Sample records for quantitative trait analyses

  1. Congruent climate-related genecological responses from molecular markers and quantitative traits for western white pine (Pinus monticola)

    Treesearch

    Bryce A. Richardson; Gerald E. Rehfeldt; Mee-Sook Kim

    2009-01-01

    Analyses of molecular and quantitative genetic data demonstrate the existence of congruent climate-related patterns in western white pine (Pinus monticola). Two independent studies allowed comparisons of amplified fragment length polymorphism (AFLP) markers with quantitative variation in adaptive traits. Principal component analyses...

  2. Missing heritability in the tails of quantitative traits? A simulation study on the impact of slightly altered true genetic models.

    PubMed

    Pütter, Carolin; Pechlivanis, Sonali; Nöthen, Markus M; Jöckel, Karl-Heinz; Wichmann, Heinz-Erich; Scherag, André

    2011-01-01

    Genome-wide association studies have identified robust associations between single nucleotide polymorphisms and complex traits. As the proportion of phenotypic variance explained is still limited for most of the traits, larger and larger meta-analyses are being conducted to detect additional associations. Here we investigate the impact of the study design and the underlying assumption about the true genetic effect in a bimodal mixture situation on the power to detect associations. We performed simulations of quantitative phenotypes analysed by standard linear regression and dichotomized case-control data sets from the extremes of the quantitative trait analysed by standard logistic regression. Using linear regression, markers with an effect in the extremes of the traits were almost undetectable, whereas analysing extremes by case-control design had superior power even for much smaller sample sizes. Two real data examples are provided to support our theoretical findings and to explore our mixture and parameter assumption. Our findings support the idea to re-analyse the available meta-analysis data sets to detect new loci in the extremes. Moreover, our investigation offers an explanation for discrepant findings when analysing quantitative traits in the general population and in the extremes. Copyright © 2011 S. Karger AG, Basel.

  3. Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir

    Treesearch

    Nicholas C. Wheeler; Kathleen D. Jermstad; Konstantin V. Krutovsky; Sally N. Aitken; Glenn T. Howe; Jodie Krakowski; David B. Neale

    2005-01-01

    Quantitative trait locus (QTL) analyses are used by geneticists to characterize the genetic architecture of quantitative traits, provide a foundation for marker-aided-selection (MAS), and provide a framework for positional selection of candidate genes. The most useful QTL for breeding applications are those that have been verified in time, space, and/or genetic...

  4. Novel Autism Subtype-Dependent Genetic Variants Are Revealed by Quantitative Trait and Subphenotype Association Analyses of Published GWAS Data

    PubMed Central

    Hu, Valerie W.; Addington, Anjene; Hyman, Alexander

    2011-01-01

    The heterogeneity of symptoms associated with autism spectrum disorders (ASDs) has presented a significant challenge to genetic analyses. Even when associations with genetic variants have been identified, it has been difficult to associate them with a specific trait or characteristic of autism. Here, we report that quantitative trait analyses of ASD symptoms combined with case-control association analyses using distinct ASD subphenotypes identified on the basis of symptomatic profiles result in the identification of highly significant associations with 18 novel single nucleotide polymorphisms (SNPs). The symptom categories included deficits in language usage, non-verbal communication, social development, and play skills, as well as insistence on sameness or ritualistic behaviors. Ten of the trait-associated SNPs, or quantitative trait loci (QTL), were associated with more than one subtype, providing partial replication of the identified QTL. Notably, none of the novel SNPs is located within an exonic region, suggesting that these hereditary components of ASDs are more likely related to gene regulatory processes (or gene expression) than to structural or functional changes in gene products. Seven of the QTL reside within intergenic chromosomal regions associated with rare copy number variants that have been previously reported in autistic samples. Pathway analyses of the genes associated with the QTL identified in this study implicate neurological functions and disorders associated with autism pathophysiology. This study underscores the advantage of incorporating both quantitative traits as well as subphenotypes into large-scale genome-wide analyses of complex disorders. PMID:21556359

  5. Quantitative trait loci analyses and RNA-seq identify genes affecting stress response in rainbow trout

    USDA-ARS?s Scientific Manuscript database

    Genomic analyses have the potential to impact aquaculture production traits by identifying markers as proxies for traits which are expensive or difficult to measure and characterizing genetic variation and biochemical mechanisms underlying phenotypic variation. One such trait is the response of rai...

  6. Correlation between quantitative traits and correlation between corresponding LOD scores: detection of pleiotropic effects.

    PubMed

    Ulgen, Ayse; Han, Zhihua; Li, Wentian

    2003-12-31

    We address the question of whether statistical correlations among quantitative traits lead to correlation of linkage results of these traits. Five measured quantitative traits (total cholesterol, fasting glucose, HDL cholesterol, blood pressure, and triglycerides), and one derived quantitative trait (total cholesterol divided by the HDL cholesterol) are used for phenotype correlation studies. Four of them are used for linkage analysis. We show that although correlation among phenotypes partially reflects the correlation among linkage analysis results, the LOD-score correlations are on average low. The most significant peaks found by using different traits do not often overlap. Studying covariances at specific locations in LOD scores may provide clues for further bivariate linkage analyses.

  7. Comparison of multipoint linkage analyses for quantitative traits in the CEPH data: parametric LOD scores, variance components LOD scores, and Bayes factors.

    PubMed

    Sung, Yun Ju; Di, Yanming; Fu, Audrey Q; Rothstein, Joseph H; Sieh, Weiva; Tong, Liping; Thompson, Elizabeth A; Wijsman, Ellen M

    2007-01-01

    We performed multipoint linkage analyses with multiple programs and models for several gene expression traits in the Centre d'Etude du Polymorphisme Humain families. All analyses provided consistent results for both peak location and shape. Variance-components (VC) analysis gave wider peaks and Bayes factors gave fewer peaks. Among programs from the MORGAN package, lm_multiple performed better than lm_markers, resulting in less Markov-chain Monte Carlo (MCMC) variability between runs, and the program lm_twoqtl provided higher LOD scores by also including either a polygenic component or an additional quantitative trait locus.

  8. Comparison of multipoint linkage analyses for quantitative traits in the CEPH data: parametric LOD scores, variance components LOD scores, and Bayes factors

    PubMed Central

    Sung, Yun Ju; Di, Yanming; Fu, Audrey Q; Rothstein, Joseph H; Sieh, Weiva; Tong, Liping; Thompson, Elizabeth A; Wijsman, Ellen M

    2007-01-01

    We performed multipoint linkage analyses with multiple programs and models for several gene expression traits in the Centre d'Etude du Polymorphisme Humain families. All analyses provided consistent results for both peak location and shape. Variance-components (VC) analysis gave wider peaks and Bayes factors gave fewer peaks. Among programs from the MORGAN package, lm_multiple performed better than lm_markers, resulting in less Markov-chain Monte Carlo (MCMC) variability between runs, and the program lm_twoqtl provided higher LOD scores by also including either a polygenic component or an additional quantitative trait locus. PMID:18466597

  9. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters.

    PubMed

    Hadfield, J D; Nakagawa, S

    2010-03-01

    Although many of the statistical techniques used in comparative biology were originally developed in quantitative genetics, subsequent development of comparative techniques has progressed in relative isolation. Consequently, many of the new and planned developments in comparative analysis already have well-tested solutions in quantitative genetics. In this paper, we take three recent publications that develop phylogenetic meta-analysis, either implicitly or explicitly, and show how they can be considered as quantitative genetic models. We highlight some of the difficulties with the proposed solutions, and demonstrate that standard quantitative genetic theory and software offer solutions. We also show how results from Bayesian quantitative genetics can be used to create efficient Markov chain Monte Carlo algorithms for phylogenetic mixed models, thereby extending their generality to non-Gaussian data. Of particular utility is the development of multinomial models for analysing the evolution of discrete traits, and the development of multi-trait models in which traits can follow different distributions. Meta-analyses often include a nonrandom collection of species for which the full phylogenetic tree has only been partly resolved. Using missing data theory, we show how the presented models can be used to correct for nonrandom sampling and show how taxonomies and phylogenies can be combined to give a flexible framework with which to model dependence.

  10. The genetic architecture of sexually selected traits in two natural populations of Drosophila montana

    PubMed Central

    Veltsos, P; Gregson, E; Morrissey, B; Slate, J; Hoikkala, A; Butlin, R K; Ritchie, M G

    2015-01-01

    We investigated the genetic architecture of courtship song and cuticular hydrocarbon traits in two phygenetically distinct populations of Drosophila montana. To study natural variation in these two important traits, we analysed within-population crosses among individuals sampled from the wild. Hence, the genetic variation analysed should represent that available for natural and sexual selection to act upon. In contrast to previous between-population crosses in this species, no major quantitative trait loci (QTLs) were detected, perhaps because the between-population QTLs were due to fixed differences between the populations. Partitioning the trait variation to chromosomes suggested a broadly polygenic genetic architecture of within-population variation, although some chromosomes explained more variation in one population compared with the other. Studies of natural variation provide an important contrast to crosses between species or divergent lines, but our analysis highlights recent concerns that segregating variation within populations for important quantitative ecological traits may largely consist of small effect alleles, difficult to detect with studies of moderate power. PMID:26198076

  11. Untargeted Metabolic Quantitative Trait Loci Analyses Reveal a Relationship between Primary Metabolism and Potato Tuber Quality1[W][OA

    PubMed Central

    Carreno-Quintero, Natalia; Acharjee, Animesh; Maliepaard, Chris; Bachem, Christian W.B.; Mumm, Roland; Bouwmeester, Harro; Visser, Richard G.F.; Keurentjes, Joost J.B.

    2012-01-01

    Recent advances in -omics technologies such as transcriptomics, metabolomics, and proteomics along with genotypic profiling have permitted dissection of the genetics of complex traits represented by molecular phenotypes in nonmodel species. To identify the genetic factors underlying variation in primary metabolism in potato (Solanum tuberosum), we have profiled primary metabolite content in a diploid potato mapping population, derived from crosses between S. tuberosum and wild relatives, using gas chromatography-time of flight-mass spectrometry. In total, 139 polar metabolites were detected, of which we identified metabolite quantitative trait loci for approximately 72% of the detected compounds. In order to obtain an insight into the relationships between metabolic traits and classical phenotypic traits, we also analyzed statistical associations between them. The combined analysis of genetic information through quantitative trait locus coincidence and the application of statistical learning methods provide information on putative indicators associated with the alterations in metabolic networks that affect complex phenotypic traits. PMID:22223596

  12. A traits-based approach for prioritizing species for monitoring and surrogacy selection

    DOE PAGES

    Pracheil, Brenda M.; McManamay, Ryan A.; Bevelhimer, Mark S.; ...

    2016-11-28

    The bar for justifying the use of vertebrate animals for study is being increasingly raised, thus requiring increased rigor for species selection and study design. Although we have power analyses to provide quantitative backing for the numbers of organisms used, quantitative backing for selection of study species is not frequently employed. This can be especially important when measuring the impacts of ecosystem alteration, when study species must be chosen that are both sensitive to the alteration and of sufficient abundance for study. Just as important is providing justification for designation of surrogate species for study, especially when the species ofmore » interest is rare or of conservation concern and selection of an appropriate surrogate can have legal implications. In this study, we use a combination of GIS, a fish traits database and multivariate statistical analyses to quantitatively prioritize species for study and to determine potential study surrogate species. We provide two case studies to illustrate our quantitative, traits-based approach for designating study species and surrogate species. In the first case study, we select broadly representative fish species to understand the effects of turbine passage on adult fishes based on traits that suggest sensitivity to turbine passage. In our second case study, we present a framework for selecting a surrogate species for an endangered species. Lastly, we suggest that our traits-based framework can provide quantitative backing and added justification to selection of study species while expanding the inference space of study results.« less

  13. A traits-based approach for prioritizing species for monitoring and surrogacy selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pracheil, Brenda M.; McManamay, Ryan A.; Bevelhimer, Mark S.

    The bar for justifying the use of vertebrate animals for study is being increasingly raised, thus requiring increased rigor for species selection and study design. Although we have power analyses to provide quantitative backing for the numbers of organisms used, quantitative backing for selection of study species is not frequently employed. This can be especially important when measuring the impacts of ecosystem alteration, when study species must be chosen that are both sensitive to the alteration and of sufficient abundance for study. Just as important is providing justification for designation of surrogate species for study, especially when the species ofmore » interest is rare or of conservation concern and selection of an appropriate surrogate can have legal implications. In this study, we use a combination of GIS, a fish traits database and multivariate statistical analyses to quantitatively prioritize species for study and to determine potential study surrogate species. We provide two case studies to illustrate our quantitative, traits-based approach for designating study species and surrogate species. In the first case study, we select broadly representative fish species to understand the effects of turbine passage on adult fishes based on traits that suggest sensitivity to turbine passage. In our second case study, we present a framework for selecting a surrogate species for an endangered species. Lastly, we suggest that our traits-based framework can provide quantitative backing and added justification to selection of study species while expanding the inference space of study results.« less

  14. Linkage Analysis of a Model Quantitative Trait in Humans: Finger Ridge Count Shows Significant Multivariate Linkage to 5q14.1

    PubMed Central

    Medland, Sarah E; Loesch, Danuta Z; Mdzewski, Bogdan; Zhu, Gu; Montgomery, Grant W; Martin, Nicholas G

    2007-01-01

    The finger ridge count (a measure of pattern size) is one of the most heritable complex traits studied in humans and has been considered a model human polygenic trait in quantitative genetic analysis. Here, we report the results of the first genome-wide linkage scan for finger ridge count in a sample of 2,114 offspring from 922 nuclear families. Both univariate linkage to the absolute ridge count (a sum of all the ridge counts on all ten fingers), and multivariate linkage analyses of the counts on individual fingers, were conducted. The multivariate analyses yielded significant linkage to 5q14.1 (Logarithm of odds [LOD] = 3.34, pointwise-empirical p-value = 0.00025) that was predominantly driven by linkage to the ring, index, and middle fingers. The strongest univariate linkage was to 1q42.2 (LOD = 2.04, point-wise p-value = 0.002, genome-wide p-value = 0.29). In summary, the combination of univariate and multivariate results was more informative than simple univariate analyses alone. Patterns of quantitative trait loci factor loadings consistent with developmental fields were observed, and the simple pleiotropic model underlying the absolute ridge count was not sufficient to characterize the interrelationships between the ridge counts of individual fingers. PMID:17907812

  15. Joint analysis of binary and quantitative traits with data sharing and outcome-dependent sampling.

    PubMed

    Zheng, Gang; Wu, Colin O; Kwak, Minjung; Jiang, Wenhua; Joo, Jungnam; Lima, Joao A C

    2012-04-01

    We study the analysis of a joint association between a genetic marker with both binary (case-control) and quantitative (continuous) traits, where the quantitative trait values are only available for the cases due to data sharing and outcome-dependent sampling. Data sharing becomes common in genetic association studies, and the outcome-dependent sampling is the consequence of data sharing, under which a phenotype of interest is not measured for some subgroup. The trend test (or Pearson's test) and F-test are often, respectively, used to analyze the binary and quantitative traits. Because of the outcome-dependent sampling, the usual F-test can be applied using the subgroup with the observed quantitative traits. We propose a modified F-test by also incorporating the genotype frequencies of the subgroup whose traits are not observed. Further, a combination of this modified F-test and Pearson's test is proposed by Fisher's combination of their P-values as a joint analysis. Because of the correlation of the two analyses, we propose to use a Gamma (scaled chi-squared) distribution to fit the asymptotic null distribution for the joint analysis. The proposed modified F-test and the joint analysis can also be applied to test single trait association (either binary or quantitative trait). Through simulations, we identify the situations under which the proposed tests are more powerful than the existing ones. Application to a real dataset of rheumatoid arthritis is presented. © 2012 Wiley Periodicals, Inc.

  16. MaGelLAn 1.0: a software to facilitate quantitative and population genetic analysis of maternal inheritance by combination of molecular and pedigree information.

    PubMed

    Ristov, Strahil; Brajkovic, Vladimir; Cubric-Curik, Vlatka; Michieli, Ivan; Curik, Ino

    2016-09-10

    Identification of genes or even nucleotides that are responsible for quantitative and adaptive trait variation is a difficult task due to the complex interdependence between a large number of genetic and environmental factors. The polymorphism of the mitogenome is one of the factors that can contribute to quantitative trait variation. However, the effects of the mitogenome have not been comprehensively studied, since large numbers of mitogenome sequences and recorded phenotypes are required to reach the adequate power of analysis. Current research in our group focuses on acquiring the necessary mitochondria sequence information and analysing its influence on the phenotype of a quantitative trait. To facilitate these tasks we have produced software for processing pedigrees that is optimised for maternal lineage analysis. We present MaGelLAn 1.0 (maternal genealogy lineage analyser), a suite of four Python scripts (modules) that is designed to facilitate the analysis of the impact of mitogenome polymorphism on quantitative trait variation by combining molecular and pedigree information. MaGelLAn 1.0 is primarily used to: (1) optimise the sampling strategy for molecular analyses; (2) identify and correct pedigree inconsistencies; and (3) identify maternal lineages and assign the corresponding mitogenome sequences to all individuals in the pedigree, this information being used as input to any of the standard software for quantitative genetic (association) analysis. In addition, MaGelLAn 1.0 allows computing the mitogenome (maternal) effective population sizes and probability of mitogenome (maternal) identity that are useful for conservation management of small populations. MaGelLAn is the first tool for pedigree analysis that focuses on quantitative genetic analyses of mitogenome data. It is conceived with the purpose to significantly reduce the effort in handling and preparing large pedigrees for processing the information linked to maternal lines. The software source code, along with the manual and the example files can be downloaded at http://lissp.irb.hr/software/magellan-1-0/ and https://github.com/sristov/magellan .

  17. Use of Multivariate Linkage Analysis for Dissection of a Complex Cognitive Trait

    PubMed Central

    Marlow, Angela J.; Fisher, Simon E.; Francks, Clyde; MacPhie, I. Laurence; Cherny, Stacey S.; Richardson, Alex J.; Talcott, Joel B.; Stein, John F.; Monaco, Anthony P.; Cardon, Lon R.

    2003-01-01

    Replication of linkage results for complex traits has been exceedingly difficult, owing in part to the inability to measure the precise underlying phenotype, small sample sizes, genetic heterogeneity, and statistical methods employed in analysis. Often, in any particular study, multiple correlated traits have been collected, yet these have been analyzed independently or, at most, in bivariate analyses. Theoretical arguments suggest that full multivariate analysis of all available traits should offer more power to detect linkage; however, this has not yet been evaluated on a genomewide scale. Here, we conduct multivariate genomewide analyses of quantitative-trait loci that influence reading- and language-related measures in families affected with developmental dyslexia. The results of these analyses are substantially clearer than those of previous univariate analyses of the same data set, helping to resolve a number of key issues. These outcomes highlight the relevance of multivariate analysis for complex disorders for dissection of linkage results in correlated traits. The approach employed here may aid positional cloning of susceptibility genes in a wide spectrum of complex traits. PMID:12587094

  18. Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast

    PubMed Central

    Jeffares, Daniel C.; Jolly, Clemency; Hoti, Mimoza; Speed, Doug; Shaw, Liam; Rallis, Charalampos; Balloux, Francois; Dessimoz, Christophe; Bähler, Jürg; Sedlazeck, Fritz J.

    2017-01-01

    Large structural variations (SVs) within genomes are more challenging to identify than smaller genetic variants but may substantially contribute to phenotypic diversity and evolution. We analyse the effects of SVs on gene expression, quantitative traits and intrinsic reproductive isolation in the yeast Schizosaccharomyces pombe. We establish a high-quality curated catalogue of SVs in the genomes of a worldwide library of S. pombe strains, including duplications, deletions, inversions and translocations. We show that copy number variants (CNVs) show a variety of genetic signals consistent with rapid turnover. These transient CNVs produce stoichiometric effects on gene expression both within and outside the duplicated regions. CNVs make substantial contributions to quantitative traits, most notably intracellular amino acid concentrations, growth under stress and sugar utilization in winemaking, whereas rearrangements are strongly associated with reproductive isolation. Collectively, these findings have broad implications for evolution and for our understanding of quantitative traits including complex human diseases. PMID:28117401

  19. Genome-wide Association Studies for Female Fertility Traits in Chinese and Nordic Holsteins.

    PubMed

    Liu, Aoxing; Wang, Yachun; Sahana, Goutam; Zhang, Qin; Liu, Lin; Lund, Mogens Sandø; Su, Guosheng

    2017-08-16

    Reduced female fertility could cause considerable economic loss and has become a worldwide problem in the modern dairy industry. The objective of this study was to detect quantitative trait loci (QTL) for female fertility traits in Chinese and Nordic Holsteins using various strategies. First, single-trait association analyses were performed for female fertility traits in Chinese and Nordic Holsteins. Second, the SNPs with P-value < 0.005 discovered in Chinese Holsteins were validated in Nordic Holsteins. Third, the summary statistics from single-trait association analyses were combined into meta-analyses to: (1) identify common QTL for multiple fertility traits within each Holstein population; (2) detect SNPs which were associated with a female fertility trait across two Holstein populations. A large numbers of QTL were discovered or confirmed for female fertility traits. The QTL segregating at 31.4~34.1 Mb on BTA13, 48.3~51.9 Mb on BTA23 and 34.0~37.6 Mb on BTA28 shared between Chinese and Nordic Holsteins were further ascertained using a validation approach and meta-analyses. Furthermore, multiple novel variants identified in Chinese Holsteins were validated with Nordic data as well as meta-analyses. The genes IL6R, SLC39A12, CACNB2, ZEB1, ZMIZ1 and FAM213A were concluded to be strong candidate genes for female fertility in Holsteins.

  20. Exploring and Harnessing Haplotype Diversity to Improve Yield Stability in Crops.

    PubMed

    Qian, Lunwen; Hickey, Lee T; Stahl, Andreas; Werner, Christian R; Hayes, Ben; Snowdon, Rod J; Voss-Fels, Kai P

    2017-01-01

    In order to meet future food, feed, fiber, and bioenergy demands, global yields of all major crops need to be increased significantly. At the same time, the increasing frequency of extreme weather events such as heat and drought necessitates improvements in the environmental resilience of modern crop cultivars. Achieving sustainably increase yields implies rapid improvement of quantitative traits with a very complex genetic architecture and strong environmental interaction. Latest advances in genome analysis technologies today provide molecular information at an ultrahigh resolution, revolutionizing crop genomic research, and paving the way for advanced quantitative genetic approaches. These include highly detailed assessment of population structure and genotypic diversity, facilitating the identification of selective sweeps and signatures of directional selection, dissection of genetic variants that underlie important agronomic traits, and genomic selection (GS) strategies that not only consider major-effect genes. Single-nucleotide polymorphism (SNP) markers today represent the genotyping system of choice for crop genetic studies because they occur abundantly in plant genomes and are easy to detect. SNPs are typically biallelic, however, hence their information content compared to multiallelic markers is low, limiting the resolution at which SNP-trait relationships can be delineated. An efficient way to overcome this limitation is to construct haplotypes based on linkage disequilibrium, one of the most important features influencing genetic analyses of crop genomes. Here, we give an overview of the latest advances in genomics-based haplotype analyses in crops, highlighting their importance in the context of polyploidy and genome evolution, linkage drag, and co-selection. We provide examples of how haplotype analyses can complement well-established quantitative genetics frameworks, such as quantitative trait analysis and GS, ultimately providing an effective tool to equip modern crops with environment-tailored characteristics.

  1. Genetic approaches in comparative and evolutionary physiology

    PubMed Central

    Bridgham, Jamie T.; Kelly, Scott A.; Garland, Theodore

    2015-01-01

    Whole animal physiological performance is highly polygenic and highly plastic, and the same is generally true for the many subordinate traits that underlie performance capacities. Quantitative genetics, therefore, provides an appropriate framework for the analysis of physiological phenotypes and can be used to infer the microevolutionary processes that have shaped patterns of trait variation within and among species. In cases where specific genes are known to contribute to variation in physiological traits, analyses of intraspecific polymorphism and interspecific divergence can reveal molecular mechanisms of functional evolution and can provide insights into the possible adaptive significance of observed sequence changes. In this review, we explain how the tools and theory of quantitative genetics, population genetics, and molecular evolution can inform our understanding of mechanism and process in physiological evolution. For example, lab-based studies of polygenic inheritance can be integrated with field-based studies of trait variation and survivorship to measure selection in the wild, thereby providing direct insights into the adaptive significance of physiological variation. Analyses of quantitative genetic variation in selection experiments can be used to probe interrelationships among traits and the genetic basis of physiological trade-offs and constraints. We review approaches for characterizing the genetic architecture of physiological traits, including linkage mapping and association mapping, and systems approaches for dissecting intermediary steps in the chain of causation between genotype and phenotype. We also discuss the promise and limitations of population genomic approaches for inferring adaptation at specific loci. We end by highlighting the role of organismal physiology in the functional synthesis of evolutionary biology. PMID:26041111

  2. Genetic approaches in comparative and evolutionary physiology.

    PubMed

    Storz, Jay F; Bridgham, Jamie T; Kelly, Scott A; Garland, Theodore

    2015-08-01

    Whole animal physiological performance is highly polygenic and highly plastic, and the same is generally true for the many subordinate traits that underlie performance capacities. Quantitative genetics, therefore, provides an appropriate framework for the analysis of physiological phenotypes and can be used to infer the microevolutionary processes that have shaped patterns of trait variation within and among species. In cases where specific genes are known to contribute to variation in physiological traits, analyses of intraspecific polymorphism and interspecific divergence can reveal molecular mechanisms of functional evolution and can provide insights into the possible adaptive significance of observed sequence changes. In this review, we explain how the tools and theory of quantitative genetics, population genetics, and molecular evolution can inform our understanding of mechanism and process in physiological evolution. For example, lab-based studies of polygenic inheritance can be integrated with field-based studies of trait variation and survivorship to measure selection in the wild, thereby providing direct insights into the adaptive significance of physiological variation. Analyses of quantitative genetic variation in selection experiments can be used to probe interrelationships among traits and the genetic basis of physiological trade-offs and constraints. We review approaches for characterizing the genetic architecture of physiological traits, including linkage mapping and association mapping, and systems approaches for dissecting intermediary steps in the chain of causation between genotype and phenotype. We also discuss the promise and limitations of population genomic approaches for inferring adaptation at specific loci. We end by highlighting the role of organismal physiology in the functional synthesis of evolutionary biology. Copyright © 2015 the American Physiological Society.

  3. Genome-wide QTL analysis for anxiety trait in bipolar disorder type I.

    PubMed

    Contreras, J; Hare, E; Chavarría-Soley, G; Raventós, H

    2018-07-01

    Genetic studies have been consistent that bipolar disorder type I (BPI) runs in families and that this familial aggregation is strongly influenced by genes. In a preliminary study, we proved that anxiety trait meets endophenotype criteria for BPI. We assessed 619 individuals from the Central Valley of Costa Rica (CVCR) who have received evaluation for anxiety following the same methodological procedure used for the initial pilot study. Our goal was to conduct a multipoint quantitative trait linkage analysis to identify quantitative trait loci (QTLs) related to anxiety trait in subjects with BPI. We conducted the statistical analyses using Quantitative Trait Loci method (Variance-components models), implemented in Sequential Oligogenic Linkage Analysis Routines (SOLAR), using 5606 single nucleotide polymorphism (SNPs). We identified a suggestive linkage signal with a LOD score of 2.01 at chromosome 2 (2q13-q14). Since confounding factors such as substance abuse, medical illness and medication history were not assessed in our study, these conclusions should be taken as preliminary. We conclude that region 2q13-q14 may harbor a candidate gene(s) with an important role in the pathophysiology of BPI and anxiety. Published by Elsevier B.V.

  4. Genetic and genomic analyses for economically important traits and their applications in molecular breeding of cultured fish.

    PubMed

    Tong, JinGou; Sun, XiaoWen

    2015-02-01

    The traits of cultured fish must continually be genetically improved to supply high-quality animal protein for human consumption. Economically important fish traits are controlled by multiple gene quantitative trait loci (QTL), most of which have minor effects, but a few genes may have major effects useful for molecular breeding. In this review, we chose relevant studies on some of the most intensively cultured fish and concisely summarize progress on identifying and verifying QTLs for such traits as growth, disease and stress resistance and sex in recent decades. The potential applications of these major-effect genes and their associated markers in marker-assisted selection and molecular breeding, as well as future research directions are also discussed. These genetic and genomic analyses will be valuable for elucidating the mechanisms modulating economically important traits and to establish more effective molecular breeding techniques in fish.

  5. Replication of linkage to quantitative trait loci: variation in location and magnitude of the lod score.

    PubMed

    Hsueh, W C; Göring, H H; Blangero, J; Mitchell, B D

    2001-01-01

    Replication of linkage signals from independent samples is considered an important step toward verifying the significance of linkage signals in studies of complex traits. The purpose of this empirical investigation was to examine the variability in the precision of localizing a quantitative trait locus (QTL) by analyzing multiple replicates of a simulated data set with the use of variance components-based methods. Specifically, we evaluated across replicates the variation in both the magnitude and the location of the peak lod scores. We analyzed QTLs whose effects accounted for 10-37% of the phenotypic variance in the quantitative traits. Our analyses revealed that the precision of QTL localization was directly related to the magnitude of the QTL effect. For a QTL with effect accounting for > 20% of total phenotypic variation, > 90% of the linkage peaks fall within 10 cM from the true gene location. We found no evidence that, for a given magnitude of the lod score, the presence of interaction influenced the precision of QTL localization.

  6. Altitudinal and climatic associations of seed dormancy and flowering traits evidence adaptation of annual life cycle timing in Arabidopsis thaliana.

    PubMed

    Vidigal, Deborah S; Marques, Alexandre C S S; Willems, Leo A J; Buijs, Gonda; Méndez-Vigo, Belén; Hilhorst, Henk W M; Bentsink, Leónie; Picó, F Xavier; Alonso-Blanco, Carlos

    2016-08-01

    The temporal control or timing of the life cycle of annual plants is presumed to provide adaptive strategies to escape harsh environments for survival and reproduction. This is mainly determined by the timing of germination, which is controlled by the level of seed dormancy, and of flowering initiation. However, the environmental factors driving the evolution of plant life cycles remain largely unknown. To address this question we have analysed nine quantitative life history traits, in a native regional collection of 300 wild accessions of Arabidopsis thaliana. Seed dormancy and flowering time were negatively correlated, indicating that these traits have coevolved. In addition, environmental-phenotypic analyses detected strong altitudinal and climatic clines for most life history traits. Overall, accessions showing life cycles with early flowering, small seeds, high seed dormancy and slow germination rate were associated with locations exposed to high temperature, low summer precipitation and high radiation. Furthermore, we analysed the expression level of the positive regulator of seed dormancy DELAY OF GERMINATION 1 (DOG1), finding similar but weaker altitudinal and climatic patterns than seed dormancy. Therefore, DOG1 regulatory mutations are likely to provide a quantitative molecular mechanism for the adaptation of A. thaliana life cycle to altitude and climate. © 2016 John Wiley & Sons Ltd.

  7. Quantitative trait loci for live animal and carcass composition traits in Jersey and Limousin back-cross cattle finished on pasture or feedlot.

    PubMed

    Morris, C A; Pitchford, W S; Cullen, N G; Esmailizadeh, A K; Hickey, S M; Hyndman, D; Dodds, K G; Afolayan, R A; Crawford, A M; Bottema, C D K

    2009-10-01

    A quantitative trait locus (QTL) study was carried out in two countries, recording live animal and carcass composition traits. Back-cross calves (385 heifers and 398 steers) were generated, with Jersey and Limousin breed backgrounds. The New Zealand cattle were reared on pasture to carcass weights averaging 229 kg, whilst the Australian cattle were reared on grass and finished on grain (for at least 180 days) to carcass weights averaging 335 kg. From 11 live animal traits and 31 carcass composition traits respectively, 5 and 22 QTL were detected in combined-sire analyses, which were significant (P < 0.05) on a genome-wise basis. Fourteen significant traits for carcass composition QTL were on chromosome 2 and these were traits associated with muscling and fatness. This chromosome carried a variant myostatin allele (F94L), segregating from the Limousin ancestry. Despite very different cattle management systems between the two countries, the two populations had a large number of QTL in common. Of the 18 traits which were common to both countries, and which had significant QTL at the genome-wise level, eight were significant in both countries.

  8. DRIFTSEL: an R package for detecting signals of natural selection in quantitative traits.

    PubMed

    Karhunen, M; Merilä, J; Leinonen, T; Cano, J M; Ovaskainen, O

    2013-07-01

    Approaches and tools to differentiate between natural selection and genetic drift as causes of population differentiation are of frequent demand in evolutionary biology. Based on the approach of Ovaskainen et al. (2011), we have developed an R package (DRIFTSEL) that can be used to differentiate between stabilizing selection, diversifying selection and random genetic drift as causes of population differentiation in quantitative traits when neutral marker and quantitative genetic data are available. Apart from illustrating the use of this method and the interpretation of results using simulated data, we apply the package on data from three-spined sticklebacks (Gasterosteus aculeatus) to highlight its virtues. DRIFTSEL can also be used to perform usual quantitative genetic analyses in common-garden study designs. © 2013 John Wiley & Sons Ltd.

  9. Pleiotropy Analysis of Quantitative Traits at Gene Level by Multivariate Functional Linear Models

    PubMed Central

    Wang, Yifan; Liu, Aiyi; Mills, James L.; Boehnke, Michael; Wilson, Alexander F.; Bailey-Wilson, Joan E.; Xiong, Momiao; Wu, Colin O.; Fan, Ruzong

    2015-01-01

    In genetics, pleiotropy describes the genetic effect of a single gene on multiple phenotypic traits. A common approach is to analyze the phenotypic traits separately using univariate analyses and combine the test results through multiple comparisons. This approach may lead to low power. Multivariate functional linear models are developed to connect genetic variant data to multiple quantitative traits adjusting for covariates for a unified analysis. Three types of approximate F-distribution tests based on Pillai–Bartlett trace, Hotelling–Lawley trace, and Wilks’s Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants in one genetic region. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and optimal sequence kernel association test (SKAT-O). Extensive simulations were performed to evaluate the false positive rates and power performance of the proposed models and tests. We show that the approximate F-distribution tests control the type I error rates very well. Overall, simultaneous analysis of multiple traits can increase power performance compared to an individual test of each trait. The proposed methods were applied to analyze (1) four lipid traits in eight European cohorts, and (2) three biochemical traits in the Trinity Students Study. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and SKAT-O for the three biochemical traits. The approximate F-distribution tests of the proposed functional linear models are more sensitive than those of the traditional multivariate linear models that in turn are more sensitive than SKAT-O in the univariate case. The analysis of the four lipid traits and the three biochemical traits detects more association than SKAT-O in the univariate case. PMID:25809955

  10. Pleiotropy analysis of quantitative traits at gene level by multivariate functional linear models.

    PubMed

    Wang, Yifan; Liu, Aiyi; Mills, James L; Boehnke, Michael; Wilson, Alexander F; Bailey-Wilson, Joan E; Xiong, Momiao; Wu, Colin O; Fan, Ruzong

    2015-05-01

    In genetics, pleiotropy describes the genetic effect of a single gene on multiple phenotypic traits. A common approach is to analyze the phenotypic traits separately using univariate analyses and combine the test results through multiple comparisons. This approach may lead to low power. Multivariate functional linear models are developed to connect genetic variant data to multiple quantitative traits adjusting for covariates for a unified analysis. Three types of approximate F-distribution tests based on Pillai-Bartlett trace, Hotelling-Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants in one genetic region. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and optimal sequence kernel association test (SKAT-O). Extensive simulations were performed to evaluate the false positive rates and power performance of the proposed models and tests. We show that the approximate F-distribution tests control the type I error rates very well. Overall, simultaneous analysis of multiple traits can increase power performance compared to an individual test of each trait. The proposed methods were applied to analyze (1) four lipid traits in eight European cohorts, and (2) three biochemical traits in the Trinity Students Study. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and SKAT-O for the three biochemical traits. The approximate F-distribution tests of the proposed functional linear models are more sensitive than those of the traditional multivariate linear models that in turn are more sensitive than SKAT-O in the univariate case. The analysis of the four lipid traits and the three biochemical traits detects more association than SKAT-O in the univariate case. © 2015 WILEY PERIODICALS, INC.

  11. On normality, ethnicity, and missing values in quantitative trait locus mapping

    PubMed Central

    Labbe, Aurélie; Wormald, Hanna

    2005-01-01

    Background This paper deals with the detection of significant linkage for quantitative traits using a variance components approach. Microsatellite markers were obtained for the Genetic Analysis Workshop 14 Collaborative Study on the Genetics of Alcoholism data. Ethnic heterogeneity, highly skewed quantitative measures, and a high rate of missing values are all present in this dataset and well known to impact upon linkage analysis. This makes it a good candidate for investigation. Results As expected, we observed a number of changes in LOD scores, especially for chromosomes 1, 7, and 18, along with the three factors studied. A dramatic example of such changes can be found in chromosome 7. Highly significant linkage to one of the quantitative traits became insignificant when a proper normalizing transformation of the trait was used and when analysis was carried out on an ethnically homogeneous subset of the original pedigrees. Conclusion In agreement with existing literature, transforming a trait to ensure normality using a Box-Cox transformation is highly recommended in order to avoid false-positive linkages. Furthermore, pedigrees should be sorted by ethnic groups and analyses should be carried out separately. Finally, one should be aware that the inclusion of covariates with a high rate of missing values reduces considerably the number of subjects included in the model. In such a case, the loss in power may be large. Imputation methods are then recommended. PMID:16451664

  12. Genetic variation maintained in multilocus models of additive quantitative traits under stabilizing selection.

    PubMed Central

    Bürger, R; Gimelfarb, A

    1999-01-01

    Stabilizing selection for an intermediate optimum is generally considered to deplete genetic variation in quantitative traits. However, conflicting results from various types of models have been obtained. While classical analyses assuming a large number of independent additive loci with individually small effects indicated that no genetic variation is preserved under stabilizing selection, several analyses of two-locus models showed the contrary. We perform a complete analysis of a generalization of Wright's two-locus quadratic-optimum model and investigate numerically the ability of quadratic stabilizing selection to maintain genetic variation in additive quantitative traits controlled by up to five loci. A statistical approach is employed by choosing randomly 4000 parameter sets (allelic effects, recombination rates, and strength of selection) for a given number of loci. For each parameter set we iterate the recursion equations that describe the dynamics of gamete frequencies starting from 20 randomly chosen initial conditions until an equilibrium is reached, record the quantities of interest, and calculate their corresponding mean values. As the number of loci increases from two to five, the fraction of the genome expected to be polymorphic declines surprisingly rapidly, and the loci that are polymorphic increasingly are those with small effects on the trait. As a result, the genetic variance expected to be maintained under stabilizing selection decreases very rapidly with increased number of loci. The equilibrium structure expected under stabilizing selection on an additive trait differs markedly from that expected under selection with no constraints on genotypic fitness values. The expected genetic variance, the expected polymorphic fraction of the genome, as well as other quantities of interest, are only weakly dependent on the selection intensity and the level of recombination. PMID:10353920

  13. Linkage disequilibrium interval mapping of quantitative trait loci.

    PubMed

    Boitard, Simon; Abdallah, Jihad; de Rochambeau, Hubert; Cierco-Ayrolles, Christine; Mangin, Brigitte

    2006-03-16

    For many years gene mapping studies have been performed through linkage analyses based on pedigree data. Recently, linkage disequilibrium methods based on unrelated individuals have been advocated as powerful tools to refine estimates of gene location. Many strategies have been proposed to deal with simply inherited disease traits. However, locating quantitative trait loci is statistically more challenging and considerable research is needed to provide robust and computationally efficient methods. Under a three-locus Wright-Fisher model, we derived approximate expressions for the expected haplotype frequencies in a population. We considered haplotypes comprising one trait locus and two flanking markers. Using these theoretical expressions, we built a likelihood-maximization method, called HAPim, for estimating the location of a quantitative trait locus. For each postulated position, the method only requires information from the two flanking markers. Over a wide range of simulation scenarios it was found to be more accurate than a two-marker composite likelihood method. It also performed as well as identity by descent methods, whilst being valuable in a wider range of populations. Our method makes efficient use of marker information, and can be valuable for fine mapping purposes. Its performance is increased if multiallelic markers are available. Several improvements can be developed to account for more complex evolution scenarios or provide robust confidence intervals for the location estimates.

