Sample records for quantitative thin layer

  1. Quantitative Determination of Photosynthetic Pigments in Green Beans Using Thin-Layer Chromatography and a Flatbed Scanner as Densitometer

    ERIC Educational Resources Information Center

    Valverde, Juan; This, Herve; Vignolle, Marc

    2007-01-01

    A simple method for the quantitative determination of photosynthetic pigments extracted from green beans using thin-layer chromatography is proposed. Various extraction methods are compared, and it is shown how a simple flatbed scanner and free software for image processing can give a quantitative determination of pigments. (Contains 5 figures.)

  2. Quantitative thickness measurement of polarity-inverted piezoelectric thin-film layer by scanning nonlinear dielectric microscopy

    NASA Astrophysics Data System (ADS)

    Odagawa, Hiroyuki; Terada, Koshiro; Tanaka, Yohei; Nishikawa, Hiroaki; Yanagitani, Takahiko; Cho, Yasuo

    2017-10-01

    A quantitative measurement method for a polarity-inverted layer in ferroelectric or piezoelectric thin film is proposed. It is performed nondestructively by scanning nonlinear dielectric microscopy (SNDM). In SNDM, linear and nonlinear dielectric constants are measured using a probe that converts the variation of capacitance related to these constants into the variation of electrical oscillation frequency. In this paper, we describe a principle for determining the layer thickness and some calculation results of the output signal, which are related to the radius of the probe tip and the thickness of the inverted layer. Moreover, we derive an equation that represents the relationship between the output signal and the oscillation frequency of the probe and explain how to determine the thickness from the measured frequency. Experimental results in Sc-doped AlN piezoelectric thin films that have a polarity-inverted layer with a thickness of 1.5 µm fabricated by radio frequency magnetron sputtering showed a fairly good value of 1.38 µm for the thickness of the polarity-inverted layer.

  3. Frontally eluted components procedure with thin layer chromatography as a mode of sample preparation for high performance liquid chromatography quantitation of acetaminophen in biological matrix.

    PubMed

    Klimek-Turek, A; Sikora, M; Rybicki, M; Dzido, T H

    2016-03-04

    A new concept of using thin-layer chromatography to sample preparation for the quantitative determination of solute/s followed by instrumental techniques is presented Thin-layer chromatography (TLC) is used to completely separate acetaminophen and its internal standard from other components (matrix) and to form a single spot/zone containing them at the solvent front position (after the final stage of the thin-layer chromatogram development). The location of the analytes and internal standard in the solvent front zone allows their easy extraction followed by quantitation by HPLC. The exctraction procedure of the solute/s and internal standard can proceed from whole solute frontal zone or its part without lowering in accuracy of quantitative analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Quantitative thin layer chromatographic multi-sulfonamide screening procedure.

    PubMed

    Thomas, M H; Soroka, K E; Thomas, S H

    1983-07-01

    In-situ optical scanning of fluorescamine derivatives on thin layer silica gel plates provides a rapid method for the determination of multiple sulfonamides at levels below 0.1 ppm. Sample preparation is minimal. Homogenized liver or muscle is extracted with ethyl acetate and then back-extracted into 0.2M glycine buffer. After pH adjustment, the extract is washed with hexane and extracted with methylene chloride. The organic phase is evaporated to dryness and reconstituted in methanol. Pre-adsorbent layer silica gel plates are used for chromatography. The method has been applied to residues of sulfamethazine, sulfadimethoxine, sulfathiazole, sulfaquinoxaline, and sulfabromomethazine in cattle, swine, turkey, and duck tissues.

  5. Quantitative thin-layer chromatography/mass spectrometry analysis of caffeine using a surface sampling probe electrospray ionization tandem mass spectrometry system.

    PubMed

    Ford, Michael J; Deibel, Michael A; Tomkins, Bruce A; Van Berkel, Gary J

    2005-07-15

    Quantitative determination of caffeine on reversed-phase C8 thin-layer chromatography plates using a surface sampling electrospray ionization system with tandem mass spectrometry detection is reported. The thin-layer chromatography/electrospray tandem mass spectrometry method employed a deuterium-labeled caffeine internal standard and selected reaction monitoring detection. Up to nine parallel caffeine bands on a single plate were sampled in a single surface scanning experiment requiring 35 min at a surface scan rate of 44 mum/s. A reversed-phase HPLC/UV caffeine assay was developed in parallel to assess the mass spectrometry method performance. Limits of detection for the HPLC/UV and thin-layer chromatography/electrospray tandem mass spectrometry methods determined from the calibration curve statistics were 0.20 ng injected (0.50 muL) and 1.0 ng spotted on the plate, respectively. Spike recoveries with standards and real samples ranged between 97 and 106% for both methods. The caffeine content of three diet soft drinks (Diet Coke, Diet Cherry Coke, Diet Pepsi) and three diet sport drinks (Diet Turbo Tea, Speed Stack Grape, Speed Stack Fruit Punch) was measured. The HPLC/UV and mass spectrometry determinations were in general agreement, and these values were consistent with the quoted values for two of the three diet colas. In the case of Diet Cherry Coke and the diet sports drinks, the determined caffeine amounts using both methods were consistently higher (by approximately 8% or more) than the literature values.

  6. Quantitative Thin-Layer Chromatography/Mass Spectrometry Analysis of Caffeine Using a Surface Sampling Probe Electrospray Ionization Tandem Mass Spectrometry System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, Michael J; Deibel, Michael A.; Tomkins, Bruce A

    Quantitative determination of caffeine on reversed-phase C8 thin-layer chromatography plates using a surface sampling electrospray ionization system with tandem mass spectrometry detection is reported. The thin-layer chromatography/electrospray tandem mass spectrometry method employed a deuterium-labeled caffeine internal standard and selected reaction monitoring detection. Up to nine parallel caffeine bands on a single plate were sampled in a single surface scanning experiment requiring 35 min at a surface scan rate of 44 {mu}m/s. A reversed-phase HPLC/UV caffeine assay was developed in parallel to assess the mass spectrometry method performance. Limits of detection for the HPLC/UV and thin-layer chromatography/electrospray tandem mass spectrometry methodsmore » determined from the calibration curve statistics were 0.20 ng injected (0.50 {mu}L) and 1.0 ng spotted on the plate, respectively. Spike recoveries with standards and real samples ranged between 97 and 106% for both methods. The caffeine content of three diet soft drinks (Diet Coke, Diet Cherry Coke, Diet Pepsi) and three diet sport drinks (Diet Turbo Tea, Speed Stack Grape, Speed Stack Fruit Punch) was measured. The HPLC/UV and mass spectrometry determinations were in general agreement, and these values were consistent with the quoted values for two of the three diet colas. In the case of Diet Cherry Coke and the diet sports drinks, the determined caffeine amounts using both methods were consistently higher (by 8% or more) than the literature values.« less

  7. Method of transferring a thin crystalline semiconductor layer

    DOEpatents

    Nastasi, Michael A [Sante Fe, NM; Shao, Lin [Los Alamos, NM; Theodore, N David [Mesa, AZ

    2006-12-26

    A method for transferring a thin semiconductor layer from one substrate to another substrate involves depositing a thin epitaxial monocrystalline semiconductor layer on a substrate having surface contaminants. An interface that includes the contaminants is formed in between the deposited layer and the substrate. Hydrogen atoms are introduced into the structure and allowed to diffuse to the interface. Afterward, the thin semiconductor layer is bonded to a second substrate and the thin layer is separated away at the interface, which results in transferring the thin epitaxial semiconductor layer from one substrate to the other substrate.

  8. Amorphous silicon Schottky barrier solar cells incorporating a thin insulating layer and a thin doped layer

    DOEpatents

    Carlson, David E.

    1980-01-01

    Amorphous silicon Schottky barrier solar cells which incorporate a thin insulating layer and a thin doped layer adjacent to the junction forming metal layer exhibit increased open circuit voltages compared to standard rectifying junction metal devices, i.e., Schottky barrier devices, and rectifying junction metal insulating silicon devices, i.e., MIS devices.

  9. Quantitative determination of 3,4-methylenedioxymethamphetamine by thin-layer chromatography in ecstasy illicit pills in Tehran.

    PubMed

    Shetab Boushehri, Seyed Vahid; Tamimi, Maryam; Kebriaeezadeh, Abbas

    2009-11-01

    3,4-Methylenedioxymethamphetamine (MDMA) is the major ingredient of ecstasy illicit pills. It is a hallucinogen, central nervous system stimulant, and serotonergic neurotoxin that strongly releases serotonin from serotonergic nerves terminals. Moreover, it releases norepinephrine and dopamine from nerves terminal, but to a lesser extent than serotonin. Poisoning and even death from abusing MDMA-containing ecstasy illicit pills among abusers is usual. Thus, quantitative determination of MDMA content of ecstasy illicit pills in illicit drug bazaar must be done regularly to find the most high dose ecstasy illicit pills and removing them from illicit drug bazaar. In the present study, MDMA contents of 13 most abundant ecstasy illicit pills were determined by quantitative thin-layer chromatography (TLC). Two procedures for quantitative determination of MDMA contents of ecstasy illicit pills by TLC were used: densitometric and so-called 'scraping off' methods. The former was done in a reflection mode at 285 nm and the latter was done by absorbance measurement of eluted scraped off spots. Limit of detection (LOD), considering signal-to-noise ratio (S/N) of 2, and limit of quantification (LOQ), regarding S/N of 10, of densitometric and scraping off methods were 0.40 microg, 1.20 microg, and 6.87 mug, 20.63 microg, respectively. Repeatabilities (within-laboratory error) of densitometric and scraping off methods were 0.5% and 3.6%, respectively. The results showed that the ecstasy illicit pills contained 24-124.5 mg and 23.9-122.2 mg MDMA by densitometric and scraping off methods, respectively.

  10. Internal hypersonic flow. [in thin shock layer

    NASA Technical Reports Server (NTRS)

    Lin, T. C.; Rubin, S. G.

    1974-01-01

    An approach for studying hypersonic internal flow with the aid of a thin-shock-layer approximation is discussed, giving attention to a comparison of thin-shock-layer results with the data obtained on the basis of the imposition theory or a finite-difference integration of the Euler equations. Relations in the case of strong interaction are considered together with questions of pressure distribution and aspects of the boundary-layer solution.

  11. Methods for making thin layers of crystalline materials

    DOEpatents

    Lagally, Max G; Paskiewicz, Deborah M; Tanto, Boy

    2013-07-23

    Methods for making growth templates for the epitaxial growth of compound semiconductors and other materials are provided. The growth templates are thin layers of single-crystalline materials that are themselves grown epitaxially on a substrate that includes a thin layer of sacrificial material. The thin layer of sacrificial material, which creates a coherent strain in the single-crystalline material as it is grown thereon, includes one or more suspended sections and one or more supported sections.

  12. 21 CFR 862.2270 - Thin-layer chromatography system for clinical use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Thin-layer chromatography system for clinical use... Instruments § 862.2270 Thin-layer chromatography system for clinical use. (a) Identification. A thin-layer... a mixture. The mixture of compounds is absorbed onto a stationary phase or thin layer of inert...

  13. Interaction between depolarization effects, interface layer, and fatigue behavior in PZT thin film capacitors

    NASA Astrophysics Data System (ADS)

    Böttger, U.; Waser, R.

    2017-07-01

    The existence of non-ferroelectric regions in ferroelectric thin films evokes depolarization effects leading to a tilt of the P(E) hysteresis loop. The analysis of measured hysteresis of lead zirconate titanate (PZT) thin films is used to determine a depolarization factor which contains quantitative information about interfacial layers as well as ferroelectrically passive zones in the bulk. The derived interfacial capacitance is smaller than that estimated from conventional extrapolation techniques. In addition, the concept of depolarization is used for the investigation of fatigue behavior of PZT thin films indicating that the mechanism of seed inhibition, which is responsible for the effect, occurs in the entire film.

  14. Qualitative and quantitative two-dimensional thin-layer chromatography/high performance liquid chromatography/diode-array/electrospray-ionization-time-of-flight mass spectrometry of cholinesterase inhibitors.

    PubMed

    Mroczek, Tomasz

    2016-09-10

    Recently launched thin-layer chromatography-mass spectrometry (TLC-MS) interface enabling extraction of compounds directly from TLC plates into MS ion source was unusually extended into two-dimensional thin-layer chromatography/high performance liquid chromatography (2D, TLC/HPLC) system by its a direct connection to a rapid resolution 50×2.1mm, I.D. C18 column compartment followed by detection by diode array (DAD) and electrospray ionisation time-of-flight mass spectrometry (ESI-TOF-MS). In this way, even not separated bands of complicated mixtures of natural compounds could be analysed structurally, only within 1-2min after development of TLC plates. In comparison to typically applied TLC-MS interface, no ion suppression for acidic mobile phases was observed. Also, substantial increase in ESI-TOF-MS sensitivities and quality of spectra, were noticed. It has been utilised in combination with TLC- based bioautographic approaches of acetylcholinesterase (AChE) inhibitors, However, it can be also applied in any other procedures related to bioactivity (e.g. 2,2-Diphenyl-1-picryl-hydrazyl-DPPH screen test for radicals). This system has been also used for determination of half maximal inhibitory concentration (IC50 values) of the active inhibitor-galanthamine, as an example. Moreover, AChE inhibitory potencies of some of purified plant extracts, never studied before, have been quantitatively measured. This is first report of usage such the 2D TLC/HPLC/MS system both for qualitative and quantitative evaluation of cholinesterase inhibitors in biological matrices. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Relationship of Estimated SHIV Acquisition Time Points During the Menstrual Cycle and Thinning of Vaginal Epithelial Layers in Pigtail Macaques.

    PubMed

    Kersh, Ellen N; Ritter, Jana; Butler, Katherine; Ostergaard, Sharon Dietz; Hanson, Debra; Ellis, Shanon; Zaki, Sherif; McNicholl, Janet M

    2015-12-01

    HIV acquisition in the female genital tract remains incompletely understood. Quantitative data on biological HIV risk factors, the influence of reproductive hormones, and infection risk are lacking. We evaluated vaginal epithelial thickness during the menstrual cycle in pigtail macaques (Macaca nemestrina). This model previously revealed increased susceptibility to vaginal infection during and after progesterone-dominated periods in the menstrual cycle. Nucleated and nonnucleated (superficial) epithelial layers were quantitated throughout the menstrual cycle of 16 macaques. We examined the relationship with previously estimated vaginal SHIVSF162P3 acquisition time points in the cycle of 43 different animals repeatedly exposed to low virus doses. In the luteal phase (days 17 to cycle end), the mean vaginal epithelium thinned to 66% of mean follicular thickness (days 1-16; P = 0.007, Mann-Whitney test). Analyzing 4-day segments, the epithelium was thickest on days 9 to 12 and thinned to 31% thereof on days 29 to 32, with reductions of nucleated and nonnucleated layers to 36% and 15% of their previous thickness, respectively. The proportion of animals with estimated SHIV acquisition in each cycle segment correlated with nonnucleated layer thinning (Pearson r = 0.7, P < 0.05, linear regression analysis), but not nucleated layer thinning (Pearson r = 0.6, P = 0.15). These data provide a detailed picture of dynamic cycle-related changes in the vaginal epithelium of pigtail macaques. Substantial thinning occurred in the superficial, nonnucleated layer, which maintains the vaginal microbiome. The findings support vaginal tissue architecture as susceptibility factor for infection and contribute to our understanding of innate resistance to SHIV infection.

  16. Layer-by-Layer Assembly of a pH-Responsive and Electrochromic Thin Film

    ERIC Educational Resources Information Center

    Schmidt, Daniel J.; Pridgen, Eric M.; Hammond, Paula T.; Love, J. Christopher

    2010-01-01

    This article summarizes an experiment on thin-film fabrication with layer-by-layer assembly that is appropriate for undergraduate laboratory courses. The purpose of this experiment is to teach students about self-assembly in the context of thin films and to expose students to the concepts of functional polymeric coatings. Students dip coat…

  17. Standardisation of Gymnema sylvestre R.Br. by high-performance thin-layer chromatography: an improved method.

    PubMed

    Raju, Valivarthi S R; Kannababu, S; Subbaraju, Gottumukkala V

    2006-01-01

    An improved high-performance thin-layer chromatographic (HPTLC) method for the standardisation of Gymnema sylvestre is reported. The method involves the initial hydrolysis of gymnemic acids, the active ingredients, to a common aglycone followed by the quantitative estimation of gymnemagenin. The present method rectifies an error found in an HPTLC method reported recently.

  18. MultiLayer solid electrolyte for lithium thin film batteries

    DOEpatents

    Lee, Se -Hee; Tracy, C. Edwin; Pitts, John Roland; Liu, Ping

    2015-07-28

    A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF.sub.4 in contact with the thin, stable, solid electrolyte layer [18]. Batteries made up of or containing these structures are more efficient to produce than other lithium metal batteries that use only a single solid electrolyte. They are also more resistant to stress and strain than batteries made using layers of only the stable, solid electrolyte materials. Furthermore, lithium anode batteries as disclosed herein are useful as rechargeable batteries.

  19. Buffer layers for high-Tc thin films on sapphire

    NASA Technical Reports Server (NTRS)

    Wu, X. D.; Foltyn, S. R.; Muenchausen, R. E.; Cooke, D. W.; Pique, A.; Kalokitis, D.; Pendrick, V.; Belohoubek, E.

    1992-01-01

    Buffer layers of various oxides including CeO2 and yttrium-stabilized zirconia (YSZ) have been deposited on R-plane sapphire. The orientation and crystallinity of the layers were optimized to promote epitaxial growth of YBa2Cu3O(7-delta) (YBCO) thin films. An ion beam channeling minimum yield of about 3 percent was obtained in the CeO2 layer on sapphire, indicating excellent crystallinity of the buffer layer. Among the buffer materials used, CeO2 was found to be the best one for YBCO thin films on R-plane sapphire. High Tc and Jc were obtained in YBCO thin films on sapphire with buffer layers. Surface resistances of the YBCO films were about 4 mOmega at 77 K and 25 GHz.

  20. NMR of thin layers using a meanderline surface coil

    DOEpatents

    Cowgill, Donald F.

    2001-01-01

    A miniature meanderline sensor coil which extends the capabilities of nuclear magnetic resonance (NMR) to provide analysis of thin planar samples and surface layer geometries. The sensor coil allows standard NMR techniques to be used to examine thin planar (or curved) layers, extending NMRs utility to many problems of modern interest. This technique can be used to examine contact layers, non-destructively depth profile into films, or image multiple layers in a 3-dimensional sense. It lends itself to high resolution NMR techniques of magic angle spinning and thus can be used to examine the bonding and electronic structure in layered materials or to observe the chemistry associated with aging coatings. Coupling this sensor coil technology with an arrangement of small magnets will produce a penetrator probe for remote in-situ chemical analysis of groundwater or contaminant sediments. Alternatively, the sensor coil can be further miniaturized to provide sub-micron depth resolution within thin films or to orthoscopically examine living tissue. This thin-layer NMR technique using a stationary meanderline coil in a series-resonant circuit has been demonstrated and it has been determined that the flat meanderline geometry has about he same detection sensitivity as a solenoidal coil, but is specifically tailored to examine planar material layers, while avoiding signals from the bulk.

  1. An Electrochemical Experiment Using an Optically Transparent Thin Layer Electrode

    ERIC Educational Resources Information Center

    DeAngelis, Thomas P.; Heineman, William R.

    1976-01-01

    Describes a unified experiment in which an optically transparent thin layer electrode is used to illustrate the techniques of thin layer electrochemistry, cyclic voltammetry, controlled potential coulometry, and spectroelectrochemistry. (MLH)

  2. Detection of water in jet fuel using layer-by-layer thin film coated long period grating sensor.

    PubMed

    Puckett, Sean D; Pacey, Gilbert E

    2009-04-15

    The quantitative measurement of jet fuel additives in the field is of interest to the Air Force. The "smart nozzle" project was designed as a state-of-the-art diagnostics package attached to a single-point refueling nozzle for assessing key fuel properties as the fuel is dispensed. The objective of the work was to show proof of concept that a layer-by-layer thin film and long period grating fibers could be used to detect the presence of water in jet fuel. The data for the nafion/PDMA film and a long period grating fiber is a combination capable of quantitative measurement of water in kerosene. The average response (spectral loss wavelength shift) to the kerosene sample ranged from -6.0 for 15 ppm to -126.5 for 60 ppm water. The average calculated value for the check standard was 21.71 and ranged from 21.25 to 22.00 with a true value of 22.5 ppm water. Potential interferences were observed and are judged to be insignificant in real samples.

  3. Methods for producing thin film charge selective transport layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammond, Scott Ryan; Olson, Dana C.; van Hest, Marinus Franciscus Antonius Maria

    Methods for producing thin film charge selective transport layers are provided. In one embodiment, a method for forming a thin film charge selective transport layer comprises: providing a precursor solution comprising a metal containing reactive precursor material dissolved into a complexing solvent; depositing the precursor solution onto a surface of a substrate to form a film; and forming a charge selective transport layer on the substrate by annealing the film.

  4. Quantitative determination of seven chemical constituents and chemo-type differentiation of chamomiles using high-performance thin-layer chromatography

    USDA-ARS?s Scientific Manuscript database

    Matricaria recutita L. (German Chamomile), Anthemis nobilis L. (Roman Chamomile) and Chrysanthemum morifolium Ramat are commonly used chamomiles. High performance thin layer chromatographic (HPTLC) method was developed for estimation of six flavonoids (rutin, luteolin-7-O-ß-glucoside, chamaemeloside...

  5. Comparison Between Navier-Stokes and Thin-Layer Computations for Separated Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Degani, David; Steger, Joseph L.

    1983-01-01

    In the numerical simulation of high Reynolds-number flow, one can frequently supply only enough grid points to resolve the viscous terms in a thin layer. As a consequence, a body-or stream-aligned coordinate system is frequently used and viscous terms in this direction are discarded. It is argued that these terms cannot be resolved and computational efficiency is gained by their neglect. Dropping the streamwise viscous terms in this manner has been termed the thin-layer approximation. The thin-layer concept is an old one, and similar viscous terms are dropped, for example, in parabolized Navier-Stokes schemes. However, such schemes also make additional assumptions so that the equations can be marched in space, and such a restriction is not usually imposed on a thin-layer model. The thin-layer approximation can be justified in much the same way as the boundary-layer approximation; it requires, therefore, a body-or stream-aligned coordinate and a high Reynolds number. Unlike the boundary-layer approximation, the same equations are used throughout, so there is no matching problem. Furthermore, the normal momentum equation is not simplified and the convection terms are not one-sided differenced for marching. Consequently, the thin-layer equations are numerically well behaved at separation and require no special treatment there. Nevertheless, the thin-layer approximation receives criticism. It has been suggested that the approximation is invalid at separation and, more recently, that it is inadequate for unsteady transonic flow. Although previous comparisons between the thin-layer and Navier-Stokes equations have been made, these comparisons have not been adequately documented.

  6. Programmable Electrochemical Rectifier Based on a Thin-Layer Cell.

    PubMed

    Park, Seungjin; Park, Jun Hui; Hwang, Seongpil; Kwak, Juhyoun

    2017-06-21

    A programmable electrochemical rectifier based on thin-layer electrochemistry is described here. Both the rectification ratio and the response time of the device are programmable by controlling the gap distance of the thin-layer electrochemical cell, which is easily controlled using commercially available beads. One of the electrodes was modified using a ferrocene-terminated self-assembled monolayer to offer unidirectional charge transfers via soluble redox species. The thin-layer configuration provided enhanced mass transport, which was determined by the gap thickness. The device with the smallest gap thickness (∼4 μm) showed an unprecedented, high rectification ratio (up to 160) with a fast response time in a two-terminal configuration using conventional electronics.

  7. Nonenzymatic detection of glucose using BaCuO2 thin layer

    NASA Astrophysics Data System (ADS)

    Ito, Takeshi; Asada, Tsuyoshi; Asai, Naoto; Shimizu, Tomohiro; Shingubara, Shoso

    2017-01-01

    A BaCuO2 thin layer was deposited on a glassy carbon electrode and used for the direct oxidation of glucose. The crystalline, electrochemical, and physicochemical properties that depend on the deposition temperature and deposition time were studied. X-ray diffraction (XRD) analysis showed that the thin layer was amorphous even at 400 °C. The current density of the glucose oxidation using the thin layer deposited at 200 °C was higher than those at other deposition temperatures. Under this condition, the current density increased with the glucose concentration and deposition time. These results indicate that a BaCuO2 thin layer has potential for measuring the blood glucose level without enzymes.

  8. High Performance Thin Layer Chromatography.

    ERIC Educational Resources Information Center

    Costanzo, Samuel J.

    1984-01-01

    Clarifies where in the scheme of modern chromatography high performance thin layer chromatography (TLC) fits and why in some situations it is a viable alternative to gas and high performance liquid chromatography. New TLC plates, sample applications, plate development, and instrumental techniques are considered. (JN)

  9. Thin-Layer Fuel Cell for Teaching and Classroom Demonstrations

    ERIC Educational Resources Information Center

    Shirkhanzadeh, M.

    2009-01-01

    A thin-layer fuel cell is described that is simple and easy to set up and is particularly useful for teaching and classroom demonstrations. The cell is both an electrolyzer and a fuel cell and operates using a thin layer of electrolyte with a thickness of approximately 127 micrometers and a volume of approximately 40 microliters. As an…

  10. Carbon-Nanotube Conductive Layers for Thin-Film Solar Cells

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2005-01-01

    Thin, transparent layers comprising mats of carbon nanotubes have been proposed for providing lateral (that is, inplane) electrical conductivities for collecting electric currents from the front surfaces of the emitter layers of thin-film solar photovoltaic cells. Traditionally, thin, semitransparent films of other electrically conductive materials (usually, indium tin oxide, zinc oxide, or cadmium sulfide) have been used for this purpose. As in the cases of the traditional semitransparent conductive films, the currents collected by the nanotube layers would, in turn, be further collected by front metal contact stripes. Depending on details of a specific solar-cell design, the layer of carbon nanotubes would be deposited in addition to, or instead of, a semitransparent layer of one of these traditional conductive materials (see figure). The proposal is expected to afford the following advantages: The electrical conductivity of the carbon- nanotube layer would exceed that of the corresponding semitransparent layer of traditional electrically conductive material. The greater electrical conductivity of the carbon-nanotube layer would make it possible to retain adequate lateral electrical conductivity while reducing the thickness of, or eliminating entirely, the traditional semitransparent conductive layer. As a consequence of thinning or elimination of the traditional semitransparent conductive layer, less light would be absorbed, so that more of the incident light would be available for photovoltaic conversion. The greater electrical conductivity of the carbon-nanotube layer would make it possible to increase the distance between front metal contact stripes, in addition to (or instead of) thinning or eliminating the layer of traditional semitransparent conductive material. Consequently, the fraction of solar-cell area shadowed by front metal contact stripes would be reduced again, making more of the incident light available for photovoltaic conversion. The electrical

  11. A validated high performance thin layer chromatography method for determination of yohimbine hydrochloride in pharmaceutical preparations

    PubMed Central

    Badr, Jihan M.

    2013-01-01

    Background: Yohimbine is an indole alkaloid used as a promising therapy for erectile dysfunction. A number of methods were reported for the analysis of yohimbine in the bark or in pharmaceutical preparations. Materials and Method: In the present work, a simple and sensitive high performance thin layer chromatographic method is developed for determination of yohimbine (occurring as yohimbine hydrochloride) in pharmaceutical preparations and validated according to International Conference of Harmonization (ICH) guidelines. The method employed thin layer chromatography aluminum sheets precoated with silica gel as the stationary phase and the mobile phase consisted of chloroform:methanol:ammonia (97:3:0.2), which gave compact bands of yohimbine hydrochloride. Results: Linear regression data for the calibration curves of standard yohimbine hydrochloride showed a good linear relationship over a concentration range of 80–1000 ng/spot with respect to the area and correlation coefficient (R2) was 0.9965. The method was evaluated regarding accuracy, precision, selectivity, and robustness. Limits of detection and quantitation were recorded as 5 and 40 ng/spot, respectively. The proposed method efficiently separated yohimbine hydrochloride from other components even in complex mixture containing powdered plants. The amount of yohimbine hydrochloride ranged from 2.3 to 5.2 mg/tablet or capsule in preparations containing the pure alkaloid, while it varied from zero (0) to 1.5–1.8 mg/capsule in dietary supplements containing powdered yohimbe bark. Conclusion: We concluded that this method employing high performance thin layer chromatography (HPTLC) in quantitative determination of yohimbine hydrochloride in pharmaceutical preparations is efficient, simple, accurate, and validated. PMID:23661986

  12. A validated high performance thin layer chromatography method for determination of yohimbine hydrochloride in pharmaceutical preparations.

    PubMed

    Badr, Jihan M

    2013-01-01

    Yohimbine is an indole alkaloid used as a promising therapy for erectile dysfunction. A number of methods were reported for the analysis of yohimbine in the bark or in pharmaceutical preparations. In the present work, a simple and sensitive high performance thin layer chromatographic method is developed for determination of yohimbine (occurring as yohimbine hydrochloride) in pharmaceutical preparations and validated according to International Conference of Harmonization (ICH) guidelines. The method employed thin layer chromatography aluminum sheets precoated with silica gel as the stationary phase and the mobile phase consisted of chloroform:methanol:ammonia (97:3:0.2), which gave compact bands of yohimbine hydrochloride. Linear regression data for the calibration curves of standard yohimbine hydrochloride showed a good linear relationship over a concentration range of 80-1000 ng/spot with respect to the area and correlation coefficient (R(2)) was 0.9965. The method was evaluated regarding accuracy, precision, selectivity, and robustness. Limits of detection and quantitation were recorded as 5 and 40 ng/spot, respectively. The proposed method efficiently separated yohimbine hydrochloride from other components even in complex mixture containing powdered plants. The amount of yohimbine hydrochloride ranged from 2.3 to 5.2 mg/tablet or capsule in preparations containing the pure alkaloid, while it varied from zero (0) to 1.5-1.8 mg/capsule in dietary supplements containing powdered yohimbe bark. We concluded that this method employing high performance thin layer chromatography (HPTLC) in quantitative determination of yohimbine hydrochloride in pharmaceutical preparations is efficient, simple, accurate, and validated.

  13. [High performance thin-layer chromatography in specific blood diagnosis (author's transl)].

    PubMed

    Bernardelli, B; Masotti, G

    1976-01-01

    Furthering their research into the differentiation of various haemoglobins (both human and animal) with the use of thin layer chromatographic methods, the Authors have applied Kaiser's high performance thin layer chromatography (HPTLC) to the specific diagnosis of blood. Although the method was superior to ascending one-dimensional thin layer chromatography for its sensitivity, Rf reproducibility and much briefer migration times, it did not turn out to be suitable for application to the specific requirements of forensic haematology.

  14. Thin layer model for nonlinear evolution of the Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Zhao, K. G.; Wang, L. F.; Xue, C.; Ye, W. H.; Wu, J. F.; Ding, Y. K.; Zhang, W. Y.

    2018-03-01

    On the basis of the thin layer approximation [Ott, Phys. Rev. Lett. 29, 1429 (1972)], a revised thin layer model for incompressible Rayleigh-Taylor instability has been developed to describe the deformation and nonlinear evolution of the perturbed interface. The differential equations for motion are obtained by analyzing the forces (the gravity and pressure difference) of fluid elements (i.e., Newton's second law). The positions of the perturbed interface are obtained from the numerical solution of the motion equations. For the case of vacuum on both sides of the layer, the positions of the upper and lower interfaces obtained from the revised thin layer approximation agree with that from the weakly nonlinear (WN) model of a finite-thickness fluid layer [Wang et al., Phys. Plasmas 21, 122710 (2014)]. For the case considering the fluids on both sides of the layer, the bubble-spike amplitude from the revised thin layer model agrees with that from the WN model [Wang et al., Phys. Plasmas 17, 052305 (2010)] and the expanded Layzer's theory [Goncharov, Phys. Rev. Lett. 88, 134502 (2002)] in the early nonlinear growth regime. Note that the revised thin layer model can be applied to investigate the perturbation growth at arbitrary Atwood numbers. In addition, the large deformation (the large perturbed amplitude and the arbitrary perturbed distributions) in the initial stage can also be described by the present model.

  15. Layered Organization in the Coastal Ocean: 4-D Assessment of Thin Layer Structure, Dynamics and Impacts

    DTIC Science & Technology

    2009-09-30

    maintenance and dissipation of layers; (2) to understand the spatial coherence and spatial properties of thin layers in the coastal ocean (especially in...ORCAS profilers at K1 South and K2 had a Nortek ADV (Acoustic Doppler Velocity meter) for simultaneously measuring centimeter- scale currents and...year will be used to (1) detect the presence, intensity, thickness, temporal persistence, and spatial coherence of thin optical and acoustical layers

  16. [Analysis of pigments from Rhodotorula glutinis by Raman spectroscopy and thin layer chromatography].

    PubMed

    Yuan, Yu-feng; Tao, Zhan-hua; Wang, Xue; Li, Yong-qing; Liu, Jun-xian

    2012-03-01

    The pigments from Rhodotorula glutinis were separated by using thin layer chromatography, and the result showed that Rhodotorula glutinis cells could synthesize at least three kinds of pigments, which were beta-carotene, torulene, and torularhodin. The Raman spectra based on the three pigments were acquired, and original spectra were preprocessed by background elimination, baseline correction, and three-point-smoothing, then the averaged spectra from different pigments were investigated, and the result indicated that Raman shift which represents C-C bond was different, and the wave number of beta-carotene demonstrated the largest deviation, finally torulene and torularhodin in Rhodotorula glutinis had more content than beta-carotene. Quantitative analysis of Raman peak height ratio revealed that peak height ratio of pigments showed little difference, which could be used as parameters for further research on living cells, providing reference content of pigments. The above results suggest that Raman spectroscopy combined with thin layer chromatography can be applied to analyze pigments from Rhodotorula glutinis, provides abundant information about pigments, and serves as an effective method to study pigments.

  17. Advanced germanium layer transfer for ultra thin body on insulator structure

    NASA Astrophysics Data System (ADS)

    Maeda, Tatsuro; Chang, Wen-Hsin; Irisawa, Toshifumi; Ishii, Hiroyuki; Hattori, Hiroyuki; Poborchii, Vladimir; Kurashima, Yuuichi; Takagi, Hideki; Uchida, Noriyuki

    2016-12-01

    We present the HEtero-Layer Lift-Off (HELLO) technique to obtain ultra thin body (UTB) Ge on insulator (GeOI) substrates. The transferred ultra thin Ge layers are characterized by the Raman spectroscopy measurements down to the thickness of ˜1 nm, observing a strong Raman intensity enhancement for high quality GeOI structure in ultra thin regime due to quantum size effect. This advanced Ge layer transfer technique enabled us to demonstrate UTB-GeOI nMOSFETs with the body thickness of only 4 nm.

  18. Characterization of aluminum selenide bi-layer thin film

    NASA Astrophysics Data System (ADS)

    Boolchandani, Sarita; Soni, Gyanesh; Srivastava, Subodh; Vijay, Y. K.

    2018-05-01

    The Aluminum Selenide (AlSe) bi-layer thin films were grown on glass substrate using thermal evaporation method under high vacuum condition. The morphological characterization was done using SEM. Electrical measurement with temperature variation shows that thin films exhibit the semiconductor nature. The optical properties of prepared thin films have also been characterized by UV-VIS spectroscopy measurements. The band gap of composite thin films has been calculated by Tauc's relation at different temperature ranging 35°C-100°C.

  19. Optical characterizations of silver nanoprisms embedded in polymer thin film layers

    NASA Astrophysics Data System (ADS)

    Carlberg, Miriam; Pourcin, Florent; Margeat, Olivier; Le Rouzo, Judikael; Berginc, Gerard; Sauvage, Rose-Marie; Ackermann, Jorg; Escoubas, Ludovic

    2017-10-01

    The precise control of light-matter interaction has a wide range of applications and is currently driven by the use of nanoparticles (NPs) by the recent advances in nanotechnology. Taking advantage of the material, size, shape, and surrounding media dependence of the optical properties of plasmonic NPs, thin film layers with tunable optical properties are achieved. The NPs are synthesized by wet chemistry and embedded in a polyvinylpyrrolidone (PVP) polymer thin film layer. Spectrophotometer and spectroscopic ellipsometry measurements are coupled to finite-difference time domain numerical modeling to optically characterize the heterogeneous thin film layers. Silver nanoprisms of 10 to 50 nm edge size exhibit high absorption through the visible wavelength range. A simple optical model composed of a Cauchy law and a Lorentz law, accounting for the optical properties of the nonabsorbing polymer and the absorbing property of the nanoprisms, fits the spectroscopic ellipsometry measurements. Knowing the complex optical indices of heterogeneous thin film layers let us design layers of any optical properties.

  20. Effects of channel thickness on oxide thin film transistor with double-stacked channel layer

    NASA Astrophysics Data System (ADS)

    Lee, Kimoon; Kim, Yong-Hoon; Yoon, Sung-Min; Kim, Jiwan; Oh, Min Suk

    2017-11-01

    To improve the field effect mobility and control the threshold voltage ( V th ) of oxide thin film transistors (TFTs), we fabricated the oxide TFTs with double-stacked channel layers which consist of thick Zn-Sn-O (ZTO) and very thin In-Zn-O (IZO) layers. We investigated the effects of the thickness of thin conductive layer and the conductivity of thick layer on oxide TFTs with doublestacked channel layer. When we changed the thickness of thin conductive IZO channel layer, the resistivity values were changed. This resistivity of thin channel layer affected on the saturation field effect mobility and the off current of TFTs. In case of the thick ZTO channel layer which was deposited by sputtering in Ar: O2 = 10: 1, the device showed better performances than that which was deposited in Ar: O2 = 1: 1. Our TFTs showed high mobility ( μ FE ) of 40.7 cm2/Vs and V th of 4.3 V. We assumed that high mobility and the controlled V th were caused by thin conductive IZO layer and thick stable ZTO layer. Therefore, this double-stacked channel structure can be very promising way to improve the electrical characteristics of various oxide thin film transistors.

  1. Fabrication of ATO/Graphene Multi-layered Transparent Conducting Thin Films

    NASA Astrophysics Data System (ADS)

    Li, Na; Chen, Fei; Shen, Qiang; Wang, Chuanbin; Zhang, Lianmeng

    2013-03-01

    A novel transparent conducting oxide based on the ATO/graphene multi-layered thin films has been developed to satisfy the application of transparent conductive electrode in solar cells. The ATO thin films are prepared by pulsed laser deposition method with high quality, namely the sheet resistance of 49.5 Ω/sq and average transmittance of 81.9 %. The prepared graphene sheet is well reduced and shows atomically thin, spotty distributed appearance on the top of the ATO thin films. The XRD and optical micrographs are used to confirm the successfully preparation of the ATO/graphene multi-layered thin films. The Hall measurements and UV-Vis spectrophotometer are conducted to evaluate the sheet resistance and optical transmittance of the innovative structure. It is found that graphene can improve the electrical properties of the ATO thin films with little influence on the optical transmittance.

  2. Quantitative Determination of L-DOPA in Seeds of Mucuna Pruriens Germplasm by High Performance Thin Layer Chromatography

    PubMed Central

    Raina, Archana P.; Khatri, Renu

    2011-01-01

    Mucuna pruriens Linn. is an important medicinal plant used for treatment of Parkinson's disease and many others in ancient Indian medical system. L-DOPA extracted from seeds of Mucuna is a constituent of more than 200 indigenous drug formulations and is more effective as drug than the synthetic counterpart. A densitometric high performance thin-layer chromatographic (HPTLC) method was developed for quantification of L-DOPA content present in the seeds extract. The method involves separation of L-DOPA on precoated silica gel 60 GF254 HPTLC plates using a solvent system of n-butanol-acetic-acid-water (4:1:1, v/v) as the mobile phase. Quantification was done at 280 nm using absorbance reflectance mode. Linearity was found in the concentration range of 100 to 1000 ng/spot with the correlation coefficient value of 0.9980. The method was validated for accuracy, precision and repeatability. Mean recovery was 100.89%. The LOD and LOQ for L-DOPA determination were found to be 3.41 ng/spot and 10.35 ng/spot respectively. The proposed HPTLC method was found to be precise, specific and accurate for quantitative determination of L-DOPA. It can be used for rapid screening of large germplasm collections of Mucuna pruriens for L-DOPA content. The method was used to study variation in fifteen accessions of Mucuna germplasm collected from different geographical regions. PMID:22707835

  3. Quantitative Determination of L-DOPA in Seeds of Mucuna Pruriens Germplasm by High Performance Thin Layer Chromatography.

    PubMed

    Raina, Archana P; Khatri, Renu

    2011-07-01

    Mucuna pruriens Linn. is an important medicinal plant used for treatment of Parkinson's disease and many others in ancient Indian medical system. L-DOPA extracted from seeds of Mucuna is a constituent of more than 200 indigenous drug formulations and is more effective as drug than the synthetic counterpart. A densitometric high performance thin-layer chromatographic (HPTLC) method was developed for quantification of L-DOPA content present in the seeds extract. The method involves separation of L-DOPA on precoated silica gel 60 GF(254) HPTLC plates using a solvent system of n-butanol-acetic-acid-water (4:1:1, v/v) as the mobile phase. Quantification was done at 280 nm using absorbance reflectance mode. Linearity was found in the concentration range of 100 to 1000 ng/spot with the correlation coefficient value of 0.9980. The method was validated for accuracy, precision and repeatability. Mean recovery was 100.89%. The LOD and LOQ for L-DOPA determination were found to be 3.41 ng/spot and 10.35 ng/spot respectively. The proposed HPTLC method was found to be precise, specific and accurate for quantitative determination of L-DOPA. It can be used for rapid screening of large germplasm collections of Mucuna pruriens for L-DOPA content. The method was used to study variation in fifteen accessions of Mucuna germplasm collected from different geographical regions.

  4. The enhancement mechanism of thin plasma layer on antenna radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chunsheng, E-mail: wangcs@hit.edu.cn; Jiang, Binhao; Li, Xueai

    A model of plasma-antenna is carried out to study the radiation enhancement mechanism of antenna covered by thin plasma layer. The results show when the radiation intensity achieves maximum, a region of equal electric field is formed due to the reflection of electric field at the interface of plasma and air. The plasma layer acted as an extension of the antenna. Furthermore, the shape of plasma layer is changed to verify the effect of plasma boundary on antenna radiation. The study shows the effect of thin plasma layer on electromagnetic field and provides a type of plasma antenna.

  5. Thin-layer voltammetry of soluble species on screen-printed electrodes: proof of concept.

    PubMed

    Botasini, S; Martí, A C; Méndez, E

    2016-10-17

    Thin-layer diffusion conditions were accomplished on screen-printed electrodes by placing a controlled-weight onto the cast solution and allowing for its natural spreading. The restricted diffusive conditions were assessed by cyclic voltammetry at low voltage scan rates and electrochemical impedance spectroscopy. The relationship between the weight exerted over the drop and the thin-layer thickness achieved was determined, in such a way that the simple experimental set-up designed for this work could be developed into a commercial device with variable control of the thin-layer conditions. The experimental results obtained resemble those reported for the voltammetric features of electroactive soluble species employing electrodes modified with carbon nanotubes or graphene layers, suggesting that the attainment of the benefits reported for these nanomaterials could be done simply by forcing the solution to spread over the screen-printed electrodic system to form a thin layer solution. The advantages of thin-layer voltammetry in the kinetic characterization of quasi-reversible and irreversible processes are highlighted.

  6. Gravitational instability of thin gas layer between two thick liquid layers

    NASA Astrophysics Data System (ADS)

    Pimenova, A. V.; Goldobin, D. S.

    2016-12-01

    We consider the problem of gravitational instability (Rayleigh-Taylor instability) of a horizontal thin gas layer between two liquid half-spaces (or thick layers), where the light liquid overlies the heavy one. This study is motivated by the phenomenon of boiling at the surface of direct contact between two immiscible liquids, where the rate of the "break-away" of the vapor layer growing at the contact interface due to development of the Rayleigh-Taylor instability on the upper liquid-gas interface is of interest. The problem is solved analytically under the assumptions of inviscid liquids and viscous weightless vapor. These assumptions correspond well to the processes in real systems, e.g., they are relevant for the case of interfacial boiling in the system water- n-heptane. In order to verify the results, the limiting cases of infinitely thin and infinitely thick gas layers were considered, for which the results can be obviously deduced from the classical problem of the Rayleigh-Taylor instability. These limiting cases are completely identical to the well-studied cases of gravity waves at the liquidliquid and liquid-gas interfaces. When the horizontal extent of the system is long enough, the wavenumber of perturbations is not limited from below, and the system is always unstable. The wavelength of the most dangerous perturbations and the rate of their exponential growth are derived as a function of the layer thickness. The dependence of the exponential growth rate on the gas layer thickness is cubic.

  7. Marangoni-Benard Convection in a Evaporating Liquid Thin Layer

    NASA Technical Reports Server (NTRS)

    Chai, An-Ti; Zhang, Nengli

    1996-01-01

    Marangoni-Benard convection in evaporating liquid thin layers has been investigated through flow visualization and temperature profile measurement. Twelve liquids, namely ethyl alcohol, methanol, chloroform, acetone, cyclohexane, benzine, methylene chloride, carbon tetrachloride, ethyl acetate, n-pentane, silicone oil (0.65 cSt.), and freon-113, were tested and convection patterns in thin layers of these samples were observed. Comparison among these tested samples shows that some liquids are sensitive to surface contamination from aluminum powder but some are not. The latter is excellent to be used for the investigation of surface-tension driven convection through visualization using the tracer. Two sample liquids, alcohol and freon-113 were particularly selected for systematic study. It was found that the wavelength of Benard cells would not change with thickness of the layer when it evaporates at room temperature. Special attention was focused on cases in which a liquid layer was cooled from below, and some interesting results were obtained. Convection patterns were recorded during the evaporation process and the patterns at certain time frame were compared. Benard cells were observed in thin layers with a nonlinear temperature profile and even with a zero or positive temperature gradient. Wavelength of the cells was found to increase as the evaporation progressed.

  8. Ferroelastic switching in a layered-perovskite thin film

    PubMed Central

    Wang, Chuanshou; Ke, Xiaoxing; Wang, Jianjun; Liang, Renrong; Luo, Zhenlin; Tian, Yu; Yi, Di; Zhang, Qintong; Wang, Jing; Han, Xiu-Feng; Van Tendeloo, Gustaaf; Chen, Long-Qing; Nan, Ce-Wen; Ramesh, Ramamoorthy; Zhang, Jinxing

    2016-01-01

    A controllable ferroelastic switching in ferroelectric/multiferroic oxides is highly desirable due to the non-volatile strain and possible coupling between lattice and other order parameter in heterostructures. However, a substrate clamping usually inhibits their elastic deformation in thin films without micro/nano-patterned structure so that the integration of the non-volatile strain with thin film devices is challenging. Here, we report that reversible in-plane elastic switching with a non-volatile strain of approximately 0.4% can be achieved in layered-perovskite Bi2WO6 thin films, where the ferroelectric polarization rotates by 90° within four in-plane preferred orientations. Phase-field simulation indicates that the energy barrier of ferroelastic switching in orthorhombic Bi2WO6 film is ten times lower than the one in PbTiO3 films, revealing the origin of the switching with negligible substrate constraint. The reversible control of the in-plane strain in this layered-perovskite thin film demonstrates a new pathway to integrate mechanical deformation with nanoscale electronic and/or magnetoelectronic applications. PMID:26838483

  9. Ferroelastic switching in a layered-perovskite thin film

    DOE PAGES

    Wang, Chuanshou; Ke, Xiaoxing; Wang, Jianjun; ...

    2016-02-03

    Here, a controllable ferroelastic switching in ferroelectric/multiferroic oxides is highly desirable due to the non-volatile strain and possible coupling between lattice and other order parameter in heterostructures. However, a substrate clamping usually inhibits their elastic deformation in thin films without micro/nano-patterned structure so that the integration of the non-volatile strain with thin film devices is challenging. Here, we report that reversible in-plane elastic switching with a non-volatile strain of approximately 0.4% can be achieved in layered-perovskite Bi 2WO 6 thin films, where the ferroelectric polarization rotates by 90° within four in-plane preferred orientations. Phase-field simulation indicates that the energy barriermore » of ferroelastic switching in orthorhombic Bi 2WO 6 film is ten times lower than the one in PbTiO 3 films, revealing the origin of the switching with negligible substrate constraint. The reversible control of the in-plane strain in this layered-perovskite thin film demonstrates a new pathway to integrate mechanical deformation with nanoscale electronic and/or magnetoelectronic applications.« less

  10. Surface passivation investigation on ultra-thin atomic layer deposited aluminum oxide layers for their potential application to form tunnel layer passivated contacts

    NASA Astrophysics Data System (ADS)

    Xin, Zheng; Ling, Zhi Peng; Nandakumar, Naomi; Kaur, Gurleen; Ke, Cangming; Liao, Baochen; Aberle, Armin G.; Stangl, Rolf

    2017-08-01

    The surface passivation performance of atomic layer deposited ultra-thin aluminium oxide layers with different thickness in the tunnel layer regime, i.e., ranging from one atomic cycle (∼0.13 nm) to 11 atomic cycles (∼1.5 nm) on n-type silicon wafers is studied. The effect of thickness and thermal activation on passivation performance is investigated with corona-voltage metrology to measure the interface defect density D it(E) and the total interface charge Q tot. Furthermore, the bonding configuration variation of the AlO x films under various post-deposition thermal activation conditions is analyzed by Fourier transform infrared spectroscopy. Additionally, poly(3,4-ethylenedioxythiophene) poly(styrene sulfonate) is used as capping layer on ultra-thin AlO x tunneling layers to further reduce the surface recombination current density to values as low as 42 fA/cm2. This work is a useful reference for using ultra-thin ALD AlO x layers as tunnel layers in order to form hole selective passivated contacts for silicon solar cells.

  11. Patterning layer-by-layer self-assembled multilayer by lithography and its applications to thin film devices

    NASA Astrophysics Data System (ADS)

    Hua, Feng

    Nanoparticles are exciting materials because they exhibit unique electronic, catalytic, and optical properties. As a novel and promising nanobuilding block, it attracts considerable research efforts in its integration into a wide variety of thin film devices. Nanoparticles were adsorbed onto the substrate with layer-by-layer self-assembly which becomes of great interest due to its suitability in colloid particle assembly. Without extremely high temperatures and sophisticated equipment, molecularly organized films in an exactly pre-designed order can grow on almost all the substrates in nature. Two approaches generating spatially separated patterns comprised of nanoparticles are demonstrated, as well as two approaches patterning more than one type of nonoparticle on a silicon wafer. The structure of the thin film patterned by these approaches are analyzed and considered suitable to the thin film device. Finally, the combination of lithography and layer-by-layer (lbl) self-assembly is utilized to realize the microelectronic device with functional nonoparticles. The lbl self-assembly is the way to coat the nonoparticles and the lighography to pattern them. Based on the coating and patterning technique, a MOS-capacitor, a MOS field-effect-transistor and magnetic thin film cantilever are fabricated.

  12. Patch testing with thin-layer chromatograms of chamomile tea in patients allergic to sesquiterpene lactones.

    PubMed

    Lundh, Kerstin; Gruvberger, Birgitta; Möller, Halvor; Persson, Lena; Hindsén, Monica; Zimerson, Erik; Svensson, Ake; Bruze, Magnus

    2007-10-01

    Patients with contact allergy to sesquiterpene lactones (SLs) are usually hypersensitive to Asteraceae plant products such as herbal teas. The objective of this study was to show sensitizers in chamomile tea by patch testing with thin-layer chromatograms. Tea made from German chamomile was separated by thin-layer chromatography. Strips of the thin-layer chromatograms were used for patch testing SL-positive patients. 15 (43%) of 35 patients tested positively to 1 or more spots on the thin-layer chromatogram, with many individual reaction patterns. Patch testing with thin-layer chromatograms of German chamomile tea showed the presence of several allergens.

  13. Use of a thin-layer technique in thyroid fine needle aspiration.

    PubMed

    Malle, Despoina; Valeri, Rosalia-Maria; Pazaitou-Panajiotou, Kalliopi; Kiziridou, Anastasia; Vainas, Iraklis; Destouni, Charicleia

    2006-01-01

    To investigate the efficacy of the ThinPrep Processor (Cytyc Corporation, Boxborough, Massachusetts, U.S.A) in fine needle aspiration (FNA) of thyroid gland lesions. This study included 459 thyroid FNA specimens obtained from patients who came to our endocrinology department with various thyroid disorders over 3 years. The cytologic material was prepared using both the conventional and ThinPrep method in the first 2 years (285 cases), while in the last one only the ThinPrep method was used (1 74 cases). The smears were stained using a modified Papanicolaou procedure and May-Grünwald-Giemsa stain. Immunocytochemistry was performed on thin-layer slides using specific monoclonal antibodies when needed. Thin-layer and direct smear diagnoses were compared with the final cytologic or histologic diagnoses, when available. Our cases included 279 adenomatoid nodules, 15 cases of Hashimoto thyroiditis, 45 follicular neoplasms, 14 Hürthle cell tumors, 58 papillary carcinomas and 1 5 anaplastic carcinomas. Thin-layer preparations showed a trend toward a lower proportion of inadequate specimens and a lower false negative rate. Cytomorphologic features showed some differences between the 2 methods. Colloid was less frequently observed on ThinPrep slides, while nuclear detail and micronucleoli were more easily detected with this technique. Moreover, ThinPrep appeared to be the appropriate method for the use of ancillary techniques in suspicious cases. Thin-layer cytology improves the diagnostic accuracy of thyroid FNA and offers the possibility of performing new techniques, such as immunocytochemistry, on the same sample in order to detect malignancy as well as the type and origin of thyroid gland neoplasms.

  14. Thin Carbon Layers on Nanostructured Silicon-Properties and Applications

    NASA Astrophysics Data System (ADS)

    Angelescu, Anca; Kleps, Irina; Miu, Mihaela; Simion, Monica; Bragaru, Adina; Petrescu, Stefana; Paduraru, Crina; Raducanu, Aurelia

    Thin carbon layers such as silicon carbide (SiC) and diamond like carbon (DLC) layers on silicon, or on nanostructured silicon substrats were obtained by different methods. This paper is a review of our results in the areas of carbon layer microfabrication technologies and their properties related to different microsystem apllications. So, silicon membranes using a-SiC or DLC layers as etching mask, as well as silicon carbide membranes using a combined porous silicon — DLC structure were fabricated for sensor applications. A detailed evaluation of the field emission (FE) properties of these films was done to demonstrate their capability to be used in field emission devices. Carbon thin layers on nanostructured silicon samples were also investigated with respect to the living cell adhesion on these structures. The experiments indicate that the cell attachment on the surface of carbon coatings can be controlled by deposition parameters during the technological process.

  15. Photoluminescence-based quality control for thin film absorber layers of photovoltaic devices

    DOEpatents

    Repins, Ingrid L.; Kuciauskas, Darius

    2015-07-07

    A time-resolved photoluminescence-based system providing quality control during manufacture of thin film absorber layers for photovoltaic devices. The system includes a laser generating excitation beams and an optical fiber with an end used both for directing each excitation beam onto a thin film absorber layer and for collecting photoluminescence from the absorber layer. The system includes a processor determining a quality control parameter such as minority carrier lifetime of the thin film absorber layer based on the collected photoluminescence. In some implementations, the laser is a low power, pulsed diode laser having photon energy at least great enough to excite electron hole pairs in the thin film absorber layer. The scattered light may be filterable from the collected photoluminescence, and the system may include a dichroic beam splitter and a filter that transmit the photoluminescence and remove scattered laser light prior to delivery to a photodetector and a digital oscilloscope.

  16. Saturn meteorology - A diagnostic assessment of thin-layer configurations for the zonal flow

    NASA Technical Reports Server (NTRS)

    Allison, M.; Stone, P. H.

    1983-01-01

    Voyager imaging, infrared, and radio observations for Saturn have been recently interpreted by Smith et al. (1982) as an indication that the jet streams observed at the cloud tops extend to depths greater than the 10,000-bar level. This analysis assumes a maximum latitudinal temperature contrast of a few percent, a mean atmospheric rotation rate at depth given by Saturn's ratio period, and no variation with latitude of the bottom pressure level for the zonal flow system. These assumptions are not, however, firmly constrained by observation. The diagnostic analysis of plausible alternative configurations for Saturn's atmospheric structure demonstrates that a thin weather layer system (confined at mid to high latitudes to levels above 200 bar) cannot be excluded by any of the available observations. A quantitative estimate of the effects of moisture condensation (including the differentiation of mean molecular weight) suggests that these might provide the buoyancy contrasts necessary to support a thin-layer flow provided that Saturn's outer envelope is enriched approximately 10 times in water abundance relative to a solar composition atmosphere and strongly differentiated with latitude at the condensation level.

  17. Critical Transitions in Thin Layer Turbulence

    NASA Astrophysics Data System (ADS)

    Benavides, Santiago; Alexakis, Alexandros

    2017-11-01

    We investigate a model of thin layer turbulence that follows the evolution of the two-dimensional motions u2 D (x , y) along the horizontal directions (x , y) coupled to a single Fourier mode along the vertical direction (z) of the form uq (x , y , z) = [vx (x , y) sin (qz) ,vy (x , y) sin (qz) ,vz (x , y) cos (qz) ] , reducing thus the system to two coupled, two-dimensional equations. Its reduced dimensionality allows a thorough investigation of the transition from a forward to an inverse cascade of energy as the thickness of the layer H = π / q is varied.Starting from a thick layer and reducing its thickness it is shown that two critical heights are met (i) one for which the forward unidirectional cascade (similar to three-dimensional turbulence) transitions to a bidirectional cascade transferring energy to both small and large scales and (ii) one for which the bidirectional cascade transitions to a unidirectional inverse cascade when the layer becomes very thin (similar to two-dimensional turbulence). The two critical heights are shown to have different properties close to criticality that we are able to analyze with numerical simulations for a wide range of Reynolds numbers and aspect ratios. This work was Granted access to the HPC resources of MesoPSL financed by the Region Ile de France and the project Equip@Meso (reference ANR-10-EQPX-29-01).

  18. Effect of thin oxide layers incorporated in spin valve structures

    NASA Astrophysics Data System (ADS)

    Gillies, M. F.; Kuiper, A. E. T.; Leibbrandt, G. W. R.

    2001-06-01

    The enhancement of the magnetoresistance effect, induced by incorporating nano-oxide layers (NOLs) in a bottom-type spin valve, was studied for various preparation conditions. The effect of a NOL in the Co90Fe10 pinned layer was found to depend critically on the oxygen pressure applied to form the thin oxide film. Pressures over 10-3 Torr O2 yield oxides thicker than about 0.7 nm, which apparently deteriorate the biasing field which exists over the oxide. The magnetoresistance values can further be raised by forming a specular reflecting oxide on top of the sense layer. Promising results were obtained with an Al2O3 capping layer formed in a solid-state oxidation reaction that occurs spontaneously when a thin Al layer is deposited on the oxidized surface of the Co90Fe10 sense layer.

  19. A model for thin layer formation by delayed particle settling at sharp density gradients

    NASA Astrophysics Data System (ADS)

    Prairie, Jennifer C.; White, Brian L.

    2017-02-01

    Thin layers - regions where plankton or particles accumulate vertically on scales of a few meters or less - are common in coastal waters, and have important implications for both trophic dynamics and carbon cycling. These features can form by a variety of biological and physical mechanisms, including localized growth, shear-thinning, and directed swimming. An additional mechanism may result in the formation of thin layers of marine aggregates, which have been shown to decrease their settling velocity when passing through sharp density gradients, a behavior termed delayed settling. Here, we apply a simple vertical advection-diffusion model to predict the properties of aggregate thin layers formed by this process. We assume a constant vertical flux of particles from the surface, which is parameterized by observations from laboratory experiments with marine aggregates. The formation, maintenance, and shape of the layers are described in relation to non-dimensional numbers that depend on environmental conditions and particle settling properties. In particular, model results demonstrate layer intensity and sharpness both increase with higher Péclet number (Pe), that is, under conditions with weaker mixing relative to layer formation. Similarly, more intense and sharper layers are found when the delayed settling behavior of aggregates is characterized by a lower velocity minimum. The model also predicts layers that are vertically asymmetric and highly "peaky" when compared with a Gaussian distribution, features often seen in thin layers in natural environments. Lastly, by comparing model predictions with observations of thin layers in the field, we are able to gain some insight into the applicability of delayed settling as a thin layer formation mechanism in different environmental conditions.

  20. Rapid thin-layer chromatographic photodensitometric method for the determination of metoclopramide and clebopride in the presence of some of their metabolic products.

    PubMed

    Huizing, G; Beckett, A H; Segura, J

    1979-04-21

    Metoclopramide and its newly developed analogue clebopride, together with some of their metabolic products are quantitated, following extraction from biological tissues and fluids, and subsequent separation on silica gel thin-layer chromatographic plates. Diazotisation, followed by coupling with N-(1-naphthyl)ethylenediammonium dichloride, carried out on the thin-layer plate, is utilised for visualisation. The intensity of the spots is measured by photodensitometric analysis. The effect of variation of various experimental conditions is studied. The method has proven to be satisfactory for the measurement of 20 ng/ml of these compounds in biological material; the results are well within the accepted limits of deviation.

  1. Fermi level de-pinning of aluminium contacts to n-type germanium using thin atomic layer deposited layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gajula, D. R., E-mail: dgajula01@qub.ac.uk; Baine, P.; Armstrong, B. M.

    Fermi-level pinning of aluminium on n-type germanium (n-Ge) was reduced by insertion of a thin interfacial dielectric by atomic layer deposition. The barrier height for aluminium contacts on n-Ge was reduced from 0.7 eV to a value of 0.28 eV for a thin Al{sub 2}O{sub 3} interfacial layer (∼2.8 nm). For diodes with an Al{sub 2}O{sub 3} interfacial layer, the contact resistance started to increase for layer thicknesses above 2.8 nm. For diodes with a HfO{sub 2} interfacial layer, the barrier height was also reduced but the contact resistance increased dramatically for layer thicknesses above 1.5 nm.

  2. Layered Organization in the Coastal Ocean: 4-D Assessment of Thin Layer Structure, Dynamics and Impacts

    DTIC Science & Technology

    2007-09-30

    For example, the differences seen between the waters off of the US Pacific Northwest and the California Bight are almost certainly a reflection of the...the Pacific Northwest were favorable for thin layer development during that study. This is even more evident in those cases where thin layers...approach during the 2005 and 2006 LOCO process study combined time series data from an array of our Ocean Response Coastal Analysis System ( ORCAS ) (Donaghay

  3. Thin Layer Drying Model of Bacterial Cellulose Film

    NASA Astrophysics Data System (ADS)

    Hadi Jatmiko, Tri; Taufika Rosyida, Vita; Wheni Indrianingsih, Anastasia; Apriyana, Wuri

    2017-12-01

    The bacterial cellulose film produced by Acetobacter xylinum using coconut water as a carbon source was dried at a temperature of 60 to 100 C. The drying process of bacterial cellulose film occur at falling rate drying period. Increasing drying temperature will shorten the drying time. The drying data fitted with thin layer drying models that widely used, Newton, Page and Henderson and Pabis models. All thin layer drying models describe the experimental data well, but Page model is better than the other models on all various temperature with coefficients of determination (R2) range from 0.9908 to 0.9979, chi square range from 0.000212 to 0.000851 and RMSE range from 0.014307 to 0.0289458.

  4. Electrochemical Atomic Layer Epitaxy of Thin Film CdSe

    NASA Astrophysics Data System (ADS)

    Pham, L.; Kaleida, K.; Happek, U.; Mathe, M. K.; Vaidyanathan, R.; Stickney, J. L.; Radevic, M.

    2002-10-01

    Electrochemical atomic layer epitaxy (EC-ALE) is a current developmental technique for the fabrication of compound semiconductor thin films. The deposition of elements making up the compound utilizes surface limited reactions where the potential is less than that required for bulk growth. This growth method offers mono-atomic layer control, allowing the deposition of superlattices with sharp interfaces. Here we report on the EC-ALE formation of CdSe thin films on Au and Cu substrates using an automated flow cell system. The band gap was measured using IR absorption and photoconductivity and found to be consistent with the literature value of 1.74 eV at 300K and 1.85 eV at 20K. The stoichiometry of the thin film was confirmed with electron microprobe analysis and x-ray diffraction.

  5. Characterization of Cu buffer layers for growth of L10-FeNi thin films

    NASA Astrophysics Data System (ADS)

    Mizuguchi, M.; Sekiya, S.; Takanashi, K.

    2010-05-01

    A Cu(001) layer was fabricated on a Au(001) layer to investigate the use of Cu as a buffer layer for growing L10-FeNi thin films. The epitaxial growth of a Cu buffer layer was observed using reflection high-energy electron diffraction. The flatness of the layer improved drastically with an increase in the substrate temperature although the layer was an alloy (AuCu3). An FeNi thin film was epitaxially grown on the AuCu3 buffer layer by alternate monatomic layer deposition and the formation of an L10-FeNi ordered alloy was expected. The AuCu3 buffer layer is thus a promising candidate material for the growth of L10-FeNi thin films.

  6. Polymer thin film as coating layer to prevent corrosion of metal/metal oxide film

    NASA Astrophysics Data System (ADS)

    Sarkar, Suman; Kundu, Sarathi

    2018-04-01

    Thin film of polymer is used as coating layer and the corrosion of metal/metal oxide layer is studied with the variation of the thickness of the coating layer. The thin layer of polystyrene is fabricated using spin coating method on copper oxide (CuO) film which is deposited on glass substrate using DC magnetron sputtering technique. Thickness of the polystyrene and the CuO layers are determined using X-ray reflectivity (XRR) technique. CuO thin films coated with the polystyrene layer are exposed to acetic acid (2.5 v/v% aqueous CH3COOH solution) environments and are subsequently analyzed using UV-Vis spectroscopy and atomic force microscopy (AFM). Surface morphology of the film before and after interaction with the acidic environment is determined using AFM. Results obtained from the XRR and UV-Vis spectroscopy confirm that the thin film of polystyrene acts as an anticorrosion coating layer and the strength of the coating depends upon the polymer layer thickness at a constant acid concentration.

  7. Fabrication of Organic Thin Film Transistors Using Layer-By-Layer Assembly (Preprint)

    DTIC Science & Technology

    2007-03-01

    thin-film transistors ( TFTs ) have received considerable attention as a low- cost, light-weight, flexible alternative to traditional amorphous silicon...Previous studies have investigated the use of a number of materials for both the active layer and the gate dielectric in various TFT architectures. These...performance. Conjugated small molecules, such as pentacene, or polymers, such as poly(3- hexylthiophene), are commonly used as the active layer in organic TFT

  8. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurhandoko, Bagus Endar B., E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com; Rock Fluid Imaging Lab., Bandung; Susilowati, E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com

    2015-04-16

    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied aboutmore » the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia.« less

  9. Layer-by-layer deposition of nanostructured CsPbBr3 perovskite thin films

    NASA Astrophysics Data System (ADS)

    Reshetnikova, A. A.; Matyushkin, L. B.; Andronov, A. A.; Sokolov, V. S.; Aleksandrova, O. A.; Moshnikov, V. A.

    2017-11-01

    Layer-by-layer deposition of nanostructured perovskites cesium lead halide thin films is described. The method of deposition is based on alternate immersion of the substrate in the precursor solutions or colloidal solution of nanocrystals and methyl acetate/lead nitrate solution using the device for deposition of films by SILAR and dip-coating techniques. An example of obtaining a photosensitive structure based on nanostructures of ZnO nanowires and layers of CsBbBr3 nanocrystals is also shown.

  10. Underpotential deposition-mediated layer-by-layer growth of thin films

    DOEpatents

    Wang, Jia Xu; Adzic, Radoslav R.

    2017-06-27

    A method of depositing contiguous, conformal submonolayer-to-multilayer thin films with atomic-level control is described. The process involves electrochemically exchanging a mediating element on a substrate with a noble metal film by alternatingly sweeping potential in forward and reverse directions for a predetermined number of times in an electrochemical cell. By cycling the applied voltage between the bulk deposition potential for the mediating element and the material to be deposited, repeated desorption/adsorption of the mediating element during each potential cycle can be used to precisely control film growth on a layer-by-layer basis.

  11. Evaluation of double-layer density modulated Si thin films as Li-ion battery anodes

    NASA Astrophysics Data System (ADS)

    Taha Demirkan, Muhammed; Yurukcu, Mesut; Dursun, Burcu; Demir-Cakan, Rezan; Karabacak, Tansel

    2017-10-01

    Double-layer density modulated silicon thin films which contain alternating low and high density Si film layers were fabricated by magnetron sputtering. Two different samples consisting of alternating layers of high-density/low-density and low-density/high-density Si thin film layers were investigated as anode electrodes in Li-ion batteries. Si thin film in which the terminating layer at the top is low density Si layer-quoted as low-density/high-density film (LD/HD)- exhibits better performance than Si thin film that has high density layer at the top, -quoted as high-density/low-density (HD/LD). A highly stabilized cycling performance with the specific charge capacities of 2000 mAh g-1 at the 150th cycle at C/2 current density, and 1200 mAh g-1 at the 240th cycle at 10 C current density were observed for the LD/HD Si anode in the presence of fluoroethylene carbonate (FEC) electrolyte additive.

