Field, Christopher R.; Lubrano, Adam; Woytowitz, Morgan; Giordano, Braden C.; Rose-Pehrsson, Susan L.
2014-01-01
The direct liquid deposition of solution standards onto sorbent-filled thermal desorption tubes is used for the quantitative analysis of trace explosive vapor samples. The direct liquid deposition method yields a higher fidelity between the analysis of vapor samples and the analysis of solution standards than using separate injection methods for vapors and solutions, i.e., samples collected on vapor collection tubes and standards prepared in solution vials. Additionally, the method can account for instrumentation losses, which makes it ideal for minimizing variability and quantitative trace chemical detection. Gas chromatography with an electron capture detector is an instrumentation configuration sensitive to nitro-energetics, such as TNT and RDX, due to their relatively high electron affinity. However, vapor quantitation of these compounds is difficult without viable vapor standards. Thus, we eliminate the requirement for vapor standards by combining the sensitivity of the instrumentation with a direct liquid deposition protocol to analyze trace explosive vapor samples. PMID:25145416
Field, Christopher R; Lubrano, Adam; Woytowitz, Morgan; Giordano, Braden C; Rose-Pehrsson, Susan L
2014-07-25
The direct liquid deposition of solution standards onto sorbent-filled thermal desorption tubes is used for the quantitative analysis of trace explosive vapor samples. The direct liquid deposition method yields a higher fidelity between the analysis of vapor samples and the analysis of solution standards than using separate injection methods for vapors and solutions, i.e., samples collected on vapor collection tubes and standards prepared in solution vials. Additionally, the method can account for instrumentation losses, which makes it ideal for minimizing variability and quantitative trace chemical detection. Gas chromatography with an electron capture detector is an instrumentation configuration sensitive to nitro-energetics, such as TNT and RDX, due to their relatively high electron affinity. However, vapor quantitation of these compounds is difficult without viable vapor standards. Thus, we eliminate the requirement for vapor standards by combining the sensitivity of the instrumentation with a direct liquid deposition protocol to analyze trace explosive vapor samples.
NASA Astrophysics Data System (ADS)
Samek, O.; Beddows, D. C. S.; Telle, H. H.; Morris, G. W.; Liska, M.; Kaiser, J.
The technique of laser ablation is receiving increasing attention for applications in dentistry, specifically for the treatment of teeth (e.g. drilling of micro-holes and plaque removal). In the process of ablation a luminous micro-plasma is normally generated which may be exploited for elemental analysis. Here we report on quantitative Laser-Induced Breakdown Spectroscopy (LIBS) analysis to study the presence of trace minerals in teeth. A selection of teeth of different age groups has been investigated, ranging from the first teeth of infants, through the second teeth of children, to adults to trace the influence of environmental factors on the accumulation of a number of elements in teeth. We found a close link between elements detected in tooth fillings and toothpastes with those present in teeth.
Application of relativistic electrons for the quantitative analysis of trace elements
NASA Astrophysics Data System (ADS)
Hoffmann, D. H. H.; Brendel, C.; Genz, H.; Löw, W.; Richter, A.
1984-04-01
Particle induced X-ray emission methods (PIXE) have been extended to relativistic electrons to induce X-ray emission (REIXE) for quantitative trace-element analysis. The electron beam (20 ≤ E0≤ 70 MeV) was supplied by the Darmstadt electron linear accelerator DALINAC. Systematic measurements of absolute K-, L- and M-shell ionization cross sections revealed a scaling behaviour of inner-shell ionization cross sections from which X-ray production cross sections can be deduced for any element of interest for a quantitative sample investigation. Using a multielemental mineral monazite sample from Malaysia the sensitivity of REIXE is compared to well established methods of trace-element analysis like proton- and X-ray-induced X-ray fluorescence analysis. The achievable detection limit for very heavy elements amounts to about 100 ppm for the REIXE method. As an example of an application the investigation of a sample prepared from manganese nodules — picked up from the Pacific deep sea — is discussed, which showed the expected high mineral content of Fe, Ni, Cu and Ti, although the search for aliquots of Pt did not show any measurable content within an upper limit of 250 ppm.
NASA Technical Reports Server (NTRS)
Kuehner, S. M.; Laughlin, J. R.; Grossman, L.; Johnson, M. L.; Burnett, D. S.
1989-01-01
The applicability of ion microprobe (IMP) for quantitative analysis of minor elements (Sr, Y, Zr, La, Sm, and Yb) in the major phases present in natural Ca-, Al-rich inclusions (CAIs) was investigated by comparing IMP results with those of an electron microprobe (EMP). Results on three trace-element-doped glasses indicated that it is not possible to obtain precise quantitative analysis by using IMP if there are large differences in SiO2 content between the standards used to derive the ion yields and the unknowns.
Xiu, Junshan; Dong, Lili; Qin, Hua; Liu, Yunyan; Yu, Jin
2016-12-01
The detection limit of trace metals in liquids has been improved greatly by laser-induced breakdown spectroscopy (LIBS) using solid substrate. A paper substrate and a metallic substrate were used as a solid substrate for the detection of trace metals in aqueous solutions and viscous liquids (lubricating oils) respectively. The matrix effect on quantitative analysis of trace metals in two types of liquids was investigated. For trace metals in aqueous solutions using paper substrate, the calibration curves established for pure solutions and mixed solutions samples presented large variation on both the slope and the intercept for the Cu, Cd, and Cr. The matrix effects among the different elements in mixed solutions were observed. However, good agreement was obtained between the measured and known values in real wastewater. For trace metals in lubricating oils, the matrix effect between the different oils is relatively small and reasonably negligible under the conditions of our experiment. A universal calibration curve can be established for trace metals in different types of oils. The two approaches are verified that it is possible to develop a feasible and sensitive method with accuracy results for rapid detection of trace metals in industrial wastewater and viscous liquids by laser-induced breakdown spectroscopy. © The Author(s) 2016.
Trace analysis of high-purity graphite by LA-ICP-MS.
Pickhardt, C; Becker, J S
2001-07-01
Laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been established as a very efficient and sensitive technique for the direct analysis of solids. In this work the capability of LA-ICP-MS was investigated for determination of trace elements in high-purity graphite. Synthetic laboratory standards with a graphite matrix were prepared for the purpose of quantifying the analytical results. Doped trace elements, concentration 0.5 microg g(-1), in a laboratory standard were determined with an accuracy of 1% to +/- 7% and a relative standard deviation (RSD) of 2-13%. Solution-based calibration was also used for quantitative analysis of high-purity graphite. It was found that such calibration led to analytical results for trace-element determination in graphite with accuracy similar to that obtained by use of synthetic laboratory standards for quantification of analytical results. Results from quantitative determination of trace impurities in a real reactor-graphite sample, using both quantification approaches, were in good agreement. Detection limits for all elements of interest were determined in the low ng g(-1) concentration range. Improvement of detection limits by a factor of 10 was achieved for analyses of high-purity graphite with LA-ICP-MS under wet plasma conditions, because the lower background signal and increased element sensitivity.
Neutron-activation analysis applied to copper ores and artifacts
NASA Technical Reports Server (NTRS)
Linder, N. F.
1970-01-01
Neutron activation analysis is used for quantitative identification of trace metals in copper. Establishing a unique fingerprint of impurities in Michigan copper would enable identification of artifacts made from this copper.
Jastrzembski, Jillian A; Bee, Madeleine Y; Sacks, Gavin L
2017-10-25
Ambient ionization mass spectrometric (AI-MS) techniques like direct analysis in real time (DART) offer the potential for rapid quantitative analyses of trace volatiles in food matrices, but performance is generally limited by the lack of preconcentration and extraction steps. The sensitivity and selectivity of AI-MS approaches can be improved through solid-phase microextraction (SPME) with appropriate thin-film geometries, for example, solid-phase mesh-enhanced sorption from headspace (SPMESH). This work improves the SPMESH-DART-MS approach for use in food analyses and validates the approach for trace volatile analysis for two compounds in real samples (grape macerates). SPMESH units prepared with different sorbent coatings were evaluated for their ability to extract a range of odor-active volatiles, with poly(dimethylsiloxane)/divinylbenzene giving the most satisfactory results. In combination with high-resolution mass spectrometry (HRMS), detection limits for SPMESH-DART-MS under 4 ng/L in less than 30 s acquisition times could be achieved for some volatiles [3-isobutyl-2-methoxypyrazine (IBMP) and β-damascenone]. A comparison of SPMESH-DART-MS and SPME-GC-MS quantitation of linalool and IBMP demonstrates excellent agreement between the two methods for real grape samples (r 2 ≥ 0.90), although linalool measurements appeared to also include isobaric interference.
Methods were developed for the extraction from soil, identification, confirmation and quantitation by LC/MS/MS of trace levels of perfluorinated octanoic acid (PFOA), perfluorinated nonanoic acid (PFNA) and perfluorinated decanoic acid (PFDA). Whereas PFOA, PFNA and PFDA all can...
Fu, Hongbo; Wang, Huadong; Jia, Junwei; Ni, Zhibo; Dong, Fengzhong
2018-01-01
Due to the influence of major elements' self-absorption, scarce observable spectral lines of trace elements, and relative efficiency correction of experimental system, accurate quantitative analysis with calibration-free laser-induced breakdown spectroscopy (CF-LIBS) is in fact not easy. In order to overcome these difficulties, standard reference line (SRL) combined with one-point calibration (OPC) is used to analyze six elements in three stainless-steel and five heat-resistant steel samples. The Stark broadening and Saha - Boltzmann plot of Fe are used to calculate the electron density and the plasma temperature, respectively. In the present work, we tested the original SRL method, the SRL with the OPC method, and intercept with the OPC method. The final calculation results show that the latter two methods can effectively improve the overall accuracy of quantitative analysis and the detection limits of trace elements.
Ultrasensitive, self-calibrated cavity ring-down spectrometer for quantitative trace gas analysis.
Chen, Bing; Sun, Yu R; Zhou, Ze-Yi; Chen, Jian; Liu, An-Wen; Hu, Shui-Ming
2014-11-10
A cavity ring-down spectrometer is built for trace gas detection using telecom distributed feedback (DFB) diode lasers. The longitudinal modes of the ring-down cavity are used as frequency markers without active-locking either the laser or the high-finesse cavity. A control scheme is applied to scan the DFB laser frequency, matching the cavity modes one by one in sequence and resulting in a correct index at each recorded spectral data point, which allows us to calibrate the spectrum with a relative frequency precision of 0.06 MHz. Besides the frequency precision of the spectrometer, a sensitivity (noise-equivalent absorption) of 4×10-11 cm-1 Hz-1/2 has also been demonstrated. A minimum detectable absorption coefficient of 5×10-12 cm-1 has been obtained by averaging about 100 spectra recorded in 2 h. The quantitative accuracy is tested by measuring the CO2 concentrations in N2 samples prepared by the gravimetric method, and the relative deviation is less than 0.3%. The trace detection capability is demonstrated by detecting CO2 of ppbv-level concentrations in a high-purity nitrogen gas sample. Simple structure, high sensitivity, and good accuracy make the instrument very suitable for quantitative trace gas analysis.
NASA Technical Reports Server (NTRS)
Podwysocki, M. H.
1974-01-01
Two study areas in a cratonic platform underlain by flat-lying sedimentary rocks were analyzed to determine if a quantitative relationship exists between fracture trace patterns and their frequency distributions and subsurface structural closures which might contain petroleum. Fracture trace lengths and frequency (number of fracture traces per unit area) were analyzed by trend surface analysis and length frequency distributions also were compared to a standard Gaussian distribution. Composite rose diagrams of fracture traces were analyzed using a multivariate analysis method which grouped or clustered the rose diagrams and their respective areas on the basis of the behavior of the rays of the rose diagram. Analysis indicates that the lengths of fracture traces are log-normally distributed according to the mapping technique used. Fracture trace frequency appeared higher on the flanks of active structures and lower around passive reef structures. Fracture trace log-mean lengths were shorter over several types of structures, perhaps due to increased fracturing and subsequent erosion. Analysis of rose diagrams using a multivariate technique indicated lithology as the primary control for the lower grouping levels. Groupings at higher levels indicated that areas overlying active structures may be isolated from their neighbors by this technique while passive structures showed no differences which could be isolated.
Cloern, James E.; Cole, Brian E.; Caffrey, J.M.
1996-01-01
In this report, we focus on selection of an “optimum” station configuration for the channel of San Francisco Bay for vertical profiling of water quality. Our analysis is based on the monthly cruises conducted by the USGS under the auspices of the Regional Monitoring Program for Trace Substances (Caffrey et al. 1994; SFEI 1994). The underlying rationale for undertaking the analysis is that the distribution of trace substances is structured, at least in part, by the same forces acting on water quality parameters. This must be true to some extent, as trace substance concentrations are partially dependent on water quality characteristics such as salinity. On the other hand, the quantitative importance of these parameters in accounting for overall variability in individual trace substances is unknown. Furthermore, trace substances have their own unique sources, and these sources may dominate their distribution.
Quantitation and detection of vanadium in biologic and pollution materials
NASA Technical Reports Server (NTRS)
Gordon, W. A.
1974-01-01
A review is presented of special considerations and methodology for determining vanadium in biological and air pollution materials. In addition to descriptions of specific analysis procedures, general sections are included on quantitation of analysis procedures, sample preparation, blanks, and methods of detection of vanadium. Most of the information presented is applicable to the determination of other trace elements in addition to vanadium.
Fluorescent discrimination between traces of chemical warfare agents and their mimics.
Díaz de Greñu, Borja; Moreno, Daniel; Torroba, Tomás; Berg, Alexander; Gunnars, Johan; Nilsson, Tobias; Nyman, Rasmus; Persson, Milton; Pettersson, Johannes; Eklind, Ida; Wästerby, Pär
2014-03-19
An array of fluorogenic probes is able to discriminate between nerve agents, sarin, soman, tabun, VX and their mimics, in water or organic solvent, by qualitative fluorescence patterns and quantitative multivariate analysis, thus making the system suitable for the in-the-field detection of traces of chemical warfare agents as well as to differentiate between the real nerve agents and other related compounds.
Tanaka, Yuji; Yamashita, Takako; Nagoshi, Masayasu
2017-04-01
Hydrocarbon contamination introduced during point, line and map analyses in a field emission electron probe microanalysis (FE-EPMA) was investigated to enable reliable quantitative analysis of trace amounts of carbon in steels. The increment of contamination on pure iron in point analysis is proportional to the number of iterations of beam irradiation, but not to the accumulated irradiation time. A combination of a longer dwell time and single measurement with a liquid nitrogen (LN2) trap as an anti-contamination device (ACD) is sufficient for a quantitative point analysis. However, in line and map analyses, contamination increases with irradiation time in addition to the number of iterations, even though the LN2 trap and a plasma cleaner are used as ACDs. Thus, a shorter dwell time and single measurement are preferred for line and map analyses, although it is difficult to eliminate the influence of contamination. While ring-like contamination around the irradiation point grows during electron-beam irradiation, contamination at the irradiation point increases during blanking time after irradiation. This can explain the increment of contamination in iterative point analysis as well as in line and map analyses. Among the ACDs, which are tested in this study, specimen heating at 373 K has a significant contamination inhibition effect. This technique makes it possible to obtain line and map analysis data with minimum influence of contamination. The above-mentioned FE-EPMA data are presented and discussed in terms of the contamination-formation mechanisms and the preferable experimental conditions for the quantification of trace carbon in steels. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Devès, Guillaume; Cohen-Bouhacina, Touria; Ortega, Richard
2004-10-01
We used the nuclear microprobe techniques, micro-PIXE (particle-induced X-ray emission), micro-RBS (Rutherford backscattering spectrometry) and scanning transmission ion microscopy (STIM) in order to perform the characterization of trace element content and spatial distribution within biological samples (dehydrated cultured cells, tissues). The normalization of PIXE results was usually expressed in terms of sample dry mass as determined by micro-RBS recorded simultaneously to micro-PIXE. However, the main limit of RBS mass measurement is the sample mass loss occurring during irradiation and which could be up to 30% of the initial sample mass. We present here a new methodology for PIXE normalization and quantitative analysis of trace element within biological samples based on dry mass measurement performed by mean of STIM. The validation of STIM cell mass measurements was obtained in comparison with AFM sample thickness measurements. Results indicated the reliability of STIM mass measurement performed on biological samples and suggested that STIM should be performed for PIXE normalization. Further information deriving from direct confrontation of AFM and STIM analysis could as well be obtained, like in situ measurements of cell specific gravity within cells compartment (nucleolus and cytoplasm).
Chiu, Chi-yang; Jung, Jeesun; Chen, Wei; Weeks, Daniel E; Ren, Haobo; Boehnke, Michael; Amos, Christopher I; Liu, Aiyi; Mills, James L; Ting Lee, Mei-ling; Xiong, Momiao; Fan, Ruzong
2017-01-01
To analyze next-generation sequencing data, multivariate functional linear models are developed for a meta-analysis of multiple studies to connect genetic variant data to multiple quantitative traits adjusting for covariates. The goal is to take the advantage of both meta-analysis and pleiotropic analysis in order to improve power and to carry out a unified association analysis of multiple studies and multiple traits of complex disorders. Three types of approximate F -distributions based on Pillai–Bartlett trace, Hotelling–Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants. Simulation analysis is performed to evaluate false-positive rates and power of the proposed tests. The proposed methods are applied to analyze lipid traits in eight European cohorts. It is shown that it is more advantageous to perform multivariate analysis than univariate analysis in general, and it is more advantageous to perform meta-analysis of multiple studies instead of analyzing the individual studies separately. The proposed models require individual observations. The value of the current paper can be seen at least for two reasons: (a) the proposed methods can be applied to studies that have individual genotype data; (b) the proposed methods can be used as a criterion for future work that uses summary statistics to build test statistics to meta-analyze the data. PMID:28000696
Chiu, Chi-Yang; Jung, Jeesun; Chen, Wei; Weeks, Daniel E; Ren, Haobo; Boehnke, Michael; Amos, Christopher I; Liu, Aiyi; Mills, James L; Ting Lee, Mei-Ling; Xiong, Momiao; Fan, Ruzong
2017-02-01
To analyze next-generation sequencing data, multivariate functional linear models are developed for a meta-analysis of multiple studies to connect genetic variant data to multiple quantitative traits adjusting for covariates. The goal is to take the advantage of both meta-analysis and pleiotropic analysis in order to improve power and to carry out a unified association analysis of multiple studies and multiple traits of complex disorders. Three types of approximate F -distributions based on Pillai-Bartlett trace, Hotelling-Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants. Simulation analysis is performed to evaluate false-positive rates and power of the proposed tests. The proposed methods are applied to analyze lipid traits in eight European cohorts. It is shown that it is more advantageous to perform multivariate analysis than univariate analysis in general, and it is more advantageous to perform meta-analysis of multiple studies instead of analyzing the individual studies separately. The proposed models require individual observations. The value of the current paper can be seen at least for two reasons: (a) the proposed methods can be applied to studies that have individual genotype data; (b) the proposed methods can be used as a criterion for future work that uses summary statistics to build test statistics to meta-analyze the data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beach, Connor A.; Krumm, Christoph; Spanjers, Charles S.
Analysis of trace compounds, such as pesticides and other contaminants, within consumer products, fuels, and the environment requires quantification of increasingly complex mixtures of difficult-to-quantify compounds.
NASA Astrophysics Data System (ADS)
Smith, David; Španěl, Patrik
Our major objective in this paper is to describe a new method we have developed for the analysis of trace gases at partial pressures down to the ppb level in atmospheric air, with special emphasis on the detection and quantification of trace gases on human breath. It involves the use of our selected ion flow tube (Sift) technique which we previously developed and used extensively for the study of gas phase ionic reactions occurring in ionized media such as the terrestrial atmosphere and interstellar gas clouds. Before discussing this analytical technique we describe the results of our very recent Sift and flowing afterglow (FA) studies of the reactions of the H3O+ and OH- ions, of their hydrates H3O+(H2O)1,2,3 and OH- (H2O)1,2, and of NO+ and O2+, with several hydrocarbons and oxygen-bearing organic molecules, studies that are very relevant to our trace gas analytical studies. Then follows a detailed discussion of the application of our Sift technique to trace gas analysis, after which we present some results obtained for the analyses of laboratory air, the breath of a healthy non-smoking person, the breath of a person who regularly smokes cigarettes, the complex vapours emitted by banana and onion, and the molecules present in a butane/air flame. We show how the quantitative analysis of breath can be achieved from only a single exhalation and in real time (the time response of the instrument is only about 20 ms). We also show how the time variation of breath gases over long time periods can be followed, using the decay of ethanol on the breath after the ingestion of distilled liquor as an example, yet simultaneously following several other trace gases including acetone and isoprene which are very easily detected on the breath of all individuals because of their relatively high partial pressures (typically 100 to 1000 ppb). The breath of a smoker is richer in complex molecules, some nitrogen containing organics apparently being very evident at the 5 to 50 ppb level. These results and those for banana and onion vapours and butane/air flame forcibly demonstrate the value and the scope of our Sift ion chemistry approach to the analysis of very complex gas mixtures, and that this method is accurately quantitative if the appropriate ion chemistry is properly understood.
Sarkissian, Garry
2007-09-01
Automobile tire marks can routinely be found at the scenes of crime, particularly hit-and-run accidents and are left on road surfaces because of sudden braking or the wheels spinning. The tire marks are left due to the friction between the tire rubber and the solid road surface, and do not always demonstrate the tire tread pattern. However, the tire mark will contain traces of the tire. In this study, Pyrolysis Gas Chromatography/Mass Spectrometry was used to analyze 12 tires from different manufacturer's and their traces collected after braking incidents. Tire marks were left on a conglomerate road surface with sudden braking. The samples were pyrolysed without removal of contaminant in a micro-furnace type pyrolyser. Quantitative and qualitative analysis were performed on all the samples. All 12 samples were distinguished from each other. Each of the tire traces were identified as coming from there original source.
Quantitative Analysis of Trace Element Impurity Levels in Some Gem-Quality Diamonds
NASA Astrophysics Data System (ADS)
McNeill, J. C.; Klein-Bendavid, O.; Pearson, D. G.; Nowell, G. M.; Ottley, C. J.; Chinn, I.; Malarkey, J.
2009-05-01
Perhaps the most important information required to understand the origin of diamonds is the nature of the fluid that they crystallise from. Constraining the identity of the diamond-forming fluid for high purity gem diamonds is hampered by analytical challenges because of the very low analyte levels involved. Here we use a new ultra- low blank 'off-line' laser ablation method coupled to sector-field ICPMS for the quantitative analysis of fluid-poor gem diamonds. Ten diamonds comprised of both E- and P-type parageneses, from the Premier Mine, South Africa, were analysed for trace element abundances. We assume that the elemental signatures arise from low densities of sub-microscopic fluid inclusions that are analogous to the much higher densities of fluid inclusions commonly found within fluid-rich diamonds exhibiting fibrous growth. Repeatability of multiple (>20) blanks yielded consistently low values so that using the current procedure our limits of quantitation (10-ã blank) are <1pg for most trace elements, except for Sr, Zr, Ba, from 2-9pg and Pb ~30pg. Trace element patterns of the Premier diamond suite show enrichment of LREE over HREE. Abundances broadly decrease with increasing elemental compatibility. As a suite the chondrite normalised diamond patterns show negative Sr, Zr, Ti and Y anomalies and positive U, and Pb anomalies. All sample abundances are very depleted relative to chondrites (0.1 to 0.001X ch). HREE range from 0.1 to 1ppb as do Y, Nb, Cs. Other lighter elements vary from 2-30ppb. Pb reaches several ppb and Ti ranges from ppb values up to 2ppm. No significant difference were observed between the trace element systematics of the eclogitic and peridotitic diamonds. Overall, these initial data have inter-element fractionation patterns similar to those evident from fluid-rich fibrous diamonds and can be sued to infer that both types of diamond-forming fluids share a common origin.
Tykot, Robert H
2002-08-01
Chemical fingerprinting using major or trace element composition is used to characterize the Mediterranean island sources of obsidian and can even differentiate as many as nine flows in the Monte Arci region of Sardinia. Analysis of significant numbers of obsidian artifacts from Neolithic sites in the central Mediterranean reveals specific patterns of source exploitation and suggests particular trade mechanisms and routes. The use of techniques such as X-ray fluorescence, the electron microprobe, neutron activation analysis, and laser ablation ICP mass spectrometry are emphasized in order to produce quantitative results while minimizing damage to valuable artifacts.
[Remote sensing of atmospheric trace gas by airborne passive FTIR].
Gao, Min-quang; Liu, Wen-qing; Zhang, Tian-shu; Liu, Jian-guo; Lu, Yi-huai; Wang, Ya-ping; Xu, Liang; Zhu, Jun; Chen, Jun
2006-12-01
The present article describes the details of aviatic measurement for remote sensing trace gases in atmosphere under various surface backgrounds with airborne passive FTIR. The passive down viewing and remote sensing technique used in the experiment is discussed. The method of acquiring atmospheric trace gases infrared characteristic spectra in complicated background and the algorithm of concentration retrieval are discussed. The concentrations of CO and N2O of boundary-layer atmosphere in experimental region below 1000 m are analyzed quantitatively. This measurement technique and the data analysis method, which does not require a previously measured background spectrum, allow fast and mobile remote detection and identification of atmosphere trace gas in large area, and also can be used for urgent monitoring of pollution accidental breakout.
Friedman, J.D.; Huth, P.C.; Smiley, D.
1990-01-01
Reconnaissance sampling and chemical analysis of water from selected lakes, streams and springs of the northern Shawangunk Mountains in 1987 to 1988 to determine the influence of lithology on trace-metal concentrations in surface water, and to establish a base level of concentration of 27 selected metals by ICP-AES and Hg by cold-vapor AAS methods, for geochemical exploration, ecologic, acid-rain, and climatic-change studies, have yielded trace-metal concentrations greater than detection limits for 10 metallic elements. Eighteen additional metallic elements were also present in trace quantities below the quantitative detection limit. Two distinct geochemical populations are related to source lithology and pH. -from Authors
Recent advances in the sequencing of relevant water intrusion fungi by the EPA, combined with the development of probes and primers have allowed for the unequivocal quantitative and qualitative identification of fungi in selected matrices.
In this pilot study, quantitative...
Xu, Pengcheng; Yu, Haitao; Li, Xinxin
2016-05-03
Activation-energy (Ea) value for trace-amount adsorption of gas molecules on material is rapidly and inexpensively obtained, for the first time, from a microgravimetric analysis experiment. With the material loaded, a resonant microcantilever is used to record in real time the adsorption process at two temperatures. The kinetic parameter Ea is thereby extracted by solving the Arrhenius equation. As an example, two CO2 capture nanomaterials are examined by the Ea extracting method for evaluation/optimization and, thereby, demonstrating the applicability of the microgravimetric analysis method. The achievement helps to solve the absence in rapid quantitative characterization of sorption kinetics and opens a new route to investigate molecule adsorption processes and materials.
Lee, Sangyeop; Choi, Junghyun; Chen, Lingxin; Park, Byungchoon; Kyong, Jin Burm; Seong, Gi Hun; Choo, Jaebum; Lee, Yeonjung; Shin, Kyung-Hoon; Lee, Eun Kyu; Joo, Sang-Woo; Lee, Kyeong-Hee
2007-05-08
A rapid and highly sensitive trace analysis technique for determining malachite green (MG) in a polydimethylsiloxane (PDMS) microfluidic sensor was investigated using surface-enhanced Raman spectroscopy (SERS). A zigzag-shaped PDMS microfluidic channel was fabricated for efficient mixing between MG analytes and aggregated silver colloids. Under the optimal condition of flow velocity, MG molecules were effectively adsorbed onto silver nanoparticles while flowing along the upper and lower zigzag-shaped PDMS channel. A quantitative analysis of MG was performed based on the measured peak height at 1615 cm(-1) in its SERS spectrum. The limit of detection, using the SERS microfluidic sensor, was found to be below the 1-2 ppb level and this low detection limit is comparable to the result of the LC-Mass detection method. In the present study, we introduce a new conceptual detection technology, using a SERS microfluidic sensor, for the highly sensitive trace analysis of MG in water.
Statistical significance of trace evidence matches using independent physicochemical measurements
NASA Astrophysics Data System (ADS)
Almirall, Jose R.; Cole, Michael; Furton, Kenneth G.; Gettinby, George
1997-02-01
A statistical approach to the significance of glass evidence is proposed using independent physicochemical measurements and chemometrics. Traditional interpretation of the significance of trace evidence matches or exclusions relies on qualitative descriptors such as 'indistinguishable from,' 'consistent with,' 'similar to' etc. By performing physical and chemical measurements with are independent of one another, the significance of object exclusions or matches can be evaluated statistically. One of the problems with this approach is that the human brain is excellent at recognizing and classifying patterns and shapes but performs less well when that object is represented by a numerical list of attributes. Chemometrics can be employed to group similar objects using clustering algorithms and provide statistical significance in a quantitative manner. This approach is enhanced when population databases exist or can be created and the data in question can be evaluated given these databases. Since the selection of the variables used and their pre-processing can greatly influence the outcome, several different methods could be employed in order to obtain a more complete picture of the information contained in the data. Presently, we report on the analysis of glass samples using refractive index measurements and the quantitative analysis of the concentrations of the metals: Mg, Al, Ca, Fe, Mn, Ba, Sr, Ti and Zr. The extension of this general approach to fiber and paint comparisons also is discussed. This statistical approach should not replace the current interpretative approaches to trace evidence matches or exclusions but rather yields an additional quantitative measure. The lack of sufficient general population databases containing the needed physicochemical measurements and the potential for confusion arising from statistical analysis currently hamper this approach and ways of overcoming these obstacles are presented.
Removal of uranium from soil sample digests for ICP-OES analysis of trace metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foust, R.D. Jr.; Bidabad, M.
1996-10-01
An analytical procedure has been developed to quantitatively remove uranium from soil sample digests, permitting ICP-OES analysis of trace metals. The procedure involves digesting a soil sample with standard procedures (EPA SW-846, Method 3050), and passing the sample digestate through commercially available resin (U/TEVA{sm_bullet}Spec, Eichrom Industries, Inc.) containing diarryl amylphosphonate as the stationary phase. Quantitative removal of uranium was achieved with soil samples containing up to 60% uranium, and percent recoveries averaged better than 85% for 9 of the 10 metals evaluated (Ag, As, Cd. Cr, Cu, Ni, Pb, Se and Tl). The U/TEVA{sm_bullet}Spec column was regenerated by washing withmore » 200 mL of a 0.01 M oxalic acid/0.02 M nitric acid solution, permitting re-use of the column. GFAAS analysis of a sample spiked with 56.5% uranium, after treatment of the digestate with a U/TEVA{sm_bullet}Spec resin column, resulted in percent recoveries of 97% or better for all target metals.« less
Ajelli, Marco; Merler, Stefano; Fumanelli, Laura; Pastore Y Piontti, Ana; Dean, Natalie E; Longini, Ira M; Halloran, M Elizabeth; Vespignani, Alessandro
2016-09-07
Among the three countries most affected by the Ebola virus disease outbreak in 2014-2015, Guinea presents an unusual spatiotemporal epidemic pattern, with several waves and a long tail in the decay of the epidemic incidence. Here, we develop a stochastic agent-based model at the level of a single household that integrates detailed data on Guinean demography, hospitals, Ebola treatment units, contact tracing, and safe burial interventions. The microsimulation-based model is used to assess the effect of each control strategy and the probability of elimination of the epidemic according to different intervention scenarios, including ring vaccination with the recombinant vesicular stomatitis virus-vectored vaccine. The numerical results indicate that the dynamics of the Ebola epidemic in Guinea can be quantitatively explained by the timeline of the implemented interventions. In particular, the early availability of Ebola treatment units and the associated isolation of cases and safe burials helped to limit the number of Ebola cases experienced by Guinea. We provide quantitative evidence of a strong negative correlation between the time series of cases and the number of traced contacts. This result is confirmed by the computational model that suggests that contact tracing effort is a key determinant in the control and elimination of the disease. In data-driven microsimulations, we find that tracing at least 5-10 contacts per case is crucial in preventing epidemic resurgence during the epidemic elimination phase. The computational model is used to provide an analysis of the ring vaccination trial highlighting its potential effect on disease elimination. We identify contact tracing as one of the key determinants of the epidemic's behavior in Guinea, and we show that the early availability of Ebola treatment unit beds helped to limit the number of Ebola cases in Guinea.
NASA Technical Reports Server (NTRS)
Stiller, G. P.; Gunson, M. R.; Lowes, L. L.; Abrams, M. C.; Raper, O. F.; Farmer, C. B.; Zander, R.; Rinsland, C. P.
1995-01-01
A simple, classical, and expedient method for the retrieval of atmospheric pressure-temperature profiles has been applied to the high-resolution infrared solar absorption spectra obtained with the atmospheric trace molecule spectroscopy (ATMOS) instrument. The basis for this method is a rotational analysis of retrieved apparent abundances from CO2 rovibrational absorption lines, employing existing constituent concentration retrieval software used in the analysis of data returned by ATMOS. Pressure-temperature profiles derived from spectra acquired during the ATLAS 1 space shuttle mission of March-April 1992 are quantitatively evaluated and compared with climatological and meteorological data as a means of assessing the validity of this approach.
Statistics, Structures & Satisfied Customers: Using Web Log Data to Improve Site Performance.
ERIC Educational Resources Information Center
Peacock, Darren
This paper explores some of the ways in which the National Museum of Australia is using Web analysis tools to shape its future directions in the delivery of online services. In particular, it explores the potential of quantitative analysis, based on Web server log data, to convert these ephemeral traces of user experience into a strategic…
Li, Chongning; Ouyang, Huixiang; Tang, Xueping; Wen, Guiqing; Liang, Aihui; Jiang, Zhiliang
2017-01-15
With development of economy and society, there is an urgent need to develop convenient and sensitive methods for detection of Cu 2+ pollution in water. In this article, a simple and sensitive SERS sensor was proposed to quantitative analysis of trace Cu 2+ in water. The SERS sensor platform was prepared a common gold nanoparticle (AuNP)-SiO 2 sol substrate platform by adsorbing HSA, coupling with the catalytic reaction of Cu 2+ -ascorbic acid (H 2 A)-dissolved oxygen, and using label-free Victoria blue B (VBB) as SERS molecular probes. The SERS sensor platform response to the AuNP aggregations by hydroxyl radicals (•OH) oxidizing from the Cu 2+ catalytic reaction, which caused the SERS signal enhancement. Therefore, by monitoring the increase of SERS signal, Cu 2+ in water can be determined accurately. The results show that the SERS sensor platforms owns a linear response with a range from 0.025 to 25μmol/L Cu 2+ , and with a detection limit of 0.008μmol/L. In addition, the SERS method demonstrated good specificity for Cu 2+ , which can determined accurately trace Cu 2+ in water samples, and good recovery and accuracy are obtained for the water samples. With its high selectivity and good accuracy, the sensitive SERS quantitative analysis method is expected to be a promising candidate for determining copper ions in environmental monitoring and food safety. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashraf, M.; Jaffar, M.
1988-07-01
The role of trace metals in marine ecosystems has been keenly investigated during recent years. It is known that abundance of essential trace metals regulates the metal content in the organisms by homeostatic control mechanisms, which when cease to function cause essential trace metals to act in an either acutely or chronically toxic manner. Therefore, a correlation study based on essential and non-essential trace metal concentrations is imperative for extending the existing knowledge of bioaccumulation of trace metals in marine organisms. An attempt has been made in the present investigation to bring out quantitative correlations between the concentrations of iron,more » copper, lead and zinc in the edible muscle tissue of six species of marine fish: Salmon (salmon sole); tuna (thunnus thynnus); pomfret silver (pampus argenteus); Pomfret black (formioniger); long tail tuna (thynnus tonggel) and Indian oil sardine (sardinella longiceps). These fish are abundantly available in Pakistan along the coastal line of the Arabian Sea and have great commercial value. The computational analysis on the trace metal correlation was conducted using an MSTAT statistical package.« less
Global sensing of gaseous and aerosol trace species using automated instrumentation on 747 airliners
NASA Technical Reports Server (NTRS)
Perkins, P. J.; Papathakos, L. C.
1977-01-01
The Global Atmospheric Sampling Program (GASP) by NASA is collecting and analyzing data on gaseous and aerosol trace species in the upper troposphere and lower stratosphere. Measurements are obtained from automated systems installed on four 747 airliners flying global air routes. Advances were made in airborne sampling instrumentation. Improved instruments and analysis techniques are providing an expanding data base for trace species including ozone, carbon monoxide, water vapor, condensation nuclei and mass concentrations of sulfates and nitrates. Simultaneous measurements of several trace species obtained frequently can be used to uniquely identify the source of the air mass as being typically tropospheric or stratospheric. A quantitative understanding of the tropospheric-stratospheric exchange processes leads to better knowledge of the atmospheric impact of pollution through the development of improved simulation models of the atmosphere.
Detection of titanium in human tissues after craniofacial surgery.
Jorgenson, D S; Mayer, M H; Ellenbogen, R G; Centeno, J A; Johnson, F B; Mullick, F G; Manson, P N
1997-04-01
Generally, titanium fixation plates are not removed after osteosynthesis, because they have high biocompatability and high corrosion resistance characteristics. Experiments with laboratory animals, and limited studies of analyses of human tissues, have reported evidence of titanium release into local and distant tissues. This study summarizes our results of the analysis of soft tissues for titanium in four patients with titanium microfixation plates. Energy dispersive x-ray analysis, scanning electron microscopy, and electrothermal atomic absorption spectrophotometry were used to detect trace amounts of titanium in surrounding soft tissues. A single metal inclusion was detected by scanning electron microscopy and energy dispersive x-ray analysis in one patient, whereas, electrothermal atomic absorption spectrophotometry analyses revealed titanium present in three of four specimens in levels ranging from 7.92 to 31.8 micrograms/gm of dry tissue. Results from this study revealed trace amounts of titanium in tissues surrounding craniofacial plates. At the atomic level, electrothermal atomic absorption spectrophotometry appears to be a sensitive tool to quantitatively detect ultra-trace amounts of metal in human tissue.
Analysis of trace fibers by IR-MALDESI imaging coupled with high resolving power MS
Cochran, Kristin H.; Barry, Jeremy A.; Robichaud, Guillaume
2016-01-01
Trace evidence is a significant portion of forensic cases. Textile fibers are a common form of trace evidence that are gaining importance in criminal cases. Currently, qualitative techniques that do not yield structural information are primarily used for fiber analysis, but mass spectrometry is gaining an increasing role in this field. Mass spectrometry yields more quantitative structural information about the dye and polymer that can be used for more conclusive comparisons. Matrix-assisted laser desorption electrospray ionization (MALDESI) is a hybrid ambient ionization source being investigated for use in mass spectrometric fiber analysis. In this manuscript, IR-MALDESI was used as a source for mass spectrometry imaging (MSI) of a dyed nylon fiber cluster and single fiber. Information about the fiber polymer as well as the dye were obtained from a single fiber which was on the order of 10 μm in diameter. These experiments were performed directly from the surface of a tape lift of the fiber with a background of extraneous fibers. PMID:25081013
Analysis of trace fibers by IR-MALDESI imaging coupled with high resolving power MS.
Cochran, Kristin H; Barry, Jeremy A; Robichaud, Guillaume; Muddiman, David C
2015-01-01
Trace evidence is a significant portion of forensic cases. Textile fibers are a common form of trace evidence that are gaining importance in criminal cases. Currently, qualitative techniques that do not yield structural information are primarily used for fiber analysis, but mass spectrometry is gaining an increasing role in this field. Mass spectrometry yields more quantitative structural information about the dye and polymer that can be used for more conclusive comparisons. Matrix-assisted laser desorption electrospray ionization (MALDESI) is a hybrid ambient ionization source being investigated for use in mass spectrometric fiber analysis. In this manuscript, IR-MALDESI was used as a source for mass spectrometry imaging (MSI) of a dyed nylon fiber cluster and single fiber. Information about the fiber polymer as well as the dye were obtained from a single fiber which was on the order of 10 μm in diameter. These experiments were performed directly from the surface of a tape lift of the fiber with a background of extraneous fibers.
Rock fracture skeleton tracing by image processing and quantitative analysis by geometry features
NASA Astrophysics Data System (ADS)
Liang, Yanjie
2016-06-01
In rock engineering, fracture measurement is important for many applications. This paper proposes a novel method for rock fracture skeleton tracing and analyzing. As for skeleton localizing, the curvilinear fractures are multiscale enhanced based on a Hessian matrix, after image binarization, and clutters are post-processed by image analysis; subsequently, the fracture skeleton is extracted via ridge detection combined with a distance transform and thinning algorithm, after which gap sewing and burrs removal repair the skeleton. In regard to skeleton analyzing, the roughness and distribution of a fracture network are respectively described by the fractal dimensions D s and D b; the intersection and fragmentation of a fracture network are respectively characterized by the average number of ends and junctions per fracture N average and the average length per fracture L average. Three rock fracture surfaces are analyzed for experiments and the results verify that both the fracture tracing accuracy and the analysis feasibility are satisfactory using the new method.
In-injection port thermal desorption for explosives trace evidence analysis.
Sigman, M E; Ma, C Y
1999-10-01
A gas chromatographic method utilizing thermal desorption of a dry surface wipe for the analysis of explosives trace chemical evidence has been developed and validated using electron capture and negative ion chemical ionization mass spectrometric detection. Thermal desorption was performed within a split/splitless injection port with minimal instrument modification. Surface-abraded Teflon tubing provided the solid support for sample collection and desorption. Performance was characterized by desorption efficiency, reproducibility, linearity of the calibration, and method detection and quantitation limits. Method validation was performed with a series of dinitrotoluenes, trinitrotoluene, two nitroester explosives, and one nitramine explosive. The method was applied to the sampling of a single piece of debris from an explosion containing trinitrotoluene.
Tuinman, Albert A; Lewis, Linda A; Lewis, Samuel A
2003-06-01
The application of electrospray ionization mass spectrometry (ESI-MS) to trace-fiber color analysis is explored using acidic dyes commonly employed to color nylon-based fibers, as well as extracts from dyed nylon fibers. Qualitative information about constituent dyes and quantitative information about the relative amounts of those dyes present on a single fiber become readily available using this technique. Sample requirements for establishing the color identity of different samples (i.e., comparative trace-fiber analysis) are shown to be submillimeter. Absolute verification of dye mixture identity (beyond the comparison of molecular weights derived from ESI-MS) can be obtained by expanding the technique to include tandem mass spectrometry (ESI-MS/MS). For dyes of unknown origin, the ESI-MS/MS analyses may offer insights into the chemical structure of the compound-information not available from chromatographic techniques alone. This research demonstrates that ESI-MS is viable as a sensitive technique for distinguishing dye constituents extracted from a minute amount of trace-fiber evidence. A protocol is suggested to establish/refute the proposition that two fibers--one of which is available in minute quantity only--are of the same origin.
Broadband external cavity quantum cascade laser based sensor for gasoline detection
NASA Astrophysics Data System (ADS)
Ding, Junya; He, Tianbo; Zhou, Sheng; Li, Jinsong
2018-02-01
A new type of tunable diode spectroscopy sensor based on an external cavity quantum cascade laser (ECQCL) and a quartz crystal tuning fork (QCTF) were used for quantitative analysis of volatile organic compounds. In this work, the sensor system had been tested on different gasoline sample analysis. For signal processing, the self-established interpolation algorithm and multiple linear regression algorithm model were used for quantitative analysis of major volatile organic compounds in gasoline samples. The results were very consistent with that of the standard spectra taken from the Pacific Northwest National Laboratory (PNNL) database. In future, The ECQCL sensor will be used for trace explosive, chemical warfare agent, and toxic industrial chemical detection and spectroscopic analysis, etc.
2011-01-01
areas. We quantified morphometric features by geometric and fractal analysis of traced lesion boundaries. Although no single parameter can reliably...These include acoustic descriptors (“echogenicity,” “heterogeneity,” “shadowing”) and morphometric descriptors (“area,” “aspect ratio,” “border...quantitative descriptors; some morphometric features (such as border irregularity) also were particularly effective in lesion classification. Our
N-nitrosamines as "special case" leachables in a metered dose inhaler drug product.
Norwood, Daniel L; Mullis, James O; Feinberg, Thomas N; Davis, Letha K
2009-01-01
N-nitrosamines are chemical entities, some of which are considered to be possible human carcinogens, which can be found at trace levels in some types of foods, tobacco smoke, certain cosmetics, and certain types of rubber. N-nitrosamines are of regulatory concern as leachables in inhalation drug products, particularly metered dose inhalers, which incorporate rubber seals into their container closure systems. The United States Food and Drug Administration considers N-nitrosamines (along with polycyclic aromatic hydrocarbons and 2-mercaptobenzothiazole) to be "special case" leachables in inhalation drug products, meaning that there are no recognized safety or analytical thresholds and these compounds must therefore be identified and quantitated at the lowest practical level. This report presents the development of a quantitative analytical method for target volatile N-nitrosamines in a metered dose inhaler drug product, Atrovent HFA. The method incorporates a target analyte recovery procedure from the drug product matrix with analysis by gas chromatography/thermal energy analysis detection. The capability of the method was investigated with respect to specificity, linearity/range, accuracy (linearity of recovery), precision (repeatability, intermediate precision), limits of quantitation, standard/sample stability, and system suitability. Sample analyses showed that Atrovent HFA contains no target N-nitrosamines at the trace level of 1 ng/canister.
Gao, Jun; Manard, Benjamin Thomas; Castro, Alonso; ...
2017-02-02
Advances in sample nebulization and injection technology have significantly reduced the volume of solution required for trace impurity analysis in plutonium and uranium materials. Correspondingly, we have designed and tested a novel chip-based microfluidic platform, containing a 100-µL or 20-µL solid-phase microextraction column, packed by centrifugation, which supports nuclear material mass and solution volume reductions of 90% or more compared to standard methods. Quantitative recovery of 28 trace elements in uranium was demonstrated using a UTEVA chromatographic resin column, and trace element recovery from thorium (a surrogate for plutonium) was similarly demonstrated using anion exchange resin AG MP-1. Of ninemore » materials tested, compatibility of polyvinyl chloride (PVC), polypropylene (PP), and polytetrafluoroethylene (PTFE) chips with the strong nitric acid media was highest. Finally, the microcolumns can be incorporated into a variety of devices and systems, and can be loaded with other solid-phase resins for trace element assay in high-purity metals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Jun; Manard, Benjamin Thomas; Castro, Alonso
Advances in sample nebulization and injection technology have significantly reduced the volume of solution required for trace impurity analysis in plutonium and uranium materials. Correspondingly, we have designed and tested a novel chip-based microfluidic platform, containing a 100-µL or 20-µL solid-phase microextraction column, packed by centrifugation, which supports nuclear material mass and solution volume reductions of 90% or more compared to standard methods. Quantitative recovery of 28 trace elements in uranium was demonstrated using a UTEVA chromatographic resin column, and trace element recovery from thorium (a surrogate for plutonium) was similarly demonstrated using anion exchange resin AG MP-1. Of ninemore » materials tested, compatibility of polyvinyl chloride (PVC), polypropylene (PP), and polytetrafluoroethylene (PTFE) chips with the strong nitric acid media was highest. Finally, the microcolumns can be incorporated into a variety of devices and systems, and can be loaded with other solid-phase resins for trace element assay in high-purity metals.« less
Miller, C.M.; Nogar, N.S.
1982-09-02
Photoionization via autoionizing atomic levels combined with conventional mass spectroscopy provides a technique for quantitative analysis of trace quantities of chemical elements in the presence of much larger amounts of other elements with substantially the same atomic mass. Ytterbium samples smaller than 10 ng have been detected using an ArF* excimer laser which provides the atomic ions for a time-of-flight mass spectrometer. Elemental selectivity of greater than 5:1 with respect to lutetium impurity has been obtained. Autoionization via a single photon process permits greater photon utilization efficiency because of its greater absorption cross section than bound-free transitions, while maintaining sufficient spectroscopic structure to allow significant photoionization selectivity between different atomic species. Separation of atomic species from others of substantially the same atomic mass is also described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeRosier, R.; Waterland, L.R.
1987-03-01
The report gives emission results from field tests of a wood-waste-fired industrial firetube boiler. Emission measurements included: continuous monitoring of flue-gas emissions; source assessment sampling system (SASS) sampling of the flue gas with subsequent laboratory analysis of samples to give total flue-gas organics in two boiling-point ranges, compound category information within these ranges, specific quantitation of the semivolatile organic priority pollutants, and flue-gas concentrations of 65 trace elements; Method 5 sampling for particulates; controlled condensation system (CSS) sampling for SO/sub 2/ and SO/sub 3/; and grab sampling of boiler bottom ash for trace-element-content determinations. Emission levels of five polycyclic organicmore » matter species and phenol were quantitated: except for naphthalene, all were emitted at less than 0.4 microgram/dscm.« less
Miniaturization of Fresnel lenses for solar concentration: a quantitative investigation.
Duerr, Fabian; Meuret, Youri; Thienpont, Hugo
2010-04-20
Sizing down the dimensions of solar concentrators for photovoltaic applications offers a number of promising advantages. It provides thinner modules and smaller solar cells, which reduces thermal issues. In this work a plane Fresnel lens design is introduced that is first analyzed with geometrical optics. Because of miniaturization, pure ray tracing may no longer be valid to determine the concentration performance. Therefore, a quantitative wave optical analysis of the miniaturization's influence on the obtained concentration performance is presented. This better quantitative understanding of the impact of diffraction in microstructured Fresnel lenses might help to optimize the design of several applications in nonimaging optics.
ERIC Educational Resources Information Center
Lopez-Arias, T.; Calza, G.; Gratton, L. M.; Oss, S.
2009-01-01
A simple experiment is presented to visualize inferior and superior mirages in the laboratory. A quantitative analysis is done using ray tracing with both photographic and computational techniques. The mirage's image, as seen by the eye or the camera lens, can be used to analyse the deflection and inversion of light rays. (Contains 6 footnotes, 1…
Pleiotropy Analysis of Quantitative Traits at Gene Level by Multivariate Functional Linear Models
Wang, Yifan; Liu, Aiyi; Mills, James L.; Boehnke, Michael; Wilson, Alexander F.; Bailey-Wilson, Joan E.; Xiong, Momiao; Wu, Colin O.; Fan, Ruzong
2015-01-01
In genetics, pleiotropy describes the genetic effect of a single gene on multiple phenotypic traits. A common approach is to analyze the phenotypic traits separately using univariate analyses and combine the test results through multiple comparisons. This approach may lead to low power. Multivariate functional linear models are developed to connect genetic variant data to multiple quantitative traits adjusting for covariates for a unified analysis. Three types of approximate F-distribution tests based on Pillai–Bartlett trace, Hotelling–Lawley trace, and Wilks’s Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants in one genetic region. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and optimal sequence kernel association test (SKAT-O). Extensive simulations were performed to evaluate the false positive rates and power performance of the proposed models and tests. We show that the approximate F-distribution tests control the type I error rates very well. Overall, simultaneous analysis of multiple traits can increase power performance compared to an individual test of each trait. The proposed methods were applied to analyze (1) four lipid traits in eight European cohorts, and (2) three biochemical traits in the Trinity Students Study. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and SKAT-O for the three biochemical traits. The approximate F-distribution tests of the proposed functional linear models are more sensitive than those of the traditional multivariate linear models that in turn are more sensitive than SKAT-O in the univariate case. The analysis of the four lipid traits and the three biochemical traits detects more association than SKAT-O in the univariate case. PMID:25809955
Pleiotropy analysis of quantitative traits at gene level by multivariate functional linear models.
Wang, Yifan; Liu, Aiyi; Mills, James L; Boehnke, Michael; Wilson, Alexander F; Bailey-Wilson, Joan E; Xiong, Momiao; Wu, Colin O; Fan, Ruzong
2015-05-01
In genetics, pleiotropy describes the genetic effect of a single gene on multiple phenotypic traits. A common approach is to analyze the phenotypic traits separately using univariate analyses and combine the test results through multiple comparisons. This approach may lead to low power. Multivariate functional linear models are developed to connect genetic variant data to multiple quantitative traits adjusting for covariates for a unified analysis. Three types of approximate F-distribution tests based on Pillai-Bartlett trace, Hotelling-Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants in one genetic region. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and optimal sequence kernel association test (SKAT-O). Extensive simulations were performed to evaluate the false positive rates and power performance of the proposed models and tests. We show that the approximate F-distribution tests control the type I error rates very well. Overall, simultaneous analysis of multiple traits can increase power performance compared to an individual test of each trait. The proposed methods were applied to analyze (1) four lipid traits in eight European cohorts, and (2) three biochemical traits in the Trinity Students Study. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and SKAT-O for the three biochemical traits. The approximate F-distribution tests of the proposed functional linear models are more sensitive than those of the traditional multivariate linear models that in turn are more sensitive than SKAT-O in the univariate case. The analysis of the four lipid traits and the three biochemical traits detects more association than SKAT-O in the univariate case. © 2015 WILEY PERIODICALS, INC.
γγ coincidence spectrometer for instrumental neutron-activation analysis
NASA Astrophysics Data System (ADS)
Tomlin, B. E.; Zeisler, R.; Lindstrom, R. M.
2008-05-01
Neutron-activation analysis (NAA) is an important technique for the accurate and precise determination of trace and ultra-trace elemental compositions. The application of γγ coincidence counting to NAA in order to enhance specificity was first explored over 40 years ago but has not evolved into a regularly used technique. A γγ coincidence spectrometer has been constructed at the National Institute of Standards and Technology, using two HPGe γ-ray detectors and an all-digital data-acquisition system, for the purpose of exploring coincidence NAA and its value in characterizing reference materials. This paper describes the initial evaluation of the quantitative precision of coincidence counting versus singles spectrometry, based upon a sample of neutron-irradiated bovine liver material.
Kiseleva, N M; Novoseletskaya, A V; Voevodina, Ye B; Kozlov, I G; Inozemtsev, A N
2012-12-01
Apart from restoration of disordered immunological parameters, tactivin and derinat exhibit a pronounced effect on the higher integrative functions of the brain. Experiments on Wistar rats have shown that these drugs accelerated conditioning of food and defense responses. New methods for quantitative evaluation of memory trace consolidation are proposed.
Qiang, Xue; Bing, Liang; Hui-yun, Wang; Lei, Liu
2006-01-01
An understanding of the dynamic behavior of trace elements leaching from coal mine spoil is important in predicting the groundwater quality. The relationship between trace element concentrations and leaching times, pH values of the media is studied. Column leaching tests conducted in the laboratory showed that there was a close correlation between pH value and trace element concentrations. The longer the leaching time, the higher the trace element concentrations. Different trace elements are differently affected by pH values of leaching media. A numerical model for water flow and trace element transport has been developed based on analyzing the characteristics of migration and transformation of trace elements leached from coal mine spoil. Solutions to the coupled model are accomplished by Eulerian-Lagrangian localized adjoint method. Numerical simulation shows that rainfall intensity determined maximum leaching depth. As rainfall intensity is 3.6ml/s, the outflow concentrations indicate a breakthrough of trace elements beyond the column base, with peak concentration at 90cm depth. And the subsurface pollution range has a trend of increase with time. The model simulations are compared to experimental results of trace element concentrations, with reasonable agreement between them. The analysis and modeling of trace elements suggested that the infiltration of rainwater through the mine spoil might lead to potential groundwater pollution. It provides theoretical evidence for quantitative assessment soil-water quality of trace element transport on environment pollution.
Useful ion yields for Cameca IMS 3f and 6f SIMS: Limits on quantitative analysis
Hervig, R.L.; Mazdab, F.K.; Williams, Pat; Guan, Y.; Huss, G.R.; Leshin, L.A.
2006-01-01
The useful yields (ions detected/atom sputtered) of major and trace elements in NIST 610 glass were measured by secondary ion mass spectrometry (SIMS) using Cameca IMS 3f and 6f instruments. Useful yields of positive ions at maximum transmission range from 10-4 to 0.2 and are negatively correlated with ionization potential. We quantified the decrease in useful yields when applying energy filtering or high mass resolution techniques to remove molecular interferences. The useful yields of selected negative ions (O, S, Au) in magnetite and pyrite were also determined. These data allow the analyst to determine if a particular analysis (trace element contents or isotopic ratio) can be achieved, given the amount of sample available and the conditions of the analysis. ?? 2005 Elsevier B.V. All rights reserved.
Pitarch, Elena; Hernandez, Felix; ten Hove, Jan; Meiring, Hugo; Niesing, Willem; Dijkman, Ellen; Stolker, Linda; Hogendoorn, Elbert
2004-03-26
We have investigated the potential of capillary-column-switching liquid chromatography coupled to tandem mass spectrometry (cLC-MS-MS) for the quantitative on-line trace analysis of target compounds in aqueous solutions. The technical design of the nano-scale cLC system developed at our Institute for peptide and protein identification has been tested and evaluated for the direct trace analysis of drugs in water samples. Sulphametoxazole, bezafibrate, metoprolol, carbamazepine and bisoprolol occurring frequently in Dutch waters, were selected as test compounds. Adequate conditions for trapping, elution and MS-MS detection were investigated by employing laboratory made 200 microm i.d. capillary columns packed with 5 microm aqua C18 material. In the final cLC-MS-MS conditions, a 1 cm length trapping column and a 4 cm length analytical column were selected. Under these conditions, the target compounds could be directly determined in water down to a level of around 50 ng/l employing only 25 microl of water sample. Validation was done by recovery experiments in ground-, surface- and drinking-water matrices as well as by the analysis of water samples with incurred residues and previously analyzed with a conventional procedure involving off-line solid-phase extraction and narrow-bore LC with MS-MS detection. The new methodology provided recoveries (50-500 ng/l level) between 50 and 114% with RSDs (n = 3, each level) below 20% for most of the compounds. Despite the somewhat less analytical performance in comparison to the conventional procedure, the on-line approach of the new methodology is very suitable for screening of drugs in aqueous samples.
ERIC Educational Resources Information Center
Ormsmith, Michael Isaac
2014-01-01
This explanatory mixed-methods policy analysis describes how school counselors' thoughts and attitudes contribute to the implementation fidelity of the Academic and Career Plan (ACP) policy in a suburban Virginia school division. A quantitative survey investigated counselor thoughts about the policy, implementation behaviors, and counselor ideas…
Quantitative trace analysis of complex mixtures using SABRE hyperpolarization.
Eshuis, Nan; van Weerdenburg, Bram J A; Feiters, Martin C; Rutjes, Floris P J T; Wijmenga, Sybren S; Tessari, Marco
2015-01-26
Signal amplification by reversible exchange (SABRE) is an emerging nuclear spin hyperpolarization technique that strongly enhances NMR signals of small molecules in solution. However, such signal enhancements have never been exploited for concentration determination, as the efficiency of SABRE can strongly vary between different substrates or even between nuclear spins in the same molecule. The first application of SABRE for the quantitative analysis of a complex mixture is now reported. Despite the inherent complexity of the system under investigation, which involves thousands of competing binding equilibria, analytes at concentrations in the low micromolar range could be quantified from single-scan SABRE spectra using a standard-addition approach. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Leakey, Tatiana I; Zielinski, Jerzy; Siegfried, Rachel N; Siegel, Eric R; Fan, Chun-Yang; Cooney, Craig A
2008-06-01
DNA methylation at cytosines is a widely studied epigenetic modification. Methylation is commonly detected using bisulfite modification of DNA followed by PCR and additional techniques such as restriction digestion or sequencing. These additional techniques are either laborious, require specialized equipment, or are not quantitative. Here we describe a simple algorithm that yields quantitative results from analysis of conventional four-dye-trace sequencing. We call this method Mquant and we compare it with the established laboratory method of combined bisulfite restriction assay (COBRA). This analysis of sequencing electropherograms provides a simple, easily applied method to quantify DNA methylation at specific CpG sites.
Critical Quantitative Inquiry in Context
ERIC Educational Resources Information Center
Stage, Frances K.; Wells, Ryan S.
2014-01-01
This chapter briefly traces the development of the concept of critical quantitative inquiry, provides an expanded conceptualization of the tasks of critical quantitative research, offers theoretical explanation and justification for critical research using quantitative methods, and previews the work of quantitative criticalists presented in this…
NASA Astrophysics Data System (ADS)
Ahmed, Nasar; Umar, Zeshan A.; Ahmed, Rizwan; Aslam Baig, M.
2017-10-01
We present qualitative and quantitative analysis of the trace elements present in different brands of tobacco available in Pakistan using laser induced breakdown spectroscopy (LIBS) and Laser ablation Time of Flight Mass Spectrometer (LA-TOFMS). The compositional analysis using the calibration free LIBS technique is based on the observed emission spectra of the laser produced plasma plume whereas the elemental composition analysis using LA-TOFMS is based on the mass spectra of the ions produced by laser ablation. The optical emission spectra of these samples contain spectral lines of calcium, magnesium, sodium, potassium, silicon, strontium, barium, lithium and aluminum with varying intensities. The corresponding mass spectra of the elements were detected in LA-TOF-MS with their composition concentration. The analysis of different brands of cigarettes demonstrates that LIBS coupled with a LA-TOF-MS is a powerful technique for the elemental analysis of the trace elements in any solid sample.
Drivelos, Spiros A; Higgins, Kevin; Kalivas, John H; Haroutounian, Serkos A; Georgiou, Constantinos A
2014-12-15
"Fava Santorinis", is a protected designation of origin (PDO) yellow split pea species growing only in the island of Santorini in Greece. Due to its nutritional quality and taste, it has gained a high monetary value. Thus, it is prone to adulteration with other yellow split peas. In order to discriminate "Fava Santorinis" from other yellow split peas, four classification methods utilising rare earth elements (REEs) measured through inductively coupled plasma-mass spectrometry (ICP-MS) are studied. The four classification processes are orthogonal projection analysis (OPA), Mahalanobis distance (MD), partial least squares discriminant analysis (PLS-DA) and k nearest neighbours (KNN). Since it is known that trace elements are often useful to determine geographical origin of food products, we further quantitated for trace elements using ICP-MS. Presented in this paper are results using the four classification processes based on the fusion of the REEs data with the trace element data. Overall, the OPA method was found to perform best with up to 100% accuracy using the fused data. Copyright © 2014 Elsevier Ltd. All rights reserved.
Karbasi, Mohamad-Hadi; Jahanparast, Babak; Shamsipur, Mojtaba; Hassan, Jalal
2009-10-15
Multielement simultaneous determination of 35 trace elements in environmental samples was carried out by inductively coupled plasma emission spectrometry (ICP-OES) after preconcentration with octadecyl silicagel, modified with aurin tricarboxylic acid (Aluminon). Optimal experimental conditions including pH of sample solution, sample volume, sample and eluent flow rate, type, concentration and volume of eluent and foreign ions effect were investigated and established. Trace element ions in aqueous solution were quantitatively adsorbed onto octadecyl silicagel modified with aurin tricarboxylic acid at pH 8.0 with a flow rate of 11.0 mL min(-1). The adsorbed element ions were eluted with 3-5 mL of 0.5 mol L(-1) HNO(3) at a flow rate of 10.0 mL min(-1) and analyzed by ICP-OES simultaneously. The proposed method has at least preconcentration factor of 100 in water samples, which results high sensitive detection of ultra-trace and trace analysis. The present methodology gave recoveries better than 70% and RSD less than 16%.
Fayn, J; Rubel, P
1988-01-01
The authors present a new computer program for serial ECG analysis that allows a direct comparison of any couple of three-dimensional ECGs and quantitatively assesses the degree of evolution of the spatial loops as well as of their initial, central, or terminal sectors. Loops and sectors are superposed as best as possible, with the aim of overcoming tracing variability of nonpathological origin. As a result, optimal measures of evolution are computed and a tabular summary of measurements is dynamically configured with respect to the patient's history and is then printed. A multivariate classifier assigns each couple of tracings to one of four classes of evolution. Color graphic displays corresponding to several modes of representation may also be plotted.
Neurient: An Algorithm for Automatic Tracing of Confluent Neuronal Images to Determine Alignment
Mitchel, J.A.; Martin, I.S.
2013-01-01
A goal of neural tissue engineering is the development and evaluation of materials that guide neuronal growth and alignment. However, the methods available to quantitatively evaluate the response of neurons to guidance materials are limited and/or expensive, and may require manual tracing to be performed by the researcher. We have developed an open source, automated Matlab-based algorithm, building on previously published methods, to trace and quantify alignment of fluorescent images of neurons in culture. The algorithm is divided into three phases, including computation of a lookup table which contains directional information for each image, location of a set of seed points which may lie along neurite centerlines, and tracing neurites starting with each seed point and indexing into the lookup table. This method was used to obtain quantitative alignment data for complex images of densely cultured neurons. Complete automation of tracing allows for unsupervised processing of large numbers of images. Following image processing with our algorithm, available metrics to quantify neurite alignment include angular histograms, percent of neurite segments in a given direction, and mean neurite angle. The alignment information obtained from traced images can be used to compare the response of neurons to a range of conditions. This tracing algorithm is freely available to the scientific community under the name Neurient, and its implementation in Matlab allows a wide range of researchers to use a standardized, open source method to quantitatively evaluate the alignment of dense neuronal cultures. PMID:23384629
Beach, Connor A; Krumm, Christoph; Spanjers, Charles S; Maduskar, Saurabh; Jones, Andrew J; Dauenhauer, Paul J
2016-03-07
Analysis of trace compounds, such as pesticides and other contaminants, within consumer products, fuels, and the environment requires quantification of increasingly complex mixtures of difficult-to-quantify compounds. Many compounds of interest are non-volatile and exhibit poor response in current gas chromatography and flame ionization systems. Here we show the reaction of trimethylsilylated chemical analytes to methane using a quantitative carbon detector (QCD; the Polyarc™ reactor) within a gas chromatograph (GC), thereby enabling enhanced detection (up to 10×) of highly functionalized compounds including carbohydrates, acids, drugs, flavorants, and pesticides. Analysis of a complex mixture of compounds shows that the GC-QCD method exhibits faster and more accurate analysis of complex mixtures commonly encountered in everyday products and the environment.
Horowltz, A.J.
1986-01-01
Centrifugation, settling/centrifugation, and backflush-filtration procedures have been tested for the concentration of suspended sediment from water for subsequent trace-metal analysis. Either of the first two procedures is comparable with in-line filtration and can be carried out precisely, accurately, and with a facility that makes the procedures amenable to large-scale sampling and analysis programs. There is less potential for post-sampling alteration of suspended sediment-associated metal concentrations with the centrifugation procedure because sample stabilization is accomplished more rapidly than with settling/centrifugation. Sample preservation can be achieved by chilling. Suspended sediment associated metal levels can best be determined by direct analysis but can also be estimated from the difference between a set of unfiltered-digested and filtered subsamples. However, when suspended sediment concentrations (<150 mg/L) or trace-metal levels are low, the direct analysis approach makes quantitation more accurate and precise and can be accomplished with simpler analytical procedures.
Sabidó, Eduard; Bosch, Elena
2016-01-01
Essential trace elements possess vital functions at molecular, cellular, and physiological levels in health and disease, and they are tightly regulated in the human body. In order to assess variability and potential adaptive evolution of trace element homeostasis, we quantified 18 trace elements in 150 liver samples, together with the expression levels of 90 genes and abundances of 40 proteins involved in their homeostasis. Additionally, we genotyped 169 single nucleotide polymorphism (SNPs) in the same sample set. We detected significant associations for 8 protein quantitative trait loci (pQTL), 10 expression quantitative trait loci (eQTLs), and 15 micronutrient quantitative trait loci (nutriQTL). Six of these exceeded the false discovery rate cutoff and were related to essential trace elements: 1) one pQTL for GPX2 (rs10133290); 2) two previously described eQTLs for HFE (rs12346) and SELO (rs4838862) expression; and 3) three nutriQTLs: The pathogenic C282Y mutation at HFE affecting iron (rs1800562), and two SNPs within several clustered metallothionein genes determining selenium concentration (rs1811322 and rs904773). Within the complete set of significant QTLs (which involved 30 SNPs and 20 gene regions), we identified 12 SNPs with extreme patterns of population differentiation (FST values in the top 5% percentile in at least one HapMap population pair) and significant evidence for selective sweeps involving QTLs at GPX1, SELENBP1, GPX3, SLC30A9, and SLC39A8. Overall, this detailed study of various molecular phenotypes illustrates the role of regulatory variants in explaining differences in trace element homeostasis among populations and in the human adaptive response to environmental pressures related to micronutrients. PMID:26582562
USDA-ARS?s Scientific Manuscript database
An extensive study of the metabolism of the type-A trichothecene mycotoxins HT-2 toxin and T-2 toxin in barley using liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS) is reported. A recently developed untargeted approach based on stable isotopic labelling, LC-Orbitrap-MS a...
Ye, Z.; Weinberg, H.S.; Meyer, M.T.
2007-01-01
A multirun analytical method has been developed and validated for trace determination of 24 antibiotics including 7 sulfonamides, 3 macrolides, 7 quinolones, 6 tetracyclines, and trimethoprim in chlorine-disinfected drinking water using a single solid-phase extraction method coupled to liquid chromatography with positive electrospray tandem mass spectrometry detection. The analytes were extracted by a hydrophilic-lipophilic balanced resin and eluted with acidified methanol (0.1% formic acid), resulting in analyte recoveries generally above 90%. The limits of quantitation were mostly below 10 ng/L in drinking water. Since the concentrated sample matrix typically caused ion suppression during electrospray ionization, the method of standard addition was used for quantitation. Chlorine residuals in drinking water can react with some antibiotics, but ascorbic acid was found to be an effective chlorine quenching agent without affecting the analysis and stability of the antibiotics in water. A preliminary occurrence study using this method revealed the presence of some antibiotics in drinking waters, including sulfamethoxazole (3.0-3.4 ng/L), macrolides (1.4-4.9 ng/L), and quinolones (1.2-4.0 ng/L). ?? 2007 American Chemical Society.
Batchu, Sudha Rani; Ramirez, Cesar E; Gardinali, Piero R
2015-05-01
Because of its widespread consumption and its persistence during wastewater treatment, the artificial sweetener sucralose has gained considerable interest as a proxy to detect wastewater intrusion into usable water resources. The molecular resilience of this compound dictates that coastal and oceanic waters are the final recipient of this compound with unknown effects on ecosystems. Furthermore, no suitable methodologies have been reported for routine, ultra-trace detection of sucralose in seawater as the sensitivity of traditional liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis is limited by a low yield of product ions upon collision-induced dissociation (CID). In this work, we report the development and field test of an alternative analysis tool for sucralose in environmental waters, with enough sensitivity for the proper quantitation and confirmation of this analyte in seawater. The methodology is based on automated online solid-phase extraction (SPE) and high-resolving-power orbitrap MS detection. Operating in full scan (no CID), detection of the unique isotopic pattern (100:96:31 for [M-H](-), [M-H+2](-), and [M-H+4](-), respectively) was used for ultra-trace quantitation and analyte identification. The method offers fast analysis (14 min per run) and low sample consumption (10 mL per sample) with method detection and confirmation limits (MDLs and MCLs) of 1.4 and 5.7 ng/L in seawater, respectively. The methodology involves low operating costs due to virtually no sample preparation steps or consumables. As an application example, samples were collected from 17 oceanic and estuarine sites in Broward County, FL, with varying salinity (6-40 PSU). Samples included the ocean outfall of the Southern Regional Wastewater Treatment Plant (WWTP) that serves Hollywood, FL. Sucralose was detected above MCL in 78% of the samples at concentrations ranging from 8 to 148 ng/L, with the exception of the WWTP ocean outfall (at pipe end, 28 m below the surface) where the measured concentration was 8418 ± 3813 ng/L. These results demonstrate the applicability of this monitoring tool for the trace-level detection of this wastewater marker in very dilute environmental waters.
Respiratory trace feature analysis for the prediction of respiratory-gated PET quantification.
Wang, Shouyi; Bowen, Stephen R; Chaovalitwongse, W Art; Sandison, George A; Grabowski, Thomas J; Kinahan, Paul E
2014-02-21
The benefits of respiratory gating in quantitative PET/CT vary tremendously between individual patients. Respiratory pattern is among many patient-specific characteristics that are thought to play an important role in gating-induced imaging improvements. However, the quantitative relationship between patient-specific characteristics of respiratory pattern and improvements in quantitative accuracy from respiratory-gated PET/CT has not been well established. If such a relationship could be estimated, then patient-specific respiratory patterns could be used to prospectively select appropriate motion compensation during image acquisition on a per-patient basis. This study was undertaken to develop a novel statistical model that predicts quantitative changes in PET/CT imaging due to respiratory gating. Free-breathing static FDG-PET images without gating and respiratory-gated FDG-PET images were collected from 22 lung and liver cancer patients on a PET/CT scanner. PET imaging quality was quantified with peak standardized uptake value (SUV(peak)) over lesions of interest. Relative differences in SUV(peak) between static and gated PET images were calculated to indicate quantitative imaging changes due to gating. A comprehensive multidimensional extraction of the morphological and statistical characteristics of respiratory patterns was conducted, resulting in 16 features that characterize representative patterns of a single respiratory trace. The six most informative features were subsequently extracted using a stepwise feature selection approach. The multiple-regression model was trained and tested based on a leave-one-subject-out cross-validation. The predicted quantitative improvements in PET imaging achieved an accuracy higher than 90% using a criterion with a dynamic error-tolerance range for SUV(peak) values. The results of this study suggest that our prediction framework could be applied to determine which patients would likely benefit from respiratory motion compensation when clinicians quantitatively assess PET/CT for therapy target definition and response assessment.
Respiratory trace feature analysis for the prediction of respiratory-gated PET quantification
NASA Astrophysics Data System (ADS)
Wang, Shouyi; Bowen, Stephen R.; Chaovalitwongse, W. Art; Sandison, George A.; Grabowski, Thomas J.; Kinahan, Paul E.