  14. Quantitative trait loci controlling leaf venation in Arabidopsis.

    PubMed

    Rishmawi, Louai; Bühler, Jonas; Jaegle, Benjamin; Hülskamp, Martin; Koornneef, Maarten

    2017-08-01

    Leaf veins provide the mechanical support and are responsible for the transport of nutrients and water to the plant. High vein density is a prerequisite for plants to have C4 photosynthesis. We investigated the genetic variation and genetic architecture of leaf venation traits within the species Arabidopsis thaliana using natural variation. Leaf venation traits, including leaf vein density (LVD) were analysed in 66 worldwide accessions and 399 lines of the multi-parent advanced generation intercross population. It was shown that there is no correlation between LVD and photosynthesis parameters within A. thaliana. Association mapping was performed for LVD and identified 16 and 17 putative quantitative trait loci (QTLs) in the multi-parent advanced generation intercross and worldwide sets, respectively. There was no overlap between the identified QTLs suggesting that many genes can affect the traits. In addition, linkage mapping was performed using two biparental recombinant inbred line populations. Combining linkage and association mapping revealed seven candidate genes. For one of the candidate genes, RCI2c, we demonstrated its function in leaf venation patterning. © 2017 John Wiley & Sons Ltd.

  15. Quantitative trait locus for reading disability on chromosome 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardon, L.R.; Smith, S.D.; Kimberling, W.J.

    1994-10-14

    Interval mapping of data from two independent samples of sib pairs, at least one member of whom was reading disabled, revealed evidence for a quantitative trait locus (QTL) on chromosome 6. Results obtained from analyses of reading performance from 114 sib pairs genotyped for DNA markers localized the QTL to 6p21.3. Analyses of corresponding data from an independent sample of 50 dizygotic twin pairs provided evidence for linkage to the same region. In combination, the replicate samples yielded a x{sup 2} value of 16.73 (P = 0.0002). Examination of twin and kindred siblings with more extreme deficits in reading performancemore » yielded even stronger evidence for a QTL (x{sup 2} = 27.35, P < 0.00001). The position of the QTL was narrowly defined with a 100:1 confidence interval to a 2-centimorgan region within the human leukocyte antigen complex. 23 refs., 4 figs.« less

  16. The genetics of feed conversion efficiency traits in a commercial broiler line

    PubMed Central

    Reyer, Henry; Hawken, Rachel; Murani, Eduard; Ponsuksili, Siriluck; Wimmers, Klaus

    2015-01-01

    Individual feed conversion efficiency (FCE) is a major trait that influences the usage of energy resources and the ecological footprint of livestock production. The underlying biological processes of FCE are complex and are influenced by factors as diverse as climate, feed properties, gut microbiota, and individual genetic predisposition. To gain an insight to the genetic relationships with FCE traits and to contribute to the improvement of FCE in commercial chicken lines, a genome-wide association study was conducted using a commercial broiler population (n = 859) tested for FCE and weight traits during the finisher period from 39 to 46 days of age. Both single-marker (generalized linear model) and multi-marker (Bayesian approach) analyses were applied to the dataset to detect genes associated with the variability in FCE. The separate analyses revealed 22 quantitative trait loci (QTL) regions on 13 different chromosomes; the integration of both approaches resulted in 7 overlapping QTL regions. The analyses pointed to acylglycerol kinase (AGK) and general transcription factor 2-I (GTF2I) as positional and functional candidate genes. Non-synonymous polymorphisms of both candidate genes revealed evidence for a functional importance of these genes by influencing different biological aspects of FCE. PMID:26552583

  17. Genome-wide association analysis of metabolic traits in a birth cohort from a founder population.

    PubMed

    Sabatti, Chiara; Service, Susan K; Hartikainen, Anna-Liisa; Pouta, Anneli; Ripatti, Samuli; Brodsky, Jae; Jones, Chris G; Zaitlen, Noah A; Varilo, Teppo; Kaakinen, Marika; Sovio, Ulla; Ruokonen, Aimo; Laitinen, Jaana; Jakkula, Eveliina; Coin, Lachlan; Hoggart, Clive; Collins, Andrew; Turunen, Hannu; Gabriel, Stacey; Elliot, Paul; McCarthy, Mark I; Daly, Mark J; Järvelin, Marjo-Riitta; Freimer, Nelson B; Peltonen, Leena

    2009-01-01

    Genome-wide association studies (GWAS) of longitudinal birth cohorts enable joint investigation of environmental and genetic influences on complex traits. We report GWAS results for nine quantitative metabolic traits (triglycerides, high-density lipoprotein, low-density lipoprotein, glucose, insulin, C-reactive protein, body mass index, and systolic and diastolic blood pressure) in the Northern Finland Birth Cohort 1966 (NFBC1966), drawn from the most genetically isolated Finnish regions. We replicate most previously reported associations for these traits and identify nine new associations, several of which highlight genes with metabolic functions: high-density lipoprotein with NR1H3 (LXRA), low-density lipoprotein with AR and FADS1-FADS2, glucose with MTNR1B, and insulin with PANK1. Two of these new associations emerged after adjustment of results for body mass index. Gene-environment interaction analyses suggested additional associations, which will require validation in larger samples. The currently identified loci, together with quantified environmental exposures, explain little of the trait variation in NFBC1966. The association observed between low-density lipoprotein and an infrequent variant in AR suggests the potential of such a cohort for identifying associations with both common, low-impact and rarer, high-impact quantitative trait loci.

  18. Functional traits and ecological affinities of riparian plants along the Colorado River in Grand Canyon

    USGS Publications Warehouse

    Palmquist, Emily C.; Ralston, Barbara E.; Sarr. Daniel,; Merritt, David; Shafroth, Patrick B; Scott, Julian

    2017-01-01

    Trait-based approaches to vegetation analyses are becoming more prevalent in studies of riparian vegetation dynamics, including responses to flow regulation, groundwater pumping, and climate change. These analyses require species trait data compiled from the literature and floras or original field measurements. Gathering such data makes trait-based research time intensive at best and impracticable in some cases. To support trait-based analysis of vegetation along the Colorado River through Grand Canyon, a data set of 20 biological traits and ecological affinities for 179 species occurring in that study area was compiled. This diverse flora shares species with many riparian areas in the western USA and includes species that occur across a wide moisture gradient. Data were compiled from published scientific papers, unpublished reports, plant fact sheets, existing trait databases, regional floras, and plant guides. Data for ordinal environmental tolerances were more readily available than were quantitative traits. More publicly available data are needed for traits of both common and rare southwestern U.S. plant species to facilitate comprehensive, trait-based research. The trait data set is free to use and can be downloaded from ScienceBase: https://www.sciencebase.gov/catalog/item/58af41dee4b01ccd54f9f2ff and https://dx.doi.org/10.5066/F7QV3JN1

  19. Modeling development and quantitative trait mapping reveal independent genetic modules for leaf size and shape.

    PubMed

    Baker, Robert L; Leong, Wen Fung; Brock, Marcus T; Markelz, R J Cody; Covington, Michael F; Devisetty, Upendra K; Edwards, Christine E; Maloof, Julin; Welch, Stephen; Weinig, Cynthia

    2015-10-01

    Improved predictions of fitness and yield may be obtained by characterizing the genetic controls and environmental dependencies of organismal ontogeny. Elucidating the shape of growth curves may reveal novel genetic controls that single-time-point (STP) analyses do not because, in theory, infinite numbers of growth curves can result in the same final measurement. We measured leaf lengths and widths in Brassica rapa recombinant inbred lines (RILs) throughout ontogeny. We modeled leaf growth and allometry as function valued traits (FVT), and examined genetic correlations between these traits and aspects of phenology, physiology, circadian rhythms and fitness. We used RNA-seq to construct a SNP linkage map and mapped trait quantitative trait loci (QTL). We found genetic trade-offs between leaf size and growth rate FVT and uncovered differences in genotypic and QTL correlations involving FVT vs STPs. We identified leaf shape (allometry) as a genetic module independent of length and width and identified selection on FVT parameters of development. Leaf shape is associated with venation features that affect desiccation resistance. The genetic independence of leaf shape from other leaf traits may therefore enable crop optimization in leaf shape without negative effects on traits such as size, growth rate, duration or gas exchange. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  20. Testing natural selection vs. genetic drift in phenotypic evolution using quantitative trait locus data.

    PubMed Central

    Orr, H A

    1998-01-01

    Evolutionary biologists have long sought a way to determine whether a phenotypic difference between two taxa was caused by natural selection or random genetic drift. Here I argue that data from quantitative trait locus (QTL) analyses can be used to test the null hypothesis of neutral phenotypic evolution. I propose a sign test that compares the observed number of plus and minus alleles in the "high line" with that expected under neutrality, conditioning on the known phenotypic difference between the taxa. Rejection of the null hypothesis implies a role for directional natural selection. This test is applicable to any character in any organism in which QTL analysis can be performed. PMID:9691061

  1. Quantitative genetics of age at reproduction in wild swans: Support for antagonistic pleiotropy models of senescence

    PubMed Central

    Charmantier, Anne; Perrins, Christopher; McCleery, Robin H.; Sheldon, Ben C.

    2006-01-01

    Why do individuals stop reproducing after a certain age, and how is this age determined? The antagonistic pleiotropy theory for the evolution of senescence predicts that increased early-life performance should be accompanied by earlier (or faster) senescence. Hence, an individual that has started to breed early should also lose its reproductive capacities early. We investigate here the relationship between age at first reproduction (AFR) and age at last reproduction (ALR) in a free-ranging mute swan (Cygnus olor) population monitored for 36 years. Using multivariate analyses on the longitudinal data, we show that both traits are strongly selected in opposite directions. Analysis of the phenotypic covariance between these characters shows that individuals vary in their inherent quality, such that some individuals have earlier AFR and later ALR than expected. Quantitative genetic pedigree analyses show that both traits possess additive genetic variance but also that AFR and ALR are positively genetically correlated. Hence, although both traits display heritable variation and are under opposing directional selection, their evolution is constrained by a strong evolutionary tradeoff. These results are consistent with the theory that increased early-life performance comes with faster senescence because of genetic tradeoffs. PMID:16618935

  2. Rapid changes in genetic architecture of behavioural syndromes following colonization of a novel environment.

    PubMed

    Karlsson Green, K; Eroukhmanoff, F; Harris, S; Pettersson, L B; Svensson, E I

    2016-01-01

    Behavioural syndromes, that is correlated behaviours, may be a result from adaptive correlational selection, but in a new environmental setting, the trait correlation might act as an evolutionary constraint. However, knowledge about the quantitative genetic basis of behavioural syndromes, and the stability and evolvability of genetic correlations under different ecological conditions, is limited. We investigated the quantitative genetic basis of correlated behaviours in the freshwater isopod Asellus aquaticus. In some Swedish lakes, A. aquaticus has recently colonized a novel habitat and diverged into two ecotypes, presumably due to habitat-specific selection from predation. Using a common garden approach and animal model analyses, we estimated quantitative genetic parameters for behavioural traits and compared the genetic architecture between the ecotypes. We report that the genetic covariance structure of the behavioural traits has been altered in the novel ecotype, demonstrating divergence in behavioural correlations. Thus, our study confirms that genetic correlations behind behaviours can change rapidly in response to novel selective environments. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  3. Genetic architecture of plant stress resistance: multi-trait genome-wide association mapping.

    PubMed

    Thoen, Manus P M; Davila Olivas, Nelson H; Kloth, Karen J; Coolen, Silvia; Huang, Ping-Ping; Aarts, Mark G M; Bac-Molenaar, Johanna A; Bakker, Jaap; Bouwmeester, Harro J; Broekgaarden, Colette; Bucher, Johan; Busscher-Lange, Jacqueline; Cheng, Xi; Fradin, Emilie F; Jongsma, Maarten A; Julkowska, Magdalena M; Keurentjes, Joost J B; Ligterink, Wilco; Pieterse, Corné M J; Ruyter-Spira, Carolien; Smant, Geert; Testerink, Christa; Usadel, Björn; van Loon, Joop J A; van Pelt, Johan A; van Schaik, Casper C; van Wees, Saskia C M; Visser, Richard G F; Voorrips, Roeland; Vosman, Ben; Vreugdenhil, Dick; Warmerdam, Sonja; Wiegers, Gerrie L; van Heerwaarden, Joost; Kruijer, Willem; van Eeuwijk, Fred A; Dicke, Marcel

    2017-02-01

    Plants are exposed to combinations of various biotic and abiotic stresses, but stress responses are usually investigated for single stresses only. Here, we investigated the genetic architecture underlying plant responses to 11 single stresses and several of their combinations by phenotyping 350 Arabidopsis thaliana accessions. A set of 214 000 single nucleotide polymorphisms (SNPs) was screened for marker-trait associations in genome-wide association (GWA) analyses using tailored multi-trait mixed models. Stress responses that share phytohormonal signaling pathways also share genetic architecture underlying these responses. After removing the effects of general robustness, for the 30 most significant SNPs, average quantitative trait locus (QTL) effect sizes were larger for dual stresses than for single stresses. Plants appear to deploy broad-spectrum defensive mechanisms influencing multiple traits in response to combined stresses. Association analyses identified QTLs with contrasting and with similar responses to biotic vs abiotic stresses, and below-ground vs above-ground stresses. Our approach allowed for an unprecedented comprehensive genetic analysis of how plants deal with a wide spectrum of stress conditions. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  4. Genetic and Genomic Analysis of a Fat Mass Trait with Complex Inheritance Reveals Marked Sex Specificity

    PubMed Central

    Wang, Hui; Drake, Thomas A; Lusis, Aldons J

    2006-01-01

    The integration of expression profiling with linkage analysis has increasingly been used to identify genes underlying complex phenotypes. The effects of gender on the regulation of many physiological traits are well documented; however, “genetical genomic” analyses have not yet addressed the degree to which their conclusions are affected by sex. We constructed and densely genotyped a large F2 intercross derived from the inbred mouse strains C57BL/6J and C3H/HeJ on an apolipoprotein E null (ApoE−/−) background. This BXH.ApoE−/− population recapitulates several “metabolic syndrome” phenotypes. The cross consists of 334 animals of both sexes, allowing us to specifically test for the dependence of linkage on sex. We detected several thousand liver gene expression quantitative trait loci, a significant proportion of which are sex-biased. We used these analyses to dissect the genetics of gonadal fat mass, a complex trait with sex-specific regulation. We present evidence for a remarkably high degree of sex-dependence on both the cis and trans regulation of gene expression. We demonstrate how these analyses can be applied to the study of the genetics underlying gonadal fat mass, a complex trait showing significantly female-biased heritability. These data have implications on the potential effects of sex on the genetic regulation of other complex traits. PMID:16462940

  5. On the Structure of Personality Disorder Traits: Conjoint Analyses of the CAT-PD, PID-5, and NEO-PI-3 Trait Models

    PubMed Central

    Wright, Aidan G.C.; Simms, Leonard J.

    2014-01-01

    The current study examines the relations among contemporary models of pathological and normal range personality traits. Specifically, we report on (a) conjoint exploratory factor analyses of the Computerized Adaptive Test of Personality Disorder static form (CAT-PD-SF) with the Personality Inventory for the DSM-5 (PID-5; Krueger et al., 2012) and NEO Personality Inventory-3 First Half (NEI-PI-3FH; McCrae & Costa, 2007), and (b) unfolding hierarchical analyses of the three measures in a large general psychiatric outpatient sample (N = 628; 64% Female). A five-factor solution provided conceptually coherent alignment among the CAT-PD-SF, PID-5, and NEO-PI-3FH scales. Hierarchical solutions suggested that higher-order factors bear strong resemblance to dimensions that emerge from structural models of psychopathology (e.g., Internalizing and Externalizing spectra). These results demonstrate that the CAT-PD-SF adheres to the consensual structure of broad trait domains at the five-factor level. Additionally, patterns of scale loadings further inform questions of structure and bipolarity of facet and domain level constructs. Finally, hierarchical analyses strengthen the argument for using broad dimensions that span normative and pathological functioning to scaffold a quantitatively derived phenotypic structure of psychopathology to orient future research on explanatory, etiological, and maintenance mechanisms. PMID:24588061

  6. On the structure of personality disorder traits: conjoint analyses of the CAT-PD, PID-5, and NEO-PI-3 trait models.

    PubMed

    Wright, Aidan G C; Simms, Leonard J

    2014-01-01

    The current study examines the relations among contemporary models of pathological and normal range personality traits. Specifically, we report on (a) conjoint exploratory factor analyses of the Computerized Adaptive Test of Personality Disorder static form (CAT-PD-SF) with the Personality Inventory for the Diagnostic and Statistical Manual of Mental Disorders, fifth edition and NEO Personality Inventory-3 First Half, and (b) unfolding hierarchical analyses of the three measures in a large general psychiatric outpatient sample (n = 628; 64% Female). A five-factor solution provided conceptually coherent alignment among the CAT-PD-SF, PID-5, and NEO-PI-3FH scales. Hierarchical solutions suggested that higher-order factors bear strong resemblance to dimensions that emerge from structural models of psychopathology (e.g., Internalizing and Externalizing spectra). These results demonstrate that the CAT-PD-SF adheres to the consensual structure of broad trait domains at the five-factor level. Additionally, patterns of scale loadings further inform questions of structure and bipolarity of facet and domain level constructs. Finally, hierarchical analyses strengthen the argument for using broad dimensions that span normative and pathological functioning to scaffold a quantitatively derived phenotypic structure of psychopathology to orient future research on explanatory, etiological, and maintenance mechanisms.

  7. Advances in cereal genomics and applications in crop breeding.

    PubMed

    Varshney, Rajeev K; Hoisington, David A; Tyagi, Akhilesh K

    2006-11-01

    Recent advances in cereal genomics have made it possible to analyse the architecture of cereal genomes and their expressed components, leading to an increase in our knowledge of the genes that are linked to key agronomically important traits. These studies have used molecular genetic mapping of quantitative trait loci (QTL) of several complex traits that are important in breeding. The identification and molecular cloning of genes underlying QTLs offers the possibility to examine the naturally occurring allelic variation for respective complex traits. Novel alleles, identified by functional genomics or haplotype analysis, can enrich the genetic basis of cultivated crops to improve productivity. Advances made in cereal genomics research in recent years thus offer the opportunities to enhance the prediction of phenotypes from genotypes for cereal breeding.

  8. The influence of genetic drift and selection on quantitative traits in a plant pathogenic fungus.

    PubMed

    Stefansson, Tryggvi S; McDonald, Bruce A; Willi, Yvonne

    2014-01-01

    Genetic drift and selection are ubiquitous evolutionary forces acting to shape genetic variation in populations. While their relative importance has been well studied in plants and animals, less is known about their relative importance in fungal pathogens. Because agro-ecosystems are more homogeneous environments than natural ecosystems, stabilizing selection may play a stronger role than genetic drift or diversifying selection in shaping genetic variation among populations of fungal pathogens in agro-ecosystems. We tested this hypothesis by conducting a QST/FST analysis using agricultural populations of the barley pathogen Rhynchosporium commune. Population divergence for eight quantitative traits (QST) was compared with divergence at eight neutral microsatellite loci (FST) for 126 pathogen strains originating from nine globally distributed field populations to infer the effects of genetic drift and types of selection acting on each trait. Our analyses indicated that five of the eight traits had QST values significantly lower than FST, consistent with stabilizing selection, whereas one trait, growth under heat stress (22°C), showed evidence of diversifying selection and local adaptation (QST>FST). Estimates of heritability were high for all traits (means ranging between 0.55-0.84), and average heritability across traits was negatively correlated with microsatellite gene diversity. Some trait pairs were genetically correlated and there was significant evidence for a trade-off between spore size and spore number, and between melanization and growth under benign temperature. Our findings indicate that many ecologically and agriculturally important traits are under stabilizing selection in R. commune and that high within-population genetic variation is maintained for these traits.

  9. LOD significance thresholds for QTL analysis in experimental populations of diploid species

    PubMed

    Van Ooijen JW

    1999-11-01

    Linkage analysis with molecular genetic markers is a very powerful tool in the biological research of quantitative traits. The lack of an easy way to know what areas of the genome can be designated as statistically significant for containing a gene affecting the quantitative trait of interest hampers the important prediction of the rate of false positives. In this paper four tables, obtained by large-scale simulations, are presented that can be used with a simple formula to get the false-positives rate for analyses of the standard types of experimental populations with diploid species with any size of genome. A new definition of the term 'suggestive linkage' is proposed that allows a more objective comparison of results across species.

  10. Quantitative Effects of P Elements on Hybrid Dysgenesis in Drosophila Melanogaster

    PubMed Central

    Rasmusson, K. E.; Simmons, M. J.; Raymond, J. D.; McLarnon, C. F.

    1990-01-01

    Genetic analyses involving chromosomes from seven inbred lines derived from a single M' strain were used to study the quantitative relationships between the incidence and severity of P-M hybrid dysgenesis and the number of genomic P elements. In four separate analyses, the mutability of sn(w), a P element-insertion mutation of the X-linked singed locus, was found to be inversely related to the number of autosomal P elements. Since sn(w) mutability is caused by the action of the P transposase, this finding supports the hypothesis that genomic P elements titrate the transposase present within a cell. Other analyses demonstrated that autosomal transmission ratios were distorted by P element action. In these analyses, the amount of distortion against an autosome increased more or less linearly with the number of P elements carried by the autosome. Additional analyses showed that the magnitude of this distortion was reduced when a second P element-containing autosome was present in the genome. This reduction could adequately be explained by transposase titration; there was no evidence that it was due to repressor molecules binding to P elements and inhibiting their movement. The influence of genomic P elements on the incidence of gonadal dysgenesis was also investigated. Although no simple relationship between the number of P elements and the incidence of the trait could be discerned, it was clear that even a small number of elements could increase the incidence markedly. The failure to find a quantitative relationship between P element number and the incidence of gonadal dysgenesis probably reflects the complex etiology of this trait. PMID:2155853

  11. Intercontinental convergence of stream fish community traits along geomorphic and hydraulic gradients

    USGS Publications Warehouse

    Lamouroux, N.; Poff, N.L.; Angermeier, P.L.

    2002-01-01

    Community convergence across biogeographically distinct regions suggests the existence of key, repeated, evolutionary mechanisms relating community characteristics to the environment. However, convergence studies at the community level often involve only qualitative comparisons of the environment and may fail to identify which environmental variables drive community structure. We tested the hypothesis that the biological traits of fish communities on two continents (Europe and North America) are similarly related to environmental conditions. Specifically, from observations of individual fish made at the microhabitat scale (a few square meters) within French streams, we generated habitat preference models linking traits of fish species to local scale hydraulic conditions (Froude number), Using this information, we then predicted how hydraulics and geomorphology at the larger scale of stream reaches (several pool-riffle sequences) should quantitatively influence the trait composition of fish communities. Trait composition for fishes in stream reaches with low Froude number at low flow or high proportion of pools was predicted as nonbenthic, large, fecund, long-lived, nonstreamlined, and weak swimmers. We tested our predictions in contrasting stream reaches in France (n = 11) and Virginia, USA (n = 76), using analyses of covariance to quantify the relative influence of continent vs. physical habitat variables on fish traits. The reach-scale convergence analysis indicated that trait proportions in the communities differed between continents (up to 55% of the variance in each trait was explained by "continent"), partly due to distinct evolutionary histories. However, within continents, trait proportions were comparably related to the hydraulic and geomorphic variables (up to 54% of the variance within continents explained). In particular, a synthetic measure of fish traits in reaches was well explained (50% of its variance) by the Froude number independently of the continent. The effect of physical variables did not differ across continents for most traits, confirming our predictions qualitatively and quantitatively. Therefore, despite phylogenetic and historical differences between continents, fish communities of France and Virginia exhibit convergence in biological traits related to hydraulics and geomorphology. This convergence reflects morphological and behavioral adaptations to physical stress in streams. This study supports the existence of a habitat template for ecological strategies. Some key quantitative variables that define this habitat template can be identified by characterizing how individual organisms use their physical environment, and by using dimensionless physical variables that reveal common energetic properties in different systems. Overall, quantitative tests of community convergence are efficient tools to demonstrate that some community traits are predictable from environmental features.

  12. Quantitative analysis of bristle number in Drosophila mutants identifies genes involved in neural development

    NASA Technical Reports Server (NTRS)

    Norga, Koenraad K.; Gurganus, Marjorie C.; Dilda, Christy L.; Yamamoto, Akihiko; Lyman, Richard F.; Patel, Prajal H.; Rubin, Gerald M.; Hoskins, Roger A.; Mackay, Trudy F.; Bellen, Hugo J.

    2003-01-01

    BACKGROUND: The identification of the function of all genes that contribute to specific biological processes and complex traits is one of the major challenges in the postgenomic era. One approach is to employ forward genetic screens in genetically tractable model organisms. In Drosophila melanogaster, P element-mediated insertional mutagenesis is a versatile tool for the dissection of molecular pathways, and there is an ongoing effort to tag every gene with a P element insertion. However, the vast majority of P element insertion lines are viable and fertile as homozygotes and do not exhibit obvious phenotypic defects, perhaps because of the tendency for P elements to insert 5' of transcription units. Quantitative genetic analysis of subtle effects of P element mutations that have been induced in an isogenic background may be a highly efficient method for functional genome annotation. RESULTS: Here, we have tested the efficacy of this strategy by assessing the extent to which screening for quantitative effects of P elements on sensory bristle number can identify genes affecting neural development. We find that such quantitative screens uncover an unusually large number of genes that are known to function in neural development, as well as genes with yet uncharacterized effects on neural development, and novel loci. CONCLUSIONS: Our findings establish the use of quantitative trait analysis for functional genome annotation through forward genetics. Similar analyses of quantitative effects of P element insertions will facilitate our understanding of the genes affecting many other complex traits in Drosophila.

  13. Functional Regression Models for Epistasis Analysis of Multiple Quantitative Traits.

    PubMed

    Zhang, Futao; Xie, Dan; Liang, Meimei; Xiong, Momiao

    2016-04-01

    To date, most genetic analyses of phenotypes have focused on analyzing single traits or analyzing each phenotype independently. However, joint epistasis analysis of multiple complementary traits will increase statistical power and improve our understanding of the complicated genetic structure of the complex diseases. Despite their importance in uncovering the genetic structure of complex traits, the statistical methods for identifying epistasis in multiple phenotypes remains fundamentally unexplored. To fill this gap, we formulate a test for interaction between two genes in multiple quantitative trait analysis as a multiple functional regression (MFRG) in which the genotype functions (genetic variant profiles) are defined as a function of the genomic position of the genetic variants. We use large-scale simulations to calculate Type I error rates for testing interaction between two genes with multiple phenotypes and to compare the power with multivariate pairwise interaction analysis and single trait interaction analysis by a single variate functional regression model. To further evaluate performance, the MFRG for epistasis analysis is applied to five phenotypes of exome sequence data from the NHLBI's Exome Sequencing Project (ESP) to detect pleiotropic epistasis. A total of 267 pairs of genes that formed a genetic interaction network showed significant evidence of epistasis influencing five traits. The results demonstrate that the joint interaction analysis of multiple phenotypes has a much higher power to detect interaction than the interaction analysis of a single trait and may open a new direction to fully uncovering the genetic structure of multiple phenotypes.

  14. SCOPA and META-SCOPA: software for the analysis and aggregation of genome-wide association studies of multiple correlated phenotypes.

    PubMed

    Mägi, Reedik; Suleimanov, Yury V; Clarke, Geraldine M; Kaakinen, Marika; Fischer, Krista; Prokopenko, Inga; Morris, Andrew P

    2017-01-11

    Genome-wide association studies (GWAS) of single nucleotide polymorphisms (SNPs) have been successful in identifying loci contributing genetic effects to a wide range of complex human diseases and quantitative traits. The traditional approach to GWAS analysis is to consider each phenotype separately, despite the fact that many diseases and quantitative traits are correlated with each other, and often measured in the same sample of individuals. Multivariate analyses of correlated phenotypes have been demonstrated, by simulation, to increase power to detect association with SNPs, and thus may enable improved detection of novel loci contributing to diseases and quantitative traits. We have developed the SCOPA software to enable GWAS analysis of multiple correlated phenotypes. The software implements "reverse regression" methodology, which treats the genotype of an individual at a SNP as the outcome and the phenotypes as predictors in a general linear model. SCOPA can be applied to quantitative traits and categorical phenotypes, and can accommodate imputed genotypes under a dosage model. The accompanying META-SCOPA software enables meta-analysis of association summary statistics from SCOPA across GWAS. Application of SCOPA to two GWAS of high-and low-density lipoprotein cholesterol, triglycerides and body mass index, and subsequent meta-analysis with META-SCOPA, highlighted stronger association signals than univariate phenotype analysis at established lipid and obesity loci. The META-SCOPA meta-analysis also revealed a novel signal of association at genome-wide significance for triglycerides mapping to GPC5 (lead SNP rs71427535, p = 1.1x10 -8 ), which has not been reported in previous large-scale GWAS of lipid traits. The SCOPA and META-SCOPA software enable discovery and dissection of multiple phenotype association signals through implementation of a powerful reverse regression approach.

  15. Genetic variation affecting host-parasite interactions: major-effect quantitative trait loci affect the transmission of sigma virus in Drosophila melanogaster.

    PubMed

    Bangham, Jenny; Knott, Sara A; Kim, Kang-Wook; Young, Robert S; Jiggins, Francis M

    2008-09-01

    In natural populations, genetic variation affects resistance to disease. Whether that genetic variation comprises lots of small-effect polymorphisms or a small number of large-effect polymorphisms has implications for adaptation, selection and how genetic variation is maintained in populations. Furthermore, how much genetic variation there is, and the genes that underlie this variation, affects models of co-evolution between parasites and their hosts. We are studying the genetic variation that affects the resistance of Drosophila melanogaster to its natural pathogen--the vertically transmitted sigma virus. We have carried out three separate quantitative trait locus mapping analyses to map gene variants on the second chromosome that cause variation in the rate at which males transmit the infection to their offspring. All three crosses identified a locus in a similar chromosomal location that causes a large drop in the rate at which the virus is transmitted. We also found evidence for an additional smaller-effect quantitative trait locus elsewhere on the chromosome. Our data, together with previous experiments on the sigma virus and parasitoid wasps, indicate that the resistance of D. melanogaster to co-evolved pathogens is controlled by a limited number of major-effect polymorphisms.

  16. Quantitative trait loci (QTLs) for water use and crop production traits co-locate with major QTL for tolerance to water deficit in a fine-mapping population of pearl millet (Pennisetum glaucum L. R.Br.).

    PubMed

    Tharanya, Murugesan; Kholova, Jana; Sivasakthi, Kaliamoorthy; Seghal, Deepmala; Hash, Charles Tom; Raj, Basker; Srivastava, Rakesh Kumar; Baddam, Rekha; Thirunalasundari, Thiyagarajan; Yadav, Rattan; Vadez, Vincent

    2018-04-21

    Four genetic regions associated with water use traits, measured at different levels of plant organization, and with agronomic traits were identified within a previously reported region for terminal water deficit adaptation on linkage group 2. Close linkages between these traits showed the value of phenotyping both for agronomic and secondary traits to better understand plant productive processes. Water saving traits are critical for water stress adaptation of pearl millet, whereas maximizing water use is key to the absence of stress. This research aimed at demonstrating the close relationship between traits measured at different levels of plant organization, some putatively involved in water stress adaptation, and those responsible for agronomic performance. A fine-mapping population of pearl millet, segregating for a previously identified quantitative trait locus (QTL) for adaptation to terminal drought stress on LG02, was phenotyped for traits at different levels of plant organization in different experimental environments (pot culture, high-throughput phenotyping platform, lysimeters, and field). The linkages among traits across the experimental systems were analysed using principal component analysis and QTL co-localization approach. Four regions within the LG02-QTL were found and revealed substantial co-mapping of water use and agronomic traits. These regions, identified across experimental systems, provided genetic evidence of the tight linkages between traits phenotyped at a lower level of plant organization and agronomic traits assessed in the field, therefore deepening our understanding of complex traits and then benefiting both geneticists and breeders. In short: (1) under no/mild stress conditions, increasing biomass and tiller production increased water use and eventually yield; (2) under severe stress conditions, water savings at vegetative stage, from lower plant vigour and fewer tillers in that population, led to more water available during grain filling, expression of stay-green phenotypes, and higher yield.

  17. Natural variation in stomatal abundance of Arabidopsis thaliana includes cryptic diversity for different developmental processes

    PubMed Central

    Delgado, Dolores; Alonso-Blanco, Carlos; Fenoll, Carmen; Mena, Montaña

    2011-01-01

    Background and Aims Current understanding of stomatal development in Arabidopsis thaliana is based on mutations producing aberrant, often lethal phenotypes. The aim was to discover if naturally occurring viable phenotypes would be useful for studying stomatal development in a species that enables further molecular analysis. Methods Natural variation in stomatal abundance of A. thaliana was explored in two collections comprising 62 wild accessions by surveying adaxial epidermal cell-type proportion (stomatal index) and density (stomatal and pavement cell density) traits in cotyledons and first leaves. Organ size variation was studied in a subset of accessions. For all traits, maternal effects derived from different laboratory environments were evaluated. In four selected accessions, distinct stomatal initiation processes were quantitatively analysed. Key Results and Conclusions Substantial genetic variation was found for all six stomatal abundance-related traits, which were weakly or not affected by laboratory maternal environments. Correlation analyses revealed overall relationships among all traits. Within each organ, stomatal density highly correlated with the other traits, suggesting common genetic bases. Each trait correlated between organs, supporting supra-organ control of stomatal abundance. Clustering analyses identified accessions with uncommon phenotypic patterns, suggesting differences among genetic programmes controlling the various traits. Variation was also found in organ size, which negatively correlated with cell densities in both organs and with stomatal index in the cotyledon. Relative proportions of primary and satellite lineages varied among the accessions analysed, indicating that distinct developmental components contribute to natural diversity in stomatal abundance. Accessions with similar stomatal indices showed different lineage class ratios, revealing hidden developmental phenotypes and showing that genetic determinants of primary and satellite lineage initiation combine in several ways. This first systematic, comprehensive natural variation survey for stomatal abundance in A. thaliana reveals cryptic developmental genetic variation, and provides relevant relationships amongst stomatal traits and extreme or uncommon accessions as resources for the genetic dissection of stomatal development. PMID:21447490

  18. Genome-Wide Association Mapping and Genomic Prediction Elucidate the Genetic Architecture of Morphological Traits in Arabidopsis.

    PubMed

    Kooke, Rik; Kruijer, Willem; Bours, Ralph; Becker, Frank; Kuhn, André; van de Geest, Henri; Buntjer, Jaap; Doeswijk, Timo; Guerra, José; Bouwmeester, Harro; Vreugdenhil, Dick; Keurentjes, Joost J B

    2016-04-01

    Quantitative traits in plants are controlled by a large number of genes and their interaction with the environment. To disentangle the genetic architecture of such traits, natural variation within species can be explored by studying genotype-phenotype relationships. Genome-wide association studies that link phenotypes to thousands of single nucleotide polymorphism markers are nowadays common practice for such analyses. In many cases, however, the identified individual loci cannot fully explain the heritability estimates, suggesting missing heritability. We analyzed 349 Arabidopsis accessions and found extensive variation and high heritabilities for different morphological traits. The number of significant genome-wide associations was, however, very low. The application of genomic prediction models that take into account the effects of all individual loci may greatly enhance the elucidation of the genetic architecture of quantitative traits in plants. Here, genomic prediction models revealed different genetic architectures for the morphological traits. Integrating genomic prediction and association mapping enabled the assignment of many plausible candidate genes explaining the observed variation. These genes were analyzed for functional and sequence diversity, and good indications that natural allelic variation in many of these genes contributes to phenotypic variation were obtained. For ACS11, an ethylene biosynthesis gene, haplotype differences explaining variation in the ratio of petiole and leaf length could be identified. © 2016 American Society of Plant Biologists. All Rights Reserved.

  19. Mapping quantitative trait loci for traits defined as ratios.

    PubMed

    Yang, Runqing; Li, Jiahan; Xu, Shizhong

    2008-03-01

    Many traits are defined as ratios of two quantitative traits. Methods of QTL mapping for regular quantitative traits are not optimal when applied to ratios due to lack of normality for traits defined as ratios. We develop a new method of QTL mapping for traits defined as ratios. The new method uses a special linear combination of the two component traits, and thus takes advantage of the normal property of the new variable. Simulation study shows that the new method can substantially increase the statistical power of QTL detection relative to the method which treats ratios as regular quantitative traits. The new method also outperforms the method that uses Box-Cox transformed ratio as the phenotype. A real example of QTL mapping for relative growth rate in soybean demonstrates that the new method can detect more QTL than existing methods of QTL mapping for traits defined as ratios.