  12. Matching characteristics of different buffer layers with VO2 thin films

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Zhang, Dongping; Liu, Yi; Guan, Tianrui; Qin, Xiaonan; Zhong, Aihua; Cai, Xingmin; Fan, Ping; Lv, Weizhong

    2016-10-01

    VO2 thin films were fabricated by reactive DC magnetron sputtering on different buffer layers of MgF2, Al2O3 and TiO2, respectively. The crystallinity and orientation relationship, thickness of VO2 thin films, atoms vibrational modes, optical and electrical property, surface morphology of films were characterized by X-ray diffraction, Raman scattering microscopy, step profiler, spectrophotometer, four-probe technique, and scanning electron microscopy, respectively. XRD results investigated that the films have preferential crystalline planes VO2 (011). The crystallinity of VO2 films grown on TiO2 buffer layers are superior to VO2 directly deposited on soda-lime glass. The Raman bands of the VO2 films correspond to an Ag symmetry mode of VO2 (M). The sample prepared on 100nm TiO2 buffer layer appears nanorods structure, and exhibits remarkable solar energy modulation ability as high as 5.82% in full spectrum and 23% in near infrared spectrum. Cross-sectional SEM image of the thin films samples indicate that MgF2 buffer layer has clear interface with VO2 layer. But there are serious interdiffusion phenomenons between Al2O3, TiO2 buffer layer with VO2 layer.

  13. Flat-lying semiconductor-insulator interfacial layer in DNTT thin films.

    PubMed

    Jung, Min-Cherl; Leyden, Matthew R; Nikiforov, Gueorgui O; Lee, Michael V; Lee, Han-Koo; Shin, Tae Joo; Takimiya, Kazuo; Qi, Yabing

    2015-01-28

    The molecular order of organic semiconductors at the gate dielectric is the most critical factor determining carrier mobility in thin film transistors since the conducting channel forms at the dielectric interface. Despite its fundamental importance, this semiconductor-insulator interface is not well understood, primarily because it is buried within the device. We fabricated dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) thin film transistors by thermal evaporation in vacuum onto substrates held at different temperatures and systematically correlated the extracted charge mobility to the crystal grain size and crystal orientation. As a result, we identify a molecular layer of flat-lying DNTT molecules at the semiconductor-insulator interface. It is likely that such a layer might form in other material systems as well, and could be one of the factors reducing charge transport. Controlling this interfacial flat-lying layer may raise the ultimate possible device performance for thin film devices.

  14. [A thin-layer chromatography method for determining the styrene metabolites mandelic and phenylglyoxylic acid in urine].

    PubMed

    Gartzke, J; Burck, D

    1989-06-01

    A thin-layer chromatographic method is described for the determination of mandelic and phenyglyoxillic acid on silicagel (Silufol UV 254) after extraction from urine of styrene exposed workers. The quantitative determination was performed after eluting the spots. Phenylglyoxilic acid was measured at 255 nm and mandelic acid by derivative spectroscopically estimation of the .CH(OH).COOH -chromophore at 217 nm or by a three-wavelength mode, respectively. The recovery in urine was 80-104% for phenylglyoxilic acid and 99-105% for mandelic acid.

  15. Effects of different wetting layers on the growth of smooth ultra-thin silver thin films

    NASA Astrophysics Data System (ADS)

    Ni, Chuan; Shah, Piyush; Sarangan, Andrew M.

    2014-09-01

    Ultrathin silver films (thickness below 10 nm) are of great interest as optical coatings on windows and plasmonic devices. However, producing these films has been a continuing challenge because of their tendency to form clusters or islands rather than smooth contiguous thin films. In this work we have studied the effect of Cu, Ge and ZnS as wetting layers (1.0 nm) to achieve ultrasmooth thin silver films. The silver films (5 nm) were grown by RF sputter deposition on silicon and glass substrates using a few monolayers of the different wetting materials. SEM imaging was used to characterize the surface properties such as island formation and roughness. Also the optical properties were measured to identify the optical impact of the different wetting layers. Finally, a multi-layer silver based structure is designed and fabricated, and its performance is evaluated. The comparison between the samples with different wetting layers show that the designs with wetting layers which have similar optical properties to silver produce the best overall performance. In the absence of a wetting layer, the measured optical spectra show a significant departure from the model predictions, which we attribute primarily to the formation of clusters.

  16. A tri-layer thin film containing graphene oxide to protect zinc substrates from wear

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Gu, Zhengpeng; Yuan, Ningyi; Chu, Fuqiang; Cheng, Guanggui; Ding, Jianning

    2018-06-01

    Due to its excellent properties, Zn alloy is widely used in daily life. However, the poor wear-resisting properties of Zn alloys limits their application. In this paper, a tri-layer thin film consisting of 3-aminopropyltriethoxysilane (APS), graphene oxide (GO) and perfluoropolyethers (PFPE) were successfully prepared on the surface of Zn alloy to improve the wear-resisting properties. The as-prepared tri-layer thin films were characterized by atomic force microscopy, Raman spectroscopy, x-ray photoelectron spectroscopy and contact angle measurement. In addition, the tribological properties of the as-prepared tri-layer thin films were studied on a ball-on-plate tribometer and the morphologies of worn surfaces were observed using 3D noncontact interferometric microscope. Compared with the control samples, the tri-layer thin films showed excellent friction-reducing and wear-resisting properties, which was attributed to the synergistic effect of the GO as the load-carrying layer and the PFPE as the lubricating layer.

  17. Room temperature rubbing for few-layer two-dimensional thin flakes directly on flexible polymer substrates

    PubMed Central

    Yu, Yan; Jiang, Shenglin; Zhou, Wenli; Miao, Xiangshui; Zeng, Yike; Zhang, Guangzu; Liu, Sisi

    2013-01-01

    The functional layers of few-layer two-dimensional (2-D) thin flakes on flexible polymers for stretchable applications have attracted much interest. However, most fabrication methods are “indirect” processes that require transfer steps. Moreover, previously reported “transfer-free” methods are only suitable for graphene and not for other few-layer 2-D thin flakes. Here, a friction based room temperature rubbing method is proposed for fabricating different types of few-layer 2-D thin flakes (graphene, hexagonal boron nitride (h-BN), molybdenum disulphide (MoS2), and tungsten disulphide (WS2)) on flexible polymer substrates. Commercial 2-D raw materials (graphite, h-BN, MoS2, and WS2) that contain thousands of atom layers were used. After several minutes, different types of few-layer 2-D thin flakes were fabricated directly on the flexible polymer substrates by rubbing procedures at room temperature and without any transfer step. These few-layer 2-D thin flakes strongly adhere to the flexible polymer substrates. This strong adhesion is beneficial for future applications. PMID:24045289

  18. Enhanced electrical properties of dual-layer channel ZnO thin film transistors prepared by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Li, Huijin; Han, Dedong; Dong, Junchen; Yu, Wen; Liang, Yi; Luo, Zhen; Zhang, Shengdong; Zhang, Xing; Wang, Yi

    2018-05-01

    The thin film transistors (TFTs) with a dual-layer channel structure combing ZnO thin layer grown at 200 °C and ZnO film grown at 120 °C by atomic layer deposition are fabricated. The dual-layer channel TFT exhibits a low leakage current of 2.8 × 10-13 A, Ion/Ioff ratio of 3.4 × 109, saturation mobility μsat of 12 cm2 V-1 s-1, subthreshold swing (SS) of 0.25 V/decade. The SS value decreases to 0.18 V/decade after the annealing treatment in O2 due to the reduction of the trap states at the channel/dielectric interface and in the bulk channel layer. The enhanced performance obtained from the dual-layer channel TFTs is due to the ability of maintaining high mobility and suppressing the increase in the off-current at the same time.

  19. Process for forming epitaxial perovskite thin film layers using halide precursors

    DOEpatents

    Clem, Paul G.; Rodriguez, Mark A.; Voigt, James A.; Ashley, Carol S.

    2001-01-01

    A process for forming an epitaxial perovskite-phase thin film on a substrate. This thin film can act as a buffer layer between a Ni substrate and a YBa.sub.2 Cu.sub.3 O.sub.7-x superconductor layer. The process utilizes alkali or alkaline metal acetates dissolved in halogenated organic acid along with titanium isopropoxide to dip or spin-coat the substrate which is then heated to about 700.degree. C. in an inert gas atmosphere to form the epitaxial film on the substrate. The YBCO superconductor can then be deposited on the layer formed by this invention.

  20. Thin layer chromatography residue applicator sampler

    DOEpatents

    Nunes, Peter J [Danville, CA; Kelly, Fredrick R [Modesto, CA; Haas, Jeffrey S [San Ramon, CA; Andresen, Brian D [Livermore, CA

    2007-07-24

    A thin layer chromatograph residue applicator sampler. The residue applicator sampler provides for rapid analysis of samples containing high explosives, chemical warfare, and other analyses of interest under field conditions. This satisfied the need for a field-deployable, small, hand-held, all-in-one device for efficient sampling, sample dissolution, and sample application to an analytical technique. The residue applicator sampler includes a sampling sponge that is resistant to most chemicals and is fastened via a plastic handle in a hermetically sealed tube containing a known amount of solvent. Upon use, the wetted sponge is removed from the sealed tube and used as a swiping device across an environmental sample. The sponge is then replaced in the hermetically sealed tube where the sample remains contained and dissolved in the solvent. A small pipette tip is removably contained in the hermetically sealed tube. The sponge is removed and placed into the pipette tip where a squeezing-out of the dissolved sample from the sponge into the pipette tip results in a droplet captured in a vial for later instrumental analysis, or applied directly to a thin layer chromatography plate for immediate analysis.

  1. Synthesis and Characterization of Hydrophobic Silica Thin Layer Derived from Methyltrimethoxysilane (MTMS)

    NASA Astrophysics Data System (ADS)

    Darmawan, Adi; Utari, Riyadini; Eka Saputra, Riza; Suhartana; Astuti, Yayuk

    2018-01-01

    This study investigated the synthesis and characterization of MTMS hydrophobic silica prepared by sol-gel method. In principle, silica xerogels and silica thin layer were obtained by reacting MTMS in ethanol solvent in some pH variations. The MTMS solution was used to modify the surface of the ceramic plate by dipcoating method to further be calcined at two different temperatures of 350°C and 500°C. The silica xerogels were analysed by FTIR, TGA-DSC and GSA to determine functional group characteristics, thermal properties and pore morphology respectively. Meanwhile, the silica thin layers were analysed their hydrophobic properties using water contact angle measurement and surface roughness determination using SEM. The results showed that the higher the pH used in the MTMS solution, the higher the resulting contact angle. The highest contact angle was obtained at pH 8.12 which reached 94.7° and 79.5° for silica thin layer calcined at 350°C and 500°C, respectively. The TGA results indicated that the methyl group survived up to 400°C and disappeared at 500°C which had implications on silica thin layer hydrophobic nature. GSA result exhibited that the silica xerogel had a close structure with a very low pore volume. While the SEM-EDX results displayed that the silica thin layer prepared at acidic pH had smoother surface morphology and became rough when prepared at an alkaline pH.

  2. Fabrication of Crack-Free Barium Titanate Thin Film with High Dielectric Constant Using Sub-Micrometric Scale Layer-by-Layer E-Jet Deposition.

    PubMed

    Liang, Junsheng; Li, Pengfei; Wang, Dazhi; Fang, Xu; Ding, Jiahong; Wu, Junxiong; Tang, Chang

    2016-01-19

    Dense and crack-free barium titanate (BaTiO₃, BTO) thin films with a thickness of less than 4 μm were prepared by using sub-micrometric scale, layer-by-layer electrohydrodynamic jet (E-jet) deposition of the suspension ink which is composed of BTO nanopowder and BTO sol. Impacts of the jet height and line-to-line pitch of the deposition on the micro-structure of BTO thin films were investigated. Results show that crack-free BTO thin films can be prepared with 4 mm jet height and 300 μm line-to-line pitch in this work. Dielectric constant of the prepared BTO thin film was recorded as high as 2940 at 1 kHz at room temperature. Meanwhile, low dissipation factor of the BTO thin film of about 8.6% at 1 kHz was also obtained. The layer-by-layer E-jet deposition technique developed in this work has been proved to be a cost-effective, flexible and easy to control approach for the preparation of high-quality solid thin film.

  3. Fabrication of Crack-Free Barium Titanate Thin Film with High Dielectric Constant Using Sub-Micrometric Scale Layer-by-Layer E-Jet Deposition

    PubMed Central

    Liang, Junsheng; Li, Pengfei; Wang, Dazhi; Fang, Xu; Ding, Jiahong; Wu, Junxiong; Tang, Chang

    2016-01-01

    Dense and crack-free barium titanate (BaTiO3, BTO) thin films with a thickness of less than 4 μm were prepared by using sub-micrometric scale, layer-by-layer electrohydrodynamic jet (E-jet) deposition of the suspension ink which is composed of BTO nanopowder and BTO sol. Impacts of the jet height and line-to-line pitch of the deposition on the micro-structure of BTO thin films were investigated. Results show that crack-free BTO thin films can be prepared with 4 mm jet height and 300 μm line-to-line pitch in this work. Dielectric constant of the prepared BTO thin film was recorded as high as 2940 at 1 kHz at room temperature. Meanwhile, low dissipation factor of the BTO thin film of about 8.6% at 1 kHz was also obtained. The layer-by-layer E-jet deposition technique developed in this work has been proved to be a cost-effective, flexible and easy to control approach for the preparation of high-quality solid thin film. PMID:28787860

  4. Thin Layer Chromatography (TLC) of Chlorophyll Pigments.

    ERIC Educational Resources Information Center

    Foote, Jerry

    1984-01-01

    Background information, list of materials needed, procedures used, and discussion of typical results are provided for an experiment on the thin layer chromatography of chlorophyll pigments. The experiment works well in high school, since the chemicals used are the same as those used in paper chromatography of plant pigments. (JN)

  5. High-performance thin layer chromatography to assess pharmaceutical product quality.

    PubMed

    Kaale, Eliangiringa; Manyanga, Vicky; Makori, Narsis; Jenkins, David; Michael Hope, Samuel; Layloff, Thomas

    2014-06-01

    To assess the sustainability, robustness and economic advantages of high-performance thin layer chromatography (HPTLC) for quality control of pharmaceutical products. We compared three laboratories where three lots of cotrimoxazole tablets were assessed using different techniques for quantifying the active ingredient. The average assay relative standard deviation for the three lots was 1.2 with a range of 0.65-2.0. High-performance thin layer chromatography assessments are yielding valid results suitable for assessing product quality. The local pharmaceutical manufacturer had evolved the capacity to produce very high quality products. © 2014 John Wiley & Sons Ltd.

  6. Investigation of the superconducting proximity effect (SPE) and magnetic dead layers (MDL) in thin film double layers

    NASA Astrophysics Data System (ADS)

    Tateishi, Go

    When a thin superconducting film (S film) is condensed onto a thin normal conducting film (N film), the first layers of the S film loose their superconductivity. This phenomenon is generally called the "superconducting proximity effect (SPE)". As an investigation of SPE we focus on the transition temperature of extremely thin NS double layers in the thin regime. Normal metal is condensed on top of insulating Sb, then Pb is deposited on it in small steps. The transition temperature is plotted in an inverse Tc-reduction 1/Delta T c =1/(Ts - Tc) versus Pb thickness graph. To compare our experimental results with the theoretical prediction, a numerical calculation of the SN double layer is performed by our group using the linear gap equation. As a result, there are large discrepancies between the experimental and theoretical results generally. The results of the NS double layers can be divided into three groups in terms of their discrepancies between experiment and theory.(1) Non-coupling (Tc = 0 K): N= Mg, Ag, Cu, Au. There are large deviations between experiment and theory by a factor to the order of 2.5. (2) Weak coupling (Tc is low (< 2.5 K)) : N=Cd, Zn, Al. Deviation is present, but only by a factor of 1.5. (3) Intermediate coupling (T c is around half of Pb's (≈ 4.5 K)) : N=In, Sn. The experimental results agree with the theory. Next, we examine the detection of the magnetic dead layer (MDL) of Ni thin films in terms of the anomalous Hall effect (AHE) with several non-magnetic metal substrates. In our results, when Ni film is contact with a polyvalent metal substrate film, the sandwich film has around 2 to 3.5 at.lay. of magnetic dead layers. However we have not observed the magnetic dead Ni layers with the alkali and noble metal substrate film. Finally, we revisit the Pb/Ni system to measure the magnetic scattering of Ni with the method of Weak Localization (WL) to compare with the dephasing rate due to the Tc-reduction. In this series, we use only very thin

  7. Thin layer drying of cassava starch using continuous vibrated fluidized bed dryer

    NASA Astrophysics Data System (ADS)

    Suherman, Trisnaningtyas, Rona

    2015-12-01

    This paper present the experimental work and thin layer modelling of cassava starch drying in continuous vibrated fluidized bed dryer. The experimental data was used to validate nine thin layer models of drying curve. Cassava starch with 0.21 initial moisture content was dried in different air drying temperature (50°C, 55°C, 60°C, 65°C, 70°C), different weir height in bed (0 and 1 cm), and different solid feed flow (10 and 30 gr.minute-1). The result showed air dryer temperature has a significant effect on drying curve, while the weir height and solid flow rate are slightly. Based on value of R2, χ2, and RMSE, Page Model is the most accurate simulation for thin layer drying model of cassava starch.

  8. Underpotential deposition-mediated layer-by-layer growth of thin films

    DOEpatents

    Wang, Jia Xu; Adzic, Radoslav R.

    2015-05-19

    A method of depositing contiguous, conformal submonolayer-to-multilayer thin films with atomic-level control is described. The process involves the use of underpotential deposition of a first element to mediate the growth of a second material by overpotential deposition. Deposition occurs between a potential positive to the bulk deposition potential for the mediating element where a full monolayer of mediating element forms, and a potential which is less than, or only slightly greater than, the bulk deposition potential of the material to be deposited. By cycling the applied voltage between the bulk deposition potential for the mediating element and the material to be deposited, repeated desorption/adsorption of the mediating element during each potential cycle can be used to precisely control film growth on a layer-by-layer basis. This process is especially suitable for the formation of a catalytically active layer on core-shell particles for use in energy conversion devices such as fuel cells.

  9. Disruption of vertical motility by shear triggers formation of thin phytoplankton layers.

    PubMed

    Durham, William M; Kessler, John O; Stocker, Roman

    2009-02-20

    Thin layers of phytoplankton are important hotspots of ecological activity that are found in the coastal ocean, meters beneath the surface, and contain cell concentrations up to two orders of magnitude above ambient concentrations. Current interpretations of their formation favor abiotic processes, yet many phytoplankton species found in these layers are motile. We demonstrated that layers formed when the vertical migration of phytoplankton was disrupted by hydrodynamic shear. This mechanism, which we call gyrotactic trapping, can be responsible for the thin layers of phytoplankton commonly observed in the ocean. These results reveal that the coupling between active microorganism motility and ambient fluid motion can shape the macroscopic features of the marine ecological landscape.

  10. Application of thin-layer Navier-Stokes equations near maximum lift

    NASA Technical Reports Server (NTRS)

    Anderson, W. K.; Thomas, J. L.; Rumsey, C. L.

    1984-01-01

    The flowfield about a NACA 0012 airfoil at a Mach number of 0.3 and Reynolds number of 1 million is computed through an angle of attack range, up to 18 deg, corresponding to conditions up to and beyond the maximum lift coefficient. Results obtained using the compressible thin-layer Navier-Stokes equations are presented as well as results from the compressible Euler equations with and without a viscous coupling procedure. The applicability of each code is assessed and many thin-layer Navier-Stokes benchmark solutions are obtained which can be used for comparison with other codes intended for use at high angles of attack. Reasonable agreement of the Navier-Stokes code with experiment and the viscous-inviscid interaction code is obtained at moderate angles of attack. An unsteady solution is obtained with the thin-layer Navier-Stokes code at the highest angle of attack considered. The maximum lift coefficient is overpredicted, however, in comparison to experimental data, which is attributed to the presence of a laminar separation bubble near the leading edge not modeled in the computations. Two comparisons with experimental data are also presented at a higher Mach number.

  11. Breakthrough to Non-Vacuum Deposition of Single-Crystal, Ultra-Thin, Homogeneous Nanoparticle Layers: A Better Alternative to Chemical Bath Deposition and Atomic Layer Deposition

    PubMed Central

    Liao, Yu-Kuang; Liu, Yung-Tsung; Hsieh, Dan-Hua; Shen, Tien-Lin; Hsieh, Ming-Yang; Tzou, An-Jye; Chen, Shih-Chen; Tsai, Yu-Lin; Lin, Wei-Sheng; Chan, Sheng-Wen; Shen, Yen-Ping; Cheng, Shun-Jen; Chen, Chyong-Hua; Wu, Kaung-Hsiung; Chen, Hao-Ming; Kuo, Shou-Yi; Charlton, Martin D. B.; Hsieh, Tung-Po; Kuo, Hao-Chung

    2017-01-01

    Most thin-film techniques require a multiple vacuum process, and cannot produce high-coverage continuous thin films with the thickness of a few nanometers on rough surfaces. We present a new ”paradigm shift” non-vacuum process to deposit high-quality, ultra-thin, single-crystal layers of coalesced sulfide nanoparticles (NPs) with controllable thickness down to a few nanometers, based on thermal decomposition. This provides high-coverage, homogeneous thickness, and large-area deposition over a rough surface, with little material loss or liquid chemical waste, and deposition rates of 10 nm/min. This technique can potentially replace conventional thin-film deposition methods, such as atomic layer deposition (ALD) and chemical bath deposition (CBD) as used by the Cu(In,Ga)Se2 (CIGS) thin-film solar cell industry for decades. We demonstrate 32% improvement of CIGS thin-film solar cell efficiency in comparison to reference devices prepared by conventional CBD deposition method by depositing the ZnS NPs buffer layer using the new process. The new ZnS NPs layer allows reduction of an intrinsic ZnO layer, which can lead to severe shunt leakage in case of a CBD buffer layer. This leads to a 65% relative efficiency increase. PMID:28383488

  12. Atomically thin transition metal layers: Atomic layer stabilization and metal-semiconductor transition

    NASA Astrophysics Data System (ADS)

    Hwang, Jeongwoon; Oh, Young Jun; Kim, Jiyoung; Sung, Myung Mo; Cho, Kyeongjae

    2018-04-01

    We have performed first-principle calculations to explore the possibility of synthesizing atomically thin transition metal (TM) layers. Buckled structures as well as planar structures of elemental 2D TM layers result in significantly higher formation energies compared with sp-bonded elemental 2D materials with similar structures, such as silicene and phosphorene. It is shown that the TM layers can be stabilized by surface passivation with HS, C6H5S2, or O, and O passivation is most effective. The surface oxygen passivation can improve stability leading to thermodynamically stable TM monolayers except Au, which is the most non-reactive metal element. Such stabilized TM monolayers also show an electronic structure transition from metallic state of free-standing TM layer to semiconducting O-passivated Mo and W monolayers with band gaps of 0.20-1.38 eV.

  13. Highway pavement performance test for colored thin anti-skidding layers

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Cui, Wei; Xu, Ming

    2018-03-01

    Based on the actual service condition of highway pavement colored thin anti-skidding layers, with materials of color quartz sand and two-component acrylic resin as basis, we designed such tests as the bond strength, shearing strength, tear strength, fatigue performance and aggregate polished value, and included the freeze-thaw cycle and de-icing salt and other factors in the experiment, connecting with the climate characteristics of circumpolar latitude and low altitude in Heilongjiang province. Through the pavement performance test, it is confirmed that the colored thin anti-skidding layers can adapt to cold and humid climate conditions, and its physical mechanical properties are good.

  14. Optical Properties of Hybrid Inorganic/Organic Thin Film Encapsulation Layers for Flexible Top-Emission Organic Light-Emitting Diodes.

    PubMed

    An, Jae Seok; Jang, Ha Jun; Park, Cheol Young; Youn, Hongseok; Lee, Jong Ho; Heo, Gi-Seok; Choi, Bum Ho; Lee, Choong Hun

    2015-10-01

    Inorganic/organic hybrid thin film encapsulation layers consist of a thin Al2O3 layer together with polymer material. We have investigated optical properties of thin film encapsulation layers for top-emission flexible organic light-emitting diodes. The transmittance of hybrid thin film encapsulation layers and the electroluminescent spectrum of organic light-emitting diodes that were passivated by hybrid organic/inorganic thin film encapsulation layers were also examined as a function of the thickness of inorganic Al203 and monomer layers. The number of interference peaks, their intensity, and their positions in the visible range can be controlled by varying the thickness of inorganic Al2O3 layer. On the other hand, changing the thickness of monomer layer had a negligible effect on the optical properties. We also verified that there is a trade-off between transparency in the visible range and the permeation of water vapor in hybrid thin film encapsulation layers. As the number of dyads decreased, optical transparency improved while the water vapor permeation barrier was degraded. Our study suggests that, in top-emission organic light-emitting diodes, the thickness of each thin film encapsulation layer, in particular that of the inorganic layer, and the number of dyads should be controlled for highly efficient top-emission flexible organic light-emitting diodes.

  15. Ultrasonic measurements of thin zinc layers on concrete

    NASA Astrophysics Data System (ADS)

    Jansen, Henri; Brooks, Bill; Nguyen, Vinh; Koretsky, Milo

    2008-05-01

    In order to protect bridges at the coast from corrosion, a thin layer (approximately 0.5 mm) of zinc is sprayed on the concrete of the bridge. When this zinc layer is electrically connected to the reinforcing steel (rebar) and placed at a positive potential with respect to the rebar, oxidation is favored at the zinc layer and reduced at the rebar. The resulting protection of the rebar fails when the zinc layer delaminates from the concrete or when the zinc oxidation product layer becomes too thick. We have used ultrasonic detection to investigate the properties of the zinc layer. This method has been applied very successfully in the semiconductor industry. We present the details of the method and the expected response. Unfortunately, we are not able to measure changes in the zinc layer, because either the frequency we use (10-20 MHz) is too low, or scattering in the concrete is a dominant effect.

  16. Quantitative determination of triterpenes from Amphiptherygium adstringens by liquid chromatography and thin-layer chromatography and morphological analysis of cuachalalate preparations.

    PubMed

    Navarrete, Andres; Avula, Bharathi; Joshi, Vaishali C; Ji, Xiuhong; Hersh, Paul; Khan, Ikhlas A

    2006-01-01

    Amphiptherygium adstringens (Anacardiaceae/Julianaceae), local name "cuachalalate," is used in folk medicine for the treatment of cholelithiasis, fevers, fresh wounds, hypercholesterolemia, gastritis, gastric ulcers, and cancer of the gastrointestinal tract. The development of column high-performance liquid chromatography-photodiode array detector (LC-PDA) and high-performance thin-layer chromatography (HPTLC)-densitometry methods for the determination of masticadienonic acid and 3-hydroxymasticadienonic acid in cuachalalate preparations is described in this paper. Good separation of the compounds could be achieved by both methods. Either might be preparable depending on the requirements. The LC separation was performed on a Phenomenex Synergi MAX-RP 80A reversed-phase column operated at 40 degrees C with detection at 215 nm. The plant materials were extracted with methanol by sonication. The triterpenes present in the plant material and commercial extracts were separated with an acetonitrile-water reagent alcohol isocratic system. The limit of detection was 0.1-0.2 microg/mL. The relative standard deviation values for the determination of triterpenes in plant extracts were less than 1.00%. This is the first report of an analytical method developed for the quantitative analysis of triterpenes from Amphiptherygium adstringens by LC-PDA and HPTLC. The stem bark showed higher amounts of triterpenes, and low amounts in root and stem root. The microscopic description of the crude drug of cuachalalate was also provided.

  17. Characterization of Softmagnetic Thin Layers Using Barkhausen Noise Microscopy

    DTIC Science & Technology

    2001-04-01

    magnetoresistive (MR) sensors softmagnetic thin layer systems are used. Optimal performance of these layers requires homogeneous magnetic properties , especially a...Sendust, used in inductive sensors and nanocrystalline NiFe , used in MR-sensors. In quality correlations to Barkhausen noise parameters were found...Brillouin scattering are frequently used. An important issue is the influence of mechanical properties , e.g. residual stress on the magnetic performance

  18. Thin film solar cell including a spatially modulated intrinsic layer

    DOEpatents

    Guha, Subhendu; Yang, Chi-Chung; Ovshinsky, Stanford R.

    1989-03-28

    One or more thin film solar cells in which the intrinsic layer of substantially amorphous semiconductor alloy material thereof includes at least a first band gap portion and a narrower band gap portion. The band gap of the intrinsic layer is spatially graded through a portion of the bulk thickness, said graded portion including a region removed from the intrinsic layer-dopant layer interfaces. The band gap of the intrinsic layer is always less than the band gap of the doped layers. The gradation of the intrinsic layer is effected such that the open circuit voltage and/or the fill factor of the one or plural solar cell structure is enhanced.

  19. Analysis of layer-by-layer thin-film oxide growth using RHEED and Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Adler, Eli; Sullivan, M. C.; Gutierrez-Llorente, Araceli; Joress, H.; Woll, A.; Brock, J. D.

    2015-03-01

    Reflection high energy electron diffraction (RHEED) is commonly used as an in situ analysis tool for layer-by-layer thin-film growth. Atomic force microscopy is an equally common ex situ tool for analysis of the film surface, providing visual evidence of the surface morphology. During growth, the RHEED intensity oscillates as the film surface changes in roughness. It is often assumed that the maxima of the RHEED oscillations signify a complete layer, however, the oscillations in oxide systems can be misleading. Thus, using only the RHEED maxima is insufficient. X-ray reflectivity can also be used to analyze growth, as the intensity oscillates in phase with the smoothness of the surface. Using x-ray reflectivity to determine the thin film layer deposition, we grew three films where the x-ray and RHEED oscillations were nearly exactly out of phase and halted deposition at different points in the growth. Pre-growth and post-growth AFM images emphasize the fact that the maxima in RHEED are not a justification for determining layer completion. Work conducted at the Cornell High Energy Synchrotron Source (CHESS) supported by NSF Awards DMR-1332208 and DMR-0936384 and the Cornell Center for Materials Research Shared Facilities are supported through DMR-1120296.

  20. Quantitative analysis of psilocybin and psilocin in psilocybe baeocystis (Singer and Smith) by high-performance liquid chromatography and by thin-layer chromatography.

    PubMed

    Beug, M W; Bigwood, J

    1981-03-27

    Rapid quantification of psilocybin and psilocin in extracts of wild mushrooms is accomplished by reversed-phase high-performance liquid chromatography with paired-ion reagents. Nine solvent systems and three solid supports are evaluated for their efficiency in separating psilocybin, psilocin and other components of crude mushroom extracts by thin-layer chromatography.

  1. Developments of the Physical and Electrical Properties of NiCr and NiCrSi Single-Layer and Bi-Layer Nano-Scale Thin-Film Resistors.

    PubMed

    Cheng, Huan-Yi; Chen, Ying-Chung; Li, Chi-Lun; Li, Pei-Jou; Houng, Mau-Phon; Yang, Cheng-Fu

    2016-02-25

    In this study, commercial-grade NiCr (80 wt % Ni, 20 wt % Cr) and NiCrSi (55 wt % Ni, 40 wt % Cr, 5 wt % Si) were used as targets and the sputtering method was used to deposit NiCr and NiCrSi thin films on Al₂O₃ and Si substrates at room temperature under different deposition time. X-ray diffraction patterns showed that the NiCr and NiCrSi thin films were amorphous phase, and the field-effect scanning electronic microscope observations showed that only nano-crystalline grains were revealed on the surfaces of the NiCr and NiCrSi thin films. The log (resistivity) values of the NiCr and NiCrSi thin-film resistors decreased approximately linearly as their thicknesses increased. We found that the value of temperature coefficient of resistance (TCR value) of the NiCr thin-film resistors was positive and that of the NiCrSi thin-film resistors was negative. To investigate these thin-film resistors with a low TCR value, we designed a novel bi-layer structure to fabricate the thin-film resistors via two different stacking methods. The bi-layer structures were created by depositing NiCr for 10 min as the upper (or lower) layer and depositing NiCrSi for 10, 30, or 60 min as the lower (or upper) layer. We aim to show that the stacking method had no apparent effect on the resistivity of the NiCr-NiCrSi bi-layer thin-film resistors but had large effect on the TCR value.

  2. Effect of ZnO buffer layer on phase transition properties of vanadium dioxide thin films

    NASA Astrophysics Data System (ADS)

    Zhu, Huiqun; Li, Lekang; Li, Chunbo

    2016-03-01

    VO2 thin films were prepared on ZnO buffer layers by DC magnetron sputtering at room temperature using vanadium target and post annealing at 400 °C. The ZnO buffer layers with different thickness deposited on glass substrates by magnetron sputtering have a high visible and near infrared optical transmittance. The electrical resistivity and the phase transition properties of the VO2/ZnO composite thin films in terms of temperature were investigated. The results showed that the resistivity variation of VO2 thin film with ZnO buffer layer deposited for 35 min was 16 KΩ-cm. The VO2/ZnO composite thin films exhibit a reversible semiconductor-metal phase transition at 48 °C.

  3. Exhaustive thin-layer cyclic voltammetry for absolute multianalyte halide detection.

    PubMed

    Cuartero, Maria; Crespo, Gastón A; Ghahraman Afshar, Majid; Bakker, Eric

    2014-11-18

    Water analysis is one of the greatest challenges in the field of environmental analysis. In particular, seawater analysis is often difficult because a large amount of NaCl may mask the determination of other ions, i.e., nutrients, halides, and carbonate species. We demonstrate here the use of thin-layer samples controlled by cyclic voltammetry to analyze water samples for chloride, bromide, and iodide. The fabrication of a microfluidic electrochemical cell based on a Ag/AgX wire (working electrode) inserted into a tubular Nafion membrane is described, which confines the sample solution layer to less than 15 μm. By increasing the applied potential, halide ions present in the thin-layer sample (X(-)) are electrodeposited on the working electrode as AgX, while their respective counterions are transported across the perm-selective membrane to an outer solution. Thin-layer cyclic voltammetry allows us to obtain separated peaks in mixed samples of these three halides, finding a linear relationship between the halide concentration and the corresponding peak area from about 10(-5) to 0.1 M for bromide and iodide and from 10(-4) to 0.6 M for chloride. This technique was successfully applied for the halide analysis in tap, mineral, and river water as well as seawater. The proposed methodology is absolute and potentially calibration-free, as evidenced by an observed 2.5% RSD cell to cell reproducibility and independence from the operating temperature.

  4. Ultra-thin, single-layer polarization rotator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Son, T. V.; Truong, V. V., E-mail: Truong.Vo-Van@Concordia.Ca; Do, P. A.

    We demonstrate light polarization control over a broad spectral range by a uniform layer of vanadium dioxide as it undergoes a phase transition from insulator to metal. Changes in refractive indices create unequal phase shifts on s- and p-polarization components of incident light, and rotation of linear polarization shows intensity modulation by a factor of 10{sup 3} when transmitted through polarizers. This makes possible polarization rotation devices as thin as 50 nm that would be activated thermally, optically or electrically.

  5. Thin layered drawing media probed by THz time-domain spectroscopy.

    PubMed

    Tasseva, J; Taschin, A; Bartolini, P; Striova, J; Fontana, R; Torre, R

    2016-12-19

    Dry and wet drawing materials were investigated by THz time-domain spectroscopy in transmission mode. Carbon-based and iron-gall inks have been studied, some prepared following ancient recipes and others using current synthetic materials; a commercial ink was studied as well. We measured the THz signals on the thin films of liquid inks deposited on polyethylene pellicles, comparing the results with the thick pellets of dried inks blended with polyethylene powder. This study required the implementation of an accurate experimental method and data analysis procedure able to provide a reliable extraction of the material transmission parameters from a structured sample composed of thin layers, down to a thickness of a few tens of micrometers. THz measurements on thin ink layers enabled the determination of both the absorption and the refractive index in an absolute scale in the 0.1-3 THz range, as well as the layer thickness. THz spectroscopic features of a paper sheet dyed by using one of the iron-gall inks were also investigated. Our results showed that THz time-domain spectroscopy enables the discrimination of various inks on different supports, including the application on paper, together with the proper determination of the absorption coefficients and indices of refraction.

  6. Optical bandgap of single- and multi-layered amorphous germanium ultra-thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Pei; Zaslavsky, Alexander; Longo, Paolo

    2016-01-07

    Accurate optical methods are required to determine the energy bandgap of amorphous semiconductors and elucidate the role of quantum confinement in nanometer-scale, ultra-thin absorbing layers. Here, we provide a critical comparison between well-established methods that are generally employed to determine the optical bandgap of thin-film amorphous semiconductors, starting from normal-incidence reflectance and transmittance measurements. First, we demonstrate that a more accurate estimate of the optical bandgap can be achieved by using a multiple-reflection interference model. We show that this model generates more reliable results compared to the widely accepted single-pass absorption method. Second, we compare two most representative methods (Taucmore » and Cody plots) that are extensively used to determine the optical bandgap of thin-film amorphous semiconductors starting from the extracted absorption coefficient. Analysis of the experimental absorption data acquired for ultra-thin amorphous germanium (a-Ge) layers demonstrates that the Cody model is able to provide a less ambiguous energy bandgap value. Finally, we apply our proposed method to experimentally determine the optical bandgap of a-Ge/SiO{sub 2} superlattices with single and multiple a-Ge layers down to 2 nm thickness.« less

  7. Initial formation of calcite crystals in the thin prismatic layer with the periostracum of Pinctada fucata.

    PubMed

    Suzuki, Michio; Nakayama, Seiji; Nagasawa, Hiromichi; Kogure, Toshihiro

    2013-02-01

    Although the formation mechanism of calcite crystals in the prismatic layer has been studied well in many previous works, the initial state of calcite formation has not been observed in detail using electron microscopes. In this study, we report that the soft prismatic layer with transparent color (the thin prismatic layer) in the tip of the fresh shell of Pinctada fucata was picked up to observe the early calcification phase. A scanning electron microscope (SEM) image showed that the growth tip of the thin prismatic layer was covered by the periostracum, which was also where the initial formation of calcite crystals began. A cross-section containing the thin calcite crystals in the thin prismatic layer with the periostracum was made using a focused ion beam (FIB) system. In a transmission electron microscope (TEM) observation, the thin calcite crystal (thickness is about 1μm) on the periostracum was found to be a single crystal with the c-axis oriented perpendicular to the shell surface. On the other hand, many aggregated small particles consisting of bassanite crystals were observed in the periostracum suggesting the possibility that not only organic sulfate but also inorganic sulfates exist in the prismatic layer. These discoveries in the early calcification phase of the thin prismatic layer may help to clarify the mechanism of regulating the nucleation and orientation of the calcite crystal in the shell. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. System and Method for Fabricating Super Conducting Circuitry on Both Sides of an Ultra-Thin Layer

    NASA Technical Reports Server (NTRS)

    Brown, Ari D. (Inventor); Mikula, Vilem (Inventor)

    2017-01-01

    A method of fabricating circuitry in a wafer includes depositing a superconducting metal on a silicon on insulator wafer having a handle wafer, coating the wafer with a sacrificial layer and bonding the wafer to a thermally oxide silicon wafer with a first epoxy. The method includes flipping the wafer, thinning the flipped wafer by removing a handle wafer, etching a buried oxide layer, depositing a superconducting layer, bonding the wafer to a thermally oxidized silicon wafer having a handle wafer using an epoxy, flipping the wafer again, thinning the flipped wafer, etching a buried oxide layer from the wafer and etching the sacrificial layer from the wafer. The result is a wafer having superconductive circuitry on both sides of an ultra-thin silicon layer.

  9. Developments of the Physical and Electrical Properties of NiCr and NiCrSi Single-Layer and Bi-Layer Nano-Scale Thin-Film Resistors

    PubMed Central

    Cheng, Huan-Yi; Chen, Ying-Chung; Li, Chi-Lun; Li, Pei-Jou; Houng, Mau-Phon; Yang, Cheng-Fu

    2016-01-01

    In this study, commercial-grade NiCr (80 wt % Ni, 20 wt % Cr) and NiCrSi (55 wt % Ni, 40 wt % Cr, 5 wt % Si) were used as targets and the sputtering method was used to deposit NiCr and NiCrSi thin films on Al2O3 and Si substrates at room temperature under different deposition time. X-ray diffraction patterns showed that the NiCr and NiCrSi thin films were amorphous phase, and the field-effect scanning electronic microscope observations showed that only nano-crystalline grains were revealed on the surfaces of the NiCr and NiCrSi thin films. The log (resistivity) values of the NiCr and NiCrSi thin-film resistors decreased approximately linearly as their thicknesses increased. We found that the value of temperature coefficient of resistance (TCR value) of the NiCr thin-film resistors was positive and that of the NiCrSi thin-film resistors was negative. To investigate these thin-film resistors with a low TCR value, we designed a novel bi-layer structure to fabricate the thin-film resistors via two different stacking methods. The bi-layer structures were created by depositing NiCr for 10 min as the upper (or lower) layer and depositing NiCrSi for 10, 30, or 60 min as the lower (or upper) layer. We aim to show that the stacking method had no apparent effect on the resistivity of the NiCr-NiCrSi bi-layer thin-film resistors but had large effect on the TCR value. PMID:28344296

  10. The effects of layering in ferroelectric Si-doped HfO{sub 2} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lomenzo, Patrick D.; Nishida, Toshikazu, E-mail: nishida@ufl.edu; Takmeel, Qanit

    2014-08-18

    Atomic layer deposited Si-doped HfO{sub 2} thin films approximately 10 nm thick are deposited with various Si-dopant concentrations and distributions. The ferroelectric behavior of the HfO{sub 2} thin films are shown to be dependent on both the Si mol. % and the distribution of Si-dopants. Metal-ferroelectric-insulator-semiconductor capacitors are shown to exhibit a tunable remanent polarization through the adjustment of the Si-dopant distribution at a constant Si concentration. Inhomogeneous layering of Si-dopants within the thin films effectively lowers the remanent polarization. A pinched hysteresis loop is observed for higher Si-dopant concentrations and found to be dependent on the Si layering distribution.

  11. Layered ultra-thin coherent structures used as electrical resistors having low-temperature coefficient of resistivity

    DOEpatents

    Werner, T.R.; Falco, C.M.; Schuller, I.K.

    1982-08-31

    A thin film resistor having a controlled temperature coefficient of resistance (TCR) ranging from negative to positive degrees kelvin and having relatively high resistivity. The resistor is a multilayer superlattice crystal containing a plurality of alternating, ultra-thin layers of two different metals. TCR is varied by controlling the thickness of the individual layers. The resistor can be readily prepared by methods compatible with thin film circuitry manufacturing techniques.

  12. Thin layer asphaltic concrete density measuring using nuclear gages.

    DOT National Transportation Integrated Search

    1989-03-01

    A Troxler 4640 thin layer nuclear gage was evaluated under field conditions to determine if it would provide improved accuracy of density measurements on asphalt overlays of 1-3/4 and 2 inches in thickness. Statistical analysis shows slightly improve...

  13. High Performance Thin layer Chromatography: Densitometry Method for Determination of Rubraxanthone in the Stem Bark Extract of Garcinia cowa Roxb.

    PubMed

    Hamidi, Dachriyanus; Aulia, Hilyatul; Susanti, Meri

    2017-01-01

    Garcinia cowa is a medicinal plant widely grown in Southeast Asia and tropical countries. Various parts of this plant have been used in traditional folk medicine. The bark, latex, and root have been used as an antipyretic agent, while fruit and leaves have been used as an expectorant, for indigestion and improvement of blood circulation. This study aims to determine the concentration of rubraxanthone found in ethyl acetate extract of the stem bark of G. cowa by the high-performance thin-layer chromatography (HPTLC). HPTLC method was performed on precoated silica gel G 60 F254 plates using an HPTLC system with a developed mobile-phase system of chloroform: ethyl acetate: methanol: formic acid (86:6:3:5). A volume of 5 μL of standard and sample solutions was applied to the chromatographic plates. The plates were developed in saturated mode of twin trough chamber at room temperature. The method was validated based on linearity, accuracy, precision, limit of detection (LOD), limit of quantification (LOQ), and specificity. The spots were observed at ultraviolet 243 nm. The linearity of rubraxanthone was obtained between 52.5 and 157.5 ppm/spot. The LOD and LOQ were found to be 4.03 and 13.42 ppm/spot, respectively. The proposed method showed good linearity, precision, accuracy, and high sensitivity. Therefore, it may be applied for the quantification of rubraxanthone in ethyl acetate extract of the stem bark of G. cowa . High performance thin layer chromatography (HPTLC) method provides rapid qualitative and quantitative estimation of rubraxanthone as a marker com¬pound in G. cowa extract used for commercial productRubraxanthone found in ethyl acetate extracts of G. cowa was successfully quantified using HPTLC method. Abbreviations Used : TLC: Thin-layer chromatography, HPTLC: High-performance thin-layer chromatography, LOD: Limit of detection, LOQ: Limit of quantification, ICH: International Conference on Harmonization.

  14. Preparation of Ferroelectric Thin Films of Bismuth Layer Structured Compounds

    NASA Astrophysics Data System (ADS)

    Watanabe, Hitoshi; Mihara, Takashi; Yoshimori, Hiroyuki; Araujo, Carlos

    1995-09-01

    Ferroelectric thin films of bismuth layer structured compounds, SrBi2Ta2O9, SrBi2Nb2O9, SrBi4Ti4O15 and their solid solutions, were formed onto a sputtered platinum layer on a silicon substrate using spin-on technique and metal-organic decomposition (MOD) method. X-ray diffraction (XRD) analysis and some electrical measurements were performed on the prepared thin films. XRD results of SrBi2(Ta1- x, Nb x)2O9 films (0≤x≤1) showed that niobium ions substitute for tantalum ions in an arbitrary ratio without any change of the layer structure and lattice constants. Furthermore, XRD results of SrBi2 xTa2O9 films (0≤x≤1.5) indicated that the formation of the bismuth layer structure does not always require an accurate bismuth content. The layer structure was formed above 50% of the stoichiometric bismuth content in the general formula. SrBi2(Ta1- x, Nb x)2O9 films with various Ta/Nb ratios have large enough remanent polarization for nonvolatile memory application and have shown high fatigue resistance against 1011 cycles of full switching of the remanent polarization. Mixture films of the three compounds were also investigated.

  15. Thin-Layering Effect On Estimating Seismic Attenuation In Methane Hydrate-Bearing Sediments

    NASA Astrophysics Data System (ADS)

    Lee, K.; Matsushima, J.

    2012-12-01

    Seismic attenuation is one of the important parameters that provide information concerning both the detection and quantitative assessment of gas-hydrates. We estimated seismic attenuation (1/Q) from surface seismic data acquired at Nankai Trough in Japan. We adapt the Q-versus offset (QVO) method to calculate robust and continuous interval attenuations from CMP gathers. We could observe high attenuation in methane hydrate bearing sediments over the BSR region. However some negative 1/Q values are also shown. This means that the amplitude of high frequency components is increasing with depth. Such results may be due to tuning effect. Here, we carried out numerical test to see how thin-layering effect influences on seismic attenuation results. The results showed that tuning considerably influences the attenuation results, and causes the lower 1/Q values (lower attenuation) and negative 1/Q values.

  16. Pulsed laser deposition of functionalized Mg-Al layered double hydroxide thin films

    NASA Astrophysics Data System (ADS)

    Vlad, A.; Birjega, R.; Tirca, I.; Matei, A.; Mardare, C. C.; Hassel, A. W.; Nedelcea, A.; Dinescu, M.; Zavoianu, R.

    2018-02-01

    In this paper, magnesium-aluminium layered double hydroxide (LDH) has been functionalized with sodium dodecyl sulfate (DS) and deposited as thin film by pulsed laser deposition (PLD). Mg, Al-LDH powders were prepared by co-precipitation and used as reference material. Intercalation of DS as an anionic surfactant into the LDHs host layers has been prepared in two ways: co-precipitation (P) and reconstruction (R). DS intercalation occurred in LDH powder via both preparation methods. The films deposited via PLD, in particular at 532 and 1064 nm, preserve the organic intercalated layered structure of the targets prepared from these powders. The results reveal the ability of proposed deposition technique to produce functional composite organo-modified LDHs thin films.

  17. Polymerization contraction stress in thin resin composite layers as a function of layer thickness.

    PubMed

    Alster, D; Feilzer, A J; de Gee, A J; Davidson, C L

    1997-05-01

    In the present study, the effect of layer thickness on the curing stress in thin resin composite layers was investigated. Since the value of the contraction stress is dependent on the compliance of the measuring equipment (especially for thin films), a method to determine the compliance of the test apparatus was tested. A chemically initiated resin composite (Clearfil F2, Kuraray) was inserted between two sandblasted and silane-coated stainless steel discs in a tensilometer. The curing contraction of the cylindrical samples was continuously counteracted by feedback displacement of the tensilometer crosshead, and the curing stress development was registered. After 20 min, the samples were loaded in tension until fracture. The curing stress was determined for layer thicknesses of 50, 100, 200, 300, 400, 500, 600, 700 microns, 1.4 mm and 2.7 mm. The compliance of the apparatus was calculated with the aid of a non-linear regression analysis, using an equation derived from Hooke's Law as the model. None of the samples fractured due to contraction stress prior to tensile loading. The contraction stress after 20 min decreased from 23.3 +/- 5.3 MPa for the 50 microns layer to 5.5 +/- 0.6 MPa for the 2.7 mm layer. The compliance on the apparatus was 0.029 mm/MPa. A measuring method was developed which was found to be suitable for the determination of axial polymerization contraction stress in this films of chemically initiated resin composites. The method makes it possible to estimate the stress levels that occur in resin composite films in the clinical situation.

  18. Tuning plasmons layer-by-layer for quantitative colloidal sensing with surface-enhanced Raman spectroscopy.

    PubMed

    Anderson, William J; Nowinska, Kamila; Hutter, Tanya; Mahajan, Sumeet; Fischlechner, Martin

    2018-04-19

    Surface-enhanced Raman spectroscopy (SERS) is well known for its high sensitivity that emerges due to the plasmonic enhancement of electric fields typically on gold and silver nanostructures. However, difficulties associated with the preparation of nanostructured substrates with uniform and reproducible features limit reliability and quantitation using SERS measurements. In this work we use layer-by-layer (LbL) self-assembly to incorporate multiple functional building blocks of collaborative assemblies of nanoparticles on colloidal spheres to fabricate SERS sensors. Gold nanoparticles (AuNPs) are packaged in discrete layers, effectively 'freezing nano-gaps', on spherical colloidal cores to achieve multifunctionality and reproducible sensing. Coupling between layers tunes the plasmon resonance for optimum SERS signal generation to achieve a 10 nM limit of detection. Significantly, using the layer-by-layer construction, SERS-active AuNP layers are spaced out and thus optically isolated. This uniquely allows the creation of an internal standard within each colloidal sensor to enable highly reproducible self-calibrated sensing. By using 4-mercaptobenzoic acid (4-MBA) as the internal standard adenine concentrations are quantified to an accuracy of 92.6-99.5%. Our versatile approach paves the way for rationally designed yet quantitative colloidal SERS sensors and their use in a variety of sensing applications.

  19. Growth of <111>-oriented Cu layer on thin TaWN films

    NASA Astrophysics Data System (ADS)

    Takeyama, Mayumi B.; Sato, Masaru

    2017-07-01

    In this study, we examine the growth of a <111>-oriented Cu layer on a thin TaWN ternary alloy barrier for good electromigration reliability. The strongly preferentially oriented Cu(111) layer is observed on a thin TaWN barrier even in the as-deposited Cu (100 nm)/TaWN (5 nm)/Si system. Also, this system tolerates annealing at 700 °C for 1 h without silicide reaction. It is revealed that the TaWN film is one of the excellent barriers with thermal stability and low resistivity. Simultaneously, the TaWN film is a candidate for a superior underlying material to achieve the Cu(111) preferential orientation.

  20. Bi-layer Channel AZO/ZnO Thin Film Transistors Fabricated by Atomic Layer Deposition Technique

    NASA Astrophysics Data System (ADS)

    Li, Huijin; Han, Dedong; Liu, Liqiao; Dong, Junchen; Cui, Guodong; Zhang, Shengdong; Zhang, Xing; Wang, Yi

    2017-03-01

    This letter demonstrates bi-layer channel Al-doped ZnO/ZnO thin film transistors (AZO/ZnO TFTs) via atomic layer deposition process at a relatively low temperature. The effects of annealing in oxygen atmosphere at different temperatures have also been investigated. The ALD bi-layer channel AZO/ZnO TFTs annealed in dry O2 at 300 °C exhibit a low leakage current of 2.5 × 10-13A, I on/ I off ratio of 1.4 × 107, subthreshold swing (SS) of 0.23 V/decade, and high transmittance. The enhanced performance obtained from the bi-layer channel AZO/ZnO TFT devices is explained by the inserted AZO front channel layer playing the role of the mobility booster.

  1. Extracting elastic properties of an atomically thin interfacial layer by time-domain analysis of femtosecond acoustics

    NASA Astrophysics Data System (ADS)

    Chen, H.-Y.; Huang, Y.-R.; Shih, H.-Y.; Chen, M.-J.; Sheu, J.-K.; Sun, C.-K.

    2017-11-01

    Modern devices adopting denser designs and complex 3D structures have created much more interfaces than before, where atomically thin interfacial layers could form. However, fundamental information such as the elastic property of the interfacial layers is hard to measure. The elastic property of the interfacial layer is of great importance in both thermal management and nano-engineering of modern devices. Appropriate techniques to probe the elastic properties of interfacial layers as thin as only several atoms are thus critically needed. In this work, we demonstrated the feasibility of utilizing the time-resolved femtosecond acoustics technique to extract the elastic properties and mass density of a 1.85-nm-thick interfacial layer, with the aid of transmission electron microscopy. We believe that this femtosecond acoustics approach will provide a strategy to measure the absolute elastic properties of atomically thin interfacial layers.

  2. Optical-to-optical interface device. [consisting of two transparent electrodes on glass substrates that enclose thin film photoconductor and thin layer of nematic liquid crystal

    NASA Technical Reports Server (NTRS)

    Jacobson, A. D.

    1973-01-01

    Studies were conducted on the performance of a photoactivated dc liquid crystal light valve. The dc light valve is a thin film device that consists of two transparent electrodes, deposited on glass substrates, that enclose a thin film photoconductor (cadmium sulfide) and a thin layer of a nematic liquid crystal that operates in the dynamic scattering mode. The work was directed toward application of the light valve to high resolution non-coherent light to coherent light image conversion. The goal of these studies was to improve the performance and quality of the already existing dc light valve device and to evaluate quantitatively the properties and performance of the device as they relate to the coherent optical data processing application. As a result of these efforts, device sensitivity was improved by a factor of ten, device resolution was improved by a factor of three, device lifetime was improved by two-orders of magnitude, undesirable secondary liquid crystal scattering effects were eliminated, the scattering characteristics of the liquid crystal were thoroughly documented, the cosmetic quality of the devices was dramatically improved, and the performance of the device was fully documented.

  3. Super Gas Barrier Thin Films via Layer-by-Layer Assembly of Polyelectrolytes and Clay

    NASA Astrophysics Data System (ADS)

    Priolo, Morgan; Gamboa, Daniel; Grunlan, Jaime

    2010-03-01

    Thin composite films of branched polyethylenimine (PEI), polyacrylic acid (PAA) and sodium montmorillonite clay (MMT) platelets were prepared using layer-by-layer assembly. Film thickness, mass deposited per layer, and barrier were shown to increase exponentially with the number of deposition cycles. After 32 layers (i.e., eight PEI/PAA/PEI/MMT quadlayers) are deposited, the resulting transparent film exhibits an oxygen transmission rate below the detection limit of commercial instrumentation (< 0.005 cm^3/m^2 . day). This level of oxygen barrier is believed to be due to a nano-brick wall microstructure comprised of exfoliated clay bricks in polymeric mortar, where the enhanced spacing between MMT layers, provided by PEI and PAA, creates channels perpendicular concentration gradient that delay the permeating molecule. These films are good candidates for flexible electronics, food, and pharmaceutical packaging due to their transparency, super gas barrier (that rivals SiOx) and lack of metal.

  4. Precise Control of the Number of Layers of Graphene by Picosecond Laser Thinning.

    PubMed

    Lin, Zhe; Ye, Xiaohui; Han, Jinpeng; Chen, Qiao; Fan, Peixun; Zhang, Hongjun; Xie, Dan; Zhu, Hongwei; Zhong, Minlin

    2015-06-26

    The properties of graphene can vary as a function of the number of layers (NOL). Controlling the NOL in large area graphene is still challenging. In this work, we demonstrate a picosecond (ps) laser thinning removal of graphene layers from multi-layered graphene to obtain desired NOL when appropriate pulse threshold energy is adopted. The thinning process is conducted in atmosphere without any coating and it is applicable for graphene films on arbitrary substrates. This method provides many advantages such as one-step process, non-contact operation, substrate and environment-friendly, and patternable, which will enable its potential applications in the manufacturing of graphene-based electronic devices.

  5. Precise Control of the Number of Layers of Graphene by Picosecond Laser Thinning

    NASA Astrophysics Data System (ADS)

    Lin, Zhe; Ye, Xiaohui; Han, Jinpeng; Chen, Qiao; Fan, Peixun; Zhang, Hongjun; Xie, Dan; Zhu, Hongwei; Zhong, Minlin

    2015-06-01

    The properties of graphene can vary as a function of the number of layers (NOL). Controlling the NOL in large area graphene is still challenging. In this work, we demonstrate a picosecond (ps) laser thinning removal of graphene layers from multi-layered graphene to obtain desired NOL when appropriate pulse threshold energy is adopted. The thinning process is conducted in atmosphere without any coating and it is applicable for graphene films on arbitrary substrates. This method provides many advantages such as one-step process, non-contact operation, substrate and environment-friendly, and patternable, which will enable its potential applications in the manufacturing of graphene-based electronic devices.

  6. Free and bound excitons in thin wurtzite GaN layers on sapphire

    NASA Astrophysics Data System (ADS)

    Merz, C.; Kunzer, M.; Kaufmann, U.; Akasaki, I.; Amano, H.

    1996-05-01

    Free and bound excitons have been studied by photoluminescence in thin (0268-1242/11/5/010/img8) wurtzite-undoped GaN, n-type GaN:Si as well as p-type GaN:Mg and GaN:Zn layers grown by metal-organic chemical vapour phase deposition (MOCVD). An accurate value for the free A exciton binding energy and an estimate for the isotropically averaged hole mass of the uppermost 0268-1242/11/5/010/img9 valence band are deduced from the data on undoped samples. The acceptor-doped samples reveal recombination lines which are attributed to excitons bound to 0268-1242/11/5/010/img10 and 0268-1242/11/5/010/img11 respectively. These lines are spectrally clearly separated and the exciton localization energies are in line with Haynes' rule. Whenever a comparison is possible, it is found that the exciton lines in these thin MOCVD layers are ultraviolet-shifted by 20 to 25 meV as compared to quasi-bulk (0268-1242/11/5/010/img12) samples. This effect is interpreted in terms of the compressive hydrostatic stress component which thin GaN layers experience when grown on sapphire with an AlN buffer layer.

  7. Bi-layer Channel AZO/ZnO Thin Film Transistors Fabricated by Atomic Layer Deposition Technique.

    PubMed

    Li, Huijin; Han, Dedong; Liu, Liqiao; Dong, Junchen; Cui, Guodong; Zhang, Shengdong; Zhang, Xing; Wang, Yi

    2017-12-01

    This letter demonstrates bi-layer channel Al-doped ZnO/ZnO thin film transistors (AZO/ZnO TFTs) via atomic layer deposition process at a relatively low temperature. The effects of annealing in oxygen atmosphere at different temperatures have also been investigated. The ALD bi-layer channel AZO/ZnO TFTs annealed in dry O 2 at 300 °C exhibit a low leakage current of 2.5 × 10 -13 A, I on /I off ratio of 1.4 × 10 7 , subthreshold swing (SS) of 0.23 V/decade, and high transmittance. The enhanced performance obtained from the bi-layer channel AZO/ZnO TFT devices is explained by the inserted AZO front channel layer playing the role of the mobility booster.

  8. Layer-by-layer modification of thin-film metal-semiconductor multilayers with ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Romashevskiy, S. A.; Tsygankov, P. A.; Ashitkov, S. I.; Agranat, M. B.

    2018-05-01

    The surface modifications in a multilayer thin-film structure (50-nm alternating layers of Si and Al) induced by a single Gaussian-shaped femtosecond laser pulse (350 fs, 1028 nm) in the air are investigated by means of atomic-force microscopy (AFM), scanning electron microscopy (SEM), and optical microscopy (OM). Depending on the laser fluence, various modifications of nanometer-scale metal and semiconductor layers, including localized formation of silicon/aluminum nanofoams and layer-by-layer removal, are found. While the nanofoams with cell sizes in the range of tens to hundreds of nanometers are produced only in the two top layers, layer-by-layer removal is observed for the four top layers under single pulse irradiation. The 50-nm films of the multilayer structure are found to be separated at their interfaces, resulting in a selective removal of several top layers (up to 4) in the form of step-like (concentric) craters. The observed phenomenon is associated with a thermo-mechanical ablation mechanism that results in splitting off at film-film interface, where the adhesion force is less than the bulk strength of the used materials, revealing linear dependence of threshold fluences on the film thickness.

  9. A Thin Layer Chromatography Laboratory Experiment of Medical Importance

    ERIC Educational Resources Information Center

    Sharma, Loretta; Desai, Ankur; Sharma, Ajit

    2006-01-01

    A thin layer chromatography experiment of medical importance is described. The experiment involves extraction of lipids from simulated amniotic fluid samples followed by separation, detection, and scanning of the lecithin and sphingomyelin bands on TLC plates. The lecithin-to-sphingomyelin ratio is calculated. The clinical significance of this…

  10. Voltammetric Thin-Layer Ionophore-Based Films: Part 2. Semi-Empirical Treatment.

    PubMed

    Yuan, Dajing; Cuartero, Maria; Crespo, Gaston A; Bakker, Eric

    2017-01-03

    This work reports on a semiempirical treatment that allows one to rationalize and predict experimental conditions for thin-layer ionophore-based films with cation-exchange capacity read out with cyclic voltammetry. The transition between diffusional mass transport and thin-layer regime is described with a parameter (α), which depends on membrane composition, diffusion coefficient, scan rate, and electrode rotating speed. Once the thin-layer regime is fulfilled (α = 1), the membrane behaves in some analogy to a potentiometric sensor with a second discrimination variable (the applied potential) that allows one to operate such electrodes in a multianalyte detection mode owing to the variable applied ion-transfer potentials. The limit of detection of this regime is defined with a second parameter (β = 2) and is chosen in analogy to the definition of the detection limit for potentiometric sensors provided by the IUPAC. The analytical equations were validated through the simulation of the respective cyclic voltammograms under the same experimental conditions. While simulations of high complexity and better accuracy satisfactorily reproduced the experimental voltammograms during the forward and backward potential sweeps (companion paper 1), the semiempirical treatment here, while less accurate, is of low complexity and allows one to quite easily predict relevant experimental conditions for this emergent methodology.

  11. Quantitative imaging technique using the layer-stripping algorithm

    NASA Astrophysics Data System (ADS)

    Beilina, L.

    2017-07-01

    We present the layer-stripping algorithm for the solution of the hyperbolic coefficient inverse problem (CIP). Our numerical examples show quantitative reconstruction of small tumor-like inclusions in two-dimensions.

  12. Atomically thin gallium layers from solid-melt exfoliation

    PubMed Central

    Kochat, Vidya; Samanta, Atanu; Zhang, Yuan; Bhowmick, Sanjit; Manimunda, Praveena; Asif, Syed Asif S.; Stender, Anthony S.; Vajtai, Robert; Singh, Abhishek K.; Tiwary, Chandra S.; Ajayan, Pulickel M.

    2018-01-01

    Among the large number of promising two-dimensional (2D) atomic layer crystals, true metallic layers are rare. Using combined theoretical and experimental approaches, we report on the stability and successful exfoliation of atomically thin “gallenene” sheets on a silicon substrate, which has two distinct atomic arrangements along crystallographic twin directions of the parent α-gallium. With a weak interface between solid and molten phases of gallium, a solid-melt interface exfoliation technique is developed to extract these layers. Phonon dispersion calculations show that gallenene can be stabilized with bulk gallium lattice parameters. The electronic band structure of gallenene shows a combination of partially filled Dirac cone and the nonlinear dispersive band near the Fermi level, suggesting that gallenene should behave as a metallic layer. Furthermore, it is observed that the strong interaction of gallenene with other 2D semiconductors induces semiconducting to metallic phase transitions in the latter, paving the way for using gallenene as promising metallic contacts in 2D devices. PMID:29536039

  13. Qualitative and quantitative high performance thin layer chromatography analysis of Calendula officinalis using high resolution plate imaging and artificial neural network data modelling.

    PubMed

    Agatonovic-Kustrin, S; Loescher, Christine M

    2013-10-10

    Calendula officinalis, commonly known Marigold, has been traditionally used for its anti-inflammatory effects. The aim of this study was to investigate the capacity of an artificial neural network (ANN) to analyse thin layer chromatography (TLC) chromatograms as fingerprint patterns for quantitative estimation of chlorogenic acid, caffeic acid and rutin in Calendula plant extracts. By applying samples with different weight ratios of marker compounds to the system, a database of chromatograms was constructed. A hundred and one signal intensities in each of the HPTLC chromatograms were correlated to the amounts of applied chlorogenic acid, caffeic acid, and rutin using an ANN. The developed ANN correlation was used to quantify the amounts of 3 marker compounds in calendula plant extracts. The minimum quantifiable level (MQL) of 610, 190 and 940 ng and the limit of detection (LD) of 183, 57 and 282 ng were established for chlorogenic, caffeic acid and rutin, respectively. A novel method for quality control of herbal products, based on HPTLC separation, high resolution digital plate imaging and ANN data analysis has been developed. The proposed method can be adopted for routine evaluation of the phytochemical variability in calendula extracts. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Layer-controllable graphene by plasma thinning and post-annealing

    NASA Astrophysics Data System (ADS)

    Zhang, Lufang; Feng, Shaopeng; Xiao, Shaoqing; Shen, Gang; Zhang, Xiumei; Nan, Haiyan; Gu, Xiaofeng; Ostrikov, Kostya (Ken)

    2018-05-01

    The electronic structure of graphene depends crucially on its layer number and therefore engineering the number of graphene's atomic stacking layers is of great importance for the preparation of graphene-based devices. In this paper, we demonstrated a relatively less invasive, high-throughput and uniform large-area plasma thinning of graphene based on direct bombardment effect of fast-moving ionic hydrogen or argon species. Any desired number of graphene layers including trilayer, bilayer and monolayer can be obtained. Structural changes of graphene layers are studied by optical microscopy, Raman spectroscopy and atomic force microscopy. Post annealing is adopted to self-heal the lattice defects induced by the ion bombardment effect. This plasma etching technique is efficient and compatible with semiconductor manufacturing processes, and may find important applications for graphene-based device fabrication.

  15. High performance thin film transistor with ZnO channel layer deposited by DC magnetron sputtering.

    PubMed

    Moon, Yeon-Keon; Moon, Dae-Yong; Lee, Sang-Ho; Jeong, Chang-Oh; Park, Jong-Wan

    2008-09-01

    Research in large area electronics, especially for low-temperature plastic substrates, focuses commonly on limitations of the semiconductor in thin film transistors (TFTs), in particular its low mobility. ZnO is an emerging example of a semiconductor material for TFTs that can have high mobility, while a-Si and organic semiconductors have low mobility (<1 cm2/Vs). ZnO-based TFTs have achieved high mobility, along with low-voltage operation low off-state current, and low gate leakage current. In general, ZnO thin films for the channel layer of TFTs are deposited with RF magnetron sputtering methods. On the other hand, we studied ZnO thin films deposited with DC magnetron sputtering for the channel layer of TFTs. After analyzing the basic physical and chemical properties of ZnO thin films, we fabricated a TFT-unit cell using ZnO thin films for the channel layer. The field effect mobility (micro(sat)) of 1.8 cm2/Vs and threshold voltage (Vth) of -0.7 V were obtained.

  16. Thin film photovoltaic devices with a minimally conductive buffer layer

    DOEpatents

    Barnes, Teresa M.; Burst, James

    2016-11-15

    A thin film photovoltaic device (100) with a tunable, minimally conductive buffer (128) layer is provided. The photovoltaic device (100) may include a back contact (150), a transparent front contact stack (120), and an absorber (140) positioned between the front contact stack (120) and the back contact (150). The front contact stack (120) may include a low resistivity transparent conductive oxide (TCO) layer (124) and a buffer layer (128) that is proximate to the absorber layer (140). The photovoltaic device (100) may also include a window layer (130) between the buffer layer (128) and the absorber (140). In some cases, the buffer layer (128) is minimally conductive, with its resistivity being tunable, and the buffer layer (128) may be formed as an alloy from a host oxide and a high-permittivity oxide. The high-permittivity oxide may further be chosen to have a bandgap greater than the host oxide.

  17. Thin-Layer Chromatography: The "Eyes" of the Organic Chemist

    ERIC Educational Resources Information Center

    Dickson, Hamilton; Kittredge, Kevin W.; Sarquis, Arlyne

    2004-01-01

    Thin-layer chromatography (TLC) methods are successfully used in many areas of research and development such as clinical medicine, forensic chemistry, biochemistry, and pharmaceutical analysis as TLC is relatively inexpensive and has found widespread application as an easy to use, reliable, and quick analytic tool. The usefulness of TLC in organic…

  18. Photo-EMF sensitivity of porous silicon thin layer-crystalline silicon heterojunction to ammonia adsorption.

    PubMed

    Vashpanov, Yuriy; Jung, Jae Il; Kwack, Kae Dal

    2011-01-01

    A new method of using photo-electromotive force in detecting gas and controlling sensitivity is proposed. Photo-electromotive force on the heterojunction between porous silicon thin layer and crystalline silicon wafer depends on the concentration of ammonia in the measurement chamber. A porous silicon thin layer was formed by electrochemical etching on p-type silicon wafer. A gas and light transparent electrical contact was manufactured to this porous layer. Photo-EMF sensitivity corresponding to ammonia concentration in the range from 10 ppm to 1,000 ppm can be maximized by controlling the intensity of illumination light.