2014-02-01
The benefits of respiratory gating in quantitative PET/CT vary tremendously between individual patients. Respiratory pattern is among many patient-specific characteristics that are thought to play an important role in gating-induced imaging improvements. However, the quantitative relationship between patient-specific characteristics of respiratory pattern and improvements in quantitative accuracy from respiratory-gated PET/CT has not been well established. If such a relationship could be estimated, then patient-specific respiratory patterns could be used to prospectively select appropriate motion compensation during image acquisition on a per-patient basis. This study was undertaken to develop a novel statistical model that predicts quantitative changes in PET/CT imaging due to respiratory gating. Free-breathing static FDG-PET images without gating and respiratory-gated FDG-PET images were collected from 22 lung and liver cancer patients on a PET/CT scanner. PET imaging quality was quantified with peak standardized uptake value (SUVpeak) over lesions of interest. Relative differences in SUVpeak between static and gated PET images were calculated to indicate quantitative imaging changes due to gating. A comprehensive multidimensional extraction of the morphological and statistical characteristics of respiratory patterns was conducted, resulting in 16 features that characterize representative patterns of a single respiratory trace. The six most informative features were subsequently extracted using a stepwise feature selection approach. The multiple-regression model was trained and tested based on a leave-one-subject-out cross-validation. The predicted quantitative improvements in PET imaging achieved an accuracy higher than 90% using a criterion with a dynamic error-tolerance range for SUVpeak values. The results of this study suggest that our prediction framework could be applied to determine which patients would likely benefit from respiratory motion compensation when clinicians quantitatively assess PET/CT for therapy target definition and response assessment.
Representativeness of laboratory sampling procedures for the analysis of trace metals in soil.
Dubé, Jean-Sébastien; Boudreault, Jean-Philippe; Bost, Régis; Sona, Mirela; Duhaime, François; Éthier, Yannic
2015-08-01
This study was conducted to assess the representativeness of laboratory sampling protocols for purposes of trace metal analysis in soil. Five laboratory protocols were compared, including conventional grab sampling, to assess the influence of sectorial splitting, sieving, and grinding on measured trace metal concentrations and their variability. It was concluded that grinding was the most important factor in controlling the variability of trace metal concentrations. Grinding increased the reproducibility of sample mass reduction by rotary sectorial splitting by up to two orders of magnitude. Combined with rotary sectorial splitting, grinding increased the reproducibility of trace metal concentrations by almost three orders of magnitude compared to grab sampling. Moreover, results showed that if grinding is used as part of a mass reduction protocol by sectorial splitting, the effect of sieving on reproducibility became insignificant. Gy's sampling theory and practice was also used to analyze the aforementioned sampling protocols. While the theoretical relative variances calculated for each sampling protocol qualitatively agreed with the experimental variances, their quantitative agreement was very poor. It was assumed that the parameters used in the calculation of theoretical sampling variances may not correctly estimate the constitutional heterogeneity of soils or soil-like materials. Finally, the results have highlighted the pitfalls of grab sampling, namely, the fact that it does not exert control over incorrect sampling errors and that it is strongly affected by distribution heterogeneity.
Desorption electrospray ionization mass spectrometry for trace analysis of agrochemicals in food.
García-Reyes, Juan F; Jackson, Ayanna U; Molina-Díaz, Antonio; Cooks, R Graham
2009-01-15
Desorption electrospray ionization (DESI) is applied to the rapid, in situ, direct qualitative and quantitative (ultra)trace analysis of agrochemicals in foodstuffs. To evaluate the potential of DESI mass spectrometry (MS) in toxic residue testing in food, 16 representative multiclass agricultural chemicals (pesticides, insecticides, herbicides, and fungicides) were selected (namely, ametryn, amitraz, azoxystrobin, bitertanol, buprofezin, imazalil, imazalil metabolite, isofenphos-methyl, malathion, nitenpyram, prochloraz, spinosad, terbuthylazine, thiabendazole, and thiacloprid). The DESI-MS experiments were performed using 3 microL of solution spotted onto conventional smooth poly(tetrafluoroethylene) (PTFE) surfaces, with examination by MS and tandem mass spectrometry (MS/MS) using an ion trap mass spectrometer. Optimization of the spray solvent led to the use of acetonitrile/water (80:20) (v/v), with 1% formic acid. Most of the compounds tested showed remarkable sensitivity in the positive ion mode, approaching that attainable with conventional direct infusion electrospray mass spectrometry. To evaluate the potential of the proposed approach in real samples, different experiments were performed including the direct DESI-MS/MS analysis of fruit peels and also of fruit/vegetable extracts. The results proved that DESI allows the detection and confirmation of traces of agrochemicals in actual market-purchased samples. In addition, MS/MS confirmation of selected pesticides in spiked vegetable extracts was obtained at absolute levels as low as 1 pg for ametryn. Quantitation of imazalil residues was also undertaken using an isotopically labeled standard. The data obtained were in agreement with those from the liquid chromatography mass spectrometry (LC-MS) reference method, with relative standard deviation (RSD) values consistently below 15%. The results obtained demonstrate the sensitivity of DESI as they meet the stringent European Union pesticide regulation requirements (maximum residue levels) for a large percentage of the studied compounds.
NASA Technical Reports Server (NTRS)
Harrington, Peter DEB.; Zheng, Peng
1995-01-01
Ion Mobility Spectrometry (IMS) is a powerful technique for trace organic analysis in the gas phase. Quantitative measurements are difficult, because IMS has a limited linear range. Factors that may affect the instrument response are pressure, temperature, and humidity. Nonlinear calibration methods, such as neural networks, may be ideally suited for IMS. Neural networks have the capability of modeling complex systems. Many neural networks suffer from long training times and overfitting. Cascade correlation neural networks train at very fast rates. They also build their own topology, that is a number of layers and number of units in each layer. By controlling the decay parameter in training neural networks, reproducible and general models may be obtained.
Berendsen, Bjorn J A; Gerritsen, Henk W; Wegh, Robin S; Lameris, Steven; van Sebille, Ralph; Stolker, Alida A M; Nielen, Michel W F
2013-09-01
A comprehensive method for the quantitative residue analysis of trace levels of 22 ß-lactam antibiotics, including penicillins, cephalosporins, and carbapenems, in poultry muscle by liquid chromatography in combination with tandem mass spectrometric detection is reported. The samples analyzed for ß-lactam residues are hydrolyzed using piperidine in order to improve compound stability and to include the total residue content of the cephalosporin ceftifour. The reaction procedure was optimized using a full experimental design. Following detailed isotope labeling, tandem mass spectrometry studies and exact mass measurements using high-resolution mass spectrometry reaction schemes could be proposed for all ß-lactams studied. The main reaction occurring is the hydrolysis of the ß-lactam ring under formation of the piperidine substituted amide. For some ß-lactams, multiple isobaric hydrolysis reaction products are obtained, in accordance with expectations, but this did not hamper quantitative analysis. The final method was fully validated as a quantitative confirmatory residue analysis method according to Commission Decision 2002/657/EC and showed satisfactory quantitative performance for all compounds with trueness between 80 and 110% and within-laboratory reproducibility below 22% at target level, except for biapenem. For biapenem, the method proved to be suitable for qualitative analysis only.
MaTrace: tracing the fate of materials over time and across products in open-loop recycling.
Nakamura, Shinichiro; Kondo, Yasushi; Kagawa, Shigemi; Matsubae, Kazuyo; Nakajima, Kenichi; Nagasaka, Tetsuya
2014-07-01
Even for metals, open-loop recycling is more common than closed-loop recycling due, among other factors, to the degradation of quality in the end-of-life (EoL) phase. Open-loop recycling is subject to loss of functionality of original materials, dissipation in forms that are difficult to recover, and recovered metals might need dilution with primary metals to meet quality requirements. Sustainable management of metal resources calls for the minimization of these losses. Imperative to this is quantitative tracking of the fate of materials across different stages, products, and losses. A new input-output analysis (IO) based model of dynamic material flow analysis (MFA) is presented that can trace the fate of materials over time and across products in open-loop recycling taking explicit consideration of losses and the quality of scrap into account. Application to car steel recovered from EoL vehicles (ELV) showed that after 50 years around 80% of the steel is used in products, mostly buildings and civil engineering (infrastructure), with the rest mostly resided in unrecovered obsolete infrastructure and refinery losses. Sensitivity analysis was conducted to evaluate the effects of changes in product lifespan, and the quality of scrap.
Mid-Frequency Reverberation Measurements with Full Companion Environmental Support
2014-12-30
acoustic modeling is based on measured stratification and observed wave amplitudes on the New Jersey shelf during the SWARM experiment.3 Ray tracing is...wave model then gives quantitative results for the clutter. 2. Swarm NLIW model and ray tracing Nonlinear internal waves are very common on the...receiver in order to give quantitative clutter to reverberation. To picture the mechanism, a set of rays was launched from a source at range zero and
Demonstration of Wavelet Techniques in the Spectral Analysis of Bypass Transition Data
NASA Technical Reports Server (NTRS)
Lewalle, Jacques; Ashpis, David E.; Sohn, Ki-Hyeon
1997-01-01
A number of wavelet-based techniques for the analysis of experimental data are developed and illustrated. A multiscale analysis based on the Mexican hat wavelet is demonstrated as a tool for acquiring physical and quantitative information not obtainable by standard signal analysis methods. Experimental data for the analysis came from simultaneous hot-wire velocity traces in a bypass transition of the boundary layer on a heated flat plate. A pair of traces (two components of velocity) at one location was excerpted. A number of ensemble and conditional statistics related to dominant time scales for energy and momentum transport were calculated. The analysis revealed a lack of energy-dominant time scales inside turbulent spots but identified transport-dominant scales inside spots that account for the largest part of the Reynolds stress. Momentum transport was much more intermittent than were energetic fluctuations. This work is the first step in a continuing study of the spatial evolution of these scale-related statistics, the goal being to apply the multiscale analysis results to improve the modeling of transitional and turbulent industrial flows.
Parallel labeling experiments for pathway elucidation and (13)C metabolic flux analysis.
Antoniewicz, Maciek R
2015-12-01
Metabolic pathway models provide the foundation for quantitative studies of cellular physiology through the measurement of intracellular metabolic fluxes. For model organisms metabolic models are well established, with many manually curated genome-scale model reconstructions, gene knockout studies and stable-isotope tracing studies. However, for non-model organisms a similar level of knowledge is often lacking. Compartmentation of cellular metabolism in eukaryotic systems also presents significant challenges for quantitative (13)C-metabolic flux analysis ((13)C-MFA). Recently, innovative (13)C-MFA approaches have been developed based on parallel labeling experiments, the use of multiple isotopic tracers and integrated data analysis, that allow more rigorous validation of pathway models and improved quantification of metabolic fluxes. Applications of these approaches open new research directions in metabolic engineering, biotechnology and medicine. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kolker, A.; Wooden, J.L.; Persing, H.M.; Zielinski, R.A.
2000-01-01
The distribution of Cr and other trace metals of environmental interest in a range of widely used U.S. coals was investigated using the Stanford-USGS SHRIMP-RG ion microprobe . Using the oxygen ion source, concentrations of Cr (11 to 176 ppm), V (23 to 248 ppm), Mn (2 to 149 ppm), Ni (2 to 30 ppm), and 13 other elements were determined in illite/smectite, a group of clay minerals commonly present in coal. The results confirm previous indirect or semi-quantitative determinations indicating illite/smectite to be an important host of these metals. Calibration was achieved using doped aluminosilicate-glass synthetic standards and glasses prepared from USGS rock standards. Grains for analysis were identified optically, and confirmed by 1) precursory electron microprobe analysis and wavelength-dispersive compositional mapping, and 2) SHRIMP-RG major element data obtained concurrently with trace element results. Follow-up investigations will focus on the distribution of As and other elements that are more effectively ionized with the cesium primary beam currently being tested.
Jaswal, Brij Bir S; Kumar, Vinay; Sharma, Jitendra; Rai, Pradeep K; Gondal, Mohammed A; Gondal, Bilal; Singh, Vivek K
2016-04-01
Laser-induced breakdown spectroscopy (LIBS) is an emerging analytical technique with numerous advantages such as rapidity, multi-elemental analysis, no specific sample preparation requirements, non-destructiveness, and versatility. It has been proven to be a robust elemental analysis tool attracting interest because of being applied to a wide range of materials including biomaterials. In this paper, we have performed spectroscopic studies on gallstones which are heterogeneous in nature using LIBS and wavelength dispersive X-ray fluorescence (WD-XRF) techniques. It has been observed that the presence and relative concentrations of trace elements in different kind of gallstones (cholesterol and pigment gallstones) can easily be determined using LIBS technique. From the experiments carried out on gallstones for trace elemental mapping and detection, it was found that LIBS is a robust tool for such biomedical applications. The stone samples studied in the present paper were classified using the Fourier transform infrared (FTIR) spectroscopy. WD-XRF spectroscopy has been applied for the qualitative and quantitative analysis of major and trace elements present in the gallstone which was compared with the LIBS data. The results obtained in the present paper show interesting prospects for LIBS and WD-XRF to study cholelithiasis better.
ERIC Educational Resources Information Center
Johnson, Bettie Obi; Burke, Fernanda M.; Harrison, Rebecca; Burdette, Samantha
2012-01-01
The measurement of trace levels of bisphenol A (BPA) leached out of household plastics using solid-phase microextraction (SPME) with gas chromatography-mass spectrometry (GC-MS) is reported here. BPA is an endocrine-disrupting compound used in the industrial manufacture of polycarbonate plastic bottles and epoxy resin can liners. This experiment…
NASA Astrophysics Data System (ADS)
Stock, Joachim W.; Blaszczak-Boxe, Christopher S.; Lehmann, Ralph; Grenfell, J. Lee; Patzer, A. Beate C.; Rauer, Heike; Yung, Yuk L.
2017-07-01
Atmospheric chemical composition is crucial in determining a planet's atmospheric structure, stability, and evolution. Attaining a quantitative understanding of the essential chemical mechanisms governing atmospheric composition is nontrivial due to complex interactions between chemical species. Trace species, for example, can participate in catalytic cycles - affecting the abundance of major and other trace gas species. Specifically, for Mars, such cycles dictate the abundance of its primary atmospheric constituent, carbon dioxide (CO2), but also for one of its trace gases, ozone (O3). The identification of chemical pathways/cycles by hand is extremely demanding; hence, the application of numerical methods, such as the Pathway Analysis Program (PAP), is crucial to analyze and quantitatively exemplify chemical reaction networks. Here, we carry out the first automated quantitative chemical pathway analysis of Mars' atmosphere with respect to O3. PAP was applied to JPL/Caltech's 1-D updated photochemical Mars model's output data. We determine all significant chemical pathways and their contribution to O3 production and consumption (up to 80 km) in order to investigate the mechanisms causing the characteristic shape of the O3 volume mixing ratio profile, i.e. a ground layer maximum and an ozone layer at ∼50 km. These pathways explain why an O3 layer is present, why it is located at that particular altitude and what the different processes forming the near-surface and middle atmosphere O3 maxima are. Furthermore, we show that the Martian atmosphere can be divided into two chemically distinct regions according to the O(3P):O3 ratio. In the lower region (below approximately 24 km altitude) O3 is the most abundant Ox (= O3 + O(3P)) species. In the upper region (above approximately 24 km altitude), where the O3 layer is located, O(3P) is the most abundant Ox species. Earlier results concerning the formation of O3 on Mars can now be explained with the help of chemical pathways leading to a better understanding of the vertical O3 profile.
Taverniers, Isabel; Windels, Pieter; Vaïtilingom, Marc; Milcamps, Anne; Van Bockstaele, Erik; Van den Eede, Guy; De Loose, Marc
2005-04-20
Since the 18th of April 2004, two new regulations, EC/1829/2003 on genetically modified food and feed products and EC/1830/2003 on traceability and labeling of GMOs, are in force in the EU. This new, comprehensive regulatory framework emphasizes the need of an adequate tracing system. Unique identifiers, such as the transgene genome junction region or a specific rearrangement within the transgene DNA, should form the basis of such a tracing system. In this study, we describe the development of event-specific tracing systems for transgenic maize lines Bt11, Bt176, and GA21 and for canola event GT73. Molecular characterization of the transgene loci enabled us to clone an event-specific sequence into a plasmid vector, to be used as a marker, and to develop line-specific primers. Primer specificity was tested through qualitative PCRs and dissociation curve analysis in SYBR Green I real-time PCRs. The primers were then combined with event-specific TaqMan probes in quantitative real-time PCRs. Calibration curves were set up both with genomic DNA samples and the newly synthesized plasmid DNA markers. It is shown that cloned plasmid GMO target sequences are perfectly suitable as unique identifiers and quantitative calibrators. Together with an event-specific primer pair and a highly specific TaqMan probe, the plasmid markers form crucial components of a unique and straighforward tracing system for Bt11, Bt176, and GA21 maize and GT73 canola events.
NASA Technical Reports Server (NTRS)
Natesh, R.; Smith, J. M.; Qidwai, H. A.; Bruce, T.
1979-01-01
The evaluation and prediction of the conversion efficiency for a variety of silicon samples with differences in structural defects, such as grain boundaries, twin boundaries, precipitate particles, dislocations, etc. are discussed. Quantitative characterization of these structural defects, which were revealed by etching the surface of silicon samples, is performed by using an image analyzer. Due to different crystal growth and fabrication techniques the various types of silicon contain a variety of trace impurity elements and structural defects. The two most important criteria in evaluating the various silicon types for solar cell applications are cost and conversion efficiency.
NASA Astrophysics Data System (ADS)
Zhang, Airui; Jin, Axiang; Wang, Hai; Wang, Xiaokang; Zha, Pengfei; Wang, Meiling; Song, Xiaoping; Gao, Sitian
2018-03-01
Quantitative determination of trace elements like S, Fe, Cu, Mn and Pb in gasoline and S in diesel is of great importance due to the growing concerns over air pollution, human health and engine failure caused by utilization of gasoline and diesel with these harmful elements. A method of total reflection X-ray fluorescence (TXRF) was developed to measure these harmful trace elements in gasoline and diesel. A variety of factors to affect measurement results, including TXRF parameters, microwave-assisted digestion conditions and internal standard element and its addition, were examined to optimize these experimental procedures. The hydrophobic treatment of the surface of quartz reflectors to support the analyte with neutral silicone solutions could prepare thin films of gasoline and diesel digestion solutions for subsequent TXRF analysis. The proposed method shows good potential and reliability to determine the content of harmful trace elements in gasoline and diesel with high sensitivity and accuracy without drawing different standard calibration curves, and can be easily employed to screen gasoline and diesel in routine quality control and assurance.
NASA Astrophysics Data System (ADS)
Van Hoose, A. E.; Wolff, J.; Conrey, R.
2013-12-01
Advances in portable X-Ray fluorescence (pXRF) analytical technology have made it possible for high-quality, quantitative data to be collected in a fraction of the time required by standard, non-portable analytical techniques. Not only do these advances reduce analysis time, but data may also be collected in the field in conjunction with sampling. Rhyolitic pumice, being primarily glass, is an excellent material to be analyzed with this technology. High-quality, quantitative data for elements that are tracers of magmatic differentiation (e.g. Rb, Sr, Y, Nb) can be collected for whole, individual pumices and subsamples of larger pumices in 4 minutes. We have developed a calibration for powdered rhyolite pumice from the Otowi Member of the Bandelier Tuff analyzed with the Bruker Tracer IV pXRF using Bruker software and influence coefficients for pumice, which measures the following 19 oxides and elements: SiO2, TiO2, Al2O3, FeO*, MnO, CaO, K2O, P2O5, Zn, Ga, Rb, Sr, Y, Zr, Nb, Ba, Ce, Pb, and Th. With this calibration for the pXRF and thousands of individual powdered pumice samples, we have generated an unparalleled data set for any single eruptive unit with known trace element zonation. The Bandelier Tuff of the Valles-Toledo Caldera Complex, Jemez Mountains, New Mexico, is divided into three main eruptive events. For this study, we have chosen the 1.61 Ma, 450 km3 Otowi Member as it is primarily unwelded and pumice samples are easily accessible. The eruption began with a plinian phase from a single source located near center of the current caldera and deposited the Guaje Pumice Bed. The initial Unit A of the Guaje is geochemically monotonous, but Units B through E, co-deposited with ignimbrite show very strong chemical zonation in trace elements, progressing upwards through the deposits from highly differentiated compositions (Rb ~350 ppm, Nb ~200 ppm) to less differentiated (Rb ~100 ppm, Nb ~50 ppm). Co-erupted ignimbrites emplaced during column collapse show similar trace element zonation. The eruption culminated in caldera collapse after transitioning from a single central vent to ring fracture vents. Ignimbrites deposited at this time have lithic breccias and chaotic geochemical profiles. The geochemical discrepancy between early and late deposits warrants detailed, high-resolution sampling and analysis in order to fully understand the dynamics behind zonation processes. Samples were collected from locations that circumvent the caldera and prepared and analyzed in the field and the laboratory with the pXRF. Approximately 2,000 pumice samples will complete this unprecedented data set, allowing detailed reconstruction of trace element zonation around all sides of the Valles Caldera. These data are then used to constrain models of magma chamber processes that produce trace element zonation and how it is preserved in the deposits after a catastrophic, caldera-forming eruption.
Trace elements as quantitative probes of differentiation processes in planetary interiors
NASA Technical Reports Server (NTRS)
Drake, M. J.
1980-01-01
The characteristic trace element signature that each mineral in the source region imparts on the magma constitutes the conceptual basis for trace element modeling. It is shown that abundances of trace elements in extrusive igneous rocks may be used as petrological and geochemical probes of the source regions of the rocks if differentiation processes, partition coefficients, phase equilibria, and initial concentrations in the source region are known. Although compatible and incompatible trace elements are useful in modeling, the present review focuses primarily on examples involving the rare-earth elements.
Lindsey, M.E.; Meyer, M.; Thurman, E.M.
2001-01-01
A method has been developed for the trace analysis of two classes of antimicrobials consisting of six sulfonamides (SAs) and five tetracyclines (TCs), which commonly are used for veterinary purposes and agricultural feed additives and are suspected to leach into ground and surface water. The method used solid-phase extraction and liquid chromatography/mass spectrometry (LC/MS) with positive ion electrospray. The unique combination of a metal chelation agent (Na2EDTA) with a macroporous copolymer resulted in quantitative recoveries by solid-phase extraction (mean recovery, 98 ?? 12%) at submicrogram-per-liter concentrations. An ammonium formate/formic acid buffer with a methanol/water gradient was used to separate the antimicrobials and to optimize the signal intensity. Mass spectral fragmentation and ionization characteristics were determined for each class of compounds for unequivocal identification. For all SAs, a characteristic m/z 156 ion representing the sulfanilyl fragment was identified. TCs exhibited neutral losses of 17 amu resulting from the loss of ammonia and 35 amu from the subsequent loss of water. Unusual matrix effects were seen only for TCs in this first survey of groundwater and surface water samples from sites around the United States, requiring that TCs be quantitated using the method of standard additions.
Mull, D.S.; Smoot, J.L.; Liebermann, T.D.
1988-01-01
Because of the vulnerability of karst aquifers to contamination and the need for water managers to know recharge areas and groundwater flow characteristics for springs and wells used for public water supply, qualitative and quantitative dye tracing techniques were used during a groundwater investigation in the Elizabethtown area, Hardin County, in north-central Kentucky. The principal aquifer in the Elizabethtown area is thick, nearly horizontal beds of limestone, and thin beds of shale of Mississippi age. As much as 65% of all water pumped for the city water supply is obtained from two springs and two wells that obtain water from these rocks. Sinkholes were classified according to their ability to funnel runoff directly into the groundwater flow system, based primarily on the nature of the swallet draining the sinkhole. The presence of bedrock in the sinkhole nearly always ensured a well defined swallet leading to the subsurface. Qualitative and quantitative dye tracing techniques and equipment are discussed in detail. Qualitative dye tracing with fluorescein dye and passive dye detectors, consisting of activated coconut charcoal identified point to point connection between representative sinkholes, sinking streams, and karst windows and the city springs and wells. Qualitative tracing confirmed the presence of infiltrated surface water from a perennial stream, Valley Creek, in water from city wells and generally confirmed the direction of groundwater flow as shown by a water level contour map. Quantitative dye tracing with rhodamin WT, automatic samplers, discharge measurements, and fluorometric analyses were used to determine flow characteristics such as traveltime for arrival of the leading edge, peak concentration, trailing edge, and persistence of the dye cloud at the spring resurgence. Analyses of the dye recovery curves for quantitative dye traces completed between the same sinkholes and a city spring, and during different flow conditions showed that the arrival time of the leading edge of the dye cloud ranged from 5 to 24 hours and that the traveltime of the centroid of the dye cloud ranged from 6 to 31 hours when discharge was 4.6 and 0.53 cu ft/second, respectively. (Lantz-PTT)
Recent advances in X-ray microanalysis in dermatology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forslind, B.; Grundin, T.G.; Lindberg, M.
1985-01-01
Electron microprobe and proton microprobe X-ray analysis can be used in several areas of dermatological research. With a proton probe, the distribution of trace elements in human hair can be determined. Electron microprobe analysis on freeze-dried cryosections of guinea-pig and human epidermis shows a marked gradient of Na, P and K over the stratum granulosum. In sections of freeze-substituted human skin this gradient is less steep. This difference is likely to be due to a decrease in water content of the epidermis towards the stratum corneum. Electron microprobe analysis of the epidermis can, for analysis of trace elements, be complementedmore » by the proton microprobe. Quantitative agreement between the two techniques can be obtained by the use of a standard. Proton microprobe analysis was used to determine the distribution of Ni or Cr in human epidermis exposed to nickel or chromate ions. Possible differences in water content between the stratum corneum of patients with atopic eczema and normal stratum corneum was investigated in skin freeze-substituted with Br-doped resin. No significant differences were observed.« less
NASA Astrophysics Data System (ADS)
Amosova, Alena A.; Panteeva, Svetlana V.; Chubarov, Victor M.; Finkelshtein, Alexandr L.
2016-08-01
The fusion technique is proposed for simultaneous determination of 35 elements from the same sample. Only 110 mg of rock sample was used to obtain fused glasses for quantitative determination of 10 major elements by wavelength dispersive X-ray fluorescence analysis, 16 rare earth elements and some other trace elements by inductively coupled plasma mass spectrometry analysis. Fusion was performed with 1.1 g of lithium metaborate and LiBr solution as the releasing agent in platinum crucible in electric furnace at 1100 °C. The certified reference materials of ultramafic, mafic, intermediate and felsic igneous rocks have been applied to obtain the calibration curves for rock-forming oxides (Na2O, MgO, Al2O3, SiO2, P2O5, K2O, CaO, TiO2, MnO, Fe2O3) and some trace elements (Ba, Sr, Zr) determination by X-ray fluorescence analysis. The repeatability does not exceed the allowable standard deviation for a wide range of concentrations. In the most cases the relative standard deviation was less than 5%. Obtained glasses were utilized for the further determination of rare earth (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) and some other (Ba, Sr, Zr, Rb, Cs, Y, Nb, Hf, Ta, Th and U) trace elements by inductively coupled plasma mass spectrometry analysis with the same certified reference materials employed. The results could mostly be accepted as satisfactory. The proposed procedure essentially reduces the expenses in comparison with separate sample preparation for inductively coupled plasma mass spectrometry and X-ray fluorescence analysis.
A Century of Enzyme Kinetic Analysis, 1913 to 2013
Johnson, Kenneth A.
2013-01-01
This review traces the history and logical progression of methods for quantitative analysis of enzyme kinetics from the 1913 Michaelis and Menten paper to the application of modern computational methods today. Following a brief review of methods for fitting steady state kinetic data, modern methods are highlighted for fitting full progress curve kinetics based upon numerical integration of rate equations, including a re-analysis of the original Michaelis-Menten full time course kinetic data. Finally, several illustrations of modern transient state kinetic methods of analysis are shown which enable the elucidation of reactions occurring at the active sites of enzymes in order to relate structure and function. PMID:23850893
Zhang, Wen; Hu, Zhaochu; Liu, Yongsheng; Yang, Wenwu; Chen, Haihong; Hu, Shenghong; Xiao, Hongyan
2017-08-29
In this paper, we described a NH 4 HF 2 digestion method as sample preparation for the rapid determination of major and trace elements in silicate rocks using laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS). Sample powders digested by NH 4 HF 2 at 230 °C for 3 h form ultrafine powders with a typical grain size d 80 < 8.5 μm, and various silicate rocks have a consistent grain morphology and size, allowing us to produce pressed powder pellets that have excellent cohesion and homogeneity suitable for laser ablation micro-analysis without the addition of binder. The influences of the digestion parameters were investigated and optimized, including the evaporation stage of removing residual NH 4 HF 2 , sample homogenization, selection of the digestion vessel and calibration strategy of quantitative analysis. The optimized NH 4 HF 2 digestion method was applied to dissolve six silicate rock reference materials (BCR-2, BHVO-2, AGV-2, RGM-2, GSP-2, GSR-1) covering a wide range of rock types. Ten major elements and thirty-five trace elements were simultaneously analyzed by LA-ICP-MS. The analytical results of the six reference materials generally agreed with the recommended values, with discrepancies of less than 10% for most elements. The analytical precision is within 5% for most major elements and within 10% for most trace elements. Compared with previous methods of LA-ICP-MS bulk analysis, our method enables the complete dissolution of refractory minerals, such as zircon, in intermediate-acidic intrusive rocks and limits contamination as well as the loss of volatile elements. Moreover, there are many advantages for the new technique, including reducing matrix effects between reference materials and samples, spiking the internal standard simply and feasibly and sample batch processing. The applicability filed of the new technique in this study was focused on the whole-rock analysis of igneous rock samples, which are from basic rocks to acid rocks (45% < SiO 2 < 73%). However, we thought that the NH 4 HF 2 digestion method can be used as a new alternative in LA-ICP-MS for a wider range of geological samples, and will significantly accelerate the application of LA-ICP-MS for the whole-rock analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Quantification of trace metals in infant formula premixes using laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Cama-Moncunill, Raquel; Casado-Gavalda, Maria P.; Cama-Moncunill, Xavier; Markiewicz-Keszycka, Maria; Dixit, Yash; Cullen, Patrick J.; Sullivan, Carl
2017-09-01
Infant formula is a human milk substitute generally based upon fortified cow milk components. In order to mimic the composition of breast milk, trace elements such as copper, iron and zinc are usually added in a single operation using a premix. The correct addition of premixes must be verified to ensure that the target levels in infant formulae are achieved. In this study, a laser-induced breakdown spectroscopy (LIBS) system was assessed as a fast validation tool for trace element premixes. LIBS is a promising emission spectroscopic technique for elemental analysis, which offers real-time analyses, little to no sample preparation and ease of use. LIBS was employed for copper and iron determinations of premix samples ranging approximately from 0 to 120 mg/kg Cu/1640 mg/kg Fe. LIBS spectra are affected by several parameters, hindering subsequent quantitative analyses. This work aimed at testing three matrix-matched calibration approaches (simple-linear regression, multi-linear regression and partial least squares regression (PLS)) as means for precision and accuracy enhancement of LIBS quantitative analysis. All calibration models were first developed using a training set and then validated with an independent test set. PLS yielded the best results. For instance, the PLS model for copper provided a coefficient of determination (R2) of 0.995 and a root mean square error of prediction (RMSEP) of 14 mg/kg. Furthermore, LIBS was employed to penetrate through the samples by repetitively measuring the same spot. Consequently, LIBS spectra can be obtained as a function of sample layers. This information was used to explore whether measuring deeper into the sample could reduce possible surface-contaminant effects and provide better quantifications.
2000-10-01
most enlightening sources found on how to approach the problem were as follows: 1. Eric A. Hanushek and Others, Making Schools Work, Improving... Hanushek traces the history of educational inputs and outputs in the United States. Since the 1950s, test scores have not increased, while...important inputs see Eric A. Hanushek and Others, Making Schools Work: Improving Performance and Controlling Costs, The Brookings Institution, 1994 and
ERIC Educational Resources Information Center
Mei-Ratliff, Yuan
2012-01-01
Trace levels of oxytetracylcine spiked into commercial milk samples are extracted, cleaned up, and preconcentrated using a C[subscript 18] solid-phase extraction column. The extract is then analyzed by a high-performance liquid chromatography (HPLC) instrument equipped with a UV detector and a C[subscript 18] column (150 mm x 4.6 mm x 3.5 [mu]m).…
Modeling of contact tracing in social networks
NASA Astrophysics Data System (ADS)
Tsimring, Lev S.; Huerta, Ramón
2003-07-01
Spreading of certain infections in complex networks is effectively suppressed by using intelligent strategies for epidemic control. One such standard epidemiological strategy consists in tracing contacts of infected individuals. In this paper, we use a recently introduced generalization of the standard susceptible-infectious-removed stochastic model for epidemics in sparse random networks which incorporates an additional (traced) state. We describe a deterministic mean-field description which yields quantitative agreement with stochastic simulations on random graphs. We also discuss the role of contact tracing in epidemics control in small-world and scale-free networks. Effectiveness of contact tracing grows as the rewiring probability is reduced.
Exploitation of very small particles to enhance the probative value of carpet fibers.
Stoney, David A; Neumann, Cedric; Mooney, Kim E; Wyatt, J Matney; Stoney, Paul L
2015-07-01
Environmentally acquired very small particles (VSP), present on the surfaces of carpet fibers, have shown potential for the association of fibers with their carpet source. To unlock this potential, research is required addressing a number of areas, including the application of methods under realistic casework conditions and the utilization of computational methods for the refinement and testing of the approach. In this work field collections of carpet fibers were conducted by crime scene practitioners under realistic casework conditions. VSP were isolated using previously developed methods, and analyses were conducted using SEM/EDS analytical protocols in an operational crime laboratory setting. Computational methods were designed, allowing sets of hundreds to thousands of VSP to be characterized. Classifiers were designed to associate and discriminate among specimens. These classifiers were applied to the VSP data for specimens collected by crime scene practitioners, as well as to a previously collected research dataset. Quantitative measures of correspondence and probative value were designed based on the classification measures and successfully applied to both sets of VSP data. Particle sets larger than 500 showed strong promise for quantitative associations with their sources. The use of larger numbers of target particle types (TPTs) showed strong promise to improve the performance of classification and association. Overall, the usefulness of VSP to provide objective, quantitative associations has been established. Because VSP are acquired post-manufacture, these methods can address fundamental limitations to probative value that arise when class characteristics, determined by manufacture, are shared among mass produced commodities. These findings are of broad significance for the future of trace evidence analysis. The results of this research are likely extendable, with minor modifications, to other trace evidence types (such as glass, tape and human hair), and are expected to contribute significantly for those types of trace evidence that have long been considered of low evidential value (such as undyed cotton and animal hairs). Furthermore, entirely new approaches to trace evidence are enabled by exploiting VSP profiles, such as comparing different types of trace evidence with one another and comparing VSP defined by crime scene or suspect environments to those on virtually any item of physical evidence. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Volodin, Boris; Dolgy, Sergei; Ban, Vladimir S.; Gracin, Davor; Juraić, Krunoslav; Gracin, Leo
2014-03-01
Shifted Excitation Raman Difference Spectroscopy (SERDS) has proven an effective method for performing Raman analysis of fluorescent samples. This technique allows achieving excellent signal to noise performance with shorter excitation wavelengths, thus taking full advantage of the superior signal strength afforded by shorter excitation wavelengths and the superior performance, also combined with lower cost, delivered by silicon CCDs. The technique is enabled by use of two closely space fixed-wavelength laser diode sources stabilized with the Volume Bragg gratings (VBGs). A side by side comparison reveals that SERDS technique delivers superior signal to noise ratio and better detection limits in most situations, even when a longer excitation wavelength is employed for the purpose of elimination of the fluorescence. We have applied the SERDS technique to the quantitative analysis of the presence of trace amounts of methanol in red wines, which is an important task in quality control operations within wine industry and is currently difficult to perform in the field. So far conventional Raman spectroscopy analysis of red wines has been impractical due to the high degree of fluorescence.
Shao, Shuai; Hu, Bifeng; Fu, Zhiyi; Wang, Jiayu; Lou, Ge; Zhou, Yue; Jin, Bin; Li, Yan; Shi, Zhou
2018-06-12
Trace elements pollution has attracted a lot of attention worldwide. However, it is difficult to identify and apportion the sources of multiple element pollutants over large areas because of the considerable spatial complexity and variability in the distribution of trace elements in soil. In this study, we collected total of 2051 topsoil (0⁻20 cm) samples, and analyzed the general pollution status of soils from the Yangtze River Delta, Southeast China. We applied principal component analysis (PCA), a finite mixture distribution model (FMDM), and geostatistical tools to identify and quantitatively apportion the sources of seven kinds of trace elements (chromium (Cr), cadmium (Cd), mercury (Hg), copper (Cu), zinc (Zn), nickel (Ni), and arsenic (As)) in soil. The PCA results indicated that the trace elements in soil in the study area were mainly from natural, multi-pollutant and industrial sources. The FMDM also fitted three sub log-normal distributions. The results from the two models were quite similar: Cr, As, and Ni were mainly from natural sources caused by parent material weathering; Cd, Cu, and Zu were mainly from mixed sources, with a considerable portion from anthropogenic activities such as traffic pollutants, domestic garbage, and agricultural inputs, and Hg was mainly from industrial wastes and pollutants.
A new technique for collection, concentration and determination of gaseous tropospheric formaldehyde
NASA Astrophysics Data System (ADS)
Cofer, Wesley R.; Edahl, Robert A.
This article describes an improved technique for making in situ measurements of gaseous tropospheric formaldehyde (CH 2O). The new technique is based on nebulization/reflux principles that have proved very effective in quantitatively scrubbing water soluble trace gases (e.g. CH 2O) into aqueous mediums, which are subsequently analyzed. Atmospheric formaldehyde extractions and analyses have been performed with the nebulization/reflux concentrator using an acidified dinitrophenylhydrazine solution that indicate that quantitative analysis of CH 2O at global background levels (˜ 0.1 ppbv) is feasible with 20-min extractions. Analysis of CH 2O, once concentrated, is accomplished using high performance liquid chromatography (HPLC) with ultraviolet photometric detection. The CH 2O-hydrazone derivative, produced by the reaction of 2,4-dinitrophenylhydrazine in H 2SO 4 acidified aqueous solution, is detected as CH 2O.
A new technique for collection, concentration and determination of gaseous tropospheric formaldehyde
NASA Technical Reports Server (NTRS)
Cofer, W. R., III; Edahl, R. A., Jr.
1986-01-01
This article describes an improved technique for making in situ measurements of gaseous tropospheric formaldehyde (CH2O). The new technique is based on nebulization/reflux principles that have proved very effective in quantitatively scrubbing water soluble trace gases (e.g., CH2O) into aqueous mediums, which are subsequently analyzed. Atmospheric formaldehyde extractions and analyses have been performed with the nebulization/reflux concentrator using an acidified dinitrophenylhydrazine solution that indicate that quantitative analysis of CH2O at global background levels (about 0.1 ppbv) is feasible with 20-min extractions. Analysis of CH2O, once concentrated, is accomplished using high performance liquid chromatography with ultraviolet photometric detection. The CH2O-hydrazone derivative, produced by the reaction of 2,4-dinitrophenylhydrazine in H2SO4 acidified aqueous solution, is detected as CH2O.
NASA Technical Reports Server (NTRS)
Shekhar, R.; Cothren, R. M.; Vince, D. G.; Chandra, S.; Thomas, J. D.; Cornhill, J. F.
1999-01-01
Intravascular ultrasound (IVUS) provides exact anatomy of arteries, allowing accurate quantitative analysis. Automated segmentation of IVUS images is a prerequisite for routine quantitative analyses. We present a new three-dimensional (3D) segmentation technique, called active surface segmentation, which detects luminal and adventitial borders in IVUS pullback examinations of coronary arteries. The technique was validated against expert tracings by computing correlation coefficients (range 0.83-0.97) and William's index values (range 0.37-0.66). The technique was statistically accurate, robust to image artifacts, and capable of segmenting a large number of images rapidly. Active surface segmentation enabled geometrically accurate 3D reconstruction and visualization of coronary arteries and volumetric measurements.
Separation of thorium from lanthanides by solvent extraction with ionizable crown ethers.
Du, H S; Wood, D J; Elshani, S; Wai, C M
1993-02-01
Thorium and the lanthanides are extracted by alpha-(sym-dibenzo-16-crown-5-oxy)acetic acid and its analogues in different pH ranges. At pH 4.5, Th is quantitatively extracted by the crown ether carboxylic acids into chloroform whereas the extraction of the lanthanides is negligible. Separation of Th from the lanthanides can be achieved by solvent extraction under this condition. The extraction does not require specific counteranions and is reversible with respect to pH. Trace amounts of Th in water can be quantitatively recovered using this extraction system for neutron activation analysis. The nature of the extracted Th complex and the mechanism of extraction are discussed.
Quantitative characterisation of sedimentary grains
NASA Astrophysics Data System (ADS)
Tunwal, Mohit; Mulchrone, Kieran F.; Meere, Patrick A.
2016-04-01
Analysis of sedimentary texture helps in determining the formation, transportation and deposition processes of sedimentary rocks. Grain size analysis is traditionally quantitative, whereas grain shape analysis is largely qualitative. A semi-automated approach to quantitatively analyse shape and size of sand sized sedimentary grains is presented. Grain boundaries are manually traced from thin section microphotographs in the case of lithified samples and are automatically identified in the case of loose sediments. Shape and size paramters can then be estimated using a software package written on the Mathematica platform. While automated methodology already exists for loose sediment analysis, the available techniques for the case of lithified samples are limited to cases of high definition thin section microphotographs showing clear contrast between framework grains and matrix. Along with the size of grain, shape parameters such as roundness, angularity, circularity, irregularity and fractal dimension are measured. A new grain shape parameter developed using Fourier descriptors has also been developed. To test this new approach theoretical examples were analysed and produce high quality results supporting the accuracy of the algorithm. Furthermore sandstone samples from known aeolian and fluvial environments from the Dingle Basin, County Kerry, Ireland were collected and analysed. Modern loose sediments from glacial till from County Cork, Ireland and aeolian sediments from Rajasthan, India have also been collected and analysed. A graphical summary of the data is presented and allows for quantitative distinction between samples extracted from different sedimentary environments.
Kaniu, M I; Angeyo, K H; Mwala, A K; Mangala, M J
2012-06-04
Precision agriculture depends on the knowledge and management of soil quality (SQ), which calls for affordable, simple and rapid but accurate analysis of bioavailable soil nutrients. Conventional SQ analysis methods are tedious and expensive. We demonstrate the utility of a new chemometrics-assisted energy dispersive X-ray fluorescence and scattering (EDXRFS) spectroscopy method we have developed for direct rapid analysis of trace 'bioavailable' macronutrients (i.e. C, N, Na, Mg, P) in soils. The method exploits, in addition to X-ray fluorescence, the scatter peaks detected from soil pellets to develop a model for SQ analysis. Spectra were acquired from soil samples held in a Teflon holder analyzed using (109)Cd isotope source EDXRF spectrometer for 200 s. Chemometric techniques namely principal component analysis (PCA), partial least squares (PLS) and artificial neural networks (ANNs) were utilized for pattern recognition based on fluorescence and Compton scatter peaks regions, and to develop multivariate quantitative calibration models based on Compton scatter peak respectively. SQ analyses were realized with high CMD (R(2)>0.9) and low SEP (0.01% for N and Na, 0.05% for C, 0.08% for Mg and 1.98 μg g(-1) for P). Comparison of predicted macronutrients with reference standards using a one-way ANOVA test showed no statistical difference at 95% confidence level. To the best of the authors' knowledge, this is the first time that an XRF method has demonstrated utility in trace analysis of macronutrients in soil or related matrices. Copyright © 2012 Elsevier B.V. All rights reserved.
Online Continuous Trace Process Analytics Using Multiplexing Gas Chromatography.
Wunsch, Marco R; Lehnig, Rudolf; Trapp, Oliver
2017-04-04
The analysis of impurities at a trace level in chemical products, nutrition additives, and drugs is highly important to guarantee safe products suitable for consumption. However, trace analysis in the presence of a dominating component can be a challenging task because of noncompatible linear detection ranges or strong signal overlap that suppresses the signal of interest. Here, we developed a technique for quantitative analysis using multiplexing gas chromatography (mpGC) for continuous and completely automated process trace analytics exemplified for the analysis of a CO 2 stream in a production plant for detection of benzene, toluene, ethylbenzene, and the three structural isomers of xylene (BTEX) in the concentration range of 0-10 ppb. Additional minor components are methane and methanol with concentrations up to 100 ppm. The sample is injected up to 512 times according to a pseudorandom binary sequence (PRBS) with a mean frequency of 0.1 Hz into a gas chromatograph equipped with a flame ionization detector (FID). A superimposed chromatogram is recorded which is deconvoluted into an averaged chromatogram with Hadamard transformation. Novel algorithms to maintain the data acquisition rate of the detector by application of Hadamard transformation and to suppress correlation noise induced by components with much higher concentrations than the target substances are shown. Compared to conventional GC-FID, the signal-to-noise ratio has been increased by a factor of 10 with mpGC-FID. Correspondingly, the detection limits for BTEX in CO 2 have been lowered from 10 to 1 ppb each. This has been achieved despite the presence of detectable components (methane and methanol) with a concentration about 1000 times higher than the target substances. The robustness and reliability of mpGC has been proven in a two-month field test in a chemical production plant.
Hoffman, Gerald L.
1996-01-01
A method for the chemical preparation of tissue samples that are subsequently analyzed for 22 trace metals is described. The tissue-preparation procedure was tested with three National Institute of Standards and Technology biological standard reference materials and two National Water Quality Laboratory homogenized biological materials. A low-temperature (85 degrees Celsius) nitric acid digestion followed by the careful addition of hydrogen peroxide (30-percent solution) is used to decompose the biological material. The solutions are evaporated to incipient dryness, reconstituted with 5 percent nitric acid, and filtered. After filtration the solutions were diluted to a known volume and analyzed by inductively coupled plasma-mass spectrometry (ICP-MS), inductively coupled plasma-atomic emission spectrometry (ICP-AES), and cold vapor-atomic absorption spectrophotometry (CV-AAS). Many of the metals were determined by both ICP-MS and ICP-AES. This report does not provide a detailed description of the instrumental procedures and conditions used with the three types of instrumentation for the quantitation of trace metals determined in this study. Statistical data regarding recovery, accuracy, and precision for individual trace metals determined in the biological material tested are summarized.
An expert system/ion trap mass spectrometry approach for life support systems monitoring
NASA Technical Reports Server (NTRS)
Palmer, Peter T.; Wong, Carla M.; Yost, Richard A.; Johnson, Jodie V.; Yates, Nathan A.; Story, Michael
1992-01-01
Efforts to develop sensor and control system technology to monitor air quality for life support have resulted in the development and preliminary testing of a concept based on expert systems and ion trap mass spectrometry (ITMS). An ITMS instrument provides the capability to identify and quantitate a large number of suspected contaminants at trace levels through the use of a variety of multidimensional experiments. An expert system provides specialized knowledge for control, analysis, and decision making. The system is intended for real-time, on-line, autonomous monitoring of air quality. The key characteristics of the system, performance data and analytical capabilities of the ITMS instrument, the design and operation of the expert system, and results from preliminary testing of the system for trace contaminant monitoring are described.
Ohtsuka, Masahiro; Muto, Shunsuke; Tatsumi, Kazuyoshi; Kobayashi, Yoshinori; Kawata, Tsunehiro
2016-04-01
The occupation sites and the occupancies of trace dopants in La/Co co-doped Sr-M-type ferrite, SrFe12O19, were quantitatively and precisely determined by beam-rocking energy-dispersive X-ray spectroscopy (EDXS) on the basis of electron-channeling effects. Because the Co atoms, in particular, should be partially substituted for the five crystallographically inequivalent sites, which could be key parameters in improving the magneto-crystalline anisotropy, it is difficult yet intriguing to discover their occupation sites and occupancies without using the methods of large-scale facilities, such as neutron diffraction and synchrotron radiation. In the present study, we tackled this problem by applying an extended statistical atom location by channeling enhanced microanalysis method, using conventional transmission electron microscopy, EDXS and dynamical electron elastic/inelastic scattering theories. The results show that the key occupation sites of Co were the 2a, 4f1 and 12k sites. The quantified occupancies of Co were consistent with those of the previous study, which involved a combination of neutron diffraction and extended X-ray absorption fine structure analysis, as well as energetics considerations based on by first-principles calculations. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Determination of volatile organic compounds for a systematic evaluation of third-hand smoking.
Ueta, Ikuo; Saito, Yoshihiro; Teraoka, Kenta; Miura, Tomoya; Jinno, Kiyokatsu
2010-01-01
Third-hand smoking was quantitatively evaluated with a polymer-packed sample preparation needle and subsequent gas chromatography-mass spectroscopy analysis. The extraction needle was prepared with polymeric particles as the extraction medium, and successful extraction of typical gaseous volatile organic compounds (VOCs) was accomplished with the extraction needle. For an evaluation of this new cigarette hazard, several types of clothing fabrics were exposed to sidestream smoke, and the smoking-related VOCs evaporated from the fabrics to the environmental air were preconcentrated with the extraction needle. Smoking-related VOCs in smokers' breath were also measured using the extraction needle, and the effect of the breath VOCs on third-hand smoking pollution was evaluated. The results demonstrated that a trace amount of smoking-related VOCs was successfully determined by the proposed method. The adsorption and desorption behaviors of smoking-related VOCs were clearly different for each fabric material, and the time variations of these VOCs concentrations were quantitatively evaluated. The VOCs in the smokers' breath were clearly higher than that of nonsmokers'; however, the results suggested that no significant effect of the smokers' breath on the potential pollution occurred in the typical life space. The method was further applied to the determination of the actual third-hand smoking pollution in an automobile, and a future possibility of the proposed method to the analysis of trace amounts of VOCs in environmental air samples was suggested.
Xiao, Ruiyang; Ye, Tiantian; Wei, Zongsu; Luo, Shuang; Yang, Zhihui; Spinney, Richard
2015-11-17
The sulfate radical anion (SO4•–) based oxidation of trace organic contaminants (TrOCs) has recently received great attention due to its high reactivity and low selectivity. In this study, a meta-analysis was conducted to better understand the role of functional groups on the reactivity between SO4•– and TrOCs. The results indicate that compounds in which electron transfer and addition channels dominate tend to exhibit a faster second-order rate constants (kSO4•–) than that of H–atom abstraction, corroborating the SO4•– reactivity and mechanisms observed in the individual studies. Then, a quantitative structure activity relationship (QSAR) model was developed using a sequential approach with constitutional, geometrical, electrostatic, and quantum chemical descriptors. Two descriptors, ELUMO and EHOMO energy gap (ELUMO–EHOMO) and the ratio of oxygen atoms to carbon atoms (#O:C), were found to mechanistically and statistically affect kSO4•– to a great extent with the standardized QSAR model: ln kSO4•– = 26.8–3.97 × #O:C – 0.746 × (ELUMO–EHOMO). In addition, the correlation analysis indicates that there is no dominant reaction channel for SO4•– reactions with various structurally diverse compounds. Our QSAR model provides a robust predictive tool for estimating emerging micropollutants removal using SO4•– during wastewater treatment processes.
Quantitative Evaluation of a Planetary Renderer for Terrain Relative Navigation
NASA Astrophysics Data System (ADS)
Amoroso, E.; Jones, H.; Otten, N.; Wettergreen, D.; Whittaker, W.
2016-11-01
A ray-tracing computer renderer tool is presented based on LOLA and LROC elevation models and is quantitatively compared to LRO WAC and NAC images for photometric accuracy. We investigated using rendered images for terrain relative navigation.
X-ray fluorescence analysis of K, Al and trace elements in chloroaluminate melts
NASA Astrophysics Data System (ADS)
Shibitko, A. O.; Abramov, A. V.; Denisov, E. I.; Lisienko, D. G.; Rebrin, O. I.; Bunkov, G. M.; Rychkov, V. N.
2017-09-01
Energy dispersive x-ray fluorescence spectrometry was applied to quantitative determination of K, Al, Cr, Fe and Ni in chloroaluminate melts. To implement the external standard calibration method, an unconventional way of samples preparation was suggested. A mixture of metal chlorides was melted in a quartz cell at 350-450 °C under a slightly excessive pressure of purified argon (99.999 %). The composition of the calibration samples (CSs) prepared was controlled by means of the inductively coupled plasma atomic emission spectrometry (ICP-AES). The optimal conditions for analytical lines excitation were determined, the analytes calibration curves were obtained. There was some influence of matrix effects in synthesized samples on the analytical signal of some elements. The CSs are to be stored in inert gas atmosphere. The precision, accuracy, and reproducibility factors of the quantitative chemical analysis were computed.
Wavelet Analysis of Turbulent Spots and Other Coherent Structures in Unsteady Transition
NASA Technical Reports Server (NTRS)
Lewalle, Jacques
1998-01-01
This is a secondary analysis of a portion of the Halstead data. The hot-film traces from an embedded stage of a low pressure turbine have been extensively analyzed by Halstead et al. In this project, wavelet analysis is used to develop the quantitative characterization of individual coherent structures in terms of size, amplitude, phase, convection speed, etc., as well as phase-averaged time scales. The purposes of the study are (1) to extract information about turbulent time scales for comparison with unsteady model results (e.g. k/epsilon). Phase-averaged maps of dominant time scales will be presented; and (2) to evaluate any differences between wake-induced and natural spots that might affect model performance. Preliminary results, subject to verification with data at higher frequency resolution, indicate that spot properties are independent of their phase relative to the wake footprints: therefore requirements for the physical content of models are kept relatively simple. Incidentally, we also observed that spot substructures can be traced over several stations; further study will examine their possible impact.
EDXRF quantitative analysis of chromophore chemical elements in corundum samples.
Bonizzoni, L; Galli, A; Spinolo, G; Palanza, V
2009-12-01
Corundum is a crystalline form of aluminum oxide (Al(2)O(3)) and is one of the rock-forming minerals. When aluminum oxide is pure, the mineral is colorless, but the presence of trace amounts of other elements such as iron, titanium, and chromium in the crystal lattice gives the typical colors (including blue, red, violet, pink, green, yellow, orange, gray, white, colorless, and black) of gemstone varieties. The starting point for our work is the quantitative evaluation of the concentration of chromophore chemical elements with a precision as good as possible to match the data obtained by different techniques as such as optical absorption photoluminescence. The aim is to give an interpretation of the absorption bands present in the NIR and visible ranges which do not involve intervalence charge transfer transitions (Fe(2+) --> Fe(3+) and Fe(2+) --> Ti(4+)), commonly considered responsible of the important features of the blue sapphire absorption spectra. So, we developed a method to evaluate as accurately as possible the autoabsorption effects and the secondary excitation effects which frequently are sources of relevant errors in the quantitative EDXRF analysis.
Trace element mapping in Parkinsonian brain by quantitative ion beam microscopy
NASA Astrophysics Data System (ADS)
Barapatre, Nirav; Morawski, Markus; Butz, Tilman; Reinert, Tilo
2010-06-01
The role of iron in the pathogenesis of the Parkinson's disease (PD) is a current subject of research in Neurochemistry, since an abnormal increase in iron is reported in the substantia nigra (SN) of Parkinsonian patients. A severe loss of the cells containing dopamine in the SN in the PD has also drawn attention towards the function of a browny-black pigment called neuromelanin, which accumulates predominantly in these dopaminergic neurons. The neuromelanin has an ability to chelate metal ions, which, in free state, may cause considerable damage to cells by reacting with their lipid-rich membranes. However, it could also potentiate free radical production if it releases the bound metal ions. The highly sensitive and non-destructive micro-PIXE method suits best to quantify and map the trace elements in the SN. The accuracy in charge measurement for such microanalysis studies is of utmost importance for quantitative analysis. Since a Faraday cup is usually placed behind the thin biological sample to measure the charge, the primary and the secondary electrons, knocked out from the sample by traversing ion beam, hamper an exact charge determination. Hence, a new non-interceptive technique was developed for precise charge measurement and for continuous monitoring of beam current.
Raju, K V S N; Pavan Kumar, K S R; Siva Krishna, N; Madhava Reddy, P; Sreenivas, N; Kumar Sharma, Hemant; Himabindu, G; Annapurna, N
2016-01-01
A capillary gas chromatography method with a short run time, using a flame ionization detector, has been developed for the quantitative determination of trace level analysis of mesityl oxide and diacetone alcohol in the atazanavir sulfate drug substance. The chromatographic method was achieved on a fused silica capillary column coated with 5% diphenyl and 95% dimethyl polysiloxane stationary phase (Rtx-5, 30 m x 0.53 mm x 5.0 µm). The run time was 20 min employing programmed temperature with a split mode (1:5) and was validated for specificity, sensitivity, precision, linearity, and accuracy. The detection and quantitation limits obtained for mesityl oxide and diacetone alcohol were 5 µg/g and 10 µg/g, respectively, for both of the analytes. The method was found to be linear in the range between 10 µg/g and 150 µg/g with a correlation coefficient greater than 0.999, and the average recoveries obtained in atazanavir sulfate were between 102.0% and 103.7%, respectively, for mesityl oxide and diacetone alcohol. The developed method was found to be robust and rugged. The detailed experimental results are discussed in this research paper.
Huang, Wen; Duan, Dandan; Zhang, Yulong; Cheng, Hefa; Ran, Yong
2014-08-30
Suspended particulate matter (SPM) and colloidal matter (COM) in annual dry and wet deposition samples in urban Guangzhou were for the first time collected, and their trace metals were investigated by using inductively coupled plasma mass spectrometry (ICP-MS). The deposition flux of SPM and of metal elements varied largely among the investigated seasons, and reached the maximum in spring. The correlation analysis indicated that significant correlations existed among some of the metal elements in the deposition samples. The enrichment factors (EF) of metals in COM in the deposition ranging from 79.66 to 130,000 were much higher than those of SPM ranging from 1.65 to 286.48, indicating the important role of COM. The factor analysis showed that emissions from street dust, non-ferrous metal production, and heavy fuel oil were major sources of the trace metals. Positive matrix factorization (PMF) model was used to quantitatively estimate anthropogenic source. Copyright © 2013 Elsevier Ltd. All rights reserved.
Enhanced identification of trace element fingerprint of prehistoric pigments by PIXE mapping
NASA Astrophysics Data System (ADS)
Lebon, M.; Pichon, L.; Beck, L.
2018-02-01
The elemental composition of Fe rich rocks used as pigment during prehistoric periods can provide valuable information about the type of material used and their geological origin. However, these materials present several analytical constraints since their patrimonial value involve using non-invasive techniques maintaining a high sensitivity of the detection and the quantification of trace elements. Micro-beam techniques also require to take into account the heterogeneity of these geomaterials from the macroscopic to microscopic scales. Several previous studies have demonstrated that PIXE analysis satisfies these analytical conditions. However, application of micro-PIXE analysis is still complex when thin and discontinuous layer of pigment is deposed on the surface of other materials such as rocks or bones. In such case, PIXE imaging could improve the ability to take into account the high heterogeneity of such archaeological objects. In study, we used PIXE imaging system developed at the NewAGLAE facility in order to visualize distribution of elements associated with iron-rich pigment phase. The results obtained show that PIXE maps can improve the identification of the main trace elements specific to the iron mineral phase. By grouping pixels of iron-rich areas and performing quantitative treatment, it was possible to reveal additional trace elements associated to pigment. This study highlights the contribution of PIXE imaging to the identification of elements associated with mineral phases of interest and to use them as proxies to discriminate different geological materials used in archaeological context.
Whale baleen trace element signatures: a predictor of environmental life history?
NASA Astrophysics Data System (ADS)
Wilcox Freeburg, E.; Brault, S.; Mayo, C.; Oktay, S.; Hannigan, R.
2009-12-01
The analysis of trace element composition of biogenic structures (e.g., otoliths, feathers) by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) provides unique insights into the environmental life history of individuals. We studied the trace element chemistry of right whale baleens in an attempt to reconstruct migration patterns. Though much is known about the feeding and breeding habitats of these whales, little is known about the location in which they spend most of their adult years. Baleens, made of keratin, grow continuously and are metabolically inactive. Previous work showed that the stable isotope chemistry along the length of a baleen records changes in diet, such as weaning. Baleen chemistry should, therefore, also record the environmental life history of the individual. Trace metal chemistry along a single baleen plate from a right whale were analyzed by LA-ICP-MS. Semi-quantitative elemental signatures were obtained using NIST 612 (glass standard) and MACS-3 (calcium carbonate standard). These concentrations were then compared for accuracy to acid digested baleen laterally adjacent to the laser ablation site via aqueous ICP-MS. Elemental chemistry was compared to known feeding/breeding locations of the individual (water chemistry). Using these comparisons as well as principal components analysis, life history of the individual was reconstructed. Development of an in-house keratin standard is in progress and is expected to strengthen the confidence in results. Future work is expected to bring a more complete knowledge of right whale wintering habits.
NASA Technical Reports Server (NTRS)
Husson, N.; Barbe, A.; Brown, L. R.; Carli, B.; Goldman, A.; Pickett, H. M.; Roche, A. E.; Rothman, L. S.; Smith, M. A. H.
1985-01-01
Several aspects of quantitative atmospheric spectroscopy are considered, using a classification of the molecules according to the gas amounts in the stratosphere and upper troposphere, and reviews of quantitative atmospheric high-resolution spectroscopic measurements and field measurements systems are given. Laboratory spectroscopy and spectral analysis and prediction are presented with a summary of current laboratory spectroscopy capabilities. Spectroscopic data requirements for accurate derivation of atmospheric composition are discussed, where examples are given for space-based remote sensing experiments of the atmosphere: the ATMOS (Atmospheric Trace Molecule) and UARS (Upper Atmosphere Research Satellite) experiment. A review of the basic parameters involved in the data compilations; a summary of information on line parameter compilations already in existence; and a summary of current laboratory spectroscopy studies are used to assess the data base.
Chen, Li; Mossa-Basha, Mahmud; Balu, Niranjan; Canton, Gador; Sun, Jie; Pimentel, Kristi; Hatsukami, Thomas S; Hwang, Jenq-Neng; Yuan, Chun
2018-06-01
To develop a quantitative intracranial artery measurement technique to extract comprehensive artery features from time-of-flight MR angiography (MRA). By semiautomatically tracing arteries based on an open-curve active contour model in a graphical user interface, 12 basic morphometric features and 16 basic intensity features for each artery were identified. Arteries were then classified as one of 24 types using prediction from a probability model. Based on the anatomical structures, features were integrated within 34 vascular groups for regional features of vascular trees. Eight 3D MRA acquisitions with intracranial atherosclerosis were assessed to validate this technique. Arterial tracings were validated by an experienced neuroradiologist who checked agreement at bifurcation and stenosis locations. This technique achieved 94% sensitivity and 85% positive predictive values (PPV) for bifurcations, and 85% sensitivity and PPV for stenosis. Up to 1,456 features, such as length, volume, and averaged signal intensity for each artery, as well as vascular group in each of the MRA images, could be extracted to comprehensively reflect characteristics, distribution, and connectivity of arteries. Length for the M1 segment of the middle cerebral artery extracted by this technique was compared with reviewer-measured results, and the intraclass correlation coefficient was 0.97. A semiautomated quantitative method to trace, label, and measure intracranial arteries from 3D-MRA was developed and validated. This technique can be used to facilitate quantitative intracranial vascular research, such as studying cerebrovascular adaptation to aging and disease conditions. Magn Reson Med 79:3229-3238, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
ERIC Educational Resources Information Center
Lavilla, Isela; Costas, Marta; Pena-Pereira, Francisco; Gil, Sandra; Bendicho, Carlos
2011-01-01
Ultrasound-assisted extraction (UAE) is introduced to upper-level analytical chemistry students as a simple strategy focused on sample preparation for trace-metal determination in biological tissues. Nickel extraction in seafood samples and quantification by electrothermal atomic absorption spectrometry (ETAAS) are carried out by a team of four…
Electron microscopy and forensic practice
NASA Astrophysics Data System (ADS)
Kotrlý, Marek; Turková, Ivana
2013-05-01
Electron microanalysis in forensic practice ranks among basic applications used in investigation of traces (latents, stains, etc.) from crime scenes. Applying electron microscope allows for rapid screening and receiving initial information for a wide range of traces. SEM with EDS/WDS makes it possible to observe topography surface and morphology samples and examination of chemical components. Physical laboratory of the Institute of Criminalistics Prague use SEM especially for examination of inorganic samples, rarely for biology and other material. Recently, possibilities of electron microscopy have been extended considerably using dual systems with focused ion beam. These systems are applied mainly in study of inner micro and nanoparticles , thin layers (intersecting lines in graphical forensic examinations, analysis of layers of functional glass, etc.), study of alloys microdefects, creating 3D particles and aggregates models, etc. Automated mineralogical analyses are a great asset to analysis of mineral phases, particularly soils, similarly it holds for cathode luminescence, predominantly colour one and precise quantitative measurement of their spectral characteristics. Among latest innovations that are becoming to appear also at ordinary laboratories are TOF - SIMS systems and micro Raman spectroscopy with a resolution comparable to EDS/WDS analysis (capable of achieving similar level as through EDS/WDS analysis).
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeRosier, R.; Waterland, L.R.
1987-03-01
The report gives emission results from field tests of a wood-waste-fired industrial firetube boiler. Emission measurements included: continuous monitoring of flue gas emissions: source assessment sampling system (SASS) sampling of the flue-gas with subsequent laboratory analysis of samples to give total flue gas organics in two boiling point ranges, compound category information within these ranges, specific quantitation of the semivolatile organic priority pollutants, and flue gas concentrations of 65 trace elements; Method 5 sampling for particulates; controlled condensation system (CSS) sampling for SO/sub 2/ and SO/sub 3/; and grab sampling of boiler bottom ash for trace element content determinations. Totalmore » organic emissions from the boiler were 5.7 mg/dscm, about 90% of which consisted of volatile compounds.« less
Starvin, A M; Rao, T Prasada
2004-09-10
As a part of removal of toxic heavy metals from hazardous wastes, solid phase extraction (SPE) of mercury(II) at trace and ultra trace levels was studied using 1-(2-thiazolylazo)-2-naphthol (TAN) functionalized activated carbon (AC). The SPE material removes traces of mercury(II) quantitatively in the pH range 6.0 +/- 0.2. Other parameters that influence quantitative recovery of mercury(II), viz. percent concentration of TAN in AC, amount of TAN-AC, preconcentration time and volume of aqueous phase were varied and optimized. The possible means of removal of Hg(II) from other metal ions that are likely to be present in the wastes of the chloroalkali industry is discussed. The potential of TAN-functionalized AC SPE material for decontaminating mercury from the brine sludge and cell house effluent of a chloralkali plant has been evaluated.
Chen, Bihua; Chen, Gang; Dai, Chenxi; Wang, Pei; Zhang, Lei; Huang, Yuanyuan; Li, Yongqin
2018-04-01
Quantitative electroencephalogram (EEG) analysis has shown promising results in studying brain injury and functional recovery after cardiac arrest (CA). However, whether the quantitative characteristics of EEG, as potential indicators of neurological prognosis, are influenced by CA causes is unknown. The purpose of this study was designed to compare the quantitative characteristics of early post-resuscitation EEG between asphyxial CA (ACA) and ventricular fibrillation CA (VFCA) in rats. Thirty-two Sprague-Dawley rats of both sexes were randomized into either ACA or VFCA group. Cardiopulmonary resuscitation was initiated after 5-min untreated CA. Characteristics of early post-resuscitation EEG were compared, and the relationships between quantitative EEG features and neurological outcomes were investigated. Compared with VFCA, serum level of S100B, neurological deficit score and brain histopathologic damage score were dramatically higher in the ACA group. Quantitative measures of EEG, including onset time of EEG burst, time to normal trace, burst suppression ratio, and information quantity, were significantly lower for CA caused by asphyxia and correlated with the 96-h neurological outcome and survival. Characteristics of earlier post-resuscitation EEG differed between cardiac and respiratory causes. Quantitative measures of EEG not only predicted neurological outcome and survival, but also have the potential to stratify CA with different causes.
Ostrinskaya, Alla; Kunz, Roderick R; Clark, Michelle; Kingsborough, Richard P; Ong, Ta-Hsuan; Deneault, Sandra
2018-05-24
A flow-injection analysis tandem mass spectrometry (FIA MSMS) method was developed for rapid quantitative analysis of 10 different inorganic and organic explosives. Performance is optimized by tailoring the ionization method (APCI/ESI), de-clustering potentials, and collision energies for each specific analyte. In doing so, a single instrument can be used to detect urea nitrate, potassium chlorate, 2,4,6-trinitrotoluene, 2,4,6-trinitrophenylmethylnitramine, triacetone triperoxide, hexamethylene triperoxide diamine, pentaerythritol tetranitrate, 1,3,5-trinitroperhydro-1,3,5-triazine, nitroglycerin, and octohy-dro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine with sensitivities all in the picogram per milliliter range. In conclusion, FIA APCI/ESI MSMS is a fast (<1 min/sample), sensitive (~pg/mL LOQ), and precise (intraday RSD < 10%) method for trace explosive detection that can play an important role in criminal and attributional forensics, counterterrorism, and environmental protection areas, and has the potential to augment or replace several of the existing explosive detection methods. © 2018 American Academy of Forensic Sciences.
Limchoowong, Nunticha; Sricharoen, Phitchan; Techawongstien, Suchila; Chanthai, Saksit
2017-09-01
A green approach using chitosan solution as a novel bio-dispersive agent for the dispersive liquid-liquid microextraction (DLLME) of trace amounts of Cu(II) in edible oils is presented. An emulsion was formed by mixing the oil sample with 300µL of 0.25% (w/v) chitosan solution containing 200µL of 6molL -1 HCl. Deionized water was used to induce emulsion breaking without centrifugation. The centrifuged Cu(II) extract was collected and analyzed using an inductively coupled plasma-optical emission spectrometer. The detection and quantitation limits were 2.1 and 6.8µgL -1 , respectively. Trace amounts of Cu(II) in six edible oil samples were tested under optimum conditions for DLLME, with a recovery ranging from 90.3% to 109.3%. Therefore, the new dispersive agent in DLLME offers superior performance owing to the non-toxic nature of the solvent, short extraction time, high sensitivity, and easy operation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zuo, Xue; Hong, Hao; Zang, Xin-yu; Xu, Feng; Shang, Ming-ying; Wang, Xuan; Cai, Shao-qing
2015-12-01
This study is to establish the characteristic HPLC chromatogram of phenols in Ephedrae Herba, from which to pick out the marker peaks, followed by the analysis of the regularity of their distribution and content in the herbaceous stems of Ephedra sinica, E. intermedia and E. equisetina. The HPLC-DAD method for the characteristic chromatogram as well as quantitative analysis was established. The separation was carried out on a YMC-Pack ODS-A column (4.6 mm x 250 mm, 5 µm), eluted with the mobile phases as 0.01% formic acid aqueous solution (A) and acetonitrile (B) in a linear gradient (0-10 min, 17% B; 10-25 min, 17%-19% B; 25- 33 min, 19%-48% B; 33-35 min, 48%-51% B; 35-44 min, 51% B). The flow rate was kept at 1.0 mL · min⁻¹. The column tem- perature was 40 °C, and the detection wavelength was set at 350 nm (0-16 min) and 330 nm (16-44 min). Forty-six batches of collected samples from three official origins of Ephedrae Herba were detected, whose liquid chromatograms proven to be helpful to the differentiation of different origins. With principal component analysis and the analysis of distribution of peak area, twelve key peaks from the chromatogram were discussed in details on their contributions to the characteristics and differences of three official origins of the herb: peak area of peak 10, 11, 12 were found out to be significantly higher in E. equisetina than in other two origins, whose sum (higher than 146 mAU in E. equisetina) was useful for the discrimination between E. equisetina and the other two origins; peak area of 1 and 4 were respectively higher in E. sinica and E. intermedia than in other official origins, indicating their important effect on the differen- tiation of corresponding origins; peak 8 and 9 were picked out as two characteristic common peaks in three official origins of the herb, whose peak area showed little difference among different origins; further, peak area of other key peaks in the chromatogram also showed some difference among three origins, which make contributions to the differentiation of origins as well. Then, four phenols as 2"-O-α- L-rhamnosyl-isovitexin (1), vitexin (2), pollenitin B (5) and herbacetin-7-O-β-D-glucoside (6) were quantitative analyzed with the above-mentioned method, with good linear relationship and accuracy (recoveries in a range of 97.8%-102.5%). The content of the four phenols were firstly reported in Ephedrae Herba from official origins, which were respectively trace-1.55 (1), trace-0.160 (2), trace-0.284 (5) and trace-0.620 (6) mg · g⁻¹ in all of the tested samples. In addition, the content of these phenols showed differences in three official origins, especially 1, whose content in E. sinica [(0.670 ± 0.88) mg ± g⁻¹] were significantly higher than in other two origins (lower than 0.16 mg ± g⁻¹ besides sample Ei-060630-2-2), and 6, whose average content in E. equisetina [(0.260 ± 0.039 2) mg · g⁻¹] were twice as high as in E. sinica [(0.120 ± 0.270) mg · g⁻¹] and E. intermedia [(0.136 ± 0.485) mg g⁻¹], indicating the important effects of the two constituents on the differentiation among three official origins of the herb. The method established for the characteristic HPLC chromatogram and quantitative analysis of phenols was simple and accurate, and the marker constituents selected may provide new guides for the discrimination of official origins as well as the improvement of quality criteria of EphedraeHerba.
Determination of trace and heavy metals in some commonly used medicinal herbs in Ayurveda.