  20. Responses of leaf traits to climatic gradients: adaptive variation versus compositional shifts

    NASA Astrophysics Data System (ADS)

    Meng, T.-T.; Wang, H.; Harrison, S. P.; Prentice, I. C.; Ni, J.; Wang, G.

    2015-09-01

    Dynamic global vegetation models (DGVMs) typically rely on plant functional types (PFTs), which are assigned distinct environmental tolerances and replace one another progressively along environmental gradients. Fixed values of traits are assigned to each PFT; modelled trait variation along gradients is thus driven by PFT replacement. But empirical studies have revealed "universal" scaling relationships (quantitative trait variations with climate that are similar within and between species, PFTs and communities); and continuous, adaptive trait variation has been proposed to replace PFTs as the basis for next-generation DGVMs. Here we analyse quantitative leaf-trait variation on long temperature and moisture gradients in China with a view to understanding the relative importance of PFT replacement vs. continuous adaptive variation within PFTs. Leaf area (LA), specific leaf area (SLA), leaf dry matter content (LDMC) and nitrogen content of dry matter were measured on all species at 80 sites ranging from temperate to tropical climates and from dense forests to deserts. Chlorophyll fluorescence traits and carbon, phosphorus and potassium contents were measured at 47 sites. Generalized linear models were used to relate log-transformed trait values to growing-season temperature and moisture indices, with or without PFT identity as a predictor, and to test for differences in trait responses among PFTs. Continuous trait variation was found to be ubiquitous. Responses to moisture availability were generally similar within and between PFTs, but biophysical traits (LA, SLA and LDMC) of forbs and grasses responded differently from woody plants. SLA and LDMC responses to temperature were dominated by the prevalence of evergreen PFTs with thick, dense leaves at the warm end of the gradient. Nutrient (N, P and K) responses to climate gradients were generally similar within all PFTs. Area-based nutrients generally declined with moisture; Narea and Karea declined with temperature, but Parea increased with temperature. Although the adaptive nature of many of these trait-climate relationships is understood qualitatively, a key challenge for modelling is to predict them quantitatively. Models must take into account that community-level responses to climatic gradients can be influenced by shifts in PFT composition, such as the replacement of deciduous by evergreen trees, which may run either parallel or counter to trait variation within PFTs. The importance of PFT shifts varies among traits, being important for biophysical traits but less so for physiological and chemical traits. Finally, models should take account of the diversity of trait values that is found in all sites and PFTs, representing the "pool" of variation that is locally available for the natural adaptation of ecosystem function to environmental change.

  1. Application of Genome Wide Association and Genomic Prediction for Improvement of Cacao Productivity and Resistance to Black and Frosty Pod Diseases

    PubMed Central

    Romero Navarro, J. Alberto; Phillips-Mora, Wilbert; Arciniegas-Leal, Adriana; Mata-Quirós, Allan; Haiminen, Niina; Mustiga, Guiliana; Livingstone III, Donald; van Bakel, Harm; Kuhn, David N.; Parida, Laxmi; Kasarskis, Andrew; Motamayor, Juan C.

    2017-01-01

    Chocolate is a highly valued and palatable confectionery product. Chocolate is primarily made from the processed seeds of the tree species Theobroma cacao. Cacao cultivation is highly relevant for small-holder farmers throughout the tropics, yet its productivity remains limited by low yields and widespread pathogens. A panel of 148 improved cacao clones was assembled based on productivity and disease resistance, and phenotypic single-tree replicated clonal evaluation was performed for 8 years. Using high-density markers, the diversity of clones was expressed relative to 10 known ancestral cacao populations, and significant effects of ancestry were observed in productivity and disease resistance. Genome-wide association (GWA) was performed, and six markers were significantly associated with frosty pod disease resistance. In addition, genomic selection was performed, and consistent with the observed extensive linkage disequilibrium, high predictive ability was observed at low marker densities for all traits. Finally, quantitative trait locus mapping and differential expression analysis of two cultivars with contrasting disease phenotypes were performed to identify genes underlying frosty pod disease resistance, identifying a significant quantitative trait locus and 35 differentially expressed genes using two independent differential expression analyses. These results indicate that in breeding populations of heterozygous and recently admixed individuals, mapping approaches can be used for low complexity traits like pod color cacao, or in other species single gene disease resistance, however genomic selection for quantitative traits remains highly effective relative to mapping. Our results can help guide the breeding process for sustainable improved cacao productivity. PMID:29184558

  2. Universality and predictability in molecular quantitative genetics.

    PubMed

    Nourmohammad, Armita; Held, Torsten; Lässig, Michael

    2013-12-01

    Molecular traits, such as gene expression levels or protein binding affinities, are increasingly accessible to quantitative measurement by modern high-throughput techniques. Such traits measure molecular functions and, from an evolutionary point of view, are important as targets of natural selection. We review recent developments in evolutionary theory and experiments that are expected to become building blocks of a quantitative genetics of molecular traits. We focus on universal evolutionary characteristics: these are largely independent of a trait's genetic basis, which is often at least partially unknown. We show that universal measurements can be used to infer selection on a quantitative trait, which determines its evolutionary mode of conservation or adaptation. Furthermore, universality is closely linked to predictability of trait evolution across lineages. We argue that universal trait statistics extends over a range of cellular scales and opens new avenues of quantitative evolutionary systems biology. Copyright © 2013. Published by Elsevier Ltd.

  3. An Improved Method for Measuring Quantitative Resistance to the Wheat Pathogen Zymoseptoria tritici Using High-Throughput Automated Image Analysis.

    PubMed

    Stewart, Ethan L; Hagerty, Christina H; Mikaberidze, Alexey; Mundt, Christopher C; Zhong, Ziming; McDonald, Bruce A

    2016-07-01

    Zymoseptoria tritici causes Septoria tritici blotch (STB) on wheat. An improved method of quantifying STB symptoms was developed based on automated analysis of diseased leaf images made using a flatbed scanner. Naturally infected leaves (n = 949) sampled from fungicide-treated field plots comprising 39 wheat cultivars grown in Switzerland and 9 recombinant inbred lines (RIL) grown in Oregon were included in these analyses. Measures of quantitative resistance were percent leaf area covered by lesions, pycnidia size and gray value, and pycnidia density per leaf and lesion. These measures were obtained automatically with a batch-processing macro utilizing the image-processing software ImageJ. All phenotypes in both locations showed a continuous distribution, as expected for a quantitative trait. The trait distributions at both sites were largely overlapping even though the field and host environments were quite different. Cultivars and RILs could be assigned to two or more statistically different groups for each measured phenotype. Traditional visual assessments of field resistance were highly correlated with quantitative resistance measures based on image analysis for the Oregon RILs. These results show that automated image analysis provides a promising tool for assessing quantitative resistance to Z. tritici under field conditions.

  4. Model-Based Linkage Analysis of a Quantitative Trait.

    PubMed

    Song, Yeunjoo E; Song, Sunah; Schnell, Audrey H

    2017-01-01

    Linkage Analysis is a family-based method of analysis to examine whether any typed genetic markers cosegregate with a given trait, in this case a quantitative trait. If linkage exists, this is taken as evidence in support of a genetic basis for the trait. Historically, linkage analysis was performed using a binary disease trait, but has been extended to include quantitative disease measures. Quantitative traits are desirable as they provide more information than binary traits. Linkage analysis can be performed using single-marker methods (one marker at a time) or multipoint (using multiple markers simultaneously). In model-based linkage analysis the genetic model for the trait of interest is specified. There are many software options for performing linkage analysis. Here, we use the program package Statistical Analysis for Genetic Epidemiology (S.A.G.E.). S.A.G.E. was chosen because it also includes programs to perform data cleaning procedures and to generate and test genetic models for a quantitative trait, in addition to performing linkage analysis. We demonstrate in detail the process of running the program LODLINK to perform single-marker analysis, and MLOD to perform multipoint analysis using output from SEGREG, where SEGREG was used to determine the best fitting statistical model for the trait.

  5. Decomposing genomic variance using information from GWA, GWE and eQTL analysis.

    PubMed

    Ehsani, A; Janss, L; Pomp, D; Sørensen, P

    2016-04-01

    A commonly used procedure in genome-wide association (GWA), genome-wide expression (GWE) and expression quantitative trait locus (eQTL) analyses is based on a bottom-up experimental approach that attempts to individually associate molecular variants with complex traits. Top-down modeling of the entire set of genomic data and partitioning of the overall variance into subcomponents may provide further insight into the genetic basis of complex traits. To test this approach, we performed a whole-genome variance components analysis and partitioned the genomic variance using information from GWA, GWE and eQTL analyses of growth-related traits in a mouse F2 population. We characterized the mouse trait genetic architecture by ordering single nucleotide polymorphisms (SNPs) based on their P-values and studying the areas under the curve (AUCs). The observed traits were found to have a genomic variance profile that differed significantly from that expected of a trait under an infinitesimal model. This situation was particularly true for both body weight and body fat, for which the AUCs were much higher compared with that of glucose. In addition, SNPs with a high degree of trait-specific regulatory potential (SNPs associated with subset of transcripts that significantly associated with a specific trait) explained a larger proportion of the genomic variance than did SNPs with high overall regulatory potential (SNPs associated with transcripts using traditional eQTL analysis). We introduced AUC measures of genomic variance profiles that can be used to quantify relative importance of SNPs as well as degree of deviation of a trait's inheritance from an infinitesimal model. The shape of the curve aids global understanding of traits: The steeper the left-hand side of the curve, the fewer the number of SNPs controlling most of the phenotypic variance. © 2015 Stichting International Foundation for Animal Genetics.

  6. Evidence of major genes affecting stress response in rainbow trout using Bayesian methods of complex segregation analysis

    USDA-ARS?s Scientific Manuscript database

    As a first step towards the genetic mapping of quantitative trait loci (QTL) affecting stress response variation in rainbow trout, we performed complex segregation analyses (CSA) fitting mixed inheritance models of plasma cortisol using Bayesian methods in large full-sib families of rainbow trout. ...

  7. The roles of genetic drift and natural selection in quantitative trait divergence along an altitudinal gradient in Arabidopsis thaliana

    PubMed Central

    Luo, Y; Widmer, A; Karrenberg, S

    2015-01-01

    Understanding how natural selection and genetic drift shape biological variation is a central topic in biology, yet our understanding of the agents of natural selection and their target traits is limited. We investigated to what extent selection along an altitudinal gradient or genetic drift contributed to variation in ecologically relevant traits in Arabidopsis thaliana. We collected seeds from 8 to 14 individuals from each of 14 A. thaliana populations originating from sites between 800 and 2700 m above sea level in the Swiss Alps. Seed families were grown with and without vernalization, corresponding to winter-annual and summer-annual life histories, respectively. We analyzed putatively neutral genetic divergence between these populations using 24 simple sequence repeat markers. We measured seven traits related to growth, phenology and leaf morphology that are rarely reported in A. thaliana and performed analyses of altitudinal clines, as well as overall QST-FST comparisons and correlation analyses among pair-wise QST, FST and altitude of origin differences. Multivariate analyses suggested adaptive differentiation along altitude in the entire suite of traits, particularly when expressed in the summer-annual life history. Of the individual traits, a decrease in rosette leaf number in the vegetative state and an increase in leaf succulence with increasing altitude could be attributed to adaptive divergence. Interestingly, these patterns relate well to common within- and between-species trends of smaller plant size and thicker leaves at high altitude. Our results thus offer exciting possibilities to unravel the underlying mechanisms for these conspicuous trends using the model species A. thaliana. PMID:25293874

  8. Limits to behavioral evolution: the quantitative genetics of a complex trait under directional selection.

    PubMed

    Careau, Vincent; Wolak, Matthew E; Carter, Patrick A; Garland, Theodore

    2013-11-01

    Replicated selection experiments provide a powerful way to study how "multiple adaptive solutions" may lead to differences in the quantitative-genetic architecture of selected traits and whether this may translate into differences in the timing at which evolutionary limits are reached. We analyze data from 31 generations (n=17,988) of selection on voluntary wheel running in house mice. The rate of initial response, timing of selection limit, and height of the plateau varied significantly between sexes and among the four selected lines. Analyses of litter size and realized selection differentials seem to rule out counterposing natural selection as a cause of the selection limits. Animal-model analyses showed that although the additive genetic variance was significantly lower in selected than control lines, both before and after the limits, the decrease was not sufficient to explain the limits. Moreover, directional selection promoted a negative covariance between additive and maternal genetic variance over the first 10 generations. These results stress the importance of replication in selection studies of higher-level traits and highlight the fact that long-term predictions of response to selection are not necessarily expected to be linear because of the variable effects of selection on additive genetic variance and maternal effects. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  9. Efficient QTL detection for nonhost resistance in wild lettuce: backcross inbred lines versus F2 population

    PubMed Central

    Pelgrom, K.; Stam, P.; Lindhout, P.

    2008-01-01

    In plants, several population types [F2, recombinant inbred lines, backcross inbred lines (BILs), etc.] are used for quantitative trait locus (QTL) analyses. However, dissection of the trait of interest and subsequent confirmation by introgression of QTLs for breeding purposes has not been as successful as that predicted from theoretical calculations. More practical knowledge of different QTL mapping approaches is needed. In this recent study, we describe the detection and mapping of quantitative resistances to downy mildew in a set of 29 BILs of cultivated lettuce (L. sativa) containing genome segments introgressed from wild lettuce (L. saligna). Introgression regions that are associated with quantitative resistance are considered to harbor a QTL. Furthermore, we compare this with results from an already existing F2 population derived from the same parents. We identified six QTLs in our BIL approach compared to only three in the F2 approach, while there were two QTLs in common. We performed a simulation study based on our actual data to help us interpret them. This revealed that two newly detected QTLs in the BILs had gone unnoticed in the F2, due to a combination of recessiveness of the trait and skewed segregation, causing a deficit of the wild species alleles. This study clearly illustrates the added value of extended genetic studies on two different population types (BILs and F2) to dissect complex genetic traits. PMID:18251002

  10. Allelic variations and differential expressions detected at quantitative trait loci for salt stress tolerance in wheat.

    PubMed

    Oyiga, Benedict C; Sharma, Ram C; Baum, Michael; Ogbonnaya, Francis C; Léon, Jens; Ballvora, Agim

    2018-05-01

    The increasing salinization of agricultural lands is a threat to global wheat production. Understanding of the mechanistic basis of salt tolerance (ST) is essential for developing breeding and selection strategies that would allow for increased wheat production under saline conditions to meet the increasing global demand. We used a set that consists of 150 internationally derived winter and facultative wheat cultivars genotyped with a 90K SNP chip and phenotyped for ST across three growth stages and for ionic (leaf K + and Na +  contents) traits to dissect the genetic architecture regulating ST in wheat. Genome-wide association mapping revealed 187 Single Nucleotide Polymorphism (SNPs) (R 2  = 3.00-30.67%), representing 37 quantitative trait loci (QTL), significantly associated with the ST traits. Of these, four QTL on 1BS, 2AL, 2BS and 3AL were associated with ST across the three growth stages and with the ionic traits. Novel QTL were also detected on 1BS and 1DL. Candidate genes linked to these polymorphisms were uncovered, and expression analyses were performed and validated on them under saline and non-saline conditions using transcriptomics and qRT-PCR data. Expressed sequence comparisons in contrasting ST wheat genotypes identified several non-synonymous/missense mutation sites that are contributory to the ST trait variations, indicating the biological relevance of these polymorphisms that can be exploited in breeding for ST in wheat. © 2017 The Authors. Plant, Cell & Environment published by JohnWiley & Sons Ltd.

  11. Local Genetic Correlation Gives Insights into the Shared Genetic Architecture of Complex Traits.

    PubMed

    Shi, Huwenbo; Mancuso, Nicholas; Spendlove, Sarah; Pasaniuc, Bogdan

    2017-11-02

    Although genetic correlations between complex traits provide valuable insights into epidemiological and etiological studies, a precise quantification of which genomic regions disproportionately contribute to the genome-wide correlation is currently lacking. Here, we introduce ρ-HESS, a technique to quantify the correlation between pairs of traits due to genetic variation at a small region in the genome. Our approach requires GWAS summary data only and makes no distributional assumption on the causal variant effect sizes while accounting for linkage disequilibrium (LD) and overlapping GWAS samples. We analyzed large-scale GWAS summary data across 36 quantitative traits, and identified 25 genomic regions that contribute significantly to the genetic correlation among these traits. Notably, we find 6 genomic regions that contribute to the genetic correlation of 10 pairs of traits that show negligible genome-wide correlation, further showcasing the power of local genetic correlation analyses. Finally, we report the distribution of local genetic correlations across the genome for 55 pairs of traits that show putative causal relationships. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  12. Comprehensive evaluation of disease- and trait-specific enrichment for eight functional elements among GWAS-identified variants.

    PubMed

    Markunas, Christina A; Johnson, Eric O; Hancock, Dana B

    2017-07-01

    Genome-wide association study (GWAS)-identified variants are enriched for functional elements. However, we have limited knowledge of how functional enrichment may differ by disease/trait and tissue type. We tested a broad set of eight functional elements for enrichment among GWAS-identified SNPs (p < 5×10 -8 ) from the NHGRI-EBI Catalog across seven disease/trait categories: cancer, cardiovascular disease, diabetes, autoimmune disease, psychiatric disease, neurological disease, and anthropometric traits. SNPs were annotated using HaploReg for the eight functional elements across any tissue: DNase sites, expression quantitative trait loci (eQTL), sequence conservation, enhancers, promoters, missense variants, sequence motifs, and protein binding sites. In addition, tissue-specific annotations were considered for brain vs. blood. Disease/trait SNPs were compared to a control set of 4809 SNPs matched to the GWAS SNPs (N = 1639) on allele frequency, gene density, distance to nearest gene, and linkage disequilibrium at ~3:1 ratio. Enrichment analyses were conducted using logistic regression, with Bonferroni correction. Overall, a significant enrichment was observed for all functional elements, except sequence motifs. Missense SNPs showed the strongest magnitude of enrichment. eQTLs were the only functional element significantly enriched across all diseases/traits. Magnitudes of enrichment were generally similar across diseases/traits, where enrichment was statistically significant. Blood vs. brain tissue effects on enrichment were dependent on disease/trait and functional element (e.g., cardiovascular disease: eQTLs P TissueDifference  = 1.28 × 10 -6 vs. enhancers P TissueDifference  = 0.94). Identifying disease/trait-relevant functional elements and tissue types could provide new insight into the underlying biology, by guiding a priori GWAS analyses (e.g., brain enhancer elements for psychiatric disease) or facilitating post hoc interpretation.

  13. QTL analysis of fruit quality in fresh market tomato: a few chromosome regions control the variation of sensory and instrumental traits.

    PubMed

    Causse, M; Saliba-Colombani, V; Lecomte, L; Duffé, P; Rousselle, P; Buret, M

    2002-10-01

    The organoleptic quality of tomato fruit involves a set of attributes (flavour, aroma, texture) that can be evaluated either by sensory analyses or by instrumental measures. In order to study the genetic control of this characteristic, a recombinant inbred line (RIL) population was developed from an intraspecific cross between a cherry tomato line with a good overall aroma intensity and an inbred line with medium flavour but bigger fruits. A total of 38 traits involved in organoleptic quality were evaluated. Physical traits included fruit weight, diameter, colour, firmness, and elasticity. Chemical traits were dry matter weight, titratable acidity, pH, and the contents of soluble solids, sugars, lycopene, carotene, and 12 aroma volatiles. A panel of trained assessors quantified sensory attributes: flavour (sweetness and sourness), aroma (overall aroma intensity, together with candy, lemon, citrus fruit, and pharmaceutical aromas) and texture (firmness, meltiness, mealiness, juiciness, and skin difficult to swallow). RILs showed a large range of variation. Molecular markers were used to map a total of 130 quantitative trait loci (QTL) for the 38 traits. They were mainly distributed in a few chromosome regions. Major QTLs (R(2) >30%) were detected for fruit weight, diameter, colour, firmness, meltiness, and for six aroma volatiles. The relationships between instrumental measures and sensory traits were analysed with regard to the QTL map. A special insight was provided about the few regions where QTLs are related to multiple traits. A few examples are shown to illustrate how the simultaneous analysis of QTL segregation for related traits may aid in understanding the genetic control of quality traits and pave the way towards QTL characterization.

  14. Analysis of intraspecific seed diversity in Astragalus aquilanus (Fabaceae), an endemic species of Central Apennine.

    PubMed

    Di Cecco, V; Di Musciano, M; D'Archivio, A A; Frattaroli, A R; Di Martino, L

    2018-05-20

    This work aims to study seeds of the endemic species Astragalus aquilanus from four different populations of central Italy. We investigated seed morpho-colorimetric features (shape and size) and chemical differences (through infrared spectroscopy) among populations and between dark and light seeds. Seed morpho-colorimetric quantitative variables, describing shape, size and colour traits, were measured using image analysis techniques. Fourier transform infrared (FT-IR) spectroscopy was used to attempt seed chemical characterisation. The measured data were analysed by step-wise linear discriminant analysis (LDA). Moreover, we analysed the correlation between the four most important traits and six climatic variables extracted from WorldClim 2.0. The LDA on seeds traits shows clear differentiation of the four populations, which can be attributed to different chemical composition, as confirmed by Wilk's lambda test (P < 0.001). A strong correlation between morphometric traits and temperature (annual mean temperature, mean temperature of the warmest and coolest quarter), colorimetric traits and precipitation (annual precipitation, precipitation of wettest and driest quarter) was observed. The characterisation of A. aquilanus seeds shows large intraspecific plasticity both in morpho-colorimetric and chemical composition. These results confirm the strong relationship between the type of seed produced and the climatic variables. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  15. Rootstock control of scion transpiration and its acclimation to water deficit are controlled by different genes.

    PubMed

    Marguerit, Elisa; Brendel, Oliver; Lebon, Eric; Van Leeuwen, Cornelis; Ollat, Nathalie

    2012-04-01

    The stomatal control of transpiration is one of the major strategies by which plants cope with water stress. Here, we investigated the genetic architecture of the rootstock control of scion transpiration-related traits over a period of 3 yr. The rootstocks studied were full sibs from a controlled interspecific cross (Vitis vinifera cv. Cabernet Sauvignon × Vitis riparia cv. Gloire de Montpellier), onto which we grafted a single scion genotype. After 10 d without stress, the water supply was progressively limited over a period of 10 d, and a stable water deficit was then applied for 15 d. Transpiration rate was estimated daily and a mathematical curve was fitted to its response to water deficit intensity. We also determined δ(13) C values in leaves, transpiration efficiency and water extraction capacity. These traits were then analysed in a multienvironment (year and water status) quantitative trait locus (QTL) analysis. Quantitative trait loci, independent of year and water status, were detected for each trait. One genomic region was specifically implicated in the acclimation of scion transpiration induced by the rootstock. The QTLs identified colocalized with genes involved in water deficit responses, such as those relating to ABA and hydraulic regulation. Scion transpiration rate and its acclimation to water deficit are thus controlled genetically by the rootstock, through different genetic architectures. © 2012 INRA. New Phytologist © 2012 New Phytologist Trust.

  16. Relationship between QTL for grain shape, grain weight, test weight, milling yield, and plant height in the spring wheat cross RL4452/'AC Domain'.

    PubMed

    Cabral, Adrian L; Jordan, Mark C; Larson, Gary; Somers, Daryl J; Humphreys, D Gavin; McCartney, Curt A

    2018-01-01

    Kernel morphology characteristics of wheat are complex and quantitatively inherited. A doubled haploid (DH) population of the cross RL4452/'AC Domain' was used to study the genetic basis of seed shape. Quantitative trait loci (QTL) analyses were conducted on a total of 18 traits: 14 grain shape traits, flour yield (Fyd), and three agronomic traits (Plant height [Plht], 1000 Grain weight [Gwt], Test weight [Twt]), using data from trial locations at Glenlea, Brandon, and Morden in Manitoba, Canada, between 1999 and 2004. Kernel shape was studied through digital image analysis with an Acurum® grain analyzer. Plht, Gwt, Twt, Fyd, and grain shape QTL were correlated with each other and QTL analysis revealed that QTL for these traits often mapped to the same genetic locations. The most significant QTL for the grain shape traits were located on chromosomes 4B and 4D, each accounting for up to 24.4% and 53.3% of the total phenotypic variation, respectively. In addition, the most significant QTL for Plht, Gwt, and Twt were all detected on chromosome 4D at the Rht-D1 locus. Rht-D1b decreased Plht, Gwt, Twt, and kernel width relative to the Rht-D1a allele. A narrow genetic interval on chromosome 4B contained significant QTL for grain shape, Gwt, and Plht. The 'AC Domain' allele reduced Plht, Gwt, kernel length and width traits, but had no detectable effect on Twt. The data indicated that this variation was inconsistent with segregation at Rht-B1. Numerous QTL were identified that control these traits in this population.

  17. Relationship between QTL for grain shape, grain weight, test weight, milling yield, and plant height in the spring wheat cross RL4452/‘AC Domain’

    PubMed Central

    Cabral, Adrian L.; Jordan, Mark C.; Larson, Gary; Somers, Daryl J.; Humphreys, D. Gavin

    2018-01-01

    Kernel morphology characteristics of wheat are complex and quantitatively inherited. A doubled haploid (DH) population of the cross RL4452/‘AC Domain’ was used to study the genetic basis of seed shape. Quantitative trait loci (QTL) analyses were conducted on a total of 18 traits: 14 grain shape traits, flour yield (Fyd), and three agronomic traits (Plant height [Plht], 1000 Grain weight [Gwt], Test weight [Twt]), using data from trial locations at Glenlea, Brandon, and Morden in Manitoba, Canada, between 1999 and 2004. Kernel shape was studied through digital image analysis with an Acurum® grain analyzer. Plht, Gwt, Twt, Fyd, and grain shape QTL were correlated with each other and QTL analysis revealed that QTL for these traits often mapped to the same genetic locations. The most significant QTL for the grain shape traits were located on chromosomes 4B and 4D, each accounting for up to 24.4% and 53.3% of the total phenotypic variation, respectively. In addition, the most significant QTL for Plht, Gwt, and Twt were all detected on chromosome 4D at the Rht-D1 locus. Rht-D1b decreased Plht, Gwt, Twt, and kernel width relative to the Rht-D1a allele. A narrow genetic interval on chromosome 4B contained significant QTL for grain shape, Gwt, and Plht. The ‘AC Domain’ allele reduced Plht, Gwt, kernel length and width traits, but had no detectable effect on Twt. The data indicated that this variation was inconsistent with segregation at Rht-B1. Numerous QTL were identified that control these traits in this population. PMID:29357369

  18. Quantitative genetic methods depending on the nature of the phenotypic trait.

    PubMed

    de Villemereuil, Pierre

    2018-01-24

    A consequence of the assumptions of the infinitesimal model, one of the most important theoretical foundations of quantitative genetics, is that phenotypic traits are predicted to be most often normally distributed (so-called Gaussian traits). But phenotypic traits, especially those interesting for evolutionary biology, might be shaped according to very diverse distributions. Here, I show how quantitative genetics tools have been extended to account for a wider diversity of phenotypic traits using first the threshold model and then more recently using generalized linear mixed models. I explore the assumptions behind these models and how they can be used to study the genetics of non-Gaussian complex traits. I also comment on three recent methodological advances in quantitative genetics that widen our ability to study new kinds of traits: the use of "modular" hierarchical modeling (e.g., to study survival in the context of capture-recapture approaches for wild populations); the use of aster models to study a set of traits with conditional relationships (e.g., life-history traits); and, finally, the study of high-dimensional traits, such as gene expression. © 2018 New York Academy of Sciences.

  19. Methods for meta-analysis of multiple traits using GWAS summary statistics.

    PubMed

    Ray, Debashree; Boehnke, Michael

    2018-03-01

    Genome-wide association studies (GWAS) for complex diseases have focused primarily on single-trait analyses for disease status and disease-related quantitative traits. For example, GWAS on risk factors for coronary artery disease analyze genetic associations of plasma lipids such as total cholesterol, LDL-cholesterol, HDL-cholesterol, and triglycerides (TGs) separately. However, traits are often correlated and a joint analysis may yield increased statistical power for association over multiple univariate analyses. Recently several multivariate methods have been proposed that require individual-level data. Here, we develop metaUSAT (where USAT is unified score-based association test), a novel unified association test of a single genetic variant with multiple traits that uses only summary statistics from existing GWAS. Although the existing methods either perform well when most correlated traits are affected by the genetic variant in the same direction or are powerful when only a few of the correlated traits are associated, metaUSAT is designed to be robust to the association structure of correlated traits. metaUSAT does not require individual-level data and can test genetic associations of categorical and/or continuous traits. One can also use metaUSAT to analyze a single trait over multiple studies, appropriately accounting for overlapping samples, if any. metaUSAT provides an approximate asymptotic P-value for association and is computationally efficient for implementation at a genome-wide level. Simulation experiments show that metaUSAT maintains proper type-I error at low error levels. It has similar and sometimes greater power to detect association across a wide array of scenarios compared to existing methods, which are usually powerful for some specific association scenarios only. When applied to plasma lipids summary data from the METSIM and the T2D-GENES studies, metaUSAT detected genome-wide significant loci beyond the ones identified by univariate analyses. Evidence from larger studies suggest that the variants additionally detected by our test are, indeed, associated with lipid levels in humans. In summary, metaUSAT can provide novel insights into the genetic architecture of a common disease or traits. © 2017 WILEY PERIODICALS, INC.

  20. Path analysis of the genetic integration of traits in the sand cricket: a novel use of BLUPs.

    PubMed

    Roff, D A; Fairbairn, D J

    2011-09-01

    This study combines path analysis with quantitative genetics to analyse a key life history trade-off in the cricket, Gryllus firmus. We develop a path model connecting five traits associated with the trade-off between flight capability and reproduction and test this model using phenotypic data and estimates of breeding values (best linear unbiased predictors) from a half-sibling experiment. Strong support by both types of data validates our causal model and indicates concordance between the phenotypic and genetic expression of the trade-off. Comparisons of the trade-off between sexes and wing morphs reveal that these discrete phenotypes are not genetically independent and that the evolutionary trajectories of the two wing morphs are more tightly constrained to covary than those of the two sexes. Our results illustrate the benefits of combining a quantitative genetic analysis, which examines statistical correlations between traits, with a path model that focuses upon the causal components of variation. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  1. Principal Components Analyses of the MMPI-2 PSY-5 Scales. Identification of Facet Subscales

    ERIC Educational Resources Information Center

    Arnau, Randolph C.; Handel, Richard W.; Archer, Robert P.

    2005-01-01

    The Personality Psychopathology Five (PSY-5) is a five-factor personality trait model designed for assessing personality pathology using quantitative dimensions. Harkness, McNulty, and Ben-Porath developed Minnesota Multiphasic Personality Inventory-2 (MMPI-2) scales based on the PSY-5 model, and these scales were recently added to the standard…

  2. Orderly Change in a Stable World: The Antisocial Trait as a Chimera.

    ERIC Educational Resources Information Center

    Patterson, Gerald R.

    1993-01-01

    Used longitudinal data from Oregon Youth Study to examine quantitative and qualitative change. Used latent growth models to demonstrate changes in form and systematic changes in mean level for subgroup of boys. Factor analyses carried out at three ages showed that, over time, changes in form and addition of new problems were quantifiable and thus…

  3. Genetic interactions contribute less than additive effects to quantitative trait variation in yeast

    PubMed Central

    Bloom, Joshua S.; Kotenko, Iulia; Sadhu, Meru J.; Treusch, Sebastian; Albert, Frank W.; Kruglyak, Leonid

    2015-01-01

    Genetic mapping studies of quantitative traits typically focus on detecting loci that contribute additively to trait variation. Genetic interactions are often proposed as a contributing factor to trait variation, but the relative contribution of interactions to trait variation is a subject of debate. Here we use a very large cross between two yeast strains to accurately estimate the fraction of phenotypic variance due to pairwise QTL–QTL interactions for 20 quantitative traits. We find that this fraction is 9% on average, substantially less than the contribution of additive QTL (43%). Statistically significant QTL–QTL pairs typically have small individual effect sizes, but collectively explain 40% of the pairwise interaction variance. We show that pairwise interaction variance is largely explained by pairs of loci at least one of which has a significant additive effect. These results refine our understanding of the genetic architecture of quantitative traits and help guide future mapping studies. PMID:26537231

  4. Phenotypic selection in natural populations: what limits directional selection?

    PubMed

    Kingsolver, Joel G; Diamond, Sarah E

    2011-03-01

    Studies of phenotypic selection document directional selection in many natural populations. What factors reduce total directional selection and the cumulative evolutionary responses to selection? We combine two data sets for phenotypic selection, representing more than 4,600 distinct estimates of selection from 143 studies, to evaluate the potential roles of fitness trade-offs, indirect (correlated) selection, temporally varying selection, and stabilizing selection for reducing net directional selection and cumulative responses to selection. We detected little evidence that trade-offs among different fitness components reduced total directional selection in most study systems. Comparisons of selection gradients and selection differentials suggest that correlated selection frequently reduced total selection on size but not on other types of traits. The direction of selection on a trait often changes over time in many temporally replicated studies, but these fluctuations have limited impact in reducing cumulative directional selection in most study systems. Analyses of quadratic selection gradients indicated stabilizing selection on body size in at least some studies but provided little evidence that stabilizing selection is more common than disruptive selection for most traits or study systems. Our analyses provide little evidence that fitness trade-offs, correlated selection, or stabilizing selection strongly constrains the directional selection reported for most quantitative traits.

  5. Identification of quantitative trait loci (QTL) for fruit quality traits and number of weeks of flowering in the cultivated strawberry

    USDA-ARS?s Scientific Manuscript database

    Fruit quality traits and dayneutrality are two major foci of several strawberry breeding programs. The identification of quantitative trait loci (QTL) and molecular markers linked to these traits could improve breeding efficiency. In this work, an F1 population derived from the cross ‘Delmarvel’ × ...

  6. Genetic determinism of anatomical and hydraulic traits within an apple progeny.

    PubMed

    Lauri, Pierre-Éric; Gorza, Olivier; Cochard, Hervé; Martinez, Sébastien; Celton, Jean-Marc; Ripetti, Véronique; Lartaud, Marc; Bry, Xavier; Trottier, Catherine; Costes, Evelyne

    2011-08-01

    The apple tree is known to have an isohydric behaviour, maintaining rather constant leaf water potential in soil with low water status and/or under high evaporative demand. However, little is known on the xylem water transport from roots to leaves from the two perspectives of efficiency and safety, and on its genetic variability. We analysed 16 traits related to hydraulic efficiency and safety, and anatomical traits in apple stems, and the relationships between them. Most variables were found heritable, and we investigated the determinism underlying their genetic control through a quantitative trait loci (QTL) analysis on 90 genotypes from the same progeny. Principal component analysis (PCA) revealed that all traits related to efficiency, whether hydraulic conductivity, vessel number and area or wood area, were included in the first PC, whereas the second PC included the safety variables, thus confirming the absence of trade-off between these two sets of traits. Our results demonstrated that clustered variables were characterized by common genomic regions. Together with previous results on the same progeny, our study substantiated that hydraulic efficiency traits co-localized with traits identified for tree growth and fruit production. © 2011 Blackwell Publishing Ltd.

  7. Joint Transcriptomic and Metabolomic Analyses Reveal Changes in the Primary Metabolism and Imbalances in the Subgenome Orchestration in the Bread Wheat Molecular Response to Fusarium graminearum.

    PubMed

    Nussbaumer, Thomas; Warth, Benedikt; Sharma, Sapna; Ametz, Christian; Bueschl, Christoph; Parich, Alexandra; Pfeifer, Matthias; Siegwart, Gerald; Steiner, Barbara; Lemmens, Marc; Schuhmacher, Rainer; Buerstmayr, Hermann; Mayer, Klaus F X; Kugler, Karl G; Schweiger, Wolfgang

    2015-10-04

    Fusarium head blight is a prevalent disease of bread wheat (Triticum aestivum L.), which leads to considerable losses in yield and quality. Quantitative resistance to the causative fungus Fusarium graminearum is poorly understood. We integrated transcriptomics and metabolomics data to dissect the molecular response to the fungus and its main virulence factor, the toxin deoxynivalenol in near-isogenic lines segregating for two resistance quantitative trait loci, Fhb1 and Qfhs.ifa-5A. The data sets portrait rearrangements in the primary metabolism and the translational machinery to counter the fungus and the effects of the toxin and highlight distinct changes in the metabolism of glutamate in lines carrying Qfhs.ifa-5A. These observations are possibly due to the activity of two amino acid permeases located in the quantitative trait locus confidence interval, which may contribute to increased pathogen endurance. Mapping to the highly resolved region of Fhb1 reduced the list of candidates to few genes that are specifically expressed in presence of the quantitative trait loci and in response to the pathogen, which include a receptor-like protein kinase, a protein kinase, and an E3 ubiquitin-protein ligase. On a genome-scale level, the individual subgenomes of hexaploid wheat contribute differentially to defense. In particular, the D subgenome exhibited a pronounced response to the pathogen and contributed significantly to the overall defense response. Copyright © 2015 Nussbaumer et al.

  8. An assessment of the reliability of quantitative genetics estimates in study systems with high rate of extra-pair reproduction and low recruitment.

    PubMed

    Bourret, A; Garant, D

    2017-03-01

    Quantitative genetics approaches, and particularly animal models, are widely used to assess the genetic (co)variance of key fitness related traits and infer adaptive potential of wild populations. Despite the importance of precision and accuracy of genetic variance estimates and their potential sensitivity to various ecological and population specific factors, their reliability is rarely tested explicitly. Here, we used simulations and empirical data collected from an 11-year study on tree swallow (Tachycineta bicolor), a species showing a high rate of extra-pair paternity and a low recruitment rate, to assess the importance of identity errors, structure and size of the pedigree on quantitative genetic estimates in our dataset. Our simulations revealed an important lack of precision in heritability and genetic-correlation estimates for most traits, a low power to detect significant effects and important identifiability problems. We also observed a large bias in heritability estimates when using the social pedigree instead of the genetic one (deflated heritabilities) or when not accounting for an important cause of resemblance among individuals (for example, permanent environment or brood effect) in model parameterizations for some traits (inflated heritabilities). We discuss the causes underlying the low reliability observed here and why they are also likely to occur in other study systems. Altogether, our results re-emphasize the difficulties of generalizing quantitative genetic estimates reliably from one study system to another and the importance of reporting simulation analyses to evaluate these important issues.