  19. Modified Back Contact Interface of CZTSe Thin Film Solar Cells: Elimination of Double Layer Distribution in Absorber Layer

    PubMed Central

    Zhang, Zhaojing; Yao, Liyong; Bi, Jinlian; Gao, Shoushuai; Gao, Qing; Jeng, Ming‐Jer; Sun, Guozhong; Zhou, Zhiqiang; He, Qing; Sun, Yun

    2017-01-01

    Abstract Double layer distribution exists in Cu2SnZnSe4 (CZTSe) thin films prepared by selenizing the metallic precursors, which will degrade the back contact of Mo substrate to absorber layer and thus suppressing the performance of solar cell. In this work, the double‐layer distribution of CZTSe film is eliminated entirely and the formation of MoSe2 interfacial layer is inhibited successfully. CZTSe film is prepared by selenizing the precursor deposited by electrodeposition method under Se and SnSex mixed atmosphere. It is found that the insufficient reaction between ZnSe and Cu‐Sn‐Se phases in the bottom of the film is the reason why the double layer distribution of CZTSe film is formed. By increasing Sn content in the metallic precursor, thus making up the loss of Sn because of the decomposition of CZTSe and facilitate the diffusion of liquid Cu2Se, the double layer distribution is eliminated entirely. The crystallization of the formed thin film is dense and the grains go through the entire film without voids. And there is no obvious MoSe2 layer formed between CZTSe and Mo. As a consequence, the series resistance of the solar cell reduces significantly to 0.14 Ω cm2 and a CZTSe solar cell with efficiency of 7.2% is fabricated. PMID:29610727

  20. Modified Back Contact Interface of CZTSe Thin Film Solar Cells: Elimination of Double Layer Distribution in Absorber Layer.

    PubMed

    Zhang, Zhaojing; Yao, Liyong; Zhang, Yi; Ao, Jianping; Bi, Jinlian; Gao, Shoushuai; Gao, Qing; Jeng, Ming-Jer; Sun, Guozhong; Zhou, Zhiqiang; He, Qing; Sun, Yun

    2018-02-01

    Double layer distribution exists in Cu 2 SnZnSe 4 (CZTSe) thin films prepared by selenizing the metallic precursors, which will degrade the back contact of Mo substrate to absorber layer and thus suppressing the performance of solar cell. In this work, the double-layer distribution of CZTSe film is eliminated entirely and the formation of MoSe 2 interfacial layer is inhibited successfully. CZTSe film is prepared by selenizing the precursor deposited by electrodeposition method under Se and SnSe x mixed atmosphere. It is found that the insufficient reaction between ZnSe and Cu-Sn-Se phases in the bottom of the film is the reason why the double layer distribution of CZTSe film is formed. By increasing Sn content in the metallic precursor, thus making up the loss of Sn because of the decomposition of CZTSe and facilitate the diffusion of liquid Cu 2 Se, the double layer distribution is eliminated entirely. The crystallization of the formed thin film is dense and the grains go through the entire film without voids. And there is no obvious MoSe 2 layer formed between CZTSe and Mo. As a consequence, the series resistance of the solar cell reduces significantly to 0.14 Ω cm 2 and a CZTSe solar cell with efficiency of 7.2% is fabricated.

  1. A thin-layer liquid culture technique for the growth of Helicobacter pylori.

    PubMed

    Joo, Jung-Soo; Park, Kyung-Chul; Song, Jae-Young; Kim, Dong-Hyun; Lee, Kyung-Ja; Kwon, Young-Cheol; Kim, Jung-Min; Kim, Kyung-Mi; Youn, Hee-Shang; Kang, Hyung-Lyun; Baik, Seung-Chul; Lee, Woo-Kon; Cho, Myung-Je; Rhee, Kwang-Ho

    2010-08-01

    Several attempts have been successful in liquid cultivation of Helicobaccter pylori. However, there is a need to improve the growth of H. pylori in liquid media in order to get affluent growth and a simple approach for examining bacterial properties. We introduce here a thin-layer liquid culture technique for the growth of H. pylori. A thin-layer liquid culture system was established by adding liquid media to a 90-mm diameter Petri dish. Optimal conditions for bacterial growth were investigated and then viability, growth curve, and released proteins were examined. Maximal growth of H. pylori was obtained by adding 3 mL of brucella broth supplemented with 10% horse to a Petri dish. H. pylori grew in both DMEM and RPMI-1640 supplemented with 10% fetal bovine serum and 0.5% yeast extract. Serum-free RPMI-1640 supported the growth of H. pylori when supplemented with dimethyl-beta-cyclodextrin (200 microg/mL) and 1% yeast extract. Under optimal growth, H. pylori grew exponentially for 28 hours, reaching a density of 3.4 OD(600) with a generation time of 3.3 hours. After 24 hours, cultures at a cell density of 1.0 OD(600) contained 1.3 +/- 0.1 x 10(9 )CFU/mL. gamma-Glutamyl transpeptidase, nuclease, superoxide dismutase, and urease were not detected in culture supernatants at 24 hours in thin-layer liquid culture, but were present at 48 hours, whereas alcohol dehydrogenase, alkylhydroperoxide reductase, catalase, and vacuolating cytotoxin were detected at 24 hours. Thin-layer liquid culture technique is feasible, and can serve as a versatile liquid culture technique for investigating bacterial properties of H. pylori.

  2. Employment of High-Performance Thin-Layer Chromatography for the Quantification of Oleuropein in Olive Leaves and the Selection of a Suitable Solvent System for Its Isolation with Centrifugal Partition Chromatography.

    PubMed

    Boka, Vasiliki-Ioanna; Argyropoulou, Aikaterini; Gikas, Evangelos; Angelis, Apostolis; Aligiannis, Nektarios; Skaltsounis, Alexios-Leandros

    2015-11-01

    A high-performance thin-layer chromatographic methodology was developed and validated for the isolation and quantitative determination of oleuropein in two extracts of Olea europaea leaves. OLE_A was a crude acetone extract, while OLE_AA was its defatted residue. Initially, high-performance thin-layer chromatography was employed for the purification process of oleuropein with fast centrifugal partition chromatography, replacing high-performance liquid-chromatography, in the stage of the determination of the distribution coefficient and the retention volume. A densitometric method was developed for the determination of the distribution coefficients, KC = CS/CM. The total concentrations of the target compound in the stationary phase (CS) and in the mobile phase (CM) were calculated by the area measured in the high-performance thin-layer chromatogram. The estimated Kc was also used for the calculation of the retention volume, VR, with a chromatographic retention equation. The obtained data were successfully applied for the purification of oleuropein and the experimental results confirmed the theoretical predictions, indicating that high-performance thin-layer chromatography could be an important counterpart in the phytochemical study of natural products. The isolated oleuropein (purity > 95%) was subsequently used for the estimation of its content in each extract with a simple, sensitive and accurate high-performance thin-layer chromatography method. The best fit calibration curve from 1.0 µg/track to 6.0 µg/track of oleuropein was polynomial and the quantification was achieved by UV detection at λ 240 nm. The method was validated giving rise to an efficient and high-throughput procedure, with the relative standard deviation % of repeatability and intermediate precision not exceeding 4.9% and accuracy between 92% and 98% (recovery rates). Moreover, the method was validated for robustness, limit of quantitation, and limit of detection. The amount of oleuropein for

  3. Sound transmission through finite lightweight multilayered structures with thin air layers.

    PubMed

    Dijckmans, A; Vermeir, G; Lauriks, W

    2010-12-01

    The sound transmission loss (STL) of finite lightweight multilayered structures with thin air layers is studied in this paper. Two types of models are used to describe the vibro-acoustic behavior of these structures. Standard transfer matrix method assumes infinite layers and represents the plane wave propagation in the layers. A wave based model describes the direct sound transmission through a rectangular structure placed between two reverberant rooms. Full vibro-acoustic coupling between rooms, plates, and air cavities is taken into account. Comparison with double glazing measurements shows that this effect of vibro-acoustic coupling is important in lightweight double walls. For infinite structures, structural damping has no significant influence on STL below the coincidence frequency. In this frequency region, the non-resonant transmission or so-called mass-law behavior dominates sound transmission. Modal simulations suggest a large influence of structural damping on STL. This is confirmed by experiments with double fiberboard partitions and sandwich structures. The results show that for thin air layers, the damping induced by friction and viscous effects at the air gap surfaces can largely influence and improve the sound transmission characteristics.

  4. Modeling of Multiphase Flow through Thin Porous Layers: Application to a Polymer Electrolyte Fuel Cell (PEFC)

    NASA Astrophysics Data System (ADS)

    Qin, C.; Hassanizadeh, S.

    2013-12-01

    Multiphase flow and species transport though thin porous layers are encountered in a number of industrial applications, such as fuel cells, filters, and hygiene products. Based on some macroscale models like the Darcy's law, to date, the modeling of flow and transport through such thin layers has been mostly performed in 3D discretized domains with many computational cells. But, there are a number of problems with this approach. First, a proper representative elementary volume (REV) is not defined. Second, one needs to discretize a thin porous medium into computational cells whose size may be comparable to the pore sizes. This suggests that the traditional models are not applicable to such thin domains. Third, the interfacial conditions between neighboring layers are usually not well defined. Last, 3D modeling of a number of interacting thin porous layers often requires heavy computational efforts. So, to eliminate the drawbacks mentioned above, we propose a new approach to modeling multilayers of thin porous media as 2D interacting continua (see Fig. 1). Macroscale 2D governing equations are formulated in terms of thickness-averaged material properties. Also, the exchange of thermodynamic properties between neighboring layers is described by thickness-averaged quantities. In Comparison to previous macroscale models, our model has the distinctive advantages of: (1) it is rigorous thermodynamics-based model; (2) it is formulated in terms of thickness-averaged material properties which are easily measureable; and (3) it reduces 3D modeling to 2D leading to a very significant reduction of computation efforts. As an application, we employ the new approach in the study of liquid water flooding in the cathode of a polymer electrolyte fuel cell (PEFC). To highlight the advantages of the present model, we compare the results of water distribution with those obtained from the traditional 3D Darcy-based modeling. Finally, it is worth noting that, for specific case studies, a

  5. Observations of metal concentrations in E-region sporadic thin layers using incoherent-scatter radar

    NASA Astrophysics Data System (ADS)

    Suzuki, Nobuhiro

    This thesis has used incoherent-scatter radar data from the facility at Sondrestrom, Greenland to determine the ion mass values inside thin sporadic-E layers in the lower ionosphere. Metallic positively-charged ions of meteoric origin are deposited in the earth's upper atmosphere over a height range of about 85-120 km. Electric fields and neutral-gas (eg N2, O, O2) winds at high latitudes may produce convergent ion dynamics that results in the re-distribution of the background altitude distribution of the ions to form thin (1-3 km) high-density layers that are detectable with radar. A large database of experimental radar observations has been processed to determine ion mass values inside these thin ion layers. The range resolution of the radar was 600 meters that permitted mass determinations at several altitude steps within the layers. Near the lower edge of the layers the ion mass values were in the range 20-25 amu while at the top portion of the layers the mass values were generally in the range 30-40 amu. The numerical values are consistent with in-situ mass spectrometer data obtained by other researchers that suggest these layers are mainly composed of a mixture or Mg +, Si+, and Fe + ions. The small tendency for heavier ions to reside at the top portion of the layers is consistent with theory. The results have also found new evidence for the existence of complex-shaped multiple layers; the examples studied suggest similar ion mass values in different layers that in some cases are separated in altitude by several km.

  6. Thin and thick layers of resin-based sealer cement bonded to root dentine compared: Adhesive behaviour.

    PubMed

    Pane, Epita S; Palamara, Joseph E A; Messer, Harold H

    2015-12-01

    This study aims to evaluate tensile and shear bond strengths of one epoxy (AH) and two methacrylate resin-based sealers (EZ and RS) in thin and thick layers bonded to root dentine. An alignment device was prepared for accurate positioning of 20 root dentine cylinders in a predefined gap of 0.1 or 1 mm. Sealer was placed in the interface. Bond strength tests were conducted. Mode of failures and representative surfaces were evaluated. Data were analysed using anova and post-hoc tests, with P < 0.05. The thick layer of sealer produced higher bond strength, except for the shear bond strength of EZ. Significant differences between thin and thick layers were found only in tensile bond strengths of AH and RS. Mixed type of failure was constantly found with all sealers. Bond strengths of thick layers of resin-based sealers to root dentine tended to be higher than with thin layers. © 2015 Australian Society of Endodontology.

  7. Conversion treatment of thin titanium layer deposited on carbon steel

    NASA Astrophysics Data System (ADS)

    Benarioua, Younes; Wendler, Bogdan; Chicot, Didier

    2018-05-01

    The present study has been conducted in order to obtain titanium carbide layer using a conversion treatment consisting of two main steps. In the first step a thin pure titanium layer was deposited on 120C4 carbon steel by PVD. In the second step, the carbon atoms from the substrate diffuse to the titanium coating due to a vacuum annealing treatment and the Ti coating transforms into titanium carbide. Depending on the annealing temperature a partial or complete conversion into TiC is obtained. The hardness of the layer can be expected to differ depending on the processing temperatures. By a systematic study of the hardness as a function of the applied load, we confirm the process of growth of the layer.

  8. High-performance a-IGZO thin-film transistor with conductive indium-tin-oxide buried layer

    NASA Astrophysics Data System (ADS)

    Ahn, Min-Ju; Cho, Won-Ju

    2017-10-01

    In this study, we fabricated top-contact top-gate (TCTG) structure of amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) with a thin buried conductive indium-tin oxide (ITO) layer. The electrical performance of a-IGZO TFTs was improved by inserting an ITO buried layer under the IGZO channel. Also, the effect of the buried layer's length on the electrical characteristics of a-IGZO TFTs was investigated. The electrical performance of the transistors improved with increasing the buried layer's length: a large on/off current ratio of 1.1×107, a high field-effect mobility of 35.6 cm2/Vs, a small subthreshold slope of 116.1 mV/dec, and a low interface trap density of 4.2×1011 cm-2eV-1 were obtained. The buried layer a-IGZO TFTs exhibited enhanced transistor performance and excellent stability against the gate bias stress.

  9. Stepwise crystallization and the layered distribution in crystallization kinetics of ultra-thin poly(ethylene terephthalate) film

    NASA Astrophysics Data System (ADS)

    Zuo, Biao; Xu, Jianquan; Sun, Shuzheng; Liu, Yue; Yang, Juping; Zhang, Li; Wang, Xinping

    2016-06-01

    Crystallization is an important property of polymeric materials. In conventional viewpoint, the transformation of disordered chains into crystals is usually a spatially homogeneous process (i.e., it occurs simultaneously throughout the sample), that is, the crystallization rate at each local position within the sample is almost the same. Here, we show that crystallization of ultra-thin poly(ethylene terephthalate) (PET) films can occur in the heterogeneous way, exhibiting a stepwise crystallization process. We found that the layered distribution of glass transition dynamics of thin film modifies the corresponding crystallization behavior, giving rise to the layered distribution of the crystallization kinetics of PET films, with an 11-nm-thick surface layer having faster crystallization rate and the underlying layer showing bulk-like behavior. The layered distribution in crystallization kinetics results in a particular stepwise crystallization behavior during heating the sample, with the two cold-crystallization temperatures separated by up to 20 K. Meanwhile, interfacial interaction is crucial for the occurrence of the heterogeneous crystallization, as the thin film crystallizes simultaneously if the interfacial interaction is relatively strong. We anticipate that this mechanism of stepwise crystallization of thin polymeric films will allow new insight into the chain organization in confined environments and permit independent manipulation of localized properties of nanomaterials.

  10. Stepwise crystallization and the layered distribution in crystallization kinetics of ultra-thin poly(ethylene terephthalate) film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuo, Biao, E-mail: chemizuo@zstu.edu.cn, E-mail: wxinping@yahoo.com; Xu, Jianquan; Sun, Shuzheng

    2016-06-21

    Crystallization is an important property of polymeric materials. In conventional viewpoint, the transformation of disordered chains into crystals is usually a spatially homogeneous process (i.e., it occurs simultaneously throughout the sample), that is, the crystallization rate at each local position within the sample is almost the same. Here, we show that crystallization of ultra-thin poly(ethylene terephthalate) (PET) films can occur in the heterogeneous way, exhibiting a stepwise crystallization process. We found that the layered distribution of glass transition dynamics of thin film modifies the corresponding crystallization behavior, giving rise to the layered distribution of the crystallization kinetics of PET films,more » with an 11-nm-thick surface layer having faster crystallization rate and the underlying layer showing bulk-like behavior. The layered distribution in crystallization kinetics results in a particular stepwise crystallization behavior during heating the sample, with the two cold-crystallization temperatures separated by up to 20 K. Meanwhile, interfacial interaction is crucial for the occurrence of the heterogeneous crystallization, as the thin film crystallizes simultaneously if the interfacial interaction is relatively strong. We anticipate that this mechanism of stepwise crystallization of thin polymeric films will allow new insight into the chain organization in confined environments and permit independent manipulation of localized properties of nanomaterials.« less

  11. Epitaxially influenced boundary layer model for size effect in thin metallic films

    NASA Astrophysics Data System (ADS)

    Bažant, Zdeněk P.; Guo, Zaoyang; Espinosa, Horacio D.; Zhu, Yong; Peng, Bei

    2005-04-01

    It is shown that the size effect recently observed by Espinosa et al., [J. Mech. Phys. Solids51, 47 (2003)] in pure tension tests on free thin metallic films can be explained by the existence of a boundary layer of fixed thickness, located at the surface of the film that was attached onto the substrate during deposition. The boundary layer is influenced by the epitaxial effects of crystal growth on the dislocation density and texture (manifested by prevalent crystal plane orientations). This influence is assumed to cause significantly elevated yield strength. Furthermore, the observed gradual postpeak softening, along with its size independence, which is observed in short film strips subjected to pure tension, is explained by slip localization, originating at notch-like defects, and by damage, which can propagate in a stable manner when the film strip under pure tension is sufficiently thin and short. For general applications, the present epitaxially influenced boundary layer model may be combined with the classical strain-gradient plasticity proposed by Gao et al., [J. Mech. Phys. Solids 47, 1239 (1999)], and it is shown that this combination is necessary to fit the test data on both pure tension and bending of thin films by one and the same theory. To deal with films having different crystal grain sizes, the Hall-Petch relation for the yield strength dependence on the grain size needs to be incorporated into the combined theory. For very thin films, in which a flattened grain fills the whole film thickness, the Hall-Petch relation needs a cutoff, and the asymptotic increase of yield strength with diminishing film thickness is then described by the extension of Nix's model of misfit dislocations by Zhang and Zhou [J. Adv. Mater. 38, 51 (2002)]. The final result is a proposal of a general theory for strength, size effect, hardening, and softening of thin metallic films.

  12. Correlation between active layer thickness and ambient gas stability in IGZO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Gao, Xu; Lin, Meng-Fang; Mao, Bao-Hua; Shimizu, Maki; Mitoma, Nobuhiko; Kizu, Takio; Ou-Yang, Wei; Nabatame, Toshihide; Liu, Zhi; Tsukagoshi, Kazuhito; Wang, Sui-Dong

    2017-01-01

    Decreasing the active layer thickness has been recently reported as an alternative way to achieve fully depleted oxide thin-film transistors for the realization of low-voltage operations. However, the correlation between the active layer thickness and device resistivity to environmental changes is still unclear, which is important for the optimized design of oxide thin-film transistors. In this work, the ambient gas stability of IGZO thin-film transistors is found to be strongly correlated to the IGZO thickness. The TFT with the thinnest IGZO layer shows the highest intrinsic electron mobility in a vacuum, which is greatly reduced after exposure to O2/air. The device with a thick IGZO layer shows similar electron mobility in O2/air, whereas the mobility variation measured in the vacuum is absent. The thickness dependent ambient gas stability is attributed to a high-mobility region in the IGZO surface vicinity with less sputtering-induced damage, which will become electron depleted in O2/air due to the electron transfer to adsorbed gas molecules. The O2 adsorption and deduced IGZO surface band bending is demonstrated by the ambient-pressure x-ray photoemission spectroscopy results.

  13. Recent Advances in Gas Barrier Thin Films via Layer-by-Layer Assembly of Polymers and Platelets.

    PubMed

    Priolo, Morgan A; Holder, Kevin M; Guin, Tyler; Grunlan, Jaime C

    2015-05-01

    Layer-by-layer (LbL) assembly has emerged as the leading non-vacuum technology for the fabrication of transparent, super gas barrier films. The super gas barrier performance of LbL deposited films has been demonstrated in numerous studies, with a variety of polyelectrolytes, to rival that of metal and metal oxide-based barrier films. This Feature Article is a mini-review of LbL-based multilayer thin films with a 'nanobrick wall' microstructure comprising polymeric mortar and nano-platelet bricks that impart high gas barrier to otherwise permeable polymer substrates. These transparent, water-based thin films exhibit oxygen transmission rates below 5 × 10(-3) cm(3) m(-2) day(-1) atm(-1) and lower permeability than any other barrier material reported. In an effort to put this technology in the proper context, incumbent technologies such as metallized plastics, metal oxides, and flake-filled polymers are briefly reviewed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Enhanced stability of thin film transistors with double-stacked amorphous IWO/IWO:N channel layer

    NASA Astrophysics Data System (ADS)

    Lin, Dong; Pi, Shubin; Yang, Jianwen; Tiwari, Nidhi; Ren, Jinhua; Zhang, Qun; Liu, Po-Tsun; Shieh, Han-Ping

    2018-06-01

    In this work, bottom-gate top-contact thin film transistors with double-stacked amorphous IWO/IWO:N channel layer were fabricated. Herein, amorphous IWO and N-doped IWO were deposited as front and back channel layers, respectively, by radio-frequency magnetron sputtering. The electrical characteristics of the bi-layer-channel thin film transistors (TFTs) were examined and compared with those of single-layer-channel (i.e., amorphous IWO or IWO:N) TFTs. It was demonstrated to exhibit a high mobility of 27.2 cm2 V‑1 s‑1 and an on/off current ratio of 107. Compared to the single peers, bi-layer a-IWO/IWO:N TFTs showed smaller hysteresis and higher stability under negative bias stress and negative bias temperature stress. The enhanced performance could be attributed to its unique double-stacked channel configuration, which successfully combined the merits of the TFTs with IWO and IWO:N channels. The underlying IWO thin film provided percolation paths for electron transport, meanwhile, the top IWO:N layer reduced the bulk trap densities. In addition, the IWO channel/gate insulator interface had reduced defects, and IWO:N back channel surface was insensitive to the ambient atmosphere. Overall, the proposed bi-layer a-IWO/IWO:N TFTs show potential for practical applications due to its possibly long-term serviceability.

  15. Treatment of ice cover and other thin elastic layers with the parabolic equation method.

    PubMed

    Collins, Michael D

    2015-03-01

    The parabolic equation method is extended to handle problems involving ice cover and other thin elastic layers. Parabolic equation solutions are based on rational approximations that are designed using accuracy constraints to ensure that the propagating modes are handled properly and stability constrains to ensure that the non-propagating modes are annihilated. The non-propagating modes are especially problematic for problems involving thin elastic layers. It is demonstrated that stable results may be obtained for such problems by using rotated rational approximations [Milinazzo, Zala, and Brooke, J. Acoust. Soc. Am. 101, 760-766 (1997)] and generalizations of these approximations. The approach is applied to problems involving ice cover with variable thickness and sediment layers that taper to zero thickness.

  16. Showing Its Colors. Thin-Layer Chromatographic Detection of Cannabinoid Metabolites.

    ERIC Educational Resources Information Center

    Bonicamp, Judith M.

    1986-01-01

    Describes a chemistry laboratory experiment in which thin-layer chromatography (TLC) is used to analyze urine specimens containing metabolites of the drug tetrahydro-cannabinol, which comes from the marijuana plant. The materials needed to conduct the experiment are listed, and the procedure and expected results are outlined. (TW)

  17. A thin layer electrochemical cell for disinfection of water contaminated with Staphylococcus aureus

    PubMed Central

    Gusmão, Isabel C. P.; Moraes, Peterson B.; Bidoia, Ederio D.

    2009-01-01

    A thin layer electrochemical cell was tested and developed for disinfection treatment of water artificially contaminated with Staphylococcus aureus. Electrolysis was performed with a low-voltage DC power source applying current densities of 75 mA cm-2 (3 A) or 25 mA cm-2 (1 A). A dimensionally stable anode (DSA) of titanium coated with an oxide layer of 70%TiO2 plus 30%RuO2 (w/w) and a 3 mm from a stainless-steel 304 cathode was used in the thin layer cell. The experiments were carried out using a bacteria suspension containing 0.08 M sodium sulphate with chloride-free to determine the bacterial inactivation efficacy of the thin layer cell without the generation of chlorine. The chlorine can promote the formation of trihalomethanes (THM) that are carcinogenic. S. aureus inactivation increased with electrolysis time and lower flow rate. The flow rates used were 200 or 500 L h-1. At 500 L h-1 and 75 mA cm-2 the inactivation after 60 min was about three logs of decreasing for colony forming units by mL. However, 100% inactivation for S. aureus was observed at 5.6 V and 75 mA cm-2 after 30 min. Thus, significant disinfection levels can be achieved without adding oxidant substances or generation of chlorine in the water. PMID:24031410

  18. Multi-layer thin-film electrolytes for metal supported solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Haydn, Markus; Ortner, Kai; Franco, Thomas; Uhlenbruck, Sven; Menzler, Norbert H.; Stöver, Detlev; Bräuer, Günter; Venskutonis, Andreas; Sigl, Lorenz S.; Buchkremer, Hans-Peter; Vaßen, Robert

    2014-06-01

    A key to the development of metal-supported solid oxide fuel cells (MSCs) is the manufacturing of gas-tight thin-film electrolytes, which separate the cathode from the anode. This paper focuses the electrolyte manufacturing on the basis of 8YSZ (8 mol.-% Y2O3 stabilized ZrO2). The electrolyte layers are applied by a physical vapor deposition (PVD) gas flow sputtering (GFS) process. The gas-tightness of the electrolyte is significantly improved when sequential oxidic and metallic thin-film multi-layers are deposited, which interrupt the columnar grain structure of single-layer electrolytes. Such electrolytes with two or eight oxide/metal layers and a total thickness of about 4 μm obtain leakage rates of less than 3 × 10-4 hPa dm3 s-1 cm-2 (Δp: 100 hPa) at room temperature and therefore fulfill the gas tightness requirements. They are also highly tolerant with respect to surface flaws and particulate impurities which can be present on the graded anode underground. MSC cell tests with double-layer and multilayer electrolytes feature high power densities more than 1.4 W cm-2 at 850 °C and underline the high potential of MSC cells.

  19. Bias of shear wave elasticity measurements in thin layer samples and a simple correction strategy.

    PubMed

    Mo, Jianqiang; Xu, Hao; Qiang, Bo; Giambini, Hugo; Kinnick, Randall; An, Kai-Nan; Chen, Shigao; Luo, Zongping

    2016-01-01

    Shear wave elastography (SWE) is an emerging technique for measuring biological tissue stiffness. However, the application of SWE in thin layer tissues is limited by bias due to the influence of geometry on measured shear wave speed. In this study, we investigated the bias of Young's modulus measured by SWE in thin layer gelatin-agar phantoms, and compared the result with finite element method and Lamb wave model simulation. The result indicated that the Young's modulus measured by SWE decreased continuously when the sample thickness decreased, and this effect was more significant for smaller thickness. We proposed a new empirical formula which can conveniently correct the bias without the need of using complicated mathematical modeling. In summary, we confirmed the nonlinear relation between thickness and Young's modulus measured by SWE in thin layer samples, and offered a simple and practical correction strategy which is convenient for clinicians to use.

  20. Thin-layer chromatographic determination of erythromycin and other macrolide antibiotics in livestock products.

    PubMed

    Petz, M; Solly, R; Lymburn, M; Clear, M H

    1987-01-01

    A method is described for determination of 4 macrolide antibiotics in livestock products. Erythromycin, tylosin, oleandomycin, and spiramycin were extracted from animal tissues, milk, and egg with acetonitrile at pH 8.5. Cleanup was done by adding sodium chloride and dichloromethane, evaporating the organic layer, and subsequent acid/base partitioning. After the antibiotics were separated by thin-layer chromatography (TLC), they were reacted with xanthydrol and could be detected as purple spots down to 0.02 mg/kg without interference by other commonly used therapeutic drugs (23 were tested). Anisaldehyde-sulfuric acid, cerium sulfate-molybdic acid, phosphomolybdic acid, and Dragendorff's reagent proved to be less sensitive as visualizing agents. For quantitation, TLC plates were scanned at 525 nm. Recoveries were between 71 and 96% for erythromycin and tylosin in liver, muscle, and egg at the 0.1-0.5 mg/kg level and 51% for erythromycin in milk at the 0.02 mg/kg level (coefficient of variation = 10-18%). Bioautography with Bacillus subtilis was used to confirm results, in addition to TLC analysis of derivatized antibiotics and liquid chromatography with electrochemical detection. Various derivatization procedures for erythromycin were investigated for improved ultra-violet or fluorescence detection in liquid chromatography.

  1. Enhanced electrical properties of oxide semiconductor thin-film transistors with high conductivity thin layer insertion for the channel region

    NASA Astrophysics Data System (ADS)

    Nguyen, Cam Phu Thi; Raja, Jayapal; Kim, Sunbo; Jang, Kyungsoo; Le, Anh Huy Tuan; Lee, Youn-Jung; Yi, Junsin

    2017-02-01

    This study examined the performance and the stability of indium tin zinc oxide (ITZO) thin film transistors (TFTs) by inserting an ultra-thin indium tin oxide (ITO) layer at the active/insulator interface. The electrical properties of the double channel device (ITO thickness of 5 nm) were improved in comparison with the single channel ITZO or ITO devices. The TFT characteristics of the device with an ITO thickness of less than 5 nm were degraded due to the formation of an island-like morphology and the carriers scattering at the active/insulator interface. The 5 nm-thick ITO inserted ITZO TFTs (optimal condition) exhibited a superior field effect mobility (∼95 cm2/V·s) compared with the ITZO-only TFTs (∼34 cm2/V·s). The best characteristics of the TFT devices with double channel layer are due to the lowest surface roughness (0.14 nm) and contact angle (50.1°) that result in the highest hydrophicility, and the most effective adhesion at the surface. Furthermore, the threshold voltage shifts for the ITO/ITZO double layer device decreased to 0.80 and -2.39 V compared with 6.10 and -6.79 V (for the ITZO only device) under positive and negative bias stress, respectively. The falling rates of EA were 0.38 eV/V and 0.54 eV/V for the ITZO and ITO/ITZO bi-layer devices, respectively. The faster falling rate of the double channel devices suggests that the trap density, including interface trap and semiconductor bulk trap, can be decreased by the ion insertion of a very thin ITO film into the ITZO/SiO2 reference device. These results demonstrate that the double active layer TFT can potentially be applied to the flat panel display.

  2. Resistivity scaling due to electron surface scattering in thin metal layers

    NASA Astrophysics Data System (ADS)

    Zhou, Tianji; Gall, Daniel

    2018-04-01

    The effect of electron surface scattering on the thickness-dependent electrical resistivity ρ of thin metal layers is investigated using nonequilibrium Green's function density functional transport simulations. Cu(001) thin films with thickness d =1 -2 nm are used as a model system, employing a random one-monolayer-high surface roughness and frozen phonons to cause surface and bulk scattering, respectively. The zero-temperature resistivity increases from 9.7 ±1.0 μ Ω cm at d =1.99 nm to 18.7 ±2.6 μ Ω cm at d =0.9 0 nm, contradicting the asymptotic T =0 prediction from the classical Fuchs-Sondheimer model. At T =9 00 K, ρ =5.8 ±0.1 μ Ω cm for bulk Cu and ρ =13.4 ±1.1 and 22.5 ±2.4 μ Ω cm for layers with d =1.99 and 0.90 nm, respectively, indicating an approximately additive phonon contribution which, however, is smaller than for bulk Cu or atomically smooth layers. The overall data indicate that the resistivity contribution from surface scattering is temperature-independent and proportional to 1 /d , suggesting that it can be described using a surface-scattering mean-free path λs for 2D transport which is channel-independent and proportional to d . Data fitting indicates λs=4 ×d for the particular simulated Cu(001) surfaces with a one-monolayer-high surface roughness. The 1 /d dependence deviates considerably from previous 1 /d2 predictions from quantum models, indicating that the small-roughness approximation in these models is not applicable to very thin (<2 nm) layers, where the surface roughness is a considerable fraction of d .

  3. Electromagnetic shielding effectiveness of a thin silver layer deposited onto PET film via atmospheric pressure plasma reduction

    NASA Astrophysics Data System (ADS)

    Oh, Hyo-Jun; Dao, Van-Duong; Choi, Ho-Suk

    2018-03-01

    This study presents the first use of a plasma reduction reaction under atmospheric pressure to fabricate a thin silver layer on polyethylene terephthalate (PET) film without the use of toxic chemicals, high voltages, or an expensive vacuum apparatus. The developed film is applied to electromagnetic interference (EMI) shielding. After repeatedly depositing a silver layer through a plasma reduction reaction on PET, we can successfully fabricate a uniformly deposited thin silver layer. It was found that both the particle size and film thickness of thin silver layers fabricated at different AgNO3 concentrations increase with an increase in the concentration of AgNO3. However, the roughness of the thin silver layer decreases when increasing the concentration of AgNO3 from 100 to 500 mM, and the roughness increases with a further increase in the concentration of AgNO3. The EMI shielding effectiveness (SE) of the film is measured in the frequency range of 0.045 to 1 GHz. As a result of optimizing the electrical conductivity by measuring sheet resistance of the thin silver layer, the film fabricated from 500 mM AgNO3 exhibits the highest EMI SE among all fabricated films. The maximum values of the EMI SE are 60.490 dB at 0.1 GHz and 54.721 dB at 1.0 GHz with minimum sheet resistance of 0.244 Ω/□. Given that the proposed strategy is simple and effective, it is promising for fabricating various low-cost metal films with high EMI SE.

  4. A Simple and Inexpensive Capillary Holder for Thin-Layer Chromatography

    ERIC Educational Resources Information Center

    Pintea, Beniamin-Nicolae V.

    2011-01-01

    Thin-layer chromatography (TLC) is a widely used method of qualitative analysis in organic synthesis, as it uniquely combines low cost, rapidity, simplicity, versatility, small quantities of sample and low detection limits. The simplest and most economical method for the application of samples onto TLC plates is by hand, using glass capillaries.…

  5. Low-Dimensional Nanomaterials as Active Layer Components in Thin-Film Photovoltaics

    NASA Astrophysics Data System (ADS)

    Shastry, Tejas Attreya

    Thin-film photovoltaics offer the promise of cost-effective and scalable solar energy conversion, particularly for applications of semi-transparent solar cells where the poor absorption of commercially-available silicon is inadequate. Applications ranging from roof coatings that capture solar energy to semi-transparent windows that harvest the immense amount of incident sunlight on buildings could be realized with efficient and stable thin-film solar cells. However, the lifetime and efficiency of thin-film solar cells continue to trail their inorganic silicon counterparts. Low-dimensional nanomaterials, such as carbon nanotubes and two-dimensional metal dichalcogenides, have recently been explored as materials in thin-film solar cells due to their exceptional optoelectronic properties, solution-processability, and chemical inertness. Thus far, issues with the processing of these materials has held back their implementation in efficient photovoltaics. This dissertation reports processing advances that enable demonstrations of low-dimensional nanomaterials in thin-film solar cells. These low-dimensional photovoltaics show enhanced photovoltaic efficiency and environmental stability in comparison to previous devices, with a focus on semiconducting single-walled carbon nanotubes as an active layer component. The introduction summarizes recent advances in the processing of carbon nanotubes and their implementation through the thin-film photovoltaic architecture, as well as the use of two-dimensional metal dichalcogenides in photovoltaic applications and potential future directions for all-nanomaterial solar cells. The following chapter reports a study of the interaction between carbon nanotubes and surfactants that enables them to be sorted by electronic type via density gradient ultracentrifugation. These insights are utilized to construct of a broad distribution of carbon nanotubes that absorb throughout the solar spectrum. This polychiral distribution is then shown

  6. [Ascending one-dimensional thin layer chromatography in specific blood diagnosis (author's transl)].

    PubMed

    Bernardelli, B; Masotti, G

    1976-01-01

    A brief review of the literature on chromatography in forensic haematology is followed by a report of the results obtained by using ascending one-dimensional thin layer chromatography in specific blood diagnosis.

  7. Effect of Selectively Etched Ferroelectric Thin-Film Layer on the Performance of a Tunable Bandpass Filter

    NASA Technical Reports Server (NTRS)

    Subramanyam, Guru; Vignesparamoorthy, Sivaruban; Mueller, Carl; VanKeuls, Fred; Warner, Joseph; Miranda, Felix A.

    2001-01-01

    The main purpose of this work is to study the effect of a selectively etched ferroelectric thin film layer on the performance of an electrically tunable filter. An X-band tunable filter was designed, fabricated and tested on a selectively etched Barium Strontium Titanate (BSTO) ferroelectric thin film layer. Tunable filters with varying lengths of BSTO thin-film in the input and output coupling gaps were modeled, as well as experimentally tested. Experimental results showed that filters with coupling gaps partially filled with BSTO maintained frequency tunability and improved the insertion loss by approx. 2dB. To the best of our knowledge, these results represent the first experimental demonstration of the advantages of selective etching in the performance of thin film ferroelectric-based tunable microwave components.

  8. Thin-layer chromatography and colorimetric analysis of multi-component explosive mixtures

    DOEpatents

    Pagoria, Philip F.; Mitchell, Alexander R.; Whipple, Richard E.; Carman, M. Leslie

    2014-08-26

    A thin-layer chromatography method for detection and identification of common military and peroxide explosives in samples includes the steps of provide a reverse-phase thin-layer chromatography plate; prepare the plate by marking spots on which to deposit the samples by touching the plate with a marker; spot one micro liter of a first standard onto one of the spots, spot one micro liter of a second standard onto another of the spots, and spot samples onto other of spots producing a spotted plate; add eluent to a developing chamber; add the spotted plate to the developing chamber; remove the spotted plate from the developing chamber producing a developed plate; place the developed plate in an ultraviolet light box; add a visualization agent to a dip tank; dip the developed plate in the dip tank and remove the developed plate quickly; and detect explosives by viewing said developed plate.

  9. The properties of plasma-enhanced atomic layer deposition (ALD) ZnO thin films and comparison with thermal ALD

    NASA Astrophysics Data System (ADS)

    Kim, Doyoung; Kang, Hyemin; Kim, Jae-Min; Kim, Hyungjun

    2011-02-01

    Zinc oxide (ZnO) thin films were prepared by plasma-enhanced atomic layer deposition (PE-ALD) using oxygen plasma as a reactant and the properties were compared with those of thermal atomic layer deposition (TH-ALD) ZnO thin films. While hexagonal wurzite phase with preferential (0 0 2) orientation was obtained for both cases, significant differences were observed in various aspects of film properties including resistivity values between these two techniques. Photoluminescence (PL) measurements have shown that high resistivity of PE-ALD ZnO thin films is due to the oxygen interstitials at low growth temperature of 200 °C, whose amount decreases with increasing growth temperature. Thin film transistors (TFT) using TH- and PE-ALD ZnO as an active layer were also fabricated and the device properties were evaluated comparatively.

  10. Effect of native oxide layers on copper thin-film tensile properties: A reactive molecular dynamics study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skarlinski, Michael D., E-mail: michael.skarlinski@rochester.edu; Quesnel, David J.; Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627

    2015-12-21

    Metal-oxide layers are likely to be present on metallic nano-structures due to either environmental exposure during use, or high temperature processing techniques such as annealing. It is well known that nano-structured metals have vastly different mechanical properties from bulk metals; however, difficulties in modeling the transition between metallic and ionic bonding have prevented the computational investigation of the effects of oxide surface layers. Newly developed charge-optimized many body [Liang et al., Mater. Sci. Eng., R 74, 255 (2013)] potentials are used to perform fully reactive molecular dynamics simulations which elucidate the effects that metal-oxide layers have on the mechanical propertiesmore » of a copper thin-film. Simulated tensile tests are performed on thin-films while using different strain-rates, temperatures, and oxide thicknesses to evaluate changes in yield stress, modulus, and failure mechanisms. Findings indicate that copper-thin film mechanical properties are strongly affected by native oxide layers. The formed oxide layers have an amorphous structure with lower Cu-O bond-densities than bulk CuO, and a mixture of Cu{sub 2}O and CuO charge character. It is found that oxidation will cause modifications to the strain response of the elastic modulii, producing a stiffened modulii at low temperatures (<75 K) and low strain values (<5%), and a softened modulii at higher temperatures. While under strain, structural reorganization within the oxide layers facilitates brittle yielding through nucleation of defects across the oxide/metal interface. The oxide-free copper thin-film yielding mechanism is found to be a tensile-axis reorientation and grain creation. The oxide layers change the observed yielding mechanism, allowing for the inner copper thin-film to sustain an FCC-to-BCC transition during yielding. The mechanical properties are fit to a thermodynamic model based on classical nucleation theory. The fit implies that the oxidation of

  11. Thin-film hermeticity - A quantitative analysis of diamondlike carbon using variable angle spectroscopic ellipsometry

    NASA Technical Reports Server (NTRS)

    Orzeszko, S.; De, Bhola N.; Woollam, John A.; Pouch, John J.; Alterovitz, Samuel A.

    1988-01-01

    This paper reports on the successful application of variable-angle spectroscopic ellipsometry to quantitative thin-film hermeticity evaluation. It is shown that, under a variety of film preparations and moisture introduction conditions, water penetrates only a very thin diamondlike carbon (DLC) top surface-roughness region. Thus, DLC is an excellent candidate for use as protective coatings in adverse chemical and aqueous environments.

  12. Development of a quantitative high-performance thin-layer chromatographic method for sucralose in sewage effluent, surface water, and drinking water.

    PubMed

    Morlock, Gertrud E; Schuele, Leonard; Grashorn, Sebastian

    2011-05-13

    Sucralose, a persistent chlorinated substance used as sweetener, can already be found in waste water, and various countries focused on the release of sucralose into the aquatic environment. A quantitative high-performance thin-layer chromatography (HPTLC) method, which is orthogonal to existing methods, was developed to analyze sucralose in water. After sample preparation, separation of up to 17 samples was performed in parallel on a HPTLC plate silica gel 60 F(254) with a mixture of isopropyl acetate, methanol and water (15:3:1, v/v/v) within 15 min. Due to the weak native UV absorption of sucralose (≤200 nm), various post-chromatographic derivatization reactions were compared to selectively detect sucralose in effluent and surface water matrices. Thereby p-aminobenzoic acid reagent was discovered as a new derivatization reagent for sucralose. Compared to the latter and to β-naphthol, derivatization with aniline diphenylamine o-phosphoric acid reagent was slightly preferred and densitometry was performed by absorbance measurement at 400 nm. The limit of quantification (LOQ) of sucralose in drinking and surface water was calculated to be 100 ng/L for a given recovery rate of 80% and the extraction of a 0.5 L water sample. The sucralose content determined in four water samples obtained during an interlaboratory trial in 2008 was in good agreement to the mean laboratory values of that trial. According to the t-test, which compares the results with the target value, the means obtained by HPTLC were not significantly different from the respective means of six laboratories, analyzed by HPLC-MS/MS or HPLC-TOF-MS with the use of mostly isotopically labeled standards. The good accuracy and high sample throughput capacity proved HPTLC as a well suited method regarding quantification of sucralose in various aqueous matrices. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Hand portable thin-layer chromatography system

    DOEpatents

    Haas, Jeffrey S.; Kelly, Fredrick R.; Bushman, John F.; Wiefel, Michael H.; Jensen, Wayne A.

    2000-01-01

    A hand portable, field-deployable thin-layer chromatography (TLC) unit and a hand portable, battery-operated unit for development, illumination, and data acquisition of the TLC plates contain many miniaturized features that permit a large number of samples to be processed efficiently. The TLC unit includes a solvent tank, a holder for TLC plates, and a variety of tool chambers for storing TLC plates, solvent, and pipettes. After processing in the TLC unit, a TLC plate is positioned in a collapsible illumination box, where the box and a CCD camera are optically aligned for optimal pixel resolution of the CCD images of the TLC plate. The TLC system includes an improved development chamber for chemical development of TLC plates that prevents solvent overflow.

  14. Polishability of thin electrolytic and electroless NiP layers

    NASA Astrophysics Data System (ADS)

    Kinast, Jan; Beier, Matthias; Gebhardt, Andreas; Risse, Stefan; Tünnermann, Andreas

    2015-10-01

    Ultra-precise metal optics are key components of sophisticated scientific instrumentation in astronomy and space applications, covering a wide spectral range. Especially for applications in the visible or ultra-violet spectral ranges, a low roughness of the optics is required. Therefore, a polishable surface is necessary. State of the art is an amorphous nickel-phosphorus (NiP) layer, which enables several polishing techniques achieving a roughness of <1 nm RMS. Typically, these layers are approximately 30 μm to 60 μm thick. Deposited on Al6061, the bimetallic effect leads to a restricted operational temperature, caused by different coefficients of thermal expansion of Al6061 and NiP. Thinner NiP layers reduce the bimetallic effect. Hence, the possible operating temperature range. A deterministic shape correction via Magnetorheological Finishing of the substrate Al6061 leads to low shape deviations prior to the NiP deposition. This allows for depositing thin NiP-layers, which are polishable via a chemical mechanical polishing technique aiming at ultra-precise metal optics. The present article shows deposition processes and polishability of electroless and electrolytic NiP layers with thicknesses between 1 μm and 10 μm.

  15. Thin-Layer Composite Unimorph Ferroelectric Driver Sensor Properties

    NASA Technical Reports Server (NTRS)

    Mossi, Karla M.; Selby, Gregory V.; Bryant, Robert G.

    1998-01-01

    Tests were conducted on 13 different configurations of a new class of piezoelectric devices called THUNDER (thin layer composite unimorph ferroelectric driver and sensor). These configurations consisted of a combination of 1, 3, 5, 7, and 9 layers of 25.4 micron thick aluminium as a backing material, with and without a top layer of 25.4 micrometer aluminum. All of these configurations used the same piezoelectric ceramic wafer (PZT-5A) with dimensions of 5.08 x 3.81 x 0.018 cm. The above configurations were tested at two stages of the manufacturing process: before and after repoling. The parameters measured included frequency, driving voltage. displacement, capacitance, and radius of curvature. An optic sensor recorded the displacement at a fixed voltage(100 - 400 V peak to peak) over a predetermined frequency range (1 - 1000 Hz). These displacement measurements were performed using a computer that controlled the process of activating and measuring the displacement of the device. A parameter alpha was defined which can be used to predict the which configuration will produce the most displacement for a free standing device.

  16. Tuneable surface enhanced Raman spectroscopy hyphenated to chemically derivatized thin-layer chromatography plates for screening histamine in fish.

    PubMed

    Xie, Zhengjun; Wang, Yang; Chen, Yisheng; Xu, Xueming; Jin, Zhengyu; Ding, Yunlian; Yang, Na; Wu, Fengfeng

    2017-09-01

    Reliable screening of histamine in fish was of urgent importance for food safety. This work presented a highly selective surface enhanced Raman spectroscopy (SERS) method mediated by thin-layer chromatography (TLC), which was tailored for identification and quantitation of histamine. Following separation and derivatization with fluram, plates were assayed with SERS, jointly using silver nanoparticle and NaCl. The latter dramatically suppressed the masking effect caused by excessive fluram throughout the plate, thus offering clear baseline and intensive Raman fingerprints specific to the analyte. Under optimized conditions, the usability of this method was validated by identifying the structural fingerprints of both targeted and unknown compounds in fish samples. Meanwhile, the quantitative results of this method agreed with those by an HPLC method officially suggested by EU for histamine determination. Showing remarkable cost-efficiency and user-friendliness, this facile TLC-SERS method was indeed screening-oriented and may be more attractive to controlling laboratories of limited resource. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Effect of dead layer and strain on diffuse phase transition of PLZT relaxor thin films.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, S.; Narayanan, M.; Ma, B.

    2011-02-01

    Bulk relaxor ferroelectrics exhibit excellent permittivity compared to their thin film counterpart, although both show diffuse phase transition (DPT) behavior unlike normal ferroelectrics. To better understand the effect of dead layer and strain on the observed anomaly in the dielectric properties, we have developed relaxor PLZT (lead lanthanum zirconate titanate) thin films with different thicknesses and measured their dielectric properties as a function of temperature and frequency. The effect of dead layer on thin film permittivity has been found to be independent of temperature and frequency, and is governed by the Schottky barrier between the platinum electrode and PLZT. Themore » total strain (thermal and intrinsic) in the film majorly determines the broadening, dielectric peak and temperature shift in the relaxor ferroelectric. The Curie-Weiss type law for relaxors has been further modified to incorporate these two effects to accurately predict the DPT behavior of thin film and bulk relaxor ferroelectrics. The dielectric behavior of thin film is predicted by using the bulk dielectric data from literature in the proposed equation, which agree well with the measured dielectric behavior.« less

  18. Al-/Ga-Doped ZnO Window Layers for Highly Efficient Cu₂ZnSn(S,Se)₄ Thin Film Solar Cells.

    PubMed

    Seo, Se Won; Seo, Jung Woo; Kim, Donghwan; Cheon, Ki-Beom; Lee, Doh-Kwon; Kim, Jin Young

    2018-09-01

    The successful use of Al-/Ga-doped ZnO (AGZO) thin films as a transparent conducting oxide (TCO) layer of a Cu2ZnSn(S,Se)4 (CZTSSe) thin film solar cell is demonstrated. The AGZO thin films were prepared by radio frequency (RF) sputtering. The structural, crystallographic, electrical, and optical properties of the AGZO thin films were systematically investigated. The photovoltaic properties of CZTSSe thin film solar cells incorporating the AGZO-based TCO layer were also reported. It has been found that the RF power and substrate temperature of the AGZO thin film are important factors determining the electrical, optical, and structural properties. The optimization process involving the RF power and the substrate temperature leads to good electrical and optical transmittance of the AGZO thin films. Finally, the CZTSSe solar cell with the AGZO TCO layer demonstrated a high conversion efficiency of 9.68%, which is higher than that of the conventional AZO counterpart by 12%.

  19. Normal and Reversed-Phase Thin Layer Chromatography of Green Leaf Extracts

    ERIC Educational Resources Information Center

    Sjursnes, Birte Johanne; Kvittingen, Lise; Schmid, Rudolf

    2015-01-01

    Introductory experiments of chromatography are often conducted by separating colored samples, such as inks, dyes, and plant extracts, using filter paper, chalk, or thin layer chromatography (TLC) plates with various solvent systems. Many simple experiments have been reported. The relationship between normal chromatography and reversed-phase…

  20. High Performance and Highly Reliable ZnO Thin Film Transistor Fabricated by Atomic Layer Deposition for Next Generation Displays

    DTIC Science & Technology

    2011-08-19

    zinc oxide ( ZnO ) thin film as an active channel layer in TFT has become of great interest owing to their specific...630-0192 Japan Phone: +81-743-72-6060 Fax: +81-743-72-6069 E-mail: uraoka@ms.naist.jp Keywords: zinc oxide , thin film transistors , atomic layer...deposition Symposium topic: Transparent Semiconductors Oxides [Abstract] In this study, we fabricated TFTs using ZnO thin film as the

  1. 21 CFR 862.2270 - Thin-layer chromatography system for clinical use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... a mixture. The mixture of compounds is absorbed onto a stationary phase or thin layer of inert material (e.g., cellulose, alumina, etc.) and eluted off by a moving solvent (moving phase) until equilibrium occurs between the two phases. (b) Classification. Class I (general controls). The device is...

  2. 21 CFR 862.2270 - Thin-layer chromatography system for clinical use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Thin-layer chromatography system for clinical use. 862.2270 Section 862.2270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory...

  3. 21 CFR 862.2270 - Thin-layer chromatography system for clinical use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Thin-layer chromatography system for clinical use. 862.2270 Section 862.2270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory...

  4. 21 CFR 862.2270 - Thin-layer chromatography system for clinical use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Thin-layer chromatography system for clinical use. 862.2270 Section 862.2270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory...

  5. Metallic atomically-thin layered silicon epitaxially grown on silicene/ZrB 2

    DOE PAGES

    Gill, Tobias G.; Fleurence, Antoine; Warner, Ben; ...

    2017-02-17

    We observe a new two-dimensional (2D) silicon crystal, using low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM) and it's formed by depositing additional Si atoms onto spontaneously-formed epitaxial silicene on a ZrB 2 thin film. From scanning tunnelling spectroscopy (STS) studies, we find that this atomically-thin layered silicon has distinctly different electronic properties. Angle resolved photoelectron spectroscopy (ARPES) reveals that, in sharp contrast to epitaxial silicene, the layered silicon exhibits significantly enhanced density of states at the Fermi level resulting from newly formed metallic bands. Furthermore, the 2D growth of this material could allow for direct contacting tomore » the silicene surface and demonstrates the dramatic changes in electronic structure that can occur by the addition of even a single monolayer amount of material in 2D systems.« less

  6. Dynamic Leidenfrost temperature on micro-textured surfaces: Acoustic wave absorption into thin vapor layer

    NASA Astrophysics Data System (ADS)

    Jerng, Dong Wook; Kim, Dong Eok

    2018-01-01

    The dynamic Leidenfrost phenomenon is governed by three types of pressure potentials induced via vapor hydrodynamics, liquid dynamic pressure, and the water hammer effect resulting from the generation of acoustic waves at the liquid-vapor interface. The prediction of the Leidenfrost temperature for a dynamic droplet needs quantitative evaluation and definition for each of the pressure fields. In particular, the textures on a heated surface can significantly affect the vapor hydrodynamics and the water hammer pressure. We present a quantitative model for evaluating the water hammer pressure on micro-textured surfaces taking into account the absorption of acoustic waves into the thin vapor layer. The model demonstrates that the strength of the acoustic flow into the liquid droplet, which directly contributes to the water hammer pressure, depends on the magnitude of the acoustic resistance (impedance) in the droplet and the vapor region. In consequence, the micro-textures of the surface and the increased spacing between them reduce the water hammer coefficient ( kh ) defined as the ratio of the acoustic flow into the droplet to total generated flow. Aided by numerical calculations that solve the laminar Navier-Stokes equation for the vapor flow, we also predict the dynamic Leidenfrost temperature on a micro-textured surface with reliable accuracy consistent with the experimental data.

  7. Nano-crystalline thin and nano-particulate thick TiO{sub 2} layer: Cost effective sequential deposition and study on dye sensitized solar cell characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, P.; Sengupta, D.; CSIR-Central Mechanical Engineering Research Institute, Academy of Scientific and Innovative Research

    Highlights: • Thin TiO{sub 2} layer is deposited on conducting substrate using sol–gel based dip coating. • TiO{sub 2} nano-particles are synthesized using hydrothermal route. • Thick TiO{sub 2} particulate layer is deposited on prepared thin layer. • Dye sensitized solar cells are made using thin and thick layer based photo-anode. • Introduction of thin layer in particulate photo-anode improves the cell efficiency. - Abstract: A compact thin TiO{sub 2} passivation layer is introduced between the mesoporous TiO{sub 2} nano-particulate layer and the conducting glass substrate to prepare photo-anode for dye-sensitized solar cell (DSSC). In order to understand the effectmore » of passivation layer, other two DSSCs are also developed separately using TiO{sub 2} nano-particulate and compact thin film based photo-anodes. Nano-particles are prepared using hydrothermal synthesis route and the compact passivation layer is prepared by simply dip coating the precursor sol prepared through wet chemical route. The TiO{sub 2} compact layer and the nano-particles are characterised in terms of their micro-structural features and phase formation behavior. It is found that introduction of a compact TiO{sub 2} layer in between the mesoporous TiO{sub 2} nano-particulate layer and the conducting substrate improves the solar to electric conversion efficiency of the fabricated cell. The dense thin passivation layer is supposed to enhance the photo-excited electron transfer and prevent the recombination of photo-excited electrons.« less

  8. Isolation of Three Components from Spearmint Oil: An Exercise in Column and Thin-Layer Chromatography

    ERIC Educational Resources Information Center

    Davies, Don R.; Johnson, Todd M.

    2007-01-01

    A simple experiment for undergraduate organic chemistry students to separate a colorless mixture using column chromatography and then monitor the outcome of the separation using thin-layer chromatography (TLC) and infrared spectroscopy(IR) is described. The experiment teaches students the principle and techniques of column and thin-layer…

  9. Y1Ba2Cu3O(6+delta) growth on thin Y-enhanced SiO2 buffer layers on silicon

    NASA Technical Reports Server (NTRS)

    Robin, T.; Mesarwi, A.; Wu, N. J.; Fan, W. C.; Espoir, L.; Ignatiev, A.; Sega, R.

    1991-01-01

    SiO2 buffer layers as thin as 2 nm have been developed for use in the growth of Y1Ba2Cu3O(6+delta) thin films on silicon substrates. The SiO2 layers are formed through Y enhancement of silicon oxidation, and are highly stoichiometric. Y1Ba2Cu3O(6+delta) film growth on silicon with thin buffer layers has shown c orientation and Tc0 = 78 K.

  10. A two-layer structured PbI2 thin film for efficient planar perovskite solar cells.

    PubMed

    Ying, Chao; Shi, Chengwu; Wu, Ni; Zhang, Jincheng; Wang, Mao

    2015-07-28

    In this paper, a two-layer structured PbI2 thin film was constructed by the spin-coating procedure using a 0.80 M PbI2 solution in DMF and subsequent close-spaced vacuum thermal evaporation using PbI2 powder as a source. The bottom PbI2 thin film was compact with a sheet-like appearance, parallel to the FTO substrate, and can be easily converted to a compact perovskite thin film to suppress the charge recombination of the electrons of the TiO2 conduction band and the holes of the spiro-OMeTAD valence band. The top PbI2 thin film was porous with nano-sheet arrays, perpendicular to the FTO substrate, and can be easily converted to a porous perovskite thin film to improve the hole migration from the perovskite to spiro-OMeTAD and the charge separation at the perovskite/spiro-OMeTAD interface. The planar perovskite solar cells based on the two-layer structured PbI2 thin film exhibited a photoelectric conversion efficiency of 11.64%, along with an open-circuit voltage of 0.90 V, a short-circuit photocurrent density of 19.29 mA cm(-2) and a fill factor of 0.67.

  11. Electrodeposition of thin yttria-stabilized zirconia layers using glow-discharge plasma

    NASA Astrophysics Data System (ADS)

    Ogumi, Zempachi; Uchimoto, Yoshiharu; Tsuji, Yoichiro; Takehara, Zen-ichiro

    1992-08-01

    A novel process for preparation of thin yttria-stabilized zirconia (YSZ) layers was developed. This process differs from other vapor-phase deposition methods in that a dc bias circuit, separate from the plasma-generation circuit, is used for the electrodeposition process. The YSZ layer was electrodeposited from ZrCl4 and YCl3 on a nonporous calcia-stabilized zirconia substrate. Scanning electron microscopy, electron probe microanalysis, electron spectroscopy for chemical analysis, and x-ray-diffraction measurements confirmed the electrodeposition of a smooth, pinhole-free yttria-stabilized zirconia film of about 3 μm thickness.

  12. Transmittance jump in a thin aluminium layer during laser ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bykovsky, N E; Senatsky, Yu V; Pershin, S M

    A jump in the transmittance (from ∼0.1% to ∼50% for ∼1 ns) of an optical gate on a Mylar film (a thin aluminium layer on a Lavsan substrate) irradiated by nanosecond (10{sup -7} – 10{sup -8} s) pulses of a neodymium laser with an intensity up to 0.1 GW cm{sup -2} has been recorded. The mechanism of a fast (10{sup -10} – 10{sup -11} s) increase in the transmittance of the aluminium layer upon its overheating (without boiling) to the metal – insulator phase-transition temperature is discussed. (interaction of laser radiation with matter. laser plasma)

  13. Analysis of thin baked-on silicone layers by FTIR and 3D-Laser Scanning Microscopy.

    PubMed

    Funke, Stefanie; Matilainen, Julia; Nalenz, Heiko; Bechtold-Peters, Karoline; Mahler, Hanns-Christian; Friess, Wolfgang

    2015-10-01

    Pre-filled syringes (PFS) and auto-injection devices with cartridges are increasingly used for parenteral administration. To assure functionality, silicone oil is applied to the inner surface of the glass barrel. Silicone oil migration into the product can be minimized by applying a thin but sufficient layer of silicone oil emulsion followed by thermal bake-on versus spraying-on silicone oil. Silicone layers thicker than 100nm resulting from regular spray-on siliconization can be characterized using interferometric profilometers. However, the analysis of thin silicone layers generated by bake-on siliconization is more challenging. In this paper, we have evaluated Fourier transform infrared (FTIR) spectroscopy after solvent extraction and a new 3D-Laser Scanning Microscopy (3D-LSM) to overcome this challenge. A multi-step solvent extraction and subsequent FTIR spectroscopy enabled to quantify baked-on silicone levels as low as 21-325μg per 5mL cartridge. 3D-LSM was successfully established to visualize and measure baked-on silicone layers as thin as 10nm. 3D-LSM was additionally used to analyze the silicone oil distribution within cartridges at such low levels. Both methods provided new, highly valuable insights to characterize the siliconization after processing, in order to achieve functionality. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Titanium dioxide thin films by atomic layer deposition: a review

    NASA Astrophysics Data System (ADS)

    Niemelä, Janne-Petteri; Marin, Giovanni; Karppinen, Maarit

    2017-09-01

    Within its rich phase diagram titanium dioxide is a truly multifunctional material with a property palette that has been shown to span from dielectric to transparent-conducting characteristics, in addition to the well-known catalytic properties. At the same time down-scaling of microelectronic devices has led to an explosive growth in research on atomic layer deposition (ALD) of a wide variety of frontier thin-film materials, among which TiO2 is one of the most popular ones. In this topical review we summarize the advances in research of ALD of titanium dioxide starting from the chemistries of the over 50 different deposition routes developed for TiO2 and the resultant structural characteristics of the films. We then continue with the doped ALD-TiO2 thin films from the perspective of dielectric, transparent-conductor and photocatalytic applications. Moreover, in order to cover the latest trends in the research field, both the variously constructed TiO2 nanostructures enabled by ALD and the Ti-based hybrid inorganic-organic films grown by the emerging ALD/MLD (combined atomic/molecular layer deposition) technique are discussed.

  15. [Thin layer agar represents a cost-effective alternative for the rapid diagnosis of multi-drug resistant tuberculosis].

    PubMed

    Hernández-Sarmiento, José M; Martínez-Negrete, Milton A; Castrillón-Velilla, Diana M; Mejía-Espinosa, Sergio A; Mejía-Mesa, Gloria I; Zapata-Fernández, Elsa M; Rojas-Jiménez, Sara; Marín-Castro, Andrés E; Robledo-Restrepo, Jaime A

    2014-01-01

    Using cost-benefit analysis for comparing the thin-layer agar culture method to the standard multiple proportion method used in diagnosing multidrug-resistant tuberculosis (MDR TB). A cost-benefit evaluation of two diagnostic tests was made at the Corporación para Investigaciones Biológicas (CIB) in Medellín, Colombia. 100 patients were evaluated; 10.8% rifampicin resistance and 14.3% isoniazid resistance were found. A computer-based decision tree model was used for cost-effectiveness analysis (Treeage Pro); the thin-layer agar culture method was most cost-effective, having 100% sensitivity, specificity and predictive values for detecting rifampicin and isoniazid resistance. The multiple proportion method value was calculated as being US$ 71 having an average 49 day report time compared to US$ 18 and 14 days for the thin-layer agar culture method. New technologies have been developed for diagnosing tuberculosis which are apparently faster and more effective; their operating characteristics must be evaluated as must their effectiveness in terms of cost-benefit. The present study established that using thin-layer agar culture was cheaper, equally effective and could provide results more quickly than the traditional method. This implies that a patient could receive MDR TB treatment more quickly.

  16. Drag crisis moderation by thin air layers sustained on superhydrophobic spheres falling in water.

    PubMed

    Jetly, Aditya; Vakarelski, Ivan U; Thoroddsen, Sigurdur T

    2018-02-28

    We investigate the effect of thin air layers naturally sustained on superhydrophobic surfaces on the terminal velocity and drag force of metallic spheres free falling in water. The surface of 20 mm to 60 mm steel or tungsten-carbide spheres is rendered superhydrophobic by a simple coating process that uses a commercially available hydrophobic agent. By comparing the free fall of unmodified spheres and superhydrophobic spheres in a 2.5 meter tall water tank, it is demonstrated that even a very thin air layer (∼1-2 μm) that covers the freshly dipped superhydrophobic sphere can reduce the drag force on the spheres by up to 80%, at Reynolds numbers from 10 5 to 3 × 10 5 , owing to an early drag crisis transition. This study complements prior investigations on the drag reduction efficiency of model gas layers sustained on heated metal spheres falling in liquid by the Leidenfrost effect. The drag reduction effects are expected to have significant implications for the development of sustainable air-layer-based energy saving technologies.

  17. Effect of atmospheric-pressure plasma treatment on the adhesion properties of a thin adhesive layer in a selective transfer process

    NASA Astrophysics Data System (ADS)

    Yoon, Min-Ah; Kim, Chan; Hur, Min; Kang, Woo Seok; Kim, Jaegu; Kim, Jae-Hyun; Lee, Hak-Joo; Kim, Kwang-Seop

    2018-01-01

    The adhesion between a stamp and thin film devices is crucial for their transfer on a flexible substrate. In this paper, a thin adhesive silicone layer on the stamp was treated by atmospheric pressure plasma to locally control the adhesion strength for the selective transfer. The adhesion strength of the silicone layer was significantly reduced after the plasma treatment, while its surface energy was increased. To understand the inconsistency between the adhesion strength and surface energy changes, the surface properties of the silicone layer were characterized using nanoindentation and X-ray photoelectron spectroscopy. These techniques revealed that a thin, hard, silica-like layer had formed on the surface from plasma-enhanced oxidation. This layer played an important role in decreasing the contact area and increasing the interfacial slippage, resulting in decreased adhesion. As a practical application, the transfer process was demonstrated on GaN LEDs that had been previously delaminated by a laser lift-off (LLO) process. Although the LEDs were not transferred onto the treated adhesive layer due to the reduced adhesion, the untreated adhesive layer could readily pick up the LEDs. It is expected that this simple method of controlling the adhesion of a stamp with a thin adhesive layer would enable a continuous, selective and large-scale roll-to-roll selective transfer process and thereby advance the development of flexible, stretchable and wearable electronics.

  18. Analysis and Identification of Acid-Base Indicator Dyes by Thin-Layer Chromatography

    ERIC Educational Resources Information Center

    Clark, Daniel D.

    2007-01-01

    Thin-layer chromatography (TLC) is a very simple and effective technique that is used by chemists by different purposes, including the monitoring of the progress of a reaction. TLC can also be easily used for the analysis and identification of various acid-base indicator dyes.

  19. Atomic Layer-Deposited Titanium-Doped Vanadium Oxide Thin Films and Their Thermistor Applications

    DOE PAGES

    Wang, Shuyu; Yu, Shifeng; Lu, Ming; ...

    2016-11-30

    In this paper, we report the enhancement in the temperature coefficient of resistance (TCR) of atomic layer-deposited vanadium oxide thin films through the doping of titanium oxide. The Hall effect measurement provides a potential explanation for the phenomenon. The composition and morphology of the thin films are investigated by x-ray diffraction and scanning electron microscopy techniques. The high TCR, good uniformity, and low processing temperature of the material make it a good candidate for thermistor application.

  20. Ultrafast atomic layer-by-layer oxygen vacancy-exchange diffusion in double-perovskite LnBaCo2O5.5+δ thin films.

    PubMed

    Bao, Shanyong; Ma, Chunrui; Chen, Garry; Xu, Xing; Enriquez, Erik; Chen, Chonglin; Zhang, Yamei; Bettis, Jerry L; Whangbo, Myung-Hwan; Dong, Chuang; Zhang, Qingyu

    2014-04-22

    Surface exchange and oxygen vacancy diffusion dynamics were studied in double-perovskites LnBaCo2O5.5+δ (LnBCO) single-crystalline thin films (Ln = Er, Pr; -0.5 < δ < 0.5) by carefully monitoring the resistance changes under a switching flow of oxidizing gas (O2) and reducing gas (H2) in the temperature range of 250 ~ 800 °C. A giant resistance change ΔR by three to four orders of magnitude in less than 0.1 s was found with a fast oscillation behavior in the resistance change rates in the ΔR vs. t plots, suggesting that the oxygen vacancy exchange diffusion with oxygen/hydrogen atoms in the LnBCO thin films is taking the layer by layer oxygen-vacancy-exchange mechanism. The first principles density functional theory calculations indicate that hydrogen atoms are present in LnBCO as bound to oxygen forming O-H bonds. This unprecedented oscillation phenomenon provides the first direct experimental evidence of the layer by layer oxygen vacancy exchange diffusion mechanism.

  1. White organic light-emitting diodes with ultra-thin mixed emitting layer

    NASA Astrophysics Data System (ADS)

    Jeon, T.; Forget, S.; Chenais, S.; Geffroy, B.; Tondelier, D.; Bonnassieux, Y.; Ishow, E.

    2012-02-01

    White light can be obtained from Organic Light Emitting Diodes by mixing three primary colors, (i.e. red, green and blue) or two complementary colors in the emissive layer. In order to improve the efficiency and stability of the devices, a host-guest system is generally used as an emitting layer. However, the color balance to obtain white light is difficult to control and optimize because the spectrum is very sensitive to doping concentration (especially when a small amount of material is used). We use here an ultra-thin mixed emitting layer (UML) deposited by thermal evaporation to fabricate white organic light emitting diodes (WOLEDs) without co-evaporation. The UML was inserted in the hole-transporting layer consisting of 4, 4'-bis[N-(1-naphtyl)-N-phenylamino]biphenyl (α-NPB) instead of using a conventional doping process. The UML was formed from a single evaporation boat containing a mixture of two dipolar starbust triarylamine molecules (fvin and fcho) presenting very similar structures and thermal properties and emitting in complementary spectral regions (orange and blue respectively) and mixed according to their weight ratio. The composition of the UML specifically allows for fine tuning of the emission color despite its very thin thickness down to 1 nm. Competitive energy transfer processes from fcho and the host interface toward fvin are key parameters to control the relative intensity between red and blue emission. White light with very good CIE 1931 color coordinate (0.34, 0.34) was obtained by simply adjusting the UML film composition.

