2012 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.12112638/-/DC1 PMID:22723496
Hallioğlu, O; Ozge, A; Comelekoglu, U; Topaloglu, A K; Kanik, A; Duzovali, O; Yilgor, E
2001-10-01
This study was undertaken to evaluate resting electroencephalographic (EEG) changes and their relations to cerebral maturation in children with primary nocturnal enuresis. Cerebral maturation is known to be important in the pathogenesis of this disorder. Twenty-five right-handed patients with primary nocturnal enuresis, aged 6 to 14 years, and 23 age- and sex-matched healthy children were included in this cross-sectional case-control study. The abnormalities detected using such techniques as hemispheral asymmetry, regional differences, and hyperventilation response in addition to visual and quantitative EEG analysis were examined statistically by multivariate analysis. A decrease in alpha activity in the left (dominant hemisphere) temporal lobe and in the frontal lobes bilaterally and an increase in delta activity in the right temporal region were observed. We concluded that insufficient cerebral maturation is an important factor in the pathogenesis of primary nocturnal enuresis, and EEG, as a noninvasive and inexpensive method, could be used in evaluating cerebral maturation.
NASA Astrophysics Data System (ADS)
Trusiak, Maciej; Micó, Vicente; Patorski, Krzysztof; García-Monreal, Javier; Sluzewski, Lukasz; Ferreira, Carlos
2016-08-01
In this contribution we propose two Hilbert-Huang Transform based algorithms for fast and accurate single-shot and two-shot quantitative phase imaging applicable in both on-axis and off-axis configurations. In the first scheme a single fringe pattern containing information about biological phase-sample under study is adaptively pre-filtered using empirical mode decomposition based approach. Further it is phase demodulated by the Hilbert Spiral Transform aided by the Principal Component Analysis for the local fringe orientation estimation. Orientation calculation enables closed fringes efficient analysis and can be avoided using arbitrary phase-shifted two-shot Gram-Schmidt Orthonormalization scheme aided by Hilbert-Huang Transform pre-filtering. This two-shot approach is a trade-off between single-frame and temporal phase shifting demodulation. Robustness of the proposed techniques is corroborated using experimental digital holographic microscopy studies of polystyrene micro-beads and red blood cells. Both algorithms compare favorably with the temporal phase shifting scheme which is used as a reference method.
Quantitative estimation of time-variable earthquake hazard by using fuzzy set theory
NASA Astrophysics Data System (ADS)
Deyi, Feng; Ichikawa, M.
1989-11-01
In this paper, the various methods of fuzzy set theory, called fuzzy mathematics, have been applied to the quantitative estimation of the time-variable earthquake hazard. The results obtained consist of the following. (1) Quantitative estimation of the earthquake hazard on the basis of seismicity data. By using some methods of fuzzy mathematics, seismicity patterns before large earthquakes can be studied more clearly and more quantitatively, highly active periods in a given region and quiet periods of seismic activity before large earthquakes can be recognized, similarities in temporal variation of seismic activity and seismic gaps can be examined and, on the other hand, the time-variable earthquake hazard can be assessed directly on the basis of a series of statistical indices of seismicity. Two methods of fuzzy clustering analysis, the method of fuzzy similarity, and the direct method of fuzzy pattern recognition, have been studied is particular. One method of fuzzy clustering analysis is based on fuzzy netting, and another is based on the fuzzy equivalent relation. (2) Quantitative estimation of the earthquake hazard on the basis of observational data for different precursors. The direct method of fuzzy pattern recognition has been applied to research on earthquake precursors of different kinds. On the basis of the temporal and spatial characteristics of recognized precursors, earthquake hazards in different terms can be estimated. This paper mainly deals with medium-short-term precursors observed in Japan and China.
Automated Video Based Facial Expression Analysis of Neuropsychiatric Disorders
Wang, Peng; Barrett, Frederick; Martin, Elizabeth; Milanova, Marina; Gur, Raquel E.; Gur, Ruben C.; Kohler, Christian; Verma, Ragini
2008-01-01
Deficits in emotional expression are prominent in several neuropsychiatric disorders, including schizophrenia. Available clinical facial expression evaluations provide subjective and qualitative measurements, which are based on static 2D images that do not capture the temporal dynamics and subtleties of expression changes. Therefore, there is a need for automated, objective and quantitative measurements of facial expressions captured using videos. This paper presents a computational framework that creates probabilistic expression profiles for video data and can potentially help to automatically quantify emotional expression differences between patients with neuropsychiatric disorders and healthy controls. Our method automatically detects and tracks facial landmarks in videos, and then extracts geometric features to characterize facial expression changes. To analyze temporal facial expression changes, we employ probabilistic classifiers that analyze facial expressions in individual frames, and then propagate the probabilities throughout the video to capture the temporal characteristics of facial expressions. The applications of our method to healthy controls and case studies of patients with schizophrenia and Asperger’s syndrome demonstrate the capability of the video-based expression analysis method in capturing subtleties of facial expression. Such results can pave the way for a video based method for quantitative analysis of facial expressions in clinical research of disorders that cause affective deficits. PMID:18045693
Zamir, Ehud; Kong, George Y.X.; Kowalski, Tanya; Coote, Michael; Ang, Ghee Soon
2016-01-01
Purpose We hypothesize that: (1) Anterior chamber depth (ACD) is correlated with the relative anteroposterior position of the pupillary image, as viewed from the temporal side. (2) Such a correlation may be used as a simple quantitative tool for estimation of ACD. Methods Two hundred sixty-six phakic eyes had lateral digital photographs taken from the temporal side, perpendicular to the visual axis, and underwent optical biometry (Nidek AL scanner). The relative anteroposterior position of the pupillary image was expressed using the ratio between: (1) lateral photographic temporal limbus to pupil distance (“E”) and (2) lateral photographic temporal limbus to cornea distance (“Z”). In the first chronological half of patients (Correlation Series), E:Z ratio (EZR) was correlated with optical biometric ACD. The correlation equation was then used to predict ACD in the second half of patients (Prediction Series) and compared to their biometric ACD for agreement analysis. Results A strong linear correlation was found between EZR and ACD, R = −0.91, R2 = 0.81. Bland-Altman analysis showed good agreement between predicted ACD using this method and the optical biometric ACD. The mean error was −0.013 mm (range −0.377 to 0.336 mm), standard deviation 0.166 mm. The 95% limits of agreement were ±0.33 mm. Conclusions Lateral digital photography and EZR calculation is a novel method to quantitatively estimate ACD, requiring minimal equipment and training. Translational Relevance EZ ratio may be employed in screening for angle closure glaucoma. It may also be helpful in outpatient medical clinic settings, where doctors need to judge the safety of topical or systemic pupil-dilating medications versus their risk of triggering acute angle closure glaucoma. Similarly, non ophthalmologists may use it to estimate the likelihood of acute angle closure glaucoma in emergency presentations. PMID:27540496
McClelland, A C; Gomes, W A; Shinnar, S; Hesdorffer, D C; Bagiella, E; Lewis, D V; Bello, J A; Chan, S; MacFall, J; Chen, M; Pellock, J M; Nordli, D R; Frank, L M; Moshé, S L; Shinnar, R C; Sun, S
2016-12-01
The pathogenesis of febrile status epilepticus is poorly understood, but prior studies have suggested an association with temporal lobe abnormalities, including hippocampal malrotation. We used a quantitative morphometric method to assess the association between temporal lobe morphology and febrile status epilepticus. Brain MR imaging was performed in children presenting with febrile status epilepticus and control subjects as part of the Consequences of Prolonged Febrile Seizures in Childhood study. Medial temporal lobe morphologic parameters were measured manually, including the distance of the hippocampus from the midline, hippocampal height:width ratio, hippocampal angle, collateral sulcus angle, and width of the temporal horn. Temporal lobe morphologic parameters were correlated with the presence of visual hippocampal malrotation; the strongest association was with left temporal horn width (P < .001; adjusted OR, 10.59). Multiple morphologic parameters correlated with febrile status epilepticus, encompassing both the right and left sides. This association was statistically strongest in the right temporal lobe, whereas hippocampal malrotation was almost exclusively left-sided in this cohort. The association between temporal lobe measurements and febrile status epilepticus persisted when the analysis was restricted to cases with visually normal imaging findings without hippocampal malrotation or other visually apparent abnormalities. Several component morphologic features of hippocampal malrotation are independently associated with febrile status epilepticus, even when complete hippocampal malrotation is absent. Unexpectedly, this association predominantly involves the right temporal lobe. These findings suggest that a spectrum of bilateral temporal lobe anomalies are associated with febrile status epilepticus in children. Hippocampal malrotation may represent a visually apparent subset of this spectrum. © 2016 by American Journal of Neuroradiology.
Ozaki, Yu-ichi; Uda, Shinsuke; Saito, Takeshi H; Chung, Jaehoon; Kubota, Hiroyuki; Kuroda, Shinya
2010-04-01
Modeling of cellular functions on the basis of experimental observation is increasingly common in the field of cellular signaling. However, such modeling requires a large amount of quantitative data of signaling events with high spatio-temporal resolution. A novel technique which allows us to obtain such data is needed for systems biology of cellular signaling. We developed a fully automatable assay technique, termed quantitative image cytometry (QIC), which integrates a quantitative immunostaining technique and a high precision image-processing algorithm for cell identification. With the aid of an automated sample preparation system, this device can quantify protein expression, phosphorylation and localization with subcellular resolution at one-minute intervals. The signaling activities quantified by the assay system showed good correlation with, as well as comparable reproducibility to, western blot analysis. Taking advantage of the high spatio-temporal resolution, we investigated the signaling dynamics of the ERK pathway in PC12 cells. The QIC technique appears as a highly quantitative and versatile technique, which can be a convenient replacement for the most conventional techniques including western blot, flow cytometry and live cell imaging. Thus, the QIC technique can be a powerful tool for investigating the systems biology of cellular signaling.
Temporal maps and informativeness in associative learning.
Balsam, Peter D; Gallistel, C Randy
2009-02-01
Neurobiological research on learning assumes that temporal contiguity is essential for association formation, but what constitutes temporal contiguity has never been specified. We review evidence that learning depends, instead, on learning a temporal map. Temporal relations between events are encoded even from single experiences. The speed with which an anticipatory response emerges is proportional to the informativeness of the encoded relation between a predictive stimulus or event and the event it predicts. This principle yields a quantitative account of the heretofore undefined, but theoretically crucial, concept of temporal pairing, an account in quantitative accord with surprising experimental findings. The same principle explains the basic results in the cue competition literature, which motivated the Rescorla-Wagner model and most other contemporary models of associative learning. The essential feature of a memory mechanism in this account is its ability to encode quantitative information.
Temporal maps and informativeness in associative learning
Balsam, Peter D; Gallistel, C. Randy
2009-01-01
Neurobiological research on learning assumes that temporal contiguity is essential for association formation, but what constitutes temporal contiguity has never been specified. We review evidence that learning depends, instead, on learning a temporal map. Temporal relations between events are encoded even from single experiences. The speed with which an anticipatory response emerges is proportional to the informativeness of the encoded relation between a predictive stimulus or event and the event it predicts. This principle yields a quantitative account of the heretofore undefined, but theoretically crucial, concept of temporal pairing, an account in quantitative accord with surprising experimental findings. The same principle explains the basic results in the cue competition literature, which motivated the Rescorla–Wagner model and most other contemporary models of associative learning. The essential feature of a memory mechanism in this account is its ability to encode quantitative information. PMID:19136158
Fujiyoshi, T; Mogi, G; Watanabe, T; Matsushita, F
1992-01-01
Using a novel method of cutting undecalcified temporal bone specimens, quantitative structural analysis in the human and the Japanese monkey was undertaken. One millimeter thick serial slices made from unembedded temporal bones retained fine structure. Therefore, gross to fine observation could be performed systematically at the macroscopic, light, scanning, and transmission electron microscopic levels. The entire temporal bone three-dimensional reconstruction was completed from embedded sections; consequently, the volume of the tubotympanum and air cell system could be calculated. Available methods by embedding, tungsten carbide sectioning, grinding, and microwave irradiation for decalcification were also examined. These morphologic studies suggest that these novel methods offer timesaving advantages over any presently available techniques, and allow for elucidation of temporal bone morphology with only a few specimens.
Casarrubea, Maurizio; Faulisi, Fabiana; Magnusson, Magnus S; Crescimanno, Giuseppe
2016-08-01
The largest amount of researches on the hot-plate test was carried out using quantitative assessments. However, the evaluation of the relationships among the different elements that compose the behavioral response to pain requires different approaches. Although previous studies have provided clear information on the behavioral structure of the response, no data are available on its temporal structure. The objective of this study was to investigate the temporal structure of the behavioral response to pain in Wistar rat tested in hot-plate and how this structure was influenced by morphine-induced analgesia. The behavior of four groups of subjects tested in hot-plate, one administered saline and three with different doses (3, 6, 12 mg/kg) of morphine IP, was analyzed by means of quantitative and t-pattern analyses. The latter is a multivariate technique able to detect the existence of statistically significant temporal relationships among the behavioral events in time. A clear-cut influence of morphine on quantitative parameters of the response to the noxious stimulation was observed. T-pattern analysis evidenced profound structural changes of behavior. Twenty-four different t-patterns were identified following saline, whereas a dose-dependent reduction was observed following morphine. Such a reduction was accompanied by a decrease of the total amount of t-patterns detected. Morphine, by reducing the effects of the noxious stimulation, orients animal behavior prevalently toward exploratory t-patterns. In addition, it is suggested that the temporal structure of the response is very quickly organized and adapted to environmental noxious cues.
Ganz, J; Baker, R P; Hamilton, M K; Melancon, E; Diba, P; Eisen, J S; Parthasarathy, R
2018-05-02
Normal gut function requires rhythmic and coordinated movements that are affected by developmental processes, physical and chemical stimuli, and many debilitating diseases. The imaging and characterization of gut motility, especially regarding periodic, propagative contractions driving material transport, are therefore critical goals. Previous image analysis approaches have successfully extracted properties related to the temporal frequency of motility modes, but robust measures of contraction magnitude, especially from in vivo image data, remain challenging to obtain. We developed a new image analysis method based on image velocimetry and spectral analysis that reveals temporal characteristics such as frequency and wave propagation speed, while also providing quantitative measures of the amplitude of gut motion. We validate this approach using several challenges to larval zebrafish, imaged with differential interference contrast microscopy. Both acetylcholine exposure and feeding increase frequency and amplitude of motility. Larvae lacking enteric nervous system gut innervation show the same average motility frequency, but reduced and less variable amplitude compared to wild types. Our image analysis approach enables insights into gut dynamics in a wide variety of developmental and physiological contexts and can also be extended to analyze other types of cell movements. © 2018 John Wiley & Sons Ltd.
TASI: A software tool for spatial-temporal quantification of tumor spheroid dynamics.
Hou, Yue; Konen, Jessica; Brat, Daniel J; Marcus, Adam I; Cooper, Lee A D
2018-05-08
Spheroid cultures derived from explanted cancer specimens are an increasingly utilized resource for studying complex biological processes like tumor cell invasion and metastasis, representing an important bridge between the simplicity and practicality of 2-dimensional monolayer cultures and the complexity and realism of in vivo animal models. Temporal imaging of spheroids can capture the dynamics of cell behaviors and microenvironments, and when combined with quantitative image analysis methods, enables deep interrogation of biological mechanisms. This paper presents a comprehensive open-source software framework for Temporal Analysis of Spheroid Imaging (TASI) that allows investigators to objectively characterize spheroid growth and invasion dynamics. TASI performs spatiotemporal segmentation of spheroid cultures, extraction of features describing spheroid morpho-phenotypes, mathematical modeling of spheroid dynamics, and statistical comparisons of experimental conditions. We demonstrate the utility of this tool in an analysis of non-small cell lung cancer spheroids that exhibit variability in metastatic and proliferative behaviors.
Lipiäinen, Tiina; Pessi, Jenni; Movahedi, Parisa; Koivistoinen, Juha; Kurki, Lauri; Tenhunen, Mari; Yliruusi, Jouko; Juppo, Anne M; Heikkonen, Jukka; Pahikkala, Tapio; Strachan, Clare J
2018-04-03
Raman spectroscopy is widely used for quantitative pharmaceutical analysis, but a common obstacle to its use is sample fluorescence masking the Raman signal. Time-gating provides an instrument-based method for rejecting fluorescence through temporal resolution of the spectral signal and allows Raman spectra of fluorescent materials to be obtained. An additional practical advantage is that analysis is possible in ambient lighting. This study assesses the efficacy of time-gated Raman spectroscopy for the quantitative measurement of fluorescent pharmaceuticals. Time-gated Raman spectroscopy with a 128 × (2) × 4 CMOS SPAD detector was applied for quantitative analysis of ternary mixtures of solid-state forms of the model drug, piroxicam (PRX). Partial least-squares (PLS) regression allowed quantification, with Raman-active time domain selection (based on visual inspection) improving performance. Model performance was further improved by using kernel-based regularized least-squares (RLS) regression with greedy feature selection in which the data use in both the Raman shift and time dimensions was statistically optimized. Overall, time-gated Raman spectroscopy, especially with optimized data analysis in both the spectral and time dimensions, shows potential for sensitive and relatively routine quantitative analysis of photoluminescent pharmaceuticals during drug development and manufacturing.
Akman, Cigdem Inan; Provenzano, Frank; Wang, Dong; Engelstad, Kristin; Hinton, Veronica; Yu, Julia; Tikofsky, Ronald; Ichese, Masonari; De Vivo, Darryl C
2015-02-01
(18)F fluorodeoxyglucose positron emission tomography ((18)F FDG-PET) facilitates examination of glucose metabolism. Previously, we described regional cerebral glucose hypometabolism using (18)F FDG-PET in patients with Glucose transporter 1 Deficiency Syndrome (Glut1 DS). We now expand this observation in Glut1 DS using quantitative image analysis to identify the epileptic network based on the regional distribution of glucose hypometabolism. (18)F FDG-PET scans of 16 Glut1 DS patients and 7 healthy participants were examined using Statistical parametric Mapping (SPM). Summed images were preprocessed for statistical analysis using MATLAB 7.1 and SPM 2 software. Region of interest (ROI) analysis was performed to validate SPM results. Visual analysis of the (18)F FDG-PET images demonstrated prominent regional glucose hypometabolism in the thalamus, neocortical regions and cerebellum bilaterally. Group comparison using SPM analysis confirmed that the regional distribution of glucose hypo-metabolism was present in thalamus, cerebellum, temporal cortex and central lobule. Two mildly affected patients without epilepsy had hypometabolism in cerebellum, inferior frontal cortex, and temporal lobe, but not thalamus. Glucose hypometabolism did not correlate with age at the time of PET imaging, head circumference, CSF glucose concentration at the time of diagnosis, RBC glucose uptake, or CNS score. Quantitative analysis of (18)F FDG-PET imaging in Glut1 DS patients confirmed that hypometabolism was present symmetrically in thalamus, cerebellum, frontal and temporal cortex. The hypometabolism in thalamus correlated with the clinical history of epilepsy. Copyright © 2014. Published by Elsevier B.V.
Temporal intracavity detection of parasitic infrared absorption in Ti:Sapphire lasers
NASA Astrophysics Data System (ADS)
Deleva, A. D.; Peshev, Z. Y.; Aneva, Z. I.
1993-12-01
An intracavity technique with temporal sensitivity to optical losses is used to detect parasitic infrared absorption (PIRA) in Ti:sapphire crystals with high active-center concentrations. By means of comparative analysis, re-emission is established of part of the parasitically absorbed energy back into the laser action channel. A method is proposed for approximate quantitative determination of the relative part of re-emitting PIRA-centers with respect to their total number; for the highly-doped crystal described, it is estimated at about 11%.
High-throughput analysis of spatio-temporal dynamics in Dictyostelium
Sawai, Satoshi; Guan, Xiao-Juan; Kuspa, Adam; Cox, Edward C
2007-01-01
We demonstrate a time-lapse video approach that allows rapid examination of the spatio-temporal dynamics of Dictyostelium cell populations. Quantitative information was gathered by sampling life histories of more than 2,000 mutant clones from a large mutagenesis collection. Approximately 4% of the clonal lines showed a mutant phenotype at one stage. Many of these could be ordered by clustering into functional groups. The dataset allows one to search and retrieve movies on a gene-by-gene and phenotype-by-phenotype basis. PMID:17659086
Andrews, J O; Conway, W; Cho, W -K; Narayanan, A; Spille, J -H; Jayanth, N; Inoue, T; Mullen, S; Thaler, J; Cissé, I I
2018-05-09
We present qSR, an analytical tool for the quantitative analysis of single molecule based super-resolution data. The software is created as an open-source platform integrating multiple algorithms for rigorous spatial and temporal characterizations of protein clusters in super-resolution data of living cells. First, we illustrate qSR using a sample live cell data of RNA Polymerase II (Pol II) as an example of highly dynamic sub-diffractive clusters. Then we utilize qSR to investigate the organization and dynamics of endogenous RNA Polymerase I (Pol I) in live human cells, throughout the cell cycle. Our analysis reveals a previously uncharacterized transient clustering of Pol I. Both stable and transient populations of Pol I clusters co-exist in individual living cells, and their relative fraction vary during cell cycle, in a manner correlating with global gene expression. Thus, qSR serves to facilitate the study of protein organization and dynamics with very high spatial and temporal resolutions directly in live cell.
Ginat, D T; Ferro, L; Gluth, M B
2016-12-01
We describe the temporal bone computed tomography (CT) findings of an unusual case of branchio-oto-renal syndrome with ectopic ossicles that are partially located in the middle cranial fossa. We also describe quantitative temporal bone CT assessment pertaining to cochlear implantation in the setting of anomalous cochlear anatomy associated with this syndrome.
Surface electromyography analysis of blepharoptosis correction by transconjunctival incisions.
Tu, Lung-Chen; Wu, Ming-Chya; Chu, Hsueh-Liang; Chiang, Yi-Pin; Kuo, Chih-Lin; Li, Hsing-Yuan; Chang, Chia-Ching
2016-06-01
Upper eyelid movement depends on the antagonistic actions of orbicularis oculi muscle and levator aponeurosis. Blepharoptosis is an abnormal drooping of upper eyelid margin with the eye in primary position of gaze. Transconjunctival incisions for upper eyelid ptosis correction have been a well-developed technique. Conventional prognosis however depends on clinical observations and lacks of quantitatively analysis for the eyelid muscle controlling. This study examines the possibility of using the assessments of temporal correlation in surface electromyography (SEMG) as a quantitative description for the change of muscle controlling after operation. Eyelid SEMG was measured from patients with blepharoptosis preoperatively and postoperatively, as well as, for comparative study, from young and aged normal subjects. The data were analyzed using the detrended fluctuation analysis method. The results show that the temporal correlation of the SEMG signals can be characterized by two indices associated with the correlation properties in short and long time scales demarcated at 3ms, corresponding to the time scale of neural response. Aging causes degradation of the correlation properties at both time scales, and patient group likely possess more serious correlation degradation in long-time regime which was improved moderately by the ptosis corrections. We propose that the temporal correlation in SEMG signals may be regarded as an indicator for evaluating the performance of eyelid muscle controlling in postoperative recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.
Temporal Noise Analysis of Charge-Domain Sampling Readout Circuits for CMOS Image Sensors.
Ge, Xiaoliang; Theuwissen, Albert J P
2018-02-27
This paper presents a temporal noise analysis of charge-domain sampling readout circuits for Complementary Metal-Oxide Semiconductor (CMOS) image sensors. In order to address the trade-off between the low input-referred noise and high dynamic range, a Gm-cell-based pixel together with a charge-domain correlated-double sampling (CDS) technique has been proposed to provide a way to efficiently embed a tunable conversion gain along the read-out path. Such readout topology, however, operates in a non-stationery large-signal behavior, and the statistical properties of its temporal noise are a function of time. Conventional noise analysis methods for CMOS image sensors are based on steady-state signal models, and therefore cannot be readily applied for Gm-cell-based pixels. In this paper, we develop analysis models for both thermal noise and flicker noise in Gm-cell-based pixels by employing the time-domain linear analysis approach and the non-stationary noise analysis theory, which help to quantitatively evaluate the temporal noise characteristic of Gm-cell-based pixels. Both models were numerically computed in MATLAB using design parameters of a prototype chip, and compared with both simulation and experimental results. The good agreement between the theoretical and measurement results verifies the effectiveness of the proposed noise analysis models.
Temporal Noise Analysis of Charge-Domain Sampling Readout Circuits for CMOS Image Sensors †
Theuwissen, Albert J. P.
2018-01-01
This paper presents a temporal noise analysis of charge-domain sampling readout circuits for Complementary Metal-Oxide Semiconductor (CMOS) image sensors. In order to address the trade-off between the low input-referred noise and high dynamic range, a Gm-cell-based pixel together with a charge-domain correlated-double sampling (CDS) technique has been proposed to provide a way to efficiently embed a tunable conversion gain along the read-out path. Such readout topology, however, operates in a non-stationery large-signal behavior, and the statistical properties of its temporal noise are a function of time. Conventional noise analysis methods for CMOS image sensors are based on steady-state signal models, and therefore cannot be readily applied for Gm-cell-based pixels. In this paper, we develop analysis models for both thermal noise and flicker noise in Gm-cell-based pixels by employing the time-domain linear analysis approach and the non-stationary noise analysis theory, which help to quantitatively evaluate the temporal noise characteristic of Gm-cell-based pixels. Both models were numerically computed in MATLAB using design parameters of a prototype chip, and compared with both simulation and experimental results. The good agreement between the theoretical and measurement results verifies the effectiveness of the proposed noise analysis models. PMID:29495496
NASA Astrophysics Data System (ADS)
Chen, Zhe; Parker, B. J.; Feng, D. D.; Fulton, R.
2004-10-01
In this paper, we compare various temporal analysis schemes applied to dynamic PET for improved quantification, image quality and temporal compression purposes. We compare an optimal sampling schedule (OSS) design, principal component analysis (PCA) applied in the image domain, and principal component analysis applied in the sinogram domain; for region-of-interest quantification, sinogram-domain PCA is combined with the Huesman algorithm to quantify from the sinograms directly without requiring reconstruction of all PCA channels. Using a simulated phantom FDG brain study and three clinical studies, we evaluate the fidelity of the compressed data for estimation of local cerebral metabolic rate of glucose by a four-compartment model. Our results show that using a noise-normalized PCA in the sinogram domain gives similar compression ratio and quantitative accuracy to OSS, but with substantially better precision. These results indicate that sinogram-domain PCA for dynamic PET can be a useful preprocessing stage for PET compression and quantification applications.
Using Aoristic Analysis to Link Remote and Ground-Level Phenological Observations
NASA Astrophysics Data System (ADS)
Henebry, G. M.
2013-12-01
Phenology is about observing events in time and space. With the advent of publically accessible geospatial datastreams and easy to use mapping software, specifying where an event occurs is much less of a challenge than it was just two decades ago. In contrast, specifying when an event occurs remains a nontrivial function of a population of organismal responses, sampling interval, compositing period, and reporting precision. I explore how aoristic analysis can be used to analyzing spatiotemporal events for which the location is known to acceptable levels of precision but for which temporal coordinates are poorly specified or only partially bounded. Aoristic analysis was developed in the late 1990s in the field of quantitative criminology to leverage temporally imprecise geospatial data of crime reports. Here I demonstrate how aoristic analysis can be used to link remotely sensed observations of land surface phenology to ground-level observations of organismal phenophase transitions. Explicit representation of the windows of temporal uncertainty with aoristic weights enables cross-validation exercises and forecasting efforts to avoid false precision.
Gait Patterns in Hemiplegic Children with Cerebral Palsy: Comparison of Right and Left Hemiplegia
ERIC Educational Resources Information Center
Galli, Manuela; Cimolin, Veronica; Rigoldi, Chiara; Tenore, Nunzio; Albertini, Giorgio
2010-01-01
The aims of this study are to compare quantitatively the gait strategy of the right and left hemiplegic children with Cerebral Palsy (CP) using gait analysis. The gait strategy of 28 right hemiparetic CP (RHG) and 23 left hemiparetic CP (LHG) was compared using gait analysis (spatio-temporal and kinematic parameters) and considering the hemiplegic…
Issues in Quantitative Analysis of Ultraviolet Imager (UV) Data: Airglow
NASA Technical Reports Server (NTRS)
Germany, G. A.; Richards, P. G.; Spann, J. F.; Brittnacher, M. J.; Parks, G. K.
1999-01-01
The GGS Ultraviolet Imager (UVI) has proven to be especially valuable in correlative substorm, auroral morphology, and extended statistical studies of the auroral regions. Such studies are based on knowledge of the location, spatial, and temporal behavior of auroral emissions. More quantitative studies, based on absolute radiometric intensities from UVI images, require a more intimate knowledge of the instrument behavior and data processing requirements and are inherently more difficult than studies based on relative knowledge of the oval location. In this study, UVI airglow observations are analyzed and compared with model predictions to illustrate issues that arise in quantitative analysis of UVI images. These issues include instrument calibration, long term changes in sensitivity, and imager flat field response as well as proper background correction. Airglow emissions are chosen for this study because of their relatively straightforward modeling requirements and because of their implications for thermospheric compositional studies. The analysis issues discussed here, however, are identical to those faced in quantitative auroral studies.
NASA Astrophysics Data System (ADS)
Zhang, T. H.; Ji, H. W.; Hu, Y.; Ye, Q.; Lin, Y.
2018-04-01
Remote Sensing (RS) and Geography Information System (GIS) technologies are widely used in ecological analysis and regional planning. With the advantages of large scale monitoring, combination of point and area, multiple time-phases and repeated observation, they are suitable for monitoring and analysis of environmental information in a large range. In this study, support vector machine (SVM) classification algorithm is used to monitor the land use and land cover change (LUCC), and then to perform the ecological evaluation for Chaohu lake tourism area quantitatively. The automatic classification and the quantitative spatial-temporal analysis for the Chaohu Lake basin are realized by the analysis of multi-temporal and multispectral satellite images, DEM data and slope information data. Furthermore, the ecological buffer zone analysis is also studied to set up the buffer width for each catchment area surrounding Chaohu Lake. The results of LUCC monitoring from 1992 to 2015 has shown obvious affections by human activities. Since the construction of the Chaohu Lake basin is in the crucial stage of the rapid development of urbanization, the application of RS and GIS technique can effectively provide scientific basis for land use planning, ecological management, environmental protection and tourism resources development in the Chaohu Lake Basin.
Knowles, David W; Biggin, Mark D
2013-01-01
Animals comprise dynamic three-dimensional arrays of cells that express gene products in intricate spatial and temporal patterns that determine cellular differentiation and morphogenesis. A rigorous understanding of these developmental processes requires automated methods that quantitatively record and analyze complex morphologies and their associated patterns of gene expression at cellular resolution. Here we summarize light microscopy-based approaches to establish permanent, quantitative datasets-atlases-that record this information. We focus on experiments that capture data for whole embryos or large areas of tissue in three dimensions, often at multiple time points. We compare and contrast the advantages and limitations of different methods and highlight some of the discoveries made. We emphasize the need for interdisciplinary collaborations and integrated experimental pipelines that link sample preparation, image acquisition, image analysis, database design, visualization, and quantitative analysis. Copyright © 2013 Wiley Periodicals, Inc.
Jaimes-Bautista, A G; Rodríguez-Camacho, M; Martínez-Juárez, I E; Rodríguez-Agudelo, Y
2017-08-29
Patients with temporal lobe epilepsy (TLE) perform poorly on semantic verbal fluency (SVF) tasks. Completing these tasks successfully involves multiple cognitive processes simultaneously. Therefore, quantitative analysis of SVF (number of correct words in one minute), conducted in most studies, has been found to be insufficient to identify cognitive dysfunction underlying SVF difficulties in TLE. To determine whether a sample of patients with TLE had SVF difficulties compared with a control group (CG), and to identify the cognitive components associated with SVF difficulties using quantitative and qualitative analysis. SVF was evaluated in 25 patients with TLE and 24 healthy controls; the semantic verbal fluency test included 5 semantic categories: animals, fruits, occupations, countries, and verbs. All 5 categories were analysed quantitatively (number of correct words per minute and interval of execution: 0-15, 16-30, 31-45, and 46-60seconds); the categories animals and fruits were also analysed qualitatively (clusters, cluster size, switches, perseverations, and intrusions). Patients generated fewer words for all categories and intervals and fewer clusters and switches for animals and fruits than the CG (P<.01). Differences between groups were not significant in terms of cluster size and number of intrusions and perseverations (P>.05). Our results suggest an association between SVF difficulties in TLE and difficulty activating semantic networks, impaired strategic search, and poor cognitive flexibility. Attention, inhibition, and working memory are preserved in these patients. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
Andresen, Ellen; Díaz-Castelazo, Cecilia
2016-01-01
Background. Ecological communities are dynamic collections whose composition and structure change over time, making up complex interspecific interaction networks. Mutualistic plant–animal networks can be approached through complex network analysis; these networks are characterized by a nested structure consisting of a core of generalist species, which endows the network with stability and robustness against disturbance. Those mutualistic network structures can vary as a consequence of seasonal fluctuations and food availability, as well as the arrival of new species into the system that might disorder the mutualistic network structure (e.g., a decrease in nested pattern). However, there is no assessment on how the arrival of migratory species into seasonal tropical systems can modify such patterns. Emergent and fine structural temporal patterns are adressed here for the first time for plant-frugivorous bird networks in a highly seasonal tropical environment. Methods. In a plant-frugivorous bird community, we analyzed the temporal turnover of bird species comprising the network core and periphery of ten temporal interaction networks resulting from different bird migration periods. Additionally, we evaluated how fruit abundance and richness, as well as the arrival of migratory birds into the system, explained the temporal changes in network parameters such as network size, connectance, nestedness, specialization, interaction strength asymmetry and niche overlap. The analysis included data from 10 quantitative plant-frugivorous bird networks registered from November 2013 to November 2014. Results. We registered a total of 319 interactions between 42 plant species and 44 frugivorous bird species; only ten bird species were part of the network core. We witnessed a noteworthy turnover of the species comprising the network periphery during migration periods, as opposed to the network core, which did not show significant temporal changes in species composition. Our results revealed that migration and fruit richness explain the temporal variations in network size, connectance, nestedness and interaction strength asymmetry. On the other hand, fruit abundance only explained connectance and nestedness. Discussion. By means of a fine-resolution temporal analysis, we evidenced for the first time how temporal changes in the interaction network structure respond to the arrival of migratory species into the system and to fruit availability. Additionally, few migratory bird species are important links for structuring networks, while most of them were peripheral species. We showed the relevance of studying bird–plant interactions at fine temporal scales, considering changing scenarios of species composition with a quantitative network approach. PMID:27330852
Interaction-Dominant Dynamics in Human Cognition: Beyond 1/f[superscript [alpha
ERIC Educational Resources Information Center
Ihlen, Espen A. F.; Vereijken, Beatrix
2010-01-01
It has been suggested that human behavior in general and cognitive performance in particular emerge from coordination between multiple temporal scales. In this article, we provide quantitative support for such a theory of interaction-dominant dynamics in human cognition by using wavelet-based multifractal analysis and accompanying multiplicative…
QEEG and LORETA in Teenagers With Conduct Disorder and Psychopathic Traits.
Calzada-Reyes, Ana; Alvarez-Amador, Alfredo; Galán-García, Lídice; Valdés-Sosa, Mitchell
2017-05-01
Few studies have investigated the impact of the psychopathic traits on the EEG of teenagers with conduct disorder (CD). To date, there is no other research studying low-resolution brain electromagnetic tomography (LORETA) technique using quantitative EEG (QEEG) analysis in adolescents with CD and psychopathic traits. To find electrophysiological differences specifically related to the psychopathic traits. The current investigation compares the QEEG and the current source density measures between adolescents with CD and psychopathic traits and adolescents with CD without psychopathic traits. The resting EEG activity and LORETA for the EEG fast spectral bands were evaluated in 42 teenagers with CD, 25 with and 17 without psychopathic traits according to the Antisocial Process Screening Device. All adolescents were assessed using the DSM-IV-TR criteria. The EEG visual inspection characteristics and the use of frequency domain quantitative analysis techniques (narrow band spectral parameters) are described. QEEG analysis showed a pattern of beta activity excess on the bilateral frontal-temporal regions and decreases of alpha band power on the left central-temporal and right frontal-central-temporal regions in the psychopathic traits group. Current source density calculated at 17.18 Hz showed an increase within fronto-temporo-striatal regions in the psychopathic relative to the nonpsychopathic traits group. These findings indicate that QEEG analysis and techniques of source localization may reveal differences in brain electrical activity among teenagers with CD and psychopathic traits, which was not obvious to visual inspection. Taken together, these results suggest that abnormalities in a fronto-temporo-striatal network play a relevant role in the neurobiological basis of psychopathic behavior.
A Review of the Statistical and Quantitative Methods Used to Study Alcohol-Attributable Crime.
Fitterer, Jessica L; Nelson, Trisalyn A
2015-01-01
Modelling the relationship between alcohol consumption and crime generates new knowledge for crime prevention strategies. Advances in data, particularly data with spatial and temporal attributes, have led to a growing suite of applied methods for modelling. In support of alcohol and crime researchers we synthesized and critiqued existing methods of spatially and quantitatively modelling the effects of alcohol exposure on crime to aid method selection, and identify new opportunities for analysis strategies. We searched the alcohol-crime literature from 1950 to January 2014. Analyses that statistically evaluated or mapped the association between alcohol and crime were included. For modelling purposes, crime data were most often derived from generalized police reports, aggregated to large spatial units such as census tracts or postal codes, and standardized by residential population data. Sixty-eight of the 90 selected studies included geospatial data of which 48 used cross-sectional datasets. Regression was the prominent modelling choice (n = 78) though dependent on data many variations existed. There are opportunities to improve information for alcohol-attributable crime prevention by using alternative population data to standardize crime rates, sourcing crime information from non-traditional platforms (social media), increasing the number of panel studies, and conducting analysis at the local level (neighbourhood, block, or point). Due to the spatio-temporal advances in crime data, we expect a continued uptake of flexible Bayesian hierarchical modelling, a greater inclusion of spatial-temporal point pattern analysis, and shift toward prospective (forecast) modelling over small areas (e.g., blocks).
A Review of the Statistical and Quantitative Methods Used to Study Alcohol-Attributable Crime
Fitterer, Jessica L.; Nelson, Trisalyn A.
2015-01-01
Modelling the relationship between alcohol consumption and crime generates new knowledge for crime prevention strategies. Advances in data, particularly data with spatial and temporal attributes, have led to a growing suite of applied methods for modelling. In support of alcohol and crime researchers we synthesized and critiqued existing methods of spatially and quantitatively modelling the effects of alcohol exposure on crime to aid method selection, and identify new opportunities for analysis strategies. We searched the alcohol-crime literature from 1950 to January 2014. Analyses that statistically evaluated or mapped the association between alcohol and crime were included. For modelling purposes, crime data were most often derived from generalized police reports, aggregated to large spatial units such as census tracts or postal codes, and standardized by residential population data. Sixty-eight of the 90 selected studies included geospatial data of which 48 used cross-sectional datasets. Regression was the prominent modelling choice (n = 78) though dependent on data many variations existed. There are opportunities to improve information for alcohol-attributable crime prevention by using alternative population data to standardize crime rates, sourcing crime information from non-traditional platforms (social media), increasing the number of panel studies, and conducting analysis at the local level (neighbourhood, block, or point). Due to the spatio-temporal advances in crime data, we expect a continued uptake of flexible Bayesian hierarchical modelling, a greater inclusion of spatial-temporal point pattern analysis, and shift toward prospective (forecast) modelling over small areas (e.g., blocks). PMID:26418016
Cerebral capillary velocimetry based on temporal OCT speckle contrast.
Choi, Woo June; Li, Yuandong; Qin, Wan; Wang, Ruikang K
2016-12-01
We propose a new optical coherence tomography (OCT) based method to measure red blood cell (RBC) velocities of single capillaries in the cortex of rodent brain. This OCT capillary velocimetry exploits quantitative laser speckle contrast analysis to estimate speckle decorrelation rate from the measured temporal OCT speckle signals, which is related to microcirculatory flow velocity. We hypothesize that OCT signal due to sub-surface capillary flow can be treated as the speckle signal in the single scattering regime and thus its time scale of speckle fluctuations can be subjected to single scattering laser speckle contrast analysis to derive characteristic decorrelation time. To validate this hypothesis, OCT measurements are conducted on a single capillary flow phantom operating at preset velocities, in which M-mode B-frames are acquired using a high-speed OCT system. Analysis is then performed on the time-varying OCT signals extracted at the capillary flow, exhibiting a typical inverse relationship between the estimated decorrelation time and absolute RBC velocity, which is then used to deduce the capillary velocities. We apply the method to in vivo measurements of mouse brain, demonstrating that the proposed approach provides additional useful information in the quantitative assessment of capillary hemodynamics, complementary to that of OCT angiography.
Quantitative analysis of facial paralysis using local binary patterns in biomedical videos.
He, Shu; Soraghan, John J; O'Reilly, Brian F; Xing, Dongshan
2009-07-01
Facial paralysis is the loss of voluntary muscle movement of one side of the face. A quantitative, objective, and reliable assessment system would be an invaluable tool for clinicians treating patients with this condition. This paper presents a novel framework for objective measurement of facial paralysis. The motion information in the horizontal and vertical directions and the appearance features on the apex frames are extracted based on the local binary patterns (LBPs) on the temporal-spatial domain in each facial region. These features are temporally and spatially enhanced by the application of novel block processing schemes. A multiresolution extension of uniform LBP is proposed to efficiently combine the micropatterns and large-scale patterns into a feature vector. The symmetry of facial movements is measured by the resistor-average distance (RAD) between LBP features extracted from the two sides of the face. Support vector machine is applied to provide quantitative evaluation of facial paralysis based on the House-Brackmann (H-B) scale. The proposed method is validated by experiments with 197 subject videos, which demonstrates its accuracy and efficiency.
NASA Astrophysics Data System (ADS)
Karakatsanis, Nicolas A.; Rahmim, Arman
2014-03-01
Graphical analysis is employed in the research setting to provide quantitative estimation of PET tracer kinetics from dynamic images at a single bed. Recently, we proposed a multi-bed dynamic acquisition framework enabling clinically feasible whole-body parametric PET imaging by employing post-reconstruction parameter estimation. In addition, by incorporating linear Patlak modeling within the system matrix, we enabled direct 4D reconstruction in order to effectively circumvent noise amplification in dynamic whole-body imaging. However, direct 4D Patlak reconstruction exhibits a relatively slow convergence due to the presence of non-sparse spatial correlations in temporal kinetic analysis. In addition, the standard Patlak model does not account for reversible uptake, thus underestimating the influx rate Ki. We have developed a novel whole-body PET parametric reconstruction framework in the STIR platform, a widely employed open-source reconstruction toolkit, a) enabling accelerated convergence of direct 4D multi-bed reconstruction, by employing a nested algorithm to decouple the temporal parameter estimation from the spatial image update process, and b) enhancing the quantitative performance particularly in regions with reversible uptake, by pursuing a non-linear generalized Patlak 4D nested reconstruction algorithm. A set of published kinetic parameters and the XCAT phantom were employed for the simulation of dynamic multi-bed acquisitions. Quantitative analysis on the Ki images demonstrated considerable acceleration in the convergence of the nested 4D whole-body Patlak algorithm. In addition, our simulated and patient whole-body data in the postreconstruction domain indicated the quantitative benefits of our extended generalized Patlak 4D nested reconstruction for tumor diagnosis and treatment response monitoring.
Development of a Computer-Based Visualised Quantitative Learning System for Playing Violin Vibrato
ERIC Educational Resources Information Center
Ho, Tracy Kwei-Liang; Lin, Huann-shyang; Chen, Ching-Kong; Tsai, Jih-Long
2015-01-01
Traditional methods of teaching music are largely subjective, with the lack of objectivity being particularly challenging for violin students learning vibrato because of the existence of conflicting theories. By using a computer-based analysis method, this study found that maintaining temporal coincidence between the intensity peak and the target…
Trends in fluorescence imaging and related techniques to unravel biological information.
Haustein, Elke; Schwille, Petra
2007-09-01
Optical microscopy is among the most powerful tools that the physical sciences have ever provided biology. It is indispensable for basic lab work, as well as for cutting edge research, as the visual monitoring of life processes still belongs to the most compelling evidences for a multitude of biomedical applications. Along with the rapid development of new probes and methods for the analysis of laser induced fluorescence, optical microscopy over past years experienced a vast increase of both new techniques and novel combinations of established methods to study biological processes with unprecedented spatial and temporal precision. On the one hand, major technical advances have significantly improved spatial resolution. On the other hand, life scientists are moving toward three- and even four-dimensional cell biology and biophysics involving time as a crucial coordinate to quantitatively understand living specimen. Monitoring the whole cell or tissue in real time, rather than producing snap-shot-like two-dimensional projections, will enable more physiological and, thus, more clinically relevant experiments, whereas an increase in temporal resolution facilitates monitoring fast nonperiodic processes as well as the quantitative analysis of characteristic dynamics.
Trends in fluorescence imaging and related techniques to unravel biological information
Haustein, Elke; Schwille, Petra
2007-01-01
Optical microscopy is among the most powerful tools that the physical sciences have ever provided biology. It is indispensable for basic lab work, as well as for cutting edge research, as the visual monitoring of life processes still belongs to the most compelling evidences for a multitude of biomedical applications. Along with the rapid development of new probes and methods for the analysis of laser induced fluorescence, optical microscopy over past years experienced a vast increase of both new techniques and novel combinations of established methods to study biological processes with unprecedented spatial and temporal precision. On the one hand, major technical advances have significantly improved spatial resolution. On the other hand, life scientists are moving toward three- and even four-dimensional cell biology and biophysics involving time as a crucial coordinate to quantitatively understand living specimen. Monitoring the whole cell or tissue in real time, rather than producing snap-shot-like two-dimensional projections, will enable more physiological and, thus, more clinically relevant experiments, whereas an increase in temporal resolution facilitates monitoring fast nonperiodic processes as well as the quantitative analysis of characteristic dynamics. PMID:19404444
NASA Astrophysics Data System (ADS)
Tsuchiya, Yuichiro; Kodera, Yoshie; Tanaka, Rie; Sanada, Shigeru
2007-03-01
Early detection and treatment of lung cancer is one of the most effective means to reduce cancer mortality; chest X-ray radiography has been widely used as a screening examination or health checkup. The new examination method and the development of computer analysis system allow obtaining respiratory kinetics by the use of flat panel detector (FPD), which is the expanded method of chest X-ray radiography. Through such changes functional evaluation of respiratory kinetics in chest has become available. Its introduction into clinical practice is expected in the future. In this study, we developed the computer analysis algorithm for the purpose of detecting lung nodules and evaluating quantitative kinetics. Breathing chest radiograph obtained by modified FPD was converted into 4 static images drawing the feature, by sequential temporal subtraction processing, morphologic enhancement processing, kinetic visualization processing, and lung region detection processing, after the breath synchronization process utilizing the diaphragmatic analysis of the vector movement. The artificial neural network used to analyze the density patterns detected the true nodules by analyzing these static images, and drew their kinetic tracks. For the algorithm performance and the evaluation of clinical effectiveness with 7 normal patients and simulated nodules, both showed sufficient detecting capability and kinetic imaging function without statistically significant difference. Our technique can quantitatively evaluate the kinetic range of nodules, and is effective in detecting a nodule on a breathing chest radiograph. Moreover, the application of this technique is expected to extend computer-aided diagnosis systems and facilitate the development of an automatic planning system for radiation therapy.
Hattori, Naoya; Yabe, Ichiro; Hirata, Kenji; Shiga, Tohru; Sakushima, Ken; Tsuji-Akimoto, Sachiko; Sasaki, Hidenao; Tamaki, Nagara
2013-05-01
Cognitive impairment is a representative neuropsychiatric presentation that accompanies Parkinson disease (PD). The purpose of this study was to localize the cerebral regions associated with cognitive impairment in patients with PD using quantitative SPECT. Thirty-two patients with PD (mean [SD] age, 75 [8] years; 25 women; Hoehn-Yahr scores from 2 to 5) underwent quantitative brain SPECT using 123I iodoamphetamine. Parametric images of regional cerebral blood flow (rCBF) were spatially normalized to the standard brain atlas. First, voxel-by-voxel comparison between patients with PD with versus without cognitive impairment was performed to visualize overall trend of regional differences. Next, the individual quantitative rCBF values were extracted in representative cortical regions using a standard region-of-interest template to compare the quantitative rCBF values. Patients with cognitive impairment showed trends of lower rCBF in the left frontal and temporal cortices as well as in the bilateral medial frontal and anterior cingulate cortices in the voxel-by-voxel analyses. Region-of-interest-based analysis demonstrated significantly lower rCBF in the bilateral anterior cingulate cortices (right, 25.8 [5.5] vs 28.9 [5.7] mL per 100 g/min, P < 0.05; left, 25.8 [5.8] vs 29.1 [5.7] mL per 100 g/min, P < 0.05) associated with cognitive impairment. Patients with cognitive impairment showed lower rCBF in the left frontal and temporal cortices as well as in the bilateral medial frontal and anterior cingulate cortices. The results suggested dysexecutive function as an underlining mechanism of cognitive impairment in patients with PD.
A study of the temporal robustness of the growing global container-shipping network
Wang, Nuo; Wu, Nuan; Dong, Ling-ling; Yan, Hua-kun; Wu, Di
2016-01-01
Whether they thrive as they grow must be determined for all constantly expanding networks. However, few studies have focused on this important network feature or the development of quantitative analytical methods. Given the formation and growth of the global container-shipping network, we proposed the concept of network temporal robustness and quantitative method. As an example, we collected container liner companies’ data at two time points (2004 and 2014) and built a shipping network with ports as nodes and routes as links. We thus obtained a quantitative value of the temporal robustness. The temporal robustness is a significant network property because, for the first time, we can clearly recognize that the shipping network has become more vulnerable to damage over the last decade: When the node failure scale reached 50% of the entire network, the temporal robustness was approximately −0.51% for random errors and −12.63% for intentional attacks. The proposed concept and analytical method described in this paper are significant for other network studies. PMID:27713549
Szabo, J.K.; Fedriani, E.M.; Segovia-Gonzalez, M. M.; Astheimer, L.B.; Hooper, M.J.
2010-01-01
This paper introduces a new technique in ecology to analyze spatial and temporal variability in environmental variables. By using simple statistics, we explore the relations between abiotic and biotic variables that influence animal distributions. However, spatial and temporal variability in rainfall, a key variable in ecological studies, can cause difficulties to any basic model including time evolution. The study was of a landscape scale (three million square kilometers in eastern Australia), mainly over the period of 19982004. We simultaneously considered qualitative spatial (soil and habitat types) and quantitative temporal (rainfall) variables in a Geographical Information System environment. In addition to some techniques commonly used in ecology, we applied a new method, Functional Principal Component Analysis, which proved to be very suitable for this case, as it explained more than 97% of the total variance of the rainfall data, providing us with substitute variables that are easier to manage and are even able to explain rainfall patterns. The main variable came from a habitat classification that showed strong correlations with rainfall values and soil types. ?? 2010 World Scientific Publishing Company.
The attractor dimension of solar decimetric radio pulsations
NASA Technical Reports Server (NTRS)
Kurths, J.; Benz, A. O.; Aschwanden, M. J.
1991-01-01
The temporal characteristics of decimetric pulsations and related radio emissions during solar flares are analyzed using statistical methods recently developed for nonlinear dynamic systems. The results of the analysis is consistent with earlier reports on low-dimensional attractors of such events and yield a quantitative description of their temporal characteristics and hidden order. The estimated dimensions of typical decimetric pulsations are generally in the range of 3.0 + or - 0.5. Quasi-periodic oscillations and sudden reductions may have dimensions as low as 2. Pulsations of decimetric type IV continua have typically a dimension of about 4.
Relating interesting quantitative time series patterns with text events and text features
NASA Astrophysics Data System (ADS)
Wanner, Franz; Schreck, Tobias; Jentner, Wolfgang; Sharalieva, Lyubka; Keim, Daniel A.
2013-12-01
In many application areas, the key to successful data analysis is the integrated analysis of heterogeneous data. One example is the financial domain, where time-dependent and highly frequent quantitative data (e.g., trading volume and price information) and textual data (e.g., economic and political news reports) need to be considered jointly. Data analysis tools need to support an integrated analysis, which allows studying the relationships between textual news documents and quantitative properties of the stock market price series. In this paper, we describe a workflow and tool that allows a flexible formation of hypotheses about text features and their combinations, which reflect quantitative phenomena observed in stock data. To support such an analysis, we combine the analysis steps of frequent quantitative and text-oriented data using an existing a-priori method. First, based on heuristics we extract interesting intervals and patterns in large time series data. The visual analysis supports the analyst in exploring parameter combinations and their results. The identified time series patterns are then input for the second analysis step, in which all identified intervals of interest are analyzed for frequent patterns co-occurring with financial news. An a-priori method supports the discovery of such sequential temporal patterns. Then, various text features like the degree of sentence nesting, noun phrase complexity, the vocabulary richness, etc. are extracted from the news to obtain meta patterns. Meta patterns are defined by a specific combination of text features which significantly differ from the text features of the remaining news data. Our approach combines a portfolio of visualization and analysis techniques, including time-, cluster- and sequence visualization and analysis functionality. We provide two case studies, showing the effectiveness of our combined quantitative and textual analysis work flow. The workflow can also be generalized to other application domains such as data analysis of smart grids, cyber physical systems or the security of critical infrastructure, where the data consists of a combination of quantitative and textual time series data.
Time-dynamics of the two-color emission from vertical-external-cavity surface-emitting lasers
NASA Astrophysics Data System (ADS)
Chernikov, A.; Wichmann, M.; Shakfa, M. K.; Scheller, M.; Moloney, J. V.; Koch, S. W.; Koch, M.
2012-01-01
The temporal stability of a two-color vertical-external-cavity surface-emitting laser is studied using single-shot streak-camera measurements. The collected data is evaluated via quantitative statistical analysis schemes. Dynamically stable and unstable regions for the two-color operation are identified and the dependence on the pump conditions is analyzed.
ERIC Educational Resources Information Center
Nobile, Maria; Perego, Paolo; Piccinini, Luigi; Mani, Elisa; Rossi, Agnese; Bellina, Monica; Molteni, Massimo
2011-01-01
In order to increase the knowledge of locomotor disturbances in children with autism, and of the mechanism underlying them, the objective of this exploratory study was to reliably and quantitatively evaluate linear gait parameters (spatio-temporal and kinematic parameters), upper body kinematic parameters, walk orientation and smoothness using an…
Quantitative assessment of human exposures and health effects due to air pollution involve detailed characterization of impacts of air quality on exposure and dose. A key challenge is to integrate these three components on a consistent spatial and temporal basis taking into acco...
ERIC Educational Resources Information Center
Greenwood, Charles R., Ed.; And Others
This monograph contains five papers that discuss an eco-behavioral approach to psychology, special education, and applied behavior analysis. The papers point out the advantages of assessing ecological factors (such as natural stimuli and special education procedures) in a quantitative fashion and in a temporal relationship with student behavior.…
Quantitative EEG After Brain Stimulation and Cognitive Training in Alzheimer Disease.
Gandelman-Marton, Revital; Aichenbaum, Sergio; Dobronevsky, Evgenya; Khaigrekht, Michael; Rabey, Jose M
2017-01-01
Medications are the currently accepted symptomatic treatment of Alzheimer disease (AD), but their impact on delaying the progression of cognitive deficits and functional impairment is limited. The authors aimed to explore long-term electrophysiological effects of repetitive transcranial magnetic stimulation interlaced with cognitive training on quantitative electroencephalography (EEG) in patients with AD. Quantitative EEG was assessed on non-repetitive transcranial magnetic stimulation interlaced with cognitive training treatment days before treatment and after each treatment phase in seven patients with mild AD. After 4.5 months (54 sessions) of treatment, a significant increase of delta activity over the temporal region was found compared with pretreatment values. Nonsignificant increases of the log EEG power were found for alpha band over the frontal and temporal regions, beta band over the frontal region, theta band over the frontal, temporal, and parieto-occipital regions, and delta band over the frontal and parieto-occipital regions. Nonsignificant decreases were found for alpha over the parieto-occipital region, and for beta over the temporal and parieto-occipital regions. A positive correlation was found between log alpha power over the frontal and temporal regions at 6 weeks and Mini-Mental State Examination (MMSE) scores at 6 weeks and 4.5 months, and between log alpha power over the parieto-occipital regions and MMSE scores at 6 weeks. A negative correlation was found between log alpha power over the frontal and temporal regions at 6 weeks and baseline Alzheimer's Disease Assessment Scale-cognitive subscale scores. Repetitive transcranial magnetic stimulation interlaced with cognitive training has long-term effects on quantitative EEG in patients with mild AD. Further research on the quantitative EEG long-term effects of transcranial magnetic stimulation interlaced with cognitive training is required to confirm the authors' data.
Quantitative contrast-enhanced mammography for contrast medium kinetics studies
NASA Astrophysics Data System (ADS)
Arvanitis, C. D.; Speller, R.
2009-10-01
Quantitative contrast-enhanced mammography, based on a dual-energy approach, aims to extract quantitative and temporal information of the tumour enhancement after administration of iodinated vascular contrast media. Simulations using analytical expressions and optimization of critical parameters essential for the development of quantitative contrast-enhanced mammography are presented. The procedure has been experimentally evaluated using a tissue-equivalent phantom and an amorphous silicon active matrix flat panel imager. The x-ray beams were produced by a tungsten target tube and spectrally shaped using readily available materials. Measurement of iodine projected thickness in mg cm-2 has been performed. The effect of beam hardening does not introduce nonlinearities in the measurement of iodine projected thickness for values of thicknesses found in clinical investigations. However, scattered radiation introduces significant deviations from slope equal to unity when compared with the actual iodine projected thickness. Scatter correction before the analysis of the dual-energy images provides accurate iodine projected thickness measurements. At 10% of the exposure used in clinical mammography, signal-to-noise ratios in excess of 5 were achieved for iodine projected thicknesses less than 3 mg cm-2 within a 4 cm thick phantom. For the extraction of temporal information, a limited number of low-dose images were used with the phantom incorporating a flow of iodinated contrast medium. The results suggest that spatial and temporal information of iodinated contrast media can be used to indirectly measure the tumour microvessel density and determine its uptake and washout from breast tumours. The proposed method can significantly improve tumour detection in dense breasts. Its application to perform in situ x-ray biopsy and assessment of the oncolytic effect of anticancer agents is foreseeable.
Temporal efficiency evaluation and small-worldness characterization in temporal networks
Dai, Zhongxiang; Chen, Yu; Li, Junhua; Fam, Johnson; Bezerianos, Anastasios; Sun, Yu
2016-01-01
Numerous real-world systems can be modeled as networks. To date, most network studies have been conducted assuming stationary network characteristics. Many systems, however, undergo topological changes over time. Temporal networks, which incorporate time into conventional network models, are therefore more accurate representations of such dynamic systems. Here, we introduce a novel generalized analytical framework for temporal networks, which enables 1) robust evaluation of the efficiency of temporal information exchange using two new network metrics and 2) quantitative inspection of the temporal small-worldness. Specifically, we define new robust temporal network efficiency measures by incorporating the time dependency of temporal distance. We propose a temporal regular network model, and based on this plus the redefined temporal efficiency metrics and widely used temporal random network models, we introduce a quantitative approach for identifying temporal small-world architectures (featuring high temporal network efficiency both globally and locally). In addition, within this framework, we can uncover network-specific dynamic structures. Applications to brain networks, international trade networks, and social networks reveal prominent temporal small-world properties with distinct dynamic network structures. We believe that the framework can provide further insight into dynamic changes in the network topology of various real-world systems and significantly promote research on temporal networks. PMID:27682314
Temporal efficiency evaluation and small-worldness characterization in temporal networks
NASA Astrophysics Data System (ADS)
Dai, Zhongxiang; Chen, Yu; Li, Junhua; Fam, Johnson; Bezerianos, Anastasios; Sun, Yu
2016-09-01
Numerous real-world systems can be modeled as networks. To date, most network studies have been conducted assuming stationary network characteristics. Many systems, however, undergo topological changes over time. Temporal networks, which incorporate time into conventional network models, are therefore more accurate representations of such dynamic systems. Here, we introduce a novel generalized analytical framework for temporal networks, which enables 1) robust evaluation of the efficiency of temporal information exchange using two new network metrics and 2) quantitative inspection of the temporal small-worldness. Specifically, we define new robust temporal network efficiency measures by incorporating the time dependency of temporal distance. We propose a temporal regular network model, and based on this plus the redefined temporal efficiency metrics and widely used temporal random network models, we introduce a quantitative approach for identifying temporal small-world architectures (featuring high temporal network efficiency both globally and locally). In addition, within this framework, we can uncover network-specific dynamic structures. Applications to brain networks, international trade networks, and social networks reveal prominent temporal small-world properties with distinct dynamic network structures. We believe that the framework can provide further insight into dynamic changes in the network topology of various real-world systems and significantly promote research on temporal networks.
Method for a quantitative investigation of the frozen flow hypothesis
Schock; Spillar
2000-09-01
We present a technique to test the frozen flow hypothesis quantitatively, using data from wave-front sensors such as those found in adaptive optics systems. Detailed treatments of the theoretical background of the method and of the error analysis are presented. Analyzing data from the 1.5-m and 3.5-m telescopes at the Starfire Optical Range, we find that the frozen flow hypothesis is an accurate description of the temporal development of atmospheric turbulence on time scales of the order of 1-10 ms but that significant deviations from the frozen flow behavior are present for longer time scales.
Linearised dynamics and non-modal instability analysis of an impinging under-expanded supersonic jet
NASA Astrophysics Data System (ADS)
Karami, Shahram; Stegeman, Paul C.; Theofilis, Vassilis; Schmid, Peter J.; Soria, Julio
2018-04-01
Non-modal instability analysis of the shear layer near the nozzle of a supersonic under-expanded impinging jet is studied. The shear layer instability is considered to be one of the main components of the feedback loop in supersonic jets. The feedback loop is observed in instantaneous visualisations of the density field where it is noted that acoustic waves scattered by the nozzle lip internalise as shear layer instabilities. A modal analysis describes the asymptotic limit of the instability disturbances and fails to capture short-time responses. Therefore, a non-modal analysis which allows the quantitative description of the short-time amplification or decay of a disturbance is performed by means of a local far-field pressure pulse. An impulse response analysis is performed which allows a wide range of frequencies to be excited. The temporal and spatial growths of the disturbances in the shear layer near the nozzle are studied by decomposing the response using dynamic mode decomposition and Hilbert transform analysis. The short-time response shows that disturbances with non-dimensionalised temporal frequencies in the range of 1 to 4 have positive growth rates in the shear layer. The Hilbert transform analysis shows that high non-dimensionalised temporal frequencies (>4) are dampened immediately, whereas low non-dimensionalised temporal frequencies (<1) are neutral. Both dynamic mode decomposition and Hilbert transform analysis show that spatial frequencies between 1 and 3 have positive spatial growth rates. Finally, the envelope of the streamwise velocity disturbances reveals the presence of a convective instability.
Casarrubea, M; Faulisi, F; Caternicchia, F; Santangelo, A; Di Giovanni, G; Benigno, A; Magnusson, M S; Crescimanno, G
2016-08-01
We have analyzed the temporal patterns of behaviour of male rats of the Wistar and DA/Han strains on the central platform of the elevated plus maze. The ethogram encompassed 10 behavioural elements. Durations, frequencies and latencies showed quantitative differences as to walking and sniffing activities. Wistar rats displayed significantly lower latency and significantly higher durations and frequencies of walking activities. DA/Han rats showed a significant increase of sniffing duration. In addition, DA/Han rats showed a significantly higher amount of time spent in the central platform. Multivariate T-pattern analysis revealed differences in the temporal organization of behaviour of the two rat strains. DA/Han rats showed (a) higher behavioural complexity and variability and (b) a significantly higher mean number of T-patterns than Wistar rats. Taken together, T-pattern analysis of behaviour in the centre of the elevated plus maze can noticeably improve the detection of subtle features of anxiety related behaviour. We suggest that T-pattern analysis could be used as sensitive tool to test the action of anxiolytic and anxiogenic manipulations. Copyright © 2015 Elsevier B.V. All rights reserved.
Fan, Yaxin; Zhu, Xinyan; Guo, Wei; Guo, Tao
2018-01-01
The analysis of traffic collisions is essential for urban safety and the sustainable development of the urban environment. Reducing the road traffic injuries and the financial losses caused by collisions is the most important goal of traffic management. In addition, traffic collisions are a major cause of traffic congestion, which is a serious issue that affects everyone in the society. Therefore, traffic collision analysis is essential for all parties, including drivers, pedestrians, and traffic officers, to understand the road risks at a finer spatio-temporal scale. However, traffic collisions in the urban context are dynamic and complex. Thus, it is important to detect how the collision hotspots evolve over time through spatio-temporal clustering analysis. In addition, traffic collisions are not isolated events in space. The characteristics of the traffic collisions and their surrounding locations also present an influence of the clusters. This work tries to explore the spatio-temporal clustering patterns of traffic collisions by combining a set of network-constrained methods. These methods were tested using the traffic collision data in Jianghan District of Wuhan, China. The results demonstrated that these methods offer different perspectives of the spatio-temporal clustering patterns. The weighted network kernel density estimation provides an intuitive way to incorporate attribute information. The network cross K-function shows that there are varying clustering tendencies between traffic collisions and different types of POIs. The proposed network differential Local Moran’s I and network local indicators of mobility association provide straightforward and quantitative measures of the hotspot changes. This case study shows that these methods could help researchers, practitioners, and policy-makers to better understand the spatio-temporal clustering patterns of traffic collisions. PMID:29672551
High-Resolution Strain Analysis of the Human Heart with Fast-DENSE
NASA Astrophysics Data System (ADS)
Aletras, Anthony H.; Balaban, Robert S.; Wen, Han
1999-09-01
Single breath-hold displacement data from the human heart were acquired with fast-DENSE (fast displacement encoding with stimulated echoes) during systolic contraction at 2.5 × 2.5 mm in-plane resolution. Encoding strengths of 0.86-1.60 mm/π were utilized in order to extend the dynamic range of the phase measurements and minimize effects of physiologic and instrument noise. The noise level in strain measurements for both contraction and dilation corresponded to a strain value of 2.8%. In the human heart, strain analysis has sufficient resolution to reveal transmural variation across the left ventricular wall. Data processing required minimal user intervention and provided a rapid quantitative feedback. The intrinsic temporal integration of fast-DENSE achieves high accuracy at the expense of temporal resolution.
NASA Astrophysics Data System (ADS)
Dong, Yang; He, Honghui; He, Chao; Ma, Hui
2017-02-01
Mueller matrix polarimetry is a powerful tool for detecting microscopic structures, therefore can be used to monitor physiological changes of tissue samples. Meanwhile, spectral features of scattered light can also provide abundant microstructural information of tissues. In this paper, we take the 2D multispectral backscattering Mueller matrix images of bovine skeletal muscle tissues, and analyze their temporal variation behavior using multispectral Mueller matrix parameters. The 2D images of the Mueller matrix elements are reduced to the multispectral frequency distribution histograms (mFDHs) to reveal the dominant structural features of the muscle samples more clearly. For quantitative analysis, the multispectral Mueller matrix transformation (MMT) parameters are calculated to characterize the microstructural variations during the rigor mortis and proteolysis processes of the skeletal muscle tissue samples. The experimental results indicate that the multispectral MMT parameters can be used to judge different physiological stages for bovine skeletal muscle tissues in 24 hours, and combining with the multispectral technique, the Mueller matrix polarimetry and FDH analysis can monitor the microstructural variation features of skeletal muscle samples. The techniques may be used for quick assessment and quantitative monitoring of meat qualities in food industry.
Ahmad, Azeem; Dubey, Vishesh; Singh, Gyanendra; Singh, Veena; Mehta, Dalip Singh
2016-04-01
In this Letter, we demonstrate quantitative phase imaging of biological samples, such as human red blood cells (RBCs) and onion cells using narrow temporal frequency and wide angular frequency spectrum light source. This type of light source was synthesized by the combined effect of spatial, angular, and temporal diversity of speckle reduction technique. The importance of using low spatial and high temporal coherence light source over the broad band and narrow band light source is that it does not require any dispersion compensation mechanism for biological samples. Further, it avoids the formation of speckle or spurious fringes which arises while using narrow band light source.
Feng, Ziang; Gao, Zhan; Zhang, Xiaoqiong; Wang, Shengjia; Yang, Dong; Yuan, Hao; Qin, Jie
2015-09-01
Digital shearing speckle pattern interferometry (DSSPI) has been recognized as a practical tool in testing strain. The DSSPI system which is based on temporal analysis is attractive because of its ability to measure strain dynamically. In this paper, such a DSSPI system with Wollaston prism has been built. The principles and system arrangement are described and the preliminary experimental result of the displacement-derivative test of an aluminum plate is shown with the wavelet transformation method and the Fourier transformation method. The simulations have been conducted with the finite element method. The comparison of the results shows that quantitative measurement of displacement-derivative has been realized.
Harnessing cell-to-cell variations to probe bacterial structure and biophysics
NASA Astrophysics Data System (ADS)
Cass, Julie A.
Advances in microscopy and biotechnology have given us novel insights into cellular biology and physics. While bacteria were long considered to be relatively unstructured, the development of fluorescence microscopy techniques, and spatially and temporally resolved high-throughput quantitative studies, have uncovered that the bacterial cell is highly organized, and its structure rigorously maintained. In this thesis I will describe our gateTool software, designed to harness cell-to-cell variations to probe bacterial structure, and discuss two exciting aspects of structure that we have employed gateTool to investigate: (i) chromosome organization and the cellular mechanisms for controlling DNA dynamics, and (ii) the study of cell wall synthesis, and how the genes in the synthesis pathway impact cellular shape. In the first project, we develop a spatial and temporal mapping of cell-cycle-dependent chromosomal organization, and use this quantitative map to discover that chromosomal loci segregate from midcell with universal dynamics. In the second project, I describe preliminary time- lapse and snapshot imaging analysis suggesting phentoypical coherence across peptidoglycan synthesis pathways.
Jin, Cheng; Feng, Jianjiang; Wang, Lei; Yu, Heng; Liu, Jiang; Lu, Jiwen; Zhou, Jie
2018-05-01
In this paper, we present an approach for left atrial appendage (LAA) multi-phase fast segmentation and quantitative assisted diagnosis of atrial fibrillation (AF) based on 4D-CT data. We take full advantage of the temporal dimension information to segment the living, flailed LAA based on a parametric max-flow method and graph-cut approach to build 3-D model of each phase. To assist the diagnosis of AF, we calculate the volumes of 3-D models, and then generate a "volume-phase" curve to calculate the important dynamic metrics: ejection fraction, filling flux, and emptying flux of the LAA's blood by volume. This approach demonstrates more precise results than the conventional approaches that calculate metrics by area, and allows for the quick analysis of LAA-volume pattern changes of in a cardiac cycle. It may also provide insight into the individual differences in the lesions of the LAA. Furthermore, we apply support vector machines (SVMs) to achieve a quantitative auto-diagnosis of the AF by exploiting seven features from volume change ratios of the LAA, and perform multivariate logistic regression analysis for the risk of LAA thrombosis. The 100 cases utilized in this research were taken from the Philips 256-iCT. The experimental results demonstrate that our approach can construct the 3-D LAA geometries robustly compared to manual annotations, and reasonably infer that the LAA undergoes filling, emptying and re-filling, re-emptying in a cardiac cycle. This research provides a potential for exploring various physiological functions of the LAA and quantitatively estimating the risk of stroke in patients with AF. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kuznetsova, G D; Gabova, A V; Lazarev, I E; Obukhov, Iu V; Obukhov, K Iu; Morozov, A A; Kulikov, M A; Shchatskova, A B; Vasil'eva, O N; Tomilovskaia, E S
2015-01-01
Frequency-temporal electroencephalogram (EEG) reactions to hypogravity were studied in 7 male subjects at the age of 20 to 27 years. The experiment was conducted using dry immersion (DI) as the best known method of simulating the space microgravity effects on the Earth. This hypogravity model reproduces hypokinesia, i.e. the weight-bearing and mechanic load removal, which is typical of microgravity. EEG was recorded by Neuroscan-2 (Compumedics) before the experiment (baseline data) and at the end of day 2 in DI. Comparative analysis of the EEG frequency-temporal structure was performed with the use of 2 techniques: Fourier transform and modified wavelet analysis. The Fourier transform elicited that after 2 days in DI the main shifts occurring to the EEG spectral composition are a decline in the alpha power and a slight though reliable growth of theta power. Similar frequency shifts were detected in the same records analyzed using the wavelet transform. According to wavelet analysis, during DI shifts in EEG frequency spectrum are accompanied by frequency desorganization of the EEG dominant rhythm and gross impairment of total stability of the electrical activity with time. Wavelet transform provides an opportunity to quantify changes in the frequency-temporal structure of the electrical activity of the brain. Quantitative evidence of frequency desorganization and temporal instability of EEG wavelet spectrograms may be the key to the understanding of mechanisms that drive functional disorders in the brain cortex in the conditions of hypogravity.
A method for analyzing temporal patterns of variability of a time series from Poincare plots.
Fishman, Mikkel; Jacono, Frank J; Park, Soojin; Jamasebi, Reza; Thungtong, Anurak; Loparo, Kenneth A; Dick, Thomas E
2012-07-01
The Poincaré plot is a popular two-dimensional, time series analysis tool because of its intuitive display of dynamic system behavior. Poincaré plots have been used to visualize heart rate and respiratory pattern variabilities. However, conventional quantitative analysis relies primarily on statistical measurements of the cumulative distribution of points, making it difficult to interpret irregular or complex plots. Moreover, the plots are constructed to reflect highly correlated regions of the time series, reducing the amount of nonlinear information that is presented and thereby hiding potentially relevant features. We propose temporal Poincaré variability (TPV), a novel analysis methodology that uses standard techniques to quantify the temporal distribution of points and to detect nonlinear sources responsible for physiological variability. In addition, the analysis is applied across multiple time delays, yielding a richer insight into system dynamics than the traditional circle return plot. The method is applied to data sets of R-R intervals and to synthetic point process data extracted from the Lorenz time series. The results demonstrate that TPV complements the traditional analysis and can be applied more generally, including Poincaré plots with multiple clusters, and more consistently than the conventional measures and can address questions regarding potential structure underlying the variability of a data set.
Falcon: A Temporal Visual Analysis System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steed, Chad A.
2016-09-05
Flexible visible exploration of long, high-resolution time series from multiple sensor streams is a challenge in several domains. Falcon is a visual analytics approach that helps researchers acquire a deep understanding of patterns in log and imagery data. Falcon allows users to interactively explore large, time-oriented data sets from multiple linked perspectives. Falcon provides overviews, detailed views, and unique segmented time series visualizations with multiple levels of detail. These capabilities are applicable to the analysis of any quantitative time series.
Temporal assessment of radiomic features on clinical mammography in a high-risk population
NASA Astrophysics Data System (ADS)
Mendel, Kayla R.; Li, Hui; Lan, Li; Chan, Chun-Wai; King, Lauren M.; Tayob, Nabihah; Whitman, Gary; El-Zein, Randa; Bedrosian, Isabelle; Giger, Maryellen L.
2018-02-01
Extraction of high-dimensional quantitative data from medical images has become necessary in disease risk assessment, diagnostics and prognostics. Radiomic workflows for mammography typically involve a single medical image for each patient although medical images may exist for multiple imaging exams, especially in screening protocols. Our study takes advantage of the availability of mammograms acquired over multiple years for the prediction of cancer onset. This study included 841 images from 328 patients who developed subsequent mammographic abnormalities, which were confirmed as either cancer (n=173) or non-cancer (n=155) through diagnostic core needle biopsy. Quantitative radiomic analysis was conducted on antecedent FFDMs acquired a year or more prior to diagnostic biopsy. Analysis was limited to the breast contralateral to that in which the abnormality arose. Novel metrics were used to identify robust radiomic features. The most robust features were evaluated in the task of predicting future malignancies on a subset of 72 subjects (23 cancer cases and 49 non-cancer controls) with mammograms over multiple years. Using linear discriminant analysis, the robust radiomic features were merged into predictive signatures by: (i) using features from only the most recent contralateral mammogram, (ii) change in feature values between mammograms, and (iii) ratio of feature values over time, yielding AUCs of 0.57 (SE=0.07), 0.63 (SE=0.06), and 0.66 (SE=0.06), respectively. The AUCs for temporal radiomics (ratio) statistically differed from chance, suggesting that changes in radiomics over time may be critical for risk assessment. Overall, we found that our two-stage process of robustness assessment followed by performance evaluation served well in our investigation on the role of temporal radiomics in risk assessment.
Wang, Quan; Wu, Xianhua; Zhao, Bin; Qin, Jie; Peng, Tingchun
2015-01-01
Understanding spatial and temporal variations in river water quality and quantitatively evaluating the trend of changes are important in order to study and efficiently manage water resources. In this study, an analysis of Water Pollution Index (WPI), Daniel Trend Test, Cluster Analysis and Discriminant Analysis are applied as an integrated approach to quantitatively explore the spatial and temporal variations and the latent sources of water pollution in the Shanchong River basin, Northwest Basin of Lake Fuxian, China. We group all field surveys into 2 clusters (dry season and rainy season). Moreover, 14 sampling sites have been grouped into 3 clusters for the rainy season (highly polluted, moderately polluted and less polluted sites) and 2 clusters for the dry season (highly polluted and less polluted sites) based on their similarities and the level of pollution during the two seasons. The results show that the main trend of pollution was aggravated during the transition from the dry to the rainy season. The Water Pollution Index of Total Nitrogen is the highest of all pollution parameters, whereas the Chemical Oxygen Demand (Chromium) is the lowest. Our results also show that the main sources of pollution are farming activities alongside the Shanchong River, soil erosion and fish culture at Shanchong River reservoir area and domestic sewage from scattered rural residential area. Our results suggest that strategies to prevent water pollutionat the Shanchong River basin need to focus on non-point pollution control by employing appropriate fertilizer formulas in farming, and take the measures of soil and water conservation at Shanchong reservoir area, and purifying sewage from scattered villages.