Nema, Neelesh K; Maity, Niladri; Sarkar, Birendra K; Mukherjee, Pulok K
2014-11-01
Traditionally, the herbal drugs are well established for their therapeutic benefits. Depending upon their geographical sources sometimes the trace and heavy metals' content may differ, which may lead to severe toxicity. So, the toxicological and safety assessment of these herbal drugs are one of the major issues in recent days. Eight different plant species including Aloe vera, Centella asiatica, Calendula officinalis, Cucumis sativus, Camellia sinensis, Clitoria ternatea, Piper betel and Tagetes erecta were selected to determine their heavy and trace metals content and thereby to assure their safer therapeutic application. The trace and heavy metals were detected through atomic absorption spectrometry analysis. The selected medicinal plant materials were collected from the local cultivated regions of West Bengal, India, and were digested with nitric acid and hydrochloric acid as specified. Absorbance was measured through atomic absorption spectrometer (AA 303) and the concentration of different trace and heavy metals in the plant samples were calculated. The quantitative determinations were carried out using standard calibration curve obtained by the standard solutions of different metals. The contents of heavy metals were found to be within the prescribed limit. Other trace metals were found to be present in significant amount. Thus, on the basis of experimental outcome, it can be concluded that the plant materials collected from the specific region are safe and may not produce any harmful effect of metal toxicity during their therapeutic application. The investigated medicinal plants contain trace metals such as copper (Cu), chromium (Cr), manganese (Mn), iron (Fe) and nickel (Ni) as well as heavy metals such as arsenic (As), lead (Pb) and mercury (Hg), which were present within the permissible limit. © The Author(s) 2012.
A century of enzyme kinetic analysis, 1913 to 2013.
Johnson, Kenneth A
2013-09-02
This review traces the history and logical progression of methods for quantitative analysis of enzyme kinetics from the 1913 Michaelis and Menten paper to the application of modern computational methods today. Following a brief review of methods for fitting steady state kinetic data, modern methods are highlighted for fitting full progress curve kinetics based upon numerical integration of rate equations, including a re-analysis of the original Michaelis-Menten full time course kinetic data. Finally, several illustrations of modern transient state kinetic methods of analysis are shown which enable the elucidation of reactions occurring at the active sites of enzymes in order to relate structure and function. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Quantitative spectroscopy for the analysis of GOME data
NASA Technical Reports Server (NTRS)
Chance, K.
1997-01-01
Accurate analysis of the global ozone monitoring experiment (GOME) data to obtain atmospheric constituents requires reliable, traceable spectroscopic parameters for atmospheric absorption and scattering. Results are summarized for research that includes: the re-determination of Rayleigh scattering cross sections and phase functions for the 200 nm to 1000 nm range; the analysis of solar spectra to obtain a high-resolution reference spectrum with excellent absolute vacuum wavelength calibration; Ring effect cross sections and phase functions determined directly from accurate molecular parameters of N2 and O2; O2 A band line intensities and pressure broadening coefficients; and the analysis of absolute accuracies for ultraviolet and visible absorption cross sections of O3 and other trace species measurable by GOME.
NASA Astrophysics Data System (ADS)
Pappalardo, L.; Bracchitta, D.; Palio, O.; Pappalardo, G.; Rizzo, F.
2012-04-01
About 1300 obsidian artefacts coming from various archaeological sites of Sicily were analyzed by using the BSC-XRF (Beam Stability Controlled - X-ray Fluorescence) and PIXE-alpha (Particle Induced X-ray Emission, using low energy alpha particles) portable spectrometers developed at the Landis laboratory at the LNS-INF and IBAM-CNR in Catania (Italy). The portable BSC-XRF system allows the non-destructive analysis of the Rb, Sr, Y, Zr and Nb trace concentrations, which are considered to be characteristic of the obsidian samples and consequently are indicative of the provenance quarries. Quantitative data on Rb, Sr, Y, Zr, Nb trace element concentrations where deduced through the use of a method that makes use of a multi parameter linear regression, previously The portable PIXE-alpha spectrometer allows the quantitative determination of the matrix major elements, from Na to Zn. In the present work the two instrumental devices are presented. The data are from: Milena (Cl), Ustica (Pa), Rocchicella (Ct), Poggio dell'Acquila (Ct), San Marco (Ct), Villaggio del Petraro* (Sr) and Licodia Eubea* (Ct). Results on compositional data for trace elements and major elements allowed to identify Lipari and Pantelleria islands as the only two sources of the analysed samples. Analyses carried out on vitreous artefact found in Rocchicella, showed for the first time that the Palagonite was used as row material. *Preliminary data. Topic of conference: Application of XRS in archaeometry Kind of presentation: oral
van der Westhuizen, Rina; Ajam, Mariam; De Coning, Piet; Beens, Jan; de Villiers, André; Sandra, Pat
2011-07-15
Fully synthetic jet fuel (FSJF) produced via Fischer-Tropsch (FT) technology was recently approved by the international aviation fuel authorities. To receive approval, comparison of FSJF and crude-derived fuel and blends on their qualitative and quantitative hydrocarbon composition was of utmost importance. This was performed by comprehensive two-dimensional gas chromatography (GC×GC) in the reversed phase mode. The hydrocarbon composition of synthetic and crude-derived jet fuels is very similar and all compounds detected in the synthetic product are also present in crude-derived fuels. Quantitatively, the synthetic fuel consists of a higher degree of aliphatic branching with less than half the aromatic content of the crude-derived fuel. GC×GC analyses also indicated the presence of trace levels of hetero-atomic impurities in the crude-derived product that were absent in the synthetic product. While clay-treatment removed some of the impurities and improved the fuel stability, the crude-derived product still contained traces of cyclic and aromatic S-containing compounds afterwards. Lower level of aromatics and the absence of sulphur are some of the factors that contribute to the better fuel stability and environmental properties of the synthetic fuel. GC×GC was further applied for the analysis of products during Jet Fuel Thermal Oxidation Testing (JFTOT), which measures deposit formation of a fuel under simulated engine conditions. JFTOT showed the synthetic fuel to be much more stable than the crude-derived fuel. Copyright © 2011 Elsevier B.V. All rights reserved.
Instrumental and statistical methods for the comparison of class evidence
NASA Astrophysics Data System (ADS)
Liszewski, Elisa Anne
Trace evidence is a major field within forensic science. Association of trace evidence samples can be problematic due to sample heterogeneity and a lack of quantitative criteria for comparing spectra or chromatograms. The aim of this study is to evaluate different types of instrumentation for their ability to discriminate among samples of various types of trace evidence. Chemometric analysis, including techniques such as Agglomerative Hierarchical Clustering, Principal Components Analysis, and Discriminant Analysis, was employed to evaluate instrumental data. First, automotive clear coats were analyzed by using microspectrophotometry to collect UV absorption data. In total, 71 samples were analyzed with classification accuracy of 91.61%. An external validation was performed, resulting in a prediction accuracy of 81.11%. Next, fiber dyes were analyzed using UV-Visible microspectrophotometry. While several physical characteristics of cotton fiber can be identified and compared, fiber color is considered to be an excellent source of variation, and thus was examined in this study. Twelve dyes were employed, some being visually indistinguishable. Several different analyses and comparisons were done, including an inter-laboratory comparison and external validations. Lastly, common plastic samples and other polymers were analyzed using pyrolysis-gas chromatography/mass spectrometry, and their pyrolysis products were then analyzed using multivariate statistics. The classification accuracy varied dependent upon the number of classes chosen, but the plastics were grouped based on composition. The polymers were used as an external validation and misclassifications occurred with chlorinated samples all being placed into the category containing PVC.
Velasco-Tapia, Fernando
2014-01-01
Magmatic processes have usually been identified and evaluated using qualitative or semiquantitative geochemical or isotopic tools based on a restricted number of variables. However, a more complete and quantitative view could be reached applying multivariate analysis, mass balance techniques, and statistical tests. As an example, in this work a statistical and quantitative scheme is applied to analyze the geochemical features for the Sierra de las Cruces (SC) volcanic range (Mexican Volcanic Belt). In this locality, the volcanic activity (3.7 to 0.5 Ma) was dominantly dacitic, but the presence of spheroidal andesitic enclaves and/or diverse disequilibrium features in majority of lavas confirms the operation of magma mixing/mingling. New discriminant-function-based multidimensional diagrams were used to discriminate tectonic setting. Statistical tests of discordancy and significance were applied to evaluate the influence of the subducting Cocos plate, which seems to be rather negligible for the SC magmas in relation to several major and trace elements. A cluster analysis following Ward's linkage rule was carried out to classify the SC volcanic rocks geochemical groups. Finally, two mass-balance schemes were applied for the quantitative evaluation of the proportion of the end-member components (dacitic and andesitic magmas) in the comingled lavas (binary mixtures).
Dual Processes in Decision Making and Developmental Neuroscience: A Fuzzy-Trace Model.
Reyna, Valerie F; Brainerd, Charles J
2011-09-01
From Piaget to the present, traditional and dual-process theories have predicted improvement in reasoning from childhood to adulthood, and improvement has been observed. However, developmental reversals-that reasoning biases emerge with development -have also been observed in a growing list of paradigms. We explain how fuzzy-trace theory predicts both improvement and developmental reversals in reasoning and decision making. Drawing on research on logical and quantitative reasoning, as well as on risky decision making in the laboratory and in life, we illustrate how the same small set of theoretical principles apply to typical neurodevelopment, encompassing childhood, adolescence, and adulthood, and to neurological conditions such as autism and Alzheimer's disease. For example, framing effects-that risk preferences shift when the same decisions are phrases in terms of gains versus losses-emerge in early adolescence as gist-based intuition develops. In autistic individuals, who rely less on gist-based intuition and more on verbatim-based analysis, framing biases are attenuated (i.e., they outperform typically developing control subjects). In adults, simple manipulations based on fuzzy-trace theory can make framing effects appear and disappear depending on whether gist-based intuition or verbatim-based analysis is induced. These theoretical principles are summarized and integrated in a new mathematical model that specifies how dual modes of reasoning combine to produce predictable variability in performance. In particular, we show how the most popular and extensively studied model of decision making-prospect theory-can be derived from fuzzy-trace theory by combining analytical (verbatim-based) and intuitive (gist-based) processes.
Dual Processes in Decision Making and Developmental Neuroscience: A Fuzzy-Trace Model
Reyna, Valerie F.; Brainerd, Charles J.
2011-01-01
From Piaget to the present, traditional and dual-process theories have predicted improvement in reasoning from childhood to adulthood, and improvement has been observed. However, developmental reversals—that reasoning biases emerge with development —have also been observed in a growing list of paradigms. We explain how fuzzy-trace theory predicts both improvement and developmental reversals in reasoning and decision making. Drawing on research on logical and quantitative reasoning, as well as on risky decision making in the laboratory and in life, we illustrate how the same small set of theoretical principles apply to typical neurodevelopment, encompassing childhood, adolescence, and adulthood, and to neurological conditions such as autism and Alzheimer's disease. For example, framing effects—that risk preferences shift when the same decisions are phrases in terms of gains versus losses—emerge in early adolescence as gist-based intuition develops. In autistic individuals, who rely less on gist-based intuition and more on verbatim-based analysis, framing biases are attenuated (i.e., they outperform typically developing control subjects). In adults, simple manipulations based on fuzzy-trace theory can make framing effects appear and disappear depending on whether gist-based intuition or verbatim-based analysis is induced. These theoretical principles are summarized and integrated in a new mathematical model that specifies how dual modes of reasoning combine to produce predictable variability in performance. In particular, we show how the most popular and extensively studied model of decision making—prospect theory—can be derived from fuzzy-trace theory by combining analytical (verbatim-based) and intuitive (gist-based) processes. PMID:22096268
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, K; Hristov, D
2014-06-01
Purpose: To evaluate the potential impact of listmode-driven amplitude based optimal gating (OG) respiratory motion management technique on quantitative PET imaging. Methods: During the PET acquisitions, an optical camera tracked and recorded the motion of a tool placed on top of patients' torso. PET event data were utilized to detect and derive a motion signal that is directly coupled with a specific internal organ. A radioactivity-trace was generated from listmode data by accumulating all prompt counts in temporal bins matching the sampling rate of the external tracking device. Decay correction for 18F was performed. The image reconstructions using OG respiratorymore » motion management technique that uses 35% of total radioactivity counts within limited motion amplitudes were performed with external motion and radioactivity traces separately with ordered subset expectation maximization (OSEM) with 2 iterations and 21 subsets. Standard uptake values (SUVs) in a tumor region were calculated to measure the effect of using radioactivity trace for motion compensation. Motion-blurred 3D static PET image was also reconstructed with all counts and the SUVs derived from OG images were compared with SUVs from 3D images. Results: A 5.7 % increase of the maximum SUV in the lesion was found for optimal gating image reconstruction with radioactivity trace when compared to a static 3D image. The mean and maximum SUVs on the image that was reconstructed with radioactivity trace were found comparable (0.4 % and 4.5 % increase, respectively) to the values derived from the image that was reconstructed with external trace. Conclusion: The image reconstructed using radioactivity trace showed that the blurring due to the motion was reduced with impact on derived SUVs. The resolution and contrast of the images reconstructed with radioactivity trace were comparable to the resolution and contrast of the images reconstructed with external respiratory traces. Research supported by Siemens.« less
Minkin, J.A.; Chao, E.C.T.; Blank, Herma; Dulong, F.T.
1987-01-01
The PIXE (proton-induced X-ray emission) microprobe can be used for nondestructive, in-situ analyses of areas as small as those analyzed by the electron microprobe, and has a sensitivity of detection as much as two orders of magnitude better than the electron microprobe. Preliminary studies demonstrated that PIXE provides a capability for quantitative determination of elemental concentrations in individual coal maceral grains with a detection limit of 1-10 ppm for most elements analyzed. Encouraged by the earlier results, we carried out the analyses reported below to examine trace element variations laterally (over a km range) as well as vertically (cm to m) in the I and J coal beds in the Upper Cretaceous Ferron Sandstone Member of the Mancos Shale in central Utah, and to compare the data with the data from two samples of eastern coals of Pennsylvanian age.
NASA Astrophysics Data System (ADS)
Titov, D. V.; Ignatiev, N.; Formisano, V.; Grassi, D.; Giuranna, M.; Maturilli, A.; Piccioni, G.; Moroz, V. I.; Lellouch, E.; Encrenaz, T.; Pfs Team
High spectral resolution observations of Mars by the PFS/Mars Express provide new insight into the atmospheric composition. Spectral features of atmospheric CO2 and its isotopes at 15, 4.3, 2.7, 1.4 μ m, CO at 4.7 and 2.35 μ m, and H2O at 40, 2.56, and 1.38 μ m as well as solar spectral features are clearly identified in the PFS spectra. HDO spectral details at 3.7 μ m were also tentatively detected. The paper will present qualitative and quantitative analysis of the PFS spectra in the regions of spectral bands of trace gases. Abundance of minor constituents will be determined using complete radiative transfer modeling including possible non-LTE effects. We will also present results of search for other minor species with emphasis on the limb observations that provide higher air mass factor.
Liu, Yongjian; Mou, Shifen; Heberling, Shawn
2002-05-17
A simple sample preconcentration technique employing microwave-based evaporation for the determination of trace level bromate and perchlorate in drinking water with ion chromatography is presented. With a hydrophilic anion-exchange column and a sodium hydroxide eluent in linear gradient, bromate and perchlorate can be determined in one injection within 35 min. Prior to ion chromatographic analysis, the drinking water sample was treated with an OnGuard-Ag cartridge to remove the superfluous chloride and concentrated 20-fold using a PTFE beaker in a domestic microwave oven for 15 min. The recoveries of the anions ranged from 94.6% for NO2- to 105.2% for F-. The detection limits for bromate, perchlorate, iodate and chlorate were 0.1, 0.2, 0.1 and 0.2 microg/l, respectively. The developed method is applicable for the quantitation of bromate and perchlorate in drinking water samples.
Quantitative analysis of cardiovascular MR images.
van der Geest, R J; de Roos, A; van der Wall, E E; Reiber, J H
1997-06-01
The diagnosis of cardiovascular disease requires the precise assessment of both morphology and function. Nearly all aspects of cardiovascular function and flow can be quantified nowadays with fast magnetic resonance (MR) imaging techniques. Conventional and breath-hold cine MR imaging allow the precise and highly reproducible assessment of global and regional left ventricular function. During the same examination, velocity encoded cine (VEC) MR imaging provides measurements of blood flow in the heart and great vessels. Quantitative image analysis often still relies on manual tracing of contours in the images. Reliable automated or semi-automated image analysis software would be very helpful to overcome the limitations associated with the manual and tedious processing of the images. Recent progress in MR imaging of the coronary arteries and myocardial perfusion imaging with contrast media, along with the further development of faster imaging sequences, suggest that MR imaging could evolve into a single technique ('one stop shop') for the evaluation of many aspects of heart disease. As a result, it is very likely that the need for automated image segmentation and analysis software algorithms will further increase. In this paper the developments directed towards the automated image analysis and semi-automated contour detection for cardiovascular MR imaging are presented.
New perspectives on quantitative characterization of biomass burning (Invited)
NASA Astrophysics Data System (ADS)
Ichoku, C. M.
2010-12-01
Biomass burning (BB) occurs seasonally in different vegetated landscapes across the world, consuming large amounts of biomass, generating intense heat energy, and emitting corresponding amounts of smoke plumes that comprise aerosols and trace gases, which include carbon monoxide (CO), carbon dioxide (CO2), methane (CH4), non-methane hydrocarbons, and numerous other trace compounds, many of which have adverse effects on human health, air quality, and environmental processes. Accurate estimates of these emissions are required as model inputs to evaluate and forecast smoke plume transport and impacts on air quality, human health, clouds, weather, radiation, and climate. The goal of this presentation is to highlight results of research activities that are aimed at advancing the quantitative characterization of various aspects of biomass burning (energetics, intensity, burn areas, burn severity, emissions, and fire weather) from aircraft and satellite measurements that can help advance our understanding of biomass burning and its overall effects. We will show recent results of analysis of fire radiative power (FRP), burned areas, fuel consumption, smoke emission rates, and plume heights from satellite measurements, as well as related aircraft calibration/validation activities. We will also briefly examine potential future plans and strategies for effective monitoring of biomass burning characteristics and emissions from aircraft and satellite.
Liao, Ting T; Wang, Lei; Jia, Ru W; Fu, Xiao H; Chua, Hong
2014-01-01
Membrane damage related to morphological change in Vero cells is a sensitive index of the composite biotoxicity of trace lipophilic chemicals. However, judging whether the morphological change in Vero cells happens and its ratio are difficult because it is not a quantitative characteristic. To find biomarkers of cell morphological change for quantitatively representing the ratio of morphological changed cell, the mechanism of cell membrane damage driven by typical lipophilic chemicals, such as trichlorophenol (TCP) and perfluorooctanesulphonate (PFOS), was explored. The ratio of morphologically changed cells generally increased with increased TCP or PFOS concentrations, and the level of four major components of phospholipids varied with concentrations of TCP or PFOS, but only the ratio of phosphatidylcholine (PC)/phosphatidylethanolamine (PE) decreased regularly as TCP or PFOS concentrations increased. Analysis of membrane proteins showed that the level of vimentin in normal cell membranes is high, while it decreases or vanishes after TCP exposure. These variations in phospholipid and membrane protein components may result in membrane leakage and variation in rigid structure, which leads to changes in cell morphology. Therefore, the ratio of PC/PE and amount of vimentin may be potential biomarkers for representing the ratio of morphological changed Vero cell introduced by trace lipophilic compounds, thus their composite bio-toxicity.
ERIC Educational Resources Information Center
Yüksel, H. Gülru
2014-01-01
This longitudinal study aimed to trace changes in Turkish pre-service English as a foreign language teachers' self-efficacy over a year, and to detect possible sources of information influencing their efficacy. Utilizing concurrent mixed model design of Creswell (2003) both qualitative and quantitative data was collected. A total of 40 pre-service…
FURTHER STUDIES ON CHEMICAL EVALUATION OF LAUHA BHASMA III
Keshri, A.; Verma, P.R.P.; Prasad, C.M
1996-01-01
Samples of marketed Lauha bhasma from different manufactures were evaluated chemically. Apart from the 81 -85% iron content, the 15-19% other constituents were determined therein. Ferrous ferric and total iron in a single aliquot were determined spectrophotometrically, Qualitative and chromatographic analysis indicate the presence of sodium, potassium, calcium copper and cobalt in the samples, silicious matter and traces of ascorbic acid were present while tannin was absent in Lauha bhasma . Quantitatively sodium and potassium were determined by flame spectrometry. Upon fractionation, water soluble and acid soluble contents were determined. PMID:22556767
Gas chromatographic determination of formaldehyde in coffee via thiazolidine derivative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, T.; Reece, C.A.; Shibamoto, T.
Thiazolidine formed from trace quantities of formaldehyde in an aqueous solution containing cysteamine at pH 8 was extracted with chloroform and subsequently analyzed by a gas chromatograph equipped with a fused silica capillary column and a thermionic nitrogen-phosphorus specific detector. Recoveries of formaldehyde from the aqueous solutions at levels lower than 1 ppm were slightly over 100%. Quantitative analysis of formaldehyde in commercial brewed and instant coffees showed 3.4-4.5 ppm in the brewed and 10-16.3 ppm in the instant coffee.
Determination of chloramine T in dairy products.
van Gils, W F; Visser, G; Hidskes, G G
1975-08-28
A method has been developed for the quantitative determination of traces of chloramine T (Activin, Halamid) in dairy products. Proteins are removed and the hydrolysis product toluene-4-sulphonamide is extracted with ether. After evaporation of the solvent, the residue is oxidized with an alkaline potassium permanganate solution. The oxidized product is isolated by ether extraction and the residue is subjected to reduction with Raney Nickel catalyst in a sodium hydroxide solution. The sulphonamide group is split off and the benzoic acid thus formed is subjected to a gas chromatographic analysis.
Wu, Xinzhou; Li, Weifeng; Guo, Pengran; Zhang, Zhixiang; Xu, Hanhong
2018-04-18
Matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR-MS) has been applied for rapid, sensitive, undisputed, and quantitative detection of pesticide residues on fresh leaves with little sample pretreatment. Various pesticides (insecticides, bactericides, herbicides, and acaricides) are detected directly in the complex matrix with excellent limits of detection down to 4 μg/L. FTICR-MS could unambiguously identify pesticides with tiny mass differences (∼0.017 75 Da), thereby avoiding false-positive results. Remarkably, pesticide isomers can be totally discriminated by use of diagnostic fragments, and quantitative analysis of pesticide isomers is demonstrated. The present results expand the horizons of the MALDI-FTICR-MS platform in the reliable determination of pesticides, with integrated advantages of ultrahigh mass resolution and accuracy. This method provides growing evidence for the resultant detrimental effects of pesticides, expediting the identification and evaluation of innovative pesticides.
NASA Astrophysics Data System (ADS)
Marguí, E.; Queralt, I.; García-Ruiz, E.; García-González, E.; Rello, L.; Resano, M.
2018-01-01
Home-based collection protocols for clinical specimens are actively pursued as a means of improving life quality of patients. In this sense, dried blood spots (DBS) are proposed as a non-invasive and even self-administered alternative to sampling whole venous blood. This contribution explores the potential of energy dispersive X-ray fluorescence spectrometry for the simultaneous and direct determination of some major (S, Cl, K, Na), minor (P, Fe) and trace (Ca, Cu, Zn) elements in blood, after its deposition onto clinical filter papers, thus giving rise to DBS. For quantification purposes the best strategy was to use matrix-matched blood samples of known analyte concentrations. The accuracy and precision of the method were evaluated by analysis of a blood reference material (Seronorm™ trace elements whole blood L3). Quantitative results were obtained for the determination of P, S, Cl, K and Fe, and limits of detection for these elements were adequate, taking into account their typical concentrations in real blood samples. Determination of Na, Ca, Cu and Zn was hampered by the occurrence of high sample support (Na, Ca) and instrumental blanks (Cu, Zn). Therefore, the quantitative determination of these elements at the levels expected in blood samples was not feasible. The methodology developed was applied to the analysis of several blood samples and the results obtained were compared with those reported by standard techniques. Overall, the performance of the method developed is promising and it could be used to determine the aforementioned elements in blood samples in a simple, fast and economic way. Furthermore, its non-destructive nature enables further analyses by means of complementary techniques to be carried out.
Nakano, Yosuke; Konya, Yutaka; Taniguchi, Moyu; Fukusaki, Eiichiro
2017-01-01
d-Amino acids have recently attracted much attention in various research fields including medical, clinical and food industry due to their important biological functions that differ from l-amino acid. Most chiral amino acid separation techniques require complicated derivatization procedures in order to achieve the desirable chromatographic behavior and detectability. Thus, the aim of this research is to develop a highly sensitive analytical method for the enantioseparation of chiral amino acids without any derivatization process using liquid chromatography-tandem mass spectrometry (LC-MS/MS). By optimizing MS/MS parameters, we established a quantification method that allowed the simultaneous analysis of 18 d-amino acids with high sensitivity and reproducibility. Additionally, we applied the method to food sample (vinegar) for the validation, and successfully quantified trace levels of d-amino acids in samples. These results demonstrated the applicability and feasibility of the LC-MS/MS method as a novel, effective tool for d-amino acid measurement in various biological samples. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Tracking and Quantifying Developmental Processes in C. elegans Using Open-source Tools.
Dutta, Priyanka; Lehmann, Christina; Odedra, Devang; Singh, Deepika; Pohl, Christian
2015-12-16
Quantitatively capturing developmental processes is crucial to derive mechanistic models and key to identify and describe mutant phenotypes. Here protocols are presented for preparing embryos and adult C. elegans animals for short- and long-term time-lapse microscopy and methods for tracking and quantification of developmental processes. The methods presented are all based on C. elegans strains available from the Caenorhabditis Genetics Center and on open-source software that can be easily implemented in any laboratory independently of the microscopy system used. A reconstruction of a 3D cell-shape model using the modelling software IMOD, manual tracking of fluorescently-labeled subcellular structures using the multi-purpose image analysis program Endrov, and an analysis of cortical contractile flow using PIVlab (Time-Resolved Digital Particle Image Velocimetry Tool for MATLAB) are shown. It is discussed how these methods can also be deployed to quantitatively capture other developmental processes in different models, e.g., cell tracking and lineage tracing, tracking of vesicle flow.
Neutron activation analysis: A primary method of measurement
NASA Astrophysics Data System (ADS)
Greenberg, Robert R.; Bode, Peter; De Nadai Fernandes, Elisabete A.
2011-03-01
Neutron activation analysis (NAA), based on the comparator method, has the potential to fulfill the requirements of a primary ratio method as defined in 1998 by the Comité Consultatif pour la Quantité de Matière — Métrologie en Chimie (CCQM, Consultative Committee on Amount of Substance — Metrology in Chemistry). This thesis is evidenced in this paper in three chapters by: demonstration that the method is fully physically and chemically understood; that a measurement equation can be written down in which the values of all parameters have dimensions in SI units and thus having the potential for metrological traceability to these units; that all contributions to uncertainty of measurement can be quantitatively evaluated, underpinning the metrological traceability; and that the performance of NAA in CCQM key-comparisons of trace elements in complex matrices between 2000 and 2007 is similar to the performance of Isotope Dilution Mass Spectrometry (IDMS), which had been formerly designated by the CCQM as a primary ratio method.
Quantitative Tracking of Combinatorially Engineered Populations with Multiplexed Binary Assemblies.
Zeitoun, Ramsey I; Pines, Gur; Grau, Willliam C; Gill, Ryan T
2017-04-21
Advances in synthetic biology and genomics have enabled full-scale genome engineering efforts on laboratory time scales. However, the absence of sufficient approaches for mapping engineered genomes at system-wide scales onto performance has limited the adoption of more sophisticated algorithms for engineering complex biological systems. Here we report on the development and application of a robust approach to quantitatively map combinatorially engineered populations at scales up to several dozen target sites. This approach works by assembling genome engineered sites with cell-specific barcodes into a format compatible with high-throughput sequencing technologies. This approach, called barcoded-TRACE (bTRACE) was applied to assess E. coli populations engineered by recursive multiplex recombineering across both 6-target sites and 31-target sites. The 31-target library was then tracked throughout growth selections in the presence and absence of isopentenol (a potential next-generation biofuel). We also use the resolution of bTRACE to compare the influence of technical and biological noise on genome engineering efforts.
USDA-ARS?s Scientific Manuscript database
Perennial grasses cover diverse soils throughout the world, including sites contaminated with heavy metals, producing forages that must be safe for livestock and wildlife. Chromosome regions known as quantitative trait loci (QTLs) controlling forage mineral concentrations were mapped in a populatio...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Premuzic, E.T.
1996-08-01
During the past several years, a considerable amount of work has been carried out showing that microbially enhanced oil recovery (MEOR) is promising and the resulting biotechnology may be deliverable. At Brookhaven National Laboratory (BNL), systematic studies have been conducted which dealt with the effects of thermophilic and thermoadapted bacteria on the chemical and physical properties of selected types of crude oils at elevated temperatures and pressures. Current studies indicate that during the biotreatment several chemical and physical properties of crude oils are affected. The oils are (1) emulsified; (2) acidified; (3) there is a qualitative and quantitative change inmore » light and heavy fractions of the crudes; (4) there are chemical changes in fractions containing sulfur compounds; (5) there is an apparent reduction in the concentration of trace metals; and (6) the qualitative and quantitative changes appear to be microbial species dependent; and (7) there is a distinction between biodegraded and biotreated oils. The downstream biotechnological crude oil processing research performed thus far is of laboratory scale and has focused on demonstrating the technical feasibility of downstream processing with different types of biocatalysts under a variety of processing conditions. Quantitative economic analysis is the topic of the present project which investigates the economic feasibility of the various biochemical downstream processes which hold promise in upgrading of heavy crudes, such as those found in California, e.g., Monterey-type, Midway Sunset, Honda crudes, and others.« less
Multiscale Image Processing of Solar Image Data
NASA Astrophysics Data System (ADS)
Young, C.; Myers, D. C.
2001-12-01
It is often said that the blessing and curse of solar physics is too much data. Solar missions such as Yohkoh, SOHO and TRACE have shown us the Sun with amazing clarity but have also increased the amount of highly complex data. We have improved our view of the Sun yet we have not improved our analysis techniques. The standard techniques used for analysis of solar images generally consist of observing the evolution of features in a sequence of byte scaled images or a sequence of byte scaled difference images. The determination of features and structures in the images are done qualitatively by the observer. There is little quantitative and objective analysis done with these images. Many advances in image processing techniques have occured in the past decade. Many of these methods are possibly suited for solar image analysis. Multiscale/Multiresolution methods are perhaps the most promising. These methods have been used to formulate the human ability to view and comprehend phenomena on different scales. So these techniques could be used to quantitify the imaging processing done by the observers eyes and brains. In this work we present several applications of multiscale techniques applied to solar image data. Specifically, we discuss uses of the wavelet, curvelet, and related transforms to define a multiresolution support for EIT, LASCO and TRACE images.
Multiscale Analysis of Solar Image Data
NASA Astrophysics Data System (ADS)
Young, C. A.; Myers, D. C.
2001-12-01
It is often said that the blessing and curse of solar physics is that there is too much data. Solar missions such as Yohkoh, SOHO and TRACE have shown us the Sun with amazing clarity but have also cursed us with an increased amount of higher complexity data than previous missions. We have improved our view of the Sun yet we have not improved our analysis techniques. The standard techniques used for analysis of solar images generally consist of observing the evolution of features in a sequence of byte scaled images or a sequence of byte scaled difference images. The determination of features and structures in the images are done qualitatively by the observer. There is little quantitative and objective analysis done with these images. Many advances in image processing techniques have occured in the past decade. Many of these methods are possibly suited for solar image analysis. Multiscale/Multiresolution methods are perhaps the most promising. These methods have been used to formulate the human ability to view and comprehend phenomena on different scales. So these techniques could be used to quantitify the imaging processing done by the observers eyes and brains. In this work we present a preliminary analysis of multiscale techniques applied to solar image data. Specifically, we explore the use of the 2-d wavelet transform and related transforms with EIT, LASCO and TRACE images. This work was supported by NASA contract NAS5-00220.
Identification of deposit types of natural corundum by PIXE
NASA Astrophysics Data System (ADS)
Chulapakorn, T.; Intarasiri, S.; Bootkul, D.; Singkarat, S.
2014-07-01
Natural corundum, one of the most important exports of Thailand, is a rare, durable and valuable gemstone. The value of these precious stones is determined by their visual appearances, including brilliance, color, fire (light dispersion) and luster. Corundum is an allochromatic mineral whose trace element concentration depends on the origin and has influence on price setting. This work attempts to use an alternative method to identify the geological deposits of rubies and sapphires found in the Thai market which came from various countries, e.g., Africa, Cambodia, Myanmar, Sri Lanka, Thailand and USA. Interrelations between most important major trace elements are the main results of this work. Quantitative analysis of trace elements were performed by particle-induced X-ray emission (PIXE) technique, using 2-MeV proton beam generated and accelerated by the 1.7 MV tandem accelerator at Chiang Mai University. The trace elements of interest are Ti, Cr, Fe and Ga. We have found that the relationships between the ratios of trace element concentration can be used to classify the deposit type. Moreover, this method shows a clear separation between two main types of geological deposits, basaltic and metamorphic deposits, which further helps in determining the gemstone origin. For example, the gemstones from Cambodia, Thailand and the USA can be classified as the basaltic deposits with their high concentration in Fe but low in Ti, while the gemstones from Africa, Myanmar and Sri Lanka are metamorphic deposits because they have low Fe but high Ti concentrations. Both deposits required plots of pairs of trace elements and their ratios in population field appearance in order to distinguish their origins. The advantageous of these methods appear to be a new and a sustainable procedure for determining gemstone origins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1990. The ACL has four technical groups -- Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis. The Chemical Analysis Group uses wet-chemical and instrumental methods for elemental, compositional, and isotopic analyses of solid, liquid, and gaseous samples and provides specialized analytical services. The Instrumental Analysis Group uses nuclear counting techniques in radiochemical analyses over a wide range of sample types from low-level environmental samples to samples of high radioactivity. The Organic Analysis Group uses amore » number of complementary techniques to separate and to quantitatively and qualitatively analyze complex organic mixtures and compounds at the trace level, including synthetic fuels, toxic substances, fossil-fuel residues and emissions, pollutants, biologically active compounds, pesticides, and drugs. The Environmental Analysis Group performs analyses of inorganic environmental and hazardous waste and coal samples.« less
Lu, Baiyi; Ren, Yiping; Huang, Baifen; Liao, Wenqun; Cai, Zengxuan; Tie, Xiaowei
2008-03-01
A novel ultra-performance liquid chromatography electrospray ionization tandem triple quadrupole mass spectrometry method for the simultaneous determination of four water-soluble vitamins, including vitamin B5 (VB5), vitamin B8 (VB8), vitamin B9 (VB9), and vitamin B12 (VB12) in fortified infant foods is developed and validated. A reverse phase UPLC separation system consisting of a Waters ACQUITY UPLC BEH C-18 column (2.1 mm x 100 mm i.d., 1.7 microm) and a binary gradient acetonitrile-water mobile phase is applied for the separation of the four water-soluble vitamins. Formic acid is spiked into the mobile phase to enhance the ionization efficiency. Tandem MS-MS analysis is performed in multi-reaction monitoring mode (MRM). Product-ion traces at m/z 220.1 --> 89.9 for VB5, 245.1 --> 227.1 for VB8, 442.3 --> 295.2 for VB9, and 678.9 --> 147.0 for VB12 are used for quantitation of the corresponding vitamins, and traces at m/z 455.5 --> 308.0 are used for methotrexate (internal standard). Limits of quantitation (LOQs) are 0.016, 0.090, 0.020, and 0.019 microg/L for VB5, VB8, VB9, and VB12, respectively. Intra- and inter-day precisions for the determination of the four vitamins are better than 6.84% and 12.26% in relative standard deviations, and recoveries for the four vitamins are in the range of 86.0~101.5%. The developed approach is applied for the determination of the trace amounts of the vitamins in fortified milk powers and fortified rice powers.
Spatial distribution of the trace elements zinc, strontium and lead in human bone tissue☆
Pemmer, B.; Roschger, A.; Wastl, A.; Hofstaetter, J.G.; Wobrauschek, P.; Simon, R.; Thaler, H.W.; Roschger, P.; Klaushofer, K.; Streli, C.
2013-01-01
Trace elements are chemical elements in minute quantities, which are known to accumulate in the bone. Cortical and trabecular bones consist of bone structural units (BSUs) such as osteons and bone packets of different mineral content and are separated by cement lines. Previous studies investigating trace elements in bone lacked resolution and therefore very little is known about the local concentration of zinc (Zn), strontium (Sr) and lead (Pb) in BSUs of human bone. We used synchrotron radiation induced micro X-ray fluorescence analysis (SR μ-XRF) in combination with quantitative backscattered electron imaging (qBEI) to determine the distribution and accumulation of Zn, Sr, and Pb in human bone tissue. Fourteen human bone samples (10 femoral necks and 4 femoral heads) from individuals with osteoporotic femoral neck fractures as well as from healthy individuals were analyzed. Fluorescence intensity maps were matched with BE images and correlated with calcium (Ca) content. We found that Zn and Pb had significantly increased levels in the cement lines of all samples compared to the surrounding mineralized bone matrix. Pb and Sr levels were found to be correlated with the degree of mineralization. Interestingly, Zn intensities had no correlation with Ca levels. We have shown for the first time that there is a differential accumulation of the trace elements Zn, Pb and Sr in BSUs of human bone indicating different mechanisms of accumulation. PMID:23932972
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorak-Pokrajac, M.; Dermelj, M.; Slejkovec, Z.
In the domain of the essential trace elements, the role of selenium is extremely important. As one of the volatile elements it can be partly absorbed through the pulmonary system during smoking and transported to different organs of the body. Thus a knowledge of its concentration levels in various sorts of tobacco and in the smoke of commercial cigarettes, as well as in the same type of cigarettes from plants treated with selenium, is of interest for various research fields. The purpose of this contribution is to present reliable quantitative data on selenium contents in tobacco, soil, and main streammore » cigarette smoke, obtained by destructive neutron activation analysis.« less
Xiang, Suyun; Wang, Wei; Xia, Jia; Xiang, Bingren; Ouyang, Pingkai
2009-09-01
The stochastic resonance algorithm is applied to the trace analysis of alkyl halides and alkyl benzenes in water samples. Compared to encountering a single signal when applying the algorithm, the optimization of system parameters for a multicomponent is more complex. In this article, the resolution of adjacent chromatographic peaks is first involved in the optimization of parameters. With the optimized parameters, the algorithm gave an ideal output with good resolution as well as enhanced signal-to-noise ratio. Applying the enhanced signals, the method extended the limit of detection and exhibited good linearity, which ensures accurate determination of the multicomponent.
Single cell elemental analysis using nuclear microscopy
NASA Astrophysics Data System (ADS)
Ren, M. Q.; Thong, P. S. P.; Kara, U.; Watt, F.
1999-04-01
The use of Particle Induced X-ray Emission (PIXE), Rutherford Backscattering Spectrometry (RBS) and Scanning Transmission Ion Microscopy (STIM) to provide quantitative elemental analysis of single cells is an area which has high potential, particularly when the trace elements such as Ca, Fe, Zn and Cu can be monitored. We describe the methodology of sample preparation for two cell types, the procedures of cell imaging using STIM, and the quantitative elemental analysis of single cells using RBS and PIXE. Recent work on single cells at the Nuclear Microscopy Research Centre,National University of Singapore has centred around two research areas: (a) Apoptosis (programmed cell death), which has been recently implicated in a wide range of pathological conditions such as cancer, Parkinson's disease etc, and (b) Malaria (infection of red blood cells by the malaria parasite). Firstly we present results on the elemental analysis of human Chang liver cells (ATTCC CCL 13) where vanadium ions were used to trigger apoptosis, and demonstrate that nuclear microscopy has the capability of monitoring vanadium loading within individual cells. Secondly we present the results of elemental changes taking place in individual mouse red blood cells which have been infected with the malaria parasite and treated with the anti-malaria drug Qinghaosu (QHS).
Luke, Paul
1996-01-01
An ionization detector electrode and signal subtraction apparatus and method provides at least one first conductive trace formed onto the first surface of an ionization detector. The first surface opposes a second surface of the ionization detector. At least one second conductive trace is also formed on the first surface of the ionization detector in a substantially interlaced and symmetrical pattern with the at least one first conductive trace. Both of the traces are held at a voltage potential of a first polarity type. By forming the traces in a substantially interlaced and symmetric pattern, signals generated by a charge carrier are substantially of equal strength with respect to both of the traces. The only significant difference in measured signal strength occurs when the charge carrier moves to within close proximity of the traces and is received at the collecting trace. The measured signals are then subtracted and compared to quantitatively measure the magnitude of the charge and to determine the position at which the charge carrier originated within the ionization detector.
Luke, P.
1996-06-25
An ionization detector electrode and signal subtraction apparatus and method provide at least one first conductive trace formed onto the first surface of an ionization detector. The first surface opposes a second surface of the ionization detector. At least one second conductive trace is also formed on the first surface of the ionization detector in a substantially interlaced and symmetrical pattern with the at least one first conductive trace. Both of the traces are held at a voltage potential of a first polarity type. By forming the traces in a substantially interlaced and symmetric pattern, signals generated by a charge carrier are substantially of equal strength with respect to both of the traces. The only significant difference in measured signal strength occurs when the charge carrier moves to within close proximity of the traces and is received at the collecting trace. The measured signals are then subtracted and compared to quantitatively measure the magnitude of the charge and to determine the position at which the charge carrier originated within the ionization detector. 9 figs.
NASA Astrophysics Data System (ADS)
Barroso Peña, Alvaro; Grüner, Malte; Forbes, Taylor; Denz, Cornelia; Strassert, Cristian A.
2016-09-01
Antimicrobial Photodynamic Inactivation (PDI) represents an attractive alternative in the treatment of infections by antibiotic-resistant pathogenic bacteria. In PDI a photosensitizer (PS) is administered to the site of the biological target in order to generate cytotoxic singlet oxygen which reacts with the biological membrane upon application of harmless visible light. Established methods for testing the photoinduced cytotoxicity of PSs rely on the observation of the whole bacterial ensemble providing only a population-averaged information about the overall produced toxicity. However, for a deeper understanding of the processes that take place in PDI, new methods are required that provide simultaneous regulation of the ROS production, monitoring the subsequent damage induced in the bacteria cells, and full control of the distance between the bacteria and the center of the singlet oxygen production. Herein we present a novel method that enables the quantitative spatio-time-resolved analysis at the single cell level of the photoinduced damage produced by transparent microspheres functionalized with PSs. For this purpose, a methodology was introduced to monitor phototriggered changes with spatiotemporal resolution employing holographic optical tweezers and functional fluorescence microscopy. The defined distance between the photoactive particles and individual bacteria can be fixed under the microscope before the photosensitization process, and the photoinduced damage is monitored by tracing the fluorescence turn-on of a suitable marker. Our methodology constitutes a new tool for the in vitro design and analysis of photosensitizers, as it enables a quantitative response evaluation of living systems towards oxidative stress.
Wu, Haifeng; Guo, Jian; Chen, Shilin; Liu, Xin; Zhou, Yan; Zhang, Xiaopo; Xu, Xudong
2013-01-01
Over the past few years, the applications of liquid chromatography coupled with mass spectrometry (LC-MS) in natural product analysis have been dramatically growing because of the increasingly improved separation and detection capabilities of LC-MS instruments. In particular, novel high-resolution hybrid instruments linked to ultra-high-performance LC and the hyphenations of LC-MS with other separation or analytical techniques greatly aid unequivocal identification and highly sensitive quantification of natural products at trace concentrations in complex matrices. With the aim of providing an up-to-date overview of LC-MS applications on the analysis of plant-derived compounds, papers published within the latest years (2007-2012) involving qualitative and quantitative analysis of phytochemical constituents and their metabolites are summarized in the present review. After briefly describing the general characteristics of natural products analysis, the most remarkable features of LC-MS and sample preparation techniques, the present paper mainly focuses on screening and characterization of phenols (including flavonoids), alkaloids, terpenoids, steroids, coumarins, lignans, and miscellaneous compounds in respective herbs and biological samples, as well as traditional Chinese medicine (TCM) prescriptions using tandem mass spectrometer. Chemical fingerprinting analysis using LC-MS is also described. Meanwhile, instrumental peculiarities and methodological details are accentuated. Copyright © 2012 Elsevier B.V. All rights reserved.
Specialised emission pattern of leaf trace in a late Permian (253 million-years old) conifer
Wei, Hai-Bo; Feng, Zhuo; Yang, Ji-Yuan; Chen, Yu-Xuan; Shen, Jia-Jia; He, Xiao-Yuan
2015-01-01
Leaf traces are important structures in higher plants that connect leaves and the stem vascular system. The anatomy and emission pattern of leaf traces are well studied in extant vascular plants, but remain poorly understood in fossil lineages. We quantitatively analysed the leaf traces in the late Permian conifer Ningxiaites specialis from Northwest China based on serial sections through pith, primary and secondary xylems. A complete leaf traces emission pattern of a conifer is presented for the first time from the late Palaeozoic. Three to five monarch leaf traces are grouped in clusters, arranged in a helical phyllotaxis. The leaf traces in each cluster can be divided into upper, middle and lower portions, and initiate at the pith periphery and cross the wood horizontally. The upper leaf trace increases its diameter during the first growth increment and then diminishes completely, which indicates leaf abscission at the end of the first year. The middle trace immediately bifurcates once or twice to form two or three vascular bundles. The lower trace persists as a single bundle during its entire length. The intricate leaf trace dynamics indicates this fossil plant had a novel evolutionary habit by promoting photosynthetic capability for the matured plant. PMID:26198410
Bonta, Maximilian; Török, Szilvia; Hegedus, Balazs; Döme, Balazs; Limbeck, Andreas
2017-03-01
Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is one of the most commonly applied methods for lateral trace element distribution analysis in medical studies. Many improvements of the technique regarding quantification and achievable lateral resolution have been achieved in the last years. Nevertheless, sample preparation is also of major importance and the optimal sample preparation strategy still has not been defined. While conventional histology knows a number of sample pre-treatment strategies, little is known about the effect of these approaches on the lateral distributions of elements and/or their quantities in tissues. The technique of formalin fixation and paraffin embedding (FFPE) has emerged as the gold standard in tissue preparation. However, the potential use for elemental distribution studies is questionable due to a large number of sample preparation steps. In this work, LA-ICP-MS was used to examine the applicability of the FFPE sample preparation approach for elemental distribution studies. Qualitative elemental distributions as well as quantitative concentrations in cryo-cut tissues as well as FFPE samples were compared. Results showed that some metals (especially Na and K) are severely affected by the FFPE process, whereas others (e.g., Mn, Ni) are less influenced. Based on these results, a general recommendation can be given: FFPE samples are completely unsuitable for the analysis of alkaline metals. When analyzing transition metals, FFPE samples can give comparable results to snap-frozen tissues. Graphical abstract Sample preparation strategies for biological tissues are compared with regard to the elemental distributions and average trace element concentrations.
Bolann, B J; Rahil-Khazen, R; Henriksen, H; Isrenn, R; Ulvik, R J
2007-01-01
Commonly used techniques for trace-element analysis in human biological material are flame atomic absorption spectrometry (FAAS), graphite furnace atomic absorption spectrometry (GFAAS), inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). Elements that form volatile hydrides, first of all mercury, are analysed by hydride generation techniques. In the absorption techniques the samples are vaporized into free, neutral atoms and illuminated by a light source that emits the atomic spectrum of the element under analysis. The absorbance gives a quantitative measure of the concentration of the element. ICP-AES and ICP-MS are multi-element techniques. In ICP-AES the atoms of the sample are excited by, for example, argon plasma at very high temperatures. The emitted light is directed to a detector, and the optical signals are processed to values for the concentrations of the elements. In ICP-MS a mass spectrometer separates and detects ions produced by the ICP, according to their mass-to-charge ratio. Dilution of biological fluids is commonly needed to reduce the effect of the matrix. Digestion using acids and microwave energy in closed vessels at elevated pressure is often used. Matrix and spectral interferences may cause problems. Precautions should be taken against trace-element contamination during collection, storage and processing of samples. For clinical problems requiring the analysis of only one or a few elements, the use of FAAS may be sufficient, unless the higher sensitivity of GFAAS is required. For screening of multiple elements, however, the ICP techniques are preferable.
Improving Precision, Maintaining Accuracy, and Reducing Acquisition Time for Trace Elements in EPMA
NASA Astrophysics Data System (ADS)
Donovan, J.; Singer, J.; Armstrong, J. T.
2016-12-01
Trace element precision in electron probe micro analysis (EPMA) is limited by intrinsic random variation in the x-ray continuum. Traditionally we characterize background intensity by measuring on either side of the emission line and interpolating the intensity underneath the peak to obtain the net intensity. Alternatively, we can measure the background intensity at the on-peak spectrometer position using a number of standard materials that do not contain the element of interest. This so-called mean atomic number (MAN) background calibration (Donovan, et al., 2016) uses a set of standard measurements, covering an appropriate range of average atomic number, to iteratively estimate the continuum intensity for the unknown composition (and hence average atomic number). We will demonstrate that, at least for materials with a relatively simple matrix such as SiO2, TiO2, ZrSiO4, etc. where one may obtain a matrix matched standard for use in the so called "blank correction", we can obtain trace element accuracy comparable to traditional off-peak methods, and with improved precision, in about half the time. Donovan, Singer and Armstrong, A New EPMA Method for Fast Trace Element Analysis in Simple Matrices ", American Mineralogist, v101, p1839-1853, 2016 Figure 1. Uranium concentration line profiles from quantitative x-ray maps (20 keV, 100 nA, 5 um beam size and 4000 msec per pixel), for both off-peak and MAN background methods without (a), and with (b), the blank correction applied. We see precision significantly improved compared with traditional off-peak measurements while, in this case, the blank correction provides a small but discernable improvement in accuracy.
Velasco-Tapia, Fernando
2014-01-01
Magmatic processes have usually been identified and evaluated using qualitative or semiquantitative geochemical or isotopic tools based on a restricted number of variables. However, a more complete and quantitative view could be reached applying multivariate analysis, mass balance techniques, and statistical tests. As an example, in this work a statistical and quantitative scheme is applied to analyze the geochemical features for the Sierra de las Cruces (SC) volcanic range (Mexican Volcanic Belt). In this locality, the volcanic activity (3.7 to 0.5 Ma) was dominantly dacitic, but the presence of spheroidal andesitic enclaves and/or diverse disequilibrium features in majority of lavas confirms the operation of magma mixing/mingling. New discriminant-function-based multidimensional diagrams were used to discriminate tectonic setting. Statistical tests of discordancy and significance were applied to evaluate the influence of the subducting Cocos plate, which seems to be rather negligible for the SC magmas in relation to several major and trace elements. A cluster analysis following Ward's linkage rule was carried out to classify the SC volcanic rocks geochemical groups. Finally, two mass-balance schemes were applied for the quantitative evaluation of the proportion of the end-member components (dacitic and andesitic magmas) in the comingled lavas (binary mixtures). PMID:24737994
Pourmohammadbagher, Amin; Shaw, John M
2015-09-15
Clays, in tailings, are a significant ongoing environmental concern in the mining and oilsands production industries, and clay rehabilitation following contamination poses challenges episodically. Understanding the fundamentals of clay behavior can lead to better environmental impact mitigation strategies. Systematic calorimetric measurements are shown to provide a framework for parsing the synergistic and antagonistic impacts of trace (i.e., parts per million level) components on the surface compositions of clays. The enthalpy of solution of as-received and "contaminated" clays, in as-received and "contaminated" organic solvents and water, at 60 °C and atmospheric pressure, provides important illustrative examples. Clay contamination included pre-saturation of clays with water and organic liquids. Solvent contamination included the addition of trace water to organic solvents and trace organic liquids to water. Enthalpy of solution outcomes are interpreted using a quantitative mass and energy balance modeling framework that isolates terms for solvent and trace contaminant sorption/desorption and surface energy effects. Underlying surface energies are shown to dominate the energetics of the solvent-clay interaction, and organic liquids as solvents or as trace contaminants are shown to displace water from as-received clay surfaces. This approach can be readily extended to include pH, salts, or other effects and is expected to provide mechanistic and quantitative insights underlying the stability of clays in tailings ponds and the behaviors of clays in diverse industrial and natural environments.
Viviani, Paolo; Burkhard, Pierre R; Chiuvé, Sabina Catalano; Corradi-Dell'Acqua, Corrado; Vindras, Philippe
2009-04-01
An experiment was conducted to contrast the motor performance of three groups (N = 20) of participants: (1) patients with confirmed Parkinson Disease (PD) diagnose; (2) age-matched controls; (3) young adults. The task consisted of scribbling freely for 10 s within circular frames of different sizes. Comparison among groups focused on the relation between the figural elements of the trace (overall size and trace length) and the velocity of the drawing movements. Results were analysed within the framework of previous work on normal individuals showing that instantaneous velocity of drawing movements depends jointly on trace curvature (Two-thirds Power Law) and trace extent (Isochrony principle). The motor behaviour of PD patients exhibited all classical symptoms of the disease (reduced average velocity, reduced fluency, micrographia). At a coarse level of analysis both isochrony and the dependence of velocity on curvature, which are supposed to reflect cortical mechanisms, were spared in PD patients. Instead, significant differences with respects to the control groups emerged from an in-depth analysis of the velocity control suggesting that patients did not scale average velocity as effectively as controls. We factored out velocity control by distinguishing the influence of the broad context in which movement is planned--i.e. the size of the limiting frames--from the influence of the local context--i.e. the linear extent of the unit of motor action being executed. The balance between the two factors was found to be distinctively different in PD patients and controls. This difference is discussed in the light of current theorizing on the role of cortical and sub-cortical mechanisms in the aetiology of PD. We argue that the results are congruent with the notion that cortical mechanisms are responsible for generating a parametric template of the desired movement and the BG specify the actual spatio-temporal parameters through a multiplicative gain factor acting on both size and velocity.
NASA Astrophysics Data System (ADS)
Wuhrer, R.; Moran, K.
2014-03-01
Quantitative X-ray mapping with silicon drift detectors and multi-EDS detector systems have become an invaluable analysis technique and one of the most useful methods of X-ray microanalysis today. The time to perform an X-ray map has reduced considerably with the ability to map minor and trace elements very accurately due to the larger detector area and higher count rate detectors. Live X-ray imaging can now be performed with a significant amount of data collected in a matter of minutes. A great deal of information can be obtained from X-ray maps. This includes; elemental relationship or scatter diagram creation, elemental ratio mapping, chemical phase mapping (CPM) and quantitative X-ray maps. In obtaining quantitative x-ray maps, we are able to easily generate atomic number (Z), absorption (A), fluorescence (F), theoretical back scatter coefficient (η), and quantitative total maps from each pixel in the image. This allows us to generate an image corresponding to each factor (for each element present). These images allow the user to predict and verify where they are likely to have problems in our images, and are especially helpful to look at possible interface artefacts. The post-processing techniques to improve the quantitation of X-ray map data and the development of post processing techniques for improved characterisation are covered in this paper.
Sanal, Hasan; Güler, Zehra; Park, Young W
2011-01-01
The objectives of this study were to determine the profiles of non-essential trace elements in ewes' and goats' milk and manufactured products, such as yoghurt, torba yoghurt and whey, as well as changes in trace element content during Torba yoghurt-making processes. Concentrations of non-essential trace elements in ewe (Awassi) and goat (Damascus) milk and their yoghurt, torba yoghurt and whey were quantitatively determined by simultaneous inductively coupled plasma optical emission spectrometer (ICP-OES), after microwave digestion. Aluminium, antimony, arsenic, boron, beryllium, cadmium, nickel, lead, silver, titanium, thallium and vanadium were determined for both types of milk and their products. Barium was not detected in goats' milk or their products. Among all trace elements, boron was the most abundant and beryllium was least present in milk and the manufactured products. The results showed that goats' and ewes' milk and their manufactured products may be a source of 13 non-essential trace elements.
Skeleton-based tracing of curved fibers from 3D X-ray microtomographic imaging
NASA Astrophysics Data System (ADS)
Huang, Xiang; Wen, Donghui; Zhao, Yanwei; Wang, Qinghui; Zhou, Wei; Deng, Daxiang
A skeleton-based fiber tracing algorithm is described and applied on a specific fibrous material, porous metal fiber sintered sheet (PMFSS), featuring high porosity and curved fibers. The skeleton segments are firstly categorized according to the connectivity of the skeleton paths. Spurious segments like fiber bonds are detected making extensive use of the distance transform (DT) values. Single fibers are then traced and reconstructed by consecutively choosing the connecting skeleton segment pairs that show the most similar orientations and radius. Moreover, to reduce the misconnection due to the tracing orders, a multilevel tracing strategy is proposed. The fibrous network is finally reconstructed by dilating single fibers according to the DT values. Based on the traced single fibers, various morphology information regarding fiber length, radius, orientation, and tortuosity are quantitatively analyzed and compared with our previous results (Wang et al., 2013). Moreover, the number of bonds per fibers are firstly accessed. The methodology described in this paper can be expanded to other fibrous materials with adapted parameters.
NASA Astrophysics Data System (ADS)
Agrosì, G.; Tempesta, G.; Scandale, E.; Legnaioli, S.; Lorenzetti, G.; Pagnotta, S.; Palleschi, V.; Mangone, A.; Lezzerini, M.
2014-12-01
Laser Induced Breakdown Spectroscopy can provide a useful contribution in mineralogical field in which the quantitative chemical analyses (including the evaluation of light elements) can play a key role in the studies on the origin of the emeralds. In particular, the chemical analyses permit to determine those trace elements, known as fingerprints, that can be useful to study their provenance. This technique, not requiring sample preparation results particularly suitable for gemstones, that obviously must be studied in a non-destructive way. In this paper, the LIBS technique was applied to distinguish synthetic emeralds grown by Biron hydrothermal method from those grown by Chatham flux method. The analyses performed by collinear double-pulse LIBS give a signal enhancement useful for the quantitative chemical analyses while guaranteeing a minimal sample damage. In this way it was obtained a considerable improvement on the detection limit of the trace elements, whose determination is essential for determining the origin of emerald gemstone. The trace elements V, Cr, and Fe and their relative amounts allowed the correct attribution of the manufacturer. Two different methods for quantitative analyses were used for this study: the standard Calibration-Free LIBS (CF-LIBS) method and its recent evolution, the One Point Calibration LIBS (OPC-LIBS). This is the first approach to the evaluation of the emerald origin by means of the LIBS technique.
How to make Raman-inactive helium visible in Raman spectra of tritium-helium gas mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schloesser, M.; Pakari, O.; Rupp, S.
2015-03-15
Raman spectroscopy, a powerful method for the quantitative compositional analysis of molecular gases, e.g. mixtures of hydrogen isotopologues, is not able to detect monoatomic species like helium. This deficit can be overcome by using radioluminescence emission from helium atoms induced by β-electrons from tritium decay. We present theoretical considerations and combined Raman/radioluminescence spectra. Furthermore, we discuss the linearity of the method together with validation measurements for determining the pressure dependence. Finally, we conclude how this technique can be used for samples of helium with traces of tritium, and vice versa. (authors)
Jiang, Tian-Jia; Guo, Zheng; Liu, Jin-Huai; Huang, Xing-Jiu
2015-08-18
An analytical technique based on electroadsorption and transmission X-ray fluorescence (XRF) for the quantitative determination of arsenic in aqueous solution with ppb-level limits of detection (LOD) is proposed. The approach uses electroadsorption to enhance the sensitivity and LOD of the arsenic XRF response. Amine-functionalized carbonaceous microspheres (NH2-CMSs) are found to be the ideal materials for both the quantitative adsorption of arsenic and XRF analysis due to the basic amine sites on the surface and their noninterference in the XRF spectrum. In electroadsorptive X-ray fluorescence (EA-XRF), arsenic is preconcentrated by a conventional three-electrode system with a positive electricity field around the adsorbents. Then, the quantification of arsenic on the adsorbents is achieved using XRF. The electroadsorption preconcentration can realize the fast transfer of arsenic from the solution to the adsorbents and improve the LOD of conventional XRF compared with directly determining arsenic solution by XRF alone. The sensitivity of 0.09 cnt ppb(-1) is obtained without the interferences from coexisted metal ions in the determination of arsenic, and the LOD is found to be 7 ppb, which is lower than the arsenic guideline value of 10 ppb given by the World Health Organization (WHO). These results demonstrated that XRF coupled with electroadsorption was able to determine trace arsenic in real water sample.
Geiss, S; Einax, J W
2001-07-01
Detection limit, reporting limit and limit of quantitation are analytical parameters which describe the power of analytical methods. These parameters are used for internal quality assurance and externally for competing, especially in the case of trace analysis in environmental compartments. The wide variety of possibilities for computing or obtaining these measures in literature and in legislative rules makes any comparison difficult. Additionally, a host of terms have been used within the analytical community to describe detection and quantitation capabilities. Without trying to create an order for the variety of terms, this paper is aimed at providing a practical proposal for answering the main questions for the analysts concerning quality measures above. These main questions and related parameters were explained and graphically demonstrated. Estimation and verification of these parameters are the two steps to get real measures. A rule for a practical verification is given in a table, where the analyst can read out what to measure, what to estimate and which criteria have to be fulfilled. In this manner verified parameters detection limit, reporting limit and limit of quantitation now are comparable and the analyst himself is responsible to the unambiguity and reliability of these measures.
Becker, M; Zweckmair, T; Forneck, A; Rosenau, T; Potthast, A; Liebner, F
2013-03-15
Gas chromatographic analysis of complex carbohydrate mixtures requires highly effective and reliable derivatisation strategies for successful separation, identification, and quantitation of all constituents. Different single-step (per-trimethylsilylation, isopropylidenation) and two-step approaches (ethoximation-trimethylsilylation, ethoximation-trifluoroacetylation, benzoximation-trimethylsilylation, benzoximation-trifluoroacetylation) have been comprehensively studied with regard to chromatographic characteristics, informational value of mass spectra, ease of peak assignment, robustness toward matrix effects, and quantitation using a set of reference compounds that comprise eight monosaccharides (C(5)-C(6)), glycolaldehyde, and dihydroxyacetone. It has been shown that isopropylidenation and the two oximation-trifluoroacetylation approaches are least suitable for complex carbohydrate matrices. Whereas the former is limited to compounds that contain vicinal dihydroxy moieties in cis configuration, the latter two methods are sensitive to traces of trifluoroacetic acid which strongly supports decomposition of ketohexoses. It has been demonstrated for two "real" carbohydrate-rich matrices of biological and synthetic origin, respectively, that two-step ethoximation-trimethylsilylation is superior to other approaches due to the low number of peaks obtained per carbohydrate, good peak separation performance, structural information of mass spectra, low limits of detection and quantitation, minor relative standard deviations, and low sensitivity toward matrix effects. Copyright © 2013 Elsevier B.V. All rights reserved.
Interdisciplinary collaboration in action: tracking the signal, tracing the noise
Callard, Felicity; Fitzgerald, Des; Woods, Angela
2016-01-01
Interdisciplinarity is often framed as an unquestioned good within and beyond the academy, one to be encouraged by funders and research institutions alike. And yet there is little research on how interdisciplinary projects actually work—and do not work—in practice, particularly within and across the social sciences and humanities. This article centres on “Hubbub”, the first interdisciplinary 2-year research residency of The Hub at Wellcome Collection, which is investigating rest and its opposites in neuroscience, mental health, the arts and the everyday. The article describes how Hubbub is tracing, capturing and reflecting on practices of interdisciplinarity across its large, dispersed team of collaborators, who work across the social sciences, humanities, arts, mind and brain sciences, and public engagement. We first describe the distinctiveness of Hubbub (a project designed for a particular space, and one in which the arts are not positioned as simply illustrating or disseminating the research of the scientists), and then outline three techniques Hubbub has developed to map interdisciplinary collaboration in the making: (1) ethnographic analysis; (2) “In the Diary Room”, an aesthetics of collaboration designed to harness and capture affective dynamics within a large, complex project; and (3) the Hubbub Collaboration Questionnaire, which yields quantitative and qualitative data, as well as a social network analysis of collaborators. We conclude by considering some themes that other inter-disciplinary projects might draw on for their own logics of tracking and tracing. This article forms part of an ongoing thematic collection dedicated to interdisciplinary research. PMID:27516896
Quantitation of trace levels of perchlorate ion in water has become a key issue since this species was discovered in water supplies around the United States. Although ion chromatographic methods presently offer the lowest limit of detection, =40 nm (4ngm1-1), chromatographic ret...
Environmental Mycobiome Modifiers of Inflammation and Fibrosis in Systemic Sclerosis
2016-09-01
TUBB), and ribosomal proteins), while others are considered specific to SSc despite trace level detection in controls. For ex- ample, multiple SSc...Strong re- activity was seen against all five proteins in SSc with only trace levels detected in controls (Fig. 3a), indicating widespread immune...sequences in SSc RNA-seq data was used to detect microbial sequences in human tissues in an unbiased, quantitative manner. Our studies suggest that
Blank, Hartmut
2005-02-01
Traditionally, the causes of interference phenomena were sought in "real" or "hard" memory processes such as unlearning, response competition, or inhibition, which serve to reduce the accessibility of target items. I propose an alternative approach which does not deny the influence of such processes but highlights a second, equally important, source of interference-the conversion (Tulving, 1983) of accessible memory information into memory performance. Conversion is conceived as a problem-solving-like activity in which the rememberer tries to find solutions to a memory task. Conversion-based interference effects are traced to different conversion processes in the experimental and control conditions of interference designs. I present a simple theoretical model that quantitatively predicts the resulting amount of interference. In two paired-associate learning experiments using two different types of memory tests, these predictions were corroborated. Relations of the present approach to traditional accounts of interference phenomena and implications for eyewitness testimony are discussed.
Newbury, Dale E; Ritchie, Nicholas W M
2016-06-01
Electron-excited X-ray microanalysis performed with scanning electron microscopy and energy-dispersive spectrometry (EDS) has been used to measure trace elemental constituents of complex multielement materials, where "trace" refers to constituents present at concentrations below 0.01 (mass fraction). High count spectra measured with silicon drift detector EDS were quantified using the standards/matrix correction protocol embedded in the NIST DTSA-II software engine. Robust quantitative analytical results for trace constituents were obtained from concentrations as low as 0.000500 (mass fraction), even in the presence of significant peak interferences from minor (concentration 0.01≤C≤0.1) and major (C>0.1) constituents. Limits of detection as low as 0.000200 were achieved in the absence of peak interference.
NASA Astrophysics Data System (ADS)
Xu, Tao; Zhang, Yong; Zhang, Ming; He, Yi; Yu, Qiaoling; Duan, Yixiang
2016-07-01
Optical emission of laser ablation plasma on a shale target surface provides sensitive laser-induced breakdown spectrometry (LIBS) detection of major, minor or trace elements. An exploratory study for the characterization of the plasma induced on shale materials was carried out with the aim to trigger a crucial step towards the quantitative LIBS measurement. In this work, the experimental strategies that optimize the plasma generation on a pressed shale pellet surface are presented. The temporal evolution properties of the plasma induced by ns Nd:YAG laser pulse at the fundamental wavelength in air were investigated using time-resolved space-integrated optical emission spectroscopy. The electron density as well as the temperatures of the plasma were diagnosed as functions of the decay time for the bulk plasma analysis. In particular, the values of time-resolved atomic and ionic temperatures of shale elements, such as Fe, Mg, Ca, and Ti, were extracted from the well-known Boltzmann or Saha-Boltzmann plot method. Further comparison of these temperatures validated the local thermodynamic equilibrium (LTE) within specific interval of the delay time. In addition, the temporal behaviors of the signal-to-noise ratio of shale elements, including Si, Al, Fe, Ca, Mg, Ba, Li, Ti, K, Na, Sr, V, Cr, and Ni, revealed the coincidence of their maximum values with LIBS LTE condition in the time frame, providing practical implications for an optimized LIBS detection of shale elements. Analytical performance of LIBS was further evaluated with the linear calibration procedure for the most concerned trace elements of Sr, V, Cr, and Ni present in different shales. Their limits of detection obtained are elementally dependent and can be lower than tens of parts per million with the present LIBS experimental configurations. However, the occurrence of saturation effect for the calibration curve is still observable with the increasing trace element content, indicating that, due to the complex composition of shale materials, the omnipresent "matrix effect" is still a great challenging for the performance of quantitative LIBS measurement even in the framework of the LTE approach.
Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Baudelet, Matthieu; Yu, Jin; Bossu, Myriam; Jovelet, Julien; Wolf, Jean-Pierre; Amodeo, Tanguy; Fréjafon, Emeric; Laloi, Patrick
2006-10-01
Using femtosecond laser-induced breakdown spectroscopy, the authors have analyzed five different species of bacterium. Line emissions from six trace mineral elements, Na, Mg, P, K, Ca, and Fe, have been clearly detected. Their intensities correspond to relative concentrations of these elements contained in the analyzed samples. The authors demonstrate that the concentration profile of trace elements allows unambiguous discrimination of different bacteria. Quantitative differentiation has been made by representing bacteria in a six-dimension hyperspace with each of its axis representing a detected trace element. In such hyperspace, representative points of different species of bacterium are gathered in different and distinct volumes.
Sajnóg, Adam; Hanć, Anetta; Barałkiewicz, Danuta
2018-05-15
Analysis of clinical specimens by imaging techniques allows to determine the content and distribution of trace elements on the surface of the examined sample. In order to obtain reliable results, the developed procedure should be based not only on the properly prepared sample and performed calibration. It is also necessary to carry out all phases of the procedure in accordance with the principles of chemical metrology whose main pillars are the use of validated analytical methods, establishing the traceability of the measurement results and the estimation of the uncertainty. This review paper discusses aspects related to sampling, preparation and analysis of clinical samples by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) with emphasis on metrological aspects, i.e. selected validation parameters of the analytical method, the traceability of the measurement result and the uncertainty of the result. This work promotes the introduction of metrology principles for chemical measurement with emphasis to the LA-ICP-MS which is the comparative method that requires studious approach to the development of the analytical procedure in order to acquire reliable quantitative results. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Panozzo, M.; Quintero-Quiroz, C.; Tiana-Alsina, J.; Torrent, M. C.; Masoller, C.
2017-11-01
Semiconductor lasers with time-delayed optical feedback display a wide range of dynamical regimes, which have found various practical applications. They also provide excellent testbeds for data analysis tools for characterizing complex signals. Recently, several of us have analyzed experimental intensity time-traces and quantitatively identified the onset of different dynamical regimes, as the laser current increases. Specifically, we identified the onset of low-frequency fluctuations (LFFs), where the laser intensity displays abrupt dropouts, and the onset of coherence collapse (CC), where the intensity fluctuations are highly irregular. Here we map these regimes when both, the laser current and the feedback strength vary. We show that the shape of the distribution of intensity fluctuations (characterized by the standard deviation, the skewness, and the kurtosis) allows to distinguish among noise, LFFs and CC, and to quantitatively determine (in spite of the gradual nature of the transitions) the boundaries of the three regimes. Ordinal analysis of the inter-dropout time intervals consistently identifies the three regimes occurring in the same parameter regions as the analysis of the intensity distribution. Simulations of the well-known time-delayed Lang-Kobayashi model are in good qualitative agreement with the observations.
Microwave assisted extraction for trace element analysis of plant materials by ICP-AES.
Borkowska-Burnecka, J
2000-11-01
Application of microwave assisted extraction for the decomposition and dissolution of plant samples for trace metal determination by ICP-AES was examined. Dried onion, leaves of spinach beet and three reference materials CTA-OTL-1, CTA-VTL-2 and CL-1 were analyzed. Water, EDTA and hydrochloric acid (0.01, 0.10 and 1.0 M, respectively) were used as leaching solutions. The extraction efficiency was investigated by comparison of the results with those obtained after microwave wet digestion. HCl was found to be very suitable for quantitative extraction of B, Ba, Cd, Cu, Mn, Ni, Pb, Sr and Zn from the samples. For reference materials, the measured concentrations are well consistent with the certified values. The use of EDTA led to a complete extraction of B, Cd, Ni, Pb, Sr and Zn. Water was found to be a good leaching solution for boron. For extraction with HCl and EDTA, the RSD values for the concentrations measured were below 8% for most of the elements.
Schultz, M.M.; Furlong, E.T.
2008-01-01
Treated wastewater effluent is a potential environmental point source for antidepressant pharmaceuticals. A quantitative method was developed for the determination of trace levels of antidepressants in environmental aquatic matrixes using solid-phase extraction coupled with liquid chromatography- electrospray ionization tandem mass spectrometry. Recoveries of parent antidepressants from matrix spiking experiments for the individual antidepressants ranged from 72 to 118% at low concentrations (0.5 ng/L) and 70 to 118% at high concentrations (100 ng/L) for the solid-phase extraction method. Method detection limits for the individual antidepressant compounds ranged from 0.19 to 0.45 ng/L. The method was applied to wastewater effluent and samples collected from a wastewater-dominated stream. Venlafaxine was the predominant antidepressant observed in wastewater and river water samples. Individual antidepressant concentrations found in the wastewater effluent ranged from 3 (duloxetine) to 2190 ng/L (venlafaxine), whereas individual concentrations in the waste-dominated stream ranged from 0.72 (norfluoxetine) to 1310 ng/L (venlafaxine). ?? 2008 American Chemical Society.