  2. Sum-Frequency Generation from a Thin Cylindrical Layer

    NASA Astrophysics Data System (ADS)

    Shamyna, A. A.; Kapshai, V. N.

    2018-01-01

    In the Rayleigh-Gans-Debye approximation, we have solved the problem of the sum-frequency generation by two plane elliptically polarized electromagnetic waves from the surface of a dielectric particle of a cylindrical shape that is coated by a thin layer possessing nonlinear optical properties. The formulas that describe the sum-frequency field have been presented in the tensor and vector forms for the second-order nonlinear dielectric susceptibility tensor, which was chosen in the general form, containing chiral components. Expressions describing the sum-frequency field from the cylindrical particle ends have been obtained for the case of a nonlinear layer possessing chiral properties. Three-dimensional directivity patterns of the sum-frequency radiation have been analyzed for different combinations of parameters (angles of incidence, degrees of ellipticity, orientations of polarization ellipses, cylindrical particle dimensions). The mathematical properties of the spatial distribution functions of the sum-frequency field, which characterize the symmetry of directivity patterns, have been revealed.

  3. Prediction of transmittance spectra for transparent composite electrodes with ultra-thin metal layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Zhao; Alford, T. L., E-mail: TA@asu.edu; Khorasani, Arash Elhami

    2015-11-28

    Recent interest in indium-free transparent composite-electrodes (TCEs) has motivated theoretical and experimental efforts to better understand and enhance their electrical and optical properties. Various tools have been developed to calculate the optical transmittance of multilayer thin-film structures based on the transfer-matrix method. However, the factors that affect the accuracy of these calculations have not been investigated very much. In this study, two sets of TCEs, TiO{sub 2}/Au/TiO{sub 2} and TiO{sub 2}/Ag/TiO{sub 2}, were fabricated to study the factors that affect the accuracy of transmittance predictions. We found that the predicted transmittance can deviate significantly from measured transmittance for TCEs thatmore » have ultra-thin plasmonic metal layers. The ultrathin metal layer in the TCE is typically discontinuous. When light interacts with the metallic islands in this discontinuous layer, localized surface plasmons are generated. This causes extra light absorption, which then leads to the actual transmittance being lower than the predicted transmittance.« less

  4. Rosenzweig instability in a thin layer of a magnetic fluid

    NASA Astrophysics Data System (ADS)

    Korovin, V. M.

    2013-12-01

    A simple mathematical model of the initial stage of nonlinear evolution of the Rosenzweig instability in a thin layer of a nonlinearly magnetized viscous ferrofluid coating a horizontal nonmagnetizable plate is constructed on the basis of the system of equations and boundary conditions of ferrofluid dynamics. A dispersion relation is derived and analyzed using the linearized equations of this model. The critical magnetization of the initial layer with a flat free surface, the threshold wavenumber, and the characteristic time of evolution of the most rapidly growing mode are determined. The equation for the neutral stability curve, which is applicable for any physically admissible law of magnetization of a ferrofluid, is derived analytically.

  5. A new high-performance thin-layer chromatographic method for determining bile salt hydrolase activity.

    PubMed

    Rohawi, Nur Syakila; Ramasamy, Kalavathy; Agatonovic-Kustrin, Snezana; Lim, Siong Meng

    2018-06-05

    A quantitative assay using high-performance thin-layer chromatography (HPTLC) was developed to investigate bile salt hydrolase (BSH) activity in Pediococcus pentosaceus LAB6 and Lactobacillus plantarum LAB12 probiotic bacteria isolated from Malaysian fermented food. Lactic acid bacteria (LAB) were cultured in de Man Rogosa and Sharpe (MRS) broth containing 1 mmol/L of sodium-based glyco- and tauro-conjugated bile salts for 24 h. The cultures were centrifuged and the resultant cell free supernatant was subjected to chromatographic separation on a HPTLC plate. Conjugated bile salts were quantified by densitometric scans at 550 nm and results were compared to digital image analysis of chromatographic plates after derivatisation with anisaldehyde/sulfuric acid. Standard curves for bile salts determination with both methods show good linearity with high coefficient of determination (R 2 ) between 0.97 and 0.99. Method validation indicates good sensitivity with low relative standard deviation (RSD) (<10%), low limits of detection (LOD) of 0.4 versus 0.2 μg and limit of quantification (LOQ) of 1.4 versus 0.7 μg, for densitometric vs digital image analysis method, respectively. The bile salt hydrolase activity was found to be higher against glyco- than tauro-conjugated bile salts (LAB6; 100% vs >38%: LAB12; 100% vs >75%). The present findings strongly show that quantitative analysis via digitally-enhanced HPTLC offers a rapid quantitative analysis for deconjugation of bile salts by probiotics. Copyright © 2018. Published by Elsevier B.V.

  6. Molecular Ionization-Desorption Analysis Source (MIDAS) for Mass Spectrometry: Thin-Layer Chromatography.

    PubMed

    Winter, Gregory T; Wilhide, Joshua A; LaCourse, William R

    2016-02-01

    Molecular ionization-desorption analysis source (MIDAS), which is a desorption atmospheric pressure chemical ionization (DAPCI) type source, for mass spectrometry has been developed as a multi-functional platform for the direct sampling of surfaces. In this article, its utility for the analysis of thin-layer chromatography (TLC) plates is highlighted. Amino acids, which are difficult to visualize without staining reagents or charring, were detected and identified directly from a TLC plate. To demonstrate the full potential of MIDAS, all active ingredients from an analgesic tablet, separated on a TLC plate, were successfully detected using both positive and negative ion modes. The identity of each of the compounds was confirmed from their mass spectra and compared against standards. Post separation, the chemical signal (blue permanent marker) as reference marks placed at the origin and solvent front were used to calculate retention factor (Rf) values from the resulting ion chromatogram. The quantitative capabilities of the device were exhibited by scanning caffeine spots on a TLC plate of increasing sample amount. A linear curve based on peak are, R2 = 0.994, was generated for seven spots ranging from 50 to 1000 ng of caffeine per spot.

  7. Molecular Ionization-Desorption Analysis Source (MIDAS) for Mass Spectrometry: Thin-Layer Chromatography

    NASA Astrophysics Data System (ADS)

    Winter, Gregory T.; Wilhide, Joshua A.; LaCourse, William R.

    2016-02-01

    Molecular ionization-desorption analysis source (MIDAS), which is a desorption atmospheric pressure chemical ionization (DAPCI) type source, for mass spectrometry has been developed as a multi-functional platform for the direct sampling of surfaces. In this article, its utility for the analysis of thin-layer chromatography (TLC) plates is highlighted. Amino acids, which are difficult to visualize without staining reagents or charring, were detected and identified directly from a TLC plate. To demonstrate the full potential of MIDAS, all active ingredients from an analgesic tablet, separated on a TLC plate, were successfully detected using both positive and negative ion modes. The identity of each of the compounds was confirmed from their mass spectra and compared against standards. Post separation, the chemical signal (blue permanent marker) as reference marks placed at the origin and solvent front were used to calculate retention factor (Rf) values from the resulting ion chromatogram. The quantitative capabilities of the device were exhibited by scanning caffeine spots on a TLC plate of increasing sample amount. A linear curve based on peak are, R2 = 0.994, was generated for seven spots ranging from 50 to 1000 ng of caffeine per spot.

  8. Development and validation of High-performance Thin-layer Chromatography Method for Simultaneous Determination of Polyphenolic Compounds in Medicinal Plants.

    PubMed

    Jayachandran Nair, C V; Ahamad, Sayeed; Khan, Washim; Anjum, Varisha; Mathur, Rajani

    2017-12-01

    Quantitative standardization of plant-based products is challenging albeit essential to maintain their quality. This study aims to develop and validate high-performance thin-layer chromatography (HPTLC) method for the simultaneous determination of rutin (Ru), quercetin (Qu), and gallic acid (Ga) from Psidium guajava Linn. (PG) and Aegle marmelos (L.) Correa. (AM) and correlate with antioxidant activity. The stock solution (1 mg/mL) of standard Ru, Qu, and Ga in methanol: Water (1:1) was serially diluted and spotted (5 μL) on slica gel 60 F 254 thin-layer chromatography plates. Toluene: Ethyl acetate: Formic acid: Methanol (3:4:0.8:0.7, v/v/v) was selected as mobile phase for analysis at 254 nm. Hydroalcoholic (1:1) extracts of leaves of PG and AM were fractionated and similarly analyzed. Antioxidant activity was also determined using 2, 2-diphenyl-1-picrylhydrazyl assay. The developed method was robust and resolved Ru, Qu, and Ga at R f 0.08 ± 0.02, 0.76 ± 0.01, and 0.63 ± 0.02, respectively. The intra-day, interday precision, and interanalyst were <2% relative standard deviation. The limit of detection and limit of quantification for Ru, Qu, and Ga were 4.51, 4.2, 5.27, and 13.67, 12.73, 15.98 ng/spot, respectively. Antioxidant activity (Log 50% inhibition) of PG and AM was 4.947 ± 0.322 and 6.498 ± 0.295, respectively. The developed HPTLC method was rapid, accurate, precise, reproducible, and specific for the simultaneous estimation of Ru, Qu, and Ga. HPTLC method for simultaneous determination and quantification of Rutin, Quercetin and Gallic acid, is reported for quality control of herbal drugs. Abbreviations Used: A: Aqueous fraction; AM: Aegle marmelos L. Correa; B: Butanol fraction; C: Chloroform fraction; EA: Ethyl acetate fraction; Ga: Gallic acid; H: Hexane fraction; HA: Hydroalcoholic extract; HPTLC: High-performance thin-layer chromatography; PG: Psidium guajava ; Qu: Quercetin; Ru: Rutin.

  9. Low-Temperature-Processed Zinc Oxide Thin-Film Transistors Fabricated by Plasma-Assisted Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Kawamura, Yumi; Tani, Mai; Hattori, Nozomu; Miyatake, Naomasa; Horita, Masahiro; Ishikawa, Yasuaki; Uraoka, Yukiharu

    2012-02-01

    We investigated zinc oxide (ZnO) thin films prepared by plasma assisted atomic layer deposition (PA-ALD), and thin-film transistors (TFTs) with the ALD ZnO channel layer for application to next-generation displays. We deposited the ZnO channel layer by PA-ALD at 100 or 300 °C, and fabricated TFTs. The transfer characteristic of the 300 °C-deposited ZnO TFT exhibited high mobility (5.7 cm2 V-1 s-1), although the threshold voltage largely shifted toward the negative (-16 V). Furthermore, we deposited Al2O3 thin film as a gate insulator by PA-ALD at 100 °C for the low-temperature TFT fabrication process. In the case of ZnO TFTs with the Al2O3 gate insulator, the shift of the threshold voltage improved (-0.1 V). This improvement of the negative shift seems to be due to the negative charges of the Al2O3 film deposited by PA-ALD. On the basis of the experimental results, we confirmed that the threshold voltage of ZnO TFTs is controlled by PA-ALD for the deposition of the gate insulator.

  10. Properties of nanostructured undoped ZrO{sub 2} thin film electrolytes by plasma enhanced atomic layer deposition for thin film solid oxide fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Gu Young; Noh, Seungtak; Lee, Yoon Ho

    2016-01-15

    Nanostructured ZrO{sub 2} thin films were prepared by thermal atomic layer deposition (ALD) and by plasma-enhanced atomic layer deposition (PEALD). The effects of the deposition conditions of temperature, reactant, plasma power, and duration upon the physical and chemical properties of ZrO{sub 2} films were investigated. The ZrO{sub 2} films by PEALD were polycrystalline and had low contamination, rough surfaces, and relatively large grains. Increasing the plasma power and duration led to a clear polycrystalline structure with relatively large grains due to the additional energy imparted by the plasma. After characterization, the films were incorporated as electrolytes in thin film solidmore » oxide fuel cells, and the performance was measured at 500 °C. Despite similar structure and cathode morphology of the cells studied, the thin film solid oxide fuel cell with the ZrO{sub 2} thin film electrolyte by the thermal ALD at 250 °C exhibited the highest power density (38 mW/cm{sup 2}) because of the lowest average grain size at cathode/electrolyte interface.« less

  11. Layer-by-layer assembled thin films and microcapsules of nanocrystalline cellulose for hydrophobic drug delivery.

    PubMed

    Mohanta, Vaishakhi; Madras, Giridhar; Patil, Satish

    2014-11-26

    A layer-by-layer (LbL) approach has been employed for the fabrication of multilayer thin films and microcapsules having nanofibrous morphology using nanocrystalline cellulose (NCC) as one of the components of the assembly. The applicability of these nanoassemblies as drug delivery carriers has been explored by the loading of an anticancer drug, doxorubicin hydrochloride, and a water-insoluble drug, curcumin. Doxorubicin hydrochloride, having a good water solubility, is postloaded in the assembly. In the case of curcumin, which is very hydrophobic and has limited solubility in water, a stable dispersion is prepared via noncovalent interaction with NCC prior to incorporation in the LbL assembly. The interaction of various other lipophilic drugs with NCC was analyzed theoretically by molecular docking in consideration of NCC as a general carrier for hydrophobic drugs.

  12. Electrical contacts to thin layers of Bi2Sr2CaCu2O8+δ

    NASA Astrophysics Data System (ADS)

    Suzuki, Shota; Taniguchi, Hiroki; Kawakami, Tsukasa; Cosset-Cheneau, Maxen; Arakawa, Tomonori; Miyasaka, Shigeki; Tajima, Setsuko; Niimi, Yasuhiro; Kobayashi, Kensuke

    2018-05-01

    Thin layers of Bi2Sr2CaCu2O8+δ (Bi2212) were fabricated using the mechanical exfoliation technique. Good electrical contacts to the thin Bi2212 films with low contact resistance were realized by depositing Ag and Au electrodes onto the Bi2212 films and annealing them with an oxygen flow at 350 °C for 30 min. We observed cross-section images of the Bi2212 thin film device using a transmission electron microscope to characterize the diffusion of Ag and Au atoms into the Bi2212 thin film.

  13. Thin layer chromatography of p-aminophenol in urine after mixed exposure to aniline and toluene.

    PubMed Central

    Bieniek, G; Karmańska, K; Wilczok, T

    1984-01-01

    A simple method of evaluating p-aminophenol in the urine of people exposed simultaneously to aniline and toluene relies on separating p-aminophenol from hippuric acid and other physiological components of the urine by thin layer chromatography. The adsorbents and developing system have been thus fixed to make possible the separation of p-aminophenol from hippuric acid, urea, and creatinine and their quantitative determination. This method also makes possible the determination of p-aminophenol in urine in the presence of hippuric acid. Hippuric acid is a physiological component of urine and also the metabolite of toluene, so the determination of p-aminophenol is possible also after simultaneous exposure to both compounds: aniline and toluene. At the same time the concentrations of urea and creatinine as additional factors may be determined. The limit of detection of the method is: 5 micrograms/ml for p-aminophenol, 9 micrograms/ml for hippuric acid, 8 micrograms/ml for urea, and 6 micrograms/ml for creatinine. PMID:6722055

  14. Method for producing high quality thin layer films on substrates

    DOEpatents

    Strongin, M.; Ruckman, M.; Strongin, D.

    1994-04-26

    A method for producing high quality, thin layer films of inorganic compounds upon the surface of a substrate is disclosed. The method involves condensing a mixture of preselected molecular precursors on the surface of a substrate and subsequently inducing the formation of reactive species using high energy photon or charged particle irradiation. The reactive species react with one another to produce a film of the desired compound upon the surface of the substrate. 4 figures.

  15. Method for producing high quality thin layer films on substrates

    DOEpatents

    Strongin, Myron; Ruckman, Mark; Strongin, Daniel

    1994-01-01

    A method for producing high quality, thin layer films of inorganic compounds upon the surface of a substrate is disclosed. The method involves condensing a mixture of preselected molecular precursors on the surface of a substrate and subsequently inducing the formation of reactive species using high energy photon or charged particle irradiation. The reactive species react with one another to produce a film of the desired compound upon the surface of the substrate.

  16. Enhanced direct-drive implosions with thin high-Z ablation layers.

    PubMed

    Mostovych, Andrew N; Colombant, Denis G; Karasik, Max; Knauer, James P; Schmitt, Andrew J; Weaver, James L

    2008-02-22

    New direct-drive spherical implosion experiments with deuterium filled plastic shells have demonstrated significant and absolute (2x) improvements in neutron yield when the shells are coated with a very thin layer ( approximately 200-400 A) of high-Z material such as palladium. This improvement is interpreted as resulting from increased stability of the imploding shell. These results provide for a possible path to control laser imprint and stability in laser-fusion-energy target designs.

  17. On the Examination of Darcy Permeability a Thin Fibrous Porous Layer

    NASA Astrophysics Data System (ADS)

    Zhu, Zenghao; Wang, Qiuyun; Wu, Qianhong; Vucbmss Team

    2016-11-01

    In this paper, we report a novel experimental approach to investigate the Darcy permeability of a soft and thin fibrous porous layer. The project is inspired by recent studies involved compression of very thin porous films and the resultant pore fluid flow inside the confined porous structure. The Darcy permeability plays a critical role during the process, which however, is tricky to measure due to the very thin nature of the porous media. In the current study, a special micro-fluidic device is developed that consists of a rectangular flow channel with adjustable gap height ranging from 20 mm to 0.5 mm. Air is forced through the thin gap filled with testing fibrous materials. By measuring the flow rate and the pressure drop, we have successfully obtained the Darcy permeability of different thin porous sheets at different compression ratios. Furthermore, the surface area of the fibers are evaluated using a Micromeritics® ASAP 2020 (Accelerated Surface Area and Porosimetry) system. We found that, although the functions relating the permeability and porosities are different for different fibrous materials, these functions collapse to a single relationship if one express the permeability as a function of the solid phase surface area per unit volume. This finding provides a useful approach to evaluate the permeability of very thin fibrous porous sheet, which otherwise is difficult to measure directly. This research was supported by the National Science Foundation under Award #1511096.

  18. Enhanced structural color generation in aluminum metamaterials coated with a thin polymer layer

    DOE PAGES

    Cheng, Fei; Yang, Xiaodong; Rosenmann, Daniel; ...

    2015-09-18

    A high-resolution and angle-insensitive structural color generation platform is demonstrated based on triple-layer aluminum-silica-aluminum metamaterials supporting surface plasmon resonances tunable across the entire visible spectrum. The color performances of the fabricated aluminum metamaterials can be strongly enhanced by coating a thin transparent polymer layer on top. The results show that the presence of the polymer layer induces a better impedance matching for the plasmonic resonances to the free space so that strong light absorption can be obtained, leading to the generation of pure colors in cyan, magenta, yellow and black (CMYK) with high color saturation.

  19. Equatorial magnetic Rossby waves — evidence for a thin, strongly-buoyant stratified layer in earth's core

    NASA Astrophysics Data System (ADS)

    Knezek, Nicholas; Buffett, Bruce

    2017-04-01

    A low density stratified layer at the top of Earth's core has been proposed by many authors on the basis of chemical and thermodynamic arguments and has implications for Earth's thermal history, core energetics, and core-mantle interactions. Past studies claiming to detect a layer using perturbations in seismic wave speeds are contentious due to the extremely small magnitude of the detected signal. Recently, several studies have instead argued for the existence of a stratified layer by hypothesizing that oscillations in the observed geomagnetic field arise from waves propagating in the layer. In particular, 60 year oscillations in dipole strength have been attributed to global MAC waves, and 8 year oscillations of secular acceleration have been attributed to equatorially-trapped waves. We use a new hybrid finite-volume and Fourier numerical method we developed to model magnetohydrodynamic waves in a thin layer and show that a thin, strongly buoyant layer can produce equatorially-trapped waves with similar structures and periods to the observed 8 year signal. Using these simulated wave structures, we provide additional evidence for the existence of several propagating wave modes and place constraints on estimates for the wave periods, stratified layer thickness, and strength of buoyancy within the layer.

  20. Spatially and momentum resolved energy electron loss spectra from an ultra-thin PrNiO{sub 3} layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinyanjui, M. K., E-mail: michael.kinyanjui@uni-ulm.de; Kaiser, U.; Benner, G.

    2015-05-18

    We present an experimental approach which allows for the acquisition of spectra from ultra-thin films at high spatial, momentum, and energy resolutions. Spatially and momentum (q) resolved electron energy loss spectra have been obtained from a 12 nm ultra-thin PrNiO{sub 3} layer using a nano-beam electron diffraction based approach which enabled the acquisition of momentum resolved spectra from individual, differently oriented nano-domains and at different positions of the PrNiO{sub 3} thin layer. The spatial and wavelength dependence of the spectral excitations are obtained and characterized after the analysis of the experimental spectra using calculated dielectric and energy loss functions. The presentedmore » approach makes a contribution towards obtaining momentum-resolved spectra from nanostructures, thin film, heterostructures, surfaces, and interfaces.« less

  1. A reversed-phase compatible thin-layer chromatography autography for the detection of acetylcholinesterase inhibitors.

    PubMed

    Ramallo, I Ayelen; García, Paula; Furlan, Ricardo L E

    2015-11-01

    A dual readout autographic assay to detect acetylcholinesterase inhibitors present in complex matrices adsorbed on reversed-phase or normal-phase thin-layer chromatography plates is described. Enzyme gel entrapment with an amphiphilic copolymer was used for assay development. The effects of substrate and enzyme concentrations, pH, incubation time, and incubation temperature on the sensitivity and the detection limit of the assay were evaluated. Experimental design and response surface methodology were used to optimize conditions with a minimum number of experiments. The assay allowed the detection of 0.01% w/w of physostigmine in both a spiked Sonchus oleraceus L. extract chromatographed on normal phase and a spiked Pimenta racemosa (Mill.) J.W. Moore leaf essential oil chromatographed on reversed phase. Finally, the reversed-phase thin-layer chromatography assay was applied to reveal the presence of an inhibitor in the Cymbopogon citratus (DC.) Stapf essential oil. The developed assay is able to detect acetylcholinesterase inhibitors present in complex matrixes that were chromatographed in normal phase or reversed-phase thin-layer chromatography. The detection limit for physostigmine on both normal and reversed phase was of 1×10(-4) μg. The results can be read by a change in color and/or a change in fluorescence. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The investigation of optimal Silicon/Silicon(1-x)Germanium(x) thin-film solar cells with quantitative analysis

    NASA Astrophysics Data System (ADS)

    Ehsan, Md Amimul

    Thin-film solar cells are emerging from the research laboratory to become commercially available devices for low cost electrical power generation applications. Silicon which is a cheap, abundant and non-toxic elemental semiconductor is an attractive candidate for these solar cells. Advanced modeling and simulation of Si thin-film solar cells has been performed to make this technology more cost effective without compromising the performance and efficiency. In this study, we focus on the design and optimization of Si/Si1-xGex heterostructures, and microcrystalline and nanocrystalline Si thin-film solar cells. Layer by layer optimization of these structures was performed by using advanced bandgap engineering followed by numerical analysis for their structural, electrical and optical characterizations. Special care has been introduced for the selection of material layers which can help to improve the light absorption properties of these structures for harvesting the solar spectrum. Various strategies such as the optimization of the doping concentrations, Ge contents in Si1-xGex buffer layer, incorporation of the absorber layers and surface texturing have been in used to improve overall conversion efficiencies of the solar cells. To be more specific, the observed improvement in the conversion efficiency of these solar cells has been calculated by tailoring the thickness of the buffer, absorber, and emitter layers. In brief, an approach relying on the phenomena of improved absorption of the buffer and absorber layer which leads to a corresponding gain in the open circuit voltage and short circuit current is explored. For numerical analysis, a PC1D simulator is employed that uses finite element analysis technique for solving semiconductor transport equations. A comparative study of the Si/Si1-xGex and Ge/Si1-xGex is also performed. We found that due to the higher lattice mismatch of Ge to Si, thin-film solar cells based on Si/Si1-xGex heterostructures performed much

  3. Electronic structure evolution in doping of fullerene (C{sub 60}) by ultra-thin layer molybdenum trioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chenggong; Wang, Congcong; Kauppi, John

    2015-08-28

    Ultra-thin layer molybdenum oxide doping of fullerene has been investigated using ultraviolet photoemission spectroscopy (UPS) and X-ray photoemission spectroscopy (XPS). The highest occupied molecular orbital (HOMO) can be observed directly with UPS. It is observed that the Fermi level position in fullerene is modified by ultra-thin-layer molybdenum oxide doping, and the HOMO onset is shifted to less than 1.3 eV below the Fermi level. The XPS results indicate that charge transfer was observed from the C{sub 60} to MoO{sub x} and Mo{sup 6+} oxides is the basis as hole dopants.

  4. Quantitative Collection and Enzymatic Activity of Glucose Oxidase Nanotubes Fabricated by Templated Layer-by-Layer Assembly.

    PubMed

    Zhang, Shouwei; Demoustier-Champagne, Sophie; Jonas, Alain M

    2015-08-10

    We report on the fabrication of enzyme nanotubes in nanoporous polycarbonate membranes via the layer-by-layer (LbL) alternate assembly of polyethylenimine (PEI) and glucose oxidase (GOX), followed by dissolution of the sacrificial template in CH2Cl2, collection, and final dispersion in water. An adjuvant-assisted filtration methodology is exploited to extract quantitatively the nanotubes without loss of activity and morphology. Different water-soluble CH2Cl2-insoluble adjuvants are tested for maximal enzyme activity and nanotube stability; whereas NaCl disrupts the tubes by screening electrostatic interactions, the high osmotic pressure created by fructose also contributes to loosening the nanotubular structures. These issues are solved when using neutral, high molar mass dextran. The enzymatic activity of intact free nanotubes in water is then quantitatively compared to membrane-embedded nanotubes, showing that the liberated nanotubes have a higher catalytic activity in proportion to their larger exposed surface. Our study thus discloses a robust and general methodology for the fabrication and quantitative collection of enzymatic nanotubes and shows that LbL assembly provides access to efficient enzyme carriers for use as catalytic swarming agents.

  5. Contact interaction of thin-walled elements with an elastic layer and an infinite circular cylinder under torsion

    NASA Astrophysics Data System (ADS)

    Kanetsyan, E. G.; Mkrtchyan, M. S.; Mkhitaryan, S. M.

    2018-04-01

    We consider a class of contact torsion problems on interaction of thin-walled elements shaped as an elastic thin washer – a flat circular plate of small height – with an elastic layer, in particular, with a half-space, and on interaction of thin cylindrical shells with a solid elastic cylinder, infinite in both directions. The governing equations of the physical models of elastic thin washers and thin circular cylindrical shells under torsion are derived from the exact equations of mathematical theory of elasticity using the Hankel and Fourier transforms. Within the framework of the accepted physical models, the solution of the contact problem between an elastic washer and an elastic layer is reduced to solving the Fredholm integral equation of the first kind with a kernel representable as a sum of the Weber–Sonin integral and some integral regular kernel, while solving the contact problem between a cylindrical shell and solid cylinder is reduced to a singular integral equation (SIE). An effective method for solving the governing integral equations of these problems are specified.

  6. Crystalline Stratification in Semiconducting Polymer Thin Film Quantified by Grazing Incidence X-ray Scattering

    NASA Astrophysics Data System (ADS)

    Gann, Eliot; Caironi, Mario; Noh, Yong-Young; Kim, Yun-Hi; McNeill, Christopher R.

    The depth dependence of crystalline structure within thin films is critical for many technological applications, but has been impossible to measure directly using common techniques. In this work, by monitoring diffraction peak intensity and location and utilizing the highly angle-dependent waveguiding effects of X-rays near grazing incidence we quantitatively measure the thickness, roughness and orientation of stratified crystalline layers within thin films of a high-performance semiconducting polymer. In particular, this diffractive X-ray waveguiding reveals a self-organized 5-nm-thick crystalline surface layer with crystalline orientation orthogonal to the underlying 65-nm-thick layer. While demonstrated for an organic semiconductor film, this approach is applicable to any thin film material system where stratified crystalline structure and orientation can influence important interfacial processes such as charge injection and field-effect transport.

  7. Photocatalytic thin films containing TiO2:N nanopowders obtained by the layer-by-layer self-assembling method

    NASA Astrophysics Data System (ADS)

    Rojas-Blanco, L.; Urzúa, M. D.; Ramírez-Bon, R.; Espinoza Beltrán, F. J.

    2012-01-01

    In this work, TiO2-N powders were synthesized by high-energy ball milling, using commercial titanium dioxide (TiO2) in the anatase phase and urea to introduce nitrogen into TiO2 in order to enhance their photocatalytic properties in the visible spectral region. Several samples were prepared by milling a mixture of TiO2-urea during 2, 4, 8, 12 and 24 h and characterized by spectroscopic and analytical techniques. X-ray diffraction (XRD) results showed the coexistence of anatase and high-pressure srilankite TiO2 crystalline phases in the samples. Scanning electron microscopy (SEM) revealed that the grain size of the powder samples decreases to 200 nm at 24 h milling time. UV-Vis diffuse reflectance spectroscopic data showed a clear red-shift in the onset of light absorption from 387 to 469 nm as consequence of nitrogen doping in the samples. The photocatalytic activity of the TiO2-N samples was evaluated by methylene blue degradation under visible light irradiation. It was found that TiO2-N samples had higher photocatalytic activity than undoped TiO2 samples, which could be assigned to the effect of introducing N atoms and XPS results confirm it. Using polyethylenimine (PEI), transparent thin films of TiO2-N nanoparticles were prepared by layer-by-layer self assembly method. UV-visible spectrophotometry was employed in a quantitative manner to monitor the adsorbed mass of TiO2 and PEI after each dip cycle. The adsorption of both TiO2 and PEI showed a saturation dip time of 15 min.

  8. Synthesis and characterization of Zn(O,OH)S and AgInS2 layers to be used in thin film solar cells

    NASA Astrophysics Data System (ADS)

    Vallejo, W.; Arredondo, C. A.; Gordillo, G.

    2010-11-01

    In this paper AgInS2 and Zn(O,OH)S thin films were synthesized and characterized. AgInS2 layers were grown by co-evaporation from metal precursors in a two-step process, and, Zn(O,OH)S thin films were deposited from chemical bath containing thiourea, zinc acetate, sodium citrate and ammonia. X-ray diffraction measurements indicated that AgInS2 thin films grown with chalcopyrite structure, and the as-grown Zn(O,OH)S thin films were polycrystalline. It was also found that the AgInS2 films presented p-type conductivity, a high absorption coefficient (greater than 104 cm-1) and energy band-gap Eg of about 1.95 eV, Zn(O,OH),S thin films presented Eg of about 3.89 eV. Morphological analysis showed that under this synthesis conditions Zn(O,OH),S thin films coated uniformly the absorber layer. Additionally, the Zn(O,OH)S kinetic growth on AgInS2 layer was studied also. Finally, the results suggest that these layers possibly could be used in one-junction solar cells and/or as top cell in a tandem solar cell.

  9. Quantitative measurement of piezoelectric coefficient of thin film using a scanning evanescent microwave microscope.

    PubMed

    Zhao, Zhenli; Luo, Zhenlin; Liu, Chihui; Wu, Wenbin; Gao, Chen; Lu, Yalin

    2008-06-01

    This article describes a new approach to quantitatively measure the piezoelectric coefficients of thin films at the microscopic level using a scanning evanescent microwave microscope. This technique can resolve 10 pm deformation caused by the piezoelectric effect and has the advantages of high scanning speed, large scanning area, submicron spatial resolution, and a simultaneous accessibility to many other related properties. Results from the test measurements on the longitudinal piezoelectric coefficient of PZT thin film agree well with those from other techniques listed in literatures.

  10. Impact of ultra-thin Al2O3-y layers on TiO2-x ReRAM switching characteristics

    NASA Astrophysics Data System (ADS)

    Trapatseli, Maria; Cortese, Simone; Serb, Alexander; Khiat, Ali; Prodromakis, Themistoklis

    2017-05-01

    Transition metal-oxide resistive random access memory devices have demonstrated excellent performance in switching speed, versatility of switching and low-power operation. However, this technology still faces challenges like poor cycling endurance, degradation due to high electroforming (EF) switching voltages and low yields. Approaches such as engineering of the active layer by doping or addition of thin oxide buffer layers have been often adopted to tackle these problems. Here, we have followed a strategy that combines the two; we have used ultra-thin Al2O3-y buffer layers incorporated between TiO2-x thin films taking into account both 3+/4+ oxidation states of Al/Ti cations. Our devices were tested by DC and pulsed voltage sweeping and in both cases demonstrated improved switching voltages. We believe that the Al2O3-y layers act as reservoirs of oxygen vacancies which are injected during EF, facilitate a filamentary switching mechanism and provide enhanced filament stability, as shown by the cycling endurance measurements.

  11. QCM-D Investigation of Swelling Behavior of Layer-by-Layer Thin Films upon Exposure to Monovalent Ions.

    PubMed

    O'Neal, Joshua T; Dai, Ethan Y; Zhang, Yanpu; Clark, Kyle B; Wilcox, Kathryn G; George, Ian M; Ramasamy, Nandha E; Enriquez, Daisy; Batys, Piotr; Sammalkorpi, Maria; Lutkenhaus, Jodie L

    2018-01-23

    Polyelectrolyte multilayers and layer-by-layer assemblies are susceptible to structural changes in response to ionic environment. By altering the salt type and ionic strength, structural changes can be induced by disruption of intrinsically bound ion pairs within the multilayer network via electrostatic screening. Notably, high salt concentrations have been used for the purposes of salt-annealing and self-healing of LbL assemblies with KBr, in particular, yielding a remarkably rapid response. However, to date, the structural and swelling effects of various monovalent ion species on the behavior of LbL assemblies remain unclear, including a quantitative view of ion content in the LbL assembly and thickness changes over a wide concentration window. Here, we investigate the effects of various concentrations of KBr (0 to 1.6 M) on the swelling and de-swelling of LbL assemblies formed from poly(diallyldimethylammonium) polycation (PDADMA) and poly(styrene sulfonate) polyanion (PSS) in 0.5 M NaCl using quartz-crystal microbalance with dissipation (QCM-D) monitoring as compared to KCl, NaBr, and NaCl. The ion content after salt exchange is quantified using neutron activation analysis (NAA). Our results demonstrate that Br - ions have a much greater effect on the structure of as-prepared thin films than Cl - at ionic strengths above assembly conditions, which is possibly caused by the more chaotropic nature of Br - . It is also found that the anion in general dominates the swelling response as compared to the cation because of the excess PDADMA in the multilayer. Four response regimes are identified that delineate swelling due to electrostatic repulsion, slight contraction, swelling due to doping, and film destruction as ionic strength increases. This understanding is critical if such materials are to be used in applications requiring submersion in chemically dynamic environments such as sensors, coatings on biomedical implants, and filtration membranes.

  12. Multifunctional Organic-Semiconductor Interfacial Layers for Solution-Processed Oxide-Semiconductor Thin-Film Transistor.

    PubMed

    Kwon, Guhyun; Kim, Keetae; Choi, Byung Doo; Roh, Jeongkyun; Lee, Changhee; Noh, Yong-Young; Seo, SungYong; Kim, Myung-Gil; Kim, Choongik

    2017-06-01

    The stabilization and control of the electrical properties in solution-processed amorphous-oxide semiconductors (AOSs) is crucial for the realization of cost-effective, high-performance, large-area electronics. In particular, impurity diffusion, electrical instability, and the lack of a general substitutional doping strategy for the active layer hinder the industrial implementation of copper electrodes and the fine tuning of the electrical parameters of AOS-based thin-film transistors (TFTs). In this study, the authors employ a multifunctional organic-semiconductor (OSC) interlayer as a solution-processed thin-film passivation layer and a charge-transfer dopant. As an electrically active impurity blocking layer, the OSC interlayer enhances the electrical stability of AOS TFTs by suppressing the adsorption of environmental gas species and copper-ion diffusion. Moreover, charge transfer between the organic interlayer and the AOS allows the fine tuning of the electrical properties and the passivation of the electrical defects in the AOS TFTs. The development of a multifunctional solution-processed organic interlayer enables the production of low-cost, high-performance oxide semiconductor-based circuits. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Magnetic domain observation of FeCo thin films fabricated by alternate monoatomic layer deposition

    NASA Astrophysics Data System (ADS)

    Ohtsuki, T.; Kojima, T.; Kotsugi, M.; Ohkochi, T.; Mizuguchi, M.; Takanashi, K.

    2014-01-01

    FeCo thin films are fabricated by alternate monoatomic layer deposition method on a Cu3Au buffer layer, which in-plane lattice constant is very close to the predicted value to obtain a large magnetic anisotropy constant. The variation of the in-plane lattice constant during the deposition process is investigated by reflection high-energy electron diffraction. The magnetic domain images are also observed by a photoelectron emission microscope in order to microscopically understand the magnetic structure. As a result, element-specific magnetic domain images show that Fe and Co magnetic moments align parallel. A series of images obtained with various azimuth reveal that the FeCo thin films show fourfold in-plane magnetic anisotropy along ⟨110⟩ direction, and that the magnetic domain structure is composed only of 90∘ wall.

  14. Solution processed metal oxide thin film hole transport layers for high performance organic solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steirer, K. Xerxes; Berry, Joseph J.; Chesin, Jordan P.

    2017-01-10

    A method for the application of solution processed metal oxide hole transport layers in organic photovoltaic devices and related organic electronics devices is disclosed. The metal oxide may be derived from a metal-organic precursor enabling solution processing of an amorphous, p-type metal oxide. An organic photovoltaic device having solution processed, metal oxide, thin-film hole transport layer.

  15. Organic and inorganic–organic thin film structures by molecular layer deposition: A review

    PubMed Central

    Sundberg, Pia

    2014-01-01

    Summary The possibility to deposit purely organic and hybrid inorganic–organic materials in a way parallel to the state-of-the-art gas-phase deposition method of inorganic thin films, i.e., atomic layer deposition (ALD), is currently experiencing a strongly growing interest. Like ALD in case of the inorganics, the emerging molecular layer deposition (MLD) technique for organic constituents can be employed to fabricate high-quality thin films and coatings with thickness and composition control on the molecular scale, even on complex three-dimensional structures. Moreover, by combining the two techniques, ALD and MLD, fundamentally new types of inorganic–organic hybrid materials can be produced. In this review article, we first describe the basic concepts regarding the MLD and ALD/MLD processes, followed by a comprehensive review of the various precursors and precursor pairs so far employed in these processes. Finally, we discuss the first proof-of-concept experiments in which the newly developed MLD and ALD/MLD processes are exploited to fabricate novel multilayer and nanostructure architectures by combining different inorganic, organic and hybrid material layers into on-demand designed mixtures, superlattices and nanolaminates, and employing new innovative nanotemplates or post-deposition treatments to, e.g., selectively decompose parts of the structure. Such layer-engineered and/or nanostructured hybrid materials with exciting combinations of functional properties hold great promise for high-end technological applications. PMID:25161845

  16. Development and evaluation of thin-layer chromatography-digital image-based analysis for the quantitation of the botanical pesticide azadirachtin in agricultural matrixes and commercial formulations: comparison with ELISA.

    PubMed

    Tanuja, Penmatsa; Venugopal, Namburi; Sashidhar, Rao Beedu

    2007-01-01

    A simple thin-layer chromatography-digital image-based analytical method has been developed for the quantitation of the botanical pesticide, azadirachtin. The method was validated by analyzing azadirachtin in the spiked food matrixes and processed commercial pesticide formulations, using acidified vanillin reagent as a postchromatographic derivatizing agent. The separated azadirachtin was clearly identified as a green spot. The Rf value was found to be 0.55, which was similar to that of a reference standard. A standard calibration plot was established using a reference standard, based on the linear regression analysis [r2 = 0.996; y = 371.43 + (634.82)x]. The sensitivity of the method was found to be 0.875 microg azadirachtin. Spiking studies conducted at the 1 ppm (microg/g) level in various agricultural matrixes, such as brinjal, tomato, coffee, and cotton seeds, revealed the recoveries of azadirachtin in the range of 67-92%. Azadirachtin content of commercial neem formulations analyzed by the method was in the range of 190-1825 ppm (microg/mL). Further, the present method was compared with an immunoanalytical method enzyme-linked immonosorbent assay developed earlier in our laboratory. Statistical comparison of the 2 methods, using Fischer's F-test, indicated no significant difference in variance, suggesting that both methods are comparable.

  17. Thin layer imaging process for microlithography using radiation at strongly attenuated wavelengths

    DOEpatents

    Wheeler, David R.

    2004-01-06

    A method for patterning of resist surfaces which is particularly advantageous for systems having low photon flux and highly energetic, strongly attenuated radiation. A thin imaging layer is created with uniform silicon distribution in a bilayer format. An image is formed by exposing selected regions of the silylated imaging layer to radiation. The radiation incident upon the silyliated resist material results in acid generation which either catalyzes cleavage of Si--O bonds to produce moieties that are volatile enough to be driven off in a post exposure bake step or produces a resist material where the exposed portions of the imaging layer are soluble in a basic solution, thereby desilylating the exposed areas of the imaging layer. The process is self limiting due to the limited quantity of silyl groups within each region of the pattern. Following the post exposure bake step, an etching step, generally an oxygen plasma etch, removes the resist material from the de-silylated areas of the imaging layer.

  18. Analysis of Peppermint Leaf and Spearmint Leaf Extracts by Thin-Layer Chromatography

    ERIC Educational Resources Information Center

    Pelter, Libbie S. W.; Amico, Andrea; Gordon, Natalie; Martin, Chylah; Sandifer, Dessalyn; Pelter, Michael W.

    2008-01-01

    In this inquiry-based activity, the usefulness of thin-layer chromatography (TLC) to visualize the difference between spearmint and peppermint is explored. The experiment may be used in any class where TLC is discussed from high school to college. We have used this activity with science majors in an organic chemistry laboratory, with non-science…

  19. Reduction of channel resistance in amorphous oxide thin-film transistors with buried layer

    NASA Astrophysics Data System (ADS)

    Chong, Eugene; Kim, Bosul; Lee, Sang Yeol

    2012-04-01

    A silicon-indium-zinc-oxide (SIZO) thin film transistor (TFT) with low channel-resistance (RCH) indium-zinc-oxide (In2O3:ZnO = 9:1) buried layer annealed at low temperature of 200°C exhibited high field-effect mobility (μFE) over 55.8 cm2/V·s which is 5 times higher than that of the conventional TFTs due to small threshold voltage (Vth) change of 1.8 V under bias-temperature stress (BTS) condition for 420 minutes. The low-RCH buried-layer allows more strong current-path formed in channel layer well within relatively high-RCH channel-layer since it is less affected by the channel bulk and/or back interface trap with high carrier concentration.

  20. Incorporation of layered double nanomaterials in thin film nanocomposite nanofiltration membrane for magnesium sulphate removal

    NASA Astrophysics Data System (ADS)

    Hanis Tajuddin, Muhammad; Yusof, Norhaniza; Salleh, Wan Norharyati Wan; Fauzi Ismail, Ahmad; Hanis Hayati Hairom, Nur; Misdan, Nurasyikin

    2018-03-01

    Thin film nanocomposite (TFN) membrane with copper-aluminium layered double hydroxides (LDH) incorporated into polyamide (PA) selective layer has been prepared for magnesium sulphate salt removal. 0, 0.05, 0.1, 0.15, 0.2 wt% of LDH were dispersed in the trimesoyl chloride (TMC) in n-hexane as organic solution and embedded into PA layer during interfacial polymerization with piperazine. The fabricated membranes were further characterized to evaluate its morphological structure and membrane surface hydrophilicity. The TFN membranes performance were evaluated with divalent salt magnesium sulphate (MgSO4) removal and compared with thin film composite (TFC). The morphological structures of TFN membranes were altered and the surface hydrophilicity were enhanced with addition of LDH. Incorporation of LDH has improved the permeate water flux by 82.5% compared to that of TFC membrane with satisfactory rejection of MgSO4. This study has experimentally validated the potential of LDH to improve the divalent salt separation performance for TFN membranes.

  1. A mass transfer model of ethanol emission from thin layers of corn silage

    USDA-ARS?s Scientific Manuscript database

    A mass transfer model of ethanol emission from thin layers of corn silage was developed and validated. The model was developed based on data from wind tunnel experiments conducted at different temperatures and air velocities. Multiple regression analysis was used to derive an equation that related t...

  2. Fabrication of amorphous IGZO thin film transistor using self-aligned imprint lithography with a sacrificial layer

    NASA Astrophysics Data System (ADS)

    Kim, Sung Jin; Kim, Hyung Tae; Choi, Jong Hoon; Chung, Ho Kyoon; Cho, Sung Min

    2018-04-01

    An amorphous indium-gallium-zinc-oxide (a-IGZO) thin film transistor (TFT) was fabricated by a self-aligned imprint lithography (SAIL) method with a sacrificial photoresist layer. The SAIL is a top-down method to fabricate a TFT using a three-dimensional multilayer etch mask having all pattern information for the TFT. The sacrificial layer was applied in the SAIL process for the purpose of removing the resin residues that were inevitably left when the etch mask was thinned by plasma etching. This work demonstrated that the a-IGZO TFT could be fabricated by the SAIL process with the sacrificial layer. Specifically, the simple fabrication process utilized in this study can be utilized for the TFT with a plasma-sensitive semiconductor such as the a-IGZO and further extended for the roll-to-roll TFT fabrication.

  3. Surface layer formation of LiCoO2 thin film electrodes in non-aqueous electrolyte containing lithium bis(oxalate)borate

    NASA Astrophysics Data System (ADS)

    Matsui, Masaki; Dokko, Kaoru; Akita, Yasuhiro; Munakata, Hirokazu; Kanamura, Kiyoshi

    2012-07-01

    Surface layer formation processes on a LiCoO2 thin film electrode in a non-aqueous electrolyte containing lithium bis(oxalate)borate (LiBOB) were investigated using in situ FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS). The in situ FTIR spectra of the electrolyte solution containing LiBOB showed that the adsorption of BOB anions on the electrode surface occurred during the charge process of the LiCoO2 thin film electrode above 4.0 V. XPS analysis for the LiCoO2 thin film electrode charged in an electrolyte containing LiBOB suggested that the adsorbed BOB anions on the electrode surface prevent the continuous decomposition of hexafluorophosphate (PF6) anions resulting in the formation of a very thin surface layer containing organic species, while the LiCoO2 charged in a LiPF6 solution had a relatively thick surface layer containing organic species and inorganic species.

  4. Irradiation of industrial enzyme preparations. II. Characterization of fungal pectinase by thin-layer isoelectric focusing and gel filtration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delincee, H.

    1978-01-01

    Industrial dry fungal pectinase from A. niger was irradiated with doses (up to 1 Mrad) of /sup 60/Co-..gamma..rays effective in reducing microbial contamination. The pectinase was characterized by thin-layer isoelectric focusing and gel filtration in order to detect possible radiation-induced structural alterations. Thin-layer isoelectric focusing revealed at least fifteen multiple forms with pectin-depolymerizing activity, with isoelectric points in the range pH 4.5 to 7. Heterogeneity of pectinesterase was also demonstrated, the main band occurring around pH 4. By thin-layer gel filtration the molecular weight of the pectin-depolymerase was estimated as being about 36,000, and that of pectinesterase as about 33,000.more » Radiation-induced changes of the charge properties or molecular size of the irradiated pectinase preparation were not observed. The feasibility of using ionizing radiation for the reduction of microbial contamination of industrial enzyme preparations looks promising.« less

  5. Exploration of photosensitive polyimide as the modification layer in thin film microcircuit

    NASA Astrophysics Data System (ADS)

    Liu, Lily; Song, Changbin; Xue, Bin; Li, Jing; Wang, Junxi; Li, Jinmin

    2018-02-01

    Positive type photosensitive polyimide is used as the modification layer in the thin film transistors production process. The photosensitive polyimide is not only used as the second insulating layer, it can also be used instead of a mask because of the photosensitivity. A suitable curing condition can help photosensitive polyimide form the high performance polyimide with orderly texture inside, and the performance of imidization depends on the precise control of temperature, time, and heat control during the curing process. Therefore, experiments of different stepped up heating tests are made, and the ability of protecting silicon dioxide is analyzed.

  6. High conductivity and transparent aluminum-based multi-layer source/drain electrodes for thin film transistors

    NASA Astrophysics Data System (ADS)

    Yao, Rihui; Zhang, Hongke; Fang, Zhiqiang; Ning, Honglong; Zheng, Zeke; Li, Xiaoqing; Zhang, Xiaochen; Cai, Wei; Lu, Xubing; Peng, Junbiao

    2018-02-01

    In this study, high conductivity and transparent multi-layer (AZO/Al/AZO-/Al/AZO) source/drain (S/D) electrodes for thin film transistors were fabricated via conventional physical vapor deposition approaches, without toxic elements or further thermal annealing process. The 68 nm-thick multi-layer films with excellent optical properties (transparency: 82.64%), good electrical properties (resistivity: 6.64  ×  10-5 Ω m, work function: 3.95 eV), and superior surface roughness (R q   =  0.757 nm with scanning area of 5  ×  5 µm2) were fabricated as the S/D electrodes. Significantly, comprehensive performances of AZO films are enhanced by the insertion of ultra-thin Al layers. The optimal transparent TFT with this multi-layer S/D electrodes exhibited a decent electrical performance with a saturation mobility (µ sat) of 3.2 cm2 V-1 s-1, an I on/I off ratio of 1.59  ×  106, a subthreshold swing of 1.05 V/decade. The contact resistance of AZO/Al/AZO/Al/AZO multi-layer electrodes is as low as 0.29 MΩ. Moreover, the average visible light transmittance of the unpatterned multi-layers constituting a whole transparent TFT could reach 72.5%. The high conductivity and transparent multi-layer S/D electrodes for transparent TFTs possessed great potential for the applications of the green and transparent displays industry.

  7. Investigation of Boundary Layer Disturbances Caused by Periodic Heating of a Thin Ribbon

    DTIC Science & Technology

    1988-03-01

    boundary layer. To obtain quantitative information about the development of these waves, they introduced a two-dimensional artificial disturbance into the...AF IT a. Thermo Systems Inc. (TSI) IFA-iO Intellegent Flow Analyzer Anemometry System b. TSI Model 1218-20 Hot Film Boundary Layer Probe c. Zenith Z

  8. HPTLC-aptastaining - Innovative protein detection system for high-performance thin-layer chromatography

    NASA Astrophysics Data System (ADS)

    Morschheuser, Lena; Wessels, Hauke; Pille, Christina; Fischer, Judith; Hünniger, Tim; Fischer, Markus; Paschke-Kratzin, Angelika; Rohn, Sascha

    2016-05-01

    Protein analysis using high-performance thin-layer chromatography (HPTLC) is not commonly used but can complement traditional electrophoretic and mass spectrometric approaches in a unique way. Due to various detection protocols and possibilities for hyphenation, HPTLC protein analysis is a promising alternative for e.g., investigating posttranslational modifications. This study exemplarily focused on the investigation of lysozyme, an enzyme which is occurring in eggs and technologically added to foods and beverages such as wine. The detection of lysozyme is mandatory, as it might trigger allergenic reactions in sensitive individuals. To underline the advantages of HPTLC in protein analysis, the development of innovative, highly specific staining protocols leads to improved sensitivity for protein detection on HPTLC plates in comparison to universal protein derivatization reagents. This study aimed at developing a detection methodology for HPTLC separated proteins using aptamers. Due to their affinity and specificity towards a wide range of targets, an aptamer based staining procedure on HPTLC (HPTLC-aptastaining) will enable manifold analytical possibilities. Besides the proof of its applicability for the very first time, (i) aptamer-based staining of proteins is applicable on different stationary phase materials and (ii) furthermore, it can be used as an approach for a semi-quantitative estimation of protein concentrations.

  9. Use of low volatility mobile phases in electroosmotic thin-layer chromatography.

    PubMed

    Berezkin, V G; Balushkin, A O; Tyaglov, B V; Litvin, E F

    2005-08-19

    A variant of electroosmotic thin-layer chromatography is suggested with the use of low volatility compounds as mobile phases aimed at drastically decreasing the evaporation of the mobile phase and improving the reproducibility of the method. The linear movement velocity of zones of separated compounds is experimentally shown to increase 2-12-fold in electroosmotic chromatography (compared to similar values in traditional TLC). The separation efficiency is also considerably increased.

  10. Magnetic domain observation of FeCo thin films fabricated by alternate monoatomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohtsuki, T., E-mail: ohtsuki@spring8.or.jp; Kotsugi, M.; Ohkochi, T.

    2014-01-28

    FeCo thin films are fabricated by alternate monoatomic layer deposition method on a Cu{sub 3}Au buffer layer, which in-plane lattice constant is very close to the predicted value to obtain a large magnetic anisotropy constant. The variation of the in-plane lattice constant during the deposition process is investigated by reflection high-energy electron diffraction. The magnetic domain images are also observed by a photoelectron emission microscope in order to microscopically understand the magnetic structure. As a result, element-specific magnetic domain images show that Fe and Co magnetic moments align parallel. A series of images obtained with various azimuth reveal that themore » FeCo thin films show fourfold in-plane magnetic anisotropy along 〈110〉 direction, and that the magnetic domain structure is composed only of 90∘ wall.« less

  11. Simultaneous quantification of withanolides in Withania somnifera by a validated high-performance thin-layer chromatographic method.

    PubMed

    Srivastava, Pooja; Tiwari, Neerja; Yadav, Akhilesh K; Kumar, Vijendra; Shanker, Karuna; Verma, Ram K; Gupta, Madan M; Gupta, Anil K; Khanuja, Suman P S

    2008-01-01

    This paper describes a sensitive, selective, specific, robust, and validated densitometric high-performance thin-layer chromatographic (HPTLC) method for the simultaneous determination of 3 key withanolides, namely, withaferin-A, 12-deoxywithastramonolide, and withanolide-A, in Ashwagandha (Withania somnifera) plant samples. The separation was performed on aluminum-backed silica gel 60F254 HPTLC plates using dichloromethane-methanol-acetone-diethyl ether (15 + 1 + 1 + 1, v/v/v/v) as the mobile phase. The withanolides were quantified by densitometry in the reflection/absorption mode at 230 nm. Precise and accurate quantification could be performed in the linear working concentration range of 66-330 ng/band with good correlation (r2 = 0.997, 0.999, and 0.996, respectively). The method was validated for recovery, precision, accuracy, robustness, limit of detection, limit of quantitation, and specificity according to International Conference on Harmonization guidelines. Specificity of quantification was confirmed using retention factor (Rf) values, UV-Vis spectral correlation, and electrospray ionization mass spectra of marker compounds in sample tracks.

  12. Multispectral surface plasmon resonance approach for ultra-thin silver layer characterization: Application to top-emitting OLED cathode

    NASA Astrophysics Data System (ADS)

    Taverne, S.; Caron, B.; Gétin, S.; Lartigue, O.; Lopez, C.; Meunier-Della-Gatta, S.; Gorge, V.; Reymermier, M.; Racine, B.; Maindron, T.; Quesnel, E.

    2018-01-01

    While dielectric/metal/dielectric (DMD) multilayer thin films have raised considerable interest as transparent and conductive electrodes in various optoelectronic devices, the knowledge of optical characteristics of thin metallic layers integrated in such structures is still rather approximate. The multispectral surface plasmon resonance characterization approach described in this work precisely aims at providing a rigorous methodology able to accurately determine the optical constants of ultra-thin metallic films. As a practical example, the refractive index and extinction dispersion curves of 8 to 25 nm-thick silver layers have been investigated. As a result, their extreme dependence on the layer thickness is highlighted, in particular in a thickness range close to the critical threshold value (˜10 nm) where the silver film becomes continuous and its electrical conductance/optical transmittance ratio particularly interesting. To check the validity of the revisited Ag layers constant dispersion curves deduced from this study, they were introduced into a commercial optical model software to simulate the behavior of various optoelectronic building blocks from the simplest ones (DMD electrodes) to much more complex structures [full organic light emitting device (OLED) stacks]. As a result, a much better prediction of the emission spectrum profile as well as the angular emission pattern of top-emitting OLEDs is obtained. On this basis, it is also shown how a redesign of the top encapsulation thin film of OLEDs is necessary to better take benefit from the advanced DMD electrode. These results should particularly interest the micro-OLED display field where bright and directive single color pixel emission is required.

  13. Adsorption and electronic properties of pentacene on thin dielectric decoupling layers.

    PubMed

    Koslowski, Sebastian; Rosenblatt, Daniel; Kabakchiev, Alexander; Kuhnke, Klaus; Kern, Klaus; Schlickum, Uta

    2017-01-01

    With the increasing use of thin dielectric decoupling layers to study the electronic properties of organic molecules on metal surfaces, comparative studies are needed in order to generalize findings and formulate practical rules. In this paper we study the adsorption and electronic properties of pentacene deposited onto h-BN/Rh(111) and compare them with those of pentacene deposited onto KCl on various metal surfaces. When deposited onto KCl, the HOMO and LUMO energies of the pentacene molecules scale with the work functions of the combined KCl/metal surface. The magnitude of the variation between the respective KCl/metal systems indicates the degree of interaction of the frontier orbitals with the underlying metal. The results confirm that the so-called IDIS model developed by Willenbockel et al. applies not only to molecular layers on bare metal surfaces, but also to individual molecules on thin electronically decoupling layers. Depositing pentacene onto h-BN/Rh(111) results in significantly different adsorption characteristics, due to the topographic corrugation of the surface as well as the lateral electric fields it presents. These properties are reflected in the divergence from the aforementioned trend for the orbital energies of pentacene deposited onto h-BN/Rh(111), as well as in the different adsorption geometry. Thus, the highly desirable capacity of h-BN to trap molecules comes at the price of enhanced metal-molecule interaction, which decreases the HOMO-LUMO gap of the molecules. In spite of the enhanced interaction, the molecular orbitals are evident in scanning tunnelling spectroscopy (STS) and their shapes can be resolved by spectroscopic mapping.

  14. Burning Graphene Layer-by-Layer

    PubMed Central

    Ermakov, Victor A.; Alaferdov, Andrei V.; Vaz, Alfredo R.; Perim, Eric; Autreto, Pedro A. S.; Paupitz, Ricardo; Galvao, Douglas S.; Moshkalev, Stanislav A.

    2015-01-01

    Graphene, in single layer or multi-layer forms, holds great promise for future electronics and high-temperature applications. Resistance to oxidation, an important property for high-temperature applications, has not yet been extensively investigated. Controlled thinning of multi-layer graphene (MLG), e.g., by plasma or laser processing is another challenge, since the existing methods produce non-uniform thinning or introduce undesirable defects in the basal plane. We report here that heating to extremely high temperatures (exceeding 2000 K) and controllable layer-by-layer burning (thinning) can be achieved by low-power laser processing of suspended high-quality MLG in air in “cold-wall” reactor configuration. In contrast, localized laser heating of supported samples results in non-uniform graphene burning at much higher rates. Fully atomistic molecular dynamics simulations were also performed to reveal details of oxidation mechanisms leading to uniform layer-by-layer graphene gasification. The extraordinary resistance of MLG to oxidation paves the way to novel high-temperature applications as continuum light source or scaffolding material. PMID:26100466

  15. Formation of a highly doped ultra-thin amorphous carbon layer by ion bombardment of graphene.

    PubMed

    Michałowski, Paweł Piotr; Pasternak, Iwona; Ciepielewski, Paweł; Guinea, Francisco; Strupiński, Włodek

    2018-07-27

    Ion bombardment of graphene leads to the formation of defects which may be used to tune properties of the graphene based devices. In this work, however, we present that the presence of the graphene layer on a surface of a sample has a significant impact on the ion bombardment process: broken sp 2 bonds react with the incoming ions and trap them close to the surface of the sample, preventing a standard ion implantation. For an ion bombardment with a low impact energy and significant dose (in the range of 10 14 atoms cm -2 ) an amorphization of the graphene layer is observed but at the same time, most of the incoming ions do not penetrate the sample but stop at the surface, thus forming a highly doped ultra-thin amorphous carbon layer. The effect may be used to create thin layers containing desired atoms if no other technique is available. This approach is particularly useful for secondary ion mass spectrometry where a high concentration of Cs at the surface of a sample significantly enhances the negative ionization probability, allowing it to reach better detection limits.

  16. Formation of a highly doped ultra-thin amorphous carbon layer by ion bombardment of graphene

    NASA Astrophysics Data System (ADS)

    Piotr Michałowski, Paweł; Pasternak, Iwona; Ciepielewski, Paweł; Guinea, Francisco; Strupiński, Włodek

    2018-07-01

    Ion bombardment of graphene leads to the formation of defects which may be used to tune properties of the graphene based devices. In this work, however, we present that the presence of the graphene layer on a surface of a sample has a significant impact on the ion bombardment process: broken sp2 bonds react with the incoming ions and trap them close to the surface of the sample, preventing a standard ion implantation. For an ion bombardment with a low impact energy and significant dose (in the range of 1014 atoms cm‑2) an amorphization of the graphene layer is observed but at the same time, most of the incoming ions do not penetrate the sample but stop at the surface, thus forming a highly doped ultra-thin amorphous carbon layer. The effect may be used to create thin layers containing desired atoms if no other technique is available. This approach is particularly useful for secondary ion mass spectrometry where a high concentration of Cs at the surface of a sample significantly enhances the negative ionization probability, allowing it to reach better detection limits.

  17. Low-temperature atomic layer deposition of TiO{sub 2} thin layers for the processing of memristive devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porro, Samuele, E-mail: samuele.porro@polito.it; Conti, Daniele; Guastella, Salvatore

    2016-01-15

    Atomic layer deposition (ALD) represents one of the most fundamental techniques capable of satisfying the strict technological requirements imposed by the rapidly evolving electronic components industry. The actual scaling trend is rapidly leading to the fabrication of nanoscaled devices able to overcome limits of the present microelectronic technology, of which the memristor is one of the principal candidates. Since their development in 2008, TiO{sub 2} thin film memristors have been identified as the future technology for resistive random access memories because of their numerous advantages in producing dense, low power-consuming, three-dimensional memory stacks. The typical features of ALD, such asmore » self-limiting and conformal deposition without line-of-sight requirements, are strong assets for fabricating these nanosized devices. This work focuses on the realization of memristors based on low-temperature ALD TiO{sub 2} thin films. In this process, the oxide layer was directly grown on a polymeric photoresist, thus simplifying the fabrication procedure with a direct liftoff patterning instead of a complex dry etching process. The TiO{sub 2} thin films deposited in a temperature range of 120–230 °C were characterized via Raman spectroscopy and x-ray photoelectron spectroscopy, and electrical current–voltage measurements taken in voltage sweep mode were employed to confirm the existence of resistive switching behaviors typical of memristors. These measurements showed that these low-temperature devices exhibit an ON/OFF ratio comparable to that of a high-temperature memristor, thus exhibiting similar performances with respect to memory applications.« less

  18. Performance improvement of organic thin film transistors by using active layer with sandwich structure

    NASA Astrophysics Data System (ADS)

    Ni, Yao; Zhou, Jianlin; Kuang, Peng; Lin, Hui; Gan, Ping; Hu, Shengdong; Lin, Zhi

    2017-08-01

    We report organic thin film transistors (OTFTs) with pentacene/fluorinated copper phthalo-cyanine (F16CuPc)/pentacene (PFP) sandwich configuration as active layers. The sandwich devices not only show hole mobility enhancement but also present a well control about threshold voltage and off-state current. By investigating various characteristics, including current-voltage hysteresis, organic film morphology, capacitance-voltage curve and resistance variation of active layers carefully, it has been found the performance improvement is mainly attributed to the low carrier traps and the higher conductivity of the sandwich active layer due to the additional induced carriers in F16CuPc/pentacene. Therefore, using proper multiple active layer is an effective way to gain high performance OTFTs.

  19. Effects of V2O5/Au bi-layer electrodes on the top contact Pentacene-based organic thin film transistors

    NASA Astrophysics Data System (ADS)

    Borthakur, Tribeni; Sarma, Ranjit

    2017-05-01

    Top-contact Pentacene-based organic thin film transistors (OTFTs) with a thin layer of Vanadium Pent-oxide between Pentacene and Au layer are fabricated. Here we have found that the devices with V2O5/Au bi-layer source-drain electrode exhibit better field-effect mobility, high on-off ratio, low threshold voltage and low sub-threshold slope than the devices with Au only. The field-effect mobility, current on-off ratio, threshold voltage and sub-threshold slope of V2O5/Au bi-layer OTFT estimated from the device with 15 nm thick V2O5 layer is .77 cm2 v-1 s-1, 7.5×105, -2.9 V and .36 V/decade respectively.

  20. Influence of patterning the TCO layer on the series resistance of thin film HIT solar cells

    NASA Astrophysics Data System (ADS)

    Champory, Romain; Mandorlo, Fabien; Seassal, Christian; Fave, Alain

    2017-01-01

    Thin HIT solar cells combine efficient surface passivation and high open circuit voltage leading to high conversion efficiencies. They require a TCO layer in order to ease carriers transfer to the top surface fingers. This Transparent Conductive Oxide layer induces parasitic absorption in the low wavelength range of the solar spectrum that limits the maximum short circuit current. In case of thin film HIT solar cells, the front surface is patterned in order to increase the effective life time of photons in the active material, and the TCO layer is often deposited with a conformal way leading to additional material on the sidewalls of the patterns. In this article, we propose an alternative scheme with a local etching of both the TCO and the front a-Si:H layers in order to reduce the parasitic absorption. We study how the local resistivity of the TCO evolves as a function of the patterns, and demonstrate how the increase of the series resistance can be compensated in order to increase the conversion efficiency.

  1. Effect of tethering on the surface dynamics of a thin polymer melt layer

    DOE PAGES

    Uğur, Gökçe; Akgun, Bulent; Jiang, Zhang; ...

    2016-05-13

    The surface height fluctuations of a layer of low molecular weight (2.2k) untethered perdeuterated polystyrene (dPS) chains adjacent to a densely grafted polystyrene brush are slowed dramatically. Due to the interpenetration of the brush with the layer of “untethered chains” a hydrodynamic continuum theory can only describe the fluctuations when the effective thickness of the film is taken to be that which remains above the swollen brush. Furthermore, the portion of the film of initially untethered chains that interpenetrates with the brush becomes so viscous as to effectively play the role of a rigid substrate. They provide a route formore » tailoring polymer layer surface properties such as wetting, adhesion and friction, since these hybrid samples contain a covalently tethered layer at the bottom, does not readily dewet, and are more robust than thin layers of untethered short chains on rigid substrates.« less

  2. Effect of tethering on the surface dynamics of a thin polymer melt layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uğur, Gökçe; Akgun, Bulent; Jiang, Zhang

    The surface height fluctuations of a layer of low molecular weight (2.2k) untethered perdeuterated polystyrene (dPS) chains adjacent to a densely grafted polystyrene brush are slowed dramatically. Due to the interpenetration of the brush with the layer of “untethered chains” a hydrodynamic continuum theory can only describe the fluctuations when the effective thickness of the film is taken to be that which remains above the swollen brush. Furthermore, the portion of the film of initially untethered chains that interpenetrates with the brush becomes so viscous as to effectively play the role of a rigid substrate. They provide a route formore » tailoring polymer layer surface properties such as wetting, adhesion and friction, since these hybrid samples contain a covalently tethered layer at the bottom, does not readily dewet, and are more robust than thin layers of untethered short chains on rigid substrates.« less

  3. Solution-processable alumina: PVP nanocomposite dielectric layer for high-performance organic thin-film transistors

    NASA Astrophysics Data System (ADS)

    Lin, Hui; Kong, Xiao; Li, Yiran; Kuang, Peng; Tao, Silu

    2018-03-01

    In this article, we have investigated the effect of nanocomposite gate dielectric layer built by alumina (Al2O3) and poly(4-vinyphenol) (PVP) with solution method which could enhance the dielectric capability and decrease the surface polarity. Then, we used modify layer to optimize the surface morphology of dielectric layer to further improve the insulation capability, and finally we fabricated the high-performance and low-voltage organic thin-film transistors by using this nanocomposite dielectric layer. The result shows that the devices with Al2O3:10%PVP dielectric layer with a modified layer exhibited a mobility of 0.49 cm2/Vs, I on/Ioff ratio of 7.8 × 104, threshold voltage of - 1.2 V, sub-threshold swing of 0.3 V/dec, and operating voltage as low as - 4 V. The improvement of devices performance was owing to the good insulation capability, appropriate capacitance of dielectric layer, and preferable interface contact, smaller crystalline size of active layer.

  4. Chlorophyll-a thin layers in the Magellan fjord system: The role of the water column stratification

    NASA Astrophysics Data System (ADS)

    Ríos, Francisco; Kilian, Rolf; Mutschke, Erika

    2016-08-01

    Fjord systems represent hotspots of primary productivity and organic carbon burial. However, the factors which control the primary production in mid-latitude fjords are poorly understood. In this context, results from the first fine-scale measurements of bio-oceanographic features in the water column of fjords associated with the Strait of Magellan are presented. A submersible fluorescence probe (FP) was used to measure the Chlorophyll-a (Chl-a) concentration in situ, along with conductivity, temperature, hydrostatic pressure (depth) and dissolved oxygen (CTD-O2) of the water column. The Austral spring results of 14 FP-CTD-O2 profiles were used to define the vertical and horizontal patches of the fluorescent pigment distribution and their spatial relations with respect to the observed hydrographic features. Three zones with distinct water structures were defined. In all zones, the 'brown' spectral group (diatoms and dinoflagellates) predominated accounting for >80 wt% of the phytoplankton community. Thin layers with high Chl-a concentration were detected in 50% of the profiles. These layers harbored a substantial amount (30-65 wt%) of the phytoplankton biomass. Stratification was positively correlated to the occurrence of Chl-a thin layers. In stable and highly stratified water columns the integrated Chl-a concentration was higher and frequently located within thin layers whereas well mixed water columns displayed lower values and more homogeneous vertical distribution of Chl-a. These results indicate that mixing/stability processes are important factors accounting to the vertical distribution of Chl-a in Magellan fjords.