  9. Determination of quantitative trait variants by concordance via application of the a posteriori granddaughter design to the U.S. Holstein population

    USDA-ARS?s Scientific Manuscript database

    Experimental designs that exploit family information can provide substantial predictive power in quantitative trait variant discovery projects. Concordance between quantitative trait locus genotype as determined by the a posteriori granddaughter design and marker genotype was determined for 29 trai...

  10. Classification of cassava genotypes based on qualitative and quantitative data.

    PubMed

    Oliveira, E J; Oliveira Filho, O S; Santos, V S

    2015-02-02

    We evaluated the genetic variation of cassava accessions based on qualitative (binomial and multicategorical) and quantitative traits (continuous). We characterized 95 accessions obtained from the Cassava Germplasm Bank of Embrapa Mandioca e Fruticultura; we evaluated these accessions for 13 continuous, 10 binary, and 25 multicategorical traits. First, we analyzed the accessions based only on quantitative traits; next, we conducted joint analysis (qualitative and quantitative traits) based on the Ward-MLM method, which performs clustering in two stages. According to the pseudo-F, pseudo-t2, and maximum likelihood criteria, we identified five and four groups based on quantitative trait and joint analysis, respectively. The smaller number of groups identified based on joint analysis may be related to the nature of the data. On the other hand, quantitative data are more subject to environmental effects in the phenotype expression; this results in the absence of genetic differences, thereby contributing to greater differentiation among accessions. For most of the accessions, the maximum probability of classification was >0.90, independent of the trait analyzed, indicating a good fit of the clustering method. Differences in clustering according to the type of data implied that analysis of quantitative and qualitative traits in cassava germplasm might explore different genomic regions. On the other hand, when joint analysis was used, the means and ranges of genetic distances were high, indicating that the Ward-MLM method is very useful for clustering genotypes when there are several phenotypic traits, such as in the case of genetic resources and breeding programs.

  11. Genome-Wide Association Mapping for Kernel and Malting Quality Traits Using Historical European Barley Records

    PubMed Central

    Röder, Marion S.; van Eeuwijk, Fred

    2014-01-01

    Malting quality is an important trait in breeding barley (Hordeum vulgare L.). It requires elaborate, expensive phenotyping, which involves micro-malting experiments. Although there is abundant historical information available for different cultivars in different years and trials, that historical information is not often used in genetic analyses. This study aimed to exploit historical records to assist in identifying genomic regions that affect malting and kernel quality traits in barley. This genome-wide association study utilized information on grain yield and 18 quality traits accumulated over 25 years on 174 European spring and winter barley cultivars combined with diversity array technology markers. Marker-trait associations were tested with a mixed linear model. This model took into account the genetic relatedness between cultivars based on principal components scores obtained from marker information. We detected 140 marker-trait associations. Some of these associations confirmed previously known quantitative trait loci for malting quality (on chromosomes 1H, 2H, and 5H). Other associations were reported for the first time in this study. The genetic correlations between traits are discussed in relation to the chromosomal regions associated with the different traits. This approach is expected to be particularly useful when designing strategies for multiple trait improvements. PMID:25372869

  12. A new method of linkage analysis using LOD scores for quantitative traits supports linkage of monoamine oxidase activity to D17S250 in the Collaborative Study on the Genetics of Alcoholism pedigrees.

    PubMed

    Curtis, David; Knight, Jo; Sham, Pak C

    2005-09-01

    Although LOD score methods have been applied to diseases with complex modes of inheritance, linkage analysis of quantitative traits has tended to rely on non-parametric methods based on regression or variance components analysis. Here, we describe a new method for LOD score analysis of quantitative traits which does not require specification of a mode of inheritance. The technique is derived from the MFLINK method for dichotomous traits. A range of plausible transmission models is constructed, constrained to yield the correct population mean and variance for the trait but differing with respect to the contribution to the variance due to the locus under consideration. Maximized LOD scores under homogeneity and admixture are calculated, as is a model-free LOD score which compares the maximized likelihoods under admixture assuming linkage and no linkage. These LOD scores have known asymptotic distributions and hence can be used to provide a statistical test for linkage. The method has been implemented in a program called QMFLINK. It was applied to data sets simulated using a variety of transmission models and to a measure of monoamine oxidase activity in 105 pedigrees from the Collaborative Study on the Genetics of Alcoholism. With the simulated data, the results showed that the new method could detect linkage well if the true allele frequency for the trait was close to that specified. However, it performed poorly on models in which the true allele frequency was much rarer. For the Collaborative Study on the Genetics of Alcoholism data set only a modest overlap was observed between the results obtained from the new method and those obtained when the same data were analysed previously using regression and variance components analysis. Of interest is that D17S250 produced a maximized LOD score under homogeneity and admixture of 2.6 but did not indicate linkage using the previous methods. However, this region did produce evidence for linkage in a separate data set, suggesting that QMFLINK may have been able to detect a true linkage which was not picked up by the other methods. The application of model-free LOD score analysis to quantitative traits is novel and deserves further evaluation of its merits and disadvantages relative to other methods.

  13. Evolutionary Quantitative Genomics of Populus trichocarpa

    PubMed Central

    McKown, Athena D.; La Mantia, Jonathan; Guy, Robert D.; Ingvarsson, Pär K.; Hamelin, Richard; Mansfield, Shawn D.; Ehlting, Jürgen; Douglas, Carl J.; El-Kassaby, Yousry A.

    2015-01-01

    Forest trees generally show high levels of local adaptation and efforts focusing on understanding adaptation to climate will be crucial for species survival and management. Here, we address fundamental questions regarding the molecular basis of adaptation in undomesticated forest tree populations to past climatic environments by employing an integrative quantitative genetics and landscape genomics approach. Using this comprehensive approach, we studied the molecular basis of climate adaptation in 433 Populus trichocarpa (black cottonwood) genotypes originating across western North America. Variation in 74 field-assessed traits (growth, ecophysiology, phenology, leaf stomata, wood, and disease resistance) was investigated for signatures of selection (comparing Q ST -F ST) using clustering of individuals by climate of origin (temperature and precipitation). 29,354 SNPs were investigated employing three different outlier detection methods and marker-inferred relatedness was estimated to obtain the narrow-sense estimate of population differentiation in wild populations. In addition, we compared our results with previously assessed selection of candidate SNPs using the 25 topographical units (drainages) across the P. trichocarpa sampling range as population groupings. Narrow-sense Q ST for 53% of distinct field traits was significantly divergent from expectations of neutrality (indicating adaptive trait variation); 2,855 SNPs showed signals of diversifying selection and of these, 118 SNPs (within 81 genes) were associated with adaptive traits (based on significant Q ST). Many SNPs were putatively pleiotropic for functionally uncorrelated adaptive traits, such as autumn phenology, height, and disease resistance. Evolutionary quantitative genomics in P. trichocarpa provides an enhanced understanding regarding the molecular basis of climate-driven selection in forest trees and we highlight that important loci underlying adaptive trait variation also show relationship to climate of origin. We consider our approach the most comprehensive, as it uncovers the molecular mechanisms of adaptation using multiple methods and tests. We also provide a detailed outline of the required analyses for studying adaptation to the environment in a population genomics context to better understand the species’ potential adaptive capacity to future climatic scenarios. PMID:26599762

  14. Leaf epidermis images for robust identification of plants

    PubMed Central

    da Silva, Núbia Rosa; Oliveira, Marcos William da Silva; Filho, Humberto Antunes de Almeida; Pinheiro, Luiz Felipe Souza; Rossatto, Davi Rodrigo; Kolb, Rosana Marta; Bruno, Odemir Martinez

    2016-01-01

    This paper proposes a methodology for plant analysis and identification based on extracting texture features from microscopic images of leaf epidermis. All the experiments were carried out using 32 plant species with 309 epidermal samples captured by an optical microscope coupled to a digital camera. The results of the computational methods using texture features were compared to the conventional approach, where quantitative measurements of stomatal traits (density, length and width) were manually obtained. Epidermis image classification using texture has achieved a success rate of over 96%, while success rate was around 60% for quantitative measurements taken manually. Furthermore, we verified the robustness of our method accounting for natural phenotypic plasticity of stomata, analysing samples from the same species grown in different environments. Texture methods were robust even when considering phenotypic plasticity of stomatal traits with a decrease of 20% in the success rate, as quantitative measurements proved to be fully sensitive with a decrease of 77%. Results from the comparison between the computational approach and the conventional quantitative measurements lead us to discover how computational systems are advantageous and promising in terms of solving problems related to Botany, such as species identification. PMID:27217018

  15. Advances in QTL Mapping in Pigs

    PubMed Central

    Rothschild, Max F.; Hu, Zhi-liang; Jiang, Zhihua

    2007-01-01

    Over the past 15 years advances in the porcine genetic linkage map and discovery of useful candidate genes have led to valuable gene and trait information being discovered. Early use of exotic breed crosses and now commercial breed crosses for quantitative trait loci (QTL) scans and candidate gene analyses have led to 110 publications which have identified 1,675 QTL. Additionally, these studies continue to identify genes associated with economically important traits such as growth rate, leanness, feed intake, meat quality, litter size, and disease resistance. A well developed QTL database called PigQTLdb is now as a valuable tool for summarizing and pinpointing in silico regions of interest to researchers. The commercial pig industry is actively incorporating these markers in marker-assisted selection along with traditional performance information to improve traits of economic performance. The long awaited sequencing efforts are also now beginning to provide sequence available for both comparative genomics and large scale single nucleotide polymorphism (SNP) association studies. While these advances are all positive, development of useful new trait families and measurement of new or underlying traits still limits future discoveries. A review of these developments is presented. PMID:17384738

  16. Dominant Epistasis Between Two Quantitative Trait Loci Governing Sporulation Efficiency in Yeast Saccharomyces cerevisiae

    PubMed Central

    Bergman, Juraj; Mitrikeski, Petar T.

    2015-01-01

    Summary Sporulation efficiency in the yeast Saccharomyces cerevisiae is a well-established model for studying quantitative traits. A variety of genes and nucleotides causing different sporulation efficiencies in laboratory, as well as in wild strains, has already been extensively characterised (mainly by reciprocal hemizygosity analysis and nucleotide exchange methods). We applied a different strategy in order to analyze the variation in sporulation efficiency of laboratory yeast strains. Coupling classical quantitative genetic analysis with simulations of phenotypic distributions (a method we call phenotype modelling) enabled us to obtain a detailed picture of the quantitative trait loci (QTLs) relationships underlying the phenotypic variation of this trait. Using this approach, we were able to uncover a dominant epistatic inheritance of loci governing the phenotype. Moreover, a molecular analysis of known causative quantitative trait genes and nucleotides allowed for the detection of novel alleles, potentially responsible for the observed phenotypic variation. Based on the molecular data, we hypothesise that the observed dominant epistatic relationship could be caused by the interaction of multiple quantitative trait nucleotides distributed across a 60--kb QTL region located on chromosome XIV and the RME1 locus on chromosome VII. Furthermore, we propose a model of molecular pathways which possibly underlie the phenotypic variation of this trait. PMID:27904371

  17. Association mapping of seed quality traits using the Canadian flax (Linum usitatissimum L.) core collection.

    PubMed

    Soto-Cerda, Braulio J; Duguid, Scott; Booker, Helen; Rowland, Gordon; Diederichsen, Axel; Cloutier, Sylvie

    2014-04-01

    The identification of stable QTL for seed quality traits by association mapping of a diverse panel of linseed accessions establishes the foundation for assisted breeding and future fine mapping in linseed. Linseed oil is valued for its food and non-food applications. Modifying its oil content and fatty acid (FA) profiles to meet market needs in a timely manner requires clear understanding of their quantitative trait loci (QTL) architectures, which have received little attention to date. Association mapping is an efficient approach to identify QTL in germplasm collections. In this study, we explored the quantitative nature of seed quality traits including oil content (OIL), palmitic acid, stearic acid, oleic acid, linoleic acid (LIO) linolenic acid (LIN) and iodine value in a flax core collection of 390 accessions assayed with 460 microsatellite markers. The core collection was grown in a modified augmented design at two locations over 3 years and phenotypic data for all seven traits were obtained from all six environments. Significant phenotypic diversity and moderate to high heritability for each trait (0.73-0.99) were observed. Most of the candidate QTL were stable as revealed by multivariate analyses. Nine candidate QTL were identified, varying from one for OIL to three for LIO and LIN. Candidate QTL for LIO and LIN co-localized with QTL previously identified in bi-parental populations and some mapped nearby genes known to be involved in the FA biosynthesis pathway. Fifty-eight percent of the QTL alleles were absent (private) in the Canadian cultivars suggesting that the core collection possesses QTL alleles potentially useful to improve seed quality traits. The candidate QTL identified herein will establish the foundation for future marker-assisted breeding in linseed.

  18. Differential gene expression of wheat progeny with contrasting levels of transpiration efficiency.

    PubMed

    Xue, Gang-Ping; McIntyre, C Lynne; Chapman, Scott; Bower, Neil I; Way, Heather; Reverter, Antonio; Clarke, Bryan; Shorter, Ray

    2006-08-01

    High water use efficiency or transpiration efficiency (TE) in wheat is a desirable physiological trait for increasing grain yield under water-limited environments. The identification of genes associated with this trait would facilitate the selection for genotypes with higher TE using molecular markers. We performed an expression profiling (microarray) analysis of approximately 16,000 unique wheat ESTs to identify genes that were differentially expressed between wheat progeny lines with contrasting TE levels from a cross between Quarrion (high TE) and Genaro 81 (low TE). We also conducted a second microarray analysis to identify genes responsive to drought stress in wheat leaves. Ninety-three genes that were differentially expressed between high and low TE progeny lines were identified. One fifth of these genes were markedly responsive to drought stress. Several potential growth-related regulatory genes, which were down-regulated by drought, were expressed at a higher level in the high TE lines than the low TE lines and are potentially associated with a biomass production component of the Quarrion-derived high TE trait. Eighteen of the TE differentially expressed genes were further analysed using quantitative RT-PCR on a separate set of plant samples from those used for microarray analysis. The expression levels of 11 of the 18 genes were positively correlated with the high TE trait, measured as carbon isotope discrimination (Delta(13)C). These data indicate that some of these TE differentially expressed genes are candidates for investigating processes that underlie the high TE trait or for use as expression quantitative trait loci (eQTLs) for TE.

  19. Small- and Large-Effect Quantitative Trait Locus Interactions Underlie Variation in Yeast Sporulation Efficiency

    PubMed Central

    Lorenz, Kim; Cohen, Barak A.

    2012-01-01

    Quantitative trait loci (QTL) with small effects on phenotypic variation can be difficult to detect and analyze. Because of this a large fraction of the genetic architecture of many complex traits is not well understood. Here we use sporulation efficiency in Saccharomyces cerevisiae as a model complex trait to identify and study small-effect QTL. In crosses where the large-effect quantitative trait nucleotides (QTN) have been genetically fixed we identify small-effect QTL that explain approximately half of the remaining variation not explained by the major effects. We find that small-effect QTL are often physically linked to large-effect QTL and that there are extensive genetic interactions between small- and large-effect QTL. A more complete understanding of quantitative traits will require a better understanding of the numbers, effect sizes, and genetic interactions of small-effect QTL. PMID:22942125

  20. Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. III

    Treesearch

    Kathleen D. Jermstad; Daniel L. Bassoni; Keith S. Jech; Gary A. Ritchie; Nicholas C. Wheeler; David B. Neale

    2003-01-01

    Quantitative trait loci (QTL) were mapped in the woody perennial Douglas fir (Pseudotsuga menziesii var. menziesii [Mirb.] Franco) for complex traits controlling the timing of growth initiation and growth cessation. QTL were estimated under controlled environmental conditions to identify QTL interactions with photoperiod, moisture stress, winter chilling, and spring...

  1. QTL analysis of root morphology, flowering time, and yield reveals trade-offs in response to drought in Brassica napus.

    PubMed

    Fletcher, Richard S; Mullen, Jack L; Heiliger, Annie; McKay, John K

    2015-01-01

    Drought escape and dehydration avoidance represent alternative strategies for drought adaptation in annual crops. The mechanisms underlying these two strategies are reported to have a negative correlation, suggesting a trade-off. We conducted a quantitative trait locus (QTL) analysis of flowering time and root mass, traits representing each strategy, in Brassica napus to understand if a trade-off exists and what the genetic basis might be. Our field experiment used a genotyped population of doubled haploid lines and included both irrigated and rainfed treatments, allowing analysis of plasticity in each trait. We found strong genetic correlations among all traits, suggesting a trade-off among traits may exist. Summing across traits and treatments we found 20 QTLs, but many of these co-localized to two major QTLs, providing evidence that the trade-off is genetically constrained. To understand the mechanistic relationship between root mass, flowering time, and QTLs, we analysed the data by conditioning upon correlated traits. Our results suggest a causal model where such QTLs affect root mass directly as well as through their impacts on flowering time. Additionally, we used draft Brassica genomes to identify orthologues of well characterized Arabidopsis thaliana flowering time genes as candidate genes. This research provides valuable clues to breeding for drought adaptation as it is the first to analyse the inheritance of the root system in B. napus in relation to drought. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. Sex-specific genetic architecture of human fatness in Chinese: the SAPPHIRe Study.

    PubMed

    Chiu, Y-F; Chuang, L-M; Kao, H-Y; Shih, K-C; Lin, M-W; Lee, W-J; Quertermous, T; Curb, J D; Chen, I; Rodriguez, B L; Hsiung, C A

    2010-11-01

    To dissect the genetic architecture of sexual dimorphism in obesity-related traits, we evaluated the sex-genotype interaction, sex-specific heritability and genome-wide linkages for seven measurements related to obesity. A total of 1,365 non-diabetic Chinese subjects from the family study of the Stanford Asia-Pacific Program of Hypertension and Insulin Resistance were used to search for quantitative trait loci (QTLs) responsible for the obesity-related traits. Pleiotropy and co-incidence effects from the QTLs were also examined using the bivariate linkage approach. We found that sex-specific differences in heritability and the genotype-sex interaction effects were substantially significant for most of these traits. Several QTLs with strong linkage evidence were identified after incorporating genotype by sex (G × S) interactions into the linkage mapping, including one QTL for hip circumference [maximum LOD score (MLS) = 4.22, empirical p = 0.000033] and two QTLs: for BMI on chromosome 12q with MLS 3.37 (empirical p = 0.0043) and 3.10 (empirical p = 0.0054). Sex-specific analyses demonstrated that these linkage signals all resulted from females rather than males. Most of these QTLs for obesity-related traits replicated the findings in other ethnic groups. Bivariate linkage analyses showed several obesity traits were influenced by a common set of QTLs. All regions with linkage signals were observed in one gender, but not in the whole sample, suggesting the genetic architecture of obesity-related traits does differ by gender. These findings are useful for further identification of the liability genes for these phenotypes through candidate genes or genome-wide association analysis.

  3. Combining semi-automated image analysis techniques with machine learning algorithms to accelerate large-scale genetic studies.

    PubMed

    Atkinson, Jonathan A; Lobet, Guillaume; Noll, Manuel; Meyer, Patrick E; Griffiths, Marcus; Wells, Darren M

    2017-10-01

    Genetic analyses of plant root systems require large datasets of extracted architectural traits. To quantify such traits from images of root systems, researchers often have to choose between automated tools (that are prone to error and extract only a limited number of architectural traits) or semi-automated ones (that are highly time consuming). We trained a Random Forest algorithm to infer architectural traits from automatically extracted image descriptors. The training was performed on a subset of the dataset, then applied to its entirety. This strategy allowed us to (i) decrease the image analysis time by 73% and (ii) extract meaningful architectural traits based on image descriptors. We also show that these traits are sufficient to identify the quantitative trait loci that had previously been discovered using a semi-automated method. We have shown that combining semi-automated image analysis with machine learning algorithms has the power to increase the throughput of large-scale root studies. We expect that such an approach will enable the quantification of more complex root systems for genetic studies. We also believe that our approach could be extended to other areas of plant phenotyping. © The Authors 2017. Published by Oxford University Press.

  4. Combining semi-automated image analysis techniques with machine learning algorithms to accelerate large-scale genetic studies

    PubMed Central

    Atkinson, Jonathan A.; Lobet, Guillaume; Noll, Manuel; Meyer, Patrick E.; Griffiths, Marcus

    2017-01-01

    Abstract Genetic analyses of plant root systems require large datasets of extracted architectural traits. To quantify such traits from images of root systems, researchers often have to choose between automated tools (that are prone to error and extract only a limited number of architectural traits) or semi-automated ones (that are highly time consuming). We trained a Random Forest algorithm to infer architectural traits from automatically extracted image descriptors. The training was performed on a subset of the dataset, then applied to its entirety. This strategy allowed us to (i) decrease the image analysis time by 73% and (ii) extract meaningful architectural traits based on image descriptors. We also show that these traits are sufficient to identify the quantitative trait loci that had previously been discovered using a semi-automated method. We have shown that combining semi-automated image analysis with machine learning algorithms has the power to increase the throughput of large-scale root studies. We expect that such an approach will enable the quantification of more complex root systems for genetic studies. We also believe that our approach could be extended to other areas of plant phenotyping. PMID:29020748

  5. QTLomics in Soybean: A Way Forward for Translational Genomics and Breeding

    PubMed Central

    Kumawat, Giriraj; Gupta, Sanjay; Ratnaparkhe, Milind B.; Maranna, Shivakumar; Satpute, Gyanesh K.

    2016-01-01

    Food legumes play an important role in attaining both food and nutritional security along with sustainable agricultural production for the well-being of humans globally. The various traits of economic importance in legume crops are complex and quantitative in nature, which are governed by quantitative trait loci (QTLs). Mapping of quantitative traits is a tedious and costly process, however, a large number of QTLs has been mapped in soybean for various traits albeit their utilization in breeding programmes is poorly reported. For their effective use in breeding programme it is imperative to narrow down the confidence interval of QTLs, to identify the underlying genes, and most importantly allelic characterization of these genes for identifying superior variants. In the field of functional genomics, especially in the identification and characterization of gene responsible for quantitative traits, soybean is far ahead from other legume crops. The availability of genic information about quantitative traits is more significant because it is easy and effective to identify homologs than identifying shared syntenic regions in other crop species. In soybean, genes underlying QTLs have been identified and functionally characterized for phosphorous efficiency, flowering and maturity, pod dehiscence, hard-seededness, α-Tocopherol content, soybean cyst nematode, sudden death syndrome, and salt tolerance. Candidate genes have also been identified for many other quantitative traits for which functional validation is required. Using the sequence information of identified genes from soybean, comparative genomic analysis of homologs in other legume crops could discover novel structural variants and useful alleles for functional marker development. The functional markers may be very useful for molecular breeding in soybean and harnessing benefit of translational research from soybean to other leguminous crops. Thus, soybean crop can act as a model crop for translational genomics and breeding of quantitative traits in legume crops. In this review, we summarize current status of identification and characterization of genes underlying QTLs for various quantitative traits in soybean and their significance in translational genomics and breeding of other legume crops. PMID:28066449

  6. Environmental quality and evolutionary potential: lessons from wild populations

    PubMed Central

    Charmantier, Anne; Garant, Dany

    2005-01-01

    An essential requirement to determine a population's potential for evolutionary change is to quantify the amount of genetic variability expressed for traits under selection. Early investigations in laboratory conditions showed that the magnitude of the genetic and environmental components of phenotypic variation can change with environmental conditions. However, there is no consensus as to how the expression of genetic variation is sensitive to different environmental conditions. Recently, the study of quantitative genetics in the wild has been revitalized by new pedigree analyses based on restricted maximum likelihood, resulting in a number of studies investigating these questions in wild populations. Experimental manipulation of environmental quality in the wild, as well as the use of naturally occurring favourable or stressful environments, has broadened the treatment of different taxa and traits. Here, we conduct a meta-analysis on recent studies comparing heritability in favourable versus unfavourable conditions in non-domestic and non-laboratory animals. The results provide evidence for increased heritability in more favourable conditions, significantly so for morphometric traits but not for traits more closely related to fitness. We discuss how these results are explained by underlying changes in variance components, and how they represent a major step in our understanding of evolutionary processes in wild populations. We also show how these trends contrast with the prevailing view resulting mainly from laboratory experiments on Drosophila. Finally, we underline the importance of taking into account the environmental variation in models predicting quantitative trait evolution. PMID:16011915

  7. Quantitative trait locus mapping and functional genomics of an organophosphate resistance trait in the western corn rootworm, Diabrotica virgifera virgifera.

    PubMed

    Coates, B S; Alves, A P; Wang, H; Zhou, X; Nowatzki, T; Chen, H; Rangasamy, M; Robertson, H M; Whitfield, C W; Walden, K K; Kachman, S D; French, B W; Meinke, L J; Hawthorne, D; Abel, C A; Sappington, T W; Siegfried, B D; Miller, N J

    2016-02-01

    The western corn rootworm, Diabrotica virgifera virgifera, is an insect pest of corn and population suppression with chemical insecticides is an important management tool. Traits conferring organophosphate insecticide resistance have increased in frequency amongst D. v. virgifera populations, resulting in the reduced efficacy in many corn-growing regions of the USA. We used comparative functional genomic and quantitative trait locus (QTL) mapping approaches to investigate the genetic basis of D. v. virgifera resistance to the organophosphate methyl-parathion. RNA from adult methyl-parathion resistant and susceptible adults was hybridized to 8331 microarray probes. The results predicted that 11 transcripts were significantly up-regulated in resistant phenotypes, with the most significant (fold increases ≥ 2.43) being an α-esterase-like transcript. Differential expression was validated only for the α-esterase (ST020027A20C03), with 11- to 13-fold greater expression in methyl-parathion resistant adults (P < 0.05). Progeny with a segregating methyl-parathion resistance trait were obtained from a reciprocal backcross design. QTL analyses of high-throughput single nucleotide polymorphism genotype data predicted involvement of a single genome interval. These data suggest that a specific carboyxesterase may function in field-evolved corn rootworm resistance to organophosphates, even though direct linkage between the QTL and this locus could not be established. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  8. Identification of genotyping-by-sequencing sequence tags associated with milling performance and end-use quality traits in hard red spring wheat (Triticum aestivum L.)

    USDA-ARS?s Scientific Manuscript database

    Wheat quality is defined by culinary end-uses and processing characteristics. Wheat breeders are interested to identify quantitative trait loci for grain, milling, and end-use quality traits because it is imperative to understand the genetic complexity underlying quantitatively inherited traits to ...

  9. Genome-wide Linkage Analysis for Identifying Quantitative Trait Loci Involved in the Regulation of Lipoprotein a (Lpa) Levels

    PubMed Central

    López, Sonia; Buil, Alfonso; Ordoñez, Jordi; Souto, Juan Carlos; Almasy, Laura; Lathrop, Mark; Blangero, John; Blanco-Vaca, Francisco; Fontcuberta, Jordi; Soria, José Manuel

    2009-01-01

    Lipoprotein Lp(a) levels are highly heritable and are associated with cardiovascular risk. We performed a genome-wide linkage analysis to delineate the genomic regions that influence the concentration of Lp(a) in families from the Genetic Analysis of Idiopathic Thrombophilia (GAIT) Project. Lp(a) levels were measured in 387 individuals belonging to 21 extended Spanish families. A total of 485 DNA microsatellite markers were genotyped to provide a 7.1 cM genetic map. A variance component linkage method was used to evaluate linkage and to detect quantitative trait loci (QTLs). The main QTL that showed strong evidence of linkage with Lp(a) levels was located at the structural gene for apo(a) on Chromosome 6 (LOD score=13.8). Interestingly, another QTL influencing Lp(a) concentration was located on Chromosome 2 with a LOD score of 2.01. This region contains several candidate genes. One of them is the tissue factor pathway inhibitor (TFPI), which has antithrombotic action and also has the ability to bind lipoproteins. However, quantitative trait association analyses performed with 12 SNPs in TFPI gene revealed no association with Lp(a) levels. Our study confirms previous results on the genetic basis of Lp(a) levels. In addition, we report a new QTL on Chromosome 2 involved in the quantitative variation of Lp(a). These data should serve as the basis for further detection of candidate genes and to elucidate the relationship between the concentration of Lp(a) and cardiovascular risk. PMID:18560444

  10. A genome-wide association scan implicates DCHS2, RUNX2, GLI3, PAX1 and EDAR in human facial variation

    PubMed Central

    Adhikari, Kaustubh; Fuentes-Guajardo, Macarena; Quinto-Sánchez, Mirsha; Mendoza-Revilla, Javier; Camilo Chacón-Duque, Juan; Acuña-Alonzo, Victor; Jaramillo, Claudia; Arias, William; Lozano, Rodrigo Barquera; Pérez, Gastón Macín; Gómez-Valdés, Jorge; Villamil-Ramírez, Hugo; Hunemeier, Tábita; Ramallo, Virginia; Silva de Cerqueira, Caio C.; Hurtado, Malena; Villegas, Valeria; Granja, Vanessa; Gallo, Carla; Poletti, Giovanni; Schuler-Faccini, Lavinia; Salzano, Francisco M.; Bortolini, Maria- Cátira; Canizales-Quinteros, Samuel; Cheeseman, Michael; Rosique, Javier; Bedoya, Gabriel; Rothhammer, Francisco; Headon, Denis; González-José, Rolando; Balding, David; Ruiz-Linares, Andrés

    2016-01-01

    We report a genome-wide association scan for facial features in ∼6,000 Latin Americans. We evaluated 14 traits on an ordinal scale and found significant association (P values<5 × 10−8) at single-nucleotide polymorphisms (SNPs) in four genomic regions for three nose-related traits: columella inclination (4q31), nose bridge breadth (6p21) and nose wing breadth (7p13 and 20p11). In a subsample of ∼3,000 individuals we obtained quantitative traits related to 9 of the ordinal phenotypes and, also, a measure of nasion position. Quantitative analyses confirmed the ordinal-based associations, identified SNPs in 2q12 associated to chin protrusion, and replicated the reported association of nasion position with SNPs in PAX3. Strongest association in 2q12, 4q31, 6p21 and 7p13 was observed for SNPs in the EDAR, DCHS2, RUNX2 and GLI3 genes, respectively. Associated SNPs in 20p11 extend to PAX1. Consistent with the effect of EDAR on chin protrusion, we documented alterations of mandible length in mice with modified Edar funtion. PMID:27193062

  11. A genome-wide association scan implicates DCHS2, RUNX2, GLI3, PAX1 and EDAR in human facial variation.

    PubMed

    Adhikari, Kaustubh; Fuentes-Guajardo, Macarena; Quinto-Sánchez, Mirsha; Mendoza-Revilla, Javier; Camilo Chacón-Duque, Juan; Acuña-Alonzo, Victor; Jaramillo, Claudia; Arias, William; Lozano, Rodrigo Barquera; Pérez, Gastón Macín; Gómez-Valdés, Jorge; Villamil-Ramírez, Hugo; Hunemeier, Tábita; Ramallo, Virginia; Silva de Cerqueira, Caio C; Hurtado, Malena; Villegas, Valeria; Granja, Vanessa; Gallo, Carla; Poletti, Giovanni; Schuler-Faccini, Lavinia; Salzano, Francisco M; Bortolini, Maria-Cátira; Canizales-Quinteros, Samuel; Cheeseman, Michael; Rosique, Javier; Bedoya, Gabriel; Rothhammer, Francisco; Headon, Denis; González-José, Rolando; Balding, David; Ruiz-Linares, Andrés

    2016-05-19

    We report a genome-wide association scan for facial features in ∼6,000 Latin Americans. We evaluated 14 traits on an ordinal scale and found significant association (P values<5 × 10(-8)) at single-nucleotide polymorphisms (SNPs) in four genomic regions for three nose-related traits: columella inclination (4q31), nose bridge breadth (6p21) and nose wing breadth (7p13 and 20p11). In a subsample of ∼3,000 individuals we obtained quantitative traits related to 9 of the ordinal phenotypes and, also, a measure of nasion position. Quantitative analyses confirmed the ordinal-based associations, identified SNPs in 2q12 associated to chin protrusion, and replicated the reported association of nasion position with SNPs in PAX3. Strongest association in 2q12, 4q31, 6p21 and 7p13 was observed for SNPs in the EDAR, DCHS2, RUNX2 and GLI3 genes, respectively. Associated SNPs in 20p11 extend to PAX1. Consistent with the effect of EDAR on chin protrusion, we documented alterations of mandible length in mice with modified Edar funtion.

  12. Regression and Data Mining Methods for Analyses of Multiple Rare Variants in the Genetic Analysis Workshop 17 Mini-Exome Data

    PubMed Central

    Bailey-Wilson, Joan E.; Brennan, Jennifer S.; Bull, Shelley B; Culverhouse, Robert; Kim, Yoonhee; Jiang, Yuan; Jung, Jeesun; Li, Qing; Lamina, Claudia; Liu, Ying; Mägi, Reedik; Niu, Yue S.; Simpson, Claire L.; Wang, Libo; Yilmaz, Yildiz E.; Zhang, Heping; Zhang, Zhaogong

    2012-01-01

    Group 14 of Genetic Analysis Workshop 17 examined several issues related to analysis of complex traits using DNA sequence data. These issues included novel methods for analyzing rare genetic variants in an aggregated manner (often termed collapsing rare variants), evaluation of various study designs to increase power to detect effects of rare variants, and the use of machine learning approaches to model highly complex heterogeneous traits. Various published and novel methods for analyzing traits with extreme locus and allelic heterogeneity were applied to the simulated quantitative and disease phenotypes. Overall, we conclude that power is (as expected) dependent on locus-specific heritability or contribution to disease risk, large samples will be required to detect rare causal variants with small effect sizes, extreme phenotype sampling designs may increase power for smaller laboratory costs, methods that allow joint analysis of multiple variants per gene or pathway are more powerful in general than analyses of individual rare variants, population-specific analyses can be optimal when different subpopulations harbor private causal mutations, and machine learning methods may be useful for selecting subsets of predictors for follow-up in the presence of extreme locus heterogeneity and large numbers of potential predictors. PMID:22128066

  13. Bayesian B-spline mapping for dynamic quantitative traits.

    PubMed

    Xing, Jun; Li, Jiahan; Yang, Runqing; Zhou, Xiaojing; Xu, Shizhong

    2012-04-01

    Owing to their ability and flexibility to describe individual gene expression at different time points, random regression (RR) analyses have become a popular procedure for the genetic analysis of dynamic traits whose phenotypes are collected over time. Specifically, when modelling the dynamic patterns of gene expressions in the RR framework, B-splines have been proved successful as an alternative to orthogonal polynomials. In the so-called Bayesian B-spline quantitative trait locus (QTL) mapping, B-splines are used to characterize the patterns of QTL effects and individual-specific time-dependent environmental errors over time, and the Bayesian shrinkage estimation method is employed to estimate model parameters. Extensive simulations demonstrate that (1) in terms of statistical power, Bayesian B-spline mapping outperforms the interval mapping based on the maximum likelihood; (2) for the simulated dataset with complicated growth curve simulated by B-splines, Legendre polynomial-based Bayesian mapping is not capable of identifying the designed QTLs accurately, even when higher-order Legendre polynomials are considered and (3) for the simulated dataset using Legendre polynomials, the Bayesian B-spline mapping can find the same QTLs as those identified by Legendre polynomial analysis. All simulation results support the necessity and flexibility of B-spline in Bayesian mapping of dynamic traits. The proposed method is also applied to a real dataset, where QTLs controlling the growth trajectory of stem diameters in Populus are located.

  14. Biological and molecular characterization of silkworm strains from the Brazilian germplasm bank of Bombyx mori.

    PubMed

    Pereira, N C; Munhoz, R E F; Bignotto, T S; Bespalhuk, R; Garay, L B; Saez, C R N; Fassina, V A; Nembri, A; Fernandez, M A

    2013-06-28

    Brazil has only one public genetic pool of Bombyx mori strains, which was established in 2005 at Universidade Estadual de Maringá, Maringá, Paraná State. This genetic bank has been maintained, and the strains have been characterized using genetic and morphological tools. The quantitative and qualitative traits, directly or indirectly related to productivity, were evaluated in 14 silkworm strains. In addition to biological and productivity analyses, DNA markers related to susceptibility to the B. mori nucleopolyhedrovirus (BmNPV) were analyzed. BmNPV is a major cause of production loss and is a serious problem for Paraná sericulture. The silkworm strains from diverse geographic origins were found to have different characteristics, including body weight, larval stage duration, cocoon weight, and other biological traits. In terms of productivity, the raw silk percentages were almost uniform, with an overall average of 16.28%. Overall, the Chinese strain C37 gave the best performance in many of the quantitative traits, and it surpassed the other strains in productivity traits. Therefore, it can be used as one of the strains that compose the elite germplasm for silkworm breeding programs. Additionally, genetic molecular markers were efficient in discriminating between B. mori strains that had been identified based on their geographical origin. We found that all Japanese strains produced a 400-bp molecular marker that has been associated with susceptibility to BmNPV.

  15. Power Analysis of Artificial Selection Experiments Using Efficient Whole Genome Simulation of Quantitative Traits

    PubMed Central

    Kessner, Darren; Novembre, John

    2015-01-01

    Evolve and resequence studies combine artificial selection experiments with massively parallel sequencing technology to study the genetic basis for complex traits. In these experiments, individuals are selected for extreme values of a trait, causing alleles at quantitative trait loci (QTL) to increase or decrease in frequency in the experimental population. We present a new analysis of the power of artificial selection experiments to detect and localize quantitative trait loci. This analysis uses a simulation framework that explicitly models whole genomes of individuals, quantitative traits, and selection based on individual trait values. We find that explicitly modeling QTL provides qualitatively different insights than considering independent loci with constant selection coefficients. Specifically, we observe how interference between QTL under selection affects the trajectories and lengthens the fixation times of selected alleles. We also show that a substantial portion of the genetic variance of the trait (50–100%) can be explained by detected QTL in as little as 20 generations of selection, depending on the trait architecture and experimental design. Furthermore, we show that power depends crucially on the opportunity for recombination during the experiment. Finally, we show that an increase in power is obtained by leveraging founder haplotype information to obtain allele frequency estimates. PMID:25672748

  16. Evidences of local adaptation in quantitative traits in Prosopis alba (Leguminosae).

    PubMed

    Bessega, C; Pometti, C; Ewens, M; Saidman, B O; Vilardi, J C

    2015-02-01

    Signals of selection on quantitative traits can be detected by the comparison between the genetic differentiation of molecular (neutral) markers and quantitative traits, by multivariate extensions of the same model and by the observation of the additive covariance among relatives. We studied, by three different tests, signals of occurrence of selection in Prosopis alba populations over 15 quantitative traits: three economically important life history traits: height, basal diameter and biomass, 11 leaf morphology traits that may be related with heat-tolerance and physiological responses and spine length that is very important from silvicultural purposes. We analyzed 172 G1-generation trees growing in a common garden belonging to 32 open pollinated families from eight sampling sites in Argentina. The multivariate phenotypes differ significantly among origins, and the highest differentiation corresponded to foliar traits. Molecular genetic markers (SSR) exhibited significant differentiation and allowed us to provide convincing evidence that natural selection is responsible for the patterns of morphological differentiation. The heterogeneous selection over phenotypic traits observed suggested different optima in each population and has important implications for gene resource management. The results suggest that the adaptive significance of traits should be considered together with population provenance in breeding program as a crucial point prior to any selecting program, especially in Prosopis where the first steps are under development.