Luo, Nana; An, Li; Nara, Atsushi; Yan, Xing; Zhao, Wenji
2016-06-01
Dust, as an important carrier of inorganic and organic pollutants, daily exposes to human without any protection. It affects our health adversely, especially its chemical elements and ions. In this research, we investigated the chemical characteristics of dustfall in Beijing, specifically in terms of 40 major and trace elements, and presented semi-quantitative evaluations of the relative local and remote contributions. In total, 58 samples were collected in Beijing and nearby cities during 2013-2014 "the winter heating period". Using multiple statistical methods and GIS techniques, we obtained the relative similarities among certain elements and identified their pollution sources (from local or nearby cities). And more interestingly, the relative contributions of nearby cities can be calculated by the Hysplit4 backward-trajectory model. In addition, the correlation analysis for the 40 elements in dust and soil indicated that traffic restricted interchange between them; the city center, with the heaviest traffic, had the most significant influence. Finally, the resulting source apportionment was examined and modified using land use data and terrain information. We hope it can provide a strong basis for the environmental protection and risk assessment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Vidaki, Athina; Kalamara, Vivian; Carnero-Montoro, Elena; Spector, Timothy D; Bell, Jordana T; Kayser, Manfred
2018-05-14
Monozygotic (MZ) twins are typically indistinguishable via forensic DNA profiling. Recently, we demonstrated that epigenetic differentiation of MZ twins is feasible; however, proportions of twin differentially methylated CpG sites (tDMSs) identified in reference-type blood DNA were not replicated in trace-type blood DNA. Here we investigated buccal swabs as typical forensic reference material, and saliva and cigarette butts as commonly encountered forensic trace materials. As an analog to a forensic case, we analyzed one MZ twin pair. Epigenome-wide microarray analysis in reference-type buccal DNA revealed 25 candidate tDMSs with >0.5 twin-to-twin differences. MethyLight quantitative PCR (qPCR) of 22 selected tDMSs in trace-type DNA revealed in saliva DNA that six tDMSs (27.3%) had >0.1 twin-to-twin differences, seven (31.8%) had smaller (<0.1) but robustly detected differences, whereas for nine (40.9%) the differences were in the opposite direction relative to the microarray data; for cigarette butt DNA, results were 50%, 22.7%, and 27.3%, respectively. The discrepancies between reference-type and trace-type DNA outcomes can be explained by cell composition differences, method-to-method variation, and other technical reasons including bisulfite conversion inefficiency. Our study highlights the importance of the DNA source and that careful characterization of biological and technical effects is needed before epigenetic MZ twin differentiation is applicable in forensic casework.
Spatial distribution of the trace elements zinc, strontium and lead in human bone tissue.
Pemmer, B; Roschger, A; Wastl, A; Hofstaetter, J G; Wobrauschek, P; Simon, R; Thaler, H W; Roschger, P; Klaushofer, K; Streli, C
2013-11-01
Trace elements are chemical elements in minute quantities, which are known to accumulate in the bone. Cortical and trabecular bones consist of bone structural units (BSUs) such as osteons and bone packets of different mineral content and are separated by cement lines. Previous studies investigating trace elements in bone lacked resolution and therefore very little is known about the local concentration of zinc (Zn), strontium (Sr) and lead (Pb) in BSUs of human bone. We used synchrotron radiation induced micro X-ray fluorescence analysis (SR μ-XRF) in combination with quantitative backscattered electron imaging (qBEI) to determine the distribution and accumulation of Zn, Sr, and Pb in human bone tissue. Fourteen human bone samples (10 femoral necks and 4 femoral heads) from individuals with osteoporotic femoral neck fractures as well as from healthy individuals were analyzed. Fluorescence intensity maps were matched with BE images and correlated with calcium (Ca) content. We found that Zn and Pb had significantly increased levels in the cement lines of all samples compared to the surrounding mineralized bone matrix. Pb and Sr levels were found to be correlated with the degree of mineralization. Interestingly, Zn intensities had no correlation with Ca levels. We have shown for the first time that there is a differential accumulation of the trace elements Zn, Pb and Sr in BSUs of human bone indicating different mechanisms of accumulation. © 2013. Published by Elsevier Inc. All rights reserved.
Clonal tracing of Sox9+ liver progenitors in oval cell injury
Tarlow, Branden D.; Finegold, Milton J.; Grompe, Markus
2014-01-01
Proliferating ducts, termed “oval cells”, have long thought to be bipotential, i.e. produce both biliary ducts and hepatocytes during chronic liver injury. The precursor to oval cells is considered to be a facultative liver stem cell (LSC). Recent lineage tracing experiments indicated that the LSC is Sox9+ and can replace the bulk of hepatocyte mass in several settings. However, no clonal relationship between Sox9+ cells and the two epithelial liver lineages was established. We labeled Sox9+ mouse liver cells at low density with a multicolor fluorescent confetti reporter. Organoid formation validated the progenitor activity of the labeled population. Sox9+ cells were traced in multiple oval cell injury models using both histology and FACS. Surprisingly, only rare clones containing both hepatocytes and oval cells were found in any experiment. Quantitative analysis showed that Sox9+ cells contributed only minimally (<1%) to the hepatocyte pool, even in classic oval cell injury models. In contrast, clonally marked mature hepatocytes demonstrated the ability to self-renew in all classic mouse oval cell activation injuries. A hepatocyte chimera model to trace hepatocytes and non-parenchymal cells also demonstrated the prevalence of hepatocyte-driven regeneration in mouse oval cell injury models. Conclusion Sox9+ ductal progenitor cells give rise to clonal oval cell proliferation and bipotential organoids but rarely produce hepatocytes in vivo. Hepatocytes themselves are the predominant source of new parenchyma cells in prototypical mouse models of oval cell activation. PMID:24700457
NASA Astrophysics Data System (ADS)
Noack, C.; Jain, J.; Hakala, A.; Schroeder, K.; Dzombak, D. A.; Karamalidis, A.
2013-12-01
Rare earth elements (REE) - encompassing the naturally occurring lanthanides, yttrium, and scandium - are potential tracers for subsurface groundwater-brine flows and geochemical processes. Application of these elements as naturally occurring tracers during shale gas development is reliant on accurate quantitation of trace metals in hypersaline brines. We have modified and validated a liquid-liquid technique for extraction and pre-concentration of REE from saline produced waters from shale gas extraction wells with quantitative analysis by ICP-MS. This method was used to analyze time-series samples of Marcellus shale flowback and produced waters. Additionally, the total REE content of core samples of various strata throughout the Appalachian Basin were determined using HF/HNO3 digestion and ICP-MS analysis. A primary goal of the study is to elucidate systematic geochemical variations as a function of location or shale characteristics. Statistical testing will be performed to study temporal variability of inter-element relationships and explore associations between REE abundance and major solution chemistry. The results of these analyses and discussion of their significance will be presented.
Leader, Joseph K.; Crothers, Kristina; Huang, Laurence; King, Mark A.; Morris, Alison; Thompson, Bruce W.; Flores, Sonia C.; Drummond, M. Bradley; Rom, William N.; Diaz, Philip T.
2015-01-01
Introduction The disease spectrum for HIV-infected individuals has shifted towards co-morbid non-AIDS conditions including chronic lung disease, but quantitative image analysis of lung disease has not been performed. Objectives To quantify the prevalence of structural changes of the lung indicating emphysema or fibrosis on radiographic examination. Methods A cross-sectional analysis of 510 HIV-infected participants in the multi-center Lung-HIV study was performed. Data collected included: demographics, biological markers of HIV, pulmonary function testing, and chest CT examinations. Emphysema and fibrosis-like changes were quantified on CT images based on threshold approaches. Results In our cohort: 69% was on antiretroviral therapy, 13% had a current CD4 cell count less than 200 cells/μL, 39% had an HIV viral load greater than 500 copies/mL, 25% had at least a trace level of emphysema (defined as >2.5% of voxels <-950HU). Trace emphysema was significantly correlated with age, smoking, and pulmonary function. Neither current CD4 cell count nor HIV viral load was significantly correlated with emphysema. Fibrosis-like changes were detected in 29% of the participants and were significantly correlated with HIV viral load (Pearson correlation coefficient = 0.210, p<0.05); current CD4 cell count was not associated with fibrosis. In multivariable analyses including age, race, and smoking status, HIV viral load remained significantly correlated with fibrosis-like changes (coefficient = 0.107, P = 0.03). Conclusion A higher HIV viral load was significantly associated with fibrosis-like changes possibly indicating early interstitial lung disease, but emphysematous changes were not related to current CD4 cell count or HIV viral load. PMID:26914911
NASA Astrophysics Data System (ADS)
Wang, Xin; Li, Yan; Chen, Tongjun; Yan, Qiuyan; Ma, Li
2017-04-01
The thickness of tectonically deformed coal (TDC) has positive correlation associations with gas outbursts. In order to predict the TDC thickness of coal beds, we propose a new quantitative predicting method using an extreme learning machine (ELM) algorithm, a principal component analysis (PCA) algorithm, and seismic attributes. At first, we build an ELM prediction model using the PCA attributes of a synthetic seismic section. The results suggest that the ELM model can produce a reliable and accurate prediction of the TDC thickness for synthetic data, preferring Sigmoid activation function and 20 hidden nodes. Then, we analyze the applicability of the ELM model on the thickness prediction of the TDC with real application data. Through the cross validation of near-well traces, the results suggest that the ELM model can produce a reliable and accurate prediction of the TDC. After that, we use 250 near-well traces from 10 wells to build an ELM predicting model and use the model to forecast the TDC thickness of the No. 15 coal in the study area using the PCA attributes as the inputs. Comparing the predicted results, it is noted that the trained ELM model with two selected PCA attributes yields better predication results than those from the other combinations of the attributes. Finally, the trained ELM model with real seismic data have a different number of hidden nodes (10) than the trained ELM model with synthetic seismic data. In summary, it is feasible to use an ELM model to predict the TDC thickness using the calculated PCA attributes as the inputs. However, the input attributes, the activation function and the number of hidden nodes in the ELM model should be selected and tested carefully based on individual application.
HOLST, Alexandra Ioana; HOLST, Stefan; HIRSCHFELDER, Ursula; von SECKENDORFF, Volker
2012-01-01
Objective The objective of this study was to investigate the applicability of micro-analytical methods with high spatial resolution to the characterization of the composition and corrosion behavior of two bracket systems. Material and methods The surfaces of six nickel-free brackets and six nickel-containing brackets were examined for signs of corrosion and qualitative surface analysis using an electron probe microanalyzer (EPMA), prior to bonding to patient's tooth surfaces and four months after clinical use. The surfaces were characterized qualitatively by secondary electron (SE) images and back scattered electron (BSE) images in both compositional and topographical mode. Qualitative and quantitative wavelength-dispersive analyses were performed for different elements, and by utilizing qualitative analysis the relative concentration of selected elements was mapped two-dimensionally. The absolute concentration of the elements was determined in specially prepared brackets by quantitative analysis using pure element standards for calibration and calculating correction-factors (ZAF). Results Clear differences were observed between the different bracket types. The nickel-containing stainless steel brackets consist of two separate pieces joined by a brazing alloy. Compositional analysis revealed two different alloy compositions, and reaction zones on both sides of the brazing alloy. The nickel-free bracket was a single piece with only slight variation in element concentration, but had a significantly rougher surface. After clinical use, no corrosive phenomena were detectable with the methods applied. Traces of intraoral wear at the contact areas between the bracket slot and the arch wire were verified. Conclusion Electron probe microanalysis is a valuable tool for the characterization of element distribution and quantitative analysis for corrosion studies. PMID:23032212
An R package for state-trace analysis.
Prince, Melissa; Hawkins, Guy; Love, Jonathon; Heathcote, Andrew
2012-09-01
State-trace analysis (Bamber, Journal of Mathematical Psychology, 19, 137-181, 1979) is a graphical analysis that can determine whether one or more than one latent variable mediates an apparent dissociation between the effects of two experimental manipulations. State-trace analysis makes only ordinal assumptions and so, is not confounded by range effects that plague alternative methods, especially when performance is measured on a bounded scale (such as accuracy). We describe and illustrate the application of a freely available GUI driven package, StateTrace, for the R language. StateTrace automates many aspects of a state-trace analysis of accuracy and other binary response data, including customizable graphics and the efficient management of computationally intensive Bayesian methods for quantifying evidence about the outcomes of a state-trace experiment, developed by Prince, Brown, and Heathcote (Psychological Methods, 17, 78-99, 2012).
Input-output characterization of fiber reinforced composites by P waves
NASA Technical Reports Server (NTRS)
Renneisen, John D.; Williams, James H., Jr.
1990-01-01
Input-output characterization of fiber composites is studied theoretically by tracing P waves in the media. A new path motion to aid in the tracing of P and the reflection generated SV wave paths in the continuum plate is developed. A theoretical output voltage from the receiving transducer is calculated for a tone burst. The study enhances the quantitative and qualitative understanding of the nondestructive evaluation of fiber composites which can be modeled as transversely isotropic media.
Hill, Shannon B; Faradzhev, Nadir S; Powell, Cedric J
2017-12-01
We discuss the problem of quantifying common sources of statistical uncertainties for analyses of trace levels of surface contamination using X-ray photoelectron spectroscopy. We examine the propagation of error for peak-area measurements using common forms of linear and polynomial background subtraction including the correlation of points used to determine both background and peak areas. This correlation has been neglected in previous analyses, but we show that it contributes significantly to the peak-area uncertainty near the detection limit. We introduce the concept of relative background subtraction variance (RBSV) which quantifies the uncertainty introduced by the method of background determination relative to the uncertainty of the background area itself. The uncertainties of the peak area and atomic concentration and of the detection limit are expressed using the RBSV, which separates the contributions from the acquisition parameters, the background-determination method, and the properties of the measured spectrum. These results are then combined to find acquisition strategies that minimize the total measurement time needed to achieve a desired detection limit or atomic-percentage uncertainty for a particular trace element. Minimization of data-acquisition time is important for samples that are sensitive to x-ray dose and also for laboratories that need to optimize throughput.
Tamiri, Tsippy; Rozin, Rinat; Lemberger, Nitay; Almog, Joseph
2009-09-01
Urea nitrate is a powerful improvised explosive, frequently used by terrorists in the Israeli arena. It was also used in the first World Trade Center bombing in New York in February 1993. It is difficult to identify urea nitrate in post-explosion debris, since only a very small fraction survives the blast. Also, in the presence of water, it readily decomposes to its original components, urea and nitric acid. It is suspected that post-blast debris of urea nitrate can be confused with ammonium nitrate, the main solid product of urea nitrate thermal decomposition. In a comprehensive study towards identification of urea nitrate in post-blast traces, a spectrophotometric technique for quantitative determination of urea nitrate was developed, and conditions were found for extraction and separation of un-exploded traces of urea nitrate with minimal decomposition. Nevertheless, out of 28 samples collected from a series of three controlled firings of urea nitrate charges, only one gave the typical adduct ion by liquid chromatography/mass spectrometry analysis. We found that urea nitrate can be extracted from solid mixtures to organic solvents by using Crown ethers as "host compounds." The adducts thus formed are solid, crystalline compounds that can be characterized by microanalysis and spectroscopic techniques.
Ansari, T M; Marr, I L; Coats, A M
2001-02-01
This study was carried out to characterise the mineralogical forms of barium and the trace heavy metal impurities in commercial barytes of different origins using electron probe microanalysis (EPMA), X-ray diffraction (XRD) and inductively coupled plasma mass spectrometry (ICP-MS). Qualitative EPMA results show the presence of typically eight different minerals in commercial barytes including barite (BaSO4), barium feldspar, galena (PbS), pyrite (FeS2), sphalerite (ZnS), quartz (SiO2), and silicates, etc. Quantitative EPMA confirms that the barite crystals in the barytes contain some strontium and a little calcium, whereas trace heavy metals occur in the associated minerals. Analysis of aqua regia extracts of barytes samples by ICP-MS has shown the presence of a large number of elements in the associated minerals. Arsenic, copper and zinc concentrations correlate closely in all 10 samples. The findings suggest that barytes is not, as traditionally thought, an inert mineral, but is a potentially toxic substance due to its associated heavy metal impurities, which can be determined by an aqua regia digest without the need for complete dissolution of the barite itself. X-ray powder diffraction was not informative as the complex barite pattern masks the very weak lines from the small amounts of associated minerals.
Knott, J.R.; Sarna-Wojcicki, A. M.; Montanez, I.P.; Wan, E.
2007-01-01
Volcanic glass samples from the same volcanic center (intra-source) often have a similar major-element composition. Thus, it can be difficult to distinguish between individual tephra layers, particularly when using similarity coefficients calculated from electron microprobe major-element measurements. Minor/trace element concentrations in glass can be determined by solution inductively coupled plasma mass spectrometry (S-ICP-MS), but have not been shown as suitable for use in large tephrochronologic databases. Here, we present minor/trace-element concentrations measured by S-ICP-MS and compare these data by similarity coefficients, the method commonly used in large databases. Trial samples from the Bishop Tuff, the upper and lower tuffs of Glass Mountain and the tuffs of Mesquite Spring suites from eastern California, USA, which have an indistinguishable major-element composition, were analyzed using S-ICP-MS. The resulting minor/trace element similarity coefficients clearly separated the suites of tephra layers and, in most cases, individual tephra layers within each suite. Comparisons with previous instrumental neutron activation analysis (INAA) elemental measurements were marginally successful. This is important step toward quantitative correlation in large tephrochronologic databases to achieve definitive identification of volcanic glass samples and for high-resolution age determinations. ?? 2007 Elsevier Ltd and INQUA.
Ahn, Yeong Hee; Lee, Yeon Jung; Kim, Sung Ho
2015-01-01
This study describes an MS-based analysis method for monitoring changes in polymer composition during the polyaddition polymerization reaction of toluene diisocyanate (TDI) and ethylene glycol (EG). The polymerization was monitored as a function of reaction time using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS). The resulting series of polymer adducts terminated with various end-functional groups were precisely identified and the relative compositions of those series were estimated. A new MALDI MS data interpretation method was developed, consisting of a peak-resolving algorithm for overlapping peaks in MALDI MS spectra, a retrosynthetic analysis for the generation of reduced unit mass peaks, and a Gaussian fit-based selection of the most prominent polymer series among the reconstructed unit mass peaks. This method of data interpretation avoids errors originating from side reactions due to the presence of trace water in the reaction mixture or MALDI analysis. Quantitative changes in the relative compositions of the resulting polymer products were monitored as a function of reaction time. These results demonstrate that the mass data interpretation method described herein can be a powerful tool for estimating quantitative changes in the compositions of polymer products arising during a polymerization reaction.
Analysis of spectra using correlation functions
NASA Technical Reports Server (NTRS)
Beer, Reinhard; Norton, Robert H.
1988-01-01
A novel method is presented for the quantitative analysis of spectra based on the properties of the cross correlation between a real spectrum and either a numerical synthesis or laboratory simulation. A new goodness-of-fit criterion called the heteromorphic coefficient H is proposed that has the property of being zero when a fit is achieved and varying smoothly through zero as the iteration proceeds, providing a powerful tool for automatic or near-automatic analysis. It is also shown that H can be rendered substantially noise-immune, permitting the analysis of very weak spectra well below the apparent noise level and, as a byproduct, providing Doppler shift and radial velocity information with excellent precision. The technique is in regular use in the Atmospheric Trace Molecule Spectroscopy (ATMOS) project and operates in an interactive, realtime computing environment with turn-around times of a few seconds or less.
NASA Astrophysics Data System (ADS)
Haciyakupoglu, Sevilay; Nur Esen, Ayse; Erenturk, Sema
2014-08-01
The purpose of this study is optimization of the experimental parameters for analysis of soil matrix by instrumental neutron activation analysis and quantitative determination of barium, cerium, lanthanum, rubidium, scandium and thorium in soil samples collected from industrialized urban areas near Istanbul. Samples were irradiated in TRIGA MARK II Research Reactor of Istanbul Technical University. Two types of reference materials were used to check the accuracy of the applied method. The achieved results were found to be in compliance with certified values of the reference materials. The calculated En numbers for mentioned elements were found to be less than 1. The presented data of element concentrations in soil samples will help to trace the pollution as an impact of urbanization and industrialization, as well as providing database for future studies.
CTG Analyzer: A graphical user interface for cardiotocography.
Sbrollini, Agnese; Agostinelli, Angela; Burattini, Luca; Morettini, Micaela; Di Nardo, Francesco; Fioretti, Sandro; Burattini, Laura
2017-07-01
Cardiotocography (CTG) is the most commonly used test for establishing the good health of the fetus during pregnancy and labor. CTG consists in the recording of fetal heart rate (FHR; bpm) and maternal uterine contractions (UC; mmHg). FHR is characterized by baseline, baseline variability, tachycardia, bradycardia, acceleration and decelerations. Instead, UC signal is characterized by presence of contractions and contractions period. Such parameters are usually evaluated by visual inspection. However, visual analysis of CTG recordings has a well-demonstrated poor reproducibility, due to the complexity of physiological phenomena affecting fetal heart rhythm and being related to clinician's experience. Computerized tools in support of clinicians represents a possible solution for improving correctness in CTG interpretation. This paper proposes CTG Analyzer as a graphical tool for automatic and objective analysis of CTG tracings. CTG Analyzer was developed under MATLAB®; it is a very intuitive and user friendly graphical user interface. FHR time series and UC signal are represented one under the other, on a grid with reference lines, as usually done for CTG reports printed on paper. Colors help identification of FHR and UC features. Automatic analysis is based on some unchangeable features definitions provided by the FIGO guidelines, and other arbitrary settings whose default values can be changed by the user. Eventually, CTG Analyzer provides a report file listing all the quantitative results of the analysis. Thus, CTG Analyzer represents a potentially useful graphical tool for automatic and objective analysis of CTG tracings.
Kume, Teruyoshi; Kim, Byeong-Keuk; Waseda, Katsuhisa; Sathyanarayana, Shashidhar; Li, Wenguang; Teo, Tat-Jin; Yock, Paul G; Fitzgerald, Peter J; Honda, Yasuhiro
2013-02-01
The aim of this study was to evaluate a new fully automated lumen border tracing system based on a novel multifrequency processing algorithm. We developed the multifrequency processing method to enhance arterial lumen detection by exploiting the differential scattering characteristics of blood and arterial tissue. The implementation of the method can be integrated into current intravascular ultrasound (IVUS) hardware. This study was performed in vivo with conventional 40-MHz IVUS catheters (Atlantis SR Pro™, Boston Scientific Corp, Natick, MA) in 43 clinical patients with coronary artery disease. A total of 522 frames were randomly selected, and lumen areas were measured after automatically tracing lumen borders with the new tracing system and a commercially available tracing system (TraceAssist™) referred to as the "conventional tracing system." The data assessed by the two automated systems were compared with the results of manual tracings by experienced IVUS analysts. New automated lumen measurements showed better agreement with manual lumen area tracings compared with those of the conventional tracing system (correlation coefficient: 0.819 vs. 0.509). When compared against manual tracings, the new algorithm also demonstrated improved systematic error (mean difference: 0.13 vs. -1.02 mm(2) ) and random variability (standard deviation of difference: 2.21 vs. 4.02 mm(2) ) compared with the conventional tracing system. This preliminary study showed that the novel fully automated tracing system based on the multifrequency processing algorithm can provide more accurate lumen border detection than current automated tracing systems and thus, offer a more reliable quantitative evaluation of lumen geometry. Copyright © 2011 Wiley Periodicals, Inc.
Is scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) quantitative?
Newbury, Dale E; Ritchie, Nicholas W M
2013-01-01
Scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) is a widely applied elemental microanalysis method capable of identifying and quantifying all elements in the periodic table except H, He, and Li. By following the "k-ratio" (unknown/standard) measurement protocol development for electron-excited wavelength dispersive spectrometry (WDS), SEM/EDS can achieve accuracy and precision equivalent to WDS and at substantially lower electron dose, even when severe X-ray peak overlaps occur, provided sufficient counts are recorded. Achieving this level of performance is now much more practical with the advent of the high-throughput silicon drift detector energy dispersive X-ray spectrometer (SDD-EDS). However, three measurement issues continue to diminish the impact of SEM/EDS: (1) In the qualitative analysis (i.e., element identification) that must precede quantitative analysis, at least some current and many legacy software systems are vulnerable to occasional misidentification of major constituent peaks, with the frequency of misidentifications rising significantly for minor and trace constituents. (2) The use of standardless analysis, which is subject to much broader systematic errors, leads to quantitative results that, while useful, do not have sufficient accuracy to solve critical problems, e.g. determining the formula of a compound. (3) EDS spectrometers have such a large volume of acceptance that apparently credible spectra can be obtained from specimens with complex topography that introduce uncontrolled geometric factors that modify X-ray generation and propagation, resulting in very large systematic errors, often a factor of ten or more. © Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Reichert, B. A.; Hingst, W. R.; Okiishi, T. H.
1991-01-01
An ethylene trace gas technique was used to map out fluid transport and mixing within a circular to rectangular transition duct. Ethylene gas was injected at several points in a cross stream plane upstream of the transition duct. Ethylene concentration contours were determined at several cross stream measurement planes spaced axially within the duct. The flow involved a uniform inlet flow at a Mach number level of 0.5. Statistical analyses were used to quantitatively interpret the trace gas results. Also, trace gas data were considered along with aerodynamic and surface flow visualization results to ascertain transition duct flow phenomena. Convection of wall boundary layer fluid by vortices produced regions of high total pressure loss in the duct. The physical extent of these high loss regions is governed by turbulent diffusion.
de Kanel, J; Vickery, W E; Waldner, B; Monahan, R M; Diamond, F X
1998-05-01
A forensic procedure for the quantitative confirmation of lysergic acid diethylamide (LSD) and the qualitative confirmation of its metabolite, N-demethyl-LSD, in blood, serum, plasma, and urine samples is presented. The Zymark RapidTrace was used to perform fully automated solid-phase extractions of all specimen types. After extract evaporation, confirmations were performed using liquid chromatography (LC) followed by positive electrospray ionization (ESI+) mass spectrometry/mass spectrometry (MS/MS) without derivatization. Quantitation of LSD was accomplished using LSD-d3 as an internal standard. The limit of quantitation (LOQ) for LSD was 0.05 ng/mL. The limit of detection (LOD) for both LSD and N-demethyl-LSD was 0.025 ng/mL. The recovery of LSD was greater than 95% at levels of 0.1 ng/mL and 2.0 ng/mL. For LSD at 1.0 ng/mL, the within-run and between-run (different day) relative standard deviation (RSD) was 2.2% and 4.4%, respectively.
Aramendía, Maite; Rello, Luis; Vanhaecke, Frank; Resano, Martín
2012-10-16
Collection of biological fluids on clinical filter papers shows important advantages from a logistic point of view, although analysis of these specimens is far from straightforward. Concerning urine analysis, and particularly when direct trace elemental analysis by laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) is aimed at, several problems arise, such as lack of sensitivity or different distribution of the analytes on the filter paper, rendering obtaining reliable quantitative results quite difficult. In this paper, a novel approach for urine collection is proposed, which circumvents many of these problems. This methodology consists on the use of precut filter paper discs where large amounts of sample can be retained upon a single deposition. This provides higher amounts of the target analytes and, thus, sufficient sensitivity, and allows addition of an adequate internal standard at the clinical lab prior to analysis, therefore making it suitable for a strategy based on unsupervised sample collection and ulterior analysis at referral centers. On the basis of this sampling methodology, an analytical method was developed for the direct determination of several elements in urine (Be, Bi, Cd, Co, Cu, Ni, Sb, Sn, Tl, Pb, and V) at the low μg L(-1) level by means of LA-ICPMS. The method developed provides good results in terms of accuracy and LODs (≤1 μg L(-1) for most of the analytes tested), with a precision in the range of 15%, fit-for-purpose for clinical control analysis.
Coal burning issues. [Book - monograph
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, A.E.S.
1980-01-01
The results of the scoping phase of an interdisciplinary assessment of the impact of the increased use of coal are reported in this monograph. Subject areas include: coal availability and coal mining; an energetics analysis of coal quality; coal transportation; coal burning technology; synthetic fuels from coal; technological innovations; water resources; atmospheric pollution; air pollution dispersion modeling; atmospheric modifications; solid waste and trace element impacts; agriculture; health effects of air pollution resulting from coal combustion; quantitative public policy assessments; financing capacity growth and coal conversions in the electric utility industry; coal and the states - a public choice perspective; andmore » federal regulatory and legal aspects.« less
Analysing neutron scattering data using McStas virtual experiments
NASA Astrophysics Data System (ADS)
Udby, L.; Willendrup, P. K.; Knudsen, E.; Niedermayer, Ch.; Filges, U.; Christensen, N. B.; Farhi, E.; Wells, B. O.; Lefmann, K.
2011-04-01
With the intention of developing a new data analysis method using virtual experiments we have built a detailed virtual model of the cold triple-axis spectrometer RITA-II at PSI, Switzerland, using the McStas neutron ray-tracing package. The parameters characterising the virtual instrument were carefully tuned against real experiments. In the present paper we show that virtual experiments reproduce experimentally observed linewidths within 1-3% for a variety of samples. Furthermore we show that the detailed knowledge of the instrumental resolution found from virtual experiments, including sample mosaicity, can be used for quantitative estimates of linewidth broadening resulting from, e.g., finite domain sizes in single-crystal samples.
Tropospheric Chemistry Studies using Observations from GOME and TOMS
NASA Technical Reports Server (NTRS)
Chance, Kelly; Spurr, Robert J. D.; Kurosu, Thomas P.; Jacob, Daniel J.; Gleason, James F.
2003-01-01
Studies to quantitatively determine trace gas and aerosol amounts from the Global Ozone Monitoring Experiment (GOME) and the Total Ozone Monitoring Experiment (TOMS) and to perform chemical modeling studies which utilize these results are given. This includes: 1. Analysis of measurements from the GOME and TOMS instruments for troposphere distributions of O3 and HCHO; troposphere enhancements of SO2, NO2 and aerosols associated with major sources; and springtime events of elevated BrO in the lower Arctic troposphere. 2. Application of a global 3-dimensional model of troposphere chemistry to interpret the GOME observations in terms of the factors controlling the abundances of troposphere ozone and OH.
Wilson, S.A.; Ridley, W.I.; Koenig, A.E.
2002-01-01
The requirements of standard materials for LA-ICP-MS analysis have been difficult to meet for the determination of trace elements in sulfides. We describe a method for the production of synthetic sulfides by precipitation from solution. The method is detailed by the production of approximately 200 g of a material, PS-1, with a suite of chalcophilic trace elements in an Fe-Zn-Cu-S matrix. Preliminary composition data, together with an evaluation of the homogeneity for individual elements, suggests that this type of material meets the requirements for a sulfide calibration standard that allows for quantitative analysis. Contamination of the standard with Na suggests that H2S gas may prove a better sulfur source for future experiments. We recommend that calibration data be collected in whatever mode is closest to that employed for the analysis of the unknown material, because of variable fractionation effects as a function of analytical mode. For instance, if individual spot analyses are attempted on unknown sample, then a raster of several individual spot analyses, not a continuous scan, should be collected and averaged for the standard. Hg and Au are exceptions to the above and calibration data should always be collected in a scanning mode. Au is more heterogeneously distributed than other trace metals and large-area scans are required to provide an average value for calibration purposes. We emphasize that the values given in Table 1 are preliminary values. Further chemical characterization of this standard, through a round-robin analysis program, will allow the USGS to provide both certified and recommended values for individual elements. The USGS has developed PS-1 as a potential new LA-ICP-MS standard for use by the analytical community, and requests for this material should be addressed to S. Wilson. However, it is stressed that an important aspect of the method described here is the flexibility for individual investigators to produce sulfides with a wide range of trace metals in variable matrices. For example, PS-1 is not well suited to the analysis of galena, and it would be relatively straightforward for other standards to be developed with Pb present in the matrix as a major constituent. These standards can be made easily and cheaply in a standard wet chemistry laboratory using equipment and chemicals that are readily available.
A dual-trace model for visual sensory memory.
Cappiello, Marcus; Zhang, Weiwei
2016-11-01
Visual sensory memory refers to a transient memory lingering briefly after the stimulus offset. Although previous literature suggests that visual sensory memory is supported by a fine-grained trace for continuous representation and a coarse-grained trace of categorical information, simultaneous separation and assessment of these traces can be difficult without a quantitative model. The present study used a continuous estimation procedure to test a novel mathematical model of the dual-trace hypothesis of visual sensory memory according to which visual sensory memory could be modeled as a mixture of 2 von Mises (2VM) distributions differing in standard deviation. When visual sensory memory and working memory (WM) for colors were distinguished using different experimental manipulations in the first 3 experiments, the 2VM model outperformed Zhang and Luck (2008) standard mixture model (SM) representing a mixture of a single memory trace and random guesses, even though SM outperformed 2VM for WM. Experiment 4 generalized 2VM's advantages of fitting visual sensory memory data over SM from color to orientation. Furthermore, a single trace model and 4 other alternative models were ruled out, suggesting the necessity and sufficiency of dual traces for visual sensory memory. Together these results support the dual-trace model of visual sensory memory and provide a preliminary inquiry into the nature of information loss from visual sensory memory to WM. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Comparison of screening-level and Monte Carlo approaches for wildlife food web exposure modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pastorok, R.; Butcher, M.; LaTier, A.
1995-12-31
The implications of using quantitative uncertainty analysis (e.g., Monte Carlo) and site-specific tissue residue data for wildlife exposure modeling were examined with data on trace elements at the Clark Fork River Superfund Site. Exposure of white-tailed deer, red fox, and American kestrel was evaluated using three approaches. First, a screening-level exposure model was based on conservative estimates of exposure parameters, including estimates of dietary residues derived from bioconcentration factors (BCFs) and soil chemistry. A second model without Monte Carlo was based on site-specific data for tissue residues of trace elements (As, Cd, Cu, Pb, Zn) in key dietary species andmore » plausible assumptions for habitat spatial segmentation and other exposure parameters. Dietary species sampled included dominant grasses (tufted hairgrass and redtop), willows, alfalfa, barley, invertebrates (grasshoppers, spiders, and beetles), and deer mice. Third, the Monte Carlo analysis was based on the site-specific residue data and assumed or estimated distributions for exposure parameters. Substantial uncertainties are associated with several exposure parameters, especially BCFS, such that exposure and risk may be greatly overestimated in screening-level approaches. The results of the three approaches are compared with respect to realism, practicality, and data gaps. Collection of site-specific data on trace elements concentrations in plants and animals eaten by the target wildlife receptors is a cost-effective way to obtain realistic estimates of exposure. Implications of the results for exposure and risk estimates are discussed relative to use of wildlife exposure modeling and evaluation of remedial actions at Superfund sites.« less
Fast analysis of wood preservers using laser induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Uhl, A.; Loebe, K.; Kreuchwig, L.
2001-06-01
Laser-induced breakdown spectroscopy (LIBS) is used for the investigation of wood preservers in timber and in furniture. Both experiments in laboratory and practical applications in recycling facilities and on a building site prove the new possibilities for the fast detection of harmful agents in wood. A commercial system was developed for mobile laser-plasma-analysis as well as for industrial use in sorting plants. The universal measuring principle in combination with an Echelle optics permits real simultaneous multi-element-analysis in the range of 200-780 nm with a resolution of a few picometers. It enables the user to detect main and trace elements in wood within a few seconds, nearly independent of the matrix, knowing that different kinds of wood show an equal elemental composition. Sample preparation is not required. The quantitative analysis of inorganic wood preservers (containing, e.g. Cu, Cr, B, As, Pb, Hg) has been performed exactly using carbon as reference element. It can be shown that the detection limits for heavy metals in wood are in the ppm-range. Additional information is given concerning the quantitative analysis. Statistical data, e.g. the standard deviation (S.D.), were determined and calibration curves were used for each particular element. A comparison between ICP-AES and LIBS is given using depth profile correction factors regarding the different penetration depths with respect to the different volumes in wood analyzed by both analytical methods.
Zhang, Liuyang; Luo, Jinju; Shen, Xinyu; Li, Chunya; Wang, Xian; Nie, Bei; Fang, Huaifang
2018-05-10
Direct detecting of trace amount Al(III) in aqueous solution by stripping voltammetry is often frustrated by its irreversible reduction, resided at −1.75 V (vs. Ag/AgCl reference), which is in a proximal potential of proton reduction. Here, we described an electroanalytical approach, combined with liquid phase microextraction (LPME) using ionic liquid (IL), to quantitatively assess trace amount aluminum in environmental samples. The Al(III) was caged by 8-hydroxyquinoline, forming a superb hydrophobic metal⁻chelate, which sequentially transfers and concentrates in the bottom layer of IL-phase during LPME. The preconcentrated Al(III) was further analyzed by a square-wave anodic stripping voltammetry (SW-ASV). The resulting Al-deposited electrodes were characterized by scanning electron microscopy and powder X-ray diffraction, showing the intriguing amorphous nanostructures. The method developed provides a linear calibration ranging from 0.1 to 1.2 ng L −1 with a correlation coefficient of 0.9978. The LOD attains as low as 1 pmol L −1 , which reaches the lowest report for Al(III) detection using electroanalytical techniques. The applicable methodology was implemented for monitoring Al(III) in commercial distilled water.
Surface-enhanced Raman sensor for trace chemical detection in water
NASA Astrophysics Data System (ADS)
Lee, Vincent Y.; Farquharson, Stuart; Rainey, Petrie M.
1999-11-01
Surface-enhanced Raman spectroscopy (SERS) promises to be one of the most sensitive methods for chemical detection and in recent years SERS has been used for chemical, biochemical, environmental, and physiological applications. A variety of methods using various media (electrodes, colloids, and substrates) have been successfully developed to enhance Raman signals by six orders of magnitude and more. However, SERS has not become a routine analytical technique because these methods are unable to provide quantitative measurements. This is largely due to the inability to fabricate a sampling medium that provides reversible chemical adsorption, analysis-to-analysis reproducibility, unrestricted solution requirements (reagent concentration and pH) or sample phase (liquid or solid). In an effort to overcome these restrictions, we have developed metal-doped sol-gels to provide surface-enhancement of Raman scattering.
Bjornsson, Christopher S; Lin, Gang; Al-Kofahi, Yousef; Narayanaswamy, Arunachalam; Smith, Karen L; Shain, William; Roysam, Badrinath
2009-01-01
Brain structural complexity has confounded prior efforts to extract quantitative image-based measurements. We present a systematic ‘divide and conquer’ methodology for analyzing three-dimensional (3D) multi-parameter images of brain tissue to delineate and classify key structures, and compute quantitative associations among them. To demonstrate the method, thick (~100 μm) slices of rat brain tissue were labeled using 3 – 5 fluorescent signals, and imaged using spectral confocal microscopy and unmixing algorithms. Automated 3D segmentation and tracing algorithms were used to delineate cell nuclei, vasculature, and cell processes. From these segmentations, a set of 23 intrinsic and 8 associative image-based measurements was computed for each cell. These features were used to classify astrocytes, microglia, neurons, and endothelial cells. Associations among cells and between cells and vasculature were computed and represented as graphical networks to enable further analysis. The automated results were validated using a graphical interface that permits investigator inspection and corrective editing of each cell in 3D. Nuclear counting accuracy was >89%, and cell classification accuracy ranged from 81–92% depending on cell type. We present a software system named FARSIGHT implementing our methodology. Its output is a detailed XML file containing measurements that may be used for diverse quantitative hypothesis-driven and exploratory studies of the central nervous system. PMID:18294697
Assessment of early attrition using an ordinary flatbed scanner.
Van't Spijker, Arie; Kreulen, Cees M; Bronkhorst, Ewald M; Creugers, Nico H J
2012-07-01
The aim of this study was to assess a two-dimensional method to monitor occlusal tooth wear quantitatively using a commercially available ordinary flatbed scanner. A flatbed scanner, measuring software and gypsum casts were used. In Part I, two observers (A and B) independently traced scans of marked wear facets of ten sets of casts in two sessions (test and retest). In Part II, three other sets of casts were duplicated and two observers (C and D) marked wear facets and traced the scanned images independently. Intra- and inter-observer agreement was determined comparing measured values (mm(2)) in paired T-tests. Duplicate measurement errors (DME) were calculated. In Part I the test and retest values (10 casts, 218 teeth) of observer A and B did not differ significantly (A: p = 0.289; B: p = 0.666); correlation coefficients were 0.998 (A) and 0.999 (B). "Tracing wear facets" showed a DME of 0.30 mm(2) for observer A and 0.15 mm(2) for observer B. In Part II, assessment of 70 teeth resulted in correlation coefficients of 0.994 for observer C and 0.997 for observer D; no differences between test and retest values were found for C (p = 0.061), although D differed significantly (p = 0.000). The DME for "marking and tracing wear facets" was 0.39 mm(2) (C) and 0.27 mm(2) (D). DME for inter-observer agreement were 0.45 mm(2) (test) and 0.42 mm(2) (re-test). We conclude that marking and tracing of occlusal wear facets to assess occlusal tooth wear quantitatively can be done accurately and reproducibly. Copyright © 2012 Elsevier Ltd. All rights reserved.
Small-World Brain Networks Revisited
Bassett, Danielle S.; Bullmore, Edward T.
2016-01-01
It is nearly 20 years since the concept of a small-world network was first quantitatively defined, by a combination of high clustering and short path length; and about 10 years since this metric of complex network topology began to be widely applied to analysis of neuroimaging and other neuroscience data as part of the rapid growth of the new field of connectomics. Here, we review briefly the foundational concepts of graph theoretical estimation and generation of small-world networks. We take stock of some of the key developments in the field in the past decade and we consider in some detail the implications of recent studies using high-resolution tract-tracing methods to map the anatomical networks of the macaque and the mouse. In doing so, we draw attention to the important methodological distinction between topological analysis of binary or unweighted graphs, which have provided a popular but simple approach to brain network analysis in the past, and the topology of weighted graphs, which retain more biologically relevant information and are more appropriate to the increasingly sophisticated data on brain connectivity emerging from contemporary tract-tracing and other imaging studies. We conclude by highlighting some possible future trends in the further development of weighted small-worldness as part of a deeper and broader understanding of the topology and the functional value of the strong and weak links between areas of mammalian cortex. PMID:27655008
Breath analysis based on micropreconcentrator for early cancer diagnosis
NASA Astrophysics Data System (ADS)
Lee, Sang-Seok
2018-02-01
We are developing micropreconcentrators based on micro/nanotechnology to detect trace levels of volatile organic compound (VOC) gases contained in human and canine exhaled breath. The possibility of using exhaled VOC gases as biomarkers for various cancer diagnoses has been previously discussed. For early cancer diagnosis, detection of trace levels of VOC gas is indispensable. Using micropreconcentrators based on MEMS technology or nanotechnology is very promising for detection of VOC gas. A micropreconcentrator based breath analysis technique also has advantages from the viewpoints of cost performance and availability for various cancers diagnosis. In this paper, we introduce design, fabrication and evaluation results of our MEMS and nanotechnology based micropreconcentrators. In the MEMS based device, we propose a flower leaf type Si microstructure, and its shape and configuration are optimized quantitatively by finite element method simulation. The nanotechnology based micropreconcentrator consists of carbon nanotube (CNT) structures. As a result, we achieve ppb level VOC gas detection with our micropreconcentrators and usual gas chromatography system that can detect on the order of ppm VOC in gas samples. In performance evaluation, we also confirm that the CNT based micropreconcentrator shows 115 times better concentration ratio than that of the Si based micropreconcentrator. Moreover, we discuss a commercialization idea for new cancer diagnosis using breath analysis. Future work and preliminary clinical testing in dogs is also discussed.
NASA Astrophysics Data System (ADS)
Jahnke, Annika; Barber, Jonathan L.; Jones, Kevin C.; Temme, Christian
A method intercomparison study of analytical methods for the determination of neutral, volatile polyfluorinated alkyl substances (PFAS) was carried out in March, 2006. Environmental air samples were collected in triplicate at the European background site Mace Head on the west coast of Ireland, a site dominated by 'clean' westerly winds coming across the Atlantic. Extraction and analysis were performed at two laboratories active in PFAS research using their in-house methods. Airborne polyfluorinated telomer alcohols (FTOHs), fluorooctane sulfonamides and sulfonamidoethanols (FOSAs/FOSEs) as well as additional polyfluorinated compounds were investigated. Different native and isotope-labelled internal standards (IS) were applied at various steps in the analytical procedure to evaluate the different quantification strategies. Field blanks revealed no major blank problems. European background concentrations observed at Mace Head were found to be in a similar range to Arctic data reported in the literature. Due to trace-levels at the remote site, only FTOH data sets were complete and could therefore be compared between the laboratories. Additionally, FOSEs could partly be included. Data comparison revealed that despite the challenges inherent in analysis of airborne PFAS and the low concentrations, all methods applied in this study obtained similar results. However, application of isotope-labelled IS early in the analytical procedure leads to more precise results and is therefore recommended.
Chung, Y T; Ling, Y C; Yang, C S; Sun, Y C; Lee, P L; Lin, C Y; Hong, C C; Yang, M H
2007-12-01
We have developed an on-line analytical system involving microdialysis (MD) sampling, a carbohydrate membrane desalter (CMD), and an inductively coupled plasma mass spectrometer (ICPMS) system for the simultaneous determination of multiple trace metals in the extracellular fluid (ECF) in the brains of anesthetized rats. The microdialysate that perfused from the animal at a flow rate of 0.5 microL/min was on-line transferred to the CMD to remove the high-sodium matrix, followed by ICPMS measurement. The role of the CMD in this on-line system was investigated in detail. With prior addition of EDTA to the microdialysate to form anionic complexes of the metal analytes and the use of NH4Cl as a regenerant to exchange Na(+) with NH4(+) ions, both quantitative recovery of the trace metal analytes and quantitative removal of the sodium matrix could be achieved. Two experimental modes of the monitoring system were constructed. For those metals (e.g., Cu, Zn, and Mn) that existed at (sub)nanogram-per-milliliter concentrations in the microdialysate, the temporal resolution was 10 min when using a 10 microL loop for sample collection, followed by CMD and ICPMS; for those elements (e.g., Ca and Mg) that existed at microgram-per-milliliter levels (or greater), near-real-time analysis was possible because the microdialysate could be led, bypassing the sample loop, directly to the CMD for desalting without any time delay. Further improvement of the temporal resolution for the low-concentration elements was not possible without decreasing the detection limits of mass detection. Among the eight trace metals tested using this on-line system, the method detection limits for Cu, Zn, Mn, Co, Ni, and Pb reached subnanogram-per-milliliter levels; for electrolyte species such as Ca and Mg, the detection limits were in the range of 50-100 ng/mL. Analytical accuracy, expressed as spike recovery, was 100% +/- 15% for all of the elements tested. We demonstrate the applicability of the proposed system through the successful measurement of the basal values of Ca, Mg, Cu, Zn, and Mn in the ECF of a living rat brain and through in vivo monitoring of the concentration profiles of Mn and Pt in the ECF after the injection of drugs (MnCl2 and cisplatin) into the rats. This microdialysis system is the first to offer real-time, in vivo monitoring of trace elements such as Ca and Mg.
LIBS: a potential tool for industrial/agricultural waste water analysis
NASA Astrophysics Data System (ADS)
Karpate, Tanvi; K. M., Muhammed Shameem; Nayak, Rajesh; V. K., Unnikrishnan; Santhosh, C.
2016-04-01
Laser Induced Breakdown Spectroscopy (LIBS) is a multi-elemental analysis technique with various advantages and has the ability to detect any element in real time. This technique holds a potential for environmental monitoring and various such analysis has been done in soil, glass, paint, water, plastic etc confirms the robustness of this technique for such applications. Compared to the currently available water quality monitoring methods and techniques, LIBS has several advantages, viz. no need for sample preparation, fast and easy operation, and chemical free during the process. In LIBS, powerful pulsed laser generates plasma which is then analyzed to get quantitative and qualitative details of the elements present in the sample. Another main advantage of LIBS technique is that it can perform in standoff mode for real time analysis. Water samples from industries and agricultural strata tend to have a lot of pollutants making it harmful for consumption. The emphasis of this project is to determine such harmful pollutants present in trace amounts in industrial and agricultural wastewater. When high intensity laser is made incident on the sample, a plasma is generated which gives a multielemental emission spectra. LIBS analysis has shown outstanding success for solids samples. For liquid samples, the analysis is challenging as the liquid sample has the chances of splashing due to the high energy of laser and thus making it difficult to generate plasma. This project also deals with determining the most efficient method for testing of water sample for qualitative as well as quantitative analysis using LIBS.
Multielement extraction system for the determination of 18 trace elements in geochemical samples
Clark, J.R.; Viets, J.G.
1981-01-01
A Methyl isobutyl ketone-Amine synerGistic Iodide Complex (MAGIC) extraction system has been developed for use in geochemical exploration which separates a maximum number of trace elements from interfering matrices. Extraction curves for 18 of these trace elements are presented: Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, Ga, In, Tl, Sa, Pb, As, Sb, Bi, Se, and Te. The acid normality of the aqueous phase controls the extraction into the organic phase, and each of these 18 elements has a broad range of HCl normality over which H is quantitatively extracted, making H possible to determine all 18 trace elements from a single sample digestion or leach solution. The extract can be analyzed directly by flame atomic absorption or inductively coupled plasma emission spectroscopy. Most of these 18 elements can be determined by Nameless atomic absorption after special treatment of the organic extract.
Shen, Fenghua; Liu, Jing; Zhang, Zhen; Yang, Yingju
2016-06-05
The temporal release of selenium from coal during combustion and gasification in a fluidized bed was measured in situ by an on-line analysis system of trace elements in flue gas. The on-line analysis system is based on an inductively coupled plasma optical emission spectroscopy (ICP-OES), and can measure concentrations of trace elements in flue gas quantitatively and continuously. The results of on-line analysis suggest that the concentration of selenium in flue gas during coal gasification is higher than that during coal combustion. Based on the results of on-line analysis, a second-order kinetic law r(x)=0.94e(-26.58/RT)(-0.56 x(2) -0.51 x+1.05) was determined for selenium release during coal combustion, and r(x)=11.96e(-45.03/RT)(-0.53 x(2) -0.56 x+1.09) for selenium release during coal gasification. These two kinetic laws can predict respectively the temporal release of selenium during coal combustion and gasification with an acceptable accuracy. Thermodynamic calculations were conducted to predict selenium species during coal combustion and gasification. The speciation of selenium in flue gas during coal combustion differs from that during coal gasification, indicating that selenium volatilization is different. The gaseous selenium species can react with CaO during coal combustion, but it is not likely to interact with mineral during coal gasification. Copyright © 2016 Elsevier B.V. All rights reserved.
Quantitative assessment of drawing tests in children with dyslexia and dysgraphia.
Galli, Manuela; Cimolin, Veronica; Stella, Giacomo; De Pandis, Maria Francesca; Ancillao, Andrea; Condoluci, Claudia
2018-05-07
Drawing tests in children diagnosed with dyslexia and dysgraphia were quantitatively compared. Fourteen children with dysgraphia, 19 with dyslexia and 13 normally developing were asked to copy 3 figures: a circle, a square and a cross. An optoelectronic system allowed the acquisition of the drawing track in three-dimensions. The participants' head position and upper limb movements were measured as well. A set of parameters including movement duration, velocity, length of the trace, Range of Motion of the upper limb, was computed and compared among the 3 groups. Children with dyslexia traced the circle faster than the other groups. In the cross test, dyslexic participants showed a reduced execution time and increased velocity while drawing the horizontal line. Children with dyslexia were also faster in drawing certain sides of square with respect to the other groups. Copyright © 2018 Elsevier B.V. All rights reserved.
Three-dimensional atlas of iron, copper, and zinc in the mouse cerebrum and brainstem.
Hare, Dominic J; Lee, Jason K; Beavis, Alison D; van Gramberg, Amanda; George, Jessica; Adlard, Paul A; Finkelstein, David I; Doble, Philip A
2012-05-01
Atlases depicting molecular and functional features of the brain are becoming an integral part of modern neuroscience. In this study we used laser ablation-inductively coupled plasma-mass spectrometry (LA-ICPMS) to quantitatively measure iron (Fe), copper (Cu), and zinc (Zn) levels in a serially sectioned C57BL/6 mouse brain (cerebrum and brainstem). Forty-six sections were analyzed in a single experiment of approximately 158 h in duration. We constructed a 46-plate reference atlas by aligning quantified images of metal distribution with corresponding coronal sections from the Allen Mouse Brain Reference Atlas. The 46 plates were also used to construct three-dimensional models of Fe, Cu, and Zn distribution. This atlas represents the first reconstruction of quantitative trace metal distribution through the brain by LA-ICPMS and will facilitate the study of trace metals in the brain and help to elucidate their role in neurobiology.
NASA Astrophysics Data System (ADS)
Kerekes, Ryan A.; Gleason, Shaun S.; Trivedi, Niraj; Solecki, David J.
2010-03-01
Segmentation, tracking, and tracing of neurons in video imagery are important steps in many neuronal migration studies and can be inaccurate and time-consuming when performed manually. In this paper, we present an automated method for tracing the leading and trailing processes of migrating neurons in time-lapse image stacks acquired with a confocal fluorescence microscope. In our approach, we first locate and track the soma of the cell of interest by smoothing each frame and tracking the local maxima through the sequence. We then trace the leading process in each frame by starting at the center of the soma and stepping repeatedly in the most likely direction of the leading process. This direction is found at each step by examining second derivatives of fluorescent intensity along curves of constant radius around the current point. Tracing terminates after a fixed number of steps or when fluorescent intensity drops below a fixed threshold. We evolve the resulting trace to form an improved trace that more closely follows the approximate centerline of the leading process. We apply a similar algorithm to the trailing process of the cell by starting the trace in the opposite direction. We demonstrate our algorithm on two time-lapse confocal video sequences of migrating cerebellar granule neurons (CGNs). We show that the automated traces closely approximate ground truth traces to within 1 or 2 pixels on average. Additionally, we compute line intensity profiles of fluorescence along the automated traces and quantitatively demonstrate their similarity to manually generated profiles in terms of fluorescence peak locations.
Quantitative genetic analysis of brain copper and zinc in BXD recombinant inbred mice.
Jones, Leslie C; McCarthy, Kristin A; Beard, John L; Keen, Carl L; Jones, Byron C
2006-01-01
Copper and zinc are trace nutrients essential for normal brain function, yet an excess of these elements can be toxic. It is important therefore that these metals be closely regulated. We recently conducted a quantitative trait loci (QTL) analysis to identify chromosomal regions in the mouse containing possible regulatory genes. The animals came from 15 strains of the BXD/Ty recombinant inbred (RI) strain panel and the brain regions analyzed were frontal cortex, caudate-putamen, nucleus accumbens and ventral midbrain. Several QTL were identified for copper and/or zinc, most notably on chromosomes 1, 8, 16 and 17. Genetic correlational analysis also revealed associations between these metals and dopamine, cocaine responses, saccharine preference, immune response and seizure susceptibility. Notably, the QTL on chromosome 17 is also associated with seizure susceptibility and contains the histocompatibility H2 complex. This work shows that regulation of zinc and copper is under polygenic influence and is intimately related to CNS function. Future work will reveal genes underlying the QTL and how they interact with other genes and the environment. More importantly, revelation of the genetic underpinnings of copper and zinc brain homeostasis will aid our understanding of neurological diseases that are related to copper and zinc imbalance.
Zelinsky, Deborah; Feinberg, Corey
2017-01-01
Abstract. The brain is equipped with a complex system for processing sensory information, including retinal circuitry comprising part of the central nervous system. Retinal stimulation can influence brain function via customized eyeglasses at both subcortical and cortical levels. We investigated cortical effects from wearing therapeutic eyeglasses, hypothesizing that they can create measureable changes in electroencephalogram (EEG) tracings. A Z-BellSM test was performed on a participant to select optimal lenses. An EEG measurement was recorded before and after the participant wore the eyeglasses. Equivalent quantitative electroencephalography (QEEG) analyses (statistical analysis on raw EEG recordings) were performed and compared with baseline findings. With glasses on, the participant’s readings were found to be closer to the normed database. The original objective of our investigation was met, and additional findings were revealed. The Z-bellSM test identified lenses to influence neurotypical brain activity, supporting the paradigm that eyeglasses can be utilized as a therapeutic intervention. Also, EEG analysis demonstrated that encephalographic techniques can be used to identify channels through which neuro-optomertric treatments work. This case study’s preliminary exploration illustrates the potential role of QEEG analysis and EEG-derived brain imaging in neuro-optometric research endeavors to affect brain function. PMID:28386574
On-Line Analysis and Kinetic Behavior of Arsenic Release during Coal Combustion and Pyrolysis.
Shen, Fenghua; Liu, Jing; Zhang, Zhen; Dai, Jinxin
2015-11-17
The kinetic behavior of arsenic (As) release during coal combustion and pyrolysis in a fluidized bed was investigated by applying an on-line analysis system of trace elements in flue gas. This system, based on inductively coupled plasma optical emission spectroscopy (ICP-OES), was developed to measure trace elements concentrations in flue gas quantitatively and continuously. Obvious variations of arsenic concentration in flue gas were observed during coal combustion and pyrolysis, indicating strong influences of atmosphere and temperature on arsenic release behavior. Kinetic laws governing the arsenic release during coal combustion and pyrolysis were determined based on the results of instantaneous arsenic concentration in flue gas. A second-order kinetic law was determined for arsenic release during coal combustion, and the arsenic release during coal pyrolysis followed a fourth-order kinetic law. The results showed that the arsenic release rate during coal pyrolysis was faster than that during coal combustion. Thermodynamic calculations were carried out to identify the forms of arsenic in vapor and solid phases during coal combustion and pyrolysis, respectively. Ca3(AsO4)2 and Ca(AsO2)2 are the possible species resulting from As-Ca interaction during coal combustion. Ca(AsO2)2 is the most probable species during coal pyrolysis.
Chemical kinetic studies of atmospheric reactions using tunable diode laser spectroscopy
NASA Technical Reports Server (NTRS)
Worsnop, Douglas R.; Nelson, David D.; Zahniser, Mark S.
1993-01-01
IR absorption using tunable diode laser spectroscopy provides a sensitive and quantitative detection method for laboratory kinetic studies of atmospheric trace gases. Improvements in multipass cell design, real time signal processing, and computer controlled data acquisition and analysis have extended the applicability of the technique. We have developed several optical systems using off-axis resonator mirror designs which maximize path length while minimizing both the sample volume and the interference fringes inherent in conventional 'White' cells. Computerized signal processing using rapid scan (300 kHz), sweep integration with 100 percent duty cycle allows substantial noise reduction while retaining the advantages of using direct absorption for absolute absorbance measurements and simultaneous detection of multiple species. Peak heights and areas are determined by curve fitting using nonlinear least square methods. We have applied these techniques to measurements of: (1) heterogeneous uptake chemistry of atmospheric trace gases (HCl, H2O2, and N2O5) on aqueous and sulfuric acid droplets; (2) vapor pressure measurements of nitric acid and water over prototypical stratospheric aerosol (nitric acid trihydrate) surfaces; and (3) discharge flow tube kinetic studies of the HO2 radical using isotopic labeling for product channel and mechanistic analysis. Results from each of these areas demonstrate the versatility of TDL absorption spectroscopy for atmospheric chemistry applications.
Identification of organ tissue types and skin from forensic samples by microRNA expression analysis.
Sauer, Eva; Extra, Antje; Cachée, Philipp; Courts, Cornelius
2017-05-01
The identification of organ tissues in traces recovered from scenes and objects with regard to violent crimes involving serious injuries can be of considerable relevance in forensic investigations. Molecular genetic approaches are provably superior to histological and immunological assays in characterizing organ tissues, and micro-RNAs (miRNAs), due to their cell type specific expression patterns and stability against degradation, emerged as a promising molecular species for forensic analyses, with a range of tried and tested indicative markers. Thus, herein we present the first miRNA based approach for the forensic identification of organ tissues. Using quantitative PCR employing an empirically derived strategy for data normalization and unbiased statistical decision making, we assessed the differential expression of 15 preselected miRNAs in tissues of brain, kidney, lung, liver, heart muscle, skeletal muscle and skin. We show that not only can miRNA expression profiling be used to reliably differentiate between organ tissues but also that this method, which is compatible with and complementary to forensic DNA analysis, is applicable to realistic forensic samples e.g. mixtures, aged and degraded material as well as traces generated by mock stabbings and experimental shootings at ballistic models. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spemann, D., E-mail: spemann@uni-leipzig.de; Esquinazi, P., E-mail: esquin@physik.uni-leipzig.de; Setzer, A.
In this study, the impurity concentration and magnetic response of nine highly oriented pyrolytic graphite (HOPG) samples with different grades and from different providers were determined using ion beam microscopy and SQUID magnetometry. Apart from sideface contaminations in the as-received state, bulk contamination of the samples in most cases consists of disk-shaped micron-sized particles made of Ti and V with an additional Fe contamination around the grain perimeter. The saturation magnetization typically increases with Fe concentration, however, there is no simple correlation between Fe content and magnetic moment. The saturation magnetization of one, respectively six, out of nine samples clearlymore » exceeds the maximum contribution from pure Fe or Fe{sub 3}C. For most samples the temperature dependence of the remanence decreases linearly with T – a dependence found previously for defect-induced magnetism (DIM) in HOPG. We conclude that apart from magnetic impurities, additional contribution to the ferromagnetic magnetization exists in pristine HOPG in agreement with previous studies. A comparative study between the results of ion beam microscopy and the commonly used EDX analysis shows clearly that EDX is not a reliable method for quantitative trace elemental analysis in graphite, clarifying weaknesses and discrepancies in the element concentrations given in the recent literature.« less
Quantitative bioimaging of trace elements in the human lens by LA-ICP-MS.
Konz, Ioana; Fernández, Beatriz; Fernández, M Luisa; Pereiro, Rosario; González-Iglesias, Héctor; Coca-Prados, Miguel; Sanz-Medel, Alfredo
2014-04-01
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for the quantitative imaging of Fe, Cu and Zn in cryostat sections of human eye lenses and for depth profiling analysis in bovine lenses. To ensure a tight temperature control throughout the experiments, a new Peltier-cooled laser ablation cell was employed. For quantification purposes, matrix-matched laboratory standards were prepared from a pool of human lenses from eye donors and spiked with standard solutions containing different concentrations of natural abundance Fe, Cu and Zn. A normalisation strategy was also carried out to correct matrix effects, lack of tissue homogeneity and/or instrumental drifts using a thin gold film deposited on the sample surface. Quantitative images of cryo-sections of human eye lenses analysed by LA-ICP-MS revealed a homogeneous distribution of Fe, Cu and Zn in the nuclear region and a slight increase in Fe concentration in the outer cell layer (i.e. lens epithelium) at the anterior pole. These results were assessed also by isotope dilution mass spectrometry, and Fe, Cu and Zn concentrations determined by ID-ICP-MS in digested samples of lenses and lens capsules.
Rigger, Romana; Rück, Alexander; Hellriegel, Christine; Sauermoser, Robert; Morf, Fabienne; Breitruck, KathrinBreitruck; Obkircher, Markus
2017-09-01
In recent years, quantitative NMR (qNMR) spectroscopy has become one of the most important tools for content determination of organic substances and quantitative evaluation of impurities. Using Certified Reference Materials (CRMs) as internal or external standards, the extensively used qNMR method can be applied for purity determination, including unbroken traceability to the International System of Units (SI). The implementation of qNMR toward new application fields, e.g., metabolomics, environmental analysis, and physiological pathway studies, brings along more complex molecules and systems, thus making use of 1H qNMR challenging. A smart workaround is possible by the use of other NMR active nuclei, namely 31P and 19F. This article presents the development of three classes of qNMR CRMs based on different NMR active nuclei (1H, 31P, and 19F), and the corresponding approaches to establish traceability to the SI through primary CRMs from the National Institute of Standards and Technology and the National Metrology Institute of Japan. These TraceCERT® qNMR CRMs are produced under ISO/IEC 17025 and ISO Guide 34 using high-performance qNMR.
Hetrick, Evan M; Kramer, Timothy T; Risley, Donald S
2017-03-17
Based on a column-screening exercise, a column ranking system was developed for sample mixtures containing any combination of 26 sugar and sugar alcohol analytes using 16 polar stationary phases in the HILIC mode with acetonitrile/water or acetone/water mobile phases. Each analyte was evaluated on the HILIC columns with gradient elution and the subsequent chromatography data was compiled into a statistical software package where any subset of the analytes can be selected and the columns are then ranked by the greatest separation. Since these analytes lack chromophores, aerosol-based detectors, including an evaporative light scattering detector (ELSD) and a charged aerosol detector (CAD) were employed for qualitative and quantitative detection. Example qualitative applications are provided to illustrate the practicality and efficiency of this HILIC column ranking. Furthermore, the design-space approach was used as a starting point for a quantitative method for the trace analysis of glucose in trehalose samples in a complex matrix. Knowledge gained from evaluating the design-space led to rapid development of a capable method as demonstrated through validation of the following parameters: specificity, accuracy, precision, linearity, limit of quantitation, limit of detection, and range. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sugano, Koji; Ikegami, Kohei; Isono, Yoshitada
2017-06-01
In this paper, a characterization method for Raman enhancement for highly sensitive and quantitative surface-enhanced Raman spectroscopy (SERS) is reported. A particle dimer shows a marked electromagnetic enhancement when the particle connection direction is matched to the polarization direction of incident light. In this study, dimers were arrayed by nanotrench-guided self-assembly for a marked total Raman enhancement. By measuring acetonedicarboxylic acid, the fabricated structures were characterized for SERS depending on the polarization angle against the particle connection direction. This indicates that the fabricated structures cause an effective SERS enhancement, which is dominated by the electromagnetic enhancement. Then, we measured 4,4‧-bipyridine, which is a pesticide material, for quantitative analysis. In advance, we evaluated the enhancement of the particle structure by the Raman measurement of acetonedicarboxylic acid. Finally, we compared the Raman intensities of acetonedicarboxylic acid and 4,4‧-bipyridine. Their intensities showed good correlation. The advantage of this method for previously evaluating the enhancement of the substrate was demonstrated. This developed SERS characterization method is expected to be applied to various quantitative trace analyses of molecules with high sensitivity.
Uccello-Barretta, Gloria; Balzano, Federica; Aiello, Federica; Falugiani, Niccolò; Desideri, Ielizza
2015-03-25
In total parenteral nutrition (TPN), especially in the case of preterm infants, simultaneous administration of vitamins and trace elements is still a problematic issue: guidelines put in evidence the lack of specific documentation. In this work NMR spectroscopy was applied to the study of vitamins (pyridoxine hydrochloride, thiamine nitrate, riboflavin-5'-phosphate and nicotinamide) stability in presence of salts and trace elements. Vitamins in D2O were first analyzed by (1)H NMR spectroscopy in absence of salts and trace elements; changes in chemical shifts or in diffusion coefficients, measured by NMR DOSY technique, were analyzed. The effects of salts and trace elements on single vitamins and on their admixtures were then investigated by performing quantitative analyses during 48h. Selected vitamins are subject to intermolecular interactions. No degradative effects were observed in presence of salts and trace elements. Only riboflavin-5'-phosphate is subject to precipitation in presence of divalent cations; however, at low concentration and in presence of other vitamins this effect was not observed. Solutions analyzed, in the condition of this study, are stable for at least 48h and vitamins and trace elements can be administered together in TPN. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Maeno, Tsuyoshi; Ueyama, Hiroya; Iida, Michihira; Fujiwara, Osamu
It is well known that electromagnetic disturbances in vehicle-mounted radios are mainly caused by conducted noise currents flowing through wiring-harnesses from vehicle-mounted printed circuit boards (PCBs) with common ground patterns with slits. To suppress the noise current outflows from the PCBs of this kind, we previously measured noise current outflows from simple two-layer PCBs having two parallel signal traces and different ground patterns with/without slits, which revealed that making slits with open ends on the ground patterns in parallel with the traces can reduce the conducted noise currents. In the present study, with the FDTD simulation, we investigated reduction characteristics of the FM-band cross-talk noise levels between two parallel signal traces for eighteen PCBs, which have different ground patterns with/without slits parallel to the traces and dielectric layers with different thickness. As a result, we found that the cross-talk reduction effect due to slits is obtained by 3.6-5.3dB, while the cross-talks between signal traces are reduced in inverse proportion to the square of the dielectric-layer thickness and in proportion to the square of the trace interval and, which can quantitatively be explained from an inductive coupling theory.
NASA Astrophysics Data System (ADS)
Shaltout, Abdallah A.; Moharram, Mohammed A.; Mostafa, Nasser Y.
2012-01-01
This work is the first attempt to quantify trace elements in the Catha edulis plant (Khat) with a fundamental parameter approach. C. edulis is a famous drug plant in east Africa and Arabian Peninsula. We have previously confirmed that hydroxyapatite represents one of the main inorganic compounds in the leaves and stalks of C. edulis. Comparable plant leaves from basil, mint and green tea were included in the present investigation as well as trifolium leaves were included as a non-related plant. The elemental analyses of the plants were done by Wavelength Dispersive X-Ray Fluorescence (WDXRF) spectroscopy. Standard-less quantitative WDXRF analysis was carried out based on the fundamental parameter approaches. According to the standard-less analysis algorithms, there is an essential need for an accurate determination of the amount of organic material in the sample. A new approach, based on the differential thermal analysis, was successfully used for the organic material determination. The obtained results based on this approach were in a good agreement with the commonly used methods. Depending on the developed method, quantitative analysis results of eighteen elements including; Al, Br, Ca, Cl, Cu, Fe, K, Na, Ni, Mg, Mn, P, Rb, S, Si, Sr, Ti and Zn were obtained for each plant. The results of the certified reference materials of green tea (NCSZC73014, China National Analysis Center for Iron and Steel, Beijing, China) confirmed the validity of the proposed method.
Balaba, Ronald S; Smart, Ronald B
2012-11-01
Trace levels of arsenic and selenium can be toxic to living organisms yet their quantitation in high ionic strength or high salinity aqueous media is difficult due to the matrix interferences which can either suppress or enhance the analyte signal. A modified thiol cotton fiber (TCF) method employing lower flow rates and centrifugation has been used to remove the analyte from complex aqueous media and minimize the matrix interferences. This method has been tested using a USGS (SGR-1b) certified reference shale. It has been used to analyze Marcellus shale samples following microwave digestion as well as spiked samples of high salinity water (HSW) and flow back wastewater (WRF6) obtained from an actual gas well drilling operation. Quantitation of arsenic and selenium is carried out by graphite furnace atomic spectroscopy (GFAAS). Extraction of arsenic and selenium from Marcellus shale exposed to HSW and WRF6 for varying lengths of time is also reported. Copyright © 2012 Elsevier Ltd. All rights reserved.
Bruni, Aline Thaís; Velho, Jesus Antonio; Ferreira, Arthur Serra Lopes; Tasso, Maria Júlia; Ferrari, Raíssa Santos; Yoshida, Ricardo Luís; Dias, Marcos Salvador; Leite, Vitor Barbanti Pereira
2014-08-01
This study uses statistical techniques to evaluate reports on suicide scenes; it utilizes 80 reports from different locations in Brazil, randomly collected from both federal and state jurisdictions. We aimed to assess a heterogeneous group of cases in order to obtain an overall perspective of the problem. We evaluated variables regarding the characteristics of the crime scene, such as the detected traces (blood, instruments and clothes) that were found and we addressed the methodology employed by the experts. A qualitative approach using basic statistics revealed a wide distribution as to how the issue was addressed in the documents. We examined a quantitative approach involving an empirical equation and we used multivariate procedures to validate the quantitative methodology proposed for this empirical equation. The methodology successfully identified the main differences in the information presented in the reports, showing that there is no standardized method of analyzing evidences. Copyright © 2014 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
NASA Astrophysics Data System (ADS)
Cederman, L.-E.; Conte, R.; Helbing, D.; Nowak, A.; Schweitzer, F.; Vespignani, A.
2012-11-01
A huge flow of quantitative social, demographic and behavioral data is becoming available that traces the activities and interactions of individuals, social patterns, transportation infrastructures and travel fluxes. This has caused, together with innovative computational techniques and methods for modeling social actions in hybrid (natural and artificial) societies, a qualitative change in the ways we model socio-technical systems. For the first time, society can be studied in a comprehensive fashion that addresses social and behavioral complexity. In other words we are in the position to envision the development of large data and computational cyber infrastructure defining an exploratory of society that provides quantitative anticipatory, explanatory and scenario analysis capabilities ranging from emerging infectious disease to conflict and crime surges. The goal of the exploratory of society is to provide the basic infrastructure embedding the framework of tools and knowledge needed for the design of forecast/anticipatory/crisis management approaches to socio technical systems, supporting future decision making procedures by accelerating the scientific cycle that goes from data generation to predictions.
A QUANTITATIVE ANALYSIS OF DISTANT OPEN CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janes, Kenneth A.; Hoq, Sadia
2011-03-15
The oldest open star clusters are important for tracing the history of the Galactic disk, but many of the more distant clusters are heavily reddened and projected against the rich stellar background of the Galaxy. We have undertaken an investigation of several distant clusters (Berkeley 19, Berkeley 44, King 25, NGC 6802, NGC 6827, Berkeley 52, Berkeley 56, NGC 7142, NGC 7245, and King 9) to develop procedures for separating probable cluster members from the background field. We next created a simple quantitative approach for finding approximate cluster distances, reddenings, and ages. We first conclude that with the possible exceptionmore » of King 25 they are probably all physical clusters. We also find that for these distant clusters our typical errors are about {+-}0.07 in E(B - V), {+-}0.15 in log(age), and {+-}0.25 in (m - M){sub o}. The clusters range in age from 470 Myr to 7 Gyr and range from 7.1 to 16.4 kpc from the Galactic center.« less
Khalifa, M E; Akl, M A; Ghazy, S E
2001-06-01
Copper(II) forms 1:1 and 1:2 intense red complexes with phenanthraquinone monophenylthiosemicarbazone (PPT) at pH 3-3.5 and > or =6.5, respectively. These complexes exhibit maximal absorbance at 545 and 517 nm, the molar absorptivity being 2.3 x 10(4) and 4.8 x 10(4) l mol(-1) cm(-1), respectively. However, the 1:1 complex was quantitatively floated with oleic acid (HOL) surfactant in the pH range 4.5-5.5, providing a highly selective and sensitive procedure for the spectrophotometric determination of CuII. The molar absorptivity of the floated Cu-PPT complex was 1.5 x 10(5) l mol)(-1) cm(-1). Beer's law was obeyed over the range 3-400 ppb at 545 nm. The analytical parameters affecting the flotation process and hence the determination of copper traces were reported. Also, the structure of the isolated solid complex and the mechanism of flotation were suggested. Moreover, the procedure was successfully applied to the analysis of CuII in natural waters, serum blood and some drug samples.