  5. Nonlinear Ballistic Transport in an Atomically Thin Material.

    PubMed

    Boland, Mathias J; Sundararajan, Abhishek; Farrokhi, M Javad; Strachan, Douglas R

    2016-01-26

    Ultrashort devices that incorporate atomically thin components have the potential to be the smallest electronics. Such extremely scaled atomically thin devices are expected to show ballistic nonlinear behavior that could make them tremendously useful for ultrafast applications. While nonlinear diffusive electron transport has been widely reported, clear evidence for intrinsic nonlinear ballistic transport in the growing array of atomically thin conductors has so far been elusive. Here we report nonlinear electron transport of an ultrashort single-layer graphene channel that shows quantitative agreement with intrinsic ballistic transport. This behavior is shown to be distinctly different than that observed in similarly prepared ultrashort devices consisting, instead, of bilayer graphene channels. These results suggest that the addition of only one extra layer of an atomically thin material can make a significant impact on the nonlinear ballistic behavior of ultrashort devices, which is possibly due to the very different chiral tunneling of their charge carriers. The fact that we observe the nonlinear ballistic response at room temperature, with zero applied magnetic field, in non-ultrahigh vacuum conditions and directly on a readily accessible oxide substrate makes the nanogap technology we utilize of great potential for achieving extremely scaled high-speed atomically thin devices.

  6. Interference effects in the sum frequency generation spectra of thin organic films. II: Applications to different thin-film systems.

    PubMed

    Tong, Yujin; Zhao, Yanbao; Li, Na; Ma, Yunsheng; Osawa, Masatoshi; Davies, Paul B; Ye, Shen

    2010-07-21

    In this paper, the results of the modeling calculations carried out for predicting the interference effects expected in the sum frequency generation (SFG) spectra of a specific thin-layer system, described in the accompanying paper, are tested by comparing them with the experimental spectra obtained for a real thin-layer film comprising an organic monolayer/variable thickness dielectric layer/gold substrate. In this system, two contributions to the SFG spectra arise, a resonant contribution from the organic film and a nonresonant contribution from the gold substrate. The modeling calculations are in excellent agreement with the experimental spectra over a wide range of thicknesses and for different polarization combinations. The introduction of another resonant monolayer adjacent to the gold substrate and with the molecules having a reverse orientation has a significant affect on the spectral shapes which is predicted. If a dielectric substrate such as CaF(2) is used instead of a gold substrate, only the spectral intensities vary with the film thickness but not the spectral shapes. The counterpropagating beam geometry will change both the thickness dependent spectral shapes and the intensity of different vibrational modes in comparison with a copropagating geometry. The influences of these experimental factors, i.e., the molecular orientational structure in the thin film, the nature of the substrate, and the selected incident beam geometry, on the experimental SFG spectra are quantitatively predicted by the calculations. The thickness effects on the signals from a SFG active monolayer contained in a thin liquid-layer cell of the type frequently used for in situ electrochemical measurements is also discussed. The modeling calculation is also valid for application to other thin-film systems comprising more than two resonant SFG active interfaces by appropriate choice of optical geometries and relevant optical properties.

  7. Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts

    DOEpatents

    Jansen, Kai W.; Maley, Nagi

    2000-01-01

    High performance photovoltaic modules are produced with improved interconnects by a special process. Advantageously, the photovoltaic modules have a dual layer back (rear) contact and a front contact with at least one layer. The front contact and the inner layer of the back contact can comprise a transparent conductive oxide. The outer layer of the back contact can comprise a metal or metal oxide. The front contact can also have a dielectric layer. In one form, the dual layer back contact comprises a zinc oxide inner layer and an aluminum outer layer and the front contact comprises a tin oxide inner layer and a silicon dioxide dielectric outer layer. One or more amorphous silicon-containing thin film semiconductors can be deposited between the front and back contacts. The contacts can be positioned between a substrate and an optional superstrate. During production, the transparent conductive oxide layer of the front contact is scribed by a laser, then the amorphous silicon-containing semiconductors and inner layer of the dual layer back contact are simultaneously scribed and trenched (drilled) by the laser and the trench is subsequently filled with the same metal as the outer layer of the dual layer back contact to provide a superb mechanical and electrical interconnect between the front contact and the outer layer of the dual layer back contact. The outer layer of the dual layer back contact can then be scribed by the laser. For enhanced environmental protection, the photovoltaic modules can be encapsulated.

  8. Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts

    DOEpatents

    Jansen, Kai W.; Maley, Nagi

    2001-01-01

    High performance photovoltaic modules are produced with improved interconnects by a special process. Advantageously, the photovoltaic modules have a dual layer back (rear) contact and a front contact with at least one layer. The front contact and the inner layer of the back contact can comprise a transparent conductive oxide. The outer layer of the back contact can comprise a metal or metal oxide. The front contact can also have a dielectric layer. In one form, the dual layer back contact comprises a zinc oxide inner layer and an aluminum outer layer and the front contact comprises a tin oxide inner layer and a silicon dioxide dielectric outer layer. One or more amorphous silicon-containing thin film semiconductors can be deposited between the front and back contacts. The contacts can be positioned between a substrate and an optional superstrate. During production, the transparent conductive oxide layer of the front contact is scribed by a laser, then the amorphous silicon-containing semiconductors and inner layer of the dual layer back contact are simultaneously scribed and trenched (drilled) by the laser and the trench is subsequently filled with the same metal as the outer layer of the dual layer back contact to provide a superb mechanical and electrical interconnect between the front contact and the outer layer of the dual layer back contact. The outer layer of the dual layer back contact can then be scribed by the laser. For enhanced environmental protection, the photovoltaic modules can be encapsulated.

  9. Characterization of E 471 food emulsifiers by high-performance thin-layer chromatography-fluorescence detection.

    PubMed

    Oellig, Claudia; Brändle, Klara; Schwack, Wolfgang

    2018-07-13

    Mono- and diacylglycerol (MAG and DAG) emulsifiers, also known as food additive E 471, are widely used to adjust techno-functional properties in various foods. Besides MAGs and DAGs, E 471 emulsifiers additionally comprise different amounts of triacylglycerols (TAGs) and free fatty acids (FFAs). MAGs, DAGs, TAGs and FFAs are generally determined by high-performance liquid chromatography (HPLC) or gas chromatography (GC) coupled to mass selective detection, analyzing the individual representatives of the lipid classes. In this work we present a rapid and sensitive method for the determination of MAGs, DAGs, TAGs and FFAs in E 471 emulsifiers by high-performance thin-layer chromatography with fluorescence detection (HPTLC-FLD), including a response factor system for quantitation. Samples were simply dissolved and diluted with t-butyl methyl ether before a two-fold development was performed on primuline pre-impregnated LiChrospher silica gel plates with diethyl ether and n-pentane/n-hexane/diethyl ether (52:20:28, v/v/v) as the mobile phases to 18 and 75 mm, respectively. For quantitation, the plate was scanned in the fluorescence mode at UV 366/>400 nm, when the cumulative signal for each lipid class was used. Calibration was done with 1,2-distearin and amounts of lipid classes were calculated with response factors and expressed as monostearin, distearin, tristearin and stearic acid. Limits of detection and quantitation were 1 and 4 ng/zone, respectively, for 1,2-distearin. Thus, the HPTLC-FLD approach represents a simple, rapid and convenient screening alternative to HPLC and GC analysis of the individual compounds. Visual detection additionally enables an easy characterization and the direct comparison of emulsifiers through the lipid class pattern, when utilized as a fingerprint. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. A comprehensive review of thin-layer drying models used in agricultural products.

    PubMed

    Ertekin, Can; Firat, M Ziya

    2017-03-04

    Drying is one of the widely used methods of grain, fruit, and vegetable preservation. The important aim of drying is to reduce the moisture content and thereby increase the lifetime of products by limiting enzymatic and oxidative degradation. In addition, by reducing the amount of water, drying reduces the crop losses, improves the quality of dried products, and facilitates its transportation, handling, and storage requirements. Drying is a process comprising simultaneous heat and mass transfer within the material, and between the surface of the material and the surrounding media. Many models have been used to describe the drying process for different agricultural products. These models are used to estimate drying time of several products under different drying conditions, and how to increase the drying process efficiency and also to generalize drying curves, for the design and operation of dryers. Several investigators have proposed numerous mathematical models for thin-layer drying of many agricultural products. This study gives a comprehensive review of more than 100 different semitheoretical and empirical thin-layer drying models used in agricultural products and evaluates the statistical criteria for the determination of appropriate model.

  11. Parallel adaptive discontinuous Galerkin approximation for thin layer avalanche modeling

    NASA Astrophysics Data System (ADS)

    Patra, A. K.; Nichita, C. C.; Bauer, A. C.; Pitman, E. B.; Bursik, M.; Sheridan, M. F.

    2006-08-01

    This paper describes the development of highly accurate adaptive discontinuous Galerkin schemes for the solution of the equations arising from a thin layer type model of debris flows. Such flows have wide applicability in the analysis of avalanches induced by many natural calamities, e.g. volcanoes, earthquakes, etc. These schemes are coupled with special parallel solution methodologies to produce a simulation tool capable of very high-order numerical accuracy. The methodology successfully replicates cold rock avalanches at Mount Rainier, Washington and hot volcanic particulate flows at Colima Volcano, Mexico.

  12. What Factors Affect the Separation of Substances Using Thin-Layer Chromatography? An Undergraduate Experiment.

    ERIC Educational Resources Information Center

    Nash, John J.; Meyer, Jeanne A.; Everson, Barbara

    2001-01-01

    Rx values in thin-layer chromatography (TLC) depend strongly on the solvent saturation of the atmosphere above the liquid in the TLC developing chamber. Presents an experiment illustrating the potentially dramatic effects on TLC Rx values of not equilibrating the solvent atmosphere during development. (ASK)

  13. All-back-Schottky-contact thin-film photovoltaics

    NASA Astrophysics Data System (ADS)

    Nardone, Marco

    2016-02-01

    The concept of All-Back-Schottky-Contact (ABSC) thin-film photovoltaic (TFPV) devices is introduced and evaluated using 2D numerical simulation. Reach-through Schottky junctions due to two metals of different work functions in an alternating, side-by-side pattern along the non-illuminated side generate the requisite built-in field. It is shown that our simulation method quantitatively describes existing data for a recently demonstrated heterojunction thin-film cell with interdigitated back contacts (IBCs) of one metal type. That model is extended to investigate the performance of ABSC devices with bimetallic IBCs within a pertinent parameter space. Our calculations indicate that 20% efficiency is achievable with micron-scale features and sufficient surface passivation. Bimetallic, micron-scale IBCs are readily fabricated using photo-lithographic techniques and the ABSC design allows for optically transparent surface passivation layers that need not be electrically conductive. The key advantages of the ABSC-TFPV architecture are that window layers, buffer layers, heterojunctions, and module scribing are not required because both contacts are located on the back of the device.

  14. Determination of the Mass Absorption Coefficient in Two-Layer Ti/V and V/Ti Thin Film Systems by the X-Ray Fluorescence Method

    NASA Astrophysics Data System (ADS)

    Mashin, N. I.; Chernyaeva, E. A.; Tumanova, A. N.; Gafarova, L. M.

    2016-03-01

    A new XRF procedure for the determination of the mass absorption coefficient in thin film Ti/V and V/Ti two-layer systems has been proposed. The procedure uses easy-to-make thin-film layers of sputtered titanium and vanadium on a polymer film substrate. Correction coefficients have been calculated that take into account attenuation of primary radiation of the X-ray tube, as well as attenuation of the spectral line of the bottom layer element in the top layer.

  15. Atomic layer deposition synthesized TiO{sub x} thin films and their application as microbolometer active materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanrikulu, Mahmud Yusuf, E-mail: mytanrikulu@adanabtu.edu.tr; Rasouli, Hamid Reza; Ghaffari, Mohammad

    2016-05-15

    This paper demonstrates the possible usage of TiO{sub x} thin films synthesized by atomic layer deposition as a microbolometer active material. Thin film electrical resistance is investigated as a function of thermal annealing. It is found that the temperature coefficient of resistance values can be controlled by coating/annealing processes, and the value as high as −9%/K near room temperature is obtained. The noise properties of TiO{sub x} films are characterized. It is shown that TiO{sub x} films grown by atomic layer deposition technique could have a significant potential to be used as a new active material for microbolometer-based applications.

  16. Hydrogen in thin Pd-based layers deposited on reticulated vitreous carbon-A new system for electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Łukaszewski, M.; Żurowski, A.; Czerwiński, A.

    Reticulated vitreous carbon (RVC) has been used as a matrix for electrodeposition of thin layers of Pd and Pd-rich Pd-Rh alloys. It was found that RVC substrate does not affect qualitatively hydrogen absorption behavior of Pd-based deposits. Similarly to thin Pd or Pd alloy layers deposited on Au wires, the α-β phase transition controls the overall rate of hydrogen absorption and desorption into/from Pd-based/RVC electrodes. The possibility of the application of these materials as phase charging-discharging systems was investigated. The values of specific pseudocapacitance, specific power and specific energy were comparable with those for supercapacitors utilizing various redox reactions.

  17. Thin-film encapsulation of organic electronic devices based on vacuum evaporated lithium fluoride as protective buffer layer

    NASA Astrophysics Data System (ADS)

    Peng, Yingquan; Ding, Sihan; Wen, Zhanwei; Xu, Sunan; Lv, Wenli; Xu, Ziqiang; Yang, Yuhuan; Wang, Ying; Wei, Yi; Tang, Ying

    2017-03-01

    Encapsulation is indispensable for organic thin-film electronic devices to ensure reliable operation and long-term stability. For thin-film encapsulating organic electronic devices, insulating polymers and inorganic metal oxides thin films are widely used. However, spin-coating of insulating polymers directly on organic electronic devices may destroy or introduce unwanted impurities in the underlying organic active layers. And also, sputtering of inorganic metal oxides may damage the underlying organic semiconductors. Here, we demonstrated that by utilizing vacuum evaporated lithium fluoride (LiF) as protective buffer layer, spin-coated insulating polymer polyvinyl alcohol (PVA), and sputtered inorganic material Er2O3, can be successfully applied for thin film encapsulation of copper phthalocyanine (CuPc)-based organic diodes. By encapsulating with LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films, the device lifetime improvements of 10 and 15 times can be achieved. These methods should be applicable for thin-film encapsulation of all kinds of organic electronic devices. Moisture-induced hole trapping, and Al top electrode oxidation are suggest to be the origins of current decay for the LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films encapsulated devices, respectively.

  18. Ceramic Composite Thin Films

    NASA Technical Reports Server (NTRS)

    Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor); Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  19. Molecular Beam Epitaxy Growth and Characterization of Thin Layers of Semiconductor Tin

    DTIC Science & Technology

    2016-09-01

    confirm that the thin layers of α-Sn are slightly strained, which supports theoretical prediction that α-Sn is a 3-D topological insulator (TI...topological insulator , single crystal 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF...its thickness, α-Sn is a 3-D or 2-D topological insulator (TI). Three-dimensional TIs are electronic materials that have a bulk bandgap and

  20. Quantitative measurement of mean inner potential and specimen thickness from high-resolution off-axis electron holograms of ultra-thin layered WSe2.

    PubMed

    Winkler, Florian; Tavabi, Amir H; Barthel, Juri; Duchamp, Martial; Yucelen, Emrah; Borghardt, Sven; Kardynal, Beata E; Dunin-Borkowski, Rafal E

    2017-07-01

    The phase and amplitude of the electron wavefunction that has passed through ultra-thin flakes of WSe 2 is measured from high-resolution off-axis electron holograms. Both the experimental measurements and corresponding computer simulations are used to show that, as a result of dynamical diffraction, the spatially averaged phase does not increase linearly with specimen thickness close to an [001] zone axis orientation even when the specimen has a thickness of only a few layers. It is then not possible to infer the local specimen thickness of the WSe 2 from either the phase or the amplitude alone. Instead, we show that the combined analysis of phase and amplitude from experimental measurements and simulations allows an accurate determination of the local specimen thickness. The relationship between phase and projected potential is shown to be approximately linear for extremely thin specimens that are tilted by several degrees in certain directions from the [001] zone axis. A knowledge of the specimen thickness then allows the electrostatic potential to be determined from the measured phase. By using this combined approach, we determine a value for the mean inner potential of WSe 2 of 18.9±0.8V, which is 12% lower than the value calculated from neutral atom scattering factors. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Adsorption and electronic properties of pentacene on thin dielectric decoupling layers

    PubMed Central

    Kabakchiev, Alexander; Kuhnke, Klaus; Kern, Klaus

    2017-01-01

    With the increasing use of thin dielectric decoupling layers to study the electronic properties of organic molecules on metal surfaces, comparative studies are needed in order to generalize findings and formulate practical rules. In this paper we study the adsorption and electronic properties of pentacene deposited onto h-BN/Rh(111) and compare them with those of pentacene deposited onto KCl on various metal surfaces. When deposited onto KCl, the HOMO and LUMO energies of the pentacene molecules scale with the work functions of the combined KCl/metal surface. The magnitude of the variation between the respective KCl/metal systems indicates the degree of interaction of the frontier orbitals with the underlying metal. The results confirm that the so-called IDIS model developed by Willenbockel et al. applies not only to molecular layers on bare metal surfaces, but also to individual molecules on thin electronically decoupling layers. Depositing pentacene onto h-BN/Rh(111) results in significantly different adsorption characteristics, due to the topographic corrugation of the surface as well as the lateral electric fields it presents. These properties are reflected in the divergence from the aforementioned trend for the orbital energies of pentacene deposited onto h-BN/Rh(111), as well as in the different adsorption geometry. Thus, the highly desirable capacity of h-BN to trap molecules comes at the price of enhanced metal–molecule interaction, which decreases the HOMO–LUMO gap of the molecules. In spite of the enhanced interaction, the molecular orbitals are evident in scanning tunnelling spectroscopy (STS) and their shapes can be resolved by spectroscopic mapping. PMID:28900594

  2. Approximate transient and long time limit solutions for the band broadening induced by the thin sidewall-layer in liquid chromatography columns.

    PubMed

    Broeckhoven, Ken; Desmet, Gert

    2007-11-16

    Using a combination of both analytical and numerical techniques, approximate analytical expressions have been established for the transient and long time limit band broadening, originating from the presence of a thin disturbed sidewall layer in liquid chromatography columns, including packed, monolithic as well as microfabricated columns. The established expressions can be used to compare the importance of a thin disturbed sidewall layer with that of other radial heterogeneity effects (such as transcolumn packing density variations due to the relief of packing stresses). The expressions are independent of the actual velocity profile inside the layer as long as the disturbed sidewall layer occupies less than 2.5% of the column width.

  3. Effect of Mg doping in ZnO buffer layer on ZnO thin film devices for electronic applications

    NASA Astrophysics Data System (ADS)

    Giri, Pushpa; Chakrabarti, P.

    2016-05-01

    Zinc Oxide (ZnO) thin films have been grown on p-silicon (Si) substrate using magnesium doped ZnO (Mg: ZnO) buffer layer by radio-frequency (RF) sputtering method. In this paper, we have optimized the concentration of Mg (0-5 atomic percent (at. %)) ZnO buffer layer to examine its effect on ZnO thin film based devices for electronic and optoelectronic applications. The crystalline nature, morphology and topography of the surface of the thin film have been characterized. The optical as well as electrical properties of the active ZnO film can be tailored by varying the concentration of Mg in the buffer layer. The crystallite size in the active ZnO thin film was found to increase with the Mg concentration in the buffer layer in the range of 0-3 at. % and subsequently decrease with increasing Mg atom concentration in the ZnO. The same was verified by the surface morphology and topography studies carried out with scanning electron microscope (SEM) and atomic electron microscopy (AFM) respectively. The reflectance in the visible region was measured to be less than 80% and found to decrease with increase in Mg concentration from 0 to 3 at. % in the buffer region. The optical bandgap was initially found to increase from 3.02 eV to 3.74 eV by increasing the Mg content from 0 to 3 at. % but subsequently decreases and drops down to 3.43 eV for a concentration of 5 at. %. The study of an Au:Pd/ZnO Schottky diode reveals that for optimum doping of the buffer layer the device exhibits superior rectifying behavior. The barrier height, ideality factor, rectification ratio, reverse saturation current and series resistance of the Schottky diode were extracted from the measured current voltage (I-V) characteristics.

  4. Validation Thin Layer Chromatography for the Determination of Acetaminophen in Tablets and Comparison with a Pharmacopeial Method

    PubMed Central

    Pyka, Alina; Budzisz, Marika; Dołowy, Małgorzata

    2013-01-01

    Adsorption thin layer chromatography (NP-TLC) with densitometry has been established for the identification and the quantification of acetaminophen in three leading commercial products of pharmaceutical tablets coded as brand: P1 (Product no. 1), P2 (Product no. 2), and P3 (Product no. 3). Applied chromatographic conditions have separated acetaminophen from its related substances, namely, 4-aminophenol and and 4′-chloroacetanilide. UV densitometry was performed in absorbance mode at 248 nm. The presented method was validated by specificity, range, linearity, accuracy, precision, detection limit, quantitative limit, and robustness. The TLC-densitometric method was also compared with a pharmacopeial UV-spectrophotometric method for the assay of acetaminophen, and the results confirmed statistically that the NP-TLC-densitometric method can be used as a substitute method. It could be said that the validated NP-TLC-densitometric method is suitable for the routine analysis of acetaminophen in quantity control laboratories. PMID:24063006

  5. Determination of cortisol in human plasma by thin-layer chromatography and fluorescence derivatization with isonicotinic acid hydrazide.

    PubMed

    Fenske, Martin

    2008-01-01

    The present work describes a specific and rapid determination of cortisol in human plasma. The method includes liquid-liquid extraction of plasma samples, thin-layer chromatography (TLC) of ethanolic extracts on aluminium foil-backed silica gel 60 TLC plates, derivatization of cortisol with isonicotinic acid hydrazide, and densitometric measurement of the fluorescence intensity of cortisol hydrazone. The fluorescence was linearly related to cortisol amounts; the correlation coefficients of standard curve plots were r>0.99. The coefficient of variation ranged between 2.8-7.9% (20 ng, within-assay/between assay variation) and 1.6-6.8% (80 ng, within-assay/between assay variation). The recovery of cortisol from plasma spiked with 21-deoxycortisol was 85%+/-4%. Cortisol concentration in the plasma was 66+/-32 ng/mL (mean+/-standard deviation, n=24). The advantage of this method is its simplicity to separate cortisol from other steroids by TLC, its specificity (formation of cortisol hydrazone), and the rapid quantitation of cortisol by densitometry.

  6. Assessment of doses caused by electrons in thin layers of tissue-equivalent materials, using MCNP.

    PubMed

    Heide, Bernd

    2013-10-01

    Absorbed doses caused by electron irradiation were calculated with Monte Carlo N-Particle transport code (MCNP) for thin layers of tissue-equivalent materials. The layers were so thin that the calculation of energy deposition was on the border of the scope of MCNP. Therefore, in this article application of three different methods of calculation of energy deposition is discussed. This was done by means of two scenarios: in the first one, electrons were emitted from the centre of a sphere of water and also recorded in that sphere; and in the second, an irradiation with the PTB Secondary Standard BSS2 was modelled, where electrons were emitted from an (90)Sr/(90)Y area source and recorded inside a cuboid phantom made of tissue-equivalent material. The speed and accuracy of the different methods were of interest. While a significant difference in accuracy was visible for one method in the first scenario, the difference in accuracy of the three methods was insignificant for the second one. Considerable differences in speed were found for both scenarios. In order to demonstrate the need for calculating the dose in thin small zones, a third scenario was constructed and simulated as well. The third scenario was nearly equal to the second one, but a pike of lead was assumed to be inside the phantom in addition. A dose enhancement (caused by the pike of lead) of ∼113 % was recorded for a thin hollow cylinder at a depth of 0.007 cm, which the basal-skin layer is referred to in particular. Dose enhancements between 68 and 88 % were found for a slab with a radius of 0.09 cm for all depths. All dose enhancements were hardly noticeable for a slab with a cross-sectional area of 1 cm(2), which is usually applied to operational radiation protection.

  7. Thin-layer chromatographic (TLC) separations and bioassays of plant extracts to identify antimicrobial compounds

    USDA-ARS?s Scientific Manuscript database

    A common screen for plant antimicrobial compounds consists of separating plant extracts by paper or thin-layer chromatography (PC or TLC), exposing the chromatograms to microbial suspensions (e.g. fungal spores in nutrient solution or bacteria in liquefied agar), allowing time for the microbes to gr...

  8. Evaluating Mechanisms of Dihydroxylation by Thin-Layer Chromatography: A Microscale Experiment for Organic Chemistry

    ERIC Educational Resources Information Center

    Burlingham, Benjamin T.; Rettig, Joseph C.

    2008-01-01

    A microscale experiment is presented in which cyclohexene is dihydroxylated under three sets of conditions: epoxidation-hydrolysis, permanganate oxidation, and the Woodward dihydroxylation. The products of the reactions are determined by the use of thin-layer chromatography. Teams of students are presented with proposed mechanisms for each…

  9. Determination of caffeine, theobromine and theophylline in Mate beer and Mate soft drinks by high-performance thin-layer chromatography.

    PubMed

    Oellig, Claudia; Schunck, Jacob; Schwack, Wolfgang

    2018-01-19

    Mate beer and Mate soft drinks are beverages produced from the dried leaves of Ilex paraguariensis (Yerba Mate). In Yerba Mate, the xanthine derivatives caffeine, theobromine and theophylline, also known as methylxanthines, are important active components. The presented method for the determination of caffeine, theobromine and theophylline in Mate beer and Mate soft drinks by high-performance thin-layer chromatography with ultraviolet detection (HPTLC-UV) offers a fully automated and sensitive determination of the three methylxanthines. Filtration of the samples was followed by degassing, dilution with acetonitrile in the case of Mate beers for protein precipitation, and centrifugation before the extracts were analyzed by HPTLC-UV on LiChrospher silica gel plates with fluorescence indicator and acetone/toluene/chloroform (4:3:3, v/v/v) as the mobile phase. For quantitation, the absorbance was scanned at 274nm. Limits of detection and quantitation were 1 and 4ng/zone, respectively, for caffeine, theobromine and theophylline. With recoveries close to 100% and low standard deviations reliable results were guaranteed. Experimental Mate beers as well as Mate beers and Mate soft drinks from the market were analyzed for their concentrations of methylxanthines. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Investigation of Thin Layered Cobalt Oxide Nano-Islands on Gold

    NASA Astrophysics Data System (ADS)

    Bajdich, Michal; Walton, Alex S.; Fester, Jakob; Arman, Mohammad A.; Osiecki, Jacek; Knudsen, Jan; Vojvodic, Aleksandra; Lauritsen, Jeppe V.

    2015-03-01

    Layered cobalt oxides have been shown to be highly active catalysts for the oxygen evolution reaction (OER), but the synergistic effect of contact with gold is yet to be fully understood. The synthesis of three distinct types of thin-layered cobalt oxide nano-islands supported on a single crystal gold (111) substrate is confirmed by combination of STM and XAS methods. In this work, we present DFT+U theoretical investigation of above nano-islands using several previously known structural models. Our calculations confirm stability of two low-oxygen pressure phases: (a) rock-salt Co-O bilayer and (b) wurtzite Co-O quadlayer and single high-oxygen pressure phase: (c) O-Co-O trilayer. The optimized geometries agree with STM structures and calculated oxidation states confirm the conversion from Co2+ to Co3+ found experimentally in XAS. The O-Co-O trilayer islands have the structure of a single layer of CoOOH proposed to be the true active phase for OER catalyst. For that reason, the effect of water on the Pourbaix stabilities of basal planes and edge sites is fully investigated. Lastly, we also present the corresponding OER theoretical overpotentials.

  11. Influences of Indium Tin Oxide Layer on the Properties of RF Magnetron-Sputtered (BaSr)TiO3 Thin Films on Indium Tin Oxide-Coated Glass Substrate

    NASA Astrophysics Data System (ADS)

    Kim, Tae Song; Oh, Myung Hwan; Kim, Chong Hee

    1993-06-01

    Nearly stoichiometric ((Ba+Sr)/Ti=1.08-1.09) and optically transparent (BaSr)TiO3 thin films were deposited on an indium tin oxide (ITO)-coated glass substrate by means of rf magnetron sputtering for their application to the insulating layer of an electroluminescent flat panel display. The influence of the ITO layer on the properties of (BaSr)TiO3 thin films deposited on the ITO-coated substrate was investigated. The ITO layer did not affect the crystallographic orientation of (BaSr)TiO3 thin film, but enhanced the grain growth. Another effect of the ITO layer on (BaSr)TiO3 thin films was the interdiffusion phenomenon, which was studied by means of secondary ion mass spectrometry (SIMS). As the substrate temperature increased, interdiffusion intensified at the interface not only between the grown film and ITO layer but also between the ITO layer and base glass substrate. The refractive index (nf) of (BaSr)TiO3 thin film deposited on a bare glass substrate was 2.138-2.286, as a function of substrate temperature.

  12. Gas sensing properties of very thin TiO2 films prepared by atomic layer deposition (ALD)

    NASA Astrophysics Data System (ADS)

    Boyadjiev, S.; Georgieva, V.; Vergov, L.; Baji, Zs; Gáber, F.; Szilágyi, I. M.

    2014-11-01

    Very thin titanium dioxide (TiO2) films of less than 10 nm were deposited by atomic layer deposition (ALD) in order to study their gas sensing properties. Applying the quartz crystal microbalance (QCM) method, prototype structures with the TiO2 ALD deposited thin films were tested for sensitivity to NO2. Although being very thin, the films were sensitive at room temperature and could register low concentrations as 50-100 ppm. The sorption is fully reversible and the films seem to be capable to detect for long term. These initial results for very thin ALD deposited TiO2 films give a promising approach for producing gas sensors working at room temperature on a fast, simple and cost-effective technology.

  13. Phospholipids, Dietary Supplements, and Chicken Eggs: An Inquiry-Based Exercise Using Thin-Layer Chromatography

    ERIC Educational Resources Information Center

    Potteiger, Sara E.; Belanger, Julie M.

    2015-01-01

    This inquiry-based experiment is designed for organic or biochemistry undergraduate students to deduce the identity of phospholipids extracted from chicken eggs and dietary supplements. This is achieved using thin-layer chromatography (TLC) data, a series of guided questions of increasing complexity, and provided relative retention factor (Rf)…

  14. Quantitative evaluation of sputtering induced surface roughness and its influence on AES depth profiles of polycrystalline Ni/Cu multilayer thin films

    NASA Astrophysics Data System (ADS)

    Yan, X. L.; Coetsee, E.; Wang, J. Y.; Swart, H. C.; Terblans, J. J.

    2017-07-01

    The polycrystalline Ni/Cu multilayer thin films consisting of 8 alternating layers of Ni and Cu were deposited on a SiO2 substrate by means of electron beam evaporation in a high vacuum. Concentration-depth profiles of the as-deposited multilayered Ni/Cu thin films were determined with Auger electron spectroscopy (AES) in combination with Ar+ ion sputtering, under various bombardment conditions with the samples been stationary as well as rotating in some cases. The Mixing-Roughness-Information depth (MRI) model used for the fittings of the concentration-depth profiles accounts for the interface broadening of the experimental depth profiling. The interface broadening incorporates the effects of atomic mixing, surface roughness and information depth of the Auger electrons. The roughness values extracted from the MRI model fitting of the depth profiling data agrees well with those measured by atomic force microscopy (AFM). The ion sputtering induced surface roughness during the depth profiling was accordingly quantitatively evaluated from the fitted MRI parameters with sample rotation and stationary conditions. The depth resolutions of the AES depth profiles were derived directly from the values determined by the fitting parameters in the MRI model.

  15. Partial ablation of Ti/Al nano-layer thin film by single femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Gaković, B.; Tsibidis, G. D.; Skoulas, E.; Petrović, S. M.; Vasić, B.; Stratakis, E.

    2017-12-01

    The interaction of ultra-short laser pulses with Titanium/Aluminium (Ti/Al) nano-layered thin film was investigated. The sample composed of alternating Ti and Al layers of a few nanometres thick was deposited by ion-sputtering. A single pulse irradiation experiment was conducted in an ambient air environment using focused and linearly polarized femtosecond laser pulses for the investigation of the ablation effects. The laser induced morphological changes and the composition were characterized using several microscopy techniques and energy dispersive X-ray spectroscopy. The following results were obtained: (i) at low values of pulse energy/fluence, ablation of the upper Ti layer only was observed; (ii) at higher laser fluence, a two-step ablation of Ti and Al layers takes place, followed by partial removal of the nano-layered film. The experimental observations were supported by a theoretical model accounting for the thermal response of the multiple layered structure upon irradiation with ultra-short laser pulses.

  16. Detection and determination of organophosphorus insecticides in tissues by thin-layer chromatography.

    PubMed

    Tewari, S N; Harpalani, S P

    1977-01-11

    The toxicological analysis of 12 common organophosphorus insecticides is described. Suitable methods for the extraction of organophosphorus insecticides from tissues are proposed. The detection, identification and estimation of these insecticides by thin-layer chromatography is described for 25 solvent systems and a series of chromogenic reagents. The distribution of insecticides in human body tissues in five cases of poisoning by ethyl parathion, malathion, dimethoate, sumithion and phosphamidon has also been studied.

  17. Determination of Absolute Configuration of Secondary Alcohols Using Thin-Layer Chromatography

    PubMed Central

    Wagner, Alexander J.; Rychnovsky, Scott D.

    2013-01-01

    A new implementation of the Competing Enantioselective Conversion (CEC) method was developed to qualitatively determine the absolute configuration of enantioenriched secondary alcohols using thin-layer chromatography. The entire process for the method requires approximately 60 min and utilizes micromole quantities of the secondary alcohol being tested. A number of synthetically relevant secondary alcohols are presented. Additionally, 1H NMR spectroscopy was conducted on all samples to provide evidence of reaction conversion that supports the qualitative method presented herein. PMID:23593963

  18. New approaches for the analysis of confluent cell layers with quantitative phase digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Pohl, L.; Kaiser, M.; Ketelhut, S.; Pereira, S.; Goycoolea, F.; Kemper, Björn

    2016-03-01

    Digital holographic microscopy (DHM) enables high resolution non-destructive inspection of technical surfaces and minimally-invasive label-free live cell imaging. However, the analysis of confluent cell layers represents a challenge as quantitative DHM phase images in this case do not provide sufficient information for image segmentation, determination of the cellular dry mass or calculation of the cell thickness. We present novel strategies for the analysis of confluent cell layers with quantitative DHM phase contrast utilizing a histogram based-evaluation procedure. The applicability of our approach is illustrated by quantification of drug induced cell morphology changes and it is shown that the method is capable to quantify reliable global morphology changes of confluent cell layers.

  19. A three-layer PMMA electrophoresis microchip with Pt microelectrodes insulated by a thin film for contactless conductivity detection.

    PubMed

    Liu, Junshan; Wang, Junyao; Chen, Zuanguang; Yu, Yong; Yang, Xiujuan; Zhang, Xianbin; Xu, Zheng; Liu, Chong

    2011-03-07

    A three-layer poly (methyl methacrylate) (PMMA) electrophoresis microchip integrated with Pt microelectrodes for contactless conductivity detection is presented. A 50 μm-thick PMMA film is used as the insulating layer and placed between the channel plate (containing the microchannel) and the electrode plate (containing the microelectrode). The three-layer structure facilitates the achievement of a thin insulating layer, obviates the difficulty of integrating microelectrodes on a thin film, and does not compromise the integration of microchips. To overcome the thermal and chemical incompatibilities of polymers and photolithographic techniques, a modified lift-off process was developed to integrate Pt microelectrodes onto the PMMA substrate. A novel two-step bonding method was created to assemble the complete PMMA microchip. A low limit of detection of 1.25 μg ml(-1) for Na(+) and high separation efficiency of 77,000 and 48,000 plates/m for Na(+) and K(+) were obtained when operating the detector at a low excitation frequency of 60 kHz.

  20. Properties of dielectric dead layers for SrTiO3 thin films on Pt electrodes

    NASA Astrophysics Data System (ADS)

    Finstrom, Nicholas H.; Cagnon, Joel; Stemmer, Susanne

    2007-02-01

    Dielectric measurements as a function of temperature were used to characterize the properties of the dielectric dead layers in parallel-plate capacitors with differently textured SrTiO3 thin films and Pt electrodes. The apparent thickness dependence of the permittivity was described with low-permittivity passive (dead) layers at the interfaces connected in series with the bulk of the SrTiO3 film. Interfacial capacitance densities changed with the film microstructure and were weakly temperature dependent. Estimates of the dielectric dead layer thickness and permittivity were limited by the film surface roughness (˜5nm ). The consequences for the possible origins of dielectric dead layers that have been proposed in the literature are discussed.

  1. Atomic layer deposition of copper thin film and feasibility of deposition on inner walls of waveguides

    NASA Astrophysics Data System (ADS)

    Yuqing, XIONG; Hengjiao, GAO; Ni, REN; Zhongwei, LIU

    2018-03-01

    Copper thin films were deposited by plasma-enhanced atomic layer deposition at low temperature, using copper(I)-N,N‧-di-sec-butylacetamidinate as a precursor and hydrogen as a reductive gas. The influence of temperature, plasma power, mode of plasma, and pulse time, on the deposition rate of copper thin film, the purity of the film and the step coverage were studied. The feasibility of copper film deposition on the inner wall of a carbon fibre reinforced plastic waveguide with high aspect ratio was also studied. The morphology and composition of the thin film were studied by atomic force microscopy and x-ray photoelectron spectroscopy, respectively. The square resistance of the thin film was also tested by a four-probe technique. On the basis of on-line diagnosis, a growth mechanism of copper thin film was put forward, and it was considered that surface functional group played an important role in the process of nucleation and in determining the properties of thin films. A high density of plasma and high free-radical content were helpful for the deposition of copper thin films.

  2. Epitaxial integration of CoFe2O4 thin films on Si (001) surfaces using TiN buffer layers

    NASA Astrophysics Data System (ADS)

    Prieto, Pilar; Marco, José F.; Prieto, José E.; Ruiz-Gomez, Sandra; Perez, Lucas; del Real, Rafael P.; Vázquez, Manuel; de la Figuera, Juan

    2018-04-01

    Epitaxial cobalt ferrite thin films with strong in-plane magnetic anisotropy have been grown on Si (001) substrates using a TiN buffer layer. The epitaxial films have been grown by ion beam sputtering using either metallic, CoFe2, or ceramic, CoFe2O4, targets. X-ray diffraction (XRD) and Rutherford spectrometry (RBS) in random and channeling configuration have been used to determine the epitaxial relationship CoFe2O4 [100]/TiN [100]/Si [100]. Mössbauer spectroscopy, in combination with XRD and RBS, has been used to determine the composition and structure of the cobalt ferrite thin films. The TiN buffer layer induces a compressive strain in the cobalt ferrite thin films giving rise to an in-plane magnetic anisotropy. The degree of in-plane anisotropy depends on the lattice mismatch between CoFe2O4 and TiN, which is larger for CoFe2O4 thin films grown on the reactive sputtering process with ceramic targets.

  3. Bioturbation delays attenuation of DDT by clean sediment cap but promotes sequestration by thin-layered activated carbon.

    PubMed

    Lin, Diana; Cho, Yeo-Myoung; Werner, David; Luthy, Richard G

    2014-01-21

    The effects of bioturbation on the performance of attenuation by sediment deposition and activated carbon to reduce risks from DDT-contaminated sediment were assessed for DDT sediment-water flux, biouptake, and passive sampler (PE) uptake in microcosm experiments with a freshwater worm, Lumbriculus variegatus. A thin-layer of clean sediment (0.5 cm) did not reduce the DDT flux when bioturbation was present, while a thin (0.3 cm) AC cap was still capable of reducing the DDT flux by 94%. Bioturbation promoted AC sequestration by reducing the 28-day DDT biouptake (66%) and DDT uptake into PE (>99%) compared to controls. Bioturbation further promoted AC-sediment contact by mixing AC particles into underlying sediment layers, reducing PE uptake (55%) in sediment compared to the AC cap without bioturbation. To account for the observed effects from bioturbation, a mass transfer model together with a biodynamic model were developed to simulate DDT flux and biouptake, respectively, and models confirmed experimental results. Both experimental measurements and modeling predictions imply that thin-layer activated carbon placement on sediment is effective in reducing the risks from contaminated sediments in the presence of bioturbation, while natural attenuation process by clean sediment deposition may be delayed by bioturbation.

  4. Thin-layer chromatographic technique for rapid detection of bacterial phospholipases.

    PubMed

    Legakis, N J; Papavassiliou, J

    1975-11-01

    Silica gel thin-layer chromatography was employed to detect lecithinase activity induced from bacterial resting cell preparations induced from bacterial resting cell preparations incubated at 37 C for 4 h in the presence of purified egg yolk lecithin. Bacillus subtilis, Bacillus cereus, Serratia marcescens, and Pseudomonas aeruginosa hydrolyzed lecithin with the formation of free fatty acids as the sole lipid-soluble product. In none of the Escherichia coli and Citrobacter freundii strains tested could lecithinase activity be detected. Four among eight strains of Enterobacter aerogenes and one among 12 strains of Proteus tested produced negligible amounts of free fatty acid.

  5. Spin-hall-active platinum thin films grown via atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Schlitz, Richard; Amusan, Akinwumi Abimbola; Lammel, Michaela; Schlicht, Stefanie; Tynell, Tommi; Bachmann, Julien; Woltersdorf, Georg; Nielsch, Kornelius; Goennenwein, Sebastian T. B.; Thomas, Andy

    2018-06-01

    We study the magnetoresistance of yttrium iron garnet/Pt heterostructures in which the Pt layer was grown via atomic layer deposition (ALD). Magnetotransport experiments in three orthogonal rotation planes reveal the hallmark features of spin Hall magnetoresistance. To estimate the spin transport parameters, we compare the magnitude of the magnetoresistance in samples with different Pt thicknesses. We check the spin Hall angle and the spin diffusion length of the ALD Pt layers against the values reported for high-quality sputter-deposited Pt films. The spin diffusion length of 1.5 nm agrees well with that of platinum thin films reported in the literature, whereas the spin Hall magnetoresistance Δ ρ / ρ = 2.2 × 10 - 5 is approximately a factor of 20 smaller compared to that of our sputter-deposited films. Our results demonstrate that ALD allows fabricating spin-Hall-active Pt films of suitable quality for use in spin transport structures. This work provides the basis to establish conformal ALD coatings for arbitrary surface geometries with spin-Hall-active metals and could lead to 3D spintronic devices in the future.

  6. Excitation of Love waves in a thin film layer by a line source.

    NASA Technical Reports Server (NTRS)

    Tuan, H.-S.; Ponamgi, S. R.

    1972-01-01

    The excitation of a Love surface wave guided by a thin film layer deposited on a semiinfinite substrate is studied in this paper. Both the thin film and the substrate are considered to be elastically isotropic. Amplitudes of the surface wave in the thin film region and the substrate are found in terms of the strength of a line source vibrating in a direction transverse to the propagating wave. In addition to the surface wave, the bulk shear wave excited by the source is also studied. Analytical expressions for the bulk wave amplitude as a function of the direction of propagation, the acoustic powers transported by the surface and bulk waves, and the efficiency of surface wave excitation are obtained. A numerical example is given to show how the bulk wave radiation pattern depends upon the source frequency, the film thickness and other important parameters of the problem. The efficiency of surface wave excitation is also calculated for various parameter values.

  7. Layer-by-layer assembled polyaniline nanofiber/multiwall carbon nanotube thin film electrodes for high-power and high-energy storage applications.

    PubMed

    Hyder, Md Nasim; Lee, Seung Woo; Cebeci, Fevzi Ç; Schmidt, Daniel J; Shao-Horn, Yang; Hammond, Paula T

    2011-11-22

    Thin film electrodes of polyaniline (PANi) nanofibers and functionalized multiwall carbon nanotubes (MWNTs) are created by layer-by-layer (LbL) assembly for microbatteries or -electrochemical capacitors. Highly stable cationic PANi nanofibers, synthesized from the rapid aqueous phase polymerization of aniline, are assembled with carboxylic acid functionalized MWNT into LbL films. The pH-dependent surface charge of PANi nanofibers and MWNTs allows the system to behave like weak polyelectrolytes with controllable LbL film thickness and morphology by varying the number of bilayers. The LbL-PANi/MWNT films consist of a nanoscale interpenetrating network structure with well developed nanopores that yield excellent electrochemical performance for energy storage applications. These LbL-PANi/MWNT films in lithium cell can store high volumetric capacitance (~238 ± 32 F/cm(3)) and high volumetric capacity (~210 mAh/cm(3)). In addition, rate-dependent galvanostatic tests show LbL-PANi/MWNT films can deliver both high power and high energy density (~220 Wh/L(electrode) at ~100 kW/L(electrode)) and could be promising positive electrode materials for thin film microbatteries or electrochemical capacitors. © 2011 American Chemical Society

  8. Fabrication and electrochemical properties of insoluble fullerene-diamine adduct thin-films as buffer layer by alternate immersion process

    NASA Astrophysics Data System (ADS)

    Saito, Jo; Akiyama, Tsuyoshi; Suzuki, Atsushi; Oku, Takeo

    2017-01-01

    Insoluble fullerene-diamine adduct thin-films consisting of C60 and 1,2-diaminoethane were easily fabricated on an electrode by an alternate immersion process. Formation of the C60-diamine adduct films were confirmed using transmission absorption spectroscopy and atomic force microscopy. An inverted-type organic solar cells were fabricated by using the C60-diamine adduct film as the electron transport layer. The resultant photoelectric conversation performance of the solar cells suggested that photocurrent is generated via the photoexcitation of polythiophene. The result suggests that the present insoluble fullerene-diamine adduct films worked as buffer layer for organic thin-film solar cells.

  9. Thin layer activation techniques at the U-120 cyclotron of Bucharest

    NASA Astrophysics Data System (ADS)

    Constantinescu, B.; Ivanov, E. A.; Pascovici, G.; Popa-Simil, L.; Racolta, P. M.

    1994-05-01

    The Thin Layer Activation (TLA) technique is a nuclear method especially used for different types of wear (or corrosion) investigations. Experimental results for selection criteria of nuclear reactions for various tribological studies, using the IPNE U-120 classical variable energy Cyclotron are presented. Measuring methods for the main types of wear phenomena and home made instrumentations dedicated for TLA industrial applications are also reported. Some typical TLA tribological applications, a nuclear scanning method to obtain wear profile of piston-rings are presented as well.

  10. Production of biologically inert Teflon thin layers on the surface of allergenic metal objects by pulsed laser deposition technology

    NASA Astrophysics Data System (ADS)

    Hopp, B.; Smausz, T.; Kresz, N.; Nagy, P. M.; Juhász, A.; Ignácz, F.; Márton, Z.

    Allergic-type diseases are current nowadays, and they are frequently caused by certain metals. We demonstrated that the metal objects can be covered by Teflon protective thin layers using a pulsed laser deposition procedure. An ArF excimer laser beam was focused onto the surface of pressed PTFE powder pellets; the applied fluences were 7.5-7.7 J/cm2. Teflon films were deposited on fourteen-carat gold, silver and titanium plates. The number of ablating pulses was 10000. Post-annealing of the films was carried out in atmospheric air at oven temperatures between 320 and 500 °C. The thickness of the thin layers was around 5 μm. The prepared films were granular without heat treatment or after annealing at a temperature below 340 °C. At 360 °C a crystalline, contiguous, smooth, very compact and pinhole-free thin layer was produced; a melted and re-solidified morphology was observed above 420 °C. The adhesion strength between the Teflon films and the metal substrates was determined. This could exceed 1-4 MPa depending on the treatment temperature. It was proved that the prepared Teflon layers can be suitable for prevention of contact between the human body and allergen metals and so for avoidance of metal allergy.

  11. Moisture removal characteristics of thin layer rough rice under sequenced infrared radiation heating and cooling

    USDA-ARS?s Scientific Manuscript database

    Rice drying with infrared (IR) radiation has been investigated during recent years and showed promising potential with improved quality and energy efficiency. The objective of this study was to further investigate the moisture removal characteristics of thin layer rough rice heated by IR and cooled ...

  12. Quantitative and Qualitative Analysis of Bacteria in Er(III) Solution by Thin-Film Magnetopheresis

    PubMed Central

    Zborowski, Maciej; Tada, Yoko; Malchesky, Paul S.; Hall, Geraldine S.

    1993-01-01

    Magnetic deposition, quantitation, and identification of bacteria reacting with the paramagnetic trivalent lanthanide ion, Er3+, was evaluated. The magnetic deposition method was dubbed thin-film magnetopheresis. The optimization of the magnetic deposition protocol was accomplished with Escherichia coli as a model organism in 150 mM NaCl and 5 mM ErCl3 solution. Three gram-positive bacteria, Staphylococcus epidermidis, Staphylococcus saprophyticus, and Enterococcus faecalis, and four gram-negative bacteria, E. coli, Pseudomonas aeruginosa, Proteus mirabilis, and Klebsiella pneumoniae, were subsequently investigated. Quantitative analysis consisted of the microscopic cell count and a scattered-light scanning of the magnetically deposited material aided by the computer data acquisition system. Qualitative analysis consisted of Gram stain differentiation and fluorescein isothiocyanate staining in combination with selected antisera against specific types of bacteria on the solid substrate. The magnetic deposition protocol allowed quantitative detection of E. coli down to the concentration of 105 CFU ml-1, significant in clinical diagnosis applications such as urinary tract infections. Er3+ did not interfere with the typical appearance of the Gram-stained bacteria nor with the antigen recognition by the antibody in the immunohistological evaluations. Indirect antiserum-fluorescein isothiocyanate labelling correctly revealed the presence of E. faecalis and P. aeruginosa in the magnetically deposited material obtained from the mixture of these two bacterial species. On average, the reaction of gram-positive organisms was significantly stronger to the magnetic field in the presence of Er3+ than the reaction of gram-negative organisms. The thin-film magnetophoresis offers promise as a rapid method for quantitative and qualitative analysis of bacteria in solutions such as urine or environmental water. Images PMID:16348916

  13. Quantitative fundus autofluorescence in mice: correlation with HPLC quantitation of RPE lipofuscin and measurement of retina outer nuclear layer thickness.

    PubMed

    Sparrow, Janet R; Blonska, Anna; Flynn, Erin; Duncker, Tobias; Greenberg, Jonathan P; Secondi, Roberta; Ueda, Keiko; Delori, François C

    2013-04-17

    Our study was conducted to establish procedures and protocols for quantitative autofluorescence (qAF) measurements in mice, and to report changes in qAF, A2E bisretinoid concentration, and outer nuclear layer (ONL) thickness in mice of different genotypes and age. Fundus autofluorescence (AF) images (55° lens, 488 nm excitation) were acquired in albino Abca4(-/-), Abca4(+/-), and Abca4(+/+) mice (ages 2-12 months) with a confocal scanning laser ophthalmoscope (cSLO). Gray levels (GLs) in each image were calibrated to an internal fluorescence reference. The bisretinoid A2E was measured by quantitative high performance liquid chromatography (HPLC). Histometric analysis of ONL thicknesses was performed. The Bland-Altman coefficient of repeatability (95% confidence interval) was ±18% for between-session qAF measurements. Mean qAF values increased with age (2-12 months) in all groups of mice. qAF was approximately 2-fold higher in Abca4(-/-) mice than in Abca4(+/+) mice and approximately 20% higher in heterozygous mice. HPLC measurements of the lipofuscin fluorophore A2E also revealed age-associated increases, and the fold difference between Abca4(-/-) and wild-type mice was more pronounced (approximately 3-4-fold) than measurable by qAF. Moreover, A2E levels declined after 8 months of age, a change not observed with qAF. The decline in A2E levels in the Abca4(-/-) mice corresponded to reduced photoreceptor cell viability as reflected in ONL thinning beginning at 8 months of age. The qAF method enables measurement of in vivo lipofuscin and the detection of genotype and age-associated differences. The use of this approach has the potential to aid in understanding retinal disease processes and will facilitate preclinical studies.

  14. Spotting 2D atomic layers on aluminum nitride thin films.

    PubMed

    Chandrasekar, Hareesh; Bharadwaj B, Krishna; Vaidyuala, Kranthi Kumar; Suran, Swathi; Bhat, Navakanta; Varma, Manoj; Srinivasan Raghavan

    2015-10-23

    Substrates for 2D materials are important for tailoring their fundamental properties and realizing device applications. Aluminum nitride (AIN) films on silicon are promising large-area substrates for such devices in view of their high surface phonon energies and reasonably large dielectric constants. In this paper epitaxial layers of AlN on 2″ Si wafers have been investigated as a necessary first step to realize devices from exfoliated or transferred atomic layers. Significant thickness dependent contrast enhancements are both predicted and observed for monolayers of graphene and MoS2 on AlN films as compared to the conventional SiO2 films on silicon, with calculated contrast values approaching 100% for graphene on AlN as compared to 8% for SiO2 at normal incidences. Quantitative estimates of experimentally measured contrast using reflectance spectroscopy show very good agreement with calculated values. Transistors of monolayer graphene on AlN films are demonstrated, indicating the feasibility of complete device fabrication on the identified layers.

  15. UV light induced insulator-metal transition in ultra-thin ZnO/TiOx stacked layer grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Saha, D.; Misra, P.; Joshi, M. P.; Kukreja, L. M.

    2016-08-01

    In the present study, atomic layer deposition has been used to grow a series of Ti incorporated ZnO thin films by vertically stacking different numbers (n = 1-7) of ZnO/TiOx layers on (0001) sapphire substrates. The effects of defect states mediated chemisorption of O2 and/OH groups on the electrical properties of these films have been investigated by illuminating the samples under UV light inside a high vacuum optical cryostat. The ultra-thin film having one stacked layer (n = 1) did not show any change in its electrical resistance upon UV light exposure. On the contrary, marginal drop in the electrical resistivity was measured for the samples with n ≥ 3. Most surprisingly, the sample with n = 2 (thickness ˜ 12 nm) showed an insulator to metal transition upon UV light exposure. The temperature dependent electrical resistivity measurement on the as grown film (n = 2) showed insulating behaviour, i.e., diverging resistivity on extrapolation to T→ 0 K. However, upon UV light exposure, it transformed to a metallic state, i.e., finite resistivity at T → 0 K. Such an insulator-metal transition plausibly arises due to the de-trapping of conduction electrons from the surface defect sites which resulted in an upward shift of the Fermi level above the mobility edge. The low-temperature electron transport properties on the insulating film (n = 2) were investigated by a combined study of zero field electrical resistivity ρ(T) and magnetoresistance (MR) measurements. The observed negative MR was found to be in good agreement with the magnetic field induced suppression of quantum interference between forward-going paths of tunnelling electrons. Both ρ(T) and MR measurements provided strong evidence for the Efros-Shklovskii type variable range hopping conduction in the low-temperature (≤40 K) regime. Such studies on electron transport in ultra-thin n-type doped ZnO films are crucial to achieve optimum functionality with long term reliability of ZnO based transparent

  16. Photodiode Based on CdO Thin Films as Electron Transport Layer

    NASA Astrophysics Data System (ADS)

    Soylu, M.; Kader, H. S.

    2016-11-01

    Cadmium oxide (CdO) thin films were synthesized by the sol-gel method. The films were analyzed by means of XRD, AFM, and UV/Vis spectrophotometry. X-ray diffraction patterns confirm that the films are formed from CdO with cubic crystal structure and consist of nano-particles. The energy gap of the prepared film was found to be 2.29 eV. The current-voltage ( I- V) characteristics of the CdO/ p-Si heterojunction were examined in the dark and under different illumination intensities. The heterojunction showed high rectifying behavior and a strong photoresponse. Main electrical parameters of the photodiode such as series and shunt resistances ( R s and R sh), saturation current I 0, and photocurrent I ph, were extracted considering a single diode equivalent circuit of a photovoltaic cell. Results indicate that the application of CdO thin films as an electron transport layer on p-Si acts as a photodetector in the field of the UV/visible.

  17. Simulation of light in-coupling through an aperture probe to investigate light propagation in a thin layer for opto-electronic application

    NASA Astrophysics Data System (ADS)

    Ermes, Markus; Lehnen, Stephan; Cao, Zhao; Bittkau, Karsten; Carius, Reinhard

    2015-06-01

    In thin optoelectronic devices, like organic light emitting diodes (OLED) or thin-film solar cells (TFSC), light propagation, which is initiated by a local point source, is of particular importance. In OLEDs, light is generated in the layer by the luminescence of single molecules, whereas in TFSCs, light is coupled into the devices by scattering at small surface features. In both applications, light propagation within the active layers has a significant impact on the optical device performance. Scanning near-field optical microscopy (SNOM) using aperture probes is a powerful tool to investigate this propagation with a high spatial resolution. Dual-probe SNOM allows simulating the local light generation by an illumination probe as well as the detection of the light propagated through the layer. In our work, we focus on the light propagation in thin silicon films as used in thin-film silicon solar cells. We investigate the light-in-coupling from an illuminating probe via rigorous solution of Maxwell's equations using a Finite-Difference Time-Domain approach, especially to gain insight into the light distribution inside a thin layer, which is not accessible in the experiment. The structures investigated include at and structured surfaces with varying illumination positions and wavelengths. From the performed simulations, we define a "spatial sensitivity" which is characteristic for the local structure and illumination position. This quantity can help to identify structures which are beneficial as well as detrimental to absorption inside the investigated layer. We find a strong dependence of the spatial sensitivity on the surface structure as well as both the absorption coefficient and the probe position. Furthermore, we investigate inhomogeneity in local light propagation resulting from different surface structures and illumination positions.

  18. Quantitative adhesion characterization of antireflective coatings in multijunction photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brock, Ryan; Rewari, Raunaq; Novoa, Fernando D.

    We discuss the development of a new composite dual cantilever beam (cDCB) thin-film adhesion testing method, which enables the quantitative measurement of adhesion on the thin and fragile substrates used in multijunction photovoltaics. In particular, we address the adhesion of several 2- and 3-layer antireflective coating systems on multijunction cells. By varying interface chemistry and morphology through processing, we demonstrate the marked effects on adhesion and help to develop an understanding of how high adhesion can be achieved, as adhesion values ranging from 0.5 J/m2 to 10 J/m2 were measured. Damp heat (85 degrees C/85% RH) was used to invokemore » degradation of interfacial adhesion. We demonstrate that even with germanium substrates that fracture relatively easily, quantitative measurements of adhesion can be made at high test yield. The cDCB test is discussed as an important new methodology, which can be broadly applied to any system that makes use of thin, brittle, or otherwise fragile substrates.« less

  19. Rapid and selective determination of multi-sulfonamides by high-performance thin layer chromatography coupled to fluorescent densitometry and electrospray ionization mass detection.

    PubMed

    Chen, Yisheng; Schwack, Wolfgang

    2014-02-28

    In the European Union (EU), sulfonamides are among the most widely administrated groups of antibiotics in animal husbandry. Therefore, monitoring their residues in edible animal tissues plays an important role in the EU food safety framework. In this work, a simple and efficient method for the rapid screening of twelve prior sulfonamides frequently prescribed as veterinary drugs by high-performance thin-layer chromatography (HPTLC) was established. Sample extracts obtained with acetonitrile were tenfold concentrated and applied to HPTLC without any further cleanup. Following separation and fluram derivatization, sensitive and selective quantitation of the analytes can readily be accomplished with fluorescent densitometry. Limits of detection and quantitation were 15-40 and 35-70μg/kg, respectively. Additionally, a confirmative detection by HPTLC-electrospray ionization mass spectrometry (HPTLC-ESI/MS) was optimized, offering straightforward identification of target zones. Therefore, the risk of potential false positive findings can efficiently be reduced. The method was validated to meet the enforced commission regulation (EU) No. 37/2010, regarding different matrix complexities (bovine milk, porcine liver and kidney). Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Guest-Induced Two-Way Structural Transformation in a Layered Metal-Organic Framework Thin Film.

    PubMed

    Haraguchi, Tomoyuki; Otsubo, Kazuya; Sakata, Osami; Fujiwara, Akihiko; Kitagawa, Hiroshi

    2016-12-28

    Fabrication of thin films made of metal-organic frameworks (MOFs) has been intensively pursued for practical applications that use the structural response of MOFs. However, to date, only physisorption-induced structural response has been studied in these films. Chemisorption can be expected to provide a remarkable structural response because of the formation of bonds between guest molecules and reactive metal sites in host MOFs. Here, we report that chemisorption-induced two-way structural transformation in a nanometer-sized MOF thin film. We prepared a two-dimensional layered-type MOF Fe[Pt(CN) 4 ] thin film using a step-by-step approach. Although the as-synthesized film showed poor crystallinity, the dehydrated form of this thin film had a highly oriented crystalline nature (Film-D) as confirmed by synchrotron X-ray diffraction (XRD). Surprisingly, under water and pyridine vapors, Film-D showed chemisorption-induced dynamic structural transformations to Fe(L) 2 [Pt(CN) 4 ] thin films [L = H 2 O (Film-H), pyridine (Film-P)], where water and pyridine coordinated to the open Fe 2+ site. Dynamic structural transformations were also confirmed by in situ XRD, sorption measurement, and infrared reflection absorption spectroscopy. This is the first report of chemisorption-induced dynamic structural response in a MOF thin film, and it provides useful insights, which would lead to future practical applications of MOFs utilizing chemisorption-induced structural responses.

  1. Encapsulation of sulfur with thin-layered nickel-based hydroxides for long-cyclic lithium–sulfur cells

    PubMed Central

    Jiang, Jian; Zhu, Jianhui; Ai, Wei; Wang, Xiuli; Wang, Yanlong; Zou, Chenji; Huang, Wei; Yu, Ting

    2015-01-01

    Elemental sulfur cathodes for lithium/sulfur cells are still in the stage of intensive research due to their unsatisfactory capacity retention and cyclability. The undesired capacity degradation upon cycling originates from gradual diffusion of lithium polysulfides out of the cathode region. To prevent losses of certain intermediate soluble species and extend lifespan of cells, the effective encapsulation of sulfur plays a critical role. Here we report an applicable way, by using thin-layered nickel-based hydroxide as a feasible and effective encapsulation material. In addition to being a durable physical barrier, such hydroxide thin films can irreversibly react with lithium to generate protective layers that combine good ionic permeability and abundant functional polar/hydrophilic groups, leading to drastic improvements in cell behaviours (almost 100% coulombic efficiency and negligible capacity decay within total 500 cycles). Our present encapsulation strategy and understanding of hydroxide working mechanisms may advance progress on the development of lithium/sulfur cells for practical use. PMID:26470847

  2. Materials science and integration bases for fabrication of (BaxSr1-x)TiO3 thin film capacitors with layered Cu-based electrodes

    NASA Astrophysics Data System (ADS)

    Fan, W.; Kabius, B.; Hiller, J. M.; Saha, S.; Carlisle, J. A.; Auciello, O.; Chang, R. P. H.; Ramesh, R.

    2003-11-01

    The synthesis and fundamental material properties of layered TiAl/Cu/Ta electrodes were investigated to achieve the integration of Cu electrodes with high-dielectric constant (κ) oxide thin films for application to the fabrication of high-frequency devices. The Ta layer is an excellent diffusion barrier to inhibit deleterious Cu diffusion into the Si substrate, while the TiAl layer provides an excellent barrier against oxygen diffusion into the Cu layer to inhibit Cu oxidation during the growth of the high-κ layer in an oxygen atmosphere. Polycrystalline (BaxSr1-x)TiO3 (BST) thin films were grown on the Cu-based bottom electrode by rf magnetron sputtering at temperatures in the range 400-600 °C in oxygen, to investigate the performance of BST/Cu-based capacitors. Characterization of the Cu-based layered structure using surface analytical methods showed that two amorphous oxide layers were formed on both sides of the TiAl barrier, such that the oxide layer on the free surface of the TiAl layer correlates with TiAlOx, while the oxide layer at the TiAl/Cu interface is an Al2O3-rich layer. This double amorphous barrier layer structure effectively prevents oxygen penetration towards the underlying Cu and Ta layers. The TiAlOx interfacial layer, which has a relatively low dielectric constant compared with BST, reduced the total capacitance of the BST thin film capacitors. In addition, the layered electrode-oxide interface roughening observed during the growth of BST films at high temperature, due to copper grain growth, resulted in large dielectric loss on the fabricated BST capacitors. These problems were solved by growing the BST layer at 450 °C followed by a rapid thermal annealing at 700 °C. This process significantly reduced the thickness of the TiAlOx layer and interface roughness resulting in BST capacitors exhibiting properties suitable for the fabrication of high-performance high-frequency devices. In summary, relatively high dielectric constant (280), low

  3. Iron-Terephthalate Coordination Network Thin Films Through In-Situ Atomic/Molecular Layer Deposition.

    PubMed

    Tanskanen, A; Karppinen, M

    2018-06-12

    Iron terephthalate coordination network thin films can be fabricated using the state-of-the-art gas-phase atomic/molecular layer deposition (ALD/MLD) technique in a highly controlled manner. Iron is an Earth-abundant and nonhazardous transition metal, and with its rich variety of potential applications an interesting metal constituent for the inorganic-organic coordination network films. Our work underlines the role of the metal precursor used when aiming at in-situ ALD/MLD growth of crystalline inorganic-organic thin films. We obtain crystalline iron terephthalate films when FeCl 3 is employed as the iron source whereas depositions based on the bulkier Fe(acac) 3 precursor yield amorphous films. The chemical composition and structure of the films are investigated with GIXRD, XRR, FTIR and XPS.

  4. Effect of precursor concentration and film thickness deposited by layer on nanostructured TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Affendi, I. H. H.; Sarah, M. S. P.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2018-05-01

    Sol-gel spin coating method is used in the production of nanostructured TiO2 thin film. The surface topology and morphology was observed using the Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscopy (FESEM). The electrical properties were investigated by using two probe current-voltage (I-V) measurements to study the electrical resistivity behavior, hence the conductivity of the thin film. The solution concentration will be varied from 14.0 to 0.01wt% with 0.02wt% interval where the last concentration of 0.02 to 0.01wt% have 0.01wt% interval to find which concentrations have the highest conductivity then the optimized concentration's sample were chosen for the thickness parameter based on layer by layer deposition from 1 to 6 layer. Based on the result, the lowest concentration of TiO2, the surface becomes more uniform and the conductivity will increase. As the result, sample of 0.01wt% concentration have conductivity value of 1.77E-10 S/m and will be advanced in thickness parameter. Whereas in thickness parameter, the 3layer deposition were chosen as its conductivity is the highest at 3.9098E9 S/m.

  5. Nucleation and growth kinetics during metal-induced layer exchange crystallization of Ge thin films at low temperatures

    NASA Astrophysics Data System (ADS)

    Hu, Shu; McIntyre, Paul C.

    2012-02-01

    The kinetics of Al-catalyzed layer exchange crystallization of amorphous germanium (Ge) thin films at low temperatures is reported. Observation of Ge mass transport from an underlying amorphous Ge layer to the Al film surface through an interposed sub-nanometer GeOx interfacial layer allows independent measurement of the areal density and average area of crystalline Ge islands formed on the film surface. We show that bias-voltage stressing of the interfacial layer can be used to control the areal density of nucleated Ge islands. Based on experimental observations, the Johnson-Mehl-Avrami-Kolmogorov phase transformation theory is used to model nanoscale nucleation and growth of Ge islands in two dimensions. Ge island nucleation kinetics follows an exponentially decaying nucleation rate with time. Ge island growth kinetics switches from linear growth at a constant growth velocity to diffusion-limited growth as the growth front advances. The transition point between these two regimes depends on the Ge nucleation site density and the annealing temperature. Knowledge of the kinetics of low-temperature crystallization is important in achieving textured polycrystalline Ge thin films with large grains for applications in large-area electronics and solar energy conversion.

  6. High mobility, dual layer, c-axis aligned crystalline/amorphous IGZO thin film transistor

    NASA Astrophysics Data System (ADS)

    Chung, Chen-Yang; Zhu, Bin; Greene, Raymond G.; Thompson, Michael O.; Ast, Dieter G.

    2015-11-01

    We demonstrate a dual layer IGZO thin film transistor (TFT) consisting of a 310 °C deposited c-axis aligned crystal (CAAC) 20 nm thick channel layer capped by a second, 30 nm thick, 260 °C deposited amorphous IGZO layer. The TFT exhibits a saturation field-effect mobility of ˜20 cm2/V s, exceeding the mobility of 50 nm thick single layer reference TFTs fabricated with either material. The deposition temperature of the second layer influences the mobility of the underlying transport layer. When the cap layer is deposited at room temperature (RT), the mobility in the 310 °C deposited CAAC layer is initially low (6.7 cm2/V s), but rises continuously with time over 58 days to 20.5 cm2/V s, i.e., to the same value as when the second layer is deposited at 260 °C. This observation indicates that the two layers equilibrate at RT with a time constant on the order of 5 × 106 s. An analysis based on diffusive transport indicates that the room temperature diffusivity must be of the order of 1 × 10-18 cm2 s-1 with an activation enthalpy EA < 0.2 eV for the mobility limiting species. The findings are consistent with a hypothesis that the amorphous layer deposited on top of the CAAC has a higher solubility for impurities and/or structural defects than the underlying nanocrystalline transport layer, and that the equilibration of the mobility limiting species is rate limited by hydrogen diffusion, whose known diffusivity fits these estimates.