  17. Detecting Genetic Interactions for Quantitative Traits Using m-Spacing Entropy Measure

    PubMed Central

    Yee, Jaeyong; Kwon, Min-Seok; Park, Taesung; Park, Mira

    2015-01-01

    A number of statistical methods for detecting gene-gene interactions have been developed in genetic association studies with binary traits. However, many phenotype measures are intrinsically quantitative and categorizing continuous traits may not always be straightforward and meaningful. Association of gene-gene interactions with an observed distribution of such phenotypes needs to be investigated directly without categorization. Information gain based on entropy measure has previously been successful in identifying genetic associations with binary traits. We extend the usefulness of this information gain by proposing a nonparametric evaluation method of conditional entropy of a quantitative phenotype associated with a given genotype. Hence, the information gain can be obtained for any phenotype distribution. Because any functional form, such as Gaussian, is not assumed for the entire distribution of a trait or a given genotype, this method is expected to be robust enough to be applied to any phenotypic association data. Here, we show its use to successfully identify the main effect, as well as the genetic interactions, associated with a quantitative trait. PMID:26339620

  18. Deleterious Mutations, Apparent Stabilizing Selection and the Maintenance of Quantitative Variation

    PubMed Central

    Kondrashov, A. S.; Turelli, M.

    1992-01-01

    Apparent stabilizing selection on a quantitative trait that is not causally connected to fitness can result from the pleiotropic effects of unconditionally deleterious mutations, because as N. Barton noted, ``... individuals with extreme values of the trait will tend to carry more deleterious alleles ....'' We use a simple model to investigate the dependence of this apparent selection on the genomic deleterious mutation rate, U; the equilibrium distribution of K, the number of deleterious mutations per genome; and the parameters describing directional selection against deleterious mutations. Unlike previous analyses, we allow for epistatic selection against deleterious alleles. For various selection functions and realistic parameter values, the distribution of K, the distribution of breeding values for a pleiotropically affected trait, and the apparent stabilizing selection function are all nearly Gaussian. The additive genetic variance for the quantitative trait is kQa(2), where k is the average number of deleterious mutations per genome, Q is the proportion of deleterious mutations that affect the trait, and a(2) is the variance of pleiotropic effects for individual mutations that do affect the trait. In contrast, when the trait is measured in units of its additive standard deviation, the apparent fitness function is essentially independent of Q and a(2); and β, the intensity of selection, measured as the ratio of additive genetic variance to the ``variance'' of the fitness curve, is very close to s = U/k, the selection coefficient against individual deleterious mutations at equilibrium. Therefore, this model predicts appreciable apparent stabilizing selection if s exceeds about 0.03, which is consistent with various data. However, the model also predicts that β must equal V(m)/V(G), the ratio of new additive variance for the trait introduced each generation by mutation to the standing additive variance. Most, although not all, estimates of this ratio imply apparent stabilizing selection weaker than generally observed. A qualitative argument suggests that even when direct selection is responsible for most of the selection observed on a character, it may be essentially irrelevant to the maintenance of variation for the character by mutation-selection balance. Simple experiments can indicate the fraction of observed stabilizing selection attributable to the pleiotropic effects of deleterious mutations. PMID:1427047

  19. Quantitative trait loci mapping and gene network analysis implicate protocadherin-15 as a determinant of brain serotonin transporter expression.

    PubMed

    Ye, R; Carneiro, A M D; Han, Q; Airey, D; Sanders-Bush, E; Zhang, B; Lu, L; Williams, R; Blakely, R D

    2014-03-01

    Presynaptic serotonin (5-hydroxytryptamine, 5-HT) transporters (SERT) regulate 5-HT signaling via antidepressant-sensitive clearance of released neurotransmitter. Polymorphisms in the human SERT gene (SLC6A4) have been linked to risk for multiple neuropsychiatric disorders, including depression, obsessive-compulsive disorder and autism. Using BXD recombinant inbred mice, a genetic reference population that can support the discovery of novel determinants of complex traits, merging collective trait assessments with bioinformatics approaches, we examine phenotypic and molecular networks associated with SERT gene and protein expression. Correlational analyses revealed a network of genes that significantly associated with SERT mRNA levels. We quantified SERT protein expression levels and identified region- and gender-specific quantitative trait loci (QTLs), one of which associated with male midbrain SERT protein expression, centered on the protocadherin-15 gene (Pcdh15), overlapped with a QTL for midbrain 5-HT levels. Pcdh15 was also the only QTL-associated gene whose midbrain mRNA expression significantly associated with both SERT protein and 5-HT traits, suggesting an unrecognized role of the cell adhesion protein in the development or function of 5-HT neurons. To test this hypothesis, we assessed SERT protein and 5-HT traits in the Pcdh15 functional null line (Pcdh15(av-) (3J) ), studies that revealed a strong, negative influence of Pcdh15 on these phenotypes. Together, our findings illustrate the power of multidimensional profiling of recombinant inbred lines in the analysis of molecular networks that support synaptic signaling, and that, as in the case of Pcdh15, can reveal novel relationships that may underlie risk for mental illness. © 2014 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  20. Detection of QTL for forage yield, lodging resistance and spring vigor traits in alfalfa (Medicago sativa L.)

    USDA-ARS?s Scientific Manuscript database

    Alfalfa (Medicago sativa L.) is an internationally significant forage crop. Forage yield, lodging resistance and spring vigor are important agronomic traits conditioned by quantitative genetic and environmental effects. The objective of this study was to identify quantitative trait loci (QTL) and mo...

  1. Joint analysis of quantitative trait loci and major-effect causative mutations affecting meat quality and carcass composition traits in pigs.

    PubMed

    Cherel, Pierre; Pires, José; Glénisson, Jérôme; Milan, Denis; Iannuccelli, Nathalie; Hérault, Frédéric; Damon, Marie; Le Roy, Pascale

    2011-08-29

    Detection of quantitative trait loci (QTLs) affecting meat quality traits in pigs is crucial for the design of efficient marker-assisted selection programs and to initiate efforts toward the identification of underlying polymorphisms. The RYR1 and PRKAG3 causative mutations, originally identified from major effects on meat characteristics, can be used both as controls for an overall QTL detection strategy for diversely affected traits and as a scale for detected QTL effects. We report on a microsatellite-based QTL detection scan including all autosomes for pig meat quality and carcass composition traits in an F2 population of 1,000 females and barrows resulting from an intercross between a Pietrain and a Large White-Hampshire-Duroc synthetic sire line. Our QTL detection design allowed side-by-side comparison of the RYR1 and PRKAG3 mutation effects seen as QTLs when segregating at low frequencies (0.03-0.08), with independent QTL effects detected from most of the same population, excluding any carrier of these mutations. Large QTL effects were detected in the absence of the RYR1 and PRKGA3 mutations, accounting for 12.7% of phenotypic variation in loin colour redness CIE-a* on SSC6 and 15% of phenotypic variation in glycolytic potential on SSC1. We detected 8 significant QTLs with effects on meat quality traits and 20 significant QTLs for carcass composition and growth traits under these conditions. In control analyses including mutation carriers, RYR1 and PRKAG3 mutations were detected as QTLs, from highly significant to suggestive, and explained 53% to 5% of the phenotypic variance according to the trait. Our results suggest that part of muscle development and backfat thickness effects commonly attributed to the RYR1 mutation may be a consequence of linkage with independent QTLs affecting those traits. The proportion of variation explained by the most significant QTLs detected in this work is close to the influence of major-effect mutations on the least affected traits, but is one order of magnitude lower than effect on variance of traits primarily affected by these causative mutations. This suggests that uncovering physiological traits directly affected by genetic polymorphisms would be an appropriate approach for further characterization of QTLs.

  2. Joint analysis of quantitative trait loci and major-effect causative mutations affecting meat quality and carcass composition traits in pigs

    PubMed Central

    2011-01-01

    Background Detection of quantitative trait loci (QTLs) affecting meat quality traits in pigs is crucial for the design of efficient marker-assisted selection programs and to initiate efforts toward the identification of underlying polymorphisms. The RYR1 and PRKAG3 causative mutations, originally identified from major effects on meat characteristics, can be used both as controls for an overall QTL detection strategy for diversely affected traits and as a scale for detected QTL effects. We report on a microsatellite-based QTL detection scan including all autosomes for pig meat quality and carcass composition traits in an F2 population of 1,000 females and barrows resulting from an intercross between a Pietrain and a Large White-Hampshire-Duroc synthetic sire line. Our QTL detection design allowed side-by-side comparison of the RYR1 and PRKAG3 mutation effects seen as QTLs when segregating at low frequencies (0.03-0.08), with independent QTL effects detected from most of the same population, excluding any carrier of these mutations. Results Large QTL effects were detected in the absence of the RYR1 and PRKGA3 mutations, accounting for 12.7% of phenotypic variation in loin colour redness CIE-a* on SSC6 and 15% of phenotypic variation in glycolytic potential on SSC1. We detected 8 significant QTLs with effects on meat quality traits and 20 significant QTLs for carcass composition and growth traits under these conditions. In control analyses including mutation carriers, RYR1 and PRKAG3 mutations were detected as QTLs, from highly significant to suggestive, and explained 53% to 5% of the phenotypic variance according to the trait. Conclusions Our results suggest that part of muscle development and backfat thickness effects commonly attributed to the RYR1 mutation may be a consequence of linkage with independent QTLs affecting those traits. The proportion of variation explained by the most significant QTLs detected in this work is close to the influence of major-effect mutations on the least affected traits, but is one order of magnitude lower than effect on variance of traits primarily affected by these causative mutations. This suggests that uncovering physiological traits directly affected by genetic polymorphisms would be an appropriate approach for further characterization of QTLs. PMID:21875434

  3. A High-Density Genetic Map with Array-Based Markers Facilitates Structural and Quantitative Trait Locus Analyses of the Common Wheat Genome

    PubMed Central

    Iehisa, Julio Cesar Masaru; Ohno, Ryoko; Kimura, Tatsuro; Enoki, Hiroyuki; Nishimura, Satoru; Okamoto, Yuki; Nasuda, Shuhei; Takumi, Shigeo

    2014-01-01

    The large genome and allohexaploidy of common wheat have complicated construction of a high-density genetic map. Although improvements in the throughput of next-generation sequencing (NGS) technologies have made it possible to obtain a large amount of genotyping data for an entire mapping population by direct sequencing, including hexaploid wheat, a significant number of missing data points are often apparent due to the low coverage of sequencing. In the present study, a microarray-based polymorphism detection system was developed using NGS data obtained from complexity-reduced genomic DNA of two common wheat cultivars, Chinese Spring (CS) and Mironovskaya 808. After design and selection of polymorphic probes, 13,056 new markers were added to the linkage map of a recombinant inbred mapping population between CS and Mironovskaya 808. On average, 2.49 missing data points per marker were observed in the 201 recombinant inbred lines, with a maximum of 42. Around 40% of the new markers were derived from genic regions and 11% from repetitive regions. The low number of retroelements indicated that the new polymorphic markers were mainly derived from the less repetitive region of the wheat genome. Around 25% of the mapped sequences were useful for alignment with the physical map of barley. Quantitative trait locus (QTL) analyses of 14 agronomically important traits related to flowering, spikes, and seeds demonstrated that the new high-density map showed improved QTL detection, resolution, and accuracy over the original simple sequence repeat map. PMID:24972598

  4. QTL detection for forage quality and stem histology in four connected mapping populations of the model legume Medicago truncatula.

    PubMed

    Lagunes Espinoza, Luz Del Carmen; Julier, Bernadette

    2013-02-01

    Forage quality combines traits related to protein content and energy value. High-quality forages contribute to increase farm autonomy by reducing the use of energy or protein-rich supplements. Genetic analyses in forage legume species are complex because of their tetraploidy and allogamy. Indeed, no genetic studies of quality have been published at the molecular level on these species. Nonetheless, mapping populations of the model species M. truncatula can be used to detect QTL for forage quality. Here, we studied a crossing design involving four connected populations of M. truncatula. Each population was composed of ca. 200 recombinant inbred lines (RIL). We sought population-specific QTL and QTL explaining the whole design variation. We grew parents and RIL in a greenhouse for 2 or 3 seasons and analysed plants for chemical composition of vegetative organs (protein content, digestibility, leaf-to-stem ratio) and stem histology (stem cross-section area, tissue proportions). Over the four populations and all the traits, QTL were found on all chromosomes. Among these QTL, only four genomic regions, on chromosomes 1, 3, 7 and 8, contributed to explaining the variations in the whole crossing design. Surprisingly, we found that quality QTL were located in the same genomic regions as morphological QTL. We thus confirmed the quantitative inheritance of quality traits and tight relationships between quality and morphology. Our findings could be explained by a co-location of genes involved in quality and morphology. This study will help to detect candidate genes involved in quantitative variation for quality in forage legume species.

  5. A high-density genetic map with array-based markers facilitates structural and quantitative trait locus analyses of the common wheat genome.

    PubMed

    Iehisa, Julio Cesar Masaru; Ohno, Ryoko; Kimura, Tatsuro; Enoki, Hiroyuki; Nishimura, Satoru; Okamoto, Yuki; Nasuda, Shuhei; Takumi, Shigeo

    2014-10-01

    The large genome and allohexaploidy of common wheat have complicated construction of a high-density genetic map. Although improvements in the throughput of next-generation sequencing (NGS) technologies have made it possible to obtain a large amount of genotyping data for an entire mapping population by direct sequencing, including hexaploid wheat, a significant number of missing data points are often apparent due to the low coverage of sequencing. In the present study, a microarray-based polymorphism detection system was developed using NGS data obtained from complexity-reduced genomic DNA of two common wheat cultivars, Chinese Spring (CS) and Mironovskaya 808. After design and selection of polymorphic probes, 13,056 new markers were added to the linkage map of a recombinant inbred mapping population between CS and Mironovskaya 808. On average, 2.49 missing data points per marker were observed in the 201 recombinant inbred lines, with a maximum of 42. Around 40% of the new markers were derived from genic regions and 11% from repetitive regions. The low number of retroelements indicated that the new polymorphic markers were mainly derived from the less repetitive region of the wheat genome. Around 25% of the mapped sequences were useful for alignment with the physical map of barley. Quantitative trait locus (QTL) analyses of 14 agronomically important traits related to flowering, spikes, and seeds demonstrated that the new high-density map showed improved QTL detection, resolution, and accuracy over the original simple sequence repeat map. © The Author 2014. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  6. Comprehensive genetic dissection of wood properties in a widely-grown tropical tree: Eucalyptus

    PubMed Central

    2011-01-01

    Background Eucalyptus is an important genus in industrial plantations throughout the world and is grown for use as timber, pulp, paper and charcoal. Several breeding programmes have been launched worldwide to concomitantly improve growth performance and wood properties (WPs). In this study, an interspecific cross between Eucalyptus urophylla and E. grandis was used to identify major genomic regions (Quantitative Trait Loci, QTL) controlling the variability of WPs. Results Linkage maps were generated for both parent species. A total of 117 QTLs were detected for a series of wood and end-use related traits, including chemical, technological, physical, mechanical and anatomical properties. The QTLs were mainly clustered into five linkage groups. In terms of distribution of QTL effects, our result agrees with the typical L-shape reported in most QTL studies, i.e. most WP QTLs had limited effects and only a few (13) had major effects (phenotypic variance explained > 15%). The co-locations of QTLs for different WPs as well as QTLs and candidate genes are discussed in terms of phenotypic correlations between traits, and of the function of the candidate genes. The major wood property QTL harbours a gene encoding a Cinnamoyl CoA reductase (CCR), a structural enzyme of the monolignol-specific biosynthesis pathway. Conclusions Given the number of traits analysed, this study provides a comprehensive understanding of the genetic architecture of wood properties in this Eucalyptus full-sib pedigree. At the dawn of Eucalyptus genome sequence, it will provide a framework to identify the nature of genes underlying these important quantitative traits. PMID:21651758

  7. Genomic atlas of the human plasma proteome.

    PubMed

    Sun, Benjamin B; Maranville, Joseph C; Peters, James E; Stacey, David; Staley, James R; Blackshaw, James; Burgess, Stephen; Jiang, Tao; Paige, Ellie; Surendran, Praveen; Oliver-Williams, Clare; Kamat, Mihir A; Prins, Bram P; Wilcox, Sheri K; Zimmerman, Erik S; Chi, An; Bansal, Narinder; Spain, Sarah L; Wood, Angela M; Morrell, Nicholas W; Bradley, John R; Janjic, Nebojsa; Roberts, David J; Ouwehand, Willem H; Todd, John A; Soranzo, Nicole; Suhre, Karsten; Paul, Dirk S; Fox, Caroline S; Plenge, Robert M; Danesh, John; Runz, Heiko; Butterworth, Adam S

    2018-06-01

    Although plasma proteins have important roles in biological processes and are the direct targets of many drugs, the genetic factors that control inter-individual variation in plasma protein levels are not well understood. Here we characterize the genetic architecture of the human plasma proteome in healthy blood donors from the INTERVAL study. We identify 1,927 genetic associations with 1,478 proteins, a fourfold increase on existing knowledge, including trans associations for 1,104 proteins. To understand the consequences of perturbations in plasma protein levels, we apply an integrated approach that links genetic variation with biological pathway, disease, and drug databases. We show that protein quantitative trait loci overlap with gene expression quantitative trait loci, as well as with disease-associated loci, and find evidence that protein biomarkers have causal roles in disease using Mendelian randomization analysis. By linking genetic factors to diseases via specific proteins, our analyses highlight potential therapeutic targets, opportunities for matching existing drugs with new disease indications, and potential safety concerns for drugs under development.

  8. A novel 3D imaging system for strawberry phenotyping.

    PubMed

    He, Joe Q; Harrison, Richard J; Li, Bo

    2017-01-01

    Accurate and quantitative phenotypic data in plant breeding programmes is vital in breeding to assess the performance of genotypes and to make selections. Traditional strawberry phenotyping relies on the human eye to assess most external fruit quality attributes, which is time-consuming and subjective. 3D imaging is a promising high-throughput technique that allows multiple external fruit quality attributes to be measured simultaneously. A low cost multi-view stereo (MVS) imaging system was developed, which captured data from 360° around a target strawberry fruit. A 3D point cloud of the sample was derived and analysed with custom-developed software to estimate berry height, length, width, volume, calyx size, colour and achene number. Analysis of these traits in 100 fruits showed good concordance with manual assessment methods. This study demonstrates the feasibility of an MVS based 3D imaging system for the rapid and quantitative phenotyping of seven agronomically important external strawberry traits. With further improvement, this method could be applied in strawberry breeding programmes as a cost effective phenotyping technique.

  9. Gene Level Meta-Analysis of Quantitative Traits by Functional Linear Models.

    PubMed

    Fan, Ruzong; Wang, Yifan; Boehnke, Michael; Chen, Wei; Li, Yun; Ren, Haobo; Lobach, Iryna; Xiong, Momiao

    2015-08-01

    Meta-analysis of genetic data must account for differences among studies including study designs, markers genotyped, and covariates. The effects of genetic variants may differ from population to population, i.e., heterogeneity. Thus, meta-analysis of combining data of multiple studies is difficult. Novel statistical methods for meta-analysis are needed. In this article, functional linear models are developed for meta-analyses that connect genetic data to quantitative traits, adjusting for covariates. The models can be used to analyze rare variants, common variants, or a combination of the two. Both likelihood-ratio test (LRT) and F-distributed statistics are introduced to test association between quantitative traits and multiple variants in one genetic region. Extensive simulations are performed to evaluate empirical type I error rates and power performance of the proposed tests. The proposed LRT and F-distributed statistics control the type I error very well and have higher power than the existing methods of the meta-analysis sequence kernel association test (MetaSKAT). We analyze four blood lipid levels in data from a meta-analysis of eight European studies. The proposed methods detect more significant associations than MetaSKAT and the P-values of the proposed LRT and F-distributed statistics are usually much smaller than those of MetaSKAT. The functional linear models and related test statistics can be useful in whole-genome and whole-exome association studies. Copyright © 2015 by the Genetics Society of America.

  10. On the reconciliation of missing heritability for genome-wide association studies

    PubMed Central

    Chen, Guo-Bo

    2016-01-01

    The definition of heritability has been unique and clear, but its estimation and estimates vary across studies. Linear mixed model (LMM) and Haseman–Elston (HE) regression analyses are commonly used for estimating heritability from genome-wide association data. This study provides an analytical resolution that can be used to reconcile the differences between LMM and HE in the estimation of heritability given the genetic architecture, which is responsible for these differences. The genetic architecture was classified into three forms via thought experiments: (i) coupling genetic architecture that the quantitative trait loci (QTLs) in the linkage disequilibrium (LD) had a positive covariance; (ii) repulsion genetic architecture that the QTLs in the LD had a negative covariance; (iii) and neutral genetic architecture that the QTLs in the LD had a covariance with a summation of zero. The neutral genetic architecture is so far most embraced, whereas the coupling and the repulsion genetic architecture have not been well investigated. For a quantitative trait under the coupling genetic architecture, HE overestimated the heritability and LMM underestimated the heritability; under the repulsion genetic architecture, HE underestimated but LMM overestimated the heritability for a quantitative trait. These two methods gave identical results under the neutral genetic architecture. A general analytical result for the statistic estimated under HE is given regardless of genetic architecture. In contrast, the performance of LMM remained elusive, such as further depended on the ratio between the sample size and the number of markers, but LMM converged to HE with increased sample size. PMID:27436266

  11. Genome-wide Association Study of a Quantitative Disordered Gambling Trait

    PubMed Central

    Lind, Penelope A.; Zhu, Gu; Montgomery, Grant W; Madden, Pamela A.F.; Heath, Andrew C.; Martin, Nicholas G.; Slutske, Wendy S.

    2012-01-01

    Disordered gambling is a moderately heritable trait, but the underlying genetic basis is largely unknown. We performed a genome-wide association study (GWAS) for disordered gambling using a quantitative factor score in 1,312 twins from 894 Australian families. Association was conducted for 2,381,914 single nucleotide polymorphisms (SNPs) using the family-based association test in Merlin followed by gene and pathway enrichment analyses. Although no SNP reached genome-wide significance, six achieved P-values < 1 × 10−5 with variants in three genes (MT1X, ATXN1 and VLDLR) implicated in disordered gambling. Secondary case-control analyses found two SNPs on chromosome 9 (rs1106076 and rs12305135 near VLDLR) and rs10812227 near FZD10 on chromosome 12 to be significantly associated with lifetime DSM-IV pathological gambling and SOGS classified probable pathological gambling status. Furthermore, several addiction-related pathways were enriched for SNPs associated with disordered gambling. Finally, gene-based analysis of 24 candidate genes for dopamine agonist induced gambling in individuals with Parkinson’s disease suggested an enrichment of SNPs associated with disordered gambling. We report the first GWAS of disordered gambling. While further replication is required, the identification of susceptibility loci and biological pathways will be important in characterizing the biological mechanisms that underpin disordered gambling. PMID:22780124

  12. Evaluation of breeding strategies for polledness in dairy cattle using a newly developed simulation framework for quantitative and Mendelian traits.

    PubMed

    Scheper, Carsten; Wensch-Dorendorf, Monika; Yin, Tong; Dressel, Holger; Swalve, Herrmann; König, Sven

    2016-06-29

    Intensified selection of polled individuals has recently gained importance in predominantly horned dairy cattle breeds as an alternative to routine dehorning. The status quo of the current polled breeding pool of genetically-closely related artificial insemination sires with lower breeding values for performance traits raises questions regarding the effects of intensified selection based on this founder pool. We developed a stochastic simulation framework that combines the stochastic simulation software QMSim and a self-designed R program named QUALsim that acts as an external extension. Two traits were simulated in a dairy cattle population for 25 generations: one quantitative (QMSim) and one qualitative trait with Mendelian inheritance (i.e. polledness, QUALsim). The assignment scheme for qualitative trait genotypes initiated realistic initial breeding situations regarding allele frequencies, true breeding values for the quantitative trait and genetic relatedness. Intensified selection for polled cattle was achieved using an approach that weights estimated breeding values in the animal best linear unbiased prediction model for the quantitative trait depending on genotypes or phenotypes for the polled trait with a user-defined weighting factor. Selection response for the polled trait was highest in the selection scheme based on genotypes. Selection based on phenotypes led to significantly lower allele frequencies for polled. The male selection path played a significantly greater role for a fast dissemination of polled alleles compared to female selection strategies. Fixation of the polled allele implies selection based on polled genotypes among males. In comparison to a base breeding scenario that does not take polledness into account, intensive selection for polled substantially reduced genetic gain for this quantitative trait after 25 generations. Reducing selection intensity for polled males while maintaining strong selection intensity among females, simultaneously decreased losses in genetic gain and achieved a final allele frequency of 0.93 for polled. A fast transition to a completely polled population through intensified selection for polled was in contradiction to the preservation of high genetic gain for the quantitative trait. Selection on male polled genotypes with moderate weighting, and selection on female polled phenotypes with high weighting, could be a suitable compromise regarding all important breeding aspects.

  13. Metabolite profiling and quantitative genetics of natural variation for flavonoids in Arabidopsis

    PubMed Central

    Routaboul, Jean-Marc; Dubos, Christian; Beck, Gilles; Marquis, Catherine; Bidzinski, Przemyslaw; Loudet, Olivier; Lepiniec, Loïc

    2012-01-01

    Little is known about the range and the genetic bases of naturally occurring variation for flavonoids. Using Arabidopsis thaliana seed as a model, the flavonoid content of 41 accessions and two recombinant inbred line (RIL) sets derived from divergent accessions (Cvi-0×Col-0 and Bay-0×Shahdara) were analysed. These accessions and RILs showed mainly quantitative rather than qualitative changes. To dissect the genetic architecture underlying these differences, a quantitative trait locus (QTL) analysis was performed on the two segregating populations. Twenty-two flavonoid QTLs were detected that accounted for 11–64% of the observed trait variations, only one QTL being common to both RIL sets. Sixteen of these QTLs were confirmed and coarsely mapped using heterogeneous inbred families (HIFs). Three genes, namely TRANSPARENT TESTA (TT)7, TT15, and MYB12, were proposed to underlie their variations since the corresponding mutants and QTLs displayed similar specific flavonoid changes. Interestingly, most loci did not co-localize with any gene known to be involved in flavonoid metabolism. This latter result shows that novel functions have yet to be characterized and paves the way for their isolation. PMID:22442426

  14. Identification of seedling vigor-associated quantitative trait loci in temperate japonica rice

    USDA-ARS?s Scientific Manuscript database

    A quantitative trait loci (QTL) analysis of seedling vigor traits was conducted under dry-seeded conditions using 176 recombinant inbred lines developed from a cross of two California temperate japonica rice varieties M-203 and M-206. Height at early seedling (HES) and late seedling (HLS) stage, gro...

  15. Quantitative trait loci analysis for net ginning energy requirements in upland cotton (Gossypium hirsutum L.)

    USDA-ARS?s Scientific Manuscript database

    Cotton cultivars with reduced fiber-seed attachment force have the potential to be ginned faster with less energy. The objective of this study was to identify quantitative trait loci (QTL) for net ginning energy (NGE) requirement, and its relationship with other fiber quality traits in upland cotton...

  16. Comprehensive Comparison of Self-Administered Questionnaires for Measuring Quantitative Autistic Traits in Adults

    ERIC Educational Resources Information Center

    Nishiyama, Takeshi; Suzuki, Masako; Adachi, Katsunori; Sumi, Satoshi; Okada, Kensuke; Kishino, Hirohisa; Sakai, Saeko; Kamio, Yoko; Kojima, Masayo; Suzuki, Sadao; Kanne, Stephen M.

    2014-01-01

    We comprehensively compared all available questionnaires for measuring quantitative autistic traits (QATs) in terms of reliability and construct validity in 3,147 non-clinical and 60 clinical subjects with normal intelligence. We examined four full-length forms, the Subthreshold Autism Trait Questionnaire (SATQ), the Broader Autism Phenotype…

  17. Quantitative and Qualitative Differences in Morphological Traits Revealed between Diploid Fragaria Species

    PubMed Central

    SARGENT, DANIEL J.; GEIBEL, M.; HAWKINS, J. A.; WILKINSON, M. J.; BATTEY, N. H.; SIMPSON, D. W.

    2004-01-01

    • Background and Aims The aims of this investigation were to highlight the qualitative and quantitative diversity apparent between nine diploid Fragaria species and produce interspecific populations segregating for a large number of morphological characters suitable for quantitative trait loci analysis. • Methods A qualitative comparison of eight described diploid Fragaria species was performed and measurements were taken of 23 morphological traits from 19 accessions including eight described species and one previously undescribed species. A principal components analysis was performed on 14 mathematically unrelated traits from these accessions, which partitioned the species accessions into distinct morphological groups. Interspecific crosses were performed with accessions of species that displayed significant quantitative divergence and, from these, populations that should segregate for a range of quantitative traits were raised. • Key Results Significant differences between species were observed for all 23 morphological traits quantified and three distinct groups of species accessions were observed after the principal components analysis. Interspecific crosses were performed between these groups, and F2 and backcross populations were raised that should segregate for a range of morphological characters. In addition, the study highlighted a number of distinctive morphological characters in many of the species studied. • Conclusions Diploid Fragaria species are morphologically diverse, yet remain highly interfertile, making the group an ideal model for the study of the genetic basis of phenotypic differences between species through map-based investigation using quantitative trait loci. The segregating interspecific populations raised will be ideal for such investigations and could also provide insights into the nature and extent of genome evolution within this group. PMID:15469944

  18. Adrenal cortex expression quantitative trait loci in a German Holstein × Charolais cross.

    PubMed

    Brand, Bodo; Scheinhardt, Markus O; Friedrich, Juliane; Zimmer, Daisy; Reinsch, Norbert; Ponsuksili, Siriluck; Schwerin, Manfred; Ziegler, Andreas

    2016-10-06

    The importance of the adrenal gland in regard to lactation and reproduction in cattle has been recognized early. Caused by interest in animal welfare and the impact of stress on economically important traits in farm animals the adrenal gland and its function within the stress response is of increasing interest. However, the molecular mechanisms and pathways involved in stress-related effects on economically important traits in farm animals are not fully understood. Gene expression is an important mechanism underlying complex traits, and genetic variants affecting the transcript abundance are thought to influence the manifestation of an expressed phenotype. We therefore investigated the genetic background of adrenocortical gene expression by applying an adaptive linear rank test to identify genome-wide expression quantitative trait loci (eQTL) for adrenal cortex transcripts in cattle. A total of 10,986 adrenal cortex transcripts and 37,204 single nucleotide polymorphisms (SNPs) were analysed in 145 F2 cows of a Charolais × German Holstein cross. We identified 505 SNPs that were associated with the abundance of 129 transcripts, comprising 482 cis effects and 17 trans effects. These SNPs were located on all chromosomes but X, 16, 24 and 28. Associated genes are mainly involved in molecular and cellular functions comprising free radical scavenging, cellular compromise, cell morphology and lipid metabolism, including genes such as CYP27A1 and LHCGR that have been shown to affect economically important traits in cattle. In this study we showed that adrenocortical eQTL affect the expression of genes known to contribute to the phenotypic manifestation in cattle. Furthermore, some of the identified genes and related molecular pathways were previously shown to contribute to the phenotypic variation of behaviour, temperament and growth at the onset of puberty in the same population investigated here. We conclude that eQTL analysis appears to be a useful approach providing insight into the molecular and genetic background of complex traits in cattle and will help to understand molecular networks involved.

  19. Identifying gene networks underlying the neurobiology of ethanol and alcoholism.

    PubMed

    Wolen, Aaron R; Miles, Michael F

    2012-01-01

    For complex disorders such as alcoholism, identifying the genes linked to these diseases and their specific roles is difficult. Traditional genetic approaches, such as genetic association studies (including genome-wide association studies) and analyses of quantitative trait loci (QTLs) in both humans and laboratory animals already have helped identify some candidate genes. However, because of technical obstacles, such as the small impact of any individual gene, these approaches only have limited effectiveness in identifying specific genes that contribute to complex diseases. The emerging field of systems biology, which allows for analyses of entire gene networks, may help researchers better elucidate the genetic basis of alcoholism, both in humans and in animal models. Such networks can be identified using approaches such as high-throughput molecular profiling (e.g., through microarray-based gene expression analyses) or strategies referred to as genetical genomics, such as the mapping of expression QTLs (eQTLs). Characterization of gene networks can shed light on the biological pathways underlying complex traits and provide the functional context for identifying those genes that contribute to disease development.

  20. Data Sources for Trait Databases: Comparing the Phenomic Content of Monographs and Evolutionary Matrices.

    PubMed

    Dececchi, T Alex; Mabee, Paula M; Blackburn, David C

    2016-01-01

    Databases of organismal traits that aggregate information from one or multiple sources can be leveraged for large-scale analyses in biology. Yet the differences among these data streams and how well they capture trait diversity have never been explored. We present the first analysis of the differences between phenotypes captured in free text of descriptive publications ('monographs') and those used in phylogenetic analyses ('matrices'). We focus our analysis on osteological phenotypes of the limbs of four extinct vertebrate taxa critical to our understanding of the fin-to-limb transition. We find that there is low overlap between the anatomical entities used in these two sources of phenotype data, indicating that phenotypes represented in matrices are not simply a subset of those found in monographic descriptions. Perhaps as expected, compared to characters found in matrices, phenotypes in monographs tend to emphasize descriptive and positional morphology, be somewhat more complex, and relate to fewer additional taxa. While based on a small set of focal taxa, these qualitative and quantitative data suggest that either source of phenotypes alone will result in incomplete knowledge of variation for a given taxon. As a broader community develops to use and expand databases characterizing organismal trait diversity, it is important to recognize the limitations of the data sources and develop strategies to more fully characterize variation both within species and across the tree of life.

  1. Data Sources for Trait Databases: Comparing the Phenomic Content of Monographs and Evolutionary Matrices

    PubMed Central

    Dececchi, T. Alex; Mabee, Paula M.; Blackburn, David C.

    2016-01-01

    Databases of organismal traits that aggregate information from one or multiple sources can be leveraged for large-scale analyses in biology. Yet the differences among these data streams and how well they capture trait diversity have never been explored. We present the first analysis of the differences between phenotypes captured in free text of descriptive publications (‘monographs’) and those used in phylogenetic analyses (‘matrices’). We focus our analysis on osteological phenotypes of the limbs of four extinct vertebrate taxa critical to our understanding of the fin-to-limb transition. We find that there is low overlap between the anatomical entities used in these two sources of phenotype data, indicating that phenotypes represented in matrices are not simply a subset of those found in monographic descriptions. Perhaps as expected, compared to characters found in matrices, phenotypes in monographs tend to emphasize descriptive and positional morphology, be somewhat more complex, and relate to fewer additional taxa. While based on a small set of focal taxa, these qualitative and quantitative data suggest that either source of phenotypes alone will result in incomplete knowledge of variation for a given taxon. As a broader community develops to use and expand databases characterizing organismal trait diversity, it is important to recognize the limitations of the data sources and develop strategies to more fully characterize variation both within species and across the tree of life. PMID:27191170

  2. A complete genetic linkage map and QTL analyses for bast fibre quality traits, yield and yield components in jute (Corchorus olitorius L.).

    PubMed

    Topdar, N; Kundu, A; Sinha, M K; Sarkar, D; Das, M; Banerjee, S; Kar, C S; Satya, P; Balyan, H S; Mahapatra, B S; Gupta, P K

    2013-01-01

    We report the first complete microsatellite genetic map of jute (Corchorus olitorius L.; 2n = 2x = 14) using an F6 recombinant inbred population. Of the 403 microsatellite markers screened, 82 were mapped on the seven linkage groups (LGs) that covered a total genetic distance of 799.9 cM, with an average marker interval of 10.7 cM. LG5 had the longest and LG7 the shortest genetic lengths, whereas LG1 had the maximum and LG7 the minimum number of markers. Segregation distortion of microsatellite loci was high (61%), with the majority of them (76%) skewed towards the female parent. Genomewide non-parametric single-marker analysis in combination with multiple quantitative trait loci (QTL)-models (MQM) mapping detected 26 definitive QTLs for bast fibre quality, yield and yield-related traits. These were unevenly distributed on six LGs, as colocalized clusters, at genomic sectors marked by 15 microsatellite loci. LG1 was the QTL-richest map sector, with the densest colocalized clusters of QTLs governing fibre yield, yield-related traits and tensile strength. Expectedly, favorable QTLs were derived from the desirable parents, except for nearly all of those of fibre fineness, which might be due to the creation of new gene combinations. Our results will be a good starting point for further genome analyses in jute.

  3. Genetics Home Reference: prostate cancer

    MedlinePlus

    ... prostate cancer Genetic Testing Registry: Prostate cancer aggressiveness quantitative trait locus on chromosome 19 Genetic Testing Registry: ... OMIM (25 links) PROSTATE CANCER PROSTATE CANCER AGGRESSIVENESS QUANTITATIVE TRAIT LOCUS ON CHROMOSOME 19 PROSTATE CANCER ANTIGEN ...