Wang, Quan; Wu, Xianhua; Zhao, Bin; Qin, Jie; Peng, Tingchun
2015-01-01
Understanding spatial and temporal variations in river water quality and quantitatively evaluating the trend of changes are important in order to study and efficiently manage water resources. In this study, an analysis of Water Pollution Index (WPI), Daniel Trend Test, Cluster Analysis and Discriminant Analysis are applied as an integrated approach to quantitatively explore the spatial and temporal variations and the latent sources of water pollution in the Shanchong River basin, Northwest Basin of Lake Fuxian, China. We group all field surveys into 2 clusters (dry season and rainy season). Moreover, 14 sampling sites have been grouped into 3 clusters for the rainy season (highly polluted, moderately polluted and less polluted sites) and 2 clusters for the dry season (highly polluted and less polluted sites) based on their similarities and the level of pollution during the two seasons. The results show that the main trend of pollution was aggravated during the transition from the dry to the rainy season. The Water Pollution Index of Total Nitrogen is the highest of all pollution parameters, whereas the Chemical Oxygen Demand (Chromium) is the lowest. Our results also show that the main sources of pollution are farming activities alongside the Shanchong River, soil erosion and fish culture at Shanchong River reservoir area and domestic sewage from scattered rural residential area. Our results suggest that strategies to prevent water pollutionat the Shanchong River basin need to focus on non-point pollution control by employing appropriate fertilizer formulas in farming, and take the measures of soil and water conservation at Shanchong reservoir area, and purifying sewage from scattered villages. PMID:25837673
Continuous EEG monitoring in the intensive care unit.
Scheuer, Mark L
2002-01-01
Continuous EEG (CEEG) monitoring allows uninterrupted assessment of cerebral cortical activity with good spatial resolution and excellent temporal resolution. Thus, this procedure provides a means of constantly assessing brain function in critically ill obtunded and comatose patients. Recent advances in digital EEG acquisition, storage, quantitative analysis, and transmission have made CEEG monitoring in the intensive care unit (ICU) technically feasible and useful. This article summarizes the indications and methodology of CEEG monitoring in the ICU, and discusses the role of some quantitative EEG analysis techniques in near real-time remote observation of CEEG recordings. Clinical examples of CEEG use, including monitoring of status epilepticus, assessment of ongoing therapy for treatment of seizures in critically ill patients, and monitoring for cerebral ischemia, are presented. Areas requiring further development of CEEG monitoring techniques and indications are discussed.
Lorido, Laura; Estévez, Mario; Ventanas, Sonia
2014-01-01
Although dynamic sensory techniques such as time-intensity (TI) have been applied to certain meat products, existing knowledge regarding the temporal sensory perception of muscle foods is still limited. The objective of the present study was to apply TI to the flavour and texture perception of three different Iberian meat products: liver pâté, dry-cured sausages ("salchichon") and dry-cured loin. Moreover, the advantages of using dynamic versus static sensory techniques were explored by subjecting the same products to a quantitative descriptive analysis (QDA). TI was a suitable technique to assess the impact of composition and structure of the three meat products on flavour and texture perception from a dynamic perspective. TI parameters extracted from the TI-curves and related to temporal perception enabled the detection of clear differences in sensory temporal perception between the meat products and provided additional insight on sensory perception compared to the conventional static sensory technique (QDA). © 2013.
Pfammatter, Sibylle; Bonneil, Eric; Thibault, Pierre
2016-12-02
Quantitative proteomics using isobaric reagent tandem mass tags (TMT) or isobaric tags for relative and absolute quantitation (iTRAQ) provides a convenient approach to compare changes in protein abundance across multiple samples. However, the analysis of complex protein digests by isobaric labeling can be undermined by the relative large proportion of co-selected peptide ions that lead to distorted reporter ion ratios and affect the accuracy and precision of quantitative measurements. Here, we investigated the use of high-field asymmetric waveform ion mobility spectrometry (FAIMS) in proteomic experiments to reduce sample complexity and improve protein quantification using TMT isobaric labeling. LC-FAIMS-MS/MS analyses of human and yeast protein digests led to significant reductions in interfering ions, which increased the number of quantifiable peptides by up to 68% while significantly improving the accuracy of abundance measurements compared to that with conventional LC-MS/MS. The improvement in quantitative measurements using FAIMS is further demonstrated for the temporal profiling of protein abundance of HEK293 cells following heat shock treatment.
Zhang, Yang; Shen, Jing; Li, Yu
2018-01-01
Assessing and quantifying atmospheric vulnerability is a key issue in urban environmental protection and management. This paper integrated the Analytical hierarchy process (AHP), fuzzy synthesis evaluation and Geographic Information System (GIS) spatial analysis into an Exposure-Sensitivity-Adaptive capacity (ESA) framework to quantitatively assess atmospheric environment vulnerability in the Beijing-Tianjin-Hebei (BTH) region with spatial and temporal comparisons. The elaboration of the relationships between atmospheric environment vulnerability and indices of exposure, sensitivity, and adaptive capacity supports enable analysis of the atmospheric environment vulnerability. Our findings indicate that the atmospheric environment vulnerability of 13 cities in the BTH region exhibits obvious spatial heterogeneity, which is caused by regional diversity in exposure, sensitivity, and adaptive capacity indices. The results of atmospheric environment vulnerability assessment and the cause analysis can provide guidance to pick out key control regions and recognize vulnerable indicators for study sites. The framework developed in this paper can also be replicated at different spatial and temporal scales using context-specific datasets to support environmental management. PMID:29342852
Zhang, Yang; Shen, Jing; Li, Yu
2018-01-13
Assessing and quantifying atmospheric vulnerability is a key issue in urban environmental protection and management. This paper integrated the Analytical hierarchy process (AHP), fuzzy synthesis evaluation and Geographic Information System (GIS) spatial analysis into an Exposure-Sensitivity-Adaptive capacity (ESA) framework to quantitatively assess atmospheric environment vulnerability in the Beijing-Tianjin-Hebei (BTH) region with spatial and temporal comparisons. The elaboration of the relationships between atmospheric environment vulnerability and indices of exposure, sensitivity, and adaptive capacity supports enable analysis of the atmospheric environment vulnerability. Our findings indicate that the atmospheric environment vulnerability of 13 cities in the BTH region exhibits obvious spatial heterogeneity, which is caused by regional diversity in exposure, sensitivity, and adaptive capacity indices. The results of atmospheric environment vulnerability assessment and the cause analysis can provide guidance to pick out key control regions and recognize vulnerable indicators for study sites. The framework developed in this paper can also be replicated at different spatial and temporal scales using context-specific datasets to support environmental management.
Prasad, Nikhil K; Coleman Wood, Krista A; Spinner, Robert J; Kaufman, Kenton R
The assessment of neuromuscular recovery after peripheral nerve surgery has typically been a subjective physical examination. The purpose of this report was to assess the value of gait analysis in documenting recovery quantitatively. A professional football player underwent gait analysis before and after surgery for a peroneal intraneural ganglion cyst causing a left-sided foot drop. Surface electromyography (SEMG) recording from surface electrodes and motion parameter acquisition from a computerized motion capture system consisting of 10 infrared cameras were performed simultaneously. A comparison between SEMG recordings before and after surgery showed a progression from disorganized activation in the left tibialis anterior and peroneus longus muscles to temporally appropriate activation for the phase of the gait cycle. Kinematic analysis of ankle motion planes showed resolution from a complete foot drop preoperatively to phase-appropriate dorsiflexion postoperatively. Gait analysis with dynamic SEMG and motion capture complements physical examination when assessing postoperative recovery in athletes.
Ratiometric spectral imaging for fast tumor detection and chemotherapy monitoring in vivo
Hwang, Jae Youn; Gross, Zeev; Gray, Harry B.; Medina-Kauwe, Lali K.; Farkas, Daniel L.
2011-01-01
We report a novel in vivo spectral imaging approach to cancer detection and chemotherapy assessment. We describe and characterize a ratiometric spectral imaging and analysis method and evaluate its performance for tumor detection and delineation by quantitatively monitoring the specific accumulation of targeted gallium corrole (HerGa) into HER2-positive (HER2 +) breast tumors. HerGa temporal accumulation in nude mice bearing HER2 + breast tumors was monitored comparatively by a. this new ratiometric imaging and analysis method; b. established (reflectance and fluorescence) spectral imaging; c. more commonly used fluorescence intensity imaging. We also tested the feasibility of HerGa imaging in vivo using the ratiometric spectral imaging method for tumor detection and delineation. Our results show that the new method not only provides better quantitative information than typical spectral imaging, but also better specificity than standard fluorescence intensity imaging, thus allowing enhanced in vivo outlining of tumors and dynamic, quantitative monitoring of targeted chemotherapy agent accumulation into them. PMID:21721808
Single Case Method in Psychology: How to Improve as a Possible Methodology in Quantitative Research.
Krause-Kjær, Elisa; Nedergaard, Jensine I
2015-09-01
Awareness of including Single-Case Method (SCM), as a possible methodology in quantitative research in the field of psychology, has been argued as useful, e.g., by Hurtado-Parrado and López-López (IPBS: Integrative Psychological & Behavioral Science, 49:2, 2015). Their article introduces a historical and conceptual analysis of SCMs and proposes changing the, often prevailing, tendency of neglecting SCM as an alternative to Null Hypothesis Significance Testing (NHST). This article contributes by putting a new light on SCM as an equally important methodology in psychology. The intention of the present article is to elaborate this point of view further by discussing one of the most fundamental requirements as well as main characteristics of SCM regarding temporality. In this respect that; "…performance is assessed continuously over time and under different conditions…" Hurtado-Parrado and López-López (IPBS: Integrative Psychological & Behavioral Science, 49:2, 2015). Defining principles when it comes to particular units of analysis, both synchronic (spatial) and diachronic (temporal) elements should be incorporated. In this article misunderstandings of the SCM will be adduced, and further the temporality will be described in order to propose how the SCM could have a more severe usability in psychological research. It is further discussed how to implement SCM in psychological methodology. It is suggested that one solution might be to reconsider the notion of time in psychological research to cover more than a variable of control and in this respect also include the notion of time as an irreversible unity within life.
NASA Astrophysics Data System (ADS)
Kalchenko, Vyacheslav; Molodij, Guillaume; Kuznetsov, Yuri; Smolyakov, Yuri; Israeli, David; Meglinski, Igor; Harmelin, Alon
2016-03-01
The use of fluorescence imaging of vascular permeability becomes a golden standard for assessing the inflammation process during experimental immune response in vivo. The use of the optical fluorescence imaging provides a very useful and simple tool to reach this purpose. The motivation comes from the necessity of a robust and simple quantification and data presentation of inflammation based on a vascular permeability. Changes of the fluorescent intensity, as a function of time is a widely accepted method to assess the vascular permeability during inflammation related to the immune response. In the present study we propose to bring a new dimension by applying a more sophisticated approach to the analysis of vascular reaction by using a quantitative analysis based on methods derived from astronomical observations, in particular by using a space-time Fourier filtering analysis followed by a polynomial orthogonal modes decomposition. We demonstrate that temporal evolution of the fluorescent intensity observed at certain pixels correlates quantitatively to the blood flow circulation at normal conditions. The approach allows to determine the regions of permeability and monitor both the fast kinetics related to the contrast material distribution in the circulatory system and slow kinetics associated with extravasation of the contrast material. Thus, we introduce a simple and convenient method for fast quantitative visualization of the leakage related to the inflammatory (immune) reaction in vivo.
NASA Astrophysics Data System (ADS)
Cai, J.; Yin, H.; Varis, O.
2016-12-01
China faces a complicated puzzle in balancing the country's trade-offs among water and energy security, economic competitiveness, and environmental sustainability. It is therefore of prime importance to comprehend China's water and energy security under the effect of its economic structural changes. Analyses on this entity still remain few and far between though, and a comprehensive picture has not been available that would help understand China's recent development in economic structure as well as its spatial features and links to water and energy security, and policy-making. Consequently, we addressed this information gap by performing an integrated and quantitative spatio-temporal analysis of the impacts of China's industrial transition on water use intensity (WUI) and energy-related carbon intensity (ERCI). Those two factors serve as the national targets of its water and energy security. Our results for the first time quantitatively demonstrated the following significant and novel information: 1) the primary industry (PI) appeared to dominate the WUI although its relative share decreased, and PI's WUI continued to be far higher than that of secondary and tertiary industries (SI and TI); 2) SI dominated in affecting the total ERCI at both national and provincial scales; 3) the total WUI and ERCI had a significant positive correlation.
He, Jingzhen; Zu, Yuliang; Wang, Qing; Ma, Xiangxing
2014-12-01
The purpose of this study was to determine the performance of low-dose computed tomography (CT) scanning with integrated circuit (IC) detector in defining fine structures of temporal bone in children by comparing with the conventional detector. The study was performed with the approval of our institutional review board and the patients' anonymity was maintained. A total of 86 children<3 years of age underwent imaging of temporal bone with low-dose CT (80 kV/150 mAs) equipped with either IC detector or conventional discrete circuit (DC) detector. The image noise was measured for quantitative analysis. Thirty-five structures of temporal bone were further assessed and rated by 2 radiologists for qualitative analysis. κ Statistics were performed to determine the agreement reached between the 2 radiologists on each image. Mann-Whitney U test was used to determine the difference in image quality between the 2 detector systems. Objective analysis showed that the image noise was significantly lower (P<0.001) with the IC detector than with the DC detector. The κ values for qualitative assessment of the 35 fine anatomical structures revealed high interobserver agreement. The delineation for 30 of the 35 landmarks (86%) with the IC detector was superior to that with the conventional DC detector (P<0.05) although there were no differences in the delineation of the remaining 5 structures (P>0.05). The low-dose CT images acquired with the IC detector provide better depiction of fine osseous structures of temporal bone than that with the conventional DC detector.
Predictive value of EEG in postanoxic encephalopathy: A quantitative model-based approach.
Efthymiou, Evdokia; Renzel, Roland; Baumann, Christian R; Poryazova, Rositsa; Imbach, Lukas L
2017-10-01
The majority of comatose patients after cardiac arrest do not regain consciousness due to severe postanoxic encephalopathy. Early and accurate outcome prediction is therefore essential in determining further therapeutic interventions. The electroencephalogram is a standardized and commonly available tool used to estimate prognosis in postanoxic patients. The identification of pathological EEG patterns with poor prognosis relies however primarily on visual EEG scoring by experts. We introduced a model-based approach of EEG analysis (state space model) that allows for an objective and quantitative description of spectral EEG variability. We retrospectively analyzed standard EEG recordings in 83 comatose patients after cardiac arrest between 2005 and 2013 in the intensive care unit of the University Hospital Zürich. Neurological outcome was assessed one month after cardiac arrest using the Cerebral Performance Category. For a dynamic and quantitative EEG analysis, we implemented a model-based approach (state space analysis) to quantify EEG background variability independent from visual scoring of EEG epochs. Spectral variability was compared between groups and correlated with clinical outcome parameters and visual EEG patterns. Quantitative assessment of spectral EEG variability (state space velocity) revealed significant differences between patients with poor and good outcome after cardiac arrest: Lower mean velocity in temporal electrodes (T4 and T5) was significantly associated with poor prognostic outcome (p<0.005) and correlated with independently identified visual EEG patterns such as generalized periodic discharges (p<0.02). Receiver operating characteristic (ROC) analysis confirmed the predictive value of lower state space velocity for poor clinical outcome after cardiac arrest (AUC 80.8, 70% sensitivity, 15% false positive rate). Model-based quantitative EEG analysis (state space analysis) provides a novel, complementary marker for prognosis in postanoxic encephalopathy. Copyright © 2017 Elsevier B.V. All rights reserved.
Dependence of quantitative accuracy of CT perfusion imaging on system parameters
NASA Astrophysics Data System (ADS)
Li, Ke; Chen, Guang-Hong
2017-03-01
Deconvolution is a popular method to calculate parametric perfusion parameters from four dimensional CT perfusion (CTP) source images. During the deconvolution process, the four dimensional space is squeezed into three-dimensional space by removing the temporal dimension, and a prior knowledge is often used to suppress noise associated with the process. These additional complexities confound the understanding about deconvolution-based CTP imaging system and how its quantitative accuracy depends on parameters and sub-operations involved in the image formation process. Meanwhile, there has been a strong clinical need in answering this question, as physicians often rely heavily on the quantitative values of perfusion parameters to make diagnostic decisions, particularly during an emergent clinical situation (e.g. diagnosis of acute ischemic stroke). The purpose of this work was to develop a theoretical framework that quantitatively relates the quantification accuracy of parametric perfusion parameters with CTP acquisition and post-processing parameters. This goal was achieved with the help of a cascaded systems analysis for deconvolution-based CTP imaging systems. Based on the cascaded systems analysis, the quantitative relationship between regularization strength, source image noise, arterial input function, and the quantification accuracy of perfusion parameters was established. The theory could potentially be used to guide developments of CTP imaging technology for better quantification accuracy and lower radiation dose.
Manteca, Angel; Sanchez, Jesus; Jung, Hye R.; Schwämmle, Veit; Jensen, Ole N.
2010-01-01
Streptomyces species produce many clinically important secondary metabolites, including antibiotics and antitumorals. They have a complex developmental cycle, including programmed cell death phenomena, that makes this bacterium a multicellular prokaryotic model. There are two differentiated mycelial stages: an early compartmentalized vegetative mycelium (first mycelium) and a multinucleated reproductive mycelium (second mycelium) arising after programmed cell death processes. In the present study, we made a detailed proteomics analysis of the distinct developmental stages of solid confluent Streptomyces coelicolor cultures using iTRAQ (isobaric tags for relative and absolute quantitation) labeling and LC-MS/MS. A new experimental approach was developed to obtain homogeneous samples at each developmental stage (temporal protein analysis) and also to obtain membrane and cytosolic protein fractions (spatial protein analysis). A total of 345 proteins were quantified in two biological replicates. Comparative bioinformatics analyses revealed the switch from primary to secondary metabolism between the initial compartmentalized mycelium and the multinucleated hyphae. PMID:20224110
Common and distinct neural correlates of personal and vicarious reward: A quantitative meta-analysis
Morelli, Sylvia A.; Sacchet, Matthew D.; Zaki, Jamil
2015-01-01
Individuals experience reward not only when directly receiving positive outcomes (e.g., food or money), but also when observing others receive such outcomes. This latter phenomenon, known as vicarious reward, is a perennial topic of interest among psychologists and economists. More recently, neuroscientists have begun exploring the neuroanatomy underlying vicarious reward. Here we present a quantitative whole-brain meta-analysis of this emerging literature. We identified 25 functional neuroimaging studies that included contrasts between vicarious reward and a neutral control, and subjected these contrasts to an activation likelihood estimate (ALE) meta-analysis. This analysis revealed a consistent pattern of activation across studies, spanning structures typically associated with the computation of value (especially ventromedial prefrontal cortex) and mentalizing (including dorsomedial prefrontal cortex and superior temporal sulcus). We further quantitatively compared this activation pattern to activation foci from a previous meta-analysis of personal reward. Conjunction analyses yielded overlapping VMPFC activity in response to personal and vicarious reward. Contrast analyses identified preferential engagement of the nucleus accumbens in response to personal as compared to vicarious reward, and in mentalizing-related structures in response to vicarious as compared to personal reward. These data shed light on the common and unique components of the reward that individuals experience directly and through their social connections. PMID:25554428
Koenig, Laura L.; Lucero, Jorge C.; Perlman, Elizabeth
2008-01-01
This study investigates token-to-token variability in fricative production of 5 year olds, 10 year olds, and adults. Previous studies have reported higher intrasubject variability in children than adults, in speech as well as nonspeech tasks, but authors have disagreed on the causes and implications of this finding. The current work assessed the characteristics of age-related variability across articulators (larynx and tongue) as well as in temporal versus spatial domains. Oral airflow signals, which reflect changes in both laryngeal and supralaryngeal apertures, were obtained for multiple productions of ∕h s z∕. The data were processed using functional data analysis, which provides a means of obtaining relatively independent indices of amplitude and temporal (phasing) variability. Consistent with past work, both temporal and amplitude variabilities were higher in children than adults, but the temporal indices were generally less adultlike than the amplitude indices for both groups of children. Quantitative and qualitative analyses showed considerable speaker- and consonant-specific patterns of variability. The data indicate that variability in ∕s∕ may represent laryngeal as well as supralaryngeal control and further that a simple random noise factor, higher in children than in adults, is insufficient to explain developmental differences in speech production variability. PMID:19045800
NASA Astrophysics Data System (ADS)
Ghosh, Somnath
2018-05-01
Co-existence and interplay between mesoscopic light dynamics with singular optics in spatially random but temporally coherent disordered waveguide lattices is reported. Two CW light beams of 1.55 micron operating wavelength are launched as inputs to 1D waveguide lattices with controllable weak disorder in refractive index profile. Direct observation of phase singularities in the speckle pattern along the length is numerically demonstrated. Quantitative analysis of onset of such singular behavior and diffusive wave propagation is analyzed for the first time.
Optofluidic time-stretch quantitative phase microscopy.
Guo, Baoshan; Lei, Cheng; Wu, Yi; Kobayashi, Hirofumi; Ito, Takuro; Yalikun, Yaxiaer; Lee, Sangwook; Isozaki, Akihiro; Li, Ming; Jiang, Yiyue; Yasumoto, Atsushi; Di Carlo, Dino; Tanaka, Yo; Yatomi, Yutaka; Ozeki, Yasuyuki; Goda, Keisuke
2018-03-01
Innovations in optical microscopy have opened new windows onto scientific research, industrial quality control, and medical practice over the last few decades. One of such innovations is optofluidic time-stretch quantitative phase microscopy - an emerging method for high-throughput quantitative phase imaging that builds on the interference between temporally stretched signal and reference pulses by using dispersive properties of light in both spatial and temporal domains in an interferometric configuration on a microfluidic platform. It achieves the continuous acquisition of both intensity and phase images with a high throughput of more than 10,000 particles or cells per second by overcoming speed limitations that exist in conventional quantitative phase imaging methods. Applications enabled by such capabilities are versatile and include characterization of cancer cells and microalgal cultures. In this paper, we review the principles and applications of optofluidic time-stretch quantitative phase microscopy and discuss its future perspective. Copyright © 2017 Elsevier Inc. All rights reserved.
A meta-analysis on progressive atrophy in intractable temporal lobe epilepsy
Caciagli, Lorenzo; Bernasconi, Andrea; Wiebe, Samuel; Koepp, Matthias J.; Bernasconi, Neda
2017-01-01
Objective: It remains unclear whether drug-resistant temporal lobe epilepsy (TLE) is associated with cumulative brain damage, with no expert consensus and no quantitative syntheses of the available evidence. Methods: We conducted a systematic review and meta-analysis of MRI studies on progressive atrophy, searching PubMed and Ovid MEDLINE databases for cross-sectional and longitudinal quantitative MRI studies on drug-resistant TLE. Results: We screened 2,976 records and assessed eligibility of 248 full-text articles. Forty-two articles met the inclusion criteria for quantitative evaluation. We observed a predominance of cross-sectional studies, use of different clinical indices of progression, and high heterogeneity in age-control procedures. Meta-analysis of 18/1 cross-sectional/longitudinal studies on hippocampal atrophy (n = 979 patients) yielded a pooled effect size of r = −0.42 for ipsilateral atrophy related to epilepsy duration (95% confidence interval [CI] −0.51 to −0.32; p < 0.0001; I2 = 65.22%) and r = −0.35 related to seizure frequency (95% CI −0.47 to −0.22; p < 0.0001; I2 = 61.97%). Sensitivity analyses did not change the results. Narrative synthesis of 25/3 cross-sectional/longitudinal studies on whole brain atrophy (n = 1,504 patients) indicated that >80% of articles reported duration-related progression in extratemporal cortical and subcortical regions. Detailed analysis of study design features yielded low to moderate levels of evidence for progressive atrophy across studies, mainly due to dominance of cross-sectional over longitudinal investigations, use of diverse measures of seizure estimates, and absence of consistent age control procedures. Conclusions: While the neuroimaging literature is overall suggestive of progressive atrophy in drug-resistant TLE, published studies have employed rather weak designs to directly demonstrate it. Longitudinal multicohort studies are needed to unequivocally differentiate aging from disease progression. PMID:28687722
Time perspective and environmental engagement: a meta-analysis.
Milfont, Taciano L; Wilson, Jessie; Diniz, Pollyane
2012-01-01
Environmental issues entail both a social conflict (private vs. public interests) and a temporal conflict (short- vs. long-term interests). This paper focuses on the role temporal concerns play in influencing environmental engagement by quantitatively integrating results of studies that assessed the associations between time perspective and proenvironmental attitudes and behaviors. The meta-analysis included a total of 19 independent samples and 6,301 participants from seven countries (Australia, Brazil, Germany, Mexico, New Zealand, Norway, and the United States). Results showed that the associations between time perspective and proenvironmental behaviors were higher than those for proenvironmental attitudes. Supporting predictions, the associations between future time perspective and proenvironmental behaviors were strong and nontrivial compared to those for the combined past-present time perspective. The findings indicate that future time perspective seems to play an important role in influencing individuals' attitudes and behaviors towards the environment. Implications of the findings for theory and practice are discussed.
Unfreezing the behaviour of two orb spiders.
Zschokke, S; Vollrath, F
1995-12-01
Spider's webs reflect the builders behaviour pattern; yet there are aspects of the construction behaviour that cannot be "read" from the geometry of the finished web alone. Using computerised image analysis we developed an automatic surveillance method to track a spider's path during web-building. Thus we collected data on two orb-weaving spiders--the cribellate Uloborus walckenaerius and the ecribellate Araneus diadematus--for web geometry, movement pattern and time allocation. Representatives of these two species built webs of similar geometry but they used different movement patterns both spatially (which we describe qualitatively) and temporally (which we analyse quantitatively). Most importantly, temporal analysis showed that the two spiders differed significantly in some but not all web-building stages; and from this we deduce that Uloborus--unlike Araneus--was constrained by speed of silk production during the construction of its capture but not its auxiliary spiral.
NASA Astrophysics Data System (ADS)
Cao, An-ye; Dou, Lin-ming; Wang, Chang-bin; Yao, Xiao-xiao; Dong, Jing-yuan; Gu, Yu
2016-11-01
Identification of precursory characteristics is a key issue for rock burst prevention. The aim of this research is to provide a reference for assessing rock burst risk and determining potential rock burst risk areas in coal mining. In this work, the microseismic multidimensional information for the identification of rock bursts and spatial-temporal pre-warning was investigated in a specific coalface which suffered high rock burst risk in a mining area near a large residual coal pillar. Firstly, microseismicity evolution prior to a disastrous rock burst was qualitatively analysed, and the abnormal clustering of seismic sources, abnormal variations in daily total energy release, and event counts can be regarded as precursors to rock burst. Secondly, passive tomographic imaging has been used to locate high seismic activity zones and assess rock burst hazard when the coalface passes through residual pillar areas. The results show that high-velocity or velocity anomaly regions correlated well with strong seismic activities in future mining periods and that passive tomography has the potential to describe, both quantitatively and periodically, hazardous regions and assess rock burst risk. Finally, the bursting strain energy index was further used for short-term spatial-temporal pre-warning of rock bursts. The temporal sequence curve and spatial contour nephograms indicate that the status of the danger and the specific hazardous zones, and levels of rock burst risk can be quantitatively and rapidly analysed in short time and in space. The multidimensional precursory characteristic identification of rock bursts, including qualitative analysis, intermediate and short-time quantitative predictions, can guide the choice of measures implemented to control rock bursts in the field, and provides a new approach to monitor and forecast rock bursts in space and time.
Sheelakumari, R; Kesavadas, C; Varghese, T; Sreedharan, R M; Thomas, B; Verghese, J; Mathuranath, P S
2017-10-01
Brain iron deposition has been implicated as a major culprit in the pathophysiology of neurodegeneration. However, the quantitative assessment of iron in behavioral variant frontotemporal dementia and primary progressive aphasia brains has not been performed, to our knowledge. The aim of our study was to investigate the characteristic iron levels in the frontotemporal dementia subtypes using susceptibility-weighted imaging and report its association with behavioral profiles. This prospective study included 46 patients with frontotemporal dementia (34 with behavioral variant frontotemporal dementia and 12 with primary progressive aphasia) and 34 age-matched healthy controls. We performed behavioral and neuropsychological assessment in all the subjects. The quantitative iron load was determined on SWI in the superior frontal gyrus and temporal pole, precentral gyrus, basal ganglia, anterior cingulate, frontal white matter, head and body of the hippocampus, red nucleus, substantia nigra, insula, and dentate nucleus. A linear regression analysis was performed to correlate iron content and behavioral scores in patients. The iron content of the bilateral superior frontal and temporal gyri, anterior cingulate, putamen, right hemispheric precentral gyrus, insula, hippocampus, and red nucleus was higher in patients with behavioral variant frontotemporal dementia than in controls. Patients with primary progressive aphasia had increased iron levels in the left superior temporal gyrus. In addition, right superior frontal gyrus iron deposition discriminated behavioral variant frontotemporal dementia from primary progressive aphasia. A strong positive association was found between apathy and iron content in the superior frontal gyrus and disinhibition and iron content in the putamen. Quantitative assessment of iron deposition with SWI may serve as a new biomarker in the diagnostic work-up of frontotemporal dementia and help distinguish frontotemporal dementia subtypes. © 2017 by American Journal of Neuroradiology.
Automatic Detection of Decadal Shoreline Change on Northern Coastal of Gresik, East Java - Indonesia
NASA Astrophysics Data System (ADS)
Fuad, M. A. Z.; A, M. Fais D.
2017-12-01
The Coastal zone is a dynamic region that has high environmental and economic values. This present research focuses on the analyzing the rate of shoreline change using multi-temporal Landsat Imagery and Digital Shoreline Analysis Systems (DSAS) along the northern part of Gresik coastal area, East Java Indonesia. Five village were selected for analysis; Campurejo, Dalegan, Prupuh, Ngemboh, and Banyuurip. Erosion and Accretion were observed and detected on Multi-temporal satellite Images along the area of interest from 1972 - 2016. Landsat Images were radiometrically and geometrically corrected before using for analysis. Coastline delineation for each Landsat image was performed by MNDWI method before digitized for quantitative shoreline change analysis. DSAS was performed for quantitative analysis of Net Shoreline Movement (NSM) and End Point Rate (EPR). The results indicate that in the study area accretion and abrasion was occurred, but overall abrasion was dominated than accretion. The remarkable shoreline changes were observed in the entire region. The highest abrasion area was occurred in Ngemboh village. From 1972 to 2016, coastline was retreat 242.56 meter to the land and the rate of movement was -5.54m/yr. In contrast, Campurejo area was relatively stable due to the introduction of manmade structure, i.e. Jetty and Groin. The Shoreline movement and the rate of movement in this area were -6.11m and -0.12 m/yr respectively. The research represents an important step in understanding the dynamics of coastal area in this area. By identification and analysis of coastline evolution, the stake holder could perform a scenario for reducing the risk of coastal erosion and minimize the social and economic lost.
NASA Astrophysics Data System (ADS)
Li, Baojuan; Liu, Jian; Liu, Yang; Lu, Hong-Bing; Yin, Hong
2013-03-01
The majority of studies on posttraumatic stress disorder (PTSD) so far have focused on delineating patterns of activations during cognitive processes. Recently, more and more researches have started to investigate functional connectivity in PTSD subjects using BOLD-fMRI. Functional connectivity analysis has been demonstrated as a powerful approach to identify biomarkers of different brain diseases. This study aimed to detect resting-state functional connectivity abnormities in patients with PTSD using arterial spin labeling (ASL) fMRI. As a completely non-invasive technique, ASL allows quantitative estimates of cerebral blood flow (CBF). Compared with BOLD-fMRI, ASL fMRI has many advantages, including less low-frequency signal drifts, superior functional localization, etc. In the current study, ASL images were collected from 10 survivors in mining disaster with recent onset PTSD and 10 survivors without PTSD. Decreased regional CBF in the right middle temporal gyrus, lingual gyrus, and postcentral gyrus was detected in the PTSD patients. Seed-based resting-state functional connectivity analysis was performed using an area in the right middle temporal gyrus as region of interest. Compared with the non-PTSD group, the PTSD subjects demonstrated increased functional connectivity between the right middle temporal gyrus and the right superior temporal gyrus, the left middle temporal gyrus. Meanwhile, decreased functional connectivity between the right middle temporal gyrus and the right postcentral gyrus, the right superior parietal lobule was also found in the PTSD patients. This is the first study which investigated resting-state functional connectivity in PTSD using ASL images. The results may provide new insight into the neural substrates of PTSD.
Temporal Progression of Pneumonic Plague in Blood of Nonhuman Primate: A Transcriptomic Analysis
2016-03-22
urea nitrogen (BUN), Fig 2. Potentially activated and inhibited GoI-Time enriched pathways across the time course. The canonical pathways enriched by up...journal.pone.0151788 March 22, 2016 8 / 21 The quantitative measurements of Y. pestis present in the exposed animals’ blood and urine samples and...leukocytes (S5B Fig), formation of cellular inclusion bodies, synthesis of extracellular matrix, and myocardial and liver failure. Protein ubiquitination
Change Mechanisms of Schema-Centered Group Psychotherapy with Personality Disorder Patients
Tschacher, Wolfgang; Zorn, Peter; Ramseyer, Fabian
2012-01-01
Background This study addressed the temporal properties of personality disorders and their treatment by schema-centered group psychotherapy. It investigated the change mechanisms of psychotherapy using a novel method by which psychotherapy can be modeled explicitly in the temporal domain. Methodology and Findings 69 patients were assigned to a specific schema-centered behavioral group psychotherapy, 26 to social skills training as a control condition. The largest diagnostic subgroups were narcissistic and borderline personality disorder. Both treatments offered 30 group sessions of 100 min duration each, at a frequency of two sessions per week. Therapy process was described by components resulting from principal component analysis of patients' session-reports that were obtained after each session. These patient-assessed components were Clarification, Bond, Rejection, and Emotional Activation. The statistical approach focused on time-lagged associations of components using time-series panel analysis. This method provided a detailed quantitative representation of therapy process. It was found that Clarification played a core role in schema-centered psychotherapy, reducing rejection and regulating the emotion of patients. This was also a change mechanism linked to therapy outcome. Conclusions/Significance The introduced process-oriented methodology allowed to highlight the mechanisms by which psychotherapeutic treatment became effective. Additionally, process models depicted the actual patterns that differentiated specific diagnostic subgroups. Time-series analysis explores Granger causality, a non-experimental approximation of causality based on temporal sequences. This methodology, resting upon naturalistic data, can explicate mechanisms of action in psychotherapy research and illustrate the temporal patterns underlying personality disorders. PMID:22745811
Cranial base morphology and temporal bone pneumatization in Asian Homo erectus.
Balzeau, Antoine; Grimaud-Hervé, Dominique
2006-10-01
The external morphological features of the temporal bone are used frequently to determine taxonomic affinities of fossils of the genus Homo. Temporal bone pneumatization has been widely studied in great apes and in early hominids. However, this feature is rarely examined in the later hominids, particularly in Asian Homo erectus. We provide a comparative morphological and quantitative analysis of Asian Homo erectus from the sites of Ngandong, Sambungmacan, and Zhoukoudian, and of Neandertals and anatomically modern Homo sapiens in order to discuss causes and modalities of temporal bone pneumatization during hominid evolution. The evolution of temporal bone pneumatization in the genus Homo is more complex than previously described. Indeed, the Zhoukoudian fossils have a unique pattern of temporal bone pneumatization, whereas Ngandong and Sambungmacan fossils, as well as the Neandertals, more closely resemble the modern human pattern. Moreover, these Chinese fossils are characterized by a wide midvault and a relatively narrow occipital bone. Our results support the point of view that cell development does not play an active role in determining cranial base morphology. Instead, pneumatization is related to available space and to temporal bone morphology, and its development is related to correlated morphology and the relative disposition of the bones and cerebral lobes. Because variation in pneumatization is extensive within the same species, the phyletic implications of pneumatization are limited in the taxa considered here.
Estimates of spatial and temporal variation of energy crops biomass yields in the US
NASA Astrophysics Data System (ADS)
Song, Y.; Jain, A. K.; Landuyt, W.; Kheshgi, H. S.
2013-12-01
Perennial grasses, such as switchgrass (Panicum viragatum) and Miscanthus (Miscanthus x giganteus) have been identified for potential use as biomass feedstocks in the US. Current research on perennial grass biomass production has been evaluated on small-scale plots. However, the extent to which this potential can be realized at a landscape-scale will depend on the biophysical potential to grow these grasses with minimum possible amount of land that needs to be diverted from food to fuel production. To assess this potential three questions about the biomass yield for these grasses need to be answered: (1) how the yields for different grasses are varied spatially and temporally across the US; (2) whether the yields are temporally stable or not; and (3) how the spatial and temporal trends in yields of these perennial grasses are controlled by limiting factors, including soil type, water availability, climate, and crop varieties. To answer these questions, the growth processes of the perennial grasses are implemented into a coupled biophysical, physiological and biogeochemical model (ISAM). The model has been applied to quantitatively investigate the spatial and temporal trends in biomass yields for over the period 1980 -2010 in the US. The bioenergy grasses considered in this study include Miscanthus, Cave-in-Rock switchgrass and Alamo switchgrass. The effects of climate, soil and topography on the spatial and temporal trends of biomass yields are quantitatively analyzed using principal component analysis and GIS based geographically weighted regression. The spatial temporal trend results are evaluated further to classify each part of the US into four homogeneous potential yield zones: high and stable yield zone (HS), high but unstable yield zone (HU), low and stable yield zone (LS) and low but unstable yield zone (LU). Our preliminary results indicate that the yields for perennial grasses among different zones are strongly related to the different controlling factors. For example, the yield in HS zone is depended on soil and topography factors. However, the yields in HU zone are more controlled by climate factors, leading to a large uncertainty in yield potential of bioenergy grasses under future climate change.
Shi, Bin; Jiang, Jiping; Sivakumar, Bellie; Zheng, Yi; Wang, Peng
2018-05-01
Field monitoring strategy is critical for disaster preparedness and watershed emergency environmental management. However, development of such is also highly challenging. Despite the efforts and progress thus far, no definitive guidelines or solutions are available worldwide for quantitatively designing a monitoring network in response to river chemical spill incidents, except general rules based on administrative divisions or arbitrary interpolation on routine monitoring sections. To address this gap, a novel framework for spatial-temporal network design was proposed in this study. The framework combines contaminant transport modelling with discrete entropy theory and spectral analysis. The water quality model was applied to forecast the spatio-temporal distribution of contaminant after spills and then corresponding information transfer indexes (ITIs) and Fourier approximation periodic functions were estimated as critical measures for setting sampling locations and times. The results indicate that the framework can produce scientific preparedness plans of emergency monitoring based on scenario analysis of spill risks as well as rapid design as soon as the incident happened but not prepared. The framework was applied to a hypothetical spill case based on tracer experiment and a real nitrobenzene spill incident case to demonstrate its suitability and effectiveness. The newly-designed temporal-spatial monitoring network captured major pollution information at relatively low costs. It showed obvious benefits for follow-up early-warning and treatment as well as for aftermath recovery and assessment. The underlying drivers of ITIs as well as the limitations and uncertainty of the approach were analyzed based on the case studies. Comparison with existing monitoring network design approaches, management implications, and generalized applicability were also discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Hoebel, Louis J.
1993-01-01
The problem of plan generation (PG) and the problem of plan execution monitoring (PEM), including updating, queries, and resource-bounded replanning, have different reasoning and representation requirements. PEM requires the integration of qualitative and quantitative information. PEM is the receiving of data about the world in which a plan or agent is executing. The problem is to quickly determine the relevance of the data, the consistency of the data with respect to the expected effects, and if execution should continue. Only spatial and temporal aspects of the plan are addressed for relevance in this work. Current temporal reasoning systems are deficient in computational aspects or expressiveness. This work presents a hybrid qualitative and quantitative system that is fully expressive in its assertion language while offering certain computational efficiencies. In order to proceed, methods incorporating approximate reasoning using hierarchies, notions of locality, constraint expansion, and absolute parameters need be used and are shown to be useful for the anytime nature of PEM.
Neltner, Janna Hackett; Abner, Erin Lynn; Schmitt, Frederick A; Denison, Stephanie Kay; Anderson, Sonya; Patel, Ela; Nelson, Peter T
2012-12-01
Quantitative neuropathologic methods provide information that is important for both research and clinical applications. The technologic advancement of digital pathology and image analysis offers new solutions to enable valid quantification of pathologic severity that is reproducible between raters regardless of experience. Using an Aperio ScanScope XT and its accompanying image analysis software, we designed algorithms for quantitation of amyloid and tau pathologies on 65 β-amyloid (6F/3D antibody) and 48 phospho-tau (PHF-1)-immunostained sections of human temporal neocortex. Quantitative digital pathologic data were compared with manual pathology counts. There were excellent correlations between manually counted and digitally analyzed neuropathologic parameters (R² = 0.56-0.72). Data were highly reproducible among 3 participants with varying degrees of expertise in neuropathology (intraclass correlation coefficient values, >0.910). Digital quantification also provided additional parameters, including average plaque area, which shows statistically significant differences when samples are stratified according to apolipoprotein E allele status (average plaque area, 380.9 μm² in apolipoprotein E [Latin Small Letter Open E]4 carriers vs 274.4 μm² for noncarriers; p < 0.001). Thus, digital pathology offers a rigorous and reproducible method for quantifying Alzheimer disease neuropathologic changes and may provide additional insights into morphologic characteristics that were previously more challenging to assess because of technical limitations.
Shultzaberger, Ryan K.; Paddock, Mark L.; Katsuki, Takeo; Greenspan, Ralph J.; Golden, Susan S.
2016-01-01
The temporal measurement of a bioluminescent reporter has proven to be one of the most powerful tools for characterizing circadian rhythms in the cyanobacterium Synechococcus elongatus. Primarily, two approaches have been used to automate this process: (1) detection of cell culture bioluminescence in 96-well plates by a photomultiplier tube-based plate-cycling luminometer (TopCount Microplate Scintillation and Luminescence Counter, Perkin Elmer) and (2) detection of individual colony bioluminescence by iteratively rotating a Petri dish under a cooled CCD camera using a computer-controlled turntable. Each approach has distinct advantages. The TopCount provides a more quantitative measurement of bioluminescence, enabling the direct comparison of clock output levels among strains. The computer-controlled turntable approach has a shorter set-up time and greater throughput, making it a more powerful phenotypic screening tool. While the latter approach is extremely useful, only a few labs have been able to build such an apparatus because of technical hurdles involved in coordinating and controlling both the camera and the turntable, and in processing the resulting images. This protocol provides instructions on how to construct, use, and process data from a computer-controlled turntable to measure the temporal changes in bioluminescence of individual cyanobacterial colonies. Furthermore, we describe how to prepare samples for use with the TopCount to minimize experimental noise, and generate meaningful quantitative measurements of clock output levels for advanced analysis. PMID:25662451
Kalcsits, Lee A.
2016-01-01
Calcium and potassium are essential for cell signaling, ion homeostasis and cell wall strength in plants. Unlike nutrients such as nitrogen and potassium, calcium is immobile in plants. Localized calcium deficiencies result in agricultural losses; particularly for fleshy horticultural crops in which elemental imbalances in fruit contribute to the development of physiological disorders such as bitter pit in apple and cork spot in pear. Currently, elemental analysis of plant tissue is destructive, time consuming and costly. This is a limitation for nutrition studies related to calcium in plants. Handheld portable x-ray fluorescence (XRF) can be used to non-destructively measure elemental concentrations. The main objective was to test if handheld XRF can be used for semi-quantitative calcium and potassium analysis of in-tact apple and pear. Semi-quantitative measurements for individual fruit were compared to results obtained from traditional lab analysis. Here, we observed significant correlations between handheld XRF measurements of calcium and potassium and concentrations determined using MP-AES lab analysis. Pearson correlation coefficients ranged from 0.73 and 0.97. Furthermore, measuring apple and pear using handheld XRF identified spatial variability in calcium and potassium concentrations on the surface of individual fruit. This variability may contribute to the development of localized nutritional imbalances. This highlights the importance of understanding spatial and temporal variability in elemental concentrations in plant tissue. Handheld XRF is a relatively high-throughput approach for measuring calcium and potassium in plant tissue. It can be used in conjunction with traditional lab analysis to better understand spatial and temporal patterns in calcium and potassium uptake and distribution within an organ, plant or across the landscape. PMID:27092160
Pau, Massimiliano; Corona, Federica; Coghe, Giancarlo; Marongiu, Elisabetta; Loi, Andrea; Crisafulli, Antonio; Concu, Alberto; Galli, Manuela; Marrosu, Maria Giovanna; Cocco, Eleonora
2018-01-01
The purpose of this study is to quantitatively assess the effect of 6 months of supervised adapted physical activity (APA i.e. physical activity designed for people with special needs) on spatio-temporal and kinematic parameters of gait in persons with Multiple Sclerosis (pwMS). Twenty-two pwMS with Expanded Disability Status Scale scores ranging from 1.5 to 5.5 were randomly assigned either to the intervention group (APA, n = 11) or the control group (CG, n = 11). The former underwent 6 months of APA consisting of 3 weekly 60-min sessions of aerobic and strength training, while CG participants were engaged in no structured PA program. Gait patterns were analyzed before and after the training using three-dimensional gait analysis by calculating spatio-temporal parameters and concise indexes of gait kinematics (Gait Profile Score - GPS and Gait Variable Score - GVS) as well as dynamic Range of Motion (ROM) of hip, knee, and ankle joints. The training originated significant improvements in stride length, gait speed and cadence in the APA group, while GPS and GVS scores remained practically unchanged. A trend of improvement was also observed as regard the dynamic ROM of hip, knee, and ankle joints. No significant changes were observed in the CG for any of the parameters considered. The quantitative analysis of gait supplied mixed evidence about the actual impact of 6 months of APA on pwMS. Although some improvements have been observed, the substantial constancy of kinematic patterns of gait suggests that the full transferability of the administered training on the ambulation function may require more specific exercises. Implications for rehabilitation Adapted Physical Activity (APA) is effective in improving spatio-temporal parameters of gait, but not kinematics, in people with multiple sclerosis. Dynamic range of motion during gait is increased after APA. The full transferability of APA on the ambulation function may require specific exercises rather than generic lower limbs strength/flexibility training.
Xie, Dengfeng; Zhang, Jinshui; Zhu, Xiufang; Pan, Yaozhong; Liu, Hongli; Yuan, Zhoumiqi; Yun, Ya
2016-02-05
Remote sensing technology plays an important role in monitoring rapid changes of the Earth's surface. However, sensors that can simultaneously provide satellite images with both high temporal and spatial resolution haven't been designed yet. This paper proposes an improved spatial and temporal adaptive reflectance fusion model (STARFM) with the help of an Unmixing-based method (USTARFM) to generate the high spatial and temporal data needed for the study of heterogeneous areas. The results showed that the USTARFM had higher accuracy than STARFM methods in two aspects of analysis: individual bands and of heterogeneity analysis. Taking the predicted NIR band as an example, the correlation coefficients (r) for the USTARFM, STARFM and unmixing methods were 0.96, 0.95, 0.90, respectively (p-value < 0.001); Root Mean Square Error (RMSE) values were 0.0245, 0.0300, 0.0401, respectively; and ERGAS values were 0.5416, 0.6507, 0.8737, respectively. The USTARM showed consistently higher performance than STARM when the degree of heterogeneity ranged from 2 to 10, highlighting that the use of this method provides the capacity to solve the data fusion problems faced when using STARFM. Additionally, the USTARFM method could help researchers achieve better performance than STARFM at a smaller window size from its heterogeneous land surface quantitative representation.
Morimoto, Emiko; Okada, Tomohisa; Kanagaki, Mitsunori; Yamamoto, Akira; Fushimi, Yasutaka; Matsumoto, Riki; Takaya, Shigetoshi; Ikeda, Akio; Kunieda, Takeharu; Kikuchi, Takayuki; Paul, Dominik; Miyamoto, Susumu; Takahashi, Ryosuke; Togashi, Kaori
2013-12-01
To quantitatively compare the diagnostic capability of double inversion-recovery (DIR) with F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) for detection of seizure focus laterality in temporal lobe epilepsy (TLE). This study was approved by the institutional review board, and written informed consent was obtained. Fifteen patients with TLE and 38 healthy volunteers were enrolled. All magnetic resonance (MR) images were acquired using a 3T-MRI system. Voxel-based analysis (VBA) was conducted for FDG-PET images and white matter segments of DIR images (DIR-WM) focused on the whole temporal lobe (TL) and the anterior part of the temporal lobe (ATL). Distribution of hypometabolic areas on FDG-PET and increased signal intensity areas on DIR-WM were evaluated, and their laterality was compared with clinically determined seizure focus laterality. Correct diagnostic rates of laterality were evaluated, and agreement between DIR-WM and FDG-PET was assessed using κ statistics. Increased signal intensity areas on DIR-WM were located at the vicinity of the hypometabolic areas on FDG-PET, especially in the ATL. Correct diagnostic rates of seizure focus laterality for DIR-WM (0.80 and 0.67 for the TL and the ATL, respectively) were slightly higher than those for FDG-PET (0.67 and 0.60 for the TL and the ATL, respectively). Agreement of laterality between DIR-WM and FDG-PET was substantial for the TL and almost perfect for the ATL (κ = 0.67 and 0.86, respectively). High agreement in localization between DIR-WM and FDG-PET and nearly equivalent detectability of them show us an additional role of MRI in TLE. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.
NASA Astrophysics Data System (ADS)
Ren, Y.
2017-12-01
Context Land surface temperatures (LSTs) spatio-temporal distribution pattern of urban forests are influenced by many ecological factors; the identification of interaction between these factors can improve simulations and predictions of spatial patterns of urban cold islands. This quantitative research requires an integrated method that combines multiple sources data with spatial statistical analysis. Objectives The purpose of this study was to clarify urban forest LST influence interaction between anthropogenic activities and multiple ecological factors using cluster analysis of hot and cold spots and Geogdetector model. We introduced the hypothesis that anthropogenic activity interacts with certain ecological factors, and their combination influences urban forests LST. We also assumed that spatio-temporal distributions of urban forest LST should be similar to those of ecological factors and can be represented quantitatively. Methods We used Jinjiang as a representative city in China as a case study. Population density was employed to represent anthropogenic activity. We built up a multi-source data (forest inventory, digital elevation models (DEM), population, and remote sensing imagery) on a unified urban scale to support urban forest LST influence interaction research. Through a combination of spatial statistical analysis results, multi-source spatial data, and Geogdetector model, the interaction mechanisms of urban forest LST were revealed. Results Although different ecological factors have different influences on forest LST, in two periods with different hot spots and cold spots, the patch area and dominant tree species were the main factors contributing to LST clustering in urban forests. The interaction between anthropogenic activity and multiple ecological factors increased LST in urban forest stands, linearly and nonlinearly. Strong interactions between elevation and dominant species were generally observed and were prevalent in either hot or cold spots areas in different years. Conclusions In conclusion, a combination of spatial statistics and GeogDetector models should be effective for quantitatively evaluating interactive relationships among ecological factors, anthropogenic activity and LST.
Kobayashi, Shinya; Ishikawa, Tatsuya; Tanabe, Jun; Moroi, Junta; Suzuki, Akifumi
2014-01-01
Intraoperative qualitative indocyanine green (ICG) angiography has been used in cerebrovascular surgery. Hyperperfusion may lead to neurological complications after superficial temporal artery to middle cerebral artery (STA-MCA) anastomosis. The purpose of this study is to quantitatively evaluate intraoperative cerebral perfusion using microscope-integrated dynamic ICG fluorescence analysis, and to assess whether this value predicts hyperperfusion syndrome (HPS) after STA-MCA anastomosis. Ten patients undergoing STA-MCA anastomosis due to unilateral major cerebral artery occlusive disease were included. Ten patients with normal cerebral perfusion served as controls. The ICG transit curve from six regions of interest (ROIs) on the cortex, corresponding to ROIs on positron emission tomography (PET) study, was recorded. Maximum intensity (IMAX), cerebral blood flow index (CBFi), rise time (RT), and time to peak (TTP) were evaluated. RT/TTP, but not IMAX or CBFi, could differentiate between control and study subjects. RT/TTP correlated (|r| = 0.534-0.807; P < 0.01) with mean transit time (MTT)/MTT ratio in the ipsilateral to contralateral hemisphere by PET study. Bland-Altman analysis showed a wide limit of agreement between RT and MTT and between TTP and MTT. The ratio of RT before and after bypass procedures was significantly lower in patients with postoperative HPS than in patients without postoperative HPS (0.60 ± 0.032 and 0.80 ± 0.056, respectively; P = 0.017). The ratio of TTP was also significantly lower in patients with postoperative HPS than in patients without postoperative HPS (0.64 ± 0.081 and 0.85 ± 0.095, respectively; P = 0.017). Time-dependent intraoperative parameters from the ICG transit curve provide quantitative information regarding cerebral circulation time with quality and utility comparable to information obtained by PET. These parameters may help predict the occurrence of postoperative HPS.
MEM spectral analysis for predicting influenza epidemics in Japan.
Sumi, Ayako; Kamo, Ken-ichi
2012-03-01
The prediction of influenza epidemics has long been the focus of attention in epidemiology and mathematical biology. In this study, we tested whether time series analysis was useful for predicting the incidence of influenza in Japan. The method of time series analysis we used consists of spectral analysis based on the maximum entropy method (MEM) in the frequency domain and the nonlinear least squares method in the time domain. Using this time series analysis, we analyzed the incidence data of influenza in Japan from January 1948 to December 1998; these data are unique in that they covered the periods of pandemics in Japan in 1957, 1968, and 1977. On the basis of the MEM spectral analysis, we identified the periodic modes explaining the underlying variations of the incidence data. The optimum least squares fitting (LSF) curve calculated with the periodic modes reproduced the underlying variation of the incidence data. An extension of the LSF curve could be used to predict the incidence of influenza quantitatively. Our study suggested that MEM spectral analysis would allow us to model temporal variations of influenza epidemics with multiple periodic modes much more effectively than by using the method of conventional time series analysis, which has been used previously to investigate the behavior of temporal variations in influenza data.
Temporal Variability of Observed and Simulated Hyperspectral Earth Reflectance
NASA Technical Reports Server (NTRS)
Roberts, Yolanda; Pilewskie, Peter; Kindel, Bruce; Feldman, Daniel; Collins, William D.
2012-01-01
The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a climate observation system designed to study Earth's climate variability with unprecedented absolute radiometric accuracy and SI traceability. Observation System Simulation Experiments (OSSEs) were developed using GCM output and MODTRAN to simulate CLARREO reflectance measurements during the 21st century as a design tool for the CLARREO hyperspectral shortwave imager. With OSSE simulations of hyperspectral reflectance, Feldman et al. [2011a,b] found that shortwave reflectance is able to detect changes in climate variables during the 21st century and improve time-to-detection compared to broadband measurements. The OSSE has been a powerful tool in the design of the CLARREO imager and for understanding the effect of climate change on the spectral variability of reflectance, but it is important to evaluate how well the OSSE simulates the Earth's present-day spectral variability. For this evaluation we have used hyperspectral reflectance measurements from the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY), a shortwave spectrometer that was operational between March 2002 and April 2012. To study the spectral variability of SCIAMACHY-measured and OSSE-simulated reflectance, we used principal component analysis (PCA), a spectral decomposition technique that identifies dominant modes of variability in a multivariate data set. Using quantitative comparisons of the OSSE and SCIAMACHY PCs, we have quantified how well the OSSE captures the spectral variability of Earth?s climate system at the beginning of the 21st century relative to SCIAMACHY measurements. These results showed that the OSSE and SCIAMACHY data sets share over 99% of their total variance in 2004. Using the PCs and the temporally distributed reflectance spectra projected onto the PCs (PC scores), we can study the temporal variability of the observed and simulated reflectance spectra. Multivariate time series analysis of the PC scores using techniques such as Singular Spectrum Analysis (SSA) and Multichannel SSA will provide information about the temporal variability of the dominant variables. Quantitative comparison techniques can evaluate how well the OSSE reproduces the temporal variability observed by SCIAMACHY spectral reflectance measurements during the first decade of the 21st century. PCA of OSSE-simulated reflectance can also be used to study how the dominant spectral variables change on centennial scales for forced and unforced climate change scenarios. To have confidence in OSSE predictions of the spectral variability of hyperspectral reflectance, it is first necessary for us to evaluate the degree to which the OSSE simulations are able to reproduce the Earth?s present-day spectral variability.
Riffel, Philipp; Zoellner, Frank G; Budjan, Johannes; Grimm, Robert; Block, Tobias K; Schoenberg, Stefan O; Hausmann, Daniel
2016-11-01
The purpose of the present study was to evaluate a recently introduced technique for free-breathing dynamic contrast-enhanced renal magnetic resonance imaging (MRI) applying a combination of radial k-space sampling, parallel imaging, and compressed sensing. The technique allows retrospective reconstruction of 2 motion-suppressed sets of images from the same acquisition: one with lower temporal resolution but improved image quality for subjective image analysis, and one with high temporal resolution for quantitative perfusion analysis. In this study, 25 patients underwent a kidney examination, including a prototypical fat-suppressed, golden-angle radial stack-of-stars T1-weighted 3-dimensional spoiled gradient-echo examination (GRASP) performed after contrast agent administration during free breathing. Images were reconstructed at temporal resolutions of 55 spokes per frame (6.2 seconds) and 13 spokes per frame (1.5 seconds). The GRASP images were evaluated by 2 blinded radiologists. First, the reconstructions with low temporal resolution underwent subjective image analysis: the radiologists assessed the best arterial phase and the best renal phase and rated image quality score for each patient on a 5-point Likert-type scale.In addition, the diagnostic confidence was rated according to a 3-point Likert-type scale. Similarly, respiratory motion artifacts and streak artifacts were rated according to a 3-point Likert-type scale.Then, the reconstructions with high temporal resolution were analyzed with a voxel-by-voxel deconvolution approach to determine the renal plasma flow, and the results were compared with values reported in previous literature. Reader 1 and reader 2 rated the overall image quality score for the best arterial phase and the best renal phase with a median image quality score of 4 (good image quality) for both phases, respectively. A high diagnostic confidence (median score of 3) was observed. There were no respiratory motion artifacts in any of the patients. Streak artifacts were present in all of the patients, but did not compromise diagnostic image quality.The estimated renal plasma flow was slightly higher (295 ± 78 mL/100 mL per minute) than reported in previous MRI-based studies, but also closer to the physiologically expected value. Dynamic, motion-suppressed contrast-enhanced renal MRI can be performed in high diagnostic quality during free breathing using a combination of golden-angle radial sampling, parallel imaging, and compressed sensing. Both morphologic and quantitative functional information can be acquired within a single acquisition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Sun Mo, E-mail: Sunmo.Kim@rmp.uhn.on.ca; Haider, Masoom A.; Jaffray, David A.
Purpose: A previously proposed method to reduce radiation dose to patient in dynamic contrast-enhanced (DCE) CT is enhanced by principal component analysis (PCA) filtering which improves the signal-to-noise ratio (SNR) of time-concentration curves in the DCE-CT study. The efficacy of the combined method to maintain the accuracy of kinetic parameter estimates at low temporal resolution is investigated with pixel-by-pixel kinetic analysis of DCE-CT data. Methods: The method is based on DCE-CT scanning performed with low temporal resolution to reduce the radiation dose to the patient. The arterial input function (AIF) with high temporal resolution can be generated with a coarselymore » sampled AIF through a previously published method of AIF estimation. To increase the SNR of time-concentration curves (tissue curves), first, a region-of-interest is segmented into squares composed of 3 × 3 pixels in size. Subsequently, the PCA filtering combined with a fraction of residual information criterion is applied to all the segmented squares for further improvement of their SNRs. The proposed method was applied to each DCE-CT data set of a cohort of 14 patients at varying levels of down-sampling. The kinetic analyses using the modified Tofts’ model and singular value decomposition method, then, were carried out for each of the down-sampling schemes between the intervals from 2 to 15 s. The results were compared with analyses done with the measured data in high temporal resolution (i.e., original scanning frequency) as the reference. Results: The patients’ AIFs were estimated to high accuracy based on the 11 orthonormal bases of arterial impulse responses established in the previous paper. In addition, noise in the images was effectively reduced by using five principal components of the tissue curves for filtering. Kinetic analyses using the proposed method showed superior results compared to those with down-sampling alone; they were able to maintain the accuracy in the quantitative histogram parameters of volume transfer constant [standard deviation (SD), 98th percentile, and range], rate constant (SD), blood volume fraction (mean, SD, 98th percentile, and range), and blood flow (mean, SD, median, 98th percentile, and range) for sampling intervals between 10 and 15 s. Conclusions: The proposed method of PCA filtering combined with the AIF estimation technique allows low frequency scanning for DCE-CT study to reduce patient radiation dose. The results indicate that the method is useful in pixel-by-pixel kinetic analysis of DCE-CT data for patients with cervical cancer.« less
Quantitative MRI in refractory temporal lobe epilepsy: relationship with surgical outcomes
Bonilha, Leonardo
2015-01-01
Medically intractable temporal lobe epilepsy (TLE) remains a serious health problem. Across treatment centers, up to 40% of patients with TLE will continue to experience persistent postoperative seizures at 2-year follow-up. It is unknown why such a large number of patients continue to experience seizures despite being suitable candidates for resective surgery. Preoperative quantitative MRI techniques may provide useful information on why some patients continue to experience disabling seizures, and may have the potential to develop prognostic markers of surgical outcome. In this article, we provide an overview of how quantitative MRI morphometric and diffusion tensor imaging (DTI) data have improved the understanding of brain structural alterations in patients with refractory TLE. We subsequently review the studies that have applied quantitative structural imaging techniques to identify the neuroanatomical factors that are most strongly related to a poor postoperative prognosis. In summary, quantitative imaging studies strongly suggest that TLE is a disorder affecting a network of neurobiological systems, characterized by multiple and inter-related limbic and extra-limbic network abnormalities. The relationship between brain alterations and postoperative outcome are less consistent, but there is emerging evidence suggesting that seizures are less likely to remit with surgery when presurgical abnormalities are observed in the connectivity supporting brain regions serving as network nodes located outside the resected temporal lobe. Future work, possibly harnessing the potential from multimodal imaging approaches, may further elucidate the etiology of persistent postoperative seizures in patients with refractory TLE. Furthermore, quantitative imaging techniques may be explored to provide individualized measures of postoperative seizure freedom outcome. PMID:25853080
Diesel engine exhaust and lung cancer mortality: time-related factors in exposure and risk.
Moolgavkar, Suresh H; Chang, Ellen T; Luebeck, Georg; Lau, Edmund C; Watson, Heather N; Crump, Kenny S; Boffetta, Paolo; McClellan, Roger
2015-04-01
To develop a quantitative exposure-response relationship between concentrations and durations of inhaled diesel engine exhaust (DEE) and increases in lung cancer risks, we examined the role of temporal factors in modifying the estimated effects of exposure to DEE on lung cancer mortality and characterized risk by mine type in the Diesel Exhaust in Miners Study (DEMS) cohort, which followed 12,315 workers through December 1997. We analyzed the data using parametric functions based on concepts of multistage carcinogenesis to directly estimate the hazard functions associated with estimated exposure to a surrogate marker of DEE, respirable elemental carbon (REC). The REC-associated risk of lung cancer mortality in DEMS is driven by increased risk in only one of four mine types (limestone), with statistically significant heterogeneity by mine type and no significant exposure-response relationship after removal of the limestone mine workers. Temporal factors, such as duration of exposure, play an important role in determining the risk of lung cancer mortality following exposure to REC, and the relative risk declines after exposure to REC stops. There is evidence of effect modification of risk by attained age. The modifying impact of temporal factors and effect modification by age should be addressed in any quantitative risk assessment (QRA) of DEE. Until there is a better understanding of why the risk appears to be confined to a single mine type, data from DEMS cannot reliably be used for QRA. © 2015 Society for Risk Analysis.
Ranacher, Peter; Tzavella, Katerina
2014-05-27
In geographic information science, a plethora of different approaches and methods is used to assess the similarity of movement. Some of these approaches term two moving objects similar if they share akin paths. Others require objects to move at similar speed and yet others consider movement similar if it occurs at the same time. We believe that a structured and comprehensive classification of movement comparison measures is missing. We argue that such a classification not only depicts the status quo of qualitative and quantitative movement analysis, but also allows for identifying those aspects of movement for which similarity measures are scarce or entirely missing. In this review paper we, first, decompose movement into its spatial, temporal, and spatiotemporal movement parameters. A movement parameter is a physical quantity of movement, such as speed, spatial path, or temporal duration. For each of these parameters we then review qualitative and quantitative methods of how to compare movement. Thus, we provide a systematic and comprehensive classification of different movement similarity measures used in geographic information science. This classification is a valuable first step toward a GIS toolbox comprising all relevant movement comparison methods.
Ranacher, Peter; Tzavella, Katerina
2014-01-01
In geographic information science, a plethora of different approaches and methods is used to assess the similarity of movement. Some of these approaches term two moving objects similar if they share akin paths. Others require objects to move at similar speed and yet others consider movement similar if it occurs at the same time. We believe that a structured and comprehensive classification of movement comparison measures is missing. We argue that such a classification not only depicts the status quo of qualitative and quantitative movement analysis, but also allows for identifying those aspects of movement for which similarity measures are scarce or entirely missing. In this review paper we, first, decompose movement into its spatial, temporal, and spatiotemporal movement parameters. A movement parameter is a physical quantity of movement, such as speed, spatial path, or temporal duration. For each of these parameters we then review qualitative and quantitative methods of how to compare movement. Thus, we provide a systematic and comprehensive classification of different movement similarity measures used in geographic information science. This classification is a valuable first step toward a GIS toolbox comprising all relevant movement comparison methods. PMID:27019646
Valle, Susanne Collier; Støen, Ragnhild; Sæther, Rannei; Jensenius, Alexander Refsum; Adde, Lars
2015-10-01
A computer-based video analysis has recently been presented for quantitative assessment of general movements (GMs). This method's test-retest reliability, however, has not yet been evaluated. The aim of the current study was to evaluate the test-retest reliability of computer-based video analysis of GMs, and to explore the association between computer-based video analysis and the temporal organization of fidgety movements (FMs). Test-retest reliability study. 75 healthy, term-born infants were recorded twice the same day during the FMs period using a standardized video set-up. The computer-based movement variables "quantity of motion mean" (Qmean), "quantity of motion standard deviation" (QSD) and "centroid of motion standard deviation" (CSD) were analyzed, reflecting the amount of motion and the variability of the spatial center of motion of the infant, respectively. In addition, the association between the variable CSD and the temporal organization of FMs was explored. Intraclass correlation coefficients (ICC 1.1 and ICC 3.1) were calculated to assess test-retest reliability. The ICC values for the variables CSD, Qmean and QSD were 0.80, 0.80 and 0.86 for ICC (1.1), respectively; and 0.80, 0.86 and 0.90 for ICC (3.1), respectively. There were significantly lower CSD values in the recordings with continual FMs compared to the recordings with intermittent FMs (p<0.05). This study showed high test-retest reliability of computer-based video analysis of GMs, and a significant association between our computer-based video analysis and the temporal organization of FMs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Greenwood, Edward JD; Matheson, Nicholas J; Wals, Kim; van den Boomen, Dick JH; Antrobus, Robin; Williamson, James C; Lehner, Paul J
2016-01-01
Viruses manipulate host factors to enhance their replication and evade cellular restriction. We used multiplex tandem mass tag (TMT)-based whole cell proteomics to perform a comprehensive time course analysis of >6500 viral and cellular proteins during HIV infection. To enable specific functional predictions, we categorized cellular proteins regulated by HIV according to their patterns of temporal expression. We focussed on proteins depleted with similar kinetics to APOBEC3C, and found the viral accessory protein Vif to be necessary and sufficient for CUL5-dependent proteasomal degradation of all members of the B56 family of regulatory subunits of the key cellular phosphatase PP2A (PPP2R5A-E). Quantitative phosphoproteomic analysis of HIV-infected cells confirmed Vif-dependent hyperphosphorylation of >200 cellular proteins, particularly substrates of the aurora kinases. The ability of Vif to target PPP2R5 subunits is found in primate and non-primate lentiviral lineages, and remodeling of the cellular phosphoproteome is therefore a second ancient and conserved Vif function. DOI: http://dx.doi.org/10.7554/eLife.18296.001 PMID:27690223
Growth characteristics and Otolith analysis on Age-0 American Shad
Sauter, Sally T.; Wetzel, Lisa A.
2011-01-01
Otolith microstructure analysis provides useful information on the growth history of fish (Campana and Jones 1992, Bang and Gronkjaer 2005). Microstructure analysis can be used to construct the size-at-age growth trajectory of fish, determine daily growth rates, and estimate hatch date and other ecologically important life history events (Campana and Jones 1992, Tonkin et al. 2008). This kind of information can be incorporated into bioenergetics modeling, providing necessary data for estimating prey consumption, and guiding the development of empirically-based modeling scenarios for hypothesis testing. For example, age-0 American shad co-occur with emigrating juvenile fall Chinook salmon originating from Hanford Reach and the Snake River in the lower Columbia River reservoirs during the summer and early fall. The diet of age-0 American shad appears to overlap with that of juvenile fall Chinook salmon (Chapter 1, this report), but juvenile fall Chinook salmon are also known to feed on age-0 American shad in the reservoirs (USGS unpublished data). Abundant, energy-dense age-0 American shad may provide juvenile fall Chinook salmon opportunities for rapid growth during the time period when large numbers of age-0 American shad are available. Otolith analysis of hatch dates and the growth curve of age-0 American shad could be used to identify when eggs, larvae, and juveniles of specific size classes are temporally available as food for fall Chinook salmon in the lower Columbia River reservoirs. This kind of temporally and spatially explicit life history information is important to include in bioenergetics modeling scenarios. Quantitative estimates of prey consumption could be used with spatially-explicit estimates of prey abundance to construct a quantitative assessment of the age-0 American shad impact on a reservoir food web.
NASA Astrophysics Data System (ADS)
Sander, M.; Pudell, J.-E.; Herzog, M.; Bargheer, M.; Bauer, R.; Besse, V.; Temnov, V.; Gaal, P.
2017-12-01
We present time-resolved x-ray reflectivity measurements on laser excited coherent and incoherent surface deformations of thin metallic films. Based on a kinematical diffraction model, we derive the surface amplitude from the diffracted x-ray intensity and resolve transient surface excursions with sub-Å spatial precision and 70 ps temporal resolution. The analysis allows for decomposition of the surface amplitude into multiple coherent acoustic modes and a substantial contribution from incoherent phonons which constitute the sample heating.
NASA Astrophysics Data System (ADS)
Zhong, Shi-Lei; Lu, Yuan; Kong, Wei-Jin; Cheng, Kai; Zheng, Ronger
2016-08-01
In this study, an ultrasonic nebulizer unit was established to improve the quantitative analysis ability of laser-induced breakdown spectroscopy (LIBS) for liquid samples detection, using solutions of the heavy metal element Pb as an example. An analytical procedure was designed to guarantee the stability and repeatability of the LIBS signal. A series of experiments were carried out strictly according to the procedure. The experimental parameters were optimized based on studies of the pulse energy influence and temporal evolution of the emission features. The plasma temperature and electron density were calculated to confirm the LTE state of the plasma. Normalizing the intensities by background was demonstrated to be an appropriate method in this work. The linear range of this system for Pb analysis was confirmed over a concentration range of 0-4,150ppm by measuring 12 samples with different concentrations. The correlation coefficient of the fitted calibration curve was as high as 99.94% in the linear range, and the LOD of Pb was confirmed as 2.93ppm. Concentration prediction experiments were performed on a further six samples. The excellent quantitative ability of the system was demonstrated by comparison of the real and predicted concentrations of the samples. The lowest relative error was 0.043% and the highest was no more than 7.1%.
Addressing multi-label imbalance problem of surgical tool detection using CNN.
Sahu, Manish; Mukhopadhyay, Anirban; Szengel, Angelika; Zachow, Stefan
2017-06-01
A fully automated surgical tool detection framework is proposed for endoscopic video streams. State-of-the-art surgical tool detection methods rely on supervised one-vs-all or multi-class classification techniques, completely ignoring the co-occurrence relationship of the tools and the associated class imbalance. In this paper, we formulate tool detection as a multi-label classification task where tool co-occurrences are treated as separate classes. In addition, imbalance on tool co-occurrences is analyzed and stratification techniques are employed to address the imbalance during convolutional neural network (CNN) training. Moreover, temporal smoothing is introduced as an online post-processing step to enhance runtime prediction. Quantitative analysis is performed on the M2CAI16 tool detection dataset to highlight the importance of stratification, temporal smoothing and the overall framework for tool detection. The analysis on tool imbalance, backed by the empirical results, indicates the need and superiority of the proposed framework over state-of-the-art techniques.
Briassoulis, Demetres; Babou, Epifania; Hiskakis, Miltiadis; Scarascia, Giacomo; Picuno, Pietro; Guarde, Dorleta; Dejean, Cyril
2013-12-01
A review of agricultural plastic waste generation and consolidation in Europe is presented. A detailed geographical mapping of the agricultural plastic use and waste generation in Europe was conducted focusing on areas of high concentration of agricultural plastics. Quantitative data and analysis of the agricultural plastic waste generation by category, geographical distribution and compositional range, and physical characteristics of the agricultural plastic waste per use and the temporal distribution of the waste generation are presented. Data were collected and cross-checked from a variety of sources, including European, national and regional services and organizations, local agronomists, retailers and farmers, importers and converters. Missing data were estimated indirectly based on the recorded cultivated areas and the characteristics of the agricultural plastics commonly used in the particular regions. The temporal distribution, the composition and physical characteristics of the agricultural plastic waste streams were mapped by category and by application. This study represents the first systematic effort to map and analyse agricultural plastic waste generation and consolidation in Europe.
Why Is Rainfall Error Analysis Requisite for Data Assimilation and Climate Modeling?
NASA Technical Reports Server (NTRS)
Hou, Arthur Y.; Zhang, Sara Q.
2004-01-01
Given the large temporal and spatial variability of precipitation processes, errors in rainfall observations are difficult to quantify yet crucial to making effective use of rainfall data for improving atmospheric analysis, weather forecasting, and climate modeling. We highlight the need for developing a quantitative understanding of systematic and random errors in precipitation observations by examining explicit examples of how each type of errors can affect forecasts and analyses in global data assimilation. We characterize the error information needed from the precipitation measurement community and how it may be used to improve data usage within the general framework of analysis techniques, as well as accuracy requirements from the perspective of climate modeling and global data assimilation.
Temporal scaling of groundwater level fluctuations near a stream
Schilling, K.E.; Zhang, Y.-K.
2012-01-01
Temporal scaling in stream discharge and hydraulic heads in riparian wells was evaluated to determine the feasibility of using spectral analysis to identify potential surface and groundwater interaction. In floodplains where groundwater levels respond rapidly to precipitation recharge, potential interaction is established if the hydraulic head (h) spectrum of riparian groundwater has a power spectral density similar to stream discharge (Q), exhibiting a characteristic breakpoint between high and low frequencies. At a field site in Walnut Creek watershed in central Iowa, spectral analysis of h in wells located 1 m from the channel edge showed a breakpoint in scaling very similar to the spectrum of Q (~20 h), whereas h in wells located 20 and 40 m from the channel showed temporal scaling from 1 to 10,000 h without a well-defined breakpoint. The spectral exponent (??) in the riparian zone decreased systematically from the channel into the floodplain as groundwater levels were increasingly dominated by white noise groundwater recharge. The scaling pattern of hydraulic head was not affected by land cover type, although the number of analyses was limited and site conditions were variable among sites. Spectral analysis would not replace quantitative tracer or modeling studies, but the method may provide a simple means of confirming potential interaction at some sites. ?? 2011, The Author(s). Ground Water ?? 2011, National Ground Water Association.
Temporal scaling of groundwater level fluctuations near a stream.
Schilling, Keith E; Zhang, You-Kuan
2012-01-01
Temporal scaling in stream discharge and hydraulic heads in riparian wells was evaluated to determine the feasibility of using spectral analysis to identify potential surface and groundwater interaction. In floodplains where groundwater levels respond rapidly to precipitation recharge, potential interaction is established if the hydraulic head (h) spectrum of riparian groundwater has a power spectral density similar to stream discharge (Q), exhibiting a characteristic breakpoint between high and low frequencies. At a field site in Walnut Creek watershed in central Iowa, spectral analysis of h in wells located 1 m from the channel edge showed a breakpoint in scaling very similar to the spectrum of Q (∼20 h), whereas h in wells located 20 and 40 m from the channel showed temporal scaling from 1 to 10,000 h without a well-defined breakpoint. The spectral exponent (β) in the riparian zone decreased systematically from the channel into the floodplain as groundwater levels were increasingly dominated by white noise groundwater recharge. The scaling pattern of hydraulic head was not affected by land cover type, although the number of analyses was limited and site conditions were variable among sites. Spectral analysis would not replace quantitative tracer or modeling studies, but the method may provide a simple means of confirming potential interaction at some sites. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.
Alphan, Hakan
2013-03-01
The aim of this study is (1) to quantify landscape changes in the easternmost Mediterranean deltas using bi-temporal binary change detection approach and (2) to analyze relationships between conservation/management designations and various categories of change that indicate type, degree and severity of human impact. For this purpose, image differencing and ratioing were applied to Landsat TM images of 1984 and 2006. A total of 136 candidate change images including normalized difference vegetation index (NDVI) and principal component analysis (PCA) difference images were tested to understand performance of bi-temporal pre-classification analysis procedures in the Mediterranean delta ecosystems. Results showed that visible image algebra provided high accuracies than did NDVI and PCA differencing. On the other hand, Band 5 differencing had one of the lowest change detection performances. Seven superclasses of change were identified using from/to change categories between the earlier and later dates. These classes were used to understand spatial character of anthropogenic impacts in the study area and derive qualitative and quantitative change information within and outside of the conservation/management areas. Change analysis indicated that natural site and wildlife reserve designations fell short of protecting sand dunes from agricultural expansion in the west. East of the study area, however, was exposed to least human impact owing to the fact that nature conservation status kept human interference at a minimum. Implications of these changes were discussed and solutions were proposed to deal with management problems leading to environmental change.