Automation of peak-tracking analysis of stepwise perturbed NMR spectra.
Banelli, Tommaso; Vuano, Marco; Fogolari, Federico; Fusiello, Andrea; Esposito, Gennaro; Corazza, Alessandra
2017-02-01
We describe a new algorithmic approach able to automatically pick and track the NMR resonances of a large number of 2D NMR spectra acquired during a stepwise variation of a physical parameter. The method has been named Trace in Track (TINT), referring to the idea that a gaussian decomposition traces peaks within the tracks recognised through 3D mathematical morphology. It is capable of determining the evolution of the chemical shifts, intensity and linewidths of each tracked peak.The performances obtained in term of track reconstruction and correct assignment on realistic synthetic spectra were high above 90% when a noise level similar to that of experimental data were considered. TINT was applied successfully to several protein systems during a temperature ramp in isotope exchange experiments. A comparison with a state-of-the-art algorithm showed promising results for great numbers of spectra and low signal to noise ratios, when the graduality of the perturbation is appropriate. TINT can be applied to different kinds of high throughput chemical shift mapping experiments, with quasi-continuous variations, in which a quantitative automated recognition is crucial.
Deeds, Daniel A; Ghoshdastidar, Avik; Raofie, Farhad; Guérette, Élise-Andrée; Tessier, Alain; Ariya, Parisa A
2015-01-01
Measurement of oxidized mercury, Hg(II), in the atmosphere poses a significant analytical challenge as Hg(II) is present at ultra-trace concentrations (picograms per cubic meter air). Current technologies are sufficiently sensitive to measure the total Hg present as Hg(II) but cannot determine the chemical speciation of Hg(II). We detail here the development of a soft ionization mass spectrometric technique coupled with preconcentration onto nano- or microparticle-based traps prior to analysis for the measurement of mercury halides in air. The current methodology has comparable detection limits (4-11 pg m(-3)) to previously developed techniques for the measurement of total inorganic mercury in air while allowing for the identification of HgX2 in collected samples. Both mercury chloride and mercury bromide have been sporadically detected in Montreal urban and indoor air using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS). We discuss limitations and advantages of the current technique and discuss potential avenues for future research including quantitative trace measurements of a larger range of mercury compounds.
Kim, Min Jung; Lee, Jihye; Kim, Seon Hee; Kim, Haidong; Lee, Kang-Bong; Lee, Yeonhee
2015-10-01
Chalcopyrite Cu(In, Ga)Se2 (CIGS) thin films are well known as the next-generation solar cell materials notable for their high absorption coefficient for solar radiation, suitable band gap, and ability for deposition on flexible substrate materials, allowing the production of highly flexible and lightweight solar panels. To improve solar cell performances, a quantitative and depth-resolved elemental analysis of photovoltaic thin films is much needed. In this study, Cu(In, Ga)Se2 thin films were prepared on molybdenum back contacts deposited on soda-lime glass substrates via three-stage evaporation. Surface analyses via AES and SIMS were used to characterize the CIGS thin films and compare their depth profiles. We determined the average concentration of the matrix elements, Cu, In, Ga, and Se, using ICP-AES, XRF, and EPMA. We also obtained depth profiling results using TOF-SIMS, magnetic sector SIMS and AES, and APT, a sub-nanometer resolution characterization technique that enables three-dimensional elemental mapping. The SIMS technique, with its high detection limit and ability to obtain the profiles of elements in parallel, is a powerful tool for monitoring trace elements in CIGS thin films. To identify impurities in a CIGS layer, the distribution of trace elements was also observed according to depth by SIMS and APT.
Gambelunghe, Cristiana; Sommavilla, Marco; Rossi, Ruggero
2002-12-01
The concentrations of nandrolone metabolites, 19-norandrosterone (19-NA) and 19-noretiocholanolone (19-NE) were analysed in urine samples of professional athletes doing intense physical activity and sedentary subjects to verify if there was endogenous production of nandrolone and if there was any link between physical effort and the urinary metabolites of the steroid. We collected 18 urine samples from professional footballers age range 20-30 years, all from the same team, and 18 urine samples from males not doing any physical activity, age range 20-30 years. Neither group used nandrolone. Qualitative and quantitative analyses of urinary nandrolone metabolites were carried out by GC/MS followed by GC/MS/MS to confirm positive samples. This technique has been demonstrated to be an excellent analytical approach for the determination of anabolic steroids at very low detection limits in complex matrices such as urine. In five urine samples from professional footballers traces of 19-NA were detected. No trace of 19-NA was found in the group of sedentary subjects and no trace of 19-NE was found in any urine sample. The absence of nandrolone metabolites in sedentary subjects supports the hypothesis that the presence of 19-NA and 19-NE could be linked to physical effort even though the origin is not yet clear. Copyright 2002 John Wiley & Sons, Ltd.
Impact of large-scale atmospheric refractive structures on optical wave propagation
NASA Astrophysics Data System (ADS)
Nunalee, Christopher G.; He, Ping; Basu, Sukanta; Vorontsov, Mikhail A.; Fiorino, Steven T.
2014-10-01
Conventional techniques used to model optical wave propagation through the Earth's atmosphere typically as- sume flow fields based on various empirical relationships. Unfortunately, these synthetic refractive index fields do not take into account the influence of transient macroscale and mesoscale (i.e. larger than turbulent microscale) atmospheric phenomena. Nevertheless, a number of atmospheric structures that are characterized by various spatial and temporal scales exist which have the potential to significantly impact refractive index fields, thereby resulting dramatic impacts on optical wave propagation characteristics. In this paper, we analyze a subset of spatio-temporal dynamics found to strongly affect optical waves propagating through these atmospheric struc- tures. Analysis of wave propagation was performed in the geometrical optics approximation using a standard ray tracing technique. Using a numerical weather prediction (NWP) approach, we simulate multiple realistic atmospheric events (e.g., island wakes, low-level jets, etc.), and estimate the associated refractivity fields prior to performing ray tracing simulations. By coupling NWP model output with ray tracing simulations, we demon- strate the ability to quantitatively assess the potential impacts of coherent atmospheric phenomena on optical ray propagation. Our results show a strong impact of spatio-temporal characteristics of the refractive index field on optical ray trajectories. Such correlations validate the effectiveness of NWP models as they offer a more comprehensive representation of atmospheric refractivity fields compared to conventional methods based on the assumption of horizontal homogeneity.
NASA Astrophysics Data System (ADS)
Ansari, S.; Talebpour, Z.; Molaabasi, F.; Bijanzadeh, H. R.; Khazaeli, S.
2016-09-01
The analysis of pesticides in water samples is of primary concern for quality control laboratories due to the toxicity of these compounds and their associated public health risk. A novel analytical method based on stir bar sorptive extraction (SBSE), followed by 31P quantitative nuclear magnetic resonance (31P QNMR), has been developed for simultaneously monitoring and determining four organophosphorus pesticides (OPPs) in aqueous media. The effects of factors on the extraction efficiency of OPPs were investigated using a Draper-Lin small composite design. An optimal sample volume of 4.2 mL, extraction time of 96 min, extraction temperature of 42°C, and desorption time of 11 min were obtained. The results showed reasonable linearity ranges for all pesticides with correlation coefficients greater than 0.9920. The limit of quantification (LOQ) ranged from 0.1 to 2.60 mg/L, and the recoveries of spiked river water samples were from 82 to 94% with relative standard deviation (RSD) values less than 4%. The results show that this method is simple, selective, rapid, and can be applied to other sample matrices.
Kubo, Takuya; Kuroda, Kenta; Tominaga, Yuichi; Naito, Toyohiro; Sueyoshi, Kenji; Hosoya, Ken; Otsuka, Koji
2014-02-01
We report an effective and a quantitative analysis method for one of pharmaceuticals, sulpiride, in river water by online solid phase extraction (SPE) connected with liquid chromatography-mass spectrometry (LC-MS) using a molecularly imprinted polymer as a preconcentration medium. The polymer prepared with a pseudo template molecule showed the selective retention ability based on the interval recognition of functional groups in sulpiride. Also, the imprinted polymer provided an effective concentration of a trace level of sulpiride in offline SPE with dual washing processes using water and acetonitrile, although another imprinted polymer prepared by an authentic method using sulpiride and methacrylic acid as a template and a functional monomer, respectively, showed the selective adsorption only in organic solvents. Furthermore, we employed the imprinted polymer as the preconcentration column of online SPE-LC-MS and the results supposed that the proposed system allowed the quantitative analysis of sulpiride with high sensitivity and recovery (10ng/L at 96%). Additionally, the determination of sulpiride in real river water without an additional spiking was effectively achieved by the system. Copyright © 2013 Elsevier B.V. All rights reserved.
Analytical methods in sphingolipidomics: Quantitative and profiling approaches in food analysis.
Canela, Núria; Herrero, Pol; Mariné, Sílvia; Nadal, Pedro; Ras, Maria Rosa; Rodríguez, Miguel Ángel; Arola, Lluís
2016-01-08
In recent years, sphingolipidomics has emerged as an interesting omic science that encompasses the study of the full sphingolipidome characterization, content, structure and activity in cells, tissues or organisms. Like other omics, it has the potential to impact biomarker discovery, drug development and systems biology knowledge. Concretely, dietary food sphingolipids have gained considerable importance due to their extensively reported bioactivity. Because of the complexity of this lipid family and their diversity among foods, powerful analytical methodologies are needed for their study. The analytical tools developed in the past have been improved with the enormous advances made in recent years in mass spectrometry (MS) and chromatography, which allow the convenient and sensitive identification and quantitation of sphingolipid classes and form the basis of current sphingolipidomics methodologies. In addition, novel hyphenated nuclear magnetic resonance (NMR) strategies, new ionization strategies, and MS imaging are outlined as promising technologies to shape the future of sphingolipid analyses. This review traces the analytical methods of sphingolipidomics in food analysis concerning sample extraction, chromatographic separation, the identification and quantification of sphingolipids by MS and their structural elucidation by NMR. Copyright © 2015 Elsevier B.V. All rights reserved.
Wu, Jing-Jing; Liu, Yu-Wen; Sun, Meng-Xiang
2011-07-01
Green fluorescent proteins (GFPs) are widely used in tracing transgene expression and have been known as convenient and efficient markers for plant transformation. However, sometimes researchers are still puzzled by the weak fluorescence since it makes the observation of GFP signals and confirmation of transgenic plants difficult. In this investigation, we explored the possibility of enhancing the weak signals by changing the pH environment of detection and took microplate reader as a more effective instrument compared to traditional fluorescent microscope to detect the weak signals. It was found that the fluorescence intensity of enhanced GFP (EGFP) in transgenic plants can be increased 2-6 folds by altering the environmental pH, and the concentration of EGFP at a large scale (ranged from 20 ng/ml to 20 μg/ml) can be detected and quantified. It can exclude the influence of degradation fragment and hence facilitate later analysis; these advantages were further verified by comparing with western blotting and confocal microscopy. It was reliable and effective for the qualitative and quantitative analysis of transgenic plants and was more suitable for the detection of very weak fluorescent signals.
Automated classification and quantitative analysis of arterial and venous vessels in fundus images
NASA Astrophysics Data System (ADS)
Alam, Minhaj; Son, Taeyoon; Toslak, Devrim; Lim, Jennifer I.; Yao, Xincheng
2018-02-01
It is known that retinopathies may affect arteries and veins differently. Therefore, reliable differentiation of arteries and veins is essential for computer-aided analysis of fundus images. The purpose of this study is to validate one automated method for robust classification of arteries and veins (A-V) in digital fundus images. We combine optical density ratio (ODR) analysis and blood vessel tracking algorithm to classify arteries and veins. A matched filtering method is used to enhance retinal blood vessels. Bottom hat filtering and global thresholding are used to segment the vessel and skeleton individual blood vessels. The vessel tracking algorithm is used to locate the optic disk and to identify source nodes of blood vessels in optic disk area. Each node can be identified as vein or artery using ODR information. Using the source nodes as starting point, the whole vessel trace is then tracked and classified as vein or artery using vessel curvature and angle information. 50 color fundus images from diabetic retinopathy patients were used to test the algorithm. Sensitivity, specificity, and accuracy metrics were measured to assess the validity of the proposed classification method compared to ground truths created by two independent observers. The algorithm demonstrated 97.52% accuracy in identifying blood vessels as vein or artery. A quantitative analysis upon A-V classification showed that average A-V ratio of width for NPDR subjects with hypertension decreased significantly (43.13%).
Atmospheric inorganic trace contaminants in Finland, especially in the Gulf of Finland area
NASA Astrophysics Data System (ADS)
Jalkanen, Liisa Maria
Atmospheric aerosol samples were collected at Utö and Virolahti in the Gulf of Finland area and Ähtäri in Central Finland using a filter pack. The samples were analysed by instrumental neutron activation analysis (INAA) and inductively coupled plasma mass-spectrometry (ICP-MS) for 34 elements including halogens and heavy metals. A very simple and quantitative acid digestion method was developed for the dissolution of the aerosol samples for ICP-MS analysis. Analysis of the elemental data is given using trajectories, principal component analysis and long-range transport modelling. The average total (fine + coarse) atmospheric concentrations range at Utö from 0.083 ng m -3 for Cd to 730 ng m-3 for Na. The sea areas (Utö, Virolahti, Hailuoto) have most of the heavy metal air pollution in Finland, as witnessed by the aerosol concentration and wet deposition data. There is a clear decreasing gradient in the deposition of As, Cd, Cr, Pb, and V from South to North in Finland. In general, the trace element concentrations and deposition are lower in Finland than in Central Europe. The effect of large particulate emission sources in Estonia can be seen in the elemental concentrations of atmospheric particles and in the deposition around the eastern Gulf of Finland region. There has been a remarkable decrease in heavy metal emissions in Finland during the 1990s. However, due to long-range transport, the decrease in deposition as witnessed by analysis of these concentrations in precipitation and moss is much less than would be expected.
Application of ray-traced tropospheric slant delays to geodetic VLBI analysis
NASA Astrophysics Data System (ADS)
Hofmeister, Armin; Böhm, Johannes
2017-08-01
The correction of tropospheric influences via so-called path delays is critical for the analysis of observations from space geodetic techniques like the very long baseline interferometry (VLBI). In standard VLBI analysis, the a priori slant path delays are determined using the concept of zenith delays, mapping functions and gradients. The a priori use of ray-traced delays, i.e., tropospheric slant path delays determined with the technique of ray-tracing through the meteorological data of numerical weather models (NWM), serves as an alternative way of correcting the influences of the troposphere on the VLBI observations within the analysis. In the presented research, the application of ray-traced delays to the VLBI analysis of sessions in a time span of 16.5 years is investigated. Ray-traced delays have been determined with program RADIATE (see Hofmeister in Ph.D. thesis, Department of Geodesy and Geophysics, Faculty of Mathematics and Geoinformation, Technische Universität Wien. http://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-3444, 2016) utilizing meteorological data provided by NWM of the European Centre for Medium-Range Weather Forecasts (ECMWF). In comparison with a standard VLBI analysis, which includes the tropospheric gradient estimation, the application of the ray-traced delays to an analysis, which uses the same parameterization except for the a priori slant path delay handling and the used wet mapping factors for the zenith wet delay (ZWD) estimation, improves the baseline length repeatability (BLR) at 55.9% of the baselines at sub-mm level. If no tropospheric gradients are estimated within the compared analyses, 90.6% of all baselines benefit from the application of the ray-traced delays, which leads to an average improvement of the BLR of 1 mm. The effects of the ray-traced delays on the terrestrial reference frame are also investigated. A separate assessment of the RADIATE ray-traced delays is carried out by comparison to the ray-traced delays from the National Aeronautics and Space Administration Goddard Space Flight Center (NASA GSFC) (Eriksson and MacMillan in http://lacerta.gsfc.nasa.gov/tropodelays, 2016) with respect to the analysis performances in terms of BLR results. If tropospheric gradient estimation is included in the analysis, 51.3% of the baselines benefit from the RADIATE ray-traced delays at sub-mm difference level. If no tropospheric gradients are estimated within the analysis, the RADIATE ray-traced delays deliver a better BLR at 63% of the baselines compared to the NASA GSFC ray-traced delays.
Singhal, R K; Narayanan, Usha; Karpe, Rupali; Kumar, Ajay; Ranade, A; Ramachandran, V
2009-04-01
During this work, controlled redox potential methodology was adopted for the complete separation of traces of uranium from the host matrix of mixed hydroxide of Iron. Precipitates of Fe(+2) and Fe(+3) along with other transuranic elements were obtained from acid leached solution of soil by raising the pH to 9 with 14N ammonia solution. The concentration of the uranium observed in the soil samples was 200-600 ppb, whereas in sediment samples, the concentration range was 61-400 ppb.
Temporal patterns of inputs to cerebellum necessary and sufficient for trace eyelid conditioning.
Kalmbach, Brian E; Ohyama, Tatsuya; Mauk, Michael D
2010-08-01
Trace eyelid conditioning is a form of associative learning that requires several forebrain structures and cerebellum. Previous work suggests that at least two conditioned stimulus (CS)-driven signals are available to the cerebellum via mossy fiber inputs during trace conditioning: one driven by and terminating with the tone and a second driven by medial prefrontal cortex (mPFC) that persists through the stimulus-free trace interval to overlap in time with the unconditioned stimulus (US). We used electric stimulation of mossy fibers to determine whether this pattern of dual inputs is necessary and sufficient for cerebellar learning to express normal trace eyelid responses. We find that presenting the cerebellum with one input that mimics persistent activity observed in mPFC and the lateral pontine nuclei during trace eyelid conditioning and another that mimics tone-elicited mossy fiber activity is sufficient to produce responses whose properties quantitatively match trace eyelid responses using a tone. Probe trials with each input delivered separately provide evidence that the cerebellum learns to respond to the mPFC-like input (that overlaps with the US) and learns to suppress responding to the tone-like input (that does not). This contributes to precisely timed responses and the well-documented influence of tone offset on the timing of trace responses. Computer simulations suggest that the underlying cerebellar mechanisms involve activation of different subsets of granule cells during the tone and during the stimulus-free trace interval. These results indicate that tone-driven and mPFC-like inputs are necessary and sufficient for the cerebellum to learn well-timed trace conditioned responses.
NASA Astrophysics Data System (ADS)
Mansfield, C. D.; Rutt, H. N.
2002-02-01
The possible generation of spurious results, arising from the application of infrared spectroscopic techniques to the measurement of carbon isotope ratios in breath, due to coincident absorption bands has been re-examined. An earlier investigation, which approached the problem qualitatively, fulfilled its aspirations in providing an unambiguous assurance that 13C16O2/12C16O2 ratios can be confidently measured for isotopic breath tests using instruments based on infrared absorption. Although this conclusion still stands, subsequent quantitative investigation has revealed an important exception that necessitates a strict adherence to sample collection protocol. The results show that concentrations and decay rates of the coincident breath trace compounds acetonitrile and carbon monoxide, found in the breath sample of a heavy smoker, can produce spurious results. Hence, findings from this investigation justify the concern that breath trace compounds present a risk to the accurate measurement of carbon isotope ratios in breath when using broadband, non-dispersive, ground state absorption infrared spectroscopy. It provides recommendations on the length of smoking abstention required to avoid generation of spurious results and also reaffirms, through quantitative argument, the validity of using infrared absorption spectroscopy to measure CO2 isotope ratios in breath.
NASA Astrophysics Data System (ADS)
Xu, Zhida; Jiang, Jing; Wang, Xinhao; Han, Kevin; Ameen, Abid; Khan, Ibrahim; Chang, Te-Wei; Liu, Gang Logan
2016-03-01
We demonstrated a highly-sensitive, wafer-scale, highly-uniform plasmonic nano-mushroom substrate based on plastic for naked-eye plasmonic colorimetry and surface-enhanced Raman spectroscopy (SERS). We gave it the name FlexBrite. The dual-mode functionality of FlexBrite allows for label-free qualitative analysis by SERS with an enhancement factor (EF) of 108 and label-free quantitative analysis by naked-eye colorimetry with a sensitivity of 611 nm RIU-1. The SERS EF of FlexBrite in the wet state was found to be 4.81 × 108, 7 times stronger than in the dry state, making FlexBrite suitable for aqueous environments such as microfluid systems. The label-free detection of biotin-streptavidin interaction by both SERS and colorimetry was demonstrated with FlexBrite. The detection of trace amounts of the narcotic drug methamphetamine in drinking water by SERS was implemented with a handheld Raman spectrometer and FlexBrite. This plastic-based dual-mode nano-mushroom substrate has the potential to be used as a sensing platform for easy and fast analysis in chemical and biological assays.We demonstrated a highly-sensitive, wafer-scale, highly-uniform plasmonic nano-mushroom substrate based on plastic for naked-eye plasmonic colorimetry and surface-enhanced Raman spectroscopy (SERS). We gave it the name FlexBrite. The dual-mode functionality of FlexBrite allows for label-free qualitative analysis by SERS with an enhancement factor (EF) of 108 and label-free quantitative analysis by naked-eye colorimetry with a sensitivity of 611 nm RIU-1. The SERS EF of FlexBrite in the wet state was found to be 4.81 × 108, 7 times stronger than in the dry state, making FlexBrite suitable for aqueous environments such as microfluid systems. The label-free detection of biotin-streptavidin interaction by both SERS and colorimetry was demonstrated with FlexBrite. The detection of trace amounts of the narcotic drug methamphetamine in drinking water by SERS was implemented with a handheld Raman spectrometer and FlexBrite. This plastic-based dual-mode nano-mushroom substrate has the potential to be used as a sensing platform for easy and fast analysis in chemical and biological assays. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08357e
Onco-hematological diagnostics by IR spectroscopy
NASA Astrophysics Data System (ADS)
Darchuk, Sergey D.; Korovina, Larisa A.; Sizov, Fiodor F.; Bebeshko, Vladimir G.
1998-10-01
Application of the infrared (IR) spectroscopy to early medical onco-hematological diagnostics, in particular to leukemia, is described. Leukemia is characterized by the orthophosphates acid (soluble) forms (HPO42-) accumulation in bone apatites. Bone hydroxyapatite contains predominantly basic PO43- nonsoluble orthophosphate. At the same time condensed forms of pyrophosphates (e.g., CaH2P3O7) in bones and especially in dried urine were found by the analysis of IR absorption spectra of persons with leukemia. It was show that the dried urine infrared quantitative absorption spectra investigations of phosphates contents make it possible to trace the dynamics of these elements contents during the leukemia progression and can serve for onco-hematological diagnostics at early stage of leukemia.
High efficiency direct detection of ions from resonance ionization of sputtered atoms
Gruen, Dieter M.; Pellin, Michael J.; Young, Charles E.
1986-01-01
A method and apparatus are provided for trace and other quantitative analysis with high efficiency of a component in a sample, with the analysis involving the removal by ion or other bombardment of a small quantity of ion and neutral atom groups from the sample, the conversion of selected neutral atom groups to photoions by laser initiated resonance ionization spectroscopy, the selective deflection of the photoions for separation from original ion group emanating from the sample, and the detection of the photoions as a measure of the quantity of the component. In some embodiments, the original ion group is accelerated prior to the RIS step for separation purposes. Noise and other interference are reduced by shielding the detector from primary and secondary ions and deflecting the photoions sufficiently to avoid the primary and secondary ions.
High efficiency direct detection of ions from resonance ionization of sputtered atoms
Gruen, D.M.; Pellin, M.J.; Young, C.E.
1985-01-16
A method and apparatus are provided for trace and other quantitative analysis with high efficiency of a component in a sample, with the analysis involving the removal by ion or other bombardment of a small quantity of ion and neutral atom groups from the sample, the conversion of selected neutral atom groups to photoions by laser initiated resonance ionization spectroscopy, the selective deflection of the photoions for separation from original ion group emanating from the sample, and the detection of the photoions as a measure of the quantity of the component. In some embodiments, the original ion group is accelerated prior to the RIS step for separation purposes. Noise and other interference are reduced by shielding the detector from primary and secondary ions and deflecting the photoions sufficiently to avoid the primary and secondary ions.
NASA Astrophysics Data System (ADS)
Maruthi, Y. A.; Das, N. Lakshmana; Ramprasad, S.; Ram, S. S.; Sudarshan, M.
2015-08-01
The present studies focus the quantitative analysis of elements in school chalk to ensure the safety of its use. The elements like Calcium (Ca), Aluminum (Al), Iron (Fe), Silicon (Si) and Chromium (Cr) were analyzed from settled chalk dust samples collected from five classrooms (CD-1) and also from another set of unused chalk samples collected from local market (CD-2) using Energy Dispersive X-Ray florescence(ED-XRF) spectroscopy. Presence of these elements in significant concentrations in school chalk confirmed that, it is an irritant and occupational hazard. It is suggested to use protective equipments like filtered mask for mouth, nose and chalk holders. This study also suggested using the advanced mode of techniques like Digital boards, marker boards and power point presentations to mitigate the occupational hazard for classroom chalk
Ouyang, Hui; Lu, Qian; Wang, Wenwen; Song, Yang; Tu, Xinman; Zhu, Chengzhou; Smith, Jordan N; Du, Dan; Fu, Zhifeng; Lin, Yuehe
2018-04-17
Manganese dioxide nanoflowers (MnO 2 NFs) were synthesized and used as a dual readout probe to develop a novel immunochromatographic test strip (ITS) for detecting pesticide residues using chlorpyrifos as the model analyte. MnO 2 NFs-labeled antibody for chlorpyrifos was employed as the signal tracer for conducting the ITS. After 10 min competitive immunoreaction, the tracer antibody was captured by the immobilized immunogen in the test strip, resulting in the captured MnO 2 NFs on test line. The captured MnO 2 NFs led to the appearance of brown color on the test line, which could be easily observed by the naked eye as a qualitative readout. Due to the very slight colorimetric difference of chlorpyrifos at trace concentrations, the semiquantitative readout by naked eyes could not meet the demand of quantitative analysis. MnO 2 NFs showed a significant effect on the luminol-H 2 O 2 chemiluminescent (CL) system, and the CL signal driven by MnO 2 NFs were used to detect the trace concentration of chlorpyrifos quantitatively. 1,3-Diphenylisobenzofuran quenching studies and TMB-H 2 O 2 coloration assays were conducted for studying the enhancing mechanism of MnO 2 NFs, which was based on the oxidant activity to decompose H 2 O 2 for forming reactive oxygen species. Under optimal conditions, the linear range of chlorpyrifos was 0.1-50 ng/mL with a low detection limit of 0.033 ng/mL (S/N = 3). The reliability of the dual-readout ITS was successfully demonstrated by the application on traditional Chinese medicine and environmental water samples. Due to the simultaneous rapid-qualitative and sensitive-quantitative detection, the dual-readout protocol provides a promising strategy for rapid screening and field assay on various areas such as environmental monitoring and food safety.
Quantitative assessment of Pb sources in isotopic mixtures using a Bayesian mixing model.
Longman, Jack; Veres, Daniel; Ersek, Vasile; Phillips, Donald L; Chauvel, Catherine; Tamas, Calin G
2018-04-18
Lead (Pb) isotopes provide valuable insights into the origin of Pb within a sample, typically allowing for reliable fingerprinting of their source. This is useful for a variety of applications, from tracing sources of pollution-related Pb, to the origins of Pb in archaeological artefacts. However, current approaches investigate source proportions via graphical means, or simple mixing models. As such, an approach, which quantitatively assesses source proportions and fingerprints the signature of analysed Pb, especially for larger numbers of sources, would be valuable. Here we use an advanced Bayesian isotope mixing model for three such applications: tracing dust sources in pre-anthropogenic environmental samples, tracking changing ore exploitation during the Roman period, and identifying the source of Pb in a Roman-age mining artefact. These examples indicate this approach can understand changing Pb sources deposited during both pre-anthropogenic times, when natural cycling of Pb dominated, and the Roman period, one marked by significant anthropogenic pollution. Our archaeometric investigation indicates clear input of Pb from Romanian ores previously speculated, but not proven, to have been the Pb source. Our approach can be applied to a range of disciplines, providing a new method for robustly tracing sources of Pb observed within a variety of environments.
Shi, Xiaofeng; Liu, Shu; Han, Xiaohong; Ma, Jun; Jiang, Yongchao; Yu, Guifeng
2015-05-01
In this study, a gold colloid solution whose parameters were optimized, and without any surfactants, was developed as a surface-enhanced Raman scattering (SERS) substrate for the detection of trace-level polycyclic aromatic hydrocarbons (PAHs). A gold colloid solution with 57 nm gold particles and pH 13 was prepared to be the SERS substrate. It had impressive enhancement that was two orders of magnitude higher than that of a gold colloid solution with 57 nm gold particles and without pH change (pH 6). Even with a compact field-based Raman spectrometer, naphthalene, phenanthrene, anthracene, fluoranthene, and pyrene were detected, with limits of detection at 6.8 nM, 3.4 nM, 1.8 nM, 0.68 nM (680 pM), and 0.44 nM (440 pM), respectively. The significant enhancement was ascribed to an electromagnetic mechanism and a charge-transfer mechanism. Quantitative analyses for these five PAHs in water were also performed. The SERS intensities of PAHs were found to have good linear dependence relations with the concentrations in low concentration. This high-sensitivity, easily prepared substrate offers a promising technology for the quantitative detection of trace-level PAHs.
Siriangkhawut, Watsaka; Sittichan, Patcharee; Ponhong, Kraingkrai; Chantiratikul, Piyanete
2017-10-01
A simple, efficient, and reliable ultrasound-assisted digestion (UAD) procedure was used for sample preparation prior to quantitative determination of trace Cd and Pb contaminants in herbal medicines using flame atomic absorption spectrometry. The parameters influencing UAD such as the solvent system, sample mass, presonication time, sonication time, and digestion temperature were evaluated. The efficiency of the proposed UAD procedure was evaluated by comparing with conventional acid digestion (CAD) procedure. Under the optimum conditions, linear calibration graphs in a range of 2-250 μg/L for Cd, and 50-1000 μg/L for Pb were obtained with detection limits of 0.56 μg/L and 10.7 μg/L for Cd and Pb, respectively. The limit of quantification for Cd and Pb were 1.87 μg/L and 40.3 μg/L, respectively. The repeatability for analysis of 10 μg/L for Cd and 100 μg/L for Pb was 2.3% and 2.6%, respectively. The accuracy of the proposed method was evaluated by rice flour certified reference materials. The proposed method was successfully applied for analysis of trace Cd and Pb in samples of various types of medicinal plant and traditional medicine consumed in Thailand. Most herbal medicine samples were not contaminated with Cd or Pb. The contaminant levels for both metals were still lower than the maximum permissible levels of elements in medicinal plant materials and finished herbal products sets by the Ministry of Public Health of Thailand. The exception was the high level of Cd contamination found in two samples of processed medicinal plants. Copyright © 2017. Published by Elsevier B.V.
A high-precision Jacob's staff with improved spatial accuracy and laser sighting capability
NASA Astrophysics Data System (ADS)
Patacci, Marco
2016-04-01
A new Jacob's staff design incorporating a 3D positioning stage and a laser sighting stage is described. The first combines a compass and a circular spirit level on a movable bracket and the second introduces a laser able to slide vertically and rotate on a plane parallel to bedding. The new design allows greater precision in stratigraphic thickness measurement while restricting the cost and maintaining speed of measurement to levels similar to those of a traditional Jacob's staff. Greater precision is achieved as a result of: a) improved 3D positioning of the rod through the use of the integrated compass and spirit level holder; b) more accurate sighting of geological surfaces by tracing with height adjustable rotatable laser; c) reduced error when shifting the trace of the log laterally (i.e. away from the dip direction) within the trace of the laser plane, and d) improved measurement of bedding dip and direction necessary to orientate the Jacob's staff, using the rotatable laser. The new laser holder design can also be used to verify parallelism of a geological surface with structural dip by creating a visual planar datum in the field and thus allowing determination of surfaces which cut the bedding at an angle (e.g., clinoforms, levees, erosion surfaces, amalgamation surfaces, etc.). Stratigraphic thickness measurements and estimates of measurement uncertainty are valuable to many applications of sedimentology and stratigraphy at different scales (e.g., bed statistics, reconstruction of palaeotopographies, depositional processes at bed scale, architectural element analysis), especially when a quantitative approach is applied to the analysis of the data; the ability to collect larger data sets with improved precision will increase the quality of such studies.
The current role of high-resolution mass spectrometry in food analysis.
Kaufmann, Anton
2012-05-01
High-resolution mass spectrometry (HRMS), which is used for residue analysis in food, has gained wider acceptance in the last few years. This development is due to the availability of more rugged, sensitive, and selective instrumentation. The benefits provided by HRMS over classical unit-mass-resolution tandem mass spectrometry are considerable. These benefits include the collection of full-scan spectra, which provides greater insight into the composition of a sample. Consequently, the analyst has the freedom to measure compounds without previous compound-specific tuning, the possibility of retrospective data analysis, and the capability of performing structural elucidations of unknown or suspected compounds. HRMS strongly competes with classical tandem mass spectrometry in the field of quantitative multiresidue methods (e.g., pesticides and veterinary drugs). It is one of the most promising tools when moving towards nontargeted approaches. Certain hardware and software issues still have to be addressed by the instrument manufacturers for it to dislodge tandem mass spectrometry from its position as the standard trace analysis tool.
Textural and Mineralogical Analysis of Volcanic Rocks by µ-XRF Mapping.
Germinario, Luigi; Cossio, Roberto; Maritan, Lara; Borghi, Alessandro; Mazzoli, Claudio
2016-06-01
In this study, µ-XRF was applied as a novel surface technique for quick acquisition of elemental X-ray maps of rocks, image analysis of which provides quantitative information on texture and rock-forming minerals. Bench-top µ-XRF is cost-effective, fast, and non-destructive, can be applied to both large (up to a few tens of cm) and fragile samples, and yields major and trace element analysis with good sensitivity. Here, X-ray mapping was performed with a resolution of 103.5 µm and spot size of 30 µm over sample areas of about 5×4 cm of Euganean trachyte, a volcanic porphyritic rock from the Euganean Hills (NE Italy) traditionally used in cultural heritage. The relative abundance of phenocrysts and groundmass, as well as the size and shape of the various mineral phases, were obtained from image analysis of the elemental maps. The quantified petrographic features allowed identification of various extraction sites, revealing an objective method for archaeometric provenance studies exploiting µ-XRF imaging.
The fundamental parameter method applied to X-ray fluorescence analysis with synchrotron radiation
NASA Astrophysics Data System (ADS)
Pantenburg, F. J.; Beier, T.; Hennrich, F.; Mommsen, H.
1992-05-01
Quantitative X-ray fluorescence analysis applying the fundamental parameter method is usually restricted to monochromatic excitation sources. It is shown here, that such analyses can be performed as well with a white synchrotron radiation spectrum. To determine absolute elemental concentration values it is necessary to know the spectral distribution of this spectrum. A newly designed and tested experimental setup, which uses the synchrotron radiation emitted from electrons in a bending magnet of ELSA (electron stretcher accelerator of the university of Bonn) is presented. The determination of the exciting spectrum, described by the given electron beam parameters, is limited due to uncertainties in the vertical electron beam size and divergence. We describe a method which allows us to determine the relative and absolute spectral distributions needed for accurate analysis. First test measurements of different alloys and standards of known composition demonstrate that it is possible to determine exact concentration values in bulk and trace element analysis.
Estimation of trace amounts of benzene in solvent-extracted vegetable oils and oil seed cakes.
Masohan, A; Parsad, G; Khanna, M K; Chopra, S K; Rawat, B S; Garg, M O
2000-09-01
A new method is presented for the qualitative and quantitative estimation of trace amounts (up to 0.15 ppm) of benzene in crude as well as refined vegetable oils obtained by extraction with food grade hexane (FGH), and in the oil seed cakes left after extraction. The method involves the selection of two solvents; cyclohexanol, for thinning of viscous vegetable oil, and heptane, for azeotroping out trace benzene as a concentrate from the resulting mixture. Benzene is then estimated in the resulting azeotrope either by UV spectroscopy or by GC-MS subject to availability and cost effectiveness of the latter. Repeatability and reproducibility of the method is within 1-3% error. This method is suitable for estimating benzene in vegetable oils and oil seed cakes.
Ramírez Hernández, Javier; Bonete Pérez, María José; Martínez Espinosa, Rosa María
2014-12-17
1) to propose a new classification of the trace elements based on a study of the recently reported research; 2) to offer detailed and actualized information about trace elements. the analysis of the research results recently reported reveals that the advances of the molecular analysis techniques point out the importance of certain trace elements in human health. A detailed analysis of the catalytic function related to several elements not considered essential o probably essentials up to now is also offered. To perform the integral analysis of the enzymes containing trace elements informatics tools have been used. Actualized information about physiological role, kinetics, metabolism, dietetic sources and factors promoting trace elements scarcity or toxicity is also presented. Oligotherapy uses catalytic active trace elements with therapeutic proposals. The new trace element classification here presented will be of high interest for different professional sectors: doctors and other professions related to medicine; nutritionist, pharmaceutics, etc. Using this new classification and approaches, new therapeutic strategies could be designed to mitigate symptomatology related to several pathologies, particularly carential and metabolic diseases. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
In vivo study of lipid synthesis and lipolysis dynamics by stimulated Raman scattering microscopy
NASA Astrophysics Data System (ADS)
Li, Xuesong; Li, Yan; He, Sicong; Chen, Congping; Qin, Zhongya; Mak, Ho Yi; Qu, Jianan Y.
2018-02-01
To understand the mechanisms of important lipid-related biological processes and diseases, it is highly demanded to study the dynamics of lipids in living biological system with high spatiotemporal resolution. However, in vivo quantitative analysis of lipid synthesis and lipolysis has been technically difficult to achieve by conventional lipid extraction and fluorescent staining methods. Recently, SRS microscopy has emerged as a powerful tool to probe small molecules with alkyne (C≡C) or deuterium (C-D) labeling in cell-silent region. The Raman tags have been used for the quantitative study of lipids in cells. In this study, we investigated metabolic dynamics of lipid droplets (LDs) by tracing the alkyne-tagged fatty acid 17-ODYA and deuterium-labeled saturated and unsaturated fatty acids PA-D31 & OA-D34 in living C. elegans. Specifically, we developed a hyperspectral SRS microscope system for LDs characterization. The system can sequentially excite and probe the stimulated Raman scattering-induced CH2 stretching of endogenous lipids information (2863 cm-1), C≡C stretching from 17-ODYA (2125 cm-1) and C-D stretching from deuterium-labeled fatty acids (2117 cm-1). We first examined the concentration levels of fatty acids in E. coli OP50. Two major lipid metabolic processes, namely uptake and turnover, were further studied in adult C. elegans. We imaged alkyne-tagged and deuterated fatty acids using SRS and traced their uptake, transportation, incorporation and turnover over time. Additionally, several other treatments including starvation were also conducted to study their effects on metabolic dynamics of pulse labeled 17-ODYA, PA-D31 and OA-D34.
Computation and analysis of backward ray-tracing in aero-optics flow fields.
Xu, Liang; Xue, Deting; Lv, Xiaoyi
2018-01-08
A backward ray-tracing method is proposed for aero-optics simulation. Different from forward tracing, the backward tracing direction is from the internal sensor to the distant target. Along this direction, the tracing in turn goes through the internal gas region, the aero-optics flow field, and the freestream. The coordinate value, the density, and the refractive index are calculated at each tracing step. A stopping criterion is developed to ensure the tracing stops at the outer edge of the aero-optics flow field. As a demonstration, the analysis is carried out for a typical blunt nosed vehicle. The backward tracing method and stopping criterion greatly simplify the ray-tracing computations in the aero-optics flow field, and they can be extended to our active laser illumination aero-optics study because of the reciprocity principle.
Sel, Sabriye; Öztürk Er, Elif; Bakırdere, Sezgin
2017-12-01
A highly sensitive and simple diode-array high-performance liquid chromatography and liquid chromatography with quadrupole time-of-flight tandem mass spectrometry method was developed for the simultaneous determination of niacin and pyridoxine in pharmaceutical drugs, tap water, and wastewater samples. To determine the in vivo behavior of niacin and pyridoxine, analytes were subjected to simulated gastric conditions. The calibration plots of the diode-array high-performance liquid chromatography and liquid chromatography with quadrupole time-of-flight tandem mass spectrometry method showed good linearity over a wide concentration range with close to 1.0 correlation coefficients for both analytes. The limit of detection/limit of quantitation values for liquid chromatography quadrupole time-of-flight tandem mass spectrometry analysis were 1.98/6.59 and 1.3/4.4 μg/L for niacin and pyridoxine, respectively, while limit of detection/limit of quantitation values for niacin and pyridoxine in high-performance liquid chromatography analysis were 3.7/12.3 and 5.7/18.9 μg/L, respectively. Recovery studies were also performed to show the applicability of the developed methods, and percentage recovery values were found to be 90-105% in tap water and 94-97% in wastewater for both analytes. The method was also successfully applied for the qualitative and quantitative determination of niacin and pyridoxine in drug samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Newbury, Dale E.; Ritchie, Nicholas W. M.
2012-06-01
Scanning electron microscopy with energy dispersive x-ray spectrometry (SEM/EDS) is a powerful and flexible elemental analysis method that can identify and quantify elements with atomic numbers > 4 (Be) present as major constituents (where the concentration C > 0.1 mass fraction, or 10 weight percent), minor (0.01<= C <= 0.1) and trace (C < 0.01, with a minimum detectable limit of ~+/- 0.0005 - 0.001 under routine measurement conditions, a level which is analyte and matrix dependent ). SEM/EDS can select specimen volumes with linear dimensions from ~ 500 nm to 5 μm depending on composition (masses ranging from ~ 10 pg to 100 pg) and can provide compositional maps that depict lateral elemental distributions. Despite the maturity of SEM/EDS, which has a history of more than 40 years, and the sophistication of modern analytical software, the method is vulnerable to serious shortcomings that can lead to incorrect elemental identifications and quantification errors that significantly exceed reasonable expectations. This paper will describe shortcomings in peak identification procedures, limitations on the accuracy of quantitative analysis due to specimen topography or failures in physical models for matrix corrections, and quantitative artifacts encountered in xray elemental mapping. Effective solutions to these problems are based on understanding the causes and then establishing appropriate measurement science protocols. NIST DTSA II and Lispix are open source analytical software available free at www.nist.gov that can aid the analyst in overcoming significant limitations to SEM/EDS.
Shen, Li-dong; Wu, Hong-sheng; Gao, Zhi-qiu; Cheng, Hai-xiang; Li, Ji; Liu, Xu; Ren, Qian-qi
2016-04-01
Anaerobic ammonium oxidation (anammox) process plays a significant role in the marine nitrogen cycle. However, the quantitative importance of this process in nitrogen removal in wetland systems, particularly in natural freshwater wetlands, is still not determined. In the present study, we provided the evidence of the distribution and activity of anammox bacteria in a natural freshwater wetland, located in southeastern China, by using (15)N stable isotope measurements, quantitative PCR assays and 16S rRNA gene clone library analysis. The potential anammox rates measured in this wetland system ranged between 2.5 and 25.5 nmol N2 g(-1) soil day(-1), and up to 20% soil dinitrogen gas production could be attributed to the anammox process. Phylogenetic analysis of 16S rRNA genes showed that anammox bacteria related to Candidatus Brocadia, Candidatus Kuenenia, Candidatus Anammoxoglobus and two novel anammox clusters coexisted in the collected soil cores, with Candidatus Brocadia and Candidatus Kuenenia being the dominant anammox genera. Quantitative PCR of hydrazine synthase genes showed that the abundance of anammox bacteria varied from 2.3 × 10(5) to 2.2 × 10(6) copies g(-1) soil in the examined soil cores. Correlation analyses suggested that the soil ammonium concentration had significant influence on the activity of anammox bacteria. On the basis of (15)N tracing technology, it is estimated that a total loss of 31.1 g N m(-2) per year could be linked the anammox process in the examined wetland.
Fan, Lihua; Shuai, Jiangbing; Zeng, Ruoxue; Mo, Hongfei; Wang, Suhua; Zhang, Xiaofeng; He, Yongqiang
2017-12-01
Genome fragment enrichment (GFE) method was applied to identify host-specific bacterial genetic markers that differ among different fecal metagenomes. To enrich for swine-specific DNA fragments, swine fecal DNA composite (n = 34) was challenged against a DNA composite consisting of cow, human, goat, sheep, chicken, duck and goose fecal DNA extracts (n = 83). Bioinformatic analyses of 384 non-redundant swine enriched metagenomic sequences indicated a preponderance of Bacteroidales-like regions predicted to encode metabolism-associated, cellular processes and information storage and processing. After challenged against fecal DNA extracted from different animal sources, four sequences from the clone libraries targeting two Bacteroidales- (genes 1-38 and 3-53), a Clostridia- (gene 2-109) as well as a Bacilli-like sequence (gene 2-95), respectively, showed high specificity to swine feces based on PCR analysis. Host-specificity and host-sensitivity analysis confirmed that oligonucleotide primers and probes capable of annealing to select Bacteroidales-like sequences (1-38 and 3-53) exhibited high specificity (>90%) in quantitative PCR assays with 71 fecal DNAs from non-target animal sources. The two assays also demonstrated broad distributions of corresponding genetic markers (>94% positive) among 72 swine feces. After evaluation with environmental water samples from different areas, swine-targeted assays based on two Bacteroidales-like GFE sequences appear to be suitable quantitative tracing tools for swine fecal pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lueders, Tillmann; Manefield, Mike; Friedrich, Michael W
2004-01-01
Stable isotope probing (SIP) of nucleic acids allows the detection and identification of active members of natural microbial populations that are involved in the assimilation of an isotopically labelled compound into nucleic acids. SIP is based on the separation of isotopically labelled DNA or rRNA by isopycnic density gradient centrifugation. We have developed a highly sensitive protocol for the detection of 'light' and 'heavy' nucleic acids in fractions of centrifugation gradients. It involves the fluorometric quantification of total DNA or rRNA, and the quantification of either 16S rRNA genes or 16S rRNA in gradient fractions by real-time PCR with domain-specific primers. Using this approach, we found that fully 13C-labelled DNA or rRNA of Methylobacterium extorquens was quantitatively resolved from unlabelled DNA or rRNA of Methanosarcina barkeri by cesium chloride or cesium trifluoroacetate density gradient centrifugation respectively. However, a constant low background of unspecific nucleic acids was detected in all DNA or rRNA gradient fractions, which is important for the interpretation of environmental SIP results. Consequently, quantitative analysis of gradient fractions provides a higher precision and finer resolution for retrieval of isotopically enriched nucleic acids than possible using ethidium bromide or gradient fractionation combined with fingerprinting analyses. This is a prerequisite for the fine-scale tracing of microbial populations metabolizing 13C-labelled compounds in natural ecosystems.
Chen, Na; Ding, Pan; Shi, Yu; Jin, Tengyu; Su, Yuanyuan; Wang, Houyu; He, Yao
2017-05-02
There is an increasing interest in the development of surface-enhanced Raman scattering (SERS) sensors for rapid and accurate on-site detection of hidden explosives. However, portable SERS methods for trace explosive detection in real systems remain scarce, mainly due to their relatively poor reliability and portability. Herein, we present the first demonstration of a portable silicon-based SERS analytical platform for signal-on detection of trace trinitrotoluene (TNT) explosives, which is made of silver nanoparticle (AgNP)-decorated silicon wafer chip (0.5 cm × 0.5 cm). In principle, under 514 nm excitation, the Raman signals of p-aminobenzenethiol (PABT) modified on the AgNP surface could be largely lit up due to the formation of electronic resonance-active TNT-PABT complex. In addition, the surface of AgNPs and silicon substrate-induced plasmon resonances also contribute the total SERS enhancement. For quantitative evaluation, the as-prepared chip features ultrahigh sensitivity [limit of detection is down to ∼1 pM (∼45.4 fg/cm 2 )] and adaptable reproducibility (relative standard deviation is less than 15%) in the detection of TNT standard solutions. More importantly, the developed chip can couple well with a hand-held Raman spectroscopic device using 785 nm excitation, suitable for qualitative analysis of trace TNT even at ∼10 -8 M level from environmental samples including lake water, soil, envelope, and liquor with a short data acquisition time (∼1 min). Furthermore, TNT vapors diffusing from TNT residues (∼10 -6 M) can be detected by using such a portable device, indicating its feasibility in determination of hidden samples.
NASA Astrophysics Data System (ADS)
Denniston, Rhawn F.; Shearer, Charles K.; Layne, Graham D.; Vaniman, David T.
1997-05-01
Fracture-lining calcite samples from Yucca Mountain, Nevada, obtained as part of the extensive vertical sampling in studies of this site as a potential high-level waste repository, have been characterized according to microbeam-scale (25-30 μm) trace and minor element chemistry, and cathodoluminescent zonation patterns. As bulk chemical analyses are limited in spatial resolution and are subject to contamination by intergrown phases, a technique for analysis by secondary ion mass spectrometry (SIMS) of minor (Mn, Fe, Sr) and trace (REE) elements in calcite was developed and applied to eighteen calcite samples from four boreholes and one trench. SIMS analyses of REE in calcite and dolomite have been shown to be quantitative to abundances < 1 × chondrite. Although the low secondary ion yields associated with carbonates forced higher counting times than is necessary in most silicates, Mn, Fe, Sr, and REE analyses were obtained with sub-ppm detection limits and 2-15% analytical precision. Bulk chemical signatures noted by Vaniman (1994) allowed correlation of minor and trace element signatures in Yucca Mountain calcite with location of calcite precipitation (saturated vs. unsaturated zone). For example, upper unsaturated zone calcite exhibits pronounced negative Ce and Eu anomalies not observed in calcite collected below in the deep unsaturated zone. These chemical distinctions served as fingerprints which were applied to growth zones in order to examine temporal changes in calcite crystallization histories; analyses of such fine-scale zonal variations are unattainable using bulk analytical techniques. In addition, LREE (particularly Ce) scavenging of calcite-precipitating solutions by manganese oxide phases is discussed as the mechanism for Ce-depletion in unsaturated zone calcite.
User's Guide to Handlens - A Computer Program that Calculates the Chemistry of Minerals in Mixtures
Eberl, D.D.
2008-01-01
HandLens is a computer program, written in Excel macro language, that calculates the chemistry of minerals in mineral mixtures (for example, in rocks, soils and sediments) for related samples from inputs of quantitative mineralogy and chemistry. For best results, the related samples should contain minerals having the same chemical compositions; that is, the samples should differ only in the proportions of minerals present. This manual describes how to use the program, discusses the theory behind its operation, and presents test results of the program's accuracy. Required input for HandLens includes quantitative mineralogical data, obtained, for example, by RockJock analysis of X-ray diffraction (XRD) patterns, and quantitative chemical data, obtained, for example, by X-ray florescence (XRF) analysis of the same samples. Other quantitative data, such as sample depth, temperature, surface area, also can be entered. The minerals present in the samples are selected from a list, and the program is started. The results of the calculation include: (1) a table of linear coefficients of determination (r2's) which relate pairs of input data (for example, Si versus quartz weight percents); (2) a utility for plotting all input data, either as pairs of variables, or as sums of up to eight variables; (3) a table that presents the calculated chemical formulae for minerals in the samples; (4) a table that lists the calculated concentrations of major, minor, and trace elements in the various minerals; and (5) a table that presents chemical formulae for the minerals that have been corrected for possible systematic errors in the mineralogical and/or chemical analyses. In addition, the program contains a method for testing the assumption of constant chemistry of the minerals within a sample set.
Zhao, Ying-Yong; Zhao, Ye; Zhang, Yong-Min; Lin, Rui-Chao; Sun, Wen-Ji
2009-06-01
Polyporus umbellatus is a widely used anti-aldosteronic diuretic in Traditional Chinese medicine (TCM). A new, sensitive and selective high-performance liquid chromatography-fluorescence detector (HPLC-FLD) and high-performance liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (HPLC-APCI-MS/MS) method for quantitative and qualitative determination of ergosta-4,6,8(14),22-tetraen-3-one(ergone), which is the main diuretic component, was provided for quality control of P. umbellatus crude drug. The ergone in the ethanolic extract of P. umbellatus was unambiguously characterized by HPLC-APCI, and further confirmed by comparing with a standard compound. The trace ergone was detected by the sensitive and selective HPLC-FLD. Linearity (r2 > 0.9998) and recoveries of low, medium and high concentration (100.5%, 100.2% and 100.4%) were consistent with the experimental criteria. The limit of detection (LOD) of ergone was around 0.2 microg/mL. Our results indicated that the content of ergone in P. umbellatus varied significantly from habitat to habitat with contents ranging from 2.13 +/- 0.02 to 59.17 +/- 0.05 microg/g. Comparison among HPLC-FLD and HPLC-UV or HPLC-APCI-MS/MS demonstrated that the HPLC-FLD and HPLC-APCI-MS/MS methods gave similar quantitative results for the selected herb samples, the HPLC-UV methods gave lower quantitative results than HPLC-FLD and HPLC-APCI-MS/MS methods. The established new HPLC-FLD method has the advantages of being rapid, simple, selective and sensitive, and could be used for the routine analysis of P. umbellatus crude drug.
NASA Astrophysics Data System (ADS)
Eltom, Hassan A.; Abdullatif, Osman M.; Makkawi, Mohammed H.; Eltoum, Isam-Eldin A.
2017-03-01
The interpretation of depositional environments provides important information to understand facies distribution and geometry. The classical approach to interpret depositional environments principally relies on the analysis of lithofacies, biofacies and stratigraphic data, among others. An alternative method, based on geochemical data (chemical element data), is advantageous because it can simply, reproducibly and efficiently interpret and refine the interpretation of the depositional environment of carbonate strata. Here we geochemically analyze and statistically model carbonate samples (n = 156) from seven sections of the Arab-D reservoir outcrop analog of central Saudi Arabia, to determine whether the elemental signatures (major, trace and rare earth elements [REEs]) can be effectively used to predict depositional environments. We find that lithofacies associations of the studied outcrop (peritidal to open marine depositional environments) possess altered REE signatures, and that this trend increases stratigraphically from bottom-to-top, which corresponds to an upward shallowing of depositional environments. The relationship between REEs and major, minor and trace elements indicates that contamination by detrital materials is the principal source of REEs, whereas redox condition, marine and diagenetic processes have minimal impact on the relative distribution of REEs in the lithofacies. In a statistical model (factor analysis and logistic regression), REEs, major and trace elements cluster together and serve as markers to differentiate between peritidal and open marine facies and to differentiate between intertidal and subtidal lithofacies within the peritidal facies. The results indicate that statistical modelling of the elemental composition of carbonate strata can be used as a quantitative method to predict depositional environments and regional paleogeography. The significance of this study lies in offering new assessments of the relationships between lithofacies and geochemical elements by using advanced statistical analysis, a method that could be used elsewhere to interpret depositional environment and refine facies models.
A Bayesian model for estimating population means using a link-tracing sampling design.
St Clair, Katherine; O'Connell, Daniel
2012-03-01
Link-tracing sampling designs can be used to study human populations that contain "hidden" groups who tend to be linked together by a common social trait. These links can be used to increase the sampling intensity of a hidden domain by tracing links from individuals selected in an initial wave of sampling to additional domain members. Chow and Thompson (2003, Survey Methodology 29, 197-205) derived a Bayesian model to estimate the size or proportion of individuals in the hidden population for certain link-tracing designs. We propose an addition to their model that will allow for the modeling of a quantitative response. We assess properties of our model using a constructed population and a real population of at-risk individuals, both of which contain two domains of hidden and nonhidden individuals. Our results show that our model can produce good point and interval estimates of the population mean and domain means when our population assumptions are satisfied. © 2011, The International Biometric Society.
Gu, Binghe; Meldrum, Brian; McCabe, Terry; Phillips, Scott
2012-01-01
A theoretical treatment was developed and validated that relates analyte concentration and mass sensitivities to injection volume, retention factor, particle diameter, column length, column inner diameter and detection wavelength in liquid chromatography, and sample volume and extracted volume in solid-phase extraction (SPE). The principles were applied to improve sensitivity for trace analysis of clopyralid in drinking water. It was demonstrated that a concentration limit of detection of 0.02 ppb (μg/L) for clopyralid could be achieved with the use of simple UV detection and 100 mL of a spiked drinking water sample. This enabled reliable quantitation of clopyralid at the targeted 0.1 ppb level. Using a buffered solution as the elution solvent (potassium acetate buffer, pH 4.5, containing 10% of methanol) in the SPE procedures was found superior to using 100% methanol, as it provided better extraction recovery (70-90%) and precision (5% for a concentration at 0.1 ppb level). In addition, the eluted sample was in a weaker solvent than the mobile phase, permitting the direct injection of the extracted sample, which enabled a faster cycle time of the overall analysis. Excluding the preparation of calibration standards, the analysis of a single sample, including acidification, extraction, elution and LC run, could be completed in 1 h. The method was used successfully for the determination of clopyralid in over 200 clopyralid monoethanolamine-fortified drinking water samples, which were treated with various water treatment resins. Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
Active learning of neuron morphology for accurate automated tracing of neurites
Gala, Rohan; Chapeton, Julio; Jitesh, Jayant; Bhavsar, Chintan; Stepanyants, Armen
2014-01-01
Automating the process of neurite tracing from light microscopy stacks of images is essential for large-scale or high-throughput quantitative studies of neural circuits. While the general layout of labeled neurites can be captured by many automated tracing algorithms, it is often not possible to differentiate reliably between the processes belonging to different cells. The reason is that some neurites in the stack may appear broken due to imperfect labeling, while others may appear fused due to the limited resolution of optical microscopy. Trained neuroanatomists routinely resolve such topological ambiguities during manual tracing tasks by combining information about distances between branches, branch orientations, intensities, calibers, tortuosities, colors, as well as the presence of spines or boutons. Likewise, to evaluate different topological scenarios automatically, we developed a machine learning approach that combines many of the above mentioned features. A specifically designed confidence measure was used to actively train the algorithm during user-assisted tracing procedure. Active learning significantly reduces the training time and makes it possible to obtain less than 1% generalization error rates by providing few training examples. To evaluate the overall performance of the algorithm a number of image stacks were reconstructed automatically, as well as manually by several trained users, making it possible to compare the automated traces to the baseline inter-user variability. Several geometrical and topological features of the traces were selected for the comparisons. These features include the total trace length, the total numbers of branch and terminal points, the affinity of corresponding traces, and the distances between corresponding branch and terminal points. Our results show that when the density of labeled neurites is sufficiently low, automated traces are not significantly different from manual reconstructions obtained by trained users. PMID:24904306
A pitfall of muting and removing bad traces in surface-wave analysis
NASA Astrophysics Data System (ADS)
Hu, Yue; Xia, Jianghai; Mi, Binbin; Cheng, Feng; Shen, Chao
2018-06-01
Multi-channel analysis of surface/Love wave (MASW/MALW) has been widely used to construct the shallow shear (S)-wave velocity profile. The key step in surface-wave analysis is to generate accurate dispersion energy and pick the dispersive curves for inversion along the peaks of dispersion energy at different frequencies. In near-surface surface-wave acquisition, bad traces are very common and inevitable due to the imperfections in the recording instruments or others. The existence of bad traces will cause some artifacts in the dispersion energy image. To avoid the interference of bad traces on the surface-wave analysis, the bad traces should be alternatively muted (zeroed) or removed (deleted) from the raw surface-wave data before dispersion measurement. Most geophysicists and civil engineers, however, are not aware of the differences and implications between muting and removing of bad traces in surface-wave analysis. A synthetic test and a real-world example demonstrate the potential pitfalls of applying muting and removing on bad traces when using different dispersion-imaging methods. We implement muting and removing on bad traces respectively before dispersion measurement, and compare the influence of the two operations on three dispersion-imaging methods, high-resolution linear Radon transform (HRLRT), f-k transformation, and phase shift method. Results indicate that when using the HRLRT to generate the dispersive energy, muting bad traces will cause an even more complicated and discontinuous dispersive energy. When f-k transformation is utilized to conduct dispersive analysis, bad traces should be muted instead of removed to generate an accurate dispersion image to avoid the uneven sampling problem in the Fourier transform. As for the phase shift method, the difference between the two operations is slight, but we suggest that removal should be chosen because the integral for the phase-shift operator of the zeroed traces would bring in the sloped aliasing. This study provides a pre-process guidance for the real-world surface-wave data processing when the recorded shot gather contains inevitable bad traces.
Leonardi, Giorgio; Striani, Manuel; Quaglini, Silvana; Cavallini, Anna; Montani, Stefania
2018-05-21
Many medical information systems record data about the executed process instances in the form of an event log. In this paper, we present a framework, able to convert actions in the event log into higher level concepts, at different levels of abstraction, on the basis of domain knowledge. Abstracted traces are then provided as an input to trace comparison and semantic process discovery. Our abstraction mechanism is able to manage non trivial situations, such as interleaved actions or delays between two actions that abstract to the same concept. Trace comparison resorts to a similarity metric able to take into account abstraction phase penalties, and to deal with quantitative and qualitative temporal constraints in abstracted traces. As for process discovery, we rely on classical algorithms embedded in the framework ProM, made semantic by the capability of abstracting the actions on the basis of their conceptual meaning. The approach has been tested in stroke care, where we adopted abstraction and trace comparison to cluster event logs of different stroke units, to highlight (in)correct behavior, abstracting from details. We also provide process discovery results, showing how the abstraction mechanism allows to obtain stroke process models more easily interpretable by neurologists. Copyright © 2018. Published by Elsevier Inc.
ERIC Educational Resources Information Center
Gatland, Ian R.
2002-01-01
Proposes a ray tracing approach to thin lens analysis based on a vector form of Snell's law for paraxial rays as an alternative to the usual approach in introductory physics courses. The ray tracing approach accommodates skew rays and thus provides a complete analysis. (Author/KHR)
Badran, M; Morsy, R; Soliman, H; Elnimr, T
2016-01-01
The trace elements metabolism has been reported to possess specific roles in the pathogenesis and progress of diabetes mellitus. Due to the continuous increase in the population of patients with Type 2 diabetes (T2D), this study aims to assess the levels and inter-relationships of fast blood glucose (FBG) and serum trace elements in Type 2 diabetic patients. This study was conducted on 40 Egyptian Type 2 diabetic patients and 36 healthy volunteers (Hospital of Tanta University, Tanta, Egypt). The blood serum was digested and then used to determine the levels of 24 trace elements using an inductive coupled plasma mass spectroscopy (ICP-MS). Multivariate statistical analysis depended on correlation coefficient, cluster analysis (CA) and principal component analysis (PCA), were used to analysis the data. The results exhibited significant changes in FBG and eight of trace elements, Zn, Cu, Se, Fe, Mn, Cr, Mg, and As, levels in the blood serum of Type 2 diabetic patients relative to those of healthy controls. The statistical analyses using multivariate statistical techniques were obvious in the reduction of the experimental variables, and grouping the trace elements in patients into three clusters. The application of PCA revealed a distinct difference in associations of trace elements and their clustering patterns in control and patients group in particular for Mg, Fe, Cu, and Zn that appeared to be the most crucial factors which related with Type 2 diabetes. Therefore, on the basis of this study, the contributors of trace elements content in Type 2 diabetic patients can be determine and specify with correlation relationship and multivariate statistical analysis, which confirm that the alteration of some essential trace metals may play a role in the development of diabetes mellitus. Copyright © 2015 Elsevier GmbH. All rights reserved.
The occurrence and distribution of trace metals in the Mississippi River and its tributaries
Taylor, Howard E.; Garbarino, J.R.; Brinton, T.I.
1990-01-01
Quantitative and semiquantitative analyses of dissolved trace metals are reported for designated sampling sites on the Mississippi River and its main tributaries utilizing depth-integrated and width-integrated sampling technology to collect statistically representative samples. Data are reported for three sampling periods, including: July-August 1987, November-December 1987, and May-June 1988. Concentrations of Al, As, Ba, Be, Cd, Co, Cr, Cu, Fe, Li, Mn, Mo, Pb, Sr, Tl, U, V, and Zn are reported quantitatively, with the remainder of the stable metals in the periodic table reported semiquantitatively. Correlations between As and V, Ba and U, Cu and Zn, Li and Ba, and Li and U are significant at the 99% confidence level for each of the sampling trips. Comparison of the results of this study for selected metals with other published data show generally good agreement for Cr, Cu, Fe, and Zn, moderate agreement for Mo, and poor agreement for Cd and V.
Uemoto, Michihisa; Makino, Masanori; Ota, Yuji; Sakaguchi, Hiromi; Shimizu, Yukari; Sato, Kazuhiro
2018-01-01
Minor and trace metals in aluminum and aluminum alloys have been determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) as an interlaboratory testing toward standardization. The trueness of the measured data was successfully investigated to improve the analytical protocols, using certified reference materials of aluminum. Their precision could also be evaluated, feasible to estimate the uncertainties separately. The accuracy (trueness and precision) of the data were finally in good agreement with the certified values and assigned uncertainties. Repeated measurements of aluminum solutions with different concentrations of the analytes revealed the relative standard deviations of the measurements with concentrations, thus enabling their limits of quantitation. They differed separately and also showed slightly higher values with an aluminum matrix than those without one. In addition, the upper limit of the detectable concentration of silicon with simple acid digestion was estimated to be 0.03 % in the mass fraction.
Rowell, Candace; Kuiper, Nora; Preud'Homme, Hugues
2016-07-01
The knowledge-base of bottled water leachate is highly contradictory due to varying methodologies and limited multi-elemental and/or molecular analyses; understanding the range of contaminants and their pathways is required. This study determined the leaching potential and leaching kinetics of trace elements, using consistent comprehensive quantitative and semi-quantitative (79 elements total) analyses, and BPA, using isotopic dilution and MEPS pre-concentration with UHPLC-ESI-QTOF. Statistical methods were used to determine confounders and predictors of leaching and human health risk throughout 12days of UV exposure and after exposure to elevated temperature. Various types of water were used to assess the impact of water quality. Results suggest Sb leaching is primarily dependent upon water quality, not container type. Bottle type is a predictor of elemental leaching for Pb, Ba, Cr, Cu, Mn and Sr; BPA was detected in samples from polycarbonate containers. Health risks from the consumption of bottled water increase after UV exposure. Copyright © 2016 Elsevier Ltd. All rights reserved.
Paper SERS chromatography for detection of trace analytes in complex samples
NASA Astrophysics Data System (ADS)
Yu, Wei W.; White, Ian M.
2013-05-01
We report the application of paper SERS substrates for the detection of trace quantities of multiple analytes in a complex sample in the form of paper chromatography. Paper chromatography facilitates the separation of different analytes from a complex sample into distinct sections in the chromatogram, which can then be uniquely identified using SERS. As an example, the separation and quantitative detection of heroin in a highly fluorescent mixture is demonstrated. Paper SERS chromatography has obvious applications, including law enforcement, food safety, and border protection, and facilitates the rapid detection of chemical and biological threats at the point of sample.
Method for detecting trace impurities in gases
Freund, Samuel M.; Maier, II, William B.; Holland, Redus F.; Beattie, Willard H.
1981-01-01
A technique for considerably improving the sensitivity and specificity of infrared spectrometry as applied to quantitative determination of trace impurities in various carrier or solvent gases is presented. A gas to be examined for impurities is liquefied and infrared absorption spectra of the liquid are obtained. Spectral simplification and number densities of impurities in the optical path are substantially higher than are obtainable in similar gas-phase analyses. Carbon dioxide impurity (.about.2 ppm) present in commercial Xe and ppm levels of Freon 12 and vinyl chloride added to liquefied air are used to illustrate the method.
Micro-PIXE studies of Lupinus angustifolius L. after treatment of seeds with molybdenum
NASA Astrophysics Data System (ADS)
Przybylowicz, W. J.; Mesjasz-Przybylowicz, J.; Wouters, K.; Vlassak, K.; Combrink, N. J. J.
1997-02-01
An example of nuclear microprobe application in agriculture is presented. The NAC nuclear microprobe was used to determine quantitative elemental distribution of major, minor and trace elements in Lupinus angustifolius L. (Leguminosae) after treatment of seeds with molybdenum. Experiments were performed in order to establish safe concentration levels and sources of Mo in seed treatments. Elemental distributions in Mo-treated plants and in the non-treated control plants were studied in order to explain how Mo causes toxicity. Some specific regions of Mo and other main and trace elements enrichment were identified.
Method for detecting trace impurities in gases
Freund, S.M.; Maier, W.B. II; Holland, R.F.; Beattie, W.H.
A technique for considerably improving the sensitivity and specificity of infrared spectrometry as applied to quantitative determination of trace impurities in various carrier or solvent gases is presented. A gas to be examined for impurities is liquefied and infrared absorption spectra of the liquid are obtained. Spectral simplification and number densities of impurities in the optical path are substantially higher than are obtainable in similar gas-phase analyses. Carbon dioxide impurity (approx. 2 ppM) present in commercial Xe and ppM levels of Freon 12 and vinyl chloride added to liquefied air are used to illustrate the method.
Method and apparatus for detecting and measuring trace impurities in flowing gases
Taylor, Gene W.; Dowdy, Edward J.
1979-01-01
Trace impurities in flowing gases may be detected and measured by a dynamic atomic molecular emission spectrograph utilizing as its energy source the energy transfer reactions of metastable species, atomic or molecular, with the impurities in the flowing gas. An electronically metastable species which maintains a stable afterglow is formed and mixed with the flowing gas in a region downstream from and separate from the region in which the metastable species is formed. Impurity levels are determined quantitatively by the measurement of line and/or band intensity as a function of concentration employing emission spectroscopic techniques.
Fast solar radiation pressure modelling with ray tracing and multiple reflections
NASA Astrophysics Data System (ADS)
Li, Zhen; Ziebart, Marek; Bhattarai, Santosh; Harrison, David; Grey, Stuart
2018-05-01
Physics based SRP (Solar Radiation Pressure) models using ray tracing methods are powerful tools when modelling the forces on complex real world space vehicles. Currently high resolution (1 mm) ray tracing with secondary intersections is done on high performance computers at UCL (University College London). This study introduces the BVH (Bounding Volume Hierarchy) into the ray tracing approach for physics based SRP modelling and makes it possible to run high resolution analysis on personal computers. The ray tracer is both general and efficient enough to cope with the complex shape of satellites and multiple reflections (three or more, with no upper limit). In this study, the traditional ray tracing technique is introduced in the first place and then the BVH is integrated into the ray tracing. Four aspects of the ray tracer were tested for investigating the performance including runtime, accuracy, the effects of multiple reflections and the effects of pixel array resolution.Test results in runtime on GPS IIR and Galileo IOV (In Orbit Validation) satellites show that the BVH can make the force model computation 30-50 times faster. The ray tracer has an absolute accuracy of several nanonewtons by comparing the test results for spheres and planes with the analytical computations. The multiple reflection effects are investigated both in the intersection number and acceleration on GPS IIR, Galileo IOV and Sentinel-1 spacecraft. Considering the number of intersections, the 3rd reflection can capture 99.12 %, 99.14 % , and 91.34 % of the total reflections for GPS IIR, Galileo IOV satellite bus and the Sentinel-1 spacecraft respectively. In terms of the multiple reflection effects on the acceleration, the secondary reflection effect for Galileo IOV satellite and Sentinel-1 can reach 0.2 nm /s2 and 0.4 nm /s2 respectively. The error percentage in the accelerations magnitude results show that the 3rd reflection should be considered in order to make it less than 0.035 % . The pixel array resolution tests show that the dimensions of the components have to be considered when choosing the spacing of the pixel in order not to miss some components of the satellite in ray tracing. This paper presents the first systematic and quantitative study of the secondary and higher order intersection effects. It shows conclusively the effect is non-negligible for certain classes of misson.
Yin, Changhai; Iqbal, Jibran; Hu, Huilian; Liu, Bingxiang; Zhang, Lei; Zhu, Bilin; Du, Yiping
2012-09-30
A simple, sensitive and selective solid phase reflectometry method is proposed for the determination of trace mercury in aqueous samples. The complexation reagent dithizone was firstly injected into the properly buffered solution with vigorous stirring, which started a simultaneous formation of nanoparticles suspension of dithizone and its complexation reaction with the mercury(II) ions to make Hg-dithizone nanoparticles. After a definite time, the mixture was filtered with membrane, and then quantified directly on the surface of the membrane by using integrating sphere accessory of the UV-visible spectrophotometer. The quantitative analysis was carried out at a wavelength of 485 nm since it yielded the largest difference in diffuse reflectance spectra before and after reaction with mercury(II).A good linear correlation in the range of 0.2-4.0 μg/L with a squared correlation coefficient (R(2)) of 0.9944 and a detection limit of 0.12 μg/L were obtained. The accuracy of the method was evaluated by the analysis of spiked mercury(II) concentrations determined using this method along with those determined by the atomic fluorescence mercury vapourmeter and the results obtained were in good agreement. The proposed method was applied to the determination of mercury in tap water and river water samples with the recovery in an acceptable range (95.7-105.3%). Copyright © 2012 Elsevier B.V. All rights reserved.
Quantitative Ultrasound Assessment of Duchenne Muscular Dystrophy Using Edge Detection Analysis.