  4. Teaching bioinformatics and neuroinformatics by using free web-based tools.

    PubMed

    Grisham, William; Schottler, Natalie A; Valli-Marill, Joanne; Beck, Lisa; Beatty, Jackson

    2010-01-01

    This completely computer-based module's purpose is to introduce students to bioinformatics resources. We present an easy-to-adopt module that weaves together several important bioinformatic tools so students can grasp how these tools are used in answering research questions. Students integrate information gathered from websites dealing with anatomy (Mouse Brain Library), quantitative trait locus analysis (WebQTL from GeneNetwork), bioinformatics and gene expression analyses (University of California, Santa Cruz Genome Browser, National Center for Biotechnology Information's Entrez Gene, and the Allen Brain Atlas), and information resources (PubMed). Instructors can use these various websites in concert to teach genetics from the phenotypic level to the molecular level, aspects of neuroanatomy and histology, statistics, quantitative trait locus analysis, and molecular biology (including in situ hybridization and microarray analysis), and to introduce bioinformatic resources. Students use these resources to discover 1) the region(s) of chromosome(s) influencing the phenotypic trait, 2) a list of candidate genes-narrowed by expression data, 3) the in situ pattern of a given gene in the region of interest, 4) the nucleotide sequence of the candidate gene, and 5) articles describing the gene. Teaching materials such as a detailed student/instructor's manual, PowerPoints, sample exams, and links to free Web resources can be found at http://mdcune.psych.ucla.edu/modules/bioinformatics.

  5. Genetic Control of Seed Shattering in Rice by the APETALA2 Transcription Factor SHATTERING ABORTION1[C][W][OA

    PubMed Central

    Zhou, Yan; Lu, Danfeng; Li, Canyang; Luo, Jianghong; Zhu, Bo-Feng; Zhu, Jingjie; Shangguan, Yingying; Wang, Zixuan; Sang, Tao; Zhou, Bo; Han, Bin

    2012-01-01

    Seed shattering is an important agricultural trait in crop domestication. SH4 (for grain shattering quantitative trait locus on chromosome 4) and qSH1 (for quantitative trait locus of seed shattering on chromosome 1) genes have been identified as required for reduced seed shattering during rice (Oryza sativa) domestication. However, the regulatory pathways of seed shattering in rice remain unknown. Here, we identified a seed shattering abortion1 (shat1) mutant in a wild rice introgression line. The SHAT1 gene, which encodes an APETALA2 transcription factor, is required for seed shattering through specifying abscission zone (AZ) development in rice. Genetic analyses revealed that the expression of SHAT1 in AZ was positively regulated by the trihelix transcription factor SH4. We also identified a frameshift mutant of SH4 that completely eliminated AZs and showed nonshattering. Our results suggest a genetic model in which the persistent and concentrated expression of active SHAT1 and SH4 in the AZ during early spikelet developmental stages is required for conferring AZ identification. qSH1 functioned downstream of SHAT1 and SH4, through maintaining SHAT1 and SH4 expression in AZ, thus promoting AZ differentiation. PMID:22408071

  6. Searching for an Accurate Marker-Based Prediction of an Individual Quantitative Trait in Molecular Plant Breeding

    PubMed Central

    Fu, Yong-Bi; Yang, Mo-Hua; Zeng, Fangqin; Biligetu, Bill

    2017-01-01

    Molecular plant breeding with the aid of molecular markers has played an important role in modern plant breeding over the last two decades. Many marker-based predictions for quantitative traits have been made to enhance parental selection, but the trait prediction accuracy remains generally low, even with the aid of dense, genome-wide SNP markers. To search for more accurate trait-specific prediction with informative SNP markers, we conducted a literature review on the prediction issues in molecular plant breeding and on the applicability of an RNA-Seq technique for developing function-associated specific trait (FAST) SNP markers. To understand whether and how FAST SNP markers could enhance trait prediction, we also performed a theoretical reasoning on the effectiveness of these markers in a trait-specific prediction, and verified the reasoning through computer simulation. To the end, the search yielded an alternative to regular genomic selection with FAST SNP markers that could be explored to achieve more accurate trait-specific prediction. Continuous search for better alternatives is encouraged to enhance marker-based predictions for an individual quantitative trait in molecular plant breeding. PMID:28729875

  7. A test for selection employing quantitative trait locus and mutation accumulation data.

    PubMed

    Rice, Daniel P; Townsend, Jeffrey P

    2012-04-01

    Evolutionary biologists attribute much of the phenotypic diversity observed in nature to the action of natural selection. However, for many phenotypic traits, especially quantitative phenotypic traits, it has been challenging to test for the historical action of selection. An important challenge for biologists studying quantitative traits, therefore, is to distinguish between traits that have evolved under the influence of strong selection and those that have evolved neutrally. Most existing tests for selection employ molecular data, but selection also leaves a mark on the genetic architecture underlying a trait. In particular, the distribution of quantitative trait locus (QTL) effect sizes and the distribution of mutational effects together provide information regarding the history of selection. Despite the increasing availability of QTL and mutation accumulation data, such data have not yet been effectively exploited for this purpose. We present a model of the evolution of QTL and employ it to formulate a test for historical selection. To provide a baseline for neutral evolution of the trait, we estimate the distribution of mutational effects from mutation accumulation experiments. We then apply a maximum-likelihood-based method of inference to estimate the range of selection strengths under which such a distribution of mutations could generate the observed QTL. Our test thus represents the first integration of population genetic theory and QTL data to measure the historical influence of selection.

  8. Uncovering the genetic signature of quantitative trait evolution with replicated time series data.

    PubMed

    Franssen, S U; Kofler, R; Schlötterer, C

    2017-01-01

    The genetic architecture of adaptation in natural populations has not yet been resolved: it is not clear to what extent the spread of beneficial mutations (selective sweeps) or the response of many quantitative trait loci drive adaptation to environmental changes. Although much attention has been given to the genomic footprint of selective sweeps, the importance of selection on quantitative traits is still not well studied, as the associated genomic signature is extremely difficult to detect. We propose 'Evolve and Resequence' as a promising tool, to study polygenic adaptation of quantitative traits in evolving populations. Simulating replicated time series data we show that adaptation to a new intermediate trait optimum has three characteristic phases that are reflected on the genomic level: (1) directional frequency changes towards the new trait optimum, (2) plateauing of allele frequencies when the new trait optimum has been reached and (3) subsequent divergence between replicated trajectories ultimately leading to the loss or fixation of alleles while the trait value does not change. We explore these 3 phase characteristics for relevant population genetic parameters to provide expectations for various experimental evolution designs. Remarkably, over a broad range of parameters the trajectories of selected alleles display a pattern across replicates, which differs both from neutrality and directional selection. We conclude that replicated time series data from experimental evolution studies provide a promising framework to study polygenic adaptation from whole-genome population genetics data.

  9. Development of a 44K SNP assay focussing on the analysis of a varroa-specific defence behaviour in honey bees (Apis mellifera carnica).

    PubMed

    Spötter, A; Gupta, P; Nürnberg, G; Reinsch, N; Bienefeld, K

    2012-03-01

    Honey bees are exposed to a number of damaging pathogens and parasites. The most destructive among them, affecting mainly the brood, is Varroa destructor. A promising approach to prevent its spread is to breed for Varroa-tolerant honey bees. A trait that has been shown to provide significant resistance against the Varroa mite is hygienic behaviour, a behavioural response of honey bee workers to brood diseases in general. This study reports the development of a 44K SNP assay, specifically designed for the analysis of hygienic behaviour of individual worker bees (Apis mellifera carnica) directed against V. destructor. Initially, 70,000 SNPs chosen from a large set of SNPs published by the Honey Bee Genome Project were validated for their suitability in the analysis of the Varroa resistance trait 'uncapping of Varroa-infested brood'. This was achieved by genotyping of pooled DNA samples of trait bearers and two trait-negative controls using next-generation sequencing. Approximately 36,000 of these validated SNPs and another 8000 SNPs not validated in this study were selected for the construction of a SNP assay. This assay will be employed in following experiments to analyse individualized DNA samples in order to identify quantitative trait loci (QTL) involved in the control of the investigated trait and to evaluate and possibly confirm QTL found in other studies. However, this assay is not just suitable to study Varroa tolerance, it is as well applicable to analyse any other trait in honey bees. In addition, because of its high density, this assay provides access into genomic selection with respect to several traits considered in honey bee breeding. It will become publicly available via AROS Applied Biotechnology AS, Aarhus, Denmark, before the end of the year 2011. © 2011 Blackwell Publishing Ltd.

  10. Mapping quantitative trait loci for binary trait in the F2:3 design.

    PubMed

    Zhu, Chengsong; Zhang, Yuan-Ming; Guo, Zhigang

    2008-12-01

    In the analysis of inheritance of quantitative traits with low heritability, an F(2:3) design that genotypes plants in F(2) and phenotypes plants in F(2:3) progeny is often used in plant genetics. Although statistical approaches for mapping quantitative trait loci (QTL) in the F(2:3) design have been well developed, those for binary traits of biological interest and economic importance are seldom addressed. In this study, an attempt was made to map binary trait loci (BTL) in the F(2:3) design. The fundamental idea was: the F(2) plants were genotyped, all phenotypic values of each F(2:3) progeny were measured for binary trait, and these binary trait values and the marker genotype informations were used to detect BTL under the penetrance and liability models. The proposed method was verified by a series of Monte-Carlo simulation experiments. These results showed that maximum likelihood approaches under the penetrance and liability models provide accurate estimates for the effects and the locations of BTL with high statistical power, even under of low heritability. Moreover, the penetrance model is as efficient as the liability model, and the F(2:3) design is more efficient than classical F(2) design, even though only a single progeny is collected from each F(2:3) family. With the maximum likelihood approaches under the penetrance and the liability models developed in this study, we can map binary traits as we can do for quantitative trait in the F(2:3) design.

  11. EvolQG - An R package for evolutionary quantitative genetics

    PubMed Central

    Melo, Diogo; Garcia, Guilherme; Hubbe, Alex; Assis, Ana Paula; Marroig, Gabriel

    2016-01-01

    We present an open source package for performing evolutionary quantitative genetics analyses in the R environment for statistical computing. Evolutionary theory shows that evolution depends critically on the available variation in a given population. When dealing with many quantitative traits this variation is expressed in the form of a covariance matrix, particularly the additive genetic covariance matrix or sometimes the phenotypic matrix, when the genetic matrix is unavailable and there is evidence the phenotypic matrix is sufficiently similar to the genetic matrix. Given this mathematical representation of available variation, the \\textbf{EvolQG} package provides functions for calculation of relevant evolutionary statistics; estimation of sampling error; corrections for this error; matrix comparison via correlations, distances and matrix decomposition; analysis of modularity patterns; and functions for testing evolutionary hypotheses on taxa diversification. PMID:27785352

  12. Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir.II. Spring and fall cold-hardiness

    Treesearch

    K.D. Jermstad; D.L. Bassoni; N.C. Wheeler; T.S. Anekonda; S.N. Aitken; W.T. Adams; D.B. Neale

    2001-01-01

    Abstract Quantitative trait loci (QTLs) affecting fall and spring cold-hardiness were identified in a three-generation outbred pedigree of coastal Douglas-fir [Pseudotsuga meniziesii (Mirb.) Franco var. menziesii]. Eleven QTLs controlling fall cold-hardiness were detected on four linkage groups, and 15 QTLs controlling spring cold-hardiness were detected on four...

  13. CaGLK2 regulates natural variation of chlorophyll content and fruit color in pepper fruit.

    PubMed

    Brand, Arnon; Borovsky, Yelena; Hill, Theresa; Rahman, Khalis Afnan Abdul; Bellalou, Aharon; Van Deynze, Allen; Paran, Ilan

    2014-10-01

    We provide multiple evidences that CaGLK2 underlies a quantitative trait locus controlling natural variation in chlorophyll content and immature fruit color of pepper via modulating chloroplast compartment size. Pepper fruit quality is attributed to a variety of traits, affecting visual appearance, flavor, chemical composition and nutritional value. Among the quality traits, fruit color is of primary importance because the pigments that confer color are associated with nutrition, health and flavor. Although gene models have been proposed for qualitative aspects of fruit color, large natural variation in quantitative pigment content and fruit color exists in pepper. However, its genetic basis is largely unknown which hampers its utilization for plant improvement. We studied the role of GLK2, a GOLDEN2-like transcription factor that regulates chloroplast development in controlling natural variation for chlorophyll content and immature fruit color of pepper. The role of GLK2 in regulating fruit development has been studied previously in tomato using ectopic expression and the uniform ripening mutant analyses. However, pepper provides a unique opportunity to further study the function of this gene because of the wide natural variation of fruit colors in this species. Segregation, sequencing and expression analyses indicated that pepper GLK2 (CaGLK2) corresponds to the recently reported pc10 QTL that controls chloroplast development and chlorophyll content in pepper. CaGLK2 exerts its effect on chloroplast compartment size predominantly during immature fruit development. We show that the genetic background, sequence variation and expression pattern confer a complex and multi-level regulation of CaGLK2 and fruit color in Capsicum. The positive effect on fruit quality predominantly at the green stage conferred by CaGLK2 can be utilized to breed green pepper varieties with improved nutritional values and taste.

  14. Heritable victimization and the benefits of agonistic relationships

    PubMed Central

    Lea, Amanda J.; Blumstein, Daniel T.; Wey, Tina W.; Martin, Julien G. A.

    2010-01-01

    Here, we present estimates of heritability and selection on network traits in a single population, allowing us to address the evolutionary potential of social behavior and the poorly understood link between sociality and fitness. To evolve, sociality must have some heritable basis, yet the heritability of social relationships is largely unknown. Recent advances in both social network analyses and quantitative genetics allow us to quantify attributes of social relationships and estimate their heritability in free-living populations. Our analyses addressed a variety of measures (in-degree, out-degree, attractiveness, expansiveness, embeddedness, and betweenness), and we hypothesized that traits reflecting relationships controlled by an individual (i.e., those that the individual initiated or were directly involved in) would be more heritable than those based largely on the behavior of conspecifics. Identifying patterns of heritability and selection among related traits may provide insight into which types of relationships are important in animal societies. As expected, we found that variation in indirect measures was largely explained by nongenetic variation. Yet, surprisingly, traits capturing initiated interactions do not possess significant additive genetic variation, whereas measures of received interactions are heritable. Measures describing initiated aggression and position in an agonistic network are under selection (0.3 < |S| < 0.4), although advantageous trait values are not inherited by offspring. It appears that agonistic relationships positively influence fitness and seemingly costly or harmful ties may, in fact, be beneficial. Our study highlights the importance of studying agonistic as well as affiliative relationships to understand fully the connections between sociality and fitness. PMID:21115836

  15. Genetic Variants Associated With Quantitative Glucose Homeostasis Traits Translate to Type 2 Diabetes in Mexican Americans: The GUARDIAN (Genetics Underlying Diabetes in Hispanics) Consortium.

    PubMed

    Palmer, Nicholette D; Goodarzi, Mark O; Langefeld, Carl D; Wang, Nan; Guo, Xiuqing; Taylor, Kent D; Fingerlin, Tasha E; Norris, Jill M; Buchanan, Thomas A; Xiang, Anny H; Haritunians, Talin; Ziegler, Julie T; Williams, Adrienne H; Stefanovski, Darko; Cui, Jinrui; Mackay, Adrienne W; Henkin, Leora F; Bergman, Richard N; Gao, Xiaoyi; Gauderman, James; Varma, Rohit; Hanis, Craig L; Cox, Nancy J; Highland, Heather M; Below, Jennifer E; Williams, Amy L; Burtt, Noel P; Aguilar-Salinas, Carlos A; Huerta-Chagoya, Alicia; Gonzalez-Villalpando, Clicerio; Orozco, Lorena; Haiman, Christopher A; Tsai, Michael Y; Johnson, W Craig; Yao, Jie; Rasmussen-Torvik, Laura; Pankow, James; Snively, Beverly; Jackson, Rebecca D; Liu, Simin; Nadler, Jerry L; Kandeel, Fouad; Chen, Yii-Der I; Bowden, Donald W; Rich, Stephen S; Raffel, Leslie J; Rotter, Jerome I; Watanabe, Richard M; Wagenknecht, Lynne E

    2015-05-01

    Insulin sensitivity, insulin secretion, insulin clearance, and glucose effectiveness exhibit strong genetic components, although few studies have examined their genetic architecture or influence on type 2 diabetes (T2D) risk. We hypothesized that loci affecting variation in these quantitative traits influence T2D. We completed a multicohort genome-wide association study to search for loci influencing T2D-related quantitative traits in 4,176 Mexican Americans. Quantitative traits were measured by the frequently sampled intravenous glucose tolerance test (four cohorts) or euglycemic clamp (three cohorts), and random-effects models were used to test the association between loci and quantitative traits, adjusting for age, sex, and admixture proportions (Discovery). Analysis revealed a significant (P < 5.00 × 10(-8)) association at 11q14.3 (MTNR1B) with acute insulin response. Loci with P < 0.0001 among the quantitative traits were examined for translation to T2D risk in 6,463 T2D case and 9,232 control subjects of Mexican ancestry (Translation). Nonparametric meta-analysis of the Discovery and Translation cohorts identified significant associations at 6p24 (SLC35B3/TFAP2A) with glucose effectiveness/T2D, 11p15 (KCNQ1) with disposition index/T2D, and 6p22 (CDKAL1) and 11q14 (MTNR1B) with acute insulin response/T2D. These results suggest that T2D and insulin secretion and sensitivity have both shared and distinct genetic factors, potentially delineating genomic components of these quantitative traits that drive the risk for T2D. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  16. Construction of a high-density genetic map by specific locus amplified fragment sequencing (SLAF-seq) and its application to Quantitative Trait Loci (QTL) analysis for boll weight in upland cotton (Gossypium hirsutum.).

    PubMed

    Zhang, Zhen; Shang, Haihong; Shi, Yuzhen; Huang, Long; Li, Junwen; Ge, Qun; Gong, Juwu; Liu, Aiying; Chen, Tingting; Wang, Dan; Wang, Yanling; Palanga, Koffi Kibalou; Muhammad, Jamshed; Li, Weijie; Lu, Quanwei; Deng, Xiaoying; Tan, Yunna; Song, Weiwu; Cai, Juan; Li, Pengtao; Rashid, Harun or; Gong, Wankui; Yuan, Youlu

    2016-04-11

    Upland Cotton (Gossypium hirsutum) is one of the most important worldwide crops it provides natural high-quality fiber for the industrial production and everyday use. Next-generation sequencing is a powerful method to identify single nucleotide polymorphism markers on a large scale for the construction of a high-density genetic map for quantitative trait loci mapping. In this research, a recombinant inbred lines population developed from two upland cotton cultivars 0-153 and sGK9708 was used to construct a high-density genetic map through the specific locus amplified fragment sequencing method. The high-density genetic map harbored 5521 single nucleotide polymorphism markers which covered a total distance of 3259.37 cM with an average marker interval of 0.78 cM without gaps larger than 10 cM. In total 18 quantitative trait loci of boll weight were identified as stable quantitative trait loci and were detected in at least three out of 11 environments and explained 4.15-16.70 % of the observed phenotypic variation. In total, 344 candidate genes were identified within the confidence intervals of these stable quantitative trait loci based on the cotton genome sequence. These genes were categorized based on their function through gene ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis and eukaryotic orthologous groups analysis. This research reported the first high-density genetic map for Upland Cotton (Gossypium hirsutum) with a recombinant inbred line population using single nucleotide polymorphism markers developed by specific locus amplified fragment sequencing. We also identified quantitative trait loci of boll weight across 11 environments and identified candidate genes within the quantitative trait loci confidence intervals. The results of this research would provide useful information for the next-step work including fine mapping, gene functional analysis, pyramiding breeding of functional genes as well as marker-assisted selection.

  17. Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis.

    PubMed

    Bentsink, Leónie; Jowett, Jemma; Hanhart, Corrie J; Koornneef, Maarten

    2006-11-07

    Genetic variation for seed dormancy in nature is a typical quantitative trait controlled by multiple loci on which environmental factors have a strong effect. Finding the genes underlying dormancy quantitative trait loci is a major scientific challenge, which also has relevance for agriculture and ecology. In this study we describe the identification of the DELAY OF GERMINATION 1 (DOG1) gene previously identified as a quantitative trait locus involved in the control of seed dormancy. This gene was isolated by a combination of positional cloning and mutant analysis and is absolutely required for the induction of seed dormancy. DOG1 is a member of a small gene family of unknown molecular function, with five members in Arabidopsis. The functional natural allelic variation present in Arabidopsis is caused by polymorphisms in the cis-regulatory region of the DOG1 gene and results in considerable expression differences between the DOG1 alleles of the accessions analyzed.

  18. Divergent selection along climatic gradients in a rare central European endemic species, Saxifraga sponhemica

    PubMed Central

    Walisch, Tania J.; Colling, Guy; Bodenseh, Melanie; Matthies, Diethart

    2015-01-01

    Background and Aims The effects of habitat fragmentation on quantitative genetic variation in plant populations are still poorly known. Saxifraga sponhemica is a rare endemic of Central Europe with a disjunct distribution, and a stable and specialized habitat of treeless screes and cliffs. This study therefore used S. sponhemica as a model species to compare quantitative and molecular variation in order to explore (1) the relative importance of drift and selection in shaping the distribution of quantitative genetic variation along climatic gradients; (2) the relationship between plant fitness, quantitative genetic variation, molecular genetic variation and population size; and (3) the relationship between the differentiation of a trait among populations and its evolvability. Methods Genetic variation within and among 22 populations from the whole distribution area of S. sponhemica was studied using RAPD (random amplified polymorphic DNA) markers, and climatic variables were obtained for each site. Seeds were collected from each population and germinated, and seedlings were transplanted into a common garden for determination of variation in plant traits. Key Results In contrast to previous results from rare plant species, strong evidence was found for divergent selection. Most population trait means of S. sponhemica were significantly related to climate gradients, indicating adaptation. Quantitative genetic differentiation increased with geographical distance, even when neutral molecular divergence was controlled for, and QST exceeded FST for some traits. The evolvability of traits was negatively correlated with the degree of differentiation among populations (QST), i.e. traits under strong selection showed little genetic variation within populations. The evolutionary potential of a population was not related to its size, the performance of the population or its neutral genetic diversity. However, performance in the common garden was lower for plants from populations with reduced molecular genetic variation, suggesting inbreeding depression due to genetic erosion. Conclusions The findings suggest that studies of molecular and quantitative genetic variation may provide complementary insights important for the conservation of rare species. The strong differentiation of quantitative traits among populations shows that selection can be an important force for structuring variation in evolutionarily important traits even for rare endemic species restricted to very specific habitats. PMID:25862244

  19. Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. I. Timing of vegetative bud flush.

    Treesearch

    K.D. Jermstad; D.L. Bassoni; K.S. Jech; N.C. Wheeler; D.B. Neale

    2001-01-01

    Abstract Thirty three unique quantitative trait loci (QTLs) affecting the timing of spring bud flush have been identified in an intraspecific mapping population of coastal Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco var. menziesii]. Both terminal and lateral bud flush were measured over a 4-year period on clonal replicates at two test sites, allowing for the...

  20. Mapping, fine mapping, and molecular dissection of quantitative trait Loci in domestic animals.

    PubMed

    Georges, Michel

    2007-01-01

    Artificial selection has created myriad breeds of domestic animals, each characterized by unique phenotypes pertaining to behavior, morphology, physiology, and disease. Most domestic animal populations share features with isolated founder populations, making them well suited for positional cloning. Genome sequences are now available for most domestic species, and with them a panoply of tools including high-density single-nucleotide polymorphism panels. As a result, domestic animal populations are becoming invaluable resources for studying the molecular architecture of complex traits and of adaptation. Here we review recent progress and issues in the positional identification of genes underlying complex traits in domestic animals. As many phenotypes studied in animals are quantitative, we focus on mapping, fine mapping, and cloning of quantitative trait loci.

  1. A Strategy for Identifying Quantitative Trait Genes Using Gene Expression Analysis and Causal Analysis.

    PubMed

    Ishikawa, Akira

    2017-11-27

    Large numbers of quantitative trait loci (QTL) affecting complex diseases and other quantitative traits have been reported in humans and model animals. However, the genetic architecture of these traits remains elusive due to the difficulty in identifying causal quantitative trait genes (QTGs) for common QTL with relatively small phenotypic effects. A traditional strategy based on techniques such as positional cloning does not always enable identification of a single candidate gene for a QTL of interest because it is difficult to narrow down a target genomic interval of the QTL to a very small interval harboring only one gene. A combination of gene expression analysis and statistical causal analysis can greatly reduce the number of candidate genes. This integrated approach provides causal evidence that one of the candidate genes is a putative QTG for the QTL. Using this approach, I have recently succeeded in identifying a single putative QTG for resistance to obesity in mice. Here, I outline the integration approach and discuss its usefulness using my studies as an example.

  2. Multi-system Component Phenotypes of Bipolar Disorder for Genetic Investigations of Extended Pedigrees

    PubMed Central

    Fears, Scott C.; Service, Susan K.; Kremeyer, Barbara; Araya, Carmen; Araya, Xinia; Bejarano, Julio; Ramirez, Margarita; Castrillón, Gabriel; Gomez-Franco, Juliana; Lopez, Maria C.; Montoya, Gabriel; Montoya, Patricia; Aldana, Ileana; Teshiba, Terri M.; Abaryan, Zvart; Al-Sharif, Noor B.; Ericson, Marissa; Jalbrzikowski, Maria; Luykx, Jurjen J.; Navarro, Linda; Tishler, Todd A.; Altshuler, Lori; Bartzokis, George; Escobar, Javier; Glahn, David C.; Ospina-Duque, Jorge; Risch, Neil; Ruiz-Linares, Andrés; Thompson, Paul M.; Cantor, Rita M.; Lopez-Jaramillo, Carlos; Macaya, Gabriel; Molina, Julio; Reus, Victor I.; Sabatti, Chiara; Freimer, Nelson B.; Bearden, Carrie E.

    2014-01-01

    IMPORTANCE Genetic factors contribute to risk for bipolar disorder (BP), yet its pathogenesis remains poorly understood. A focus on measuring multi-system quantitative traits that may be components of BP psychopathology may enable genetic dissection of this complex disorder, and investigation of extended pedigrees from genetically isolated populations may facilitate the detection of specific genetic variants that impact on BP as well as its component phenotypes. OBJECTIVE To identify quantitative neurocognitive, temperament-related, and neuroanatomic phenotypes that appear heritable and associated with severe bipolar disorder (BP-I), and therefore suitable for genetic linkage and association studies aimed at identifying variants contributing to BP-I risk. DESIGN Multi-generational pedigree study in two closely related, genetically isolated populations: the Central Valley of Costa Rica (CVCR) and Antioquia, Colombia (ANT). PARTICIPANTS 738 individuals, all from CVCR and ANT pedigrees, of whom 181 are affected with BP-I. MAIN OUTCOME MEASURE Familial aggregation (heritability) and association with BP-I of 169 quantitative neurocognitive, temperament, magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) phenotypes. RESULTS Seventy-five percent (126) of the phenotypes investigated were significantly heritable, and 31% (53) were associated with BP-I. About 1/4 of the phenotypes, including measures from each phenotype domain, were both heritable and associated with BP-I. Neuroimaging phenotypes, particularly cortical thickness in prefrontal and temporal regions, and volume and microstructural integrity of the corpus callosum, represented the most promising candidate traits for genetic mapping related to BP based on strong heritability and association with disease. Analyses of phenotypic and genetic covariation identified substantial correlations among the traits, at least some of which share a common underlying genetic architecture. CONCLUSIONS AND RELEVANCE This is the most extensive investigation of BP-relevant component phenotypes to date. Our results identify brain and behavioral quantitative traits that appear to be genetically influenced and show a pattern of BP-I-association within families that is consistent with expectations from case-control studies. Together these phenotypes provide a basis for identifying loci contributing to BP-I risk and for genetic dissection of the disorder. PMID:24522887

  3. Two quantitative trait loci affect ACE activities in Mexican-Americans.

    PubMed

    Kammerer, Candace M; Gouin, Nicolas; Samollow, Paul B; VandeBerg, Jane F; Hixson, James E; Cole, Shelley A; MacCluer, Jean W; Atwood, Larry D

    2004-02-01

    Angiotensin-converting enzyme (ACE) activity is highly heritable and has been associated with cardiovascular disease. We are studying the effects of genes and environmental factors on hypertension and related phenotypes, such as ACE activity, in Mexican-American families. In the current study, we performed multipoint linkage analysis to search for quantitative trait loci (QTLs) that affect ACE activities on data from 793 individuals from 29 pedigrees from the San Antonio Family Heart Study. As expected, we obtained strong evidence (maximum log of the odds [LOD]=4.57, genomic P=0.003) that a QTL for ACE activity is located on chromosome 17 near the ACE structural locus. We subsequently performed linkage analyses conditional on the effect of this QTL and obtained strong evidence (LOD=3.34) for a second QTL on chromosome 4 near D4S1548. We next incorporated the ACEIns/Del genotypes in our analyses and removed the evidence for the chromosome 17 QTL (maximum LOD=0.60); however, we retained our evidence for the QTL on chromosome 4q. We conclude that the QTL on chromosome 17 is tightly linked to ACE and is in strong disequilibrium with the insertion/deletion polymorphism, which is consistent with other reports. We also have evidence that an additional QTL affects ACE activity. Identification of this additional QTL might lead to alternate means of prophylaxis.

  4. QTL and gene expression analyses identify genes affecting carcass weight and marbling on BTA14 in Hanwoo (Korean Cattle).

    PubMed

    Lee, Seung Hwan; van der Werf, J H J; Kim, Nam Kuk; Lee, Sang Hong; Gondro, C; Park, Eung Woo; Oh, Sung Jong; Gibson, J P; Thompson, J M

    2011-10-01

    Causal mutations affecting quantitative trait variation can be good targets for marker-assisted selection for carcass traits in beef cattle. In this study, linkage and linkage disequilibrium analysis (LDLA) for four carcass traits was undertaken using 19 markers on bovine chromosome 14. The LDLA analysis detected quantitative trait loci (QTL) for carcass weight (CWT) and eye muscle area (EMA) at the same position at around 50 cM and surrounded by the markers FABP4SNP2774C>G and FABP4_μsat3237. The QTL for marbling (MAR) was identified at the midpoint of markers BMS4513 and RM137 in a 3.5-cM marker interval. The most likely position for a second QTL for CWT was found at the midpoint of tenth marker bracket (FABP4SNP2774C>G and FABP4_μsat3237). For this marker bracket, the total number of haplotypes was 34 with a most common frequency of 0.118. Effects of haplotypes on CWT varied from a -5-kg deviation for haplotype 6 to +8 kg for haplotype 23. To determine which genes contribute to the QTL effect, gene expression analysis was performed in muscle for a wide range of phenotypes. The results demonstrate that two genes, LOC781182 (p = 0.002) and TRPS1 (p = 0.006) were upregulated with increasing CWT and EMA, whereas only LOC614744 (p = 0.04) has a significant effect on intramuscular fat (IMF) content. Two genetic markers detected in FABP4 were the most likely QTL position in this QTL study, but FABP4 did not show a significant effect on both traits (CWT and EMA) in gene expression analysis. We conclude that three genes could be potential causal genes affecting carcass traits CWT, EMA, and IMF in Hanwoo.

  5. Modelling the co-evolution of indirect genetic effects and inherited variability.

    PubMed

    Marjanovic, Jovana; Mulder, Han A; Rönnegård, Lars; Bijma, Piter

    2018-03-28

    When individuals interact, their phenotypes may be affected not only by their own genes but also by genes in their social partners. This phenomenon is known as Indirect Genetic Effects (IGEs). In aquaculture species and some plants, however, competition not only affects trait levels of individuals, but also inflates variability of trait values among individuals. In the field of quantitative genetics, the variability of trait values has been studied as a quantitative trait in itself, and is often referred to as inherited variability. Such studies, however, consider only the genetic effect of the focal individual on trait variability and do not make a connection to competition. Although the observed phenotypic relationship between competition and variability suggests an underlying genetic relationship, the current quantitative genetic models of IGE and inherited variability do not allow for such a relationship. The lack of quantitative genetic models that connect IGEs to inherited variability limits our understanding of the potential of variability to respond to selection, both in nature and agriculture. Models of trait levels, for example, show that IGEs may considerably change heritable variation in trait values. Currently, we lack the tools to investigate whether this result extends to variability of trait values. Here we present a model that integrates IGEs and inherited variability. In this model, the target phenotype, say growth rate, is a function of the genetic and environmental effects of the focal individual and of the difference in trait value between the social partner and the focal individual, multiplied by a regression coefficient. The regression coefficient is a genetic trait, which is a measure of cooperation; a negative value indicates competition, a positive value cooperation, and an increasing value due to selection indicates the evolution of cooperation. In contrast to the existing quantitative genetic models, our model allows for co-evolution of IGEs and variability, as the regression coefficient can respond to selection. Our simulations show that the model results in increased variability of body weight with increasing competition. When competition decreases, i.e., cooperation evolves, variability becomes significantly smaller. Hence, our model facilitates quantitative genetic studies on the relationship between IGEs and inherited variability. Moreover, our findings suggest that we may have been overlooking an entire level of genetic variation in variability, the one due to IGEs.

  6. EM Algorithm for Mapping Quantitative Trait Loci in Multivalent Tetraploids

    USDA-ARS?s Scientific Manuscript database

    Multivalent tetraploids that include many plant species, such as potato, sugarcane and rose, are of paramount importance to agricultural production and biological research. Quantitative trait locus (QTL) mapping in multivalent tetraploids is challenged by their unique cytogenetic properties, such ...

  7. Population structure and strong divergent selection shape phenotypic diversification in maize landraces.

    PubMed

    Pressoir, G; Berthaud, J

    2004-02-01

    To conserve the long-term selection potential of maize, it is necessary to investigate past and present evolutionary processes that have shaped quantitative trait variation. Understanding the dynamics of quantitative trait evolution is crucial to future crop breeding. We characterized population differentiation of maize landraces from the State of Oaxaca, Mexico for quantitative traits and molecular markers. Qst values were much higher than Fst values obtained for molecular markers. While low values of Fst (0.011 within-village and 0.003 among-villages) suggest that considerable gene flow occurred among the studied populations, high levels of population differentiation for quantitative traits were observed (ie an among-village Qst value of 0.535 for kernel weight). Our results suggest that although quantitative traits appear to be under strong divergent selection, a considerable amount of gene flow occurs among populations. Furthermore, we characterized nonproportional changes in the G matrix structure both within and among villages that are consequences of farmer selection. As a consequence of these differences in the G matrix structure, the response to multivariate selection will be different from one population to another. Large changes in the G matrix structure could indicate that farmers select for genes of major and pleiotropic effect. Farmers' decision and selection strategies have a great impact on phenotypic diversification in maize landraces.

  8. Genetic basis of climatic adaptation in scots pine by bayesian quantitative trait locus analysis.

    PubMed Central

    Hurme, P; Sillanpää, M J; Arjas, E; Repo, T; Savolainen, O

    2000-01-01

    We examined the genetic basis of large adaptive differences in timing of bud set and frost hardiness between natural populations of Scots pine. As a mapping population, we considered an "open-pollinated backcross" progeny by collecting seeds of a single F(1) tree (cross between trees from southern and northern Finland) growing in southern Finland. Due to the special features of the design (no marker information available on grandparents or the father), we applied a Bayesian quantitative trait locus (QTL) mapping method developed previously for outcrossed offspring. We found four potential QTL for timing of bud set and seven for frost hardiness. Bayesian analyses detected more QTL than ANOVA for frost hardiness, but the opposite was true for bud set. These QTL included alleles with rather large effects, and additionally smaller QTL were supported. The largest QTL for bud set date accounted for about a fourth of the mean difference between populations. Thus, natural selection during adaptation has resulted in selection of at least some alleles of rather large effect. PMID:11063704

  9. Quantitative genetic correlation between trait and preference supports a sexually selected sperm process

    PubMed Central

    Simmons, Leigh W.; Kotiaho, Janne S.

    2007-01-01

    Sperm show patterns of rapid and divergent evolution that are characteristic of sexual selection. Sperm competition has been proposed as an important selective agent in the evolution of sperm morphology. However, several comparative analyses have revealed evolutionary associations between sperm length and female reproductive tract morphology that suggest patterns of male–female coevolution. In the dung beetle Onthophagus taurus, males with short sperm have a fertilization advantage that depends on the size of the female's sperm storage organ, the spermatheca; large spermathecae select for short sperm. Sperm length is heritable and is genetically correlated with male condition. Here we report significant additive genetic variation and heritability for spermatheca size and genetic covariance between spermatheca size and sperm length predicted by both the “good-sperm” and “sexy-sperm” models of postcopulatory female preference. Our data thus provide quantitative genetic support for the role of a sexually selected sperm process in the evolutionary divergence of sperm morphology, in much the same manner as precopulatory female preferences drive the evolutionary divergence of male secondary sexual traits. PMID:17921254

  10. How fast is fisheries-induced evolution? Quantitative analysis of modelling and empirical studies

    PubMed Central

    Audzijonyte, Asta; Kuparinen, Anna; Fulton, Elizabeth A

    2013-01-01

    A number of theoretical models, experimental studies and time-series studies of wild fish have explored the presence and magnitude of fisheries-induced evolution (FIE). While most studies agree that FIE is likely to be happening in many fished stocks, there are disagreements about its rates and implications for stock viability. To address these disagreements in a quantitative manner, we conducted a meta-analysis of FIE rates reported in theoretical and empirical studies. We discovered that rates of phenotypic change observed in wild fish are about four times higher than the evolutionary rates reported in modelling studies, but correlation between the rate of change and instantaneous fishing mortality (F) was very similar in the two types of studies. Mixed-model analyses showed that in the modelling studies traits associated with reproductive investment and growth evolved slower than rates related to maturation. In empirical observations age-at-maturation was changing faster than other life-history traits. We also found that, despite different assumption and modelling approaches, rates of evolution for a given F value reported in 10 of 13 modelling studies were not significantly different. PMID:23789026

  11. The effect of induced mutations on quantitative traits in Arabidopsis thaliana: Natural versus artificial conditions.

    PubMed

    Stearns, Frank W; Fenster, Charles B

    2016-12-01

    Mutations are the ultimate source of all genetic variations. New mutations are expected to affect quantitative traits differently depending on the extent to which traits contribute to fitness and the environment in which they are tested. The dogma is that the preponderance of mutations affecting fitness will be skewed toward deleterious while their effects on nonfitness traits will be bidirectionally distributed. There are mixed views on the role of stress in modulating these effects. We quantify mutation effects by inducing mutations in Arabidopsis thaliana (Columbia accession) using the chemical ethylmethane sulfonate. We measured the effects of new mutations relative to a premutation founder for fitness components under both natural (field) and artificial (growth room) conditions. Additionally, we measured three other quantitative traits, not expected to contribute directly to fitness, under artificial conditions. We found that induced mutations were equally as likely to increase as decrease a trait when that trait was not closely related to fitness (traits that were neither survivorship nor reproduction). We also found that new mutations were more likely to decrease fitness or fitness-related traits under more stressful field conditions than under relatively benign artificial conditions. In the benign condition, the effect of new mutations on fitness components was similar to traits not as closely related to fitness. These results highlight the importance of measuring the effects of new mutations on fitness and other traits under a range of conditions.