Shen, Fenghua; Liu, Jing; Zhang, Zhen; Yang, Yingju
2016-06-05
The temporal release of selenium from coal during combustion and gasification in a fluidized bed was measured in situ by an on-line analysis system of trace elements in flue gas. The on-line analysis system is based on an inductively coupled plasma optical emission spectroscopy (ICP-OES), and can measure concentrations of trace elements in flue gas quantitatively and continuously. The results of on-line analysis suggest that the concentration of selenium in flue gas during coal gasification is higher than that during coal combustion. Based on the results of on-line analysis, a second-order kinetic law r(x)=0.94e(-26.58/RT)(-0.56 x(2) -0.51 x+1.05) was determined for selenium release during coal combustion, and r(x)=11.96e(-45.03/RT)(-0.53 x(2) -0.56 x+1.09) for selenium release during coal gasification. These two kinetic laws can predict respectively the temporal release of selenium during coal combustion and gasification with an acceptable accuracy. Thermodynamic calculations were conducted to predict selenium species during coal combustion and gasification. The speciation of selenium in flue gas during coal combustion differs from that during coal gasification, indicating that selenium volatilization is different. The gaseous selenium species can react with CaO during coal combustion, but it is not likely to interact with mineral during coal gasification. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Merlin, Thibaut; Visvikis, Dimitris; Fernandez, Philippe; Lamare, Frédéric
2018-02-01
Respiratory motion reduces both the qualitative and quantitative accuracy of PET images in oncology. This impact is more significant for quantitative applications based on kinetic modeling, where dynamic acquisitions are associated with limited statistics due to the necessity of enhanced temporal resolution. The aim of this study is to address these drawbacks, by combining a respiratory motion correction approach with temporal regularization in a unique reconstruction algorithm for dynamic PET imaging. Elastic transformation parameters for the motion correction are estimated from the non-attenuation-corrected PET images. The derived displacement matrices are subsequently used in a list-mode based OSEM reconstruction algorithm integrating a temporal regularization between the 3D dynamic PET frames, based on temporal basis functions. These functions are simultaneously estimated at each iteration, along with their relative coefficients for each image voxel. Quantitative evaluation has been performed using dynamic FDG PET/CT acquisitions of lung cancer patients acquired on a GE DRX system. The performance of the proposed method is compared with that of a standard multi-frame OSEM reconstruction algorithm. The proposed method achieved substantial improvements in terms of noise reduction while accounting for loss of contrast due to respiratory motion. Results on simulated data showed that the proposed 4D algorithms led to bias reduction values up to 40% in both tumor and blood regions for similar standard deviation levels, in comparison with a standard 3D reconstruction. Patlak parameter estimations on reconstructed images with the proposed reconstruction methods resulted in 30% and 40% bias reduction in the tumor and lung region respectively for the Patlak slope, and a 30% bias reduction for the intercept in the tumor region (a similar Patlak intercept was achieved in the lung area). Incorporation of the respiratory motion correction using an elastic model along with a temporal regularization in the reconstruction process of the PET dynamic series led to substantial quantitative improvements and motion artifact reduction. Future work will include the integration of a linear FDG kinetic model, in order to directly reconstruct parametric images.
Merlin, Thibaut; Visvikis, Dimitris; Fernandez, Philippe; Lamare, Frédéric
2018-02-13
Respiratory motion reduces both the qualitative and quantitative accuracy of PET images in oncology. This impact is more significant for quantitative applications based on kinetic modeling, where dynamic acquisitions are associated with limited statistics due to the necessity of enhanced temporal resolution. The aim of this study is to address these drawbacks, by combining a respiratory motion correction approach with temporal regularization in a unique reconstruction algorithm for dynamic PET imaging. Elastic transformation parameters for the motion correction are estimated from the non-attenuation-corrected PET images. The derived displacement matrices are subsequently used in a list-mode based OSEM reconstruction algorithm integrating a temporal regularization between the 3D dynamic PET frames, based on temporal basis functions. These functions are simultaneously estimated at each iteration, along with their relative coefficients for each image voxel. Quantitative evaluation has been performed using dynamic FDG PET/CT acquisitions of lung cancer patients acquired on a GE DRX system. The performance of the proposed method is compared with that of a standard multi-frame OSEM reconstruction algorithm. The proposed method achieved substantial improvements in terms of noise reduction while accounting for loss of contrast due to respiratory motion. Results on simulated data showed that the proposed 4D algorithms led to bias reduction values up to 40% in both tumor and blood regions for similar standard deviation levels, in comparison with a standard 3D reconstruction. Patlak parameter estimations on reconstructed images with the proposed reconstruction methods resulted in 30% and 40% bias reduction in the tumor and lung region respectively for the Patlak slope, and a 30% bias reduction for the intercept in the tumor region (a similar Patlak intercept was achieved in the lung area). Incorporation of the respiratory motion correction using an elastic model along with a temporal regularization in the reconstruction process of the PET dynamic series led to substantial quantitative improvements and motion artifact reduction. Future work will include the integration of a linear FDG kinetic model, in order to directly reconstruct parametric images.
NASA Astrophysics Data System (ADS)
Muñiz, Rocío; Lobo, Lara; Németh, Katalin; Péter, László; Pereiro, Rosario
2017-09-01
There is still a lack of approaches for quantitative depth-profiling when dealing with glow discharges (GD) coupled to mass spectrometric detection. The purpose of this work is to develop quantification procedures using pulsed GD (PGD) - time of flight mass spectrometry. In particular, research was focused towards the depth profile analysis of Cu/NiCu nanolayers and multilayers electrodeposited on Si wafers. PGDs are characterized by three different regions due to the temporal application of power: prepeak, plateau and afterglow. This last region is the most sensitive and so it is convenient for quantitative analysis of minor components; however, major elements are often saturated, even at 30 W of applied radiofrequency power for these particular samples. For such cases, we have investigated two strategies based on a multimatrix calibration procedure: (i) using the afterglow region for all the sample components except for the major element (Cu) that was analyzed in the plateau, and (ii) using the afterglow region for all the elements measuring the ArCu signal instead of Cu. Seven homogeneous certified reference materials containing Si, Cr, Fe, Co, Ni and Cu have been used for quantification. Quantitative depth profiles obtained with these two strategies for samples containing 3 or 6 multilayers (of a few tens of nanometers each layer) were in agreement with the expected values, both in terms of thickness and composition of the layers.
Couch, James R; Petersen, Martin; Rice, Carol; Schubauer-Berigan, Mary K
2011-05-01
To construct a job-exposure matrix (JEM) for an Ohio beryllium processing facility between 1953 and 2006 and to evaluate temporal changes in airborne beryllium exposures. Quantitative area- and breathing-zone-based exposure measurements of airborne beryllium were made between 1953 and 2006 and used by plant personnel to estimate daily weighted average (DWA) exposure concentrations for sampled departments and operations. These DWA measurements were used to create a JEM with 18 exposure metrics, which was linked to the plant cohort consisting of 18,568 unique job, department and year combinations. The exposure metrics ranged from quantitative metrics (annual arithmetic/geometric average DWA exposures, maximum DWA and peak exposures) to descriptive qualitative metrics (chemical beryllium species and physical form) to qualitative assignment of exposure to other risk factors (yes/no). Twelve collapsed job titles with long-term consistent industrial hygiene samples were evaluated using regression analysis for time trends in DWA estimates. Annual arithmetic mean DWA estimates (overall plant-wide exposures including administration, non-production, and production estimates) for the data by decade ranged from a high of 1.39 μg/m(3) in the 1950s to a low of 0.33 μg/m(3) in the 2000s. Of the 12 jobs evaluated for temporal trend, the average arithmetic DWA mean was 2.46 μg/m(3) and the average geometric mean DWA was 1.53 μg/m(3). After the DWA calculations were log-transformed, 11 of the 12 had a statistically significant (p < 0.05) decrease in reported exposure over time. The constructed JEM successfully differentiated beryllium exposures across jobs and over time. This is the only quantitative JEM containing exposure estimates (average and peak) for the entire plant history.
NASA Astrophysics Data System (ADS)
Zhu, X.
2016-12-01
Mangrove wetlands play an important role in global carbon cycle due to their strong carbon sequestration resulting from high plant carbon assimilation and low soil respiration. However, temporal variability of carbon sequestration in mangrove wetlands is less understood since carbon processes of mangrove wetlands are influenced by many complicated and concurrent environmental controls including tidal activities, site climate and soil conditions. Canopy light use efficiency (LUE), is the most important plant physiological parameter that can be used to describe the temporal dynamics of canopy photosynthesis, and therefore a better characterization of temporal variability of canopy LUE will improve our understanding in mangrove photosynthesis and carbon balance. One of our aims is to study the temporal variability of canopy LUE and its environmental controls in a subtropical mangrove wetland. Half-hourly canopy LUE is derived from eddy covariance (EC) carbon flux and photosynthesis active radiation observations, and half-hourly environmental controls we measure include temperature, humidity, precipitation, radiation, tidal height, salinity, etc. Another aim is to explore the links between canopy LUE and spectral indices derived from near-surface tower-based remote sensing (normalized difference vegetation index, enhanced vegetation index, photochemical reflectance index, solar-induced chlorophyll fluorescence, etc.), and then identify potential quantitative relationships for developing remote sensing-based estimation methods of canopy LUE. At present, some instruments in our in-situ observation system have not yet been installed (planned in next months) and therefore we don't have enough measurements to support our analysis. However, a preliminary analysis of our historical EC and climate observations in past several years indicates that canopy LUE shows strong temporal variability and is greatly affected by environmental factors such as tidal activity. Detailed and systematic analyses of temporal variability of canopy LUE and its environmental controls and potential remote sensing estimation methods will be conducted when our in-situ observation system is ready in near future.
MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis functions
NASA Astrophysics Data System (ADS)
Novosad, Philip; Reader, Andrew J.
2016-06-01
Recent advances in dynamic positron emission tomography (PET) reconstruction have demonstrated that it is possible to achieve markedly improved end-point kinetic parameter maps by incorporating a temporal model of the radiotracer directly into the reconstruction algorithm. In this work we have developed a highly constrained, fully dynamic PET reconstruction algorithm incorporating both spectral analysis temporal basis functions and spatial basis functions derived from the kernel method applied to a co-registered T1-weighted magnetic resonance (MR) image. The dynamic PET image is modelled as a linear combination of spatial and temporal basis functions, and a maximum likelihood estimate for the coefficients can be found using the expectation-maximization (EM) algorithm. Following reconstruction, kinetic fitting using any temporal model of interest can be applied. Based on a BrainWeb T1-weighted MR phantom, we performed a realistic dynamic [18F]FDG simulation study with two noise levels, and investigated the quantitative performance of the proposed reconstruction algorithm, comparing it with reconstructions incorporating either spectral analysis temporal basis functions alone or kernel spatial basis functions alone, as well as with conventional frame-independent reconstruction. Compared to the other reconstruction algorithms, the proposed algorithm achieved superior performance, offering a decrease in spatially averaged pixel-level root-mean-square-error on post-reconstruction kinetic parametric maps in the grey/white matter, as well as in the tumours when they were present on the co-registered MR image. When the tumours were not visible in the MR image, reconstruction with the proposed algorithm performed similarly to reconstruction with spectral temporal basis functions and was superior to both conventional frame-independent reconstruction and frame-independent reconstruction with kernel spatial basis functions. Furthermore, we demonstrate that a joint spectral/kernel model can also be used for effective post-reconstruction denoising, through the use of an EM-like image-space algorithm. Finally, we applied the proposed algorithm to reconstruction of real high-resolution dynamic [11C]SCH23390 data, showing promising results.
MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis functions.
Novosad, Philip; Reader, Andrew J
2016-06-21
Recent advances in dynamic positron emission tomography (PET) reconstruction have demonstrated that it is possible to achieve markedly improved end-point kinetic parameter maps by incorporating a temporal model of the radiotracer directly into the reconstruction algorithm. In this work we have developed a highly constrained, fully dynamic PET reconstruction algorithm incorporating both spectral analysis temporal basis functions and spatial basis functions derived from the kernel method applied to a co-registered T1-weighted magnetic resonance (MR) image. The dynamic PET image is modelled as a linear combination of spatial and temporal basis functions, and a maximum likelihood estimate for the coefficients can be found using the expectation-maximization (EM) algorithm. Following reconstruction, kinetic fitting using any temporal model of interest can be applied. Based on a BrainWeb T1-weighted MR phantom, we performed a realistic dynamic [(18)F]FDG simulation study with two noise levels, and investigated the quantitative performance of the proposed reconstruction algorithm, comparing it with reconstructions incorporating either spectral analysis temporal basis functions alone or kernel spatial basis functions alone, as well as with conventional frame-independent reconstruction. Compared to the other reconstruction algorithms, the proposed algorithm achieved superior performance, offering a decrease in spatially averaged pixel-level root-mean-square-error on post-reconstruction kinetic parametric maps in the grey/white matter, as well as in the tumours when they were present on the co-registered MR image. When the tumours were not visible in the MR image, reconstruction with the proposed algorithm performed similarly to reconstruction with spectral temporal basis functions and was superior to both conventional frame-independent reconstruction and frame-independent reconstruction with kernel spatial basis functions. Furthermore, we demonstrate that a joint spectral/kernel model can also be used for effective post-reconstruction denoising, through the use of an EM-like image-space algorithm. Finally, we applied the proposed algorithm to reconstruction of real high-resolution dynamic [(11)C]SCH23390 data, showing promising results.
Lee, Jinwoo; Foong, Yee Hoon; Musaitif, Ibrahim; Tong, Tiegang; Jefcoate, Colin
2016-07-05
The steroidogenic acute regulatory protein (StAR) has been proposed to serve as the switch that can turn on/off steroidogenesis. We investigated the events that facilitate dynamic StAR transcription in response to cAMP stimulation in MA-10 Leydig cells, focusing on splicing anomalies at StAR gene loci. We used 3' reverse primers in a single reaction to respectively quantify StAR primary (p-RNA), spliced (sp-RNA/mRNA), and extended 3' untranslated region (UTR) transcripts, which were quantitatively imaged by high-resolution fluorescence in situ hybridization (FISH). This approach delivers spatio-temporal resolution of initiation and splicing at single StAR loci, and transfers individual mRNA molecules to cytoplasmic sites. Gene expression was biphasic, initially showing slow splicing, transitioning to concerted splicing. The alternative 3.5-kb mRNAs were distinguished through the use of extended 3'UTR probes, which exhibited distinctive mitochondrial distribution. Combining quantitative PCR and FISH enables imaging of localization of RNA expression and analysis of RNA processing rates. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
FFT transformed quantitative EEG analysis of short term memory load.
Singh, Yogesh; Singh, Jayvardhan; Sharma, Ratna; Talwar, Anjana
2015-07-01
The EEG is considered as building block of functional signaling in the brain. The role of EEG oscillations in human information processing has been intensively investigated. To study the quantitative EEG correlates of short term memory load as assessed through Sternberg memory test. The study was conducted on 34 healthy male student volunteers. The intervention consisted of Sternberg memory test, which runs on a version of the Sternberg memory scanning paradigm software on a computer. Electroencephalography (EEG) was recorded from 19 scalp locations according to 10-20 international system of electrode placement. EEG signals were analyzed offline. To overcome the problems of fixed band system, individual alpha frequency (IAF) based frequency band selection method was adopted. The outcome measures were FFT transformed absolute powers in the six bands at 19 electrode positions. Sternberg memory test served as model of short term memory load. Correlation analysis of EEG during memory task was reflected as decreased absolute power in Upper alpha band in nearly all the electrode positions; increased power in Theta band at Fronto-Temporal region and Lower 1 alpha band at Fronto-Central region. Lower 2 alpha, Beta and Gamma band power remained unchanged. Short term memory load has distinct electroencephalographic correlates resembling the mentally stressed state. This is evident from decreased power in Upper alpha band (corresponding to Alpha band of traditional EEG system) which is representative band of relaxed mental state. Fronto-temporal Theta power changes may reflect the encoding and execution of memory task.
NASA Astrophysics Data System (ADS)
Khatibi, Siamak; Allansson, Louise; Gustavsson, Tomas; Blomstrand, Fredrik; Hansson, Elisabeth; Olsson, Torsten
1999-05-01
Cell volume changes are often associated with important physiological and pathological processes in the cell. These changes may be the means by which the cell interacts with its surrounding. Astroglial cells change their volume and shape under several circumstances that affect the central nervous system. Following an incidence of brain damage, such as a stroke or a traumatic brain injury, one of the first events seen is swelling of the astroglial cells. In order to study this and other similar phenomena, it is desirable to develop technical instrumentation and analysis methods capable of detecting and characterizing dynamic cell shape changes in a quantitative and robust way. We have developed a technique to monitor and to quantify the spatial and temporal volume changes in a single cell in primary culture. The technique is based on two- and three-dimensional fluorescence imaging. The temporal information is obtained from a sequence of microscope images, which are analyzed in real time. The spatial data is collected in a sequence of images from the microscope, which is automatically focused up and down through the specimen. The analysis of spatial data is performed off-line and consists of photobleaching compensation, focus restoration, filtering, segmentation and spatial volume estimation.
NASA Astrophysics Data System (ADS)
Huang, Xia; Li, Chunqiang; Xiao, Chuan; Sun, Wenqing; Qian, Wei
2017-03-01
The temporal focusing two-photon microscope (TFM) is developed to perform depth resolved wide field fluorescence imaging by capturing frames sequentially. However, due to strong nonignorable noises and diffraction rings surrounding particles, further researches are extremely formidable without a precise particle localization technique. In this paper, we developed a fully-automated scheme to locate particles positions with high noise tolerance. Our scheme includes the following procedures: noise reduction using a hybrid Kalman filter method, particle segmentation based on a multiscale kernel graph cuts global and local segmentation algorithm, and a kinematic estimation based particle tracking method. Both isolated and partial-overlapped particles can be accurately identified with removal of unrelated pixels. Based on our quantitative analysis, 96.22% isolated particles and 84.19% partial-overlapped particles were successfully detected.
Nonlinear pattern analysis of ventricular premature beats by mutual information
NASA Technical Reports Server (NTRS)
Osaka, M.; Saitoh, H.; Yokoshima, T.; Kishida, H.; Hayakawa, H.; Cohen, R. J.
1997-01-01
The frequency of ventricular premature beats (VPBs) has been related to the risk of mortality. However, little is known about the temporal pattern of occurrence of VPBs and its relationship to autonomic activity. Hence, we applied a general correlation measure, mutual information, to quantify how VPBs are generated over time. We also used mutual information to determine the correlation between VPB production and heart rate in order to evaluate effects of autonomic activity on VPB production. We examined twenty subjects with more than 3000 VPBs/day and simulated random time series of VPB occurrence. We found that mutual information values could be used to characterize quantitatively the temporal patterns of VPB generation. Our data suggest that VPB production is not random and VPBs generated with a higher value of mutual information may be more greatly affected by autonomic activity.
Apparatus and method for the spectrochemical analysis of liquids using the laser spark
Cremers, David A.; Radziemski, Leon J.; Loree, Thomas R.
1990-01-01
A method and apparatus for the qualitative and quantitative spectroscopic investigation of elements present in a liquid sample using the laser spark. A series of temporally closely spaced spark pairs is induced in the liquid sample utilizing pulsed electromagnetic radiation from a pair of lasers. The light pulses are not significantly absorbed by the sample so that the sparks occur inside of the liquid. The emitted light from the breakdown events is spectrally and temporally resolved, and the time period between the two laser pulses in each spark pair is adjusted to maximize the signal-to-noise ratio of the emitted signals. In comparison with the single pulse technique, a substantial reduction in the limits of detectability for many elements has been demonstrated. Narrowing of spectral features results in improved discrimination against interfering species.
Apparatus and method for the spectrochemical analysis of liquids using the laser spark
Cremers, D.A.; Radziemski, L.J.; Loree, T.R.
1984-05-01
A method and apparatus are disclosed for the qualitative and quantitative spectroscopic investigation of elements present in a liquid sample using the laser spark. A series of temporally closely spaced spark pairs is induced in the liquid sample utilizing pulsed electromagnetic radiation from a pair of lasers. The light pulses are not significantly absorbed by the sample so that the sparks occur inside of the liquid. The emitted light from the breakdown events is spectrally and temporally resolved, and the time period between the two laser pulses in each spark pair is adjusted to maximize the signal-to-noise ratio of the emitted signals. In comparison with the single pulse technique, a substantial reduction in the limits of detectability for many elements has been demonstrated. Narrowing of spectral features results in improved discrimination against interfering species.
Temporal Dynamics of the Human Vaginal Microbiota
Gajer, Pawel; Brotman, Rebecca M.; Bai, Guoyun; Sakamoto, Joyce; Schütte, Ursel M.E.; Zhong, Xue; Koenig, Sara S.K.; Fu, Li; Ma, Zhanshan; Zhou, Xia; Abdo, Zaid; Forney, Larry J.; Ravel, Jacques
2012-01-01
Elucidating the factors that impinge on the stability of bacterial communities in the vagina may help in predicting the risk of diseases that affect women’s health. Here, we describe the temporal dynamics of the composition of vaginal bacterial communities in 32 reproductive age women over a 16-week period. The analysis revealed the dynamics of five major classes of bacterial communities and showed that some communities change markedly over short time periods, whereas others are relatively stable. Modeling community stability using new quantitative measures indicates that deviation from stability correlates with time in the menstrual cycle, bacterial community composition and sexual activity. The women studied are healthy, thus it appears that neither variation in community composition per se, nor higher levels of observed diversity (co-dominance) are necessarily indicative of dysbiosis, in which there is microbial imbalance accompanied by symptoms. PMID:22553250
Quantifying the development of user-generated art during 2001–2010
Yazdani, Mehrdad; Chow, Jay; Manovich, Lev
2017-01-01
One of the main questions in the humanities is how cultures and artistic expressions change over time. While a number of researchers have used quantitative computational methods to study historical changes in literature, music, and cinema, our paper offers the first quantitative analysis of historical changes in visual art created by users of a social online network. We propose a number of computational methods for the analysis of temporal development of art images. We then apply these methods to a sample of 270,000 artworks created between 2001 and 2010 by users of the largest social network for art—DeviantArt (www.deviantart.com). We investigate changes in subjects, techniques, sizes, proportions and also selected visual characteristics of images. Because these artworks are classified by their creators into two general categories—Traditional Art and Digital Art—we are also able to investigate if the use of digital tools has had a significant effect on the content and form of artworks. Our analysis reveals a number of gradual and systematic changes over a ten-year period in artworks belonging to both categories. PMID:28792494
Quantifying the development of user-generated art during 2001-2010.
Yazdani, Mehrdad; Chow, Jay; Manovich, Lev
2017-01-01
One of the main questions in the humanities is how cultures and artistic expressions change over time. While a number of researchers have used quantitative computational methods to study historical changes in literature, music, and cinema, our paper offers the first quantitative analysis of historical changes in visual art created by users of a social online network. We propose a number of computational methods for the analysis of temporal development of art images. We then apply these methods to a sample of 270,000 artworks created between 2001 and 2010 by users of the largest social network for art-DeviantArt (www.deviantart.com). We investigate changes in subjects, techniques, sizes, proportions and also selected visual characteristics of images. Because these artworks are classified by their creators into two general categories-Traditional Art and Digital Art-we are also able to investigate if the use of digital tools has had a significant effect on the content and form of artworks. Our analysis reveals a number of gradual and systematic changes over a ten-year period in artworks belonging to both categories.
NASA Astrophysics Data System (ADS)
Chen, Shichao; Zhu, Yizheng
2017-02-01
Sensitivity is a critical index to measure the temporal fluctuation of the retrieved optical pathlength in quantitative phase imaging system. However, an accurate and comprehensive analysis for sensitivity evaluation is still lacking in current literature. In particular, previous theoretical studies for fundamental sensitivity based on Gaussian noise models are not applicable to modern cameras and detectors, which are dominated by shot noise. In this paper, we derive two shot noiselimited theoretical sensitivities, Cramér-Rao bound and algorithmic sensitivity for wavelength shifting interferometry, which is a major category of on-axis interferometry techniques in quantitative phase imaging. Based on the derivations, we show that the shot noise-limited model permits accurate estimation of theoretical sensitivities directly from measured data. These results can provide important insights into fundamental constraints in system performance and can be used to guide system design and optimization. The same concepts can be generalized to other quantitative phase imaging techniques as well.
High-resolution gene expression data from blastoderm embryos of the scuttle fly Megaselia abdita
Wotton, Karl R; Jiménez-Guri, Eva; Crombach, Anton; Cicin-Sain, Damjan; Jaeger, Johannes
2015-01-01
Gap genes are involved in segment determination during early development in dipteran insects (flies, midges, and mosquitoes). We carried out a systematic quantitative comparative analysis of the gap gene network across different dipteran species. Our work provides mechanistic insights into the evolution of this pattern-forming network. As a central component of our project, we created a high-resolution quantitative spatio-temporal data set of gap and maternal co-ordinate gene expression in the blastoderm embryo of the non-drosophilid scuttle fly, Megaselia abdita. Our data include expression patterns in both wild-type and RNAi-treated embryos. The data—covering 10 genes, 10 time points, and over 1,000 individual embryos—consist of original embryo images, quantified expression profiles, extracted positions of expression boundaries, and integrated expression patterns, plus metadata and intermediate processing steps. These data provide a valuable resource for researchers interested in the comparative study of gene regulatory networks and pattern formation, an essential step towards a more quantitative and mechanistic understanding of developmental evolution. PMID:25977812
Temporal variability of spectro-temporal receptive fields in the anesthetized auditory cortex.
Meyer, Arne F; Diepenbrock, Jan-Philipp; Ohl, Frank W; Anemüller, Jörn
2014-01-01
Temporal variability of neuronal response characteristics during sensory stimulation is a ubiquitous phenomenon that may reflect processes such as stimulus-driven adaptation, top-down modulation or spontaneous fluctuations. It poses a challenge to functional characterization methods such as the receptive field, since these often assume stationarity. We propose a novel method for estimation of sensory neurons' receptive fields that extends the classic static linear receptive field model to the time-varying case. Here, the long-term estimate of the static receptive field serves as the mean of a probabilistic prior distribution from which the short-term temporally localized receptive field may deviate stochastically with time-varying standard deviation. The derived corresponding generalized linear model permits robust characterization of temporal variability in receptive field structure also for highly non-Gaussian stimulus ensembles. We computed and analyzed short-term auditory spectro-temporal receptive field (STRF) estimates with characteristic temporal resolution 5-30 s based on model simulations and responses from in total 60 single-unit recordings in anesthetized Mongolian gerbil auditory midbrain and cortex. Stimulation was performed with short (100 ms) overlapping frequency-modulated tones. Results demonstrate identification of time-varying STRFs, with obtained predictive model likelihoods exceeding those from baseline static STRF estimation. Quantitative characterization of STRF variability reveals a higher degree thereof in auditory cortex compared to midbrain. Cluster analysis indicates that significant deviations from the long-term static STRF are brief, but reliably estimated. We hypothesize that the observed variability more likely reflects spontaneous or state-dependent internal fluctuations that interact with stimulus-induced processing, rather than experimental or stimulus design.
NASA Astrophysics Data System (ADS)
Soltanian-Zadeh, Somayyeh; Hossein-Zadeh, Gholam-Ali; Shahbabaie, Alireza; Ekhtiari, Hamed
2016-03-01
Resting state functional connectivity (rsFC) studies using fMRI provides a great deal of knowledge on the spatiotemporal organization of the brain. The relationships between and within a number of resting state functional networks, namely the default mode network (DMN), salience network (SN) and executive control network (ECN) have been intensely studied in basic and clinical cognitive neuroscience [1]. However, the presumption of spatial and temporal stationarity has mostly restricted the assessment of rsFC [1]. In this study, sliding window correlation analysis and k-means clustering were exploited to examine the temporal dynamics of rsFC of these three networks in 24 abstinent methamphetamine dependents. Afterwards, using canonical correlation analysis (CCA) the possible relationship between the level of self-reported craving and the temporal dynamics was examined. Results indicate that the rsFC transits between 6 discrete "FC states" in the meth dependents. CCA results show that higher levels of craving are associated with higher probability of transiting from state 4 to 6 (positive FC of DMN-ECN getting weak and negative FC of DMN-SN appearing) and staying in state 4 (positive FC of DMN-ECN), lower probability of staying in state 2 (negative FC of DMN-ECN), transiting from state 4 to 2 (change of positive FC of DMN-ECN to negative FC), and transiting from state 3 to 5 (appearance of negative FC of DMN-SN and positive FC of DMN-ECN with the presence of negative FC of SN-ECN). Quantitative measures of temporal dynamics in large-scale brain networks could bring new added values to increase potentials for applications of rsfMRI in addiction medicine.
Time-dependence of graph theory metrics in functional connectivity analysis
Chiang, Sharon; Cassese, Alberto; Guindani, Michele; Vannucci, Marina; Yeh, Hsiang J.; Haneef, Zulfi; Stern, John M.
2016-01-01
Brain graphs provide a useful way to computationally model the network structure of the connectome, and this has led to increasing interest in the use of graph theory to quantitate and investigate the topological characteristics of the healthy brain and brain disorders on the network level. The majority of graph theory investigations of functional connectivity have relied on the assumption of temporal stationarity. However, recent evidence increasingly suggests that functional connectivity fluctuates over the length of the scan. In this study, we investigate the stationarity of brain network topology using a Bayesian hidden Markov model (HMM) approach that estimates the dynamic structure of graph theoretical measures of whole-brain functional connectivity. In addition to extracting the stationary distribution and transition probabilities of commonly employed graph theory measures, we propose two estimators of temporal stationarity: the S-index and N-index. These indexes can be used to quantify different aspects of the temporal stationarity of graph theory measures. We apply the method and proposed estimators to resting-state functional MRI data from healthy controls and patients with temporal lobe epilepsy. Our analysis shows that several graph theory measures, including small-world index, global integration measures, and betweenness centrality, may exhibit greater stationarity over time and therefore be more robust. Additionally, we demonstrate that accounting for subject-level differences in the level of temporal stationarity of network topology may increase discriminatory power in discriminating between disease states. Our results confirm and extend findings from other studies regarding the dynamic nature of functional connectivity, and suggest that using statistical models which explicitly account for the dynamic nature of functional connectivity in graph theory analyses may improve the sensitivity of investigations and consistency across investigations. PMID:26518632
Time-dependence of graph theory metrics in functional connectivity analysis.
Chiang, Sharon; Cassese, Alberto; Guindani, Michele; Vannucci, Marina; Yeh, Hsiang J; Haneef, Zulfi; Stern, John M
2016-01-15
Brain graphs provide a useful way to computationally model the network structure of the connectome, and this has led to increasing interest in the use of graph theory to quantitate and investigate the topological characteristics of the healthy brain and brain disorders on the network level. The majority of graph theory investigations of functional connectivity have relied on the assumption of temporal stationarity. However, recent evidence increasingly suggests that functional connectivity fluctuates over the length of the scan. In this study, we investigate the stationarity of brain network topology using a Bayesian hidden Markov model (HMM) approach that estimates the dynamic structure of graph theoretical measures of whole-brain functional connectivity. In addition to extracting the stationary distribution and transition probabilities of commonly employed graph theory measures, we propose two estimators of temporal stationarity: the S-index and N-index. These indexes can be used to quantify different aspects of the temporal stationarity of graph theory measures. We apply the method and proposed estimators to resting-state functional MRI data from healthy controls and patients with temporal lobe epilepsy. Our analysis shows that several graph theory measures, including small-world index, global integration measures, and betweenness centrality, may exhibit greater stationarity over time and therefore be more robust. Additionally, we demonstrate that accounting for subject-level differences in the level of temporal stationarity of network topology may increase discriminatory power in discriminating between disease states. Our results confirm and extend findings from other studies regarding the dynamic nature of functional connectivity, and suggest that using statistical models which explicitly account for the dynamic nature of functional connectivity in graph theory analyses may improve the sensitivity of investigations and consistency across investigations. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Singh, Vijay Raj; Yaqoob, Zahid; So, Peter T. C.
2017-02-01
Quantitative phase microscopy (QPM) techniques developed so far primarily belongs to high speed transmitted light based systems that has enough sensitivity to resolve membrane fluctuations and dynamics, but has no depth resolution. Therefore, most biomechanics studies using QPM today is confined to simple cells, such as RBCs, without internal organelles. An important instrument that will greatly extend the biomedical applications of QPM is to develop next generation microscope with 3D capability and sufficient temporal resolution to study biomechanics of complex eukaryotic cells including the mechanics of their internal compartments. For eukaryotic cells, the depth sectioning capability is critical and should be sufficient to distinguish nucleic membrane fluctuations from plasma membrane fluctuations. Further, this microscope must provide high temporal resolution since typical eukaryotes membranes are substantially stiffer than RBCs. A confocal reflectance quantitative phase microscope is presented based on multi-pinhole scanning, with the capabilities of higher temporal resolution and sensitivity for nucleic and plasma membranes of eukaryotic cells. System hardware is developed based on an array of confocal pinhole generated by using the `ON' state of subset of micro-mirrors of digital micro-mirror device (DMD, from Texas Instruments) and high-speed raster scanning provides 14ms imaging speed in wide-field mode. A common path interferometer is integrated at the imaging arm for detection of specimens' quantitative phase information. Theoretical investigation of quantitative phase reconstructed from system is investigated and application of system is presented for dimensional fluctuations measurements of both cellular plasma and nucleic membranes of embryonic stem cells.
Outcome of temporal lobe epilepsy surgery predicted by statistical parametric PET imaging.
Wong, C Y; Geller, E B; Chen, E Q; MacIntyre, W J; Morris, H H; Raja, S; Saha, G B; Lüders, H O; Cook, S A; Go, R T
1996-07-01
PET is useful in the presurgical evaluation of temporal lobe epilepsy. The purpose of this retrospective study is to assess the clinical use of statistical parametric imaging in predicting surgical outcome. Interictal 18FDG-PET scans in 17 patients with surgically-treated temporal lobe epilepsy (Group A-13 seizure-free, group B = 4 not seizure-free at 6 mo) were transformed into statistical parametric imaging, with each pixel representing a z-score value by using the mean and s.d. of count distribution in each individual patient, for both visual and quantitative analysis. Mean z-scores were significantly more negative in anterolateral (AL) and mesial (M) regions on the operated side than the nonoperated side in group A (AL: p < 0.00005, M: p = 0.0097), but not in group B (AL: p = 0.46, M: p = 0.08). Statistical parametric imaging correctly lateralized 16 out of 17 patients. Only the AL region, however, was significant in predicting surgical outcome (F = 29.03, p < 0.00005). Using a cut-off z-score value of -1.5, statistical parametric imaging correctly classified 92% of temporal lobes from group A and 88% of those from Group B. The preliminary results indicate that statistical parametric imaging provides both clinically useful information for lateralization in temporal lobe epilepsy and a reliable predictive indicator of clinical outcome following surgical treatment.
Netzel, Pawel
2017-01-01
The United States is increasingly becoming a multi-racial society. To understand multiple consequences of this overall trend to our neighborhoods we need a methodology capable of spatio-temporal analysis of racial diversity at the local level but also across the entire U.S. Furthermore, such methodology should be accessible to stakeholders ranging from analysts to decision makers. In this paper we present a comprehensive framework for visualizing and analyzing diversity data that fulfills such requirements. The first component of our framework is a U.S.-wide, multi-year database of race sub-population grids which is freely available for download. These 30 m resolution grids have being developed using dasymetric modeling and are available for 1990-2000-2010. We summarize numerous advantages of gridded population data over commonly used Census tract-aggregated data. Using these grids frees analysts from constructing their own and allows them to focus on diversity analysis. The second component of our framework is a set of U.S.-wide, multi-year diversity maps at 30 m resolution. A diversity map is our product that classifies the gridded population into 39 communities based on their degrees of diversity, dominant race, and population density. It provides spatial information on diversity in a single, easy-to-understand map that can be utilized by analysts and end users alike. Maps based on subsequent Censuses provide information about spatio-temporal dynamics of diversity. Diversity maps are accessible through the GeoWeb application SocScape (http://sil.uc.edu/webapps/socscape_usa/) for an immediate online exploration. The third component of our framework is a proposal to quantitatively analyze diversity maps using a set of landscape metrics. Because of its form, a grid-based diversity map could be thought of as a diversity “landscape” and analyzed quantitatively using landscape metrics. We give a brief summary of most pertinent metrics and demonstrate how they can be applied to diversity maps. PMID:28358862
Proterozoic Milankovitch cycles and the history of the solar system.
Meyers, Stephen R; Malinverno, Alberto
2018-06-19
The geologic record of Milankovitch climate cycles provides a rich conceptual and temporal framework for evaluating Earth system evolution, bestowing a sharp lens through which to view our planet's history. However, the utility of these cycles for constraining the early Earth system is hindered by seemingly insurmountable uncertainties in our knowledge of solar system behavior (including Earth-Moon history), and poor temporal control for validation of cycle periods (e.g., from radioisotopic dates). Here we address these problems using a Bayesian inversion approach to quantitatively link astronomical theory with geologic observation, allowing a reconstruction of Proterozoic astronomical cycles, fundamental frequencies of the solar system, the precession constant, and the underlying geologic timescale, directly from stratigraphic data. Application of the approach to 1.4-billion-year-old rhythmites indicates a precession constant of 85.79 ± 2.72 arcsec/year (2σ), an Earth-Moon distance of 340,900 ± 2,600 km (2σ), and length of day of 18.68 ± 0.25 hours (2σ), with dominant climatic precession cycles of ∼14 ky and eccentricity cycles of ∼131 ky. The results confirm reduced tidal dissipation in the Proterozoic. A complementary analysis of Eocene rhythmites (∼55 Ma) illustrates how the approach offers a means to map out ancient solar system behavior and Earth-Moon history using the geologic archive. The method also provides robust quantitative uncertainties on the eccentricity and climatic precession periods, and derived astronomical timescales. As a consequence, the temporal resolution of ancient Earth system processes is enhanced, and our knowledge of early solar system dynamics is greatly improved.
NASA Astrophysics Data System (ADS)
Goldberg, M. A.; Shibaeva, T. V.; Smirnov, V. V.; Kutsev, S. V.; Barinov, S. M.; Grigorovich, K. V.
2012-12-01
Materials in the hydroxyapatite (HA)-calcium carbonate (CC) system were synthesized by a precipitation method from aqueous solutions. According to the data of X-ray phase analysis and IR spectroscopy, the powders consisted of CC and AB-type carbonate-substituted HA (CHA). In order to determine the content of carbonate-containing phases in materials, the temperature-temporal mode of fractionated-combustion analysis of carbon was developed. The quantitative phase ratios and the degree of substitution of carbonate groups in CHA were determined. It was shown that the degree of substitution of carbonate groups in CHA increased from 2.47 to 5.31 wt % as the CC content increased from 13.50 to 88.33 wt %.
Multi-temporal MRI carpal bone volumes analysis by principal axes registration
NASA Astrophysics Data System (ADS)
Ferretti, Roberta; Dellepiane, Silvana
2016-03-01
In this paper, a principal axes registration technique is presented, with the relevant application to segmented volumes. The purpose of the proposed registration is to compare multi-temporal volumes of carpal bones from Magnetic Resonance Imaging (MRI) acquisitions. Starting from the study of the second-order moment matrix, the eigenvectors are calculated to allow the rotation of volumes with respect to reference axes. Then the volumes are spatially translated to become perfectly overlapped. A quantitative evaluation of the results obtained is carried out by computing classical indices from the confusion matrix, which depict similarity measures between the volumes of the same organ as extracted from MRI acquisitions executed at different moments. Within the medical field, the way a registration can be used to compare multi-temporal images is of great interest, since it provides the physician with a tool which allows a visual monitoring of a disease evolution. The segmentation method used herein is based on the graph theory and is a robust, unsupervised and parameters independent method. Patients affected by rheumatic diseases have been considered.
Sobering up: A Quantitative Review of Temporal Declines in Expectations
ERIC Educational Resources Information Center
Sweeny, Kate; Krizan, Zlatan
2013-01-01
Although people's outlook on the future tends to be characterized by hope and optimism, over time this outlook often becomes more dire. We review multiple theoretical accounts of this tendency to "sober up" as feedback about outcomes draws near, and we explicate factors critical to promoting these temporal declines in expectations. We then…
Tsai, Meng-Tsan; Chang, Feng-Yu; Lee, Cheng-Kuang; Gong, Cihun-Siyong Alex; Lin, Yu-Xiang; Lee, Jiann-Der; Yang, Chih-Hsun; Liu, Hao-Li
2014-01-01
Focused ultrasound (FUS) can be used to locally and temporally enhance vascular permeability, improving the efficiency of drug delivery from the blood vessels into the surrounding tissue. However, it is difficult to evaluate in real time the effect induced by FUS and to noninvasively observe the permeability enhancement. In this study, speckle-variance optical coherence tomography (SVOCT) was implemented for the investigation of temporal effects on vessels induced by FUS treatment. With OCT scanning, the dynamic change in vessels during FUS exposure can be observed and studied. Moreover, the vascular effects induced by FUS treatment with and without the presence of microbubbles were investigated and quantitatively compared. Additionally, 2D and 3D speckle-variance images were used for quantitative observation of blood leakage from vessels due to the permeability enhancement caused by FUS, which could be an indicator that can be used to determine the influence of FUS power exposure. In conclusion, SVOCT can be a useful tool for monitoring FUS treatment in real time, facilitating the dynamic observation of temporal effects and helping to determine the optimal FUS power. PMID:25071945
Oliver, Penelope; Cicerale, Sara; Pang, Edwin; Keast, Russell
2018-04-01
Temporal dominance of sensations (TDS) is a rapid descriptive method that offers a different magnitude of information to traditional descriptive analysis methodologies. This methodology considers the dynamic nature of eating, assessing sensory perception of foods as they change throughout the eating event. Limited research has applied the TDS methodology to strawberries and subsequently validated the results against Quantitative Descriptive Analysis (QDA™). The aim of this research is to compare the TDS methodology using an untrained consumer panel to the results obtained via QDA™ with a trained sensory panel. The trained panelists (n = 12, minimum 60 hr each panelist) were provided with six strawberry samples (three cultivars at two maturation levels) and applied QDA™ techniques to profile each strawberry sample. Untrained consumers (n = 103) were provided with six strawberry samples (three cultivars at two maturation levels) and required to use TDS methodology to assess the dominant sensations for each sample as they change over time. Results revealed moderately comparable product configurations produced via TDS in comparison to QDA™ (RV coefficient = 0.559), as well as similar application of the sweet attribute (correlation coefficient of 0.895 at first bite). The TDS methodology however was not in agreement with the QDA™ methodology regarding more complex flavor terms. These findings support the notion that the lack of training on the definition of terms, together with the limitations of the methodology to ignore all attributes other than those dominant, provide a different magnitude of information than the QDA™ methodology. A comparison of TDS to traditional descriptive analysis indicate that TDS provides additional information to QDA™ regarding the lingering component of eating. The QDA™ results however provide more precise detail regarding singular attributes. Therefore, the TDS methodology has an application in industry when it is important to understand the lingering profile of products. However, this methodology should not be employed as a replacement to traditional descriptive analysis methods. © 2018 Institute of Food Technologists®.
Kim, So Young; Sim, Songyong; Choi, Hyo Geun
2018-06-05
This study aimed to evaluate the relations of smoking with asthma and asthma-related symptoms, considering quantitative and temporal influences. The 820,710 Korean adults in the Korean Community Health Survey in 2009, 2010, 2011, and 2013 were included and classified as non-smoker, past smoker or current smoker. Total smoking years, total pack-years, and age at smoking onset were assessed. Information on wheezing, exercise wheezing, and aggravation of asthma in the past 12 months and asthma diagnosis history and current treatment was collected. Multiple logistic regression analysis with complex sampling was used. Current and former smokers showed significant positive relations with wheezing, exercise wheezing, asthma ever, current asthma, and asthma aggravation. Current smokers demonstrated higher adjusted odd ratios (AORs) for wheezing, exercise wheezing, and asthma aggravation than former smokers. Former smokers showed higher AORs than current smokers for current asthma treatment. Longer passive smoking was related to wheezing and exercise wheezing. Greater age at smoking onset and duration since cessation were negatively related to wheezing, exercise wheezing, and current asthma; total pack-years demonstrated proportional associations with these symptoms. Former, current, and passive smoking was positively correlated with wheezing and exercise wheezing. Total pack-years and early initiation were increasingly related to asthma.
George, Steven Z; Wittmer, Virgil T; Fillingim, Roger B; Robinson, Michael E
2006-03-01
Quantitative sensory testing has demonstrated a promising link between experimentally determined pain sensitivity and clinical pain. However, previous studies of quantitative sensory testing have not routinely considered the important influence of psychological factors on clinical pain. This study investigated whether measures of thermal pain sensitivity (temporal summation, first pulse response, and tolerance) contributed to clinical pain reports for patients with chronic low back pain, after controlling for depression or fear-avoidance beliefs about work. Consecutive patients (n=27) with chronic low back pain were recruited from an interdisciplinary pain rehabilitation program in Jacksonville, FL. Patients completed validated self-report questionnaires for depression, fear-avoidance beliefs, clinical pain intensity, and clinical pain related disability. Patients also underwent quantitative sensory testing from previously described protocols to determine thermal pain sensitivity (temporal summation, first pulse response, and tolerance). Hierarchical regression models investigated the contribution of depression and thermal pain sensitivity to clinical pain intensity, and fear-avoidance beliefs and thermal pain sensitivity to clinical pain related disability. None of the measures of thermal pain sensitivity contributed to clinical pain intensity after controlling for depression. Temporal summation of evoked thermal pain significantly contributed to clinical pain disability after controlling for fear-avoidance beliefs about work. Measures of thermal pain sensitivity did not contribute to pain intensity, after controlling for depression. Fear-avoidance beliefs about work and temporal summation of evoked thermal pain significantly influenced pain related disability. These factors should be considered as potential outcome predictors for patients with work-related low back pain. This study supported the neuromatrix theory of pain for patients with CLBP, as cognitive-evaluative factor contributed to pain perception, and cognitive-evaluative and sensory-discriminative factors uniquely contributed to an action program in response to chronic pain. Future research will determine if a predictive model consisting of fear-avoidance beliefs and temporal summation of evoked thermal pain has predictive validity for determining clinical outcome in rehabilitation or vocational settings.
Phenotypic Signatures Arising from Unbalanced Bacterial Growth
Tan, Cheemeng; Smith, Robert Phillip; Tsai, Ming-Chi; Schwartz, Russell; You, Lingchong
2014-01-01
Fluctuations in the growth rate of a bacterial culture during unbalanced growth are generally considered undesirable in quantitative studies of bacterial physiology. Under well-controlled experimental conditions, however, these fluctuations are not random but instead reflect the interplay between intra-cellular networks underlying bacterial growth and the growth environment. Therefore, these fluctuations could be considered quantitative phenotypes of the bacteria under a specific growth condition. Here, we present a method to identify “phenotypic signatures” by time-frequency analysis of unbalanced growth curves measured with high temporal resolution. The signatures are then applied to differentiate amongst different bacterial strains or the same strain under different growth conditions, and to identify the essential architecture of the gene network underlying the observed growth dynamics. Our method has implications for both basic understanding of bacterial physiology and for the classification of bacterial strains. PMID:25101949
Phenotypic signatures arising from unbalanced bacterial growth.
Tan, Cheemeng; Smith, Robert Phillip; Tsai, Ming-Chi; Schwartz, Russell; You, Lingchong
2014-08-01
Fluctuations in the growth rate of a bacterial culture during unbalanced growth are generally considered undesirable in quantitative studies of bacterial physiology. Under well-controlled experimental conditions, however, these fluctuations are not random but instead reflect the interplay between intra-cellular networks underlying bacterial growth and the growth environment. Therefore, these fluctuations could be considered quantitative phenotypes of the bacteria under a specific growth condition. Here, we present a method to identify "phenotypic signatures" by time-frequency analysis of unbalanced growth curves measured with high temporal resolution. The signatures are then applied to differentiate amongst different bacterial strains or the same strain under different growth conditions, and to identify the essential architecture of the gene network underlying the observed growth dynamics. Our method has implications for both basic understanding of bacterial physiology and for the classification of bacterial strains.
Space-time analysis of pneumonia hospitalisations in the Netherlands.
Benincà, Elisa; van Boven, Michiel; Hagenaars, Thomas; van der Hoek, Wim
2017-01-01
Community acquired pneumonia is a major global public health problem. In the Netherlands there are 40,000-50,000 hospital admissions for pneumonia per year. In the large majority of these hospital admissions the etiologic agent is not determined and a real-time surveillance system is lacking. Localised and temporal increases in hospital admissions for pneumonia are therefore only detected retrospectively and the etiologic agents remain unknown. Here, we perform spatio-temporal analyses of pneumonia hospital admission data in the Netherlands. To this end, we scanned for spatial clusters on yearly and seasonal basis, and applied wavelet cluster analysis on the time series of five main regions. The pneumonia hospital admissions show strong clustering in space and time superimposed on a regular yearly cycle with high incidence in winter and low incidence in summer. Cluster analysis reveals a heterogeneous pattern, with most significant clusters occurring in the western, highly urbanised, and in the eastern, intensively farmed, part of the Netherlands. Quantitatively, the relative risk (RR) of the significant clusters for the age-standardised incidence varies from a minimum of 1.2 to a maximum of 2.2. We discuss possible underlying causes for the patterns observed, such as variations in air pollution.
Mapping snow cover using multi-source satellite data on big data platforms
NASA Astrophysics Data System (ADS)
Lhermitte, Stef
2017-04-01
Snowmelt is an important and dynamically changing water resource in mountainous regions around the world. In this framework, remote sensing data of snow cover data provides an essential input for hydrological models to model the water contribution from remote mountain areas and to understand how this water resource might alter as a result of climate change. Traditionally, however, many of these remote sensing products show a trade-off between spatial and temporal resolution (e.g., 16-day Landsat at 30m vs. daily MODIS at 500m resolution). With the advent of Sentinel-1 and 2 and the PROBA-V 100m products this trade-off can partially be tackled by having data that corresponds more closely to the spatial and temporal variations in snow cover typically observed over complex mountain areas. This study provides first a quantitative analysis of the trade-offs between the state-of-the-art snow cover mapping methodologies for Landsat, MODIS, PROBA-V, Sentinel-1 and 2 and applies them on big data platforms such as Google Earth Engine (GEE), RSS (ESA Research Service & Support) CloudToolbox, and the PROBA-V Mission Exploitation Platform (MEP). Second, it combines the different sensor data-cubes in one multi-sensor classification approach using newly developed spatio-temporal probability classifiers within the big data platform environments. Analysis of the spatio-temporal differences in derived snow cover areas from the different sensors reveals the importance of understanding the spatial and temporal scales at which variations occur. Moreover, it shows the importance of i) temporal resolution when monitoring highly dynamical properties such as snow cover and of ii) differences in satellite viewing angles over complex mountain areas. Finally, it highlights the potential and drawbacks of big data platforms for combining multi-source satellite data for monitoring dynamical processes such as snow cover.
Chen, Bin; Zhao, Kai; Li, Bo; Cai, Wenchao; Wang, Xiaoying; Zhang, Jue; Fang, Jing
2015-10-01
To demonstrate the feasibility of the improved temporal resolution by using compressed sensing (CS) combined imaging sequence in dynamic contrast-enhanced MRI (DCE-MRI) of kidney, and investigate its quantitative effects on renal perfusion measurements. Ten rabbits were included in the accelerated scans with a CS-combined 3D pulse sequence. To evaluate the image quality, the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were compared between the proposed CS strategy and the conventional full sampling method. Moreover, renal perfusion was estimated by using the separable compartmental model in both CS simulation and realistic CS acquisitions. The CS method showed DCE-MRI images with improved temporal resolution and acceptable image contrast, while presenting significantly higher SNR than the fully sampled images (p<.01) at 2-, 3- and 4-X acceleration. In quantitative measurements, renal perfusion results were in good agreement with the fully sampled one (concordance correlation coefficient=0.95, 0.91, 0.88) at 2-, 3- and 4-X acceleration in CS simulation. Moreover, in realistic acquisitions, the estimated perfusion by the separable compartmental model exhibited no significant differences (p>.05) between each CS-accelerated acquisition and the full sampling method. The CS-combined 3D sequence could improve the temporal resolution for DCE-MRI in kidney while yielding diagnostically acceptable image quality, and it could provide effective measurements of renal perfusion. Copyright © 2015 Elsevier Inc. All rights reserved.
Wong, Stephen; Hargreaves, Eric L; Baltuch, Gordon H; Jaggi, Jurg L; Danish, Shabbar F
2012-01-01
Microelectrode recording (MER) is necessary for precision localization of target structures such as the subthalamic nucleus during deep brain stimulation (DBS) surgery. Attempts to automate this process have produced quantitative temporal trends (feature activity vs. time) extracted from mobile MER data. Our goal was to evaluate computational methods of generating spatial profiles (feature activity vs. depth) from temporal trends that would decouple automated MER localization from the clinical procedure and enhance functional localization in DBS surgery. We evaluated two methods of interpolation (standard vs. kernel) that generated spatial profiles from temporal trends. We compared interpolated spatial profiles to true spatial profiles that were calculated with depth windows, using correlation coefficient analysis. Excellent approximation of true spatial profiles is achieved by interpolation. Kernel-interpolated spatial profiles produced superior correlation coefficient values at optimal kernel widths (r = 0.932-0.940) compared to standard interpolation (r = 0.891). The choice of kernel function and kernel width resulted in trade-offs in smoothing and resolution. Interpolation of feature activity to create spatial profiles from temporal trends is accurate and can standardize and facilitate MER functional localization of subcortical structures. The methods are computationally efficient, enhancing localization without imposing additional constraints on the MER clinical procedure during DBS surgery. Copyright © 2012 S. Karger AG, Basel.
Vinciotti, Veronica; Liu, Xiaohui; Turk, Rolf; de Meijer, Emile J; 't Hoen, Peter A C
2006-04-03
The identification of biologically interesting genes in a temporal expression profiling dataset is challenging and complicated by high levels of experimental noise. Most statistical methods used in the literature do not fully exploit the temporal ordering in the dataset and are not suited to the case where temporal profiles are measured for a number of different biological conditions. We present a statistical test that makes explicit use of the temporal order in the data by fitting polynomial functions to the temporal profile of each gene and for each biological condition. A Hotelling T2-statistic is derived to detect the genes for which the parameters of these polynomials are significantly different from each other. We validate the temporal Hotelling T2-test on muscular gene expression data from four mouse strains which were profiled at different ages: dystrophin-, beta-sarcoglycan and gamma-sarcoglycan deficient mice, and wild-type mice. The first three are animal models for different muscular dystrophies. Extensive biological validation shows that the method is capable of finding genes with temporal profiles significantly different across the four strains, as well as identifying potential biomarkers for each form of the disease. The added value of the temporal test compared to an identical test which does not make use of temporal ordering is demonstrated via a simulation study, and through confirmation of the expression profiles from selected genes by quantitative PCR experiments. The proposed method maximises the detection of the biologically interesting genes, whilst minimising false detections. The temporal Hotelling T2-test is capable of finding relatively small and robust sets of genes that display different temporal profiles between the conditions of interest. The test is simple, it can be used on gene expression data generated from any experimental design and for any number of conditions, and it allows fast interpretation of the temporal behaviour of genes. The R code is available from V.V. The microarray data have been submitted to GEO under series GSE1574 and GSE3523.
Vinciotti, Veronica; Liu, Xiaohui; Turk, Rolf; de Meijer, Emile J; 't Hoen, Peter AC
2006-01-01
Background The identification of biologically interesting genes in a temporal expression profiling dataset is challenging and complicated by high levels of experimental noise. Most statistical methods used in the literature do not fully exploit the temporal ordering in the dataset and are not suited to the case where temporal profiles are measured for a number of different biological conditions. We present a statistical test that makes explicit use of the temporal order in the data by fitting polynomial functions to the temporal profile of each gene and for each biological condition. A Hotelling T2-statistic is derived to detect the genes for which the parameters of these polynomials are significantly different from each other. Results We validate the temporal Hotelling T2-test on muscular gene expression data from four mouse strains which were profiled at different ages: dystrophin-, beta-sarcoglycan and gamma-sarcoglycan deficient mice, and wild-type mice. The first three are animal models for different muscular dystrophies. Extensive biological validation shows that the method is capable of finding genes with temporal profiles significantly different across the four strains, as well as identifying potential biomarkers for each form of the disease. The added value of the temporal test compared to an identical test which does not make use of temporal ordering is demonstrated via a simulation study, and through confirmation of the expression profiles from selected genes by quantitative PCR experiments. The proposed method maximises the detection of the biologically interesting genes, whilst minimising false detections. Conclusion The temporal Hotelling T2-test is capable of finding relatively small and robust sets of genes that display different temporal profiles between the conditions of interest. The test is simple, it can be used on gene expression data generated from any experimental design and for any number of conditions, and it allows fast interpretation of the temporal behaviour of genes. The R code is available from V.V. The microarray data have been submitted to GEO under series GSE1574 and GSE3523. PMID:16584545
Buoyancy Effects on Flow Structure and Instability of Low-Density Gas Jets
NASA Technical Reports Server (NTRS)
Pasumarthi, Kasyap Sriramachandra
2004-01-01
A low-density gas jet injected into a high-density ambient gas is known to exhibit self-excited global oscillations accompanied by large vortical structures interacting with the flow field. The primary objective of the proposed research is to study buoyancy effects on the origin and nature of the flow instability and structure in the near-field of low-density gas jets. Quantitative rainbow schlieren deflectometry, Computational fluid dynamics (CFD) and Linear stability analysis were the techniques employed to scale the buoyancy effects. The formation and evolution of vortices and scalar structure of the flow field are investigated in buoyant helium jets discharged from a vertical tube into quiescent air. Oscillations at identical frequency were observed throughout the flow field. The evolving flow structure is described by helium mole percentage contours during an oscillation cycle. Instantaneous, mean, and RMS concentration profiles are presented to describe interactions of the vortex with the jet flow. Oscillations in a narrow wake region near the jet exit are shown to spread through the jet core near the downstream location of the vortex formation. The effects of jet Richardson number on characteristics of vortex and flow field are investigated and discussed. The laminar, axisymmetric, unsteady jet flow of helium injected into air was simulated using CFD. Global oscillations were observed in the flow field. The computed oscillation frequency agreed qualitatively with the experimentally measured frequency. Contours of helium concentration, vorticity and velocity provided information about the evolution and propagation of vortices in the oscillating flow field. Buoyancy effects on the instability mode were evaluated by rainbow schlieren flow visualization and concentration measurements in the near-field of self-excited helium jets undergoing gravitational change in the microgravity environment of 2.2s drop tower at NASA John H. Glenn Research Center. The jet Reynolds number was varied from 200 to 1500 and jet Richardson number was varied from 0.72 to 0.002. Power spectra plots generated from Fast Fourier Transform (FFT) analysis of angular deflection data acquired at a temporal resolution of 1000Hz reveal substantial damping of the oscillation amplitude in microgravity at low Richardson numbers (0.002). Quantitative concentration data in the form of spatial and temporal evolutions of the instability data in Earth gravity and microgravity reveal significant variations in the jet flow structure upon removal of buoyancy forces. Radial variation of the frequency spectra and time traces of helium concentration revealed the importance of gravitational effects in the jet shear layer region. Linear temporal and spatio-temporal stability analyses of a low-density round gas jet injected into a high-density ambient gas were performed by assuming hyper-tan mean velocity and density profiles. The flow was assumed to be non parallel. Viscous and diffusive effects were ignored. The mean flow parameters were represented as the sum of the mean value and a small normal-mode fluctuation. A second order differential equation governing the pressure disturbance amplitude was derived from the basic conservation equations. The effects of the inhomogeneous shear layer and the Froude number (signifying the effects of gravity) on the temporal and spatio-temporal results were delineated. A decrease in the density ratio (ratio of the density of the jet to the density of the ambient gas) resulted in an increase in the temporal amplification rate of the disturbances. The temporal growth rate of the disturbances increased as the Froude number was reduced. The spatio-temporal analysis performed to determine the absolute instability characteristics of the jet yield positive absolute temporal growth rates at all Fr and different axial locations. As buoyancy was removed (Fr . 8), the previously existing absolute instability disappeared at all locations establhing buoyancy as the primary instability mechanism in self-excited low-density jets.
Quantitative Spatial and Temporal Analysis of Fluorescein Angiography Dynamics in the Eye
Hui, Flora; Nguyen, Christine T. O.; Bedggood, Phillip A.; He, Zheng; Fish, Rebecca L.; Gurrell, Rachel; Vingrys, Algis J.; Bui, Bang V.
2014-01-01
Purpose We describe a novel approach to analyze fluorescein angiography to investigate fluorescein flow dynamics in the rat posterior retina as well as identify abnormal areas following laser photocoagulation. Methods Experiments were undertaken in adult Long Evans rats. Using a rodent retinal camera, videos were acquired at 30 frames per second for 30 seconds following intravenous introduction of sodium fluorescein in a group of control animals (n = 14). Videos were image registered and analyzed using principle components analysis across all pixels in the field. This returns fluorescence intensity profiles from which, the half-rise (time to 50% brightness), half-fall (time for 50% decay) back to an offset (plateau level of fluorescence). We applied this analysis to video fluorescein angiography data collected 30 minutes following laser photocoagulation in a separate group of rats (n = 7). Results Pixel-by-pixel analysis of video angiography clearly delineates differences in the temporal profiles of arteries, veins and capillaries in the posterior retina. We find no difference in half-rise, half-fall or offset amongst the four quadrants (inferior, nasal, superior, temporal). We also found little difference with eccentricity. By expressing the parameters at each pixel as a function of the number of standard deviation from the average of the entire field, we could clearly identify the spatial extent of the laser injury. Conclusions This simple registration and analysis provides a way to monitor the size of vascular injury, to highlight areas of subtle vascular leakage and to quantify vascular dynamics not possible using current fluorescein angiography approaches. This can be applied in both laboratory and clinical settings for in vivo dynamic fluorescent imaging of vasculature. PMID:25365578
Bertti, Poliana; Tejada, Julian; Martins, Ana Paula Pinheiro; Dal-Cól, Maria Luiza Cleto; Terra, Vera Cristina; de Oliveira, José Antônio Cortes; Velasco, Tonicarlo Rodrigues; Sakamoto, Américo Ceiki; Garcia-Cairasco, Norberto
2014-09-01
Epileptic syndromes and seizures are the expression of complex brain systems. Because no analysis of complexity has been applied to epileptic seizure semiology, our goal was to apply neuroethology and graph analysis to the study of the complexity of behavioral manifestations of epileptic seizures in human frontal lobe epilepsy (FLE) and temporal lobe epilepsy (TLE). We analyzed the video recordings of 120 seizures of 18 patients with FLE and 28 seizures of 28 patients with TLE. All patients were seizure-free >1 year after surgery (Engel Class I). All patients' behavioral sequences were analyzed by means of a glossary containing all behaviors and analyzed for neuroethology (Ethomatic software). The same series were used for graph analysis (CYTOSCAPE). Behaviors, displayed as nodes, were connected by edges to other nodes according to their temporal sequence of appearance. Using neuroethology analysis, we confirmed data in the literature such as in FLE: brief/frequent seizures, complex motor behaviors, head and eye version, unilateral/bilateral tonic posturing, speech arrest, vocalization, and rapid postictal recovery and in the case of TLE: presence of epigastric aura, lateralized dystonias, impairment of consciousness/speech during ictal and postictal periods, and development of secondary generalization. Using graph analysis metrics of FLE and TLE confirmed data from flowcharts. However, because of the algorithms we used, they highlighted more powerfully the connectivity and complex associations among behaviors in a quite selective manner, depending on the origin of the seizures. The algorithms we used are commonly employed to track brain connectivity from EEG and MRI sources, which makes our study very promising for future studies of complexity in this field. Copyright © 2014 Elsevier Inc. All rights reserved.
Efficient robust reconstruction of dynamic PET activity maps with radioisotope decay constraints.
Gao, Fei; Liu, Huafeng; Shi, Pengcheng
2010-01-01
Dynamic PET imaging performs sequence of data acquisition in order to provide visualization and quantification of physiological changes in specific tissues and organs. The reconstruction of activity maps is generally the first step in dynamic PET. State space Hinfinity approaches have been proved to be a robust method for PET image reconstruction where, however, temporal constraints are not considered during the reconstruction process. In addition, the state space strategies for PET image reconstruction have been computationally prohibitive for practical usage because of the need for matrix inversion. In this paper, we present a minimax formulation of the dynamic PET imaging problem where a radioisotope decay model is employed as physics-based temporal constraints on the photon counts. Furthermore, a robust steady state Hinfinity filter is developed to significantly improve the computational efficiency with minimal loss of accuracy. Experiments are conducted on Monte Carlo simulated image sequences for quantitative analysis and validation.
Characterizing and modeling the dynamics of online popularity.
Ratkiewicz, Jacob; Fortunato, Santo; Flammini, Alessandro; Menczer, Filippo; Vespignani, Alessandro
2010-10-08
Online popularity has an enormous impact on opinions, culture, policy, and profits. We provide a quantitative, large scale, temporal analysis of the dynamics of online content popularity in two massive model systems: the Wikipedia and an entire country's Web space. We find that the dynamics of popularity are characterized by bursts, displaying characteristic features of critical systems such as fat-tailed distributions of magnitude and interevent time. We propose a minimal model combining the classic preferential popularity increase mechanism with the occurrence of random popularity shifts due to exogenous factors. The model recovers the critical features observed in the empirical analysis of the systems analyzed here, highlighting the key factors needed in the description of popularity dynamics.
Automated analysis of plethysmograms for functional studies of hemodynamics
NASA Astrophysics Data System (ADS)
Zatrudina, R. Sh.; Isupov, I. B.; Gribkov, V. Yu.
2018-04-01
The most promising method for the quantitative determination of cardiovascular tone indicators and of cerebral hemodynamics indicators is the method of impedance plethysmography. The accurate determination of these indicators requires the correct identification of the characteristic points in the thoracic impedance plethysmogram and the cranial impedance plethysmogram respectively. An algorithm for automatic analysis of these plethysmogram is presented. The algorithm is based on the hard temporal relationships between the phases of the cardiac cycle and the characteristic points of the plethysmogram. The proposed algorithm does not require estimation of initial data and selection of processing parameters. Use of the method on healthy subjects showed a very low detection error of characteristic points.
Huang, Ru-Lin; Xie, Yun; Wang, Wenjin; Tan, Pohching; Li, Qingfeng
2018-04-19
Previous anatomical and clinical studies have suggested that targeted restoration of the volume and distribution of fat compartments using appropriate cannula entry sites and injection planes is an excellent fat-grafting technique for facial contouring and hand rejuvenation. To perform subjective and objective evaluations of the safe and effective profile of the targeted fat-grafting technique for temporal hollowing augmentation. In a retrospective cohort study, a total of 96 consecutive patients with temporal hollowing were treated at the Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai, China, with the targeted fat-grafting technique from January 1, 2009, to January 1, 2017. The safety and efficacy profile of this technique was evaluated by the following methods: (1) a quantitative measurement of fat-graft survival and temporal augmentation rates by using 3-dimensional laser scanning, (2) a subjective assessment using a satisfaction survey and the Hollowness Severity Rating Scale (grades range from 0-3, with higher grades representing more hollowness), and (3) the complication rate. Of the 96 study patients, 94 (97.9%) were women and the mean (SD) age was 34.4 (7.4) years. Of the 142 autologous fat-grafting procedures performed, the mean (SD) total follow-up time was 16.3 (3.2) months, with a mean (SD) of 1.5 (0.7) procedures performed. The mean (SD) baseline volume requirement per temple for each patient was 12.8 (4.8) mL, and the total volume of the fat graft per temple was 17.8 (7.5) mL. Quantitative analysis revealed that the mean (SD) total augmentation volume per temple was 11.7 (3.0) mL, the total survival rate of the fat grafts was 65.7% (12.6%), and total augmentation rate of hollowness was 91.4% (23.4%). Subjective analysis revealed that all patients showed an improved appearance after fat grafting, and 142 temples (74.0%) exhibited clinical improvement by more than 2 grades. In all, 88 patients (91.7%) were satisfied with the outcomes, with a low complication rate reported. The targeted fat-grafting technique allows the transplant of fat tissue into 4 separate fat compartments in a double-plane manner through a unique cannula entry site that avoids severe neurovascular injury. The long-term results demonstrate that this technique is an effective, reproducible, and safe approach for temporal hollowing augmentation. 4.
Martin, Anna; Schurz, Matthias; Kronbichler, Martin; Richlan, Fabio
2015-05-01
We used quantitative, coordinate-based meta-analysis to objectively synthesize age-related commonalities and differences in brain activation patterns reported in 40 functional magnetic resonance imaging (fMRI) studies of reading in children and adults. Twenty fMRI studies with adults (age means: 23-34 years) were matched to 20 studies with children (age means: 7-12 years). The separate meta-analyses of these two sets showed a pattern of reading-related brain activation common to children and adults in left ventral occipito-temporal (OT), inferior frontal, and posterior parietal regions. The direct statistical comparison between the two meta-analytic maps of children and adults revealed higher convergence in studies with children in left superior temporal and bilateral supplementary motor regions. In contrast, higher convergence in studies with adults was identified in bilateral posterior OT/cerebellar and left dorsal precentral regions. The results are discussed in relation to current neuroanatomical models of reading and tentative functional interpretations of reading-related activation clusters in children and adults are provided. © 2015 Wiley Periodicals, Inc.
Kuruvilla, Mili S; Murdoch, Bruce E; Goozee, Justine V
2008-09-01
The aim of the investigation was to compare EPG-derived spatial and timing measures between a group of 11 dysarthric individuals post-severe TBI and 10 age- and sex-matched neurologically non-impaired individuals. Participants of the TBI group were diagnosed with dysarthria ranging from mild-to-moderate-severe dysarthria. Each participant from the TBI and comparison group was fitted with a custom-made artificial acrylic palate that recorded lingual palatal contact during target consonant production in sentence- and syllable-repetition tasks at a habitual rate and loudness level. Analysis of temporal parameters between the comparison and TBI groups revealed prolonged durations of the various phases of consonant production, which were attributed to articulatory slowness, impaired speech motor control, impaired accuracy, and impaired coordination of articulatory movements in the dysarthric speakers post-TBI. For the spatial measurements, quantitative analysis, as well as visual inspection of the tongue-to-palate contact diagrams, indicated spatial aberrations in dysarthric speech post-TBI. Both the spatial and temporal aberrations may have at least partially caused the perceptual judgement of articulatory impairments in the dysarthric speakers.
The SCHEIE Visual Field Grading System
Sankar, Prithvi S.; O’Keefe, Laura; Choi, Daniel; Salowe, Rebecca; Miller-Ellis, Eydie; Lehman, Amanda; Addis, Victoria; Ramakrishnan, Meera; Natesh, Vikas; Whitehead, Gideon; Khachatryan, Naira; O’Brien, Joan
2017-01-01
Objective No method of grading visual field (VF) defects has been widely accepted throughout the glaucoma community. The SCHEIE (Systematic Classification of Humphrey visual fields-Easy Interpretation and Evaluation) grading system for glaucomatous visual fields was created to convey qualitative and quantitative information regarding visual field defects in an objective, reproducible, and easily applicable manner for research purposes. Methods The SCHEIE grading system is composed of a qualitative and quantitative score. The qualitative score consists of designation in one or more of the following categories: normal, central scotoma, paracentral scotoma, paracentral crescent, temporal quadrant, nasal quadrant, peripheral arcuate defect, expansive arcuate, or altitudinal defect. The quantitative component incorporates the Humphrey visual field index (VFI), location of visual defects for superior and inferior hemifields, and blind spot involvement. Accuracy and speed at grading using the qualitative and quantitative components was calculated for non-physician graders. Results Graders had a median accuracy of 96.67% for their qualitative scores and a median accuracy of 98.75% for their quantitative scores. Graders took a mean of 56 seconds per visual field to assign a qualitative score and 20 seconds per visual field to assign a quantitative score. Conclusion The SCHEIE grading system is a reproducible tool that combines qualitative and quantitative measurements to grade glaucomatous visual field defects. The system aims to standardize clinical staging and to make specific visual field defects more easily identifiable. Specific patterns of visual field loss may also be associated with genetic variants in future genetic analysis. PMID:28932621
NASA Astrophysics Data System (ADS)
Huo, Chengyu; Huang, Xiaolin; Zhuang, Jianjun; Hou, Fengzhen; Ni, Huangjing; Ning, Xinbao
2013-09-01
The Poincaré plot is one of the most important approaches in human cardiac rhythm analysis. However, further investigations are still needed to concentrate on techniques that can characterize the dispersion of the points displayed by a Poincaré plot. Based on a modified Poincaré plot, we provide a novel measurement named distribution entropy (DE) and propose a quadrantal multi-scale distribution entropy analysis (QMDE) for the quantitative descriptions of the scatter distribution patterns in various regions and temporal scales. We apply this method to the heartbeat interval series derived from healthy subjects and congestive heart failure (CHF) sufferers, respectively, and find that the discriminations between them are most significant in the first quadrant, which implies significant impacts on vagal regulation brought about by CHF. We also investigate the day-night differences of young healthy people, and it is shown that the results present a clearly circadian rhythm, especially in the first quadrant. In addition, the multi-scale analysis indicates that the results of healthy subjects and CHF sufferers fluctuate in different trends with variation of the scale factor. The same phenomenon also appears in circadian rhythm investigations of young healthy subjects, which implies that the cardiac dynamic system is affected differently in various temporal scales by physiological or pathological factors.
NASA Astrophysics Data System (ADS)
Zhu, T.; Ajo Franklin, J. B.; Daley, T. M.
2015-12-01
Continuous active source seismic measurements (CASSM) were collected in the crosswell geometry during scCO2 injection at the Frio-II brine pilot (Liberty, TX). Previous studies (Daley et.al. 2007, 2011) have demonstrated that spatial-temporal changes in the picked first arrival time after CO2 injection constrain the movement of the CO2 plume in the storage interval. To improve the quantitative constraints on plume saturation using this dataset, we investigate spatial-temporal changes in the seismic attenuation of the first arrivals. The attenuation changes over the injection period (~60 h) are estimated by the amount of the centroid frequency shift computed by the local time-frequency analysis. Our observations include: at receivers above the packer seismic attenuation does not change in a physical trend; at receivers below the packer attenuation sharply increases as the amount of CO2 plume increase at the first few hours and peaks at specific points varying with distributed receivers, which are consistent with observations from time delays of first arrivals. Then, attenuation decreases over the injection time with increased amount of CO2 plume. This bell-shaped attenuation response as a function of time in the experiment is consistent with White's patchy saturation model which predicts an attenuation peak at intermediate CO2 saturations. Our analysis suggests that spatial-temporal attenuation change is an indicator of the movement/saturation of CO2 plume at high saturations, a system state for which seismic measurements are typically only weakly sensitive to.
Aggarwal, Priya; Gupta, Anubha
2017-12-01
A number of reconstruction methods have been proposed recently for accelerated functional Magnetic Resonance Imaging (fMRI) data collection. However, existing methods suffer with the challenge of greater artifacts at high acceleration factors. This paper addresses the issue of accelerating fMRI collection via undersampled k-space measurements combined with the proposed method based on l 1 -l 1 norm constraints, wherein we impose first l 1 -norm sparsity on the voxel time series (temporal data) in the transformed domain and the second l 1 -norm sparsity on the successive difference of the same temporal data. Hence, we name the proposed method as Double Temporal Sparsity based Reconstruction (DTSR) method. The robustness of the proposed DTSR method has been thoroughly evaluated both at the subject level and at the group level on real fMRI data. Results are presented at various acceleration factors. Quantitative analysis in terms of Peak Signal-to-Noise Ratio (PSNR) and other metrics, and qualitative analysis in terms of reproducibility of brain Resting State Networks (RSNs) demonstrate that the proposed method is accurate and robust. In addition, the proposed DTSR method preserves brain networks that are important for studying fMRI data. Compared to the existing methods, the DTSR method shows promising potential with an improvement of 10-12 dB in PSNR with acceleration factors upto 3.5 on resting state fMRI data. Simulation results on real data demonstrate that DTSR method can be used to acquire accelerated fMRI with accurate detection of RSNs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Akama-Garren, Elliot H.; Bianchi, Matt T.; Leveroni, Catherine; Cole, Andrew J.; Cash, Sydney S.; Westover, M. Brandon
2016-01-01
SUMMARY Objectives Anterior temporal lobectomy is curative for many patients with disabling medically refractory temporal lobe epilepsy, but carries an inherent risk of disabling verbal memory loss. Although accurate prediction of iatrogenic memory loss is becoming increasingly possible, it remains unclear how much weight such predictions should have in surgical decision making. Here we aim to create a framework that facilitates a systematic and integrated assessment of the relative risks and benefits of surgery versus medical management for patients with left temporal lobe epilepsy. Methods We constructed a Markov decision model to evaluate the probabilistic outcomes and associated health utilities associated with choosing to undergo a left anterior temporal lobectomy versus continuing with medical management for patients with medically refractory left temporal lobe epilepsy. Three base-cases were considered, representing a spectrum of surgical candidates encountered in practice, with varying degrees of epilepsy-related disability and potential for decreased quality of life in response to post-surgical verbal memory deficits. Results For patients with moderately severe seizures and moderate risk of verbal memory loss, medical management was the preferred decision, with increased quality-adjusted life expectancy. However, the preferred choice was sensitive to clinically meaningful changes in several parameters, including quality of life impact of verbal memory decline, quality of life with seizures, mortality rate with medical management, probability of remission following surgery, and probability of remission with medical management. Significance Our decision model suggests that for patients with left temporal lobe epilepsy, quantitative assessment of risk and benefit should guide recommendation of therapy. In particular, risk for and potential impact of verbal memory decline should be carefully weighed against the degree of disability conferred by continued seizures on a patient-by-patient basis. PMID:25244498
Akama-Garren, Elliot H; Bianchi, Matt T; Leveroni, Catherine; Cole, Andrew J; Cash, Sydney S; Westover, M Brandon
2014-11-01
Anterior temporal lobectomy is curative for many patients with disabling medically refractory temporal lobe epilepsy, but carries an inherent risk of disabling verbal memory loss. Although accurate prediction of iatrogenic memory loss is becoming increasingly possible, it remains unclear how much weight such predictions should have in surgical decision making. Here we aim to create a framework that facilitates a systematic and integrated assessment of the relative risks and benefits of surgery versus medical management for patients with left temporal lobe epilepsy. We constructed a Markov decision model to evaluate the probabilistic outcomes and associated health utilities associated with choosing to undergo a left anterior temporal lobectomy versus continuing with medical management for patients with medically refractory left temporal lobe epilepsy. Three base-cases were considered, representing a spectrum of surgical candidates encountered in practice, with varying degrees of epilepsy-related disability and potential for decreased quality of life in response to post-surgical verbal memory deficits. For patients with moderately severe seizures and moderate risk of verbal memory loss, medical management was the preferred decision, with increased quality-adjusted life expectancy. However, the preferred choice was sensitive to clinically meaningful changes in several parameters, including quality of life impact of verbal memory decline, quality of life with seizures, mortality rate with medical management, probability of remission following surgery, and probability of remission with medical management. Our decision model suggests that for patients with left temporal lobe epilepsy, quantitative assessment of risk and benefit should guide recommendation of therapy. In particular, risk for and potential impact of verbal memory decline should be carefully weighed against the degree of disability conferred by continued seizures on a patient-by-patient basis. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.