  7. Process for depositing thin film layers onto surfaces modified with organic functional groups and products formed thereby

    DOEpatents

    Tarasevich, B.J.; Rieke, P.C.

    1998-06-02

    A method is provided for producing a thin film product, comprising a first step in which an underlying substrate of a first material is provided. The underlying substrate includes a plurality of unmodified sites. The underlying substrate is then chemically modified wherein a plurality of organic functional groups are attached to a plurality of the unmodified sites. The arrangement and type of the functional group used can be selected for the purpose of controlling particular properties of the second material deposited. A thin film layer of at least one second material is then deposited onto the chemically modified underlying substrate. This can be accomplished by connecting the thin film to the underlying substrate by binding the thin film to the functional groups. 5 figs.

  8. Process for depositing thin film layers onto surfaces modified with organic functional groups and products formed thereby

    DOEpatents

    Tarasevich, Barbara J.; Rieke, Peter C.

    1998-01-01

    A method is provided for producing a thin film product, comprising a first step in which an underlying substrate of a first material is provided. The underlying substrate includes a plurality of unmodified sites. The underlying substrate is then chemically modified wherein a plurality of organic functional groups are attached to a plurality of the unmodified sites. The arrangement and type of the functional group used can be selected for the purpose of controlling particular properties of the second material deposited. A thin film layer of at least one second material is then deposited onto the chemically modified underlying substrate. This can be accomplished by connecting the thin film to the underlying substrate by binding the thin film to the functional groups.

  9. Structural properties 3,16-bis triisopropylsilylethynyl (pentacene) (TIPS-pentacene) thin films onto organic dielectric layer using slide coating method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rusnan, Fara Naila; Mohamad, Khairul Anuar; Seria, Dzul Fahmi Mohd Husin

    3,16-bis triisopropylsilylethynyl (Pentacene) (TIPS-Pentacene) compactable interface property is important in order to have a good arrangement of molecular structure. Comparison for TIPS-Pentacene deposited between two different surface layers conducted. 0.1wt% TIPS-Pentacene diluted in chloroform were deposited onto poly(methylmeaclyrate) (PMMA) layered transparent substrates using slide coating method. X-ray diffraction (XRD) used to determine crystallinity of thin films. Series of (00l) diffraction peaks obtained with sharp first peaks (001) for TIPS-Pentacene deposited onto PMMA layer at 5.35° and separation of 16.3 Å. Morphology and surface roughness were carried out using scanning electron microscope (SEM) and surface profilemeter LS500, respectively.TIPS-Pentacene deposited onto PMMAmore » layer formed needled-like-shape grains with 10.26 nm surface roughness. These properties were related as thin film formed and its surface roughness plays important role towards good mobility devices.« less

  10. Few-Layer MoS2-Organic Thin-Film Hybrid Complementary Inverter Pixel Fabricated on a Glass Substrate.

    PubMed

    Lee, Hee Sung; Shin, Jae Min; Jeon, Pyo Jin; Lee, Junyeong; Kim, Jin Sung; Hwang, Hyun Chul; Park, Eunyoung; Yoon, Woojin; Ju, Sang-Yong; Im, Seongil

    2015-05-13

    Few-layer MoS2-organic thin-film hybrid complementary inverters demonstrate a great deal of device performance with a decent voltage gain of ≈12, a few hundred pW power consumption, and 480 Hz switching speed. As fabricated on glass, this hybrid CMOS inverter operates as a light-detecting pixel as well, using a thin MoS2 channel. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Enhanced Visible Transmittance of Thermochromic VO₂ Thin Films by SiO₂ Passivation Layer and Their Optical Characterization.

    PubMed

    Yu, Jung-Hoon; Nam, Sang-Hun; Lee, Ji Won; Boo, Jin-Hyo

    2016-07-09

    This paper presents the preparation of high-quality vanadium dioxide (VO₂) thermochromic thin films with enhanced visible transmittance (T vis ) via radio frequency (RF) sputtering and plasma enhanced chemical vapor deposition (PECVD). VO₂ thin films with high T vis and excellent optical switching efficiency (E os ) were successfully prepared by employing SiO₂ as a passivation layer. After SiO₂ deposition, the roughness of the films was decreased 2-fold and a denser structure was formed. These morphological changes corresponded to the results of optical characterization including the haze, reflectance and absorption spectra. In spite of SiO₂ coating, the phase transition temperature (T c ) of the prepared films was not affected. Compared with pristine VO₂, the total layer thickness after SiO₂ coating was 160 nm, which is an increase of 80 nm. Despite the thickness change, the VO₂ thin films showed a higher T vis value (λ 650 nm, 58%) compared with the pristine samples (λ 650 nm, 43%). This enhancement of T vis while maintaining high E os is meaningful for VO₂-based smart window applications.

  12. A Cuprous Oxide Thin Film Non-Enzymatic Glucose Sensor Using Differential Pulse Voltammetry and Other Voltammetry Methods and a Comparison to Different Thin Film Electrodes on the Detection of Glucose in an Alkaline Solution

    PubMed Central

    Molazemhosseini, Alireza; Liu, Chung Chiun

    2018-01-01

    A cuprous oxide (Cu2O) thin layer served as the base for a non-enzymatic glucose sensor in an alkaline medium, 0.1 NaOH solution, with a linear range of 50–200 mg/dL using differential pulse voltammetry (DPV) measurement. An X-ray photoelectron spectroscopy (XPS) study confirmed the formation of the cuprous oxide layer on the thin gold film sensor prototype. Quantitative detection of glucose in both phosphate-buffered saline (PBS) and undiluted human serum was carried out. Neither ascorbic acid nor uric acid, even at a relatively high concentration level (100 mg/dL in serum), interfered with the glucose detection, demonstrating the excellent selectivity of this non-enzymatic cuprous oxide thin layer-based glucose sensor. Chronoamperometry and single potential amperometric voltammetry were used to verify the measurements obtained by DPV, and the positive results validated that the detection of glucose in a 0.1 M NaOH alkaline medium by DPV measurement was effective. Nickel, platinum, and copper are commonly used metals for non-enzymatic glucose detection. The performance of these metal-based sensors for glucose detection using DPV were also evaluated. The cuprous oxide (Cu2O) thin layer-based sensor showed the best sensitivity for glucose detection among the sensors evaluated. PMID:29316652

  13. Thouless length and valley degeneracy factor of ZnMnO thin films with anisotropic, highly conductive surface layers

    NASA Astrophysics Data System (ADS)

    Vegesna, Sahitya V.; Bürger, Danilo; Patra, Rajkumar; Abendroth, Barbara; Skorupa, Ilona; Schmidt, Oliver G.; Schmidt, Heidemarie

    2017-06-01

    Isothermal magnetoresistance (MR) of n-type conducting Zn1-xMnxO thin films on a sapphire substrate with a Mn content of 5 at. % has been studied in in-plane and out-of-plane magnetic fields up to 6 T in the temperature range of 5 K to 300 K. During pulsed laser deposition of the ZnMnO thin films, we controlled the thickness and roughness of a highly conductive ZnMnO surface layer. The measured MR has been modeled with constant s-d exchange (0.2 eV in ZnMnO) and electron spin (S = 5/2 for Mn2+) for samples with a single two dimensional (2D) ZnMnO layer, a single three dimensional (3D) ZnMnO layer, or a 2D and 3D (2D + 3D) ZnMnO layer in parallel. The temperature dependence of modeled Thouless length LTh (LTh ˜ T-0.5) is in good agreement with the theory [Andrearczyk et al., Phys. Rev. B 72, 121309(R) (2005)]. The superimposed positive and negative MR model for ZnCoO thin films [Xu et al., Phys. Rev. B 76, 134417 (2007)] has been extended in order to account for the increase in the density of states close to the Fermi level of n-ZnMnO due to substitutional Mn2+ ions and their effect on the negative MR in ZnMnO.

  14. ZnO nanostructures as electron extraction layers for hybrid perovskite thin films

    NASA Astrophysics Data System (ADS)

    Nikolaidou, Katerina; Sarang, Som; Tung, Vincent; Lu, Jennifer; Ghosh, Sayantani

    Optimum interaction between light harvesting media and electron transport layers is critical for the efficient operation of photovoltaic devices. In this work, ZnO layers of different morphologies are implemented as electron extraction and transport layers for hybrid perovskite CH3NH3PbI3 thin films. These include nanowires, nanoparticles, and single crystalline film. Charge transfer at the ZnO/perovskite interface is investigated and compared through ultra-fast characterization techniques, including temperature and power dependent spectroscopy, and time-resolved photoluminescence. The nanowires cause an enhancement in perovskite emission, which may be attributed to increased scattering and grain boundary formation. However, the ZnO layers with decreasing surface roughness exhibit better electron extraction, as inferred from photoluminescence quenching, reduction in the number of bound excitons, and reduced exciton lifetime in CH3NH3PbI3 samples. This systematic study is expected to provide an understanding of the fundamental processes occurring at the ZnO-CH3NH3PbI3 interface and ultimately, provide guidelines for the ideal configuration of ZnO-based hybrid Perovskite devices. This research was supported by National Aeronautics and Space administration (NASA) Grant No: NNX15AQ01A.

  15. ZrO2 Layer Thickness Dependent Electrical and Dielectric Properties of BST/ZrO2/BST Multilayer Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, S. K.; Misra, D.; Agrawal, D. C.

    2011-01-01

    Recently, high K materials play an important role in microelectronic devices such as capacitors, memory devices, and microwave devices. Now a days ferroelectric barium strontium titanate [Ba{sub x}Sr{sub 1-x}TiO{sub 3}, (BST)] thin film is being actively investigated for applications in dynamic random access memories (DRAM), field effect transistor (FET), and tunable devices because of its properties such as high dielectric constant, low leakage current, low dielectric loss, and high dielectric breakdown strength. Several approaches have been used to optimize the dielectric and electrical properties of BST thin films such as doping, graded compositions, and multilayer structures. We have found thatmore » inserting a ZrO{sub 2} layer in between two BST layers results in a significant reduction in dielectric constant, loss tangent, and leakage current in the multilayer thin films. Also it is shown that the properties of multilayer structure are found to depend strongly on the sublayer thicknesses. In this work the effect of ZrO{sub 2} layer thickness on the dielectric, ferroelectric as well as electrical properties of BST/ZrO{sub 2}/BST multilayer structure is studied. The multilayer Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3}/ZrO{sub 2}/Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3} film is deposited by a sol-gel process on the platinized Si substrate. The thickness of the middle ZrO{sub 2} layer is varied while keeping the top and bottom BST layer thickness as fixed. It is observed that the dielectric constant, dielectric loss tangent, and leakage current of the multilayer films reduce with the increase of ZrO{sub 2} layer thickness and hence suitable for memory device applications. The ferroelectric properties of the multilayer film also decrease with the ZrO{sub 2} layer thickness.« less

  16. Numerical modeling of heat transfer during hydrogen absorption in thin double-layered annular ZrCo beds

    NASA Astrophysics Data System (ADS)

    Cui, Yehui; Zeng, Xiangguo; Kou, Huaqin; Ding, Jun; Wang, Fang

    2018-06-01

    In this work a three-dimensional (3D) hydrogen absorption model was proposed to study the heat transfer behavior in thin double-layered annular ZrCo beds. Numerical simulations were performed to investigate the effects of conversion layer thickness, thermal conductivity, cooling medium and its flow velocity on the efficiency of heat transfer. Results reveal that decreasing the layer thickness and improving the thermal conductivity enhance the ability of heat transfer. Compared with nitrogen and helium, water appears to be a better medium for cooling. In order to achieve the best efficiency of heat transfer, the flow velocity needs to be maximized.

  17. Desorption isotherms and mathematical modeling of thin layer drying kinetics of tomato

    NASA Astrophysics Data System (ADS)

    Belghith, Amira; Azzouz, Soufien; ElCafsi, Afif

    2016-03-01

    In recent years, there is an increased demand on the international market of dried fruits and vegetables with significant added value. Due to its important production, consumption and nutrient intake, drying of tomato has become a subject of extended and varied research works. The present work is focused on the drying behavior of thin-layer tomato and its mathematical modeling in order to optimize the drying processes. The moisture desorption isotherms of raw tomato were determined at four temperature levels namely 45, 50, 60 and 65 °C using the static gravimetric method. The experimental data obtained were modeled by five equations and the (GAB) model was found to be the best-describing these isotherms. The drying kinetics were experimentally investigated at 45, 55 and 65 °C and performed at air velocities of 0.5 and 2 m/s. In order to investigate the effect of the exchange surface on drying time, samples were dried into two different shapes: tomato halves and tomato quarters. The impact of various drying parameters was also studied (temperature, air velocity and air humidity). The drying curves showed only the preheating period and the falling drying rate period. In this study, attention was paid to the modeling of experimental thin-layer drying kinetics. The experimental results were fitted with four different models.

  18. [Analysis of phthalates in plastic food-packaging bags by thin layer chromatography].

    PubMed

    Chen, Hui; Wang, Yuan; Zhu, Ruohua

    2006-01-01

    The method for simultaneous determination of four phthalates, namely dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP) and di (2-ethylhexyl) phthalate (DEHP) in plastic food-packaging bags by thin layer chromatography (TLC) was developed. The plastic food-packaging bags were extracted with ethanol by ultrasonication, then the mixture was filtrated through membrane (0.45 microm). The mixture of ethyl acetate-anhydrous ether-isooctane (1 : 4 : 15, v/v) was used as developing agent on the TLC silica gel plate for development. The filtered liquid was spotted on the TLC plate dealt by acetone, and detected with scanning wavelength of 275 nm and reference wavelength of 340 nm. The qualitative analysis of the phthalates was performed using the R(f) values of the chromatogram. The quantitative analysis was performed with external standard method. Good linearities were obtained for DMP, DEP, DBP and DEHP. The detection limits were 2.1 ng for DMP, 2.4 ng for DEP, 3.4 ng for DBP and 4.0 ng for DEHP. The relative standard deviations (RSDs) of the four phthalates were 2.8% - 3.5%. The recoveries of the four phthalate standards in real sample were 78.58% - 111.04%. The method presented has the advantages of high precision, high sensitivity, small sample size, and simple pretreatment . The method was used to detect the four phthalates in the food-packaging bags. The contents in real samples were close to the results by gas chromatography.

  19. Dependence of magnetic properties on different buffer layers of Mn3.5Ga thin films

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Sato, K.; Shima, T.; Doi, M.

    2018-05-01

    D022-Mn3.5Ga thin films were prepared on MgO (100) single crystalline substrates with different buffer layer (Cr, Fe, Cr/Pt and Cr/Au) using an ultra-high-vacuum electron beam vapor deposition system. From XRD patterns, a fundamental (004) peak has clearly observed for all samples. The relatively low saturation magnetization (Ms) of 178 emu/cm3, high magnetic anisotropy (Ku) of 9.1 Merg/cm3 and low surface roughness (Ra) of 0.30 nm were obtained by D022-Mn3.5Ga film (20 nm) on Cr/Pt buffer layer at Ts = 300 °C, Ta = 400 °C (3h). These findings suggest that MnGa film on Cr/Pt buffer layer is a promising PMA layer for future spin electronics devices.

  20. Laser generated guided waves and finite element modeling for the thickness gauging of thin layers.

    PubMed

    Lefevre, F; Jenot, F; Ouaftouh, M; Duquennoy, M; Ourak, M

    2010-03-01

    In this paper, nondestructive testing has been performed on a thin gold layer deposited on a 2 in. silicon wafer. Guided waves were generated and studied using a laser ultrasonic setup and a two-dimensional fast Fourier transform technique was employed to obtain the dispersion curves. A gold layer thickness of 1.33 microm has been determined with a +/-5% margin of error using the shape of the two first propagating modes, assuming for the substrate and the layer an uncertainty on the elastic parameters of +/-2.5%. A finite element model has been implemented to validate the data post-treatment and the experimental results. A good agreement between the numerical simulation, the analytical modeling and the experimentations has been observed. This method was considered suitable for thickness layer higher than 0.7 microm.

  1. Development of buffer layer structure for epitaxial growth of (100)/(001)Pb(Zr,Ti)O3-based thin film on (111)Si wafer

    NASA Astrophysics Data System (ADS)

    Hayasaka, Takeshi; Yoshida, Shinya; Tanaka, Shuji

    2017-07-01

    This paper reports on the development of a novel buffer layer structure, (100)SrRuO3/(100)LaNiO3/(111)Pt/(111)CeO2, for the epitaxial growth of a (100)/(001)-oriented Pb(Zr,Ti)O3 (PZT)-based thin film on a (111)Si wafer. (111)Pt and (111)CeO2 were epitaxially grown on (111)Si straightforwardly. Then, the crystal orientation was forcibly changed from (111) to (100) at the LaNiO3 layer owing to its strong (100)-self-orientation property, which enabled the cube-on-cube epitaxial growth of the subsequent (100)SrRuO3 layer and preferentially (100)/(001)-oriented PZT-based thin film. The PZT-based epitaxial thin films were comprehensively characterized in terms of the crystallinity, in-plane epitaxial relationships, piezoelectricity, and so forth. This buffer layer structure for the epitaxial growth of PZT can be applied to piezoelectric micro-electro-mechanical systems (MEMS) vibrating ring gyroscopes.

  2. Charge transfer from an adsorbed ruthenium-based photosensitizer through an ultra-thin aluminium oxide layer and into a metallic substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, Andrew J.; Temperton, Robert H.; Handrup, Karsten

    2014-06-21

    The interaction of the dye molecule N3 (cis-bis(isothiocyanato)bis(2,2-bipyridyl-4,4′-dicarbo-xylato) -ruthenium(II)) with the ultra-thin oxide layer on a AlNi(110) substrate, has been studied using synchrotron radiation based photoelectron spectroscopy, resonant photoemission spectroscopy, and near edge X-ray absorption fine structure spectroscopy. Calibrated X-ray absorption and valence band spectra of the monolayer and multilayer coverages reveal that charge transfer is possible from the molecule to the AlNi(110) substrate via tunnelling through the ultra-thin oxide layer and into the conduction band edge of the substrate. This charge transfer mechanism is possible from the LUMO+2 and 3 in the excited state but not from the LUMO,more » therefore enabling core-hole clock analysis, which gives an upper limit of 6.0 ± 2.5 fs for the transfer time. This indicates that ultra-thin oxide layers are a viable material for use in dye-sensitized solar cells, which may lead to reduced recombination effects and improved efficiencies of future devices.« less

  3. Two-dimensional ferroelectric topological insulators in functionalized atomically thin bismuth layers

    NASA Astrophysics Data System (ADS)

    Kou, Liangzhi; Fu, Huixia; Ma, Yandong; Yan, Binghai; Liao, Ting; Du, Aijun; Chen, Changfeng

    2018-02-01

    We introduce a class of two-dimensional (2D) materials that possess coexisting ferroelectric and topologically insulating orders. Such ferroelectric topological insulators (FETIs) occur in noncentrosymmetric atomic layer structures with strong spin-orbit coupling (SOC). We showcase a prototype 2D FETI in an atomically thin bismuth layer functionalized by C H2OH , which exhibits a large ferroelectric polarization that is switchable by a ligand molecule rotation mechanism and a strong SOC that drives a band inversion leading to the topologically insulating state. An external electric field that switches the ferroelectric polarization also tunes the spin texture in the underlying atomic lattice. Moreover, the functionalized bismuth layer exhibits an additional quantum order driven by the valley splitting at the K and K' points in the Brillouin zone stemming from the symmetry breaking and strong SOC in the system, resulting in a remarkable state of matter with the simultaneous presence of the quantum spin Hall and quantum valley Hall effect. These phenomena are predicted to exist in other similarly constructed 2D FETIs, thereby offering a unique quantum material platform for discovering novel physics and exploring innovative applications.

  4. ZnS nanostructured thin-films deposited by successive ionic layer adsorption and reaction

    NASA Astrophysics Data System (ADS)

    Deshmukh, S. G.; Jariwala, Akshay; Agarwal, Anubha; Patel, Chetna; Panchal, A. K.; Kheraj, Vipul

    2016-04-01

    ZnS thin films were grown on glass substrate using successive ionic layer adsorption and reaction (SILAR) technique at room temperature. Aqueous solutions of ZnCl2 and Na2S were used as precursors. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectroscopy and optical absorption measurements were applied to study the structural, surface morphology and optical properties of as-deposited ZnS thin films. The X-ray diffraction profiles revealed that ZnS thin films consist of crystalline grains with cubic phase. Spherical nano grains of random size and well covered on the glass substrate were observed from FESEM. The average grain size were found to be 77 nm, 100 nm and 124 nm for 20 cycles, 40 cycles and 60 cycles samples respectively. For 60 cycle sample, Raman spectra show two prominent peaks at 554 cm-1 and 1094 cm-1. The optical band gap values were found to be 3.76 eV, 3.72 eV and 3.67 eV for 20 cycle, 40 cycle and 60 cycle samples respectively.

  5. Influence of initial conditions on the flow patterns of a shock-accelerated thin fluid layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budzinski, J.M.; Benjamin, R.F.; Jacobs, J.W.

    1994-11-01

    Previous observations of three flow patterns generated by shock acceleration of a thin perturbed, fluid layer are now correlated with asymmetries in the initial conditions. Using a different diagnostic (planar laser Rayleigh scattering) than the previous experiments, upstream mushrooms, downstream mushrooms, and sinuous patterns are still observed. For each experiment the initial perturbation amplitude on one side of the layer can either be larger, smaller, or the same as the amplitude on the other side, as observed with two images per experiment, and these differences lead to the formation of the different patterns.

  6. Influence of heat conducting substrates on explosive crystallization in thin layers

    NASA Astrophysics Data System (ADS)

    Schneider, Wilhelm

    2017-09-01

    Crystallization in a thin, initially amorphous layer is considered. The layer is in thermal contact with a substrate of very large dimensions. The energy equation of the layer contains source and sink terms. The source term is due to liberation of latent heat in the crystallization process, while the sink term is due to conduction of heat into the substrate. To determine the latter, the heat diffusion equation for the substrate is solved by applying Duhamel's integral. Thus, the energy equation of the layer becomes a heat diffusion equation with a time integral as an additional term. The latter term indicates that the heat loss due to the substrate depends on the history of the process. To complete the set of equations, the crystallization process is described by a rate equation for the degree of crystallization. The governing equations are then transformed to a moving co-ordinate system in order to analyze crystallization waves that propagate with invariant properties. Dual solutions are found by an asymptotic expansion for large activation energies of molecular diffusion. By introducing suitable variables, the results can be presented in a universal form that comprises the influence of all non-dimensional parameters that govern the process. Of particular interest for applications is the prediction of a critical heat loss parameter for the existence of crystallization waves with invariant properties.

  7. High-quality crystalline yttria-stabilized-zirconia thin layer for photonic applications

    NASA Astrophysics Data System (ADS)

    Marcaud, Guillaume; Matzen, Sylvia; Alonso-Ramos, Carlos; Le Roux, Xavier; Berciano, Mathias; Maroutian, Thomas; Agnus, Guillaume; Aubert, Pascal; Largeau, Ludovic; Pillard, Valérie; Serna, Samuel; Benedikovic, Daniel; Pendenque, Christopher; Cassan, Eric; Marris-Morini, Delphine; Lecoeur, Philippe; Vivien, Laurent

    2018-03-01

    Functional oxides are considered as promising materials for photonic applications due to their extraordinary and various optical properties. Especially, yttria-stabilized zirconia (YSZ) has a high refractive index (˜2.15), leading to a good confinement of the optical mode in waveguides. Furthermore, YSZ can also be used as a buffer layer to expand toward a large family of oxides-based thin-films heterostructures. In this paper, we report a complete study of the structural properties of YSZ for the development of integrated optical devices on sapphire in telecom wavelength range. The substrate preparation and the epitaxial growth using pulsed-laser deposition technique have been studied and optimized. High-quality YSZ thin films with remarkably sharp x-ray diffraction rocking curve peaks in 10-3∘ range have then been grown on sapphire (0001). It was demonstrated that a thermal annealing of sapphire substrate before the YSZ growth allowed controlling the out-of-plane orientation of the YSZ thin film. Single-mode waveguides were finally designed, fabricated, and characterized for two different main orientations of high-quality YSZ (001) and (111). Propagation loss as low as 2 dB/cm at a wavelength of 1380 nm has been demonstrated for both orientations. These results pave the way for the development of a functional oxides-based photonics platform for numerous applications including on-chip optical communications and sensing.

  8. Indentation and overall compression behavior of multilayered thin-film composites. Effect of undulating layer geometry

    DOE PAGES

    Jamison, Ryan D.; Shen, Y. -L.

    2015-03-19

    Two finite element models are used to investigate the behavior of aluminum/silicon carbide thin-film layered composites with imperfect internal geometry when subjected to various loadings. In both models, undulating layers are represented by regular waveforms with various amplitudes, wavelengths, and phase offsets. First, uniaxial compressive loading of the composite is considered. The modulus and stress/strain response of the composite is sensitive to both loading direction and frequency of the undulation. Second, the nanoindentation response of the composite is investigated. The derived hardness and modulus are shown to be sensitive to the presence of undulating layers and the relative size ofmore » the indenter to the undulation. Undulating layers create bands of tensile and compressive stress in the indentation direction that are significantly different from the flat layers. The amount of equivalent plastic strain in the Al layers is increased by the presence of undulating layers. The correlations between the two forms of loading, and the implications to composite property measurement are carefully examined in this study.« less

  9. Atomic layer deposition of (K,Na)(Nb,Ta)O{sub 3} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sønsteby, Henrik Hovde, E-mail: henrik.sonsteby@kjemi.iuio.no; Nilsen, Ola; Fjellvåg, Helmer

    2016-07-15

    Thin films of complex alkali oxides are frequently investigated due to the large range of electric effects that are found in this class of materials. Their piezo- and ferroelectric properties also place them as sustainable lead free alternatives in optoelectronic devices. Fully gas-based routes for deposition of such compounds are required for integration into microelectronic devices that need conformal thin films with high control of thickness- and composition. The authors here present a route for deposition of materials in the (K,Na)(Nb,Ta)O{sub 3}-system, including the four end members NaNbO{sub 3}, KNbO{sub 3}, NaTaO{sub 3}, and KTaO{sub 3}, using atomic layer depositionmore » with emphasis on control of stoichiometry in such mixed quaternary and quinary compunds.« less

  10. Patterns of Progressive Ganglion Cell-Inner Plexiform Layer Thinning in Glaucoma Detected by OCT.

    PubMed

    Shin, Joong Won; Sung, Kyung Rim; Park, Sun-Won

    2018-04-25

    To investigate the spatial characteristics and patterns of progressive macular ganglion cell-inner plexiform layer (GCIPL) thinning in glaucomatous eyes assessed by OCT Guided Progression Analysis (GPA). Longitudinal, retrospective, observational study. Two hundred ninety-two eyes of 192 patients with primary open-angle glaucoma with a mean follow-up of 6.0 years (range, 3.2-8.1 years) were included. Macular GCIPL imaging and visual field (VF) examination were performed at 6-month intervals for 3 years or more. Progressive GCIPL thinning was evaluated by a Cirrus HD-OCT (Carl Zeiss Meditec, Dublin, CA) GPA device. Spatial characteristics of progressive GCIPL thinning were assessed by the GCIPL thickness change map. The pattern of progressive GCIPL thinning was evaluated by comparing the baseline GCIPL thickness deviation map and the final GCIPL thickness change map. Visual field progression was determined by Early Manifest Glaucoma Trial criteria and linear regression of the VF index. Spatial characteristics and patterns of progressive GCIPL thinning. Seventy-two eyes of 62 participants (24.7% [72/292]) showed progressive GCIPL thinning in the GCIPL thickness change map. Progressive GCIPL thinning was detected most frequently (25.0%) at 2.08 mm from the fovea, and it extended in an arcuate shape in the inferotemporal region (250°-339°). Compared with the baseline GCIPL defects, the progressive GCIPL thinning extended toward the fovea and optic disc. The most common pattern of progressive GCIPL thinning was widening of GCIPL defects (42 eyes [58.3%]), followed by deepening of GCIPL defects (19 eyes [26.4%]) and newly developed GCIPL defects (15 eyes [20.8%]). Visual field progression was accompanied by progressive GCIPL thinning in 41 of 72 eyes (56.9%). Progressive GCIPL thinning preceded (61.0% [25/41]) or occurred concomitantly with (21.9% [9/41]) VF progression. The use of OCT GPA maps offers an effective approach to evaluate the topographic patterns of

  11. Super-resolved thickness maps of thin film phantoms and in vivo visualization of tear film lipid layer using OCT

    PubMed Central

    dos Santos, Valentin Aranha; Schmetterer, Leopold; Triggs, Graham J.; Leitgeb, Rainer A.; Gröschl, Martin; Messner, Alina; Schmidl, Doreen; Garhofer, Gerhard; Aschinger, Gerold; Werkmeister, René M.

    2016-01-01

    In optical coherence tomography (OCT), the axial resolution is directly linked to the coherence length of the employed light source. It is currently unclear if OCT allows measuring thicknesses below its axial resolution value. To investigate spectral-domain OCT imaging in the super-resolution regime, we derived a signal model and compared it with the experiment. Several island thin film samples of known refractive indices and thicknesses in the range 46 – 163 nm were fabricated and imaged. Reference thickness measurements were performed using a commercial atomic force microscope. In vivo measurements of the tear film were performed in 4 healthy subjects. Our results show that quantitative super-resolved thickness measurement can be performed using OCT. In addition, we report repeatable tear film lipid layer visualization. Our results provide a novel interpretation of the OCT axial resolution limit and open a perspective to deeper extraction of the information hidden in the coherence volume. PMID:27446696

  12. Functional Layer-by-Layer Thin Films of Inducible Nitric Oxide (NO) Synthase Oxygenase and Polyethylenimine: Modulation of Enzyme Loading and NO-Release Activity.

    PubMed

    Gunasekera, Bhagya; Abou Diwan, Charbel; Altawallbeh, Ghaith; Kalil, Haitham; Maher, Shaimaa; Xu, Song; Bayachou, Mekki

    2018-03-07

    Nitric oxide (NO) release counteracts platelet aggregation and prevents the thrombosis cascade in the inner walls of blood vessels. NO-release coatings also prevent thrombus formation on the surface of blood-contacting medical devices. Our previous work has shown that inducible nitric oxide synthase (iNOS) films release NO fluxes upon enzymatic conversion of the substrate l-arginine. In this work, we report on the modulation of enzyme loading in layer-by-layer (LbL) thin films of inducible nitric oxide synthase oxygenase (iNOSoxy) on polyethylenimine (PEI). The layer of iNOSoxy is electrostatically adsorbed onto the PEI layer. The pH of the iNOSoxy solution affects the amount of enzyme adsorbed. The overall negative surface charge of iNOSoxy in solution depends on the pH and hence determines the density of adsorbed protein on the positively charged PEI layer. We used buffered iNOSoxy solutions adjusted to pHs 8.6 and 7.0, while saline PEI solution was used at pH 7.0. Atomic force microscopy imaging of the outermost layer shows higher protein adsorption with iNOSoxy at pH 8.6 than with a solution of iNOSoxy at pH 7.0. Graphite electrodes with PEI/iNOSoxy films show higher catalytic currents for nitric oxide reduction mediated by iNOSoxy. The higher enzyme loading translates into higher NO flux when the enzyme-modified surface is exposed to a solution containing the substrate and a source of electrons. Spectrophotometric assays showed higher NO fluxes with iNOSoxy/PEI films built at pH 8.6 than with films built at pH 7.0. Fourier transform infrared analysis of iNOSoxy adsorbed on PEI at pH 8.6 and 7.0 shows structural differences of iNOSoxy in films, which explains the observed changes in enzymatic activity. Our findings show that pH provides a strategy to optimize the NOS loading and enzyme activity in NOS-based LbL thin films, which enables improved NO release with minimum layers of PEI/NOS.

  13. Methods to induce perpendicular magnetic anisotropy in full-Heusler Co2FeSi thin layers in a magnetic tunnel junction structure

    NASA Astrophysics Data System (ADS)

    Shinohara, Koki; Suzuki, Takahiro; Takamura, Yota; Nakagawa, Shigeki

    2018-05-01

    In this study, to obtain perpendicular magnetic tunnel junctions (p-MTJs) using half-metallic ferromagnets (HMFs), several methods were developed to induce perpendicular magnetic anisotropy (PMA) in full-Heusler Co2FeSi (CFS) alloy thin layers in an MTJ multilayer composed of a layered CFS/MgO/CFS structure. Oxygen exposure at 2.0 Pa for 10 min after deposition of the bottom CFS layer was effective for obtaining PMA in the CFS layer. One of the reasons for the PMA is the formation of nearly ideal CFS/MgO interfaces due to oxygen exposure before the deposition of the MgO layer. The annealing process was effective for obtaining PMA in the top CFS layer capped with a Pd layer. PMA was clearly observed in the top CFS layer of a Cr(40 nm)/Pd(50 nm)/bottom CFS(0.6 nm)/MgO(2.0 nm)/top CFS(0.6 nm)/ Pd(10 nm) multilayer, where the top CFS and Pd thin films were deposited at RT and subsequently annealed at 300°C. In addition to the continuous layer growth of the films, the crystalline orientation alignment at the top CFS/Pd interface probably attributes to the origin of PMA at the top CFS layer.

  14. Fabrication of low-temperature solid oxide fuel cells with a nanothin protective layer by atomic layer deposition

    PubMed Central

    2013-01-01

    Anode aluminum oxide-supported thin-film fuel cells having a sub-500-nm-thick bilayered electrolyte comprising a gadolinium-doped ceria (GDC) layer and an yttria-stabilized zirconia (YSZ) layer were fabricated and electrochemically characterized in order to investigate the effect of the YSZ protective layer. The highly dense and thin YSZ layer acted as a blockage against electron and oxygen permeation between the anode and GDC electrolyte. Dense GDC and YSZ thin films were fabricated using radio frequency sputtering and atomic layer deposition techniques, respectively. The resulting bilayered thin-film fuel cell generated a significantly higher open circuit voltage of approximately 1.07 V compared with a thin-film fuel cell with a single-layered GDC electrolyte (approximately 0.3 V). PMID:23342963

  15. Fabrication and characterization of {110}-oriented Pb(Zr,Ti)O3 thin films on Pt/SiO2/Si substrates using PdO//Pd buffer layer

    NASA Astrophysics Data System (ADS)

    Oshima, Naoya; Uchiyama, Kiyoshi; Ehara, Yoshitaka; Oikawa, Takahiro; Ichinose, Daichi; Tanaka, Hiroki; Sato, Tomoya; Uchida, Hiroshi; Funakubo, Hiroshi

    2017-10-01

    A strongly {110}-oriented perovskite-type thin film of tetragonal Pb(Zr0.4Ti0.6)O3 (PZT) was successfully obtained on a (100)Si substrate using a {101}PdO//{111}Pd thin film as a buffer layer. The {101}PdO//{111}Pd thin film buffer layer was obtained by oxidizing {111}Pd after depositing {111}Pd on a {111}Pt/TiO x /SiO2/{100}Si substrate. Using this buffer layer, a {110} c -oriented SrRuO3 (SRO) thin film was deposited by sputtering as a bottom electrode of PZT thin films. Subsequently, the {110}-oriented PZT thin film can be deposited on a (110) c SRO thin film by metal-organic chemical deposition (MOCVD) and its properties can be compared with those of PZT thin films with other orientations of {100} and {111}. Among the {100}, {110}, {111}-oriented PZT films, the {100}-oriented one showed the largest remnant polarization, which is in good agreement with those of the PZTs epitaxially grown in the 〈100〉, 〈110〉, and 〈111〉 directions. The other properties, i.e., piezoelectricity and dielectric constants, also showed similar anisotropic tendencies, which is in good agreement with the data reported in the epitaxially grown PZTs.

  16. Freestanding and Reactive Thin Films Fabricated by Covalent Layer-by-Layer Assembly and Subsequent Lift-Off of Azlactone-Containing Polymer Multilayers

    PubMed Central

    Buck, Maren E.

    2010-01-01

    We report an approach to the fabrication of freestanding and amine-reactive thin films that is based on the reactive layer-by-layer assembly and subsequent lift-off of azlactone-containing polymer multilayers. We demonstrate that covalently crosslinked multilayers fabricated using the azlactone-functionalized polymer poly(2-vinyl-4,4-dimethylazlactone) (PVDMA) and a primary amine-containing polymer [poly(ethyleneimine) (PEI)] can be delaminated from planar glass and silicon surfaces by immersion in mildly acidic aqueous environments to yield flexible freestanding membranes. These freestanding membranes are robust and can withstand exposure to strong acid, strong base, or incubation in high ionic strength solutions that typically lead to the disruption and erosion of polymer multilayers assembled by reversible weak interactions (e.g., ‘polyelectrolyte multilayers’ assembled by electrostatic interactions or hydrogen bonding). We demonstrate further that these PEI/PVDMA assemblies contain residual reactive azlactone functionality that can be exploited to chemically modify the films (either directly after fabrication or after they have been lifted off of the substrates on which they were fabricated) using a variety of amine-functionalized small molecules. These freestanding membranes can also be transferred readily onto other objects (for example, onto the surfaces of planar substrates containing holes or pores) to fabricate suspended polymer membranes and other film-functionalized interfaces. In addition to planar, two-dimensional freestanding films, this approach can be used to fabricate and isolate three-dimensional freestanding membranes (e.g., curved films or tubes) by layer-by-layer assembly on, and subsequent lift-off from, the surfaces of topologically complex substrates (e.g., the curved ends of glass tubing, etc.). The results of this investigation, when combined, suggest the basis of methods for the fabrication of stable, chemically-reactive, and

  17. The role of ultra-thin SiO2 layers in metal-insulator-semiconductor (MIS) photoelectrochemical devices (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Esposito, Daniel V.

    2015-08-01

    Solid-state junctions based on a metal-insulator-semiconductor (MIS) architecture are of great interest for a number of optoelectronic applications such as photovoltaics, photoelectrochemical cells, and photodetection. One major advantage of the MIS junction compared to the closely related metal-semiconductor junction, or Schottky junction, is that the thin insulating layer (1-3 nm thick) that separates the metal and semiconductor can significantly reduce the density of undesirable interfacial mid-gap states. The reduction in mid-gap states helps "un-pin" the junction, allowing for significantly higher built-in-voltages to be achieved. A second major advantage of the MIS junction is that the thin insulating layer can also protect the underlying semiconductor from corrosion in an electrochemical environment, making the MIS architecture well-suited for application in (photo)electrochemical applications. In this presentation, discontinuous Si-based MIS junctions immersed in electrolyte are explored for use as i.) photoelectrodes for solar-water splitting in photoelectrochemical cells (PECs) and ii.) position-sensitive photodetectors. The development and optimization of MIS photoelectrodes for both of these applications relies heavily on understanding how processing of the thin SiO2 layer impacts the properties of nano- and micro-scale MIS junctions, as well as the interactions of the insulating layer with the electrolyte. In this work, we systematically explore the effects of insulator thickness, synthesis method, and chemical treatment on the photoelectrochemical and electrochemical properties of these MIS devices. It is shown that electrolyte-induced inversion plays a critical role in determining the charge carrier dynamics within the MIS photoelectrodes for both applications.

  18. Improvement in temperature dependence and dielectric tunability properties of PbZr0.52Ti0.48O3 thin films using Ba(Mg1/3Ta2/3)O3 buffer layer

    NASA Astrophysics Data System (ADS)

    Wu, Zhi; Zhou, Jing; Chen, Wen; Shen, Jie; Yang, Huimin; Zhang, Shisai; Liu, Yueli

    2016-12-01

    In this paper, Pb(Zr0.52Ti0.48)O3 (PZT) thin films were prepared via sol-gel method. The effects of Ba(Mg1/3Ta2/3)O3 (BMT) buffer layer on the temperature dependence and dielectric tunability properties of PZT thin films were studied. As the thickness of BMT buffer layer increases, the tan δ and tunability of PZT thin films decrease while tunability still maintains above 10%. This result shows that BMT buffer layer can improve the dielectric tunability properties of PZT thin films. Furthermore, the temperature coefficient of the dielectric constant decreases from 2333.4 to 906.9 ppm/°C with the thickness of BMT buffer layer increasing in the range from 25 to 205 °C, indicating that BMT buffer layer can improve the temperature stability of PZT thin films. Therefore, BMT buffer layer plays a critical role in improving temperature dependence and dielectric tunability properties of PbZr0.52Ti0.48O3 thin films.

  19. Fast light-induced reversible wettability of a zinc oxide nanorod array coated with a thin gold layer

    NASA Astrophysics Data System (ADS)

    Wei, Yuefan; Du, Hejun; Kong, Junhua; Tran, Van-Thai; Koh, Jia Kai; Zhao, Chenyang; He, Chaobin

    2017-11-01

    Zinc oxide (ZnO) has gained much attention recently due to its excellent physical and chemical properties, and has been extensively studied in energy harvesting applications such as photovoltaic and piezoelectric devices. In recent years, its reversible wettability has also attracted increasing interest. The wettability of ZnO nanostructures with various morphologies has been studied. However, to the best of our knowledge, there is still a lack of investigations on further modifications on ZnO to provide more benefits than pristine ZnO. Comprehensive studies on the reversible wettability are still needed. In this study, a ZnO nanorod array was prepared via a hydrothermal process and subsequently coated with thin gold layers with varied thickness. The morphologies and structures, optical properties and wettability were investigated. It is revealed that the ZnO-Au system possesses recoverable wettability upon switching between visible-ultraviolet light and a dark environment, which is verified by the contact angle change. The introduction of the thin gold layer to the ZnO nanorod array effectively increases the recovery rate of the wettability. The improvements are attributed to the hierarchical structures, which are formed by depositing thin gold layers onto the ZnO nanorod array, the visible light sensitivity due to the plasmonic effect of the deposited gold, as well as the fast charge-induced surface status change upon light illumination or dark storage. The improvement is beneficial to applications in environmental purification, energy harvesting, micro-lenses, and smart devices.

  20. Evaluation of Reaction Cross Section Data Used for Thin Layer Activation Technique

    NASA Astrophysics Data System (ADS)

    Ditrói, F.; Takács, S.; Tárkányi, F.

    2005-05-01

    Thin layer activation (TLA) is a widely used nuclear method to investigate and control the loss of material during wear, corrosion and erosion processes. The process requires knowledge of depth profiles of the investigated radioisotopes produced by charged particle bombardment. The depth distribution of the activity can be determined with direct, very time-consuming step by step measurement or by calculation from reliable cross section, stopping power and sample composition data. These data were checked experimentally at several points performing only a couple of measurements.

  1. Evaluation of Reaction Cross Section Data Used for Thin Layer Activation Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ditroi, F.; Takacs, S.; Tarkanyi, F.

    2005-05-24

    Thin layer activation (TLA) is a widely used nuclear method to investigate and control the loss of material during wear, corrosion and erosion processes. The process requires knowledge of depth profiles of the investigated radioisotopes produced by charged particle bombardment. The depth distribution of the activity can be determined with direct, very time-consuming step by step measurement or by calculation from reliable cross section, stopping power and sample composition data. These data were checked experimentally at several points performing only a couple of measurements.

  2. Spectral, thermal and optical-electrical properties of the layer-by-layer deposited thin film of nano Zn(II)-8-hydroxy-5-nitrosoquinolate complex.

    PubMed

    Haggag, Sawsan M S; Farag, A A M; Abdelrafea, Mohamed

    2013-06-01

    Zinc(II)-8-hydroxy-5-nitrosoquinolate, [Zn(II)-(HNOQ)2], was synthesized and assembled as a deposited thin film of nano-metal complex by a rapid, direct, simple and efficient procedure based on layer-by-layer chemical deposition technique. Stoichiometric identification and structural characterization of [Zn(II)-(HNOQ)2] were confirmed by electron impact mass spectrometry (EI-MS) and Fourier Transform infrared spectroscopy (FT-IR). Surface morphology was studied by using a scanning electron microscope imaging (SEM) and the particle size was found to be in the range of 23-49 nm. Thermal stability of [Zn(II)-(HNOQ)2] was studied and the thermal parameters were evaluated using thermal gravimetric analysis (TGA). The current density-voltage measurements showed that the current flow is dominated by a space charge limited and influenced by traps under high bias. The optical properties of [Zn(II)-(HNOQ)2] thin films were found to exhibit two direct allowed transitions at 2.4 and 1.0 eV, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. All-optically tunable EIT-like dielectric metasurfaces hybridized with thin phase change material layers

    NASA Astrophysics Data System (ADS)

    Petronijevic, Emilija; Sibilia, Concita

    2017-05-01

    Electromagnetically induced transparency (EIT), a pump-induced narrow transparency window within the absorption region of a probe, had offered new perspectives in slow-light control in atomic physics. For applications in nanophotonics, the implementation on chip-scaled devices has later been obtained by mimicking this effect by metallic metamaterials. High losses in visible and near infrared range of metal-based metamaterialls have recently opened a new field of all-dielectric metamaterials; a proper configuration of high refractive index dielectric nanoresonators can mimick this effect without losses to get high Q, slow-light response. The next step would be the ability to tune their optical response, and in this work we investigate thin layers of phase change materials (PCM) for all-optical control of EIT-like all-dielectric metamaterials. PCM can be nonvolatively and reversibly switched between two stable phases that differ in optical properties by applying a visible laser pulse. The device is based on Si nanoresonators covered by a thin layer of PCM GeTe; optical and transient thermal simulations have been done to find and optimize the fabrication parameters and switching parameters such as the intensity and duration of the pulse. We have found that the EIT-like response can be switched on and off by applying the 532nm laser pulse to change the phase of the upper GeTe layer. We strongly believe that such approach could open new perspectives in all-optically controlled slow-light metamaterials.

  4. Thin Layer Sensory Cues Affect Antarctic Krill Swimming Kinematics

    NASA Astrophysics Data System (ADS)

    True, A. C.; Webster, D. R.; Weissburg, M. J.; Yen, J.

    2013-11-01

    A Bickley jet (laminar, planar free jet) is employed in a recirculating flume system to replicate thin shear and phytoplankton layers for krill behavioral assays. Planar laser-induced fluorescence (LIF) and particle image velocimetry (PIV) measurements quantify the spatiotemporal structure of the chemical and free shear layers, respectively, ensuring a close match to in situ hydrodynamic and biochemical conditions. Path kinematics from digitized trajectories of free-swimming Euphausia superba examine the effects of hydrodynamic sensory cues (deformation rate) and bloom level phytoplankton patches (~1000 cells/mL, Tetraselamis spp.) on krill behavior (body orientation, swimming modes and kinematics, path fracticality). Krill morphology is finely tuned for receiving and deciphering both hydrodynamic and chemical information that is vital for basic life processes such as schooling behaviors, predator/prey, and mate interactions. Changes in individual krill behavior in response to ecologically-relevant sensory cues have the potential to produce population-scale phenomena with significant ecological implications. Krill are a vital trophic link between primary producers (phytoplankton) and larger animals (seabirds, whales, fish, penguins, seals) as well as the subjects of a valuable commercial fishery in the Southern Ocean; thus quantifying krill behavioral responses to relevant sensory cues is an important step towards accurately modeling Antarctic ecosystems.

  5. Flexible and High-Performance Amorphous Indium Zinc Oxide Thin-Film Transistor Using Low-Temperature Atomic Layer Deposition.

    PubMed

    Sheng, Jiazhen; Lee, Hwan-Jae; Oh, Saeroonter; Park, Jin-Seong

    2016-12-14

    Amorphous indium zinc oxide (IZO) thin films were deposited at different temperatures, by atomic layer deposition (ALD) using [1,1,1-trimethyl-N-(trimethylsilyl)silanaminato]indium (INCA-1) as the indium precursor, diethlzinc (DEZ) as the zinc precursor, and hydrogen peroxide (H 2 O 2 ) as the reactant. The ALD process of IZO deposition was carried by repeated supercycles, including one cycle of indium oxide (In 2 O 3 ) and one cycle of zinc oxide (ZnO). The IZO growth rate deviates from the sum of the respective In 2 O 3 and ZnO growth rates at ALD growth temperatures of 150, 175, and 200 °C. We propose growth temperature-dependent surface reactions during the In 2 O 3 cycle that correspond with the growth-rate results. Thin-film transistors (TFTs) were fabricated with the ALD-grown IZO thin films as the active layer. The amorphous IZO TFTs exhibited high mobility of 42.1 cm 2 V -1 s -1 and good positive bias temperature stress stability. Finally, flexible IZO TFT was successfully fabricated on a polyimide substrate without performance degradation, showing the great potential of ALD-grown TFTs for flexible display applications.

  6. Chemical bath deposited ZnS buffer layer for Cu(In,Ga)Se2 thin film solar cell

    NASA Astrophysics Data System (ADS)

    Hong, Jiyeon; Lim, Donghwan; Eo, Young-Joo; Choi, Changhwan

    2018-02-01

    The dependence of Zn precursors using zinc sulfate (ZnSO4), zinc acetate (Zn(CH3COO)2), and zinc chloride (ZnCl2) on the characteristics of the chemical bath deposited ZnS thin film used as a buffer layer of Cu(In,Ga)Se2 (CIGS) thin film solar cell was studied. It is found that the ZnS film deposition rate increases with higher stability constant during decomplexation reaction of zinc ligands, which affects the crack formation and the amount of sulfur and oxygen contents within the film. The band gap energies of all deposited films are in the range of 3.40-3.49 eV, which is lower than that of the bulk ZnS film due to oxygen contents within the films. Among the CIGS solar cells having ZnS buffer layers prepared by different Zn precursors, the best cell efficiency with 9.4% was attained using Zn(CH3COO)2 precursor due to increased Voc mainly. This result suggests that [Zn(NH3)4]2+ complex formation should be well controlled to attain the high quality ZnS thin films.

  7. Electrical properties of thin film transistors with zinc tin oxide channel layer

    NASA Astrophysics Data System (ADS)

    Hong, Seunghwan; Oh, Gyujin; Kim, Eun Kyu

    2017-10-01

    We have investigated thin film transistors (TFTs) with zinc tin oxide (ZTO) channel layer fabricated by using an ultra-high vacuum radio frequency sputter. ZTO thin films were grown at room temperature by co-sputtering of ZnO and SnO2, which applied power for SnO2 target was varied from 15 W to 90 W under a fixed sputtering power of 70 W for ZnO target. A post-annealing treatment to improve the film quality was done at temperature ranges from 300 to 600 °C by using the electrical furnace. The ZTO thin films showed good electrical and optical properties such as Hall mobility of more than 9 cm2/V·s, specific resistivity of about 2 × 102 Ω·cm, and optical transmittance of 85% in visible light region by optical bandgap of 3.3 eV. The ZTO-TFT with an excellent performance of channel mobility of 19.1 cm2/V·s and on-off ratio ( I on / I off ) of 104 was obtained from the films grown with SnO2 target power of 25 W and post-annealed at 450 °C. This result showed that ZTO film is promising on application to a high performance transparent TFTs.

  8. Quantitative analysis of oxyresveratrol in different plant parts of Morus species and related Genera by HPTLC

    USDA-ARS?s Scientific Manuscript database

    Four aromatic compounds; oxyresveratrol (1), mulberroside A (2), cudraflavone C (3) and kuwanone J (4) were isolated from the stems of Morus rubra L. The quantitative determination of oxyresveratrol from M. rubra L., M. alba L. and related genera by high performance thin layer chromatography (HPTLC)...

  9. Atomic scale imaging of competing polar states in a Ruddlesden-Popper layered oxide.

    PubMed

    Stone, Greg; Ophus, Colin; Birol, Turan; Ciston, Jim; Lee, Che-Hui; Wang, Ke; Fennie, Craig J; Schlom, Darrell G; Alem, Nasim; Gopalan, Venkatraman

    2016-08-31

    Layered complex oxides offer an unusually rich materials platform for emergent phenomena through many built-in design knobs such as varied topologies, chemical ordering schemes and geometric tuning of the structure. A multitude of polar phases are predicted to compete in Ruddlesden-Popper (RP), An+1BnO3n+1, thin films by tuning layer dimension (n) and strain; however, direct atomic-scale evidence for such competing states is currently absent. Using aberration-corrected scanning transmission electron microscopy with sub-Ångstrom resolution in Srn+1TinO3n+1 thin films, we demonstrate the coexistence of antiferroelectric, ferroelectric and new ordered and low-symmetry phases. We also directly image the atomic rumpling of the rock salt layer, a critical feature in RP structures that is responsible for the competing phases; exceptional quantitative agreement between electron microscopy and density functional theory is demonstrated. The study shows that layered topologies can enable multifunctionality through highly competitive phases exhibiting diverse phenomena in a single structure.

  10. Atomic scale imaging of competing polar states in a Ruddlesden–Popper layered oxide

    PubMed Central

    Stone, Greg; Ophus, Colin; Birol, Turan; Ciston, Jim; Lee, Che-Hui; Wang, Ke; Fennie, Craig J.; Schlom, Darrell G.; Alem, Nasim; Gopalan, Venkatraman

    2016-01-01

    Layered complex oxides offer an unusually rich materials platform for emergent phenomena through many built-in design knobs such as varied topologies, chemical ordering schemes and geometric tuning of the structure. A multitude of polar phases are predicted to compete in Ruddlesden–Popper (RP), An+1BnO3n+1, thin films by tuning layer dimension (n) and strain; however, direct atomic-scale evidence for such competing states is currently absent. Using aberration-corrected scanning transmission electron microscopy with sub-Ångstrom resolution in Srn+1TinO3n+1 thin films, we demonstrate the coexistence of antiferroelectric, ferroelectric and new ordered and low-symmetry phases. We also directly image the atomic rumpling of the rock salt layer, a critical feature in RP structures that is responsible for the competing phases; exceptional quantitative agreement between electron microscopy and density functional theory is demonstrated. The study shows that layered topologies can enable multifunctionality through highly competitive phases exhibiting diverse phenomena in a single structure. PMID:27578622

  11. Atomic scale imaging of competing polar states in a Ruddlesden-Popper layered oxide

    NASA Astrophysics Data System (ADS)

    Stone, Greg; Ophus, Colin; Birol, Turan; Ciston, Jim; Lee, Che-Hui; Wang, Ke; Fennie, Craig J.; Schlom, Darrell G.; Alem, Nasim; Gopalan, Venkatraman

    2016-08-01

    Layered complex oxides offer an unusually rich materials platform for emergent phenomena through many built-in design knobs such as varied topologies, chemical ordering schemes and geometric tuning of the structure. A multitude of polar phases are predicted to compete in Ruddlesden-Popper (RP), An+1BnO3n+1, thin films by tuning layer dimension (n) and strain; however, direct atomic-scale evidence for such competing states is currently absent. Using aberration-corrected scanning transmission electron microscopy with sub-Ångstrom resolution in Srn+1TinO3n+1 thin films, we demonstrate the coexistence of antiferroelectric, ferroelectric and new ordered and low-symmetry phases. We also directly image the atomic rumpling of the rock salt layer, a critical feature in RP structures that is responsible for the competing phases; exceptional quantitative agreement between electron microscopy and density functional theory is demonstrated. The study shows that layered topologies can enable multifunctionality through highly competitive phases exhibiting diverse phenomena in a single structure.

  12. [Quantitative determination of 7-phenoxyacetamidodesacetoxycephalosporanic acid].

    PubMed

    Dzegilenko, N B; Riabova, N M; Zinchenko, E Ia; Korchagin, V B

    1976-11-01

    7-Phenoxyacetamidodesacetoxycephalosporanic acid, an intermediate product in synthesis of cephalexin, was prepared by oxydation of phenoxymethylpenicillin into the respective sulphoxide and transformation of the latter. The UV-spectra of the reaction products were studied. A quantitative method is proposed for determination of 7-phenoxyacetamidodesacetoxycephalosporanic acid in the finished products based on estimation os the coefficient of specific extinction of the ethanol solutions at a wave length of 268 um in the UV-spectrum region in combination with semiquantitative estimation of the admixtures with the method of thin-layer chromatography.

  13. Simultaneous Quantification of Syringic Acid and Kaempferol in Extracts of Bergenia Species Using Validated High-Performance Thin-Layer Chromatographic-Densitometric Method.

    PubMed

    Srivastava, Nishi; Srivastava, Amit; Srivastava, Sharad; Rawat, Ajay Kumar Singh; Khan, Abdul Rahman

    2016-03-01

    A rapid, sensitive, selective and robust quantitative densitometric high-performance thin-layer chromatographic method was developed and validated for separation and quantification of syringic acid (SYA) and kaempferol (KML) in the hydrolyzed extracts of Bergenia ciliata and Bergenia stracheyi. The separation was performed on silica gel 60F254 high-performance thin-layer chromatography plates using toluene : ethyl acetate : formic acid (5 : 4: 1, v/v/v) as the mobile phase. The quantification of SYA and KML was carried out using a densitometric reflection/absorption mode at 290 nm. A dense spot of SYA and KML appeared on the developed plate at a retention factor value of 0.61 ± 0.02 and 0.70 ± 0.01. A precise and accurate quantification was performed using linear regression analysis by plotting the peak area vs concentration 100-600 ng/band (correlation coefficient: r = 0.997, regression coefficient: R(2) = 0.996) for SYA and 100-600 ng/band (correlation coefficient: r = 0.995, regression coefficient: R(2) = 0.991) for KML. The developed method was validated in terms of accuracy, recovery and inter- and intraday study as per International Conference on Harmonisation guidelines. The limit of detection and limit of quantification of SYA and KML were determined, respectively, as 91.63, 142.26 and 277.67, 431.09 ng. The statistical data analysis showed that the method is reproducible and selective for the estimation of SYA and KML in extracts of B. ciliata and B. stracheyi. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Layer-by-layer grown scalable redox-active ruthenium-based molecular multilayer thin films for electrochemical applications and beyond.

    PubMed

    Kaliginedi, Veerabhadrarao; Ozawa, Hiroaki; Kuzume, Akiyoshi; Maharajan, Sivarajakumar; Pobelov, Ilya V; Kwon, Nam Hee; Mohos, Miklos; Broekmann, Peter; Fromm, Katharina M; Haga, Masa-aki; Wandlowski, Thomas

    2015-11-14

    Here we report the first study on the electrochemical energy storage application of a surface-immobilized ruthenium complex multilayer thin film with anion storage capability. We employed a novel dinuclear ruthenium complex with tetrapodal anchoring groups to build well-ordered redox-active multilayer coatings on an indium tin oxide (ITO) surface using a layer-by-layer self-assembly process. Cyclic voltammetry (CV), UV-Visible (UV-Vis) and Raman spectroscopy showed a linear increase of peak current, absorbance and Raman intensities, respectively with the number of layers. These results indicate the formation of well-ordered multilayers of the ruthenium complex on ITO, which is further supported by the X-ray photoelectron spectroscopy analysis. The thickness of the layers can be controlled with nanometer precision. In particular, the thickest layer studied (65 molecular layers and approx. 120 nm thick) demonstrated fast electrochemical oxidation/reduction, indicating a very low attenuation of the charge transfer within the multilayer. In situ-UV-Vis and resonance Raman spectroscopy results demonstrated the reversible electrochromic/redox behavior of the ruthenium complex multilayered films on ITO with respect to the electrode potential, which is an ideal prerequisite for e.g. smart electrochemical energy storage applications. Galvanostatic charge-discharge experiments demonstrated a pseudocapacitor behavior of the multilayer film with a good specific capacitance of 92.2 F g(-1) at a current density of 10 μA cm(-2) and an excellent cycling stability. As demonstrated in our prototypical experiments, the fine control of physicochemical properties at nanometer scale, relatively good stability of layers under ambient conditions makes the multilayer coatings of this type an excellent material for e.g. electrochemical energy storage, as interlayers in inverted bulk heterojunction solar cell applications and as functional components in molecular electronics applications.

  15. Suppression of surface segregation of the phosphorous δ-doping layer by insertion of an ultra-thin silicon layer for ultra-shallow Ohmic contacts on n-type germanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Michihiro; Uematsu, Masashi; Itoh, Kohei M., E-mail: kitoh@appi.keio.ac.jp

    2015-09-28

    We demonstrate the formation of abrupt phosphorus (P) δ-doping profiles in germanium (Ge) by the insertion of ultra-thin silicon (Si) layers. The Si layers at the δ-doping region significantly suppress the surface segregation of P during the molecular beam epitaxial growth of Ge and high-concentration active P donors are confined within a few nm of the initial doping position. The current-voltage characteristics of the P δ-doped layers with Si insertion show excellent Ohmic behaviors with low enough resistivity for ultra-shallow Ohmic contacts on n-type Ge.

  16. In situ identification of high-performance thin-layer chromatography spots by fourier transform surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Koglin, Eckhardt; Kramer, Hella; Sawatski, Juergen; Lehner, Carolin; Hellman, Janice L.

    1994-01-01

    FT-SERS has been used to identify samples supported on high-performance thin-layer chromatography plates. The TLC plates were sprayed with colloidal silver solutions which resulted in enhancement of the FT-Raman scattering of these biologically and environmentally important compounds.

  17. Epitaxial thinning process

    NASA Technical Reports Server (NTRS)

    Siegel, C. M. (Inventor)

    1984-01-01

    A method is described for thinning an epitaxial layer of a wafer that is to be used in producing diodes having a specified breakdown voltage and which also facilitates the thinning process. Current is passed through the epitaxial layer, by connecting a current source between the substrate of the wafer and an electrolyte in which the wafer is immersed. When the wafer is initially immersed, the voltage across the wafer initially drops and then rises at a steep rate. When light is applied to the wafer the voltage drops, and when the light is interrupted the voltage rises again. These changes in voltage, each indicate the breakdown voltage of a Schottky diode that could be prepared from the wafer at that time. The epitaxial layer is thinned by continuing to apply current through the wafer while it is immersed and light is applied, to form an oxide film and when the oxide film is thick the wafer can then be cleaned of oxide and the testing and thinning continued. Uninterrupted thinning can be achieved by first forming an oxide film, and then using an electrolyte that dissolves the oxide about as fast as it is being formed, to limit the thickness of the oxide layer.

  18. Extraction of Nutraceuticals from Spirulina (Blue-Green Alga): A Bioorganic Chemistry Practice Using Thin-layer Chromatography

    ERIC Educational Resources Information Center

    Herrera Bravo de Laguna, Irma; Toledo Marante, Francisco J.; Luna-Freire, Kristerson R.; Mioso, Roberto

    2015-01-01

    Spirulina is a blue-green alga (cyanobacteria) with high nutritive value. This work provides an innovative and original approach to the consideration of a bioorganic chemistry practice, using Spirulina for the separation of phytochemicals with nutraceutical characteristics via thin-layer chromatography (TLC) plates. The aim is to bring together…

  19. Atomic layer deposition of Al-incorporated Zn(O,S) thin films with tunable electrical properties

    NASA Astrophysics Data System (ADS)

    Park, Helen Hejin; Jayaraman, Ashwin; Heasley, Rachel; Yang, Chuanxi; Hartle, Lauren; Mankad, Ravin; Haight, Richard; Mitzi, David B.; Gunawan, Oki; Gordon, Roy G.

    2014-11-01

    Zinc oxysulfide, Zn(O,S), films grown by atomic layer deposition were incorporated with aluminum to adjust the carrier concentration. The electron carrier concentration increased up to one order of magnitude from 1019 to 1020 cm-3 with aluminum incorporation and sulfur content in the range of 0 ≤ S/(Zn+Al) ≤ 0.16. However, the carrier concentration decreased by five orders of magnitude from 1019 to 1014 cm-3 for S/(Zn+Al) = 0.34 and decreased even further when S/(Zn+Al) > 0.34. Such tunable electrical properties are potentially useful for graded buffer layers in thin-film photovoltaic applications.

  20. Sputter Deposition of Yttrium-Barium Superconductor and Strontium Titanium Oxide Barrier Layer Thin Films

    NASA Astrophysics Data System (ADS)

    Truman, James Kelly

    1992-01-01

    The commercial application of superconducting rm YBa_2Cu_3O_{7 -x} thin films requires the development of deposition methods which can be used to reproducibly deposit films with good superconducting properties on insulating and semiconducting substrates. Sputter deposition is the most popular method to fabricate Y-Ba-Cu-O superconductor thin films, but when used in the standard configuration suffers from a deviation between the compositions of the Y-Ba-Cu-O sputter target and deposited films, which is thought to be primarily due to resputtering of the film by negative ions sputtered from the target. In this study, the negative ions were explicitly identified and were found to consist predominantly O^-. The sputter yield of O^- was found to depend on the Ba compound used in the fabrication of Y -Ba-Cu-O targets and was related to the electronegativity difference between the components. An unreacted mixture of rm Y_2O_3, CuO, and BaF_2 was found to have the lowest O^- yield among targets with Y:Ba:Cu = 1:2:3. The high yield of O^- from rm YBa_2Cu_3O _{7-x} was found to depend on the target temperature and be due to the excess oxygen present. The SIMS negative ion data supported the composition data for sputter-deposited Y-Ba-Cu-O films. Targets using BaF _2 were found to improve the Ba deficiency, the run-to-run irreproducibility and the nonuniformity of the film composition typically found in sputtered Y -Ba-Cu-O films. Superconducting Y-Ba-Cu-O films were formed on SrTiO_3 substrates by post-deposition heat treatment of Y-Ba-Cu-O-F films in humid oxygen. The growth of superconducting rm YBa_2Cu_3O_{7-x}, thin films on common substrates such as sapphire or silicon requires the use of a barrier layer to prevent the deleterious interaction which occurs between Y-Ba-Cu-O films and these substrates. Barrier layers of SrTiO_3 were studied and found to exhibit textured growth with a preferred (111) orientation on (100) Si substrates. However, SrTiO_3 was found to be

  1. Method for bonding thin film thermocouples to ceramics

    DOEpatents

    Kreider, Kenneth G.

    1993-01-01

    A method is provided for adhering a thin film metal thermocouple to a ceramic substrate used in an environment up to 700 degrees Centigrade, such as at a cylinder of an internal combustion engine. The method includes the steps of: depositing a thin layer of a reactive metal on a clean ceramic substrate; and depositing thin layers of platinum and a platinum-10% rhodium alloy forming the respective legs of the thermocouple on the reactive metal layer. The reactive metal layer serves as a bond coat between the thin noble metal thermocouple layers and the ceramic substrate. The thin layers of noble metal are in the range of 1-4 micrometers thick. Preferably, the ceramic substrate is selected from the group consisting of alumina and partially stabilized zirconia. Preferably, the thin layer of reactive metal is in the range of 0.015-0.030 micrometers (15-30 nanometers) thick. The preferred reactive metal is chromium. Other reactive metals may be titanium or zirconium. The thin layer of reactive metal may be deposited by sputtering in ultra high purity argon in a vacuum of approximately 2 milliTorr (0.3 Pascals).

  2. Through thick and thin: quantitative classification of photometric observing conditions on Paranal

    NASA Astrophysics Data System (ADS)

    Kerber, Florian; Querel, Richard R.; Neureiter, Bianca; Hanuschik, Reinhard

    2016-07-01

    A Low Humidity and Temperature Profiling (LHATPRO) microwave radiometer is used to monitor sky conditions over ESO's Paranal observatory. It provides measurements of precipitable water vapour (PWV) at 183 GHz, which are being used in Service Mode for scheduling observations that can take advantage of favourable conditions for infrared (IR) observations. The instrument also contains an IR camera measuring sky brightness temperature at 10.5 μm. It is capable of detecting cold and thin, even sub-visual, cirrus clouds. We present a diagnostic diagram that, based on a sophisticated time series analysis of these IR sky brightness data, allows for the automatic and quantitative classification of photometric observing conditions over Paranal. The method is highly sensitive to the presence of even very thin clouds but robust against other causes of sky brightness variations. The diagram has been validated across the complete range of conditions that occur over Paranal and we find that the automated process provides correct classification at the 95% level. We plan to develop our method into an operational tool for routine use in support of ESO Science Operations.

  3. Surface plasmons in new waveguide structures containing ultra-thin metal and silicon layers

    NASA Astrophysics Data System (ADS)

    Shabat, M. M.; Ubeid, M. F.; Abu Rahma, M. A.

    2018-05-01

    Reflected and transmitted powers due to the interaction of electromagnetic waves with a structure containing thin metal and silicon layer are investigated in more detail. The formulations for the transverse electric wave case are provided. Transfer matrix method is used to find the reflection and the transmission coefficients at each interface. Numerical results are presented to show the effect of the structure parameters, the incidence angle and the wavelength on the reflected, transmitted and loss powers.

  4. Static and dynamic properties of Co2FeAl thin films: Effect of MgO and Ta as capping layers

    NASA Astrophysics Data System (ADS)

    Husain, Sajid; Barwal, Vineet; Kumar, Ankit; Behera, Nilamani; Akansel, Serkan; Goyat, Ekta; Svedlindh, Peter; Chaudhary, Sujeet

    2017-05-01

    The influence of MgO and Ta capping layers on the static and dynamic magnetic properties of Co2FeAl (CFA) Heusler alloy thin films has been investigated. It is observed that the CFA film deposited with MgO capping layer is preeminent compared to the uncapped or Ta capped CFA film. In particular, the magnetic inhomogeneity contribution to the ferromagnetic resonance line broadening and damping constant are found to be minimal for the MgO capped CFA thin film i.e., 0.12±0.01 Oe and 0.0074±0.00014, respectively. The saturation magnetization was found to be 960±25emu/cc.

  5. Deposition of ultra thin CuInS₂ absorber layers by ALD for thin film solar cells at low temperature (down to 150 °C).

    PubMed

    Schneider, Nathanaelle; Bouttemy, Muriel; Genevée, Pascal; Lincot, Daniel; Donsanti, Frédérique

    2015-02-06

    Two new processes for the atomic layer deposition of copper indium sulfide (CuInS₂) based on the use of two different sets of precursors are reported. Metal chloride precursors (CuCl, InCl₃) in combination with H2S imply relatively high deposition temperature (Tdep = 380 °C), and due to exchange reactions, CuInS₂ stoechiometry was only achieved by depositing In₂S3 layers on a CuxS film. However, the use of acac- metal precursors (Cu(acac)₂, In(acac)₃) allows the direct deposition of CuInS₂ at temperature as low as 150 °C, involving in situ copper-reduction, exchange reaction and diffusion processes. The morphology, crystallographic structure, chemical composition and optical band gap of thin films were investigated using scanning electronic microscope, x-ray diffraction under grazing incidence conditions, x-ray fluorescence, energy dispersive spectrometry, secondary ion mass spectrometry, x-ray photoelectron spectroscopy and UV-vis spectroscopy. Films were implemented as ultra-thin absorbers in a typical CIS-solar cell architecture and allowed conversion efficiencies up to 2.8%.