  12. GiA Roots: software for the high throughput analysis of plant root system architecture.

    PubMed

    Galkovskyi, Taras; Mileyko, Yuriy; Bucksch, Alexander; Moore, Brad; Symonova, Olga; Price, Charles A; Topp, Christopher N; Iyer-Pascuzzi, Anjali S; Zurek, Paul R; Fang, Suqin; Harer, John; Benfey, Philip N; Weitz, Joshua S

    2012-07-26

    Characterizing root system architecture (RSA) is essential to understanding the development and function of vascular plants. Identifying RSA-associated genes also represents an underexplored opportunity for crop improvement. Software tools are needed to accelerate the pace at which quantitative traits of RSA are estimated from images of root networks. We have developed GiA Roots (General Image Analysis of Roots), a semi-automated software tool designed specifically for the high-throughput analysis of root system images. GiA Roots includes user-assisted algorithms to distinguish root from background and a fully automated pipeline that extracts dozens of root system phenotypes. Quantitative information on each phenotype, along with intermediate steps for full reproducibility, is returned to the end-user for downstream analysis. GiA Roots has a GUI front end and a command-line interface for interweaving the software into large-scale workflows. GiA Roots can also be extended to estimate novel phenotypes specified by the end-user. We demonstrate the use of GiA Roots on a set of 2393 images of rice roots representing 12 genotypes from the species Oryza sativa. We validate trait measurements against prior analyses of this image set that demonstrated that RSA traits are likely heritable and associated with genotypic differences. Moreover, we demonstrate that GiA Roots is extensible and an end-user can add functionality so that GiA Roots can estimate novel RSA traits. In summary, we show that the software can function as an efficient tool as part of a workflow to move from large numbers of root images to downstream analysis.

  13. Exploring single nucleotide polymorphisms previously related to obesity and metabolic traits in pediatric-onset type 2 diabetes.

    PubMed

    Miranda-Lora, América Liliana; Cruz, Miguel; Aguirre-Hernández, Jesús; Molina-Díaz, Mario; Gutiérrez, Jorge; Flores-Huerta, Samuel; Klünder-Klünder, Miguel

    2017-07-01

    To evaluate the association of 64 obesity-related polymorphisms with pediatric-onset type 2 diabetes and other glucose- and insulin-related traits in Mexican children. Case-control and case-sibling designs were followed. We studied 99 patients with pediatric-onset type 2 diabetes, their siblings (n = 101) without diabetes, 83 unrelated pediatric controls and 137 adult controls. Genotypes were determined for 64 single nucleotide polymorphisms, and a possible association was examined between those genotypes and type 2 diabetes and other quantitative traits, after adjusting for age, sex and body mass index. In the case-pediatric control and case-adult control analyses, five polymorphisms were associated with increased likelihood of pediatric-onset type 2 diabetes; only one of these polymorphisms (CADM2/rs1307880) also showed a consistent effect in the case-sibling analysis. The associations in the combined analysis were as follows: ADORA1/rs903361 (OR 1.9, 95% CI 1.2; 3.0); CADM2/rs13078807 (OR 2.2, 95% CI 1.2; 4.0); GNPDA2/rs10938397 (OR 2.2, 95% CI 1.4; 3.7); VEGFA/rs6905288 (OR 1.4, 95% CI 1.1; 2.1) and FTO/rs9939609 (OR 1.8, 95% CI 1.0; 3.2). We also identified 16 polymorphisms nominally associated with quantitative traits in participants without diabetes. ADORA/rs903361, CADM2/rs13078807, GNPDA2/rs10938397, VEGFA/rs6905288 and FTO/rs9939609 are associated with an increased risk of pediatric-onset type 2 diabetes in the Mexican population.

  14. Genomic Approach to Study Floral Development Genes in Rosa sp.

    PubMed Central

    Chauvet, Aurélie; Maene, Marion; Pécrix, Yann; Yang, Shu-Hua; Jeauffre, Julien; Thouroude, Tatiana; Boltz, Véronique; Martin-Magniette, Marie-Laure; Janczarski, Stéphane; Legeai, Fabrice; Renou, Jean-Pierre; Vergne, Philippe; Le Bris, Manuel; Foucher, Fabrice; Bendahmane, Mohammed

    2011-01-01

    Cultivated for centuries, the varieties of rose have been selected based on a number of flower traits. Understanding the genetic and molecular basis that contributes to these traits will impact on future improvements for this economically important ornamental plant. In this study, we used scanning electron microscopy and sections of meristems and flowers to establish a precise morphological calendar from early rose flower development stages to senescing flowers. Global gene expression was investigated from floral meristem initiation up to flower senescence in three rose genotypes exhibiting contrasted floral traits including continuous versus once flowering and simple versus double flower architecture, using a newly developed Affymetrix microarray (Rosa1_Affyarray) tool containing sequences representing 4765 unigenes expressed during flower development. Data analyses permitted the identification of genes associated with floral transition, floral organs initiation up to flower senescence. Quantitative real time PCR analyses validated the mRNA accumulation changes observed in microarray hybridizations for a selection of 24 genes expressed at either high or low levels. Our data describe the early flower development stages in Rosa sp, the production of a rose microarray and demonstrate its usefulness and reliability to study gene expression during extensive development phases, from the vegetative meristem to the senescent flower. PMID:22194838

  15. How sexual selection can drive the evolution of costly sperm ornamentation

    NASA Astrophysics Data System (ADS)

    Lüpold, Stefan; Manier, Mollie K.; Puniamoorthy, Nalini; Schoff, Christopher; Starmer, William T.; Luepold, Shannon H. Buckley; Belote, John M.; Pitnick, Scott

    2016-05-01

    Post-copulatory sexual selection (PSS), fuelled by female promiscuity, is credited with the rapid evolution of sperm quality traits across diverse taxa. Yet, our understanding of the adaptive significance of sperm ornaments and the cryptic female preferences driving their evolution is extremely limited. Here we review the evolutionary allometry of exaggerated sexual traits (for example, antlers, horns, tail feathers, mandibles and dewlaps), show that the giant sperm of some Drosophila species are possibly the most extreme ornaments in all of nature and demonstrate how their existence challenges theories explaining the intensity of sexual selection, mating-system evolution and the fundamental nature of sex differences. We also combine quantitative genetic analyses of interacting sex-specific traits in D. melanogaster with comparative analyses of the condition dependence of male and female reproductive potential across species with varying ornament size to reveal complex dynamics that may underlie sperm-length evolution. Our results suggest that producing few gigantic sperm evolved by (1) Fisherian runaway selection mediated by genetic correlations between sperm length, the female preference for long sperm and female mating frequency, and (2) longer sperm increasing the indirect benefits to females. Our results also suggest that the developmental integration of sperm quality and quantity renders post-copulatory sexual selection on ejaculates unlikely to treat male-male competition and female choice as discrete processes.

  16. Molecularly tagged genes and quantitative trait loci in cucumber

    USDA-ARS?s Scientific Manuscript database

    Since the release of the cucumber draft genome, significant progress has been made in molecular mapping, tagging or cloning of horticulturally important genes and quantitative trait loci (QTLs) in cucumber, which provides the foundation for practicing marker-assisted selection in cucumber breeding. ...

  17. Hypothalamic transcriptomes of 99 mouse strains reveal trans eQTL hotspots, splicing QTLs and novel non-coding genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasin-Brumshtein, Yehudit; Khan, Arshad H.; Hormozdiari, Farhad

    2016-09-13

    Previous studies had shown that the integration of genome wide expression profiles, in metabolic tissues, with genetic and phenotypic variance, provided valuable insight into the underlying molecular mechanisms. We used RNA-Seq to characterize hypothalamic transcriptome in 99 inbred strains of mice from the Hybrid Mouse Diversity Panel (HMDP), a reference resource population for cardiovascular and metabolic traits. We report numerous novel transcripts supported by proteomic analyses, as well as novel non coding RNAs. High resolution genetic mapping of transcript levels in HMDP, reveals bothlocalandtransexpression Quantitative Trait Loci (eQTLs) demonstrating 2transeQTL 'hotspots' associated with expression of hundreds of genes. We alsomore » report thousands of alternative splicing events regulated by genetic variants. Finally, comparison with about 150 metabolic and cardiovascular traits revealed many highly significant associations. Our data provide a rich resource for understanding the many physiologic functions mediated by the hypothalamus and their genetic regulation.« less

  18. Multivariate approach in popcorn genotypes using the Ward-MLM strategy: morpho-agronomic analysis and incidence of Fusarium spp.

    PubMed

    Kurosawa, R N F; do Amaral Junior, A T; Silva, F H L; Dos Santos, A; Vivas, M; Kamphorst, S H; Pena, G F

    2017-02-08

    The multivariate analyses are useful tools to estimate the genetic variability between accessions. In the breeding programs, the Ward-Modified Location Model (MLM) multivariate method has been a powerful strategy to quantify variability using quantitative and qualitative variables simultaneously. The present study was proposed in view of the dearth of information about popcorn breeding programs under a multivariate approach using the Ward-MLM methodology. The objective of this study was thus to estimate the genetic diversity among 37 genotypes of popcorn aiming to identify divergent groups associated with morpho-agronomic traits and traits related to resistance to Fusarium spp. To this end, 7 qualitative and 17 quantitative variables were analyzed. The experiment was conducted in 2014, at Universidade Estadual do Norte Fluminense, located in Campos dos Goytacazes, RJ, Brazil. The Ward-MLM strategy allowed the identification of four groups as follows: Group I with 10 genotypes, Group II with 11 genotypes, Group III with 9 genotypes, and Group IV with 7 genotypes. Group IV was distant in relation to the other groups, while groups I, II, and III were near. The crosses between genotypes from the other groups with those of group IV allow an exploitation of heterosis. The Ward-MLM strategy provided an appropriate grouping of genotypes; ear weight, ear diameter, and grain yield were the traits that most contributed to the analysis of genetic diversity.

  19. Genetic and Quantitative Trait Locus Analysis of Cell Wall Components and Forage Digestibility in the Zheng58 × HD568 Maize RIL Population at Anthesis Stage

    PubMed Central

    Li, Kun; Wang, Hongwu; Hu, Xiaojiao; Ma, Feiqian; Wu, Yujin; Wang, Qi; Liu, Zhifang; Huang, Changling

    2017-01-01

    The plant cell wall plays vital roles in various aspects of the plant life cycle. It provides a basic structure for cells and gives mechanical rigidity to the whole plant. Some complex cell wall components are involved in signal transduction during pathogenic infection and pest infestations. Moreover, the lignification level of cell walls strongly influences the digestibility of forage plants. To determine the genetic bases of cell wall components and digestibility, quantitative trait locus (QTL) analyses for six related traits were performed using a recombinant inbred line (RIL) population from a cross between Zheng58 and HD568. Eight QTL for in vitro neutral detergent fiber (NDF) digestibility were observed, out of which only two increasing alleles came from HD568. Three QTL out of ten with alleles increasing in vitro dry matter digestibility also originated from HD568. Five–ten QTL were detected for lignin, cellulose content, acid detergent fiber, and NDF content. Among these results, 29.8% (14/47) of QTL explained >10% of the phenotypic variation in the RIL population, whereas 70.2% (33/47) explained ≤10%. These results revealed that in maize stalks, a few large-effect QTL and a number of minor-effect QTL contributed to most of the genetic components involved in cell wall biosynthesis and digestibility. PMID:28883827

  20. Genetic and Quantitative Trait Locus Analysis of Cell Wall Components and Forage Digestibility in the Zheng58 × HD568 Maize RIL Population at Anthesis Stage.

    PubMed

    Li, Kun; Wang, Hongwu; Hu, Xiaojiao; Ma, Feiqian; Wu, Yujin; Wang, Qi; Liu, Zhifang; Huang, Changling

    2017-01-01

    The plant cell wall plays vital roles in various aspects of the plant life cycle. It provides a basic structure for cells and gives mechanical rigidity to the whole plant. Some complex cell wall components are involved in signal transduction during pathogenic infection and pest infestations. Moreover, the lignification level of cell walls strongly influences the digestibility of forage plants. To determine the genetic bases of cell wall components and digestibility, quantitative trait locus (QTL) analyses for six related traits were performed using a recombinant inbred line (RIL) population from a cross between Zheng58 and HD568. Eight QTL for in vitro neutral detergent fiber (NDF) digestibility were observed, out of which only two increasing alleles came from HD568. Three QTL out of ten with alleles increasing in vitro dry matter digestibility also originated from HD568. Five-ten QTL were detected for lignin, cellulose content, acid detergent fiber, and NDF content. Among these results, 29.8% (14/47) of QTL explained >10% of the phenotypic variation in the RIL population, whereas 70.2% (33/47) explained ≤10%. These results revealed that in maize stalks, a few large-effect QTL and a number of minor-effect QTL contributed to most of the genetic components involved in cell wall biosynthesis and digestibility.

  1. Dissecting genetic architecture of grape proanthocyanidin composition through quantitative trait locus mapping

    PubMed Central

    2012-01-01

    Background Proanthocyanidins (PAs), or condensed tannins, are flavonoid polymers, widespread throughout the plant kingdom, which provide protection against herbivores while conferring organoleptic and nutritive values to plant-derived foods, such as wine. However, the genetic basis of qualitative and quantitative PA composition variation is still poorly understood. To elucidate the genetic architecture of the complex grape PA composition, we first carried out quantitative trait locus (QTL) analysis on a 191-individual pseudo-F1 progeny. Three categories of PA variables were assessed: total content, percentages of constitutive subunits and composite ratio variables. For nine functional candidate genes, among which eight co-located with QTLs, we performed association analyses using a diversity panel of 141 grapevine cultivars in order to identify causal SNPs. Results Multiple QTL analysis revealed a total of 103 and 43 QTLs, respectively for seed and skin PA variables. Loci were mainly of additive effect while some loci were primarily of dominant effect. Results also showed a large involvement of pairwise epistatic interactions in shaping PA composition. QTLs for PA variables in skin and seeds differed in number, position, involvement of epistatic interaction and allelic effect, thus revealing different genetic determinisms for grape PA composition in seeds and skin. Association results were consistent with QTL analyses in most cases: four out of nine tested candidate genes (VvLAR1, VvMYBPA2, VvCHI1, VvMYBPA1) showed at least one significant association with PA variables, especially VvLAR1 revealed as of great interest for further functional investigation. Some SNP-phenotype associations were observed only in the diversity panel. Conclusions This study presents the first QTL analysis on grape berry PA composition with a comparison between skin and seeds, together with an association study. Our results suggest a complex genetic control for PA traits and different genetic architectures for grape PA composition between berry skin and seeds. This work also uncovers novel genomic regions for further investigation in order to increase our knowledge of the genetic basis of PA composition. PMID:22369244

  2. Studying Gene and Gene-Environment Effects of Uncommon and Common Variants on Continuous Traits: A Marker-Set Approach Using Gene-Trait Similarity Regression

    PubMed Central

    Tzeng, Jung-Ying; Zhang, Daowen; Pongpanich, Monnat; Smith, Chris; McCarthy, Mark I.; Sale, Michèle M.; Worrall, Bradford B.; Hsu, Fang-Chi; Thomas, Duncan C.; Sullivan, Patrick F.

    2011-01-01

    Genomic association analyses of complex traits demand statistical tools that are capable of detecting small effects of common and rare variants and modeling complex interaction effects and yet are computationally feasible. In this work, we introduce a similarity-based regression method for assessing the main genetic and interaction effects of a group of markers on quantitative traits. The method uses genetic similarity to aggregate information from multiple polymorphic sites and integrates adaptive weights that depend on allele frequencies to accomodate common and uncommon variants. Collapsing information at the similarity level instead of the genotype level avoids canceling signals that have the opposite etiological effects and is applicable to any class of genetic variants without the need for dichotomizing the allele types. To assess gene-trait associations, we regress trait similarities for pairs of unrelated individuals on their genetic similarities and assess association by using a score test whose limiting distribution is derived in this work. The proposed regression framework allows for covariates, has the capacity to model both main and interaction effects, can be applied to a mixture of different polymorphism types, and is computationally efficient. These features make it an ideal tool for evaluating associations between phenotype and marker sets defined by linkage disequilibrium (LD) blocks, genes, or pathways in whole-genome analysis. PMID:21835306

  3. Leaf hydraulic conductance varies with vein anatomy across Arabidopsis thaliana wild-type and leaf vein mutants.

    PubMed

    Caringella, Marissa A; Bongers, Franca J; Sack, Lawren

    2015-12-01

    Leaf venation is diverse across plant species and has practical applications from paleobotany to modern agriculture. However, the impact of vein traits on plant performance has not yet been tested in a model system such as Arabidopsis thaliana. Previous studies analysed cotyledons of A. thaliana vein mutants and identified visible differences in their vein systems from the wild type (WT). We measured leaf hydraulic conductance (Kleaf ), vein traits, and xylem and mesophyll anatomy for A. thaliana WT (Col-0) and four vein mutants (dot3-111 and dot3-134, and cvp1-3 and cvp2-1). Mutant true leaves did not possess the qualitative venation anomalies previously shown in the cotyledons, but varied quantitatively in vein traits and leaf anatomy across genotypes. The WT had significantly higher mean Kleaf . Across all genotypes, there was a strong correlation of Kleaf with traits related to hydraulic conductance across the bundle sheath, as influenced by the number and radial diameter of bundle sheath cells and vein length per area. These findings support the hypothesis that vein traits influence Kleaf , indicating the usefulness of this mutant system for testing theory that was primarily established comparatively across species, and supports a strong role for the bundle sheath in influencing Kleaf . © 2015 John Wiley & Sons Ltd.

  4. Genetics and Beyond – The Transcriptome of Human Monocytes and Disease Susceptibility

    PubMed Central

    Zeller, Tanja; Wild, Philipp; Szymczak, Silke; Rotival, Maxime; Schillert, Arne; Castagne, Raphaele; Maouche, Seraya; Germain, Marine; Lackner, Karl; Rossmann, Heidi; Eleftheriadis, Medea; Sinning, Christoph R.; Schnabel, Renate B.; Lubos, Edith; Mennerich, Detlev; Rust, Werner; Perret, Claire; Proust, Carole; Nicaud, Viviane; Loscalzo, Joseph; Hübner, Norbert; Tregouet, David; Münzel, Thomas; Ziegler, Andreas; Tiret, Laurence

    2010-01-01

    Background Variability of gene expression in human may link gene sequence variability and phenotypes; however, non-genetic variations, alone or in combination with genetics, may also influence expression traits and have a critical role in physiological and disease processes. Methodology/Principal Findings To get better insight into the overall variability of gene expression, we assessed the transcriptome of circulating monocytes, a key cell involved in immunity-related diseases and atherosclerosis, in 1,490 unrelated individuals and investigated its association with >675,000 SNPs and 10 common cardiovascular risk factors. Out of 12,808 expressed genes, 2,745 expression quantitative trait loci were detected (P<5.78×10−12), most of them (90%) being cis-modulated. Extensive analyses showed that associations identified by genome-wide association studies of lipids, body mass index or blood pressure were rarely compatible with a mediation by monocyte expression level at the locus. At a study-wide level (P<3.9×10−7), 1,662 expression traits (13.0%) were significantly associated with at least one risk factor. Genome-wide interaction analyses suggested that genetic variability and risk factors mostly acted additively on gene expression. Because of the structure of correlation among expression traits, the variability of risk factors could be characterized by a limited set of independent gene expressions which may have biological and clinical relevance. For example expression traits associated with cigarette smoking were more strongly associated with carotid atherosclerosis than smoking itself. Conclusions/Significance This study demonstrates that the monocyte transcriptome is a potent integrator of genetic and non-genetic influences of relevance for disease pathophysiology and risk assessment. PMID:20502693

  5. Identification and functional analysis of glycemic trait loci in the China Health and Nutrition Survey

    PubMed Central

    Wu, Ying; Zou, Meng; Raulerson, Chelsea K.; Jackson, Kayla; Yuan, Wentao; Wang, Haifeng; Shou, Weihua; Wang, Ying; Luo, Jingchun; Lange, Leslie A.; Lange, Ethan M.; Gordon-Larsen, Penny; Du, Shufa; Huang, Wei; Mohlke, Karen L.

    2018-01-01

    To identify genetic contributions to type 2 diabetes (T2D) and related glycemic traits (fasting glucose, fasting insulin, and HbA1c), we conducted genome-wide association analyses (GWAS) in up to 7,178 Chinese subjects from nine provinces in the China Health and Nutrition Survey (CHNS). We examined patterns of population structure within CHNS and found that allele frequencies differed across provinces, consistent with genetic drift and population substructure. We further validated 32 previously described T2D- and glycemic trait-loci, including G6PC2 and SIX3-SIX2 associated with fasting glucose. At G6PC2, we replicated a known fasting glucose-associated variant (rs34177044) and identified a second signal (rs2232326), a low-frequency (4%), probably damaging missense variant (S324P). A variant within the lead fasting glucose-associated signal at SIX3-SIX2 co-localized with pancreatic islet expression quantitative trait loci (eQTL) for SIX3, SIX2, and three noncoding transcripts. To identify variants functionally responsible for the fasting glucose association at SIX3-SIX2, we tested five candidate variants for allelic differences in regulatory function. The rs12712928-C allele, associated with higher fasting glucose and lower transcript expression level, showed lower transcriptional activity in reporter assays and increased binding to GABP compared to the rs12712928-G, suggesting that rs12712928-C contributes to elevated fasting glucose levels by disrupting an islet enhancer, resulting in reduced gene expression. Taken together, these analyses identified multiple loci associated with glycemic traits across China, and suggest a regulatory mechanism at the SIX3-SIX2 fasting glucose GWAS locus. PMID:29621232

  6. Quantitative trait loci and metabolic pathways

    PubMed Central

    McMullen, M. D.; Byrne, P. F.; Snook, M. E.; Wiseman, B. R.; Lee, E. A.; Widstrom, N. W.; Coe, E. H.

    1998-01-01

    The interpretation of quantitative trait locus (QTL) studies is limited by the lack of information on metabolic pathways leading to most economic traits. Inferences about the roles of the underlying genes with a pathway or the nature of their interaction with other loci are generally not possible. An exception is resistance to the corn earworm Helicoverpa zea (Boddie) in maize (Zea mays L.) because of maysin, a C-glycosyl flavone synthesized in silks via a branch of the well characterized flavonoid pathway. Our results using flavone synthesis as a model QTL system indicate: (i) the importance of regulatory loci as QTLs, (ii) the importance of interconnecting biochemical pathways on product levels, (iii) evidence for “channeling” of intermediates, allowing independent synthesis of related compounds, (iv) the utility of QTL analysis in clarifying the role of specific genes in a biochemical pathway, and (v) identification of a previously unknown locus on chromosome 9S affecting flavone level. A greater understanding of the genetic basis of maysin synthesis and associated corn earworm resistance should lead to improved breeding strategies. More broadly, the insights gained in relating a defined genetic and biochemical pathway affecting a quantitative trait should enhance interpretation of the biological basis of variation for other quantitative traits. PMID:9482823

  7. Nonparametric modeling of longitudinal covariance structure in functional mapping of quantitative trait loci.

    PubMed

    Yap, John Stephen; Fan, Jianqing; Wu, Rongling

    2009-12-01

    Estimation of the covariance structure of longitudinal processes is a fundamental prerequisite for the practical deployment of functional mapping designed to study the genetic regulation and network of quantitative variation in dynamic complex traits. We present a nonparametric approach for estimating the covariance structure of a quantitative trait measured repeatedly at a series of time points. Specifically, we adopt Huang et al.'s (2006, Biometrika 93, 85-98) approach of invoking the modified Cholesky decomposition and converting the problem into modeling a sequence of regressions of responses. A regularized covariance estimator is obtained using a normal penalized likelihood with an L(2) penalty. This approach, embedded within a mixture likelihood framework, leads to enhanced accuracy, precision, and flexibility of functional mapping while preserving its biological relevance. Simulation studies are performed to reveal the statistical properties and advantages of the proposed method. A real example from a mouse genome project is analyzed to illustrate the utilization of the methodology. The new method will provide a useful tool for genome-wide scanning for the existence and distribution of quantitative trait loci underlying a dynamic trait important to agriculture, biology, and health sciences.

  8. Quantitative trait loci markers derived from whole genome sequence data increases the reliability of genomic prediction.

    PubMed

    Brøndum, R F; Su, G; Janss, L; Sahana, G; Guldbrandtsen, B; Boichard, D; Lund, M S

    2015-06-01

    This study investigated the effect on the reliability of genomic prediction when a small number of significant variants from single marker analysis based on whole genome sequence data were added to the regular 54k single nucleotide polymorphism (SNP) array data. The extra markers were selected with the aim of augmenting the custom low-density Illumina BovineLD SNP chip (San Diego, CA) used in the Nordic countries. The single-marker analysis was done breed-wise on all 16 index traits included in the breeding goals for Nordic Holstein, Danish Jersey, and Nordic Red cattle plus the total merit index itself. Depending on the trait's economic weight, 15, 10, or 5 quantitative trait loci (QTL) were selected per trait per breed and 3 to 5 markers were selected to tag each QTL. After removing duplicate markers (same marker selected for more than one trait or breed) and filtering for high pairwise linkage disequilibrium and assaying performance on the array, a total of 1,623 QTL markers were selected for inclusion on the custom chip. Genomic prediction analyses were performed for Nordic and French Holstein and Nordic Red animals using either a genomic BLUP or a Bayesian variable selection model. When using the genomic BLUP model including the QTL markers in the analysis, reliability was increased by up to 4 percentage points for production traits in Nordic Holstein animals, up to 3 percentage points for Nordic Reds, and up to 5 percentage points for French Holstein. Smaller gains of up to 1 percentage point was observed for mastitis, but only a 0.5 percentage point increase was seen for fertility. When using a Bayesian model accuracies were generally higher with only 54k data compared with the genomic BLUP approach, but increases in reliability were relatively smaller when QTL markers were included. Results from this study indicate that the reliability of genomic prediction can be increased by including markers significant in genome-wide association studies on whole genome sequence data alongside the 54k SNP set. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Genetic Variants in SDC3 Gene are Significantly Associated with Growth Traits in Two Chinese Beef Cattle Breeds.

    PubMed

    Huang, Yong-Zhen; Wang, Qin; Zhang, Chun-Lei; Fang, Xing-Tang; Song, En-Liang; Chen, Hong

    2016-01-01

    Identification of the genes and polymorphisms underlying quantitative traits, and understanding these genes and polymorphisms affect economic growth traits, are important for successful marker-assisted selection and more efficient management strategies in commercial cattle (Bos taurus) population. Syndecan-3 (SDC3), a member of the syndecan family of type I transmembrane heparan sulfate proteoglycans is a novel regulator of feeding behavior and body weight. The aim of this study is to examine the association of the SDC3 polymorphism with growth traits in Chinese Jiaxian and Qinchuan cattle breeds (). Four single nucleotide polymorphisms (SNPs: 1-4) were detected in 555 cows from three Chinese native cattle breeds by means of sequencing pooled DNA samples and polymerase chain reaction-single stranded conformational polymorphism (PCR-SSCP) methods. We found one SNP (g.28362A > G) in intron and three SNPs (g.30742T > G, g.30821C > T and 33418 A > G) in exons. The statistical analyses indicated that these SNPs of SDC3 gene were associated with bovine body height, body length, chest circumference, and circumference of cannon bone (P < 0.05). The mutant-type variant was superior for growth traits; the heterozygote was associated with higher growth traits compared to wild-type homozygote. Our result confirms the polymorphisms in the SDC3 gene are associated with growth traits that may be used for marker-assisted selection in beef cattle breeding programs.

  10. Quantitative trait loci associated with anthracnose resistance in sorghum

    USDA-ARS?s Scientific Manuscript database

    With an aim to develop a durable resistance to the fungal disease anthracnose, two unique genetic sources of resistance were selected to create genetic mapping populations to identify regions of the sorghum genome that encode anthracnose resistance. A series of quantitative trait loci were identifi...

  11. Quantitative trait loci associated with the tocochromanol (vitamin E) pathway in barley

    USDA-ARS?s Scientific Manuscript database

    In this study, the Genome-Wide Association Studies approach was used to detect Quantitative Trait Loci associated with tocochromanol concentrations using a panel of 1,466 barley accessions. All major tocochromanol types- alpha-, beta-, delta-, gamma-tocopherol and tocotrienol- were assayed. We found...

  12. A simple bias correction in linear regression for quantitative trait association under two-tail extreme selection.

    PubMed

    Kwan, Johnny S H; Kung, Annie W C; Sham, Pak C

    2011-09-01

    Selective genotyping can increase power in quantitative trait association. One example of selective genotyping is two-tail extreme selection, but simple linear regression analysis gives a biased genetic effect estimate. Here, we present a simple correction for the bias.

  13. Effects of normalization on quantitative traits in association test

    PubMed Central

    2009-01-01

    Background Quantitative trait loci analysis assumes that the trait is normally distributed. In reality, this is often not observed and one strategy is to transform the trait. However, it is not clear how much normality is required and which transformation works best in association studies. Results We performed simulations on four types of common quantitative traits to evaluate the effects of normalization using the logarithm, Box-Cox, and rank-based transformations. The impact of sample size and genetic effects on normalization is also investigated. Our results show that rank-based transformation gives generally the best and consistent performance in identifying the causal polymorphism and ranking it highly in association tests, with a slight increase in false positive rate. Conclusion For small sample size or genetic effects, the improvement in sensitivity for rank transformation outweighs the slight increase in false positive rate. However, for large sample size and genetic effects, normalization may not be necessary since the increase in sensitivity is relatively modest. PMID:20003414

  14. QTL variations for growth-related traits in eight distinct families of common carp (Cyprinus carpio).

    PubMed

    Lv, Weihua; Zheng, Xianhu; Kuang, Youyi; Cao, Dingchen; Yan, Yunqin; Sun, Xiaowen

    2016-05-05

    Comparing QTL analyses of multiple pair-mating families can provide a better understanding of important allelic variations and distributions. However, most QTL mapping studies in common carp have been based on analyses of individual families. In order to improve our understanding of heredity and variation of QTLs in different families and identify important QTLs, we performed QTL analysis of growth-related traits in multiple segregating families. We completed a genome scan for QTLs that affect body weight (BW), total length (TL), and body thickness (BT) of 522 individuals from eight full-sib families using 250 microsatellites evenly distributed across 50 chromosomes. Sib-pair and half-sib model mapping identified 165 QTLs on 30 linkage groups. Among them, 10 (genome-wide P <0.01 or P < 0.05) and 28 (chromosome-wide P < 0.01) QTLs exhibited significant evidence of linkage, while the remaining 127 exhibited a suggestive effect on the above three traits at a chromosome-wide (P < 0.05) level. Multiple QTLs obtained from different families affect BW, TL, and BT and locate at close or identical positions. It suggests that same genetic factors may control variability in these traits. Furthermore, the results of the comparative QTL analysis of multiple families showed that one QTL was common in four of the eight families, nine QTLs were detected in three of the eight families, and 26 QTLs were found common to two of the eight families. These common QTLs are valuable candidates in marker-assisted selection. A large number of QTLs were detected in the common carp genome and associated with growth-related traits. Some of the QTLs of different growth-related traits were identified at similar chromosomal regions, suggesting a role for pleiotropy and/or tight linkage and demonstrating a common genetic basis of growth trait variations. The results have set up an example for comparing QTLs in common carp and provided insights into variations in the identified QTLs affecting body growth. Discovery of these common QTLs between families and growth-related traits represents an important step towards understanding of quantitative genetic variation in common carp.

  15. Four Linked Genes Participate in Controlling Sporulation Efficiency in Budding Yeast

    PubMed Central

    Ben-Ari, Giora; Zenvirth, Drora; Sherman, Amir; David, Lior; Klutstein, Michael; Lavi, Uri; Hillel, Jossi; Simchen, Giora

    2006-01-01

    Quantitative traits are conditioned by several genetic determinants. Since such genes influence many important complex traits in various organisms, the identification of quantitative trait loci (QTLs) is of major interest, but still encounters serious difficulties. We detected four linked genes within one QTL, which participate in controlling sporulation efficiency in Saccharomyces cerevisiae. Following the identification of single nucleotide polymorphisms by comparing the sequences of 145 genes between the parental strains SK1 and S288c, we analyzed the segregating progeny of the cross between them. Through reciprocal hemizygosity analysis, four genes, RAS2, PMS1, SWS2, and FKH2, located in a region of 60 kilobases on Chromosome 14, were found to be associated with sporulation efficiency. Three of the four “high” sporulation alleles are derived from the “low” sporulating strain. Two of these sporulation-related genes were verified through allele replacements. For RAS2, the causative variation was suggested to be a single nucleotide difference in the upstream region of the gene. This quantitative trait nucleotide accounts for sporulation variability among a set of ten closely related winery yeast strains. Our results provide a detailed view of genetic complexity in one “QTL region” that controls a quantitative trait and reports a single nucleotide polymorphism-trait association in wild strains. Moreover, these findings have implications on QTL identification in higher eukaryotes. PMID:17112318

  16. Accounting for trait architecture in genomic predictions of US Holstein cattle using a weighted realized relationship matrix.

    PubMed

    Tiezzi, Francesco; Maltecca, Christian

    2015-04-02

    Genomic BLUP (GBLUP) can predict breeding values for non-phenotyped individuals based on the identity-by-state genomic relationship matrix (G). The G matrix can be constructed from thousands of markers spread across the genome. The strongest assumption of G and consequently of GBLUP is that all markers contribute equally to the genetic variance of a trait. This assumption is violated for traits that are controlled by a small number of quantitative trait loci (QTL) or individual QTL with large effects. In this paper, we investigate the performance of using a weighted genomic relationship matrix (wG) that takes into consideration the genetic architecture of the trait in order to improve predictive ability for a wide range of traits. Multiple methods were used to calculate weights for several economically relevant traits in US Holstein dairy cattle. Predictive performance was tested by k-means cross-validation. Relaxing the GBLUP assumption of equal marker contribution by increasing the weight that is given to a specific marker in the construction of the trait-specific G resulted in increased predictive performance. The increase was strongest for traits that are controlled by a small number of QTL (e.g. fat and protein percentage). Furthermore, bias in prediction estimates was reduced compared to that resulting from the use of regular G. Even for traits with low heritability and lower general predictive performance (e.g. calving ease traits), weighted G still yielded a gain in accuracy. Genomic relationship matrices weighted by marker realized variance yielded more accurate and less biased predictions for traits regulated by few QTL. Genome-wide association analyses were used to derive marker weights for creating weighted genomic relationship matrices. However, this can be cumbersome and prone to low stability over generations because of erosion of linkage disequilibrium between markers and QTL. Future studies may include other sources of information, such as functional annotation and gene networks, to better exploit the genetic architecture of traits and produce more stable predictions.

  17. Evaluation and Quantitative trait loci mapping of resistance to powdery mildew in lettuce

    USDA-ARS?s Scientific Manuscript database

    Lettuce (Lactuca sativa L.) is the major leafy vegetable that is susceptible to powdery mildew disease under greenhouse and field conditions. We mapped quantitative trait loci (QTLs) for resistance to powdery mildew under greenhouse conditions in an interspecific population derived from a cross betw...

  18. The genetic architecture of low-temperature adaptation in the wine yeast Saccharomyces cerevisiae.

    PubMed

    García-Ríos, Estéfani; Morard, Miguel; Parts, Leopold; Liti, Gianni; Guillamón, José M

    2017-02-14

    Low-temperature growth and fermentation of wine yeast can enhance wine aroma and make them highly desirable traits for the industry. Elucidating response to cold in Saccharomyces cerevisiae is, therefore, of paramount importance to select or genetically improve new wine strains. As most enological traits of industrial importance in yeasts, adaptation to low temperature is a polygenic trait regulated by many interacting loci. In order to unravel the genetic determinants of low-temperature fermentation, we mapped quantitative trait loci (QTLs) by bulk segregant analyses in the F13 offspring of two Saccharomyces cerevisiae industrial strains with divergent performance at low temperature. We detected four genomic regions involved in the adaptation at low temperature, three of them located in the subtelomeric regions (chromosomes XIII, XV and XVI) and one in the chromosome XIV. The QTL analysis revealed that subtelomeric regions play a key role in defining individual variation, which emphasizes the importance of these regions' adaptive nature. The reciprocal hemizygosity analysis (RHA), run to validate the genes involved in low-temperature fermentation, showed that genetic variation in mitochondrial proteins, maintenance of correct asymmetry and distribution of phospholipid in the plasma membrane are key determinants of low-temperature adaptation.

  19. Quantitative dermatoglyphic asymmetry: a comparative study between schizophrenic patients and control groups of West Bengal, India.

    PubMed

    Karmakar, B; Sengupta, M

    2012-01-01

    Quantitative Fluctuating (FA) and Directional asymmetry (DA) of dermatoglyphics on digito-palmar complex were analyzed in a group of 111 patients (males: 61, females: 50) with schizophrenia (SZ), and compared to an ethnically matched phenotypically healthy control (males: 60, females: 60) through MANOVA, ANOVA and canonical Discriminant analyses. With few exceptions, asymmetries are higher among patients, and this is more prominent in FA than DA. Statistically significant differences were observed between patient and control groups, especially in males. In both sexes, FA of combined dermatoglyphic traits (e.g. total finger ridge count, total palmar pattern ridge count) are found to be a strong discriminator between the two groups with a correct classification of over 83% probability.

  20. Integrating Genomic Analysis with the Genetic Basis of Gene Expression: Preliminary Evidence of the Identification of Causal Genes for Cardiovascular and Metabolic Traits Related to Nutrition in Mexicans123

    PubMed Central

    Bastarrachea, Raúl A.; Gallegos-Cabriales, Esther C.; Nava-González, Edna J.; Haack, Karin; Voruganti, V. Saroja; Charlesworth, Jac; Laviada-Molina, Hugo A.; Veloz-Garza, Rosa A.; Cardenas-Villarreal, Velia Margarita; Valdovinos-Chavez, Salvador B.; Gomez-Aguilar, Patricia; Meléndez, Guillermo; López-Alvarenga, Juan Carlos; Göring, Harald H. H.; Cole, Shelley A.; Blangero, John; Comuzzie, Anthony G.; Kent, Jack W.