Koppaka, Sisir; Shklyar, Irina; Rutkove, Seward B; Darras, Basil T; Anthony, Brian W; Zaidman, Craig M; Wu, Jim S
2016-09-01
The purpose of this study was to investigate the ability of quantitative ultrasound (US) using edge detection analysis to assess patients with Duchenne muscular dystrophy (DMD). After Institutional Review Board approval, US examinations with fixed technical parameters were performed unilaterally in 6 muscles (biceps, deltoid, wrist flexors, quadriceps, medial gastrocnemius, and tibialis anterior) in 19 boys with DMD and 21 age-matched control participants. The muscles of interest were outlined by a tracing tool, and the upper third of the muscle was used for analysis. Edge detection values for each muscle were quantified by the Canny edge detection algorithm and then normalized to the number of edge pixels in the muscle region. The edge detection values were extracted at multiple sensitivity thresholds (0.01-0.99) to determine the optimal threshold for distinguishing DMD from normal. Area under the receiver operating curve values were generated for each muscle and averaged across the 6 muscles. The average age in the DMD group was 8.8 years (range, 3.0-14.3 years), and the average age in the control group was 8.7 years (range, 3.4-13.5 years). For edge detection, a Canny threshold of 0.05 provided the best discrimination between DMD and normal (area under the curve, 0.96; 95% confidence interval, 0.84-1.00). According to a Mann-Whitney test, edge detection values were significantly different between DMD and controls (P < .0001). Quantitative US imaging using edge detection can distinguish patients with DMD from healthy controls at low Canny thresholds, at which discrimination of small structures is best. Edge detection by itself or in combination with other tests can potentially serve as a useful biomarker of disease progression and effectiveness of therapy in muscle disorders.
Nakata, Norio; Ohta, Tomoyuki; Nishioka, Makiko; Takeyama, Hiroshi; Toriumi, Yasuo; Kato, Kumiko; Nogi, Hiroko; Kamio, Makiko; Fukuda, Kunihiko
2015-11-01
This study was performed to evaluate the diagnostic utility of quantitative analysis of benign and malignant breast lesions using contrast-enhanced sonography. Contrast-enhanced sonography using the perflubutane-based contrast agent Sonazoid (Daiichi Sankyo, Tokyo, Japan) was performed in 94 pathologically proven palpable breast mass lesions, which could be depicted with B-mode sonography. Quantitative analyses using the time-intensity curve on contrast-enhanced sonography were performed in 5 region of interest (ROI) types (manually traced ROI and circular ROIs of 5, 10, 15, and 20 mm in diameter). The peak signal intensity, initial slope, time to peak, positive enhancement integral, and wash-out ratio were investigated in each ROI. There were significant differences between benign and malignant lesions in the time to peak (P < .05), initial slope (P < .001), and positive enhancement integral (P < .05) for the manual ROI. Significant differences were found between benign and malignant lesions in the time to peak (P < .05) for the 5-mm ROI; the time to peak (P < .05) and initial slope (P< .05) for the 10-mm ROI; absolute values of the peak signal intensity (P< .05), time to peak (P< .01), and initial slope (P< .005) for the 15-mm ROI; and the time to peak (P < .05) and initial slope (P < .05) for the 20-mm ROI. There were no statistically significant differences in any wash-out ratio values for the 5 ROI types. Kinetic analysis using contrast-enhanced sonography is useful for differentiation between benign and malignant breast lesions. © 2015 by the American Institute of Ultrasound in Medicine.
Aomura, Yoko; Kobayashi, Yoshihiko; Miyazawa, Yuzuru; Shimizu, Hideharu
2010-03-12
Rapid analysis of trace permanent gas impurities in high purity ammonia gas for the microelectronics industry is described, using a gas chromatograph equipped with a phtoionization detector. Our system incorporates a reactive precolumn in combination with the analytical column to remove the ammonia matrix peak that otherwise would complicate the measurements due to baseline fluctuations and loss of analytes. The performance of 21 precolumn candidate materials was evaluated. Copper sulfate pentahydrate (CuSO(4).5H(2)O) was shown to selectively react with ammonia at room temperature and atmospheric column pressures, without affecting the hydrogen, oxygen, nitrogen, methane or carbon monoxide peak areas. To prevent loss of trace carbon dioxide, an additional boron trioxide reactant layer was inserted above the copper sulfate pentahydrate bed in the reactive precolumn. Using the combined materials, calibration curves for carbon dioxide proved to be equivalent in both ammonia and helium matrix gases. These curves were equivalent in both matrix gases. The quantitative performance of the system was also evaluated. Peak repeatabilities, based on eight injections, were in the range of 4.1-8.2% relative standard deviation; and detection limits were 6.9 ppb for H(2), 1.8 ppb for O(2), 1.6 ppb for N(2), 6.4 ppb for CH(4), 13 ppb for CO, and 5.4 ppb for CO(2). Copyright (c) 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smentkowski, Vincent S., E-mail: smentkow@ge.com
Changes in the oxidation state of an element can result in significant changes in the ionization efficiency and hence signal intensity during secondary ion mass spectrometry (SIMS) analysis; this is referred to as the SIMS matrix effect [Secondary Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis, edited by R. G. Wilson, F. A. Stevie, and C. W. Magee (Wiley, New York, 1990)]. The SIMS matrix effect complicates quantitative analysis. Quantification of SIMS data requires the determination of relative sensitivity factors (RSFs), which can be used to convert the as measured intensity into concentration units [Secondarymore » Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis, edited by R. G. Wilson, F. A. Stevie, and C. W. Magee (Wiley, New York, 1990)]. In this manuscript, the authors report both: RSFs which were determined for quantification of B in Si and SiO{sub 2} matrices using a dual beam time of flight secondary ion mass spectrometry (ToF-SIMS) instrument and the protocol they are using to provide quantitative ToF-SIMS images and line scan traces. The authors also compare RSF values that were determined using oxygen and Ar ion beams for erosion, discuss the problems that can be encountered when bulk calibration samples are used to determine RSFs, and remind the reader that errors in molecular details of the matrix (density, volume, etc.) that are used to convert from atoms/cm{sup 3} to other concentration units will propagate into errors in the determined concentrations.« less
Visualization and Hierarchical Analysis of Flow in Discrete Fracture Network Models
NASA Astrophysics Data System (ADS)
Aldrich, G. A.; Gable, C. W.; Painter, S. L.; Makedonska, N.; Hamann, B.; Woodring, J.
2013-12-01
Flow and transport in low permeability fractured rock is primary in interconnected fracture networks. Prediction and characterization of flow and transport in fractured rock has important implications in underground repositories for hazardous materials (eg. nuclear and chemical waste), contaminant migration and remediation, groundwater resource management, and hydrocarbon extraction. We have developed methods to explicitly model flow in discrete fracture networks and track flow paths using passive particle tracking algorithms. Visualization and analysis of particle trajectory through the fracture network is important to understanding fracture connectivity, flow patterns, potential contaminant pathways and fast paths through the network. However, occlusion due to the large number of highly tessellated and intersecting fracture polygons preclude the effective use of traditional visualization methods. We would also like quantitative analysis methods to characterize the trajectory of a large number of particle paths. We have solved these problems by defining a hierarchal flow network representing the topology of particle flow through the fracture network. This approach allows us to analyses the flow and the dynamics of the system as a whole. We are able to easily query the flow network, and use paint-and-link style framework to filter the fracture geometry and particle traces based on the flow analytics. This allows us to greatly reduce occlusion while emphasizing salient features such as the principal transport pathways. Examples are shown that demonstrate the methodology and highlight how use of this new method allows quantitative analysis and characterization of flow and transport in a number of representative fracture networks.
Detailed Modeling and Analysis of the CPFM Dataset
NASA Technical Reports Server (NTRS)
Swartz, William H.; Lloyd, Steven A.; DeMajistre, Robert
2004-01-01
A quantitative understanding of photolysis rate coefficients (or "j-values") is essential to determining the photochemical reaction rates that define ozone loss and other crucial processes in the atmosphere. j-Values can be calculated with radiative transfer models, derived from actinic flux observations, or inferred from trace gas measurements. The principal objective of this study is to cross-validate j-values from the Composition and Photodissociative Flux Measurement (CPFM) instrument during the Photochemistry of Ozone Loss in the Arctic Region In Summer (POLARIS) and SAGE I11 Ozone Loss and Validation Experiment (SOLVE) field campaigns with model calculations and other measurements and to use this detailed analysis to improve our ability to determine j-values. Another objective is to analyze the spectral flux from the CPFM (not just the j-values) and, using a multi-wavelength/multi-species spectral fitting technique, determine atmospheric composition.
Approaches to Observe Anthropogenic Aerosol-Cloud Interactions.
Quaas, Johannes
Anthropogenic aerosol particles exert an-quantitatively very uncertain-effective radiative forcing due to aerosol-cloud interactions via an immediate altering of cloud albedo on the one hand and via rapid adjustments by alteration of cloud processes and by changes in thermodynamic profiles on the other hand. Large variability in cloud cover and properties and the therefore low signal-to-noise ratio for aerosol-induced perturbations hamper the identification of effects in observations. Six approaches are discussed as a means to isolate the impact of anthropogenic aerosol on clouds from natural cloud variability to estimate or constrain the effective forcing. These are (i) intentional cloud modification, (ii) ship tracks, (iii) differences between the hemispheres, (iv) trace gases, (v) weekly cycles and (vi) trends. Ship track analysis is recommendable for detailed process understanding, and the analysis of weekly cycles and long-term trends is most promising to derive estimates or constraints on the effective radiative forcing.
Cagliero, Cecilia; Ho, Tien D; Zhang, Cheng; Bicchi, Carlo; Anderson, Jared L
2016-06-03
This study describes a simple and rapid sampling method employing a polymeric ionic liquid (PIL) sorbent coating in direct immersion solid-phase microextraction (SPME) for the trace-level analysis of acrylamide in brewed coffee and coffee powder. The crosslinked PIL sorbent coating demonstrated superior sensitivity in the extraction of acrylamide compared to all commercially available SPME coatings. A spin coating method was developed to evenly distribute the PIL coating on the SPME support and reproducibly produce fibers with a large film thickness. Ninhydrin was employed as a quenching reagent during extraction to inhibit the production of interfering acrylamide. The PIL fiber produced a limit of quantitation for acrylamide of 10μgL(-1) and achieved comparable results to the ISO method in the analysis of six coffee powder samples. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maruthi, Y. A., E-mail: ymjournal2014@gmail.com; Das, N. Lakshmana, E-mail: nldas9@gmail.com; Ramprasad, S., E-mail: ramprasadsurakala@gmail.com
The present studies focus the quantitative analysis of elements in school chalk to ensure the safety of its use. The elements like Calcium (Ca), Aluminum (Al), Iron (Fe), Silicon (Si) and Chromium (Cr) were analyzed from settled chalk dust samples collected from five classrooms (CD-1) and also from another set of unused chalk samples collected from local market (CD-2) using Energy Dispersive X-Ray florescence(ED-XRF) spectroscopy. Presence of these elements in significant concentrations in school chalk confirmed that, it is an irritant and occupational hazard. It is suggested to use protective equipments like filtered mask for mouth, nose and chalk holders.more » This study also suggested using the advanced mode of techniques like Digital boards, marker boards and power point presentations to mitigate the occupational hazard for classroom chalk.« less
Fernandez, Mario; Marot, M.E.; Holmes, C.W.
1999-01-01
This report summarizes a reconnaissance study, conducted July 20-30, 1998, of chemical and physical characteristics of recently deposited bottom sediments in the Caloosahatchee River and Estuary. Recently deposited sediments were identified using an isotopic chronometer, Beryllium-7 (7Be), a short-lived radioisotope. Fifty-nine sites were sampled in an area that encompasses the Caloosahatchee River (River) about three miles upstream from the Franklin Lock (S-79), the entire tidally affected length of the river (estuary), and the contiguous water bodies of Matlacha Pass, San Carlos Bay, Estero Bay, Tarpon Bay, and Pine Island Sound in Lee County, Florida. Bottom sediments were sampled for 7Be at 59 sites. From the results of the 7Be analysis, 30 sites were selected for physical and chemical analysis. Sediments were analyzed for particle size, total organic carbon (TOC), trace elements, and toxic organic compounds, using semiquantitative methods for trace elements and organic compounds. The semiquantitative scans of trace elements indicated that cadmium, copper, lead, and zinc concentrations, when normalized to aluminum, were above the natural background range at 24 of 30 sites. Particle size and TOC were used to characterize sediment deposition patterns and organic content. Pesticides, polychlorinated biphenyls (PCBs), and carcinogenic polycyclic aromatic hydrocarbons (CaPAHs) were determined at 30 sites using immunoassay analysis. The semiquantitative immunoassay analyses of toxic organic compounds indicated that all of the samples contained DDT, cyclodienes as chlordane (pesticides), and CaPAHs. PCBs were not detected. Based on analyses of the 30 sites, sediments at 10 of these sites were analyzed for selected trace elements and toxic organic compounds, including pesticides, PCBs, and PAHs, using quantitative laboratory procedures. No arsenic or cadmium was detected. Zinc was detected at two sites with concentrations greater than the lower limit of the range of sediment contaminant concentrations that are usually or always associated with adverse effects (Florida Department of Environmental Protection's Sediment Quality Assessment Guidelines). Organochlorine pesticides were detected at four sites at concentrations below the reporting limits; there were no organophosphorus pesticides or PCBs detected. PAHs were detected at eight sites; however, only four sites had concentrations above the reporting limit.
TraceContract: A Scala DSL for Trace Analysis
NASA Technical Reports Server (NTRS)
Barringer, Howard; Havelund, Klaus
2011-01-01
In this paper we describe TRACECONTRACT, an API for trace analysis, implemented in the SCALA programming language. We argue that for certain forms of trace analysis the best weapon is a high level programming language augmented with constructs for temporal reasoning. A trace is a sequence of events, which may for example be generated by a running program, instrumented appropriately to generate events. The API supports writing properties in a notation that combines an advanced form of data parameterized state machines with temporal logic. The implementation utilizes SCALA's support for defining internal Domain Specific Languages (DSLs). Furthermore SCALA's combination of object oriented and functional programming features, including partial functions and pattern matching, makes it an ideal host language for such an API.
The SNPforID Assay as a Supplementary Method in Kinship and Trace Analysis
Schwark, Thorsten; Meyer, Patrick; Harder, Melanie; Modrow, Jan-Hendrick; von Wurmb-Schwark, Nicole
2012-01-01
Objective Short tandem repeat (STR) analysis using commercial multiplex PCR kits is the method of choice for kinship testing and trace analysis. However, under certain circumstances (deficiency testing, mutations, minute DNA amounts), STRs alone may not suffice. Methods We present a 50-plex single nucleotide polymorphism (SNP) assay based on the SNPs chosen by the SNPforID consortium as an additional method for paternity and for trace analysis. The new assay was applied to selected routine paternity and trace cases from our laboratory. Results and Conclusions Our investigation shows that the new SNP multiplex assay is a valuable method to supplement STR analysis, and is a powerful means to solve complicated genetic analyses. PMID:22851934
Improved EPMA Trace Element Accuracy Using a Matrix Iterated Quantitative Blank Correction
NASA Astrophysics Data System (ADS)
Donovan, J. J.; Wark, D. A.; Jercinovic, M. J.
2007-12-01
At trace element levels below several hundred PPM, accuracy is more often the limiting factor for EPMA quantification rather than precision. Modern EPMA instruments equipped with low noise detectors, counting electronics and large area analyzing crystals can now routinely achieve sensitivities for most elements in the 10 to 100 PPM levels (or even lower). But due to various sample and instrumental artifacts in the x-ray continuum, absolute accuracy is often the limiting factor for ultra trace element quantification. These artifacts have various mechanisms, but are usually attributed to sample artifacts (e.g., sample matrix absorption edges)1, detector artifacts (e.g., Ar or Xe absorption edges) 2 and analyzing crystal artifacts (extended peak tails preventing accurate determination of the true background and ¡§negative peaks¡¨ or ¡§holes¡¨ in the x-ray continuum). The latter being first described3 by Self, et al. and recently documented for the Ti kÑ in quartz geo-thermometer. 4 Ti (ka) Ti (ka) Ti (ka) Ti (ka) Ti (ka) Si () O () Total Average: -.00146 -.00031 -.00180 .00013 .00240 46.7430 53.2563 99.9983 Std Dev: .00069 .00075 .00036 .00190 .00117 .00000 .00168 .00419 The general magnitude of these artifacts can be seen in the above analyses of Ti ka in a synthetic quartz standard. The values for each spectrometer/crystal vary systematically from ¡V18 PPM to + 24 PPM. The exact mechanism for these continuum ¡§holes¡¨ is not known but may be related to secondary lattice diffraction occurring at certain Bragg angles depending on crystal mounting orientation for non-isometric analyzing crystals5. These x-ray continuum artifacts can produce systematic errors at levels up to 100 PPM or more depending on the particular analytical situation. In order to correct for these inaccuracies, a ¡§blank¡¨ correction has been developed that applies a quantitative correction to the measured x-ray intensities during the matrix iteration, by calculating the intensity contribution from the systematic quantitative offset from a known (usually zero level) blank standard. Preliminary results from this new matrix iterated trace element blank correction demonstrate that systematic errors can be reduced to single digit PPM levels for many situations. 1B.W. Robinson, N.G. Ware and D.G.W. Smith, 1998. "Modern Electron-Microprobe Trace-Element Analysis in Mineralogy". In Cabri, L.J. and Vaughan, D.J., Eds. "Modern Approaches to Ore and Environmental Mineralogy", Short Course 27. Mineralogical Association of Canada, Ottawa 153-180 2Remond, G., Myklebust, R. Fialin, M. Nockolds, C. Phillips, M. Roques-Carmes, C. ¡§Decomposition of Wavelength Dispersive X-ray Spectra¡¨, Journal of Research of the National Institute of Standards and Technology (J. Res. Natl. Inst. Stand. Technol., v. 107, 509-529 (2002) 3Self, P.G., Norrish, K., Milnes, A.R., Graham, J. & Robinson, B.W. (1990): Holes in the Background in XRS. X-ray Spectrom. 19 (2), 59-61 4Wark, DA, and Watson, EB, 2006, TitaniQ: A Titanium-in-Quartz geothermometer: Contributions to Mineralogy and Petrology, 152:743-754, doi: 10.1007/s00410-006-0132-308
Surface analysis of space telescope material specimens
NASA Technical Reports Server (NTRS)
Fromhold, A. T.; Daneshvar, K.
1985-01-01
Qualitative and quantitative data on Space Telescope materials which were exposed to low Earth orbital atomic oxygen in a controlled experiment during the 41-G (STS-17) mission were obtained utilizing the experimental techniques of Rutherford backscattering (RBS), particle induced X-ray emission (PIXE), and ellipsometry (ELL). The techniques employed were chosen with a view towards appropriateness for the sample in question, after consultation with NASA scientific personnel who provided the material specimens. A group of eight samples and their controls selected by NASA scientists were measured before and after flight. Information reported herein include specimen surface characterization by ellipsometry techniques, a determination of the thickness of the evaporated metal specimens by RBS, and a determination of trace impurity species present on and within the surface by PIXE.
A method to extract soil water for stable isotope analysis
Revesz, K.; Woods, P.H.
1990-01-01
A method has been developed to extract soil water for determination of deuterium (D) and 18O content. The principle of this method is based on the observation that water and toluene form an azeotropic mixture at 84.1??C, but are completely immiscible at ambient temperature. In a specially designed distillation apparatus, the soil water is distilled at 84.1??C with toluene and is separated quantitatively in the collecting funnel at ambient temperature. Traces of toluene are removed and the sample can be analyzed by mass spectrometry. Kerosene may be substituted for toluene. The accuracy of this technique is ?? 2 and ?? 0.2???, respectively, for ??D and ??18O. Reduced accuracy is obtained at low water contents. ?? 1990.
The optical design and simulation of the collimated solar simulator
NASA Astrophysics Data System (ADS)
Zhang, Jun; Ma, Tao
2018-01-01
The solar simulator is a lighting device that can simulate the solar radiation. It has been widely used in the testing of solar cells, satellite space environment simulation and ground experiment, test and calibration precision of solar sensor. The solar simulator mainly consisted of short—arc xenon lamp, ellipsoidal reflectors, a group of optical integrator, field stop, aspheric folding mirror and collimating reflector. In this paper, the solar simulator's optical system basic size are given by calculation. Then the system is optically modeled with the Lighttools software, and the simulation analysis on solar simulator using the Monte Carlo ray -tracing technique is conducted. Finally, the simulation results are given quantitatively by diagrammatic form. The rationality of the design is verified on the basis of theory.
Johler, S; Zurfluh, K; Stephan, R
2016-05-01
Staphylococcal food poisoning is one of the most prevalent causes of foodborne intoxication worldwide. It is caused by ingestion of enterotoxins formed by Staphylococcus aureus during growth in the food matrix. Following a recall of barbecue cheese due to the detection of staphylococcal enterotoxins in Switzerland in July 2015, we analyzed the production process of the respective dairy. Although most cheese-making processes involve acidification to inhibit the growth of pathogenic bacteria, barbecue cheese has to maintain a pH >6.0 to prevent undesired melting of the cheese. In addition, the dairy decided to retain the traditional manual production process of the barbecue cheese. In this study, therefore, we aimed to (1) trace Staph. aureus along the barbecue cheese production process, and (2) develop a sustainable strategy to inhibit growth of Staph. aureus and decrease the risk of staphylococcal food poisoning without changing the traditional production process. To this end, we traced Staph. aureus in a step-wise blinded process analysis on 4 different production days using spa (Staphylococcus protein A gene) typing, DNA microarray profiling, and pulsed-field gel electrophoresis analysis. We subsequently selected a new starter culture and used a model cheese production including a challenge test assay to assess its antagonistic effect on Staph. aureus growth, as well as its sensory and technological implications. We detected Staph. aureus in 30% (37/124) of the collected samples taken from the barbecue cheese production at the dairy. This included detection of Staph. aureus in the final product on all 4 production days, either after enrichment or using quantitative detection. We traced 2 enterotoxigenic Staph. aureus strains (t073/CC45 and t282/CC45) colonizing the nasal cavity and the forearms of the cheesemakers to the final product. In the challenge test assay, we were able to show that the new starter culture inhibited growth of Staph. aureus while meeting the sensory and technological requirements of barbecue cheese production. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Becker, Johanna Sabine
2002-12-01
Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) have been applied as the most important inorganic mass spectrometric techniques having multielemental capability for the characterization of solid samples in materials science. ICP-MS is used for the sensitive determination of trace and ultratrace elements in digested solutions of solid samples or of process chemicals (ultrapure water, acids and organic solutions) for the semiconductor industry with detection limits down to sub-picogram per liter levels. Whereas ICP-MS on solid samples (e.g. high-purity ceramics) sometimes requires time-consuming sample preparation for its application in materials science, and the risk of contamination is a serious drawback, a fast, direct determination of trace elements in solid materials without any sample preparation by LA-ICP-MS is possible. The detection limits for the direct analysis of solid samples by LA-ICP-MS have been determined for many elements down to the nanogram per gram range. A deterioration of detection limits was observed for elements where interferences with polyatomic ions occur. The inherent interference problem can often be solved by applying a double-focusing sector field mass spectrometer at higher mass resolution or by collision-induced reactions of polyatomic ions with a collision gas using an ICP-MS fitted with collision cell. The main problem of LA-ICP-MS is quantification if no suitable standard reference materials with a similar matrix composition are available. The calibration problem in LA-ICP-MS can be solved using on-line solution-based calibration, and different procedures, such as external calibration and standard addition, have been discussed with respect to their application in materials science. The application of isotope dilution in solution-based calibration for trace metal determination in small amounts of noble metals has been developed as a new calibration strategy. This review discusses new analytical developments and possible applications of ICP-MS and LA-ICP-MS for the quantitative determination of trace elements and in surface analysis for materials science.
Quantitative Modelling of Trace Elements in Hard Coal.
Smoliński, Adam; Howaniec, Natalia
2016-01-01
The significance of coal in the world economy remains unquestionable for decades. It is also expected to be the dominant fossil fuel in the foreseeable future. The increased awareness of sustainable development reflected in the relevant regulations implies, however, the need for the development and implementation of clean coal technologies on the one hand, and adequate analytical tools on the other. The paper presents the application of the quantitative Partial Least Squares method in modeling the concentrations of trace elements (As, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Rb, Sr, V and Zn) in hard coal based on the physical and chemical parameters of coal, and coal ash components. The study was focused on trace elements potentially hazardous to the environment when emitted from coal processing systems. The studied data included 24 parameters determined for 132 coal samples provided by 17 coal mines of the Upper Silesian Coal Basin, Poland. Since the data set contained outliers, the construction of robust Partial Least Squares models for contaminated data set and the correct identification of outlying objects based on the robust scales were required. These enabled the development of the correct Partial Least Squares models, characterized by good fit and prediction abilities. The root mean square error was below 10% for all except for one the final Partial Least Squares models constructed, and the prediction error (root mean square error of cross-validation) exceeded 10% only for three models constructed. The study is of both cognitive and applicative importance. It presents the unique application of the chemometric methods of data exploration in modeling the content of trace elements in coal. In this way it contributes to the development of useful tools of coal quality assessment.
Griffiths, Alexander M.; Lambelet, Myriam; Little, Susan H.; Stichel, Torben; Wilson, David J.
2016-01-01
The neodymium (Nd) isotopic composition of seawater has been used extensively to reconstruct ocean circulation on a variety of time scales. However, dissolved neodymium concentrations and isotopes do not always behave conservatively, and quantitative deconvolution of this non-conservative component can be used to detect trace metal inputs and isotopic exchange at ocean–sediment interfaces. In order to facilitate such comparisons for historical datasets, we here provide an extended global database for Nd isotopes and concentrations in the context of hydrography and nutrients. Since 2010, combined datasets for a large range of trace elements and isotopes are collected on international GEOTRACES section cruises, alongside classical nutrient and hydrography measurements. Here, we take a first step towards exploiting these datasets by comparing high-resolution Nd sections for the western and eastern North Atlantic in the context of hydrography, nutrients and aluminium (Al) concentrations. Evaluating those data in tracer–tracer space reveals that North Atlantic seawater Nd isotopes and concentrations generally follow the patterns of advection, as do Al concentrations. Deviations from water mass mixing are observed locally, associated with the addition or removal of trace metals in benthic nepheloid layers, exchange with ocean margins (i.e. boundary exchange) and/or exchange with particulate phases (i.e. reversible scavenging). We emphasize that the complexity of some of the new datasets cautions against a quantitative interpretation of individual palaeo Nd isotope records, and indicates the importance of spatial reconstructions for a more balanced approach to deciphering past ocean changes. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035258
Quantitative Modelling of Trace Elements in Hard Coal
Smoliński, Adam; Howaniec, Natalia
2016-01-01
The significance of coal in the world economy remains unquestionable for decades. It is also expected to be the dominant fossil fuel in the foreseeable future. The increased awareness of sustainable development reflected in the relevant regulations implies, however, the need for the development and implementation of clean coal technologies on the one hand, and adequate analytical tools on the other. The paper presents the application of the quantitative Partial Least Squares method in modeling the concentrations of trace elements (As, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Rb, Sr, V and Zn) in hard coal based on the physical and chemical parameters of coal, and coal ash components. The study was focused on trace elements potentially hazardous to the environment when emitted from coal processing systems. The studied data included 24 parameters determined for 132 coal samples provided by 17 coal mines of the Upper Silesian Coal Basin, Poland. Since the data set contained outliers, the construction of robust Partial Least Squares models for contaminated data set and the correct identification of outlying objects based on the robust scales were required. These enabled the development of the correct Partial Least Squares models, characterized by good fit and prediction abilities. The root mean square error was below 10% for all except for one the final Partial Least Squares models constructed, and the prediction error (root mean square error of cross–validation) exceeded 10% only for three models constructed. The study is of both cognitive and applicative importance. It presents the unique application of the chemometric methods of data exploration in modeling the content of trace elements in coal. In this way it contributes to the development of useful tools of coal quality assessment. PMID:27438794
NASA Astrophysics Data System (ADS)
Dippold, Michaela; Apostel, Carolin; Dijkstra, Paul; Kuzyakov, Yakov
2017-04-01
Understanding soil and sedimentary organic matter (SOM) dynamics is one of the most important challenges in biogeoscience. To disentangle the fluxes and transformations of C in soils a detailed knowledge on the biochemical pathways and its controlling factors is required. Biogeochemists' view on the C transformation of microorganisms in soil has rarely exceed a strongly simplified concept assuming that C gets either oxidized to CO2 via the microbial catabolism or incorporated into biomass via the microbial anabolism. Biochemists, however, thoroughly identified in the past decades the individual reactions of glycolysis, pentose-phosphate pathway and citric acid cycle underlying the microbial catabolism. At various points within that metabolic network the anabolic fluxes feeding biomass formation branch off. Recent studies on metabolic flux tracing by position-specific isotope labeling allowed tracing these C transformations in soils in situ, an approach which is qunatitatively complemented by metabolic flux modeling. This approach has reached new impact by the cutting-edge combination of position-specific 13C labeling with compound-specific isotope analysis of microbial biomarkers and metabolites which allows 1) tracing specific anabolic pathways in diverse microbial communities in soils and 2) identification of specific pathways of individual functional microbial groups. Thus, the combination of position-specific labeling, compound-specific isotope incorporation in biomarkers and quantitative metabolic flux modelling provide the toolbox for quantitative soil fluxomics. Our studies combining position-specific labeled glucose with amino sugar 13C analysis showed that up to 55% of glucose, incorporated into the glucose derivative glucosamine, first passed glycolysis before allocated back via gluconeogenesis. Similarly, glutamate-derived C is allocated via anaplerotic pathways towards fatty acid synthesis and in parallel to its oxidation in citric acid cycle. Thus, oxidizing catabolic pathways and anabolic pathways, i.e. building-up new cellular compounds, occurred in soils simultaneously, a combination unlikely to occur in pure cultures, where constant growth conditions under high C supply allow a straight unidirectional regulation of C metabolism. However, unstable environmental conditions, C scarcity and interactions between a still unknown diversity of microorganisms in soils are likely to induce the observed metabolic diversity. Coupling these results with the position-specific fingerprint of microbial biomarkers revealed that microbial groups show deviating adaptation strategies and that they react on environmental changes by activation or deactivation of specific metabolic pathways such as anaplerotic fluxes. To understand how microorganisms catalyze the biogeochemical fluxes in soil a profound understanding of their metabolic adaptation strategies such as recycling or switching between pathways is crucial. Metabolic flux models adapted to soil microbial communities and their regulatory strategies will not only deepen our understanding on the microorganims' reactions to environmental changes but also create the prerequisits for a quantitative prediction of biogeochemical fluxes based on the underlying microbial processes.
NASA Astrophysics Data System (ADS)
Bernhardt, E. S.; Helton, A. M.; Morse, J. L.; Poole, G. C.
2013-12-01
Wetlands are the dominant natural source of methane to the global atmosphere and can be important sites of either N2O emission or consumption. Changes in the spatial extent or inundation frequency and duration may lead to substantial shifts in the contribution of wetland ecosystems to global CH4 and N2O emissions. Trace gases are produced at the scale of individual microbes, each of which respond dynamically to the local availability of electron donors and acceptors. Within landscape patches, substrate supply and redox conditions are strongly controlled by variation in water table elevation and vertical hydrologic exchange. At the landscape scale, lateral exchange between patches and the extent and duration of inundation. Accurate estimates of trace gas emissions from wetlands are hard to estimate given the dynamic patterns of redox potential within the soil column and across the landscape that redistribute electron donors and acceptors both vertically and laterally. In five years of trace gas flux measurement and modeling at TOWER, a 440 ha restored wetland in coastal NC, we have developed both simulation and statistical models to estimate landscape level trace gas fluxes. Yet, because trace gas emissions are highly variable in both time and space, our qualitative and quantitative attempts at upscaling trace gas emissions typically generate estimates with extremely high uncertainty. In this talk we will explore the challenges inherent to the estimation of landscape scale trace gas fluxes at the scale of our individual ecosystem as well as the difficulties in extrapolating across multiple ecosystem studies.
Composition-explicit distillation curves of aviation fuel JP-8 and a coal-based jet fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beverly L. Smith; Thomas J. Bruno
2007-09-15
We have recently introduced several important improvements in the measurement of distillation curves for complex fluids. The modifications to the classical measurement provide for (1) a composition explicit data channel for each distillate fraction (for both qualitative and quantitative analysis); (2) temperature measurements that are true thermodynamic state points; (3) temperature, volume, and pressure measurements of low uncertainty suitable for an equation of state development; (4) consistency with a century of historical data; (5) an assessment of the energy content of each distillate fraction; (6) a trace chemical analysis of each distillate fraction; and (7) a corrosivity assessment of eachmore » distillate fraction. The most significant modification is achieved with a new sampling approach that allows precise qualitative as well as quantitative analyses of each fraction, on the fly. We have applied the new method to the measurement of rocket propellant, gasoline, and jet fuels. In this paper, we present the application of the technique to representative batches of the military aviation fuel JP-8, and also to a coal-derived fuel developed as a potential substitute. We present not only the distillation curves but also a chemical characterization of each fraction and discuss the contrasts between the two fluids. 26 refs., 5 figs., 6 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haroldsen, P.E.; Gaskell, S.J.; Weintraub, S.T.
1991-04-01
One approach to the quantitative analysis of platelet activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycerol-3-phosphocholine; also referred to as AGEPC, alkyl glyceryl ether phosphocholine) is hydrolytic removal of the phosphocholine group and conversion to an electron-capturing derivative for gas chromatography-negative ion mass spectrometry. (2H3)Acetyl-AGEPC has been commonly employed as an internal standard. When 1-hexadecyl-2-(2H3)acetyl glycerol (obtained by enzymatic hydrolysis of (2H3)-C16:0 AGEPC) is treated with pentafluorobenzoyl chloride at 120 degrees C, the resulting 3-pentafluorobenzoate derivative shows extensive loss of the deuterium label. This exchange is evidently acid-catalyzed since derivatization of 1-hexadecyl-2-acetyl glycerol under the same conditions in the presence of a trace ofmore » 2HCl results in the incorporation of up to three deuterium atoms. Isotope exchange can be avoided if the reaction is carried out at low temperature in the presence of base. Direct derivatization of (2H3)-C16:0 AGEPC by treatment with pentafluorobenzoyl chloride or heptafluorobutyric anhydride also results in loss of the deuterium label. The use of (13C2)-C16:0 AGEPC as an internal standard is recommended for rigorous quantitative analysis.« less
Quantitative analysis of biomedical samples using synchrotron radiation microbeams
NASA Astrophysics Data System (ADS)
Ektessabi, Ali; Shikine, Shunsuke; Yoshida, Sohei
2001-07-01
X-ray fluorescence (XRF) using a synchrotron radiation (SR) microbeam was applied to investigate distributions and concentrations of elements in single neurons of patients with neurodegenerative diseases. In this paper we introduce a computer code that has been developed to quantify the trace elements and matrix elements at the single cell level. This computer code has been used in studies of several important neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and parkinsonism-dementia complex (PDC), as well as in basic biological experiments to determine the elemental changes in cells due to incorporation of foreign metal elements. The substantial nigra (SN) tissue obtained from the autopsy specimens of patients with Guamanian parkinsonism-dementia complex (PDC) and control cases were examined. Quantitative XRF analysis showed that neuromelanin granules of Parkinsonian SN contained higher levels of Fe than those of the control. The concentrations were in the ranges of 2300-3100 ppm and 2000-2400 ppm respectively. On the contrary, Zn and Ni in neuromelanin granules of SN tissue from the PDC case were lower than those of the control. Especially Zn was less than 40 ppm in SN tissue from the PDC case while it was 560-810 ppm in the control. These changes are considered to be closely related to the neuro-degeneration and cell death.
Xie, Yingying; Lu, Guining; Yang, Chengfang; Qu, Lu; Chen, Meiqin; Guo, Chuling; Dang, Zhi
2018-01-01
Trace-element concentrations in acid mine drainage (AMD) are primarily controlled by the mineralogy at the sediment-water interface. Results are presented for a combined geochemical and mineralogical survey of Dabaoshan Mine, South China. Developed sequential extraction experiments with the analysis of the main mineralogical phases by semi-quantitative XRD, differential X-ray diffraction (DXRD) and scanning electron microscopy (SEM) were conducted to identify the quantitative relationship between iron minerals and heavy metals. Results showed that schwertmannite, jarosite, goethite and ferrihydrite were the dominant Fe-oxyhydroxide minerals which were detected alternately in the surface sediment with the increasing pH from 2.50 to 6.93 along the Hengshi River. Decreasing contents of schwertmannite ranging from 35 wt % to 6.5 wt % were detected along the Hengshi River, which was corresponding to the decreasing metal contents. The easily reducible fractions exert higher affinity of metals while compared with reducible and relatively stable minerals. A qualitative analysis of heavy metals extracted from the sediments indicated that the retention ability varied: Pb > Mn > Zn > As ≈ Cu > Cr > Cd ≈ Ni. Results in this study are avail for understanding the fate and transport of heavy metals associated with iron minerals and establishing the remediation strategies of AMD systems.
Xie, Yingying; Yang, Chengfang; Qu, Lu; Chen, Meiqin; Guo, Chuling; Dang, Zhi
2018-01-01
Trace-element concentrations in acid mine drainage (AMD) are primarily controlled by the mineralogy at the sediment-water interface. Results are presented for a combined geochemical and mineralogical survey of Dabaoshan Mine, South China. Developed sequential extraction experiments with the analysis of the main mineralogical phases by semi-quantitative XRD, differential X-ray diffraction (DXRD) and scanning electron microscopy (SEM) were conducted to identify the quantitative relationship between iron minerals and heavy metals. Results showed that schwertmannite, jarosite, goethite and ferrihydrite were the dominant Fe-oxyhydroxide minerals which were detected alternately in the surface sediment with the increasing pH from 2.50 to 6.93 along the Hengshi River. Decreasing contents of schwertmannite ranging from 35 wt % to 6.5 wt % were detected along the Hengshi River, which was corresponding to the decreasing metal contents. The easily reducible fractions exert higher affinity of metals while compared with reducible and relatively stable minerals. A qualitative analysis of heavy metals extracted from the sediments indicated that the retention ability varied: Pb > Mn > Zn > As ≈ Cu > Cr > Cd ≈ Ni. Results in this study are avail for understanding the fate and transport of heavy metals associated with iron minerals and establishing the remediation strategies of AMD systems. PMID:29304091
Gaspari, Marco; Chiesa, Luca; Nicastri, Annalisa; Gabriele, Caterina; Harper, Valeria; Britti, Domenico; Cuda, Giovanni; Procopio, Antonio
2016-12-06
The ability of tandem mass spectrometry to determine the primary structure of proteolytic peptides can be exploited to trace back the organisms from which the corresponding proteins were extracted. This information can be important when food products, such as protein powders, can be supplemented with lower-quality starting materials. In order to dissect the origin of proteinaceous material composing a given unknown mixture, a two-step database search strategy for bottom-up nanoscale liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) data was implemented. A single nanoLC-MS/MS analysis was sufficient not only to determine the qualitative composition of the mixtures under examination, but also to assess the relative percent composition of the various proteomes, if dedicated calibration curves were previously generated. The approach of two-step database search for qualitative analysis and proteome total ion current (pTIC) calculation for quantitative analysis was applied to several binary and ternary mixtures which mimic the composition of milk replacers typically used in calf feeding.
A novel fast ion chromatographic method for the analysis of fluoride in Antarctic snow and ice.
Severi, Mirko; Becagli, Silvia; Frosini, Daniele; Marconi, Miriam; Traversi, Rita; Udisti, Roberto
2014-01-01
Ice cores are widely used to reconstruct past changes of the climate system. For instance, the ice core record of numerous water-soluble and insoluble chemical species that are trapped in snow and ice offer the possibility to investigate past changes of various key compounds present in the atmosphere (i.e., aerosol, reactive gases). We developed a new method for the quantitative determination of fluoride in ice cores at sub-μg L(-1) levels by coupling a flow injection analysis technique with a fast ion chromatography separation based on the "heart cut" column switching technology. Sensitivity, linear range (up to 60 μg L(-1)), reproducibility, and detection limit (0.02 μg L(-1)) were evaluated for the new method. This method was successfully applied to the analysis of fluoride at trace levels in more than 450 recent snow samples collected during the 1998-1999 International Trans-Antarctica Scientific Expedition traverse in East Antarctica at sites located between 170 and 850 km from the coastline.
NASA Astrophysics Data System (ADS)
Pedarnig, Johannes D.
2010-10-01
New results of the Linz group on pulsed—laser deposition (PLD) of oxide thin films and on laser—induced breakdown spectroscopy (LIBS) of multi-element materials are reported. High-Tc superconducting (HTS) films with enhanced critical current density Jc are produced by laser ablation of novel nano-composite ceramic targets. The targets contain insulating nano-particles that are embedded into the YBa2Cu3O7 matrix. Epitaxial double-layers of lithium-doped and aluminum-doped ZnO are deposited on r-cut sapphire substrates. Acoustic over-modes in the GHz range are excited by piezoelectric actuation of layers. Smooth films of rare-earth doped glass are produced by F2—laser ablation. The transport properties of HTS thin films are modified by light—ion irradiation. Thin film nano—patterning is achieved by masked ion beam irradiation. LIBS is employed to analyze trace elements in industrial iron oxide powder and reference polymer materials. Various trace elements of ppm concentration are measured in the UV/VIS and vacuum-UV spectral range. Quantitative LIBS analysis of major components in oxide materials is performed by calibration-free methods.
How infants' reaches reveal principles of sensorimotor decision making
NASA Astrophysics Data System (ADS)
Dineva, Evelina; Schöner, Gregor
2018-01-01
In Piaget's classical A-not-B-task, infants repeatedly make a sensorimotor decision to reach to one of two cued targets. Perseverative errors are induced by switching the cue from A to B, while spontaneous errors are unsolicited reaches to B when only A is cued. We argue that theoretical accounts of sensorimotor decision-making fail to address how motor decisions leave a memory trace that may impact future sensorimotor decisions. Instead, in extant neural models, perseveration is caused solely by the history of stimulation. We present a neural dynamic model of sensorimotor decision-making within the framework of Dynamic Field Theory, in which a dynamic instability amplifies fluctuations in neural activation into macroscopic, stable neural activation states that leave memory traces. The model predicts perseveration, but also a tendency to repeat spontaneous errors. To test the account, we pool data from several A-not-B experiments. A conditional probabilities analysis accounts quantitatively how motor decisions depend on the history of reaching. The results provide evidence for the interdependence among subsequent reaching decisions that is explained by the model, showing that by amplifying small differences in activation and affecting learning, decisions have consequences beyond the individual behavioural act.
Calabrese, S; D'Alessandro, W; Bellomo, S; Brusca, L; Martin, R S; Saiano, F; Parello, F
2015-01-01
Active biomonitoring using moss-bags was applied to an active volcanic environment for the first time. Bioaccumulation originating from atmospheric deposition was evaluated by exposing mixtures of washed and air-dried mosses (Sphagnum species) at 24 sites on Mt. Etna volcano (Italy). Concentrations of major and a large suite of trace elements were analysed by inductively coupled mass and optical spectrometry (ICP-MS and ICP-OES) after total acid digestion. Of the 49 elements analysed those which closely reflect summit volcanic emissions were S, Tl, Bi, Se, Cd, As, Cu, B, Na, Fe, Al. Enrichment factors and cluster analysis allowed clear distinction between volcanogenic, geogenic and anthropogenic inputs that affect the local atmospheric deposition. This study demonstrates that active biomonitoring with moss-bags is a suitable and robust technique for implementing inexpensive monitoring in scarcely accessible and harsh volcanic environments, giving time-averaged quantitative results of the local exposure to volcanic emissions. This task is especially important in the study area because the summit area of Mt. Etna is visited by nearly one hundred thousand tourists each year who are exposed to potentially harmful volcanic emissions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Martins, Cassio Henrique Taques; Assunção, Catarina De Marchi
2018-01-01
It is a fundamental element in both research and clinical applications of electroencephalography to know the frequency composition of brain electrical activity. The quantitative analysis of brain electrical activity uses computer resources to evaluate the electroencephalography and allows quantification of the data. The contribution of the quantitative perspective is unique, since conventional electroencephalography based on the visual examination of the tracing is not as objective. A systematic review was performed on the MEDLINE database in October 2017. The authors independently analyzed the studies, by title and abstract, and selected articles that met the inclusion criteria: comparative studies, not older than 30 years, that compared the use of conventional electroencephalogram (EEG) with the use of quantitative electroencephalogram (QEEG) in the English language. One hundred twelve articles were automatically selected by the MEDLINE search engine, but only six met the above criteria. The review found that given a 95% confidence interval, QEEG had no statistically higher sensitivity than EEG in four of the six studies reviewed. However, these results must be viewed with appropriate caution, particularly as groups in between studies were not matched on important variables such as gender, age, type of illness, recovery stage, and treatment. The authors' findings in this systematic review are suggestive of the importance of QEEG as an auxiliary tool to traditional EEG, and as such, justifying further refinement, standardization, and eventually the future execution of a head-to-head prospective study on comparing the two methods.
NASA Astrophysics Data System (ADS)
Dippold, Michaela; Kuzyakov, Yakov
2015-04-01
Understanding the soil organic matter (SOM) dynamics is one of the most important challenges in soil science. Transformation of low molecular weight organic substances (LMWOS) is a key step in biogeochemical cycles because 1) all high molecular substances pass this stage during their decomposition and 2) only LMWOS will be taken up by microorganisms. Previous studies on LMWOS were focused on determining net fluxes through the LMWOS pool, but they rarely identified transformations. As LMWOS are the preferred C and energy source for microorganisms, the transformations of LMWOS are dominated by biochemical pathways of the soil microorganisms. Thus, understanding fluxes and transformations in soils requires a detailed knowledge on the biochemical pathways and its controlling factors. Tracing C fate in soil by isotopes became on of the most applied and promising biogeochemistry tools. Up to now, studies on LMWOS were nearly exclusively based on uniformly labeled organic substances i.e. all C atoms in the molecules were labeled with 13C or 14C. However, this classical approach did not allow the differentiation between use of intact initial substances in any process, or whether they were transformed to metabolites. The novel tool of position-specific labeling enables to trace molecule atoms separately and thus to determine the cleavage of molecules - a prerequisite for metabolic tracing. Position-specific labeling of LMWOS and quantification of 13CO2 and 13C in bulk soil enabled following the basic metabolic pathways of soil microorganisms. However, only the combination of position-specific 13C labeling with compound-specific isotope analysis of microbial biomarkers and metabolites allowed 1) tracing specific anabolic pathways in diverse microbial communities in soils and 2) identification of specific pathways of individual functional microbial groups. So, these are the prerequisites for soil fluxomics. Our studies combining position-specific labeled glucose with amino sugar 13C analysis showed that oxidizing catabolic pathways and anabolic pathways, i.e. building-up new cellular compounds, occurred in soils simultaneously. This involved an intensive C recycling within the microorganisms that was observed not only for cytosolic compounds but also for cell wall polymers. Fungal metabolism and fluxes were slower than bacterial intracellular C recycling and turnover. Furthermore, position-specific labeling of glutamate and subsequent 13C analysis of microbial phospholipid fatty acids (PLFA) revealed starvation pathways, which were only active in specific microbial groups in soils. These studies revealed that position-specific labeling enables the reconstruction of metabolic pathways of LMWOS within diverse microbial communities in complex media such as soil. Processes occurring simultaneously in soil i.e. 1) within individual, reversible metabolic pathways and 2) in various microbial groups could be traced by position-specific labeling in soils in situ. Tracing these pathways and understanding their regulating factors are crucial for soil C fluxomics, the extremely complex network of transformations towards mineralization versus the formation of microbial biomass compounds. Quantitative models to assess microbial group specific metabolic networks can be generated and parameterized by this approach. The submolecular knowledge of transformation steps and biochemical pathways in soils and their regulating factors is essential for understanding C cycling and long-term C storage in soils.
The identification and quantitation of non-method-specific target analytes have greater importance with respect to EPA's current combustion strategy. The risk associated with combustion process emissions must now be characterized. EPA has recently released draft guidance on pr...
Quantitative Analysis of Single and Mix Food Antiseptics Basing on SERS Spectra with PLSR Method
NASA Astrophysics Data System (ADS)
Hou, Mengjing; Huang, Yu; Ma, Lingwei; Zhang, Zhengjun
2016-06-01
Usage and dosage of food antiseptics are very concerned due to their decisive influence in food safety. Surface-enhanced Raman scattering (SERS) effect was employed in this research to realize trace potassium sorbate (PS) and sodium benzoate (SB) detection. HfO2 ultrathin film-coated Ag NR array was fabricated as SERS substrate. Protected by HfO2 film, the SERS substrate possesses good acid resistance, which enables it to be applicable in acidic environment where PS and SB work. Regression relationship between SERS spectra of 0.3~10 mg/L PS solution and their concentration was calibrated by partial least squares regression (PLSR) method, and the concentration prediction performance was quite satisfactory. Furthermore, mixture solution of PS and SB was also quantitatively analyzed by PLSR method. Spectrum data of characteristic peak sections corresponding to PS and SB was used to establish the regression models of these two solutes, respectively, and their concentrations were determined accurately despite their characteristic peak sections overlapping. It is possible that the unique modeling process of PLSR method prevented the overlapped Raman signal from reducing the model accuracy.
Wang, Xinsheng; Wu, Yanfang; Wu, Chengying; Wu, Qinan; Niu, Qingshan
2018-04-01
The aim of the present work was to investigate the trace elements and the correlation with flavonoids from Sparganii rhizoma. The ICP-AES and ultraviolet-visible spectroscopy were employed to analyze trace elements and flavonoids. The concentrations of trace elements and flavonoids were calculated using standard curve. The content of flavonoids was expressed as rutin equivalents. The cluster analysis was applied to evaluate geographical features of S. rhizoma from different geographical regions. The correlation analysis was used to obtain the relationship between the trace elements and flavonoids. The results indicated that the 15 trace elements were measured and the K, Ca, Mg, Na, Mn, Al, Cu, and Zn are rich in Sparganii rhizome. The different producing regions samples were classified into four groups. There was a weak relationship between trace elements and flavonoids.
Computer programs simplify optical system analysis
NASA Technical Reports Server (NTRS)
1965-01-01
The optical ray-trace computer program performs geometrical ray tracing. The energy-trace program calculates the relative monochromatic flux density on a specific target area. This program uses the ray-trace program as a subroutine to generate a representation of the optical system.
Isobe, Tomonori; Mori, Yutaro; Takada, Kenta; Sato, Eisuke; Takahashi, Hideki; Sekiguchi, Takao; Yoshimura, Yousuke; Sakurai, Hideyuki; Sakae, Takeji
2013-10-01
A large amount of radioactive material was released into the atmosphere after the accident of the Fukushima Daiichi Nuclear Power Plant following the Tohoku earthquake on 11 March 2011, and traces of these materials were detected in Tsukuba. Because radioactive materials can adhere to vegetables, the authors made a qualitative evaluation of vegetables in Tsukuba, estimated internal exposure dose based on quantitative measurement results, and investigated several decontamination methods. Qualitative analysis of vegetable contamination was done by autoradiography. Quantitative analysis was done using a high-purity germanium detector. To assess decontamination, two methods were tested: one with running water and the other with boiling water. In addition, boiled soup stock was measured. In the qualitative evaluation by autoradiography, radioactive materials were not uniformly distributed but adhered to vegetables in clumps and hot spots. In the quantitative evaluation to measure contamination of outer and inner leaves of sanchu lettuce, it was observed that the concentration of I was 8,031.35 ± 764.79 Bq kg in the outer leaves and 115.28 ± 20.63 Bq kg in the inner leaves. In addition, the concentration of Cs was 1,371.93 ± 366.45 Bq kg in the outer leaves and 9.68 ± 15.03 Bq kg in the inner leaves. This suggests that one can greatly reduce internal exposure dose by removing the outer leaves if one has to eat vegetables just after a nuclear accident. In the decontamination assessment, a decontamination efficiency of up to 70% was achieved by boiling vegetables for 20 min.
Ray-trace analysis of glancing-incidence X-ray optical systems
NASA Technical Reports Server (NTRS)
Foreman, J. W., Jr.; Cardone, J. M.
1976-01-01
The results of a ray-trace analysis of several glancing-incidence X-ray optical systems are presented. The object of the study was threefold. First, the vignetting characteristics of the S-056 X-ray telescope were calculated using experimental data to determine mirror reflectivities. Second, a small Wolter Type I X-ray telescope intended for possible use in the Geostationary Operational Environmental Satellite program was designed and ray traced. Finally, a ray-trace program was developed for a Wolter-Schwarzschild X-ray telescope.
Taylor, Howard E.; Garbarino, John R.; Murphy, Deirdre M.; Beckett, Ronald
1992-01-01
An inductively coupled plasma-mass spectrometer was used for the quantitative measurement of trace elements In specific,submicrometer size-fraction particulates, separated by sedimentation field-flow fractionation. Fractions were collected from the eluent of the field-flow fractionation centrifuge and nebulized, with a Babington-type pneumatic nebulizer, into an argon inductively coupled plasma-mass spectrometer. Measured Ion currents were used to quantify the major, minor, and trace element composition of the size-separated colloidal (< 1-microm diameter) particulates. The composition of surface-water suspended matter collected from the Yarra and Darling rivers in Australia is presented to illustrate the usefulness of this tool for characterizing environmental materials. An adsorption experiment was performed using cadmium lon to demonstrate the utility for studying the processes of trace metal-suspended sediment interactions and contaminant transport in natural aquatic systems.
Horowitz, A.J.; Lum, K.R.; Garbarino, J.R.; Hall, G.E.M.; Lemieux, C.; Demas, C.R.
1996-01-01
Field and laboratory experiments indicate that a number of factors associated with filtration other than just pore size (e.g., diameter, manufacturer, volume of sample processed, amount of suspended sediment in the sample) can produce significant variations in the 'dissolved' concentrations of such elements as Fe, Al, Cu, Zn, Pb, Co, and Ni. The bulk of these variations result from the inclusion/exclusion of colloidally associated trace elements in the filtrate, although dilution and sorption/desorption from filters also may be factors. Thus, dissolved trace element concentrations quantitated by analyzing filtrates generated by processing whole water through similar pore-sized filters may not be equal or comparable. As such, simple filtration of unspecified volumes of natural water through unspecified 0.45-??m membrane filters may no longer represent an acceptable operational definition for a number of dissolved chemical constituents.
Pidlisecky, Adam; Haines, S.S.
2011-01-01
Conventional processing methods for seismic cone penetrometer data present several shortcomings, most notably the absence of a robust velocity model uncertainty estimate. We propose a new seismic cone penetrometer testing (SCPT) data-processing approach that employs Bayesian methods to map measured data errors into quantitative estimates of model uncertainty. We first calculate travel-time differences for all permutations of seismic trace pairs. That is, we cross-correlate each trace at each measurement location with every trace at every other measurement location to determine travel-time differences that are not biased by the choice of any particular reference trace and to thoroughly characterize data error. We calculate a forward operator that accounts for the different ray paths for each measurement location, including refraction at layer boundaries. We then use a Bayesian inversion scheme to obtain the most likely slowness (the reciprocal of velocity) and a distribution of probable slowness values for each model layer. The result is a velocity model that is based on correct ray paths, with uncertainty bounds that are based on the data error. ?? NRC Research Press 2011.
Medvedev, Nickolay S; Shaverina, Anastasiya V; Tsygankova, Alphiya R; Saprykin, Anatoly I
2016-08-01
The paper presents a combined technique of germanium dioxide analysis by inductively coupled plasma atomic emission spectrometry (ICP-AES) with preconcentration of trace elements by distilling off matrix and electrothermal (ETV) introduction of the trace elements concentrate into the ICP. Evaluation of metrological characteristics of the developed technique of high-purity germanium dioxide analysis was performed. The limits of detection (LODs) for 25 trace elements ranged from 0.05 to 20ng/g. The accuracy of proposed technique is confirmed by "added-found" («or spiking») experiment and comparing the results of ETV-ICP-AES and ICP-AES analysis of high purity germanium dioxide samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Analysis of Asian Outflow over the Western Pacific using Observations from Trace-P
NASA Technical Reports Server (NTRS)
Jacob, Daniel J.
2004-01-01
Our analysis of the TRACE-P data focused on answering the following questions: 1) How do anthropogenic sources in Asia contribute to chemical outflow over the western Pacific in spring? 2) How does biomass burning in southeast Asia contribute to this outflow? 3) How can the TRACE-P observations be used to better quantify the sources of environmentally important gases in eastern Asia? Our strategy drew on a combination of data analysis and global 3-D modeling, as described below. We also contributed to the planning and execution of TRACE-P through service as mission scientist and by providing chemical model forecasts in the field.
Lv, Zhengxian; You, Jinmao; Lu, Shuaimin; Sun, Weidi; Ji, Zhongyin; Sun, Zhiwei; Song, Cuihua; Chen, Guang; Li, Guoliang; Hu, Na; Zhou, Wu; Suo, Yourui
2017-03-31
As the key aroma compounds, varietal thiols are the crucial odorants responsible for the flavor of wines. Quantitative analysis of thiols can provide crucial information for the aroma profiles of different wine styles. In this study, a rapid and sensitive method for the simultaneous determination of six thiols in wine using d 0 /d 4 -acridone-10-ethyl-N-maleimide (d 0 /d 4 -AENM) as stable isotope-coded derivatization reagent (SICD) by high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) has been developed. Quantification of thiols was performed by using d 4 -AENM labeled thiols as the internal standards (IS), followed by stable isotope dilution HPLC-ESI-MS/MS analysis. The AENM derivatization combined with multiple reactions monitoring (MRM) not only allowed trace analysis of thiols due to the extremely high sensitivity, but also efficiently corrected the matrix effects during HPLC-MS/MS and the fluctuation in MS/MS signal intensity due to instrument. The obtained internal standard calibration curves for six thiols were linear over the range of 25-10,000pmol/L (R 2 ≥0.9961). Detection limits (LODs) for most of analytes were below 6.3pmol/L. The proposed method was successfully applied for the simultaneous determination of six kinds of thiols in wine samples with precisions ≤3.5% and recoveries ≥78.1%. In conclusion, the developed method is expected to be a promising tool for detection of trace thiols in wine and also in other complex matrix. Copyright © 2017 Elsevier B.V. All rights reserved.
Smith, C.L.; Motooka, J.M.; Willson, W.R.
1984-01-01
Since concentrations of trace elements in most natural waters seldom exceed the ??g/L level, analysis of trace elements in natural waters by inductively coupled plasma emission spectrometry (ICP) requires a preconcentration procedure. The elements Ag, Bi, Cd, Co, Cu, Fe, Mo, Ni, Pb, Sn, V, W, and Zn were separated and concentrated from 500 mL of water by coprecipitating them with sodium dibenzyldithiocarbamate (NaDBDTC) using nickel or silver as a carrier. The precipitated trace elements were collected on a membrane filter, redissolved from the filter with hot nitric and hydrochloric acids, and analyzed using ICP. Recoveries for all the trace elements except tungsten exceeded 80%. Coprecipitation of trace elements with NaDBDTC eliminated the use of difficult-to-inject organic solvents, and NaDBDTC coprecipitated a wider array of trace elements than ammoniumpyrrolidinedithiocarbamate (APDC), another commonly used coprecipitate.
TCP Packet Trace Analysis. M.S. Thesis
NASA Technical Reports Server (NTRS)
Shepard, Timothy J.
1991-01-01
Examination of a trace of packets collected from the network is often the only method available for diagnosing protocol performance problems in computer networks. This thesis explores the use of packet traces to diagnose performance problems of the transport protocol TCP. Unfortunately, manual examination of these traces can be so tedious that effective analysis is not possible. The primary contribution of this thesis is a graphical method of displaying the packet trace which greatly reduce, the tediousness of examining a packet trace. The graphical method is demonstrated by the examination of some packet traces of typical TCP connections. The performance of two different implementations of TCP sending data across a particular network path is compared. Traces many thousands of packets long are used to demonstrate how effectively the graphical method simplifies examination of long complicated traces. In the comparison of the two TCP implementations, the burstiness of the TCP transmitter appeared to be related to the achieved throughput. A method of quantifying this burstiness is presented and its possible relevance to understanding the performance of TCP is discussed.
Palmer, Kevin B; LaFon, William; Burford, Mark D
2017-09-22
Current analytical methodology for iodopropynyl butylcarbamate (IPBC) analysis focuses on the use of liquid chromatography and mass spectrometer (LC-MS), but the high instrumentation and operator investment required has resulted in the need for a cost effective alternative methodology. Past publications investigating gas chromatography with electron capture detector (GC-ECD) for IPBC quantitation proved largely unsuccessful, likely due to the preservatives limited thermal stability. The use of pulsed injection techniques commonly used for trace analysis of thermally labile pharmaceutical compounds was successfully adapted for IPBC analysis and utilizes the selectivity of GC-ECD analysis. System optimization and sample preparation improvements resulted in substantial performance and reproducibility gains. Cosmetic formulations preserved with IPBC (50-100ppm) were solvated in toluene/isopropyl alcohol and quantified over the 0.3-1.3μg/ml calibration range. The methodology was robust (relative standard deviation 4%), accurate (98% recovery), and sensitive (limit of detection 0.25ng/ml) for use in routine testing of cosmetic formulation preservation. Copyright © 2017 Elsevier B.V. All rights reserved.
Parallel program debugging with flowback analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Jongdeok.
1989-01-01
This thesis describes the design and implementation of an integrated debugging system for parallel programs running on shared memory multi-processors. The goal of the debugging system is to present to the programmer a graphical view of the dynamic program dependences while keeping the execution-time overhead low. The author first describes the use of flowback analysis to provide information on causal relationship between events in a programs' execution without re-executing the program for debugging. Execution time overhead is kept low by recording only a small amount of trace during a program's execution. He uses semantic analysis and a technique called incrementalmore » tracing to keep the time and space overhead low. As part of the semantic analysis, he uses a static program dependence graph structure that reduces the amount of work done at compile time and takes advantage of the dynamic information produced during execution time. The cornerstone of the incremental tracing concept is to generate a coarse trace during execution and fill incrementally, during the interactive portion of the debugging session, the gap between the information gathered in the coarse trace and the information needed to do the flowback analysis using the coarse trace. Then, he describes how to extend the flowback analysis to parallel programs. The flowback analysis can span process boundaries; i.e., the most recent modification to a shared variable might be traced to a different process than the one that contains the current reference. The static and dynamic program dependence graphs of the individual processes are tied together with synchronization and data dependence information to form complete graphs that represent the entire program.« less
NASA Astrophysics Data System (ADS)
Almirall, Jose R.; Montero, Shirly; Furton, Kenneth G.
2002-08-01
The importance of glass as evidence of association between a crime event and a suspect has been recognized for some time. Glass is a fragile material that is often found at the scenes of crimes such as burglaries, hit-and-run accidents and violent crime offenses. The physical and chemical properties of glass can be used to differentiate between possible sources and as evidence of association between two fragments of glass thought to originate from the same source. Refractive index (RI) comparisons have been used for this purpose but due to the improved control over glass manufacturing processes, RI values often cannot differentiate glasses, even if the glass originates from different sources. Elemental analysis methods such as NAA, XRF, ICP-AES, and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) have also been used for the comparison of trace elemental compositions and these techniques have been shown to provide an improvement in the discrimination of glass fragments over RI comparisons alone. The multi-element capability and the sensitivity of ICP-MS combined with the simplified sample introduction of laser ablation prior to ion detection provides for an excellent and relatively non-destructive technique for elemental analysis of glass fragments. The methodology for solution analysis (digestion procedure) and solid sample analysis (laser ablation) of glass is reported and the analytical results are compared. An isotope dilution method is also reported as a high precision technique for elemental analysis of glass fragments. The optimum sampling parameters for laser ablation, for semi-quantitative analysis and element ratio comparisons are also presented. Finally, the results of a case involving the breaking of 15 vehicle windows in an airport parking lot and the association of a suspect to the breakings by the glass fragments found on his person are also presented.
Dispersion model on PM₂.₅ fugitive dust and trace metals levels in Kuwait Governorates.
Bu-Olayan, A H; Thomas, B V
2012-03-01
Frequent dust storms and recent environmental changes were found to affect the human health especially in residents of arid countries. Investigations on the PM(2.5) fugitive dust in six Kuwait Governorate areas using dispersion Gaussian plume modeling revealed significant relationship between low rate of pollutant emission, low wind velocity, and stable weather conditions' matrix causing high rate of dust deposition in summer than in winter. The rate of dust deposition and trace metals levels in PM(2.5) were in the sequence of G-VI > G-I > G-II > G-V > G-III > G-IV. Trace metals were observed in the sequence of Al > Fe > Zn > Ni > Pb > Cd irrespective of the Governorate areas and the two seasons. The high rate of dust deposition and trace metals in PM(2.5) was reflected by the vast open area, wind velocity, and rapid industrialization besides natural and anthropogenic sources. A combination of air dispersion modeling and nephalometric and gravimetric studies of this kind not only determines the seasonal qualitative and quantitative analyses on the PM(2.5) dust deposition besides trace metals apportionment in six Kuwait Governorate areas, but also characterizes air pollution factors that could be used by environmentalist to deduce preventive measures.
Improved electron probe microanalysis of trace elements in quartz
Donovan, John J.; Lowers, Heather; Rusk, Brian G.
2011-01-01
Quartz occurs in a wide range of geologic environments throughout the Earth's crust. The concentration and distribution of trace elements in quartz provide information such as temperature and other physical conditions of formation. Trace element analyses with modern electron-probe microanalysis (EPMA) instruments can achieve 99% confidence detection of ~100 ppm with fairly minimal effort for many elements in samples of low to moderate average atomic number such as many common oxides and silicates. However, trace element measurements below 100 ppm in many materials are limited, not only by the precision of the background measurement, but also by the accuracy with which background levels are determined. A new "blank" correction algorithm has been developed and tested on both Cameca and JEOL instruments, which applies a quantitative correction to the emitted X-ray intensities during the iteration of the sample matrix correction based on a zero level (or known trace) abundance calibration standard. This iterated blank correction, when combined with improved background fit models, and an "aggregate" intensity calculation utilizing multiple spectrometer intensities in software for greater geometric efficiency, yields a detection limit of 2 to 3 ppm for Ti and 6 to 7 ppm for Al in quartz at 99% t-test confidence with similar levels for absolute accuracy.
NASA Astrophysics Data System (ADS)
Singh, Manpreet; Alabanza, Anginelle; Gonzalez, Lorelis E.; Wang, Weiwei; Reeves, W. Brian; Hahm, Jong-In
2016-02-01
Determining ultratrace amounts of protein biomarkers in patient samples in a straightforward and quantitative manner is extremely important for early disease diagnosis and treatment. Here, we successfully demonstrate the novel use of zinc oxide nanorods (ZnO NRs) in the ultrasensitive and quantitative detection of two acute kidney injury (AKI)-related protein biomarkers, tumor necrosis factor (TNF)-α and interleukin (IL)-8, directly from patient samples. We first validate the ZnO NRs-based IL-8 results via comparison with those obtained from using a conventional enzyme-linked immunosorbent method in samples from 38 individuals. We further assess the full detection capability of the ZnO NRs-based technique by quantifying TNF-α, whose levels in human urine are often below the detection limits of conventional methods. Using the ZnO NR platforms, we determine the TNF-α concentrations of all 46 patient samples tested, down to the fg per mL level. Subsequently, we screen for TNF-α levels in approximately 50 additional samples collected from different patient groups in order to demonstrate a potential use of the ZnO NRs-based assay in assessing cytokine levels useful for further clinical monitoring. Our research efforts demonstrate that ZnO NRs can be straightforwardly employed in the rapid, ultrasensitive, quantitative, and simultaneous detection of multiple AKI-related biomarkers directly in patient urine samples, providing an unparalleled detection capability beyond those of conventional analysis methods. Additional key advantages of the ZnO NRs-based approach include a fast detection speed, low-volume assay condition, multiplexing ability, and easy automation/integration capability to existing fluorescence instrumentation. Therefore, we anticipate that our ZnO NRs-based detection method will be highly beneficial for overcoming the frequent challenges in early biomarker development and treatment assessment, pertaining to the facile and ultrasensitive quantification of hard-to-trace biomolecules.Determining ultratrace amounts of protein biomarkers in patient samples in a straightforward and quantitative manner is extremely important for early disease diagnosis and treatment. Here, we successfully demonstrate the novel use of zinc oxide nanorods (ZnO NRs) in the ultrasensitive and quantitative detection of two acute kidney injury (AKI)-related protein biomarkers, tumor necrosis factor (TNF)-α and interleukin (IL)-8, directly from patient samples. We first validate the ZnO NRs-based IL-8 results via comparison with those obtained from using a conventional enzyme-linked immunosorbent method in samples from 38 individuals. We further assess the full detection capability of the ZnO NRs-based technique by quantifying TNF-α, whose levels in human urine are often below the detection limits of conventional methods. Using the ZnO NR platforms, we determine the TNF-α concentrations of all 46 patient samples tested, down to the fg per mL level. Subsequently, we screen for TNF-α levels in approximately 50 additional samples collected from different patient groups in order to demonstrate a potential use of the ZnO NRs-based assay in assessing cytokine levels useful for further clinical monitoring. Our research efforts demonstrate that ZnO NRs can be straightforwardly employed in the rapid, ultrasensitive, quantitative, and simultaneous detection of multiple AKI-related biomarkers directly in patient urine samples, providing an unparalleled detection capability beyond those of conventional analysis methods. Additional key advantages of the ZnO NRs-based approach include a fast detection speed, low-volume assay condition, multiplexing ability, and easy automation/integration capability to existing fluorescence instrumentation. Therefore, we anticipate that our ZnO NRs-based detection method will be highly beneficial for overcoming the frequent challenges in early biomarker development and treatment assessment, pertaining to the facile and ultrasensitive quantification of hard-to-trace biomolecules. Electronic supplementary information (ESI) available: Typical SEM images of the ZnO NRs used in the biomarker assays are provided in Fig. S1. See DOI: 10.1039/c5nr08706f
USDA-ARS?s Scientific Manuscript database
As atmospheric trace gas concentrations and global temperatures climb, scientists are challenged to determine how microbial communities may mediate plant response to future climate change. To this end, a Temperature Free-Air Controlled Enrichment (T-FACE) experiment was implemented in a spring wheat...
Quest for a Computerised Semantics.
ERIC Educational Resources Information Center
Leslie, Adrian R.
The objective of this thesis was to colligate the various strands of research in the literature of computational linguistics that have to do with the computational treatment of semantic content so as to encode it into a computerized dictionary. In chapter 1 the course of mechanical translation (1947-1960) and quantitative linguistics is traced to…
Sharma, Kakali; Sharma, Shiba P; Lahiri, Sujit C
2013-01-01
Phenolphthalein, an acid-base indicator and laxative, is important as a constituent of widely used weight-reducing multicomponent food formulations. Phenolphthalein is an useful reagent in forensic science for the identification of blood stains of suspected victims and for apprehending erring officials accepting bribes in graft or trap cases. The pink-colored alkaline hand washes originating from the phenolphthalein-smeared notes can easily be determined spectrophotometrically. But in many cases, colored solution turns colorless with time, which renders the genuineness of bribe cases doubtful to the judiciary. No method is known till now for the detection and identification of phenolphthalein in colorless forensic exhibits with positive proof. Liquid chromatography-tandem mass spectrometry had been found to be most sensitive, accurate method capable of detection and quantitation of trace phenolphthalein in commercial formulations and colorless forensic exhibits with positive proof. The detection limit of phenolphthalein was found to be 1.66 pg/L or ng/mL, and the calibration curve shows good linearity (r(2) = 0.9974). © 2012 American Academy of Forensic Sciences.
O'Connor, Thomas P; Muthukrishnan, Swarna; Barshatzky, Kristen; Wallace, William
2012-04-01
Stormwater best management practices (BMPs) require regular maintenance. The impact on trace metal concentrations in a constructed stormwater wetland BMP on Staten Island, New York, was investigated by analyzing sediment concentrations and tissue residues of the dominant macroinvertebrates (Tubifex tubifex) prior and subsequent to maintenance. Trace metal concentrations were assessed using standard serial extraction (for sediment) and acid digestion (for tissue burdens) techniques, followed by quantitative determination using graphite furnace atomic absorption spectrometry and inductively coupled plasma optical emission spectrometry, respectively. The results suggest that disturbance of sediment during maintenance of the BMP resulted in an increase in the most mobile fraction of trace metals, especially those associated with finer grained sediments (< 63 tm), and as a consequence, measured metal concentrations in macroinvertebrates increased. Regressions of a subset of metal concentrations (copper, lead, and zinc) in sediment and the macroinvertebrate tissue burden samples generally increased as a result of maintenance. A follow-up sampling event 9 months after maintenance demonstrated that the most readily available form of trace metal in the BMP was reduced, which supports (1) long-term sequestration of metals in the BMP and (2) that elevated bioavailability following maintenance was potentially a transient feature of the disturbance. This study suggests that in the long-term, performing sediment removal might help reduce bioavailability of trace metal concentrations in both the BMP and the receiving water to which a BMP discharges. However, alternative practices might need to be implemented to reduce trace metal bioavailability in the short-term.
NASA Astrophysics Data System (ADS)
Ishikawa, T.; Ujiie, K.