Temporal and spatial tuning of dorsal lateral geniculate nucleus neurons in unanesthetized rats
Sriram, Balaji; Meier, Philip M.
2016-01-01
Visual response properties of neurons in the dorsolateral geniculate nucleus (dLGN) have been well described in several species, but not in rats. Analysis of responses from the unanesthetized rat dLGN will be needed to develop quantitative models that account for visual behavior of rats. We recorded visual responses from 130 single units in the dLGN of 7 unanesthetized rats. We report the response amplitudes, temporal frequency, and spatial frequency sensitivities in this population of cells. In response to 2-Hz visual stimulation, dLGN cells fired 15.9 ± 11.4 spikes/s (mean ± SD) modulated by 10.7 ± 8.4 spikes/s about the mean. The optimal temporal frequency for full-field stimulation ranged from 5.8 to 19.6 Hz across cells. The temporal high-frequency cutoff ranged from 11.7 to 33.6 Hz. Some cells responded best to low temporal frequency stimulation (low pass), and others were strictly bandpass; most cells fell between these extremes. At 2- to 4-Hz temporal modulation, the spatial frequency of drifting grating that drove cells best ranged from 0.008 to 0.18 cycles per degree (cpd) across cells. The high-frequency cutoff ranged from 0.01 to 1.07 cpd across cells. The majority of cells were driven best by the lowest spatial frequency tested, but many were partially or strictly bandpass. We conclude that single units in the rat dLGN can respond vigorously to temporal modulation up to at least 30 Hz and spatial detail up to 1 cpd. Tuning properties were heterogeneous, but each fell along a continuum; we found no obvious clustering into discrete cell types along these dimensions. PMID:26936980
Zhang, Zhijun; Ashraf, Muhammad; Sahn, David J; Song, Xubo
2014-05-01
Quantitative analysis of cardiac motion is important for evaluation of heart function. Three dimensional (3D) echocardiography is among the most frequently used imaging modalities for motion estimation because it is convenient, real-time, low-cost, and nonionizing. However, motion estimation from 3D echocardiographic sequences is still a challenging problem due to low image quality and image corruption by noise and artifacts. The authors have developed a temporally diffeomorphic motion estimation approach in which the velocity field instead of the displacement field was optimized. The optimal velocity field optimizes a novel similarity function, which we call the intensity consistency error, defined as multiple consecutive frames evolving to each time point. The optimization problem is solved by using the steepest descent method. Experiments with simulated datasets, images of anex vivo rabbit phantom, images of in vivo open-chest pig hearts, and healthy human images were used to validate the authors' method. Simulated and real cardiac sequences tests showed that results in the authors' method are more accurate than other competing temporal diffeomorphic methods. Tests with sonomicrometry showed that the tracked crystal positions have good agreement with ground truth and the authors' method has higher accuracy than the temporal diffeomorphic free-form deformation (TDFFD) method. Validation with an open-access human cardiac dataset showed that the authors' method has smaller feature tracking errors than both TDFFD and frame-to-frame methods. The authors proposed a diffeomorphic motion estimation method with temporal smoothness by constraining the velocity field to have maximum local intensity consistency within multiple consecutive frames. The estimated motion using the authors' method has good temporal consistency and is more accurate than other temporally diffeomorphic motion estimation methods.
Koenigkam-Santos, Marcel; Optazaite, Elzbieta; Sommer, Gregor; Safi, Seyer; Heussel, Claus Peter; Kauczor, Hans-Ulrich; Puderbach, Michael
2015-01-01
To propose a technique for evaluation of pulmonary lesions using contrast-enhanced MRI; to assess morphological patterns of enhancement and correlate quantitative analysis with histopathology. Thirty-six patients were prospectively studied. Volumetric-interpolated T1W images were obtained during consecutive breath holds after bolus triggered contrast injection. Volume coverage of first three acquisitions was limited (higher temporal resolution) and last acquisition obtained at 4th min. Two radiologists individually evaluated the patterns of enhancement. Region-of-interest-based signal intensity (SI)-time curves were created to assess quantitative parameters. Readers agreed moderately to substantially concerning lesions' enhancement pattern. SI-time curves could be created for all lesions. In comparison to benign, malignant lesions showed higher values of maximum enhancement, early peak, slope and 4th min enhancement. Early peak >15% showed 100% sensitivity to detect malignancy, maximum enhancement >40% showed 100% specificity. The proposed technique is robust, simple to perform and can be applied in clinical scenario. It allows visual evaluation of enhancement pattern/progression together with creation of SI-time curves and assessment of derived quantitative parameters. Perfusion analysis was highly sensitive to detect malignancy, in accordance to what is recommended by most recent guidelines on imaging evaluation of pulmonary lesions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Munday, Diane C; Howell, Gareth; Barr, John N; Hiscox, Julian A
2015-03-01
The aim of this study was to quantitatively characterise the mitochondrial proteome of airway epithelial cells infected with human respiratory syncytial virus (HRSV), a major cause of paediatric illness. Quantitative proteomics, underpinned by stable isotope labelling with amino acids in cell culture, coupled to LC-MS/MS, was applied to mitochondrial fractions prepared from HRSV-infected and mock-infected cells 12 and 24 h post-infection. Datasets were analysed using ingenuity pathway analysis, and the results were validated and characterised using bioimaging, targeted inhibition and gene depletion. The data quantitatively indicated that antiviral signalling proteins converged on mitochondria during HRSV infection. The mitochondrial receptor protein Tom70 was found to act in an antiviral manner, while its chaperone, Hsp90, was confirmed to be a positive viral factor. Proteins associated with different organelles were also co-enriched in the mitochondrial fractions from HRSV-infected cells, suggesting that alterations in organelle dynamics and membrane associations occur during virus infection. Protein and pathway-specific alterations occur to the mitochondrial proteome in a spatial and temporal manner during HRSV infection, suggesting that this organelle may have altered functions. These could be targeted as part of potential therapeutic strategies to disrupt virus biology. © 2014 Royal Pharmaceutical Society.
Several studies have examined how fecal indicator bacteria (FIB) measurements compare between quantitative polymerase chain reaction (QPCR) and the culture methods it is intended to replace. Here we extend those studies by examining the stability of that relationship within a be...
Thalamotemporal alteration and postoperative seizures in temporal lobe epilepsy
Richardson, Mark P.; Schoene‐Bake, Jan‐Christoph; O'Muircheartaigh, Jonathan; Elkommos, Samia; Kreilkamp, Barbara; Goh, Yee Yen; Marson, Anthony G.; Elger, Christian; Weber, Bernd
2015-01-01
Objective There are competing explanations for persistent postoperative seizures after temporal lobe surgery. One is that 1 or more particular subtypes of mesial temporal lobe epilepsy (mTLE) exist that are particularly resistant to surgery. We sought to identify a common brain structural and connectivity alteration in patients with persistent postoperative seizures using preoperative quantitative magnetic resonance imaging and diffusion tensor imaging (DTI). Methods We performed a series of studies in 87 patients with mTLE (47 subsequently rendered seizure free, 40 who continued to experience postoperative seizures) and 80 healthy controls. We investigated the relationship between imaging variables and postoperative seizure outcome. All patients had unilateral temporal lobe seizure onset, had ipsilateral hippocampal sclerosis as the only brain lesion, and underwent amygdalohippocampectomy. Results Quantitative imaging factors found not to be significantly associated with persistent seizures were volumes of ipsilateral and contralateral mesial temporal lobe structures, generalized brain atrophy, and extent of resection. There were nonsignificant trends for larger amygdala and entorhinal resections to be associated with improved outcome. However, patients with persistent seizures had significant atrophy of bilateral dorsomedial and pulvinar thalamic regions, and significant alterations of DTI‐derived thalamotemporal probabilistic paths bilaterally relative to those patients rendered seizure free and controls, even when corrected for extent of mesial temporal lobe resection. Interpretation Patients with bihemispheric alterations of thalamotemporal structural networks may represent a subtype of mTLE that is resistant to temporal lobe surgery. Increasingly sensitive multimodal imaging techniques should endeavor to transform these group‐based findings to individualize prediction of patient outcomes. Ann Neurol 2015;77:760–774 PMID:25627477
Rapid recovery from aphasia after infarction of Wernicke's area.
Yagata, Stephanie A; Yen, Melodie; McCarron, Angelica; Bautista, Alexa; Lamair-Orosco, Genevieve; Wilson, Stephen M
2017-01-01
Aphasia following infarction of Wernicke's area typically resolves to some extent over time. The nature of this recovery process and its time course have not been characterized in detail, especially in the acute/subacute period. The goal of this study was to document recovery after infarction of Wernicke's area in detail in the first 3 months after stroke. Specifically, we aimed to address two questions about language recovery. First, which impaired language domains improve over time, and which do not? Second, what is the time course of recovery? We used quantitative analysis of connected speech and a brief aphasia battery to document language recovery in two individuals with aphasia following infarction of the posterior superior temporal gyrus. Speech samples were acquired daily between 2 and 16 days post stroke, and also at 1 month and 3 months. Speech samples were transcribed and coded using the CHAT system, in order to quantify multiple language domains. A brief aphasia battery was also administered at a subset of five time points during the 3 months. Both patients showed substantial recovery of language function over this time period. Most, but not all, language domains showed improvements, including fluency, lexical access, phonological retrieval and encoding, and syntactic complexity. The time course of recovery was logarithmic, with the greatest gains taking place early in the course of recovery. There is considerable potential for amelioration of language deficits when damage is relatively circumscribed to the posterior superior temporal gyrus. Quantitative analysis of connected speech samples proved to be an effective, albeit time-consuming, approach to tracking day-by-day recovery in the acute/subacute post-stroke period.
NASA Astrophysics Data System (ADS)
Zhu, Tieyuan; Ajo-Franklin, Jonathan B.; Daley, Thomas M.
2017-09-01
A continuous active source seismic monitoring data set was collected with crosswell geometry during CO2 injection at the Frio-II brine pilot, near Liberty, TX. Previous studies have shown that spatiotemporal changes in the P wave first arrival time reveal the movement of the injected CO2 plume in the storage zone. To further constrain the CO2 saturation, particularly at higher saturation levels, we investigate spatial-temporal changes in the seismic attenuation of the first arrivals. The attenuation changes over the injection period are estimated by the amount of the centroid frequency shift computed by local time-frequency analysis. We observe that (1) at receivers above the injection zone seismic attenuation does not change in a physical trend; (2) at receivers in the injection zone attenuation sharply increases following injection and peaks at specific points varying with distributed receivers, which is consistent with observations from time delays of first arrivals; then, (3) attenuation decreases over the injection time. The attenuation change exhibits a bell-shaped pattern during CO2 injection. Under Frio-II field reservoir conditions, White's patchy saturation model can quantitatively explain both the P wave velocity and attenuation response observed. We have combined the velocity and attenuation change data in a crossplot format that is useful for model-data comparison and determining patch size. Our analysis suggests that spatial-temporal attenuation change is not only an indicator of the movement and saturation of CO2 plumes, even at large saturations, but also can quantitatively constrain CO2 plume saturation when used jointly with seismic velocity.
The influence of natural factors on the spatio-temporal distribution of Oncomelania hupensis.
Cheng, Gong; Li, Dan; Zhuang, Dafang; Wang, Yong
2016-12-01
We analyzed the influence of natural factors, such as temperature, rainfall, vegetation and hydrology, on the spatio-temporal distribution of Oncomelania hupensis and explored the leading factors influencing these parameters. The results will provide reference methods and theoretical a basis for the schistosomiasis control. GIS (Geographic Information System) spatial display and analysis were used to describe the spatio-temporal distribution of Oncomelania hupensis in the study area (Dongting Lake in Hunan Province) from 2004 to 2011. Correlation analysis was used to detect the natural factors associated with the spatio-temporal distribution of O. hupensis. Spatial regression analysis was used to quantitatively analyze the effects of related natural factors on the spatio-temporal distribution of snails and explore the dominant factors influencing this parameter. (1) Overall, the spatio-temporal distribution of O. hupensis was governed by the comprehensive effects of natural factors. In the study area, the average density of living snails showed a downward trend, with the exception of a slight rebound in 2009. The density of living snails showed significant spatial clustering, and the degree of aggregation was initially weak but enhanced later. Regions with high snail density and towns with an HH distribution pattern were mostly distributed in the plain areas in the northwestern and inlet and outlet of the lake. (2) There were space-time differences in the influence of natural factors on the spatio-temporal distribution of O. hupensis. Temporally, the comprehensive influence of natural factors on snail distribution increased first and then decreased. Natural factors played an important role in snail distribution in 2005, 2006, 2010 and 2011. Spatially, it decreased from the northeast to the southwest. Snail distributions in more than 20 towns located along the Yuanshui River and on the west side of the Lishui River were less affected by natural factors, whereas relatively larger in areas around the outlet of the lake (Chenglingji) were more affected. (3) The effects of natural factors on the spatio-temporal distribution of O. hupensis were spatio-temporally heterogeneous. Rainfall, land surface temperature, NDVI, and distance from water sources all played an important role in the spatio-temporal distribution of O. hupensis. In addition, due to the effects of the local geographical environment, the direction of the influences the average annual rainfall, land surface temperature, and NDVI had on the spatio-temporal distribution of O. hupensis were all spatio-temporally heterogeneous, and both the distance from water sources and the history of snail distribution always had positive effects on the distribution O. hupensis, but the direction of the influence was spatio-temporally heterogeneous. (4) Of all the natural factors, the leading factors influencing the spatio-temporal distribution of O. hupensis were rainfall and vegetation (NDVI), and the primary factor alternated between these two. The leading role of rainfall decreased year by year, while that of vegetation (NDVI) increased from 2004 to 2011. The spatio-temporal distribution of O. hupensis was significantly influenced by natural factors, and the influences were heterogeneous across space and time. Additionally, the variation in the spatial-temporal distribution of O. hupensis was mainly affected by rainfall and vegetation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Sacco, Rosaria; Bussman, Rita; Oesch, Peter; Kesselring, Jürg; Beer, Serafin
2011-05-01
Gait impairment and fatigue are common and disabling problems in multiple sclerosis (MS). Characterisation of abnormal gait in MS patients has been done mainly using observational studies and simple walking tests providing only limited quantitative and no qualitative data, or using intricate and time-consuming assessment procedures. In addition, the correlation of gait impairments with fatigue is largely unknown. The aim of this study was to characterise spatio-temporal gait parameters by a simple and easy-to-use gait analysis system (GAITRite®) in MS patients compared with healthy controls, and to analyse changes and correlation with fatigue during inpatient rehabilitation. Twenty-four MS patients (EDSS <6.5) admitted for inpatient rehabilitation and 19 healthy subjects were evaluated using the GAITRite® Functional Ambulation System. Between-group differences and changes of gait parameters during inpatient rehabilitation were analysed, and correlation with fatigue, using the Wurzburg Fatigue Inventory for Multiple Sclerosis (WEIMuS), was determined. Compared to healthy controls MS patients showed significant impairments in different spatio-temporal gait parameters, which showed a significant improvement during inpatient rehabilitation. Different gait parameters were correlated with fatigue physical score, and change of gait parameters was correlated with improvement of fatigue. Spatio-temporal gait analysis is helpful to assess specific walking impairments in MS patients and subtle changes during rehabilitation. Correlation with fatigue may indicate a possible negative impact of fatigue on rehabilitation outcome.
Rapid structural analysis of nanomaterials in aqueous solutions
NASA Astrophysics Data System (ADS)
Ryuzaki, Sou; Tsutsui, Makusu; He, Yuhui; Yokota, Kazumichi; Arima, Akihide; Morikawa, Takanori; Taniguchi, Masateru; Kawai, Tomoji
2017-04-01
Rapid structural analysis of nanoscale matter in a liquid environment represents innovative technologies that reveal the identities and functions of biologically important molecules. However, there is currently no method with high spatio-temporal resolution that can scan individual particles in solutions to gain structural information. Here we report the development of a nanopore platform realizing quantitative structural analysis for suspended nanomaterials in solutions with a high z-axis and xy-plane spatial resolution of 35.8 ± 1.1 and 12 nm, respectively. We used a low thickness-to-diameter aspect ratio pore architecture for achieving cross sectional areas of analyte (i.e. tomograms). Combining this with multiphysics simulation methods to translate ionic current data into tomograms, we demonstrated rapid structural analysis of single polystyrene (Pst) beads and single dumbbell-like Pst beads in aqueous solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Getman, Dan; Bush, Brian; Inman, Danny
Data used by the National Renewable Energy Laboratory (NREL) in energy analysis are often produced by industry and licensed or purchased for analysis. While this practice provides needed flexibility in selecting data for analysis it presents challenges in understanding the differences among multiple, ostensibly similar, datasets. As options for source data become more varied, it is important to be able to articulate why certain datasets were chosen and to ensure those include the data that best meet the boundaries and/or limitations of a particular analysis. This report represents the first of three phases of research intended to develop methods tomore » quantitatively assess and compare both input datasets and the results of analyses performed at NREL. This capability is critical to identifying tipping points in the costs or benefits of achieving high spatial and temporal resolution of input data.« less
Velarde, Luis; Wang, Hong-Fei
2013-12-14
The lack of understanding of the temporal effects and the restricted ability to control experimental conditions in order to obtain intrinsic spectral lineshapes in surface sum-frequency generation vibrational spectroscopy (SFG-VS) have limited its applications in surface and interfacial studies. The emergence of high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BB-SFG-VS) with sub-wavenumber resolution [Velarde et al., J. Chem. Phys., 2011, 135, 241102] offers new opportunities for obtaining and understanding the spectral lineshapes and temporal effects in SFG-VS. Particularly, the high accuracy of the HR-BB-SFG-VS experimental lineshape provides detailed information on the complex coherent vibrational dynamics through direct spectral measurements. Here we present a unified formalism for the theoretical and experimental routes for obtaining an accurate lineshape of the SFG response. Then, we present a detailed analysis of a cholesterol monolayer at the air/water interface with higher and lower resolution SFG spectra along with their temporal response. With higher spectral resolution and accurate vibrational spectral lineshapes, it is shown that the parameters of the experimental SFG spectra can be used both to understand and to quantitatively reproduce the temporal effects in lower resolution SFG measurements. This perspective provides not only a unified picture but also a novel experimental approach to measuring and understanding the frequency-domain and time-domain SFG response of a complex molecular interface.
NASA Astrophysics Data System (ADS)
Tang, Xiangyang; Hsieh, Jiang; Taha, Basel H.; Vass, Melissa L.; Seamans, John L.; Okerlund, Darin R.
2009-02-01
With increasing longitudinal detector dimension available in diagnostic volumetric CT, step-and-shoot scan is becoming popular for cardiac imaging. In comparison to helical scan, step-and-shoot scan decouples patient table movement from cardiac gating/triggering, which facilitates the cardiac imaging via multi-sector data acquisition, as well as the administration of inter-cycle heart beat variation (arrhythmia) and radiation dose efficiency. Ideally, a multi-sector data acquisition can improve temporal resolution at a factor the same as the number of sectors (best scenario). In reality, however, the effective temporal resolution is jointly determined by gantry rotation speed and patient heart beat rate, which may significantly lower than the ideal or no improvement (worst scenario). Hence, it is clinically relevant to investigate the behavior of effective temporal resolution in cardiac imaging with multi-sector data acquisition. In this study, a 5-second cine scan of a porcine heart, which cascades 6 porcine cardiac cycles, is acquired. In addition to theoretical analysis and motion phantom study, the clinical consequences due to the effective temporal resolution variation are evaluated qualitative or quantitatively. By employing a 2-sector image reconstruction strategy, a total of 15 (the permutation of P(6, 2)) cases between the best and worst scenarios are studied, providing informative guidance for the design and optimization of CT cardiac imaging in volumetric CT with multi-sector data acquisition.
NASA Astrophysics Data System (ADS)
Kang, Jinbum; Jang, Won Seuk; Yoo, Yangmo
2018-02-01
Ultrafast compound Doppler imaging based on plane-wave excitation (UCDI) can be used to evaluate cardiovascular diseases using high frame rates. In particular, it provides a fully quantifiable flow analysis over a large region of interest with high spatio-temporal resolution. However, the pulse-repetition frequency (PRF) in the UCDI method is limited for high-velocity flow imaging since it has a tradeoff between the number of plane-wave angles (N) and acquisition time. In this paper, we present high PRF ultrafast sliding compound Doppler imaging method (HUSDI) to improve quantitative flow analysis. With the HUSDI method, full scanline images (i.e. each tilted plane wave data) in a Doppler frame buffer are consecutively summed using a sliding window to create high-quality ensemble data so that there is no reduction in frame rate and flow sensitivity. In addition, by updating a new compounding set with a certain time difference (i.e. sliding window step size or L), the HUSDI method allows various Doppler PRFs with the same acquisition data to enable a fully qualitative, retrospective flow assessment. To evaluate the performance of the proposed HUSDI method, simulation, in vitro and in vivo studies were conducted under diverse flow circumstances. In the simulation and in vitro studies, the HUSDI method showed improved hemodynamic representations without reducing either temporal resolution or sensitivity compared to the UCDI method. For the quantitative analysis, the root mean squared velocity error (RMSVE) was measured using 9 angles (-12° to 12°) with L of 1-9, and the results were found to be comparable to those of the UCDI method (L = N = 9), i.e. ⩽0.24 cm s-1, for all L values. For the in vivo study, the flow data acquired from a full cardiac cycle of the femoral vessels of a healthy volunteer were analyzed using a PW spectrogram, and arterial and venous flows were successfully assessed with high Doppler PRF (e.g. 5 kHz at L = 4). These results indicate that the proposed HUSDI method can improve flow visualization and quantification with a higher frame rate, PRF and flow sensitivity in cardiovascular imaging.
Wardak, Mirwais; Wong, Koon-Pong; Shao, Weber; Dahlbom, Magnus; Kepe, Vladimir; Satyamurthy, Nagichettiar; Small, Gary W.; Barrio, Jorge R.; Huang, Sung-Cheng
2010-01-01
Head movement during a PET scan (especially, dynamic scan) can affect both the qualitative and quantitative aspects of an image, making it difficult to accurately interpret the results. The primary objective of this study was to develop a retrospective image-based movement correction (MC) method and evaluate its implementation on dynamic [18F]-FDDNP PET images of cognitively intact controls and patients with Alzheimer’s disease (AD). Methods Dynamic [18F]-FDDNP PET images, used for in vivo imaging of beta-amyloid plaques and neurofibrillary tangles, were obtained from 12 AD and 9 age-matched controls. For each study, a transmission scan was first acquired for attenuation correction. An accurate retrospective MC method that corrected for transmission-emission misalignment as well as emission-emission misalignment was applied to all studies. No restriction was assumed for zero movement between the transmission scan and first emission scan. Logan analysis with cerebellum as the reference region was used to estimate various regional distribution volume ratio (DVR) values in the brain before and after MC. Discriminant analysis was used to build a predictive model for group membership, using data with and without MC. Results MC improved the image quality and quantitative values in [18F]-FDDNP PET images. In this subject population, medial temporal (MTL) did not show a significant difference between controls and AD before MC. However, after MC, significant differences in DVR values were seen in frontal, parietal, posterior cingulate (PCG), MTL, lateral temporal (LTL), and global between the two groups (P < 0.05). In controls and AD, the variability of regional DVR values (as measured by the coefficient of variation) decreased on average by >18% after MC. Mean DVR separation between controls and ADs was higher in frontal, MTL, LTL and global after MC. Group classification by discriminant analysis based on [18F]-FDDNP DVR values was markedly improved after MC. Conclusion The streamlined and easy to use MC method presented in this work significantly improves the image quality and the measured tracer kinetics of [18F]-FDDNP PET images. The proposed MC method has the potential to be applied to PET studies on patients having other disorders (e.g., Down syndrome and Parkinson’s disease) and to brain PET scans with other molecular imaging probes. PMID:20080894
Kang, Jinbum; Jang, Won Seuk; Yoo, Yangmo
2018-02-09
Ultrafast compound Doppler imaging based on plane-wave excitation (UCDI) can be used to evaluate cardiovascular diseases using high frame rates. In particular, it provides a fully quantifiable flow analysis over a large region of interest with high spatio-temporal resolution. However, the pulse-repetition frequency (PRF) in the UCDI method is limited for high-velocity flow imaging since it has a tradeoff between the number of plane-wave angles (N) and acquisition time. In this paper, we present high PRF ultrafast sliding compound Doppler imaging method (HUSDI) to improve quantitative flow analysis. With the HUSDI method, full scanline images (i.e. each tilted plane wave data) in a Doppler frame buffer are consecutively summed using a sliding window to create high-quality ensemble data so that there is no reduction in frame rate and flow sensitivity. In addition, by updating a new compounding set with a certain time difference (i.e. sliding window step size or L), the HUSDI method allows various Doppler PRFs with the same acquisition data to enable a fully qualitative, retrospective flow assessment. To evaluate the performance of the proposed HUSDI method, simulation, in vitro and in vivo studies were conducted under diverse flow circumstances. In the simulation and in vitro studies, the HUSDI method showed improved hemodynamic representations without reducing either temporal resolution or sensitivity compared to the UCDI method. For the quantitative analysis, the root mean squared velocity error (RMSVE) was measured using 9 angles (-12° to 12°) with L of 1-9, and the results were found to be comparable to those of the UCDI method (L = N = 9), i.e. ⩽0.24 cm s -1 , for all L values. For the in vivo study, the flow data acquired from a full cardiac cycle of the femoral vessels of a healthy volunteer were analyzed using a PW spectrogram, and arterial and venous flows were successfully assessed with high Doppler PRF (e.g. 5 kHz at L = 4). These results indicate that the proposed HUSDI method can improve flow visualization and quantification with a higher frame rate, PRF and flow sensitivity in cardiovascular imaging.
NASA Astrophysics Data System (ADS)
Lee, Minsuk; Won, Youngjae; Park, Byungjun; Lee, Seungrag
2017-02-01
Not only static characteristics but also dynamic characteristics of the red blood cell (RBC) contains useful information for the blood diagnosis. Quantitative phase imaging (QPI) can capture sample images with subnanometer scale depth resolution and millisecond scale temporal resolution. Various researches have been used QPI for the RBC diagnosis, and recently many researches has been developed to decrease the process time of RBC information extraction using QPI by the parallel computing algorithm, however previous studies are interested in the static parameters such as morphology of the cells or simple dynamic parameters such as root mean square (RMS) of the membrane fluctuations. Previously, we presented a practical blood test method using the time series correlation analysis of RBC membrane flickering with QPI. However, this method has shown that there is a limit to the clinical application because of the long computation time. In this study, we present an accelerated time series correlation analysis of RBC membrane flickering using the parallel computing algorithm. This method showed consistent fractal scaling exponent results of the surrounding medium and the normal RBC with our previous research.
Improving Satellite Quantitative Precipitation Estimation Using GOES-Retrieved Cloud Optical Depth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stenz, Ronald; Dong, Xiquan; Xi, Baike
To address significant gaps in ground-based radar coverage and rain gauge networks in the U.S., geostationary satellite quantitative precipitation estimates (QPEs) such as the Self-Calibrating Multivariate Precipitation Retrievals (SCaMPR) can be used to fill in both the spatial and temporal gaps of ground-based measurements. Additionally, with the launch of GOES-R, the temporal resolution of satellite QPEs may be comparable to that of Weather Service Radar-1988 Doppler (WSR-88D) volume scans as GOES images will be available every five minutes. However, while satellite QPEs have strengths in spatial coverage and temporal resolution, they face limitations particularly during convective events. Deep Convective Systemsmore » (DCSs) have large cloud shields with similar brightness temperatures (BTs) over nearly the entire system, but widely varying precipitation rates beneath these clouds. Geostationary satellite QPEs relying on the indirect relationship between BTs and precipitation rates often suffer from large errors because anvil regions (little/no precipitation) cannot be distinguished from rain-cores (heavy precipitation) using only BTs. However, a combination of BTs and optical depth (τ) has been found to reduce overestimates of precipitation in anvil regions (Stenz et al. 2014). A new rain mask algorithm incorporating both τ and BTs has been developed, and its application to the existing SCaMPR algorithm was evaluated. The performance of the modified SCaMPR was evaluated using traditional skill scores and a more detailed analysis of performance in individual DCS components by utilizing the Feng et al. (2012) classification algorithm. SCaMPR estimates with the new rain mask applied benefited from significantly reduced overestimates of precipitation in anvil regions and overall improvements in skill scores.« less
NASA Astrophysics Data System (ADS)
Chen, Lixia; van Westen, Cees J.; Hussin, Haydar; Ciurean, Roxana L.; Turkington, Thea; Chavarro-Rincon, Diana; Shrestha, Dhruba P.
2016-11-01
Extreme rainfall events are the main triggering causes for hydro-meteorological hazards in mountainous areas, where development is often constrained by the limited space suitable for construction. In these areas, hazard and risk assessments are fundamental for risk mitigation, especially for preventive planning, risk communication and emergency preparedness. Multi-hazard risk assessment in mountainous areas at local and regional scales remain a major challenge because of lack of data related to past events and causal factors, and the interactions between different types of hazards. The lack of data leads to a high level of uncertainty in the application of quantitative methods for hazard and risk assessment. Therefore, a systematic approach is required to combine these quantitative methods with expert-based assumptions and decisions. In this study, a quantitative multi-hazard risk assessment was carried out in the Fella River valley, prone to debris flows and flood in the north-eastern Italian Alps. The main steps include data collection and development of inventory maps, definition of hazard scenarios, hazard assessment in terms of temporal and spatial probability calculation and intensity modelling, elements-at-risk mapping, estimation of asset values and the number of people, physical vulnerability assessment, the generation of risk curves and annual risk calculation. To compare the risk for each type of hazard, risk curves were generated for debris flows, river floods and flash floods. Uncertainties were expressed as minimum, average and maximum values of temporal and spatial probability, replacement costs of assets, population numbers, and physical vulnerability. These result in minimum, average and maximum risk curves. To validate this approach, a back analysis was conducted using the extreme hydro-meteorological event that occurred in August 2003 in the Fella River valley. The results show a good performance when compared to the historical damage reports.
Wotton, Karl R; Jiménez-Guri, Eva; Crombach, Anton; Janssens, Hilde; Alcaine-Colet, Anna; Lemke, Steffen; Schmidt-Ott, Urs; Jaeger, Johannes
2015-01-01
The segmentation gene network in insects can produce equivalent phenotypic outputs despite differences in upstream regulatory inputs between species. We investigate the mechanistic basis of this phenomenon through a systems-level analysis of the gap gene network in the scuttle fly Megaselia abdita (Phoridae). It combines quantification of gene expression at high spatio-temporal resolution with systematic knock-downs by RNA interference (RNAi). Initiation and dynamics of gap gene expression differ markedly between M. abdita and Drosophila melanogaster, while the output of the system converges to equivalent patterns at the end of the blastoderm stage. Although the qualitative structure of the gap gene network is conserved, there are differences in the strength of regulatory interactions between species. We term such network rewiring ‘quantitative system drift’. It provides a mechanistic explanation for the developmental hourglass model in the dipteran lineage. Quantitative system drift is likely to be a widespread mechanism for developmental evolution. DOI: http://dx.doi.org/10.7554/eLife.04785.001 PMID:25560971
Directed differential connectivity graph of interictal epileptiform discharges
Amini, Ladan; Jutten, Christian; Achard, Sophie; David, Olivier; Soltanian-Zadeh, Hamid; Hossein-Zadeh, Gh. Ali; Kahane, Philippe; Minotti, Lorella; Vercueil, Laurent
2011-01-01
In this paper, we study temporal couplings between interictal events of spatially remote regions in order to localize the leading epileptic regions from intracerebral electroencephalogram (iEEG). We aim to assess whether quantitative epileptic graph analysis during interictal period may be helpful to predict the seizure onset zone of ictal iEEG. Using wavelet transform, cross-correlation coefficient, and multiple hypothesis test, we propose a differential connectivity graph (DCG) to represent the connections that change significantly between epileptic and non-epileptic states as defined by the interictal events. Post-processings based on mutual information and multi-objective optimization are proposed to localize the leading epileptic regions through DCG. The suggested approach is applied on iEEG recordings of five patients suffering from focal epilepsy. Quantitative comparisons of the proposed epileptic regions within ictal onset zones detected by visual inspection and using electrically stimulated seizures, reveal good performance of the present method. PMID:21156385
Real time quantitative imaging for semiconductor crystal growth, control and characterization
NASA Technical Reports Server (NTRS)
Wargo, Michael J.
1991-01-01
A quantitative real time image processing system has been developed which can be software-reconfigured for semiconductor processing and characterization tasks. In thermal imager mode, 2D temperature distributions of semiconductor melt surfaces (900-1600 C) can be obtained with temperature and spatial resolutions better than 0.5 C and 0.5 mm, respectively, as demonstrated by analysis of melt surface thermal distributions. Temporal and spatial image processing techniques and multitasking computational capabilities convert such thermal imaging into a multimode sensor for crystal growth control. A second configuration of the image processing engine in conjunction with bright and dark field transmission optics is used to nonintrusively determine the microdistribution of free charge carriers and submicron sized crystalline defects in semiconductors. The IR absorption characteristics of wafers are determined with 10-micron spatial resolution and, after calibration, are converted into charge carrier density.
Fast quantitative optical detection of heat dissipation by surface plasmon polaritons.
Möller, Thomas B; Ganser, Andreas; Kratt, Martina; Dickreuter, Simon; Waitz, Reimar; Scheer, Elke; Boneberg, Johannes; Leiderer, Paul
2018-06-13
Heat management at the nanoscale is an issue of increasing importance. In optoelectronic devices the transport and decay of plasmons contribute to the dissipation of heat. By comparison of experimental data and simulations we demonstrate that it is possible to gain quantitative information about excitation, propagation and decay of surface plasmon polaritons (SPPs) in a thin gold stripe supported by a silicon membrane. The temperature-dependent optical transmissivity of the membrane is used to determine the temperature distribution around the metal stripe with high spatial and temporal resolution. This method is complementary to techniques where the propagation of SPPs is monitored optically, and provides additional information which is not readily accessible by other means. In particular, we demonstrate that the thermal conductivity of the membrane can also be derived from our analysis. The results presented here show the high potential of this tool for heat management studies in nanoscale devices.
Incorporating temporal and clinical reasoning in a new measure of continuity of care.
Spooner, S. A.
1994-01-01
Previously described quantitative methods for measuring continuity of care have assumed that perfect continuity exists when a patient sees only one provider, regardless of the temporal pattern and clinical context of the visits. This paper describes an implementation of a new operational model of continuity--the Temporal Continuity Index--that takes into account time intervals between well visits in a pediatric residency continuity clinic. Ideal continuity in this model is achieved when intervals between visits are appropriate based on the age of the patient and clinical context of the encounters. The fundamental concept in this model is the expectation interval, which contains the length of the maximum ideal follow-up interval for a visit and the maximum follow-up interval. This paper describes an initial implementation of the TCI model and compares TCI calculations to previous quantitative methods and proposes its use as part of the assessment of resident education in outpatient settings. PMID:7950019
Decoding brain cancer dynamics: a quantitative histogram-based approach using temporal MRI
NASA Astrophysics Data System (ADS)
Zhou, Mu; Hall, Lawrence O.; Goldgof, Dmitry B.; Russo, Robin; Gillies, Robert J.; Gatenby, Robert A.
2015-03-01
Brain tumor heterogeneity remains a challenge for probing brain cancer evolutionary dynamics. In light of evolution, it is a priority to inspect the cancer system from a time-domain perspective since it explicitly tracks the dynamics of cancer variations. In this paper, we study the problem of exploring brain tumor heterogeneity from temporal clinical magnetic resonance imaging (MRI) data. Our goal is to discover evidence-based knowledge from such temporal imaging data, where multiple clinical MRI scans from Glioblastoma multiforme (GBM) patients are generated during therapy. In particular, we propose a quantitative histogram-based approach that builds a prediction model to measure the difference in histograms obtained from pre- and post-treatment. The study could significantly assist radiologists by providing a metric to identify distinctive patterns within each tumor, which is crucial for the goal of providing patient-specific treatments. We examine the proposed approach for a practical application - clinical survival group prediction. Experimental results show that our approach achieved 90.91% accuracy.
Chan, James Chun Yip; Kioh, Dorinda Yan Qin; Yap, Gaik Chin; Lee, Bee Wah; Chan, Eric Chun Yong
2017-05-10
A novel liquid chromatography tandem mass spectrometry (LCMSMS) method for the quantitative measurement of gut microbial-derived short-chain fatty acids (SCFAs) in human infant stool has been developed and validated. Baseline chromatographic resolution was achieved for 12 SCFAs (acetic, butyric, caproic, 2,2-dimethylbutyric, 2-ethylbutyric, isobutyric, isovaleric, 2-methylbutyric, 4-methylvaleric, propionic, pivalic and valeric acids) within an analysis time of 15min. A novel sequential derivatization of endogenous and spiked SCFAs in stool via 12 C- and 13 C-aniline respectively, facilitated the accurate quantitation of 12 C-aniline derivatized endogenous SCFAs based on calibration of exogenously 13 C-derivatized SCFAs. Optimized quenching of derivatization agents prior to LCMSMS analysis further reduced to negligible levels the confounding chromatographic peak due to in-line derivatization of unquenched aniline with residual acetic acid present within the LCMS system. The effect of residual acetic acid, a common LCMS modifier, in analysis of SCFAs has not been addressed in previous SCFA assays. For the first time, a total of 9 SCFAs (acetic, butyric, caproic, isobutyric, isovaleric, 2-methylbutyric, 4-methylvaleric, propionic and valeric acids) were detected and quantitated in 107 healthy infant stool samples. The abundance and diversity of SCFAs in infant stool vary temporally from 3 weeks onwards and stabilize towards the end of 12 months. This in turn reflects the maturation of infant SCFA-producing gut microbiota community. In summary, this novel method is applicable to future studies that investigate the biological roles of SCFAs in paediatric health and diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
Casarrubea, M; Magnusson, M S; Roy, V; Arabo, A; Sorbera, F; Santangelo, A; Faulisi, F; Crescimanno, G
2014-08-30
Aim of this article is to illustrate the application of a multivariate approach known as t-pattern analysis in the study of rat behavior in elevated plus maze. By means of this multivariate approach, significant relationships among behavioral events in the course of time can be described. Both quantitative and t-pattern analyses were utilized to analyze data obtained from fifteen male Wistar rats following a trial 1-trial 2 protocol. In trial 2, in comparison with the initial exposure, mean occurrences of behavioral elements performed in protected zones of the maze showed a significant increase counterbalanced by a significant decrease of mean occurrences of behavioral elements in unprotected zones. Multivariate t-pattern analysis, in trial 1, revealed the presence of 134 t-patterns of different composition. In trial 2, the temporal structure of behavior become more simple, being present only 32 different t-patterns. Behavioral strings and stripes (i.e. graphical representation of each t-pattern onset) of all t-patterns were presented both for trial 1 and trial 2 as well. Finally, percent distributions in the three zones of the maze show a clear-cut increase of t-patterns in closed arm and a significant reduction in the remaining zones. Results show that previous experience deeply modifies the temporal structure of rat behavior in the elevated plus maze. In addition, this article, by highlighting several conceptual, methodological and illustrative aspects on the utilization of t-pattern analysis, could represent a useful background to employ such a refined approach in the study of rat behavior in elevated plus maze. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Noack, C.; Jain, J.; Hakala, A.; Schroeder, K.; Dzombak, D. A.; Karamalidis, A.
2013-12-01
Rare earth elements (REE) - encompassing the naturally occurring lanthanides, yttrium, and scandium - are potential tracers for subsurface groundwater-brine flows and geochemical processes. Application of these elements as naturally occurring tracers during shale gas development is reliant on accurate quantitation of trace metals in hypersaline brines. We have modified and validated a liquid-liquid technique for extraction and pre-concentration of REE from saline produced waters from shale gas extraction wells with quantitative analysis by ICP-MS. This method was used to analyze time-series samples of Marcellus shale flowback and produced waters. Additionally, the total REE content of core samples of various strata throughout the Appalachian Basin were determined using HF/HNO3 digestion and ICP-MS analysis. A primary goal of the study is to elucidate systematic geochemical variations as a function of location or shale characteristics. Statistical testing will be performed to study temporal variability of inter-element relationships and explore associations between REE abundance and major solution chemistry. The results of these analyses and discussion of their significance will be presented.
Lin, Tina W; de Aburto, Michelle A Kung; Dahlbom, Magnus; Huang, Lynn L; Marvi, Michael M; Tang, Michael; Czernin, Johannes; Phelps, Michael E; Silverman, Daniel H S
2007-05-01
Conventional visual analysis of brain (18)F-FDG PET scans is useful for predicting postsurgical improvement for temporal lobe epilepsy (TLE) patients, but prognostic value for identifying patients who will achieve seizure-free status is considerably lower. We aimed to develop an approach with which to quantitatively assess prognostically pertinent aspects of metabolic asymmetry in presurgical PET scans for forecasting postsurgical seizure-free clinical outcomes. Presurgical brain PET scans of 75 TLE patients were examined using a display/analysis tool that quantified maximal metabolic asymmetry in a specified proportion (x%) of the temporal lobe pixels in the most asymmetric plane, generating a temporal lobe asymmetry index (T-AI(x)). Results of this analysis were compared with patients' actual postsurgical outcomes after an average of approximately 4 y of clinical follow-up. The investigation was divided into 2 main steps: The PET scans examined in the first step, selected by chronological order of scan acquisition dates, comprised just less than two thirds of the patient group studied (n=47) and were used to look for parameters predicting seizure-free postsurgical outcome; in the second step, the predictive value of the parameters suggested by the analysis in the first step was independently examined using the set of remaining PET scans (n=28) to check for wider applicability of the approach. Of the 75 patients studied, 42 became seizure free after surgery, whereas 33 continued to seize beyond the immediate postoperative period, during a mean 3.8-y follow-up interval. The specified proportion of temporal pixels with which to assess maximal asymmetry that provided the highest prognostic value with respect to achieving seizure-free status was 20%. Across the study population, those patients with scans having lower T-AI(20) values (corresponding to <40% difference in pixel intensities between left and right temporal lobes, among the 20% most asymmetric left-right pixel pairs measured in the most asymmetric plane) were only half as likely to continue to have seizures postsurgically as those with scans having higher T-AI(20) values (positive likelihood ratio for achieving seizure-free outcome, 1.98; 95% confidence interval, 1.07-3.67). Overall, those patients with greater maximal asymmetry, as indexed by higher T-AI(20) values, had a significantly decreased chance of achieving seizure-free status after surgery than those with lower degrees of asymmetry (P=0.017), and this same tendency was observed for both the first and second series of PET scans examined. A quantifying approach to assessing maximal temporal asymmetry over a specified proportion of the temporal lobe may help to predict whether patients will likely be free of seizures during the years after neurosurgical resection of epileptogenic tissue.
Temporal changes in tongue color as criterion for tongue diagnosis in Kampo medicine.
Yamamoto, Satoshi; Ishikawa, Yuya; Nakaguchi, Toshiya; Ogawa-Ochiai, Keiko; Tsumura, Norimichi; Kasahara, Yuji; Namiki, Takao; Miyake, Yoichi
2012-01-01
In Kampo medicine (Japanese traditional herbal medicine), the appearance of the tongue contains a lot of useful information for diagnosis. However, an inspection of the tongue is not considered to be important in modern medical diagnosis, since the skills applied in the examination are difficult to understand. Thus, we developed an imaging system and algorithm for quantitative analysis of the tongue to provide the traditional techniques of Kampo with greater objectivity. Tongue images were taken from 9 healthy subjects for 3 consecutive weeks (5 days/week), 12 times a day, with 300 images taken successively within 30 s each time. Then, the temporal color changes in 30 s, 1 day, and 3 weeks were measured in the device-independent International Commission on Illumination (CIE) 1976 L*a*b* color space. The tongue color change in 30 s varied between individuals, and it was mainly classified into 3 patterns. This image acquisition system and valid color management should help all tongue-related research, and the 30-s temporal color change might be an important target for further tongue analysis. We were able to acquire tongue images without specular reflection and with valid color reproduction, and the color change in 30 s was found to vary. Tongue color changes have not been mentioned in the classics of Kampo medicine, since they were certainly impossible to discriminate by the naked eye. The change during 30 s is a new finding based on the electronic devices, and together they are expected to become a new criterion for tongue analysis. Copyright © 2012 S. Karger AG, Basel.
Spatio-Temporal Simulation and Analysis of Regional Ecological Security Based on Lstm
NASA Astrophysics Data System (ADS)
Gong, C.; Qi, L.; Heming, L.; Karimian, H.; Yuqin, M.
2017-10-01
Region is a complicated system, where human, nature and society interact and influence. Quantitative modeling and simulation of ecology in the region are the key to realize the strategy of regional sustainable development. Traditional machine learning methods have made some achievements in the modeling of regional ecosystems, but it is difficult to determine the learning characteristics and to realize spatio-temporal simulation. Deep learning does not need prior identification of training characteristics, have excellent feature learning ability, can improve the accuracy of model prediction, so the use of deep learning model has a significant advantage. Therefore, we use net primary productivity (NPP), atmospheric optical depth (AOD), moderate-resolution imaging spectrometer (MODIS), Normalized Difference Vegetation Index (NDVI), landcover and population data, and use LSTM to do spatio-temporal simulation. We conduct spatial analysis and driving force analysis. The conclusions are as follows: the ecological deficit of northwestern Henan and urban communities such as Zhengzhou is higher. The reason of former lies in the weak land productivity of the Loess Plateau, the irrational crop cultivation mode. The latter lies in the high consumption of resources in the large urban agglomeration; The positive trend of Henan ecological development from 2013 is mainly due to the effective environmental protection policy in the 12th five-year plan; The main driver of the sustained ecological deficit growth of Henan in 2004-2013 is high-speed urbanization, increasing population and goods consumption. This article provides relevant basic scientific support and reference for the regional ecological scientific management and construction.
NASA Astrophysics Data System (ADS)
Lhermitte, S.; Tips, M.; Verbesselt, J.; Jonckheere, I.; Van Aardt, J.; Coppin, Pol
2005-10-01
Large-scale wild fires have direct impacts on natural ecosystems and play a major role in the vegetation ecology and carbon budget. Accurate methods for describing post-fire development of vegetation are therefore essential for the understanding and monitoring of terrestrial ecosystems. Time series analysis of satellite imagery offers the potential to quantify these parameters with spatial and temporal accuracy. Current research focuses on the potential of time series analysis of SPOT Vegetation S10 data (1999-2001) to quantify the vegetation recovery of large-scale burns detected in the framework of GBA2000. The objective of this study was to provide quantitative estimates of the spatio-temporal variation of vegetation recovery based on remote sensing indicators. Southern Africa was used as a pilot study area, given the availability of ground and satellite data. An automated technique was developed to extract consistent indicators of vegetation recovery from the SPOT-VGT time series. Reference areas were used to quantify the vegetation regrowth by means of Regeneration Indices (RI). Two kinds of recovery indicators (time and value- based) were tested for RI's of NDVI, SR, SAVI, NDWI, and pure band information. The effects of vegetation structure and temporal fire regime features on the recovery indicators were subsequently analyzed. Statistical analyses were conducted to assess whether the recovery indicators were different for different vegetation types and dependent on timing of the burning season. Results highlighted the importance of appropriate reference areas and the importance of correct normalization of the SPOT-VGT data.
Temporal Expression-based Analysis of Metabolism
Segrè, Daniel
2012-01-01
Metabolic flux is frequently rerouted through cellular metabolism in response to dynamic changes in the intra- and extra-cellular environment. Capturing the mechanisms underlying these metabolic transitions in quantitative and predictive models is a prominent challenge in systems biology. Progress in this regard has been made by integrating high-throughput gene expression data into genome-scale stoichiometric models of metabolism. Here, we extend previous approaches to perform a Temporal Expression-based Analysis of Metabolism (TEAM). We apply TEAM to understanding the complex metabolic dynamics of the respiratorily versatile bacterium Shewanella oneidensis grown under aerobic, lactate-limited conditions. TEAM predicts temporal metabolic flux distributions using time-series gene expression data. Increased predictive power is achieved by supplementing these data with a large reference compendium of gene expression, which allows us to take into account the unique character of the distribution of expression of each individual gene. We further propose a straightforward method for studying the sensitivity of TEAM to changes in its fundamental free threshold parameter θ, and reveal that discrete zones of distinct metabolic behavior arise as this parameter is changed. By comparing the qualitative characteristics of these zones to additional experimental data, we are able to constrain the range of θ to a small, well-defined interval. In parallel, the sensitivity analysis reveals the inherently difficult nature of dynamic metabolic flux modeling: small errors early in the simulation propagate to relatively large changes later in the simulation. We expect that handling such “history-dependent” sensitivities will be a major challenge in the future development of dynamic metabolic-modeling techniques. PMID:23209390
Effects of Sampling and Spatio/Temporal Granularity in Traffic Monitoring on Anomaly Detectability
NASA Astrophysics Data System (ADS)
Ishibashi, Keisuke; Kawahara, Ryoichi; Mori, Tatsuya; Kondoh, Tsuyoshi; Asano, Shoichiro
We quantitatively evaluate how sampling and spatio/temporal granularity in traffic monitoring affect the detectability of anomalous traffic. Those parameters also affect the monitoring burden, so network operators face a trade-off between the monitoring burden and detectability and need to know which are the optimal paramter values. We derive equations to calculate the false positive ratio and false negative ratio for given values of the sampling rate, granularity, statistics of normal traffic, and volume of anomalies to be detected. Specifically, assuming that the normal traffic has a Gaussian distribution, which is parameterized by its mean and standard deviation, we analyze how sampling and monitoring granularity change these distribution parameters. This analysis is based on observation of the backbone traffic, which exhibits spatially uncorrelated and temporally long-range dependence. Then we derive the equations for detectability. With those equations, we can answer the practical questions that arise in actual network operations: what sampling rate to set to find the given volume of anomaly, or, if the sampling is too high for actual operation, what granularity is optimal to find the anomaly for a given lower limit of sampling rate.
NASA Astrophysics Data System (ADS)
Hnat, B.; Dudson, B. D.; Dendy, R. O.; Counsell, G. F.; Kirk, A.; MAST Team
2008-08-01
Ion saturation current (Isat) measurements of edge plasma turbulence are analysed for six MAST L-mode plasmas that differ primarily in their edge magnetic field configurations. The analysis techniques are designed to capture the strong nonlinearities of the datasets. First, absolute moments of the data are examined to obtain accurate values of scaling exponents. This confirms dual scaling behaviour in all samples, with the temporal scale τ ≈ 40-60 µs separating the two regimes. Strong universality is then identified in the functional form of the probability density function (PDF) for Isat fluctuations, which is well approximated by the Fréchet distribution on temporal scales τ <= 40 µs. For temporal scales τ > 40 µs, the PDFs appear to converge to the Gumbel distribution, which has been previously identified as a universal feature of many other complex phenomena. The optimal fitting parameters k = 1.15 for Fréchet and a = 1.35 for Gumbel provide a simple quantitative characterization of the full spectrum of fluctuations. It is concluded that, to good approximation, the properties of the edge turbulence are independent of the edge magnetic field configuration.
NASA Astrophysics Data System (ADS)
Zhou, Hongying; Yuan, Xuanjun; Zhang, Youyan; Dong, Wentong; Liu, Song
2016-11-01
It is of great importance for petroleum exploration to study the sedimentary features and the growth pattern of shoal water deltas in lake basins. Taking spatio-temporal remote sensing images as the principal data source, combined with field sedimentation survey, a quantitative research on the modern deposition of Ganjiang delta in the Poyang Lake Basin is described in this paper. Using 76 multi-temporal and multi-type remote sensing images acquired from 1973 to 2015, combined with field sedimentation survey, remote sensing interpretation analysis was conducted on the sedimentary facies of the Ganjiang delta. It is found that that the current Poyang Lake mainly consists of three types of sand body deposits including deltaic deposit, overflow channel deposit, and aeolian deposit, and the distribution of sand bodies was affected by the above three types of depositions jointly. The mid-branch channels of the Ganjiang delta increased on an exponential growth rhythm. The main growth pattern of the Ganjiang delta is dendritic and reticular, and the distributary channel mostly arborizes at lake inlet and was reworked to be reticulatus at late stage.
Funk, Sebastian; Bogich, Tiffany L; Jones, Kate E; Kilpatrick, A Marm; Daszak, Peter
2013-01-01
The proper allocation of public health resources for research and control requires quantification of both a disease's current burden and the trend in its impact. Infectious diseases that have been labeled as "emerging infectious diseases" (EIDs) have received heightened scientific and public attention and resources. However, the label 'emerging' is rarely backed by quantitative analysis and is often used subjectively. This can lead to over-allocation of resources to diseases that are incorrectly labelled "emerging," and insufficient allocation of resources to diseases for which evidence of an increasing or high sustained impact is strong. We suggest a simple quantitative approach, segmented regression, to characterize the trends and emergence of diseases. Segmented regression identifies one or more trends in a time series and determines the most statistically parsimonious split(s) (or joinpoints) in the time series. These joinpoints in the time series indicate time points when a change in trend occurred and may identify periods in which drivers of disease impact change. We illustrate the method by analyzing temporal patterns in incidence data for twelve diseases. This approach provides a way to classify a disease as currently emerging, re-emerging, receding, or stable based on temporal trends, as well as to pinpoint the time when the change in these trends happened. We argue that quantitative approaches to defining emergence based on the trend in impact of a disease can, with appropriate context, be used to prioritize resources for research and control. Implementing this more rigorous definition of an EID will require buy-in and enforcement from scientists, policy makers, peer reviewers and journal editors, but has the potential to improve resource allocation for global health.
Market inefficiency identified by both single and multiple currency trends
NASA Astrophysics Data System (ADS)
Tokár, T.; Horváth, D.
2012-11-01
Many studies have shown that there are good reasons to claim very low predictability of currency returns; nevertheless, the deviations from true randomness exist which have potential predictive and prognostic power [J. James, Simple trend-following strategies in currency trading, Quantitative finance 3 (2003) C75-C77]. We analyze the local trends which are of the main focus of the technical analysis. In this article we introduced various statistical quantities examining role of single temporal discretized trend or multitude of grouped trends corresponding to different time delays. Our specific analysis based predominantly on Euro-dollar currency pair data at the one minute frequency suggests the importance of cumulative nonrandom effect of trends on the potential forecasting performance.
NASA Astrophysics Data System (ADS)
Zhao, Tianzhuo; Fan, Zhongwei; Lian, Fuqiang; Liu, Yang; Lin, Weiran; Mo, Zeqiang; Nie, Shuzhen; Wang, Pu; Xiao, Hong; Li, Xin; Zhong, Qixiu; Zhang, Hongbo
2017-11-01
Laser-induced breakdown spectroscopy (LIBS) utilizing an echelle spectrograph-ICCD system is employed for on-line analysis of elements concentration in a vacuum induction melting workshop. Active temperature stabilization of echelle spectrometer is implemented specially for industrial environment applications. The measurement precision is further improved by monitoring laser parameters, such as pulse energy, spatial and temporal profiles, in real time, and post-selecting laser pulses with specific pulse energies. Experimental results show that major components of nickel-based alloys are stable, and can be well detected. By using internal standard method, calibration curves for chromium and aluminum are obtained for quantitative determination, with determination coefficient (relative standard deviation) to be 0.9559 (< 2.2%) and 0.9723 (< 2.8%), respectively.
NASA Astrophysics Data System (ADS)
Vidovič, Luka; Milanič, Matija; Majaron, Boris
2015-07-01
We combine pulsed photothermal radiometry (PPTR) depth profiling with diffuse reflectance spectroscopy (DRS) measurements for a comprehensive analysis of bruise evolution in vivo. While PPTR enables extraction of detailed depth distribution and concentration profiles of selected absorbers (e.g. melanin, hemoglobin), DRS provides information in a wide range of visible wavelengths and thus offers an additional insight into dynamics of the hemoglobin degradation products. Combining the two approaches enables us to quantitatively characterize bruise evolution dynamics. Our results indicate temporal variations of the bruise evolution parameters in the course of bruise self-healing process. The obtained parameter values and trends represent a basis for a future development of an objective technique for bruise age determination.
Load- and skill-related changes in segmental contributions to a weightlifting movement.
Enoka, R M
1988-04-01
An exemplary short duration, high-power, weightlifting event was examined to determine whether the ability to lift heavier loads and whether variations in the level of skill were accompanied by quantitative changes in selected aspects of lower extremity joint power-time histories. Six experienced weightlifters, three skilled and three less skilled, performed the double-knee-bend execution of the pull in Olympic weightlifting, a movement which lasted almost 1 s. Analysis-of-variance statistics were performed on selected peak and average values of power generated by the three skilled subjects as they lifted three loads (69, 77, and 86% of their competition maximum). The results indicated that the skilled subjects lifted heavier loads by increasing the average power, but not the peak power, about the knee and ankle joints. In addition, the changes with load were more subtle than a mere quantitative scaling and also seemed to be associated with a skill element in the form of variation in the duration of the phases of power production and absorption. Similarly, statistical differences (independent t-test) due to skill did not involve changes in the magnitude of power but rather the temporal organization of the movement. Thus, the ability to successfully execute the double-knee-bend movement depends on an athlete's ability to both generate a sufficient magnitude of joint power and to organize the phases of power production and absorption into an appropriate temporal sequence.
Sethy, Niroj Kumar; Singh, Manjulata; Kumar, Rajesh; Ilavazhagan, Govindasamy; Bhargava, Kalpana
2011-03-01
Exposure to high altitude (and thus hypobaric hypoxia) induces electrophysiological, metabolic, and morphological modifications in the brain leading to several neurological clinical syndromes. Despite the known fact that hypoxia episodes in brain are a common factor for many neuropathologies, limited information is available on the underlying cellular and molecular mechanisms. In this study, we investigated the temporal effect of short-term (0-12 h) chronic hypobaric hypoxia on global gene expression of rat brain followed by detailed canonical pathway analysis and regulatory network identification. Our analysis revealed significant alteration of 33, 17, 53, 81, and 296 genes (p < 0.05, <1.5-fold) after 0.5, 1, 3, 6, and 12 h of hypoxia, respectively. Biological processes like regulation, metabolic, and transport pathways are temporally activated along with anti- and proinflammatory signaling networks like PI3K/AKT, NF-κB, ERK/MAPK, IL-6 and IL-8 signaling. Irrespective of exposure durations, nuclear factor (erythroid-derived 2)-like 2 (NRF2)-mediated oxidative stress response pathway and genes were detected at all time points suggesting activation of NRF2-ARE antioxidant defense system. The results were further validated by assessing the expression levels of selected genes in temporal as well as brain regions with quantitative RT-PCR and western blot. In conclusion, our whole brain approach with temporal monitoring of gene expression patterns during hypobaric hypoxia has resulted in (1) deciphering sequence of pathways and signaling networks activated during onset of hypoxia, and (2) elucidation of NRF2-orchestrated antioxidant response as a major intrinsic defense mechanism. The results of this study will aid in better understanding and management of hypoxia-induced brain pathologies.
Environmental DNA reflects spatial and temporal jellyfish distribution
Fukuda, Miho; Katsuhara, Koki R.; Fujiwara, Ayaka; Hidaka, Shunsuke; Yamamoto, Satoshi; Takahashi, Kohji; Masuda, Reiji
2017-01-01
Recent development of environmental DNA (eDNA) analysis allows us to survey underwater macro-organisms easily and cost effectively; however, there have been no reports on eDNA detection or quantification for jellyfish. Here we present the first report on an eDNA analysis of marine jellyfish using Japanese sea nettle (Chrysaora pacifica) as a model species by combining a tank experiment with spatial and temporal distribution surveys. We performed a tank experiment monitoring eDNA concentrations over a range of time intervals after the introduction of jellyfish, and quantified the eDNA concentrations by quantitative real-time PCR. The eDNA concentrations peaked twice, at 1 and 8 h after the beginning of the experiment, and became stable within 48 h. The estimated release rates of the eDNA in jellyfish were higher than the rates previously reported in fishes. A spatial survey was conducted in June 2014 in Maizuru Bay, Kyoto, in which eDNA was collected from surface water and sea floor water samples at 47 sites while jellyfish near surface water were counted on board by eye. The distribution of eDNA in the bay corresponded with the distribution of jellyfish inferred by visual observation, and the eDNA concentration in the bay was ~13 times higher on the sea floor than on the surface. The temporal survey was conducted from March to November 2014, in which jellyfish were counted by eye every morning while eDNA was collected from surface and sea floor water at three sampling points along a pier once a month. The temporal fluctuation pattern of the eDNA concentrations and the numbers of observed individuals were well correlated. We conclude that an eDNA approach is applicable for jellyfish species in the ocean. PMID:28245277
Dynamic Control of Plans with Temporal Uncertainty
NASA Technical Reports Server (NTRS)
Morris, Paul; Muscettola, Nicola; Vidal, Thierry
2001-01-01
Certain planning systems that deal with quantitative time constraints have used an underlying Simple Temporal Problem solver to ensure temporal consistency of plans. However, many applications involve processes of uncertain duration whose timing cannot be controlled by the execution agent. These cases require more complex notions of temporal feasibility. In previous work, various "controllability" properties such as Weak, Strong, and Dynamic Controllability have been defined. The most interesting and useful Controllability property, the Dynamic one, has ironically proved to be the most difficult to analyze. In this paper, we resolve the complexity issue for Dynamic Controllability. Unexpectedly, the problem turns out to be tractable. We also show how to efficiently execute networks whose status has been verified.
Dynamic Granger-Geweke causality modeling with application to interictal spike propagation
Lin, Fa-Hsuan; Hara, Keiko; Solo, Victor; Vangel, Mark; Belliveau, John W.; Stufflebeam, Steven M.; Hamalainen, Matti S.
2010-01-01
A persistent problem in developing plausible neurophysiological models of perception, cognition, and action is the difficulty of characterizing the interactions between different neural systems. Previous studies have approached this problem by estimating causal influences across brain areas activated during cognitive processing using Structural Equation Modeling and, more recently, with Granger-Geweke causality. While SEM is complicated by the need for a priori directional connectivity information, the temporal resolution of dynamic Granger-Geweke estimates is limited because the underlying autoregressive (AR) models assume stationarity over the period of analysis. We have developed a novel optimal method for obtaining data-driven directional causality estimates with high temporal resolution in both time and frequency domains. This is achieved by simultaneously optimizing the length of the analysis window and the chosen AR model order using the SURE criterion. Dynamic Granger-Geweke causality in time and frequency domains is subsequently calculated within a moving analysis window. We tested our algorithm by calculating the Granger-Geweke causality of epileptic spike propagation from the right frontal lobe to the left frontal lobe. The results quantitatively suggested the epileptic activity at the left frontal lobe was propagated from the right frontal lobe, in agreement with the clinical diagnosis. Our novel computational tool can be used to help elucidate complex directional interactions in the human brain. PMID:19378280
Jing, Min; McGinnity, T Martin; Coleman, Sonya; Fuchs, Armin; Kelso, J A Scott
2015-07-01
Despite the emerging applications of diffusion tensor imaging (DTI) to mild traumatic brain injury (mTBI), very few investigations have been reported related to temporal changes in quantitative diffusion patterns, which may help to assess recovery from head injury and the long term impact associated with cognitive and behavioral impairments caused by mTBI. Most existing methods are focused on detection of mTBI affected regions rather than quantification of temporal changes following head injury. Furthermore, most methods rely on large data samples as required for statistical analysis and, thus, are less suitable for individual case studies. In this paper, we introduce an approach based on spatial group independent component analysis (GICA), in which the diffusion scalar maps from an individual mTBI subject and the average of a group of controls are arranged according to their data collection time points. In addition, we propose a constrained GICA (CGICA) model by introducing the prior information into the GICA decomposition process, thus taking available knowledge of mTBI into account. The proposed method is evaluated based on DTI data collected from American football players including eight controls and three mTBI subjects (at three time points post injury). The results show that common spatial patterns within the diffusion maps were extracted as spatially independent components (ICs) by GICA. The temporal change of diffusion patterns during recovery is revealed by the time course of the selected IC. The results also demonstrate that the temporal change can be further influenced by incorporating the prior knowledge of mTBI (if available) based on the proposed CGICA model. Although a small sample of mTBI subjects is studied, as a proof of concept, the preliminary results provide promising insight for applications of DTI to study recovery from mTBI and may have potential for individual case studies in practice.
Baumann, Gerd; Place, Robert F; Földes-Papp, Zeno
2010-08-01
In living cell or its nucleus, the motions of molecules are complicated due to the large crowding and expected heterogeneity of the intracellular environment. Randomness in cellular systems can be either spatial (anomalous) or temporal (heterogeneous). In order to separate both processes, we introduce anomalous random walks on fractals that represented crowded environments. We report the use of numerical simulation and experimental data of single-molecule detection by fluorescence fluctuation microscopy for detecting resolution limits of different mobile fractions in crowded environment of living cells. We simulate the time scale behavior of diffusion times tau(D)(tau) for one component, e.g. the fast mobile fraction, and a second component, e.g. the slow mobile fraction. The less the anomalous exponent alpha the higher the geometric crowding of the underlying structure of motion that is quantified by the ratio of the Hausdorff dimension and the walk exponent d(f)/d(w) and specific for the type of crowding generator used. The simulated diffusion time decreases for smaller values of alpha # 1 but increases for a larger time scale tau at a given value of alpha # 1. The effect of translational anomalous motion is substantially greater if alpha differs much from 1. An alpha value close to 1 contributes little to the time dependence of subdiffusive motions. Thus, quantitative determination of molecular weights from measured diffusion times and apparent diffusion coefficients, respectively, in temporal auto- and crosscorrelation analyses and from time-dependent fluorescence imaging data are difficult to interpret and biased in crowded environments of living cells and their cellular compartments; anomalous dynamics on different time scales tau must be coupled with the quantitative analysis of how experimental parameters change with predictions from simulated subdiffusive dynamics of molecular motions and mechanistic models. We first demonstrate that the crowding exponent alpha also determines the resolution of differences in diffusion times between two components in addition to photophysical parameters well-known for normal motion in dilute solution. The resolution limit between two different kinds of single molecule species is also analyzed under translational anomalous motion with broken ergodicity. We apply our theoretical predictions of diffusion times and lower limits for the time resolution of two components to fluorescence images in human prostate cancer cells transfected with GFP-Ago2 and GFP-Ago1. In order to mimic heterogeneous behavior in crowded environments of living cells, we need to introduce so-called continuous time random walks (CTRW). CTRWs were originally performed on regular lattice. This purely stochastic molecule behavior leads to subdiffusive motion with broken ergodicity in our simulations. For the first time, we are able to quantitatively differentiate between anomalous motion without broken ergodicity and anomalous motion with broken ergodicity in time-dependent fluorescence microscopy data sets of living cells. Since the experimental conditions to measure a selfsame molecule over an extended period of time, at which biology is taken place, in living cells or even in dilute solution are very restrictive, we need to perform the time average over a subpopulation of different single molecules of the same kind. For time averages over subpopulations of single molecules, the temporal auto- and crosscorrelation functions are first found. Knowing the crowding parameter alpha for the cell type and cellular compartment type, respectively, the heterogeneous parameter gamma can be obtained from the measurements in the presence of the interacting reaction partner, e.g. ligand, with the same alpha value. The product alpha x gamma = gamma is not a simple fitting parameter in the temporal auto- and two-color crosscorrelation functions because it is related to the proper physical models of anomalous (spatial) and heterogeneous (temporal) randomness in cellular systems.We have already derived an analytical solution gamma for in the special case of gamma = 3/2. In the case of two-color crosscorrelation or/and two-color fluorescence imaging (co-localization experiments), the second component is also a two-color species gr, for example a different molecular complex with an additional ligand. Here, we first show that plausible biological mechanisms from FCS/ FCCS and fluorescence imaging in living cells are highly questionable without proper quantitative physical models of subdiffusive motion and temporal randomness. At best, such quantitative FCS/ FCCS and fluorescence imaging data are difficult to interpret under crowding and heterogeneous conditions. It is challenging to translate proper physical models of anomalous (spatial) and heterogeneous (temporal) randomness in living cells and their cellular compartments like the nucleus into biological models of the cell biological process under study testable by single-molecule approaches. Otherwise, quantitative FCS/FCCS and fluorescence imaging measurements in living cells are not well described and cannot be interpreted in a meaningful way.
A quantitative approach to evolution of music and philosophy
NASA Astrophysics Data System (ADS)
Vieira, Vilson; Fabbri, Renato; Travieso, Gonzalo; Oliveira, Osvaldo N., Jr.; da Fontoura Costa, Luciano
2012-08-01
The development of new statistical and computational methods is increasingly making it possible to bridge the gap between hard sciences and humanities. In this study, we propose an approach based on a quantitative evaluation of attributes of objects in fields of humanities, from which concepts such as dialectics and opposition are formally defined mathematically. As case studies, we analyzed the temporal evolution of classical music and philosophy by obtaining data for 8 features characterizing the corresponding fields for 7 well-known composers and philosophers, which were treated with multivariate statistics and pattern recognition methods. A bootstrap method was applied to avoid statistical bias caused by the small sample data set, with which hundreds of artificial composers and philosophers were generated, influenced by the 7 names originally chosen. Upon defining indices for opposition, skewness and counter-dialectics, we confirmed the intuitive analysis of historians in that classical music evolved according to a master-apprentice tradition, while in philosophy changes were driven by opposition. Though these case studies were meant only to show the possibility of treating phenomena in humanities quantitatively, including a quantitative measure of concepts such as dialectics and opposition, the results are encouraging for further application of the approach presented here to many other areas, since it is entirely generic.
Seo, Jong-Geun; Kang, Kyunghun; Jung, Ji-Young; Park, Sung-Pa; Lee, Maan-Gee; Lee, Ho-Won
2014-12-01
In this pilot study, we analyzed relationships between quantitative EEG measurements and clinical parameters in idiopathic normal pressure hydrocephalus patients, along with differences in these quantitative EEG markers between cerebrospinal fluid tap test responders and nonresponders. Twenty-six idiopathic normal pressure hydrocephalus patients (9 cerebrospinal fluid tap test responders and 17 cerebrospinal fluid tap test nonresponders) constituted the final group for analysis. The resting EEG was recorded and relative powers were computed for seven frequency bands. Cerebrospinal fluid tap test nonresponders, when compared with responders, showed a statistically significant increase in alpha2 band power at the right frontal and centrotemporal regions. Higher delta2 band powers in the frontal, central, parietal, and occipital regions and lower alpha1 band powers in the right temporal region significantly correlated with poorer cognitive performance. Higher theta1 band powers in the left parietal and occipital regions significantly correlated with gait dysfunction. And higher delta1 band powers in the right frontal regions significantly correlated with urinary disturbance. Our findings may encourage further research using quantitative EEG in patients with ventriculomegaly as a potential electrophysiological marker for predicting cerebrospinal fluid tap test responders. This study additionally suggests that the delta, theta, and alpha bands are statistically correlated with the severity of symptoms in idiopathic normal pressure hydrocephalus patients.
Computer-based video analysis identifies infants with absence of fidgety movements.
Støen, Ragnhild; Songstad, Nils Thomas; Silberg, Inger Elisabeth; Fjørtoft, Toril; Jensenius, Alexander Refsum; Adde, Lars
2017-10-01
BackgroundAbsence of fidgety movements (FMs) at 3 months' corrected age is a strong predictor of cerebral palsy (CP) in high-risk infants. This study evaluates the association between computer-based video analysis and the temporal organization of FMs assessed with the General Movement Assessment (GMA).MethodsInfants were eligible for this prospective cohort study if referred to a high-risk follow-up program in a participating hospital. Video recordings taken at 10-15 weeks post term age were used for GMA and computer-based analysis. The variation of the spatial center of motion, derived from differences between subsequent video frames, was used for quantitative analysis.ResultsOf 241 recordings from 150 infants, 48 (24.1%) were classified with absence of FMs or sporadic FMs using the GMA. The variation of the spatial center of motion (C SD ) during a recording was significantly lower in infants with normal (0.320; 95% confidence interval (CI) 0.309, 0.330) vs. absence of or sporadic (0.380; 95% CI 0.361, 0.398) FMs (P<0.001). A triage model with C SD thresholds chosen for sensitivity of 90% and specificity of 80% gave a 40% referral rate for GMA.ConclusionQuantitative video analysis during the FMs' period can be used to triage infants at high risk of CP to early intervention or observational GMA.
Spatial and temporal epidemiological analysis in the Big Data era.
Pfeiffer, Dirk U; Stevens, Kim B
2015-11-01
Concurrent with global economic development in the last 50 years, the opportunities for the spread of existing diseases and emergence of new infectious pathogens, have increased substantially. The activities associated with the enormously intensified global connectivity have resulted in large amounts of data being generated, which in turn provides opportunities for generating knowledge that will allow more effective management of animal and human health risks. This so-called Big Data has, more recently, been accompanied by the Internet of Things which highlights the increasing presence of a wide range of sensors, interconnected via the Internet. Analysis of this data needs to exploit its complexity, accommodate variation in data quality and should take advantage of its spatial and temporal dimensions, where available. Apart from the development of hardware technologies and networking/communication infrastructure, it is necessary to develop appropriate data management tools that make this data accessible for analysis. This includes relational databases, geographical information systems and most recently, cloud-based data storage such as Hadoop distributed file systems. While the development in analytical methodologies has not quite caught up with the data deluge, important advances have been made in a number of areas, including spatial and temporal data analysis where the spectrum of analytical methods ranges from visualisation and exploratory analysis, to modelling. While there used to be a primary focus on statistical science in terms of methodological development for data analysis, the newly emerged discipline of data science is a reflection of the challenges presented by the need to integrate diverse data sources and exploit them using novel data- and knowledge-driven modelling methods while simultaneously recognising the value of quantitative as well as qualitative analytical approaches. Machine learning regression methods, which are more robust and can handle large datasets faster than classical regression approaches, are now also used to analyse spatial and spatio-temporal data. Multi-criteria decision analysis methods have gained greater acceptance, due in part, to the need to increasingly combine data from diverse sources including published scientific information and expert opinion in an attempt to fill important knowledge gaps. The opportunities for more effective prevention, detection and control of animal health threats arising from these developments are immense, but not without risks given the different types, and much higher frequency, of biases associated with these data. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.
2013-01-01
Many remote sensing techniques and passive sensors have been developed to measure global aerosol properties. While instantaneous comparisons between pixel-level data often reveal quantitative differences, here we use Empirical Orthogonal Function (EOF) analysis, also known as Principal Component Analysis, to demonstrate that satellite-derived aerosol optical depth (AOD) data sets exhibit essentially the same spatial and temporal variability and are thus suitable for large-scale studies. Analysis results show that the first four EOF modes of AOD account for the bulk of the variance and agree well across the four data sets used in this study (i.e., Aqua MODIS, Terra MODIS, MISR, and SeaWiFS). Only SeaWiFS data over land have slightly different EOF patterns. Globally, the first two EOF modes show annual cycles and are mainly related to Sahara dust in the northern hemisphere and biomass burning in the southern hemisphere, respectively. After removing the mean seasonal cycle from the data, major aerosol sources, including biomass burning in South America and dust in West Africa, are revealed in the dominant modes due to the different interannual variability of aerosol emissions. The enhancement of biomass burning associated with El Niño over Indonesia and central South America is also captured with the EOF technique.
Web-based tools for modelling and analysis of multivariate data: California ozone pollution activity
Dinov, Ivo D.; Christou, Nicolas
2014-01-01
This article presents a hands-on web-based activity motivated by the relation between human health and ozone pollution in California. This case study is based on multivariate data collected monthly at 20 locations in California between 1980 and 2006. Several strategies and tools for data interrogation and exploratory data analysis, model fitting and statistical inference on these data are presented. All components of this case study (data, tools, activity) are freely available online at: http://wiki.stat.ucla.edu/socr/index.php/SOCR_MotionCharts_CAOzoneData. Several types of exploratory (motion charts, box-and-whisker plots, spider charts) and quantitative (inference, regression, analysis of variance (ANOVA)) data analyses tools are demonstrated. Two specific human health related questions (temporal and geographic effects of ozone pollution) are discussed as motivational challenges. PMID:24465054
Dinov, Ivo D; Christou, Nicolas
2011-09-01
This article presents a hands-on web-based activity motivated by the relation between human health and ozone pollution in California. This case study is based on multivariate data collected monthly at 20 locations in California between 1980 and 2006. Several strategies and tools for data interrogation and exploratory data analysis, model fitting and statistical inference on these data are presented. All components of this case study (data, tools, activity) are freely available online at: http://wiki.stat.ucla.edu/socr/index.php/SOCR_MotionCharts_CAOzoneData. Several types of exploratory (motion charts, box-and-whisker plots, spider charts) and quantitative (inference, regression, analysis of variance (ANOVA)) data analyses tools are demonstrated. Two specific human health related questions (temporal and geographic effects of ozone pollution) are discussed as motivational challenges.
Timber type separability in Southeastern United States on LANDSAT-1 MSS data
NASA Technical Reports Server (NTRS)
Kan, E. P.; Dillman, R. D.