  6. The effects of GaN nanocolumn arrays and thin SixNy buffer layers on the morphology of GaN layers grown by plasma-assisted molecular beam epitaxy on Si(111) substrates

    NASA Astrophysics Data System (ADS)

    Shubina, K. Yu; Pirogov, E. V.; Mizerov, A. M.; Nikitina, E. V.; Bouravleuv, A. D.

    2018-03-01

    The effects of GaN nanocolumn arrays and a thin SixNy layer, used as buffer layers, on the morphology of GaN epitaxial layers are investigated. Two types of samples with different buffer layers were synthesized by PA-MBE. The morphology of the samples was characterized by SEM. The crystalline quality of the samples was assessed by XRD. The possibility of synthesis of continuous crystalline GaN layers on Si(111) substrates without the addition of other materials such as aluminum nitride was demonstrated.

  7. Mocvd Growth of Group-III Nitrides on Silicon Carbide: From Thin Films to Atomically Thin Layers

    NASA Astrophysics Data System (ADS)

    Al Balushi, Zakaria Y.

    Group-III nitride semiconductors (AlN, GaN, InN and their alloys) are considered one of the most important class of materials for electronic and optoelectronic devices. This is not limited to the blue light-emitting diode (LED) used for efficient solid-state lighting, but other applications as well, such as solar cells, radar and a variety of high frequency power electronics, which are all prime examples of the technological importance of nitride based wide bandgap semiconductors in our daily lives. The goal of this dissertation work was to explore and establish new growth schemes to improve the structural and optical properties of thick to atomically thin films of group-III nitrides grown by metalorganic chemical vapor deposition (MOCVD) on SiC substrates for future novel devices. The first research focus of this dissertation was on the growth of indium gallium nitride (InGaN). This wide bandgap semiconductor has attracted much research attention as an active layer in LEDs and recently as an absorber material for solar cells. InGaN has superior material properties for solar cells due to its wavelength absorption tunability that nearly covers the entire solar spectrum. This can be achieved by controlling the indium content in thick grown material. Thick InGaN films are also of interest as strain reducing based layers for deep-green and red light emitters. The growth of thick films of InGaN is, however, hindered by several combined problems. This includes poor incorporation of indium in alloys, high density of structural and morphological defects, as well as challenges associated with the segregation of indium in thick films. Overcoming some of these material challenges is essential in order integrate thick InGaN films into future optoelectronics. Therefore, this dissertation research investigated the growth mechanism of InGaN layers grown in the N-polar direction by MOCVD as a route to improve the structural and optical properties of thick InGaN films. The growth

  8. Simultaneous Analysis of Losartan Potassium, Amlodipine Besylate, and Hydrochlorothiazide in Bulk and in Tablets by High-Performance Thin Layer Chromatography with UV-Absorption Densitometry

    PubMed Central

    Santhana Lakshmi, Karunanidhi; Lakshmi, Sivasubramanian

    2012-01-01

    A Simple high-performance thin layer chromatography (HPTLC) method for separation and quantitative analysis of losartan potassium, amlodipine, and hydrochlorothiazide in bulk and in pharmaceutical formulations has been established and validated. After extraction with methanol, sample and standard solutions were applied to silica gel plates and developed with chloroform : methanol : acetone : formic acid 7.5 : 1.3 : 0.5 : 0.03 (v/v/v/v) as mobile phase. Zones were scanned densitometrically at 254 nm. The R f values of amlodipine besylate, hydrochlorothiazide, and losartan potassium were 0.35, 0.57, and 0.74, respectively. Calibration plots were linear in the ranges 500–3000 ng per spot for losartan potassium, amlodipine and hydrochlorothiazide, the correlation coefficients, r, were 0.998, 0.998, and 0.999, respectively. The suitability of this method for quantitative determination of these compounds was by validation in accordance with the requirements of pharmaceutical regulatory standards. The method can be used for routine analysis of these drugs in bulk and in formulation. PMID:22567550

  9. Thermally activated decomposition of (Ga,Mn)As thin layer at medium temperature post growth annealing

    NASA Astrophysics Data System (ADS)

    Melikhov, Y.; Konstantynov, P.; Domagala, J.; Sadowski, J.; Chernyshova, M.; Wojciechowski, T.; Syryanyy, Y.; Demchenko, I. N.

    2016-05-01

    The redistribution of Mn atoms in Ga1-xMnxAs layer during medium-temperature annealing, 250-450 oC, by Mn K-edge X-ray absorption fine structure (XAFS) recorded at ALBA facility, was studied. For this purpose Ga1-xMnxAs thin layer with x=0.01 was grown on AlAs buffer layer deposited on GaAs(100) substrate by molecular beam epitaxy (MBE) followed by annealing. The examined layer was detached from the substrate using a “lift-off” procedure in order to eliminate elastic scattering in XAFS spectra. Fourier transform analysis of experimentally obtained EXAFS spectra allowed to propose a model which describes a redistribution/diffusion of Mn atoms in the host matrix. Theoretical XANES spectra, simulated using multiple scattering formalism (FEFF code) with the support of density functional theory (WIEN2k code), qualitatively describe the features observed in the experimental fine structure.

  10. ZnS nanostructured thin-films deposited by successive ionic layer adsorption and reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deshmukh, S. G., E-mail: deshmukhpradyumn@gmail.com; Jariwala, Akshay; Agarwal, Anubha

    ZnS thin films were grown on glass substrate using successive ionic layer adsorption and reaction (SILAR) technique at room temperature. Aqueous solutions of ZnCl{sub 2} and Na{sub 2}S were used as precursors. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectroscopy and optical absorption measurements were applied to study the structural, surface morphology and optical properties of as-deposited ZnS thin films. The X-ray diffraction profiles revealed that ZnS thin films consist of crystalline grains with cubic phase. Spherical nano grains of random size and well covered on the glass substrate were observed from FESEM. The average grainmore » size were found to be 77 nm, 100 nm and 124 nm for 20 cycles, 40 cycles and 60 cycles samples respectively. For 60 cycle sample, Raman spectra show two prominent peaks at 554 cm{sup −1} and 1094 cm{sup −1}. The optical band gap values were found to be 3.76 eV, 3.72 eV and 3.67 eV for 20 cycle, 40 cycle and 60 cycle samples respectively.« less

  11. Photoacoustic signal attenuation analysis for the assessment of thin layers thickness in paintings

    NASA Astrophysics Data System (ADS)

    Tserevelakis, George J.; Dal Fovo, Alice; Melessanaki, Krystalia; Fontana, Raffaella; Zacharakis, Giannis

    2018-03-01

    This study introduces a novel method for the thickness estimation of thin paint layers in works of art, based on photoacoustic signal attenuation analysis (PAcSAA). Ad hoc designed samples with acrylic paint layers (Primary Red Magenta, Cadmium Yellow, Ultramarine Blue) of various thicknesses on glass substrates were realized for the specific application. After characterization by Optical Coherence Tomography imaging, samples were irradiated at the back side using low energy nanosecond laser pulses of 532 nm wavelength. Photoacoustic waves undergo a frequency-dependent exponential attenuation through the paint layer, before being detected by a broadband ultrasonic transducer. Frequency analysis of the recorded time-domain signals allows for the estimation of the average transmitted frequency function, which shows an exponential decay with the layer thickness. Ultrasonic attenuation models were obtained for each pigment and used to fit the data acquired on an inhomogeneous painted mock-up simulating a real canvas painting. Thickness evaluation through PAcSAA resulted in excellent agreement with cross-section analysis with a conventional brightfield microscope. The results of the current study demonstrate the potential of the proposed PAcSAA method for the non-destructive stratigraphic analysis of painted artworks.

  12. Characterization of drug authenticity using thin-layer chromatography imaging with a mobile phone.

    PubMed

    Yu, Hojeong; Le, Huy M; Kaale, Eliangiringa; Long, Kenneth D; Layloff, Thomas; Lumetta, Steven S; Cunningham, Brian T

    2016-06-05

    Thin-layer chromatography (TLC) has a myriad of separation applications in chemistry, biology, and pharmacology due to its simplicity and low cost. While benchtop laboratory sample application and detection systems for TLC provide accurate quantitation of TLC spot positions and densities, there are many applications where inexpensive and portable instruments would greatly expand the applicability of the technology. In this work, we demonstrate identity verification and concentration determination of pharmaceutical compounds via TLC using a custom 3D-printed cradle that interfaces with an ordinary mobile phone. The cradle holds the mobile phone's internal, rear-facing camera in a fixed position relative to a UV lamp and a TLC plate that includes a phosphor in the stationary phase. Analysis of photographs thus reveals the locations and intensities of principal spots of UV--absorbing drugs. Automated image analysis software determines the center location and density of dark spots, which, using integrated calibration spots of known drug compounds and concentrations, can be used to determine if a drug has been diluted or substituted. Two independent image processing approaches have been developed that may be selected based upon the processing capabilities of the smartphone. Each approach is able to discern 5% drug concentration differences. Using single-component solutions of nevirapine, amodiaquine, and paracetamol that have been manually applied, the mobile phone-based detection instrument provides measurements that are equivalent to those obtained with a commercially available lab-based desktop TLC densitometer. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Mechanical properties of atomic layer deposition-reinforced nanoparticle thin films.

    PubMed

    Zhang, Lei; Prosser, Jacob H; Feng, Gang; Lee, Daeyeon

    2012-10-21

    Nanoparticle thin films (NTFs) exhibit multifunctionality, making them useful for numerous advanced applications including energy storage and conversion, biosensing and photonics. Poor mechanical reliability and durability of NTFs, however, limit their industrial and commercial applications. Atomic layer deposition (ALD) represents a unique opportunity to enhance the mechanical properties of NTFs at a relatively low temperature without drastically changing their original structure and functionality. In this work, we study how ALD of different materials, Al(2)O(3), TiO(2), and SiO(2), affects the mechanical properties of TiO(2) and SiO(2) NTFs. Our results demonstrate that the mechanical properties of ALD-reinforced NTFs are dominantly influenced by the mechanical properties of the ALD materials rather than by the compositional matching between ALD and nanoparticle materials. Among the three ALD materials, Al(2)O(3) ALD provides the best enhancement in the modulus and hardness of the NTFs. Interestingly, Al(2)O(3) ALD is able to enhance not only the modulus and hardness but also the toughness of NTFs. Our study presents an additional benefit of depositing nanometer scale ALD layers in NTFs; that is, we find that the hardness and modulus of ultrathin ALD layers (<5 nm) can be estimated from the mechanical properties of ALD-reinforced NTFs using a simple mixing rule. This investigation also provides insight into the use of nanoindentation for testing the mechanical properties of ultrathin ALD-reinforced NTFs.

  14. Thin-Film Power Transformers

    NASA Technical Reports Server (NTRS)

    Katti, Romney R.

    1995-01-01

    Transformer core made of thin layers of insulating material interspersed with thin layers of ferromagnetic material. Flux-linking conductors made of thinner nonferromagnetic-conductor/insulator multilayers wrapped around core. Transformers have geometric features finer than those of transformers made in customary way by machining and mechanical pressing. In addition, some thin-film materials exhibit magnetic-flux-carrying capabilities superior to those of customary bulk transformer materials. Suitable for low-cost, high-yield mass production.

  15. Effect of dual-dielectric hydrogen-diffusion barrier layers on the performance of low-temperature processed transparent InGaZnO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Tari, Alireza; Wong, William S.

    2018-02-01

    Dual-dielectric SiOx/SiNx thin-film layers were used as back-channel and gate-dielectric barrier layers for bottom-gate InGaZnO (IGZO) thin-film transistors (TFTs). The concentration profiles of hydrogen, indium, gallium, and zinc oxide were analyzed using secondary-ion mass spectroscopy characterization. By implementing an effective H-diffusion barrier, the hydrogen concentration and the creation of H-induced oxygen deficiency (H-Vo complex) defects during the processing of passivated flexible IGZO TFTs were minimized. A bilayer back-channel passivation layer, consisting of electron-beam deposited SiOx on plasma-enhanced chemical vapor-deposition (PECVD) SiNx films, effectively protected the TFT active region from plasma damage and minimized changes in the chemical composition of the semiconductor layer. A dual-dielectric PECVD SiOx/PECVD SiNx gate-dielectric, using SiOx as a barrier layer, also effectively prevented out-diffusion of hydrogen atoms from the PECVD SiNx-gate dielectric to the IGZO channel layer during the device fabrication.

  16. Density-controlled, solution-based growth of ZnO nanorod arrays via layer-by-layer polymer thin films for enhanced field emission

    NASA Astrophysics Data System (ADS)

    Weintraub, Benjamin; Chang, Sehoon; Singamaneni, Srikanth; Han, Won Hee; Choi, Young Jin; Bae, Joonho; Kirkham, Melanie; Tsukruk, Vladimir V.; Deng, Yulin

    2008-10-01

    A simple, scalable, and cost-effective technique for controlling the growth density of ZnO nanorod arrays based on a layer-by-layer polyelectrolyte polymer film is demonstrated. The ZnO nanorods were synthesized using a low temperature (T = 90 °C), solution-based method. The density-control technique utilizes a polymer thin film pre-coated on the substrate to control the mass transport of the reactant to the substrate. The density-controlled arrays were investigated as potential field emission candidates. The field emission results revealed that an emitter density of 7 nanorods µm-2 and a tapered nanorod morphology generated a high field enhancement factor of 5884. This novel technique shows promise for applications in flat panel display technology.

  17. Influence of film structure on the dewetting kinetics of thin polymer films in the solvent annealing process.

    PubMed

    Zhang, Huanhuan; Xu, Lin; Lai, Yuqing; Shi, Tongfei

    2016-06-28

    On a non-wetting solid substrate, the solvent annealing process of a thin polymer film includes the swelling process and the dewetting process. Owing to difficulties in the in situ analysis of the two processes simultaneously, a quantitative study on the solvent annealing process of thin polymer films on the non-wetting solid substrate is extremely rare. In this paper, we design an experimental method by combining spectroscopic ellipsometry with optical microscopy to achieve the simultaneous in situ study. Using this method, we investigate the influence of the structure of swollen film on its dewetting kinetics during the solvent annealing process. The results show that for a thin PS film with low Mw (Mw = 4.1 kg mol(-1)), acetone molecules can form an ultrathin enriched layer between the PS film and the solid substrate during the swelling process. The presence of the acetone enriched layer accounts for the exponential kinetic behavior in the case of a thin PS film with low Mw. However, the acetone enriched layer is not observed in the case of a thin PS film with high Mw (Mw = 400 kg mol(-1)) and the slippage effect of polymer chains is valid during the dewetting process.

  18. Optimization of the Solution-Based Indium-Zinc Oxide/Zinc-Tin Oxide Channel Layer for Thin-Film Transistors.

    PubMed

    Lim, Kiwon; Choi, Pyungho; Kim, Sangsub; Kim, Hyunki; Kim, Minsoo; Lee, Jeonghyun; Hyeon, Younghwan; Koo, Kwangjun; Choi, Byoungdeog

    2018-09-01

    Double stacked indium-zinc oxide (IZO)/zinc-tin oxide (ZTO) active layers were employed in amorphous-oxide-semiconductor thin-film transistors (AOS TFTs). Channel layers of the TFTs were optimized by varying the molarity of ZTO back channel layers (0.05, 0.1, 0.2, 0.3 M) and the electrical properties of IZO/ZTO double stacked TFTs were compared to single IZO and ZTO TFTs with varying the molarity and molar ratio. On the basis of the results, IZO/ZTO (0.1 M) TFTs showed the excellent electrical properties of saturation mobility (13.6 cm2/V·s), on-off ratio (7×106), and subthreshold swing (0.223 V/decade) compared to ZTO (0.1 M) of 0.73 cm2/V · s, 1 × 107, 0.416 V/decade and IZO (0.04 M) of 0.10 cm2/V · s, 5 × 106, 0.60 V/decade, respectively. This may be attributed to diffusing Sn into front layer during annealing process. In addition, with varying molarity of ZTO back channel layer, from 0.1 M to 0.3 M ZTO back channel TFTs, electrical properties and positive bias stability deteriorated with increasing molarity of back channel layer because of increasing total trap states. On the other hand, 0.05 M ZTO back channel TFT had inferior electrical properties than that of 0.1 M ZTO back channel TFT. It was related to back channel effect because of having thin thickness of channel layer. Among these devices, 0.1 M ZTO back channel TFT had a lowest total trap density, outstanding electrical properties and stability. Therefore, we recommended IZO/ZTO (0.1 M) TFT as a promising channel structure for advanced display applications.

  19. Laser sintered thin layer graphene and cubic boron nitride reinforced nickel matrix nanocomposites

    NASA Astrophysics Data System (ADS)

    Hu, Zengrong; Tong, Guoquan

    2015-10-01

    Laser sintered thin layer graphene (Gr)-cubic boron nitride (CBN)-Ni nanocomposites were fabricated on AISI 4140 plate substrate. The composites fabricating process, composites microstructure and mechanical properties were studied. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy were employed to study the micro structures and composition of the composites. XRD and Raman tests proved that graphene and CBN were dispersed in the nanocomposites. Nanoindentation test results indicate the significant improvements were achieved in the composites mechanical properties.

  20. Effect of ordered mesoporous carbon contact layer on the sensing performance of sputtered RuO2 thin film pH sensor.

    PubMed

    Lonsdale, W; Maurya, D K; Wajrak, M; Alameh, K

    2017-03-01

    The effect of contact layer on the pH sensing performance of a sputtered RuO 2 thin film pH sensor is investigated. The response of pH sensors employing RuO 2 thin film electrodes on screen-printed Pt, carbon and ordered mesoporous carbon (OMC) contact layers are measured over a pH range from 4 to 10. Working electrodes with OMC contact layer are found to have Nernstian pH sensitivity (-58.4mV/pH), low short-term drift rate (5.0mV/h), low hysteresis values (1.13mV) and fast reaction times (30s), after only 1h of conditioning. A pH sensor constructed with OMC carbon contact layer displays improved sensing performance compared to Pt and carbon-based counterparts, making this electrode more attractive for applications requiring highly-accurate pH sensing with reduced conditioning time. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Thin Film Transistors On Plastic Substrates

    DOEpatents

    Carey, Paul G.; Smith, Patrick M.; Sigmon, Thomas W.; Aceves, Randy C.

    2004-01-20

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The silicon based thin film transistor produced by the process includes a low temperature substrate incapable of withstanding sustained processing temperatures greater than about 250.degree. C., an insulating layer on the substrate, a layer of silicon on the insulating layer having sections of doped silicon, undoped silicon, and poly-silicon, a gate dielectric layer on the layer of silicon, a layer of gate metal on the dielectric layer, a layer of oxide on sections of the layer of silicon and the layer of gate metal, and metal contacts on sections of the layer of silicon and layer of gate metal defining source, gate, and drain contacts, and interconnects.

  2. Thin transparent W-doped indium-zinc oxide (WIZO) layer on glass.

    PubMed

    Lee, Young-Jun; Lim, Byung-Wook; Kim, Joo-Hyung; Kim, Tae-Won; Oh, Byeong-Yun; Heo, Gi-Seok; Kim, Kwang-Young

    2012-07-01

    Annealing effect on structural and electrical properties of W-doped IZO (WIZO) films for thin film transistors (TFT) was studied under different process conditions. Thin WIZO films were deposited on glass substrates by RF magnetron co-sputtering technique using indium zinc oxide (10 wt.% ZnO-doped In2O3) and WO3 targets in room temperature. The post annealing temperature was executed from 200 degrees C to 500 degrees C under various O2/Ar ratios. We could not find any big difference from the surface observation of as grown films while it was found that the carrier density and sheet resistance of WIZO films were controlled by O2/Ar ratio and post annealing temperature. Furthermore, the crystallinity of WIZO film was changed as annealing temperature increased, resulting in amorphous structure at the annealing temperature of 200 degrees C, while clear In2O3 peak was observed for the annealed over 300 degrees C. The transmittance of as-grown films over 89% in visible range was obtained. As an active channel layer for TFT, it was found that the variation of resistivity, carrier density and mobility concentration of WIZO film decreased by annealing process.

  3. Epitaxial Fe16N2 thin film on nonmagnetic seed layer

    NASA Astrophysics Data System (ADS)

    Hang, Xudong; Zhang, Xiaowei; Ma, Bin; Lauter, Valeria; Wang, Jian-Ping

    2018-05-01

    Metastable α″ -Fe16N2 has attracted much interest as a candidate for rare-earth-free hard magnetic materials. We demonstrate that Fe16N2 thin films were grown epitaxially on Cr seed layers with MgO (001) substrates by facing-target sputtering. Good crystallinity with the epitaxial relation MgO (001 )[110 ] ∥ Cr (001 )[100 ] ∥ Fe16N2 (001 )[100 ] was obtained. The chemical order parameter, which quantifies the degree of N ordering in the Fe16N2 (the N-disordered phase is α' -Fe8N martensite), reaches 0.75 for Cr-seeded samples. Cr has a perfect lattice constant match with Fe16N2, and no noticeable strain can be assigned to Fe16N2. The intrinsic saturation magnetization of this non-strained Fe16N2 thin film at room temperature is determined to be 2.31 T by polarized neutron reflectometry and confirmed with vibrating sample magnetometry. Our work provides a platform to directly study the magnetic properties of high purity Fe16N2 films with a high order parameter.

  4. Plasmonic tuning of gold doped thin films for layers of photovoltaic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gezgin, Serap Yiğit; Kepceoğlu, Abdullah; Bayır, Sercan

    2016-03-25

    In order to increase the absorption rates in solar cells, increasing research activities on the plasmonic nanostructures are followed carefully. The plasmonic nanoparticles provides an important enhancement in the trapping of photons in the active layer of the solar cells by means of interaction between incident light and plasmonic nanoparticles. In order to obtain this approach, under of 5×10{sup −4} mbar and 1×10{sup −2} mbar ambient argon gas pressure, gold thin film was deposited on the silicon substrate by applying PLD system. The morphology of thin films obtained was investigated by AFM and SEM considering the effect of Ar gas pressuremore » on the plasma plume. SPR peaks for Au nanoparticles deposited under 5×10{sup −4} mbar and 1×10{sup −2} mbar Ar gas pressure were observed at 756 nm and 658 nm wavelengths respectively. It has been stated that the SPR peak in the infrared is depend on the near field interaction between Au nanoparticles. Furthermore, when the pressure is increased to 1×10{sup −2} mbar Ar, it has been observed that the SPR peak for thin film is shifted towards to shorter wavelengths, and it has also been observed that the intensity of absorption peak is decreased.« less

  5. Atomically-thin molecular layers for electrode modification of organic transistors

    NASA Astrophysics Data System (ADS)

    Gim, Yuseong; Kang, Boseok; Kim, Bongsoo; Kim, Sun-Guk; Lee, Joong-Hee; Cho, Kilwon; Ku, Bon-Cheol; Cho, Jeong Ho

    2015-08-01

    Atomically-thin molecular layers of aryl-functionalized graphene oxides (GOs) were used to modify the surface characteristics of source-drain electrodes to improve the performances of organic field-effect transistor (OFET) devices. The GOs were functionalized with various aryl diazonium salts, including 4-nitroaniline, 4-fluoroaniline, or 4-methoxyaniline, to produce several types of GOs with different surface functional groups (NO2-Ph-GO, F-Ph-GO, or CH3O-Ph-GO, respectively). The deposition of aryl-functionalized GOs or their reduced derivatives onto metal electrode surfaces dramatically enhanced the electrical performances of both p-type and n-type OFETs relative to the performances of OFETs prepared without the GO modification layer. Among the functionalized rGOs, CH3O-Ph-rGO yielded the highest hole mobility of 0.55 cm2 V-1 s-1 and electron mobility of 0.17 cm2 V-1 s-1 in p-type and n-type FETs, respectively. Two governing factors: (1) the work function of the modified electrodes and (2) the crystalline microstructures of the benchmark semiconductors grown on the modified electrode surface were systematically investigated to reveal the origin of the performance improvements. Our simple, inexpensive, and scalable electrode modification technique provides a significant step toward optimizing the device performance by engineering the semiconductor-electrode interfaces in OFETs.Atomically-thin molecular layers of aryl-functionalized graphene oxides (GOs) were used to modify the surface characteristics of source-drain electrodes to improve the performances of organic field-effect transistor (OFET) devices. The GOs were functionalized with various aryl diazonium salts, including 4-nitroaniline, 4-fluoroaniline, or 4-methoxyaniline, to produce several types of GOs with different surface functional groups (NO2-Ph-GO, F-Ph-GO, or CH3O-Ph-GO, respectively). The deposition of aryl-functionalized GOs or their reduced derivatives onto metal electrode surfaces dramatically

  6. Enhanced Visible Transmittance of Thermochromic VO2 Thin Films by SiO2 Passivation Layer and Their Optical Characterization

    PubMed Central

    Yu, Jung-Hoon; Nam, Sang-Hun; Lee, Ji Won; Boo, Jin-Hyo

    2016-01-01

    This paper presents the preparation of high-quality vanadium dioxide (VO2) thermochromic thin films with enhanced visible transmittance (Tvis) via radio frequency (RF) sputtering and plasma enhanced chemical vapor deposition (PECVD). VO2 thin films with high Tvis and excellent optical switching efficiency (Eos) were successfully prepared by employing SiO2 as a passivation layer. After SiO2 deposition, the roughness of the films was decreased 2-fold and a denser structure was formed. These morphological changes corresponded to the results of optical characterization including the haze, reflectance and absorption spectra. In spite of SiO2 coating, the phase transition temperature (Tc) of the prepared films was not affected. Compared with pristine VO2, the total layer thickness after SiO2 coating was 160 nm, which is an increase of 80 nm. Despite the thickness change, the VO2 thin films showed a higher Tvis value (λ 650 nm, 58%) compared with the pristine samples (λ 650 nm, 43%). This enhancement of Tvis while maintaining high Eos is meaningful for VO2-based smart window applications. PMID:28773679

  7. Investigations into the impact of various substrates and ZnO ultra thin seed layers prepared by atomic layer deposition on growth of ZnO nanowire array

    PubMed Central

    2012-01-01

    The impact of various substrates and zinc oxide (ZnO) ultra thin seed layers prepared by atomic layer deposition on the geometric morphology of subsequent ZnO nanowire arrays (NWs) fabricated by the hydrothermal method was investigated. The investigated substrates included B-doped ZnO films, indium tin oxide films, single crystal silicon (111), and glass sheets. Scanning electron microscopy and X-ray diffraction measurements revealed that the geometry and aligment of the NWs were controlled by surface topography of the substrates and thickness of the ZnO seed layers, respectively. According to atomic force microscopy data, we suggest that the substrate, fluctuate amplitude and fluctuate frequency of roughness on ZnO seed layers have a great impact on the alignment of the resulting NWs, whereas the influence of the seed layers' texture was negligible. PMID:22759838

  8. A label-free ultrasensitive electrochemical DNA sensor based on thin-layer MoS2 nanosheets with high electrochemical activity.

    PubMed

    Wang, Xinxing; Nan, Fuxin; Zhao, Jinlong; Yang, Tao; Ge, Tong; Jiao, Kui

    2015-02-15

    A label-free and ultrasensitive electrochemical DNA biosensor, based on thin-layer molybdenum disulfide (MoS2) nanosheets sensing platform and differential pulse voltammetry detection, is constructed in this paper. The thin-layer MoS2 nanosheets were prepared via a simple ultrasound exfoliation method from bulk MoS2, which is simpler and no distortion compared with mechanical cleavage and lithium intercalation. Most importantly, this procedure allows the formation of MoS2 with enhanced electrochemical activity. Based on the high electrochemical activity and different affinity toward ssDNA versus dsDNA of the thin-layer MoS2 nanosheets sensing platform, the tlh gene sequence assay can be performed label-freely from 1.0 × 10(-16)M to 1.0 × 10(-10)M with a detection limit of 1.9 × 10(-17)M. Without labeling and the use of amplifiers, the detection method described here not only expands the application of MoS2, but also offers a viable alternative for DNA analysis, which has the priority in sensitivity, simplicity, and costs. Moreover, the proposed sensing platform has good electrocatalytic activity, and can be extended to detect more targets, such as guanine and adenine, which further expands the application of MoS2. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Copper Benzenetricarboxylate Metal-Organic Framework Nucleation Mechanisms on Metal Oxide Powders and Thin Films formed by Atomic Layer Deposition.

    PubMed

    Lemaire, Paul C; Zhao, Junjie; Williams, Philip S; Walls, Howard J; Shepherd, Sarah D; Losego, Mark D; Peterson, Gregory W; Parsons, Gregory N

    2016-04-13

    Chemically functional microporous metal-organic framework (MOF) crystals are attractive for filtration and gas storage applications, and recent results show that they can be immobilized on high surface area substrates, such as fiber mats. However, fundamental knowledge is still lacking regarding initial key reaction steps in thin film MOF nucleation and growth. We find that thin inorganic nucleation layers formed by atomic layer deposition (ALD) can promote solvothermal growth of copper benzenetricarboxylate MOF (Cu-BTC) on various substrate surfaces. The nature of the ALD material affects the MOF nucleation time, crystal size and morphology, and the resulting MOF surface area per unit mass. To understand MOF nucleation mechanisms, we investigate detailed Cu-BTC MOF nucleation behavior on metal oxide powders and Al2O3, ZnO, and TiO2 layers formed by ALD on polypropylene substrates. Studying both combined and sequential MOF reactant exposure conditions, we find that during solvothermal synthesis ALD metal oxides can react with the MOF metal precursor to form double hydroxy salts that can further convert to Cu-BTC MOF. The acidic organic linker can also etch or react with the surface to form MOF from an oxide metal source, which can also function as a nucleation agent for Cu-BTC in the mixed solvothermal solution. We discuss the implications of these results for better controlled thin film MOF nucleation and growth.

  10. Selective UV–O3 treatment for indium zinc oxide thin film transistors with solution-based multiple active layer

    NASA Astrophysics Data System (ADS)

    Kim, Yu-Jung; Jeong, Jun-Kyo; Park, Jung-Hyun; Jeong, Byung-Jun; Lee, Hi-Deok; Lee, Ga-Won

    2018-06-01

    In this study, a method to control the electrical performance of solution-based indium zinc oxide (IZO) thin film transistors (TFTs) is proposed by ultraviolet–ozone (UV–O3) treatment on the selective layer during multiple IZO active layer depositions. The IZO film is composed of triple layers formed by spin coating and UV–O3 treatment only on the first layer or last layer. The IZO films are compared by X-ray photoelectron spectroscopy, and the results show that the atomic ratio of oxygen vacancy (VO) increases in the UV–O3 treatment on the first layer, while it decreases on last layer. The device characteristics of the bottom gated structure are also improved in the UV–O3 treatment on the first layer. This indicates that the selective UV–O3 treatment in a multi-stacking active layer is an effective method to optimize TFT properties by controlling the amount of VO in the IZO interface and surface independently.

  11. High performance novel gadolinium doped ceria/yttria stabilized zirconia/nickel layered and hybrid thin film anodes for application in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Garcia-Garcia, F. J.; Beltrán, A. M.; Yubero, F.; González-Elipe, A. R.; Lambert, R. M.

    2017-09-01

    Magnetron sputtering under oblique angle deposition was used to produce Ni-containing ultra thin film anodes comprising alternating layers of gadolinium doped ceria (GDC) and yttria stabilized zirconia (YSZ) of either 200 nm or 1000 nm thickness. The evolution of film structure from initial deposition, through calcination and final reduction was examined by XRD, SEM, TEM and TOF-SIMS. After subsequent fuel cell usage, the porous columnar architecture of the two-component layered thin film anodes was maintained and their resistance to delamination from the underlying YSZ electrolyte was superior to that of corresponding single component Ni-YSZ and Ni-GDC thin films. Moreover, the fuel cell performance of the 200 nm layered anodes compared favorably with conventional commercially available thick anodes. The observed dependence of fuel cell performance on individual layer thicknesses prompted study of equivalent but more easily fabricated hybrid anodes consisting of simultaneously deposited Ni-GDC and Ni-YSZ, which procedure resulted in exceptionally intimate mixing and interaction of the components. The hybrids exhibited very unusual and favorable Isbnd V characteristics, along with exceptionally high power densities at high currents. Their discovery is the principal contribution of the present work.

  12. Analysis of low active-pharmaceutical-ingredient signal drugs based on thin layer chromatography and surface-enhanced Raman spectroscopy.

    PubMed

    Li, Xiao; Chen, Hui; Zhu, Qingxia; Liu, Yan; Lu, Feng

    2016-11-30

    Active pharmaceutical ingredients (API) embedded in the excipients of the formula can usually be unravelled by normal Raman spectroscopy (NRS). However, more and more drugs with low API content and/or low Raman scattering coefficient were insensitive to NRS analysis, which was for the first time defined as Low API-Signal Drugs (LASIDs) in this paper. The NRS spectra of these LASIDs were similar to their dominant excipients' profiles, such as lactose, starch, microcrystalline cellulose (MCC), etc., and were classified into three types as such. 21 out of 100 kinds of drugs were screened as LASIDs and characterized further by Raman microscopic mapping. Accordingly, we proposed a tailored solution to the qualitation and quantitation problem of these LASIDs, using surface-enhanced Raman spectroscopic (SERS) detection on the thin layer chromatographic (TLC) plate both in situ and after-separation. Experimental conditions and parameters including TLC support matrix, SERS substrate, detection mode, similarity threshold, internal standard, etc., were optimized. All LASIDs were satisfactorily identified and the quantitation results agreed well with those of high performance liquid chromatography (HPLC). For some structural analogues of LASIDs, although they presented highly similar SERS spectra and were tough to distinguish even with Raman microscopic mapping, they could be successfully discriminated from each other by coupling SERS (with portable Raman spectrometer) with TLC. These results demonstrated that the proposed solution could be employed to detect the LASIDs with high accuracy and cost-effectiveness. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Nevoid melanoma of the vagina: report of one case diagnosed on thin layer cytological preparations.

    PubMed

    Fulciniti, Franco; Ascierto, Paolo Antonio; Simeone, Ester; Bove, Patrizia; Losito, Simona; Russo, Serena; Gallo, Maria Stella; Greggi, Stefano

    2007-07-03

    Primary melanoma of the vagina is an extremely rare neoplasm with approximately 250 reported cases in the world literature 1234. In its amelanotic variant this lesion may raise several differential diagnostic problems in cytological specimens 5. In this setting, the usage of thin layer cytopathological techniques (Liquid Based Preparations = LBP) may enhance the diagnostic sensitivity by permitting immunocytochemical study without having to repeat the sampling procedure. The aim of this paper is to describe the cytomorphological presentation of primary vaginal melanoma on LBP since it has not previously been reported up to now, to our knowledge. a 79-y-o female complaining of vulvar itching and yellowish vaginal discharge underwent a complete gynaecological evaluation during which a LBP cytological sample was taken from a suspicious whitish mass protruding into the vaginal lumen. A cytopathological diagnosis of amelanotic melanoma was rendered. The mass was radically excised and the patient was treated with alpha-Interferon. amelanotic melanoma may be successfully diagnosed on LBP cytological preparations. Thin layer preparations may enhance the diagnostic cytomorphological clues to its diagnosis and may permit an adequate immunocytochemical characterization of the neoplasm.

  14. RGB color calibration for quantitative image analysis: the "3D thin-plate spline" warping approach.

    PubMed

    Menesatti, Paolo; Angelini, Claudio; Pallottino, Federico; Antonucci, Francesca; Aguzzi, Jacopo; Costa, Corrado

    2012-01-01

    In the last years the need to numerically define color by its coordinates in n-dimensional space has increased strongly. Colorimetric calibration is fundamental in food processing and other biological disciplines to quantitatively compare samples' color during workflow with many devices. Several software programmes are available to perform standardized colorimetric procedures, but they are often too imprecise for scientific purposes. In this study, we applied the Thin-Plate Spline interpolation algorithm to calibrate colours in sRGB space (the corresponding Matlab code is reported in the Appendix). This was compared with other two approaches. The first is based on a commercial calibration system (ProfileMaker) and the second on a Partial Least Square analysis. Moreover, to explore device variability and resolution two different cameras were adopted and for each sensor, three consecutive pictures were acquired under four different light conditions. According to our results, the Thin-Plate Spline approach reported a very high efficiency of calibration allowing the possibility to create a revolution in the in-field applicative context of colour quantification not only in food sciences, but also in other biological disciplines. These results are of great importance for scientific color evaluation when lighting conditions are not controlled. Moreover, it allows the use of low cost instruments while still returning scientifically sound quantitative data.

  15. Qualitative and quantitative analysis of hyaluronan oligosaccharides with high performance thin layer chromatography using reagent-free derivatization on amino-modified silica and electrospray ionization-quadrupole time-of-flight mass spectrometry coupling on normal phase.

    PubMed

    Rothenhöfer, Martin; Scherübl, Rosmarie; Bernhardt, Günther; Heilmann, Jörg; Buschauer, Armin

    2012-07-27

    Purified oligomers of hyalobiuronic acid are indispensable tools to elucidate the physiological and pathophysiological role of hyaluronan degradation by various hyaluronidase isoenzymes. Therefore, we established and validated a novel sensitive, convenient, rapid, and cost-effective high performance thin layer chromatography (HPTLC) method for the qualitative and quantitative analysis of small saturated hyaluronan oligosaccharides consisting of 2-4 hyalobiuronic acid moieties. The use of amino-modified silica as stationary phase allows a simple reagent-free in situ derivatization by heating, resulting in a very low limit of detection (7-19 pmol per band, depending on the analyzed saturated oligosaccharide). By this derivatization procedure for the first time densitometric quantification of the analytes could be performed by HPTLC. The validated method showed a quantification limit of 37-71 pmol per band and was proven to be superior in comparison to conventional detection of hyaluronan oligosaccharides. The analytes were identified by hyphenation of normal phase planar chromatography to mass spectrometry (TLC-MS) using electrospray ionization. As an alternative to sequential techniques such as high performance liquid chromatography (HPLC) and capillary electrophoresis (CE), the validated HPTLC quantification method can easily be automated and is applicable to the analysis of multiple samples in parallel. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Multiple-layered effective medium approximation approach to modeling environmental effects on alumina passivated highly porous silicon nanostructured thin films measured by in-situ Mueller matrix ellipsometry

    NASA Astrophysics Data System (ADS)

    Mock, Alyssa; Carlson, Timothy; VanDerslice, Jeremy; Mohrmann, Joel; Woollam, John A.; Schubert, Eva; Schubert, Mathias

    2017-11-01

    Optical changes in alumina passivated highly porous silicon slanted columnar thin films during controlled exposure to toluene vapor are reported. Electron-beam evaporation glancing angle deposition and subsequent atomic layer deposition are utilized to deposit alumina passivated nanostructured porous silicon thin films. In-situ Mueller matrix generalized spectroscopic ellipsometry in an environmental cell is then used to determine changes in optical properties of the nanostructured thin films by inspection of individual Mueller matrix elements, each of which exhibit sensitivity to adsorption. The use of a multiple-layered effective medium approximation model allows for accurate description of the inhomogeneous nature of toluene adsorption onto alumina passivated highly porous silicon slanted columnar thin films.

  17. Highly-flexible, ultra-thin, and transparent single-layer graphene/silver composite electrodes for organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Li, Kun; Wang, Hu; Li, Huiying; Li, Ye; Jin, Guangyong; Gao, Lanlan; Marco, Mazzeo; Duan, Yu

    2017-08-01

    Transparent conductive electrode (TCE) platforms are required in many optoelectronic devices, including organic light emitting diodes (OLEDs). To date, indium tin oxide based electrodes are widely used in TCEs but they still have few limitations in term of achieving flexible OLEDs and display techniques. In this paper, highly-flexible and ultra-thin TCEs were fabricated for use in OLEDs by combining single-layer graphene (SLG) with thin silver layers of only several nanometers in thickness. The as-prepared SLG + Ag (8 nm) composite electrodes showed low sheet resistances of 8.5 Ω/□, high stability over 500 bending cycles, and 74% transmittance at 550 nm wavelength. Furthermore, SLG + Ag composite electrodes employed as anodes in OLEDs delivered turn-on voltages of 2.4 V, with luminance exceeding 1300 cd m-2 at only 5 V, and maximum luminance reaching up 40 000 cd m-2 at 9 V. Also, the devices could work normally under less than the 1 cm bending radius.

  18. Variables affecting resolution of lung phospholipids in one-dimensional thin-layer chromatography.

    PubMed

    Krahn, J

    1987-01-01

    Resolution of the confusion in the literature about the separation of lung phospholipids in thin-layer chromatographic systems has awaited a systematic study of the variables that potentially affect this separation. In this study I show that: incorporation of ammonium sulfate into silica gel "GHL" has a dramatic effect on separation of lung phospholipids; this effect is equally dramatic but different in activated and nonactivated gels; when it picks up moisture, ammonium sulfate-activated gel very rapidly loses its ability to resolve lecithin from phosphatidylinositol; in gel containing ammonium sulfate, small amounts of phosphatidylethanolamine are hydrolyzed to lyso-phosphatidylethanolamine.

  19. Nanosized thin SnO₂ layers doped with Te and TeO₂ as room temperature humidity sensors.

    PubMed

    Georgieva, Biliana; Podolesheva, Irena; Spasov, Georgy; Pirov, Jordan

    2014-05-21

    In this paper the humidity sensing properties of layers prepared by a new method for obtaining doped tin oxide are studied. Different techniques-SEM, EDS in SEM, TEM, SAED, AES and electrical measurements-are used for detailed characterization of the thin layers. The as-deposited layers are amorphous with great specific area and low density. They are built up of a fine grained matrix, consisting of Sn- and Te-oxides, and a nanosized dispersed phase of Te, Sn and/or SnTe. The chemical composition of both the matrix and the nanosized particles depends on the ratio R(Sn/Te) and the evaporation conditions. It is shown that as-deposited layers with R(Sn/Te) ranging from 0.4 to 0.9 exhibit excellent characteristics as humidity sensors operating at room temperature-very high sensitivity, good selectivity, fast response and short recovery period. Ageing tests have shown that the layers possess good long-term stability. Results obtained regarding the type of the water adsorption on the layers' surface help better understand the relation between preparation conditions, structure, composition and humidity sensing properties.

  20. A study on the optics of copper indium gallium (di)selenide (CIGS) solar cells with ultra-thin absorber layers.

    PubMed

    Xu, Man; Wachters, Arthur J H; van Deelen, Joop; Mourad, Maurice C D; Buskens, Pascal J P

    2014-03-10

    We present a systematic study of the effect of variation of the zinc oxide (ZnO) and copper indium gallium (di)selenide (CIGS) layer thickness on the absorption characteristics of CIGS solar cells using a simulation program based on finite element method (FEM). We show that the absorption in the CIGS layer does not decrease monotonically with its layer thickness due to interference effects. Ergo, high precision is required in the CIGS production process, especially when using ultra-thin absorber layers, to accurately realize the required thickness of the ZnO, cadmium sulfide (CdS) and CIGS layer. We show that patterning the ZnO window layer can strongly suppress these interference effects allowing a higher tolerance in the production process.

  1. Study on the application of shear-wave elastography to thin-layered media and tubular structure: Finite-element analysis and experiment verification

    NASA Astrophysics Data System (ADS)

    Jang, Jun-keun; Kondo, Kengo; Namita, Takeshi; Yamakawa, Makoto; Shiina, Tsuyoshi

    2016-07-01

    Shear-wave elastography (SWE) enables the noninvasive and quantitative evaluation of the mechanical properties of human soft tissue. Generally, shear-wave velocity (C S) can be estimated using the time-of-flight (TOF) method. Young’s modulus is then calculated directly from the estimated C S. However, because shear waves in thin-layered media propagate as guided waves, C S cannot be accurately estimated using the conventional TOF method. Leaky Lamb dispersion analysis (LLDA) has recently been proposed to overcome this problem. In this study, we performed both experimental and finite-element (FE) analyses to evaluate the advantages of LLDA over TOF. In FE analysis, we investigated why the conventional TOF is ineffective for thin-layered media. In phantom experiments, C S results estimated using the two methods were compared for 1.5 and 2% agar plates and tube phantoms. Furthermore, it was shown that Lamb waves can be applied to tubular structures by extracting lateral waves traveling in the long axis direction of the tube using a two-dimensional window. Also, the effects of the inner radius and stiffness (or shear wavelength) of the tube on the estimation performance of LLDA were experimentally discussed. In phantom experiments, the results indicated good agreement between LLDA (plate phantoms of 2 mm thickness: 5.0 m/s for 1.5% agar and 7.2 m/s for 2% agar; tube phantoms with 2 mm thickness and 2 mm inner radius: 5.1 m/s for 1.5% agar and 7.0 m/s for 2% agar; tube phantoms with 2 mm thickness and 4 mm inner radius: 5.3 m/s for 1.5% agar and 7.3 m/s for 2% agar) and SWE measurements (bulk phantoms: 5.3 m/s ± 0.27 for 1.5% agar and 7.3 m/s ± 0.54 for 2% agar).

  2. Ester-free cross-linker molecules for ultraviolet-light-cured polysilsesquioxane gate dielectric layers of organic thin-film transistors

    NASA Astrophysics Data System (ADS)

    Okada, Shuichi; Nakahara, Yoshio; Uno, Kazuyuki; Tanaka, Ichiro

    2018-04-01

    Pentacene thin-film transistors (TFTs) were fabricated with ultraviolet-light (UV)-cured polysilsesquioxane (PSQ) gate dielectric layers using cross-linker molecules with or without ester groups. To polymerize PSQ without ester groups, thiol-ene reaction was adopted. The TFTs fabricated with PSQ layers comprising ester-free cross-linkers showed a higher carrier mobility than the TFTs with PSQ layers cross-linked with ester groups, which had large electric dipole moments that limited the carrier mobility. It was demonstrated that the thiol-ene reaction is more suitable than the conventional radical reaction for UV-cured PSQ with small dielectric constant.

  3. Modification of opto-electronic properties of ZnO by incorporating metallic tin for buffer layer in thin film solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deepu, D. R.; Jubimol, J.; Kartha, C. Sudha

    2015-06-24

    In this report, the effect of incorporation of metallic tin (Sn) on opto-electronic properties of ZnO thin films is presented. ZnO thin films were deposited through ‘automated chemical spray pyrolysis’ (CSP) technique; later different quantities of ‘Sn’ were evaporated on it and subsequently annealed. Vacuum annealing showed a positive effect on crystallinity of films. Creation of sub band gap levels due to ‘Sn’ diffusion was evident from the absorption and PL spectra. The tin incorporated films showed good photo response in visible region. Tin incorporated ZnO thin films seem to satisfy the desirable criteria for buffer layer in thin filmmore » solar cells.« less

  4. Highly improved photo-induced bias stability of sandwiched triple layer structure in sol-gel processed fluorine-doped indium zinc oxide thin film transistor

    NASA Astrophysics Data System (ADS)

    Kim, Dongha; Park, Hyungjin; Bae, Byeong-Soo

    2016-03-01

    In order to improve the reliability of TFT, an Al2O3 insulating layer is inserted between active fluorine doped indium zinc oxide (IZO:F) thin films to form a sandwiched triple layer. All the thin films were fabricated via low-cost sol-gel process. Due to its large energy bandgap and high bonding energy with oxygen atoms, the Al2O3 layer acts as a photo-induced positive charge blocking layer that effectively blocks the migration of both holes and V o2+ toward the interface between the gate insulator and the semiconductor. The inserted Al2O3 triple layer exhibits a noticeably low turn on voltage shift of -0.7 V under NBIS as well as the good TFT performance with a mobility of 10.9 cm2/V ṡ s. We anticipate that this approach can be used to solve the stability issues such as NBIS, which is caused by inescapable oxygen vacancies.

  5. Atomic layer deposition and properties of ZrO2/Fe2O3 thin films

    PubMed Central

    Seemen, Helina; Ritslaid, Peeter; Rähn, Mihkel; Tamm, Aile; Kukli, Kaupo; Kasikov, Aarne; Link, Joosep; Stern, Raivo; Dueñas, Salvador; Castán, Helena; García, Héctor

    2018-01-01

    Thin solid films consisting of ZrO2 and Fe2O3 were grown by atomic layer deposition (ALD) at 400 °C. Metastable phases of ZrO2 were stabilized by Fe2O3 doping. The number of alternating ZrO2 and Fe2O3 deposition cycles were varied in order to achieve films with different cation ratios. The influence of annealing on the composition and structure of the thin films was investigated. Additionally, the influence of composition and structure on electrical and magnetic properties was studied. Several samples exhibited a measurable saturation magnetization and most of the samples exhibited a charge polarization. Both phenomena were observed in the sample with a Zr/Fe atomic ratio of 2.0. PMID:29441257

  6. Thin hybrid pixel assembly with backside compensation layer on ROIC

    NASA Astrophysics Data System (ADS)

    Bates, R.; Buttar, C.; McMullen, T.; Cunningham, L.; Ashby, J.; Doherty, F.; Gray, C.; Pares, G.; Vignoud, L.; Kholti, B.; Vahanen, S.

    2017-01-01

    The entire ATLAS inner tracking system will be replaced for operation at the HL-LHC . This will include a significantly larger pixel detector of approximately 15 m2. For this project, it is critical to reduce the mass of the hybrid pixel modules and this requires thinning both the sensor and readout chips to about 150 micrometres each. The thinning of the silicon chips leads to low bump yield for SnAg bumps due to bad co-planarity of the two chips at the solder reflow stage creating dead zones within the pixel array. In the case of the ATLAS FEI4 pixel readout chip thinned to 100 micrometres, the chip is concave, with the front side in compression, with a bow of +100 micrometres at room temperature which varies to a bow of -175 micrometres at the SnAg solder reflow temperature, caused by the CTE mismatch between the materials in the CMOS stack and the silicon substrate. A new wafer level process to address the issue of low bump yield be controlling the chip bow has been developed. A back-side dielectric and metal stack of SiN and Al:Si has been deposited on the readout chip wafer to dynamically compensate the stress of the front side stack. In keeping with a 3D process the materials used are compatible with Through Silicon Via (TSV) technology with a TSV last approach which is under development for this chip. It is demonstrated that the amplitude of the correction can be manipulated by the deposition conditions and thickness of the SiN/Al:Si stack. The bow magnitude over the temperature range for the best sample to date is reduced by almost a factor of 4 and the sign of the bow (shape of the die) remains constant. Further development of the backside deposition conditions is on-going with the target of close to zero bow at the solder reflow temperature and a minimal bow magnitude throughout the temperature range. Assemblies produced from FEI4 readout wafers thinned to 100 micrometres with the backside compensation layer have been made for the first time and

  7. Improved efficiency of ZnO hierarchical particle based dye sensitized solar cell by incorporating thin passivation layer in photo-anode

    NASA Astrophysics Data System (ADS)

    Das, Priyanka; Mondal, Biswanath; Mukherjee, Kalisadhan

    2018-01-01

    Present article describes the DSSC performances of photo-anodes prepared using hydrothermal route derived ZnO particles having dissimilar morphologies i.e. simple micro-rod and nano-tips decorated micro-rod. The surface of nano-tips decorated micro-rod is uneven and patterned which facilitate more dye adsorption and better scattering of the incident light resulting superior photo-conversion efficiency (PCE) ( η 1.09%) than micro-rod ZnO ( η 0.86%). To further improve the efficiency of nano-tips decorated micro-rod ZnO based DSSC, thin passivation layer of ZnO is introduced in the corresponding photo-anode and a higher PCE ( η 1.29%) is achieved. The compact thin passivation layer here expedites the transportation of photo-excited electrons, restricts the undesired recombination reactions and prevents the direct contact of electrolyte with conducting substrates. Attempt is made to understand the effect of passivation layer on the transportation kinetics of photo-excited electrons by analyzing the electrochemical impedance spectra of the developed cells.

  8. Direct charge carrier injection into Ga2O3 thin films using an In2O3 cathode buffer layer: their optical, electrical and surface state properties

    NASA Astrophysics Data System (ADS)

    Cui, W.; Zhao, X. L.; An, Y. H.; Guo, D. Y.; Qing, X. Y.; Wu, Z. P.; Li, P. G.; Li, L. H.; Cui, C.; Tang, W. H.

    2017-04-01

    Conductive Ga2O3 thin films with an In2O3 buffer layer have been prepared on c-plane sapphire substrates using a laser molecular beam epitaxy technique. The effects of the In2O3 buffer layer on the structure and optical, electrical and surface state properties of the Ga2O3 films have been studied. The change in conductivity of the thin films is attributed to different thicknesses of the In2O3 buffer layer, which determine the concentration of charge carriers injected into the upper Ga2O3 layer from the interface of the bilayer thin films. In addition, the increase in flat band voltage shift and capacitance values as the In2O3 buffer layer thickens are attributed to the increase in surface state density, which also contributes to the rapid shrinkage of the optical band gap of the Ga2O3. With transparency to visible light, high n-type conduction and the ability to tune the optical band gap and surface state density, we propose that Ga2O3/In2O3 bilayer thin film is an ideal n-type semiconductor for fabrication of transparent power devices, solar cell electrodes and gas sensors.

  9. Preparation of ultra-thin and high-quality WO{sub 3} compact layers and comparision of WO{sub 3} and TiO{sub 2} compact layer thickness in planar perovskite solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jincheng; Shi, Chengwu, E-mail: shicw506@foxmail.com; Chen, Junjun

    2016-06-15

    In this paper, the ultra-thin and high-quality WO{sub 3} compact layers were successfully prepared by spin-coating-pyrolysis method using the tungsten isopropoxide solution in isopropanol. The influence of WO{sub 3} and TiO{sub 2} compact layer thickness on the photovoltaic performance of planar perovskite solar cells was systematically compared, and the interface charge transfer and recombination in planar perovskite solar cells with TiO{sub 2} compact layer was analyzed by electrochemical impedance spectroscopy. The results revealed that the optimum thickness of WO{sub 3} and TiO{sub 2} compact layer was 15 nm and 60 nm. The planar perovskite solar cell with 15 nm WO{submore » 3} compact layer gave a 9.69% average and 10.14% maximum photoelectric conversion efficiency, whereas the planar perovskite solar cell with 60 nm TiO{sub 2} compact layer achieved a 11.79% average and 12.64% maximum photoelectric conversion efficiency. - Graphical abstract: The planar perovskite solar cell with 15 nm WO{sub 3} compact layer gave a 9.69% average and 10.14% maximum photoelectric conversion efficiency, whereas the planar perovskite solar cell with 60 nm TiO{sub 2} compact layer achieved a 11.79% average and 12.64% maximum photoelectric conversion efficiency. Display Omitted - Highlights: • Preparation of ultra-thin and high-quality WO{sub 3} compact layers. • Perovskite solar cell with 15 nm-thick WO{sub 3} compact layer achieved PCE of 10.14%. • Perovskite solar cell with 60 nm-thick TiO{sub 2} compact layer achieved PCE of 12.64%.« less

  10. Buffer layer for thin film structures

    DOEpatents

    Foltyn, Stephen R.; Jia, Quanxi; Arendt, Paul N.; Wang, Haiyan

    2006-10-31

    A composite structure including a base substrate and a layer of a mixture of strontium titanate and strontium ruthenate is provided. A superconducting article can include a composite structure including an outermost layer of magnesium oxide, a buffer layer of strontium titanate or a mixture of strontium titanate and strontium ruthenate and a top-layer of a superconducting material such as YBCO upon the buffer layer.

  11. Buffer layer for thin film structures

    DOEpatents

    Foltyn, Stephen R.; Jia, Quanxi; Arendt, Paul N.; Wang, Haiyan

    2010-06-15

    A composite structure including a base substrate and a layer of a mixture of strontium titanate and strontium ruthenate is provided. A superconducting article can include a composite structure including an outermost layer of magnesium oxide, a buffer layer of strontium titanate or a mixture of strontium titanate and strontium ruthenate and a top-layer of a superconducting material such as YBCO upon the buffer layer.

  12. Quantitative fabrication of functional polymer surfaces

    NASA Astrophysics Data System (ADS)

    Rengifo, Hernan R.

    areal density. The approach is based upon synthesis of an alkyne-end-functional diblock copolymer alpha-alkyne-o-Br-poly(tBA- b-MMA). The block copolymer self-assembles to form a bilayer on the substrate and directs alkyne groups to the surface. Azido-functionalized DNA is immobilized on alkyne functionalized substrates by a "click" reaction. The density of immobilized DNA can be quantitatively controlled by varying the parameters used for spin-coating the polymer film or by adjusting the hydrophilicity of the polymer surface underlying the reactive alkyne functional groups. In Chapter 5, Layer by layer (LbL) assembly techniques construct multilayer thin films by sequential deposition of monomolecular layers of organic molecules. One of the drawbacks associated with their use is that monomolecular layers are usually held together by relatively weak forces such as Van der Waals, electrostatic and hydrogen bonding interactions, and can therefore be lacking in mechanical integrity. In this chapter, it is demonstrated that heterobifunctional polymers, functionalized with one azide chain terminus and a protected alkyne group as the other chain terminus, constitute a powerful and versatile means for the covalent layer-by-layer (CLbL) assembly of thin polymer films. Each monomolecular polymer layer is covalently bound to both the preceding and following layers to produce a robust multilayer structure. Because the coupling chemistry used, "click" chemistry, is highly chemoselective, the layering process is virtually independent of the chemical nature of the polymer so that the constitution of each layer can be selected at will. Unlike other layer-by-layer deposition techniques, the layer thickness in CLbL is not equivalent to the diameter of the polymer chain, but is related to the polymer chain length and can be controlled by adjustment of either the polymer molecular weight or the areal density of surface alkyne groups.

  13. Structural properties and sensing performance of high-k Nd2TiO5 thin layer-based electrolyte-insulator-semiconductor for pH detection and urea biosensing.

    PubMed

    Pan, Tung-Ming; Lin, Jian-Chi; Wu, Min-Hsien; Lai, Chao-Sung

    2009-05-15

    For high sensitive pH sensing, an electrolyte-insulator-semiconductor (EIS) device with Nd(2)TiO(5) thin layers fabricated on Si substrates by means of reactive sputtering and the subsequent post-deposition annealing (PDA) treatment was proposed. In this work, the effect of thermal annealing (600, 700, 800, and 900 degrees C) on the structural characteristics of Nd(2)TiO(5) thin layer was investigated by X-ray diffraction, X-ray photoelectron spectroscopy, and atomic force microscopy. The observed structural properties were then correlated with the resulting pH sensing performances. For enzymatic field-effect-transistors-based urea biosensing, a hybrid configuration of the proposed Nd(2)TiO(5) thin layer with urease-immobilized alginate film attached was established. Within the experimental conditions investigated, the EIS device with the Nd(2)TiO(5) thin layer annealed at 800 degrees C exhibited a higher pH detection sensitivity of 57.2 mV/pH, a lower hysteresis voltage of 2.33 mV, and a lower drift rate of 1.80 mV/h compared to those at other annealing temperatures. These results are attributed to the formation of a thinner low-k interfacial layer at the oxide/Si interface and the higher surface roughness occurred at this annealing temperature. Furthermore, the presented urea biosensor was also proved to be able to detect urea with good linearity (R(2)=0.99) and reasonable sensitivity of 9.52 mV/mM in the urea concentration range of 3-40 mM. As a whole, the present work has provided some fundamental data for the use of Nd(2)TiO(5) thin layer for EIS-based pH detection and the extended application for biosensing.

  14. Electronic structure investigation of atomic layer deposition ruthenium(oxide) thin films using photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Schaefer, Michael; Schlaf, Rudy

    2015-08-01

    Analyzing and manipulating the electronic band line-up of interfaces in novel micro- and nanoelectronic devices is important to achieve further advancement in this field. Such band alignment modifications can be achieved by introducing thin conformal interfacial dipole layers. Atomic layer deposition (ALD), enabling angstrom-precise control over thin film thickness, is an ideal technique for this challenge. Ruthenium (Ru0) and its oxide (RuO2) have gained interest in the past decade as interfacial dipole layers because of their favorable properties like metal-equivalent work functions, conductivity, etc. In this study, initial results of the electronic structure investigation of ALD Ru0 and RuO2 films via photoemission spectroscopy are presented. These experiments give insight into the band alignment, growth behavior, surface structure termination, and dipole formation. The experiments were performed in an integrated vacuum system attached to a home-built, stop-flow type ALD reactor without exposing the samples to the ambient in between deposition and analysis. Bis(ethylcyclopentadienyl)ruthenium(II) was used as precursor and oxygen as reactant. The analysis chamber was outfitted with X-ray photoemission spectroscopy (LIXPS, XPS). The determined growth modes are consistent with a strong growth inhibition situation with a maximum average growth rate of 0.21 Å/cycle for RuO2 and 0.04 Å/cycle for Ru.0 An interface dipole of up to -0.93 eV was observed, supporting the assumption of a strongly physisorbed interface. A separate experiment where the surface of a RuO film was sputtered suggests that the surface is terminated by an intermediate, stable, non-stoichiometric RuO2/OH compound whose surface is saturated with hydroxyl groups.

  15. Optical properties of thin merocyanine dye layers for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Dikova, J.; Kitova, S.; Stoyanova, D.; Vasilev, A.; Deligeorgiev, T.; Angelova, S.

    2014-05-01

    The potentiality was studied of our newly synthesized push-pull type merocyanine dye, labeled A1, for use as an electron donating component in solution-processed bulk heterojunction (BHJ) organic solar cells. For the purpose, a soluble n-type fullerene, (6,6)-phenyl C61 butyric acid methyl ester (PCBM), which is currently and in the ear future without an alternative, was chosen as an acceptor. The optical constants (n and k) of thin films obtained by spin coating from solutions in chlorobenzene of A1 and of an A1/PCBM blend were determined by spectrophotometric measurements. Further, an optical simulation of a standard BHJ cell with an active layer of an A1dye/PCMB blend was performed using a transfer-matrix formalism. Thus, the optimum thickness of the active layer was calculated to be about 80 nm, which provides overlapping of the total absorption with the solar spectrum in the broad range 400 nm - 800 nm. Finally, the maximum current density, Jsc, was determined to be 13 mA cm2 assuming that the internal quantum efficiency, IQE, is unity. Comparing the calculated Jsc with data on some advanced small-molecule BHJ devices, the prospects for practical applications of the new merocyanine dye are discussed.

  16. Atomic scale imaging of competing polar states in a Ruddlesden–Popper layered oxide

    DOE PAGES

    Stone, Greg; Ophus, Colin; Birol, Turan; ...

    2016-08-31

    Layered complex oxides offer an unusually rich materials platform for emergent phenomena through many built-in design knobs such as varied topologies, chemical ordering schemes and geometric tuning of the structure. A multitude of polar phases are predicted to compete in Ruddlesden-Popper (RP), A n+1 B n O 3n+1 , thin films by tuning layer dimension (n) and strain; however, direct atomic-scale evidence for such competing states is currently absent. Using aberration-corrected scanning transmission electron microscopy with sub-Ångstrom resolution in Sr n+1 Ti n O 3n+1 thin films, we demonstrate the coexistence of antiferroelectric, ferroelectric and new ordered and low-symmetry phases.more » We also directly image the atomic rumpling of the rock salt layer, a critical feature in RP structures that is responsible for the competing phases; exceptional quantitative agreement between electron microscopy and density functional theory is demonstrated. The study shows that layered topologies can enable multifunctionality through highly competitive phases exhibiting diverse phenomena in a single structure.« less

  17. Epitaxial thin films

    DOEpatents

    Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan

    2006-04-25

    Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.

  18. Low temperature growth of gallium oxide thin films via plasma enhanced atomic layer deposition.

    PubMed

    O'Donoghue, Richard; Rechmann, Julian; Aghaee, Morteza; Rogalla, Detlef; Becker, Hans-Werner; Creatore, Mariadriana; Wieck, Andreas Dirk; Devi, Anjana

    2017-12-21

    Herein we describe an efficient low temperature (60-160 °C) plasma enhanced atomic layer deposition (PEALD) process for gallium oxide (Ga 2 O 3 ) thin films using hexakis(dimethylamido)digallium [Ga(NMe 2 ) 3 ] 2 with oxygen (O 2 ) plasma on Si(100). The use of O 2 plasma was found to have a significant improvement on the growth rate and deposition temperature when compared to former Ga 2 O 3 processes. The process yielded the second highest growth rates (1.5 Å per cycle) in terms of Ga 2 O 3 ALD and the lowest temperature to date for the ALD growth of Ga 2 O 3 and typical ALD characteristics were determined. From in situ quartz crystal microbalance (QCM) studies and ex situ ellipsometry measurements, it was deduced that the process is initially substrate-inhibited. Complementary analytical techniques were employed to investigate the crystallinity (grazing-incidence X-ray diffraction), composition (Rutherford backscattering analysis/nuclear reaction analysis/X-ray photoelectron spectroscopy), morphology (X-ray reflectivity/atomic force microscopy) which revealed the formation of amorphous, homogeneous and nearly stoichiometric Ga 2 O 3 thin films of high purity (carbon and nitrogen <2 at.%) under optimised process conditions. Tauc plots obtained via UV-Vis spectroscopy yielded a band gap of 4.9 eV and the transmittance values were more than 80%. Upon annealing at 1000 °C, the transformation to oxygen rich polycrystalline β-gallium oxide took place, which also resulted in the densification and roughening of the layer, accompanied by a slight reduction in the band gap. This work outlines a fast and efficient method for the low temperature ALD growth of Ga 2 O 3 thin films and provides the means to deposit Ga 2 O 3 upon thermally sensitive polymers like polyethylene terephthalate.

  19. Development of Functional Thin Polymer Films Using a Layer-by-Layer Deposition Technique.

    PubMed

    Yoshida, Kentaro

    2017-01-01

    Functional thin films containing insulin were prepared using layer-by-layer (LbL) deposition of insulin and negatively- or positively-charged polymers on the surface of solid substrates. LbL films composed of insulin and negatively-charged polymers such as poly(acrylic acid) (PAA), poly(vinylsulfate) (PVS), and dextran sulfate (DS) were prepared through electrostatic affinity between the materials. The insulin/PAA, insulin/PVS, and insulin/DS films were stable in acidic solutions, whereas they decomposed under physiological conditions as a result of a change in the net electric charge of insulin from positive to negative. Interestingly, the insulin-containing LbL films were stable even in the presence of a digestive-enzyme (pepcin) at pH 1.4 (stomach pH). In contrast, LbL films consisting of insulin and positively-charged polymers such as poly(allylamine hydrochloride) (PAH) decomposed in acidic solutions due to the positive charges of insulin generated in acidic media. The insulin-containing LbL films can be prepared not only on the surface of flat substrates, such as quartz slides, but also on the surface of microparticles, such as poly(lactic acid) (PLA) microbeads. Thus, insulin-containing LbL film-coated PLA microbeads can be handled as a powder. In addition, insulin-containing microcapsules were prepared by coating LbL films on the surface of insulin-doped calcium carbonate (CaCO 3 ) microparticles, followed by dissolution of the CaCO 3 core. The release of insulin from the microcapsules was accelerated at pH 7.4, whereas it was suppressed in acidic solutions. These results suggest the potential use of insulin-containing microcapsules in the development of oral formulations of insulin.

  20. Influence of intermediate layers on the surface condition of laser crystallized silicon thin films and solar cell performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Höger, Ingmar, E-mail: ingmar.hoeger@ipht-jena.de; Gawlik, Annett; Brückner, Uwe

    The intermediate layer (IL) between glass substrate and silicon plays a significant role in the optimization of multicrystalline liquid phase crystallized silicon thin film solar cells on glass. This study deals with the influence of the IL on the surface condition and the required chemical surface treatment of the crystallized silicon (mc-Si), which is of particular interest for a-Si:H heterojunction thin film solar cells. Two types of IL were investigated: sputtered silicon nitride (SiN) and a layer stack consisting of silicon nitride and silicon oxide (SiN/SiO). X-ray photoelectron spectroscopy measurements revealed the formation of silicon oxynitride (SiO{sub x}N{sub y}) ormore » silicon oxide (SiO{sub 2}) layers at the surface of the mc-Si after liquid phase crystallization on SiN or SiN/SiO, respectively. We propose that SiO{sub x}N{sub y} formation is governed by dissolving nitrogen from the SiN layer in the silicon melt, which segregates at the crystallization front during crystallization. This process is successfully hindered, when additional SiO layers are introduced into the IL. In order to achieve solar cell open circuit voltages above 500 mV, a removal of the formed SiO{sub x}N{sub y} top layer is required using sophisticated cleaning of the crystallized silicon prior to a-Si:H deposition. However, solar cells crystallized on SiN/SiO yield high open circuit voltage even when a simple wet chemical surface treatment is applied. The implementation of SiN/SiO intermediate layers facilitates the production of mesa type solar cells with open circuit voltages above 600 mV and a power conversion efficiency of 10%.« less

  1. The stability of a thin water layer over a rotating disk revisited

    NASA Astrophysics Data System (ADS)

    Poncet, Sébastien

    2014-08-01

    The flow driven by a rotating disk of a thin fluid layer in a fixed cylindrical casing is studied by direct numerical simulation and experimental flow visualizations. The characteristics of the flow are first briefly discussed but the focus of this work is to understand the transition to the primary instability. The primary bifurcation is 3D and appears as spectacular sharp-cornered polygonal patterns located along the shroud. The stability diagram is established experimentally in a ( Re, G plane, where G is the aspect ratio of the cavity and Re the rotational Reynolds number and confirmed numerically. The number of vortices scales well with the Ekman number based on the water depth, which confirms the existence of a Stewartson layer along the external cylinder. The critical mixed Reynolds number is found to be constant as in other rotating flows involving a shear-layer instability. Hysteresis cycles are observed highlighting the importance of the spin-up and spin-down processes. In some particular cases, a crossflow instability appears under the form of high azimuthal wave number spiral patterns, similar to those observed in a rotor-stator cavity with throughflow and coexists with the polygons. The DNS calculations confirm the experimental results under the flat free surface hypothesis.