2017-12-01
Pseudotachylytes found in exhumed accretionary complexes, which are considered to be formed originally at seismogenic depths, are of great importance for elucidating frictional melting and concomitant dynamic weakening of the fault during earthquake in subduction zones. However, fluid-rich environment of the subduction zone faults tends to cause extensive alteration of the pseudotachylyte glass matrix in later stages, and thus it has been controversial that pseudotachylytes are rarely formed or rarely preserved. Chemical analysis of the fault rocks, especially on fluid-immobile trace elements and isotopes, can be a useful means to identify and quantify the frictional melting occurred in subduction zone faults. In this paper, we report major and trace element and Sr isotope compositions for pseudotachylyte-bearing dark veins and surrounding host rocks from the Mugi area of the Shimanto accretionary complex (Ujiie et al., J. Struct. Geol. 2007). Samples were collected from a rock chip along the microstructure using a micro-drilling technique, and then analyzed by ICP-MS and TIMS. Major element compositions of the dark veins showed a clear shift from the host rock composition toward the illite composition. The dark veins, either unaltered or completely altered, were also characterized by extreme enrichment in some of the trace elements such as Ti, Zr, Nb and Th. These results are consistent with disequilibrium melting of the fault zone. Model calculations revealed that the compositions of the dark veins can be produced by total melting of clay-rich matrix in the source rock, leaving plagioclase and quartz grains almost unmolten. The calculations also showed that the dark veins are far more enriched in melt component than that expected from the source rock compositions, suggesting migration and concentration of frictional melt during the earthquake faulting. Furthermore, Sr isotope data of the dark veins implied the occurrence of frictional melting in multiple stages. These results demonstrate that trace element and isotope analyses are useful not only to detect preexistence of pseudotachylytes but also to evaluate the frictional melting in subduction zone faults quantitatively.
NASA Astrophysics Data System (ADS)
Apostel, C.; Dippold, M. A.; Kuzyakov, Y.
2015-12-01
Understanding the microbial impact on C and nutrient cycles is one of the most important challenges in terrestrial biogeochemistry. Transformation of low molecular weight organic substances (LMWOS) is a key step in all biogeochemical cycles because 1) all high molecular substances pass the LMWOS pool during their degradation and 2) only LMWOS can be taken up by microorganisms intact. Thus, the transformations of LMWOS are dominated by biochemical pathways of the soil microorganisms. Thus, understanding fluxes and transformations in soils requires a detailed knowledge on the microbial metabolic network and its control mechanism. Tracing C fate in soil by isotopes became on of the most applied and promising biogeochemistry tools but studies were nearly exclusively based on uniformly labeled substances. However, such tracers do not allow the differentiation of the intact use of the initial substances from its transformation to metabolites. The novel tool of position-specific labeling enables to trace molecule atoms separately and thus to determine the cleavage of molecules - a prerequisite for metabolic tracing. Position-specific labeling of basic metabolites and quantification of isotope incorporation in CO2 and bulk soil enabled following the basic metabolic pathways of microorganisms. However, the combination of position-specific 13C labeling with compound-specific isotope analysis of microbial biomarkers and metabolites like phospholipid fatty acids (PLFA) or amino sugars revealed new insights into the soil fluxome: First, it enables tracing specific anabolic pathways in diverse microbial communities in soils e.g. carbon starvation pathways versus pathways reflecting microbial growth. Second, it allows identification of specific pathways of individual functional microbial groups in soils in situ. Tracing metabolic pathways and understanding their regulating factors are crucial for soil C fluxomics i.e. the unravaling of the complex network of C transformations. Quantitative models to assess microbial group specific metabolic pathways can be generated and parameterized by this approach. The knowledge of submolecular C transformation steps and its regulating factors is essential for understanding C cycling and long-term C storage in soils.
NASA Astrophysics Data System (ADS)
de Winter, Niels; Goderis, Steven; van Malderen, Stijn; Vanhaecke, Frank; Claeys, Philippe
2016-04-01
A combination of laboratory micro-X-ray Fluorescence (μXRF) and stable carbon and oxygen isotope analysis shows that trace element profiles from modern horse molars reveal a seasonal pattern that co-varies with seasonality in the oxygen isotope records of enamel carbonate from the same teeth. A combination of six cheek teeth (premolars and molars) from the same individual yields a seasonal isotope and trace element record of approximately three years recorded during the growth of the molars. This record shows that reproducible measurements of various trace element ratios (e.g., Sr/Ca, Zn/Ca, Fe/Ca, K/Ca and S/Ca) lag the seasonal pattern in oxygen isotope records by 2-3 months. Laser Ablation-ICP-Mass Spectrometry (LA-ICP-MS) analysis on a cross-section of the first molar of the same individual is compared to the bench-top tube-excitation μXRF results to test the robustness of the measurements and to compare both methods. Furthermore, trace element (e.g. Sr, Zn, Mg & Ba) profiles perpendicular to the growth direction of the same tooth, as well as profiles parallel to the growth direction are measured with LA-ICP-MS and μXRF to study the internal distribution of trace element ratios in two dimensions. Results of this extensive complementary line-scanning procedure shows the robustness of state of the art laboratory micro-XRF scanning for the measurement of trace elements in bioapatite. The comparison highlights the advantages and disadvantages of both methods for trace element analysis and illustrates their complementarity. Results of internal variation within the teeth shed light on the origins of trace elements in mammal teeth and their potential use for paleo-environmental reconstruction.
LC-DAD-MS (ESI+) analysis and antioxidant capacity of crocus sativus petal extracts.
Termentzi, Aikaterini; Kokkalou, Eugene
2008-04-01
In this study, various fractions isolated from the petals of Crocus sativus were assessed at first for their phenolic content both qualitatively and quantitatively and secondly for their antioxidant activity. The phytochemical analysis was carried out by LC-DAD-MS (ESI (+)) whereas the antioxidant potential was evaluated by applying two methodologies, the DPPH. radical scavenging activity test and the Co(II)-induced luminol chemiluminescence procedure. According to data obtained from these antioxidant tests, the diethyl ether, ethyl acetate and aqueous fractions demonstrated the strongest antioxidant capacity. Interestingly, the major constituents identified in these fractions correspond to kaempferol, quercetin, naringenin and some flavanone and flavanol derivatives glycosylated and esterified with phenylpropanoic acids. In addition, the presence of some nitrogen-containing substances, as well as other phenolics and phenylpropanoic derivatives was also traced. The identification and structural elucidation of all substances isolated in this study was achieved by both comparing available literature data and by proposed fragmentation mechanisms based on evaluating the LC-DAD-MS (ESI (+)) experimental data. The quantitative analysis data obtained thus far have shown that Crocus sativus petals are a rich source of flavonoids. Such a fact suggests that the good antioxidant capacity detected in the various fractions of Crocus sativus petals could be attributed to the presence of flavonoids, since it is already known that these molecules exert antioxidant capability. The latter, along with the use of Crocus sativus in food and pharmaceutical industry is discussed.
Mosmuller, David; Tan, Robin; Mulder, Frans; Bachour, Yara; de Vet, Henrica; Don Griot, Peter
2016-10-01
It is essential to have a reliable assessment method in order to compare the results of cleft lip and palate surgery. In this study the computer-based program SymNose, a method for quantitative assessment of the nose and lip, will be assessed on usability and reliability. The symmetry of the nose and lip was measured twice in 50 six-year-old complete and incomplete unilateral cleft lip and palate patients by four observers. For the frontal view the asymmetry level of the nose and upper lip were evaluated and for the basal view the asymmetry level of the nose and nostrils were evaluated. A mean inter-observer reliability when tracing each image once or twice was 0.70 and 0.75, respectively. Tracing the photographs with 2 observers and 4 observers gave a mean inter-observer score of 0.86 and 0.92, respectively. The mean intra-observer reliability varied between 0.80 and 0.84. SymNose is a practical and reliable tool for the retrospective assessment of large caseloads of 2D photographs of cleft patients for research purposes. Moderate to high single inter-observer reliability was found. For future research with SymNose reliable outcomes can be achieved by using the average outcomes of single tracings of two observers. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Chen, Yiqiong; Chen, Maolin; Chi, Jinxin; Yu, Xia; Chen, Yongxuan; Lin, Xucong; Xie, Zenghong
2018-08-17
A novel aptamer-based polyhedral oligomeric silsesquioxane (POSS)-containing hybrid affinity monolith has been prepared with a facile "one-pot" process simultaneously via "free radical polymerization" and "thiol-ene" click reaction, and used for on-line selective extraction and practical analysis to trace ochratoxin A (OTA). By using the ternary porogenic mixture composed of water/DMF/PEG, a homogeneous polymerization mixture with POSS chemicals, acrylate-based monomers and aptamer aqueous solution was obtained, and the copolymerization of POSS chemicals, polymer monomers and aptamer aqueous solution was systematically studied. Characterizations such as the morphology, FT-IR and fluorescence spectra, mechanical stability, dynamic binding capacity, cross-reactivity and selectivity of the resultant affinity monolith were also evaluated. Attributed to the porous monolithic structure and aptamer-based affinity interaction, acceptable selective recognition and recovery yields towards trace OTA were obtained. With a 5-fold volume enrichment, the limit of detection (LOD) and limit of quantitation (LOQ) of OTA in fortified beer samples were gained at 0.025 ng/mL (S/N = 3) and 0.045 ng/mL (S/N = 10), respectively. It could be competent for the sensitive measure of actual OTA residues in real beer samples. In comparison with the previously reported strategies containing common "sol-gel" chemistry, the proposed protocol to fabricating aptamer-modified POSS-containing hybrid affinity monolith showed a simpler preparation with acceptable selectivity and higher recovery to trace OTA. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, Rong; Limburg, Karin; Rohtla, Mehis
2017-05-01
X-ray fluorescence computed tomography is often used to measure trace element distributions within low-Z samples, using algorithms capable of X-ray absorption correction when sample self-absorption is not negligible. Its reconstruction is more complicated compared to transmission tomography, and therefore not widely used. We describe in this paper a very practical iterative method that uses widely available transmission tomography reconstruction software for fluorescence tomography. With this method, sample self-absorption can be corrected not only for the absorption within the measured layer but also for the absorption by material beyond that layer. By combining tomography with analysis for scanning X-ray fluorescence microscopy, absolute concentrations of trace elements can be obtained. By using widely shared software, we not only minimized the coding, took advantage of computing efficiency of fast Fourier transform in transmission tomography software, but also thereby accessed well-developed data processing tools coming with well-known and reliable software packages. The convergence of the iterations was also carefully studied for fluorescence of different attenuation lengths. As an example, fish eye lenses could provide valuable information about fish life-history and endured environmental conditions. Given the lens's spherical shape and sometimes the short distance from sample to detector for detecting low concentration trace elements, its tomography data are affected by absorption related to material beyond the measured layer but can be reconstructed well with our method. Fish eye lens tomography results are compared with sliced lens 2D fluorescence mapping with good agreement, and with tomography providing better spatial resolution.
Akondi, Vyas; Pérez-Merino, Pablo; Martinez-Enriquez, Eduardo; Dorronsoro, Carlos; Alejandre, Nicolás; Jiménez-Alfaro, Ignacio; Marcos, Susana
2017-04-01
Standard evaluation of aberrations from wavefront slope measurements in patients implanted with a rotationally asymmetric multifocal intraocular lens (IOL), the Lentis Mplus (Oculentis GmbH, Berlin, Germany), results in large magnitude primary vertical coma, which is attributed to the intrinsic IOL design. The new proposed method analyzes aberrometry data, allowing disentangling the IOL power pupillary distribution from the true higher order aberrations of the eye. The new method of wavefront reconstruction uses retinal spots obtained at both the near and far foci. The method was tested using ray tracing optical simulations in a computer eye model virtually implanted with the Lentis Mplus IOL, with a generic cornea or with anterior segment geometry obtained from custom quantitative spectral-domain optical coherence tomography in a real patient. The method was applied to laser ray tracing aberrometry data at near and far fixation obtained in a patient implanted with the Lentis Mplus IOL. Higher order aberrations evaluated from simulated and real retinal spot diagrams following the new reconstruction approach matched the nominal aberrations (approximately 98%). Previously reported primary vertical coma in patients implanted with this IOL lost significance with the application of the proposed reconstruction. Custom analysis of ray tracing-based retinal spot diagrams allowed decoupling of the true higher order aberrations of the patient's eye from the power pupillary distribution of a rotationally asymmetric multifocal IOL, therefore providing the appropriate phase map to accurately evaluate through-focus optical quality. [J Refract Surg. 2017;33(4):257-265.]. Copyright 2017, SLACK Incorporated.
NASA Astrophysics Data System (ADS)
de Oliveira Souza, Sidnei; da Costa, Silvânio Silvério Lopes; Santos, Dayane Melo; dos Santos Pinto, Jéssica; Garcia, Carlos Alexandre Borges; Alves, José do Patrocínio Hora; Araujo, Rennan Geovanny Oliveira
2014-06-01
An analytical method for simultaneous determination of macronutrients (Ca, Mg, Na and P), micronutrients (Cu, Fe, Mn and Zn) and trace elements (Al, As, Cd, Pb and V) in mineral fertilizers was optimized. Two-level full factorial design was applied to evaluate the optimal proportions of reagents used in the sample digestion on hot plate. A Doehlert design for two variables was used to evaluate the operating conditions of the inductively coupled plasma optical emission spectrometer in order to accomplish the simultaneous determination of the analyte concentrations. The limits of quantification (LOQs) ranged from 2.0 mg kg- 1 for Mn to 77.3 mg kg- 1 for P. The accuracy and precision of the proposed method were evaluated by analysis of standard reference materials (SRMs) of Western phosphate rock (NIST 694), Florida phosphate rock (NIST 120C) and Trace elements in multi-nutrient fertilizer (NIST 695), considered to be adequate for simultaneous determination. Twenty-one samples of mineral fertilizers collected in Sergipe State, Brazil, were analyzed. For all samples, the As, Ca, Cd and Pb concentrations were below the LOQ values of the analytical method. For As, Cd and Pb the obtained LOQ values were below the maximum limit allowed by the Brazilian Ministry of Agriculture, Livestock and Food Supply (Ministério da Agricultura, Pecuária e Abastecimento - MAPA). The optimized method presented good accuracy and was effectively applied to quantitative simultaneous determination of the analytes in mineral fertilizers by inductively coupled plasma optical emission spectrometry (ICP OES).
NASA Astrophysics Data System (ADS)
Moreva, O. Y.; Pokrovsky, O. S.; Shirokova, L. S.; Viers, J.
2008-12-01
Our knowledge of chemical fluxes in the system rock-soils-rivers-ocean of boreal and glacial landscapes is limited by the least studied part, i.e., the river water transformation between the lake and the river systems. Dissolved organic carbon (DOC), nutrients, major and trace elements are being leached from soil profile to the river but subjected to chemical transformation in the lakes due to phytoplankton and bacterial activity. As a result, many lakes in boreal regions are quite different in chemical composition compared to surrounding rivers and demonstrate important chemical stratification. The main processes responsible for chemical stratification in lakes are considered to be i) diffusion fluxes from the sediment to the bottom water accompanied by sulfate reduction and methanogenesis in the sediments and ii) dissolution/mineralization of precipitating organic matter (mineral fraction, detritus, plankton pellets) in the bottom layer horizons under anoxic conditions. Up to present time, distinguishing between two processes remains difficult. This paper is aimed at filling this gap via detailed geochemical analysis of DOC and trace elements in the water column profiles of three typical stratified lakes of Arkhangelsk region in Kenozersky National Parc (64° N) in winter (glacial) and in summer period. Concentration of most trace elements (Li, B, Al, Ti, V, Cr, Ni, Co, Zn, As, Rb, Sr, Y, Zr, Mo, Sb, Ba, REEs, Th, U) are not subjected to strong variations along the water column, despite the presence of strong or partial redox stratification. Apparently, these elements are not significantly controlled by production/mineralization processes and redox phenomena in the water column, or the influence of these processes is not pronounced under the control by the allochtonous river water input. In particularly, the stability of titanium and aluminum concentration along the depth profile and their independence of iron behavior suggest the important control by dissolved organic matter. Therefore, organo-ferric colloids controlling petrogenic elements speciation in soil and river waters are being replaced by autochthonous organic colloids in the lake system. The same observation is true for some heavy metals such as nickel, copper and zinc, whereas cobalt, as limiting component, is being strongly removed from the photic zone or it is coprecipitating with manganese hydroxide. Results of the present work allow quantitative evaluation of the role of redox processes in the bottom horizons and organic detritus degradation in the creation of chemical stratification of small lakes with high DOC concentration. Further insights on geochemical migration of trace elements in lakes require : i) study of colloidal speciation using in-situ dialysis; ii) monitoring the annual and seasonal dynamics of redox processes and TE concentration variation along the profile; iii) quantitative assessment of bacterial degradation of suspended OM and Mn and Fe redox reactions along the depth profile; iv) setting the sedimentary traps for evaluation of suspended material fluxes, and, v) thorough study of chemical composition of interstitial pore waters.
1992-12-21
in preparation). Foundations of artificial intelligence. Cambridge, MA: MIT Press. O’Reilly, R. C. (1991). X3DNet: An X- Based Neural Network ...2.2.3 Trace based protocol analysis 19 2.2A Summary of important data features 21 2.3 Tools related to process model testing 23 2.3.1 Tools for building...algorithm 57 3. Requirements for testing process models using trace based protocol 59 analysis 3.1 Definition of trace based protocol analysis (TBPA) 59
Surinova, Silvia; Hüttenhain, Ruth; Chang, Ching-Yun; Espona, Lucia; Vitek, Olga; Aebersold, Ruedi
2013-08-01
Targeted proteomics based on selected reaction monitoring (SRM) mass spectrometry is commonly used for accurate and reproducible quantification of protein analytes in complex biological mixtures. Strictly hypothesis-driven, SRM assays quantify each targeted protein by collecting measurements on its peptide fragment ions, called transitions. To achieve sensitive and accurate quantitative results, experimental design and data analysis must consistently account for the variability of the quantified transitions. This consistency is especially important in large experiments, which increasingly require profiling up to hundreds of proteins over hundreds of samples. Here we describe a robust and automated workflow for the analysis of large quantitative SRM data sets that integrates data processing, statistical protein identification and quantification, and dissemination of the results. The integrated workflow combines three software tools: mProphet for peptide identification via probabilistic scoring; SRMstats for protein significance analysis with linear mixed-effect models; and PASSEL, a public repository for storage, retrieval and query of SRM data. The input requirements for the protocol are files with SRM traces in mzXML format, and a file with a list of transitions in a text tab-separated format. The protocol is especially suited for data with heavy isotope-labeled peptide internal standards. We demonstrate the protocol on a clinical data set in which the abundances of 35 biomarker candidates were profiled in 83 blood plasma samples of subjects with ovarian cancer or benign ovarian tumors. The time frame to realize the protocol is 1-2 weeks, depending on the number of replicates used in the experiment.
Modeling and analysis of cell membrane systems with probabilistic model checking
2011-01-01
Background Recently there has been a growing interest in the application of Probabilistic Model Checking (PMC) for the formal specification of biological systems. PMC is able to exhaustively explore all states of a stochastic model and can provide valuable insight into its behavior which are more difficult to see using only traditional methods for system analysis such as deterministic and stochastic simulation. In this work we propose a stochastic modeling for the description and analysis of sodium-potassium exchange pump. The sodium-potassium pump is a membrane transport system presents in all animal cell and capable of moving sodium and potassium ions against their concentration gradient. Results We present a quantitative formal specification of the pump mechanism in the PRISM language, taking into consideration a discrete chemistry approach and the Law of Mass Action aspects. We also present an analysis of the system using quantitative properties in order to verify the pump reversibility and understand the pump behavior using trend labels for the transition rates of the pump reactions. Conclusions Probabilistic model checking can be used along with other well established approaches such as simulation and differential equations to better understand pump behavior. Using PMC we can determine if specific events happen such as the potassium outside the cell ends in all model traces. We can also have a more detailed perspective on its behavior such as determining its reversibility and why its normal operation becomes slow over time. This knowledge can be used to direct experimental research and make it more efficient, leading to faster and more accurate scientific discoveries. PMID:22369714
2010-01-01
DNA analysis is frequently used to acquire information from biological material to aid enquiries associated with criminal offences, disaster victim identification and missing persons investigations. As the relevance and value of DNA profiling to forensic investigations has increased, so too has the desire to generate this information from smaller amounts of DNA. Trace DNA samples may be defined as any sample which falls below recommended thresholds at any stage of the analysis, from sample detection through to profile interpretation, and can not be defined by a precise picogram amount. Here we review aspects associated with the collection, DNA extraction, amplification, profiling and interpretation of trace DNA samples. Contamination and transfer issues are also briefly discussed within the context of trace DNA analysis. Whilst several methodological changes have facilitated profiling from trace samples in recent years it is also clear that many opportunities exist for further improvements. PMID:21122102
NASA Technical Reports Server (NTRS)
Mittlefehldt, David W.; Kulkarni, Pranav; Chellam, Shankar
2006-01-01
In the absence of a certified reference material, a robust microwave-assisted acid digestion procedure followed by inductively coupled plasma - mass spectrometry (ICP-MS) was developed to quantify rare earth elements (REEs) in fluidized-bed catalytic cracking (FCC) catalysts and atmospheric fine particulate matter (PM2.5). High temperature (200 C), high pressure (200 psig), acid digestion (HNO3, HF, and H3BO3) with 20 minute dwell time effectively solubilized REEs from six fresh catalysts, a spent catalyst, and PM2.5. This method was also employed to measure 27 non-REEs including Na, Mg, Al, Si, K, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Zr, Mo, Cd, Cs, Ba, Pb, and U. Complete extraction of several REEs (Y, La, Ce, Pr, Nd, Tb, Dy, and Er) required HF indicating that they were closely associated with the aluminosilicate structure of the zeolite FCC catalysts. Internal standardization using 115In quantitatively corrected non-spectral interferences in the catalyst digestate matrix. Inter-laboratory comparison using ICP-optical emission spectroscopy (ICP-OES) and instrumental neutron activation analysis (INAA) demonstrated the applicability of the newly developed analytical method for accurate analysis of REEs in FCC catalysts. The method developed for FCC catalysts was also successfully implemented to measure trace to ultra-trace concentrations of La, Ce, Pr, Nd, Sm, Gd, Eu, and Dy in ambient PM2.5 in an industrial area of Houston, TX.
Nanita, Sergio C; Padivitage, Nilusha L T
2013-03-20
A sample extraction and purification procedure that uses ammonium-salt-induced acetonitrile/water phase separation was developed and demonstrated to be compatible with the recently reported method for pesticide residue analysis based on fast extraction and dilution flow injection mass spectrometry (FED-FI-MS). The ammonium salts evaluated were chloride, acetate, formate, carbonate, and sulfate. A mixture of NaCl and MgSO4, salts used in the well-known QuEChERS method, was also tested for comparison. With thermal decomposition/evaporation temperature of <350°C, ammonium salts resulted in negligible ion source residual under typical electrospray conditions, leading to consistent method performance and less instrument cleaning. Although all ammonium salts tested induced acetonitrile/water phase separation, NH4Cl yielded the best performance, thus it was the preferred salting out agent. The NH4Cl salting out method was successfully coupled with FI/MS/MS and tested for fourteen pesticide active ingredients: chlorantraniliprole, cyantraniliprole, chlorimuron ethyl, oxamyl, methomyl, sulfometuron methyl, chlorsulfuron, triflusulfuron methyl, azimsulfuron, flupyrsulfuron methyl, aminocyclopyrachlor, aminocyclopyrachlor methyl, diuron and hexazinone. A validation study was conducted with nine complex matrices: sorghum, rice, grapefruit, canola, milk, eggs, beef, urine and blood plasma. The method is applicable to all analytes, except aminocyclopyrachlor. The method was deemed appropriate for quantitative analysis in 114 out of 126 analyte/matrix cases tested (applicability rate=0.90). The NH4Cl salting out extraction/cleanup allowed expansion of FI/MS/MS for analysis in food of plant and animal origin, and body fluids with increased ruggedness and sensitivity, while maintaining high-throughput (run time=30s/sample). Limits of quantitation (LOQs) of 0.01mgkg(-1) (ppm), the 'well-accepted standard' in pesticide residue analysis, were achieved in >80% of cases tested; while limits of detection (LODs) were typically in the range of 0.001-0.01mgkg(-1) (ppm). A comparison to a well-established HPLC/MS/MS method was also conducted, yielding comparable results, thus confirming the suitability of NH4Cl salting out FI/MS/MS for pesticide residue analysis. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tanc, Beril; Kaya, Mustafa; Gumus, Lokman; Kumral, Mustafa
2016-04-01
X-ray fluorescence (XRF) spectrometry is widely used for quantitative and semi quantitative analysis of many major, minor and trace elements in geological samples. Some advantages of the XRF method are; non-destructive sample preparation, applicability for powder, solid, paste and liquid samples and simple spectrum that are independent from chemical state. On the other hand, there are some disadvantages of the XRF methods such as poor sensitivity for low atomic number elements, matrix effect (physical matrix effects, such as fine versus course grain materials, may impact XRF performance) and interference effect (the spectral lines of elements may overlap distorting results for one or more elements). Especially, spectral interferences are very significant factors for accurate results. In this study, semi-quantitative analyzed manganese (II) oxide (MnO, 99.99%) was examined. Samples were pelleted and analyzed with XRF spectrometry (Bruker S8 Tiger). Unexpected peaks were obtained at the side of the major Mn peaks. Although sample does not contain Eu element, in results 0,3% Eu2O3 was observed. These result can occur high concentration of MnO and proximity of Mn and Eu lines. It can be eliminated by using correction equation or Mn concentration can confirm with other methods (such as Atomic absorption spectroscopy). Keywords: Spectral Interferences; Manganese (Mn); Europium (Eu); X-Ray Fluorescence Spectrometry Spectrum.
Buscher, Brigitte; van de Lagemaat, Dick; Gries, Wolfgang; Beyer, Dieter; Markham, Dan A; Budinsky, Robert A; Dimond, Stephen S; Nath, Rajesh V; Snyder, Stephanie A; Hentges, Steven G
2015-11-15
The aim of the presented investigation was to document challenges encountered during implementation and qualification of a method for bisphenol A (BPA) analysis and to develop and discuss precautions taken to avoid and to monitor contamination with BPA during sample handling and analysis. Previously developed and published HPLC-MS/MS methods for the determination of unconjugated BPA (Markham et al. Journal of Analytical Toxicology, 34 (2010) 293-303) [17] and total BPA (Markham et al. Journal of Analytical Toxicology, 38 (2014) 194-203) [20] in human urine were combined and transferred into another laboratory. The initial method for unconjugated BPA was developed and evaluated in two independent laboratories simultaneously. The second method for total BPA was developed and evaluated in one of these laboratories to conserve resources. Accurate analysis of BPA at sub-ppb levels is a challenging task as BPA is a widely used material and is ubiquitous in the environment at trace concentrations. Propensity for contamination of biological samples with BPA is reported in the literature during sample collection, storage, and/or analysis. Contamination by trace levels of BPA is so pervasive that even with extraordinary care, it is difficult to completely exclude the introduction of BPA into biological samples and, consequently, contamination might have an impact on BPA biomonitoring data. The applied UPLC-MS/MS method was calibrated from 0.05 to 25ng/ml. The limit of quantification was 0.1ng/ml for unconjugated BPA and 0.2ng/ml for total BPA, respectively, in human urine. Finally, the method was applied to urine samples derived from 20 volunteers. Overall, BPA can be analyzed in human urine with acceptable recovery and repeatability if sufficient measures are taken to avoid contamination throughout the procedure from sample collection until UPLC-MS/MS analysis. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Ferreira, Fabiano G; Nouer, Darcy F; Silva, Nelson P; Garbui, Ivana U; Correr-Sobrinho, Lourenço; Nouer, Paulo R A
2014-09-01
The aim of this study was to undertake a qualitative and quantitative evaluation of changes on enamel surfaces after debonding of brackets followed by finishing procedures, using a high-resolution three-dimensional optical profiler and to investigate the accuracy of the technique. The labial surfaces of 36 extracted upper central incisors were examined. Before bonding, the enamel surfaces were subjected to profilometry, recording four amplitude parameters. Brackets were then bonded using two types of light-cured orthodontic adhesive: composite resin and resin-modified glass ionomer cement. Finishing was performed by three different methods: pumice on a rubber cup, fine and ultrafine aluminum oxide discs, and microfine diamond cups followed by silicon carbide brushes. The samples were subsequently re-analyzed by profilometry. Wilcoxon signed-rank test, Kruskal-Wallis test (p < 0.05) and a posteriori Mann-Whitney U test with Bonferroni correction (p < 0.0167) revealed a significant reduction of enamel roughness when diamond cups followed by silicon carbide brushes were used to finish surfaces that had remnants of resin-modified glass ionomer adhesive and when pumice was used to finish surfaces that had traces of composite resin. Enamel loss was minimal. The 3D optical profilometry technique was able to provide accurate qualitative and quantitative assessment of changes on the enamel surface after debonding. Morphological changes in the topography of dental surfaces, especially if related to enamel loss and roughness, are of considerable clinical importance. The quantitative evaluation method used herein enables a more comprehensive understanding of the effects of orthodontic bonding on teeth.
Busico, Gianluigi; Cuoco, Emilio; Kazakis, Nerantzis; Colombani, Nicolò; Mastrocicco, Micòl; Tedesco, Dario; Voudouris, Konstantinos
2018-03-01
Shallow aquifers are the most accessible reservoirs of potable groundwater; nevertheless, they are also prone to various sources of pollution and it is usually difficult to distinguish between human and natural sources at the watershed scale. The area chosen for this study (the Campania Plain) is characterized by high spatial heterogeneities both in geochemical features and in hydraulic properties. Groundwater mineralization is driven by many processes such as, geothermal activity, weathering of volcanic products and intense human activities. In such a landscape, multivariate statistical analysis has been used to differentiate among the main hydrochemical processes occurring in the area, using three different approaches of factor analysis: (i) major elements, (ii) trace elements, (iii) both major and trace elements. The elaboration of the factor analysis approaches has revealed seven distinct hydrogeochemical processes: i) Salinization (Cl - , Na + ); ii) Carbonate rocks dissolution; iii) Anthropogenic inputs (NO 3 - , SO 4 2- , U, V); iv) Reducing conditions (Fe 2+ , Mn 2+ ); v) Heavy metals contamination (Cr and Ni); vi) Geothermal fluids influence (Li + ); and vii) Volcanic products contribution (As, Rb). Results from this study highlight the need to separately apply factor analysis when a large data set of trace elements is available. In fact, the impact of geothermal fluids in the shallow aquifer was identified from the application of the factor analysis using only trace elements. This study also reveals that the factor analysis of major and trace elements can differentiate between anthropogenic and geogenic sources of pollution in intensively exploited aquifers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Young, Allison; Klossner, Joanne; Docherty, Carrie L; Dodge, Thomas M; Mensch, James M
2013-01-01
Context A better understanding of why students leave an undergraduate athletic training education program (ATEP), as well as why they persist, is critical in determining the future membership of our profession. Objective To better understand how clinical experiences affect student retention in undergraduate ATEPs. Design Survey-based research using a quantitative and qualitative mixed-methods approach. Setting Three-year undergraduate ATEPs across District 4 of the National Athletic Trainers' Association. Patients or Other Participants Seventy-one persistent students and 23 students who left the ATEP prematurely. Data Collection and Analysis Data were collected using a modified version of the Athletic Training Education Program Student Retention Questionnaire. Multivariate analysis of variance was performed on the quantitative data, followed by a univariate analysis of variance on any significant findings. The qualitative data were analyzed through inductive content analysis. Results A difference was identified between the persister and dropout groups (Pillai trace = 0.42, F1,92 = 12.95, P = .01). The follow-up analysis of variance revealed that the persister and dropout groups differed on the anticipatory factors (F1,92 = 4.29, P = .04), clinical integration (F1,92 = 6.99, P = .01), and motivation (F1,92 = 43.12, P = .01) scales. Several themes emerged in the qualitative data, including networks of support, authentic experiential learning, role identity, time commitment, and major or career change. Conclusions A perceived difference exists in how athletic training students are integrated into their clinical experiences between those students who leave an ATEP and those who stay. Educators may improve retention by emphasizing authentic experiential learning opportunities rather than hours worked, by allowing students to take on more responsibility, and by facilitating networks of support within clinical education experiences. PMID:23672327
Xiong, Xiaohong; Jiang, Tao; Zhou, Runzhi; Wang, Shangxian; Zou, Wei; Zhu, Zhiqiang
2016-05-01
Microwave plasma torch (MPT) is a simple and low power-consumption ambient ion source. And the MPT Mass spectra of many metal elements usually exhibit some novel features different from their inductively coupled plasma (ICP) mass spectra, which may be helpful for metal element analysis. Here, we presented the results about the MPT mass spectra of copper and molybdenum elements by a linear ion trap mass spectrometer (LTQ). The generated copper or molybdenum contained ions in plasma were characterized further in collision-induced dissociated (CID) experiments. These researches built a novel, direct and sensitive method for the direct analysis of trace levels of copper and molybdenum in aqueous liquids. Quantitative results showed that the limit of detection (LOD) by using MS(2) procedure was estimated to be 0.265 µg/l (ppb) for copper and 0.497 µg/l for molybdenum. The linear dynamics ranges cover at least 2 orders of magnitude and the analysis of a single aqueous sample can be completed in 5-6 min with a reasonable semi-quantitative sense. Two practical aqueous samples, milk and urine, were also analyzed qualitatively with reasonable recovery rates and RSD. These experimental data demonstrated that the MPT MS is able to turn into a promising and hopeful tool in field analysis of copper and molybdenum ions in water and some aqueous media, and can be applied in many fields, such as environmental controlling, hydrogeology, and water quality inspection. Moreover, MPT MS could also be used as the supplement of ICP-MS for the rapid and in-situ analysis of metal ions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Łazarek, Łukasz; Antończak, Arkadiusz J.; Wójcik, Michał R.; Kozioł, Paweł E.; Stepak, Bogusz; Abramski, Krzysztof M.
2014-08-01
Laser-induced breakdown spectroscopy (LIBS) is a fast, fully optical method, that needs little or no sample preparation. In this technique qualitative and quantitative analysis is based on comparison. The determination of composition is generally based on the construction of a calibration curve namely the LIBS signal versus the concentration of the analyte. Typically, to calibrate the system, certified reference materials with known elemental composition are used. Nevertheless, such samples due to differences in the overall composition with respect to the used complex inorganic materials can influence significantly on the accuracy. There are also some intermediate factors which can cause imprecision in measurements, such as optical absorption, surface structure, thermal conductivity etc. This paper presents the calibration procedure performed with especially prepared pellets from the tested materials, which composition was previously defined. We also proposed methods of post-processing which allowed for mitigation of the matrix effects and for a reliable and accurate analysis. This technique was implemented for determination of trace elements in industrial copper concentrates standardized by conventional atomic absorption spectroscopy with a flame atomizer. A series of copper flotation concentrate samples was analyzed for contents of three elements, that is silver, cobalt and vanadium. It has been shown that the described technique can be used to qualitative and quantitative analyses of complex inorganic materials, such as copper flotation concentrates.
Li, Qiang; Qiu, Tian; Hao, Hongxia; Zhou, Hong; Wang, Tongzhou; Zhang, Ye; Li, Xin; Huang, Guoliang; Cheng, Jing
2012-04-07
A deep ultraviolet-visible (DUV-Vis) reflected optical fiber sensor was developed for use in a simple spectrophotometric detection system to detect the absorption of various illegal drugs at wavelengths between 180 and 800 nm. Quantitative analyses performed using the sensor revealed a high specificity and sensitivity for drug detection at a wavelength of approximately 200 nm. Using a double-absorption optical path length, extremely small sample volumes were used (32 to 160 nL), which allowed the use of minimal amounts of samples. A portable spectrophotometric system was established based on our optical fiber sensor for the on-site determination and quantitative analysis of common illegal drugs, such as 3,4-methylenedioxymethamphetamine (MDMA), ketamine hydrochloride, cocaine hydrochloride, diazepam, phenobarbital, and barbital. By analyzing the absorbance spectra, six different drugs were quantified at concentrations that ranged from 0.1 to 1000 μg mL(-1) (16 pg-0.16 μg). A novel Matching Algorithm of Spectra Space (MASS) was used to accurately distinguish between each drug in a mixture. As an important supplement to traditional methods, such as mass spectrometry or chromatography, our optical fiber sensor offers rapid and low-cost on-site detection using trace amounts of sample. This rapid and accurate analytical method has wide-ranging applications in forensic science, law enforcement, and medicine.
The Sources of American Inequality, 1896-1948.
ERIC Educational Resources Information Center
Williamson, Jeffrey G.
This paper discusses American long-term experience with changes in the distribution of income since the turn of the century. It supplies quantitative documentation of a pronunced secular swing in inequality. Inequality indicators were on the rise up to 1914, exhibited no trend to 1926 or 1929, and traced out a well known egalitatian leveling up to…
Analysis of transferred fragrance and its forensic implications.
Gherghel, Simona; Morgan, Ruth M; Blackman, Christopher S; Karu, Kersti; Parkin, Ivan P
2016-12-01
Perfumes are widely used by many people in developed countries, and a large number of both men and women wear perfumes on a daily basis. Analysis of perfume trace materials from clothing is not commonly employed within forensic casework, yet as a form of trace evidence it has the potential to provide valuable intelligence. In order to appreciate the value of trace evidence there is a fundamental need for an evidence base that can both offer insight into how a trace material behaves under different scenarios and activities, and from which inferences can be made. With this purpose a gas chromatography-mass spectrometry method for trace analysis of perfumes was developed. This paper presents two different series of experiments that investigate the dynamics of perfume transfer as a factor of perfume ageing time, and as a factor of perfume contact time. Empirical data showed that both perfume ageing time, and perfume contact time play a key role in the number of perfume components transferred. These studies have implication for forensic protocols, specifically for perfume trace evidence collection, analysis, interpretation, and presentation, and there is potentially great value in analysing perfumes from clothing exhibits in forensic enquiries that involve close contact between individuals, such as sexual assaults. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Micellar electrokinetic chromatography (MEKC) with laser-induced fluorescence (LIF) detection was used for the trace analysis of phenoxy acid herbicides. Capillary electrophoresis (CE) with LIF detection, which has not previously been used for pesticide analysis, overcomes the po...
Analysis of crevasse patterns on Helheim and Kangerdlugssuaq Glaciers in Greenland
NASA Astrophysics Data System (ADS)
Udell, K.; Walker, C. C.; Schmidt, B. E.
2017-12-01
As a tidewater glacier flows through a valley, it accumulates fractures that provide qualitative information on how glacier thickness, climate forcing, and areas of compression and extension conspire within the ice. These fracture patterns remain and evolve on the glacier, and rapid changes in the pattern can be indicative of a transition in the movement of the glacier. Not only can the fractures provide qualitative information about a glacier, they can also provide quantitative information that allows for the calculation of the stress field and dynamics that the ice experiences. Helheim and Kangerdlugssuaq both terminate in the ocean, potentially providing information on the transition from solid glacier to mélange, which is an important but not well understood process. Using satellite imagery, we traced surface crevasses present along each glacier for available images between 2001-2016 using geospatial software QGIS. We also qualitatively tracked any surface melt ponds present, and monitored for large fractures or regions of the terminus that appeared to be susceptible to or currently calving. With the trace maps, we will use spatial analysis techniques to allow us to quantify the visible patterns and compare the information from year to year and glacier to glacier. Once we can quantitatively describe fracture density in different areas of the glacier, we will also be able to better describe the transition within the glacier from solid mass to highly-fractured and collapsing. Having this data for each glacier allows for comparisons to be made within regions of individual glaciers as well as between glaciers. Using this information, we can answer questions about the relationship between density and pattern of fractures to the stability of the terminus, the stresses that drive glacial fractures, and what effects climate has on glacier dynamics and calving. Preliminary observations include the increasing prevalence of melt ponds beginning in 2004 as well as the retreat of the terminus during the same period. More recently the location of the terminus has remained relatively constant. Overall, understanding the processes of glacial fracturing has implications for both better understanding climate change and analyzing ice fracturing on other planetary bodies such as Europa.
On the Information Content of Program Traces
NASA Technical Reports Server (NTRS)
Frumkin, Michael; Hood, Robert; Yan, Jerry; Saini, Subhash (Technical Monitor)
1998-01-01
Program traces are used for analysis of program performance, memory utilization, and communications as well as for program debugging. The trace contains records of execution events generated by monitoring units inserted into the program. The trace size limits the resolution of execution events and restricts the user's ability to analyze the program execution. We present a study of the information content of program traces and develop a coding scheme which reduces the trace size to the limit given by the trace entropy. We apply the coding to the traces of AIMS instrumented programs executed on the IBM SPA and the SCSI Power Challenge and compare it with other coding methods. Our technique shows size of the trace can be reduced by more than a factor of 5.
To analyse a trace or not? Evaluating the decision-making process in the criminal investigation.
Bitzer, Sonja; Ribaux, Olivier; Albertini, Nicola; Delémont, Olivier
2016-05-01
In order to broaden our knowledge and understanding of the decision steps in the criminal investigation process, we started by evaluating the decision to analyse a trace and the factors involved in this decision step. This decision step is embedded in the complete criminal investigation process, involving multiple decision and triaging steps. Considering robbery cases occurring in a geographic region during a 2-year-period, we have studied the factors influencing the decision to submit biological traces, directly sampled on the scene of the robbery or on collected objects, for analysis. The factors were categorised into five knowledge dimensions: strategic, immediate, physical, criminal and utility and decision tree analysis was carried out. Factors in each category played a role in the decision to analyse a biological trace. Interestingly, factors involving information available prior to the analysis are of importance, such as the fact that a positive result (a profile suitable for comparison) is already available in the case, or that a suspect has been identified through traditional police work before analysis. One factor that was taken into account, but was not significant, is the matrix of the trace. Hence, the decision to analyse a trace is not influenced by this variable. The decision to analyse a trace first is very complex and many of the tested variables were taken into account. The decisions are often made on a case-by-case basis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Mishra, Rupesh K; Hayat, Akhtar; Catanante, Gaëlle; Ocaña, Cristina; Marty, Jean-Louis
2015-08-19
Contamination of food by mycotoxin occurs in minute/trace quantities. Nearly 92.5% of the cocoa samples present Ochratoxin A (OTA) levels at trace quantity. Hence, there is a necessity for a highly sensitive and selective device that can detect and quantify these organic toxins in various matrices such as cocoa beans. This work reports for the first time, a facile and label-free electrochemical impedimetric aptasensor for rapid detection and quantitation of OTA in cocoa beans. The developed aptasensor was constructed based on the diazonium-coupling reaction mechanism for the immobilization of anti-OTA-aptamer on screen printed carbon electrodes (SPCEs). The aptasensor exhibited a very good limit of detection (LOD) as low as 0.15 ng/mL, with added advantages of good selectivity and reproducibility. The increase in electron transfer resistance was linearly proportional to the OTA concentration in the range 0.15-2.5 ng/mL, with an acceptable recovery percentage (91-95%, RSD = 4.8%) obtained in cocoa samples. This work can facilitate a general model for the detection of OTA in cocoa beans based on the impedimetric aptasensor. The analysis can be performed onsite with pre-constructed and aptamer modified electrodes employing a portable EIS set up. Copyright © 2015 Elsevier B.V. All rights reserved.
Gilfedder, B S; Hofmann, H; Cartwright, I
2013-01-15
There is little known about the short-term dynamics of groundwater-surface water exchange in losing rivers. This is partly due to the paucity of chemical techniques that can autonomously collect high-frequency data in groundwater bores. Here we present two new instruments for continuous in situ (222)Rn measurement in bores for quantifying the surface water infiltration rate into an underlying or adjacent aquifer. These instruments are based on (222)Rn diffusion through silicone tube membranes, either wrapped around a pole (MonoRad) or strung between two hollow end pieces (OctoRad). They are combined with novel, robust, low-cost Geiger counter (222)Rn detectors which are ideal for long-term autonomous measurement. The down-hole instruments have a quantitative response time of about a day during low flow, but this decreases to <12 h during high-flow events. The setup was able to trace river water bank infiltration during moderate to high river flow during two field experiments. Mass-balance calculations using the (222)Rn data gave a maximum infiltration rate of 2 m d(-1). These instruments offer the first easily constructible system for continuous (222)Rn analysis in groundwater, and could be used to trace surface water infiltration in many environments including rivers, lakes, wetlands, and coastal settings.
ten Kate, Inge L; Canham, John S; Conrad, Pamela G; Errigo, Therese; Katz, Ira; Mahaffy, Paul R
2008-06-01
The objective of the 2009 Mars Science Laboratory (MSL), which is planned to follow the Mars Exploration Rovers and the Phoenix lander to the surface of Mars, is to explore and assess quantitatively a site on Mars as a potential habitat for present or past life. Specific goals include an assessment of the past or present biological potential of the target environment and a characterization of its geology and geochemistry. Included in the 10 investigations of the MSL rover is the Sample Analysis at Mars (SAM) instrument suite, which is designed to obtain trace organic measurements, measure water and other volatiles, and measure several light isotopes with experiment sequences designed for both atmospheric and solid-phase samples. SAM integrates a gas chromatograph, a mass spectrometer, and a tunable laser spectrometer supported by sample manipulation tools both within and external to the suite. The sub-part-per-billion sensitivity of the suite for trace species, particularly organic molecules, along with a mobile platform that will contain many kilograms of organic materials, presents a considerable challenge due to the potential for terrestrial contamination to mask the signal of martian organics. We describe the effort presently underway to understand and mitigate, wherever possible within the resource constraints of the mission, terrestrial contamination in MSL and SAM measurements.
NASA Astrophysics Data System (ADS)
de Souza, Roseli M.; Mathias, Bárbara M.; da Silveira, Carmem Lúcia P.; Aucélio, Ricardo Q.
2005-06-01
The quantitative evaluation of trace elements in foodstuffs is of considerable interest due to the potential toxicity of many elements, and because the presence of some metallic species might affect the overall quality (flavor and stability) of these products. In the present work, an inductively coupled plasma optical emission spectrometric method has been developed for the determination of six elements (Cd, Co, Cr, Cu, Ni and Mn) in olive oil, soy oil, margarine and butter. Organic samples (oils and fats) were stabilized using propan-1-ol and water, which enabled long-time sample dispersion in the solution. This simple sample preparation procedure, together with an efficient sample introduction strategy (using a Meinhard K3 nebulizer and a twister cyclonic spray chamber), facilitated the overall analytical procedure, allowing quantification using calibration curves prepared with inorganic standards. Internal standardization (Sc) was used for correction of matrix effects and signal fluctuations. Good sensitivities with limits of detection in the ng g -1 range were achieved for all six elements. These sensitivities were appropriate for the intended application. The method was tested through the analysis of laboratory-fortified samples with good recoveries (between 91.3% and 105.5%).
Ortiz, Antonio J.; Cortez, Vieyle; Azzouz, Abdelmonaim
2017-01-01
A new analytical method based on solvent extraction, followed by continuous solid-phase extraction (SPE) clean-up using a polymeric sorbent, was demonstrated to be applicable for the detection of ivermectin in complex biological matrices of dung beetles (hemolymph, excreta or dry tissues) using liquid chromatography combined with positive electrospray ionization tandem mass spectrometry (LC/ESI+–MS/MS). Using a signal-to-noise ratio of 3:1, the limit of detection (LOD) in the insect matrices at trace levels was 0.01 ng g–1 and the limit of quantification (LOQ) was 0.1 ng g–1. The proposed method was successfully used to quantitatively determine the levels of ivermectin in the analysis of small samples in in vivo and post mortem samples, demonstrating the usefulness for quantitative analyses that are focused on future pharmacokinetic and bioavailability studies in insects and the establishment of a new protocol to study the impact of ivermectin on non-target arthropods such as dung beetles and other insects that are related with the “dung community”. Because satisfactory precision and accuracy values were obtained in both in vivo matrices, we suggest that the method can be consistently used for quantitative determinations that are focused on future pharmacokinetic and bioavailability studies in insects. Furthermore, this new analytical method was successfully applied to biological samples of dead dung beetles from the field suggesting that the method can be used to establish a new routine analysis of ivermectin residues in insect carcasses that is applied to complement typical mortality tests. PMID:28207908
Freissinet, C; Buch, A; Sternberg, R; Szopa, C; Geffroy-Rodier, C; Jelinek, C; Stambouli, M
2010-01-29
Within the context of the future space missions to Mars (MSL 2011 and Exomars 2016), which aim at searching for traces of life at the surface, the detection and quantitation of enantiomeric organic molecules is of major importance. In this work, we have developed and optimized a method to derivatize and analyze chiral organic molecules suitable for space experiments, using N,N-dimethylformamide dimethylacetal (DMF-DMA) as the derivatization agent. The temperature, duration of the derivatization reaction, and chromatographic separation parameters have been optimized to meet instrument design constraints imposed upon space experiment devices. This work demonstrates that, in addition to its intrinsic qualities, such as production of light-weight derivatives and a great resistance to drastic operating conditions, DMF-DMA facilitates simple and fast derivatization of organic compounds (three minutes at 140 degrees C in a single-step) that is suitable for an in situ analysis in space. By using DMF-DMA as the derivatization agent, we have successfully identified 19 of the 20 proteinic amino acids and been able to enantiomerically separate ten of the potential 19 (glycine being non-chiral). Additionally, we have minimized the percentage of racemized amino acid compounds produced by optimizing the conditions of the derivatization reaction itself. Quantitative linearity studies and the determination of the limit of detection show that the proposed method is also suitable for the quantitative determination of both enantiomeric forms of most of the tested amino acids, as limits of detection obtained are lower than the ppb level of organic molecules already detected in Martian meteorites. Copyright (c) 2009 Elsevier B.V. All rights reserved.
Modeling Microbial Processes in EPIC to Estimate Greenhouse Gas Emissions from soils
NASA Astrophysics Data System (ADS)
Schwab, D. E.; Izaurralde, R. C.; McGill, W. B.; Williams, J. R.; Schmid, E.
2009-12-01
Emissions of trace gases (CO2, N2O and CH4) to the atmosphere from managed terrestrial ecosystems have been contributing significantly to the warming of Earth. Trace gas production is dominated by biospheric processes. An improved knowledge of the soil-plant-atmosphere interface is of key importance for understanding trace gas dynamics. In soils, microbial metabolism plays a key role in the release or uptake of trace gases. Here we present work on the biophysical and biogeochemical model EPIC (Environmental Policy/Integrated Climate) to extend its capabilities to simulate CO2 and N2O fluxes in managed and unmanaged ecosystems. Emphasis will be given to recently developed, microbially-based, denitrification and nitrification modules. The soil-atmosphere exchange of trace gases can be measured by using various equipments, but often these measurements exhibit extreme space-time variability. We use hourly time steps to account for the variability induced by small changes in environmental conditions. Soils are often studied as macroscopic systems, although their functions are predominantly controlled at a microscopic level; i.e. the level of the microorganisms. We include these processes to the extent that these are known and can be quantitatively described. We represent soil dynamics mathematically with routines for gas diffusion, Michael Menten processes, electron budgeting and other processes such as uptake and transformations. We hypothesize that maximization of energy capture form scarce substrates using energetic favorable reactions drives evolution and that competitive advantage can result by depriving a competitor from a substrate. This Microbe Model changes concepts of production of N-containing trace gases; it unifies understanding of N oxidation and reduction, predicts production and evolution of trace gases and is consistent with observations of anaerobic ammonium oxidation.
Keller, Andrew; Bader, Samuel L.; Shteynberg, David; Hood, Leroy; Moritz, Robert L.
2015-01-01
Proteomics by mass spectrometry technology is widely used for identifying and quantifying peptides and proteins. The breadth and sensitivity of peptide detection have been advanced by the advent of data-independent acquisition mass spectrometry. Analysis of such data, however, is challenging due to the complexity of fragment ion spectra that have contributions from multiple co-eluting precursor ions. We present SWATHProphet software that identifies and quantifies peptide fragment ion traces in data-independent acquisition data, provides accurate probabilities to ensure results are correct, and automatically detects and removes contributions to quantitation originating from interfering precursor ions. Integration in the widely used open source Trans-Proteomic Pipeline facilitates subsequent analyses such as combining results of multiple data sets together for improved discrimination using iProphet and inferring sample proteins using ProteinProphet. This novel development should greatly help make data-independent acquisition mass spectrometry accessible to large numbers of users. PMID:25713123
The use of mosses as environmental metal pollution indicators.
Aceto, Maurizio; Abollino, Ornella; Conca, Raffaele; Malandrino, Mery; Mentasti, Edoardo; Sarzanini, Corrado
2003-01-01
The possibility of using mosses as environmental indicators of metal pollution has been investigated. Mosses of the species Bryum argenteum were collected from different parts of Piedmont (Italy), ranging from highly polluted areas to nearly uncontaminated mountain areas. Periodical samplings were planned in every site on a monthly base, in order to check variations of metal uptake throughout one year; correlations with pluviometric and thermal patterns were investigated for all sampling stations. On every moss sample 20 elements, ranging from major (K, P, Al, Ca, Fe and Mg) to minor (Mn, Na, Ti and Zn) and trace (As, Ba, Cd, Co, Cr, Cu, Li, Ni, Pb and Sr), were quantitatively determined by inductively coupled plasma-atomic emission spectrometry or graphite furnace-atomic absorption spectrometry, depending on the needed sensitivity. Statistical analyses, carried out with principal component analysis and cluster analysis methods, revealed that a good correlation exists between metal content in mosses and pollution degree in the areas sampled.
Modeling of thermal lensing in side and end-pumped finite solid-state laser rods. M.S. Thesis
NASA Technical Reports Server (NTRS)
Brackett, Vincent G.
1990-01-01
An analytical expression for approximating the time-dependent thermal focal length in finite solid state laser rods was derived. The analysis is based on the temperature variation of the material refractive index caused by optical pumping of these rods. Several quantities were found to be relevant to this analysis. These quantities were the specific thermal profiles of the rods, type of optical pumping employed, type of cooling scheme employed (side and end-cooling parameters), and the specific material characteristics of the rods. The Thermal Lensing Model was formulated using the geometric ray tracing approach. The focal lengths are then approximated, by calculating the phase shift in the index of refraction, as the different rays of an incident plane wave are tracked through a lens-like crystal medium. The approach also applies in the case of Gaussian or parabolic pump beams. It is shown that the prediction of thermal focal length is in good quantitative agreement with experimentally obtained data.
NASA Technical Reports Server (NTRS)
Valentine, J. L.; Bryant, P. J.
1975-01-01
Analysis of human breath is a nonintrusive method to monitor both endogenous and exogenous chemicals found in the body. Several technologies were investigated and developed which are applicable to monitoring some organic molecules important in both physiological and pathological states. Two methods were developed for enriching the organic molecules exhaled in the breath of humans. One device is based on a respiratory face mask fitted with a polyethylene foam wafer; while the other device is a cryogenic trap utilizing an organic solvent. Using laboratory workers as controls, two organic molecules which occurred in the enriched breath of all subjects were tentatively identified as lactic acid and contisol. Both of these substances occurred in breath in sufficient amounts that the conventional method of gas-liquid chromatography was adequate for detection and quantification. To detect and quantitate trace amounts of chemicals in breath, another type of technology was developed in which analysis was conducted using high pressure liquid chromatography and mass spectrometry.
Jeanne Dit Fouque, Dany; Maroto, Alicia; Memboeuf, Antony
2016-11-15
The differentiation, characterization, and quantification of isomers and/or isobars in mixtures is a recurrent problem in mass spectrometry and more generally in analytical chemistry. Here we present a new strategy to assess the purity of a compound that is susceptible to be contaminated with another isomeric side-product in trace levels. Providing one of the isomers is available as pure sample, this new strategy allows the detection of isomeric contamination. This is done thanks to a "gas-phase collisional purification" inside an ion trap mass spectrometer paving the way for an improved analysis of at least similar samples. This strategy consists in using collision induced dissociation (CID) multistage mass spectrometry (MS 2 and MS 3 ) experiments and the survival yield (SY) technique. It has been successfully applied to mixtures of cyclic poly( L -lactide) (PLA) with increasing amounts of its linear topological isomer. Purification in gas phase of PLA mixtures was established based on SY curves obtained in MS 3 mode: all samples gave rise to the same SY curve corresponding then to the pure cyclic component. This new strategy was sensitive enough to detect traces of linear PLA (<3%) in a sample of cyclic PLA that was supposedly pure according to other characterization techniques ( 1 H NMR, MALDI-HRMS, and size-exclusion chromatography). Moreover, in this case, the presence of linear isomer was undetectable according to MS/MS or MS/MS/MS analysis only as fragment ions are also of the same m/z values. This type of approach could easily be implemented in hyphenated mass spectrometric techniques to improve the structural and quantitative analysis of complex samples.
Melvin, Steven D; Leusch, Frederic D L
2016-01-01
Trace organic contaminants (TrOCs), such as endocrine disrupting compounds (EDCs) and pharmaceuticals and personal care products (PPCPs), represent global threats to aquatic animals and ecosystems. A major source of TrOCs in the aquatic environment is via the discharge of treated sewage, so there is an urgent need to evaluate the comparative efficiencies of the most widely used sewage treatment technologies as regards elimination of these compounds from wastewater. To address this need, 976 published articles were compiled focusing on estimates of removal (%) for 20 common environmental TrOCs, from five major sewage treatment technologies: conventional activated sludge (CAS), oxidation ditch (OD), membrane bioreactor (MBR), ponds and constructed wetlands (PCW), and trickling biological filters (TBF). A quantitative meta-analysis was performed to compare standardized relative removal efficiencies (SREs) of the compounds amongst these technologies, and where possible potential sources of heterogeneity were considered (e.g., flow rates and chemical sorption potential). The results indicate that the most widely used CAS treatment and the less common TBF provide comparatively poor overall removal of common organic micropollutants. Membrane bioreactors appear to be capable of achieving the greatest overall removal efficiencies, but the sustainability and economic viability of this option has been questioned. Treatment with OD systems may be more economical while still achieving comparatively high removal efficiencies, and the analysis revealed OD to be the best option for targeting highly potent estrogenic EDCs. This study offers a unique global assessment of TrOC removal via leading sewage treatment technologies, and is an important step in the identification of effective options for treating municipal sewage. Copyright © 2016 Elsevier Ltd. All rights reserved.
Image analysis using reflected light: an underutilized tool for interpreting magnetic fabrics
NASA Astrophysics Data System (ADS)
Waters-Tormey, C. L.; Liner, T.; Miller, B.; Kelso, P. R.
2010-12-01
Grain shape fabric analysis is one of the most common tools used to compare magnetic fabric and handsample scale rock fabric. Usually, this image analysis uses photomicrographs taken under plane or polarized light, which may be problematic if there are several dominant magnetic carriers (e.g., magnetite and pyrrhotite). The method developed for this study uses reflected light photomicrographs, and is effective in assessing the relative contribution of different phases to the opaque mineral shape-preferred orientation (SPO). Mosaics of high-resolution photomicrographs are first assembled and processed in Adobe Photoshop®. The Adobe Illustrator® “Live Trace” tool, whose settings can be optimized for reflected light images, completes initial automatic grain tracing and phase separation. Checking and re-classification of phases using reflected light properties and trace editing occurs manually. Phase identification is confirmed by microprobe or quantitative EDS, after which grain traces are easily reclassified as needed. Traces are imported into SPO2003 (Launeau and Robin, 2005) for SPO analysis. The combination of image resolution and magnification used here includes grains down to 10 microns. This work is part of an ongoing study examining fabric development across strain gradients in the granulite facies Capricorn ridge shear zone exposed in the Mt. Hay block of central Australia (Waters-Tormey et al., 2009). Strain marker shape fabrics, mesoscale structures, and strain localization adjacent to major lithologic boundaries all indicate that the deformation involved flattening, but that components of the deformation have been partitioned into different lithological domains. Thin sections were taken from the two gabbroic map units which volumetrically dominate the shear zone (northern and southern) using samples with similar outcrop fabric intensity. Prior thermomagnetic analyses indicate these units contain magnetite ± titanomagnetite ± ilmenite ± pyrrhotite. When all opaque minerals are combined into one SPO in the northern unit, they define a triaxial (plane) shape fabric, wheras AMS and AARM T values, the orientation distribution of AMS and AARM axes, and shape fabrics defined by other strain markers (pyroxene grains, biotite grains, felsic grain aggregates in outcrop) indicate overall oblate shape fabrics. Magnetite, ilmenite and sulfides were identified in reflected light in all three samples. Magnetite ± ilmenite are dominant (1-2%; 300-1500 sample sizes) with sulfides <1% (16-223 grains). Backscatter images and EDS were used to improve magnetite and ilmenite classification, and isolate pyrrhotite from sulfide complexes. Shape axes of individual and clustered opaque grains are overall well-aligned in all three samples. However, ilmenite shape axis ratios are 2-3 times that of magnetite and pyrrhotite. Separating opaque phase shape fabrics in these samples therefore better characterizes SPO intensity and grain fabric type for comparison with AMS and AARM results.
An in vivo quantitative Raman-pH sensor of arterial blood based on laser trapping of erythrocytes.
Lin, Manman; Xu, Bin; Yao, Huilu; Shen, Aiguo; Hu, Jiming
2016-05-10
We report on a continuous and non-invasive approach in vivo to monitor arterial blood pH based on the laser trapping and Raman detection of single live erythrocytes. A home-built confocal laser tweezers Raman system (LTRS) is applied to trace the live erythrocytes at different pH values of the extracellular environment to record their corresponding Raman changes in vitro and in vivo. The analysis results in vitro show that when the extracellular environment pH changes from 6.5 to 9.0, the Raman intensity ratio (R1603, 1616 = I1603/I1616) of single erythrocytes decrease regularly; what is more, there is a good linear relationship between these two variables, and the linearity is 0.985, which is also verified successfully via in vivo Raman measurements. These results demonstrate that the Raman signal of single live erythrocytes is possible as a marker of the extracellular pH value. This in vivo and quantitative Raman-pH sensor of arterial blood will be an important candidate for monitoring the acid-base status during the treatment of ill patients and in some major surgeries because of its continuous and non-invasive characters.
Lubrano, Adam L; Andrews, Benjamin; Hammond, Mark; Collins, Greg E; Rose-Pehrsson, Susan
2016-01-15
A novel analytical method has been developed for the quantitation of trace levels of ammonia in the headspace of ammonium nitrate (AN) using derivatized solid phase microextraction (SPME) fibers with gas chromatography mass spectrometry (GC-MS). Ammonia is difficult to detect via direct injection into a GC-MS because of its low molecular weight and extreme polarity. To circumvent this issue, ammonia was derivatized directly onto a SPME fiber by the reaction of butyl chloroformate coated fibers with the ammonia to form butyl carbamate. A derivatized externally sampled internal standard (dESIS) method based upon the reactivity of diethylamine with unreacted butyl chloroformate on the SPME fiber to form butyl diethylcarbamate was established for the reproducible quantification of ammonia concentration. Both of these compounds are easily detectable and separable via GC-MS. The optimized method was then used to quantitate the vapor concentration of ammonia in the headspace of two commonly used improvised explosive device (IED) materials, ammonium nitrate fuel oil (ANFO) and ammonium nitrate aluminum powder (Ammonal), as well as identify the presence of additional fuel components within the headspace. Published by Elsevier B.V.
Chang, Chia-Yu; Chung, Wu-Hsun; Ding, Wang-Hsien
2016-01-01
The rapid screening of trace levels of short-chain chlorinated paraffins in various aqueous samples was performed by a simple and reliable procedure based on vortex-assisted liquid-liquid microextraction combined with gas chromatography and electron capture negative ionization mass spectrometry. The optimal vortex-assisted liquid-liquid microextraction conditions for 20 mL water sample were as follows: extractant 400 μL of dichloromethane; vortex extraction time of 1 min at 2500 × g; centrifugation of 3 min at 5000 × g; and no ionic strength adjustment. Under the optimum conditions, the limit of quantitation was 0.05 μg/L. Precision, as indicated by relative standard deviations, was less than 9% for both intra- and inter-day analysis. Accuracy, expressed as the mean extraction recovery, was above 91%. The vortex-assisted liquid-liquid microextraction with gas chromatography and electron capture negative ionization mass spectrometry method was successfully applied to quantitatively extract short-chain chlorinated paraffins from samples of river water and the effluent of a wastewater treatment plant, and the concentrations ranged from 0.8 to 1.6 μg/L. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ding, W H; Liu, C H; Yeh, S P
2000-10-27
This work presents a modified method to analyze chlorophenoxy acid herbicides in water samples. The herbicides 2,4-D (2,4-dichlorophenoxyacetic acid). Silvex (2,4,5-trichlorophenoxypropionic acid) and 2,4,5-T (2,4,5-trichlorophenoxyacetic acid) were used to evaluate the method. The method involves extraction of samples by a graphitized carbon black cartridge, and on-line derivatization in the GC injection port using a large-volume (10-20 microl) direct sample introduction (DSI) device with tetraalkylammonium salts. The analytes were then identified and quantitated by ion-trap gas chromatography-mass spectrometry. The large-volume DSI injection-port derivatization technique provides sensitivity, fast and reproducible results for chlorophenoxy acid herbicides residues, to quantitation at 0.1 to 0.2 microg/l in 500-ml water samples. An enhanced characteristic mass chromatogram of molecular ions of butylated chlorophenoxy acid herbicides with a significant chlorine isotope pattern by electron impact ionization MS allows us to determine herbicides residues at trace levels in aqueous samples. Recovery of the herbicide residues in spiked various water samples ranged from 70 to 99% while RSDs ranged from 1 to 13%.
Identifiability and identification of trace continuous pollutant source.
Qu, Hongquan; Liu, Shouwen; Pang, Liping; Hu, Tao
2014-01-01
Accidental pollution events often threaten people's health and lives, and a pollutant source is very necessary so that prompt remedial actions can be taken. In this paper, a trace continuous pollutant source identification method is developed to identify a sudden continuous emission pollutant source in an enclosed space. The location probability model is set up firstly, and then the identification method is realized by searching a global optimal objective value of the location probability. In order to discuss the identifiability performance of the presented method, a conception of a synergy degree of velocity fields is presented in order to quantitatively analyze the impact of velocity field on the identification performance. Based on this conception, some simulation cases were conducted. The application conditions of this method are obtained according to the simulation studies. In order to verify the presented method, we designed an experiment and identified an unknown source appearing in the experimental space. The result showed that the method can identify a sudden trace continuous source when the studied situation satisfies the application conditions.
Poblet, A; Andrade, S; Scagliola, M; Vodopivez, C; Curtosi, A; Pucci, A; Marcovecchio, J
1997-11-27
Trace-metal contents were recorded for the epilithic antarctic lichens Usnea aurantiacoatra and U. antartica, sampled close to the Argentine scientific station 'Jubany' on '25 de Mayo' (King George) Island, in the Southern Shetland Archipelago (Antarctica). The corresponding heavy-metal levels have been measured through atomic absorption spectrophotometry, following internationally accepted analytical methods. The results obtained support the hypothesis that an atmospheric circulation of trace metals exists on the assessed area, and the activities developed at the different scientific stations located on this island would be a potential source of heavy metals to the evaluated environment. The geographical distribution of trace metals atmospherically transported in the area close to 'Jubany Station' was studied through the corresponding metal contents of the assessed lichens. Finally, the suitability of both analyzed lichen species, Usnea aurantiacoatra and U. antartica, as biological indicators for quantitative monitoring of airborne metals for this antarctic environment was recognized.
Székely, György; Henriques, Bruno; Gil, Marco; Alvarez, Carlos
2014-09-01
This paper discusses a design of experiments (DoE) assisted optimization and robustness testing of a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method development for the trace analysis of the potentially genotoxic 1,3-diisopropylurea (IPU) impurity in mometasone furoate glucocorticosteroid. Compared to the conventional trial-and-error method development, DoE is a cost-effective and systematic approach to system optimization by which the effects of multiple parameters and parameter interactions on a given response are considered. The LC and MS factors were studied simultaneously: flow (F), gradient (G), injection volume (Vinj), cone voltage (E(con)), and collision energy (E(col)). The optimization was carried out with respect to four responses: separation of peaks (Sep), peak area (A(p)), length of the analysis (T), and the signal-to-noise ratio (S/N). An optimization central composite face (CCF) DoE was conducted leading to the early discovery of carry-over effect which was further investigated in order to establish the maximum injectable sample load. A second DoE was conducted in order to obtain the optimal LC-MS/MS method. As part of the validation of the obtained method, its robustness was determined by conducting a fractional factorial of resolution III DoE, wherein column temperature and quadrupole resolution were considered as additional factors. The method utilizes a common Phenomenex Gemini NX C-18 HPLC analytical column with electrospray ionization and a triple quadrupole mass detector in multiple reaction monitoring (MRM) mode, resulting in short analyses with a 10-min runtime. The high sensitivity and low limit of quantification (LOQ) was achieved by (1) MRM mode (instead of single ion monitoring) and (2) avoiding the drawbacks of derivatization (incomplete reaction and time-consuming sample preparation). Quantitatively, the DoE method development strategy resulted in the robust trace analysis of IPU at 1.25 ng/mL absolute concentration corresponding to 0.25 ppm LOQ in 5 g/l mometasone furoate glucocorticosteroid. Validation was carried out in a linear range of 0.25-10 ppm and presented a relative standard deviation (RSD) of 1.08% for system precision. Regarding IPU recovery in mometasone furoate, spiked samples produced recoveries between 96 and 109 % in the range of 0.25 to 2 ppm. Copyright © 2013 John Wiley & Sons, Ltd.
Analysis of memory use for improved design and compile-time allocation of local memory
NASA Technical Reports Server (NTRS)
Mcniven, Geoffrey D.; Davidson, Edward S.
1986-01-01
Trace analysis techniques are used to study memory referencing behavior for the purpose of designing local memories and determining how to allocate them for data and instructions. In an attempt to assess the inherent behavior of the source code, the trace analysis system described here reduced the effects of the compiler and host architecture on the trace by using a technical called flattening. The variables in the trace, their associated single-assignment values, and references are histogrammed on the basis of various parameters describing memory referencing behavior. Bounds are developed specifying the amount of memory space required to store all live values in a particular histogram class. The reduction achieved in main memory traffic by allocating local memory is specified for each class.
Nanometer-sized materials for solid-phase extraction of trace elements.
Hu, Bin; He, Man; Chen, Beibei
2015-04-01
This review presents a comprehensive update on the state-of-the-art of nanometer-sized materials in solid-phase extraction (SPE) of trace elements followed by atomic-spectrometry detection. Zero-dimensional nanomaterials (fullerene), one-dimensional nanomaterials (carbon nanotubes, inorganic nanotubes, and nanowires), two-dimensional nanomaterials (nanofibers), and three-dimensional nanomaterials (nanoparticles, mesoporous nanoparticles, magnetic nanoparticles, and dendrimers) for SPE are discussed, with their application for trace-element analysis and their speciation in different matrices. A variety of other novel SPE sorbents, including restricted-access sorbents, ion-imprinted polymers, and metal-organic frameworks, are also discussed, although their applications in trace-element analysis are relatively scarce so far.
Weiser, Armin A; Thöns, Christian; Filter, Matthias; Falenski, Alexander; Appel, Bernd; Käsbohrer, Annemarie
2016-01-01
FoodChain-Lab is modular open-source software for trace-back and trace-forward analysis in food-borne disease outbreak investigations. Development of FoodChain-Lab has been driven by a need for appropriate software in several food-related outbreaks in Germany since 2011. The software allows integrated data management, data linkage, enrichment and visualization as well as interactive supply chain analyses. Identification of possible outbreak sources or vehicles is facilitated by calculation of tracing scores for food-handling stations (companies or persons) and food products under investigation. The software also supports consideration of station-specific cross-contamination, analysis of geographical relationships, and topological clustering of the tracing network structure. FoodChain-Lab has been applied successfully in previous outbreak investigations, for example during the 2011 EHEC outbreak and the 2013/14 European hepatitis A outbreak. The software is most useful in complex, multi-area outbreak investigations where epidemiological evidence may be insufficient to discriminate between multiple implicated food products. The automated analysis and visualization components would be of greater value if trading information on food ingredients and compound products was more easily available.
Filter, Matthias; Falenski, Alexander; Appel, Bernd; Käsbohrer, Annemarie
2016-01-01
FoodChain-Lab is modular open-source software for trace-back and trace-forward analysis in food-borne disease outbreak investigations. Development of FoodChain-Lab has been driven by a need for appropriate software in several food-related outbreaks in Germany since 2011. The software allows integrated data management, data linkage, enrichment and visualization as well as interactive supply chain analyses. Identification of possible outbreak sources or vehicles is facilitated by calculation of tracing scores for food-handling stations (companies or persons) and food products under investigation. The software also supports consideration of station-specific cross-contamination, analysis of geographical relationships, and topological clustering of the tracing network structure. FoodChain-Lab has been applied successfully in previous outbreak investigations, for example during the 2011 EHEC outbreak and the 2013/14 European hepatitis A outbreak. The software is most useful in complex, multi-area outbreak investigations where epidemiological evidence may be insufficient to discriminate between multiple implicated food products. The automated analysis and visualization components would be of greater value if trading information on food ingredients and compound products was more easily available. PMID:26985673
Predicting Individual Characteristics from Digital Traces on Social Media: A Meta-Analysis.
Settanni, Michele; Azucar, Danny; Marengo, Davide
2018-04-01
The increasing utilization of social media provides a vast and new source of user-generated ecological data (digital traces), which can be automatically collected for research purposes. The availability of these data sets, combined with the convergence between social and computer sciences, has led researchers to develop automated methods to extract digital traces from social media and use them to predict individual psychological characteristics and behaviors. In this article, we reviewed the literature on this topic and conducted a series of meta-analyses to determine the strength of associations between digital traces and specific individual characteristics; personality, psychological well-being, and intelligence. Potential moderator effects were analyzed with respect to type of social media platform, type of digital traces examined, and study quality. Our findings indicate that digital traces from social media can be studied to assess and predict theoretically distant psychosocial characteristics with remarkable accuracy. Analysis of moderators indicated that the collection of specific types of information (i.e., user demographics), and the inclusion of different types of digital traces, could help improve the accuracy of predictions.