1975-01-01
A quantitative, computer-aided study was made on the spectral separability of timber types and condition classes in the Southeastern United States, using LANDSAT-1 multispectral scanner data. It was concluded that LANDSAT-1 could be used effectively to discriminate the gross forest features of softwood, hardwood, and regeneration. The only significant detectable age difference would be between an established forest versus a young (or denuded) forest. The red or near infrared bands would be better for discrimination; phenological early and late spring data would be better than winter. And a temporal analysis would be superior to single-season analysis. Lastly, two spectral bands would be most cost effective for computer analysis. The study site was Sam Houston National Forest of East Texas, a typical forest in the Flatwoods Zone, Southern Region, U. S. Forest Service.
Implicit timing activates the left inferior parietal cortex.
Wiener, Martin; Turkeltaub, Peter E; Coslett, H Branch
2010-11-01
Coull and Nobre (2008) suggested that tasks that employ temporal cues might be divided on the basis of whether these cues are explicitly or implicitly processed. Furthermore, they suggested that implicit timing preferentially engages the left cerebral hemisphere. We tested this hypothesis by conducting a quantitative meta-analysis of eleven neuroimaging studies of implicit timing using the activation-likelihood estimation (ALE) algorithm (Turkeltaub, Eden, Jones, & Zeffiro, 2002). Our analysis revealed a single but robust cluster of activation-likelihood in the left inferior parietal cortex (supramarginal gyrus). This result is in accord with the hypothesis that the left hemisphere subserves implicit timing mechanisms. Furthermore, in conjunction with a previously reported meta-analysis of explicit timing tasks, our data support the claim that implicit and explicit timing are supported by at least partially distinct neural structures. Copyright © 2010 Elsevier Ltd. All rights reserved.
Climate Change and Macro-Economic Cycles in Pre-Industrial Europe
Pei, Qing; Zhang, David D.; Lee, Harry F.; Li, Guodong
2014-01-01
Climate change has been proven to be the ultimate cause of social crisis in pre-industrial Europe at a large scale. However, detailed analyses on climate change and macro-economic cycles in the pre-industrial era remain lacking, especially within different temporal scales. Therefore, fine-grained, paleo-climate, and economic data were employed with statistical methods to quantitatively assess the relations between climate change and agrarian economy in Europe during AD 1500 to 1800. In the study, the Butterworth filter was adopted to filter the data series into a long-term trend (low-frequency) and short-term fluctuations (high-frequency). Granger Causality Analysis was conducted to scrutinize the associations between climate change and macro-economic cycle at different frequency bands. Based on quantitative results, climate change can only show significant effects on the macro-economic cycle within the long-term. In terms of the short-term effects, society can relieve the influences from climate variations by social adaptation methods and self-adjustment mechanism. On a large spatial scale, temperature holds higher importance for the European agrarian economy than precipitation. By examining the supply-demand mechanism in the grain market, population during the study period acted as the producer in the long term, whereas as the consumer in the short term. These findings merely reflect the general interactions between climate change and macro-economic cycles at the large spatial region with a long-term study period. The findings neither illustrate individual incidents that can temporarily distort the agrarian economy nor explain some specific cases. In the study, the scale thinking in the analysis is raised as an essential methodological issue for the first time to interpret the associations between climatic impact and macro-economy in the past agrarian society within different temporal scales. PMID:24516601
Climate change and macro-economic cycles in pre-industrial europe.
Pei, Qing; Zhang, David D; Lee, Harry F; Li, Guodong
2014-01-01
Climate change has been proven to be the ultimate cause of social crisis in pre-industrial Europe at a large scale. However, detailed analyses on climate change and macro-economic cycles in the pre-industrial era remain lacking, especially within different temporal scales. Therefore, fine-grained, paleo-climate, and economic data were employed with statistical methods to quantitatively assess the relations between climate change and agrarian economy in Europe during AD 1500 to 1800. In the study, the Butterworth filter was adopted to filter the data series into a long-term trend (low-frequency) and short-term fluctuations (high-frequency). Granger Causality Analysis was conducted to scrutinize the associations between climate change and macro-economic cycle at different frequency bands. Based on quantitative results, climate change can only show significant effects on the macro-economic cycle within the long-term. In terms of the short-term effects, society can relieve the influences from climate variations by social adaptation methods and self-adjustment mechanism. On a large spatial scale, temperature holds higher importance for the European agrarian economy than precipitation. By examining the supply-demand mechanism in the grain market, population during the study period acted as the producer in the long term, whereas as the consumer in the short term. These findings merely reflect the general interactions between climate change and macro-economic cycles at the large spatial region with a long-term study period. The findings neither illustrate individual incidents that can temporarily distort the agrarian economy nor explain some specific cases. In the study, the scale thinking in the analysis is raised as an essential methodological issue for the first time to interpret the associations between climatic impact and macro-economy in the past agrarian society within different temporal scales.
Hoermann, Astrid; Cicin-Sain, Damjan; Jaeger, Johannes
2016-03-15
Understanding eukaryotic transcriptional regulation and its role in development and pattern formation is one of the big challenges in biology today. Most attempts at tackling this problem either focus on the molecular details of transcription factor binding, or aim at genome-wide prediction of expression patterns from sequence through bioinformatics and mathematical modelling. Here we bridge the gap between these two complementary approaches by providing an integrative model of cis-regulatory elements governing the expression of the gap gene giant (gt) in the blastoderm embryo of Drosophila melanogaster. We use a reverse-engineering method, where mathematical models are fit to quantitative spatio-temporal reporter gene expression data to infer the regulatory mechanisms underlying gt expression in its anterior and posterior domains. These models are validated through prediction of gene expression in mutant backgrounds. A detailed analysis of our data and models reveals that gt is regulated by domain-specific CREs at early stages, while a late element drives expression in both the anterior and the posterior domains. Initial gt expression depends exclusively on inputs from maternal factors. Later, gap gene cross-repression and gt auto-activation become increasingly important. We show that auto-regulation creates a positive feedback, which mediates the transition from early to late stages of regulation. We confirm the existence and role of gt auto-activation through targeted mutagenesis of Gt transcription factor binding sites. In summary, our analysis provides a comprehensive picture of spatio-temporal gene regulation by different interacting enhancer elements for an important developmental regulator. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Wink, Steven; Hiemstra, Steven W; Huppelschoten, Suzanne; Klip, Janna E; van de Water, Bob
2018-05-01
Drug-induced liver injury remains a concern during drug treatment and development. There is an urgent need for improved mechanistic understanding and prediction of DILI liabilities using in vitro approaches. We have established and characterized a panel of liver cell models containing mechanism-based fluorescent protein toxicity pathway reporters to quantitatively assess the dynamics of cellular stress response pathway activation at the single cell level using automated live cell imaging. We have systematically evaluated the application of four key adaptive stress pathway reporters for the prediction of DILI liability: SRXN1-GFP (oxidative stress), CHOP-GFP (ER stress/UPR response), p21 (p53-mediated DNA damage-related response) and ICAM1 (NF-κB-mediated inflammatory signaling). 118 FDA-labeled drugs in five human exposure relevant concentrations were evaluated for reporter activation using live cell confocal imaging. Quantitative data analysis revealed activation of single or multiple reporters by most drugs in a concentration and time dependent manner. Hierarchical clustering of time course dynamics and refined single cell analysis allowed the allusion of key events in DILI liability. Concentration response modeling was performed to calculate benchmark concentrations (BMCs). Extracted temporal dynamic parameters and BMCs were used to assess the predictive power of sub-lethal adaptive stress pathway activation. Although cellular adaptive responses were activated by non-DILI and severe-DILI compounds alike, dynamic behavior and lower BMCs of pathway activation were sufficiently distinct between these compound classes. The high-level detailed temporal- and concentration-dependent evaluation of the dynamics of adaptive stress pathway activation adds to the overall understanding and prediction of drug-induced liver liabilities.
Huang, Hao; Li, Ruohan; Yuan, Jinxian; Zhou, Xin; Liu, Xi; Ou, Shu; Xu, Tao; Chen, Yangmei
2016-05-15
EphB family receptor tyrosine kinases, in cooperation with cell surface-bound ephrinB ligands, play a critical role in maintenance of dendritic spine morphogenesis, axons guidance, synaptogenesis, synaptic reorganization and plasticity in the central nervous system (CNS). However, the expression pattern of ephrinB/EphB in intractable temporal lobe epilepsy (TLE) and the underlying molecular mechanisms during epileptogenesis remain poorly understood. Here we investigated the expression pattern and cellular distribution of ephrinB/EphB in intractable TLE patients and lithium chloride-pilocarpine induced TLE rats using real-time quantitative polymerase chain reaction (RT-qPCR), immunohistochemistry, double-labeled immunofluorescence and Western blot analysis. Compared to control groups, ephrinB3 and EphB3 mRNA expression were significantly up-regulated in intractable TLE patients and TLE rats, while the mRNA expression trend of ephrinB1/2 and EphB1/2/4/6 in intractable TLE patients and TLE rats were inconsistent. Western blot analysis and semi-quantitative immunohistochemistry confirmed that ephrinB3 and EphB3 protein level were up-regulated in intractable TLE patients and TLE rats. At the same time, double-labeled immunofluorescence indicate that ephrinB3 was expressed mainly in the cytoplasm and protrusions of glia and neurons, while EphB3 was expressed mainly in the cytoplasm of neurons. Taken together, up-regulated expression of ephrinB3/EphB3 in intractable TLE patients and experimental TLE rats suggested that ephrinB3/EphB3 might be involved in the pathogenesis of TLE. Copyright © 2016 Elsevier B.V. All rights reserved.
Tympanomastoid cholesterol granulomas: Immunohistochemical evaluation of angiogenesis.
Iannella, Giannicola; Di Gioia, Cira; Carletti, Raffaella; Magliulo, Giuseppe
2017-08-01
This study investigates the immunohistochemical expression of vascular endothelial growth factor (VEGF) and CD34 in patients treated for middle ear and mastoid cholesterol granulomas to evaluate the angiogenesis and vascularization of this type of lesion. A correlation between the immunohistochemical data and the radiological and intraoperative evidence of temporal bone marrow invasion and blood source connection was performed to validate this hypothesis. Retrospective study. Immunohistochemical expression of VEGF and CD34 in a group of 16 patients surgically treated for cholesterol granuloma was examined. Middle ear cholesteatomas with normal middle ear mucosa and external auditory canal skin were used as the control groups. The radiological and intraoperative features of cholesterol granulomas were also examined. In endothelial cells, there was an increased expression of angiogenetic growth factor receptors in all the cholesterol granulomas in this study. The quantitative analysis of VEGF showed a mean value of 37.5, whereas the CD34 quantitative analysis gave a mean value of 6.8. Seven patients presented radiological or intraoperative evidence of bone marrow invasion, hematopoietic potentialities, or blood source connections that might support the bleeding theory. In all of these cases there was computed tomography or intraoperative evidence of bone erosion of the middle ear and/or temporal bone structures. The mean values of VEGF and CD34 were 41.1 and 7.7, respectively. High values of VEGF and CD34 are present in patients with cholesterol granulomas. Upregulation of VEGF and CD34 is indicative of a remarkable angiogenesis and a widespread vascular concentration in cholesterol granulomas. 3b. Laryngoscope, 127:E283-E290, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.
Rapid recovery from aphasia after infarction of Wernicke's area
Yagata, Stephanie A.; Yen, Melodie; McCarron, Angelica; Bautista, Alexa; Lamair-Orosco, Genevieve
2017-01-01
Background Aphasia following infarction of Wernicke's area typically resolves to some extent over time. The nature of this recovery process and its time course have not been characterized in detail, especially in the acute/subacute period. Aims The goal of this study was to document recovery after infarction of Wernicke's area in detail in the first 3 months after stroke. Specifically, we aimed to address two questions about language recovery. First, which impaired language domains improve over time, and which do not? Second, what is the time course of recovery? Methods & Procedures We used quantitative analysis of connected speech and a brief aphasia battery to document language recovery in two individuals with aphasia following infarction of the posterior superior temporal gyrus. Speech samples were acquired daily between 2 and 16 days post stroke, and also at 1 month and 3 months. Speech samples were transcribed and coded using the CHAT system, in order to quantify multiple language domains. A brief aphasia battery was also administered at a subset of five time points during the 3 months. Outcomes & Results Both patients showed substantial recovery of language function over this time period. Most, but not all, language domains showed improvements, including fluency, lexical access, phonological retrieval and encoding, and syntactic complexity. The time course of recovery was logarithmic, with the greatest gains taking place early in the course of recovery. Conclusions There is considerable potential for amelioration of language deficits when damage is relatively circumscribed to the posterior superior temporal gyrus. Quantitative analysis of connected speech samples proved to be an effective, albeit time-consuming, approach to tracking day-by-day recovery in the acute/subacute post-stroke period. PMID:29051682
Monitoring of heavy metal particle emission in the exhaust duct of a foundry using LIBS.
Dutouquet, C; Gallou, G; Le Bihan, O; Sirven, J B; Dermigny, A; Torralba, B; Frejafon, E
2014-09-01
Heavy metals have long been known to be detrimental to human health and the environment. Their emission is mainly considered to occur via the atmospheric route. Most of airborne heavy metals are of anthropogenic origin and produced through combustion processes at industrial sites such as incinerators and foundries. Current regulations impose threshold limits on heavy metal emissions. The reference method currently implemented for quantitative measurements at exhaust stacks consists of on-site sampling of heavy metals on filters for the particulate phase (the most prominent and only fraction considered in this study) prior to subsequent laboratory analysis. Results are therefore known only a few days after sampling. Stiffer regulations require the development of adapted tools allowing automatic, on-site or even in-situ measurements with temporal resolutions. The Laser-Induced Breakdown Spectroscopy (LIBS) technique was deemed as a potential candidate to meet these requirements. On site experiments were run by melting copper bars and monitoring emission of this element in an exhaust duct at a pilot-scale furnace in a French research center dedicated to metal casting. Two approaches designated as indirect and direct analysis were broached in these experiments. The former corresponds to filter enrichment prior to subsequent LIBS interrogation whereas the latter entails laser focusing right through the aerosol for detection. On-site calibration curves were built and compared with those obtained at laboratory scale in order to investigate possible matrix and analyte effects. Eventually, the obtained results in terms of detection limits and quantitative temporal monitoring of copper emission clearly emphasize the potentialities of the direct LIBS measurements. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Tao; Zhang, Yong; Zhang, Ming; He, Yi; Yu, Qiaoling; Duan, Yixiang
2016-07-01
Optical emission of laser ablation plasma on a shale target surface provides sensitive laser-induced breakdown spectrometry (LIBS) detection of major, minor or trace elements. An exploratory study for the characterization of the plasma induced on shale materials was carried out with the aim to trigger a crucial step towards the quantitative LIBS measurement. In this work, the experimental strategies that optimize the plasma generation on a pressed shale pellet surface are presented. The temporal evolution properties of the plasma induced by ns Nd:YAG laser pulse at the fundamental wavelength in air were investigated using time-resolved space-integrated optical emission spectroscopy. The electron density as well as the temperatures of the plasma were diagnosed as functions of the decay time for the bulk plasma analysis. In particular, the values of time-resolved atomic and ionic temperatures of shale elements, such as Fe, Mg, Ca, and Ti, were extracted from the well-known Boltzmann or Saha-Boltzmann plot method. Further comparison of these temperatures validated the local thermodynamic equilibrium (LTE) within specific interval of the delay time. In addition, the temporal behaviors of the signal-to-noise ratio of shale elements, including Si, Al, Fe, Ca, Mg, Ba, Li, Ti, K, Na, Sr, V, Cr, and Ni, revealed the coincidence of their maximum values with LIBS LTE condition in the time frame, providing practical implications for an optimized LIBS detection of shale elements. Analytical performance of LIBS was further evaluated with the linear calibration procedure for the most concerned trace elements of Sr, V, Cr, and Ni present in different shales. Their limits of detection obtained are elementally dependent and can be lower than tens of parts per million with the present LIBS experimental configurations. However, the occurrence of saturation effect for the calibration curve is still observable with the increasing trace element content, indicating that, due to the complex composition of shale materials, the omnipresent "matrix effect" is still a great challenging for the performance of quantitative LIBS measurement even in the framework of the LTE approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, X; Yang, Y; Yang, L
Purpose: To report our initial experience of systematic monitoring treatment response using longitudinal diffusion MR images on a Co-60 MRI-guided radiotherapy system. Methods: Four patients, including 2 head-and-necks, 1 sarcoma and 1 GBM treated on a 0.35 Tesla MRI-guided treatment system, were analyzed. For each patient, 3D TrueFISP MRIs were acquired during CT simulation and before each treatment for treatment planning and patient setup purposes respectively. Additionally, 2D diffusion-weighted MR images (DWI) were acquired weekly throughout the treatment course. The gross target volume (GTV) and brainstem (as a reference structure) were delineated on weekly 3D TrueFISP MRIs to monitor anatomymore » changes, the contours were then transferred onto the corresponding DWI images after fusing with the weekly TrueFISP images. The patient-specific temporal and spatial variations during the entire treatment course, such as anatomic changes, target apparent diffusion coefficient (ADC) distribution were evaluated in a longitudinal pattern. Results: Routine MRI revealed progressive soft-tissue GTV volume changes (up to 53%) for the H&N cases during the treatment course of 5–7 weeks. Within the GTV, the mean ADC values varied from −44% (ADC decrease) to +26% (ADC increase) in a week. The gradual increase of ADC value was inversely associated with target volume variation for one H&N case. The maximal changes of mean ADC values within the brainstem were 5.3% for the H&N cases. For the large size sarcoma and GBM tumors, spatial heterogeneity and temporal variations were observed through longitudinal ADC analysis. Conclusion: In addition to the superior soft-tissue visualization, the 0.35T MR system on ViewRay showed the potential to quantitatively measure the ADC values for both tumor and normal tissues. For normal tissue that is minimally affected by radiation, its ADC values are reproducible. Tumor ADC values show temporal and spatial fluctuation that can be exploited for personalized adaptive therapy.« less
Temporal Coherence as an Estimate of Decorrelation Time of SAR Interferometric Measurements
NASA Astrophysics Data System (ADS)
Foumelis, Michael
2014-05-01
Following a plethora of validations and demonstrations Interferometric SAR (InSAR) has been established as a mature space geodetic technique for providing valuable insights for various phenomena related to geohazards. One of the main advantages of space borne SAR systems with respect to GNSS is the continuous spatial coverage. However, the impact of temporal decorrelation especially in repeat-pass interferometry has been observed during the historical development of InSAR applications. Interferometric coherence is considered as the expression of temporal decorrelation. It is understood that interferometric coherence decreases with time between SAR acquisitions because of changes in surface reflectivity, reducing the accuracy and spatial coverage of SAR phase measurements. This is an intrinsic characteristic of the design of SAR systems that has a significant contribution at longer time scales. Since the majority of geohazards rely on long term observation scenarios, the effect of temporal decorrelation is evident as coherence becomes dominated by temporal changes. Although in the past there was not sufficient amount of SAR data to extract robust statistical metrics, in the present study it is demonstrated that tailored analysis of interferometric coherence by exploiting the large archive of SAR data available by the European Space Agency (ESA), enables the accurate quantification of temporal decorrelation. A methodology to translate the observed rate of coherence loss into decorrelation times over a volcanic landscape is the subject treated in this study. Specifically, a sensitivity analysis based on a large data stack of interferometric pairs in order to quantitatively estimate at a pixel level the time beyond which each interferometric phase becomes practically unusable is presented. The estimation and mapping of the spatial distribution of the temporal decorrelation times in an area without a necessary a priori knowledge of its surface characteristics is a fundamental parameter for the design and establishment of local GNSS networks as well as the definition of optimal monitoring strategy for various geohazards. The dependence of decorrelation on various land cover/use types is also analyzed. The performed analysis is viewed in the framework of future SAR systems, while underlining the necessity for exploitation of archive data. Though the dependence of decorrelation on various land cover/use types is already documented the provision of additional information regarding the expected time of decorrelation is of practical use especially when EO data are utilized in operational activities. Finally, the impact of the revisit time and increased performance of upcoming SAR missions is discussed.
Reference genes for reverse transcription quantitative PCR in canine brain tissue.
Stassen, Quirine E M; Riemers, Frank M; Reijmerink, Hannah; Leegwater, Peter A J; Penning, Louis C
2015-12-09
In the last decade canine models have been used extensively to study genetic causes of neurological disorders such as epilepsy and Alzheimer's disease and unravel their pathophysiological pathways. Reverse transcription quantitative polymerase chain reaction is a sensitive and inexpensive method to study expression levels of genes involved in disease processes. Accurate normalisation with stably expressed so-called reference genes is crucial for reliable expression analysis. Following the minimum information for publication of quantitative real-time PCR experiments precise guidelines, the expression of ten frequently used reference genes, namely YWHAZ, HMBS, B2M, SDHA, GAPDH, HPRT, RPL13A, RPS5, RPS19 and GUSB was evaluated in seven brain regions (frontal lobe, parietal lobe, occipital lobe, temporal lobe, thalamus, hippocampus and cerebellum) and whole brain of healthy dogs. The stability of expression varied between different brain areas. Using the GeNorm and Normfinder software HMBS, GAPDH and HPRT were the most reliable reference genes for whole brain. Furthermore based on GeNorm calculations it was concluded that as little as two to three reference genes are sufficient to obtain reliable normalisation, irrespective the brain area. Our results amend/extend the limited previously published data on canine brain reference genes. Despite the excellent expression stability of HMBS, GAPDH and HRPT, the evaluation of expression stability of reference genes must be a standard and integral part of experimental design and subsequent data analysis.
NASA Astrophysics Data System (ADS)
Wang, Minzhong; Ming, Hu; Ruan, Zheng; Gao, Lianhui; Yang, Di
2018-02-01
With the aim to achieve quantitative monitoring of sand-dust storms in real time, wind-profiling radar is applied to monitor and study the process of four sand-dust storms in the Tazhong area of the Taklimakan Desert. Through evaluation and analysis of the spatial-temporal distribution of reflectivity factor, it is found that reflectivity factor ranges from 2 to 18 dBz under sand-dust storm weather. Using echo power spectrum of radar vertical beams, sand-dust particle spectrum and sand-dust mass concentration at the altitude of 600 ˜ 1500 m are retrieved. This study shows that sand-dust mass concentration reaches 700 μg/m3 under blowing sand weather, 2000 μg/m3 under sand-dust storm weather, and 400 μg/m3 under floating dust weather. The following equations are established to represent the relationship between the reflectivity factor and sand-dust mass concentration: Z = 20713.5 M 0.995 under floating dust weather, Z = 22988.3 M 1.006 under blowing sand weather, and Z = 24584.2 M 1.013 under sand-dust storm weather. The retrieval results from this paper are almost consistent with previous monitoring results achieved by former researchers; thus, it is implied that wind-profiling radar can be used as a new reference device to quantitatively monitor sand-dust storms.
2017-01-01
Myeloid cells play a central role in the context of viral eradication, yet precisely how these cells differentiate throughout the course of acute infections is poorly understood. In this study, we have developed a novel quantitative temporal in vivo proteomics (QTiPs) platform to capture proteomic signatures of temporally transitioning virus-driven myeloid cells directly in situ, thus taking into consideration host–virus interactions throughout the course of an infection. QTiPs, in combination with phenotypic, functional, and metabolic analyses, elucidated a pivotal role for inflammatory CD11b+, Ly6G–, Ly6Chigh-low cells in antiviral immune response and viral clearance. Most importantly, the time-resolved QTiPs data set showed the transition of CD11b+, Ly6G–, Ly6Chigh-low cells into M2-like macrophages, which displayed increased antigen-presentation capacities and bioenergetic demands late in infection. We elucidated the pivotal role of myeloid cells in virus clearance and show how these cells phenotypically, functionally, and metabolically undergo a timely transition from inflammatory to M2-like macrophages in vivo. With respect to the growing appreciation for in vivo examination of viral–host interactions and for the role of myeloid cells, this study elucidates the use of quantitative proteomics to reveal the role and response of distinct immune cell populations throughout the course of virus infection. PMID:28768414
NASA Astrophysics Data System (ADS)
Hoffmann, Sebastian; Shutler, Jamie D.; Lobbes, Marc; Burgeth, Bernhard; Meyer-Bäse, Anke
2013-12-01
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) represents an established method for the detection and diagnosis of breast lesions. While mass-like enhancing lesions can be easily categorized according to the Breast Imaging Reporting and Data System (BI-RADS) MRI lexicon, a majority of diagnostically challenging lesions, the so called non-mass-like enhancing lesions, remain both qualitatively as well as quantitatively difficult to analyze. Thus, the evaluation of kinetic and/or morphological characteristics of non-masses represents a challenging task for an automated analysis and is of crucial importance for advancing current computer-aided diagnosis (CAD) systems. Compared to the well-characterized mass-enhancing lesions, non-masses have no well-defined and blurred tumor borders and a kinetic behavior that is not easily generalizable and thus discriminative for malignant and benign non-masses. To overcome these difficulties and pave the way for novel CAD systems for non-masses, we will evaluate several kinetic and morphological descriptors separately and a novel technique, the Zernike velocity moments, to capture the joint spatio-temporal behavior of these lesions, and additionally consider the impact of non-rigid motion compensation on a correct diagnosis.
Martin, Anna; Schurz, Matthias; Kronbichler, Martin
2015-01-01
Abstract We used quantitative, coordinate‐based meta‐analysis to objectively synthesize age‐related commonalities and differences in brain activation patterns reported in 40 functional magnetic resonance imaging (fMRI) studies of reading in children and adults. Twenty fMRI studies with adults (age means: 23–34 years) were matched to 20 studies with children (age means: 7–12 years). The separate meta‐analyses of these two sets showed a pattern of reading‐related brain activation common to children and adults in left ventral occipito‐temporal (OT), inferior frontal, and posterior parietal regions. The direct statistical comparison between the two meta‐analytic maps of children and adults revealed higher convergence in studies with children in left superior temporal and bilateral supplementary motor regions. In contrast, higher convergence in studies with adults was identified in bilateral posterior OT/cerebellar and left dorsal precentral regions. The results are discussed in relation to current neuroanatomical models of reading and tentative functional interpretations of reading‐related activation clusters in children and adults are provided. Hum Brain Mapp 36:1963–1981, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.. PMID:25628041
Rong, Hao; Tian, Jin; Zhao, Tingdi
2016-01-01
In traditional approaches of human reliability assessment (HRA), the definition of the error producing conditions (EPCs) and the supporting guidance are such that some of the conditions (especially organizational or managerial conditions) can hardly be included, and thus the analysis is burdened with incomprehensiveness without reflecting the temporal trend of human reliability. A method based on system dynamics (SD), which highlights interrelationships among technical and organizational aspects that may contribute to human errors, is presented to facilitate quantitatively estimating the human error probability (HEP) and its related variables changing over time in a long period. Taking the Minuteman III missile accident in 2008 as a case, the proposed HRA method is applied to assess HEP during missile operations over 50 years by analyzing the interactions among the variables involved in human-related risks; also the critical factors are determined in terms of impact that the variables have on risks in different time periods. It is indicated that both technical and organizational aspects should be focused on to minimize human errors in a long run. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Surface and finite size effect on fluctuations dynamics in nanoparticles with long-range order
NASA Astrophysics Data System (ADS)
Morozovska, A. N.; Eliseev, E. A.
2010-02-01
The influence of surface and finite size on the dynamics of the order parameter fluctuations and critical phenomena in the three-dimensional (3D)-confined systems with long-range order was not considered theoretically. In this paper, we study the influence of surface and finite size on the dynamics of the order parameter fluctuations in the particles of arbitrary shape. We consider concrete examples of the spherical and cylindrical ferroic nanoparticles within Landau-Ginzburg-Devonshire phenomenological approach. Allowing for the strong surface energy contribution in micro and nanoparticles, the analytical expressions derived for the Ornstein-Zernike correlator of the long-range order parameter spatial-temporal fluctuations, dynamic generalized susceptibility, relaxation times, and correlation radii discrete spectra are different from those known for bulk systems. Obtained analytical expressions for the correlation function of the order parameter spatial-temporal fluctuations in micro and nanosized systems can be useful for the quantitative analysis of the dynamical structural factors determined from magnetic resonance diffraction and scattering spectra. Besides the practical importance of the correlation function for the analysis of the experimental data, derived expressions for the fluctuations strength determine the fundamental limits of phenomenological theories applicability for 3D-confined systems.
Temporal Instabilities in Amblyopic Perception: A Quantitative Approach.
Thiel, Aylin; Iftime, Adrian
2016-04-01
The purpose of this study is to quantify the temporal characteristics of spatial misperceptions in human amblyopia. Twenty-two adult participants with strabismus, strabismic, anisometropic, or mixed amblyopia were asked to describe their subjective percept of static geometrical patterns with different spatial frequencies and shapes, as seen with their non-dominant eye. We generated digital reconstructions of their perception (static images or movies) that were subsequently validated by the subjects using consecutive matching sessions. We calculated the Shannon entropy variation in time for each recorded movie, as a measure of temporal instability. Nineteen of the 22 subjects perceived temporal instabilities that can be broadly classified in two categories. We found that the average frequency of the perceived temporal instabilities is ∼1 Hz. The stimuli with higher spatial frequencies yielded more often temporally unstable perceptions with higher frequencies. We suggest that type and amount of temporal instabilities in amblyopic vision are correlated with the etiology and spatial frequency of the stimulus.
ERIC Educational Resources Information Center
Tezer, Murat; Cumhur, Meryem; Hürsen, Emine
2016-01-01
The aim of this study is to try to investigate the spatial-temporal reasoning states of primary school children between the ages 8 and 11 who play an instrument, regarding mathematics lessons from the teachers' views. This current study is both qualitative and quantitative in nature. In other words, the mixed research method was used in the study.…
Easley, Christopher J; Rocheleau, Jonathan V; Head, W Steven; Piston, David W
2009-11-01
We assayed glucose-stimulated insulin secretion (GSIS) from live, murine islets of Langerhans in microfluidic devices by the downstream formation of aqueous droplets. Zinc ions, which are cosecreted with insulin from beta-cells, were quantitatively measured from single islets with high temporal resolution using a fluorescent indicator, FluoZin-3. Real-time storage of secretions into droplets (volume of 0.470 +/- 0.009 nL) effectively preserves the temporal chemical information, allowing reconstruction of the secretory time record. The use of passive flow control within the device removes the need for syringe pumps, requiring only a single hand-held syringe. Under stimulatory glucose levels (11 mM), bursts of zinc as high as approximately 800 fg islet(-1) min(-1) were measured. Treatment with diazoxide effectively blocked zinc secretion, as expected. High temporal resolution reveals two major classes of oscillations in secreted zinc, with predominate periods at approximately 20-40 s and approximately 5-10 min. The more rapid oscillation periods match closely with those of intraislet calcium oscillations, while the slower oscillations are consistent with insulin pulses typically measured in bulk islet experiments or in the bloodstream. This droplet sampling technique should be widely applicable to time-resolved cellular secretion measurements, either in real-time or for postprocessing.
Easley, Christopher J.; Rocheleau, Jonathan V.; Head, W. Steven; Piston, David W.
2009-01-01
We assayed glucose-stimulated insulin secretion (GSIS) from live, murine islets of Langerhans in microfluidic devices by the downstream formation of aqueous droplets. Zinc ions, which are co-secreted with insulin from β-cells, were quantitatively measured from single islets with high temporal resolution using a fluorescent indicator, FluoZin-3. Real-time storage of secretions into droplets (volume of 0.470 ± 0.009 nL) effectively preserves the temporal chemical information, allowing reconstruction of the secretory time record. The use of passive flow control within the device removes the need for syringe pumps, requiring only a single handheld syringe. Under stimulatory glucose levels (11 mM), bursts of zinc as high as ~800 fg islet−1 min−1 were measured. Treatment with diazoxide effectively blocked zinc secretion, as expected. High temporal resolution reveals two major classes of oscillations in secreted zinc, with predominate periods at ~20-40 s and ~ 5-10 min. The more rapid oscillation periods match closely with those of intraislet calcium oscillations, while the slower oscillations are consistent with insulin pulses typically measured in bulk islet experiments or in the bloodstream. This droplet sampling technique should be widely applicable to time-resolved cellular secretion measurements, either in real-time or for post-processing. PMID:19874061
Bansal, Arjun K.; Singer, Jedediah M.; Anderson, William S.; Golby, Alexandra; Madsen, Joseph R.
2012-01-01
The cerebral cortex needs to maintain information for long time periods while at the same time being capable of learning and adapting to changes. The degree of stability of physiological signals in the human brain in response to external stimuli over temporal scales spanning hours to days remains unclear. Here, we quantitatively assessed the stability across sessions of visually selective intracranial field potentials (IFPs) elicited by brief flashes of visual stimuli presented to 27 subjects. The interval between sessions ranged from hours to multiple days. We considered electrodes that showed robust visual selectivity to different shapes; these electrodes were typically located in the inferior occipital gyrus, the inferior temporal cortex, and the fusiform gyrus. We found that IFP responses showed a strong degree of stability across sessions. This stability was evident in averaged responses as well as single-trial decoding analyses, at the image exemplar level as well as at the category level, across different parts of visual cortex, and for three different visual recognition tasks. These results establish a quantitative evaluation of the degree of stationarity of visually selective IFP responses within and across sessions and provide a baseline for studies of cortical plasticity and for the development of brain-machine interfaces. PMID:22956795
Othmer, Hans G.; Xin, Xiangrong; Xue, Chuan
2013-01-01
The machinery for transduction of chemotactic stimuli in the bacterium E. coli is one of the most completely characterized signal transduction systems, and because of its relative simplicity, quantitative analysis of this system is possible. Here we discuss models which reproduce many of the important behaviors of the system. The important characteristics of the signal transduction system are excitation and adaptation, and the latter implies that the transduction system can function as a “derivative sensor” with respect to the ligand concentration in that the DC component of a signal is ultimately ignored if it is not too large. This temporal sensing mechanism provides the bacterium with a memory of its passage through spatially- or temporally-varying signal fields, and adaptation is essential for successful chemotaxis. We also discuss some of the spatial patterns observed in populations and indicate how cell-level behavior can be embedded in population-level descriptions. PMID:23624608
Word embeddings quantify 100 years of gender and ethnic stereotypes.
Garg, Nikhil; Schiebinger, Londa; Jurafsky, Dan; Zou, James
2018-04-17
Word embeddings are a powerful machine-learning framework that represents each English word by a vector. The geometric relationship between these vectors captures meaningful semantic relationships between the corresponding words. In this paper, we develop a framework to demonstrate how the temporal dynamics of the embedding helps to quantify changes in stereotypes and attitudes toward women and ethnic minorities in the 20th and 21st centuries in the United States. We integrate word embeddings trained on 100 y of text data with the US Census to show that changes in the embedding track closely with demographic and occupation shifts over time. The embedding captures societal shifts-e.g., the women's movement in the 1960s and Asian immigration into the United States-and also illuminates how specific adjectives and occupations became more closely associated with certain populations over time. Our framework for temporal analysis of word embedding opens up a fruitful intersection between machine learning and quantitative social science.
Reduced Cortical Thickness in Mental Retardation
Wang, Chao; Wang, Jiaojian; Zhang, Yun; Yu, Chunshui; Jiang, Tianzi
2011-01-01
Mental retardation is a developmental disorder associated with impaired cognitive functioning and deficits in adaptive behaviors. Many studies have addressed white matter abnormalities in patients with mental retardation, while the changes of the cerebral cortex have been studied to a lesser extent. Quantitative analysis of cortical integrity using cortical thickness measurement may provide new insights into the gray matter pathology. In this study, cortical thickness was compared between 13 patients with mental retardation and 26 demographically matched healthy controls. We found that patients with mental retardation had significantly reduced cortical thickness in multiple brain regions compared with healthy controls. These regions include the bilateral lingual gyrus, the bilateral fusiform gyrus, the bilateral parahippocampal gyrus, the bilateral temporal pole, the left inferior temporal gyrus, the right lateral orbitofrontal cortex and the right precentral gyrus. The observed cortical thickness reductions might be the anatomical substrates for the impaired cognitive functioning and deficits in adaptive behaviors in patients with mental retardation. Cortical thickness measurement might provide a sensitive prospective surrogate marker for clinical trials of neuroprotective medications. PMID:22216343
Souley Kouato, B; Thys, E; Renault, V; Abatih, E; Marichatou, H; Issa, S; Saegerman, C
2018-03-05
Foot-and-mouth disease (FMD) is endemic in Niger, with outbreaks occurring every year. Recently, there was an increasing interest from veterinary authorities to implement preventive and control measures against FMD. However, for an efficient control, improving the current knowledge on the disease dynamics and factors related to FMD occurrence is a prerequisite. The objective of this study was therefore to obtain insights into the incidence and the spatio-temporal patterns of transmission of FMD outbreaks in Niger based on the retrospective analysis of 9-year outbreak data. A regression tree analysis model was used to identify statistically significant predictors associated with FMD incidence, including the period (year and month), the location (region), the animal-contact density and the animal-contact frequency. This study provided also a first report on economic losses associated with FMD. From 2007 to 2015, 791 clinical FMD outbreaks were reported from the eight regions of Niger, with the number of outbreaks per region ranging from 5 to 309. The statistical analysis revealed that three regions (Dosso, Tillabery and Zinder), the months (September, corresponding to the end of rainy season, to December and January, i.e., during the dry and cold season), the years (2007 and 2015) and the density of contact were the main predictors of FMD occurrence. The quantitative assessment of the economic impacts showed that the average total cost of FMD at outbreak level was 499 euros, while the average price for FMD vaccination of one outbreak was estimated to be more than 314 euros. Despite some limitations of the clinical data used, this study will guide further research into the epidemiology of FMD in Niger and will promote a better understanding of the disease as well as an efficient control and prevention of FMD. © 2018 Blackwell Verlag GmbH.
NASA Technical Reports Server (NTRS)
Hof, P. R.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)
1995-01-01
Visual function in monkeys is subserved at the cortical level by a large number of areas defined by their specific physiological properties and connectivity patterns. For most of these cortical fields, a precise index of their degree of anatomical specialization has not yet been defined, although many regional patterns have been described using Nissl or myelin stains. In the present study, an attempt has been made to elucidate the regional characteristics, and to varying degrees boundaries, of several visual cortical areas in the macaque monkey using an antibody to neurofilament protein (SMI32). This antibody labels a subset of pyramidal neurons with highly specific regional and laminar distribution patterns in the cerebral cortex. Based on the staining patterns and regional quantitative analysis, as many as 28 cortical fields were reliably identified. Each field had a homogeneous distribution of labeled neurons, except area V1, where increases in layer IVB cell and in Meynert cell counts paralleled the increase in the degree of eccentricity in the visual field representation. Within the occipitotemporal pathway, areas V3 and V4 and fields in the inferior temporal cortex were characterized by a distinct population of neurofilament-rich neurons in layers II-IIIa, whereas areas located in the parietal cortex and part of the occipitoparietal pathway had a consistent population of large labeled neurons in layer Va. The mediotemporal areas MT and MST displayed a distinct population of densely labeled neurons in layer VI. Quantitative analysis of the laminar distribution of the labeled neurons demonstrated that the visual cortical areas could be grouped in four hierarchical levels based on the ratio of neuron counts between infragranular and supragranular layers, with the first (areas V1, V2, V3, and V3A) and third (temporal and parietal regions) levels characterized by low ratios and the second (areas MT, MST, and V4) and fourth (frontal regions) levels characterized by high to very high ratios. Such density trends may correspond to differential representation of corticocortically (and corticosubcortically) projecting neurons at several functional steps in the integration of the visual stimuli. In this context, it is possible that neurofilament protein is crucial for the unique capacity of certain subsets of neurons to perform the highly precise mapping functions of the monkey visual system.
Event-related fMRI studies of false memory: An Activation Likelihood Estimation meta-analysis.
Kurkela, Kyle A; Dennis, Nancy A
2016-01-29
Over the last two decades, a wealth of research in the domain of episodic memory has focused on understanding the neural correlates mediating false memories, or memories for events that never happened. While several recent qualitative reviews have attempted to synthesize this literature, methodological differences amongst the empirical studies and a focus on only a sub-set of the findings has limited broader conclusions regarding the neural mechanisms underlying false memories. The current study performed a voxel-wise quantitative meta-analysis using activation likelihood estimation to investigate commonalities within the functional magnetic resonance imaging (fMRI) literature studying false memory. The results were broken down by memory phase (encoding, retrieval), as well as sub-analyses looking at differences in baseline (hit, correct rejection), memoranda (verbal, semantic), and experimental paradigm (e.g., semantic relatedness and perceptual relatedness) within retrieval. Concordance maps identified significant overlap across studies for each analysis. Several regions were identified in the general false retrieval analysis as well as multiple sub-analyses, indicating their ubiquitous, yet critical role in false retrieval (medial superior frontal gyrus, left precentral gyrus, left inferior parietal cortex). Additionally, several regions showed baseline- and paradigm-specific effects (hit/perceptual relatedness: inferior and middle occipital gyrus; CRs: bilateral inferior parietal cortex, precuneus, left caudate). With respect to encoding, analyses showed common activity in the left middle temporal gyrus and anterior cingulate cortex. No analysis identified a common cluster of activation in the medial temporal lobe. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhang, Zhijun; Zhu, Meihua; Ashraf, Muhammad; Broberg, Craig S; Sahn, David J; Song, Xubo
2014-12-01
Quantitative analysis of right ventricle (RV) motion is important for study of the mechanism of congenital and acquired diseases. Unlike left ventricle (LV), motion estimation of RV is more difficult because of its complex shape and thin myocardium. Although attempts of finite element models on MR images and speckle tracking on echocardiography have shown promising results on RV strain analysis, these methods can be improved since the temporal smoothness of the motion is not considered. The authors have proposed a temporally diffeomorphic motion estimation method in which a spatiotemporal transformation is estimated by optimization of a registration energy functional of the velocity field in their earlier work. The proposed motion estimation method is a fully automatic process for general image sequences. The authors apply the method by combining with a semiautomatic myocardium segmentation method to the RV strain analysis of three-dimensional (3D) echocardiographic sequences of five open-chest pigs under different steady states. The authors compare the peak two-point strains derived by their method with those estimated from the sonomicrometry, the results show that they have high correlation. The motion of the right ventricular free wall is studied by using segmental strains. The baseline sequence results show that the segmental strains in their methods are consistent with results obtained by other image modalities such as MRI. The image sequences of pacing steady states show that segments with the largest strain variation coincide with the pacing sites. The high correlation of the peak two-point strains of their method and sonomicrometry under different steady states demonstrates that their RV motion estimation has high accuracy. The closeness of the segmental strain of their method to those from MRI shows the feasibility of their method in the study of RV function by using 3D echocardiography. The strain analysis of the pacing steady states shows the potential utility of their method in study on RV diseases.
Carr, Tony; Yang, Haishun; Ray, Chittaranjan
2016-01-01
Water Productivity (WP) of a crop defines the relationship between the economic or physical yield of the crop and its water use. With this concept it is possible to identify disproportionate water use or water-limited yield gaps and thereby support improvements in agricultural water management. However, too often important qualitative and quantitative environmental factors are not part of a WP analysis and therefore neglect the aspect of maintaining a sustainable agricultural system. In this study, we examine both the physical and economic WP in perspective with temporally changing environmental conditions. The physical WP analysis was performed by comparing simulated maximum attainable corn yields per unit of water using the crop model Hybrid-Maize with observed data from 2005 through 2013 from 108 farm plots in the Central Platte and the Tri Basin Natural Resource Districts of Nebraska. In order to expand the WP analysis on external factors influencing yields, a second model, Maize-N, was used to estimate optimal nitrogen (N)–fertilizer rate for specific fields in the study area. Finally, a vadose zone flow and transport model, HYDRUS-1D for simulating vertical nutrient transport in the soil, was used to estimate locations of nitrogen pulses in the soil profile. The comparison of simulated and observed data revealed that WP was not on an optimal level, mainly due to large amounts of irrigation used in the study area. The further analysis illustrated year-to-year variations of WP during the nine consecutive years, as well as the need to improve fertilizer management to favor WP and environmental quality. In addition, we addressed the negative influence of groundwater depletion on the economic WP through increasing pumping costs. In summary, this study demonstrated that involving temporal variations of WP as well as associated environmental and economic issues can represent a bigger picture of WP that can help to create incentives to sustainably improve agricultural production. PMID:27575368
Nguyen Hoang, Anh Thu; Chen, Puran; Björnfot, Sofia; Högstrand, Kari; Lock, John G.; Grandien, Alf; Coles, Mark; Svensson, Mattias
2014-01-01
This manuscript describes technical advances allowing manipulation and quantitative analyses of human DC migratory behavior in lung epithelial tissue. DCs are hematopoietic cells essential for the maintenance of tissue homeostasis and the induction of tissue-specific immune responses. Important functions include cytokine production and migration in response to infection for the induction of proper immune responses. To design appropriate strategies to exploit human DC functional properties in lung tissue for the purpose of clinical evaluation, e.g., candidate vaccination and immunotherapy strategies, we have developed a live-imaging assay based on our previously described organotypic model of the human lung. This assay allows provocations and subsequent quantitative investigations of DC functional properties under conditions mimicking morphological and functional features of the in vivo parental tissue. We present protocols to set up and prepare tissue models for 4D (x, y, z, time) fluorescence-imaging analysis that allow spatial and temporal studies of human DCs in live epithelial tissue, followed by flow cytometry analysis of DCs retrieved from digested tissue models. This model system can be useful for elucidating incompletely defined pathways controlling DC functional responses to infection and inflammation in lung epithelial tissue, as well as the efficacy of locally administered candidate interventions. PMID:24899587
Real-time MRI comparisons of brass players: A methodological pilot study.
Iltis, Peter W; Schoonderwaldt, Erwin; Zhang, Shuo; Frahm, Jens; Altenmüller, Eckart
2015-08-01
This paper describes the use of real-time MRI at 30 frames/s in studying motor function within the oropharyngeal cavity of a trumpet, horn, trombone, and tuba player. Using Image J and customized MB-Ruler Pro software, analyses of discrete 33.3 ms snapshots of motion extracted from real-time MRI films obtained during an ascending five note sequence performed on a plastic practice device (B.E.R.P.) revealed inter-instrument differences in oropharyngeal cavity size and tongue conformation when moving from lower to higher notes. Tuba and trombone show a progressive decrease in oropharyngeal area featuring an upward and forward displacement of the tongue. Trumpet showed progressive increases in oropharyngeal area, with the posterior compartment showing the largest change, while horn essentially showed no change. A novel dynamic quantitative analysis method is also described utilizing Matlab. This method employs user-specified line profiles, aligned to the direction of the movement of interest. It takes advantage of time-varying pixel luminescence to derive spatial and temporal gradients. These gradients make possible the acquisition of kinematic data to describe movement in terms of slower position changes (spatial gradient) as well as fast, articulatory movements (temporal gradient). Spatial gradient analysis for the trumpet player demonstrates a progressive raising of the tongue during the ascending five note exercise. Temporal gradient analysis of double-tonguing revealed similarities in range of motion, anti-phase behavior, and frequency across instruments with respect to movements of the tongue tip and back of tongue. The paper concludes by making recommendations for extending these methods to studying musician's dystonia. Copyright © 2015 Elsevier B.V. All rights reserved.
Measurement and interpretation of magnetic shear in solar active regions
NASA Technical Reports Server (NTRS)
Hagyard, M. J.; Rabin, D. M.
1986-01-01
In this paper a summary and synthesis are presented for results on the role of magnetic shear in the flare process that have been derived from the series of Flare Buildup Study Workshops in the Solar Maximum Analysis program. With emphasis on observations, the mechanisms that seem to produce the sheared magnetic configurations observed in flaring active regions are discussed. The spatial and temporal correlations of this shear with the onset of solar flares are determined from quantitative analyses of measurements of the vector magnetic field. The question of why some areas of sheared magnetic fields are the sites of flares and others are not is investigated observationally.
FRET excited ratiometric oxygen sensing in living tissue
Ingram, Justin M.; Zhang, Chunfeng; Xu, Jian; Schiff, Steven J.
2013-01-01
Dynamic analysis of oxygen (O2) has been limited by the lack of a real-time, quantitative, and biocompatible sensor. To address these demands, we designed a ratiometric optode matrix consisting of the phosphorescence quenching dye platinum (II) octaethylporphine ketone (PtOEPK) and nanocystal quantum dots (NQDs), which when embedded within an inert polymer matrix allows long-term pre-designed excitation through fluorescence resonance energy transfer (FRET). Depositing this matrix on various glass substrates allowed the development of a series of optical sensors able to measure interstitial oxygen concentration [O2] with several hundred millisecond temporal resolution in varying biological microdomains of active brain tissue. PMID:23333398
Radiomics: Extracting more information from medical images using advanced feature analysis
Lambin, Philippe; Rios-Velazquez, Emmanuel; Leijenaar, Ralph; Carvalho, Sara; van Stiphout, Ruud G.P.M.; Granton, Patrick; Zegers, Catharina M.L.; Gillies, Robert; Boellard, Ronald; Dekker, André; Aerts, Hugo J.W.L.
2015-01-01
Solid cancers are spatially and temporally heterogeneous. This limits the use of invasive biopsy based molecular assays but gives huge potential for medical imaging, which has the ability to capture intra-tumoural heterogeneity in a non-invasive way. During the past decades, medical imaging innovations with new hardware, new imaging agents and standardised protocols, allows the field to move towards quantitative imaging. Therefore, also the development of automated and reproducible analysis methodologies to extract more information from image-based features is a requirement. Radiomics – the high-throughput extraction of large amounts of image features from radiographic images – addresses this problem and is one of the approaches that hold great promises but need further validation in multi-centric settings and in the laboratory. PMID:22257792
Subsistence strategies in Argentina during the late Pleistocene and early Holocene
NASA Astrophysics Data System (ADS)
Martínez, Gustavo; Gutiérrez, María A.; Messineo, Pablo G.; Kaufmann, Cristian A.; Rafuse, Daniel J.
2016-07-01
This paper highlights regional and temporal variation in the presence and exploitation of faunal resources from different regions of Argentina during the late Pleistocene and early Holocene. Specifically, the faunal analysis considered here includes the zooarchaeological remains from all sites older than 7500 14C years BP. We include quantitative information for each reported species (genus, family, or order) and we use the number of identified specimens (NISP per taxon and the NISPtotal by sites) as the quantitative measure of taxonomic abundance. The taxonomic richness (Ntaxatotal and Ntaxaexploited) and the taxonomic heterogeneity or Shannon-Wiener index are estimated in order to consider dietary generalization or specialization, and ternary diagrams are used to categorize subsistence patterns of particular sites and regions. The archaeological database is composed of 78 sites which are represented by 110 stratigraphic contexts. Our results demonstrate that although some quantitative differences between regions are observed, artiodactyls (camelids and deer) were the most frequently consumed animal resource in Argentina. Early hunter-gatherers did not follow a specialized predation strategy in megamammals. A variety in subsistence systems, operating in parallel with a strong regional emphasis is shown, according to specific environmental conditions and cultural trajectories.
Quantitative assessment of upper extremities motor function in multiple sclerosis.
Daunoraviciene, Kristina; Ziziene, Jurgita; Griskevicius, Julius; Pauk, Jolanta; Ovcinikova, Agne; Kizlaitiene, Rasa; Kaubrys, Gintaras
2018-05-18
Upper extremity (UE) motor function deficits are commonly noted in multiple sclerosis (MS) patients and assessing it is challenging because of the lack of consensus regarding its definition. Instrumented biomechanical analysis of upper extremity movements can quantify coordination with different spatiotemporal measures and facilitate disability rating in MS patients. To identify objective quantitative parameters for more accurate evaluation of UE disability and relate it to existing clinical scores. Thirty-four MS patients and 24 healthy controls (CG) performed a finger-to-nose test as fast as possible and, in addition, clinical evaluation kinematic parameters of UE were measured by using inertial sensors. Generally, a higher disability score was associated with an increase of several temporal parameters, like slower task performance. The time taken to touch their nose was longer when the task was fulfilled with eyes closed. Time to peak angular velocity significantly changed in MS patients (EDSS > 5.0). The inter-joint coordination significantly decreases in MS patients (EDSS 3.0-5.5). Spatial parameters indicated that maximal ROM changes were in elbow flexion. Our findings have revealed that spatiotemporal parameters are related to the UE motor function and MS disability level. Moreover, they facilitate clinical rating by supporting clinical decisions with quantitative data.
Dini-Andreote, Francisco; de Cássia Pereira e Silva, Michele; Triadó-Margarit, Xavier; Casamayor, Emilio O; van Elsas, Jan Dirk; Salles, Joana Falcão
2014-10-01
The mechanisms underlying community assembly and promoting temporal succession are often overlooked in microbial ecology. Here, we studied an undisturbed salt marsh chronosequence, spanning over a century of ecosystem development, to understand bacterial succession in soil. We used 16S rRNA gene-based quantitative PCR to determine bacterial abundance and multitag 454 pyrosequencing for community composition and diversity analyses. Despite 10-fold lower 16S rRNA gene abundances, the initial stages of soil development held higher phylogenetic diversities than the soil at late succession. Temporal variations in phylogenetic β-diversity were greater at initial stages of soil development, possibly as a result of the great dynamism imposed by the daily influence of the tide, promoting high immigration rates. Allogenic succession of bacterial communities was mostly driven by shifts in the soil physical structure, as well as variations in pH and salinity, which collectively explained 84.5% of the variation concerning community assemblage. The community assembly data for each successional stage were integrated into a network co-occurrence analysis, revealing higher complexity at initial stages, coinciding with great dynamism in turnover and environmental variability. Contrary to a spatial niche-based perspective of bacterial community assembly, we suggest temporal niche partitioning as the dominant mechanism of assembly (promoting more phylotype co-occurrence) in the initial stages of succession, where continuous environmental change results in the existence of multiple niches over short periods of time.
Dini-Andreote, Francisco; de Cássia Pereira e Silva, Michele; Triadó-Margarit, Xavier; Casamayor, Emilio O; van Elsas, Jan Dirk; Salles, Joana Falcão
2014-01-01
The mechanisms underlying community assembly and promoting temporal succession are often overlooked in microbial ecology. Here, we studied an undisturbed salt marsh chronosequence, spanning over a century of ecosystem development, to understand bacterial succession in soil. We used 16S rRNA gene-based quantitative PCR to determine bacterial abundance and multitag 454 pyrosequencing for community composition and diversity analyses. Despite 10-fold lower 16S rRNA gene abundances, the initial stages of soil development held higher phylogenetic diversities than the soil at late succession. Temporal variations in phylogenetic β-diversity were greater at initial stages of soil development, possibly as a result of the great dynamism imposed by the daily influence of the tide, promoting high immigration rates. Allogenic succession of bacterial communities was mostly driven by shifts in the soil physical structure, as well as variations in pH and salinity, which collectively explained 84.5% of the variation concerning community assemblage. The community assembly data for each successional stage were integrated into a network co-occurrence analysis, revealing higher complexity at initial stages, coinciding with great dynamism in turnover and environmental variability. Contrary to a spatial niche-based perspective of bacterial community assembly, we suggest temporal niche partitioning as the dominant mechanism of assembly (promoting more phylotype co-occurrence) in the initial stages of succession, where continuous environmental change results in the existence of multiple niches over short periods of time. PMID:24739625
NASA Astrophysics Data System (ADS)
Miller, Joseph D.; Jiang, Naibo; Slipchenko, Mikhail N.; Mance, Jason G.; Meyer, Terrence R.; Roy, Sukesh; Gord, James R.
2016-12-01
100-kHz particle image velocimetry (PIV) is demonstrated using a double-pulsed, burst-mode laser with a burst duration up to 100 ms. This enables up to 10,000 time-sequential vector fields for capturing a temporal dynamic range spanning over three orders of magnitude in high-speed turbulent flows. Pulse doublets with inter-pulse spacing of 2 µs and repetition rate of 100 kHz are generated using a fiber-based oscillator and amplified through an all-diode-pumped, burst-mode amplifier. A physics-based model of pulse doublet amplification in the burst-mode amplifier is developed and used to accurately predict oscillator pulse width and pulse intensity inputs required to generate equal-energy pulse doublets at 532 nm for velocity measurements. The effect of PIV particle response and high-speed-detector limitations on the spatial and temporal resolution are estimated in subsonic turbulent jets. An effective spatial resolution of 266-275 µm and temporal resolution of 10 µs are estimated from the 8 × 8 pixel correlation window and inter-doublet time spacing, respectively. This spatiotemporal resolution is sufficient for quantitative assessment of integral time and length scales in highly turbulent jets with Reynolds numbers in the range 15,000-50,000. The temporal dynamic range of the burst-mode PIV measurement is 1200, limited by the 85-ms high-energy portion of the burst and 30-kHz high-frequency noise limit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halls, B. R.; Roy, S.; Gord, J. R.
Flash x-ray radiography is used to capture quantitative, two-dimensional line-of-sight averaged, single-shot liquid distribution measurements in impinging jet sprays. The accuracy of utilizing broadband x-ray radiation from compact flash tube sources is investigated for a range of conditions by comparing the data with radiographic high-speed measurements from a narrowband, high-intensity synchrotron x-ray facility at the Advanced Photon Source (APS) of Argonne National Laboratory. The path length of the liquid jets is varied to evaluate the effects of energy dependent x-ray attenuation, also known as spectral beam hardening. The spatial liquid distributions from flash x-ray and synchrotron-based radiography are compared, alongmore » with spectral characteristics using Taylor’s hypothesis. The results indicate that quantitative, single-shot imaging of liquid distributions can be achieved using broadband x-ray sources with nanosecond temporal resolution. Practical considerations for optimizing the imaging system performance are discussed, including the coupled effects of x-ray bandwidth, contrast, sensitivity, spatial resolution, temporal resolution, and spectral beam hardening.« less
Combining PALM and SOFI for quantitative imaging of focal adhesions in living cells
NASA Astrophysics Data System (ADS)
Deschout, Hendrik; Lukes, Tomas; Sharipov, Azat; Feletti, Lely; Lasser, Theo; Radenovic, Aleksandra
2017-02-01
Focal adhesions are complicated assemblies of hundreds of proteins that allow cells to sense their extracellular matrix and adhere to it. Although most focal adhesion proteins have been identified, their spatial organization in living cells remains challenging to observe. Photo-activated localization microscopy (PALM) is an interesting technique for this purpose, especially since it allows estimation of molecular parameters such as the number of fluorophores. However, focal adhesions are dynamic entities, requiring a temporal resolution below one minute, which is difficult to achieve with PALM. In order to address this problem, we merged PALM with super-resolution optical fluctuation imaging (SOFI) by applying both techniques to the same data. Since SOFI tolerates an overlap of single molecule images, it can improve the temporal resolution compared to PALM. Moreover, an adaptation called balanced SOFI (bSOFI) allows estimation of molecular parameters, such as the fluorophore density. We therefore performed simulations in order to assess PALM and SOFI for quantitative imaging of dynamic structures. We demonstrated the potential of our PALM-SOFI concept as a quantitative imaging framework by investigating moving focal adhesions in living cells.
Brain Responses to Dynamic Facial Expressions: A Normative Meta-Analysis.
Zinchenko, Oksana; Yaple, Zachary A; Arsalidou, Marie
2018-01-01
Identifying facial expressions is crucial for social interactions. Functional neuroimaging studies show that a set of brain areas, such as the fusiform gyrus and amygdala, become active when viewing emotional facial expressions. The majority of functional magnetic resonance imaging (fMRI) studies investigating face perception typically employ static images of faces. However, studies that use dynamic facial expressions (e.g., videos) are accumulating and suggest that a dynamic presentation may be more sensitive and ecologically valid for investigating faces. By using quantitative fMRI meta-analysis the present study examined concordance of brain regions associated with viewing dynamic facial expressions. We analyzed data from 216 participants that participated in 14 studies, which reported coordinates for 28 experiments. Our analysis revealed bilateral fusiform and middle temporal gyri, left amygdala, left declive of the cerebellum and the right inferior frontal gyrus. These regions are discussed in terms of their relation to models of face processing.
Dias, Olívia Meira; Baldi, Bruno Guedes; Pennati, Francesca; Aliverti, Andrea; Chate, Rodrigo Caruso; Sawamura, Márcio Valente Yamada; Carvalho, Carlos Roberto Ribeiro de; Albuquerque, André Luis Pereira de
2018-01-01
Hypersensitivity pneumonitis (HP) is a disease with variable clinical presentation in which inflammation in the lung parenchyma is caused by the inhalation of specific organic antigens or low molecular weight substances in genetically susceptible individuals. Alterations of the acute, subacute and chronic forms may eventually overlap, and the diagnosis based on temporality and presence of fibrosis (acute/inflammatory HP vs. chronic HP) seems to be more feasible and useful in clinical practice. Differential diagnosis of chronic HP with other interstitial fibrotic diseases is challenging due to the overlap of the clinical history, and the functional and imaging findings of these pathologies in the terminal stages. Areas covered: This article reviews the essential features of HP with emphasis on imaging features. Moreover, the main methodological limitations of high-resolution computed tomography (HRCT) interpretation are discussed, as well as new perspectives with volumetric quantitative CT analysis as a useful tool for retrieving detailed and accurate information from the lung parenchyma. Expert commentary: Mosaic attenuation is a prominent feature of this disease, but air trapping in chronic HP seems overestimated. Quantitative analysis has the potential to estimate the involvement of the pulmonary parenchyma more accurately and could correlate better with pulmonary function results.
NASA Astrophysics Data System (ADS)
Yamada, Katsumasa; Hori, Masakazu; Tanaka, Yoshiyuki; Hasegawa, Natsuki; Nakaoka, Masahiro
2010-01-01
We examined the variation in habitat use and diet of three dominant fish species ( Myoxocephalus brandti, Pholidapus dybowskii, and Pholis crassispina) in a seagrass meadow in the Akkeshi-ko estuary in northeastern Japan, where broad and dense Zostera marina beds exist, using a semi-quantitative census of the fishes and analyses of their stomach contents. Differences among the three fish species in the temporal variation in abundance of each age class (mainly 1- and 2-year age classes) indicated that the temporal pattern of utilization of the seagrass meadow were different among them. In the semi-quantitative dietary analysis, two prey categories, i.e., taxonomic group (order and suborder) and functional group, were used to explain the variation in prey composition with size-dependent changes. The six prey functional groups were classified based on the ecological traits of the prey, i.e., trophic level, size, and life type (habitat and behavior). Ontogenetic shifts in prey of the three fish species could be fully explained by a combination of the two prey categories, and not by the use of only one category (taxonomic or functional group). The pattern of ontogenetic shifts in prey differed among the fish species and size (age) classes. These results indicate that segregation of habitat (seagrass meadow) and prey group (taxonomic and functional group) is performed among the three species, which may contribute to their coexistence in this estuary.
Ebel, Brian A.; Martin, Deborah
2017-01-01
Hydrologic recovery after wildfire is critical for restoring the ecosystem services of protecting of human lives and infrastructure from hazards and delivering water supply of sufficient quality and quantity. Recovery of soil-hydraulic properties, such as field-saturated hydraulic conductivity (Kfs), is a key factor for assessing the duration of watershed-scale flash flood and debris flow risks after wildfire. Despite the crucial role of Kfs in parameterizing numerical hydrologic models to predict the magnitude of postwildfire run-off and erosion, existing quantitative relations to predict Kfsrecovery with time since wildfire are lacking. Here, we conduct meta-analyses of 5 datasets from the literature that measure or estimate Kfs with time since wildfire for longer than 3-year duration. The meta-analyses focus on fitting 2 quantitative relations (linear and non-linear logistic) to explain trends in Kfs temporal recovery. The 2 relations adequately described temporal recovery except for 1 site where macropore flow dominated infiltration and Kfs recovery. This work also suggests that Kfs can have low hydrologic resistance (large postfire changes), and moderate to high hydrologic stability (recovery time relative to disturbance recurrence interval) and resilience (recovery of hydrologic function and provision of ecosystem services). Future Kfs relations could more explicitly incorporate processes such as soil-water repellency, ground cover and soil structure regeneration, macropore recovery, and vegetation regrowth.
NASA Astrophysics Data System (ADS)
Floberg, J. M.; Holden, J. E.
2013-02-01
We introduce a method for denoising dynamic PET data, spatio-temporal expectation-maximization (STEM) filtering, that combines four-dimensional Gaussian filtering with EM deconvolution. The initial Gaussian filter suppresses noise at a broad range of spatial and temporal frequencies and EM deconvolution quickly restores the frequencies most important to the signal. We aim to demonstrate that STEM filtering can improve variance in both individual time frames and in parametric images without introducing significant bias. We evaluate STEM filtering with a dynamic phantom study, and with simulated and human dynamic PET studies of a tracer with reversible binding behaviour, [C-11]raclopride, and a tracer with irreversible binding behaviour, [F-18]FDOPA. STEM filtering is compared to a number of established three and four-dimensional denoising methods. STEM filtering provides substantial improvements in variance in both individual time frames and in parametric images generated with a number of kinetic analysis techniques while introducing little bias. STEM filtering does bias early frames, but this does not affect quantitative parameter estimates. STEM filtering is shown to be superior to the other simple denoising methods studied. STEM filtering is a simple and effective denoising method that could be valuable for a wide range of dynamic PET applications.
Team Learning: New Insights Through a Temporal Lens.
Lehmann-Willenbrock, Nale
2017-04-01
Team learning is a complex social phenomenon that develops and changes over time. Hence, to promote understanding of the fine-grained dynamics of team learning, research should account for the temporal patterns of team learning behavior. Taking important steps in this direction, this special issue offers novel insights into the dynamics of team learning by advocating a temporal perspective. Based on a symposium presented at the 2016 Interdisciplinary Network for Group Research (INGRoup) Conference in Helsinki, the four empirical articles in this special issue showcase four different and innovative approaches to implementing a temporal perspective in team learning research. Specifically, the contributions highlight team learning dynamics in student teams, self-managing teams, teacher teams, and command and control teams. The articles cover a broad range of methods and designs, including both qualitative and quantitative methodologies, and longitudinal as well as micro-temporal approaches. The contributors represent four countries and five different disciplines in group research.
Wigton, Rebekah; Radua, Jocham; Allen, Paul; Averbeck, Bruno; Meyer-Lindenberg, Andreas; McGuire, Philip; Shergill, Sukhi S.; Fusar-Poli, Paolo
2015-01-01
Background Oxytocin (OXT) plays a prominent role in social cognition and may have clinical applications for disorders such as autism, schizophrenia and social anxiety. The neural basis of its mechanism of action remains unclear. Methods We conducted a systematic literature review of placebo-controlled imaging studies using OXT as a pharmacological manipulator of brain activity. Results We identified a total of 21 studies for inclusion in our review, and after applying additional selection criteria, 11 of them were included in our fMRI voxel-based meta-analysis. The results demonstrate consistent alterations in activation of brain regions, including the temporal lobes and insula, during the processing of social stimuli, with some variation dependent on sex and task. The meta-analysis revealed significant left insular hyperactivation after OXT administration, suggesting a potential modulation of neural circuits underlying emotional processing. Limitations This quantitative review included only a limited number of studies, thus the conclusions of our analysis should be interpreted cautiously. This limited sample size precluded a more detailed exploration of potential confounding factors, such as sex or other demographic factors, that may have affected our meta-analysis. Conclusion Oxytocin has a wide range of effects over neural activity in response to social and emotional processing, which is further modulated by sex and task specificity. The magnitude of this neural activation is largest in the temporal lobes, and a meta-analysis across all tasks and both sexes showed that the left insula demonstrated the most robust activation to OXT administration. PMID:25520163
Zhu, Linlin; Nie, Yaoxin; Chang, Chunqi; Gao, Jia-Hong; Niu, Zhendong
2014-06-01
The neural systems for phonological processing of written language have been well identified now, while models based on these neural systems are different for different language systems or age groups. Although each of such models is mostly concordant across different experiments, the results are sensitive to the experiment design and intersubject variability. Activation likelihood estimation (ALE) meta-analysis can quantitatively synthesize the data from multiple studies and minimize the interstudy or intersubject differences. In this study, we performed two ALE meta-analysis experiments: one was to examine the neural activation patterns of the phonological processing of two different types of written languages and the other was to examine the development characteristics of such neural activation patterns based on both alphabetic language and logographic language data. The results of our first meta-analysis experiment were consistent with the meta-analysis which was based on the studies published before 2005. And there were new findings in our second meta-analysis experiment, where both adults and children groups showed great activation in the left frontal lobe, the left superior/middle temporal gyrus, and the bilateral middle/superior occipital gyrus. However, the activation of the left middle/inferior frontal gyrus was found increase with the development, and the activation was found decrease in the following areas: the right claustrum and inferior frontal gyrus, the left inferior/medial frontal gyrus, the left middle/superior temporal gyrus, the right cerebellum, and the bilateral fusiform gyrus. It seems that adults involve more phonological areas, whereas children involve more orthographic areas and semantic areas. Copyright © 2013 Wiley Periodicals, Inc.
McKenzie, J E; Edwards, R J; Gentleman, S M; Ince, P G; Perry, R H; Royston, M C; Roberts, G W
1996-01-01
In a previous study we reported no difference in the overall beta-amyloid protein (beta AP) load between Alzheimer's disease (AD) and senile dementia of the Lewy body type (SDLT). However, it is possible that differences in the morphology of beta AP plaque types exist, analogous to the differences in cytoskeletal pathology found in these two disorders. We have carried out a quantitative image analysis of plaque subtypes in the temporal lobe of AD (n = 8), SDLT (n = 9) and control (n = 11) cases. Measurements of beta AP load and plaque density were consistently higher in AD and SDLT than in controls. When AD and SDLT cases were compared no differences were seen in either the density or relative proportions of classic and diffuse plaques. Based on these results we suggest that the variation in the clinical course of these diseases reflects differences in the cytoskeletal pathology, whereas the final stages of profound dementia common to both disorders is associated with the deposition of beta AP.
Kheifets, Aaron; Freestone, David; Gallistel, C R
2017-07-01
In three experiments with mice ( Mus musculus ) and rats (Rattus norvigicus), we used a switch paradigm to measure quantitative properties of the interval-timing mechanism. We found that: 1) Rodents adjusted the precision of their timed switches in response to changes in the interval between the short and long feed latencies (the temporal goalposts). 2) The variability in the timing of the switch response was reduced or unchanged in the face of large trial-to-trial random variability in the short and long feed latencies. 3) The adjustment in the distribution of switch latencies in response to changes in the relative frequency of short and long trials was sensitive to the asymmetry in the Kullback-Leibler divergence. The three results suggest that durations are represented with adjustable precision, that they are timed by multiple timers, and that there is a trial-by-trial (episodic) record of feed latencies in memory. © 2017 Society for the Experimental Analysis of Behavior.
Birgiolas, Justas; Jernigan, Christopher M.; Smith, Brian H.; Crook, Sharon M.
2016-01-01
We describe SwarmSight (available at: https://github.com/justasb/SwarmSight), a novel, open-source, Microsoft Windows software tool for quantitative assessment of the temporal progression of animal group activity levels from recorded videos. The tool utilizes a background subtraction machine vision algorithm and provides an activity metric that can be used to quantitatively assess and compare animal group behavior. Here we demonstrate the tool utility by analyzing defensive bee behavior as modulated by alarm pheromones, wild bird feeding onset and interruption, and cockroach nest finding activity. While more sophisticated, commercial software packages are available, SwarmSight provides a low-cost, open-source, and easy-to-use alternative that is suitable for a wide range of users, including minimally trained research technicians and behavioral science undergraduate students in classroom laboratory settings. PMID:27130170
NASA Astrophysics Data System (ADS)
Mehta, Dalip Singh; Ahmad, Azeem; Dubey, Vishesh; Singh, Veena; Butola, Ankit; Mohanty, Tonmoy; Nandi, Sreyankar
2018-02-01
We report longitudinal spatial coherence (LSC) gated high-resolution tomography and quantitative phase microscopy of biological cells and tissues with uniform illumination using laser as a light source. To accomplish this a pseudo thermal light source was synthesized by passing laser beams through an optical system, which is basically a speckle reduction system with combined effect of spatial, temporal, angular and polarisation diversity. The longitudinal spatial coherence length of such light was significantly reduced by synthesizing a pseudo thermal source with the combined effect of spatial, angular and temporal diversity. This results in a low spatially coherent (i.e., broad angular frequency spectrum) light source with narrow temporal frequency spectrum. Light from such a pseudo thermal light source was passed through an interference microscope with varying magnification, such as, 10X and 50X. The interference microscope was used for full-field OCT imaging of multilayer objects and topography of industrial objects. Experimental results of optical sectioning of multilayer biological objects with high axial-resolution less than 10μm was achieved which is comparable to broadband white light source. The synthesized light source with reduced speckles having uniform illumination on the sample, which can be very useful for fluorescence microscopy as well as quantitative phase microscopy with less phase noise. The present system does not require any dispersion compensation optical system for biological samples as a highly monochromatic light source is used.
Choi, Jungil; Kang, Daeshik; Han, Seungyong; Kim, Sung Bong; Rogers, John A
2017-03-01
Systems for time sequential capture of microliter volumes of sweat released from targeted regions of the skin offer the potential to enable analysis of temporal variations in electrolyte balance and biomarker concentration throughout a period of interest. Current methods that rely on absorbent pads taped to the skin do not offer the ease of use in sweat capture needed for quantitative tracking; emerging classes of electronic wearable sweat analysis systems do not directly manage sweat-induced fluid flows for sample isolation. Here, a thin, soft, "skin-like" microfluidic platform is introduced that bonds to the skin to allow for collection and storage of sweat in an interconnected set of microreservoirs. Pressure induced by the sweat glands drives flow through a network of microchannels that incorporates capillary bursting valves designed to open at different pressures, for the purpose of passively guiding sweat through the system in sequential fashion. A representative device recovers 1.8 µL volumes of sweat each from 0.8 min of sweating into a set of separate microreservoirs, collected from 0.03 cm 2 area of skin with approximately five glands, corresponding to a sweat rate of 0.60 µL min -1 per gland. Human studies demonstrate applications in the accurate chemical analysis of lactate, sodium, and potassium concentrations and their temporal variations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Temporal variations in early developmental decisions: an engine of forebrain evolution.
Bielen, H; Pal, S; Tole, S; Houart, C
2017-02-01
Tight control of developmental timing is pivotal to many major processes in developmental biology, such as patterning, fate specification, cell cycle dynamics, cell migration and connectivity. Temporal change in these ontogenetic sequences is known as heterochrony, a major force in the evolution of body plans and organogenesis. In the last 5 years, studies in fish and rodents indicate that heterochrony in signaling during early development generates diversity in forebrain size and complexity. Here, we summarize these findings and propose that, additionally to spatio-temporal tuning of neurogenesis, temporal and quantitative modulation of signaling events drive pivotal changes in shape, size and complexity of the forebrain across evolution, participating to the generation of diversity in animal behavior and emergence of cognition. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Krmpot, Aleksandar J.; Nikolić, Stanko N.; Vitali, Marco; Papadopoulos, Dimitrios K.; Oasa, Sho; Thyberg, Per; Tisa, Simone; Kinjo, Masataka; Nilsson, Lennart; Gehring, Walter J.; Terenius, Lars; Rigler, Rudolf; Vukojevic, Vladana
2015-07-01
Quantitative confocal fluorescence microscopy imaging without scanning is developed for the study of fast dynamical processes. The method relies on the use of massively parallel Fluorescence Correlation Spectroscopy (mpFCS). Simultaneous excitation of fluorescent molecules across the specimen is achieved by passing a single laser beam through a Diffractive Optical Element (DOE) to generate a quadratic illumination matrix of 32×32 light sources. Fluorescence from 1024 illuminated spots is detected in a confocal arrangement by a matching matrix detector consisting of the same number of single-photon avalanche photodiodes (SPADs). Software was developed for data acquisition and fast autoand cross-correlation analysis by parallel signal processing using a Graphic Processing Unit (GPU). Instrumental performance was assessed using a conventional single-beam FCS instrument as a reference. Versatility of the approach for application in biomedical research was evaluated using ex vivo salivary glands from Drosophila third instar larvae expressing a fluorescently-tagged transcription factor Sex Combs Reduced (Scr) and live PC12 cells stably expressing the fluorescently tagged mu-opioid receptor (MOPeGFP). We show that quantitative mapping of local concentration and mobility of transcription factor molecules across the specimen can be achieved using this approach, which paves the way for future quantitative characterization of dynamical reaction-diffusion landscapes across live cells/tissue with a submillisecond temporal resolution (presently 21 μs/frame) and single-molecule sensitivity.
Changes in retinal microvascular diameter in patients with diabetes
da Silva, Andréa Vasconcellos Batista; Gouvea, Sonia Alves; da Silva, Aurélio Paulo Batista; Bortolon, Saulo; Rodrigues, Anabel Nunes; Abreu, Glaucia Rodrigues; Herkenhoff, Fernando Luiz
2015-01-01
Background and objectives Diabetic retinopathy is the main microvascular complication in diabetes mellitus and needs to be diagnosed early to prevent severe sight-threatening retinopathy. The purpose of this study was to quantify the retinal microvasculature pattern and analyze the influence of blood glucose level and the duration of diabetes mellitus on the retinal microvasculature. Methods Two groups were analyzed: patients with diabetes (N=26) and patients without diabetes, ie, controls (N=26). A quantitative semiautomated method analyzed retinal microvasculature. The diameters of arterioles and venules were measured. The total numbers of arterioles and venules were counted. The ratio of arteriole diameter to venule diameter was calculated. The retinal microvasculature pattern was related to clinical and biochemical parameters. Results Patients with diabetes exhibited larger venule diameters in the upper temporal quadrant of the retina compared to the lower temporal quadrant (124.85±38.03 µm vs 102.92±15.69 µm; P<0.01). Patients with diabetes for 5 or more years had larger venule diameters in the upper temporal quadrant than patients without diabetes (141.62±44.44 vs 112.58±32.11 µm; P<0.05). The degree of venodilation in the upper temporal quadrant was positively correlated with blood glucose level and the estimated duration of diabetes mellitus. Interpretation and conclusion The employed quantitative method demonstrated that patients with diabetes exhibited venule dilation in the upper temporal quadrant, and the duration of diabetes mellitus was positively correlated with blood glucose level. Therefore, the early assessment of retinal microvascular changes is possible prior to the onset of diabetic retinopathy. PMID:26345217
Hefti, Marco M; Farrell, Kurt; Kim, SoongHo; Bowles, Kathryn R; Fowkes, Mary E; Raj, Towfique; Crary, John F
2018-01-01
The microtubule associated protein tau plays a critical role in the pathogenesis of neurodegenerative disease. Recent studies suggest that tau also plays a role in disorders of neuronal connectivity, including epilepsy and post-traumatic stress disorder. Animal studies have shown that the MAPT gene, which codes for the tau protein, undergoes complex pre-mRNA alternative splicing to produce multiple isoforms during brain development. Human data, particularly on temporal and regional variation in tau splicing during development are however lacking. In this study, we present the first detailed examination of the temporal and regional sequence of MAPT alternative splicing in the developing human brain. We used a novel computational analysis of large transcriptomic datasets (total n = 502 patients), quantitative polymerase chain reaction (qPCR) and western blotting to examine tau expression and splicing in post-mortem human fetal, pediatric and adult brains. We found that MAPT exons 2 and 10 undergo abrupt shifts in expression during the perinatal period that are unique in the canonical human microtubule-associated protein family, while exon 3 showed small but significant temporal variation. Tau isoform expression may be a marker of neuronal maturation, temporally correlated with the onset of axonal growth. Immature brain regions such as the ganglionic eminence and rhombic lip had very low tau expression, but within more mature regions, there was little variation in tau expression or splicing. We thus demonstrate an abrupt, evolutionarily conserved shift in tau isoform expression during the human perinatal period that may be due to tau expression in maturing neurons. Alternative splicing of the MAPT pre-mRNA may play a vital role in normal brain development across multiple species and provides a basis for future investigations into the developmental and pathological functions of the tau protein.