  2. Substrate spacing and thin-film yield in chemical bath deposition of semiconductor thin films

    NASA Astrophysics Data System (ADS)

    Arias-Carbajal Reádigos, A.; García, V. M.; Gomezdaza, O.; Campos, J.; Nair, M. T. S.; Nair, P. K.

    2000-11-01

    Thin-film yield in the chemical bath deposition technique is studied as a function of separation between substrates in batch production. Based on a mathematical model, it is proposed and experimentally verified in the case of CdS thin films that the film thickness reaches an asymptotic maximum with increase in substrate separation. It is shown that at a separation less than 1 mm between substrates the yield, i.e. percentage in moles of a soluble cadmium salt deposited as a thin film of CdS, can exceed 50%. This behaviour is explained on the basis of the existence of a critical layer of solution near the substrate, within which the relevant ionic species have a higher probability of interacting with the thin-film layer than of contributing to precipitate formation. The critical layer depends on the solution composition and the temperature of the bath as well as the duration of deposition. An effective value for the critical layer thickness has been defined as half the substrate separation at which 90% of the maximum film thickness for the particular bath composition, bath temperature and duration of deposition is obtained. In the case of CdS thin films studied as an example, the critical layer is found to extend from 0.5 to 2.5 mm from the substrate surface, depending on the deposition conditions.

  3. Quantifying in situ Zooplankton Movement and Trophic Impacts on Thin Layers in East Sound, Washington

    DTIC Science & Technology

    2006-09-30

    strength of the combination is that the tracking system quantifies swimming behaviors of protists in natural seawater samples with large numbers of motile...Sound was to link observations of thin layers to behavioral analysis of protists resident above, within, and below these features. Analysis of our...cells and diatom chains. We are not yet able to make statistical statements about swimming characteristics of the motile protists in our video samples

  4. Quantitative HAADF STEM of SiGe in presence of amorphous surface layers from FIB preparation.

    PubMed

    Grieb, Tim; Tewes, Moritz; Schowalter, Marco; Müller-Caspary, Knut; Krause, Florian F; Mehrtens, Thorsten; Hartmann, Jean-Michel; Rosenauer, Andreas

    2018-01-01

    The chemical composition of four Si 1-x Ge x layers grown on silicon was determined from quantitative scanning transmission electron microscopy (STEM). The chemical analysis was performed by a comparison of the high-angle annular dark field (HAADF) intensity with multislice simulations. It could be shown that amorphous surface layers originating from the preparation process by focused-ion beam (FIB) at 30 kV have a strong influence on the quantification: the local specimen thickness is overestimated by approximately a factor of two, and the germanium concentration is substantially underestimated. By means of simulations, the effect of amorphous surface layers on the HAADF intensity of crystalline silicon and germanium is investigated. Based on these simulations, a method is developed to analyze the experimental HAADF-STEM images by taking the influence of the amorphous layers into account which is done by a reduction of the intensities by multiplication with a constant factor. This suggested modified HAADF analysis gives germanium concentrations which are in agreement with the nominal values. The same TEM lamella was treated with low-voltage ion milling which removed the amorphous surface layers completely. The results from subsequent quantitative HAADF analyses are in agreement with the nominal concentrations which validates the applicability of the used frozen-lattice based multislice simulations to describe the HAADF scattering of Si 1-x Ge x in STEM. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. In vivo deformation of thin cartilage layers: Feasibility and applicability of T2* mapping.

    PubMed

    Van Ginckel, Ans; Witvrouw, Erik E

    2016-05-01

    The objectives of this study were as follows: (i) to assess segmentation consistency and scan precision of T2* mapping of human tibio-talar cartilage, and (ii) to monitor changes in T2* relaxation times of ankle cartilage immediately following a clinically relevant in vivo exercise and during recovery. Using multi-echo gradient recalled echo sequences, averaged T2* values were calculated for tibio-talar cartilage layers in 10 healthy volunteers. Segmentation consistency and scan precision were determined from two repeated segmentations and two repeated acquisitions with repositioning, respectively. Subsequently, acute in vivo cartilage loading responses were monitored by calculating averaged tibio-talar T2* values at rest, immediately after (i.e., deformation) and at 15 min (i.e., recovery) following a 30-repetition knee bending exercise. Precision errors attained 4-6% with excellent segmentation consistency point estimates (i.e., intra-rater ICC of 0.95) and acceptable limits of confidence. At deformation, T2* values were increased in both layers [+16.1 (10.7)%, p = 0.004 and +17.3 (15.3)%, p = 0.023, for the talus and tibia, respectively] whereas during recovery no significant changes could be established when comparing to baseline [talar cartilage: +5.2 (8.2)%, p = 0.26 and tibial cartilage: +6.6 (10.4)%, p = 0.23]. T2* mapping is a viable method to monitor deformational behavior in thin cartilage layers such as ankle cartilage. Longitudinal changes in T2* can be reliably appraised and require at least 4-6% differences to ascertain statistical significance. The ability to detect considerable change even after non-strenuous loading events, endorses T2* mapping as an innovative method to evaluate the effects of therapeutic exercise on thin cartilage layers. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:771-778, 2016. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  6. Quantitative Raman characterization of cross-linked collagen thin films as a model system for diagnosing early osteoarthritis

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Durney, Krista M.; Fomovsky, Gregory; Ateshian, Gerard A.; Vukelic, Sinisa

    2016-03-01

    The onset of osteoarthritis (OA)in articular cartilage is characterized by degradation of extracellular matrix (ECM). Specifically, breakage of cross-links between collagen fibrils in the articular cartilage leads to loss of structural integrity of the bulk tissue. Since there are no broadly accepted, non-invasive, label-free tools for diagnosing OA at its early stage, Raman spectroscopyis therefore proposed in this work as a novel, non-destructive diagnostic tool. In this study, collagen thin films were employed to act as a simplified model system of the cartilage collagen extracellular matrix. Cross-link formation was controlled via exposure to glutaraldehyde (GA), by varying exposure time and concentration levels, and Raman spectral information was collected to quantitatively characterize the cross-link assignments imparted to the collagen thin films during treatment. A novel, quantitative method was developed to analyze the Raman signal obtained from collagen thin films. Segments of Raman signal were decomposed and modeled as the sum of individual bands, providing an optimization function for subsequent curve fitting against experimental findings. Relative changes in the concentration of the GA-induced pyridinium cross-links were extracted from the model, as a function of the exposure to GA. Spatially resolved characterization enabled construction of spectral maps of the collagen thin films, which provided detailed information about the variation of cross-link formation at various locations on the specimen. Results showed that Raman spectral data correlate with glutaraldehyde treatment and therefore may be used as a proxy by which to measure loss of collagen cross-links in vivo. This study proposes a promising system of identifying onset of OA and may enable early intervention treatments that may serve to slow or prevent osteoarthritis progression.

  7. Effect of substrates on the molecular orientation of silicon phthalocyanine dichloride thin films

    NASA Astrophysics Data System (ADS)

    Deng, Juzhi; Baba, Yuji; Sekiguchi, Tetsuhiro; Hirao, Norie; Honda, Mitsunori

    2007-05-01

    Molecular orientations of silicon phthalocyanine dichloride (SiPcCl2) thin films deposited on three different substrates have been measured by near-edge x-ray absorption fine structure (NEXAFS) spectroscopy using linearly polarized synchrotron radiation. The substrates investigated were highly oriented pyrolitic graphite (HOPG), polycrystalline gold and indium tin oxide (ITO). For thin films of about five monolayers, the polarization dependences of the Si K-edge NEXAFS spectra showed that the molecular planes of SiPcCl2 on three substrates were nearly parallel to the surface. Quantitative analyses of the polarization dependences revealed that the tilted angle on HOPG was only 2°, which is interpreted by the perfect flatness of the HOPG surface. On the other hand, the tilted angle on ITO was 26°. Atomic force microscopy (AFM) observation of the ITO surface showed that the periodicity of the horizontal roughness is of the order of a few nanometres, which is larger than the molecular size of SiPcCl2. It is concluded that the morphology of the top surface layer of the substrate affects the molecular orientation of SiPcCl2 molecules not only for mono-layered adsorbates but also for multi-layered thin films.

  8. Surface-enhanced Raman scattering of amorphous TiO2 thin films by gold nanostructures: Revealing first layer effect with thickness variation

    NASA Astrophysics Data System (ADS)

    Degioanni, S.; Jurdyc, A.-M.; Bessueille, F.; Coulm, J.; Champagnon, B.; Vouagner, D.

    2013-12-01

    In this paper, amorphous titanium dioxide (TiO2) thin films have been deposited on a commercially available Klarite substrate using the sol-gel process to produce surface-enhanced Raman scattering (SERS). The substrate consists of square arrays of micrometer-sized pyramidal pits in silicon with a gold coating. Several thin TiO2 layers have been deposited on the surface to study the influence of film thickness. Ultimately, we obtained information on SERS of an amorphous TiO2 layer by gold nanostructures, whose range is less than a few nanometers. Mechanisms responsible for the enhancement are the product of concomitant chemical and electromagnetic effects with an important contribution from plasmon-induced charge transfer.

  9. Adsorption properties of BSA and DsRed proteins deposited on thin SiO2 layers: optically non-absorbing versus absorbing proteins

    NASA Astrophysics Data System (ADS)

    Scarangella, A.; Soumbo, M.; Villeneuve-Faure, C.; Mlayah, A.; Bonafos, C.; Monje, M.-C.; Roques, C.; Makasheva, K.

    2018-03-01

    Protein adsorption on solid surfaces is of interest for many industrial and biomedical applications, where it represents the conditioning step for micro-organism adhesion and biofilm formation. To understand the driving forces of such an interaction we focus in this paper on the investigation of the adsorption of bovine serum albumin (BSA) (optically non-absorbing, model protein) and DsRed (optically absorbing, naturally fluorescent protein) on silica surfaces. Specifically, we propose synthesis of thin protein layers by means of dip coating of the dielectric surface in protein solutions with different concentrations (0.01-5.0 g l-1). We employed spectroscopic ellipsometry as the most suitable and non-destructive technique for evaluation of the protein layers’ thickness and optical properties (refractive index and extinction coefficient) after dehydration, using two different optical models, Cauchy for BSA and Lorentz for DsRed. We demonstrate that the thickness, the optical properties and the wettability of the thin protein layers can be finely controlled by proper tuning of the protein concentration in the solution. These results are correlated with the thin layer morphology, investigated by AFM, FTIR and PL analyses. It is shown that the proteins do not undergo denaturation after dehydration on the silica surface. The proteins arrange themselves in a lace-like network for BSA and in a rod-like structure for DsRed to form mono- and multi-layers, due to different mechanisms driving the organization stage.

  10. Indium Oxide Thin Films by Atomic Layer Deposition Using Trimethylindium and Ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mane, Anil U.; Allen, Amy J.; Kanjolia, Ravindra K.

    We investigated the atomic layer deposition (ALD) of indium oxide (In2O3) thin films using alternating exposures of trimethylindium (TMIn) and a variety of oxygen sources: ozone (O-3), O-2, deionized H2O, and hydrogen peroxide (H2O2). We used in situ quartz crystal microbalance measurements to evaluate the effectiveness of the different oxygen sources and found that only O-3 yielded viable and sustained 111203 growth with TMIn. These measurements also provided details about the In2O3 growth mechanism and enabled us to verify that both the TMIn and O-3 surface reactions were self-limiting. In2O3 thin films were prepared and characterized using X-ray diffraction, ultravioletmore » visible spectrophotometry, spectroscopic ellipsometry, X-ray photoelectron spectroscopy, and scanning electron microscopy. The electrical transport properties of these layers were studied by Hall probe measurements. We found that, at deposition temperatures within the range of 100-200 degrees C, the In2O3 growth per cycle was nearly constant at 0.46 angstrom/cycle and the films were dense and pure. The film thickness was highly uniform (<0.3% variation) along the 45 cm length of our tubular ALD reactor. At higher growth temperatures the In2O3 growth per cycle increased due to thermal decomposition of the TMIn. The ALD In2O3 films showed resistivities as low as 3.2 x 10(-3) Omega cm, and carrier concentrations as large as 7.0 x 10(19) cm(-3). This TMIn/O-3 process for In2O3 ALD should be suitable for eventual scale-up in photovoltaics.« less

  11. Drying and color characteristics of coriander foliage using convective thin-layer and microwave drying.

    PubMed

    Shaw, Mark; Meda, Venkatesh; Tabil, Lope; Opoku, Anthony

    2007-01-01

    Heat sensitive properties (aromatic, medicinal, color) provide herbs and spices with their high market value. In order to prevent extreme loss of heat sensitive properties when drying herbs, they are normally dried at low temperatures for longer periods of time to preserve these sensory properties. High energy consumption often results from drying herbs over a long period. Coriander (Coriandrum sativum L., Umbelliferae) was dehydrated in two different drying units (thin layer convection and microwave dryers) in order to compare the drying and final product quality (color) characteristics. Microwave drying of the coriander foliage was faster than convective drying. The entire drying process took place in the falling rate period for both microwave and convective dried samples. The drying rate for the microwave dried samples ranged from 42.3 to 48.2% db/min and that of the convective dried samples ranged from 7.1 to 12.5% db/min. The fresh sample color had the lowest L value at 26.83 with higher L values for all dried samples. The results show that convective thin layer dried coriander samples exhibited a significantly greater color change than microwave dried coriander samples. The color change index values for the microwave dried samples ranged from 2.67 to 3.27 and that of the convective dried samples varied from 4.59 to 6.58.

  12. Domain matched epitaxial growth of (111) Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} thin films on (0001) Al{sub 2}O{sub 3} with ZnO buffer layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnaprasad, P. S., E-mail: pskrishnaprasu@gmail.com, E-mail: mkj@cusat.ac.in; Jayaraj, M. K., E-mail: pskrishnaprasu@gmail.com, E-mail: mkj@cusat.ac.in; Antony, Aldrin

    2015-03-28

    Epitaxial (111) Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} (BST) thin films have been grown by pulsed laser deposition on (0001) Al{sub 2}O{sub 3} substrate with ZnO as buffer layer. The x-ray ω-2θ, Φ-scan and reciprocal space mapping indicate epitaxial nature of BST thin films. The domain matched epitaxial growth of BST thin films over ZnO buffer layer was confirmed using Fourier filtered high resolution transmission electron microscope images of the film-buffer interface. The incorporation of ZnO buffer layer effectively suppressed the lattice mismatch and promoted domain matched epitaxial growth of BST thin films. Coplanar inter digital capacitors fabricated on epitaxial (111) BSTmore » thin films show significantly improved tunable performance over polycrystalline thin films.« less

  13. Alternative buffer layer development in Cu(In,Ga)Se2 thin film solar cells

    NASA Astrophysics Data System (ADS)

    Xin, Peipei

    Cu(In,Ga)Se2-based thin film solar cells are considered to be one of the most promising photovoltaic technologies. Cu(In,Ga)Se2 (CIGS) solar devices have the potential advantage of low-cost, fast fabrication by using semiconductor layers of only a few micrometers thick and high efficiency photovoltaics have been reported at both the cell and the module levels. CdS via chemical bath deposition (CBD) has been the most widely used buffer option to form the critical junction in CIGS-based thin film photovoltaic devices. However, the disadvantages of CdS can’t be ignored - regulations on cadmium usage are getting stricter primarily due to its toxicity and environmental impacts, and the proper handling of the large amount of toxic chemical bath waste is a massive and expensive task. This dissertation is devoted to the development of Cd-free alternative buffer layers in CIGS-based thin film solar cells. Based on the considerations of buffer layer selection criteria and extensive literature review, Zn-compound buffer materials are chosen as the primary investigation candidates. Radio frequency magnetron sputtering is the preferred buffer deposition approach since it’s a clean and more controllable technique compared to CBD, and is readily scaled to large area manufacturing. First, a comprehensive study of the ZnSe1-xOx compound prepared by reactive sputtering was completed. As the oxygen content in the reactive sputtering gas increased, ZnSe1-xOx crystallinity and bandgap decreased. It’s observed that oxygen miscibility in ZnSe was low and a secondary phase formed when the O2 / (O2 + Ar) ratio in the sputtering gas exceeded 2%. Two approaches were proposed to optimize the band alignment between the CIGS and buffer layer. One method focused on the bandgap engineering of the absorber, the other focused on the band structure modification of the buffer. As a result, improved current of the solar cell was achieved although a carrier transport barrier at the junction

  14. An Improved Method for the Extraction and Thin-Layer Chromatography of Chlorophyll A and B from Spinach

    ERIC Educational Resources Information Center

    Quach, Hao T.; Steeper, Robert L.; Griffin, William G.

    2004-01-01

    A simple and fast method, which resolves chlorophyll a and b from spinach leaves on analytical plates while minimizing the appearance of chlorophyll degradation products is shown. An improved mobile phase for the Thin-layer chromatographic analysis of spinach extract that allows for the complete resolution of the common plant pigments found in…

  15. Epitaxial Growth of MOF Thin Film for Modifying the Dielectric Layer in Organic Field-Effect Transistors.

    PubMed

    Gu, Zhi-Gang; Chen, Shan-Ci; Fu, Wen-Qiang; Zheng, Qingdong; Zhang, Jian

    2017-03-01

    Metal-organic framework (MOF) thin films are important in the application of sensors and devices. However, the application of MOF thin films in organic field effect transistors (OFETs) is still a challenge to date. Here, we first use the MOF thin film prepared by a liquid-phase epitaxial (LPE) approach (also called SURMOFs) to modify the SiO 2 dielectric layer in the OFETs. After the semiconductive polymer of PTB7-Th (poly[4,8-bis(5-(2-ethylhexyl)thiophene-2-yl)benzo[1,2-b:4,5-b']dithiophene-co-3-fluorothieno[3,4-b]thiophene-2-carboxylate]) was coated on MOF/SiO 2 and two electrodes on the semiconducting film were deposited sequentially, MOF-based OFETs were fabricated successfully. By controlling the LPE cycles of SURMOF HKUST-1 (also named Cu 3 (BTC) 2 , BTC = 1,3,5-benzenetricarboxylate), the performance of the HKUST-1/SiO 2 -based OFETs showed high charge mobility and low threshold voltage. This first report on the application of MOF thin film in OFETs will offer an effective approach for designing a new kind of materials for the OFET application.

  16. High Ms Fe16N2 thin film with Ag under layer on GaAs substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allard Jr, Lawrence Frederick

    2016-01-01

    (001) textured Fe16N2 thin film with Ag under layer is successfully grown on GaAs substrate using a facing target sputtering (FTS) system. After post annealing, chemically ordered Fe16N2 phase is formed and detected by X-ray diffraction (XRD). High saturation magnetization (Ms) is measured by a vibrating sample magnetometer (VSM). In comparison with Fe16N2 with Ag under layer on MgO substrate and Fe16N2 with Fe under layer on GaAs substrate, the current layer structure shows a higher Ms value, with a magnetically softer feature in contrast to the above cases. In addition, X-ray photoelectron spectroscopy (XPS) is performed to characterize themore » binding energy of N atoms. To verify the role of strain that the FeN layer experiences in the above three structures, Grazing Incidence X-ray Diffraction (GIXRD) is conducted to reveal a large in-plane lattice constant due to the in-plane biaxial tensile strain. INTRODUCTION« less

  17. Effect of dopent on the structural and optical properties of ZnS thin film as a buffer layer in solar cell application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vashistha, Indu B., E-mail: indu-139@yahoo.com; Sharma, S. K.; Sharma, Mahesh C.

    2015-08-28

    In order to find the suitable alternative of toxic CdS buffer layer, deposition of pure ZnS and doped with Al by chemical bath deposition method have been reported. Further as grown pure and doped thin films have been annealed at 150°C. The structural and surface morphological properties have been characterized by X-Ray diffraction (XRD) and Atomic Force Microscope (AFM).The XRD analysis shows that annealed thin film has been polycrystalline in nature with sphalerite cubic crystal structure and AFM images indicate increment in grain size as well as growth of crystals after annealing. Optical measurement data give band gap of 3.5more » eV which is ideal band gap for buffer layer for solar cell suggesting that the obtained ZnS buffer layer is suitable in a low-cost solar cell.« less

  18. Thickness-dependent electron mobility of single and few-layer MoS{sub 2} thin-film transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ji Heon; Kim, Tae Ho; Lee, Hyunjea

    We investigated the dependence of electron mobility on the thickness of MoS{sub 2} nanosheets by fabricating bottom-gate single and few-layer MoS{sub 2} thin-film transistors with SiO{sub 2} gate dielectrics and Au electrodes. All the fabricated MoS{sub 2} transistors showed on/off-current ratio of ∼10{sup 7} and saturated output characteristics without high-k capping layers. As the MoS{sub 2} thickness increased from 1 to 6 layers, the field-effect mobility of the fabricated MoS{sub 2} transistors increased from ∼10 to ∼18 cm{sup 2}V{sup −1}s{sup −1}. The increased subthreshold swing of the fabricated transistors with MoS{sub 2} thickness suggests that the increase of MoS{sub 2}more » mobility with thickness may be related to the dependence of the contact resistance and the dielectric constant of MoS{sub 2} layer on its thickness.« less

  19. Homogeneous double-layer amorphous Si-doped indium oxide thin-film transistors for control of turn-on voltage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kizu, Takio, E-mail: KIZU.Takio@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Tsukagoshi, Kazuhito, E-mail: KIZU.Takio@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Aikawa, Shinya

    We fabricated homogeneous double-layer amorphous Si-doped indium oxide (ISO) thin-film transistors (TFTs) with an insulating ISO cap layer on top of a semiconducting ISO bottom channel layer. The homogeneously stacked ISO TFT exhibited high mobility (19.6 cm{sup 2}/V s) and normally-off characteristics after annealing in air. It exhibited normally-off characteristics because the ISO insulator suppressed oxygen desorption, which suppressed the formation of oxygen vacancies (V{sub O}) in the semiconducting ISO. Furthermore, we investigated the recovery of the double-layer ISO TFT, after a large negative shift in turn-on voltage caused by hydrogen annealing, by treating it with annealing in ozone. The recoverymore » in turn-on voltage indicates that the dense V{sub O} in the semiconducting ISO can be partially filled through the insulator ISO. Controlling molecule penetration in the homogeneous double layer is useful for adjusting the properties of TFTs in advanced oxide electronics.« less

  20. Enhancement and restoration of non-uniform illuminated Fundus Image of Retina obtained through thin layer of cataract.

    PubMed

    Mitra, Anirban; Roy, Sudipta; Roy, Somais; Setua, Sanjit Kumar

    2018-03-01

    Retinal fundus images are extensively used in manually or without human intervention to identify and analyze various diseases. Due to the comprehensive imaging arrangement, there is a large radiance, reflectance and contrast inconsistency within and across images. A novel method is proposed based on the cataract physical model to reduce the generated blurriness of the fundus image at the time of image acquisition through the thin layer of cataract by the fundus camera. After the blurriness reduction the method is proposed the enhancement procedure of the images with an objective on contrast perfection with no preamble of artifacts. Due to the uneven distribution of thickness of the cataract, the cataract surroundings are first predicted in the domain of frequency. Second, the resultant image of first step enhanced by the intensity histogram equalization in the adapted Hue Saturation Intensity (HSI) color image space such as the gamut problem can be avoided. The concluding image with suitable color and disparity is acquired by using the proposed max-min color correction approach. The result indicates that not only the proposed method can more effectively enhanced the non-uniform image of retina obtain through thin layer of cataract, but also the resulting image show appropriate brightness and saturation and maintain complete color space information. The projected enhancement method has been tested on the openly available datasets and the result evaluated with the standard used image enhancement algorithms and the cataract removal method. Results show noticeable development over existing methods. Cataract often prevents the clinician from objectively evaluating fundus feature. Cataract also affect subjective test. Enhancement and restoration of non-uniform illuminated Fundus Image of Retina obtained through thin layer of Cataract has shown here to be potentially beneficial. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. QUALITY ASSURANCE STUDY OF MARINE LIPID CLASS DETERMINATION USING CHROMAROD/IATROSCAN( REG. TRADEMARK) THIN-LAYER CHROMATOGRAPHY-FLAME IONIZATION DETECTOR

    EPA Science Inventory

    An Iatroscan thin-layer chromatorgraphy-flame ionization detector has been utilized to quantify lipid classes in marine samples. This method was evaluated relative to established quality assurance (QA) procedures used for the gas chromatographic analysis of PCBs. A method for ext...

  2. Preparation and characterization of double layer thin films ZnO/ZnO:Ag for methylene blue photodegradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wibowo, Singgih, E-mail: singgih@st.fisika.undip.ac.id; Sutanto, Heri, E-mail: herisutanto@undip.ac.id

    2016-02-08

    Double layer (DL) thin films of zinc oxide and silver-doped zinc oxide (ZnO/ZnO:Ag) were deposited on glass substrate by sol-gel spray coating technique. The prepared thin films were subjected for optical and photocatalytic studies. UV-visible transmission spectra shows that the subtitution of Ag in ZnO leads to band gap reduction. The influence of Ag doping on the photocatalytic activity of ZnO for the degradation of methylene blue dye was studied under solar radiation. The light absorption over an extended visible region by Ag ion doping in ZnO film contributed equally to improve the photocatalytic activity up to 98.29%.

  3. Improving Fire Resistance of Cotton Fabric through Layer-by-Layer Assembled Graphene Multilayer Nanocoating

    NASA Astrophysics Data System (ADS)

    Jang, Wonjun; Chung, Il Jun; Kim, Junwoo; Seo, Seongmin; Park, Yong Tae; Choi, Kyungwho

    2018-05-01

    In this study, thin films containing poly(vinyl alcohol) (PVA) and graphene nanoplatelets (GNPs), stabilized with poly(4-styrene-sulfonic acid) (PSS), were assembled by a simple and cost-effective layer-by-layer (LbL) technique in order to introduce the anti-flammability to cotton. These antiflammable layers were characterized by using UV-vis spectrometry and quartz crystal microbalance as a function of the number of bilayers deposited. Scanning electron microscopy was used to visualize the morphology of the thin film coatings on the cotton fabric. The graphene-polymer thin films introduced anti-flammable properties through thermally stable carbonaceous layers at a high temperature. The thermal stability and flame retardant property of graphene-coated cotton was demonstrated by thermogravimetric analysis, cone calorimetry, and vertical flame test. The results indicate that LbL-assembled graphene-polymer thin films can be applied largely in the field of flame retardant.

  4. Tuning of in-plane optical anisotropy by inserting ultra-thin InAs layer at interfaces in (001)-grown GaAs/AlGaAs quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, J. L., E-mail: jlyu@semi.ac.cn; Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083; Key Laboratory of Optoelectronic Materials Chemistry and Physics, Chinese Academy of Sciences, Fuzhou 350002

    2015-01-07

    The in-plane optical anisotropy (IPOA) in (001)-grown GaAs/AlGaAs quantum wells (QWs) with different well widths varying from 2 nm to 8 nm has been studied by reflectance difference spectroscopy. Ultra-thin InAs layers with thickness ranging from 0.5 monolayer (ML) to 1.5 ML have been inserted at GaAs/AlGaAs interfaces to tune the asymmetry in the QWs. It is demonstrated that the IPOA can be accurately tailored by the thickness of the inserted ultra-thin InAs layer at the interfaces. Strain-induced IPOA has also been extracted by using a stress apparatus. We find that the intensity of the strain-induced IPOA decreases with the thickness ofmore » the inserted InAs layer, while that of the interface-induced IPOA increases with the thickness of the InAs layer. Theoretical calculations based on 6 band k ⋅ p theory have been carried out, and good agreements with experimental results are obtained. Our results demonstrate that, the IPOA of the QWs can be greatly and effectively tuned by inserting an ultra-thin InAs layer with different thicknesses at the interfaces of QWs, which does not significantly influence the transition energies and the transition probability of QWs.« less

  5. Crystal Structure Characterization of Thin Layer Zinc Oxide

    NASA Astrophysics Data System (ADS)

    Doyan, Aris; Susilawati; Azizatul Fitri, Siti; Ahzan, Sukainil

    2017-05-01

    In this research the characterization of the crystal structure of a thin layer of ZnO (zinc oxide) were synthesized by sol - gel method and spin coating deposited on a glass substrate. The samples were divided into three sol concentrations of 0.1, 0.3, 0.5 Molar and two deposition temperature is 350 °C, and 550 °C. UV-Vis. spectrophotometer results showed that in the spectrum of visible light (wavelength range 300-800 nm) has a transmittance value of which increases with increasing concentration and temperature deposition of zinc oxide, otherwise the value of the absorption and the band gap energy decreases with the addition of concentration and deposition temperature. The transmittances value of the highest and lowest absorption was 93.5% and 0.03 is at a concentration of 0.1 M and zinc oxide deposition temperature of 550 °C, with a value of band gap energy of 2.98 eV. The XRD results showed that the zinc oxide crystal orientation in the field of 013 with a crystal grain size 14.4472 nm. SEM results showed the surface morphology of zinc oxide such as rod-like.

  6. Diamond-like carbon (DLC) thin film bioelectrodes: effect of thermal post-treatments and the use of Ti adhesion layer.

    PubMed

    Laurila, Tomi; Rautiainen, Antti; Sintonen, Sakari; Jiang, Hua; Kaivosoja, Emilia; Koskinen, Jari

    2014-01-01

    The effect of thermal post-treatments and the use of Ti adhesion layer on the performance of thin film diamond like carbon bioelectrodes (DLC) have been investigated in this work. The following results were obtained: (i) The microstructure of the DLC layer after the deposition was amorphous and thermal annealing had no marked effect on the structure, (ii) formation of oxygen containing SiOx and Ti[O,C] layers were detected at the Si/Ti and Ti/DLC interfaces with the help of transmission electron microscope (TEM), (iii) thermal post-treatments increased the polar fraction of the surface energy, (iv) cyclic voltammetry (CV) measurements showed that the DLC films had wide water windows and were stable in contact with dilute sulphuric acid and phosphate buffered saline (PBS) solutions, (v) use of Ti interlayer between Pt(Ir) microwire and DLC layer was crucial for the electrodes to survive the electrochemical measurements without the loss of adhesion of the DLC layer, (vi) DLC electrodes with small exposed Pt areas were an order of magnitude more sensitive towards dopamine than Pt electrodes and (vii) thermal post-treatments did not markedly change the electrochemical behavior of the electrodes despite the significant increase in the polar nature of the surfaces. It can be concluded that thin DLC bioelectrodes are stable under physiological conditions and can detect dopamine in micro molar range, but their sensitivity must be further improved. © 2013 Elsevier B.V. All rights reserved.

  7. XPS-nanocharacterization of organic layers electrochemically grafted on the surface of SnO2 thin films to produce a new hybrid material coating

    NASA Astrophysics Data System (ADS)

    Drevet, R.; Dragoé, D.; Barthés-Labrousse, M. G.; Chaussé, A.; Andrieux, M.

    2016-10-01

    This work presents the synthesis and the characterization of hybrid material thin films obtained by the combination of two processes. The electrochemical grafting of organic layers made of carboxyphenyl moieties is carried out from the reduction of a diazonium salt on tin dioxide (SnO2) thin films previously deposited on Si substrates by metal organic chemical vapor deposition (MOCVD). Since the MOCVD experimental parameters impact the crystal growth of the SnO2 layer (i.e. its morphology and its texturation), various electrochemical grafting models can occur, producing different hybrid materials. In order to evidence the efficiency of the electrochemical grafting of the carboxyphenyl moieties, X-ray Photoelectron Spectroscopy (XPS) is used to characterize the first nanometers in depth of the synthesized hybrid material layer. Then three electrochemical grafting models are proposed.

  8. Highly improved photo-induced bias stability of sandwiched triple layer structure in sol-gel processed fluorine-doped indium zinc oxide thin film transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dongha; Park, Hyungjin; Bae, Byeong-Soo, E-mail: bsbae@kaist.ac.kr

    In order to improve the reliability of TFT, an Al{sub 2}O{sub 3} insulating layer is inserted between active fluorine doped indium zinc oxide (IZO:F) thin films to form a sandwiched triple layer. All the thin films were fabricated via low-cost sol-gel process. Due to its large energy bandgap and high bonding energy with oxygen atoms, the Al{sub 2}O{sub 3} layer acts as a photo-induced positive charge blocking layer that effectively blocks the migration of both holes and V {sub o}{sup 2+} toward the interface between the gate insulator and the semiconductor. The inserted Al{sub 2}O{sub 3} triple layer exhibits amore » noticeably low turn on voltage shift of −0.7 V under NBIS as well as the good TFT performance with a mobility of 10.9 cm{sup 2}/V ⋅ s. We anticipate that this approach can be used to solve the stability issues such as NBIS, which is caused by inescapable oxygen vacancies.« less

  9. WO{sub 3} thin film based multiple sensor array for electronic nose application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramgir, Niranjan S., E-mail: niranjanpr@yahoo.com, E-mail: deepakcct1991@gmail.com; Goyal, C. P.; Datta, N.

    2015-06-24

    Multiple sensor array comprising 16 x 2 sensing elements were realized using RF sputtered WO{sub 3} thin films. The sensor films were modified with a thin layer of sensitizers namely Au, Ni, Cu, Al, Pd, Ti, Pt. The resulting sensor array were tested for their response towards different gases namely H{sub 2}S, NH{sub 3}, NO and C{sub 2}H{sub 5}OH. The sensor response values measured from the response curves indicates that the sensor array generates a unique signature pattern (bar chart) for the gases. The sensor response values can be used to get both qualitative and quantitative information about the gas.

  10. An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic-inorganic hybrid perovskite solar cells.

    PubMed

    Seo, Seongrok; Park, Ik Jae; Kim, Myungjun; Lee, Seonhee; Bae, Changdeuck; Jung, Hyun Suk; Park, Nam-Gyu; Kim, Jin Young; Shin, Hyunjung

    2016-06-02

    NiO is a wide band gap p-type oxide semiconductor and has potential for applications in solar energy conversion as a hole-transporting layer (HTL). It also has good optical transparency and high chemical stability, and the capability of aligning the band edges to the perovskite (CH3NH3PbI3) layers. Ultra-thin and un-doped NiO films with much less absorption loss were prepared by atomic layer deposition (ALD) with highly precise control over thickness without any pinholes. Thin enough (5-7.5 nm in thickness) NiO films with the thickness of few time the Debye length (LD = 1-2 nm for NiO) show enough conductivities achieved by overlapping space charge regions. The inverted planar perovskite solar cells with NiO films as HTLs exhibited the highest energy conversion efficiency of 16.40% with high open circuit voltage (1.04 V) and fill factor (0.72) with negligible current-voltage hysteresis.

  11. Optimizing pentacene thin-film transistor performance: Temperature and surface condition induced layer growth modification.

    PubMed

    Lassnig, R; Hollerer, M; Striedinger, B; Fian, A; Stadlober, B; Winkler, A

    2015-11-01

    In this work we present in situ electrical and surface analytical, as well as ex situ atomic force microscopy (AFM) studies on temperature and surface condition induced pentacene layer growth modifications, leading to the selection of optimized deposition conditions and entailing performance improvements. We prepared p ++ -silicon/silicon dioxide bottom-gate, gold bottom-contact transistor samples and evaluated the pentacene layer growth for three different surface conditions (sputtered, sputtered + carbon and unsputtered + carbon) at sample temperatures during deposition of 200 K, 300 K and 350 K. The AFM investigations focused on the gold contacts, the silicon dioxide channel region and the highly critical transition area. Evaluations of coverage dependent saturation mobilities, threshold voltages and corresponding AFM analysis were able to confirm that the first 3-4 full monolayers contribute to the majority of charge transport within the channel region. At high temperatures and on sputtered surfaces uniform layer formation in the contact-channel transition area is limited by dewetting, leading to the formation of trenches and the partial development of double layer islands within the channel region instead of full wetting layers. By combining the advantages of an initial high temperature deposition (well-ordered islands in the channel) and a subsequent low temperature deposition (continuous film formation for low contact resistance) we were able to prepare very thin (8 ML) pentacene transistors of comparably high mobility.

  12. Optimizing pentacene thin-film transistor performance: Temperature and surface condition induced layer growth modification

    PubMed Central

    Lassnig, R.; Hollerer, M.; Striedinger, B.; Fian, A.; Stadlober, B.; Winkler, A.

    2015-01-01

    In this work we present in situ electrical and surface analytical, as well as ex situ atomic force microscopy (AFM) studies on temperature and surface condition induced pentacene layer growth modifications, leading to the selection of optimized deposition conditions and entailing performance improvements. We prepared p++-silicon/silicon dioxide bottom-gate, gold bottom-contact transistor samples and evaluated the pentacene layer growth for three different surface conditions (sputtered, sputtered + carbon and unsputtered + carbon) at sample temperatures during deposition of 200 K, 300 K and 350 K. The AFM investigations focused on the gold contacts, the silicon dioxide channel region and the highly critical transition area. Evaluations of coverage dependent saturation mobilities, threshold voltages and corresponding AFM analysis were able to confirm that the first 3–4 full monolayers contribute to the majority of charge transport within the channel region. At high temperatures and on sputtered surfaces uniform layer formation in the contact–channel transition area is limited by dewetting, leading to the formation of trenches and the partial development of double layer islands within the channel region instead of full wetting layers. By combining the advantages of an initial high temperature deposition (well-ordered islands in the channel) and a subsequent low temperature deposition (continuous film formation for low contact resistance) we were able to prepare very thin (8 ML) pentacene transistors of comparably high mobility. PMID:26543442

  13. High Performance 50 nm InAlAs/In0.75GaAs Metamorphic High Electron Mobility Transistors with Si3N4 Passivation on Thin InGaAs Layer

    NASA Astrophysics Data System (ADS)

    Yeon, Seongjin; Seo, Kwangseok

    2008-04-01

    We fabricated 50 nm InAlAs/InGaAs metamorphic high electron mobility transistors (HEMTs) with a very thin barrier. Through the reduction of the gate-channel distance (dGC) in the epitaxial structure, a channel aspect ratio (ARC) of over three was achieved when Lg was 50 nm. We inserted a thin InGaAs layer as a protective layer, and tested various gate structures to reduce surface problems induced by barrier shrinkage and to optimize the device characteristics. Through the optimization of the gate structure with the thin InGaAs layer, the fabricated 50 nm metamorphic HEMT exhibited high DC and RF characteristics, Gm of 1.5 S/mm, and fT of 490 GHz.

  14. Fabrication of PVDF-based blend membrane with a thin hydrophilic deposition layer and a network structure supporting layer via the thermally induced phase separation followed by non-solvent induced phase separation process

    NASA Astrophysics Data System (ADS)

    Wu, Zhiguo; Cui, Zhenyu; Li, Tianyu; Qin, Shuhao; He, Benqiao; Han, Na; Li, Jianxin

    2017-10-01

    A simple strategy of thermally induced phase separation followed by non-solvent induced phase separation (TIPS-NIPS) is reported to fabricate poly (vinylidene fluoride) (PVDF)-based blend membrane. The dissolved poly (styrene-co-maleic anhydride) (SMA) in diluent prevents the crystallization of PVDF during the cooling process and deposites on the established PVDF matrix in the later extraction. Compared with traditional coating technique, this one-step TIPS-NIPS method can not only fabricate a supporting layer with an interconnected network structure even via solid-liquid phase separation of TIPS, but also form a uniform SMA skin layer approximately as thin as 200 nm via surface deposition of NIPS. Besides the better hydrophilicity, what's interesting is that the BSA rejection ratio increases from 48% to 94% with the increase of SMA, which indicates that the separation performance has improved. This strategy can be conveniently extended to the creation of firmly thin layer, surface functionalization and structure controllability of the membrane.

  15. Helical Turing patterns in the Lengyel-Epstein model in thin cylindrical layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bánsági, T.; Taylor, A. F., E-mail: A.F.Taylor@sheffield.ac.uk

    2015-06-15

    The formation of Turing patterns was investigated in thin cylindrical layers using the Lengyel-Epstein model of the chlorine dioxide-iodine-malonic acid reaction. The influence of the width of the layer W and the diameter D of the inner cylinder on the pattern with intrinsic wavelength l were determined in simulations with initial random noise perturbations to the uniform state for W < l/2 and D ∼ l or lower. We show that the geometric constraints of the reaction domain may result in the formation of helical Turing patterns with parameters that give stripes (b = 0.2) or spots (b = 0.37) in two dimensions. For b = 0.2, the helices weremore » composed of lamellae and defects were likely as the diameter of the cylinder increased. With b = 0.37, the helices consisted of semi-cylinders and the orientation of stripes on the outer surface (and hence winding number) increased with increasing diameter until a new stripe appeared.« less

  16. In situ Silver Spot Preparation and on-Plate Surface-Enhanced Raman Scattering Detection in Thin Layer Chromatography Separation

    NASA Astrophysics Data System (ADS)

    Herman, K.; Mircescu, N. E.; Szabo, L.; Leopold, L. F.; Chiş, V.; Leopold, N.

    2013-05-01

    An improved approach for surface-enhanced Raman scattering (SERS) detection of mixture constituents after thin layer chromatography (TLC) separation is presented. A SERS active silver substrate was prepared under open air conditions, directly on the thin silica film by photo-reduction of silver nitrate, allowing the detection of binary mixtures of cresyl violet, bixine, crystal violet, and Cu(II) complex of 4-(2-pyridylazo)resorcinol. The recorded SERS spectrum provides a unique spectral fingerprint for each molecule; therefore the use of analyte standards is avoided, thus rendering the presented procedure advantageous compared to the conventional detection methodology in TLC.

  17. Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films

    PubMed Central

    Kocer, Hasan; Butun, Serkan; Palacios, Edgar; Liu, Zizhuo; Tongay, Sefaattin; Fu, Deyi; Wang, Kevin; Wu, Junqiao; Aydin, Koray

    2015-01-01

    Plasmonic and metamaterial based nano/micro-structured materials enable spectrally selective resonant absorption, where the resonant bandwidth and absorption intensity can be engineered by controlling the size and geometry of nanostructures. Here, we demonstrate a simple, lithography-free approach for obtaining a resonant and dynamically tunable broadband absorber based on vanadium dioxide (VO2) phase transition. Using planar layered thin film structures, where top layer is chosen to be an ultrathin (20 nm) VO2 film, we demonstrate broadband IR light absorption tuning (from ~90% to ~30% in measured absorption) over the entire mid-wavelength infrared spectrum. Our numerical and experimental results indicate that the bandwidth of the absorption bands can be controlled by changing the dielectric spacer layer thickness. Broadband tunable absorbers can find applications in absorption filters, thermal emitters, thermophotovoltaics and sensing. PMID:26294085

  18. Final Report: Rational Design of Wide Band Gap Buffer Layers for High-Efficiency Thin-Film Photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lordi, Vincenzo

    The main objective of this project is to enable rational design of wide band gap buffer layer materials for CIGS thin-film PV by building understanding of the correlation of atomic-scale defects in the buffer layer and at the buffer/absorber interface with device electrical properties. Optimized wide band gap buffers are needed to reduce efficiency loss from parasitic absorption in the buffer. The approach uses first-principles materials simulations coupled with nanoscale analytical electron microscopy as well as device electrical characterization. Materials and devices are produced by an industrial partner in a manufacturing line to maximize relevance, with the goal of enablingmore » R&D of new buffer layer compositions or deposition processes to push device efficiencies above 21%. Cadmium sulfide (CdS) is the reference material for analysis, as the prototypical high-performing buffer material.« less

  19. Polymer mediated layer-by-layer assembly of different shaped gold nanoparticles.

    PubMed

    Budy, Stephen M; Hamilton, Desmond J; Cai, Yuheng; Knowles, Michelle K; Reed, Scott M

    2017-02-01

    Gold nanoparticles (GNPs) have a wide range of properties with potential applications in electronics, optics, catalysis, and sensing. In order to demonstrate that dense, stable, and portable samples could be created for these applications, multiple layers of GNPs were assembled via drop casting on glass substrates by layer-by-layer (LBL) techniques. Two cationic polyelectrolytes, poly(diallyldimethylammonium chloride) and polyethyleneimine, one anionic polyelectrolyte, poly(sodium 4-styrene sulfonate), and one neutral polymer, polyvinylpyrrolidone, were combined with four different shapes of GNPs (spherical, rod, triangular prismatic, and octahedral) to prepare thin films. A subset of these polymer nanoparticle combinations were assembled into thin films. Synthesized GNPs were characterized via dynamic light scattering, UV-vis spectroscopy, and transmission electron microscopy and the LBL thin films were characterized using UV-vis spectroscopy and atomic force microscopy. Sensing applications of the nanoparticles in solution and thin films were tested by monitoring the localized surface plasmon resonance of the GNPs. LBL thin films were prepared ranging from 25 to 100 layers with optical densities at plasmon from 0.5 to 3.0. Sensitivity in solutions ranged from 14 to 1002nm/refractive index units (RIU) and films ranged from 18.8 to 135.1nm/RIU suggesting reduced access to the GNPs within the films. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Stretchable Characteristics of Thin Au Film on Polydimethylsiloxane Substrate with Parylene Intermediate Layer for Stretchable Electronic Packaging

    NASA Astrophysics Data System (ADS)

    Park, Donghyun; Shin, Soo Jin; Oh, Tae Sung

    2018-01-01

    Thin Au films with thickness of 150 nm could be reversibly stretched up to 30% elongation on polydimethylsiloxane (PDMS) substrate with 150-nm-thick Parylene C deposited as intermediate layer instead of a Cr adhesion layer. Prestretching of the Parylene-deposited PDMS was effective to suppress the resistance increase of Au films during their tensile elongation. While the resistance change rate Δ R/ R 0 of the Au film at 30% elongation was 11 without prestretching of the Parylene-deposited PDMS, it was substantially suppressed to 0.4 with 30% prestretching of the Parylene-deposited PDMS.

  1. Effect of organic buffer layer in the electrical properties of amorphous-indium gallium zinc oxide thin film transistor.

    PubMed

    Wang, Jian-Xun; Hyung, Gun Woo; Li, Zhao-Hui; Son, Sung-Yong; Kwon, Sang Jik; Kim, Young Kwan; Cho, Eou Sik

    2012-07-01

    In this research, we reported on the fabrication of top-contact amorphous-indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) with an organic buffer layer between inorganic gate dielectric and active layer in order to improve the electrical properties of devices. By inserting an organic buffer layer, it was possible to make an affirmation of the improvements in the electrical characteristics of a-IGZO TFTs such as subthreshold slope (SS), on/off current ratio (I(ON/OFF)), off-state current, and saturation field-effect mobility (muFE). The a-IGZO TFTs with the cross-linked polyvinyl alcohol (c-PVA) buffer layer exhibited the pronounced improvements of the muFE (17.4 cm2/Vs), SS (0.9 V/decade), and I(ON/OFF) (8.9 x 10(6)).

  2. Piezoresistivity of mechanically drawn single-walled carbon nanotube (SWCNT) thin films-: mechanism and optimizing principle

    NASA Astrophysics Data System (ADS)

    Obitayo, Waris

    The individual carbon nanotube (CNT) based strain sensors have been found to have excellent piezoresistive properties with a reported gauge factor (GF) of up to 3000. This GF on the other hand, has been shown to be structurally dependent on the nanotubes. In contrast, to individual CNT based strain sensors, the ensemble CNT based strain sensors have very low GFs e.g. for a single walled carbon nanotube (SWCNT) thin film strain sensor, GF is ~1. As a result, studies which are mostly numerical/analytical have revealed the dependence of piezoresistivity on key parameters like concentration, orientation, length and diameter, aspect ratio, energy barrier height and Poisson ratio of polymer matrix. The fundamental understanding of the piezoresistive mechanism in an ensemble CNT based strain sensor still remains unclear, largely due to discrepancies in the outcomes of these numerical studies. Besides, there have been little or no experimental confirmation of these studies. The goal of my PhD is to study the mechanism and the optimizing principle of a SWCNT thin film strain sensor and provide experimental validation of the numerical/analytical investigations. The dependence of the piezoresistivity on key parameters like orientation, network density, bundle diameter (effective tunneling area), and length is studied, and how one can effectively optimize the piezoresistive behavior of a SWCNT thin film strain sensors. To reach this goal, my first research accomplishment involves the study of orientation of SWCNTs and its effect on the piezoresistivity of mechanically drawn SWCNT thin film based piezoresistive sensors. Using polarized Raman spectroscopy analysis and coupled electrical-mechanical test, a quantitative relationship between the strain sensitivity and SWCNT alignment order parameter was established. As compared to randomly oriented SWCNT thin films, the one with draw ratio of 3.2 exhibited ~6x increase on the GF. My second accomplishment involves studying the

  3. Fabrication and evaluation of plasmonic light-emitting diodes with thin p-type layer and localized Ag particles embedded by ITO

    NASA Astrophysics Data System (ADS)

    Okada, N.; Morishita, N.; Mori, A.; Tsukada, T.; Tateishi, K.; Okamoto, K.; Tadatomo, K.

    2017-04-01

    Light-emitting diodes (LEDs) have been demonstrated with a thin p-type layer using the plasmonic effect. Optimal LED device operation was found when using a 20-nm-thick p+-GaN layer. Ag of different thicknesses was deposited on the thin p-type layer and annealed to form the localized Ag particles. The localized Ag particles were embedded by indium tin oxide to form a p-type electrode in the LED structure. By optimization of the plasmonic LED, the significant electroluminescence enhancement was observed when the thickness of Ag was 9.5 nm. Both upward and downward electroluminescence intensities were improved, and the external quantum efficiency was approximately double that of LEDs without the localized Ag particles. The time-resolved photoluminescence (PL) decay time for the LED with the localized Ag particles was shorter than that without the localized Ag particles. The faster PL decay time should cause the increase in internal quantum efficiency by adopting the localized Ag particles. To validate the localized surface plasmon resonance coupling effect, the absorption of the LEDs was investigated experimentally and using simulations.

  4. Experimental study on flat plate air solar collector using a thin sand layer

    NASA Astrophysics Data System (ADS)

    Lati, Moukhtar; Boughali, Slimane; Bouguettaia, Hamza; Mennouche, Djamel; Bechki, Djamel

    2016-07-01

    A flat plate air solar collector was constructed in the laboratory of New and Renewable Energy in Arid Zones LENREZA, Ouargla University-South East Algeria. The absorber of the flat plate air solar collector was laminated with a thin layer of local sand. This acted as a thermal storage system (packed bed) with a collecting area of 2.15 m2 (0.86 m × 2.5 m). It was noticed that the solar heater integrated with the thermal storage material delivered comparatively higher temperatures; thus, giving a better efficiency than the air heater without the thermal storage system.

  5. Application of a newly developed and validated high-performance thin-layer chromatographic method to control honey adulteration.

    PubMed

    Puscas, Anitta; Hosu, Anamaria; Cimpoiu, Claudia

    2013-01-11

    Honey is a saturated solution of sugars, used for a long time as a natural source of sugars and is an important ingredient in traditional medicine due to its antimicrobial, anti-inflammatory and antioxidant effects. Therefore, methods for quality control of honey and detection of its adulteration are very important. For this reason, the aim of this study is to develop and validate a new, simple and economical analytical method for detecting the adulteration of some Romanian honeys based on high-performance thin-layer chromatography (HPTLC) combined with image analysis. The proposed method involved the chromatographic separations of glucose, fructose and sucrose on silica gel HPTLC plates, developed twice with ethyl acetate-pyridine-water-acetic acid, 6:3:1:0.5 (v/v/v/v), followed by dipping in an immersion solution. The documentation of plates was performed using TLC visualization device and the images of plates were processed using a digital processor. The developed HPTLC method was validated for selectivity, linearity and range, LOD and LOQ, precision, robustness and accuracy. The method was then applied for quantitative determination of glucose, fructose and sucrose from different types of Romanian honeys, commercially available. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Bi-layer channel structure-based oxide thin-film transistors consisting of ZnO and Al-doped ZnO with different Al compositions and stacking sequences

    NASA Astrophysics Data System (ADS)

    Cho, Sung Woon; Yun, Myeong Gu; Ahn, Cheol Hyoun; Kim, So Hee; Cho, Hyung Koun

    2015-03-01

    Zinc oxide (ZnO)-based bi-layers, consisting of ZnO and Al-doped ZnO (AZO) layers grown by atomic layer deposition, were utilized as the channels of oxide thin-film transistors (TFTs). Thin AZO layers (5 nm) with different Al compositions (5 and 14 at. %) were deposited on top of and beneath the ZnO layers in a bi-layer channel structure. All of the bi-layer channel TFTs that included the AZO layers showed enhanced stability (Δ V Th ≤ 3.2 V) under a positive bias stress compared to the ZnO single-layer channel TFT (Δ V Th = 4.0 V). However, the AZO/ZnO bi-layer channel TFTs with an AZO interlayer between the gate dielectric and the ZnO showed a degraded field effect mobility (0.3 cm2/V·s for 5 at. % and 1.8 cm2/V·s for 14 at. %) compared to the ZnO single-layer channel TFT (5.5 cm2/V·s) due to increased scattering caused by Al-related impurities near the gate dielectric/channel interface. In contrast, the ZnO/AZO bi-layer channel TFTs with an AZO layer on top of the ZnO layer exhibited an improved field effect mobility (7.8 cm2/V·s for 14 at. %) and better stability. [Figure not available: see fulltext.

  7. High average power scaleable thin-disk laser

    DOEpatents

    Beach, Raymond J.; Honea, Eric C.; Bibeau, Camille; Payne, Stephen A.; Powell, Howard; Krupke, William F.; Sutton, Steven B.

    2002-01-01

    Using a thin disk laser gain element with an undoped cap layer enables the scaling of lasers to extremely high average output power values. Ordinarily, the power scaling of such thin disk lasers is limited by the deleterious effects of amplified spontaneous emission. By using an undoped cap layer diffusion bonded to the thin disk, the onset of amplified spontaneous emission does not occur as readily as if no cap layer is used, and much larger transverse thin disks can be effectively used as laser gain elements. This invention can be used as a high average power laser for material processing applications as well as for weapon and air defense applications.

  8. Compositional tuning of atomic layer deposited MgZnO for thin film transistors

    NASA Astrophysics Data System (ADS)

    Wrench, J. S.; Brunell, I. F.; Chalker, P. R.; Jin, J. D.; Shaw, A.; Mitrovic, I. Z.; Hall, S.

    2014-11-01

    Thin film transistors (TFTs) have been fabricated using magnesium zinc oxide (MgZnO) layers deposited by atomic layer deposition at 200 °C. The composition of the MgZnO is systematically modified by varying the ratio of MgO and ZnO deposition cycles. A blue-shift of the near band-edge photoluminescence after post-deposition annealing at 300 °C indicates significant activation of the Mg dopant. A 7:1 ratio of ZnO:MgO deposition cycles was used to fabricate a device with a TFT channel width of 2000 μm and a channel length of 60 μm. This transistor yielded an effective saturation mobility of 4 cm2/V s and a threshold voltage of 7.1 V, respectively. The on/off ratio was 1.6 × 10 6 and the maximum interface state density at the ZnO/SiO2 interface is ˜ 6.5 × 10 12 cm-2.

  9. Improving Powder Magnetic Core Properties via Application of Thin, Insulating Silica-Nanosheet Layers on Iron Powder Particles

    PubMed Central

    Ishizaki, Toshitaka; Nakano, Hideyuki; Tajima, Shin; Takahashi, Naoko

    2016-01-01

    A thin, insulating layer with high electrical resistivity is vital to achieving high performance of powder magnetic cores. Using layer-by-layer deposition of silica nanosheets or colloidal silica over insulating layers composed of strontium phosphate and boron oxide, we succeeded in fabricating insulating layers with high electrical resistivity on iron powder particles, which were subsequently used to prepare toroidal cores. The compact density of these cores decreased after coating with colloidal silica due to the substantial increase in the volume, causing the magnetic flux density to deteriorate. Coating with silica nanosheets, on the other hand, resulted in a higher electrical resistivity and a good balance between high magnetic flux density and low iron loss due to the thinner silica layers. Transmission electron microscopy images showed that the thickness of the colloidal silica coating was about 700 nm, while that of the silica nanosheet coating was 30 nm. There was one drawback to using silica nanosheets, namely a deterioration in the core mechanical strength. Nevertheless, the silica nanosheet coating resulted in nanoscale-thick silica layers that are favorable for enhancing the electrical resistivity. PMID:28336835

  10. Quantitative Nanomechanical Properties of Multilayer Films Made of Polysaccharides through Spray Assisted Layer-by-Layer Assembly.

    PubMed

    Criado, Miryam; Rebollar, Esther; Nogales, Aurora; Ezquerra, Tiberio A; Boulmedais, Fouzia; Mijangos, Carmen; Hernández, Rebeca

    2017-01-09

    Nanomechanical properties of alginate/chitosan (Alg/Chi) multilayer films, obtained through spray assisted layer-by-layer assembly, were studied by means of PeakForce quantitative nanomechanical mapping atomic force microscopy (PF-QNM AFM). Prepared at two different alginate concentrations (1.0 and 2.5 mg/mL) and a fixed chitosan concentration (1.0 mg/mL), Alg/Chi films have an exponential growth in thickness with a transition to a linear growth toward a plateau by increasing the number of deposited bilayers. Height, elastic modulus, deformation, and adhesion maps were simultaneously recorded depending on the number of deposited bilayers. The elastic modulus of Alg/Chi films was found to be related to the mechanism of growth in contrast to the adhesion and deformation. A comparison of the nanomechanical properties obtained for non-cross-linked and thermally cross-linked Alg/Chi films revealed an increase of the elastic modulus after cross-linking regardless alginate concentration. The incorporation of iron oxide nanoparticles (NPs), during the spray preparation of the films, gave rise to nanocomposite Alg/Chi films with increased elastic moduli with the number of incorporated NPs layers. Deformation maps of the films strongly suggested the presence of empty spaces associated with the method of preparation. Finally, adhesion measurements point out to a significant role of NPs on the increase of the adhesion values found for nanocomposite films.

  11. A theoretical modeling of photocurrent generation and decay in layered MoS2 thin-film transistor photosensors

    NASA Astrophysics Data System (ADS)

    Hur, Ji-Hyun; Park, Junghak; Jeon, Sanghun

    2017-02-01

    A model that universally describes the characteristics of photocurrent in molybdenum disulphide (MoS2) thin-film transistor (TFT) photosensors in both ‘light on’ and ‘light off’ conditions is presented for the first time. We considered possible material-property dependent carrier generation and recombination mechanisms in layered MoS2 channels with different numbers of layers. We propose that the recombination rates that are mainly composed of direct band-to-band recombination and interface trap-involved recombination change on changing the light condition and the number of layers. By comparing the experimental results, it is shown that the model performs well in describing the photocurrent behaviors of MoS2 TFT photosensors, including the photocurrent generation under illumination and a hugely long time persistent trend of the photocurrent decay in the dark condition, for a range of MoS2 layer numbers.

  12. Kelvin-Helmholtz instability of a thin liquid sheet: Effect of the gas-boundary layer

    NASA Astrophysics Data System (ADS)

    Tirumkudulu, Mahesh

    2017-11-01

    It is well known that when a thin liquid sheet moves with respect to a surrounding gas phase, the liquid sheet is susceptible to the Kelvin-Helmholtz instability. Here, flow in both the liquid and the gas phases are assumed to be inviscid. In this work, we include exactly via a perturbation analysis, the influence of the growing boundary layer in the gas phase in the base flow and show that both temporal and spatial growth rates obtained from the linear stability analysis are significantly reduced due to the presence of the boundary layer. These results are in line with the simulation results of Lozano et al. and Tammisola et al.. We conclude with the implication of these results on the break-up of radially expanding liquid sheets. Funding from IIT Bombay, CSIR India, and Trinity College, Cambridge University is acknowledged.

  13. Self-assembly of dodecaphenyl POSS thin films

    NASA Astrophysics Data System (ADS)

    Handke, Bartosz; Klita, Łukasz; Niemiec, Wiktor

    2017-12-01

    The self-assembly abilities of Dodecaphenyl Polyhedral Oligomeric Silsesquioxane thin films on Si(1 0 0) surfaces were studied. Due to their thermal properties - relatively low sublimation temperature and preservation of molecular structure - cage type silsesquioxanes are ideal material for the preparation of a thin films by Physical Vapor Deposition. The Ultra-High Vacuum environment and the deposition precision of the PVD method enable the study of early stages of thin film growth and its molecular organization. X-ray Reflectivity and Atomic Force Microscopy measurements allow to pursuit size-effects in the structure of thin films with thickness ranges from less than a single molecular layer up to several tens of layers. Thermal treatment of the thin films triggered phase change: from a poorly ordered polycrystalline film into a well-ordered multilayer structure. Self-assembly of the layers is the effect of the π-stacking of phenyl rings, which force molecules to arrange in a superlattice, forming stacks of alternating organic-inorganic layers.

  14. Single frequency thermal wave radar: A next-generation dynamic thermography for quantitative non-destructive imaging over wide modulation frequency ranges.

    PubMed

    Melnikov, Alexander; Chen, Liangjie; Ramirez Venegas, Diego; Sivagurunathan, Koneswaran; Sun, Qiming; Mandelis, Andreas; Rodriguez, Ignacio Rojas

    2018-04-01

    Single-Frequency Thermal Wave Radar Imaging (SF-TWRI) was introduced and used to obtain quantitative thickness images of coatings on an aluminum block and on polyetherketone, and to image blind subsurface holes in a steel block. In SF-TWR, the starting and ending frequencies of a linear frequency modulation sweep are chosen to coincide. Using the highest available camera frame rate, SF-TWRI leads to a higher number of sampled points along the modulation waveform than conventional lock-in thermography imaging because it is not limited by conventional undersampling at high frequencies due to camera frame-rate limitations. This property leads to large reduction in measurement time, better quality of images, and higher signal-noise-ratio across wide frequency ranges. For quantitative thin-coating imaging applications, a two-layer photothermal model with lumped parameters was used to reconstruct the layer thickness from multi-frequency SF-TWR images. SF-TWRI represents a next-generation thermography method with superior features for imaging important classes of thin layers, materials, and components that require high-frequency thermal-wave probing well above today's available infrared camera technology frame rates.

  15. Single frequency thermal wave radar: A next-generation dynamic thermography for quantitative non-destructive imaging over wide modulation frequency ranges

    NASA Astrophysics Data System (ADS)

    Melnikov, Alexander; Chen, Liangjie; Ramirez Venegas, Diego; Sivagurunathan, Koneswaran; Sun, Qiming; Mandelis, Andreas; Rodriguez, Ignacio Rojas

    2018-04-01

    Single-Frequency Thermal Wave Radar Imaging (SF-TWRI) was introduced and used to obtain quantitative thickness images of coatings on an aluminum block and on polyetherketone, and to image blind subsurface holes in a steel block. In SF-TWR, the starting and ending frequencies of a linear frequency modulation sweep are chosen to coincide. Using the highest available camera frame rate, SF-TWRI leads to a higher number of sampled points along the modulation waveform than conventional lock-in thermography imaging because it is not limited by conventional undersampling at high frequencies due to camera frame-rate limitations. This property leads to large reduction in measurement time, better quality of images, and higher signal-noise-ratio across wide frequency ranges. For quantitative thin-coating imaging applications, a two-layer photothermal model with lumped parameters was used to reconstruct the layer thickness from multi-frequency SF-TWR images. SF-TWRI represents a next-generation thermography method with superior features for imaging important classes of thin layers, materials, and components that require high-frequency thermal-wave probing well above today's available infrared camera technology frame rates.

  16. Nanomechanical properties of platinum thin films synthesized by atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamun, M.A.; Gu, D.; Baumgart, H.

    2015-03-01

    The nanomechanical properties of Pt thin films grown on Si (100) using atomic layer deposition (ALD) were investigated using nanoindentation. Recently, atomic layer deposition (ALD) has successfully demonstrated the capability to deposit ultra-thin films of platinum (Pt). Using (methylcyclopentadienyl) trimethylplatinum (MeCpPtMe3) as chemical platinum precursor and oxygen (O2) as the oxidizing agent, the ALD synthesis of Pt can be achieved with high conformity and excellent film uniformity. The ALD process window for Pt films was experimentally established in the temperature range between 270 °C and 320 °C, where the sheet conductance was constant over that temperature range, indicating stable ALDmore » Pt film growth rate. ALD growth of Pt films exhibits very poor nucleation and adhesion characteristics on bare Si surfaces when the native oxide was removed by 2% HF etch. Pt adhesion improves for thermally oxidized Si wafers and for Si wafers covered with native oxide. Three ALD Pt films deposited at 800, 900, and 1000 ALD deposition cycles were tested for the structural and mechanical properties. Additionally, the sample with 900 ALD deposition cycles was further annealed in forming gas (95% N2 and 5% H2) at 450 °C for 30 min in order to passivate dangling bonds in the grain boundaries of the polycrystalline Pt film. Cross-sectional transmission electron microscopy (TEM), X-ray diffraction (XRD), atomic force microscopy (AFM), and scanning electron microscope (SEM) were employed to characterize the films' surface structure and morphology. Nanoindentation technique was used to evaluate the hardness and modulus of the ALD Pt films of various film thicknesses. The results indicate that the films depict comparable hardness and modulus results; however, the 800 and 1000 ALD deposition cycles films without forming gas annealing experienced significant amount of pileup, whereas the 900 ALD deposition cycles sample annealed in forming gas resulted in a smaller

  17. Fabrication and improved photoelectrochemical properties of a transferred GaN-based thin film with InGaN/GaN layers.

    PubMed

    Cao, Dezhong; Xiao, Hongdi; Gao, Qingxue; Yang, Xiaokun; Luan, Caina; Mao, Hongzhi; Liu, Jianqiang; Liu, Xiangdong

    2017-08-17

    Herein, a lift-off mesoporous GaN-based thin film, which consisted of a strong phase-separated InGaN/GaN layer and an n-GaN layer, was fabricated via an electrochemical etching method in a hydrofluoric acid (HF) solution for the first time and then transferred onto quartz or n-Si substrates, acting as photoanodes during photoelectrochemical (PEC) water splitting in a 1 M NaCl aqueous solution. Compared to the as-grown GaN-based film, the transferred GaN-based thin films possess higher and blue-shifted light emission, presumably resulting from an increase in the surface area and stress relaxation in the InGaN/GaN layer embedded on the mesoporous n-GaN. The properties such as (i) high photoconversion efficiency, (ii) low turn-on voltage (-0.79 V versus Ag/AgCl), and (iii) outstanding stability enable the transferred films to have excellent PEC water splitting ability. Furthermore, as compared to the film transferred onto the quartz substrate, the film transferred onto the n-Si substrate exhibits higher photoconversion efficiency (2.99% at -0.10 V) due to holes (h + ) in the mesoporous n-GaN layer that originate from the n-Si substrate.

  18. Ultra-thin GaAs single-junction solar cells integrated with a reflective back scattering layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Weiquan; Becker, Jacob; Liu, Shi

    2014-05-28

    This paper reports the proposal, design, and demonstration of ultra-thin GaAs single-junction solar cells integrated with a reflective back scattering layer to optimize light management and minimize non-radiative recombination. According to our recently developed semi-analytical model, this design offers one of the highest potential achievable efficiencies for GaAs solar cells possessing typical non-radiative recombination rates found among commercially available III-V arsenide and phosphide materials. The structure of the demonstrated solar cells consists of an In{sub 0.49}Ga{sub 0.51}P/GaAs/In{sub 0.49}Ga{sub 0.51}P double-heterostructure PN junction with an ultra-thin 300 nm thick GaAs absorber, combined with a 5 μm thick Al{sub 0.52}In{sub 0.48}P layer with amore » textured as-grown surface coated with Au used as a reflective back scattering layer. The final devices were fabricated using a substrate-removal and flip-chip bonding process. Solar cells with a top metal contact coverage of 9.7%, and a MgF{sub 2}/ZnS anti-reflective coating demonstrated open-circuit voltages (V{sub oc}) up to 1.00 V, short-circuit current densities (J{sub sc}) up to 24.5 mA/cm{sup 2}, and power conversion efficiencies up to 19.1%; demonstrating the feasibility of this design approach. If a commonly used 2% metal grid coverage is assumed, the anticipated J{sub sc} and conversion efficiency of these devices are expected to reach 26.6 mA/cm{sup 2} and 20.7%, respectively.« less

  19. Purification of silicon powder by the formation of thin porous layer followed byphoto-thermal annealing.

    PubMed

    Khalifa, Marouan; Hajji, Messaoud; Ezzaouia, Hatem

    2012-08-08

    Porous silicon has been prepared using a vapor-etching based technique on a commercial silicon powder. Strong visible emission was observed in all samples. Obtained silicon powder with a thin porous layer at the surface was subjected to a photo-thermal annealing at different temperatures under oxygen atmosphere followed by a chemical treatment. Inductively coupled plasma atomic emission spectrometry results indicate that silicon purity is improved from 99.1% to 99.994% after annealing at 900°C.

  20. Thin layer chromatographic method for the detection of uric acid: collaborative study.

    PubMed

    Thrasher, J J; Abadie, A

    1978-07-01

    A collaborative study has been completed on an improved method for the detection and confirmation of uric acid from bird and insect excreta. The proposed method involves the lithium carbonate solubilization of the suspect excreta material, followed by butanol-methanol-water-acetic acid thin layer chromatography, and trisodium phosphate-phosphotungstic acid color development. The collaborative tests resulted in 100% detection of uric acid standard at the 50 ng level and 75% detection at the 20-25 ng level. No false positives were reported during tests of compounds similar to uric acid. The proposed method has been adopted official first action; the present official final action method, 44.161, will be retained for screening purposes.