NASA Technical Reports Server (NTRS)
Kavelund, Klaus; Barringer, Howard
2012-01-01
TraceContract is an API (Application Programming Interface) for trace analysis. A trace is a sequence of events, and can, for example, be generated by a running program, instrumented appropriately to generate events. An event can be any data object. An example of a trace is a log file containing events that a programmer has found important to record during a program execution. Trace - Contract takes as input such a trace together with a specification formulated using the API and reports on any violations of the specification, potentially calling code (reactions) to be executed when violations are detected. The software is developed as an internal DSL (Domain Specific Language) in the Scala programming language. Scala is a relatively new programming language that is specifically convenient for defining such internal DSLs due to a number of language characteristics. This includes Scala s elegant combination of object-oriented and functional programming, a succinct notation, and an advanced type system. The DSL offers a combination of data-parameterized state machines and temporal logic, which is novel. As an extension of Scala, it is a very expressive and convenient log file analysis framework.
NASA Astrophysics Data System (ADS)
Gleber, Sophie-Charlotte; Weinhausen, Britta; Köster, Sarah; Ward, Jesse; Vine, David; Finney, Lydia; Vogt, Stefan
2013-10-01
The distribution, binding and release of trace elements on soil colloids determine matter transport through the soil matrix, and necessitates an aqueous environment and short length and time scales for their study. However, not many microscopy techniques allow for that. We previously showed hard x-ray fluorescence microscopy capabilities to image aqueous colloidal soil samples [1]. As this technique provides attogram sensitivity for transition elements like Cu, Zn, and other geochemically relevant trace elements at sub micrometer spatial resolution (currently down to 150 nm at 2-ID-E [2]; below 50nm at Bionanoprobe, cf. G.Woloschak et al, this volume) combined with the capability to penetrate tens of micrometer of water, it is ideally suited for imaging the elemental content of soil colloids. To address the question of binding and release processes of trace elements on the surface of soil colloids, we developed a microfluidics based XRF flow cytometer, and expanded the applied methods of hard x-ray fluorescence microscopy towards three dimensional imaging. Here, we show (a) the 2-D imaged distributions of Si, K and Fe on soil colloids of Pseudogley samples; (b) how the trace element distribution is a dynamic, pH-dependent process; and (c) x-ray tomographic applications to render the trace elemental distributions in 3-D. We conclude that the approach presented here shows the remarkable potential to image and quantitate elemental distributions from samles within their natural aqueous microenvironment, particularly important in the environmental, medical, and biological sciences.
NASA Astrophysics Data System (ADS)
Pujiwati, Arie; Nakamura, K.; Watanabe, N.; Komai, T.
2018-02-01
Multivariate analysis is applied to investigate geochemistry of several trace elements in top soils and their relation with the contamination source as the influence of coal mines in Jorong, South Kalimantan. Total concentration of Cd, V, Co, Ni, Cr, Zn, As, Pb, Sb, Cu and Ba was determined in 20 soil samples by the bulk analysis. Pearson correlation is applied to specify the linear correlation among the elements. Principal Component Analysis (PCA) and Cluster Analysis (CA) were applied to observe the classification of trace elements and contamination sources. The results suggest that contamination loading is contributed by Cr, Cu, Ni, Zn, As, and Pb. The elemental loading mostly affects the non-coal mining area, for instances the area near settlement and agricultural land use. Moreover, the contamination source is classified into the areas that are influenced by the coal mining activity, the agricultural types, and the river mixing zone. Multivariate analysis could elucidate the elemental loading and the contamination sources of trace elements in the vicinity of coal mine area.
Ambient methods and apparatus for rapid laser trace constituent analysis
Snyder, Stuart C.; Partin, Judy K.; Grandy, Jon D.; Jeffery, Charles L.
2002-01-01
A method and apparatus are disclosed for measuring trace amounts of constituents in samples by using laser induced breakdown spectroscopy and laser induced fluorescence under ambient conditions. The laser induced fluorescence is performed at a selected wavelength corresponding to an absorption state of a selected trace constituent. The intensity value of the emission decay signal which is generated by the trace constituent is compared to calibrated emission intensity decay values to determine the amount of trace constituent present.
[Reconstruction of sexual offences--forensic aspects of sperm traces].
Laberke, Patrick J; Bockholdt, Britta; Hausmann, Roland; Balitzki, Beate
2010-01-01
The investigation of sexual offences is a real challenge, as the injuries are often unspecific or faint and may sometimes be missing completely. Evidence recovery and analysis as well as the statements of the victims and suspects are therefore of vital importance. In both presented cases, the results of trace evidence analysis were basically consistent with a sexual assault, but the victims' statements regarding the course of events and the pattern of traces showed severe discrepancies.
Traditions and Reforms in Bulgarian Physics Milko Borissov (1921-1998)
NASA Astrophysics Data System (ADS)
Kamisheva, Ganka
2010-01-01
University physics in Bulgaria is examined comparatively. Physical chairs, courses, lecturers and students, finished Sofia University successfully, are analyzed quantitatively. Traditions in Experimental physics are traced into scientific results of Professors P. Bachmetjew, A. Christow, and G. Nadjakov during the first half of XX century. Professor Milko Borissov's reformations of University physics in the second half of XX century are analysed.
Examining the Development of Students' Covariational Reasoning in the Context of Graphing
ERIC Educational Resources Information Center
Frank, Kristin Marianna
2017-01-01
Researchers have documented the importance of seeing a graph as an emergent trace of how two quantities' values vary simultaneously in order to reason about the graph in terms of quantitative relationships. If a student does not see a graph as a representation of how quantities change together then the student is limited to reasoning about…
Fire behavior, fuel treatments, and fire suppression on the Hayman Fire - Part 6: Daily emissions
Wei Min Hao
2003-01-01
Biomass burning is a major source of many atmospheric trace gases and aerosol particles (Crutzen and Andreae 1990). These compounds and particulates affect public health, regional air quality, air chemistry, and global climate. It is difficult to assess quantitatively the impact wildfires have on the environment because of the uncertainty in determining the size of...
Trace element analysis of soil type collected from the Manjung and central Perak
NASA Astrophysics Data System (ADS)
Azman, Muhammad Azfar; Hamzah, Suhaimi; Rahman, Shamsiah Abdul; Elias, Md Suhaimi; Abdullah, Nazaratul Ashifa; Hashim, Azian; Shukor, Shakirah Abd; Kamaruddin, Ahmad Hasnulhadi Che
2015-04-01
Trace elements in soils primarily originated from their parent materials. Parents' material is the underlying geological material that has been undergone different types of chemical weathering and leaching processes. Soil trace elements concentrations may be increases as a result of continuous input from various human activities, including power generation, agriculture, mining and manufacturing. This paper describes the Neutron Activation Analysis (NAA) method used for the determination of trace elements concentrations in part per million (ppm) present in the terrestrial environment soil in Perak. The data may indicate any contamination of trace elements contributed from human activities in the area. The enrichment factors were used to check if there any contamination due to the human activities (power plants, agricultural, mining, etc.) otherwise the values would serve as a baseline data for future study. The samples were collected from 27 locations of different soil series in the area at two different depths: the top soil (0-15cm) and the sub soil (15-30cm). The collected soil samples were air dried at 60°C and passed through 2 µm sieve. Instrumental Neutron Activation Analysis (NAA) has been used for the determination of trace elements. Samples were activated in the Nuclear Malaysia TRIGA Mark II reactor followed by gamma spectrometric analysis. By activating the stable elements in the samples, the elements can be determined from the intensities of gamma energies emitted by the respected radionuclides.
Albéric, Marie; Müller, Katharina; Pichon, Laurent; Lemasson, Quentin; Moignard, Brice; Pacheco, Claire; Fontan, Elisabeth; Reiche, Ina
2015-05-01
Antique objects are known to have been brightly colored. However, the appearance of these objects has changed over time and paint traces are rarely preserved. The surface of ivory objects (8th century B.C., Syria) from the Louvre museum collection (Paris) have been non-invasively studied by simultaneous particle-induced X-ray emission (PIXE) and Rutherford and elastic backscattering spectrometry (RBS/EBS) micro-imaging at the AGLAE facility (C2RMF, Paris). Qualitative 2D chemical images of elements ranging from Na to Pb on the surface of the ancient ivory carvings provide evidence of lost polychromy and gilding. Quantitative PIXE data of specific areas allow discrimination between traces of sediments and former polychromy. Different shades of blue can be differentiated from particular Pb/Cu ratios. The characterization of gilding based on RBS data demonstrates the exceptional technological skills of the Phoenician craftsmen supposed to have carved the Arslan Tash ivories. More precise reconstructions of the original polychromy compared to previous studies and a criterion for the authentication of ancient gilded ivory object are proposed. Copyright © 2015 Elsevier B.V. All rights reserved.
Schnellverfahren zur flammenlosen AAS-Bestimmung von Spurenelementen in geologischen Proben
NASA Astrophysics Data System (ADS)
Schrön, W.; Bombach, G.; Beuge, P.
This paper reports experience with direct quantitative trace element determinations in powdered geological samples by nameless atomic absorption spectroscopy. Two methods were explored. The first one is based on the production of a sample aerosol by laser radiation in a specifically designed sample chamber and the subsequent transport of the aerosol into a graphite tube, which has been preheated to a stable temperature. This technique is suited for a large range of concentration and is relatively free from matrix interferences. The technique was tested for the elements Ag, As, Bi, Cd, Co, Mn, Ni, Pb, Sb, Se, Sr and Tl. The described sample chamber can be also used in combination with other spcctroscopic techniques. The second method explored permits the quantitative determination of trace elements at very low concentrations. Essentially an accurately weighed amount of sample is placed on a graphite rod and introduced into a graphite furnace by inserting the rod through the sample injection port. Atomization takes place also under stable temperature conditions. Using this technique detection limits were found to be 10 -11 g for Ag, 2 × 10 -11 g for Cd and 10 -10 g for Sb in silicate materials.
NASA Astrophysics Data System (ADS)
Zhang, Li; Chang, Xijun; Li, Zhenhua; He, Qun
2010-02-01
A new selective solid-phase extractant using activated carbon as matrix which was purified, oxidized and modified by triethylenetetramine (AC-TETA) was prepared and characterized by FT-IR spectroscopy. At pH 4, quantitative extraction of trace Cr(III), Fe(III) and Pb(II) was obtained and determined by inductively coupled plasma optical emission spectrometry (ICP-OES). Complete elution of the adsorbed metal ions from the sorbent surface was carried out using 0.5 mol L -1 HCl. The maximum static adsorption capacity of sorbent for Cr(III), Fe(III) and Pb(II) was 34.6, 36.5 and 51.9 mg g -1, respectively. The time of quantitative adsorption was less than 2 min. The detection limits of the method was found to be 0.71, 0.35 and 0.45 ng mL -1 for Cr(III), Fe(III) and Pb(II), and the relative standard deviation (RSD) was 3.7%, 2.2% and 2.5%, respectively. Moreover, the method was free from interference with common coexiting ions. The method was also successfully applied to the preconcentration of trace Cr(III), Fe(III) and Pb(II) in synthetic samples and a real sample with satisfactory results.
Wagner, Arne; Seemann, Rudolf; Schicho, Kurt; Ewers, Rolf; Piehslinger, Eva
2003-11-01
Currently available systems for pantographic tracing are heavy, bulky, and can interfere with jaw movements. This study describes the development and clinical application of optoelectronic axiography designed to overcome system inherent problems of conventional bulky frame-based registration axiography. The purpose of this study is the comparison of the newly developed system and conventional axiography. Three-dimensional recordings of condylar pathways were acquired by means of infrared digitizers interfaced to newly developed software. Ten distinct curves in each of 10 subjects were recorded by synchronous optoelectronic axiography (100 tracings) and by conventional axiography (100 tracings). Usually, two 3-dimensional (3D) light weight sensors are provisionally fixed to the facial surface of a maxillary and mandibular incisor by means of a single orthodontic bracket. To allow for direct comparison of all 100 pairs of curves in this study, the 3D sensors of the optoelectronic system were attached to the bulky double face-bow system of the axiograph. The conformity of tracings (protrusion, opening/closing, mediotrusion, and laterotrusion) was evaluated by means of correlation analysis. Resulting axiographic recordings from both systems were evaluated by 3 experts (dentists, experienced in axiographic investigations, who were blind to the source of the data), focusing on standardized qualitative criteria of the recordings (homogeneity/smoothness, pathway-characteristics, excursion, and left/right-symmetry). After testing for normal distribution of the ratio scaled data (length of pathway, horizontal condylar inclination [HCI], Bennett angle) with the Kolmogoroff-Smirnov test (alpha=.01), axiographic curves were quantitatively compared by means of an intraclass correlation coefficient ([ICC] alpha =.01). The Wilcoxon test (alpha=.01) was used to evaluate equivalence of ordinally scaled values (homogeneity of tracings) and Cohen's Kappa was used to compare excursion and left/right symmetry. High correspondence between curves recorded by conventional and optoelectronic axiography was observed. The mean differences of lengths between the protrusive, opening/closing, and mediotrusive pathways were 0.0 mm, 0.6 mm, and 0.1 mm, respectively. Pathways and values for HCI were found highly correlated (pathways: 95% CI of ICC 0.9776-0.9908; HCI: 95% CI of ICC 0.8641-0.9597). The 95% CIs for differences of pathways, HCI-value, and Bennett angle were -0.1mm/0.3mm, -3.4 degrees/1.9 degrees, and -2.8 degrees/4.8 degrees, respectively. Pathway characteristics also corresponded well (Cohen's Kappa: 0.73 for symmetric and 0.72 for asymmetric movements), 0.77 for left/right symmetry, whereas other characteristics showed less significant correlation (Cohen's Kappa of excursion: 0.21 for symmetric and 0.09 for asymmetric movements, homogeneity: 0.08 for symmetric and 0.15 for asymmetric movements). Within the limitations of this study, optoelectronic axiography proved to be an applicable, promising technique, leading to diagnostic interpretations equivalent (with respect to the CIs) to conventional axiography.
Ar39 Detection at the 10-16 Isotopic Abundance Level with Atom Trap Trace Analysis
NASA Astrophysics Data System (ADS)
Jiang, W.; Williams, W.; Bailey, K.; Davis, A. M.; Hu, S.-M.; Lu, Z.-T.; O'Connor, T. P.; Purtschert, R.; Sturchio, N. C.; Sun, Y. R.; Mueller, P.
2011-03-01
Atom trap trace analysis, a laser-based atom counting method, has been applied to analyze atmospheric Ar39 (half-life=269yr), a cosmogenic isotope with an isotopic abundance of 8×10-16. In addition to the superior selectivity demonstrated in this work, the counting rate and efficiency of atom trap trace analysis have been improved by 2 orders of magnitude over prior results. The significant applications of this new analytical capability lie in radioisotope dating of ice and water samples and in the development of dark matter detectors.
Sultana, Nadia; Gunning, Sean; Furst, Stephen J; Garrard, Kenneth P; Dow, Thomas A; Vinueza, Nelson R
2018-05-19
Textile fiber is a common form of transferable trace evidence at the crime scene. Different techniques such as microscopy or spectroscopy are currently being used for trace fiber analysis. Dye characterization in trace fiber adds an important molecular specificity during the analysis. In this study, we performed a direct trace fiber analysis method via dye characterization by a novel automated microfluidics device (MFD) dye extraction system coupled with a quadrupole-time-of-flight (Q-TOF) mass spectrometer (MS). The MFD system used an in-house made automated procedure which requires only 10μL of organic solvent for the extraction. The total extraction and identification time by the system is under 12min. A variety of sulfonated azo and anthraquinone dyes were analyzed from ∼1mm length nylon fiber samples. This methodology successfully characterized multiple dyes (≥3 dyes) from a single fiber thread. Additionally, it was possible to do dye characterization from single fibers with a diameter of ∼10μm. The MFD-MS system was used for elemental composition and isotopic distribution analysis where MFD-MS/MS was used for structural characterization of dyes on fibers. Copyright © 2018 Elsevier B.V. All rights reserved.
Geochemical survey of the Lusk Creek Roadless Area, Pope County, Illinois
Klasner, John S.; Day, Gordon W.
1984-01-01
The Lusk Creek Roadless Area (Index map) lies along the western edge of the Illinois-Kentucky fluorspar district in which flourite deposits occur as lenticular-type veins emplaced along fult zones or as tratiform-shaped bedding-replacement deposits that occur along fault zones (Grogan and Bradbury, 1967; Trace, 1974). Although mineralogy varies between deposits, Trace (1974) points out that the principal minerals are fluorite (CaF) and calcite (CaCO3), and associated with these minerals are lesser amounts of sphalerite (ZnS), galena (PbS), and barite (BaSO4). Minor quantites of iron-rich dolomite (CaMg(CO3)2), pyrite (FeS2), and alteration products of zinc, lead, and copper minerals also are found.
Recent advances and remaining challenges for the spectroscopic detection of explosive threats.
Fountain, Augustus W; Christesen, Steven D; Moon, Raphael P; Guicheteau, Jason A; Emmons, Erik D
2014-01-01
In 2010, the U.S. Army initiated a program through the Edgewood Chemical Biological Center to identify viable spectroscopic signatures of explosives and initiate environmental persistence, fate, and transport studies for trace residues. These studies were ultimately designed to integrate these signatures into algorithms and experimentally evaluate sensor performance for explosives and precursor materials in existing chemical point and standoff detection systems. Accurate and validated optical cross sections and signatures are critical in benchmarking spectroscopic-based sensors. This program has provided important information for the scientists and engineers currently developing trace-detection solutions to the homemade explosive problem. With this information, the sensitivity of spectroscopic methods for explosives detection can now be quantitatively evaluated before the sensor is deployed and tested.
Imaging of arsenic traces in human hair by nano-SIMS 50
NASA Astrophysics Data System (ADS)
Audinot, J.-N.; Schneider, S.; Yegles, M.; Hallegot, P.; Wennig, R.; Migeon, H.-N.
2004-06-01
The nano-SIMS 50 allows ion imaging to be performed on microtomed hair cross-sections in order to determine the concentration and to localize the distribution of arsenic traces in hairs. Our study shows a linear relationship between the SIMS signal (As normalized with respect to CN) and the concentration determined by other analytical techniques. The advantages of SIMS imaging can be clearly proved by the capability to record quantitative distributions of As in the cross section. As a matter of fact, the nano-SIMS 50 images may allow differentiation between As located in the medulla, the cortex and the cuticle of the hair and thus distinguish between intoxication by indigestion and surface pollution of the sample.
Positive water vapour feedback in climate models confirmed by satellite data
NASA Technical Reports Server (NTRS)
Rind, D.; Lerner, J.; Chiou, E.-W.; Chu, W.; Larsen, J.; Mccormick, M. P.; Mcmaster, L.
1991-01-01
It has recently been suggested that GCMs used to evaluate climate change overestimate the greenhouse effect due to increased concentrations of trace gases in the atmosphere. Here, new satellite-generated water vapor data are used to compare summer and winter moisture values in regions of the middle and upper troposphere that have previously been difficult to observe with confidence. It is found that, as the hemispheres warm, increased convection leads to increased water vapor above 500 mbar in approximate quantitative agreement with results from current climate models. The same conclusion is reached by comparing the tropical western and eastern Pacific regions. Thus, water vapor feedback is not overestimated in models and should amplify the climate response to increased trace-gas concentrations.
Use of portable X-ray fluorescence spectroscopy and geostatistics for health risk assessment.
Yang, Meng; Wang, Cheng; Yang, Zhao-Ping; Yan, Nan; Li, Feng-Ying; Diao, Yi-Wei; Chen, Min-Dong; Li, Hui-Ming; Wang, Jin-Hua; Qian, Xin
2018-05-30
Laboratory analysis of trace metals using inductively coupled plasma (ICP) spectroscopy is not cost effective, and the complex spatial distribution of soil trace metals makes their spatial analysis and prediction problematic. Thus, for the health risk assessment of exposure to trace metals in soils, portable X-ray fluorescence (PXRF) spectroscopy was used to replace ICP spectroscopy for metal analysis, and robust geostatistical methods were used to identify spatial outliers in trace metal concentrations and to map trace metal distributions. A case study was carried out around an industrial area in Nanjing, China. The results showed that PXRF spectroscopy provided results for trace metal (Cu, Ni, Pb and Zn) levels comparable to ICP spectroscopy. The results of the health risk assessment showed that Ni posed a higher non-carcinogenic risk than Cu, Pb and Zn, indicating a higher priority of concern than the other elements. Sampling locations associated with adverse health effects were identified as 'hotspots', and high-risk areas were delineated from risk maps. These 'hotspots' and high-risk areas were in close proximity to and downwind from petrochemical plants, indicating the dominant role of industrial activities as the major sources of trace metals in soils. The approach used in this study could be adopted as a cost-effective methodology for screening 'hotspots' and priority areas of concern for cost-efficient health risk management. Copyright © 2018 Elsevier Inc. All rights reserved.
Xiong, Qiu-lin; Zhao, Wen-ji; Guo, Xiao-yu; Chen, Fan-tao; Shu, Tong-tong; Zheng, Xiao-xia; Zhao, Wen-hui
2015-08-01
The dustfall content is one of the evaluation indexes of atmospheric pollution. Trace elements especially heavy metals in dustfall can lead to risks to ecological environment and human health. In order to study the distribution characteristics of trace elements, heavy metals pollution and their sources in winter atmospheric dust, 49 dustfall samples were collected in Beijing City and nearby during November 2013 to March 2014. Then the contents (mass percentages) of 40 trace elements were measured by Elan DRC It type inductively coupled plasma mass (ICP-MS). Test results showed that more than half of the trace elements in the dust were less than 10 mg x kg(-1); about a quarter were between 10-100 mg x kg-1); while 7 elements (Pb, Zr, Cr, Cu, Zn, Sr and Ba) were more than 100 mg x kg(-1). The contents of Pb, Cu, Zn, Bi, Cd and Mo of winter dustfall in Beijing city.were respectively 4.18, 4.66, 5.35, 6.31, 6.62, and 8.62 times as high as those of corresponding elements in the surface soil in the same period, which went beyond the soil background values by more than 300% . The contribution of human activities to dustfall trace heavy metals content in Beijing city was larger than that in the surrounding region. Then sources analysis of dustfall and its 20 main trace elements (Cd, Mo, Nb, Ga, Co, Y, Nd, Li, La, Ni, Rb, V, Ce, Pb, Zr, Cr, Cu, Zn, Sr, Ba) was conducted through a multi-method analysis, including Pearson correlation analysis, Kendall correlation coefficient analysis and principal component analysis. Research results indicated that sources of winter dustfall in Beijing city were mainly composed of the earth's crust sources (including road dust, construction dust and remote transmission of dust) and the burning of fossil fuels (vehicle emissions, coal combustion, biomass combustion and industrial processes).
Siegel, D.I.
1989-01-01
Distributions of dissolved trace constituents in the aquifers probably are related to the proximity to mineralogic sources as well as chemical and hydraulic mechanisms. For example, concentrations of some constituents, such as cadmium and arsenic, are largest in the vicinity of the Dakota Formation in northwestern Iowa. Other constituents, such as beryllium and vanadium, have larger concentrations near the edge of the Forest City basin in southwestern Iowa and northwestern Missouri. Strontium and fluoride concentrations generally increase from north to south, which suggests the input of these trace constituents during the recharge events. However, concentrations of bromide, radium-226, and lithium show distribution patterns similar to the "plume" defined by dissolved solids and isotopes of water, suggesting dilution of concentrations of trace constituents by Pleistocene recharge. Concentrations of other constituents are partly controlled by aquifer temperature, such as silica in south-central Iowa, and solubility controls, such as barium in northeastern Illinois. Additional information on the chemical and mineralogical composition of the aquifer matrix and the isotopically lightest ground water is needed to evaluate the hypothesis of Pleistocene mixing before more quantitative studies can be done to evaluate the different proposed mechanisms that have controlled and modified the water chemistry over time. This study, however, indicates that the ground water in the region is thousands of years old. The study also indicates that the major chemical trends in the aquifers probably are related as much to paleohydrogeologic flow systems during Pleistocene time as to the present flow system, which may postdate the retreat of the last ice sheet about 12,000 years ago.
Pan, Sheng-Dong; Chen, Xiao-Hong; Li, Xiao-Ping; Cai, Mei-Qiang; Shen, Hao-Yu; Zhao, Yong-Gang; Jin, Mi-Cong
2015-11-27
Microcystins (MCs), a group of cyclic heptapeptide heaptoxins and tumor promoters, are generated by cyanobacteria occurring in surface waters, such as eutrophic lakes, rivers, and reservoirs. In this present study, a novel double-sided magnetic molecularly imprinted polymer modified graphene oxide (DS-MMIP@GO) based magnetic solid-phase extraction (MSPE) method was developed for fast, effective and selective enrichment, and recognition of trace MCs in environmental water samples combined with high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). The synthesized novel DS-MMIP@GO was used as the adsorbents in this work and was carefully characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and Raman spectra. The adsorption and desorption conditions of DS-MMIP@GO toward MCs were optimized in detail to obtain the highest binding capacity, selectivity, and release efficiency. Under the optimum conditions, the enrichment factors of the method for eight target MCs were found to be 2000. The limits of quantitation (LOQs) of the method for eight MCs were in range of 0.1-2.0ngL(-1). The double-sided MMIP modified structure provided DS-MMIP@GO with abundant adsorption sites and permitted it to exhibit excellent enrichment and selectivity toward trace-level MCs. The proposed method was successfully applied for the analysis of environmental water samples with recoveries ranging from 84.1 to 98.2%. Compared to conventional methods for MCs detection reported in literatures, the one developed in this work based on DS-MMIP@GO and LC-MS/MS showed much faster, more sensitive, and more convenient. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bea, F.
1991-07-01
A study was made of the chemical fractionation associated with four cases of anatectic segregation of low melt-fraction cordieritic granites from migmatized meta-greywackes. The aims of the study were to (1) reveal the fractionation patterns of major and trace elements, (2) compare the major element chemistry of leucogranites and the quantitative behavior of source minerals during anatexis - inferred by mass-balance adjustment - with available experimental data for peraluminous systems, and (3) discuss the behavior of trace elements in crustal melting by comparing the chemically determined composition of leucogranites with the results of three fractionation models. Two of these assumemore » a perfect diffusive behavior of trace elements within residual solids, but they use a different set of distribution coefficients. The third assumes a perfect nondiffusive behavior. In relation to their source rocks, the leucogranites are strongly depleted in Li, Transition Elements, and Light Rare Earth Elements, but enriched in K{sub 2}O, SiO{sub 2}, and Ba. Mass balance analysis using the Anatexis Mixing Model shows that the chemistry of cordierite leucogranites is compatible with its having originated by closed-system, water-undersaturated anatexis on previously migmatized meta-greywackes, leaving a residue enriched in cordierite plus biotite and exhausted in K-feldspar. Biotite melts congruently unless important amounts of sillimanite were also present in the source. Compared with experimental metals obtained from sources with the same chemical composition but with a different femic mineralogy (biotite + sillimanite, instead of cordierite + biotite), the Pena Negra leucogranites are richer in K{sub 2}O and MgO with a lower Fe/(Fe + Mg) ratio. The differences in magnesium are believed to result from the changes in the mineral assemblage of the source rocks.« less
NASA Astrophysics Data System (ADS)
Fourny, Anaïs.; Weis, Dominique; Scoates, James S.
2016-03-01
Controlling the accuracy and precision of geochemical analyses requires the use of characterized reference materials with matrices similar to those of the unknown samples being analyzed. We report a comprehensive Pb-Sr-Nd-Hf isotopic and trace element concentration data set, combined with quantitative phase analysis by XRD Rietveld refinement, for a wide range of mafic to ultramafic rock reference materials analyzed at the Pacific Centre for Isotopic and Geochemical Research, University of British Columbia. The samples include a pyroxenite (NIM-P), five basalts (BHVO-2, BIR-1a, JB-3, BE-N, GSR-3), a diabase (W-2), a dolerite (DNC-1), a norite (NIM-N), and an anorthosite (AN-G); results from a leucogabbro (Stillwater) are also reported. Individual isotopic ratios determined by MC-ICP-MS and TIMS, and multielement analyses by HR-ICP-MS are reported with 4-12 complete analytical duplicates for each sample. The basaltic reference materials have coherent Sr and Nd isotopic ratios with external precision below 50 ppm (2SD) and below 100 ppm for Hf isotopes (except BIR-1a). For Pb isotopic reproducibility, several of the basalts (JB-3, BHVO-2) require acid leaching prior to dissolution. The plutonic reference materials also have coherent Sr and Nd isotopic ratios (<50 ppm), however, obtaining good reproducibility for Pb and Hf isotopic ratios is more challenging for NIM-P, NIM-N, and AN-G due to a variety of factors, including postcrystallization Pb mobility and the presence of accessory zircon. Collectively, these results form a comprehensive new database that can be used by the geochemical community for evaluating the radiogenic isotope and trace element compositions of volcanic and plutonic mafic-ultramafic rocks.
2013-01-01
Background Retention in antiretroviral therapy (ART) programmes remains a challenge in many settings including Malawi, in part due to high numbers of losses to follow-up. Concept Mapping (CM), a mix-method participatory approach, was used to explore why patients on ART are lost to follow-up (LTFU) by identifying: 1) factors that influence patient losses to follow-up and 2) barriers to effective and efficient tracing in Zomba, Malawi. Methods CM sessions (brainstorming, sorting and rating, interpretation) were conducted in urban and rural settings in Zomba, Malawi. Participants included ART patients, ART providers, Health Surveillance Assistants, and health managers from the Zomba District Health Office. In brainstorming, participants generated statements in response to “A specific reason why an individual on ART becomes lost to follow-up is…” Participants then sorted and rated the consolidated list of brainstormed items. Analysis included inductive qualitative methods for grouping of data and quantitative cluster identification to produce visual maps which were then interpreted by participants. Results In total, 90 individuals brainstormed 371 statements, 64 consolidated statements were sorted (participant n = 46), and rated on importance and feasibility (participant n = 69). A nine-cluster concept map was generated and included both patient- and healthcare-related clusters such as: Stigma and Fears, Beliefs, Acceptance and Knowledge of ART, Access to ART, Poor Documentation, Social and Financial Support Issues, Health Worker Attitudes, Resources Needed for Effective Tracing, and Health Worker Issues Related to Tracing. Strategies to respond to the clusters were generated in Interpretation. Conclusions Multiple patient- and healthcare focused factors influence why patients become LTFU. Findings have implications particularly for programs with limited resources struggling with the retention of ART patients. PMID:23758879
Rachlis, Beth; Ahmad, Farah; van Lettow, Monique; Muula, Adamson S; Semba, Medson; Cole, Donald C
2013-06-11
Retention in antiretroviral therapy (ART) programmes remains a challenge in many settings including Malawi, in part due to high numbers of losses to follow-up. Concept Mapping (CM), a mix-method participatory approach, was used to explore why patients on ART are lost to follow-up (LTFU) by identifying: 1) factors that influence patient losses to follow-up and 2) barriers to effective and efficient tracing in Zomba, Malawi. CM sessions (brainstorming, sorting and rating, interpretation) were conducted in urban and rural settings in Zomba, Malawi. Participants included ART patients, ART providers, Health Surveillance Assistants, and health managers from the Zomba District Health Office. In brainstorming, participants generated statements in response to "A specific reason why an individual on ART becomes lost to follow-up is…" Participants then sorted and rated the consolidated list of brainstormed items. Analysis included inductive qualitative methods for grouping of data and quantitative cluster identification to produce visual maps which were then interpreted by participants. In total, 90 individuals brainstormed 371 statements, 64 consolidated statements were sorted (participant n = 46), and rated on importance and feasibility (participant n = 69). A nine-cluster concept map was generated and included both patient- and healthcare-related clusters such as: Stigma and Fears, Beliefs, Acceptance and Knowledge of ART, Access to ART, Poor Documentation, Social and Financial Support Issues, Health Worker Attitudes, Resources Needed for Effective Tracing, and Health Worker Issues Related to Tracing. Strategies to respond to the clusters were generated in Interpretation. Multiple patient- and healthcare focused factors influence why patients become LTFU. Findings have implications particularly for programs with limited resources struggling with the retention of ART patients.
Zacs, D; Bartkevics, V
2015-10-22
A new analytical method was established and validated for the analysis of 27 brominated flame retardants (BFRs), including so called "emerging" and "novel" BFRs (EBFRs and NBFRs) in fish samples. High performance liquid chromatography (HPLC) coupled to Orbitrap mass spectrometry (Orbitrap-MS) employing atmospheric pressure photoionization (APPI) interface operated in negative mode was used for the identification/quantitation of contaminants. HPLC-Orbitrap-MS analysis provided a fast separation of selected analytes within 14 min, thus demonstrating a high throughput processing of samples. The developed methodology was tested by intralaboratory validation in terms of recovery, repeatability, linear calibration ranges, instrumental and method limits of quantitation (i-LOQ and m-LOQ), and where possible, trueness was verified by analysis of certified reference materials (CRMs). Recoveries of analytes were between 80 and 119%, while the repeatability in terms of relative standard deviations (RSDs) was in the range from 1.2 to 15.5%. The measured values for both analyzed CRMs agreed with the provided consensus values, revealing the recovery of reference concentrations in 72-119% range. The elaborated method met the sensitivity criterion according to Commission Recommendation 2014/118/EU on monitoring of BFRs in food products for majority of the compounds. The concentrations of polybrominated diphenyl ethers (PBDEs) in real samples determined by HPLC-APPI-Orbitrap-MS method and validated gas chromatography-high-resolution mass spectrometry (GC-HRMS) method were found to be in a good agreement. Copyright © 2015 Elsevier B.V. All rights reserved.
Markiewicz, Pawel J; Ehrhardt, Matthias J; Erlandsson, Kjell; Noonan, Philip J; Barnes, Anna; Schott, Jonathan M; Atkinson, David; Arridge, Simon R; Hutton, Brian F; Ourselin, Sebastien
2018-01-01
We present a standalone, scalable and high-throughput software platform for PET image reconstruction and analysis. We focus on high fidelity modelling of the acquisition processes to provide high accuracy and precision quantitative imaging, especially for large axial field of view scanners. All the core routines are implemented using parallel computing available from within the Python package NiftyPET, enabling easy access, manipulation and visualisation of data at any processing stage. The pipeline of the platform starts from MR and raw PET input data and is divided into the following processing stages: (1) list-mode data processing; (2) accurate attenuation coefficient map generation; (3) detector normalisation; (4) exact forward and back projection between sinogram and image space; (5) estimation of reduced-variance random events; (6) high accuracy fully 3D estimation of scatter events; (7) voxel-based partial volume correction; (8) region- and voxel-level image analysis. We demonstrate the advantages of this platform using an amyloid brain scan where all the processing is executed from a single and uniform computational environment in Python. The high accuracy acquisition modelling is achieved through span-1 (no axial compression) ray tracing for true, random and scatter events. Furthermore, the platform offers uncertainty estimation of any image derived statistic to facilitate robust tracking of subtle physiological changes in longitudinal studies. The platform also supports the development of new reconstruction and analysis algorithms through restricting the axial field of view to any set of rings covering a region of interest and thus performing fully 3D reconstruction and corrections using real data significantly faster. All the software is available as open source with the accompanying wiki-page and test data.
Young, Allison; Klossner, Joanne; Docherty, Carrie L; Dodge, Thomas M; Mensch, James M
2013-01-01
A better understanding of why students leave an undergraduate athletic training education program (ATEP), as well as why they persist, is critical in determining the future membership of our profession. To better understand how clinical experiences affect student retention in undergraduate ATEPs. Survey-based research using a quantitative and qualitative mixed-methods approach. Three-year undergraduate ATEPs across District 4 of the National Athletic Trainers' Association. Seventy-one persistent students and 23 students who left the ATEP prematurely. Data were collected using a modified version of the Athletic Training Education Program Student Retention Questionnaire. Multivariate analysis of variance was performed on the quantitative data, followed by a univariate analysis of variance on any significant findings. The qualitative data were analyzed through inductive content analysis. A difference was identified between the persister and dropout groups (Pillai trace = 0.42, F(1,92) = 12.95, P = .01). The follow-up analysis of variance revealed that the persister and dropout groups differed on the anticipatory factors (F(1,92) = 4.29, P = .04), clinical integration (F(1,92) = 6.99, P = .01), and motivation (F(1,92) = 43.12, P = .01) scales. Several themes emerged in the qualitative data, including networks of support, authentic experiential learning, role identity, time commitment, and major or career change. A perceived difference exists in how athletic training students are integrated into their clinical experiences between those students who leave an ATEP and those who stay. Educators may improve retention by emphasizing authentic experiential learning opportunities rather than hours worked, by allowing students to take on more responsibility, and by facilitating networks of support within clinical education experiences.
Hua, Yujuan; Hawryluk, Myron; Gras, Ronda; Shearer, Randall; Luong, Jim
2018-01-01
A fast and reliable analytical technique for the determination of total sulfur levels in complex hydrocarbon matrices is introduced. The method employed flow injection technique using a gas chromatograph as a sample introduction device and a gas phase dual-plasma sulfur chemiluminescence detector for sulfur quantification. Using the technique described, total sulfur measurement in challenging hydrocarbon matrices can be achieved in less than 10 s with sample-to-sample time <2 min. The high degree of selectivity and sensitivity toward sulfur compounds of the detector offers the ability to measure low sulfur levels with a detection limit in the range of 20 ppb w/w S. The equimolar response characteristic of the detector allows the quantitation of unknown sulfur compounds and simplifies the calibration process. Response is linear over a concentration range of five orders of magnitude, with a high degree of repeatability. The detector's lack of response to hydrocarbons enables direct analysis without the need for time-consuming sample preparation and chromatographic separation processes. This flow injection-based sulfur chemiluminescence detection technique is ideal for fast analysis or trace sulfur analysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Application of Standards-Based Quantitative SEM-EDS Analysis to Oxide Minerals
NASA Astrophysics Data System (ADS)
Mengason, M. J.; Ritchie, N. W.; Newbury, D. E.
2016-12-01
SEM and EPMA analysis are powerful tools for documenting and evaluating the relationships between minerals in thin sections and for determining chemical compositions in-situ. The time and costs associated with determining major, minor, and some trace element concentrations in geologic materials can be reduced due to advances in EDS spectrometer performance and the availability of software tools such as NIST DTSA II to perform multiple linear least squares (MLLS) fitting of energy spectra from standards to the spectra from samples recorded under the same analytical conditions. MLLS fitting is able to overcome spectral peak overlaps among the transition-metal elements that commonly occur in oxide minerals, which had previously been seen as too difficult for EDS analysis, allowing for rapid and accurate determination of concentrations. The quantitative use of EDS is demonstrated in the chemical analysis of magnetite (NMNH 114887) and ilmenite (NMNH 96189) from the Smithsonian Natural History Museum Microbeam Standards Collection. Average concentrations from nine total spots over three grains are given in mass % listed as (recommended; measured concentration ± one standard deviation). Spectra were collected for sixty seconds live time at 15 kV and 10 nA over a 12 micrometer wide scan area. Analysis of magnetite yielded Magnesium (0.03; 0.04 ± 0.01), Aluminum (none given; 0.040 ± 0.006), Titanium (0.10; 0.11 ± 0.02), Vanadium (none given; 0.16 ± 0.01), Chromium (0.17; 0.14 ± 0.02), and Iron (70.71, 71.4 ± 0.2). Analysis of ilmenite yielded Magnesium (0.19; 0.183 ± 0.008), Aluminum (none given; 0.04 ± 0.02), Titanium (27.4, 28.1 ± 0.1), Chromium (none given; 0.04 ± 0.01), Manganese (3.69; 3.73 ± 0.03), Iron (36.18; 35.8 ± 0.1), and Niobium (0.64; 0.68 ± 0.03). The analysis of geologic materials by standards-based quantitative EDS can be further illustrated with chemical analyses of oxides from ocean island basalts representing several locations globally to illustrate the suitability of the method to the goal of evaluating trends in major and minor element concentrations and variability among locations. The shorter collection times of EDS, compared to WDS, allow greater sampling of the populations of oxides present as fine-grained quench products in addition to sampling larger inclusions hosted by silicate minerals.
McGarry, Bryony L; Rogers, Harriet J; Knight, Michael J; Jokivarsi, Kimmo T; Sierra, Alejandra; Gröhn, Olli Hj; Kauppinen, Risto A
2016-08-01
Quantitative T2 relaxation magnetic resonance imaging allows estimation of stroke onset time. We aimed to examine the accuracy of quantitative T1 and quantitative T2 relaxation times alone and in combination to provide estimates of stroke onset time in a rat model of permanent focal cerebral ischemia and map the spatial distribution of elevated quantitative T1 and quantitative T2 to assess tissue status. Permanent middle cerebral artery occlusion was induced in Wistar rats. Animals were scanned at 9.4T for quantitative T1, quantitative T2, and Trace of Diffusion Tensor (Dav) up to 4 h post-middle cerebral artery occlusion. Time courses of differentials of quantitative T1 and quantitative T2 in ischemic and non-ischemic contralateral brain tissue (ΔT1, ΔT2) and volumes of tissue with elevated T1 and T2 relaxation times (f1, f2) were determined. TTC staining was used to highlight permanent ischemic damage. ΔT1, ΔT2, f1, f2, and the volume of tissue with both elevated quantitative T1 and quantitative T2 (V(Overlap)) increased with time post-middle cerebral artery occlusion allowing stroke onset time to be estimated. V(Overlap) provided the most accurate estimate with an uncertainty of ±25 min. At all times-points regions with elevated relaxation times were smaller than areas with Dav defined ischemia. Stroke onset time can be determined by quantitative T1 and quantitative T2 relaxation times and tissue volumes. Combining quantitative T1 and quantitative T2 provides the most accurate estimate and potentially identifies irreversibly damaged brain tissue. © 2016 World Stroke Organization.
Stoney, David A; Stoney, Paul L
2015-08-01
An effective trace evidence capability is defined as one that exploits all useful particle types, chooses appropriate technologies to do so, and directly integrates the findings with case-specific problems. Limitations of current approaches inhibit the attainment of an effective capability and it has been strongly argued that a new approach to trace evidence analysis is essential. A hypothetical case example is presented to illustrate and analyze how forensic particle analysis can be used as a powerful practical tool in forensic investigations. The specifics in this example, including the casework investigation, laboratory analyses, and close professional interactions, provide focal points for subsequent analysis of how this outcome can be achieved. This leads to the specification of five key elements that are deemed necessary and sufficient for effective forensic particle analysis: (1) a dynamic forensic analytical approach, (2) concise and efficient protocols addressing particle combinations, (3) multidisciplinary capabilities of analysis and interpretation, (4) readily accessible external specialist resources, and (5) information integration and communication. A coordinating role, absent in current approaches to trace evidence analysis, is essential to achieving these elements. However, the level of expertise required for the coordinating role is readily attainable. Some additional laboratory protocols are also essential. However, none of these has greater staffing requirements than those routinely met by existing forensic trace evidence practitioners. The major challenges that remain are organizational acceptance, planning and implementation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Advanced Characterization of Rare Earth Elements in Coal Utilization Byproducts
NASA Astrophysics Data System (ADS)
Verba, C.; Scott, M.; Dieterich, M.; Poston, J.; Collins, K.
2016-12-01
Rare earth elements (REE) in various forms (e.g., crystalline mineral phases; adsorbed/absorbed state on and into organic macerals, neoformed glass from flyash or bottom ash) from domestic feedstocks such as coal deposits to coal utilization byproducts (CUB) have the potential to reduce foreign REE dependence and increase domestic resource security. Characterization is critical for understanding environmental risks related to their fate and transport as well as determining the most practical and economical techniques for concentrating the REE and converting them into chemical stocks for manufacturing. Several complementary electron microscopy (SEM-EDS, EPMA-WDS, FIB-SEM, cathodoluminescence, and XRD) and post image processing techniques were used to understand REE transition from coal to CUB. Sites of interest were identified and imaged and respective elemental x-ray maps acquired and montaged. Pixel classification of SEM imagers was completed using image analysis techniques to quantify the distribution of REE associated features. Quantitative elemental analysis of phases were completed using EMPA-WDS followed by FIB-SEM. The FIB-SEM results were reconstructed into 3D volumes and features of interest (e.g. monazite) were analyzed to determine the structure and volumetric estimation of REEs and thus predict detrital REE phases to ICP-MS results. Trace minerals were identified as pyrite, zircon, REE-phosphates' (monazite, xenotime), and barite within the coal tailings. In CUB, amorphous aluminosilicates, iron oxide cenospheres, and calcium oxides were present; monazite appear to be unaltered and unaffected by the combustion process in these samples. Thermal decomposition may have occurred due to presence of detrital zircon and xenotime and subsequent thin Ca-oxide coating enriched in trace REEs.
Root Gravitropism: Quantification, Challenges, and Solutions.
Muller, Lukas; Bennett, Malcolm J; French, Andy; Wells, Darren M; Swarup, Ranjan
2018-01-01
Better understanding of root traits such as root angle and root gravitropism will be crucial for development of crops with improved resource use efficiency. This chapter describes a high-throughput, automated image analysis method to trace Arabidopsis (Arabidopsis thaliana) seedling roots grown on agar plates. The method combines a "particle-filtering algorithm with a graph-based method" to trace the center line of a root and can be adopted for the analysis of several root parameters such as length, curvature, and stimulus from original root traces.
Niu, Guanghui; Shi, Qi; Xu, Mingjun; Lai, Hongjun; Lin, Qingyu; Liu, Kunping; Duan, Yixiang
2015-10-01
In this article, a novel and alternative method of laser-induced breakdown spectroscopy (LIBS) analysis for liquid sample is proposed, which involves the removal of metal ions from a liquid to a solid substrate using a cost-efficient adsorbent, dehydrated carbon, obtained using a dehydration reaction. Using this new technique, researchers can detect trace metal ions in solutions qualitatively and quantitatively, and the drawbacks of performing liquid analysis using LIBS can be avoided because the analysis is performed on a solid surface. To achieve better performance using this technique, we considered parameters potentially influencing both adsorption performance and LIBS analysis. The calibration curves were evaluated, and the limits of detection obtained for Cu(2+), Pb(2+), and Cr(3+) were 0.77, 0.065, and 0.46 mg/L, respectively, which are better than those in the previous studies. In addition, compared to other absorbents, the adsorbent used in this technique is much cheaper in cost, easier to obtain, and has fewer or no other elements other than C, H, and O that could result in spectral interference during analysis. We also used the recommended method to analyze spiked samples, obtaining satisfactory results. Thus, this new technique is helpful and promising for use in wastewater analysis and management.
Can NMR solve some significant challenges in metabolomics?
Gowda, G.A. Nagana; Raftery, Daniel
2015-01-01
The field of metabolomics continues to witness rapid growth driven by fundamental studies, methods development, and applications in a number of disciplines that include biomedical science, plant and nutrition sciences, drug development, energy and environmental sciences, toxicology, etc. NMR spectroscopy is one of the two most widely used analytical platforms in the metabolomics field, along with mass spectrometry (MS). NMR's excellent reproducibility and quantitative accuracy, its ability to identify structures of unknown metabolites, its capacity to generate metabolite profiles using intact biospecimens with no need for separation, and its capabilities for tracing metabolic pathways using isotope labeled substrates offer unique strengths for metabolomics applications. However, NMR's limited sensitivity and resolution continue to pose a major challenge and have restricted both the number and the quantitative accuracy of metabolites analyzed by NMR. Further, the analysis of highly complex biological samples has increased the demand for new methods with improved detection, better unknown identification, and more accurate quantitation of larger numbers of metabolites. Recent efforts have contributed significant improvements in these areas, and have thereby enhanced the pool of routinely quantifiable metabolites. Additionally, efforts focused on combining NMR and MS promise opportunities to exploit the combined strength of the two analytical platforms for direct comparison of the metabolite data, unknown identification and reliable biomarker discovery that continue to challenge the metabolomics field. This article presents our perspectives on the emerging trends in NMR-based metabolomics and NMR's continuing role in the field with an emphasis on recent and ongoing research from our laboratory. PMID:26476597
Can NMR solve some significant challenges in metabolomics?
NASA Astrophysics Data System (ADS)
Nagana Gowda, G. A.; Raftery, Daniel
2015-11-01
The field of metabolomics continues to witness rapid growth driven by fundamental studies, methods development, and applications in a number of disciplines that include biomedical science, plant and nutrition sciences, drug development, energy and environmental sciences, toxicology, etc. NMR spectroscopy is one of the two most widely used analytical platforms in the metabolomics field, along with mass spectrometry (MS). NMR's excellent reproducibility and quantitative accuracy, its ability to identify structures of unknown metabolites, its capacity to generate metabolite profiles using intact bio-specimens with no need for separation, and its capabilities for tracing metabolic pathways using isotope labeled substrates offer unique strengths for metabolomics applications. However, NMR's limited sensitivity and resolution continue to pose a major challenge and have restricted both the number and the quantitative accuracy of metabolites analyzed by NMR. Further, the analysis of highly complex biological samples has increased the demand for new methods with improved detection, better unknown identification, and more accurate quantitation of larger numbers of metabolites. Recent efforts have contributed significant improvements in these areas, and have thereby enhanced the pool of routinely quantifiable metabolites. Additionally, efforts focused on combining NMR and MS promise opportunities to exploit the combined strength of the two analytical platforms for direct comparison of the metabolite data, unknown identification and reliable biomarker discovery that continue to challenge the metabolomics field. This article presents our perspectives on the emerging trends in NMR-based metabolomics and NMR's continuing role in the field with an emphasis on recent and ongoing research from our laboratory.
Quantitative analysis of eosinophil chemotaxis tracked using a novel optical device -- TAXIScan.
Nitta, Nao; Tsuchiya, Tomoko; Yamauchi, Akira; Tamatani, Takuya; Kanegasaki, Shiro
2007-03-30
We have reported previously the development of an optically accessible, horizontal chemotaxis apparatus, in which migration of cells in the channel from a start line can be traced with time-lapse intervals using a CCD camera (JIM 282, 1-11, 2003). To obtain statistical data of migrating cells, we have developed quantitative methods to calculate various parameters in the process of chemotaxis, employing human eosinophil and CXCL12 as a model cell and a model chemoattractant, respectively. Median values of velocity and directionality of each cell within an experimental period could be calculated from the migratory pathway data obtained from time-lapse images and the data were expressed as Velocity-Directionality (VD) plot. This plot is useful for quantitatively analyzing multiple migrating cells exposed to a certain chemoattractant, and can distinguish chemotaxis from random migration. Moreover precise observation of cell migration revealed that each cell had a different lag period before starting chemotaxis, indicating variation in cell sensitivity to the chemoattractant. Thus lag time of each cell before migration, and time course of increment of the migrating cell ratio at the early stages could be calculated. We also graphed decrement of still moving cell ratio at the later stages by calculating the duration time of cell migration of each cell. These graphs could distinguish different motion patterns of chemotaxis of eosinophils, in response to a range of chemoattractants; PGD(2), fMLP, CCL3, CCL5 and CXCL12. Finally, we compared parameters of eosinophils from normal volunteers, allergy patients and asthma patients and found significant difference in response to PGD(2). The quantitative methods described here could be applicable to image data obtained with any combination of cells and chemoattractants and useful not only for basic studies of chemotaxis but also for diagnosis and for drug screening.
Krecar, D; Rosner, M; Draxler, M; Bauer, P; Hutter, H
2006-01-01
The germanium concentration and the position and thickness of the quantum well in molecular beam epitaxy (MBE)-grown SiGe were quantitatively analyzed via low-energy Rutherford backscattering (RBS) and secondary ion mass spectrometry (SIMS). In these samples, the concentrations of Si and Ge were assumed to be constant, except for the quantum well, where the germanium concentration was lower. The thickness of the analyzed quantum well was about 12 nm and it was situated at a depth of about 60 nm below the surface. A dip showed up in the RBS spectra due to the lower germanium concentration in the quantum well, and this was evaluated. Good depth resolution was required in order to obtain quantitative results, and this was obtained by choosing a primary energy of 500 keV and a tilt angle of 51 degrees with respect to the surface normal. Quantitative information was deduced from the raw data by comparing it with SIMNRA simulated spectra. The SIMS measurements were performed with oxygen primary ions. Given the response function of the SIMS instrument (the SIMS depth profile of the germanium delta (delta) layer), and using the forward convolution (point-to-point convolution) model, it is possible to determine the germanium concentration and the thickness of the analyzed quantum well from the raw SIMS data. The aim of this work was to compare the results obtained via RBS and SIMS and to show their potential for use in the semiconductor and microelectronics industry. The detection of trace elements (here the doping element antimony) that could not be evaluated with RBS in low-energy mode is also demonstrated using SIMS instead.
Digital Stratigraphy: Contextual Analysis of File System Traces in Forensic Science.
Casey, Eoghan
2017-12-28
This work introduces novel methods for conducting forensic analysis of file allocation traces, collectively called digital stratigraphy. These in-depth forensic analysis methods can provide insight into the origin, composition, distribution, and time frame of strata within storage media. Using case examples and empirical studies, this paper illuminates the successes, challenges, and limitations of digital stratigraphy. This study also shows how understanding file allocation methods can provide insight into concealment activities and how real-world computer usage can complicate digital stratigraphy. Furthermore, this work explains how forensic analysts have misinterpreted traces of normal file system behavior as indications of concealment activities. This work raises awareness of the value of taking the overall context into account when analyzing file system traces. This work calls for further research in this area and for forensic tools to provide necessary information for such contextual analysis, such as highlighting mass deletion, mass copying, and potential backdating. © 2017 American Academy of Forensic Sciences.
Computer-based analysis of holography using ray tracing.
Latta, J N
1971-12-01
The application of a ray-tracing methodology to holography is presented. Emphasis is placed on establishing a very general foundation from which to build a general computer-based implementation. As few restrictions as possible are placed on the recording and reconstruction geometry. The necessary equations are established from the construction and reconstruction parameters of the hologram. The aberrations are defined following H. H. Hopkins, and these aberration specification techniques are compared with those used previously to analyze holography. Representative of the flexibility of the ray-tracing approach, two examples are considered. The first compares the answers between a wavefront matching and the ray-tracing analysis in the case of aberration balancing to compensate for chromatic aberrations. The results are very close and establish the basic utility of aberration balancing. Further indicative of the power of a ray tracing, a thick media analysis is included in the computer programs. This section is then used to perform a study of the effects of hologram emulsion shrinkage and methods for compensation. The results of compensating such holograms are to introduce aberrations, and these are considered in both reflection and transmission holograms.
Major and Trace Element Analysis of Natural and Experimental Igneous Systems using LA-ICP-MS
NASA Technical Reports Server (NTRS)
Jenner, Frances E.; Arevalo, Ricardo D., Jr.
2016-01-01
Major- and trace-element compositions of minerals provide valuable information on a variety of global Earth-system processes, including melting of distinct mantle reservoirs, the growth and evolution of the Earths crust and the formation of economically viable ore deposits. In the mid-1980s and early 1990s, attempts were made to couple laser ablation (LA) systems to inductively coupled plasma mass spectrometry (ICPMS) instruments (e.g. Fryer et al. 1995; Jackson et al. 1992). The goal was to develop a rapid, highly sensitive in situ analytical technique to measure abundances and spatial distributions of trace elements in minerals and other geological samples. Elemental analysis using LAICPMS was envisaged as a quicker and less destructive means of chemical analysis (requiring only g quantities) than labour-intensive sample digestion and solution analysis (requiring mg-levels of material); and it would be a more cost-effective method than secondary ion mass spectrometry (SIMS) for the routine analysis of trace elements from solid samples. Furthermore, it would have lower limits-of-detection than electron probe microanalysis (EPMA) (e.g. Jackson et al. 1992; Eggins 2003).
Kocsis, Adrienn; Takács, Tibor; Jeney, Csaba; Schaff, Zsuzsa; Koiss, Róbert; Járay, Balázs; Sobel, Gábor; Pap, Károly; Székely, István; Ferenci, Tamás; Lai, Hung-Cheng; Nyíri, Miklós; Benczik, Márta
2017-03-01
The ongoing Triage and Risk Assessment of Cervical Precancer by Epigenetic Biomarker (TRACE) prospective, multicenter study aimed to provide a clinical evaluation of the CONFIDENCE™ assay, which comprises a human papillomavirus (HPV) DNA and a human epigenetic biomarker test. Between 2013 and 2015 over 6,000 women aged 18 or older were recruited in Hungary. Liquid-based cytology (LBC), high-risk HPV (hrHPV) DNA detection and single target host gene methylation test of the promoter sequence of the POU4F3 gene by quantitative methylation-specific polymerase chain reaction (PCR) were performed from the same liquid-based cytology sample. The current analysis is focused on the baseline cross-sectional clinical results of 5,384 LBC samples collected from subjects aged 25 years or older. The performance of the CONFIDENCE HPV™ test was found to be comparable to the cobas® HPV test with good agreement. When applying the CONFIDENCE Marker™ test alone in hrHPV positives, it showed significantly higher sensitivity with matching specificity compared to LBC-based triage. For CIN3+ histological endpoint in the age group of 25-65 and 30-65, the methylation test of POU4F3 achieved relative sensitivities of 1.74 (95% CI: 1.25-2.33) and 1.64 (95% CI: 1.08-2.27), respectively, after verification bias adjustment. On the basis of our findings, POU4F3 methylation as a triage test of hrHPV positives appears to be a noteworthy method. We can reasonably assume that its quantitative nature offers the potential for a more objective and discriminative risk assessment tool in the prevention and diagnostics of high-grade cervical intraepithelial neoplasia (CIN) lesions and cervical cancer. © 2016 UICC.
FracPaQ: a MATLAB™ toolbox for the quantification of fracture patterns
NASA Astrophysics Data System (ADS)
Healy, David; Rizzo, Roberto; Farrell, Natalie; Watkins, Hannah; Cornwell, David; Gomez-Rivas, Enrique; Timms, Nick
2017-04-01
The patterns of fractures in deformed rocks are rarely uniform or random. Fracture orientations, sizes, shapes and spatial distributions often exhibit some kind of order. In detail, there may be relationships among the different fracture attributes e.g. small fractures dominated by one orientation, larger fractures by another. These relationships are important because the mechanical (e.g. strength, anisotropy) and transport (e.g. fluids, heat) properties of rock depend on these fracture patterns and fracture attributes. This presentation describes an open source toolbox to quantify fracture patterns, including distributions in fracture attributes and their spatial variation. Software has been developed to quantify fracture patterns from 2-D digital images, such as thin section micrographs, geological maps, outcrop or aerial photographs or satellite images. The toolbox comprises a suite of MATLAB™ scripts based on published quantitative methods for the analysis of fracture attributes: orientations, lengths, intensity, density and connectivity. An estimate of permeability in 2-D is made using a parallel plate model. The software provides an objective and consistent methodology for quantifying fracture patterns and their variations in 2-D across a wide range of length scales. Our current focus for the application of the software is on quantifying crack and fracture patterns in and around fault zones. There is a large body of published work on the quantification of relatively simple joint patterns, but fault zones present a bigger, and arguably more important, challenge. The methods presented are inherently scale independent, and a key task will be to analyse and integrate quantitative fracture pattern data from micro- to macro-scales. New features in this release include multi-scale analyses based on a wavelet method to look for scale transitions, support for multi-colour traces in the input file processed as separate fracture sets, and combining fracture traces from multiple 2-D images to derive the statistically equivalent 3-D fracture pattern expressed as a 2nd rank crack tensor.
Digital Architecture for a Trace Gas Sensor Platform
NASA Technical Reports Server (NTRS)
Gonzales, Paula; Casias, Miguel; Vakhtin, Andrei; Pilgrim, Jeffrey
2012-01-01
A digital architecture has been implemented for a trace gas sensor platform, as a companion to standard analog control electronics, which accommodates optical absorption whose fractional absorbance equivalent would result in excess error if assumed to be linear. In cases where the absorption (1-transmission) is not equivalent to the fractional absorbance within a few percent error, it is necessary to accommodate the actual measured absorption while reporting the measured concentration of a target analyte with reasonable accuracy. This requires incorporation of programmable intelligence into the sensor platform so that flexible interpretation of the acquired data may be accomplished. Several different digital component architectures were tested and implemented. Commercial off-the-shelf digital electronics including data acquisition cards (DAQs), complex programmable logic devices (CPLDs), field-programmable gate arrays (FPGAs), and microcontrollers have been used to achieve the desired outcome. The most completely integrated architecture achieved during the project used the CPLD along with a microcontroller. The CPLD provides the initial digital demodulation of the raw sensor signal, and then communicates over a parallel communications interface with a microcontroller. The microcontroller analyzes the digital signal from the CPLD, and applies a non-linear correction obtained through extensive data analysis at the various relevant EVA operating pressures. The microcontroller then presents the quantitatively accurate carbon dioxide partial pressure regardless of optical density. This technique could extend the linear dynamic range of typical absorption spectrometers, particularly those whose low end noise equivalent absorbance is below one-part-in-100,000. In the EVA application, it allows introduction of a path-length-enhancing architecture whose optical interference effects are well understood and quantified without sacrificing the dynamic range that allows quantitative detection at the higher carbon dioxide partial pressures. The digital components are compact and allow reasonably complete integration with separately developed analog control electronics without sacrificing size, mass, or power draw.
Zhang, Zhen; Xia, Shumin; Kanchanawong, Pakorn
2017-05-22
The stress fibers are prominent organization of actin filaments that perform important functions in cellular processes such as migration, polarization, and traction force generation, and whose collective organization reflects the physiological and mechanical activities of the cells. Easily visualized by fluorescence microscopy, the stress fibers are widely used as qualitative descriptors of cell phenotypes. However, due to the complexity of the stress fibers and the presence of other actin-containing cellular features, images of stress fibers are relatively challenging to quantitatively analyze using previously developed approaches, requiring significant user intervention. This poses a challenge for the automation of their detection, segmentation, and quantitative analysis. Here we describe an open-source software package, SFEX (Stress Fiber Extractor), which is geared for efficient enhancement, segmentation, and analysis of actin stress fibers in adherent tissue culture cells. Our method made use of a carefully chosen image filtering technique to enhance filamentous structures, effectively facilitating the detection and segmentation of stress fibers by binary thresholding. We subdivided the skeletons of stress fiber traces into piecewise-linear fragments, and used a set of geometric criteria to reconstruct the stress fiber networks by pairing appropriate fiber fragments. Our strategy enables the trajectory of a majority of stress fibers within the cells to be comprehensively extracted. We also present a method for quantifying the dimensions of the stress fibers using an image gradient-based approach. We determine the optimal parameter space using sensitivity analysis, and demonstrate the utility of our approach by analyzing actin stress fibers in cells cultured on various micropattern substrates. We present an open-source graphically-interfaced computational tool for the extraction and quantification of stress fibers in adherent cells with minimal user input. This facilitates the automated extraction of actin stress fibers from fluorescence images. We highlight their potential uses by analyzing images of cells with shapes constrained by fibronectin micropatterns. The method we reported here could serve as the first step in the detection and characterization of the spatial properties of actin stress fibers to enable further detailed morphological analysis.
Frontalini, Fabrizio; Buosi, Carla; Da Pelo, Stefania; Coccioni, Rodolfo; Cherchi, Antonietta; Bucci, Carla
2009-06-01
In order to assess the response of benthic foraminifera to trace element pollution, a study of benthic foraminiferal assemblages was carried out into sediment samples collected from the Santa Gilla lagoon (Sardinia, Italy). The lagoon has been contaminated by industrial waste, mainly trace elements, as well as by agricultural and domestic effluent. The analysis of surficial sediment shows enrichment in trace elements, including Cr, Cu, Hg, Ni, Pb and Zn. Biotic and abiotic data, analyzed with multivariate techniques of statistical analysis, reveal a distinct separation of both the highly polluted and less polluted sampling sites. The innermost part of the lagoon, comprising the industrial complex at Macchiareddu, is exposed to a high load of trace elements which are probably enhanced by their accumulation in the finer sediment fraction. This area reveals lower diversity and higher percentages of abnormalities when compared to the outermost part of the lagoon.
TRACE ELEMENT ANALYSES OF URANIUM MATERIALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beals, D; Charles Shick, C
The Savannah River National Laboratory (SRNL) has developed an analytical method to measure many trace elements in a variety of uranium materials at the high part-per-billion (ppb) to low part-per-million (ppm) levels using matrix removal and analysis by quadrapole ICP-MS. Over 35 elements were measured in uranium oxides, acetate, ore and metal. Replicate analyses of samples did provide precise results however none of the materials was certified for trace element content thus no measure of the accuracy could be made. The DOE New Brunswick Laboratory (NBL) does provide a Certified Reference Material (CRM) that has provisional values for a seriesmore » of trace elements. The NBL CRM were purchased and analyzed to determine the accuracy of the method for the analysis of trace elements in uranium oxide. These results are presented and discussed in the following paper.« less
Wu, Linzhi
2016-01-01
Recently, the ray tracing method has been used to derive the non-singular cylindrical invisibility cloaks for out-of-plane shear waves, which is impossible via the transformation method directly owing to the singular push-forward mapping. In this paper, the method is adopted to design a kind of non-singular acoustic cloak. Based on Hamilton's equations of motion, eikonal equation and pre-designed ray equations, we derive several constraint equations for bulk modulus and density tensor. On the premise that the perfect matching conditions are satisfied, a series of non-singular physical profiles can be obtained by arranging the singular terms reasonably. The physical profiles derived by the ray tracing method will degenerate to the transformation-based solutions when taking the transport equation into consideration. This illuminates the essence of the newly designed cloaks that they are actually the so-called eikonal cloaks that can accurately control the paths of energy flux but with small disturbance in energy distribution along the paths. The near-perfect invisible performance has been demonstrated by the numerical ray tracing results and the pressure distribution snapshots. Finally, a kind of reduced cloak is conceived, and the good invisible performance has been measured quantitatively by the normalized scattering width. PMID:27118884
Investigation of Latent Traces Using Infrared Reflectance Hyperspectral Imaging
NASA Astrophysics Data System (ADS)
Schubert, Till; Wenzel, Susanne; Roscher, Ribana; Stachniss, Cyrill
2016-06-01
The detection of traces is a main task of forensics. Hyperspectral imaging is a potential method from which we expect to capture more fluorescence effects than with common forensic light sources. This paper shows that the use of hyperspectral imaging is suited for the analysis of latent traces and extends the classical concept to the conservation of the crime scene for retrospective laboratory analysis. We examine specimen of blood, semen and saliva traces in several dilution steps, prepared on cardboard substrate. As our key result we successfully make latent traces visible up to dilution factor of 1:8000. We can attribute most of the detectability to interference of electromagnetic light with the water content of the traces in the shortwave infrared region of the spectrum. In a classification task we use several dimensionality reduction methods (PCA and LDA) in combination with a Maximum Likelihood classifier, assuming normally distributed data. Further, we use Random Forest as a competitive approach. The classifiers retrieve the exact positions of labelled trace preparation up to highest dilution and determine posterior probabilities. By modelling the classification task with a Markov Random Field we are able to integrate prior information about the spatial relation of neighboured pixel labels.
NASA Astrophysics Data System (ADS)
Smieska, Louisa M.; Mullett, Ruth; Ferri, Laurent; Woll, Arthur R.
2017-07-01
We present trace-element and composition analysis of azurite pigments in six illuminated manuscript leaves, dating from the thirteenth to sixteenth century, using synchrotron-based, large-area x-ray fluorescence (SR-XRF) and diffraction (SR-XRD) mapping. SR-XRF mapping reveals several trace elements correlated with azurite, including arsenic, zirconium, antimony, barium, and bismuth, that appear in multiple manuscripts but were not always detected by point XRF. Within some manuscript leaves, variations in the concentration of trace elements associated with azurite coincide with distinct regions of the illuminations, suggesting systematic differences in azurite preparation or purification. Variations of the trace element concentrations in azurite are greater among different manuscript leaves than the variations within each individual leaf, suggesting the possibility that such impurities reflect distinct mineralogical/geologic sources. SR-XRD maps collected simultaneously with the SR-XRF maps confirm the identification of azurite regions and are consistent with impurities found in natural mineral sources of azurite. In general, our results suggest the feasibility of using azurite trace element analysis for provenance studies of illuminated manuscript fragments, and demonstrate the value of XRF mapping in non-destructive determination of trace element concentrations within a single pigment.
Efficient use of single molecule time traces to resolve kinetic rates, models and uncertainties
NASA Astrophysics Data System (ADS)
Schmid, Sonja; Hugel, Thorsten
2018-03-01
Single molecule time traces reveal the time evolution of unsynchronized kinetic systems. Especially single molecule Förster resonance energy transfer (smFRET) provides access to enzymatically important time scales, combined with molecular distance resolution and minimal interference with the sample. Yet the kinetic analysis of smFRET time traces is complicated by experimental shortcomings—such as photo-bleaching and noise. Here we recapitulate the fundamental limits of single molecule fluorescence that render the classic, dwell-time based kinetic analysis unsuitable. In contrast, our Single Molecule Analysis of Complex Kinetic Sequences (SMACKS) considers every data point and combines the information of many short traces in one global kinetic rate model. We demonstrate the potential of SMACKS by resolving the small kinetic effects caused by different ionic strengths in the chaperone protein Hsp90. These results show an unexpected interrelation between conformational dynamics and ATPase activity in Hsp90.
NASA Astrophysics Data System (ADS)
Sanchez, J. L.; Osipowicz, T.; Tang, S. M.; Tay, T. S.; Win, T. T.
1997-07-01
The trace element concentrations found in geological samples can shed light on the formation process. In the case of gemstones, which might be of artificial or natural origin, there is also considerable interest in the development of methods that provide identification of the origin of a sample. For rubies, trace element concentrations present in natural samples were shown previously to be significant indicators of the region of origin [S.M. Tang et al., Appl. Spectr. 42 (1988) 44, and 43 (1989) 219]. Here we report the results of micro-PIXE analyses of trace element (Ti, V, Cr, Fe, Cu and Ga) concentrations of a large set ( n = 130) of natural rough rubies from nine locations in Myanmar (Burma). The resulting concentrations are subjected to statistical analysis. Six of the nine groups form clusters when the data base is evaluated using tree clustering and principal component analysis.
NASA Astrophysics Data System (ADS)
Moretto, P.; Ortega, R.; Llabador, Y.; Simonoff, M.; Bénard, J.; Moretto, Ph.
1995-09-01
Macro-and Micro-PIXE analysis were applied to study the mechanisms of cellular resistance to cisplatin, a chemotherapeutic agent, widely used nowadays for the treatment of ovarian cancer. Two cultured cell lines, a cisplatin-sensitive and a resistant one, were compared for their trace elements content and platinum accumulation following in vitro exposure to the drug. Bulk analysis revealed significant differences in copper and iron content between the two lines. Subsequent individual cell microanalysis permitted us to characterize the response of the different morphological cell types of the resistant line. This study showed that the metabolism of some trace metals in cisplatin-resistant cells could be affected but the exact relationship with the resistant phenotype remains to be determined. From a technical point of view, this experiment demonstrated that an accurate measurement of trace elements could be derived from nuclear microprobe analysis of individual cell.
Solano, Jaime; Anabalón, Leonardo; Encina, Francisco
2016-03-01
Fast, accurate detection of plant species and their hybrids using molecular tools will facilitate assessment and monitoring of timber tracing evidence. In this study the origin of unknown pine samples is determined for a case of timber theft in the region of Araucania southern Chile. We evaluate the utility of the trnL marker region for species identification applied to pine wood based on High Resolution Melting. This efficient tracing methods can be incorporated into forestry applications such as certification of origin. The object of this work was genotype identification using high-resolution melting (HRM) and trnL approaches for Pinus radiata (Don) in timber tracing evidence. Our results indicate that trnL is a very sensitive marker for delimiting species and HRM analysis was used successfully for genotyping Pinus samples for timber tracing purposes. Genotyping samples by HRM analysis with the trnL1 approach allowed us to differentiate two wood samples from the Pinaceae family: Pinus radiata (Don) and Pseudotsuga menziesii (Mirb.) Franco. The same approach with Pinus trnL wood was not able to discriminate between samples of Pinus radiata, indicating that the samples were genetically indistinguishable, possibly because they have the same genotype at this locus. Timber tracing with HRM analysis is expected to contribute to future forest certification schemes, control of illegal trading, and molecular traceability of Pinus spp. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Trace element analysis of soil type collected from the Manjung and central Perak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azman, Muhammad Azfar, E-mail: m-azfar@nuclearmalaysia.gov.my; Hamzah, Suhaimi; Rahman, Shamsiah Abdul
2015-04-29
Trace elements in soils primarily originated from their parent materials. Parents’ material is the underlying geological material that has been undergone different types of chemical weathering and leaching processes. Soil trace elements concentrations may be increases as a result of continuous input from various human activities, including power generation, agriculture, mining and manufacturing. This paper describes the Neutron Activation Analysis (NAA) method used for the determination of trace elements concentrations in part per million (ppm) present in the terrestrial environment soil in Perak. The data may indicate any contamination of trace elements contributed from human activities in the area. Themore » enrichment factors were used to check if there any contamination due to the human activities (power plants, agricultural, mining, etc.) otherwise the values would serve as a baseline data for future study. The samples were collected from 27 locations of different soil series in the area at two different depths: the top soil (0-15cm) and the sub soil (15-30cm). The collected soil samples were air dried at 60°C and passed through 2 µm sieve. Instrumental Neutron Activation Analysis (NAA) has been used for the determination of trace elements. Samples were activated in the Nuclear Malaysia TRIGA Mark II reactor followed by gamma spectrometric analysis. By activating the stable elements in the samples, the elements can be determined from the intensities of gamma energies emitted by the respected radionuclides.« less
The paper discusses the analysis of trace-level organic combustion process emissions using novel multidimensional gas chromatography-mass spectrometry (MDGC-MS) procedures. It outlines the application of the technique through the analyses of various incinerator effluent and produ...