Bouts, Mark J R J; Westmoreland, Susan V; de Crespigny, Alex J; Liu, Yutong; Vangel, Mark; Dijkhuizen, Rick M; Wu, Ona; D'Arceuil, Helen E
2015-12-15
Spatial and temporal changes in brain tissue after acute ischemic stroke are still poorly understood. Aims of this study were three-fold: (1) to determine unique temporal magnetic resonance imaging (MRI) patterns at the acute, subacute and chronic stages after stroke in macaques by combining quantitative T2 and diffusion MRI indices into MRI 'tissue signatures', (2) to evaluate temporal differences in these signatures between transient (n = 2) and permanent (n = 2) middle cerebral artery occlusion, and (3) to correlate histopathology findings in the chronic stroke period to the acute and subacute MRI derived tissue signatures. An improved iterative self-organizing data analysis algorithm was used to combine T2, apparent diffusion coefficient (ADC), and fractional anisotropy (FA) maps across seven successive timepoints (1, 2, 3, 24, 72, 144, 240 h) which revealed five temporal MRI signatures, that were different from the normal tissue pattern (P < 0.001). The distribution of signatures between brains with permanent and transient occlusions varied significantly between groups (P < 0.001). Qualitative comparisons with histopathology revealed that these signatures represented regions with different histopathology. Two signatures identified areas of progressive injury marked by severe necrosis and the presence of gitter cells. Another signature identified less severe but pronounced neuronal and axonal degeneration, while the other signatures depicted tissue remodeling with vascular proliferation and astrogliosis. These exploratory results demonstrate the potential of temporally and spatially combined voxel-based methods to generate tissue signatures that may correlate with distinct histopathological features. The identification of distinct ischemic MRI signatures associated with specific tissue fates may further aid in assessing and monitoring the efficacy of novel pharmaceutical treatments for stroke in a pre-clinical and clinical setting.
Neumann, Kerstin; Zhao, Yusheng; Chu, Jianting; Keilwagen, Jens; Reif, Jochen C; Kilian, Benjamin; Graner, Andreas
2017-08-10
Genetic mapping of phenotypic traits generally focuses on a single time point, but biomass accumulates continuously during plant development. Resolution of the temporal dynamics that affect biomass recently became feasible using non-destructive imaging. With the aim to identify key genetic factors for vegetative biomass formation from the seedling stage to flowering, we explored growth over time in a diverse collection of two-rowed spring barley accessions. High heritabilities facilitated the temporal analysis of trait relationships and identification of quantitative trait loci (QTL). Biomass QTL tended to persist only a short period during early growth. More persistent QTL were detected around the booting stage. We identified seven major biomass QTL, which together explain 55% of the genetic variance at the seedling stage, and 43% at the booting stage. Three biomass QTL co-located with genes or QTL involved in phenology. The most important locus for biomass was independent from phenology and is located on chromosome 7HL at 141 cM. This locus explained ~20% of the genetic variance, was significant over a long period of time and co-located with HvDIM, a gene involved in brassinosteroid synthesis. Biomass is a dynamic trait and is therefore orchestrated by different QTL during early and late growth stages. Marker-assisted selection for high biomass at booting stage is most effective by also including favorable alleles from seedling biomass QTL. Selection for dynamic QTL may enhance genetic gain for complex traits such as biomass or, in the future, even grain yield.
Li, Mingzhou; Schiano, Jeffrey L; Samra, Jenna E; Shetty, Kiran K; Brey, William W
2011-10-01
Resistive and hybrid (resistive/superconducting) magnets provide substantially higher magnetic fields than those available in low-temperature superconducting magnets, but their relatively low spatial homogeneity and temporal field fluctuations are unacceptable for high resolution NMR. While several techniques for reducing temporal fluctuations have demonstrated varying degrees of success, this paper restricts attention to methods that utilize inductive measurements and feedback control to actively cancel the temporal fluctuations. In comparison to earlier studies using analog proportional control, this paper shows that shaping the controller frequency response results in significantly higher reductions in temporal fluctuations. Measurements of temporal fluctuation spectra and the frequency response of the instrumentation that cancels the temporal fluctuations guide the controller design. In particular, we describe a sampled-data phase-lead-lag controller that utilizes the internal model principle to selectively attenuate magnetic field fluctuations caused by the power supply ripple. We present a quantitative comparison of the attenuation in temporal fluctuations afforded by the new design and a proportional control design. Metrics for comparison include measurements of the temporal fluctuations using Faraday induction and observations of the effect that the fluctuations have on nuclear resonance measurements. Copyright © 2011. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Guillard-Gonçalves, C.; Zêzere, J. L.; Pereira, S.; Garcia, R. A. C.
2015-09-01
This study offers a semi-quantitative assessment of the physical vulnerability of buildings to landslides in the Loures municipality, as well as an analysis of the landslide risk computed as the product of the vulnerability by the economic value of the buildings and by the landslide hazard. The physical vulnerability assessment, which was based on a questionnaire sent to a pool of Portuguese and European researchers, and the assessment of the subjectivity of their answers are innovative contributions of this work. The generalization of the vulnerability to the smallest statistical subsection was validated by changing the map unit and applying the vulnerability to all the buildings of a test site (approximately 800 buildings), which were inventoried during fieldwork. The economic value of the buildings of the Loures municipality was calculated using an adaptation of the Portuguese Tax Services formula. The hazard was assessed by combining the susceptibility of the slopes, the spatio-temporal probability and the frequency-magnitude relationship of the landslide. Finally, the risk was mapped for different landslide magnitudes and different spatio-temporal probabilities. The highest landslide risk was found for the landslide with a depth of 3 m in the landslide body, and a height of 1m in the landslide foot.
Impacts of Climate Variability on the Spatio-temporal Characteristics of Water Stress in Korea
NASA Astrophysics Data System (ADS)
Kim, Soojun; Devineni, Naresh; Lall, Upmanu; Kim, Hung Soo
2017-04-01
This study intended to evaluate water stress quantitatively targeted at the Korean Peninsula and to analyze the spatial and temporal characteristics of its occurrence. First, the severity and multiyear influence of water stress were analyzed by realizing water balance based on water supply and demand and by calculating the normalized deficit index (NDI) and the normalized deficit cumulated (NDC) for 113 small basins in the Korean Peninsula. Next, a change in the periodic characteristics of water stress was analyzed using wavelet transform of the NDI by small basins and 3 bands of periods of 1 year, 2-4 years, and 4-8 years were separated. Through an analysis of the empirical orthogonal function (EOF) on each band, it was found that water stress occurring in the Korean Peninsula has the characteristics of spatial distribution that it is extended from the south coast to the northern area and inland as its period gets longer. An analysis of the band with a period of 2-8 years for water stress showed that it has a relationship with El Niño-Southern Oscillation (ENSO). Acknowledgment This research was supported by a grant (14AWMP-B082564-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.
NASA Astrophysics Data System (ADS)
Marx, K. D.; Edwards, C. F.
1992-12-01
The effect of the single-particle constraint on the response of phase-Doppler instruments is determined for particle flows which are spatially nonuniform and time-dependent. Poisson statistics are applied to particle positions and arrival times within the phase-Doppler probe volume to determine the probability that a particle is measured successfully. It is shown that the single-particle constraint can be viewed as applying spatial and temporal filters to the particle flow. These filters have the same meaning as those that were defined previously for uniform, steady-state sprays, but in space- and time-dependent form. Criteria are developed for determining when a fully inhomogeneous analysis of a flow is required and when a quasi-steady analysis will suffice. A new bias due to particle arrival time displacement is identified and the conditions under which it must be considered are established. The present work provides the means to rigorously investigate the response of phase-Doppler measurement systems to transient sprays such as those which occur in diesel engines. To this end, the results are applied to a numerical simulation of a diesel spray. The calculated hypothetical response of the ideal instrument provides a quantitative demonstration of the regimes within which measurements can accurately be made in such sprays.
Kaplan, Ian; Denno, Robert F
2007-10-01
The importance of interspecific competition is a highly controversial and unresolved issue for community ecology in general, and for phytophagous insects in particular. Recent advancements, however, in our understanding of indirect (plant- and enemy-mediated) interactions challenge the historical paradigms of competition. Thus, in the context of this rapidly developing field, we re-evaluate the evidence for interspecific competition in phytophagous insects using a meta-analysis of published studies. Our analysis is specifically designed to test the assumptions underlying traditional competition theory, namely that competitive interactions are symmetrical, necessitate spatial and temporal co-occurrence, and increase in intensity as the density, phylogenetic similarity, and niche overlap of competing species increase. Despite finding frequent evidence for competition, we found very little evidence that plant-feeding insects conform to theoretical predictions for interspecific competition. Interactions were highly asymmetrical, similar in magnitude within vs. between feeding guilds (chewers vs. sap-feeders), and were unaffected by the quantity of resources removed (% defoliation). There was mixed support for the effects of phylogeny, spatial/temporal separation, and the relative strength of intra- vs. interspecific competition. Clearly, a new paradigm that accounts for indirect interactions and facilitation is required to describe how interspecific competition contributes to the organization of phytophagous insect communities, and perhaps to other plant and animal communities as well.
NASA Astrophysics Data System (ADS)
Bostater, Charles R., Jr.; Rebbman, Jan; Hall, Carlton; Provancha, Mark; Vieglais, David
1995-11-01
Measurements of temporal reflectance signatures as a function of growing season for sand live oak (Quercus geminata), myrtle oak (Q. myrtifolia, and saw palmetto (Serenoa repens) were collected during a two year study period. Canopy level spectral reflectance signatures, as a function of 252 channels between 368 and 1115 nm, were collected using near nadir viewing geometry and a consistent sun illumination angle. Leaf level reflectance measurements were made in the laboratory using a halogen light source and an environmental optics chamber with a barium sulfate reflectance coating. Spectral measurements were related to several biophysical measurements utilizing optimal passive ambient correlation spectroscopy (OPACS) technique. Biophysical parameters included percent moisture, water potential (MPa), total chlorophyll, and total Kjeldahl nitrogen. Quantitative data processing techniques were used to determine optimal bands based on the utilization of a second order derivative or inflection estimator. An optical cleanup procedure was then employed that computes the double inflection ratio (DIR) spectra for all possible three band combinations normalized to the previously computed optimal bands. These results demonstrate a unique approach to the analysis of high spectral resolution reflectance signatures for estimation of several biophysical measures of plants at the leaf and canopy level from optimally selected bands or bandwidths.
A better understanding of long-range temporal dependence of traffic flow time series
NASA Astrophysics Data System (ADS)
Feng, Shuo; Wang, Xingmin; Sun, Haowei; Zhang, Yi; Li, Li
2018-02-01
Long-range temporal dependence is an important research perspective for modelling of traffic flow time series. Various methods have been proposed to depict the long-range temporal dependence, including autocorrelation function analysis, spectral analysis and fractal analysis. However, few researches have studied the daily temporal dependence (i.e. the similarity between different daily traffic flow time series), which can help us better understand the long-range temporal dependence, such as the origin of crossover phenomenon. Moreover, considering both types of dependence contributes to establishing more accurate model and depicting the properties of traffic flow time series. In this paper, we study the properties of daily temporal dependence by simple average method and Principal Component Analysis (PCA) based method. Meanwhile, we also study the long-range temporal dependence by Detrended Fluctuation Analysis (DFA) and Multifractal Detrended Fluctuation Analysis (MFDFA). The results show that both the daily and long-range temporal dependence exert considerable influence on the traffic flow series. The DFA results reveal that the daily temporal dependence creates crossover phenomenon when estimating the Hurst exponent which depicts the long-range temporal dependence. Furthermore, through the comparison of the DFA test, PCA-based method turns out to be a better method to extract the daily temporal dependence especially when the difference between days is significant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kugland, N. L.; Ryutov, D. D.; Plechaty, C.
2012-10-15
Proton imaging is commonly used to reveal the electric and magnetic fields that are found in high energy density plasmas. Presented here is an analysis of this technique that is directed towards developing additional insight into the underlying physics. This approach considers: formation of images in the limits of weak and strong intensity variations; caustic formation and structure; image inversion to obtain line-integrated field characteristics; direct relations between images and electric or magnetic field structures in a plasma; imaging of sharp features such as Debye sheaths and shocks. Limitations on spatial and temporal resolution are assessed, and similarities with opticalmore » shadowgraphy are noted. Synthetic proton images are presented to illustrate the analysis. These results will be useful for quantitatively analyzing experimental proton imaging data and verifying numerical codes.« less
Quantitative Analysis of Flow through Free-swimming Appendicularians
NASA Astrophysics Data System (ADS)
Sutherland, K.; Conley, K. R.; Gemmell, B. J.; Thompson, E.; Bouquet, J. M.
2016-02-01
Appendicularians are pelagic tunicates (Phylum: Chordata, Subphylum: Tunicata) that frequently dominate the mesozooplankton community and are key grazers in both coastal shallow seas and oligotrophic environments. Understanding of their feeding mechanisms, specifically selective feeding, has important ramifications for predicting their impact on particle distributions in the upper ocean. The goal of the current study was to determine the role of flow morphology in regulating particle capture within the houses of free-swimming appendicularians (Oikopleura dioica). We used two methods— standard Particle Image Velocimetry (PIV) with laser sheet illumination and bright field micro-PIV— to gain unprecedented spatial and temporal resolution of body kinematics and fluid motion through the mucous-mesh house. Analysis of small-scale fluid interactions at various parts of the house provided insight into factors that influence particle capture and selection in these important grazers.
Collaborating and sharing data in epilepsy research.
Wagenaar, Joost B; Worrell, Gregory A; Ives, Zachary; Dümpelmann, Matthias; Matthias, Dümpelmann; Litt, Brian; Schulze-Bonhage, Andreas
2015-06-01
Technological advances are dramatically advancing translational research in Epilepsy. Neurophysiology, imaging, and metadata are now recorded digitally in most centers, enabling quantitative analysis. Basic and translational research opportunities to use these data are exploding, but academic and funding cultures prevent this potential from being realized. Research on epileptogenic networks, antiepileptic devices, and biomarkers could progress rapidly if collaborative efforts to digest this "big neuro data" could be organized. Higher temporal and spatial resolution data are driving the need for novel multidimensional visualization and analysis tools. Crowd-sourced science, the same that drives innovation in computer science, could easily be mobilized for these tasks, were it not for competition for funding, attribution, and lack of standard data formats and platforms. As these efforts mature, there is a great opportunity to advance Epilepsy research through data sharing and increase collaboration between the international research community.
NASA Technical Reports Server (NTRS)
Fagents, Sarah A.; Greeley, Ronald; Thordarson, Thorvaldur
2002-01-01
The goal of the proposed work was to determine the origins of small volcanic cones observed in Mars Global Surveyor (MGS) data, and their implications for regolith ice stores and magma volatile contents. For this 1-year study, our approach involved a combination of: Quantitative morphologic analysis and interpretation of Mars Orbiter Camera (MOC) and Mars Orbiter Laser Altimeter (MOLA) data; Numerical modeling of eruption processes responsible for producing the observed features; Fieldwork on terrestrial analogs in Iceland. Following this approach, this study succeeded in furthering our understanding of (i) the spatial and temporal distribution of near-surface water ice, as defined by the distribution and sizes of rootless volcanic cones ("pseudocraters"), and (ii) the properties, eruption conditions, and volatile contents of magmas producing primary vent cones.
Sumi, A; Luo, T; Zhou, D; Yu, B; Kong, D; Kobayashi, N
2013-05-01
Viral hepatitis is recognized as one of the most frequently reported diseases, and especially in China, acute and chronic liver disease due to viral hepatitis has been a major public health problem. The present study aimed to analyse and predict surveillance data of infections of hepatitis A, B, C and E in Wuhan, China, by the method of time-series analysis (MemCalc, Suwa-Trast, Japan). On the basis of spectral analysis, fundamental modes explaining the underlying variation of the data for the years 2004-2008 were assigned. The model was calculated using the fundamental modes and the underlying variation of the data reproduced well. An extension of the model to the year 2009 could predict the data quantitatively. Our study suggests that the present method will allow us to model the temporal pattern of epidemics of viral hepatitis much more effectively than using the artificial neural network, which has been used previously.
Linking Advanced Visualization and MATLAB for the Analysis of 3D Gene Expression Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruebel, Oliver; Keranen, Soile V.E.; Biggin, Mark
Three-dimensional gene expression PointCloud data generated by the Berkeley Drosophila Transcription Network Project (BDTNP) provides quantitative information about the spatial and temporal expression of genes in early Drosophila embryos at cellular resolution. The BDTNP team visualizes and analyzes Point-Cloud data using the software application PointCloudXplore (PCX). To maximize the impact of novel, complex data sets, such as PointClouds, the data needs to be accessible to biologists and comprehensible to developers of analysis functions. We address this challenge by linking PCX and Matlab via a dedicated interface, thereby providing biologists seamless access to advanced data analysis functions and giving bioinformatics researchersmore » the opportunity to integrate their analysis directly into the visualization application. To demonstrate the usefulness of this approach, we computationally model parts of the expression pattern of the gene even skipped using a genetic algorithm implemented in Matlab and integrated into PCX via our Matlab interface.« less
Nonlinear analysis of human physical activity patterns in health and disease.
Paraschiv-Ionescu, A; Buchser, E; Rutschmann, B; Aminian, K
2008-02-01
The reliable and objective assessment of chronic disease state has been and still is a very significant challenge in clinical medicine. An essential feature of human behavior related to the health status, the functional capacity, and the quality of life is the physical activity during daily life. A common way to assess physical activity is to measure the quantity of body movement. Since human activity is controlled by various factors both extrinsic and intrinsic to the body, quantitative parameters only provide a partial assessment and do not allow for a clear distinction between normal and abnormal activity. In this paper, we propose a methodology for the analysis of human activity pattern based on the definition of different physical activity time series with the appropriate analysis methods. The temporal pattern of postures, movements, and transitions between postures was quantified using fractal analysis and symbolic dynamics statistics. The derived nonlinear metrics were able to discriminate patterns of daily activity generated from healthy and chronic pain states.
Image segmentation and dynamic lineage analysis in single-cell fluorescence microscopy.
Wang, Quanli; Niemi, Jarad; Tan, Chee-Meng; You, Lingchong; West, Mike
2010-01-01
An increasingly common component of studies in synthetic and systems biology is analysis of dynamics of gene expression at the single-cell level, a context that is heavily dependent on the use of time-lapse movies. Extracting quantitative data on the single-cell temporal dynamics from such movies remains a major challenge. Here, we describe novel methods for automating key steps in the analysis of single-cell, fluorescent images-segmentation and lineage reconstruction-to recognize and track individual cells over time. The automated analysis iteratively combines a set of extended morphological methods for segmentation, and uses a neighborhood-based scoring method for frame-to-frame lineage linking. Our studies with bacteria, budding yeast and human cells, demonstrate the portability and usability of these methods, whether using phase, bright field or fluorescent images. These examples also demonstrate the utility of our integrated approach in facilitating analyses of engineered and natural cellular networks in diverse settings. The automated methods are implemented in freely available, open-source software.
Temporal variations of cosmic rays over a variety of time scales
NASA Technical Reports Server (NTRS)
Jokipii, J. R.; Marti, K.
1986-01-01
The variation of the intensity of Galactic cosmic rays in the inner solar system over a wide variety of time scales is discussed, and the generally accepted physical model which can account quantitatively for these modulations is reviewed. The use of direct measurements and of nuclear reactions to study the temporal intensity variations is summarized. It is demonstrated that all of the observed variations could easily be the result of solar variations on long and short time scales.
Abscisic acid and other plant hormones: Methods to visualize distribution and signaling
Waadt, Rainer; Hsu, Po-Kai; Schroeder, Julian I.
2015-01-01
The exploration of plant behavior on a cellular scale in a minimal invasive manner is key to understanding plant adaptations to their environment. Plant hormones regulate multiple aspects of growth and development and mediate environmental responses to ensure a successful life cycle. To monitor the dynamics of plant hormone actions in intact tissue, we need qualitative and quantitative tools with high temporal and spatial resolution. Here, we describe a set of biological instruments (reporters) for the analysis of the distribution and signaling of various plant hormones. Furthermore, we provide examples of their utility for gaining novel insights into plant hormone action with a deeper focus on the drought hormone abscisic acid. PMID:26577078
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gross-Isseroff, R.; Dillon, K.A.; Fieldust, S.J.
In vitro quantitative autoradiography of alpha 1-noradrenergic receptors, using tritiated prazosin as a ligand, was performed on 24 human brains postmortem. Twelve brains were obtained from suicide victims and 12 from matched controls. We found significant lower binding to alpha 1 receptors in several brain regions of the suicide group as compared with matched controls. This decrease in receptor density was evident in portions of the prefrontal cortex, as well as the temporal cortex and in the caudate nucleus. Age, sex, presence of alcohol, and time of death to autopsy did not affect prazosin binding, in our sample, as measuredmore » by autoradiography.« less
Daniels, Marcus G; Farmer, J Doyne; Gillemot, László; Iori, Giulia; Smith, Eric
2003-03-14
We model trading and price formation in a market under the assumption that order arrival and cancellations are Poisson random processes. This model makes testable predictions for the most basic properties of markets, such as the diffusion rate of prices (which is the standard measure of financial risk) and the spread and price impact functions (which are the main determinants of transaction cost). Guided by dimensional analysis, simulation, and mean-field theory, we find scaling relations in terms of order flow rates. We show that even under completely random order flow the need to store supply and demand to facilitate trading induces anomalous diffusion and temporal structure in prices.
NASA Astrophysics Data System (ADS)
Daniels, Marcus G.; Farmer, J. Doyne; Gillemot, László; Iori, Giulia; Smith, Eric
2003-03-01
We model trading and price formation in a market under the assumption that order arrival and cancellations are Poisson random processes. This model makes testable predictions for the most basic properties of markets, such as the diffusion rate of prices (which is the standard measure of financial risk) and the spread and price impact functions (which are the main determinants of transaction cost). Guided by dimensional analysis, simulation, and mean-field theory, we find scaling relations in terms of order flow rates. We show that even under completely random order flow the need to store supply and demand to facilitate trading induces anomalous diffusion and temporal structure in prices.
NASA Astrophysics Data System (ADS)
Spier, Daphne; Gerum, Humberto L. N.; Noernberg, Maurício A.; Lana, Paulo C.
2016-09-01
Tidal patterns of the subtropical Paranaguá Estuarine Complex, in southern Brazil, are strongly affected by episodic cold fronts and by the coastal geometry and bottom topography, resulting in high temporal variability and marked gradients in flood regime. We delimit tolerance ranges of submersion and exposure for representative plant and animal species from local mangroves and salt marshes, through a quantitative analysis of flooding patterns in three estuarine sectors. Our results are consistent with flood regime being the leading factor on how species are distributed over the intertidal flats of the PEC. Subleading factors might be related to salinity, sediment composition and nutrient flow.
Bioregional monitoring design and occupancy estimation for two Sierra Nevadan amphibian taxa
Land-management agencies need quantitative, statistically rigorous monitoring data, often at large spatial and temporal scales, to support resource-management decisions. Monitoring designs typically must accommodate multiple ecological, logistical, political, and economic objec...
Kuo, Jane Z.; Zangwill, Linda M.; Medeiros, Felipe A.; Liebmann, Jeffery M.; Girkin, Christopher A.; Hammel, Na’ama; Rotter, Jerome I.; Weinreb, Robert N.
2015-01-01
Purpose To perform a quantitative trait locus (QTL) analysis and evaluate whether a locus between SIX1 and SIX6 is associated with retinal nerve fiber layer (RNFL) thickness in individuals of European descent. Design Observational, multi-center, cross-sectional study. Methods 231 participants were recruited from the Diagnostic Innovations in Glaucoma Study and the African Descent and Glaucoma Evaluation Study. Association of rs10483727 in SIX1-SIX6 with global and sectoral RNFL thickness was performed. Quantitative trait analysis with the additive model of inheritance was analyzed using linear regression. Trend analysis was performed to evaluate the mean global and sectoral RNFL thickness with 3 genotypes of interest (T/T, C/T, C/C). All models were adjusted for age and gender. Results Direction of association between T allele and RNFL thickness was consistent in the global and different sectoral RNFL regions. Each copy of the T risk allele in rs10483727 was associated with −0.16 μm thinner global RNFL thickness (β=−0.16, 95% CI: −0.28 to −0.03; P=0.01). Similar patterns were found for the sectoral regions, including inferior (P=0.03), inferior-nasal (P=0.017), superior-nasal (P=0.0025), superior (P=0.002) and superior-temporal (P=0.008). The greatest differences were observed in the superior and inferior quadrants, supporting clinical observations for RNFL thinning in glaucoma. Thinner global RNFL was found in subjects with T/T genotypes compared to subjects with C/T and C/C genotypes (P=0.044). Conclusions Each copy of the T risk allele has an additive effect and was associated with thinner global and sectoral RNFL. Findings from this QTL analysis further support a genetic contribution to glaucoma pathophysiology. PMID:25849520
Petti, Filippo; Thelemann, April; Kahler, Jen; McCormack, Siobhan; Castaldo, Linda; Hunt, Tony; Nuwaysir, Lydia; Zeiske, Lynn; Haack, Herbert; Sullivan, Laura; Garton, Andrew; Haley, John D
2005-08-01
OSI-930, a potent thiophene inhibitor of the Kit, KDR, and platelet-derived growth factor receptor tyrosine kinases, was used to selectively inhibit tyrosine phosphorylation downstream of juxtamembrane mutant Kit in the mast cell leukemia line HMC-1. Inhibition of Kit kinase activity resulted in a rapid dephosphorylation of Kit and inhibition of the downstream signaling pathways. Attenuation of Ras-Raf-Erk (phospho-Erk, phospho-p38), phosphatidyl inositol-3' kinase (phospho-p85, phospho-Akt, phospho-S6), and signal transducers and activators of transcription signaling pathways (phospho-STAT3/5/6) were measured by affinity liquid chromatography tandem mass spectrometry, by immunoblot, and by tissue microarrays of fixed cell pellets. To more globally define additional components of Kit signaling temporally altered by kinase inhibition, a novel multiplex quantitative isobaric peptide labeling approach was used. This approach allowed clustering of proteins by temporal expression patterns. Kit kinase, which dephosphorylates rapidly upon kinase inhibition, was shown to regulate both Shp-1 and BDP-1 tyrosine phosphatases and the phosphatase-interacting protein PSTPIP2. Interactions with SH2 domain adapters [growth factor receptor binding protein 2 (Grb2), Cbl, Slp-76] and SH3 domain adapters (HS1, cortactin, CD2BP3) were attenuated by inhibition of Kit kinase activity. Functional crosstalk between Kit and the non-receptor tyrosine kinases Fes/Fps, Fer, Btk, and Syk was observed. Inhibition of Kit modulated phosphorylation-dependent interactions with pathways controlling focal adhesion (paxillin, leupaxin, p130CAS, FAK1, the Src family kinase Lyn, Wasp, Fhl-3, G25K, Ack-1, Nap1, SH3P12/ponsin) and septin-actin complexes (NEDD5, cdc11, actin). The combined use of isobaric protein quantitation and expression clustering, immunoblot, and tissue microarray strategies allowed temporal measurement signaling pathways modulated by mutant Kit inhibition in a model of mast cell leukemia.
Pluviometric characterization of the Coca river basin by using a stochastic rainfall model
NASA Astrophysics Data System (ADS)
González-Zeas, Dunia; Chávez-Jiménez, Adriadna; Coello-Rubio, Xavier; Correa, Ángel; Martínez-Codina, Ángela
2014-05-01
An adequate design of the hydraulic infrastructures, as well as, the prediction and simulation of a river basin require historical records with a greater temporal and spatial resolution. However, the lack of an extensive network of precipitation data, the short time scale data and the incomplete information provided by the available rainfall stations limit the analysis and design of complex hydraulic engineering systems. As a consequence, it is necessary to develop new quantitative tools in order to face this obstacle imposed by ungauged or poorly gauged basins. In this context, the use of a spatial-temporal rainfall model allows to simulate the historical behavior of the precipitation and at the same time, to obtain long-term synthetic series that preserve the extremal behavior. This paper provides a characterization of the precipitation in the Coca river basin located in Ecuador by using RainSim V3, a robust and well tested stochastic rainfall model based on a spatial-temporal Neyman-Scott rectangular pulses process. A preliminary consistency analysis of the historical rainfall data available has been done in order to identify climatic regions with similar precipitation behavior patterns. Mean and maximum yearly and monthly fields of precipitation of high resolution spaced grids have been obtained through the use of interpolation techniques. According to the climatological similarity, long time series of daily temporal resolution of precipitation have been generated in order to evaluate the model skill in capturing the structure of daily observed precipitation. The results show a good performance of the model in reproducing very well the gross statistics, including the extreme values of rainfall at daily scale. The spatial pattern represented by the observed and simulated precipitation fields highlights the existence of two important regions characterized by different pluviometric comportment, with lower precipitation in the upper part of the basin and higher precipitation in the lower part of the basin.
NASA Astrophysics Data System (ADS)
Fantini, Sergio; Sassaroli, Angelo; Kainerstorfer, Jana M.; Tgavalekos, Kristen T.; Zang, Xuan
2016-03-01
We describe the general principles and initial results of coherent hemodynamics spectroscopy (CHS), which is a new technique for the quantitative assessment of cerebral hemodynamics on the basis of dynamic near-infrared spectroscopy (NIRS) measurements. The two components of CHS are (1) dynamic measurements of coherent cerebral hemodynamics in the form of oscillations at multiple frequencies (frequency domain) or temporal transients (time domain), and (2) their quantitative analysis with a dynamic mathematical model that relates the concentration and oxygen saturation of hemoglobin in tissue to cerebral blood volume (CBV), cerebral blood flow (CBF), and cerebral metabolic rate of oxygen (CMRO2). In particular, CHS can provide absolute measurements and dynamic monitoring of CBF, and quantitative measures of cerebral autoregulation. We report initial results of CBF measurements in hemodialysis patients, where we found a lower CBF (54 +/- 16 ml/(100 g-min)) compared to a group of healthy controls (95 +/- 11 ml/(100 g-min)). We also report CHS measurements of cerebral autoregulation, where a quantitative index of autoregulation (its cutoff frequency) was found to be significantly greater in healthy subjects during hyperventilation (0.034 +/- 0.005 Hz) than during normal breathing (0.017 +/- 0.002 Hz). We also present our approach to depth resolved CHS, based on multi-distance, frequency-domain NIRS data and a two-layer diffusion model, to enhance sensitivity to cerebral tissue. CHS offers a potentially powerful approach to the quantitative assessment and continuous monitoring of local brain perfusion at the microcirculation level, with prospective brain mapping capabilities of research and clinical significance.
Quantitative assessment of changes in landslide risk using a regional scale run-out model
NASA Astrophysics Data System (ADS)
Hussin, Haydar; Chen, Lixia; Ciurean, Roxana; van Westen, Cees; Reichenbach, Paola; Sterlacchini, Simone
2015-04-01
The risk of landslide hazard continuously changes in time and space and is rarely a static or constant phenomena in an affected area. However one of the main challenges of quantitatively assessing changes in landslide risk is the availability of multi-temporal data for the different components of risk. Furthermore, a truly "quantitative" landslide risk analysis requires the modeling of the landslide intensity (e.g. flow depth, velocities or impact pressures) affecting the elements at risk. Such a quantitative approach is often lacking in medium to regional scale studies in the scientific literature or is left out altogether. In this research we modelled the temporal and spatial changes of debris flow risk in a narrow alpine valley in the North Eastern Italian Alps. The debris flow inventory from 1996 to 2011 and multi-temporal digital elevation models (DEMs) were used to assess the susceptibility of debris flow triggering areas and to simulate debris flow run-out using the Flow-R regional scale model. In order to determine debris flow intensities, we used a linear relationship that was found between back calibrated physically based Flo-2D simulations (local scale models of five debris flows from 2003) and the probability values of the Flow-R software. This gave us the possibility to assign flow depth to a total of 10 separate classes on a regional scale. Debris flow vulnerability curves from the literature and one curve specifically for our case study area were used to determine the damage for different material and building types associated with the elements at risk. The building values were obtained from the Italian Revenue Agency (Agenzia delle Entrate) and were classified per cadastral zone according to the Real Estate Observatory data (Osservatorio del Mercato Immobiliare, Agenzia Entrate - OMI). The minimum and maximum market value for each building was obtained by multiplying the corresponding land-use value (€/msq) with building area and number of floors. The risk was calculated by multiplying the vulnerability with the spatial probability and the building values. Changes in landslide risk was assessed using the loss estimation of four different periods: (1) pre-August 2003 disaster, (2) the August 2003 event, (3) post-August 2003 to 2011 and (4) smaller frequent events occurring between the entire 1996-2011 period. One of the major findings of our work was the calculation of a significant decrease in landslide risk after the 2003 disaster compared to the pre-disaster risk period. This indicates the importance of estimating risk after a few years of a major event in order to avoid overestimation or exaggeration of future losses.
TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis
Ji, Zhicheng; Ji, Hongkai
2016-01-01
When analyzing single-cell RNA-seq data, constructing a pseudo-temporal path to order cells based on the gradual transition of their transcriptomes is a useful way to study gene expression dynamics in a heterogeneous cell population. Currently, a limited number of computational tools are available for this task, and quantitative methods for comparing different tools are lacking. Tools for Single Cell Analysis (TSCAN) is a software tool developed to better support in silico pseudo-Time reconstruction in Single-Cell RNA-seq ANalysis. TSCAN uses a cluster-based minimum spanning tree (MST) approach to order cells. Cells are first grouped into clusters and an MST is then constructed to connect cluster centers. Pseudo-time is obtained by projecting each cell onto the tree, and the ordered sequence of cells can be used to study dynamic changes of gene expression along the pseudo-time. Clustering cells before MST construction reduces the complexity of the tree space. This often leads to improved cell ordering. It also allows users to conveniently adjust the ordering based on prior knowledge. TSCAN has a graphical user interface (GUI) to support data visualization and user interaction. Furthermore, quantitative measures are developed to objectively evaluate and compare different pseudo-time reconstruction methods. TSCAN is available at https://github.com/zji90/TSCAN and as a Bioconductor package. PMID:27179027
Nguyen Hoang, Anh Thu; Chen, Puran; Björnfot, Sofia; Högstrand, Kari; Lock, John G; Grandien, Alf; Coles, Mark; Svensson, Mattias
2014-09-01
This manuscript describes technical advances allowing manipulation and quantitative analyses of human DC migratory behavior in lung epithelial tissue. DCs are hematopoietic cells essential for the maintenance of tissue homeostasis and the induction of tissue-specific immune responses. Important functions include cytokine production and migration in response to infection for the induction of proper immune responses. To design appropriate strategies to exploit human DC functional properties in lung tissue for the purpose of clinical evaluation, e.g., candidate vaccination and immunotherapy strategies, we have developed a live-imaging assay based on our previously described organotypic model of the human lung. This assay allows provocations and subsequent quantitative investigations of DC functional properties under conditions mimicking morphological and functional features of the in vivo parental tissue. We present protocols to set up and prepare tissue models for 4D (x, y, z, time) fluorescence-imaging analysis that allow spatial and temporal studies of human DCs in live epithelial tissue, followed by flow cytometry analysis of DCs retrieved from digested tissue models. This model system can be useful for elucidating incompletely defined pathways controlling DC functional responses to infection and inflammation in lung epithelial tissue, as well as the efficacy of locally administered candidate interventions. © 2014 Society for Leukocyte Biology.
A methodological investigation of hominoid craniodental morphology and phylogenetics.
Bjarnason, Alexander; Chamberlain, Andrew T; Lockwood, Charles A
2011-01-01
The evolutionary relationships of extant great apes and humans have been largely resolved by molecular studies, yet morphology-based phylogenetic analyses continue to provide conflicting results. In order to further investigate this discrepancy we present bootstrap clade support of morphological data based on two quantitative datasets, one dataset consisting of linear measurements of the whole skull from 5 hominoid genera and the second dataset consisting of 3D landmark data from the temporal bone of 5 hominoid genera, including 11 sub-species. Using similar protocols for both datasets, we were able to 1) compare distance-based phylogenetic methods to cladistic parsimony of quantitative data converted into discrete character states, 2) vary outgroup choice to observe its effect on phylogenetic inference, and 3) analyse male and female data separately to observe the effect of sexual dimorphism on phylogenies. Phylogenetic analysis was sensitive to methodological decisions, particularly outgroup selection, where designation of Pongo as an outgroup and removal of Hylobates resulted in greater congruence with the proposed molecular phylogeny. The performance of distance-based methods also justifies their use in phylogenetic analysis of morphological data. It is clear from our analyses that hominoid phylogenetics ought not to be used as an example of conflict between the morphological and molecular, but as an example of how outgroup and methodological choices can affect the outcome of phylogenetic analysis. Copyright © 2010 Elsevier Ltd. All rights reserved.
TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis.
Ji, Zhicheng; Ji, Hongkai
2016-07-27
When analyzing single-cell RNA-seq data, constructing a pseudo-temporal path to order cells based on the gradual transition of their transcriptomes is a useful way to study gene expression dynamics in a heterogeneous cell population. Currently, a limited number of computational tools are available for this task, and quantitative methods for comparing different tools are lacking. Tools for Single Cell Analysis (TSCAN) is a software tool developed to better support in silico pseudo-Time reconstruction in Single-Cell RNA-seq ANalysis. TSCAN uses a cluster-based minimum spanning tree (MST) approach to order cells. Cells are first grouped into clusters and an MST is then constructed to connect cluster centers. Pseudo-time is obtained by projecting each cell onto the tree, and the ordered sequence of cells can be used to study dynamic changes of gene expression along the pseudo-time. Clustering cells before MST construction reduces the complexity of the tree space. This often leads to improved cell ordering. It also allows users to conveniently adjust the ordering based on prior knowledge. TSCAN has a graphical user interface (GUI) to support data visualization and user interaction. Furthermore, quantitative measures are developed to objectively evaluate and compare different pseudo-time reconstruction methods. TSCAN is available at https://github.com/zji90/TSCAN and as a Bioconductor package. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Porta, Alberto; Marchi, Andrea; Bari, Vlasta; Heusser, Karsten; Tank, Jens; Jordan, Jens; Barbic, Franca; Furlan, Raffaello
2015-01-01
We propose a symbolic analysis framework for the quantitative characterization of complex dynamical systems. It allows the description of the time course of a single variable, the assessment of joint interactions and an analysis triggered by a conditioning input. The framework was applied to spontaneous variability of heart period (HP), systolic arterial pressure (SAP) and integrated muscle sympathetic nerve activity (MSNA) with the aim of characterizing cardiovascular control and nonlinear influences of respiration at rest in supine position, during orthostatic challenge induced by 80° head-up tilt (TILT) and about 3 min before evoked pre-syncope signs (PRESY). The approach detected (i) the exaggerated sympathetic modulation and vagal withdrawal from HP variability and the increased presence of fast MSNA variability components during PRESY compared with TILT; (ii) the increase of the SAP–HP coordination occurring at slow temporal scales and a decrease of that occurring at faster time scales during PRESY compared with TILT; (iii) the reduction of the coordination between fast MSNA and SAP patterns during TILT and PRESY; (iv) the nonlinear influences of respiration leading to an increased likelihood to observe the abovementioned findings during expiration compared with inspiration one. The framework provided simple, quantitative indexes able to distinguish experimental conditions characterized by different states of the autonomic nervous system and to detect the early signs of a life threatening situation such as postural syncope. PMID:25548269
Spectrally And Temporally Resolved Low-Light Level Video Microscopy
NASA Astrophysics Data System (ADS)
Wampler, John E.; Furukawa, Ruth; Fechheimer, Marcus
1989-12-01
The IDG law-light video microscope system was designed to aid studies of localization of subcellular luminescence sources and stimulus/response coupling in single living cells using luminescent probes. Much of the motivation for design of this instrument system came from the pioneering efforts of Dr. Reynolds (Reynolds, Q. Rev. Biophys. 5, 295-347; Reynolds and Taylor, Bioscience 30, 586-592) who showed the value of intensified video camera systems for detection and localizion of fluorescence and bioluminescence signals from biological tissues. Our instrument system has essentially two roles, 1) localization and quantitation of very weak bioluminescence signals and 2) quantitation of intracellular environmental characteristics such as pH and calcium ion concentrations using fluorescent and bioluminescent probes. The instrument system exhibits over one million fold operating range allowing visualization and enhancement of quantum limited images with quantum limited response, spectral analysis of fluorescence signals, and transmitted light imaging. The computer control of the system implements rapid switching between light regimes, spatially resolved spectral scanning, and digital data processing for spectral shape analysis and for detailed analysis of the statistical distribution of single cell measurements. The system design and software algorithms used by the system are summarized. These design criteria are illustrated with examples taken from studies of bioluminescence, applications of bioluminescence to study developmental processes and gene expression in single living cells, and applications of fluorescent probes to study stimulus/response coupling in living cells.
Emdal, Kristina B; Pedersen, Anna-Kathrine; Bekker-Jensen, Dorte B; Tsafou, Kalliopi P; Horn, Heiko; Lindner, Sven; Schulte, Johannes H; Eggert, Angelika; Jensen, Lars J; Francavilla, Chiara; Olsen, Jesper V
2015-04-28
SH-SY5Y neuroblastoma cells respond to nerve growth factor (NGF)-mediated activation of the tropomyosin-related kinase A (TrkA) with neurite outgrowth, thereby providing a model to study neuronal differentiation. We performed a time-resolved analysis of NGF-TrkA signaling in neuroblastoma cells using mass spectrometry-based quantitative proteomics. The combination of interactome, phosphoproteome, and proteome data provided temporal insights into the molecular events downstream of NGF binding to TrkA. We showed that upon NGF stimulation, TrkA recruits the E3 ubiquitin ligase Cbl-b, which then becomes phosphorylated and ubiquitylated and decreases in abundance. We also found that recruitment of Cbl-b promotes TrkA ubiquitylation and degradation. Furthermore, the amount of phosphorylation of the kinase ERK and neurite outgrowth increased upon Cbl-b depletion in several neuroblastoma cell lines. Our findings suggest that Cbl-b limits NGF-TrkA signaling to control the length of neurites. Copyright © 2015, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Monteleone, M.; Lanorte, A.; Lasaponara, R.
2009-04-01
Cyberpark 2000 is a project funded by the UE Regional Operating Program of the Apulia Region (2000-2006). The main objective of the Cyberpark 2000 project is to develop a new assessment model for the management and monitoring of protected areas in Foggia Province (Apulia Region) based on Information and Communication Technologies. The results herein described are placed inside the research activities finalized to develop an environmental monitoring system knowledge based on the use of satellite time series. This study include: - A- satellite time series of high spatial resolution data for supporting the analysis of fire static risk factors through land use mapping and spectral/quantitative characterization of vegetation fuels; - B- satellite time series of MODIS for supporting fire dynamic risk evaluation of study area - Integrated fire detection by using thermal imaging cameras placed on panoramic view-points; - C - integrated high spatial and high temporal satellite time series for supporting studies in change detection factors or anomalies in vegetation covers; - D - satellite time-series for monitoring: (i) post fire vegetation recovery and (ii) spatio/temporal vegetation dynamics in unburned and burned vegetation covers.
NASA Astrophysics Data System (ADS)
Chołoniewski, Jan; Chmiel, Anna; Sienkiewicz, Julian; Hołyst, Janusz A.; Küster, Dennis; Kappas, Arvid
2016-09-01
High frequency psychophysiological data create a challenge for quantitative modeling based on Big Data tools since they reflect the complexity of processes taking place in human body and its responses to external events. Here we present studies of fluctuations in facial electromyography (fEMG) and electrodermal activity (EDA) massive time series and changes of such signals in the course of emotional stimulation. Zygomaticus major (ZYG, "smiling" muscle) activity, corrugator supercilii (COR, "frowning"bmuscle) activity, and phasic skin conductance (PHSC, sweating) levels of 65 participants were recorded during experiments that involved exposure to emotional stimuli (i.e., IAPS images, reading and writing messages on an artificial online discussion board). Temporal Taylor's fluctuations scaling were found when signals for various participants and during various types of emotional events were compared. Values of scaling exponents were close to 1, suggesting an external origin of system dynamics and/or strong interactions between system's basic elements (e.g., muscle fibres). Our statistical analysis shows that the scaling exponents enable identification of high valence and arousal levels in ZYG and COR signals.
Complex-ordered patterns in shaken convection.
Rogers, Jeffrey L; Pesch, Werner; Brausch, Oliver; Schatz, Michael F
2005-06-01
We report and analyze complex patterns observed in a combination of two standard pattern forming experiments. These exotic states are composed of two distinct spatial scales, each displaying a different temporal dependence. The system is a fluid layer experiencing forcing from both a vertical temperature difference and vertical time-periodic oscillations. Depending on the parameters these forcing mechanisms produce fluid motion with either a harmonic or a subharmonic temporal response. Over a parameter range where these mechanisms have comparable influence the spatial scales associated with both responses are found to coexist, resulting in complex, yet highly ordered patterns. Phase diagrams of this region are reported and criteria to define the patterns as quasiperiodic crystals or superlattices are presented. These complex patterns are found to satisfy four-mode (resonant tetrad) conditions. The qualitative difference between the present formation mechanism and the resonant triads ubiquitously used to explain complex-ordered patterns in other nonequilibrium systems is discussed. The only exception to quantitative agreement between our analysis based on Boussinesq equations and laboratory investigations is found to be the result of breaking spatial symmetry in a small parameter region near onset.
Amador, A; Papaceit, M; Juan, E
2001-06-01
The Adh locus of Drosophilidae is organized as a single gene transcribed from two spatially and temporally regulated promoters except in species of the repleta group, which have two single promoter genes. Here we show that in Drosophila funebris the Adh gene is transcribed from a single promoter, in both larva and adult, with qualitative and quantitative species specific-differences in tissue distribution. The gene is expressed in larval fat body but in other tissues such as gastric caeca, midgut and Malpighian tubules its expression is reduced compared to most Drosophilidae species, and in adults it is almost limited to the fat body. The comparative analysis of gene expression of two strains, which differ by a duplication, indicates that the cis elements necessary for this pattern of expression in larvae are included in the region of 1.55 kb upstream of the transcription initiation site. This new organization reveals the evolution of a different regulatory strategy to express the Adh gene in the subgenus Drosophila.
In vitro ovine articular chondrocyte proliferation: experiments and modelling.
Mancuso, L; Liuzzo, M I; Fadda, S; Pisu, M; Cincotti, A; Arras, M; La Nasa, G; Concas, A; Cao, G
2010-06-01
This study focuses on analysis of in vitro cultures of chondrocytes from ovine articular cartilage. Isolated cells were seeded in Petri dishes, then expanded to confluence and phenotypically characterized by flow cytometry. The sigmoidal temporal profile of total counts was obtained by classic haemocytometry and corresponding cell size distributions were measured electronically using a Coulter Counter. A mathematical model recently proposed (1) was adopted for quantitative interpretation of these experimental data. The model is based on a 1-D (that is, mass-structured), single-staged population balance approach capable of taking into account contact inhibition at confluence. The model's parameters were determined by fitting measured total cell counts and size distributions. Model reliability was verified by predicting cell proliferation counts and corresponding size distributions at culture times longer than those used when tuning the model's parameters. It was found that adoption of cell mass as the intrinsic characteristic of a growing chondrocyte population enables sigmoidal temporal profiles of total counts in the Petri dish, as well as cell size distributions at 'balanced growth', to be adequately predicted.
[Memory peculiarities in patients with schizophrenia and their first-degree relatives].
Savina, T D; Orlova, V A; Shcherbakova, N P; Korsakova, N K; Malova, Iu A; Efanova, N N; Ganisheva, T K; Nikolaev, R A
2008-01-01
Eighty-four families with schizophrenia: 84 patients (probands) and 73 their first-degree unaffected relatives as well as 37 normals and their relatives have been studied using pathopsychological (pictogram) and Luria's neuropsychological tests. The most prominent abnormalities both in patients and relatives were global characteristics of auditory-speech memory predominantly related to left subcortical and left temporal regions. Abnormalities of immediate recall of short logic story (SLS) were connected with dysfunction of the same brain regions. Less prominent delayed recall abnormalities of SLS were revealed only in patients and connected with left subcortical, left subcortical-frontal and left subcortical-temporal zones. This abnormality was absent in relatives and age-matched controls. The span of mediated retention was decreased in patients and, to a less degree, in relatives. A quantitative psychological analysis has demonstrated the disintegration ("schizys") between semantic conception and image memory structure in patients and, to a less degree, in relatives. Data obtained show primary memory abnormalities in families with schizophrenia related to the impairment of decoding information process in the subcortical structures, the left-side dysfunction of brain structures being predominantly typical.
Fahlgren, Noah; Feldman, Maximilian; Gehan, Malia A; Wilson, Melinda S; Shyu, Christine; Bryant, Douglas W; Hill, Steven T; McEntee, Colton J; Warnasooriya, Sankalpi N; Kumar, Indrajit; Ficor, Tracy; Turnipseed, Stephanie; Gilbert, Kerrigan B; Brutnell, Thomas P; Carrington, James C; Mockler, Todd C; Baxter, Ivan
2015-10-05
Phenotyping has become the rate-limiting step in using large-scale genomic data to understand and improve agricultural crops. Here, the Bellwether Phenotyping Platform for controlled-environment plant growth and automated multimodal phenotyping is described. The system has capacity for 1140 plants, which pass daily through stations to record fluorescence, near-infrared, and visible images. Plant Computer Vision (PlantCV) was developed as open-source, hardware platform-independent software for quantitative image analysis. In a 4-week experiment, wild Setaria viridis and domesticated Setaria italica had fundamentally different temporal responses to water availability. While both lines produced similar levels of biomass under limited water conditions, Setaria viridis maintained the same water-use efficiency under water replete conditions, while Setaria italica shifted to less efficient growth. Overall, the Bellwether Phenotyping Platform and PlantCV software detected significant effects of genotype and environment on height, biomass, water-use efficiency, color, plant architecture, and tissue water status traits. All ∼ 79,000 images acquired during the course of the experiment are publicly available. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Meile, C. D.; Dwyer, I.; Zhu, Q.; Polerecky, L.; Volkenborn, N.
2017-12-01
Mineralization of organic matter in marine sediments leads to the depletion of oxygen, while activities of infauna introduce oxygenated seawater to the subsurface. In permeable sediments solutes can be transported from animals and their burrows into the surrounding sediment through advection over several centimeters. The intermittency of pumping leads to a spatially heterogeneous distribution of oxidants, with the temporal dynamics depending on sediment reactivity and activity patterns of the macrofauna. Here, we present results from a series of experiments in which these dynamics are studied at high spatial and temporal resolution using planar optodes. From O2, pH and pCO2 optode data, we quantify rates of O2 consumption and dissolved inorganic carbon production, as well alkalinity dynamics, with millimeter-scale resolution. Simulating intermittent irrigation by imposed pumping patterns in thin aquaria, we derive porewater flow patterns, which together with the production and consumption rates cause the chemical distributions and the establishment of reaction fronts. Our analysis thus establishes a quantitative connection between the locally dynamic redox conditions relevant for biogeochemical transformations and macroscopic observations commonly made with sediment cores.
NASA Astrophysics Data System (ADS)
Wu, Qiaoli; Song, Jinling; Wang, Jindi; Xiao, Zhiqiang
2014-11-01
Leaf Area Index (LAI) is an important biophysical variable for vegetation. Compared with vegetation indexes like NDVI and EVI, LAI is more capable of monitoring forest canopy growth quantitatively. GLASS LAI is a spatially complete and temporally continuous product derived from AVHRR and MODIS reflectance data. In this paper, we present the approach to build dynamic LAI growth models for young and mature Larix gmelinii forest in north Daxing'anling in Inner Mongolia of China using the Dynamic Harmonic Regression (DHR) model and Double Logistic (D-L) model respectively, based on the time series extracted from multi-temporal GLASS LAI data. Meanwhile we used the dynamic threshold method to attract the key phenological phases of Larix gmelinii forest from the simulated time series. Then, through the relationship analysis between phenological phases and the meteorological factors, we found that the annual peak LAI and the annual maximum temperature have a good correlation coefficient. The results indicate this forest canopy growth dynamic model to be very effective in predicting forest canopy LAI growth and extracting forest canopy LAI growth dynamic.
Global Analysis of River Planform Change using the Google Earth Engine
NASA Astrophysics Data System (ADS)
Bryk, A.; Dietrich, W. E.; Gorelick, N.; Sargent, R.; Braudrick, C. A.
2014-12-01
Geomorphologists have historically tracked river dynamics using a combination of maps, aerial photographs, and the stratigraphic record. Although stratigraphic records can extend into deep time, maps and aerial photographs often confine our record of change to sparse measurements over the last ~80 years and in some cases much less time. For the first time Google's Earth Engine (GEE) cloud based platform allows researchers the means to analyze quantitatively the pattern and pace of river channel change over the last 30 years with high temporal resolution across the entire planet. The GEE provides an application programing interface (API) that enables quantitative analysis of various data sets including the entire Landsat L1T archive. This allows change detection for channels wider than about 150 m over 30 years of successive, georeferenced imagery. Qualitatively, it becomes immediately evident that the pace of channel morphodynamics for similar planforms varies by orders of magnitude across the planet and downstream along individual rivers. To quantify these rates of change and to explore their controls we have developed methods for differentiating channels from floodplain along large alluvial rivers. We introduce a new metric of morphodynamics: the ratio of eroded area to channel area per unit time, referred to as "M". We also keep track of depositional areas resulting from channel shifting. To date our quantitative analysis has focused on rivers in the Andean foreland. Our analysis shows channel bank erosion rates, M, varies by orders of magnitude for these rivers, from 0 to ~0.25 yr-1, yet these rivers have essentially identical curvature and sinuosity and are visually indistinguishable. By tracking both bank paths in time, we find that, for some meandering rivers, a significant fraction of new floodplain is produced through outer-bank accretion rather than point bar deposition. This process is perhaps more important in generating floodplain stratigraphy than previously recognized. These initial findings indicate a new set of quantitative observations will emerge to further test and advance morphodynamic theory. The Google Earth Engine offers the opportunity to explore river morphodynamics on an unprecedented scale and provides a powerful tool for addressing fundamental questions in river morphodynamics.
Kohlhoff, Kai J.; Jahn, Thomas R.; Lomas, David A.; Dobson, Christopher M.; Crowther, Damian C.; Vendruscolo, Michele
2016-01-01
The use of animal models in medical research provides insights into molecular and cellular mechanisms of human disease, and helps identify and test novel therapeutic strategies. Drosophila melanogaster – the common fruit fly – is one of the most established model organisms, as its study can be performed more readily and with far less expense than for other model animal systems, such as mice, fish, or indeed primates. In the case of fruit flies, standard assays are based on the analysis of longevity and basic locomotor functions. Here we present the iFly tracking system, which enables to increase the amount of quantitative information that can be extracted from these studies, and to reduce significantly the duration and costs associated with them. The iFly system uses a single camera to simultaneously track the trajectories of up to 20 individual flies with about 100μm spatial and 33ms temporal resolution. The statistical analysis of fly movements recorded with such accuracy makes it possible to perform a rapid and fully automated quantitative analysis of locomotor changes in response to a range of different stimuli. We anticipate that the iFly method will reduce very considerably the costs and the duration of the testing of genetic and pharmacological interventions in Drosophila models, including an earlier detection of behavioural changes and a large increase in throughput compared to current longevity and locomotor assays. PMID:21698336
Valente, Ana Rita S; Hall, Andreia; Alvelos, Helena; Leahy, Margaret; Jesus, Luis M T
2018-04-12
The appropriate use of language in context depends on the speaker's pragmatic language competencies. A coding system was used to develop a specific and adult-focused self-administered questionnaire to adults who stutter and adults who do not stutter, The Assessment of Language Use in Social Contexts for Adults, with three categories: precursors, basic exchanges, and extended literal/non-literal discourse. This paper presents the content validity, item analysis, reliability coefficients and evidences of construct validity of the instrument. Content validity analysis was based on a two-stage process: first, 11 pragmatic questionnaires were assessed to identify items that probe each pragmatic competency and to create the first version of the instrument; second, items were assessed qualitatively by an expert panel composed by adults who stutter and controls, and quantitatively and qualitatively by an expert panel composed by clinicians. A pilot study was conducted with five adults who stutter and five controls to analyse items and calculate reliability. Construct validity evidences were obtained using the hypothesized relationships method and factor analysis with 28 adults who stutter and 28 controls. Concerning content validity, the questionnaires assessed up to 13 pragmatic competencies. Qualitative and quantitative analysis revealed ambiguities in items construction. Disagreement between experts was solved through item modification. The pilot study showed that the instrument presented internal consistency and temporal stability. Significant differences between adults who stutter and controls and different response profiles revealed the instrument's underlying construct. The instrument is reliable and presented evidences of construct validity.
Reilly, John F.; Games, Dora; Rydel, Russell E.; Freedman, Stephen; Schenk, Dale; Young, Warren G.; Morrison, John H.; Bloom, Floyd E.
2003-01-01
Various transgenic mouse models of Alzheimer's disease (AD) have been developed that overexpress mutant forms of amyloid precursor protein in an effort to elucidate more fully the potential role of β-amyloid (Aβ) in the etiopathogenesis of the disease. The present study represents the first complete 3D reconstruction of Aβ in the hippocampus and entorhinal cortex of PDAPP transgenic mice. Aβ deposits were detected by immunostaining and thioflavin fluorescence, and quantified by using high-throughput digital image acquisition and analysis. Quantitative analysis of amyloid load in hippocampal subfields showed a dramatic increase between 12 and 15 months of age, with little or no earlier detectable deposition. Three-dimensional reconstruction in the oldest brains visualized previously unrecognized sheets of Aβ coursing through the hippocampus and cerebral cortex. In contrast with previous hypotheses, compact plaques form before significant deposition of diffuse Aβ, suggesting that different mechanisms are involved in the deposition of diffuse amyloid and the aggregation into plaques. The dentate gyrus was the hippocampal subfield with the greatest amyloid burden. Sublaminar distribution of Aβ in the dentate gyrus correlated most closely with the termination of afferent projections from the lateral entorhinal cortex, mirroring the selective vulnerability of this circuit in human AD. This detailed temporal and spatial analysis of Aβ and compact amyloid deposition suggests that specific corticocortical circuits express selective, but late, vulnerability to the pathognomonic markers of amyloid deposition, and can provide a basis for detecting prior vulnerability factors. PMID:12697936
Li, Yi Zhe; Zhang, Ting Long; Liu, Qiu Yu; Li, Ying
2018-01-01
The ecological process models are powerful tools for studying terrestrial ecosystem water and carbon cycle at present. However, there are many parameters for these models, and weather the reasonable values of these parameters were taken, have important impact on the models simulation results. In the past, the sensitivity and the optimization of model parameters were analyzed and discussed in many researches. But the temporal and spatial heterogeneity of the optimal parameters is less concerned. In this paper, the BIOME-BGC model was used as an example. In the evergreen broad-leaved forest, deciduous broad-leaved forest and C3 grassland, the sensitive parameters of the model were selected by constructing the sensitivity judgment index with two experimental sites selected under each vegetation type. The objective function was constructed by using the simulated annealing algorithm combined with the flux data to obtain the monthly optimal values of the sensitive parameters at each site. Then we constructed the temporal heterogeneity judgment index, the spatial heterogeneity judgment index and the temporal and spatial heterogeneity judgment index to quantitatively analyze the temporal and spatial heterogeneity of the optimal values of the model sensitive parameters. The results showed that the sensitivity of BIOME-BGC model parameters was different under different vegetation types, but the selected sensitive parameters were mostly consistent. The optimal values of the sensitive parameters of BIOME-BGC model mostly presented time-space heterogeneity to different degrees which varied with vegetation types. The sensitive parameters related to vegetation physiology and ecology had relatively little temporal and spatial heterogeneity while those related to environment and phenology had generally larger temporal and spatial heterogeneity. In addition, the temporal heterogeneity of the optimal values of the model sensitive parameters showed a significant linear correlation with the spatial heterogeneity under the three vegetation types. According to the temporal and spatial heterogeneity of the optimal values, the parameters of the BIOME-BGC model could be classified in order to adopt different parameter strategies in practical application. The conclusion could help to deeply understand the parameters and the optimal values of the ecological process models, and provide a way or reference for obtaining the reasonable values of parameters in models application.
Temporal complexity in emission from Anderson localized lasers
NASA Astrophysics Data System (ADS)
Kumar, Randhir; Balasubrahmaniyam, M.; Alee, K. Shadak; Mujumdar, Sushil
2017-12-01
Anderson localization lasers exploit resonant cavities formed due to structural disorder. The inherent randomness in the structure of these cavities realizes a probability distribution in all cavity parameters such as quality factors, mode volumes, mode structures, and so on, implying resultant statistical fluctuations in the temporal behavior. Here we provide direct experimental measurements of temporal width distributions of Anderson localization lasing pulses in intrinsically and extrinsically disordered coupled-microresonator arrays. We first illustrate signature exponential decays in the spatial intensity distributions of the lasing modes that quantify their localized character, and then measure the temporal width distributions of the pulsed emission over several configurations. We observe a dependence of temporal widths on the disorder strength, wherein the widths show a single-peaked, left-skewed distribution in extrinsic disorder and a dual-peaked distribution in intrinsic disorder. We propose a model based on coupled rate equations for an emitter and an Anderson cavity with a random mode structure, which gives excellent quantitative and qualitative agreement with the experimental observations. The experimental and theoretical analyses bring to the fore the temporal complexity in Anderson-localization-based lasing systems.
Temporal processing dysfunction in schizophrenia.
Carroll, Christine A; Boggs, Jennifer; O'Donnell, Brian F; Shekhar, Anantha; Hetrick, William P
2008-07-01
Schizophrenia may be associated with a fundamental disturbance in the temporal coordination of information processing in the brain, leading to classic symptoms of schizophrenia such as thought disorder and disorganized and contextually inappropriate behavior. Despite the growing interest and centrality of time-dependent conceptualizations of the pathophysiology of schizophrenia, there remains a paucity of research directly examining overt timing performance in the disorder. Accordingly, the present study investigated timing in schizophrenia using a well-established task of time perception. Twenty-three individuals with schizophrenia and 22 non-psychiatric control participants completed a temporal bisection task, which required participants to make temporal judgments about auditory and visually presented durations ranging from 300 to 600 ms. Both schizophrenia and control groups displayed greater visual compared to auditory timing variability, with no difference between groups in the visual modality. However, individuals with schizophrenia exhibited less temporal precision than controls in the perception of auditory durations. These findings correlated with parameter estimates obtained from a quantitative model of time estimation, and provide evidence of a fundamental deficit in temporal auditory precision in schizophrenia.
Hong, Ha; Solomon, Ethan A.; DiCarlo, James J.
2015-01-01
To go beyond qualitative models of the biological substrate of object recognition, we ask: can a single ventral stream neuronal linking hypothesis quantitatively account for core object recognition performance over a broad range of tasks? We measured human performance in 64 object recognition tests using thousands of challenging images that explore shape similarity and identity preserving object variation. We then used multielectrode arrays to measure neuronal population responses to those same images in visual areas V4 and inferior temporal (IT) cortex of monkeys and simulated V1 population responses. We tested leading candidate linking hypotheses and control hypotheses, each postulating how ventral stream neuronal responses underlie object recognition behavior. Specifically, for each hypothesis, we computed the predicted performance on the 64 tests and compared it with the measured pattern of human performance. All tested hypotheses based on low- and mid-level visually evoked activity (pixels, V1, and V4) were very poor predictors of the human behavioral pattern. However, simple learned weighted sums of distributed average IT firing rates exactly predicted the behavioral pattern. More elaborate linking hypotheses relying on IT trial-by-trial correlational structure, finer IT temporal codes, or ones that strictly respect the known spatial substructures of IT (“face patches”) did not improve predictive power. Although these results do not reject those more elaborate hypotheses, they suggest a simple, sufficient quantitative model: each object recognition task is learned from the spatially distributed mean firing rates (100 ms) of ∼60,000 IT neurons and is executed as a simple weighted sum of those firing rates. SIGNIFICANCE STATEMENT We sought to go beyond qualitative models of visual object recognition and determine whether a single neuronal linking hypothesis can quantitatively account for core object recognition behavior. To achieve this, we designed a database of images for evaluating object recognition performance. We used multielectrode arrays to characterize hundreds of neurons in the visual ventral stream of nonhuman primates and measured the object recognition performance of >100 human observers. Remarkably, we found that simple learned weighted sums of firing rates of neurons in monkey inferior temporal (IT) cortex accurately predicted human performance. Although previous work led us to expect that IT would outperform V4, we were surprised by the quantitative precision with which simple IT-based linking hypotheses accounted for human behavior. PMID:26424887
Altered quantitative sensory testing outcome in subjects with opioid therapy.
Chen, Lucy; Malarick, Charlene; Seefeld, Lindsey; Wang, Shuxing; Houghton, Mary; Mao, Jianren
2009-05-01
Preclinical studies have suggested that opioid exposure may induce a paradoxical decrease in the nociceptive threshold, commonly referred as opioid-induced hyperalgesia (OIH). While OIH may have implications in acute and chronic pain management, its clinical features remain unclear. Using an office-based quantitative sensory testing (QST) method, we compared pain threshold, pain tolerance, and the degree of temporal summation of the second pain in response to thermal stimulation among three groups of subjects: those with neither pain nor opioid therapy (group 1), with chronic pain but without opioid therapy (group 2), and with both chronic pain and opioid therapy (group 3). We also examined the possible correlation between QST responses to thermal stimulation and opioid dose, opioid treatment duration, opioid analgesic type, pain duration, or gender in group 3 subjects. As compared with both group 1 (n=41) and group 2 (n=41) subjects, group 3 subjects (n=58) displayed a decreased heat pain threshold and exacerbated temporal summation of the second pain to thermal stimulation. In contrast, there were no differences in cold or warm sensation among three groups. Among clinical factors, daily opioid dose consistently correlated with the decreased heat pain threshold and exacerbated temporal summation of the second pain in group 3 subjects. These results indicate that decreased heat pain threshold and exacerbated temporal summation of the second pain may be characteristic QST changes in subjects with opioid therapy. The data suggest that QST may be a useful tool in the clinical assessment of OIH.
Predicting MCI outcome with clinically available MRI and CSF biomarkers
Heister, D.; Brewer, J.B.; Magda, S.; Blennow, K.
2011-01-01
Objective: To determine the ability of clinically available volumetric MRI (vMRI) and CSF biomarkers, alone or in combination with a quantitative learning measure, to predict conversion to Alzheimer disease (AD) in patients with mild cognitive impairment (MCI). Methods: We stratified 192 MCI participants into positive and negative risk groups on the basis of 1) degree of learning impairment on the Rey Auditory Verbal Learning Test; 2) medial temporal atrophy, quantified from Food and Drug Administration–approved software for automated vMRI analysis; and 3) CSF biomarker levels. We also stratified participants based on combinations of risk factors. We computed Cox proportional hazards models, controlling for age, to assess 3-year risk of converting to AD as a function of risk group and used Kaplan-Meier analyses to determine median survival times. Results: When risk factors were examined separately, individuals testing positive showed significantly higher risk of converting to AD than individuals testing negative (hazard ratios [HR] 1.8–4.1). The joint presence of any 2 risk factors substantially increased risk, with the combination of greater learning impairment and increased atrophy associated with highest risk (HR 29.0): 85% of patients with both risk factors converted to AD within 3 years, vs 5% of those with neither. The presence of medial temporal atrophy was associated with shortest median dementia-free survival (15 months). Conclusions: Incorporating quantitative assessment of learning ability along with vMRI or CSF biomarkers in the clinical workup of MCI can provide critical information on risk of imminent conversion to AD. PMID:21998317
How runoff begins (and ends): characterizing hydrologic response at the catchment scale
Mirus, Benjamin B.; Loague, Keith
2013-01-01
Improved understanding of the complex dynamics associated with spatially and temporally variable runoff response is needed to better understand the hydrology component of interdisciplinary problems. The objective of this study was to quantitatively characterize the environmental controls on runoff generation for the range of different streamflow-generation mechanisms illustrated in the classic Dunne diagram. The comprehensive physics-based model of coupled surface-subsurface flow, InHM, is employed in a heuristic mode. InHM has been employed previously to successfully simulate the observed hydrologic response at four diverse, well-characterized catchments, which provides the foundation for this study. The C3 and CB catchments are located within steep, forested terrain; the TW and R5 catchments are located in gently sloping rangeland. The InHM boundary-value problems for these four catchments provide the corner-stones for alternative simulation scenarios designed to address the question of how runoff begins (and ends). Simulated rainfall-runoff events are used to systematically explore the impact of soil-hydraulic properties and rainfall characteristics. This approach facilitates quantitative analysis of both integrated and distributed hydrologic responses at high-spatial and temporal resolution over the wide range of environmental conditions represented by the four catchments. The results from 140 unique simulation scenarios illustrate how rainfall intensity/depth, subsurface permeability contrasts, characteristic curve shapes, and topography provide important controls on the hydrologic-response dynamics. The processes by which runoff begins (and ends) are shown, in large part, to be defined by the relative rates of rainfall, infiltration, lateral flow convergence, and storage dynamics within the variably saturated soil layers.
Information properties of morphologically complex words modulate brain activity during word reading
Hultén, Annika; Lehtonen, Minna; Lagus, Krista; Salmelin, Riitta
2018-01-01
Abstract Neuroimaging studies of the reading process point to functionally distinct stages in word recognition. Yet, current understanding of the operations linked to those various stages is mainly descriptive in nature. Approaches developed in the field of computational linguistics may offer a more quantitative approach for understanding brain dynamics. Our aim was to evaluate whether a statistical model of morphology, with well‐defined computational principles, can capture the neural dynamics of reading, using the concept of surprisal from information theory as the common measure. The Morfessor model, created for unsupervised discovery of morphemes, is based on the minimum description length principle and attempts to find optimal units of representation for complex words. In a word recognition task, we correlated brain responses to word surprisal values derived from Morfessor and from other psycholinguistic variables that have been linked with various levels of linguistic abstraction. The magnetoencephalography data analysis focused on spatially, temporally and functionally distinct components of cortical activation observed in reading tasks. The early occipital and occipito‐temporal responses were correlated with parameters relating to visual complexity and orthographic properties, whereas the later bilateral superior temporal activation was correlated with whole‐word based and morphological models. The results show that the word processing costs estimated by the statistical Morfessor model are relevant for brain dynamics of reading during late processing stages. PMID:29524274
NASA Astrophysics Data System (ADS)
Cho, Jae-Hwan; Lee, Hae-Kag; Yang, Han-Joon; Lee, Gui-Won; Park, Yong-Soon; Chung, Woon-Kwan
2013-01-01
In this study, the authors investigated whether periodically-rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) diffusion-weighted imaging (DWI) can remove magnetic susceptibility artifacts and compared apparent diffusion coefficient (ADC) values for PROPELLER DWI and the common echo planar (EP) DWI. Twenty patients that underwent brain MRI with a metal dental implant were selected. A 3.0T MR scanner was then used to obtain EP DWI, PROPELLER DWI, and corresponding apparent diffusion coefficient (ADC) maps for a b-value of 0 and 1,000 s/mm2. The frequencies of magnetic susceptibility artifacts in four parts of the brain (bilateral temporal lobes, pons, and orbit) were selected. In the ADC maps, we measured the ADC values of both sides of the temporal lobe and the pons. According to the study results, the frequency of magnetic susceptibility artifacts in PROPELLER DW images was lower than it was in EP DW images. In ADC maps, the ADC values of the bilateral temporal lobes and the pons were all higher in PROPELLER ADC maps than in EP ADC maps. Our findings show that when a high-field MRI machine is used, magnetic susceptibility artifacts can distort anatomical structures and produce high-intensity signals. Furthermore, our findings suggest that in many cases, PROPELLER DWI would be helpful in terms of achieving a correct diagnosis.
NASA Astrophysics Data System (ADS)
Atencia, A.; Llasat, M. C.; Garrote, L.; Mediero, L.
2010-10-01
The performance of distributed hydrological models depends on the resolution, both spatial and temporal, of the rainfall surface data introduced. The estimation of quantitative precipitation from meteorological radar or satellite can improve hydrological model results, thanks to an indirect estimation at higher spatial and temporal resolution. In this work, composed radar data from a network of three C-band radars, with 6-minutal temporal and 2 × 2 km2 spatial resolution, provided by the Catalan Meteorological Service, is used to feed the RIBS distributed hydrological model. A Window Probability Matching Method (gage-adjustment method) is applied to four cases of heavy rainfall to improve the observed rainfall sub-estimation in both convective and stratiform Z/R relations used over Catalonia. Once the rainfall field has been adequately obtained, an advection correction, based on cross-correlation between two consecutive images, was introduced to get several time resolutions from 1 min to 30 min. Each different resolution is treated as an independent event, resulting in a probable range of input rainfall data. This ensemble of rainfall data is used, together with other sources of uncertainty, such as the initial basin state or the accuracy of discharge measurements, to calibrate the RIBS model using probabilistic methodology. A sensitivity analysis of time resolutions was implemented by comparing the various results with real values from stream-flow measurement stations.
Improved perception of music with a harmonic based algorithm for cochlear implants.
Li, Xing; Nie, Kaibao; Imennov, Nikita S; Rubinstein, Jay T; Atlas, Les E
2013-07-01
The lack of fine structure information in conventional cochlear implant (CI) encoding strategies presumably contributes to the generally poor music perception with CIs. To improve CI users' music perception, a harmonic-single-sideband-encoder (HSSE) strategy was developed , which explicitly tracks the harmonics of a single musical source and transforms them into modulators conveying both amplitude and temporal fine structure cues to electrodes. To investigate its effectiveness, vocoder simulations of HSSE and the conventional continuous-interleaved-sampling (CIS) strategy were implemented. Using these vocoders, five normal-hearing subjects' melody and timbre recognition performance were evaluated: a significant benefit of HSSE to both melody (p < 0.002) and timbre (p < 0.026) recognition was found. Additionally, HSSE was acutely tested in eight CI subjects. On timbre recognition, a significant advantage of HSSE over the subjects' clinical strategy was demonstrated: the largest improvement was 35% and the mean 17% (p < 0.013). On melody recognition, two subjects showed 20% improvement with HSSE; however, the mean improvement of 7% across subjects was not significant (p > 0.090). To quantify the temporal cues delivered to the auditory nerve, the neural spike patterns evoked by HSSE and CIS for one melody stimulus were simulated using an auditory nerve model. Quantitative analysis demonstrated that HSSE can convey temporal pitch cues better than CIS. The results suggest that HSSE is a promising strategy to enhance music perception with CIs.
The effect of CXCR2 inhibition on seizure activity in the pilocarpine epilepsy mouse model.
Xu, Tao; Yu, Xinyuan; Wang, Teng; Liu, Ying; Liu, Xi; Ou, Shu; Chen, Yangmei
2017-09-01
C-X-C motif chemokine receptor 2 (CXCR2) is one of the most well characterized chemokine receptors and is a potential target for treating brain pathologies involving inflammatory processes, including epilepsy. However, the role of CXCR2 in epilepsy has not been investigated, and whether CXCR2 modulates seizure activity in temporal lobe epilepsy (TLE) remains unknown. In this study, we aimed to determine the potential role of CXCR2 in intractable TLE patients and in pilocarpine-induced epileptic mice. Here, through Western blotting and semi-quantitative immunohistochemistry, we detected that CXCR2 protein expression was up-regulated (by nearly 50%) in the temporal neocortex of TLE patients and in the hippocampus and adjacent temporal cortex of pilocarpine mice model. Double-label immunofluorescence and immunohistochemical analysis indicated that CXCR2 was expressed in neurons. To investigate the effect of the CXCR2 selective antagonist SB225002 on seizure activity, SB225002 was i.p. administered during the latency window of spontaneous recurrent seizures (SRSs). This treatment increased (by nearly 40%) the latency of SRSs and reduced (by nearly 50%) the frequency of SRSs during the chronic period of epilepsy. This study suggests that CXCR2 plays a critical role in modifying epileptic seizure activity and that CXCR2 blockade could be a potential molecular therapeutic target for epilepsy. Copyright © 2017 Elsevier Inc. All rights reserved.
Impact of large-scale atmospheric refractive structures on optical wave propagation
NASA Astrophysics Data System (ADS)
Nunalee, Christopher G.; He, Ping; Basu, Sukanta; Vorontsov, Mikhail A.; Fiorino, Steven T.
2014-10-01
Conventional techniques used to model optical wave propagation through the Earth's atmosphere typically as- sume flow fields based on various empirical relationships. Unfortunately, these synthetic refractive index fields do not take into account the influence of transient macroscale and mesoscale (i.e. larger than turbulent microscale) atmospheric phenomena. Nevertheless, a number of atmospheric structures that are characterized by various spatial and temporal scales exist which have the potential to significantly impact refractive index fields, thereby resulting dramatic impacts on optical wave propagation characteristics. In this paper, we analyze a subset of spatio-temporal dynamics found to strongly affect optical waves propagating through these atmospheric struc- tures. Analysis of wave propagation was performed in the geometrical optics approximation using a standard ray tracing technique. Using a numerical weather prediction (NWP) approach, we simulate multiple realistic atmospheric events (e.g., island wakes, low-level jets, etc.), and estimate the associated refractivity fields prior to performing ray tracing simulations. By coupling NWP model output with ray tracing simulations, we demon- strate the ability to quantitatively assess the potential impacts of coherent atmospheric phenomena on optical ray propagation. Our results show a strong impact of spatio-temporal characteristics of the refractive index field on optical ray trajectories. Such correlations validate the effectiveness of NWP models as they offer a more comprehensive representation of atmospheric refractivity fields compared to conventional methods based on the assumption of horizontal homogeneity.
Information properties of morphologically complex words modulate brain activity during word reading.
Hakala, Tero; Hultén, Annika; Lehtonen, Minna; Lagus, Krista; Salmelin, Riitta
2018-06-01
Neuroimaging studies of the reading process point to functionally distinct stages in word recognition. Yet, current understanding of the operations linked to those various stages is mainly descriptive in nature. Approaches developed in the field of computational linguistics may offer a more quantitative approach for understanding brain dynamics. Our aim was to evaluate whether a statistical model of morphology, with well-defined computational principles, can capture the neural dynamics of reading, using the concept of surprisal from information theory as the common measure. The Morfessor model, created for unsupervised discovery of morphemes, is based on the minimum description length principle and attempts to find optimal units of representation for complex words. In a word recognition task, we correlated brain responses to word surprisal values derived from Morfessor and from other psycholinguistic variables that have been linked with various levels of linguistic abstraction. The magnetoencephalography data analysis focused on spatially, temporally and functionally distinct components of cortical activation observed in reading tasks. The early occipital and occipito-temporal responses were correlated with parameters relating to visual complexity and orthographic properties, whereas the later bilateral superior temporal activation was correlated with whole-word based and morphological models. The results show that the word processing costs estimated by the statistical Morfessor model are relevant for brain dynamics of reading during late processing stages. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Bammer, Roland; Hope, Thomas A.; Aksoy, Murat; Alley, Marcus T.
2012-01-01
Exact knowledge of blood flow characteristics in the major cerebral vessels is of great relevance for diagnosing cerebrovascular abnormalities. This involves the assessment of hemodynamically critical areas as well as the derivation of biomechanical parameters such as wall shear stress and pressure gradients. A time-resolved, 3D phase-contrast (PC) MRI method using parallel imaging was implemented to measure blood flow in three dimensions at multiple instances over the cardiac cycle. The 4D velocity data obtained from 14 healthy volunteers were used to investigate dynamic blood flow with the use of multiplanar reformatting, 3D streamlines, and 4D particle tracing. In addition, the effects of magnetic field strength, parallel imaging, and temporal resolution on the data were investigated in a comparative evaluation at 1.5T and 3T using three different parallel imaging reduction factors and three different temporal resolutions in eight of the 14 subjects. Studies were consistently performed faster at 3T than at 1.5T because of better parallel imaging performance. A high temporal resolution (65 ms) was required to follow dynamic processes in the intracranial vessels. The 4D flow measurements provided a high degree of vascular conspicuity. Time-resolved streamline analysis provided features that have not been reported previously for the intracranial vasculature. PMID:17195166
NASA Astrophysics Data System (ADS)
Morin, Efrat; Marra, Francesco; Peleg, Nadav; Mei, Yiwen; Anagnostou, Emmanouil N.
2017-04-01
Rainfall frequency analysis is used to quantify the probability of occurrence of extreme rainfall and is traditionally based on rain gauge records. The limited spatial coverage of rain gauges is insufficient to sample the spatiotemporal variability of extreme rainfall and to provide the areal information required by management and design applications. Conversely, remote sensing instruments, even if quantitative uncertain, offer coverage and spatiotemporal detail that allow overcoming these issues. In recent years, remote sensing datasets began to be used for frequency analyses, taking advantage of increased record lengths and quantitative adjustments of the data. However, the studies so far made use of concepts and techniques developed for rain gauge (i.e. point or multiple-point) data and have been validated by comparison with gauge-derived analyses. These procedures add further sources of uncertainty and prevent from isolating between data and methodological uncertainties and from fully exploiting the available information. In this study, we step out of the gauge-centered concept presenting a direct comparison between at-site Intensity-Duration-Frequency (IDF) curves derived from different remote sensing datasets on corresponding spatial scales, temporal resolutions and records. We analyzed 16 years of homogeneously corrected and gauge-adjusted C-Band weather radar estimates, high-resolution CMORPH and gauge-adjusted high-resolution CMORPH over the Eastern Mediterranean. Results of this study include: (a) good spatial correlation between radar and satellite IDFs ( 0.7 for 2-5 years return period); (b) consistent correlation and dispersion in the raw and gauge adjusted CMORPH; (c) bias is almost uniform with return period for 12-24 h durations; (d) radar identifies thicker tail distributions than CMORPH and the tail of the distributions depends on the spatial and temporal scales. These results demonstrate the potential of remote sensing datasets for rainfall frequency analysis for management (e.g. warning and early-warning systems) and design (e.g. sewer design, large scale drainage planning)
NASA Astrophysics Data System (ADS)
Davies, G.; Calvin, W. M.
2015-12-01
The exposure of pyrite to oxygen and water in mine waste environments is known to generate acidity and the accumulation of secondary iron minerals. Sulfates and secondary iron minerals associated with acid mine drainage (AMD) exhibit diverse spectral properties in the ultraviolet, visible and near-infrared regions of the electromagnetic spectrum. The use of hyperspectral imagery for identification of AMD mineralogy and contamination has been well studied. Fewer studies have examined the impacts of hydrologic variations on mapping AMD or the unique spectral signatures of mine waters. Open-pit mine lakes are an additional environmental hazard which have not been widely studied using imaging spectroscopy. A better understanding of AMD variation related to climate fluctuations and the spectral signatures of contaminated surface waters will aid future assessments of environmental contamination. This study examined the ability of multi-season airborne hyperspectral data to identify the geochemical evolution of substances and contaminant patterns at the Leviathan Mine Superfund site. The mine is located 24 miles southeast of Lake Tahoe and contains remnant tailings piles and several AMD collection ponds. The objectives were to 1) distinguish temporal changes in mineralogy at a the remediated open-pit sulfur mine, 2) identify the absorption features of mine affected waters, and 3) quantitatively link water spectra to known dissolved iron concentrations. Images from NASA's AVIRIS instrument were collected in the spring, summer, and fall seasons for two consecutive years at Leviathan (HyspIRI campaign). Images had a spatial resolution of 15 meters at nadir. Ground-based surveys using the ASD FieldSpecPro spectrometer and laboratory spectral and chemical analysis complemented the remote sensing data. Temporal changes in surface mineralogy were difficult to distinguish. However, seasonal changes in pond water quality were identified. Dissolved ferric iron and chlorophyll-a concentrations were determined to be the major influences on pond water spectral variation.
Sox10 Expressing Cells in the Lateral Wall of the Aged Mouse and Human Cochlea
Hao, Xinping; Xing, Yazhi; Moore, Michael W.; Zhang, Jianning; Han, Demin; Schulte, Bradley A.; Dubno, Judy R.; Lang, Hainan
2014-01-01
Age-related hearing loss (presbycusis) is a common human disorder, affecting one in three Americans aged 60 and over. Previous studies have shown that presbyacusis is associated with a loss of non-sensory cells in the cochlear lateral wall. Sox10 is a transcription factor crucial to the development and maintenance of neural crest-derived cells including some non-sensory cell types in the cochlea. Mutations of the Sox10 gene are known to cause various combinations of hearing loss and pigmentation defects in humans. This study investigated the potential relationship between Sox10 gene expression and pathological changes in the cochlear lateral wall of aged CBA/CaJ mice and human temporal bones from older donors. Cochlear tissues prepared from young adult (1–3 month-old) and aged (2–2.5 year-old) mice, and human temporal bone donors were examined using quantitative immunohistochemical analysis and transmission electron microscopy. Cells expressing Sox10 were present in the stria vascularis, outer sulcus and spiral prominence in mouse and human cochleas. The Sox10+ cell types included marginal and intermediate cells and outer sulcus cells, including those that border the scala media and those extending into root processes (root cells) in the spiral ligament. Quantitative analysis of immunostaining revealed a significant decrease in the number of Sox10+ marginal cells and outer sulcus cells in aged mice. Electron microscopic evaluation revealed degenerative alterations in the surviving Sox10+ cells in aged mice. Strial marginal cells in human cochleas from donors aged 87 and older showed only weak immunostaining for Sox10. Decreases in Sox10 expression levels and a loss of Sox10+ cells in both mouse and human aged ears suggests an important role of Sox10 in the maintenance of structural and functional integrity of the lateral wall. A loss of Sox10+ cells may also be associated with a decline in the repair capabilities of non-sensory cells in the aged ear. PMID:24887110
Endosomal Interactions during Root Hair Growth
von Wangenheim, Daniel; Rosero, Amparo; Komis, George; Šamajová, Olga; Ovečka, Miroslav; Voigt, Boris; Šamaj, Jozef
2016-01-01
The dynamic localization of endosomal compartments labeled with targeted fluorescent protein tags is routinely followed by time lapse fluorescence microscopy approaches and single particle tracking algorithms. In this way trajectories of individual endosomes can be mapped and linked to physiological processes as cell growth. However, other aspects of dynamic behavior including endosomal interactions are difficult to follow in this manner. Therefore, we characterized the localization and dynamic properties of early and late endosomes throughout the entire course of root hair formation by means of spinning disc time lapse imaging and post-acquisition automated multitracking and quantitative analysis. Our results show differential motile behavior of early and late endosomes and interactions of late endosomes that may be specified to particular root hair domains. Detailed data analysis revealed a particular transient interaction between late endosomes—termed herein as dancing-endosomes—which is not concluding to vesicular fusion. Endosomes preferentially located in the root hair tip interacted as dancing-endosomes and traveled short distances during this interaction. Finally, sizes of early and late endosomes were addressed by means of super-resolution structured illumination microscopy (SIM) to corroborate measurements on the spinning disc. This is a first study providing quantitative microscopic data on dynamic spatio-temporal interactions of endosomes during root hair tip growth. PMID:26858728
Endosomal Interactions during Root Hair Growth.
von Wangenheim, Daniel; Rosero, Amparo; Komis, George; Šamajová, Olga; Ovečka, Miroslav; Voigt, Boris; Šamaj, Jozef
2015-01-01
The dynamic localization of endosomal compartments labeled with targeted fluorescent protein tags is routinely followed by time lapse fluorescence microscopy approaches and single particle tracking algorithms. In this way trajectories of individual endosomes can be mapped and linked to physiological processes as cell growth. However, other aspects of dynamic behavior including endosomal interactions are difficult to follow in this manner. Therefore, we characterized the localization and dynamic properties of early and late endosomes throughout the entire course of root hair formation by means of spinning disc time lapse imaging and post-acquisition automated multitracking and quantitative analysis. Our results show differential motile behavior of early and late endosomes and interactions of late endosomes that may be specified to particular root hair domains. Detailed data analysis revealed a particular transient interaction between late endosomes-termed herein as dancing-endosomes-which is not concluding to vesicular fusion. Endosomes preferentially located in the root hair tip interacted as dancing-endosomes and traveled short distances during this interaction. Finally, sizes of early and late endosomes were addressed by means of super-resolution structured illumination microscopy (SIM) to corroborate measurements on the spinning disc. This is a first study providing quantitative microscopic data on dynamic spatio-temporal interactions of endosomes during root hair tip growth.
NASA Astrophysics Data System (ADS)
Lutz, Norbert W.; Bernard, Monique
2018-02-01
We recently suggested a new paradigm for statistical analysis of thermal heterogeneity in (semi-)aqueous materials by 1H NMR spectroscopy, using water as a temperature probe. Here, we present a comprehensive in silico and in vitro validation that demonstrates the ability of this new technique to provide accurate quantitative parameters characterizing the statistical distribution of temperature values in a volume of (semi-)aqueous matter. First, line shape parameters of numerically simulated water 1H NMR spectra are systematically varied to study a range of mathematically well-defined temperature distributions. Then, corresponding models based on measured 1H NMR spectra of agarose gel are analyzed. In addition, dedicated samples based on hydrogels or biological tissue are designed to produce temperature gradients changing over time, and dynamic NMR spectroscopy is employed to analyze the resulting temperature profiles at sub-second temporal resolution. Accuracy and consistency of the previously introduced statistical descriptors of temperature heterogeneity are determined: weighted median and mean temperature, standard deviation, temperature range, temperature mode(s), kurtosis, skewness, entropy, and relative areas under temperature curves. Potential and limitations of this method for quantitative analysis of thermal heterogeneity in (semi-)aqueous materials are discussed in view of prospective applications in materials science as well as biology and medicine.
Hein, Tyler C; Monk, Christopher S
2017-03-01
Child maltreatment is common and has long-term consequences for affective function. Investigations of neural consequences of maltreatment have focused on the amygdala. However, developmental neuroscience indicates that other brain regions are also likely to be affected by child maltreatment, particularly in the social information processing network (SIPN). We conducted a quantitative meta-analysis to: confirm that maltreatment is related to greater bilateral amygdala activation in a large sample that was pooled across studies; investigate other SIPN structures that are likely candidates for altered function; and conduct a data-driven examination to identify additional regions that show altered activation in maltreated children, teens, and adults. We conducted an activation likelihood estimation analysis with 1,733 participants across 20 studies of emotion processing in maltreated individuals. Maltreatment is associated with increased bilateral amygdala activation to emotional faces. One SIPN structure is altered: superior temporal gyrus, of the detection node, is hyperactive in maltreated individuals. The results of the whole-brain corrected analysis also show hyperactivation of the parahippocampal gyrus and insula in maltreated individuals. The meta-analysis confirms that maltreatment is related to increased bilateral amygdala reactivity and also shows that maltreatment affects multiple additional structures in the brain that have received little attention in the literature. Thus, although the majority of studies examining maltreatment and brain function have focused on the amygdala, these findings indicate that the neural consequences of child maltreatment involve a broader network of structures. © 2016 Association for Child and Adolescent Mental Health.
A novel mesh processing based technique for 3D plant analysis
2012-01-01
Background In recent years, imaging based, automated, non-invasive, and non-destructive high-throughput plant phenotyping platforms have become popular tools for plant biology, underpinning the field of plant phenomics. Such platforms acquire and record large amounts of raw data that must be accurately and robustly calibrated, reconstructed, and analysed, requiring the development of sophisticated image understanding and quantification algorithms. The raw data can be processed in different ways, and the past few years have seen the emergence of two main approaches: 2D image processing and 3D mesh processing algorithms. Direct image quantification methods (usually 2D) dominate the current literature due to comparative simplicity. However, 3D mesh analysis provides the tremendous potential to accurately estimate specific morphological features cross-sectionally and monitor them over-time. Result In this paper, we present a novel 3D mesh based technique developed for temporal high-throughput plant phenomics and perform initial tests for the analysis of Gossypium hirsutum vegetative growth. Based on plant meshes previously reconstructed from multi-view images, the methodology involves several stages, including morphological mesh segmentation, phenotypic parameters estimation, and plant organs tracking over time. The initial study focuses on presenting and validating the accuracy of the methodology on dicotyledons such as cotton but we believe the approach will be more broadly applicable. This study involved applying our technique to a set of six Gossypium hirsutum (cotton) plants studied over four time-points. Manual measurements, performed for each plant at every time-point, were used to assess the accuracy of our pipeline and quantify the error on the morphological parameters estimated. Conclusion By directly comparing our automated mesh based quantitative data with manual measurements of individual stem height, leaf width and leaf length, we obtained the mean absolute errors of 9.34%, 5.75%, 8.78%, and correlation coefficients 0.88, 0.96, and 0.95 respectively. The temporal matching of leaves was accurate in 95% of the cases and the average execution time required to analyse a plant over four time-points was 4.9 minutes. The mesh processing based methodology is thus considered suitable for quantitative 4D monitoring of plant phenotypic features. PMID:22553969
Flame filtering and perimeter localization of wildfires using aerial thermal imagery
NASA Astrophysics Data System (ADS)
Valero, Mario M.; Verstockt, Steven; Rios, Oriol; Pastor, Elsa; Vandecasteele, Florian; Planas, Eulàlia
2017-05-01
Airborne thermal infrared (TIR) imaging systems are being increasingly used for wild fire tactical monitoring since they show important advantages over spaceborne platforms and visible sensors while becoming much more affordable and much lighter than multispectral cameras. However, the analysis of aerial TIR images entails a number of difficulties which have thus far prevented monitoring tasks from being totally automated. One of these issues that needs to be addressed is the appearance of flame projections during the geo-correction of off-nadir images. Filtering these flames is essential in order to accurately estimate the geographical location of the fuel burning interface. Therefore, we present a methodology which allows the automatic localisation of the active fire contour free of flame projections. The actively burning area is detected in TIR georeferenced images through a combination of intensity thresholding techniques, morphological processing and active contours. Subsequently, flame projections are filtered out by the temporal frequency analysis of the appropriate contour descriptors. The proposed algorithm was tested on footages acquired during three large-scale field experimental burns. Results suggest this methodology may be suitable to automatise the acquisition of quantitative data about the fire evolution. As future work, a revision of the low-pass filter implemented for the temporal analysis (currently a median filter) was recommended. The availability of up-to-date information about the fire state would improve situational awareness during an emergency response and may be used to calibrate data-driven simulators capable of emitting short-term accurate forecasts of the subsequent fire evolution.
Pain sensitivity profiles in patients with advanced knee osteoarthritis
Frey-Law, Laura A.; Bohr, Nicole L.; Sluka, Kathleen A.; Herr, Keela; Clark, Charles R.; Noiseux, Nicolas O.; Callaghan, John J; Zimmerman, M Bridget; Rakel, Barbara A.
2016-01-01
The development of patient profiles to subgroup individuals on a variety of variables has gained attention as a potential means to better inform clinical decision-making. Patterns of pain sensitivity response specific to quantitative sensory testing (QST) modality have been demonstrated in healthy subjects. It has not been determined if these patterns persist in a knee osteoarthritis population. In a sample of 218 participants, 19 QST measures along with pain, psychological factors, self-reported function, and quality of life were assessed prior to total knee arthroplasty. Component analysis was used to identify commonalities across the 19 QST assessments to produce standardized pain sensitivity factors. Cluster analysis then grouped individuals that exhibited similar patterns of standardized pain sensitivity component scores. The QST resulted in four pain sensitivity components: heat, punctate, temporal summation, and pressure. Cluster analysis resulted in five pain sensitivity profiles: a “low pressure pain” group, an “average pain” group, and three “high pain” sensitivity groups who were sensitive to different modalities (punctate, heat, and temporal summation). Pain and function differed between pain sensitivity profiles, along with sex distribution; however no differences in OA grade, medication use, or psychological traits were found. Residualizing QST data by age and sex resulted in similar components and pain sensitivity profiles. Further, these profiles are surprisingly similar to those reported in healthy populations suggesting that individual differences in pain sensitivity are a robust finding even in an older population with significant disease. PMID:27152688
Spatiotemporal reconstruction of list-mode PET data.
Nichols, Thomas E; Qi, Jinyi; Asma, Evren; Leahy, Richard M
2002-04-01
We describe a method for computing a continuous time estimate of tracer density using list-mode positron emission tomography data. The rate function in each voxel is modeled as an inhomogeneous Poisson process whose rate function can be represented using a cubic B-spline basis. The rate functions are estimated by maximizing the likelihood of the arrival times of detected photon pairs over the control vertices of the spline, modified by quadratic spatial and temporal smoothness penalties and a penalty term to enforce nonnegativity. Randoms rate functions are estimated by assuming independence between the spatial and temporal randoms distributions. Similarly, scatter rate functions are estimated by assuming spatiotemporal independence and that the temporal distribution of the scatter is proportional to the temporal distribution of the trues. A quantitative evaluation was performed using simulated data and the method is also demonstrated in a human study using 11C-raclopride.
NASA Astrophysics Data System (ADS)
Zhang, Yi-Qing; Cui, Jing; Zhang, Shu-Min; Zhang, Qi; Li, Xiang
2016-02-01
Modelling temporal networks of human face-to-face contacts is vital both for understanding the spread of airborne pathogens and word-of-mouth spreading of information. Although many efforts have been devoted to model these temporal networks, there are still two important social features, public activity and individual reachability, have been ignored in these models. Here we present a simple model that captures these two features and other typical properties of empirical face-to-face contact networks. The model describes agents which are characterized by an attractiveness to slow down the motion of nearby people, have event-triggered active probability and perform an activity-dependent biased random walk in a square box with periodic boundary. The model quantitatively reproduces two empirical temporal networks of human face-to-face contacts which are testified by their network properties and the epidemic spread dynamics on them.
LGI1 microdeletion in autosomal dominant lateral temporal epilepsy
Fanciulli, M.; Santulli, L.; Errichiello, L.; Barozzi, C.; Tomasi, L.; Rigon, L.; Cubeddu, T.; de Falco, A.; Rampazzo, A.; Michelucci, R.; Uzzau, S.; Striano, S.; de Falco, F.A.; Striano, P.
2012-01-01
Objectives: To characterize clinically and genetically a family with autosomal dominant lateral temporal epilepsy (ADLTE) negative to LGI1 exon sequencing test. Methods: All participants were personally interviewed and underwent neurologic examination. Most affected subjects underwent EEG and neuroradiologic examinations (CT/MRI). Available family members were genotyped with the HumanOmni1-Quad v1.0 single nucleotide polymorphism (SNP) array beadchip and copy number variations (CNVs) were analyzed in each subject. LGI1 gene dosage was performed by real-time quantitative PCR (qPCR). Results: The family had 8 affected members (2 deceased) over 3 generations. All of them showed GTC seizures, with focal onset in 6 and unknown onset in 2. Four patients had focal seizures with auditory features. EEG showed only minor sharp abnormalities in 3 patients and MRI was unremarkable in all the patients examined. Three family members presented major depression and anxiety symptoms. Routine LGI1 exon sequencing revealed no point mutation. High-density SNP array CNV analysis identified a genomic microdeletion about 81 kb in size encompassing the first 4 exons of LGI1 in all available affected members and in 2 nonaffected carriers, which was confirmed by qPCR analysis. Conclusions: This is the first microdeletion affecting LGI1 identified in ADLTE. Families with ADLTE in which no point mutations are revealed by direct exon sequencing should be screened for possible genomic deletion mutations by CNV analysis or other appropriate methods. Overall, CNV analysis of multiplex families may be useful for identifying microdeletions in novel disease genes. PMID:22496201
Spaniol, Julia; Davidson, Patrick S R; Kim, Alice S N; Han, Hua; Moscovitch, Morris; Grady, Cheryl L
2009-07-01
The recent surge in event-related fMRI studies of episodic memory has generated a wealth of information about the neural correlates of encoding and retrieval processes. However, interpretation of individual studies is hampered by methodological differences, and by the fact that sample sizes are typically small. We submitted results from studies of episodic memory in healthy young adults, published between 1998 and 2007, to a voxel-wise quantitative meta-analysis using activation likelihood estimation [Laird, A. R., McMillan, K. M., Lancaster, J. L., Kochunov, P., Turkeltaub, P. E., & Pardo, J. V., et al. (2005). A comparison of label-based review and ALE meta-analysis in the stroop task. Human Brain Mapping, 25, 6-21]. We conducted separate meta-analyses for four contrasts of interest: episodic encoding success as measured in the subsequent-memory paradigm (subsequent Hit vs. Miss), episodic retrieval success (Hit vs. Correct Rejection), objective recollection (e.g., Source Hit vs. Item Hit), and subjective recollection (e.g., Remember vs. Know). Concordance maps revealed significant cross-study overlap for each contrast. In each case, the left hemisphere showed greater concordance than the right hemisphere. Both encoding and retrieval success were associated with activation in medial-temporal, prefrontal, and parietal regions. Left ventrolateral prefrontal cortex (PFC) and medial-temporal regions were more strongly involved in encoding, whereas left superior parietal and dorsolateral and anterior PFC regions were more strongly involved in retrieval. Objective recollection was associated with activation in multiple PFC regions, as well as multiple posterior parietal and medial-temporal areas, but not hippocampus. Subjective recollection, in contrast, showed left hippocampal involvement. In summary, these results identify broadly consistent activation patterns associated with episodic encoding and retrieval, and subjective and objective recollection, but also subtle differences among these processes.
Components of cross-frequency modulation in health and disease.
Allen, Elena A; Liu, Jingyu; Kiehl, Kent A; Gelernter, Joel; Pearlson, Godfrey D; Perrone-Bizzozero, Nora I; Calhoun, Vince D
2011-01-01
The cognitive deficits associated with schizophrenia are commonly believed to arise from the abnormal temporal integration of information, however a quantitative approach to assess network coordination is lacking. Here, we propose to use cross-frequency modulation (cfM), the dependence of local high-frequency activity on the phase of widespread low-frequency oscillations, as an indicator of network coordination and functional integration. In an exploratory analysis based on pre-existing data, we measured cfM from multi-channel EEG recordings acquired while schizophrenia patients (n = 47) and healthy controls (n = 130) performed an auditory oddball task. Novel application of independent component analysis (ICA) to modulation data delineated components with specific spatial and spectral profiles, the weights of which showed covariation with diagnosis. Global cfM was significantly greater in healthy controls (F(1,175) = 9.25, P < 0.005), while modulation at fronto-temporal electrodes was greater in patients (F(1,175) = 17.5, P < 0.0001). We further found that the weights of schizophrenia-relevant components were associated with genetic polymorphisms at previously identified risk loci. Global cfM decreased with copies of 957C allele in the gene for the dopamine D2 receptor (r = -0.20, P < 0.01) across all subjects. Additionally, greater "aberrant" fronto-temporal modulation in schizophrenia patients was correlated with several polymorphisms in the gene for the α2-subunit of the GABA(A) receptor (GABRA2) as well as the total number of risk alleles in GABRA2 (r = 0.45, P < 0.01). Overall, our results indicate great promise for this approach in establishing patterns of cfM in health and disease and elucidating the roles of oscillatory interactions in functional connectivity.
Gou, Min; Hu, Hang-Wei; Zhang, Yu-Jing; Wang, Jun-Tao; Hayden, Helen; Tang, Yue-Qin; He, Ji-Zheng
2018-01-15
Composting has been suggested as a potential strategy to eliminate antibiotic residues and pathogens in livestock manure before its application as an organic fertilizer in agro-ecosystems. However, the impacts of composting on antibiotic resistance genes (ARGs) in livestock manure and their temporal succession following the application of compost to land are not well understood. We examined how aerobic composting affected the resistome profiles of cattle manure, and by constructing laboratory microcosms we compared the effects of manure and compost application to agricultural soils on the temporal succession of a wide spectrum of ARGs. The high-throughput quantitative PCR array detected a total of 144 ARGs across all the soil, manure and compost samples, with Macrolide-Lincosamide-Streptogramin B, aminoglycoside, multidrug, tetracycline, and β-lactam resistance as the most dominant types. Composting significantly reduced the diversity and relative abundance of ARGs and mobile genetic elements (MGEs) in the cattle manure. In the 120-day microcosm incubation, the diversity and abundance of ARGs in manure-treated soils were significantly higher than those in compost-treated soils at the beginning of the experiment. The level of antibiotic resistance rapidly declined over time in all manure- and compost-treated soils, coupled with similar temporal patterns of manure- and compost-derived bacterial communities as revealed by SourceTracker analysis. The network analysis revealed more intensive interactions/associations among ARGs and MGEs in manure-treated soils than in compost-treated soils, suggesting that mobility potential of ARGs was lower in soils amended with compost. Our results provide evidence that aerobic composting of cattle manure may be an effective approach to mitigate the risk of antibiotic resistance propagation associated with land application of organic wastes. Copyright © 2017 Elsevier B.V. All rights reserved.
Hinchliffe, Doug J; Meredith, William R; Yeater, Kathleen M; Kim, Hee Jin; Woodward, Andrew W; Chen, Z Jeffrey; Triplett, Barbara A
2010-05-01
Gene expression profiles of developing cotton (Gossypium hirsutum L.) fibers from two near-isogenic lines (NILs) that differ in fiber-bundle strength, short-fiber content, and in fewer than two genetic loci were compared using an oligonucleotide microarray. Fiber gene expression was compared at five time points spanning fiber elongation and secondary cell wall (SCW) biosynthesis. Fiber samples were collected from field plots in a randomized, complete block design, with three spatially distinct biological replications for each NIL at each time point. Microarray hybridizations were performed in a loop experimental design that allowed comparisons of fiber gene expression profiles as a function of time between the two NILs. Overall, developmental expression patterns revealed by the microarray experiment agreed with previously reported cotton fiber gene expression patterns for specific genes. Additionally, genes expressed coordinately with the onset of SCW biosynthesis in cotton fiber correlated with gene expression patterns of other SCW-producing plant tissues. Functional classification and enrichment analysis of differentially expressed genes between the two NILs revealed that genes associated with SCW biosynthesis were significantly up-regulated in fibers of the high-fiber quality line at the transition stage of cotton fiber development. For independent corroboration of the microarray results, 15 genes were selected for quantitative reverse transcription PCR analysis of fiber gene expression. These analyses, conducted over multiple field years, confirmed the temporal difference in fiber gene expression between the two NILs. We hypothesize that the loci conferring temporal differences in fiber gene expression between the NILs are important regulatory sequences that offer the potential for more targeted manipulation of cotton fiber quality.
Wu, Xin; Yang, Wenjing; Tong, Dandan; Sun, Jiangzhou; Chen, Qunlin; Wei, Dongtao; Zhang, Qinglin; Zhang, Meng; Qiu, Jiang
2015-07-01
In this study, an activation likelihood estimation (ALE) meta-analysis was used to conduct a quantitative investigation of neuroimaging studies on divergent thinking. Based on the ALE results, the functional magnetic resonance imaging (fMRI) studies showed that distributed brain regions were more active under divergent thinking tasks (DTTs) than those under control tasks, but a large portion of the brain regions were deactivated. The ALE results indicated that the brain networks of the creative idea generation in DTTs may be composed of the lateral prefrontal cortex, posterior parietal cortex [such as the inferior parietal lobule (BA 40) and precuneus (BA 7)], anterior cingulate cortex (ACC) (BA 32), and several regions in the temporal cortex [such as the left middle temporal gyrus (BA 39), and left fusiform gyrus (BA 37)]. The left dorsolateral prefrontal cortex (BA 46) was related to selecting the loosely and remotely associated concepts and organizing them into creative ideas, whereas the ACC (BA 32) was related to observing and forming distant semantic associations in performing DTTs. The posterior parietal cortex may be involved in the semantic information related to the retrieval and buffering of the formed creative ideas, and several regions in the temporal cortex may be related to the stored long-term memory. In addition, the ALE results of the structural studies showed that divergent thinking was related to the dopaminergic system (e.g., left caudate and claustrum). Based on the ALE results, both fMRI and structural MRI studies could uncover the neural basis of divergent thinking from different aspects (e.g., specific cognitive processing and stable individual difference of cognitive capability). © 2015 Wiley Periodicals, Inc.
Spatial and Temporal Comparison of DNRA Communities in New River Estuary, USA
NASA Astrophysics Data System (ADS)
Song, B.; Lisa, J.; Tobias, C. R.
2016-02-01
Dissimilatory nitrate reduction to ammonium (DNRA) is an important nitrate respiring pathway, competing with denitrification, in various ecosystems. Studies examining the diversity and composition of DNRA communities are limited and their link to DNRA activity is unknown. We conducted a multidisciplinary investigation of sediment communities in the upper reaches of a eutrophic estuary to examine spatial and temporal variation of DNRA community structures and determine their linkage to activities. Sediment samples were collected seasonally from two study sites (AA2 and JAX) in the New River Estuary, North Carolina, USA. 15N-nitrate tracer experiments were conducted to measure potential DNRA rates while abundance of DNRA communities was measured using quantitative PCR of cytochrome C nitrite reductase genes (nrfA). Composition and diversity of DNRA communities were also examined based on next generation sequencing (NGS) of nrfA genes using an Ion Torrent PGM. Bioinformatic analysis was conducted using the FunGene pipeline and Mothur program. Higher DNRA activities were measured at JAX and associated with higher abundance of nrfA genes. Seasonal variation in DNRA rates and nrfA gene abundance was more evident at JAX than AA2. Nitrate concentration and dissolved oxygen in bottom water were significantly and positively correlated with activities and abundance of DNRA communities. The nrfA NGS analysis revealed that spatial variation of DNRA communities was much greater than temporal variation with salinity, dissolved organic carbon, and nitrate as the most important environmental variables affecting these communities. Diversity of DNRA communities was negative correlated with the DNRA rates and nrfA gene abundance, which suggests that dominant members of the DNRA community are responsible for higher rates. Thus, our multidisciplinary study clearly demonstrates the linkage between structure and activities of DNRA communities in the upper reaches of New River Estuary.
NASA Astrophysics Data System (ADS)
Donner, Reik; Balasis, Georgios; Stolbova, Veronika; Wiedermann, Marc; Georgiou, Marina; Kurths, Jürgen
2016-04-01
Magnetic storms are the most prominent global manifestations of out-of-equilibrium magnetospheric dynamics. Investigating the dynamical complexity exhibited by geomagnetic observables can provide valuable insights into relevant physical processes as well as temporal scales associated with this phenomenon. In this work, we introduce several innovative data analysis techniques enabling a quantitative analysis of the Dst index non-stationary behavior. Using recurrence quantification analysis (RQA) and recurrence network analysis (RNA), we obtain a variety of complexity measures serving as markers of quiet- and storm-time magnetospheric dynamics. We additionally apply these techniques to the main driver of Dst index variations, the V BSouth coupling function and interplanetary medium parameters Bz and Pdyn in order to discriminate internal processes from the magnetosphere's response directly induced by the external forcing by the solar wind. The derived recurrence-based measures allow us to improve the accuracy with which magnetospheric storms can be classified based on ground-based observations. The new methodology presented here could be of significant interest for the space weather research community working on time series analysis for magnetic storm forecasts.
Functional quantitative susceptibility mapping (fQSM).
Balla, Dávid Z; Sanchez-Panchuelo, Rosa M; Wharton, Samuel J; Hagberg, Gisela E; Scheffler, Klaus; Francis, Susan T; Bowtell, Richard
2014-10-15
Blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) is a powerful technique, typically based on the statistical analysis of the magnitude component of the complex time-series. Here, we additionally interrogated the phase data of the fMRI time-series and used quantitative susceptibility mapping (QSM) in order to investigate the potential of functional QSM (fQSM) relative to standard magnitude BOLD fMRI. High spatial resolution data (1mm isotropic) were acquired every 3 seconds using zoomed multi-slice gradient-echo EPI collected at 7 T in single orientation (SO) and multiple orientation (MO) experiments, the latter involving 4 repetitions with the subject's head rotated relative to B0. Statistical parametric maps (SPM) were reconstructed for magnitude, phase and QSM time-series and each was subjected to detailed analysis. Several fQSM pipelines were evaluated and compared based on the relative number of voxels that were coincidentally found to be significant in QSM and magnitude SPMs (common voxels). We found that sensitivity and spatial reliability of fQSM relative to the magnitude data depended strongly on the arbitrary significance threshold defining "activated" voxels in SPMs, and on the efficiency of spatio-temporal filtering of the phase time-series. Sensitivity and spatial reliability depended slightly on whether MO or SO fQSM was performed and on the QSM calculation approach used for SO data. Our results present the potential of fQSM as a quantitative method of mapping BOLD changes. We also critically discuss the technical challenges and issues linked to this intriguing new technique. Copyright © 2014 Elsevier Inc. All rights reserved.
Atmospheric effects on SMMR and SSM/I 37 GHz polarization difference over the Sahel
NASA Technical Reports Server (NTRS)
Choudhury, B. J.; Major, E. R.; Smith, E. A.; Becker, F.
1992-01-01
The atmospheric effects on the difference of vertically and horizontally polarized brightness temperatures, Delta(T) observed at 37 GHz frequency of the SMMR on board the Nimbus-7 satellite and SSM/I on board the DMSP-F8 satellite are studied over two 2.5 by 2.5 deg regions within the Sahel and Sudan zones of Africa from January 1985 to December 1986 through radiative transfer analysis using surface temperature, atmospheric water vapor, and cloud optical thickness. It is found that atmospheric effects alone cannot explain the observed temporal variation of Delta(T), although the atmosphere introduces important modulations on the observed seasonal variations of Delta(T) due to rather significant seasonal variation of precipitable water vapor. These Delta(T) data should be corrected for atmospheric effects before any quantitative analysis of land surface change over the Sahel and Sudan zones.
Persistence of uranium emission in laser-produced plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaHaye, N. L.; Harilal, S. S., E-mail: hari@purdue.edu; Diwakar, P. K.
2014-04-28
Detection of uranium and other nuclear materials is of the utmost importance for nuclear safeguards and security. Optical emission spectroscopy of laser-ablated U plasmas has been presented as a stand-off, portable analytical method that can yield accurate qualitative and quantitative elemental analysis of a variety of samples. In this study, optimal laser ablation and ambient conditions are explored, as well as the spatio-temporal evolution of the plasma for spectral analysis of excited U species in a glass matrix. Various Ar pressures were explored to investigate the role that plasma collisional effects and confinement have on spectral line emission enhancement andmore » persistence. The plasma-ambient gas interaction was also investigated using spatially resolved spectra and optical time-of-flight measurements. The results indicate that ambient conditions play a very important role in spectral emission intensity as well as the persistence of excited neutral U emission lines, influencing the appropriate spectral acquisition conditions.« less
Heat Capacity Mapping Mission (HCMM): Interpretation of imagery over Canada
NASA Technical Reports Server (NTRS)
Cihlar, J. (Principal Investigator); Dixon, R. G.
1981-01-01
Visual analysis of HCMM images acquired over two sites in Canada and supporting aircraft and ground data obtained at a smaller subsite in Alberta show that nightime surface temperature distribution is primarily related to the near-surface air temperature; the effects of topography, wind, and land cover were low or indirect through air temperature. Surface cover and large altitudinal differences were important parameters influencing daytime apparent temperature values. A quantitative analysis of the relationship between the antecedent precipitation index and the satellite thermal IR measurements did not yield statistically significant correlation coefficients, but the correlations had a definite temporal trend which could be related to the increasing uniformity of vegetation cover. The large pixel size (resulting in a mixture of cover types and soil/canopy temperatures measured by the satellite) and high cloud cover frequency found in images covering both Canadian sites and northern U.S. were considered the main deficiencies of the thermal satellite data.
The educational gradient in marital disruption: a meta-analysis of European research findings.
Matysiak, Anna; Styrc, Marta; Vignoli, Daniele
2014-01-01
A large number of empirical studies have investigated the effects of women's education on union dissolution in Europe, but results have varied substantially. This paper seeks to assess the relationship between educational attainment and the incidence of marital disruption by systematizing the existing empirical evidence. A quantitative literature review (a meta-analysis) was conducted to investigate the temporal change in the relationship, net of inter-study differences. The results point to a weakening of the positive educational gradient in marital disruption over time and even to a reversal in the direction of this gradient in some countries. The findings also show that the change in the educational gradient can be linked to an increase in access to divorce. Finally, the results suggest that women's empowerment has played an important role in changing the educational gradient, while the liberalization of divorce laws has not.
Inferring Biological Structures from Super-Resolution Single Molecule Images Using Generative Models
Maji, Suvrajit; Bruchez, Marcel P.
2012-01-01
Localization-based super resolution imaging is presently limited by sampling requirements for dynamic measurements of biological structures. Generating an image requires serial acquisition of individual molecular positions at sufficient density to define a biological structure, increasing the acquisition time. Efficient analysis of biological structures from sparse localization data could substantially improve the dynamic imaging capabilities of these methods. Using a feature extraction technique called the Hough Transform simple biological structures are identified from both simulated and real localization data. We demonstrate that these generative models can efficiently infer biological structures in the data from far fewer localizations than are required for complete spatial sampling. Analysis at partial data densities revealed efficient recovery of clathrin vesicle size distributions and microtubule orientation angles with as little as 10% of the localization data. This approach significantly increases the temporal resolution for dynamic imaging and provides quantitatively useful biological information. PMID:22629348
Analysis of dynamic brain oscillations: methodological advances.
Le Van Quyen, Michel; Bragin, Anatol
2007-07-01
In recent years, new recording technologies have advanced such that, at high temporal and spatial resolutions, oscillations of neuronal networks can be identified from simultaneous, multisite recordings. However, because of the deluge of multichannel data generated by these experiments, achieving the full potential of parallel neuronal recordings also depends on the development of new mathematical methods that can extract meaningful information relating to time, frequency and space. Here, we aim to bridge this gap by focusing on up-to-date recording techniques for measurement of network oscillations and new analysis tools for their quantitative assessment. In particular, we emphasize how these methods can be applied, what property might be inferred from neuronal signals and potentially productive future directions. This review is part of the INMED and TINS special issue, Physiogenic and pathogenic oscillations: the beauty and the beast, derived from presentations at the annual INMED and TINS symposium (http://inmednet.com).
Galerkin analysis of kinematic dynamos in the von Kármán geometry
NASA Astrophysics Data System (ADS)
Marié, L.; Normand, C.; Daviaud, F.
2006-01-01
We investigate dynamo action by solving the kinematic dynamo problem for velocity fields of the von Kármán type between two coaxial counter-rotating propellers in a cylinder. A Galerkin method is implemented that takes advantage of the symmetries of the flow and their subsequent influence on the nature of the magnetic field at the dynamo threshold. Distinct modes of instability have been identified that differ by their spatial and temporal behaviors. Our calculations give the result that a stationary and antisymmetric mode prevails at the dynamo threshold. We then present a quantitative analysis of the results based on the parametric study of four interaction coefficients obtained by reduction of our initially large eigenvalue problem. We propose these coefficients to measure the relative importance of the different mechanisms at play in the von Kármán kinematic dynamo.
NASA Technical Reports Server (NTRS)
Okong'o, Nora; Bellan, Josette
2005-01-01
Models for large eddy simulation (LES) are assessed on a database obtained from direct numerical simulations (DNS) of supercritical binary-species temporal mixing layers. The analysis is performed at the DNS transitional states for heptane/nitrogen, oxygen/hydrogen and oxygen/helium mixing layers. The incorporation of simplifying assumptions that are validated on the DNS database leads to a set of LES equations that requires only models for the subgrid scale (SGS) fluxes, which arise from filtering the convective terms in the DNS equations. Constant-coefficient versions of three different models for the SGS fluxes are assessed and calibrated. The Smagorinsky SGS-flux model shows poor correlations with the SGS fluxes, while the Gradient and Similarity models have high correlations, as well as good quantitative agreement with the SGS fluxes when the calibrated coefficients are used.
Snapshot Hyperspectral Volumetric Microscopy
NASA Astrophysics Data System (ADS)
Wu, Jiamin; Xiong, Bo; Lin, Xing; He, Jijun; Suo, Jinli; Dai, Qionghai
2016-04-01
The comprehensive analysis of biological specimens brings about the demand for capturing the spatial, temporal and spectral dimensions of visual information together. However, such high-dimensional video acquisition faces major challenges in developing large data throughput and effective multiplexing techniques. Here, we report the snapshot hyperspectral volumetric microscopy that computationally reconstructs hyperspectral profiles for high-resolution volumes of ~1000 μm × 1000 μm × 500 μm at video rate by a novel four-dimensional (4D) deconvolution algorithm. We validated the proposed approach with both numerical simulations for quantitative evaluation and various real experimental results on the prototype system. Different applications such as biological component analysis in bright field and spectral unmixing of multiple fluorescence are demonstrated. The experiments on moving fluorescent beads and GFP labelled drosophila larvae indicate the great potential of our method for observing multiple fluorescent markers in dynamic specimens.
NIRS-SPM: statistical parametric mapping for near infrared spectroscopy
NASA Astrophysics Data System (ADS)
Tak, Sungho; Jang, Kwang Eun; Jung, Jinwook; Jang, Jaeduck; Jeong, Yong; Ye, Jong Chul
2008-02-01
Even though there exists a powerful statistical parametric mapping (SPM) tool for fMRI, similar public domain tools are not available for near infrared spectroscopy (NIRS). In this paper, we describe a new public domain statistical toolbox called NIRS-SPM for quantitative analysis of NIRS signals. Specifically, NIRS-SPM statistically analyzes the NIRS data using GLM and makes inference as the excursion probability which comes from the random field that are interpolated from the sparse measurement. In order to obtain correct inference, NIRS-SPM offers the pre-coloring and pre-whitening method for temporal correlation estimation. For simultaneous recording NIRS signal with fMRI, the spatial mapping between fMRI image and real coordinate in 3-D digitizer is estimated using Horn's algorithm. These powerful tools allows us the super-resolution localization of the brain activation which is not possible using the conventional NIRS analysis tools.
Limit of a nonpreferential attachment multitype network model
NASA Astrophysics Data System (ADS)
Shang, Yilun
2017-02-01
Here, we deal with a model of multitype network with nonpreferential attachment growth. The connection between two nodes depends asymmetrically on their types, reflecting the implication of time order in temporal networks. Based upon graph limit theory, we analytically determined the limit of the network model characterized by a kernel, in the sense that the number of copies of any fixed subgraph converges when network size tends to infinity. The results are confirmed by extensive simulations. Our work thus provides a theoretical framework for quantitatively understanding grown temporal complex networks as a whole.
Guo, Zhongsheng
2005-01-01
Previously it was shown that male mice, when they encounter female mice or their pheromones, emit ultrasonic vocalizations with frequencies ranging over 30–110 kHz. Here, we show that these vocalizations have the characteristics of song, consisting of several different syllable types, whose temporal sequencing includes the utterance of repeated phrases. Individual males produce songs with characteristic syllabic and temporal structure. This study provides a quantitative initial description of male mouse songs, and opens the possibility of studying song production and perception in an established genetic model organism. PMID:16248680
The Slug and Churn Turbulence Characteristics of Oil-Gas-Water Flows in a Vertical Small Pipe
NASA Astrophysics Data System (ADS)
Liu, Weixin; Han, Yunfeng; Wang, Dayang; Zhao, An; Jin, Ningde
2017-08-01
The intention of the present study was to investigate the slug and churn turbulence characteristics of a vertical upward oil-gas-water three-phase flow. We firstly carried out a vertical upward oil-gas-water three-phase flow experiment in a 20-mm inner diameter (ID) pipe to measure the fluctuating signals of a rotating electric field conductance sensor under different flow patterns. Afterwards, typical flow patterns were identified with the aid of the texture structures in a cross recurrence plot. Recurrence quantitative analysis and multi-scale cross entropy (MSCE) algorithms were applied to investigate the turbulence characteristics of slug and churn flows with the varying flow parameters. The results suggest that with cross nonlinear analysis, the underlying dynamic characteristics in the evolution from slug to churn flow can be well understood. The present study provides a novel perspective for the analysis of the spatial-temporal evolution instability and complexity in oil-gas-water three-phase flow.
Separation of distinct photoexcitation species in femtosecond transient absorption microscopy
Xiao, Kai; Ma, Ying -Zhong; Simpson, Mary Jane; ...
2016-02-03
Femtosecond transient absorption microscopy is a novel chemical imaging capability with simultaneous high spatial and temporal resolution. Although several powerful data analysis approaches have been developed and successfully applied to separate distinct chemical species in such images, the application of such analysis to distinguish different photoexcited species is rare. In this paper, we demonstrate a combined approach based on phasor and linear decomposition analysis on a microscopic level that allows us to separate the contributions of both the excitons and free charge carriers in the observed transient absorption response of a composite organometallic lead halide perovskite film. We found spatialmore » regions where the transient absorption response was predominately a result of excitons and others where it was predominately due to charge carriers, and regions consisting of signals from both contributors. Lastly, quantitative decomposition of the transient absorption response curves further enabled us to reveal the relative contribution of each photoexcitation to the measured response at spatially resolved locations in the film.« less
Duffy, Frank H; D'Angelo, Eugene; Rotenberg, Alexander; Gonzalez-Heydrich, Joseph
2015-11-02
Schizophrenia is a severe, disabling and prevalent mental disorder without cure and with a variable, incomplete pharmacotherapeutic response. Prior to onset in adolescence or young adulthood a prodromal period of abnormal symptoms lasting weeks to years has been identified and operationalized as clinically high risk (CHR) for schizophrenia. However, only a minority of subjects prospectively identified with CHR convert to schizophrenia, thereby limiting enthusiasm for early intervention(s). This study utilized objective resting electroencephalogram (EEG) quantification to determine whether CHR constitutes a cohesive entity and an evoked potential to assess CHR cortical auditory processing. This study constitutes an EEG-based quantitative neurophysiological comparison between two unmedicated subject groups: 35 neurotypical controls (CON) and 22 CHR patients. After artifact management, principal component analysis (PCA) identified EEG spectral and spectral coherence factors described by associated loading patterns. Discriminant function analysis (DFA) determined factors' discrimination success between subjects in the CON and CHR groups. Loading patterns on DFA-selected factors described CHR-specific spectral and coherence differences when compared to controls. The frequency modulated auditory evoked response (FMAER) explored functional CON-CHR differences within the superior temporal gyri. Variable reduction by PCA identified 40 coherence-based factors explaining 77.8% of the total variance and 40 spectral factors explaining 95.9% of the variance. DFA demonstrated significant CON-CHR group difference (P <0.00001) and successful jackknifed subject classification (CON, 85.7%; CHR, 86.4% correct). The population distribution plotted along the canonical discriminant variable was clearly bimodal. Coherence factors delineated loading patterns of altered connectivity primarily involving the bilateral posterior temporal electrodes. However, FMAER analysis showed no CON-CHR group differences. CHR subjects form a cohesive group, significantly separable from CON subjects by EEG-derived indices. Symptoms of CHR may relate to altered connectivity with the posterior temporal regions but not to primary auditory processing abnormalities within these regions.
Guilbaud, Guillaume; Rappailles, Aurélien; Baker, Antoine; Chen, Chun-Long; Arneodo, Alain; Goldar, Arach; d'Aubenton-Carafa, Yves; Thermes, Claude; Audit, Benjamin; Hyrien, Olivier
2011-01-01
Genome-wide replication timing studies have suggested that mammalian chromosomes consist of megabase-scale domains of coordinated origin firing separated by large originless transition regions. Here, we report a quantitative genome-wide analysis of DNA replication kinetics in several human cell types that contradicts this view. DNA combing in HeLa cells sorted into four temporal compartments of S phase shows that replication origins are spaced at 40 kb intervals and fire as small clusters whose synchrony increases during S phase and that replication fork velocity (mean 0.7 kb/min, maximum 2.0 kb/min) remains constant and narrowly distributed through S phase. However, multi-scale analysis of a genome-wide replication timing profile shows a broad distribution of replication timing gradients with practically no regions larger than 100 kb replicating at less than 2 kb/min. Therefore, HeLa cells lack large regions of unidirectional fork progression. Temporal transition regions are replicated by sequential activation of origins at a rate that increases during S phase and replication timing gradients are set by the delay and the spacing between successive origin firings rather than by the velocity of single forks. Activation of internal origins in a specific temporal transition region is directly demonstrated by DNA combing of the IGH locus in HeLa cells. Analysis of published origin maps in HeLa cells and published replication timing and DNA combing data in several other cell types corroborate these findings, with the interesting exception of embryonic stem cells where regions of unidirectional fork progression seem more abundant. These results can be explained if origins fire independently of each other but under the control of long-range chromatin structure, or if replication forks progressing from early origins stimulate initiation in nearby unreplicated DNA. These findings shed a new light on the replication timing program of mammalian genomes and provide a general model for their replication kinetics. PMID:22219720
Franck, William L.; Gokce, Emine; Oh, Yeonyee; Muddiman, David C.; Dean, Ralph A.
2013-01-01
Rice blast disease caused by Magnaporthe oryzae is one of the most serious threats to global rice production. During the earliest stages of rice infection, M. oryzae conidia germinate on the leaf surface and form a specialized infection structure termed the appressorium. The development of the appressorium represents the first critical stage of infectious development. A total of 3200 unique proteins were identified by nanoLC-MS/MS in a temporal study of conidial germination and cAMP-induced appressorium formation in M. oryzae. Using spectral counting based label free quantification, observed changes in relative protein abundance during the developmental process revealed changes in the cell wall biosynthetic machinery, transport functions, and production of extracellular proteins in developing appressoria. One hundred and sixty-six up-regulated and 208 down-regulated proteins were identified in response to cAMP treatment. Proteomic analysis of a cAMP-dependent protein kinase A mutant that is compromised in the ability to form appressoria identified proteins whose developmental regulation is dependent on cAMP signaling. Selected reaction monitoring was used for absolute quantification of four regulated proteins to validate the global proteomics data and confirmed the germination or appressorium specific regulation of these proteins. Finally, a comparison of the proteome and transcriptome was performed and revealed little correlation between transcript and protein regulation. A subset of regulated proteins were identified whose transcripts show similar regulation patterns and include many of the most strongly regulated proteins indicating a central role in appressorium formation. A temporal quantitative RT-PCR analysis confirmed a strong correlation between transcript and protein abundance for some but not all genes. Collectively, the data presented here provide the first comprehensive view of the M. oryzae proteome during early infection-related development and highlight biological processes important for pathogenicity. PMID:23665591
NASA Technical Reports Server (NTRS)
Kepner, R. L. Jr; Wharton, R. A. Jr; Coats, D. W.; Wharton RA, J. r. (Principal Investigator)
1999-01-01
Planktonic and artificial substrate-associated ciliates have been identified in two perennially ice-covered antarctic lakes of the McMurdo Dry Valleys. Abundances estimated by quantitative protargol staining ranged from < 5 to 31690 cells l-1, levels that are comparable to those previously obtained using other methods. Nineteen ciliate taxa were identified from these lakes, with the most frequently encountered genera being Plagiocampa, Askenasia, Monodinium, Sphaerophrya and Vorticella. The taxonomic findings compare favorably with those of previous investigators; however four previously unreported genera were observed in both Lakes Fryxell and Hoare. The variability in the depth distributions of ciliates in Lake Fryxell is explained in terms of lake physicochemical properties and ciliate prey distributions, while factors related to temporal succession in the Lake Hoare assemblage remain unexplained. Local marine or temperate zone freshwater habitats are a more likely source than the surrounding dry valleys soils for present ciliate colonists in these lakes. Although the taxonomic uncertainties require further examination, our results suggest that ciliate populations in these antarctic lakes undergo significant fluctuations and are more diverse than was previously recognized.
NASA Astrophysics Data System (ADS)
Zhang, Jianyuan; Hu, Bin; Chen, Wenjuan; Moore, Philip; Xu, Tingting; Dong, Qunxi; Liu, Zhenyu; Luo, Yuejia; Chen, Shanguang
2014-12-01
The focus of the study is the estimation of the effects of microgravity on the central nervous activity and its underlying influencing mechanisms. To validate the microgravity-induced physiological and psychological effects on EEG, quantitative EEG features, cardiovascular indicators, mood state, and cognitive performances data collection was achieved during a 45 day period using a -6°head-down bed rest (HDBR) integrated approach. The results demonstrated significant differences in EEG data, as an increased Theta wave, a decreased Beta wave and a reduced complexity of brain, accompanied with an increased heart rate and pulse rate, decreased positive emotion, and degraded emotion conflict monitoring performance. The canonical correlation analysis (CCA) based cardiovascular and cognitive related EEG model showed the cardiovascular effect on EEG mainly affected bilateral temporal region and the cognitive effect impacted parietal-occipital and frontal regions. The results obtained in the study support the use of an approach which combines a multi-factor influential mechanism hypothesis. The changes in the EEG data may be influenced by both cardiovascular and cognitive effects.
Ege, Nil; Dowbaj, Anna M; Jiang, Ming; Howell, Michael; Hooper, Steven; Foster, Charles; Jenkins, Robert P; Sahai, Erik
2018-06-08
The transcriptional regulator YAP1 is critical for the pathological activation of fibroblasts. In normal fibroblasts, YAP1 is located in the cytoplasm, while in activated cancer-associated fibroblasts, it is nuclear and promotes the expression of genes required for pro-tumorigenic functions. Here, we investigate the dynamics of YAP1 shuttling in normal and activated fibroblasts, using EYFP-YAP1, quantitative photobleaching methods, and mathematical modeling. Imaging of migrating fibroblasts reveals the tight temporal coupling of cell shape change and altered YAP1 localization. Both 14-3-3 and TEAD binding modulate YAP1 shuttling, but neither affects nuclear import. Instead, we find that YAP1 nuclear accumulation in activated fibroblasts results from Src and actomyosin-dependent suppression of phosphorylated YAP1 export. Finally, we show that nuclear-constrained YAP1, upon XPO1 depletion, remains sensitive to blockade of actomyosin function. Together, these data place nuclear export at the center of YAP1 regulation and indicate that the cytoskeleton can regulate YAP1 within the nucleus. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Quantitative analysis of chromosome condensation in fission yeast.
Petrova, Boryana; Dehler, Sascha; Kruitwagen, Tom; Hériché, Jean-Karim; Miura, Kota; Haering, Christian H
2013-03-01
Chromosomes undergo extensive conformational rearrangements in preparation for their segregation during cell divisions. Insights into the molecular mechanisms behind this still poorly understood condensation process require the development of new approaches to quantitatively assess chromosome formation in vivo. In this study, we present a live-cell microscopy-based chromosome condensation assay in the fission yeast Schizosaccharomyces pombe. By automatically tracking the three-dimensional distance changes between fluorescently marked chromosome loci at high temporal and spatial resolution, we analyze chromosome condensation during mitosis and meiosis and deduct defined parameters to describe condensation dynamics. We demonstrate that this method can determine the contributions of condensin, topoisomerase II, and Aurora kinase to mitotic chromosome condensation. We furthermore show that the assay can identify proteins required for mitotic chromosome formation de novo by isolating mutants in condensin, DNA polymerase ε, and F-box DNA helicase I that are specifically defective in pro-/metaphase condensation. Thus, the chromosome condensation assay provides a direct and sensitive system for the discovery and characterization of components of the chromosome condensation machinery in a genetically tractable eukaryote.
Quantitative Analysis of Chromosome Condensation in Fission Yeast
Petrova, Boryana; Dehler, Sascha; Kruitwagen, Tom; Hériché, Jean-Karim; Miura, Kota
2013-01-01
Chromosomes undergo extensive conformational rearrangements in preparation for their segregation during cell divisions. Insights into the molecular mechanisms behind this still poorly understood condensation process require the development of new approaches to quantitatively assess chromosome formation in vivo. In this study, we present a live-cell microscopy-based chromosome condensation assay in the fission yeast Schizosaccharomyces pombe. By automatically tracking the three-dimensional distance changes between fluorescently marked chromosome loci at high temporal and spatial resolution, we analyze chromosome condensation during mitosis and meiosis and deduct defined parameters to describe condensation dynamics. We demonstrate that this method can determine the contributions of condensin, topoisomerase II, and Aurora kinase to mitotic chromosome condensation. We furthermore show that the assay can identify proteins required for mitotic chromosome formation de novo by isolating mutants in condensin, DNA polymerase ε, and F-box DNA helicase I that are specifically defective in pro-/metaphase condensation. Thus, the chromosome condensation assay provides a direct and sensitive system for the discovery and characterization of components of the chromosome condensation machinery in a genetically tractable eukaryote. PMID:23263988
Ultrafast X-ray Imaging of Fuel Sprays
NASA Astrophysics Data System (ADS)
Wang, Jin
2007-01-01
Detailed analysis of fuel sprays has been well recognized as an important step for optimizing the operation of internal combustion engines to improve efficiency and reduce emissions. Ultrafast radiographic and tomographic techniques have been developed for probing the fuel distribution close to the nozzles of direct-injection diesel and gasoline injectors. The measurement was made using x-ray absorption of monochromatic synchrotron-generated radiation, allowing quantitative determination of the fuel distribution in this optically impenetrable region with a time resolution on the order of 1 μs. Furthermore, an accurate 3-dimensional fuel-density distribution, in the form of fuel volume fraction, was obtained by the time-resolved computed tomography. These quantitative measurements constitute the most detailed near-nozzle study of a fuel spray to date. With high-energy and high-brilliance x-ray beams available at the Advanced Photon Source, propagation-based phase-enhanced imaging was developed as a unique metrology technique to visualize the interior of an injection nozzle through a 3-mm-thick steel with a 10-μs temporal resolution, which is virtually impossible by any other means.
NASA Astrophysics Data System (ADS)
Bindschadler, Michael; Modgil, Dimple; Branch, Kelley R.; La Riviere, Patrick J.; Alessio, Adam M.
2014-04-01
Myocardial blood flow (MBF) can be estimated from dynamic contrast enhanced (DCE) cardiac CT acquisitions, leading to quantitative assessment of regional perfusion. The need for low radiation dose and the lack of consensus on MBF estimation methods motivates this study to refine the selection of acquisition protocols and models for CT-derived MBF. DCE cardiac CT acquisitions were simulated for a range of flow states (MBF = 0.5, 1, 2, 3 ml (min g)-1, cardiac output = 3, 5, 8 L min-1). Patient kinetics were generated by a mathematical model of iodine exchange incorporating numerous physiological features including heterogenenous microvascular flow, permeability and capillary contrast gradients. CT acquisitions were simulated for multiple realizations of realistic x-ray flux levels. CT acquisitions that reduce radiation exposure were implemented by varying both temporal sampling (1, 2, and 3 s sampling intervals) and tube currents (140, 70, and 25 mAs). For all acquisitions, we compared three quantitative MBF estimation methods (two-compartment model, an axially-distributed model, and the adiabatic approximation to the tissue homogeneous model) and a qualitative slope-based method. In total, over 11 000 time attenuation curves were used to evaluate MBF estimation in multiple patient and imaging scenarios. After iodine-based beam hardening correction, the slope method consistently underestimated flow by on average 47.5% and the quantitative models provided estimates with less than 6.5% average bias and increasing variance with increasing dose reductions. The three quantitative models performed equally well, offering estimates with essentially identical root mean squared error (RMSE) for matched acquisitions. MBF estimates using the qualitative slope method were inferior in terms of bias and RMSE compared to the quantitative methods. MBF estimate error was equal at matched dose reductions for all quantitative methods and range of techniques evaluated. This suggests that there is no particular advantage between quantitative estimation methods nor to performing dose reduction via tube current reduction compared to temporal sampling reduction. These data are important for optimizing implementation of cardiac dynamic CT in clinical practice and in prospective CT MBF trials.
NASA Technical Reports Server (NTRS)
Ragan, R.
1982-01-01
General problems faced by hydrologists when using historical records, real time data, statistical analysis, and system simulation in providing quantitative information on the temporal and spatial distribution of water are related to the limitations of these data. Major problem areas requiring multispectral imaging-based research to improve hydrology models involve: evapotranspiration rates and soil moisture dynamics for large areas; the three dimensional characteristics of bodies of water; flooding in wetlands; snow water equivalents; runoff and sediment yield from ungaged watersheds; storm rainfall; fluorescence and polarization of water and its contained substances; discriminating between sediment and chlorophyll in water; role of barrier island dynamics in coastal zone processes; the relationship between remotely measured surface roughness and hydraulic roughness of land surfaces and stream networks; and modeling the runoff process.
Characterizing popularity dynamics of online videos
NASA Astrophysics Data System (ADS)
Ren, Zhuo-Ming; Shi, Yu-Qiang; Liao, Hao
2016-07-01
Online popularity has a major impact on videos, music, news and other contexts in online systems. Characterizing online popularity dynamics is nature to explain the observed properties in terms of the already acquired popularity of each individual. In this paper, we provide a quantitative, large scale, temporal analysis of the popularity dynamics in two online video-provided websites, namely MovieLens and Netflix. The two collected data sets contain over 100 million records and even span a decade. We characterize that the popularity dynamics of online videos evolve over time, and find that the dynamics of the online video popularity can be characterized by the burst behaviors, typically occurring in the early life span of a video, and later restricting to the classic preferential popularity increase mechanism.
Bouvrais, Hélène; Cornelius, Flemming; Ipsen, John H.; Mouritsen, Ole G.
2012-01-01
Interaction between integral membrane proteins and the lipid-bilayer component of biological membranes is expected to mutually influence the proteins and the membrane. We present quantitative evidence of a manifestation of the lipid–protein interactions in liposomal membranes, reconstituted with actively pumping Na+,K+-ATPase, in terms of nonequilibrium shape fluctuations that contain a relaxation time, τ, which is robust and independent of the specific fluctuation modes of the membrane. In the case of pumping Na+-ions, analysis of the flicker-noise temporal correlation spectrum of the liposomes leads to τ ≃ 0.5 s, comparing favorably with an intrinsic reaction-cycle time of about 0.4 s from enzymology. PMID:23093677
Kankeu, Cynthia; Clarke, Kylie; Van Haver, Delphi; Gevaert, Kris; Impens, Francis; Dittrich, Anna; Roderick, H Llewelyn; Passante, Egle; Huber, Heinrich J
2018-05-17
The rat cardiomyoblast cell line H9C2 has emerged as a valuable tool for studying cardiac development, mechanisms of disease and toxicology. We present here a rigorous proteomic analysis that monitored the changes in protein expression during differentiation of H9C2 cells into cardiomyocyte-like cells over time. Quantitative mass spectrometry followed by gene ontology (GO) enrichment analysis revealed that early changes in H9C2 differentiation are related to protein pathways of cardiac muscle morphogenesis and sphingolipid synthesis. These changes in the proteome were followed later in the differentiation time-course by alterations in the expression of proteins involved in cation transport and beta-oxidation. Studying the temporal profile of the H9C2 proteome during differentiation in further detail revealed eight clusters of co-regulated proteins that can be associated with early, late, continuous and transient up- and downregulation. Subsequent reactome pathway analysis based on these eight clusters further corroborated and detailed the results of the GO analysis. Specifically, this analysis confirmed that proteins related to pathways in muscle contraction are upregulated early and transiently, and proteins relevant to extracellular matrix organization are downregulated early. In contrast, upregulation of proteins related to cardiac metabolism occurs at later time points. Finally, independent validation of the proteomics results by immunoblotting confirmed hereto unknown regulators of cardiac structure and ionic metabolism. Our results are consistent with a 'function follows form' model of differentiation, whereby early and transient alterations of structural proteins enable subsequent changes that are relevant to the characteristic physiology of cardiomyocytes.
Wu, Jia; Gong, Guanghua; Cui, Yi; Li, Ruijiang
2016-11-01
To predict pathological response of breast cancer to neoadjuvant chemotherapy (NAC) based on quantitative, multiregion analysis of dynamic contrast enhancement magnetic resonance imaging (DCE-MRI). In this Institutional Review Board-approved study, 35 patients diagnosed with stage II/III breast cancer were retrospectively investigated using 3T DCE-MR images acquired before and after the first cycle of NAC. First, principal component analysis (PCA) was used to reduce the dimensionality of the DCE-MRI data with high temporal resolution. We then partitioned the whole tumor into multiple subregions using k-means clustering based on the PCA-defined eigenmaps. Within each tumor subregion, we extracted four quantitative Haralick texture features based on the gray-level co-occurrence matrix (GLCM). The change in texture features in each tumor subregion between pre- and during-NAC was used to predict pathological complete response after NAC. Three tumor subregions were identified through clustering, each with distinct enhancement characteristics. In univariate analysis, all imaging predictors except one extracted from the tumor subregion associated with fast washout were statistically significant (P < 0.05) after correcting for multiple testing, with area under the receiver operating characteristic (ROC) curve (AUC) or AUCs between 0.75 and 0.80. In multivariate analysis, the proposed imaging predictors achieved an AUC of 0.79 (P = 0.002) in leave-one-out cross-validation. This improved upon conventional imaging predictors such as tumor volume (AUC = 0.53) and texture features based on whole-tumor analysis (AUC = 0.65). The heterogeneity of the tumor subregion associated with fast washout on DCE-MRI predicted pathological response to NAC in breast cancer. J. Magn. Reson. Imaging 2016;44:1107-1115. © 2016 International Society for Magnetic Resonance in Medicine.
Tillotson, Michael D.; Kelly, Ryan P.; Duda, Jeff; Hoy, Marshal S.; Kralj, James; Quinn, Thomas P.
2018-01-01
Developing fast, cost-effective assessments of wild animal abundance is an important goal for many researchers, and environmental DNA (eDNA) holds much promise for this purpose. However, the quantitative relationship between species abundance and the amount of DNA present in the environment is likely to vary substantially among taxa and with ecological context. Here, we report a strong quantitative relationship between eDNA concentration and the abundance of spawning sockeye salmon in a small stream in Alaska, USA, where we took temporally- and spatially-replicated samples during the spawning period. This high-resolution dataset suggests that (1) eDNA concentrations vary significantly day-to-day, and likely within hours, in the context of the dynamic biological event of a salmon spawning season; (2) eDNA, as detected by species-specific quantitative PCR probes, seems to be conserved over short distances (tens of meters) in running water, but degrade quickly over larger scales (ca. 1.5 km); and (3) factors other than the mere presence of live, individual fish — such as location within the stream, live/dead ratio, and water temperature — can affect the eDNA-biomass correlation in space or time. A multivariate model incorporating both biotic and abiotic variables accounted for over 75% of the eDNA variance observed, suggesting that where a system is well-characterized, it may be possible to predict species' abundance from eDNA surveys, although we underscore that species- and system-specific variables are likely to limit the generality of any given quantitative model. Nevertheless, these findings provide an important step toward quantitative applications of eDNA in conservation and management.
Characterization results from several commercial soft X-ray streak cameras
NASA Astrophysics Data System (ADS)
Stradling, G. L.; Studebaker, J. K.; Cavailler, C.; Launspach, J.; Planes, J.
The spatio-temporal performance of four soft X-ray streak cameras has been characterized. The objective in evaluating the performance capability of these instruments is to enable us to optimize experiment designs, to encourage quantitative analysis of streak data and to educate the ultra high speed photography and photonics community about the X-ray detector performance which is available. These measurements have been made collaboratively over the space of two years at the Forge pulsed X-ray source at Los Alamos and at the Ketjak laser facility an CEA Limeil-Valenton. The X-ray pulse lengths used for these measurements at these facilities were 150 psec and 50 psec respectively. The results are presented as dynamically-measured modulation transfer functions. Limiting temporal resolution values were also calculated. Emphasis is placed upon shot noise statistical limitations in the analysis of the data. Space charge repulsion in the streak tube limits the peak flux at ultra short experiments duration times. This limit results in a reduction of total signal and a decrease in signal to no ise ratio in the streak image. The four cameras perform well with 20 1p/mm resolution discernable in data from the French C650X, the Hadland X-Chron 540 and the Hamamatsu C1936X streak cameras. The Kentech X-ray streak camera has lower modulation and does not resolve below 10 1p/mm but has a longer photocathode.
Dynamic Functional Imaging of Brain Glucose Utilization using fPET-FDG
Villien, Marjorie; Wey, Hsiao-Ying; Mandeville, Joseph B.; Catana, Ciprian; Polimeni, Jonathan R.; Sander, Christin Y.; Zürcher, Nicole R.; Chonde, Daniel B.; Fowler, Joanna S.; Rosen, Bruce R.; Hooker, Jacob M.
2014-01-01
Glucose is the principal source of energy for the brain and yet the dynamic response of glucose utilization to changes in brain activity is still not fully understood. Positron emission tomography (PET) allows quantitative measurement of glucose metabolism using 2-[18F]-fluorodeoxyglucose (FDG). However, FDG PET in its current form provides an integral (or average) of glucose consumption over tens of minutes and lacks the temporal information to capture physiological alterations associated with changes in brain activity induced by tasks or drug challenges. Traditionally, changes in glucose utilization are inferred by comparing two separate scans, which significantly limits the utility of the method. We report a novel method to track changes in FDG metabolism dynamically, with higher temporal resolution than exists to date and within a single session. Using a constant infusion of FDG, we demonstrate that our technique (termed fPET-FDG) can be used in an analysis pipeline similar to fMRI to define within-session differential metabolic responses. We use visual stimulation to demonstrate the feasibility of this method. This new method has a great potential to be used in research protocols and clinical settings since fPET-FDG imaging can be performed with most PET scanners and data acquisition and analysis is straightforward. fPET-FDG is a highly complementary technique to MRI and provides a rich new way to observe functional changes in brain metabolism. PMID:24936683
The Documentation of Historic Maps of World Heritage Site City Suzhou
NASA Astrophysics Data System (ADS)
Guangwei, Z.
2013-07-01
Documentation and analysis of historic maps enhance understanding of temporal and spatial interactions between events and the evolution of physical canals upon which they occurred. And the challenge of this work lies on carefully sifting of information through the maps drawn with relative accuracy by traditional cartographical principles before the emergence of scientific survey. This research project focuses on sorting out the evolution of historic city Suzhou in a spatio-temporal view. The investigation was conducted through an in-depth analysis of historic maps. Re-projection of the geographical elements of the city to one single georeference, that is to say a standard map BASE, help acquiring an actual sense of the scale and facilitate the recognition of the city's evolution in clear details. It is an important contribution of this thesis in coordination of variously distorted geographical information contained in nineteen periods span from 1229 to 2013 into a single research resource. Through the work both quantitative and qualitative, a clear vision of the evolution and characteristics of the urban structure of ancient Suzhou is achieved. Meanwhile, in the process of projecting the historical geometrical information onto the topographic map, historical bibliographic and cartographic records is key to the data coordination and readjustment, this inspire as well on the cautious utilization of historical materials from ancient time in the recording, documentation work.
Tian, Yong; Shen, Huiyan; Wang, Qiang; Liu, Aifeng; Gao, Wei; Chen, Xu-Wei; Chen, Ming-Li; Zhao, Zongshan
2018-06-13
High temporal resolution components analysis is still a great challenge for the frontier of atmospheric aerosol research. Here, an online high time resolution method for monitoring soluble sulfate and sulfur trioxide in atmospheric aerosols was developed by integrating a membrane-based parallel plate denuder, a particle collector, and a liquid waveguide capillary cell into a flow injection analysis system. The BaCl 2 solution (containing HCl, glycerin, and ethanol) was enabled to quantitatively transform sulfate into a well-distributed BaSO 4 solution for turbidimetric detection. The time resolution for monitoring the soluble sulfate and sulfur trioxide was 15 h -1 . The limits of detection were 86 and 7.3 μg L -1 ( S/ N = 3) with a 20 and 200 μL SO 4 2- solution injection, respectively. Both the interday and intraday precision values (relative standard deviation) were less than 6.0%. The analytical results of the certificated reference materials (GBW(E)08026 and GNM-M07117-2013) were identical to the certified values (no significant difference at a 95% confidence level). The validity and practicability of the developed device were also evaluated during a firecracker day and a routine day, obviously revealing the continuous variance in atmospheric sulfate and sulfur trioxide in both interday and intraday studies.
Mapping mountain pine beetle mortality through growth trend analysis of time-series landsat data
Liang, Lu; Chen, Yanlei; Hawbaker, Todd J.; Zhu, Zhi-Liang; Gong, Peng
2014-01-01
Disturbances are key processes in the carbon cycle of forests and other ecosystems. In recent decades, mountain pine beetle (MPB; Dendroctonus ponderosae) outbreaks have become more frequent and extensive in western North America. Remote sensing has the ability to fill the data gaps of long-term infestation monitoring, but the elimination of observational noise and attributing changes quantitatively are two main challenges in its effective application. Here, we present a forest growth trend analysis method that integrates Landsat temporal trajectories and decision tree techniques to derive annual forest disturbance maps over an 11-year period. The temporal trajectory component successfully captures the disturbance events as represented by spectral segments, whereas decision tree modeling efficiently recognizes and attributes events based upon the characteristics of the segments. Validated against a point set sampled across a gradient of MPB mortality, 86.74% to 94.00% overall accuracy was achieved with small variability in accuracy among years. In contrast, the overall accuracies of single-date classifications ranged from 37.20% to 75.20% and only become comparable with our approach when the training sample size was increased at least four-fold. This demonstrates that the advantages of this time series work flow exist in its small training sample size requirement. The easily understandable, interpretable and modifiable characteristics of our approach suggest that it could be applicable to other ecoregions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villien, Marjorie; Wey, Hsiao-Ying; Mandeville, Joseph B.
We report that glucose is the principal source of energy for the brain and yet the dynamic response of glucose utilization to changes in brain activity is still not fully understood. Positron emission tomography (PET) allows quantitative measurement of glucose metabolism using 2-[18F]-fluorodeoxyglucose (FDG). However, FDG PET in its current form provides an integral (or average) of glucose consumption over tens of minutes and lacks the temporal information to capture physiological alterations associated with changes in brain activity induced by tasks or drug challenges. Traditionally, changes in glucose utilization are inferred by comparing two separate scans, which significantly limits themore » utility of the method. We report a novel method to track changes in FDG metabolism dynamically, with higher temporal resolution than exists to date and within a single session. Using a constant infusion of FDG, we demonstrate that our technique (termed fPET-FDG) can be used in an analysis pipeline similar to fMRI to define within-session differential metabolic responses. We use visual stimulation to demonstrate the feasibility of this method. Ultimately, this new method has a great potential to be used in research protocols and clinical settings since fPET-FDG imaging can be performed with most PET scanners and data acquisition and analysis are straightforward. fPET-FDG is a highly complementary technique to MRI and provides a rich new way to observe functional changes in brain metabolism.« less
Assessment of the urban water system with an open ...
Urban water systems convey complex environmental and man-made flows. The relationships among water flows and networked storages remains difficult to comprehensively evaluate. Such evaluation is important, however, as interventions are designed (e.g, conservation measures, green infrastructure) to modify specific flows of urban water (e.g. drinking water, stormwater) that may have systemic effects. We have developed a general model that specifies the relationships among urban water system components, and a set of tools for evaluating the model for any city as the R package CityWaterBalance. CityWaterBalance provides a reproducible workflow for assessing urban water system(s) by facilitating the retrieval of open data, largely via web services, and analysis of these data using open-source R functions. It allows the user to 1) quickly assemble a quantitative, unified picture of flows thorough an urban area, and 2) easily change the spatial and temporal boundaries of analysis to match scales relevant to local decision-making. We used CityWaterBalance to evaluate the water system in the Chicago metropolitan area on a monthly basis for water years 2001-2010. Results, including the relative magnitudes and temporal variability of major water flows in greater Chicago, are used to consider 1) trade-offs associated with management alternatives for stormwater and combined sewer overflows and 2) the significance of future changes in precipitation, which is the largest
Cai, PingGen; Takahashi, Ryosuke; Kuribayashi-Shigetomi, Kaori; Subagyo, Agus; Sueoka, Kazuhisa; Maloney, John M; Van Vliet, Krystyn J; Okajima, Takaharu
2017-08-08
Changes in the cytoskeletal organization within cells can be characterized by large spatial and temporal variations in rheological properties of the cell (e.g., the complex shear modulus G ∗ ). Although the ensemble variation in G ∗ of single cells has been elucidated, the detailed temporal variation of G ∗ remains unknown. In this study, we investigated how the rheological properties of individual fibroblast cells change under a spatially confined environment in which the cell translational motion is highly restricted and the whole cell shape remains unchanged. The temporal evolution of single-cell rheology was probed at the same measurement location within the cell, using atomic force microscopy-based oscillatory deformation. The measurements reveal that the temporal variation in the power-law rheology of cells is quantitatively consistent with the ensemble variation, indicating that the cell system satisfies an ergodic hypothesis in which the temporal statistics are identical to the ensemble statistics. The autocorrelation of G ∗ implies that the cell mechanical state evolves in the ensemble of possible states with a characteristic timescale. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Imaging shock waves in diamond with both high temporal and spatial resolution at an XFEL
Schropp, Andreas; Hoppe, Robert; Meier, Vivienne; ...
2015-06-18
The advent of hard x-ray free-electron lasers (XFELs) has opened up a variety of scientific opportunities in areas as diverse as atomic physics, plasma physics, nonlinear optics in the x-ray range, and protein crystallography. In this article, we access a new field of science by measuring quantitatively the local bulk properties and dynamics of matter under extreme conditions, in this case by using the short XFEL pulse to image an elastic compression wave in diamond. The elastic wave was initiated by an intense optical laser pulse and was imaged at different delay times after the optical pump pulse using magnifiedmore » x-ray phase-contrast imaging. The temporal evolution of the shock wave can be monitored, yielding detailed information on shock dynamics, such as the shock velocity, the shock front width, and the local compression of the material. The method provides a quantitative perspective on the state of matter in extreme conditions.« less
Quantitative Characterization of Tissue Microstructure with Temporal Diffusion Spectroscopy
Xu, Junzhong; Does, Mark D.; Gore, John C.
2009-01-01
The signals recorded by diffusion-weighted magnetic resonance imaging (DWI) are dependent on the micro-structural properties of biological tissues, so it is possible to obtain quantitative structural information non-invasively from such measurements. Oscillating gradient spin echo (OGSE) methods have the ability to probe the behavior of water diffusion over different time scales and the potential to detect variations in intracellular structure. To assist in the interpretation of OGSE data, analytical expressions have been derived for diffusion-weighted signals with OGSE methods for restricted diffusion in some typical structures, including parallel planes, cylinders and spheres, using the theory of temporal diffusion spectroscopy. These analytical predictions have been confirmed with computer simulations. These expressions suggest how OGSE signals from biological tissues should be analyzed to characterize tissue microstructure, including how to estimate cell nuclear sizes. This approach provides a model to interpret diffusion data obtained from OGSE measurements that can be used for applications such as monitoring tumor response to treatment in vivo. PMID:19616979
Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL.
Schropp, Andreas; Hoppe, Robert; Meier, Vivienne; Patommel, Jens; Seiboth, Frank; Ping, Yuan; Hicks, Damien G; Beckwith, Martha A; Collins, Gilbert W; Higginbotham, Andrew; Wark, Justin S; Lee, Hae Ja; Nagler, Bob; Galtier, Eric C; Arnold, Brice; Zastrau, Ulf; Hastings, Jerome B; Schroer, Christian G
2015-06-18
The advent of hard x-ray free-electron lasers (XFELs) has opened up a variety of scientific opportunities in areas as diverse as atomic physics, plasma physics, nonlinear optics in the x-ray range, and protein crystallography. In this article, we access a new field of science by measuring quantitatively the local bulk properties and dynamics of matter under extreme conditions, in this case by using the short XFEL pulse to image an elastic compression wave in diamond. The elastic wave was initiated by an intense optical laser pulse and was imaged at different delay times after the optical pump pulse using magnified x-ray phase-contrast imaging. The temporal evolution of the shock wave can be monitored, yielding detailed information on shock dynamics, such as the shock velocity, the shock front width, and the local compression of the material. The method provides a quantitative perspective on the state of matter in extreme conditions.
McGrane, Shawn D; Moore, David S; Goodwin, Peter M; Dattelbaum, Dana M
2014-01-01
The ratio of Stokes to anti-Stokes nonresonant spontaneous Raman can provide an in situ thermometer that is noncontact, independent of any material specific parameters or calibrations, can be multiplexed spatially with line imaging, and can be time resolved for dynamic measurements. However, spontaneous Raman cross sections are very small, and thermometric measurements are often limited by the amount of laser energy that can be applied without damaging the sample or changing its temperature appreciably. In this paper, we quantitatively detail the tradeoff space between spatial, temporal, and thermometric accuracy measurable with spontaneous Raman. Theoretical estimates are pinned to experimental measurements to form realistic expectations of the resolution tradeoffs appropriate to various experiments. We consider the effects of signal to noise, collection efficiency, laser heating, pulsed laser ablation, and blackbody emission as limiting factors, provide formulae to help choose optimal conditions and provide estimates relevant to planning experiments along with concrete examples for single-shot measurements.
Sensitive elemental detection using microwave-assisted laser-induced breakdown imaging
NASA Astrophysics Data System (ADS)
Iqbal, Adeel; Sun, Zhiwei; Wall, Matthew; Alwahabi, Zeyad T.
2017-10-01
This study reports a sensitive spectroscopic method for quantitative elemental detection by manipulating the temporal and spatial parameters of laser-induced plasma. The method was tested for indium detection in solid samples, in which laser ablation was used to generate a tiny plasma. The lifetime of the laser-induced plasma can be extended to hundreds of microseconds using microwave injection to remobilize the electrons. In this novel method, temporal integrated signal of indium emission was significantly enhanced. Meanwhile, the projected detectable area of the excited indium atoms was also significantly improved using an interference-, instead of diffraction-, based technique, achieved by directly imaging microwave-enhanced plasma through a novel narrow-bandpass filter, exactly centered at the indium emission line. Quantitative laser-induce breakdown spectroscopy was also recorded simultaneously with the new imaging method. The intensities recorded from both methods exhibit very good mutual linear relationship. The detection intensity was improved to 14-folds because of the combined improvements in the plasma lifetime and the area of detection.
Neural circuits. Labeling of active neural circuits in vivo with designed calcium integrators.
Fosque, Benjamin F; Sun, Yi; Dana, Hod; Yang, Chao-Tsung; Ohyama, Tomoko; Tadross, Michael R; Patel, Ronak; Zlatic, Marta; Kim, Douglas S; Ahrens, Misha B; Jayaraman, Vivek; Looger, Loren L; Schreiter, Eric R
2015-02-13
The identification of active neurons and circuits in vivo is a fundamental challenge in understanding the neural basis of behavior. Genetically encoded calcium (Ca(2+)) indicators (GECIs) enable quantitative monitoring of cellular-resolution activity during behavior. However, such indicators require online monitoring within a limited field of view. Alternatively, post hoc staining of immediate early genes (IEGs) indicates highly active cells within the entire brain, albeit with poor temporal resolution. We designed a fluorescent sensor, CaMPARI, that combines the genetic targetability and quantitative link to neural activity of GECIs with the permanent, large-scale labeling of IEGs, allowing a temporally precise "activity snapshot" of a large tissue volume. CaMPARI undergoes efficient and irreversible green-to-red conversion only when elevated intracellular Ca(2+) and experimenter-controlled illumination coincide. We demonstrate the utility of CaMPARI in freely moving larvae of zebrafish and flies, and in head-fixed mice and adult flies. Copyright © 2015, American Association for the Advancement of Science.
Mapping human preictal and ictal haemodynamic networks using simultaneous intracranial EEG-fMRI
Chaudhary, Umair J.; Centeno, Maria; Thornton, Rachel C.; Rodionov, Roman; Vulliemoz, Serge; McEvoy, Andrew W.; Diehl, Beate; Walker, Matthew C.; Duncan, John S.; Carmichael, David W.; Lemieux, Louis
2016-01-01
Accurately characterising the brain networks involved in seizure activity may have important implications for our understanding of epilepsy. Intracranial EEG-fMRI can be used to capture focal epileptic events in humans with exquisite electrophysiological sensitivity and allows for identification of brain structures involved in this phenomenon over the entire brain. We investigated ictal BOLD networks using the simultaneous intracranial EEG-fMRI (icEEG-fMRI) in a 30 year-old male undergoing invasive presurgical evaluation with bilateral depth electrode implantations in amygdalae and hippocampi for refractory temporal lobe epilepsy. One spontaneous focal electrographic seizure was recorded. The aims of the data analysis were firstly to map BOLD changes related to the ictal activity identified on icEEG and secondly to compare different fMRI modelling approaches. Visual inspection of the icEEG showed an onset dominated by beta activity involving the right amygdala and hippocampus lasting 6.4 s (ictal onset phase), followed by gamma activity bilaterally lasting 14.8 s (late ictal phase). The fMRI data was analysed using SPM8 using two modelling approaches: firstly, purely based on the visually identified phases of the seizure and secondly, based on EEG spectral dynamics quantification. For the visual approach the two ictal phases were modelled as ‘ON’ blocks convolved with the haemodynamic response function; in addition the BOLD changes during the 30 s preceding the onset were modelled using a flexible basis set. For the quantitative fMRI modelling approach two models were evaluated: one consisting of the variations in beta and gamma bands power, thereby adding a quantitative element to the visually-derived models, and another based on principal components analysis of the entire spectrogram in attempt to reduce the bias associated with the visual appreciation of the icEEG. BOLD changes related to the visually defined ictal onset phase were revealed in the medial and lateral right temporal lobe. For the late ictal phase, the BOLD changes were remote from the SOZ and in deep brain areas (precuneus, posterior cingulate and others). The two quantitative models revealed BOLD changes involving the right hippocampus, amygdala and fusiform gyrus and in remote deep brain structures and the default mode network-related areas. In conclusion, icEEG-fMRI allowed us to reveal BOLD changes within and beyond the SOZ linked to very localised ictal fluctuations in beta and gamma activity measured in the amygdala and hippocampus. Furthermore, the BOLD changes within the SOZ structures were better captured by the quantitative models, highlighting the interest in considering seizure-related EEG fluctuations across the entire spectrum. PMID:27114897
Mapping human preictal and ictal haemodynamic networks using simultaneous intracranial EEG-fMRI.
Chaudhary, Umair J; Centeno, Maria; Thornton, Rachel C; Rodionov, Roman; Vulliemoz, Serge; McEvoy, Andrew W; Diehl, Beate; Walker, Matthew C; Duncan, John S; Carmichael, David W; Lemieux, Louis
2016-01-01
Accurately characterising the brain networks involved in seizure activity may have important implications for our understanding of epilepsy. Intracranial EEG-fMRI can be used to capture focal epileptic events in humans with exquisite electrophysiological sensitivity and allows for identification of brain structures involved in this phenomenon over the entire brain. We investigated ictal BOLD networks using the simultaneous intracranial EEG-fMRI (icEEG-fMRI) in a 30 year-old male undergoing invasive presurgical evaluation with bilateral depth electrode implantations in amygdalae and hippocampi for refractory temporal lobe epilepsy. One spontaneous focal electrographic seizure was recorded. The aims of the data analysis were firstly to map BOLD changes related to the ictal activity identified on icEEG and secondly to compare different fMRI modelling approaches. Visual inspection of the icEEG showed an onset dominated by beta activity involving the right amygdala and hippocampus lasting 6.4 s (ictal onset phase), followed by gamma activity bilaterally lasting 14.8 s (late ictal phase). The fMRI data was analysed using SPM8 using two modelling approaches: firstly, purely based on the visually identified phases of the seizure and secondly, based on EEG spectral dynamics quantification. For the visual approach the two ictal phases were modelled as 'ON' blocks convolved with the haemodynamic response function; in addition the BOLD changes during the 30 s preceding the onset were modelled using a flexible basis set. For the quantitative fMRI modelling approach two models were evaluated: one consisting of the variations in beta and gamma bands power, thereby adding a quantitative element to the visually-derived models, and another based on principal components analysis of the entire spectrogram in attempt to reduce the bias associated with the visual appreciation of the icEEG. BOLD changes related to the visually defined ictal onset phase were revealed in the medial and lateral right temporal lobe. For the late ictal phase, the BOLD changes were remote from the SOZ and in deep brain areas (precuneus, posterior cingulate and others). The two quantitative models revealed BOLD changes involving the right hippocampus, amygdala and fusiform gyrus and in remote deep brain structures and the default mode network-related areas. In conclusion, icEEG-fMRI allowed us to reveal BOLD changes within and beyond the SOZ linked to very localised ictal fluctuations in beta and gamma activity measured in the amygdala and hippocampus. Furthermore, the BOLD changes within the SOZ structures were better captured by the quantitative models, highlighting the interest in considering seizure-related EEG fluctuations across the entire spectrum.
Pineda, Federico D; Medved, Milica; Wang, Shiyang; Fan, Xiaobing; Schacht, David V; Sennett, Charlene; Oto, Aytekin; Newstead, Gillian M; Abe, Hiroyuki; Karczmar, Gregory S
2016-09-01
The study aimed to evaluate the feasibility and advantages of a combined high temporal and high spatial resolution protocol for dynamic contrast-enhanced magnetic resonance imaging of the breast. Twenty-three patients with enhancing lesions were imaged at 3T. The acquisition protocol consisted of a series of bilateral, fat-suppressed "ultrafast" acquisitions, with 6.9- to 9.9-second temporal resolution for the first minute following contrast injection, followed by four high spatial resolution acquisitions with 60- to 79.5-second temporal resolution. All images were acquired with standard uniform Fourier sampling. A filtering method was developed to reduce noise and detect significant enhancement in the high temporal resolution images. Time of arrival (TOA) was defined as the time at which each voxel first satisfied all the filter conditions, relative to the time of initial arterial enhancement. Ultrafast images improved visualization of the vasculature feeding and draining lesions. A small percentage of the entire field of view (<6%) enhanced significantly in the 30 seconds following contrast injection. Lesion conspicuity was highest in early ultrafast images, especially in cases with marked parenchymal enhancement. Although the sample size was relatively small, the average TOA for malignant lesions was significantly shorter than the TOA for benign lesions. Significant differences were also measured in other parameters descriptive of early contrast media uptake kinetics (P < 0.05). Ultrafast imaging in the first minute of dynamic contrast-enhanced magnetic resonance imaging of the breast has the potential to add valuable information on early contrast dynamics. Ultrafast imaging could allow radiologists to confidently identify lesions in the presence of marked background parenchymal enhancement. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Mantilla, Juan; Garreau, Mireille; Bellanger, Jean-Jacques; Paredes, José Luis
2013-11-01
Assessment of the cardiac Left Ventricle (LV) wall motion is generally based on visual inspection or quantitative analysis of 2D+t sequences acquired in short-axis cardiac cine-Magnetic Resonance Imaging (MRI). Most often, cardiac dynamic is globally analized from two particular phases of the cardiac cycle. In this paper, we propose an automated method to classify regional wall motion in LV function based on spatio-temporal pro les and Support Vector Machines (SVM). This approach allows to obtain a binary classi cation between normal and abnormal motion, without the need of pre-processing and by exploiting all the images of the cardiac cycle. In each short- axis MRI slice level (basal, median, and apical), the spatio-temporal pro les are extracted from the selection of a subset of diametrical lines crossing opposites LV segments. Initialized at end-diastole phase, the pro les are concatenated with their corresponding projections into the succesive temporal phases of the cardiac cycle. These pro les are associated to di erent types of information that derive from the image (gray levels), Fourier, Wavelet or Curvelet domains. The approach has been tested on a set of 14 abnormal and 6 healthy patients by using a leave-one-out cross validation and two kernel functions for SVM classi er. The best classi cation performance is yielded by using four-level db4 wavelet transform and SVM with a linear kernel. At each slice level the results provided a classi cation rate of 87.14% in apical level, 95.48% in median level and 93.65% in basal level.
Gorsich, Erin E; Luis, Angela D; Buhnerkempe, Michael G; Grear, Daniel A; Portacci, Katie; Miller, Ryan S; Webb, Colleen T
2016-11-01
The application of network analysis to cattle shipments broadens our understanding of shipment patterns beyond pairwise interactions to the network as a whole. Such a quantitative description of cattle shipments in the U.S. can identify trade communities, describe temporal shipment patterns, and inform the design of disease surveillance and control strategies. Here, we analyze a longitudinal dataset of beef and dairy cattle shipments from 2009 to 2011 in the United States to characterize communities within the broader cattle shipment network, which are groups of counties that ship mostly to each other. Because shipments occur over time, we aggregate the data at various temporal scales to examine the consistency of network and community structure over time. Our results identified nine large (>50 counties) communities based on shipments of beef cattle in 2009 aggregated into an annual network and nine large communities based on shipments of dairy cattle. The size and connectance of the shipment network was highly dynamic; monthly networks were smaller than yearly networks and revealed seasonal shipment patterns consistent across years. Comparison of the shipment network over time showed largely consistent shipping patterns, such that communities identified on annual networks of beef and diary shipments from 2009 still represented 41-95% of shipments in monthly networks from 2009 and 41-66% of shipments from networks in 2010 and 2011. The temporal aspects of cattle shipments suggest that future applications of the U.S. cattle shipment network should consider seasonal shipment patterns. However, the consistent within-community shipping patterns indicate that yearly communities could provide a reasonable way to group regions for management. Copyright © 2016 Elsevier B.V. All rights reserved.
Corneal biomechanical properties from air-puff corneal deformation imaging
NASA Astrophysics Data System (ADS)
Marcos, Susana; Kling, Sabine; Bekesi, Nandor; Dorronsoro, Carlos
2014-02-01
The combination of air-puff systems with real-time corneal imaging (i.e. Optical Coherence Tomography (OCT), or Scheimpflug) is a promising approach to assess the dynamic biomechanical properties of the corneal tissue in vivo. In this study we present an experimental system which, together with finite element modeling, allows measurements of corneal biomechanical properties from corneal deformation imaging, both ex vivo and in vivo. A spectral OCT instrument combined with an air puff from a non-contact tonometer in a non-collinear configuration was used to image the corneal deformation over full corneal cross-sections, as well as to obtain high speed measurements of the temporal deformation of the corneal apex. Quantitative analysis allows direct extraction of several deformation parameters, such as apex indentation across time, maximal indentation depth, temporal symmetry and peak distance at maximal deformation. The potential of the technique is demonstrated and compared to air-puff imaging with Scheimpflug. Measurements ex vivo were performed on 14 freshly enucleated porcine eyes and five human donor eyes. Measurements in vivo were performed on nine human eyes. Corneal deformation was studied as a function of Intraocular Pressure (IOP, 15-45 mmHg), dehydration, changes in corneal rigidity (produced by UV corneal cross-linking, CXL), and different boundary conditions (sclera, ocular muscles). Geometrical deformation parameters were used as input for inverse finite element simulation to retrieve the corneal dynamic elastic and viscoelastic parameters. Temporal and spatial deformation profiles were very sensitive to the IOP. CXL produced a significant reduction of the cornea indentation (1.41x), and a change in the temporal symmetry of the corneal deformation profile (1.65x), indicating a change in the viscoelastic properties with treatment. Combining air-puff with dynamic imaging and finite element modeling allows characterizing the corneal biomechanics in-vivo.
NASA Astrophysics Data System (ADS)
Theologou, I.; Patelaki, M.; Karantzalos, K.
2015-04-01
Assessing and monitoring water quality status through timely, cost effective and accurate manner is of fundamental importance for numerous environmental management and policy making purposes. Therefore, there is a current need for validated methodologies which can effectively exploit, in an unsupervised way, the enormous amount of earth observation imaging datasets from various high-resolution satellite multispectral sensors. To this end, many research efforts are based on building concrete relationships and empirical algorithms from concurrent satellite and in-situ data collection campaigns. We have experimented with Landsat 7 and Landsat 8 multi-temporal satellite data, coupled with hyperspectral data from a field spectroradiometer and in-situ ground truth data with several physico-chemical and other key monitoring indicators. All available datasets, covering a 4 years period, in our case study Lake Karla in Greece, were processed and fused under a quantitative evaluation framework. The performed comprehensive analysis posed certain questions regarding the applicability of single empirical models across multi-temporal, multi-sensor datasets towards the accurate prediction of key water quality indicators for shallow inland systems. Single linear regression models didn't establish concrete relations across multi-temporal, multi-sensor observations. Moreover, the shallower parts of the inland system followed, in accordance with the literature, different regression patterns. Landsat 7 and 8 resulted in quite promising results indicating that from the recreation of the lake and onward consistent per-sensor, per-depth prediction models can be successfully established. The highest rates were for chl-a (r2=89.80%), dissolved oxygen (r2=88.53%), conductivity (r2=88.18%), ammonium (r2=87.2%) and pH (r2=86.35%), while the total phosphorus (r2=70.55%) and nitrates (r2=55.50%) resulted in lower correlation rates.
Protein kinetic signatures of the remodeling heart following isoproterenol stimulation.
Lam, Maggie P Y; Wang, Ding; Lau, Edward; Liem, David A; Kim, Allen K; Ng, Dominic C M; Liang, Xiangbo; Bleakley, Brian J; Liu, Chenguang; Tabaraki, Jason D; Cadeiras, Martin; Wang, Yibin; Deng, Mario C; Ping, Peipei
2014-04-01
Protein temporal dynamics play a critical role in time-dimensional pathophysiological processes, including the gradual cardiac remodeling that occurs in early-stage heart failure. Methods for quantitative assessments of protein kinetics are lacking, and despite knowledge gained from single-protein studies, integrative views of the coordinated behavior of multiple proteins in cardiac remodeling are scarce. Here, we developed a workflow that integrates deuterium oxide (2H2O) labeling, high-resolution mass spectrometry (MS), and custom computational methods to systematically interrogate in vivo protein turnover. Using this workflow, we characterized the in vivo turnover kinetics of 2,964 proteins in a mouse model of β-adrenergic-induced cardiac remodeling. The data provided a quantitative and longitudinal view of cardiac remodeling at the molecular level, revealing widespread kinetic regulations in calcium signaling, metabolism, proteostasis, and mitochondrial dynamics. We translated the workflow to human studies, creating a reference dataset of 496 plasma protein turnover rates from 4 healthy adults. The approach is applicable to short, minimal label enrichment and can be performed on as little as a single biopsy, thereby overcoming critical obstacles to clinical investigations. The protein turnover quantitation experiments and computational workflow described here should be widely applicable to large-scale biomolecular investigations of human disease mechanisms with a temporal perspective.
Protein kinetic signatures of the remodeling heart following isoproterenol stimulation
Lam, Maggie P.Y.; Wang, Ding; Lau, Edward; Liem, David A.; Kim, Allen K.; Ng, Dominic C.M.; Liang, Xiangbo; Bleakley, Brian J.; Liu, Chenguang; Tabaraki, Jason D.; Cadeiras, Martin; Wang, Yibin; Deng, Mario C.; Ping, Peipei
2014-01-01
Protein temporal dynamics play a critical role in time-dimensional pathophysiological processes, including the gradual cardiac remodeling that occurs in early-stage heart failure. Methods for quantitative assessments of protein kinetics are lacking, and despite knowledge gained from single-protein studies, integrative views of the coordinated behavior of multiple proteins in cardiac remodeling are scarce. Here, we developed a workflow that integrates deuterium oxide (2H2O) labeling, high-resolution mass spectrometry (MS), and custom computational methods to systematically interrogate in vivo protein turnover. Using this workflow, we characterized the in vivo turnover kinetics of 2,964 proteins in a mouse model of β-adrenergic–induced cardiac remodeling. The data provided a quantitative and longitudinal view of cardiac remodeling at the molecular level, revealing widespread kinetic regulations in calcium signaling, metabolism, proteostasis, and mitochondrial dynamics. We translated the workflow to human studies, creating a reference dataset of 496 plasma protein turnover rates from 4 healthy adults. The approach is applicable to short, minimal label enrichment and can be performed on as little as a single biopsy, thereby overcoming critical obstacles to clinical investigations. The protein turnover quantitation experiments and computational workflow described here should be widely applicable to large-scale biomolecular investigations of human disease mechanisms with a temporal perspective. PMID:24614109
Quantitative 17O imaging towards oxygen consumption study in tumor bearing mice at 7 T.
Narazaki, Michiko; Kanazawa, Yoko; Koike, Sachiko; Ando, Koichi; Ikehira, Hiroo
2013-06-01
(17)O magnetic resonance imaging (MRI) using a conventional pulse sequence was explored as a method of quantitative imaging towards regional oxygen consumption rate measurement for tumor evaluation in mice. At 7 T, fast imaging with steady state (FISP) was the best among gradient echo, fast spin echo and FISP for the purpose. The distribution of natural abundance H2(17)O in mice was visualized under spatial resolution of 2.5 × 2.5mm(2) by FISP in 10 min. The signal intensity by FISP showed a linear relationship with (17)O quantity both in phantom and mice. Following the injection of 5% (17)O enriched saline, (17)O re-distribution was monitored in temporal resolution down to 5 sec with an image quality sufficient to distinguish each organ. The image of labeled water produced from inhaled (17)O2 gas was also obtained. The present method provides quantitative (17)O images under sufficient temporal and spatial resolution for the evaluation of oxygen consumption rate in each organ. Experiments using various model compounds of R-OH type clarified that the signal contribution of body constituents other than water in the present in vivo(17)O FISP image was negligible. Copyright © 2013 Elsevier Inc. All rights reserved.
Takamatsu, Daiko; Yoneyama, Akio; Asari, Yusuke; Hirano, Tatsumi
2018-02-07
A fundamental understanding of concentrations of salts in lithium-ion battery electrolytes during battery operation is important for optimal operation and design of lithium-ion batteries. However, there are few techniques that can be used to quantitatively characterize salt concentration distributions in the electrolytes during battery operation. In this paper, we demonstrate that in operando X-ray phase imaging can quantitatively visualize the salt concentration distributions that arise in electrolytes during battery operation. From quantitative evaluation of the concentration distributions at steady states, we obtained the salt diffusivities in electrolytes with different initial salt concentrations. Because of no restriction on samples and high temporal and spatial resolutions, X-ray phase imaging will be a versatile technique for evaluating electrolytes, both aqueous and nonaqueous, of many electrochemical systems.
Li, Jiaxin; Lin, Haijun; Sun, Zhenrong; Kong, Guanyi; Yan, Xu; Wang, Yujiao; Wang, Xiaoxuan; Wen, Yanhua; Liu, Xiang; Zheng, Hongkun; Jia, Mei; Shi, Zhongfang; Xu, Rong; Yang, Shaohua; Yuan, Fang
2018-01-01
Circular RNAs (circRNAs) are a class of long noncoding RNAs with a closed loop structure that regulate gene expression as microRNA sponges. CircRNAs are more enriched in brain tissue, but knowledge of the role of circRNAs in temporal lobe epilepsy (TLE) has remained limited. This study is the first to identify the global expression profiles and characteristics of circRNAs in human temporal cortex tissue from TLE patients. Temporal cortices were collected from 17 TLE patients and 17 non-TLE patients. Total RNA was isolated, and high-throughput sequencing was used to profile the transcriptome of dysregulated circRNAs. Quantitative PCR was performed for the validation of changed circRNAs. In total, 78983 circRNAs, including 15.29% known and 84.71% novel circRNAs, were detected in this study. Intriguingly, 442 circRNAs were differentially expressed between the TLE and non-TLE groups (fold change≥2.0 and FDR≤0.05). Of these circRNAs, 188 were up-regulated, and 254 were down-regulated in the TLE patient group. Eight circRNAs were validated by real-time PCR. Remarkably, circ-EFCAB2 was intensely up-regulated, while circ-DROSHA expression was significantly lower in the TLE group than in the non-TLE group (P<0.05). Bioinformatic analysis revealed that circ-EFCAB2 binds to miR-485-5p to increase the expression level of the ion channel CLCN6, while circ-DROSHA interacts with miR-1252-5p to decrease the expression level of ATP1A2. The dysregulations of circRNAs may reflect the pathogenesis of TLE and circ-EFCAB2 and circ-DROSHA might be potential therapeutic targets and biomarkers in TLE patients. © 2018 The Author(s). Published by S. Karger AG, Basel.
Courtney, Jane; Woods, Elena; Scholz, Dimitri; Hall, William W; Gautier, Virginie W
2015-01-01
We introduce here MATtrack, an open source MATLAB-based computational platform developed to process multi-Tiff files produced by a photo-conversion time lapse protocol for live cell fluorescent microscopy. MATtrack automatically performs a series of steps required for image processing, including extraction and import of numerical values from Multi-Tiff files, red/green image classification using gating parameters, noise filtering, background extraction, contrast stretching and temporal smoothing. MATtrack also integrates a series of algorithms for quantitative image analysis enabling the construction of mean and standard deviation images, clustering and classification of subcellular regions and injection point approximation. In addition, MATtrack features a simple user interface, which enables monitoring of Fluorescent Signal Intensity in multiple Regions of Interest, over time. The latter encapsulates a region growing method to automatically delineate the contours of Regions of Interest selected by the user, and performs background and regional Average Fluorescence Tracking, and automatic plotting. Finally, MATtrack computes convenient visualization and exploration tools including a migration map, which provides an overview of the protein intracellular trajectories and accumulation areas. In conclusion, MATtrack is an open source MATLAB-based software package tailored to facilitate the analysis and visualization of large data files derived from real-time live cell fluorescent microscopy using photoconvertible proteins. It is flexible, user friendly, compatible with Windows, Mac, and Linux, and a wide range of data acquisition software. MATtrack is freely available for download at eleceng.dit.ie/courtney/MATtrack.zip.
Courtney, Jane; Woods, Elena; Scholz, Dimitri; Hall, William W.; Gautier, Virginie W.
2015-01-01
We introduce here MATtrack, an open source MATLAB-based computational platform developed to process multi-Tiff files produced by a photo-conversion time lapse protocol for live cell fluorescent microscopy. MATtrack automatically performs a series of steps required for image processing, including extraction and import of numerical values from Multi-Tiff files, red/green image classification using gating parameters, noise filtering, background extraction, contrast stretching and temporal smoothing. MATtrack also integrates a series of algorithms for quantitative image analysis enabling the construction of mean and standard deviation images, clustering and classification of subcellular regions and injection point approximation. In addition, MATtrack features a simple user interface, which enables monitoring of Fluorescent Signal Intensity in multiple Regions of Interest, over time. The latter encapsulates a region growing method to automatically delineate the contours of Regions of Interest selected by the user, and performs background and regional Average Fluorescence Tracking, and automatic plotting. Finally, MATtrack computes convenient visualization and exploration tools including a migration map, which provides an overview of the protein intracellular trajectories and accumulation areas. In conclusion, MATtrack is an open source MATLAB-based software package tailored to facilitate the analysis and visualization of large data files derived from real-time live cell fluorescent microscopy using photoconvertible proteins. It is flexible, user friendly, compatible with Windows, Mac, and Linux, and a wide range of data acquisition software. MATtrack is freely available for download at eleceng.dit.ie/courtney/MATtrack.zip. PMID:26485569
Lu, Haifeng; Qian, Guirong; Ren, Zhigang; Zhang, Chunxia; Zhang, Hua; Xu, Wei; Ye, Ping; Yang, Yunmei; Li, Lanjuan
2015-06-23
The microbiomes of humans are associated with liver and lung inflammation. We identified and verified alterations of the oropharyngeal microbiome and assessed their association with cirrhosis and pneumonia. Study components were as follows: (1) determination of the temporal stability of the oropharyngeal microbiome; (2) identification of oropharyngeal microbial variation in 90 subjects; (3) quantitative identification of disease-associated bacteria. DNAs enriched in bacterial sequences were produced from low-biomass oropharyngeal swabs using whole genome amplification and were analyzed using denaturing gradient gel electrophoresis analysis. Whole genome amplification combined with denaturing gradient gel electrophoresis analysis monitored successfully oropharyngeal microbial variations and showed that the composition of each subject's oropharyngeal microbiome remained relatively stable during the follow-up. The microbial composition of cirrhotic patients with pneumonia differed from those of others and clustered together in subgroup analysis. Further, species richness and the value of Shannon's diversity and evenness index increased significantly in patients with cirrhosis and pneumonia versus others (p < 0.001, versus healthy controls; p < 0.01, versus cirrhotic patients without pneumonia). Moreover, we identified variants of Bacteroides, Eubacterium, Lachnospiraceae, Neisseria, Actinomyces, and Streptococcus through phylogenetic analysis. Quantitative polymerase chain reaction assays revealed that the populations of Bacteroides, Neisseria, and Actinomycetes increased, while that of Streptococcus decreased in cirrhotic patients with pneumonia versus others (p < 0.001, versus Healthy controls; p < 0.01, versus cirrhotic patients without pneumonia). Alterations of Bacteroides, Neisseria, Actinomyces, and Streptococcus populations in the oropharyngeal microbiome were associated with liver cirrhosis and pneumonia.
A STUDY ON TEMPORAL DISTRIBUTION OF FREIGHT TRANSPORTATION IN CONSIDERATION OF DAILY WORK-LIFE CYCLE
NASA Astrophysics Data System (ADS)
Kitaoka, Daiki; Hara, Hidetaka; Oeda, Yoshinao; Sumi, Tomonori
As advanced freight service is demanded, the time related requirements fo r freight transportation becomes more and more significant. This study, focusing on temporal distribution of freight transportation responding to the travel time, developed a shipment departure time decision model for each item, aiming at quantitatively grasping social requirement in the time domain. The model takes account of the daily work cycle of both work cy cles of shippers and carriers along with the travel time. The proposed model has a similar structure as that derived from the previous studies taking account of the daily living cycle of individuals. This model properly reproduced temporal distribution of shipment departure time that changes depending on the length of necessary lead time for each item.
Satellite remote sensing assessment of climate impact on forest vegetation dynamics
NASA Astrophysics Data System (ADS)
Zoran, M.
2009-04-01
Forest vegetation phenology constitutes an efficient bio-indicator of impacts of climate and anthropogenic changes and a key parameter for understanding and modelling vegetation-climate interactions. Climate variability represents the ensemble of net radiation, precipitation, wind and temperature characteristic for a region in a certain time scale (e.g.monthly, seasonal annual). The temporal and/or spatial sensitivity of forest vegetation dynamics to climate variability is used to characterize the quantitative relationship between these two quantities in temporal and/or spatial scales. So, climate variability has a great impact on the forest vegetation dynamics. Satellite remote sensing is a very useful tool to assess the main phenological events based on tracking significant changes on temporal trajectories of Normalized Difference Vegetation Index (NDVIs), which requires NDVI time-series with good time resolution, over homogeneous area, cloud-free and not affected by atmospheric and geometric effects and variations in sensor characteristics (calibration, spectral responses). Spatio-temporal vegetation dynamics have been quantified as the total amount of vegetation (mean NDVI) and the seasonal difference (annual NDVI amplitude) by a time series analysis of NDVI satellite images with the Harmonic ANalysis of Time Series algorithm. A climate indicator (CI) was created from meteorological data (precipitation over net radiation). The relationships between the vegetation dynamics and the CI have been determined spatially and temporally. The driest test regions prove to be the most sensitive to climate impact. The spatial and temporal patterns of the mean NDVI are the same, while they are partially different for the seasonal difference. The aim of this paper was to quantify this impact over a forest ecosystem placed in the North-Eastern part of Bucharest town, Romania, with Normalized Difference Vegetation Index (NDVI) parameter extracted from IKONOS and LANDSAT TM and ETM satellite images and meteorological data over l995-2007 period. For investigated test area, considerable NDVI decline was observed between 1995 and 2007 due to the drought events during 2003 and 2007 years. Under stress conditions, it is evident that environmental factors such as soil type, parent material, and topography are not correlated with NDVI dynamics. Specific aim of this paper was to assess, forecast, and mitigate the risks of climatic changes on forest systems and its biodiversity as well as on adjacent environment areas and to provide early warning strategies on the basis of spectral information derived from satellite data regarding atmospheric effects of forest biome degradation . The paper aims to describe observed trends and potential impacts based on scenarios from simulations with regional climate models and other downscaling procedures.
Manning, Katherine E; Tait, Roger; Suckling, John; Holland, Anthony J
2018-01-01
Prader-Willi syndrome (PWS) is a neurodevelopmental disorder of genomic imprinting, presenting with a characteristic overeating disorder, mild to moderate intellectual disability, and a variable range of social and behavioral difficulties. Consequently, widespread alterations in neural structure and developmental and maturational trajectory would be expected. To date, there have been few quantitative and systematic studies of brain morphology in PWS, although alterations of volume and of cortical organisation have been reported. This study aimed to investigate, in detail, the structure of grey matter and cortex in the brain in a sample of young adults with PWS in a well-matched case-controlled analysis. 20 young adults with PWS, aged 19-27 years, underwent multiparameter mapping magnetic resonance imaging sequences, from which measures of grey matter volume, cortical thickness and magnetisation transfer saturation, as a proxy measure of myelination, were examined. These variables were investigated in comparison to a control group of 40 typically developing young adults, matched for age and sex. A voxel-based morphometry analysis identified large and widespread bilateral clusters of both increased and decreased grey matter volume in the brain in PWS. In particular, widespread areas of increased volume encompassed parts of the prefrontal cortex, especially medially, the majority of the cingulate cortices, from anterior to posterior aspects, insula cortices, and areas of the parietal and temporal cortices. Increased volume was also reported in the caudate, putamen and thalamus. The most ventromedial prefrontal areas, in contrast, showed reduced volume, as did the parts of the medial temporal lobe, bilateral temporal poles, and a small cluster in the right lateral prefrontal cortex. Analysis of cortical structure revealed that areas of increased volume in the PWS group were largely driven by greater cortical thickness. Conversely, analysis of myelin content using magnetisation transfer saturation indicated that myelination of the cortex was broadly similar in the PWS and control groups, with the exception of highly localised areas, including the insula. The bilateral nature of these abnormalities suggests a systemic biological cause, with possible developmental and maturational mechanisms discussed, and may offer insight into the contribution of imprinted genes to neural development.
NASA Astrophysics Data System (ADS)
Tomelleri, E.; Forkel, M.; Fuchs, R.; Jung, M.; Mahecha, M. D.; Reichstein, M.; Weber, U.
2012-12-01
The objective of this study is to provide a complete quantitative assessment of the annual to decadal variability, hotspots of changes and the temporal magnitude of regional trends and variability for the main drivers of carbon cycle like climate and land use and their responses for Europe. For this purpose we used an harmonized climatic data set (ERA Interim and WATCH) and an historical land-use change reconstruction (HILDAv1, Fuchs in prep.). Both the data sets cover the period 1900-2010 and have a 0.25 deg spatial resolution. As driver response we used two different empirically up-scaled GPP fields: the first (MTE) obtained by the application of model trees (Jung et al. 2009) and a second (LUE) based on a light use efficiency model (Tomelleri in prep.). Both the approaches are based on the up-scaling of Fluxnet observations. The response fields have monthly temporal resolution and are limited to the period 1982-2011. We estimated break-points in time series of driver and response variables based on the method of Bai and Perron (2003) to identify changes in trends. This method was implemented in Verbesselt et al. 2010 and applied by deJong et al. 2011 to detect phenological and abrupt changes and trends in vegetation activity based on satellite-derived vegetation index time series. The analysis of drivers and responses allowed to identify the dominant factors driving the biosphere-atmosphere carbon exchange. The synchronous analysis of climatic drivers and land use change allowed us to explain most of the temporal and spatial variability showing that in the regions and time period where the most land use change occurred the climatic drivers are not sufficient to explain trends and oscillation in carbon cycling. The comparison of our analysis for the up-scaling methods shows some agreement: we found inconsistency in the spatial and temporal patterns in regions where the Fluxnet network is less dense. This can be explained by the conceptual difference in the up-scaling methods: while one is on pixel basis (MTE) the other (LUE) is up-scaling model parameters by bioclimatic regions. Our study shows the value of up-scaling methods for understanding the spatial-temporal variability of carbon cycling and how these are a valuable tool for spatial and temporal analysis. Furthermore, the use of climatic drivers and land-use change demonstrated the need of taking natural and anthropogenic drivers into consideration for explaining trends and oscillations. Possibly a further analysis including detailed management practices for forestry and agriculture would help in explaining the remaining variance. References: Bai, J., Perron, P.: Computation and analysis of multiple structural change models. Journal of Applied Econometrics, 18(1), 2003. Jung, M., Reichstein, M., and Bondeau, A.: Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model. Biogeosciences, 6, 2009. Verbesselt, J., Hyndman, R., Newnham, G., Culvenor, D.: Detecting trend and seasonal changes in satellite image time series. Remote Sensing of Environment,114(1), 2010. de Jong, R., Verbesselt, J., Schaepman, M.E., Bruin, S.: Trend changes in global greening and browning: contribution of short-term trends to longer-term change. Global Change Biology, 18, 2011.
Making sense of progressive non-fluent aphasia: an analysis of conversational speech
Woollams, Anna M.; Hodges, John R.; Patterson, Karalyn
2009-01-01
The speech of patients with progressive non-fluent aphasia (PNFA) has often been described clinically, but these descriptions lack support from quantitative data. The clinical classification of the progressive aphasic syndromes is also debated. This study selected 15 patients with progressive aphasia on broad criteria, excluding only those with clear semantic dementia. It aimed to provide a detailed quantitative description of their conversational speech, along with cognitive testing and visual rating of structural brain imaging, and to examine which, if any features were consistently present throughout the group; as well as looking for sub-syndromic associations between these features. A consistent increase in grammatical and speech sound errors and a simplification of spoken syntax relative to age-matched controls were observed, though telegraphic speech was rare; slow speech was common but not universal. Almost all patients showed impairments in picture naming, syntactic comprehension and executive function. The degree to which speech was affected was independent of the severity of the other cognitive deficits. A partial dissociation was also observed between slow speech with simplified grammar on the one hand, and grammatical and speech sound errors on the other. Overlap between these sets of impairments was however, the rule rather than the exception, producing continuous variation within a single consistent syndrome. The distribution of atrophy was remarkably variable, with frontal, temporal and medial temporal areas affected, either symmetrically or asymmetrically. The study suggests that PNFA is a coherent, well-defined syndrome and that varieties such as logopaenic progressive aphasia and progressive apraxia of speech may be seen as points in a space of continuous variation within progressive non-fluent aphasia. PMID:19696033
Bertaux, François; Stoma, Szymon; Drasdo, Dirk; Batt, Gregory
2014-01-01
Isogenic cells sensing identical external signals can take markedly different decisions. Such decisions often correlate with pre-existing cell-to-cell differences in protein levels. When not neglected in signal transduction models, these differences are accounted for in a static manner, by assuming randomly distributed initial protein levels. However, this approach ignores the a priori non-trivial interplay between signal transduction and the source of this cell-to-cell variability: temporal fluctuations of protein levels in individual cells, driven by noisy synthesis and degradation. Thus, modeling protein fluctuations, rather than their consequences on the initial population heterogeneity, would set the quantitative analysis of signal transduction on firmer grounds. Adopting this dynamical view on cell-to-cell differences amounts to recast extrinsic variability into intrinsic noise. Here, we propose a generic approach to merge, in a systematic and principled manner, signal transduction models with stochastic protein turnover models. When applied to an established kinetic model of TRAIL-induced apoptosis, our approach markedly increased model prediction capabilities. One obtains a mechanistic explanation of yet-unexplained observations on fractional killing and non-trivial robust predictions of the temporal evolution of cell resistance to TRAIL in HeLa cells. Our results provide an alternative explanation to survival via induction of survival pathways since no TRAIL-induced regulations are needed and suggest that short-lived anti-apoptotic protein Mcl1 exhibit large and rare fluctuations. More generally, our results highlight the importance of accounting for stochastic protein turnover to quantitatively understand signal transduction over extended durations, and imply that fluctuations of short-lived proteins deserve particular attention. PMID:25340343
Fawcett, Tim W.; Higginson, Andrew D.; Metsä-Simola, Niina; Hagen, Edward H.; Houston, Alasdair I.; Martikainen, Pekka
2017-01-01
Divorce is associated with an increased probability of a depressive episode, but the causation of events remains unclear. Adaptive models of depression propose that depression is a social strategy in part, whereas non-adaptive models tend to propose a diathesis-stress mechanism. We compare an adaptive evolutionary model of depression to three alternative non-adaptive models with respect to their ability to explain the temporal pattern of depression around the time of divorce. Register-based data (304,112 individuals drawn from a random sample of 11% of Finnish people) on antidepressant purchases is used as a proxy for depression. This proxy affords an unprecedented temporal resolution (a 3-monthly prevalence estimates over 10 years) without any bias from non-compliance, and it can be linked with underlying episodes via a statistical model. The evolutionary-adaptation model (all time periods with risk of divorce are depressogenic) was the best quantitative description of the data. The non-adaptive stress-relief model (period before divorce is depressogenic and period afterwards is not) provided the second best quantitative description of the data. The peak-stress model (periods before and after divorce can be depressogenic) fit the data less well, and the stress-induction model (period following divorce is depressogenic and the preceding period is not) did not fit the data at all. The evolutionary model was the most detailed mechanistic description of the divorce-depression link among the models, and the best fit in terms of predicted curvature; thus, it offers most rigorous hypotheses for further study. The stress-relief model also fit very well and was the best model in a sensitivity analysis, encouraging development of more mechanistic models for that hypothesis. PMID:28614385
Rosenström, Tom; Fawcett, Tim W; Higginson, Andrew D; Metsä-Simola, Niina; Hagen, Edward H; Houston, Alasdair I; Martikainen, Pekka
2017-01-01
Divorce is associated with an increased probability of a depressive episode, but the causation of events remains unclear. Adaptive models of depression propose that depression is a social strategy in part, whereas non-adaptive models tend to propose a diathesis-stress mechanism. We compare an adaptive evolutionary model of depression to three alternative non-adaptive models with respect to their ability to explain the temporal pattern of depression around the time of divorce. Register-based data (304,112 individuals drawn from a random sample of 11% of Finnish people) on antidepressant purchases is used as a proxy for depression. This proxy affords an unprecedented temporal resolution (a 3-monthly prevalence estimates over 10 years) without any bias from non-compliance, and it can be linked with underlying episodes via a statistical model. The evolutionary-adaptation model (all time periods with risk of divorce are depressogenic) was the best quantitative description of the data. The non-adaptive stress-relief model (period before divorce is depressogenic and period afterwards is not) provided the second best quantitative description of the data. The peak-stress model (periods before and after divorce can be depressogenic) fit the data less well, and the stress-induction model (period following divorce is depressogenic and the preceding period is not) did not fit the data at all. The evolutionary model was the most detailed mechanistic description of the divorce-depression link among the models, and the best fit in terms of predicted curvature; thus, it offers most rigorous hypotheses for further study. The stress-relief model also fit very well and was the best model in a sensitivity analysis, encouraging development of more mechanistic models for that hypothesis.
Bauer, Corinna M.; Hirsch, Gabriella V.; Zajac, Lauren; Koo, Bang-Bon; Collignon, Olivier
2017-01-01
In the setting of profound ocular blindness, numerous lines of evidence demonstrate the existence of dramatic anatomical and functional changes within the brain. However, previous studies based on a variety of distinct measures have often provided inconsistent findings. To help reconcile this issue, we used a multimodal magnetic resonance (MR)-based imaging approach to provide complementary structural and functional information regarding this neuroplastic reorganization. This included gray matter structural morphometry, high angular resolution diffusion imaging (HARDI) of white matter connectivity and integrity, and resting state functional connectivity MRI (rsfcMRI) analysis. When comparing the brains of early blind individuals to sighted controls, we found evidence of co-occurring decreases in cortical volume and cortical thickness within visual processing areas of the occipital and temporal cortices respectively. Increases in cortical volume in the early blind were evident within regions of parietal cortex. Investigating white matter connections using HARDI revealed patterns of increased and decreased connectivity when comparing both groups. In the blind, increased white matter connectivity (indexed by increased fiber number) was predominantly left-lateralized, including between frontal and temporal areas implicated with language processing. Decreases in structural connectivity were evident involving frontal and somatosensory regions as well as between occipital and cingulate cortices. Differences in white matter integrity (as indexed by quantitative anisotropy, or QA) were also in general agreement with observed pattern changes in the number of white matter fibers. Analysis of resting state sequences showed evidence of both increased and decreased functional connectivity in the blind compared to sighted controls. Specifically, increased connectivity was evident between temporal and inferior frontal areas. Decreases in functional connectivity were observed between occipital and frontal and somatosensory-motor areas and between temporal (mainly fusiform and parahippocampus) and parietal, frontal, and other temporal areas. Correlations in white matter connectivity and functional connectivity observed between early blind and sighted controls showed an overall high degree of association. However, comparing the relative changes in white matter and functional connectivity between early blind and sighted controls did not show a significant correlation. In summary, these findings provide complimentary evidence, as well as highlight potential contradictions, regarding the nature of regional and large scale neuroplastic reorganization resulting from early onset blindness. PMID:28328939
USDA-ARS?s Scientific Manuscript database
No comprehensive protocols exist for the collection, standardization, and storage of agronomic management information into a database that preserves privacy, maintains data uncertainty, and translates everyday decisions into quantitative values. This manuscript describes the development of a databas...
Majaj, Najib J; Hong, Ha; Solomon, Ethan A; DiCarlo, James J
2015-09-30
To go beyond qualitative models of the biological substrate of object recognition, we ask: can a single ventral stream neuronal linking hypothesis quantitatively account for core object recognition performance over a broad range of tasks? We measured human performance in 64 object recognition tests using thousands of challenging images that explore shape similarity and identity preserving object variation. We then used multielectrode arrays to measure neuronal population responses to those same images in visual areas V4 and inferior temporal (IT) cortex of monkeys and simulated V1 population responses. We tested leading candidate linking hypotheses and control hypotheses, each postulating how ventral stream neuronal responses underlie object recognition behavior. Specifically, for each hypothesis, we computed the predicted performance on the 64 tests and compared it with the measured pattern of human performance. All tested hypotheses based on low- and mid-level visually evoked activity (pixels, V1, and V4) were very poor predictors of the human behavioral pattern. However, simple learned weighted sums of distributed average IT firing rates exactly predicted the behavioral pattern. More elaborate linking hypotheses relying on IT trial-by-trial correlational structure, finer IT temporal codes, or ones that strictly respect the known spatial substructures of IT ("face patches") did not improve predictive power. Although these results do not reject those more elaborate hypotheses, they suggest a simple, sufficient quantitative model: each object recognition task is learned from the spatially distributed mean firing rates (100 ms) of ∼60,000 IT neurons and is executed as a simple weighted sum of those firing rates. Significance statement: We sought to go beyond qualitative models of visual object recognition and determine whether a single neuronal linking hypothesis can quantitatively account for core object recognition behavior. To achieve this, we designed a database of images for evaluating object recognition performance. We used multielectrode arrays to characterize hundreds of neurons in the visual ventral stream of nonhuman primates and measured the object recognition performance of >100 human observers. Remarkably, we found that simple learned weighted sums of firing rates of neurons in monkey inferior temporal (IT) cortex accurately predicted human performance. Although previous work led us to expect that IT would outperform V4, we were surprised by the quantitative precision with which simple IT-based linking hypotheses accounted for human behavior. Copyright © 2015 the authors 0270-6474/15/3513402-17$15.00/0.
Dokukin, M; Sokolov, I
2015-07-28
Dynamic mechanical spectroscopy (DMS), which allows measuring frequency-dependent viscoelastic properties, is important to study soft materials, tissues, biomaterials, polymers. However, the existing DMS techniques (nanoindentation) have limited resolution when used on soft materials, preventing them from being used to study mechanics at the nanoscale. The nanoindenters are not capable of measuring cells, nanointerfaces of composite materials. Here we present a highly accurate DMS modality, which is a combination of three different methods: quantitative nanoindentation (nanoDMA), gentle force and fast response of atomic force microscopy (AFM), and Fourier transform (FT) spectroscopy. This new spectroscopy (which we suggest to call FT-nanoDMA) is fast and sensitive enough to allow DMS imaging of nanointerfaces, single cells, while attaining about 100x improvements on polymers in both spatial (to 10-70 nm) and temporal resolution (to 0.7 s/pixel) compared to the current art. Multiple frequencies are measured simultaneously. The use of 10 frequencies are demonstrated here (up to 300 Hz which is a rather relevant range for biological materials and polymers, in both ambient conditions and liquid). The method is quantitatively verified on known polymers and demonstrated on cells and polymers blends. Analysis shows that FT-nanoDMA is highly quantitative. The FT-nanoDMA spectroscopy can easily be implemented in the existing AFMs.
Dokukin, M.; Sokolov, I.
2015-01-01
Dynamic mechanical spectroscopy (DMS), which allows measuring frequency-dependent viscoelastic properties, is important to study soft materials, tissues, biomaterials, polymers. However, the existing DMS techniques (nanoindentation) have limited resolution when used on soft materials, preventing them from being used to study mechanics at the nanoscale. The nanoindenters are not capable of measuring cells, nanointerfaces of composite materials. Here we present a highly accurate DMS modality, which is a combination of three different methods: quantitative nanoindentation (nanoDMA), gentle force and fast response of atomic force microscopy (AFM), and Fourier transform (FT) spectroscopy. This new spectroscopy (which we suggest to call FT-nanoDMA) is fast and sensitive enough to allow DMS imaging of nanointerfaces, single cells, while attaining about 100x improvements on polymers in both spatial (to 10–70 nm) and temporal resolution (to 0.7s/pixel) compared to the current art. Multiple frequencies are measured simultaneously. The use of 10 frequencies are demonstrated here (up to 300 Hz which is a rather relevant range for biological materials and polymers, in both ambient conditions and liquid). The method is quantitatively verified on known polymers and demonstrated on cells and polymers blends. Analysis shows that FT-nanoDMA is highly quantitative. The FT-nanoDMA spectroscopy can easily be implemented in the existing AFMs. PMID:26218346
A typology of household-level adaptation to coastal flooding and its spatio-temporal patterns.
Koerth, Jana; Vafeidis, Athanasios T; Carretero, Silvina; Sterr, Horst; Hinkel, Jochen
2014-01-01
The predicted sea-level rise and changes in storm surge regimes are expected to lead to an increasing risk of flooding in coastal regions. Accommodation can be an alternative to protection in many areas, with household-level adaptation potentially constituting an important element of such a strategy, as it can significantly reduce costs. To date, a systematic typology of household-level adaptation to coastal flooding does not exist. In order to bridge this gap, we conducted a series of quantitative surveys in different coastal areas in Denmark, Germany and Argentina. We applied a cluster analysis in order to categorise the adaptive behaviour of coastal households. Coastal households were found to cluster in four groups that we term: the comprehensives, the theoreticians, the minimalists and the structurals. With the exception of households focusing on the implementation of high-effort structural measures, our results show the affiliation to these groups to follow a specific temporal sequence. At the same time, large differences in category affiliation exist between the study areas. Risk communication tools can utilise our typology to selectively target specific types of households or to ensure that the information needs of all groups are addressed.
The Complex Structure of Receptive Fields in the Middle Temporal Area
Richert, Micah; Albright, Thomas D.; Krekelberg, Bart
2012-01-01
Neurons in the middle temporal area (MT) are often viewed as motion detectors that prefer a single direction of motion in a single region of space. This assumption plays an important role in our understanding of visual processing, and models of motion processing in particular. We used extracellular recordings in area MT of awake, behaving monkeys (M. mulatta) to test this assumption with a novel reverse correlation approach. Nearly half of the MT neurons in our sample deviated significantly from the classical view. First, in many cells, direction preference changed with the location of the stimulus within the receptive field. Second, the spatial response profile often had multiple peaks with apparent gaps in between. This shows that visual motion analysis in MT has access to motion detectors that are more complex than commonly thought. This complexity could be a mere byproduct of imperfect development, but can also be understood as the natural consequence of the non-linear, recurrent interactions among laterally connected MT neurons. An important direction for future research is to investigate whether these in homogeneities are advantageous, how they can be incorporated into models of motion detection, and whether they can provide quantitative insight into the underlying effective connectivity. PMID:23508640
Mauvoisin, Daniel; Wang, Jingkui; Jouffe, Céline; Martin, Eva; Atger, Florian; Waridel, Patrice; Quadroni, Manfredo; Gachon, Frédéric; Naef, Felix
2014-01-07
Diurnal oscillations of gene expression controlled by the circadian clock underlie rhythmic physiology across most living organisms. Although such rhythms have been extensively studied at the level of transcription and mRNA accumulation, little is known about the accumulation patterns of proteins. Here, we quantified temporal profiles in the murine hepatic proteome under physiological light-dark conditions using stable isotope labeling by amino acids quantitative MS. Our analysis identified over 5,000 proteins, of which several hundred showed robust diurnal oscillations with peak phases enriched in the morning and during the night and related to core hepatic physiological functions. Combined mathematical modeling of temporal protein and mRNA profiles indicated that proteins accumulate with reduced amplitudes and significant delays, consistent with protein half-life data. Moreover, a group comprising about one-half of the rhythmic proteins showed no corresponding rhythmic mRNAs, indicating significant translational or posttranslational diurnal control. Such rhythms were highly enriched in secreted proteins accumulating tightly during the night. Also, these rhythms persisted in clock-deficient animals subjected to rhythmic feeding, suggesting that food-related entrainment signals influence rhythms in circulating plasma factors.
Mauvoisin, Daniel; Wang, Jingkui; Jouffe, Céline; Martin, Eva; Atger, Florian; Waridel, Patrice; Quadroni, Manfredo; Gachon, Frédéric; Naef, Felix
2014-01-01
Diurnal oscillations of gene expression controlled by the circadian clock underlie rhythmic physiology across most living organisms. Although such rhythms have been extensively studied at the level of transcription and mRNA accumulation, little is known about the accumulation patterns of proteins. Here, we quantified temporal profiles in the murine hepatic proteome under physiological light–dark conditions using stable isotope labeling by amino acids quantitative MS. Our analysis identified over 5,000 proteins, of which several hundred showed robust diurnal oscillations with peak phases enriched in the morning and during the night and related to core hepatic physiological functions. Combined mathematical modeling of temporal protein and mRNA profiles indicated that proteins accumulate with reduced amplitudes and significant delays, consistent with protein half-life data. Moreover, a group comprising about one-half of the rhythmic proteins showed no corresponding rhythmic mRNAs, indicating significant translational or posttranslational diurnal control. Such rhythms were highly enriched in secreted proteins accumulating tightly during the night. Also, these rhythms persisted in clock-deficient animals subjected to rhythmic feeding, suggesting that food-related entrainment signals influence rhythms in circulating plasma factors. PMID:24344304
Biologically Relevant Heterogeneity: Metrics and Practical Insights.
Gough, Albert; Stern, Andrew M; Maier, John; Lezon, Timothy; Shun, Tong-Ying; Chennubhotla, Chakra; Schurdak, Mark E; Haney, Steven A; Taylor, D Lansing
2017-03-01
Heterogeneity is a fundamental property of biological systems at all scales that must be addressed in a wide range of biomedical applications, including basic biomedical research, drug discovery, diagnostics, and the implementation of precision medicine. There are a number of published approaches to characterizing heterogeneity in cells in vitro and in tissue sections. However, there are no generally accepted approaches for the detection and quantitation of heterogeneity that can be applied in a relatively high-throughput workflow. This review and perspective emphasizes the experimental methods that capture multiplexed cell-level data, as well as the need for standard metrics of the spatial, temporal, and population components of heterogeneity. A recommendation is made for the adoption of a set of three heterogeneity indices that can be implemented in any high-throughput workflow to optimize the decision-making process. In addition, a pairwise mutual information method is suggested as an approach to characterizing the spatial features of heterogeneity, especially in tissue-based imaging. Furthermore, metrics for temporal heterogeneity are in the early stages of development. Example studies indicate that the analysis of functional phenotypic heterogeneity can be exploited to guide decisions in the interpretation of biomedical experiments, drug discovery, diagnostics, and the design of optimal therapeutic strategies for individual patients.
EYE MOVEMENT RECORDING AND NONLINEAR DYNAMICS ANALYSIS – THE CASE OF SACCADES#
Aştefănoaei, Corina; Pretegiani, Elena; Optican, L.M.; Creangă, Dorina; Rufa, Alessandra
2015-01-01
Evidence of a chaotic behavioral trend in eye movement dynamics was examined in the case of a saccadic temporal series collected from a healthy human subject. Saccades are highvelocity eye movements of very short duration, their recording being relatively accessible, so that the resulting data series could be studied computationally for understanding the neural processing in a motor system. The aim of this study was to assess the complexity degree in the eye movement dynamics. To do this we analyzed the saccadic temporal series recorded with an infrared camera eye tracker from a healthy human subject in a special experimental arrangement which provides continuous records of eye position, both saccades (eye shifting movements) and fixations (focusing over regions of interest, with rapid, small fluctuations). The semi-quantitative approach used in this paper in studying the eye functioning from the viewpoint of non-linear dynamics was accomplished by some computational tests (power spectrum, portrait in the state space and its fractal dimension, Hurst exponent and largest Lyapunov exponent) derived from chaos theory. A high complexity dynamical trend was found. Lyapunov largest exponent test suggested bi-stability of cellular membrane resting potential during saccadic experiment. PMID:25698889
Shared periodic performer movements coordinate interactions in duo improvisations.
Eerola, Tuomas; Jakubowski, Kelly; Moran, Nikki; Keller, Peter E; Clayton, Martin
2018-02-01
Human interaction involves the exchange of temporally coordinated, multimodal cues. Our work focused on interaction in the visual domain, using music performance as a case for analysis due to its temporally diverse and hierarchical structures. We made use of two improvising duo datasets-(i) performances of a jazz standard with a regular pulse and (ii) non-pulsed, free improvizations-to investigate whether human judgements of moments of interaction between co-performers are influenced by body movement coordination at multiple timescales. Bouts of interaction in the performances were manually annotated by experts and the performers' movements were quantified using computer vision techniques. The annotated interaction bouts were then predicted using several quantitative movement and audio features. Over 80% of the interaction bouts were successfully predicted by a broadband measure of the energy of the cross-wavelet transform of the co-performers' movements in non-pulsed duos. A more complex model, with multiple predictors that captured more specific, interacting features of the movements, was needed to explain a significant amount of variance in the pulsed duos. The methods developed here have key implications for future work on measuring visual coordination in musical ensemble performances, and can be easily adapted to other musical contexts, ensemble types and traditions.
Yang, Wen; Zheng, Zhongming; Zheng, Cheng; Lu, Kaihong; Ding, Dewen; Zhu, Jinyong
2018-01-15
The phytoplankton community structure is potentially influenced by both extrinsic effects originating from the surrounding environment and intrinsic effects relying on interspecific interactions between two species. However, few studies have simultaneously considered both types of effects and assessed the relative importance of these factors. In this study, we used data collected over nine months (August 2012-May 2013) from a typical subtropical reservoir in southeast China to analyze the temporal variation of its phytoplankton community structure and develop a quantitative understanding of the extrinsic and intrinsic effects on phytoplankton community dynamics. Significant temporal variations were observed in environmental variables as well as the phytoplankton and zooplankton communities, whereas their variational trajectories and directions were entirely different. Variance partitioning analysis showed that extrinsic factors significantly explained only 31% of the variation in the phytoplankton community, thus suggesting that these factors were incomplete predictors of the community structure. Random forest-based models showed that 48% of qualified responsible phytoplankton species were more accurately predicted by phytoplankton-only models, which revealed clear effects of interspecific species-to-species interactions. Furthermore, we used association networks to model the interactions among phytoplankton, zooplankton and the environment. Network comparisons indicated that interspecific interactions were widely present in the phytoplankton community and dominated the network rather than those between phytoplankton and extrinsic factors. These findings expand the current understanding of the underlying mechanisms that govern phytoplankton community dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.
Gandhi, Varun N; Roberts, Philip J W; Kim, Jae-Hong
2012-12-18
Evaluating the performance of typical water treatment UV reactors is challenging due to the complexity in assessing spatial and temporal variation of UV fluence, resulting from highly unsteady, turbulent nature of flow and variation in UV intensity. In this study, three-dimensional laser-induced fluorescence (3DLIF) was applied to visualize and quantitatively analyze a lab-scale UV reactor consisting of one lamp sleeve placed perpendicular to flow. Mapping the spatial and temporal fluence delivery and MS2 inactivation revealed the highest local fluence in the wake zone due to longer residence time and higher UV exposure, while the lowest local fluence occurred in a region near the walls due to short-circuiting flow and lower UV fluence rate. Comparing the tracer based decomposition between hydrodynamics and IT revealed similar coherent structures showing the dependency of fluence delivery on the reactor flow. The location of tracer injection, varying the height and upstream distance from the lamp center, was found to significantly affect the UV fluence received by the tracer. A Lagrangian-based analysis was also employed to predict the fluence along specific paths of travel, which agreed with the experiments. The 3DLIF technique developed in this study provides new insight on dose delivery that fluctuates both spatially and temporally and is expected to aid design and optimization of UV reactors as well as validate computational fluid dynamics models that are widely used to simulate UV reactor performances.
Abnormal Time Experiences in Major Depression: An Empirical Qualitative Study.
Stanghellini, Giovanni; Ballerini, Massimo; Presenza, Simona; Mancini, Milena; Northoff, Georg; Cutting, John
2017-01-01
Phenomenological psychopathology, through theoretical and idiographic studies, conceptualizes major depressive disorder (MDD) as a disorder of time experience. Investigations on abnormal time experience (ATE) in MDD adopting methodologies requested by the standards of empirical sciences are still lacking. Our study aimed to provide a qualitative analysis, on an empirical ground and on a large scale, of narratives of temporal experiences of persons affected by MDD. We interviewed 550 consecutive patients affected by affective and schizophrenic disorders. Clinical files were analysed by means of consensual qualitative research. Out of 100 MDD patients, 96 reported at least 1 ATE. The principal categories of ATE are vital retardation - the experience of a stagnation of endogenous vital processes (37 patients), the experience of present and future dominated by the past (29 patients), and the experience of the slackening of the flow oftime (25 patients). A comparison with ATE in schizophrenia patients showed that in MDD, unlike in schizophrenia, there is no disarticulation of time experience (disorder of temporal synthesis) but rather a disorder of conation or inhibition of becoming. The interview style was not meant to make a quantitative assessment ("false negatives" cannot be excluded). Our findings confirm the relevance of distinctive features of ATE in MDD, support the hypothesis of an intrinsic disordered temporal structure in depressive symptoms, and may have direct implications in clinical practice, especially in relation to differential diagnosis, setting the boundaries between "true" and milder forms of depression, and neurobiological research. © 2016 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Li, J.; Warner, T.; Bao, A.
2017-12-01
Central Asia is one of the world most vulnerable areas responding to global change. Lakes in arid regions of Central Asia remain sensitive to climatic change and fluctuate with temperature and precipitation variations. Study showed that some central asian inland lakes in showed a trend of area shrinkage or extinct in the last decades. Quantitative analysis of lake volume changes in spatio-temporal processes will improve our understanding water resource utilization in arid regions and their responses to regional climate change. However, due to the lack of lake bathmetry or observation data, the volumes of these lakes remain unknown. In this paper, three lakes, such as Chaiwopu lake, Alik Lake and Selectyteniz Lake in Central Asia are used to reconstruct lake volume changes. Firstly, stereo mapping technologies derived from ZY-3 high resolution data are used to map the high-precision 3-D lake bathmetry, so as to create "Area-Level-Volume" based on contours of lake bathmetry. Secondly, time series lake areas in the last 50 years are mapped with multi-source and multi-temporal remote sensing images. Based on lake storage curves and time series lake areas, lake volumes in the last 5 decades can be reconstructed, and the spatio-temporal characteristics of lake volume changes and their mechanisms are also analyzed. The results showed that the high-precision lake hydrological elements are reconstructed on arid drying lakes through the application of stereo mapping technology in remote sensing.
NASA Astrophysics Data System (ADS)
Jamal, Wasifa; Das, Saptarshi; Maharatna, Koushik; Pan, Indranil; Kuyucu, Doga
2015-09-01
Degree of phase synchronization between different Electroencephalogram (EEG) channels is known to be the manifestation of the underlying mechanism of information coupling between different brain regions. In this paper, we apply a continuous wavelet transform (CWT) based analysis technique on EEG data, captured during face perception tasks, to explore the temporal evolution of phase synchronization, from the onset of a stimulus. Our explorations show that there exists a small set (typically 3-5) of unique synchronized patterns or synchrostates, each of which are stable of the order of milliseconds. Particularly, in the beta (β) band, which has been reported to be associated with visual processing task, the number of such stable states has been found to be three consistently. During processing of the stimulus, the switching between these states occurs abruptly but the switching characteristic follows a well-behaved and repeatable sequence. This is observed in a single subject analysis as well as a multiple-subject group-analysis in adults during face perception. We also show that although these patterns remain topographically similar for the general category of face perception task, the sequence of their occurrence and their temporal stability varies markedly between different face perception scenarios (stimuli) indicating toward different dynamical characteristics for information processing, which is stimulus-specific in nature. Subsequently, we translated these stable states into brain complex networks and derived informative network measures for characterizing the degree of segregated processing and information integration in those synchrostates, leading to a new methodology for characterizing information processing in human brain. The proposed methodology of modeling the functional brain connectivity through the synchrostates may be viewed as a new way of quantitative characterization of the cognitive ability of the subject, stimuli and information integration/segregation capability.
NASA Astrophysics Data System (ADS)
Knoop, Tom H.; Derikx, Loes C.; Verdonschot, Nico; Slump, Cornelis H.
2015-03-01
In the progressive stages of cancer, metastatic lesions in often develop in the femur. The accompanying pain and risk of fracture dramatically affect the quality of life of the patient. Radiotherapy is often administered as palliative treatment to relieve pain and restore the bone around the lesion. It is thought to affect the bone mineralization of the treated region, but the quantitative relation between radiation dose and femur remineralization remains unclear. A new framework for the longitudinal analysis of CT-scans of patients receiving radiotherapy is presented to investigate this relationship. The implemented framework is capable of automatic calibration of Hounsfield Units to calcium equivalent values and the estimation of a prediction interval per scan. Other features of the framework are temporal registration of femurs using elastix, transformation of arbitrary Regions Of Interests (ROI), and extraction of metrics for analysis. Build in Matlab, the modular approach aids easy adaptation to the pertinent questions in the explorative phase of the research. For validation purposes, an in-vitro model consisting of a human cadaver femur with a milled hole in the intertrochanteric region was used, representing a femur with a metastatic lesion. The hole was incrementally stacked with plates of PMMA bone cement with variable radiopaqueness. Using a Kolmogorov-Smirnov (KS) test, changes in density distribution due to an increase of the calcium concentration could be discriminated. In a 21 cm3 ROI, changes in 8% of the volume from 888 ± 57mg • ml-1 to 1000 ± 80mg • ml-1 could be statistically proven using the proposed framework. In conclusion, the newly developed framework proved to be a useful and flexible tool for the analysis of longitudinal CT data.
Quantitative imaging of mammalian transcriptional dynamics: from single cells to whole embryos.
Zhao, Ziqing W; White, Melanie D; Bissiere, Stephanie; Levi, Valeria; Plachta, Nicolas
2016-12-23
Probing dynamic processes occurring within the cell nucleus at the quantitative level has long been a challenge in mammalian biology. Advances in bio-imaging techniques over the past decade have enabled us to directly visualize nuclear processes in situ with unprecedented spatial and temporal resolution and single-molecule sensitivity. Here, using transcription as our primary focus, we survey recent imaging studies that specifically emphasize the quantitative understanding of nuclear dynamics in both time and space. These analyses not only inform on previously hidden physical parameters and mechanistic details, but also reveal a hierarchical organizational landscape for coordinating a wide range of transcriptional processes shared by mammalian systems of varying complexity, from single cells to whole embryos.
Liu, Jing; Koskas, Louise; Faraji, Farshid; Kao, Evan; Wang, Yan; Haraldsson, Henrik; Kefayati, Sarah; Zhu, Chengcheng; Ahn, Sinyeob; Laub, Gerhard; Saloner, David
2018-04-01
To evaluate an accelerated 4D flow MRI method that provides high temporal resolution in a clinically feasible acquisition time for intracranial velocity imaging. Accelerated 4D flow MRI was developed by using a pseudo-random variable-density Cartesian undersampling strategy (CIRCUS) with the combination of k-t, parallel imaging and compressed sensing image reconstruction techniques (k-t SPARSE-SENSE). Four-dimensional flow data were acquired on five healthy volunteers and eight patients with intracranial aneurysms using CIRCUS (acceleration factor of R = 4, termed CIRCUS4) and GRAPPA (R = 2, termed GRAPPA2) as the reference method. Images with three times higher temporal resolution (R = 12, CIRCUS12) were also reconstructed from the same acquisition as CIRCUS4. Qualitative and quantitative image assessment was performed on the images acquired with different methods, and complex flow patterns in the aneurysms were identified and compared. Four-dimensional flow MRI with CIRCUS was achieved in 5 min and allowed further improved temporal resolution of <30 ms. Volunteer studies showed similar qualitative and quantitative evaluation obtained with the proposed approach compared to the reference (overall image scores: GRAPPA2 3.2 ± 0.6; CIRCUS4 3.1 ± 0.7; CIRCUS12 3.3 ± 0.4; difference of the peak velocities: -3.83 ± 7.72 cm/s between CIRCUS4 and GRAPPA2, -1.72 ± 8.41 cm/s between CIRCUS12 and GRAPPA2). In patients with intracranial aneurysms, the higher temporal resolution improved capturing of the flow features in intracranial aneurysms (pathline visualization scores: GRAPPA2 2.2 ± 0.2; CIRCUS4 2.5 ± 0.5; CIRCUS12 2.7 ± 0.6). The proposed rapid 4D flow MRI with a high temporal resolution is a promising tool for evaluating intracranial aneurysms in a clinically feasible acquisition time.
Positive Feedback Keeps Duration of Mitosis Temporally Insulated from Upstream Cell-Cycle Events.
Araujo, Ana Rita; Gelens, Lendert; Sheriff, Rahuman S M; Santos, Silvia D M
2016-10-20
Cell division is characterized by a sequence of events by which a cell gives rise to two daughter cells. Quantitative measurements of cell-cycle dynamics in single cells showed that despite variability in G1-, S-, and G2 phases, duration of mitosis is short and remarkably constant. Surprisingly, there is no correlation between cell-cycle length and mitotic duration, suggesting that mitosis is temporally insulated from variability in earlier cell-cycle phases. By combining live cell imaging and computational modeling, we showed that positive feedback is the molecular mechanism underlying the temporal insulation of mitosis. Perturbing positive feedback gave rise to a sluggish, variable entry and progression through mitosis and uncoupled duration of mitosis from variability in cell cycle length. We show that positive feedback is important to keep mitosis short, constant, and temporally insulated and anticipate it might be a commonly used regulatory strategy to create modularity in other biological systems. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Palme, Klaus; Aubry, D.; Bensch, M.; Schmidt, T.; Ronneberger, O.; Neu, C.; Li, X.; Wang, H.; Santos, F.; Wang, B.; Paponov, I.; Ditengou, F. A.; Teale, W. T.; Volkmann, D.; Baluska, F.; Nonis, A.; Trevisan, S.; Ruperti, B.; Dovzhenko, A.
Gravity plays a fundamental role in plant growth and development. Up to now, little is known about the molecular organisation of the signal transduction cascades and networks which co-ordinate gravity perception and response. By using an integrated systems biological approach, a systems analysis of gravity perception and the subsequent tightly-regulated growth response is planned in the model plant Arabidopsis thaliana. This approach will address questions such as: (i) what are the components of gravity signal transduction pathways? (ii) what are the dynamics of these components? (iii) what is their spatio-temporal regulation in different tis-sues? Using Arabidopsis thaliana as a model-we use root growth to obtain insights in the gravity response. New techniques enable identification of the individual genes affected by grav-ity and further integration of transcriptomics and proteomics data into interaction networks and cell communication events that operate during gravitropic curvature. Using systematic multiscale analysis we have identified regulatory networks consisting of transcription factors, the protein degradation machinery, vesicle trafficking and cellular signalling during the gravire-sponse. We developed approach allowing to incorporate key features of the root system across all relevant spatial and temporal scales to describe gene-expression patterns and correlate them with individual gene and protein functions. Combination of high-resolution microscopy and novel computational tools resulted in development of the root 3D model in which quantitative descriptions of cellular network properties and of multicellular interactions important in root growth and gravitropism can be integrated for the first time.
NASA Astrophysics Data System (ADS)
Köseoğlu, Denizcan; Belt, Simon T.; Smik, Lukas; Yao, Haoyi; Panieri, Giuliana; Knies, Jochen
2018-02-01
The discovery of IP25 as a qualitative biomarker proxy for Arctic sea ice and subsequent introduction of the so-called PIP25 index for semi-quantitative descriptions of sea ice conditions has significantly advanced our understanding of long-term paleo Arctic sea ice conditions over the past decade. We investigated the potential for classification tree (CT) models to provide a further approach to paleo Arctic sea ice reconstruction through analysis of a suite of highly branched isoprenoid (HBI) biomarkers in ca. 200 surface sediments from the Barents Sea. Four CT models constructed using different HBI assemblages revealed IP25 and an HBI triene as the most appropriate classifiers of sea ice conditions, achieving a >90% cross-validated classification rate. Additionally, lower model performance for locations in the Marginal Ice Zone (MIZ) highlighted difficulties in characterisation of this climatically-sensitive region. CT model classification and semi-quantitative PIP25-derived estimates of spring sea ice concentration (SpSIC) for four downcore records from the region were consistent, although agreement between proxy and satellite/observational records was weaker for a core from the west Svalbard margin, likely due to the highly variable sea ice conditions. The automatic selection of appropriate biomarkers for description of sea ice conditions, quantitative model assessment, and insensitivity to the c-factor used in the calculation of the PIP25 index are key attributes of the CT approach, and we provide an initial comparative assessment between these potentially complementary methods. The CT model should be capable of generating longer-term temporal shifts in sea ice conditions for the climatically sensitive Barents Sea.