    2012-01-01

    Whole-transcriptome expression profiling provides novel phenotypes for analysis of complex traits. Gene expression measurements reflect quantitative variation in transcript-specific messenger RNA levels and represent phenotypes lying close to the action of genes. Understanding the genetic basis of gene expression will provide insight into the processes that connect genotype to clinically significant traits representing a central tenet of system biology. Synchronous in vivo expression profiles of lymphocytes, muscle, and subcutaneous fat were obtained from healthy Mexican men. Most genes were expressed at detectable levels in multiple tissues, and RNA levels were correlated between tissue types. A subset of transcripts with high reliability of expression across tissues (estimated by intraclass correlation coefficients) was enriched for cis-regulated genes, suggesting that proximal sequence variants may influence expression similarly in different cellular environments. This integrative global gene expression profiling approach is proving extremely useful for identifying genes and pathways that contribute to complex clinical traits. Clearly, the coincidence of clinical trait quantitative trait loci and expression quantitative trait loci can help in the prioritization of positional candidate genes. Such data will be crucial for the formal integration of positional and transcriptomic information characterized as genetical genomics. PMID:22797999

  1. Exploring the interaction among EPHX1, GSTP1, SERPINE2, and TGFB1 contributing to the quantitative traits of chronic obstructive pulmonary disease in Chinese Han population.

    PubMed

    An, Li; Lin, Yingxiang; Yang, Ting; Hua, Lin

    2016-05-18

    Currently, the majority of genetic association studies on chronic obstructive pulmonary disease (COPD) risk focused on identifying the individual effects of single nucleotide polymorphisms (SNPs) as well as their interaction effects on the disease. However, conventional genetic studies often use binary disease status as the primary phenotype, but for COPD, many quantitative traits have the potential correlation with the disease status and closely reflect pathological changes. Here, we genotyped 44 SNPs from four genes (EPHX1, GSTP1, SERPINE2, and TGFB1) in 310 patients and 203 controls which belonged to the Chinese Han population to test the two-way and three-way genetic interactions with COPD-related quantitative traits using recently developed generalized multifactor dimensionality reduction (GMDR) and quantitative multifactor dimensionality reduction (QMDR) algorithms. Based on the 310 patients and the whole samples of 513 subjects, the best gene-gene interactions models were detected for four lung-function-related quantitative traits. For the forced expiratory volume in 1 s (FEV1), the best interaction was seen from EPHX1, SERPINE2, and GSTP1. For FEV1%pre, the forced vital capacity (FVC), and FEV1/FVC, the best interactions were seen from SERPINE2 and TGFB1. The results of this study provide further evidence for the genotype combinations at risk of developing COPD in Chinese Han population and improve the understanding on the genetic etiology of COPD and COPD-related quantitative traits.

  2. Genetic basis of nitrogen use efficiency and yield stability across environments in winter rapeseed.

    PubMed

    Bouchet, Anne-Sophie; Laperche, Anne; Bissuel-Belaygue, Christine; Baron, Cécile; Morice, Jérôme; Rousseau-Gueutin, Mathieu; Dheu, Jean-Eric; George, Pierre; Pinochet, Xavier; Foubert, Thomas; Maes, Olivier; Dugué, Damien; Guinot, Florent; Nesi, Nathalie

    2016-09-15

    Nitrogen use efficiency is an important breeding trait that can be modified to improve the sustainability of many crop species used in agriculture. Rapeseed is a major oil crop with low nitrogen use efficiency, making its production highly dependent on nitrogen input. This complex trait is suspected to be sensitive to genotype × environment interactions, especially genotype × nitrogen interactions. Therefore, phenotyping diverse rapeseed populations under a dense network of trials is a powerful approach to study nitrogen use efficiency in this crop. The present study aimed to determine the quantitative trait loci (QTL) associated with yield in winter oilseed rape and to assess the stability of these regions under contrasting nitrogen conditions for the purpose of increasing nitrogen use efficiency. Genome-wide association studies and linkage analyses were performed on two diversity sets and two doubled-haploid populations. These populations were densely genotyped, and yield-related traits were scored in a multi-environment design including seven French locations, six growing seasons (2009 to 2014) and two nitrogen nutrition levels (optimal versus limited). Very few genotype × nitrogen interactions were detected, and a large proportion of the QTL were stable across nitrogen nutrition conditions. In contrast, strong genotype × trial interactions in which most of the QTL were specific to a single trial were found. To obtain further insight into the QTL × environment interactions, genetic analyses of ecovalence were performed to identify the genomic regions contributing to the genotype × nitrogen and genotype × trial interactions. Fifty-one critical genomic regions contributing to the additive genetic control of yield-associated traits were identified, and the structural organization of these regions in the genome was investigated. Our results demonstrated that the effect of the trial was greater than the effect of nitrogen nutrition levels on seed yield-related traits under our experimental conditions. Nevertheless, critical genomic regions associated with yield that were stable across environments were identified in rapeseed.

  3. Investigation of QTL regions on Chromosome 17 for genes associated with meat color in the pig.

    PubMed

    Fan, B; Glenn, K L; Geiger, B; Mileham, A; Rothschild, M F

    2008-08-01

    Previous studies have uncovered several significant quantitative trait loci (QTL) relevant to meat colour traits mapped at the end of SSC17 in the pig. Furthermore, results released from the porcine genome sequencing project have identified genes underlying the entire QTL regions and can further contribute to mining the region for likely causative genes. Ten protein coding genes or novel transcripts located within the QTL regions were screened for single nucleotide polymorphisms (SNPs). Linkage mapping and association studies were carried out in the ISU Berkshire x Yorkshire (B x Y) pig resource family. The total length of the new SSC17 linkage map was 126.6 cM and additional markers including endothelin 3 (EDN3) and phosphatase and actin regulator 3 (PHACTR3) genes were assigned at positions 119.4 cM and 122.9 cM, respectively. A new QTL peak was noted at approximately 120 cM, close to the EDN3 gene, and for some colour traits QTL exceeded the 5% chromosome-wise significance threshold. The association analyses in the B x Y family showed that the EDN3 BslI and PHACTR3 PstI polymorphisms were strongly associated with the subjective colour score and objective colour reflectance measures in the loin, as well as average drip loss percentage and pH value. The RNPC1 DpnII and CTCFL HpyCH4III polymorphisms were associated with some meat colour traits. No significant association between CBLN4, TFAP2C, and four novel transcripts and meat colour traits were detected. The association analyses conducted in one commercial pig line found that both EDN3 BslI and PHACTR3 PstI polymorphisms were associated with meat colour reflectance traits such as centre loin hue angle and Minolta Lightness score. The present findings suggested that the EDN3 and PHACTR3 genes might have potential effects on meat colour in pigs, and molecular mechanisms of their functions are worth exploring.

  4. Neuropsychological Endophenotype Approach to Genome-wide Linkage Analysis Identifies Susceptibility Loci for ADHD on 2q21.1 and 13q12.11

    PubMed Central

    Rommelse, Nanda N.J.; Arias-Vásquez, Alejandro; Altink, Marieke E.; Buschgens, Cathelijne J.M.; Fliers, Ellen; Asherson, Philip; Faraone, Stephen V.; Buitelaar, Jan K.; Sergeant, Joseph A.; Oosterlaan, Jaap; Franke, Barbara

    2008-01-01

    ADHD linkage findings have not all been consistently replicated, suggesting that other approaches to linkage analysis in ADHD might be necessary, such as the use of (quantitative) endophenotypes (heritable traits associated with an increased risk for ADHD). Genome-wide linkage analyses were performed in the Dutch subsample of the International Multi-Center ADHD Genetics (IMAGE) study comprising 238 DSM-IV combined-type ADHD probands and their 112 affected and 195 nonaffected siblings. Eight candidate neuropsychological ADHD endophenotypes with heritabilities > 0.2 were used as quantitative traits. In addition, an overall component score of neuropsychological functioning was used. A total of 5407 autosomal single-nucleotide polymorphisms (SNPs) were used to run multipoint regression-based linkage analyses. Two significant genome-wide linkage signals were found, one for Motor Timing on chromosome 2q21.1 (LOD score: 3.944) and one for Digit Span on 13q12.11 (LOD score: 3.959). Ten suggestive linkage signals were found (LOD scores ≥ 2) on chromosomes 2p, 2q, 3p, 4q, 8q, 12p, 12q, 14q, and 17q. The suggestive linkage signal for the component score that was found at 2q14.3 (LOD score: 2.878) overlapped with the region significantly linked to Motor Timing. Endophenotype approaches may increase power to detect susceptibility loci in ADHD and possibly in other complex disorders. PMID:18599010

  5. Quantitative trait loci mapping of the mouse plasma proteome (pQTL).

    PubMed

    Holdt, Lesca M; von Delft, Annette; Nicolaou, Alexandros; Baumann, Sven; Kostrzewa, Markus; Thiery, Joachim; Teupser, Daniel

    2013-02-01

    A current challenge in the era of genome-wide studies is to determine the responsible genes and mechanisms underlying newly identified loci. Screening of the plasma proteome by high-throughput mass spectrometry (MALDI-TOF MS) is considered a promising approach for identification of metabolic and disease processes. Therefore, plasma proteome screening might be particularly useful for identifying responsible genes when combined with analysis of variation in the genome. Here, we describe a proteomic quantitative trait locus (pQTL) study of plasma proteome screens in an F(2) intercross of 455 mice mapped with 177 genetic markers across the genome. A total of 69 of 176 peptides revealed significant LOD scores (≥5.35) demonstrating strong genetic regulation of distinct components of the plasma proteome. Analyses were confirmed by mechanistic studies and MALDI-TOF/TOF, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses of the two strongest pQTLs: A pQTL for mass-to-charge ratio (m/z) 3494 (LOD 24.9, D11Mit151) was identified as the N-terminal 35 amino acids of hemoglobin subunit A (Hba) and caused by genetic variation in Hba. Another pQTL for m/z 8713 (LOD 36.4; D1Mit111) was caused by variation in apolipoprotein A2 (Apoa2) and cosegregated with HDL cholesterol. Taken together, we show that genome-wide plasma proteome profiling in combination with genome-wide genetic screening aids in the identification of causal genetic variants affecting abundance of plasma proteins.

  6. Quantitative Trait Loci Mapping of the Mouse Plasma Proteome (pQTL)

    PubMed Central

    Holdt, Lesca M.; von Delft, Annette; Nicolaou, Alexandros; Baumann, Sven; Kostrzewa, Markus; Thiery, Joachim; Teupser, Daniel

    2013-01-01

    A current challenge in the era of genome-wide studies is to determine the responsible genes and mechanisms underlying newly identified loci. Screening of the plasma proteome by high-throughput mass spectrometry (MALDI-TOF MS) is considered a promising approach for identification of metabolic and disease processes. Therefore, plasma proteome screening might be particularly useful for identifying responsible genes when combined with analysis of variation in the genome. Here, we describe a proteomic quantitative trait locus (pQTL) study of plasma proteome screens in an F2 intercross of 455 mice mapped with 177 genetic markers across the genome. A total of 69 of 176 peptides revealed significant LOD scores (≥5.35) demonstrating strong genetic regulation of distinct components of the plasma proteome. Analyses were confirmed by mechanistic studies and MALDI-TOF/TOF, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses of the two strongest pQTLs: A pQTL for mass-to-charge ratio (m/z) 3494 (LOD 24.9, D11Mit151) was identified as the N-terminal 35 amino acids of hemoglobin subunit A (Hba) and caused by genetic variation in Hba. Another pQTL for m/z 8713 (LOD 36.4; D1Mit111) was caused by variation in apolipoprotein A2 (Apoa2) and cosegregated with HDL cholesterol. Taken together, we show that genome-wide plasma proteome profiling in combination with genome-wide genetic screening aids in the identification of causal genetic variants affecting abundance of plasma proteins. PMID:23172855

  7. Mapping loci influencing blood pressure in the Framingham pedigrees using model-free LOD score analysis of a quantitative trait.

    PubMed

    Knight, Jo; North, Bernard V; Sham, Pak C; Curtis, David

    2003-12-31

    This paper presents a method of performing model-free LOD-score based linkage analysis on quantitative traits. It is implemented in the QMFLINK program. The method is used to perform a genome screen on the Framingham Heart Study data. A number of markers that show some support for linkage in our study coincide substantially with those implicated in other linkage studies of hypertension. Although the new method needs further testing on additional real and simulated data sets we can already say that it is straightforward to apply and may offer a useful complementary approach to previously available methods for the linkage analysis of quantitative traits.

  8. Mapping loci influencing blood pressure in the Framingham pedigrees using model-free LOD score analysis of a quantitative trait

    PubMed Central

    Knight, Jo; North, Bernard V; Sham, Pak C; Curtis, David

    2003-01-01

    This paper presents a method of performing model-free LOD-score based linkage analysis on quantitative traits. It is implemented in the QMFLINK program. The method is used to perform a genome screen on the Framingham Heart Study data. A number of markers that show some support for linkage in our study coincide substantially with those implicated in other linkage studies of hypertension. Although the new method needs further testing on additional real and simulated data sets we can already say that it is straightforward to apply and may offer a useful complementary approach to previously available methods for the linkage analysis of quantitative traits. PMID:14975142

  9. Practical applications of the bioinformatics toolbox for narrowing quantitative trait loci.

    PubMed

    Burgess-Herbert, Sarah L; Cox, Allison; Tsaih, Shirng-Wern; Paigen, Beverly

    2008-12-01

    Dissecting the genes involved in complex traits can be confounded by multiple factors, including extensive epistatic interactions among genes, the involvement of epigenetic regulators, and the variable expressivity of traits. Although quantitative trait locus (QTL) analysis has been a powerful tool for localizing the chromosomal regions underlying complex traits, systematically identifying the causal genes remains challenging. Here, through its application to plasma levels of high-density lipoprotein cholesterol (HDL) in mice, we demonstrate a strategy for narrowing QTL that utilizes comparative genomics and bioinformatics techniques. We show how QTL detected in multiple crosses are subjected to both combined cross analysis and haplotype block analysis; how QTL from one species are mapped to the concordant regions in another species; and how genomewide scans associating haplotype groups with their phenotypes can be used to prioritize the narrowed regions. Then we illustrate how these individual methods for narrowing QTL can be systematically integrated for mouse chromosomes 12 and 15, resulting in a significantly reduced number of candidate genes, often from hundreds to <10. Finally, we give an example of how additional bioinformatics resources can be combined with experiments to determine the most likely quantitative trait genes.

  10. Genetic and Quantitative Trait Locus Analysis for Bio-Oil Compounds after Fast Pyrolysis in Maize Cobs.

    PubMed

    Jeffrey, Brandon; Kuzhiyil, Najeeb; de Leon, Natalia; Lübberstedt, Thomas

    2016-01-01

    Fast pyrolysis has been identified as one of the biorenewable conversion platforms that could be a part of an alternative energy future, but it has not yet received the same attention as cellulosic ethanol in the analysis of genetic inheritance within potential feedstocks such as maize. Ten bio-oil compounds were measured via pyrolysis/gas chromatography-mass spectrometry (Py/GC-MS) in maize cobs. 184 recombinant inbred lines (RILs) of the intermated B73 x Mo17 (IBM) Syn4 population were analyzed in two environments, using 1339 markers, for quantitative trait locus (QTL) mapping. QTL mapping was performed using composite interval mapping with significance thresholds established by 1000 permutations at α = 0.05. 50 QTL were found in total across those ten traits with R2 values ranging from 1.7 to 5.8%, indicating a complex quantitative inheritance of these traits.

  11. Recent progress in the genetics of spontaneously hypertensive rats.

    PubMed

    Pravenec, M; Křen, V; Landa, V; Mlejnek, P; Musilová, A; Šilhavý, J; Šimáková, M; Zídek, V

    2014-01-01

    The spontaneously hypertensive rat (SHR) is the most widely used animal model of essential hypertension and accompanying metabolic disturbances. Recent advances in sequencing of genomes of BN-Lx and SHR progenitors of the BXH/HXB recombinant inbred (RI) strains as well as accumulation of multiple data sets of intermediary phenotypes in the RI strains, including mRNA and microRNA abundance, quantitative metabolomics, proteomics, methylomics or histone modifications, will make it possible to systematically search for genetic variants involved in regulation of gene expression and in the etiology of complex pathophysiological traits. New advances in manipulation of the rat genome, including efficient transgenesis and gene targeting, will enable in vivo functional analyses of selected candidate genes to identify QTL at the molecular level or to provide insight into mechanisms whereby targeted genes affect pathophysiological traits in the SHR.

  12. Adaptability and stability of soybean genotypes in off-season cultivation.

    PubMed

    Batista, R O; Hamawaki, R L; Sousa, L B; Nogueira, A P O; Hamawaki, O T

    2015-08-14

    The oil and protein contents of soybean grains are important quantitative traits for use in breeding. However, few breeding programs perform selection based on these traits in different environments. This study assessed the adaptability and stability of 14 elite early soybean breeding lines in off-season cultivation with respect to yield, and oil and protein contents. A range of statistical methods was applied and these analyses indicated that for off-season cultivation, the lines UFUS 5 and UFUS 10 could be recommended due to their superior performance in grain yield, oil content, and specific adaptability to unfavorable environments along with high stability in these characteristics. Also recommended were UFUS 06, which demonstrated superior performance in all three tested characteristics and showed adaptation to favorable environments, and UFUS 13, which showed high adaptability and stability and a superior performance for protein content.

  13. Mapping of quantitative trait loci associated with partial resistance to phytophthora sojae and flooding tolerance in soybean

    USDA-ARS?s Scientific Manuscript database

    Phytophthora root rot (PRR) caused by Phytophthora sojae Kaufm. & Gerd. and flooding can limit growth and productivity, of soybean [Glycine max (L.) Merr.], especially on poorly drained soils. The primary objective of this research project was to map quantitative trait loci (QTL) associated with f...

  14. CBCL Pediatric Bipolar Disorder Profile and ADHD: Comorbidity and Quantitative Trait Loci Analysis

    ERIC Educational Resources Information Center

    McGough, James J.; Loo, Sandra K.; McCracken, James T.; Dang, Jeffery; Clark, Shaunna; Nelson, Stanley F.; Smalley, Susan L.

    2008-01-01

    The pediatric bipolar disorder profile of the Child Behavior checklist is used to differentiate patterns of comorbidity and to search for quantitative trait loci in multiple affected ADHD sibling pairs. The CBCL-PBD profiling identified 8 percent of individuals with severe psychopathology and increased rates of oppositional defiant, conduct and…

  15. Multi-ethnic meta-analysis identifies RAI1 as a possible obstructive sleep apnea related quantitative trait locus in men

    USDA-ARS?s Scientific Manuscript database

    Obstructive sleep apnea (OSA) is a common heritable disorder displaying marked sexual dimorphism in disease prevalence and progression. Previous genetic association studies have identified a few genetic loci associated with OSA and related quantitative traits, but they have only focused on single et...

  16. Genes and quantitative trait loci (QTL) controlling trace element concentrations in perennial grasses grown on phytotoxic soil contaminated with heavy metals

    USDA-ARS?s Scientific Manuscript database

    Perennial grasses cover diverse soils throughout the world, including sites contaminated with heavy metals, producing forages that must be safe for livestock and wildlife. Chromosome regions known as quantitative trait loci (QTLs) controlling forage mineral concentrations were mapped in a populatio...

  17. Mapping of quantitative trait loci for resistance to fall armyworm and southwestern corn borer leaf-feeding damage in maize.

    USDA-ARS?s Scientific Manuscript database

    Fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith), and southwestern corn borer (SWCB), Diatraea grandiosella Dyar are damaging insect pests of maize resulting in significant yield and economic losses. A previous study identified quantitative trait loci (QTL) that contribute to reduced leaf-fe...

  18. Confirmatory Factor Analytic Structure and Measurement Invariance of Quantitative Autistic Traits Measured by the Social Responsiveness Scale-2

    ERIC Educational Resources Information Center

    Frazier, Thomas W.; Ratliff, Kristin R.; Gruber, Chris; Zhang, Yi; Law, Paul A.; Constantino, John N.

    2014-01-01

    Understanding the factor structure of autistic symptomatology is critical to the discovery and interpretation of causal mechanisms in autism spectrum disorder. We applied confirmatory factor analysis and assessment of measurement invariance to a large ("N" = 9635) accumulated collection of reports on quantitative autistic traits using…

  19. Quantitative autistic trait measurements index background genetic risk for ASD in Hispanic families.

    PubMed

    Page, Joshua; Constantino, John Nicholas; Zambrana, Katherine; Martin, Eden; Tunc, Ilker; Zhang, Yi; Abbacchi, Anna; Messinger, Daniel

    2016-01-01

    Recent studies have indicated that quantitative autistic traits (QATs) of parents reflect inherited liabilities that may index background genetic risk for clinical autism spectrum disorder (ASD) in their offspring. Moreover, preferential mating for QATs has been observed as a potential factor in concentrating autistic liabilities in some families across generations. Heretofore, intergenerational studies of QATs have focused almost exclusively on Caucasian populations-the present study explored these phenomena in a well-characterized Hispanic population. The present study examined QAT scores in siblings and parents of 83 Hispanic probands meeting research diagnostic criteria for ASD, and 64 non-ASD controls, using the Social Responsiveness Scale-2 (SRS-2). Ancestry of the probands was characterized by genotype, using information from 541,929 single nucleotide polymorphic markers. In families of Hispanic children with an ASD diagnosis, the pattern of quantitative trait correlations observed between ASD-affected children and their first-degree relatives (ICCs on the order of 0.20), between unaffected first-degree relatives in ASD-affected families (sibling/mother ICC = 0.36; sibling/father ICC = 0.53), and between spouses (mother/father ICC = 0.48) were in keeping with the influence of transmitted background genetic risk and strong preferential mating for variation in quantitative autistic trait burden. Results from analysis of ancestry-informative genetic markers among probands in this sample were consistent with that from other Hispanic populations. Quantitative autistic traits represent measurable indices of inherited liability to ASD in Hispanic families. The accumulation of autistic traits occurs within generations, between spouses, and across generations, among Hispanic families affected by ASD. The occurrence of preferential mating for QATs-the magnitude of which may vary across cultures-constitutes a mechanism by which background genetic liability for ASD can accumulate in a given family in successive generations.

  20. Improvement of baking quality traits through a diverse soft winter wheat population

    USDA-ARS?s Scientific Manuscript database

    Breeding baking quality improvements into soft winter wheat (SWW) entails crossing lines based on quality traits, assessing new lines, and repeating several times as little is known about the genetics of these traits. Previous research on SWW baking quality focused on quantitative trait locus and ge...

  1. Identification, Replication, and Functional Fine-Mapping of Expression Quantitative Trait Loci in Primary Human Liver Tissue

    PubMed Central

    Stanaway, Ian B.; Gamazon, Eric R.; Smith, Joshua D.; Mirkov, Snezana; Ramirez, Jacqueline; Liu, Wanqing; Lin, Yvonne S.; Moloney, Cliona; Aldred, Shelly Force; Trinklein, Nathan D.; Schuetz, Erin; Nickerson, Deborah A.; Thummel, Ken E.; Rieder, Mark J.; Rettie, Allan E.; Ratain, Mark J.; Cox, Nancy J.; Brown, Christopher D.

    2011-01-01

    The discovery of expression quantitative trait loci (“eQTLs”) can help to unravel genetic contributions to complex traits. We identified genetic determinants of human liver gene expression variation using two independent collections of primary tissue profiled with Agilent (n = 206) and Illumina (n = 60) expression arrays and Illumina SNP genotyping (550K), and we also incorporated data from a published study (n = 266). We found that ∼30% of SNP-expression correlations in one study failed to replicate in either of the others, even at thresholds yielding high reproducibility in simulations, and we quantified numerous factors affecting reproducibility. Our data suggest that drug exposure, clinical descriptors, and unknown factors associated with tissue ascertainment and analysis have substantial effects on gene expression and that controlling for hidden confounding variables significantly increases replication rate. Furthermore, we found that reproducible eQTL SNPs were heavily enriched near gene starts and ends, and subsequently resequenced the promoters and 3′UTRs for 14 genes and tested the identified haplotypes using luciferase assays. For three genes, significant haplotype-specific in vitro functional differences correlated directly with expression levels, suggesting that many bona fide eQTLs result from functional variants that can be mechanistically isolated in a high-throughput fashion. Finally, given our study design, we were able to discover and validate hundreds of liver eQTLs. Many of these relate directly to complex traits for which liver-specific analyses are likely to be relevant, and we identified dozens of potential connections with disease-associated loci. These included previously characterized eQTL contributors to diabetes, drug response, and lipid levels, and they suggest novel candidates such as a role for NOD2 expression in leprosy risk and C2orf43 in prostate cancer. In general, the work presented here will be valuable for future efforts to precisely identify and functionally characterize genetic contributions to a variety of complex traits. PMID:21637794

  2. Quantitative trait locus mapping under irrigated and drought treatments based on a novel genetic linkage map in mungbean (Vigna radiata L.).

    PubMed

    Liu, Changyou; Wu, Jing; Wang, Lanfen; Fan, Baojie; Cao, Zhimin; Su, Qiuzhu; Zhang, Zhixiao; Wang, Yan; Tian, Jing; Wang, Shumin

    2017-11-01

    A novel genetic linkage map was constructed using SSR markers and stable QTLs were identified for six drought tolerance related-traits using single-environment analysis under irrigation and drought treatments. Mungbean (Vigna radiata L.) is one of the most important leguminous food crops. However, mungbean production is seriously constrained by drought. Isolation of drought-responsive genetic elements and marker-assisted selection breeding will benefit from the detection of quantitative trait locus (QTLs) for traits related to drought tolerance. In this study, we developed a full-coverage genetic linkage map based on simple sequence repeat (SSR) markers using a recombinant inbred line (RIL) population derived from an intra-specific cross between two drought-resistant varieties. This novel map was anchored with 313 markers. The total map length was 1010.18 cM across 11 linkage groups, covering the entire genome of mungbean with a saturation of one marker every 3.23 cM. We subsequently detected 58 QTLs for plant height (PH), maximum leaf area (MLA), biomass (BM), relative water content, days to first flowering, and seed yield (Yield) and 5 for the drought tolerance index of 3 traits in irrigated and drought environments at 2 locations. Thirty-eight of these QTLs were consistently detected two or more times at similar linkage positions. Notably, qPH5A and qMLA2A were consistently identified in marker intervals from GMES5773 to MUS128 in LG05 and from Mchr11-34 to the HAAS_VR_1812 region in LG02 in four environments, contributing 6.40-20.06% and 6.97-7.94% of the observed phenotypic variation, respectively. None of these QTLs shared loci with previously identified drought-related loci from mungbean. The results of these analyses might facilitate the isolation of drought-related genes and help to clarify the mechanism of drought tolerance in mungbean.

  3. An eQTL Analysis of Partial Resistance to Puccinia hordei in Barley

    PubMed Central

    Chen, Xinwei; Hackett, Christine A.; Niks, Rients E.; Hedley, Peter E.; Booth, Clare; Druka, Arnis; Marcel, Thierry C.; Vels, Anton; Bayer, Micha; Milne, Iain; Morris, Jenny; Ramsay, Luke; Marshall, David; Cardle, Linda; Waugh, Robbie

    2010-01-01

    Background Genetic resistance to barley leaf rust caused by Puccinia hordei involves both R genes and quantitative trait loci. The R genes provide higher but less durable resistance than the quantitative trait loci. Consequently, exploring quantitative or partial resistance has become a favorable alternative for controlling disease. Four quantitative trait loci for partial resistance to leaf rust have been identified in the doubled haploid Steptoe (St)/Morex (Mx) mapping population. Further investigations are required to study the molecular mechanisms underpinning partial resistance and ultimately identify the causal genes. Methodology/Principal Findings We explored partial resistance to barley leaf rust using a genetical genomics approach. We recorded RNA transcript abundance corresponding to each probe on a 15K Agilent custom barley microarray in seedlings from St and Mx and 144 doubled haploid lines of the St/Mx population. A total of 1154 and 1037 genes were, respectively, identified as being P. hordei-responsive among the St and Mx and differentially expressed between P. hordei-infected St and Mx. Normalized ratios from 72 distant-pair hybridisations were used to map the genetic determinants of variation in transcript abundance by expression quantitative trait locus (eQTL) mapping generating 15685 eQTL from 9557 genes. Correlation analysis identified 128 genes that were correlated with resistance, of which 89 had eQTL co-locating with the phenotypic quantitative trait loci (pQTL). Transcript abundance in the parents and conservation of synteny with rice allowed us to prioritise six genes as candidates for Rphq11, the pQTL of largest effect, and highlight one, a phospholipid hydroperoxide glutathione peroxidase (HvPHGPx) for detailed analysis. Conclusions/Significance The eQTL approach yielded information that led to the identification of strong candidate genes underlying pQTL for resistance to leaf rust in barley and on the general pathogen response pathway. The dataset will facilitate a systems appraisal of this host-pathogen interaction and, potentially, for other traits measured in this population. PMID:20066049

  4. Integrated genomics and molecular breeding approaches for dissecting the complex quantitative traits in crop plants.

    PubMed

    Kujur, Alice; Saxena, Maneesha S; Bajaj, Deepak; Laxmi; Parida, Swarup K

    2013-12-01

    The enormous population growth, climate change and global warming are now considered major threats to agriculture and world's food security. To improve the productivity and sustainability of agriculture, the development of highyielding and durable abiotic and biotic stress-tolerant cultivars and/climate resilient crops is essential. Henceforth, understanding the molecular mechanism and dissection of complex quantitative yield and stress tolerance traits is the prime objective in current agricultural biotechnology research. In recent years, tremendous progress has been made in plant genomics and molecular breeding research pertaining to conventional and next-generation whole genome, transcriptome and epigenome sequencing efforts, generation of huge genomic, transcriptomic and epigenomic resources and development of modern genomics-assisted breeding approaches in diverse crop genotypes with contrasting yield and abiotic stress tolerance traits. Unfortunately, the detailed molecular mechanism and gene regulatory networks controlling such complex quantitative traits is not yet well understood in crop plants. Therefore, we propose an integrated strategies involving available enormous and diverse traditional and modern -omics (structural, functional, comparative and epigenomics) approaches/resources and genomics-assisted breeding methods which agricultural biotechnologist can adopt/utilize to dissect and decode the molecular and gene regulatory networks involved in the complex quantitative yield and stress tolerance traits in crop plants. This would provide clues and much needed inputs for rapid selection of novel functionally relevant molecular tags regulating such complex traits to expedite traditional and modern marker-assisted genetic enhancement studies in target crop species for developing high-yielding stress-tolerant varieties.

  5. A rapid generalized least squares model for a genome-wide quantitative trait association analysis in families.

    PubMed

    Li, Xiang; Basu, Saonli; Miller, Michael B; Iacono, William G; McGue, Matt

    2011-01-01

    Genome-wide association studies (GWAS) using family data involve association analyses between hundreds of thousands of markers and a trait for a large number of related individuals. The correlations among relatives bring statistical and computational challenges when performing these large-scale association analyses. Recently, several rapid methods accounting for both within- and between-family variation have been proposed. However, these techniques mostly model the phenotypic similarities in terms of genetic relatedness. The familial resemblances in many family-based studies such as twin studies are not only due to the genetic relatedness, but also derive from shared environmental effects and assortative mating. In this paper, we propose 2 generalized least squares (GLS) models for rapid association analysis of family-based GWAS, which accommodate both genetic and environmental contributions to familial resemblance. In our first model, we estimated the joint genetic and environmental variations. In our second model, we estimated the genetic and environmental components separately. Through simulation studies, we demonstrated that our proposed approaches are more powerful and computationally efficient than a number of existing methods are. We show that estimating the residual variance-covariance matrix in the GLS models without SNP effects does not lead to an appreciable bias in the p values as long as the SNP effect is small (i.e. accounting for no more than 1% of trait variance). Copyright © 2011 S. Karger AG, Basel.

  6. Genetic Architecture of Micro-Environmental Plasticity in Drosophila melanogaster.

    PubMed

    Morgante, Fabio; Sørensen, Peter; Sorensen, Daniel A; Maltecca, Christian; Mackay, Trudy F C

    2015-05-06

    Individuals of the same genotype do not have the same phenotype for quantitative traits when reared under common macro-environmental conditions, a phenomenon called micro-environmental plasticity. Genetic variation in micro-environmental plasticity is assumed in models of the evolution of phenotypic variance, and is important in applied breeding and personalized medicine. Here, we quantified genetic variation for micro-environmental plasticity for three quantitative traits in the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel. We found substantial genetic variation for micro-environmental plasticity for all traits, with broad sense heritabilities of the same magnitude or greater than those of trait means. Micro-environmental plasticity is not correlated with residual segregating variation, is trait-specific, and has genetic correlations with trait means ranging from zero to near unity. We identified several candidate genes associated with micro-environmental plasticity of startle response, including Drosophila Hsp90, setting the stage for future genetic dissection of this phenomenon.

  7. Functional Connectivity and Quantitative EEG in Women with Alcohol Use Disorders: A Resting-State Study.

    PubMed

    Herrera-Díaz, Adianes; Mendoza-Quiñones, Raúl; Melie-Garcia, Lester; Martínez-Montes, Eduardo; Sanabria-Diaz, Gretel; Romero-Quintana, Yuniel; Salazar-Guerra, Iraklys; Carballoso-Acosta, Mario; Caballero-Moreno, Antonio

    2016-05-01

    This study was aimed at exploring the electroencephalographic features associated with alcohol use disorders (AUD) during a resting-state condition, by using quantitative EEG and Functional Connectivity analyses. In addition, we explored whether EEG functional connectivity is associated with trait impulsivity. Absolute and relative powers and Synchronization Likelihood (SL) as a measure of functional connectivity were analyzed in 15 AUD women and fifteen controls matched in age, gender and education. Correlation analysis between self-report impulsivity as measured by the Barratt impulsiveness Scale (BIS-11) and SL values of AUD patients were performed. Our results showed increased absolute and relative beta power in AUD patients compared to matched controls, and reduced functional connectivity in AUD patients predominantly in the beta and alpha bands. Impaired connectivity was distributed at fronto-central and occipito-parietal regions in the alpha band, and over the entire scalp in the beta band. We also found that impaired functional connectivity particularly in alpha band at fronto-central areas was negative correlated with non-planning dimension of impulsivity. These findings suggest that functional brain abnormalities are present in AUD patients and a disruption of resting-state EEG functional connectivity is associated with psychopathological traits of addictive behavior.

  8. DENSITY-DEPENDENT SELECTION ON CONTINUOUS CHARACTERS: A QUANTITATIVE GENETIC MODEL.

    PubMed

    Tanaka, Yoshinari

    1996-10-01

    A quantitative genetic model of density-dependent selection is presented and analysed with parameter values obtained from laboratory selection experiments conducted by Mueller and his coworkers. The ecological concept of r- and K-selection is formulated in terms of selection gradients on underlying phenotypic characters that influence the density-dependent measure of fitness. Hence the selection gradients on traits are decomposed into two components, one that changes in the direction to increase r, and one that changes in the direction to increase K. The relative importance of the two components is determined by temporal fluctuations in population density. The evolutionary rate of r and K (per-generation changes in r and K due to the genetic responses of the underlying traits) is also formulated. Numerical simulation has shown that with moderate genetic variances of the underlying characters, r and K can evolve rapidly and the evolutionary rate is influenced by synergistic interaction between characters that contribute to r and K. But strong r-selection can occur only with severe and continuous disturbances of populations so that the population density is kept low enough to prevent K-selection. © 1996 The Society for the Study of Evolution.

  9. Advances in Genetical Genomics of Plants

    PubMed Central

    Joosen, R.V.L.; Ligterink, W.; Hilhorst, H.W.M.; Keurentjes, J.J.B.

    2009-01-01

    Natural variation provides a valuable resource to study the genetic regulation of quantitative traits. In quantitative trait locus (QTL) analyses this variation, captured in segregating mapping populations, is used to identify the genomic regions affecting these traits. The identification of the causal genes underlying QTLs is a major challenge for which the detection of gene expression differences is of major importance. By combining genetics with large scale expression profiling (i.e. genetical genomics), resulting in expression QTLs (eQTLs), great progress can be made in connecting phenotypic variation to genotypic diversity. In this review we discuss examples from human, mouse, Drosophila, yeast and plant research to illustrate the advances in genetical genomics, with a focus on understanding the regulatory mechanisms underlying natural variation. With their tolerance to inbreeding, short generation time and ease to generate large families, plants are ideal subjects to test new concepts in genetics. The comprehensive resources which are available for Arabidopsis make it a favorite model plant but genetical genomics also found its way to important crop species like rice, barley and wheat. We discuss eQTL profiling with respect to cis and trans regulation and show how combined studies with other ‘omics’ technologies, such as metabolomics and proteomics may further augment current information on transcriptional, translational and metabolomic signaling pathways and enable reconstruction of detailed regulatory networks. The fast developments in the ‘omics’ area will offer great potential for genetical genomics to elucidate the genotype-phenotype relationships for both fundamental and applied research. PMID:20514216

  10. [INVITED] Non-intrusive optical imaging of face to probe physiological traits in Autism Spectrum Disorder

    NASA Astrophysics Data System (ADS)

    Samad, Manar D.; Bobzien, Jonna L.; Harrington, John W.; Iftekharuddin, Khan M.

    2016-03-01

    Autism Spectrum Disorders (ASD) can impair non-verbal communication including the variety and extent of facial expressions in social and interpersonal communication. These impairments may appear as differential traits in the physiology of facial muscles of an individual with ASD when compared to a typically developing individual. The differential traits in the facial expressions as shown by facial muscle-specific changes (also known as 'facial oddity' for subjects with ASD) may be measured visually. However, this mode of measurement may not discern the subtlety in facial oddity distinctive to ASD. Earlier studies have used intrusive electrophysiological sensors on the facial skin to gauge facial muscle actions from quantitative physiological data. This study demonstrates, for the first time in the literature, novel quantitative measures for facial oddity recognition using non-intrusive facial imaging sensors such as video and 3D optical cameras. An Institutional Review Board (IRB) approved that pilot study has been conducted on a group of individuals consisting of eight participants with ASD and eight typically developing participants in a control group to capture their facial images in response to visual stimuli. The proposed computational techniques and statistical analyses reveal higher mean of actions in the facial muscles of the ASD group versus the control group. The facial muscle-specific evaluation reveals intense yet asymmetric facial responses as facial oddity in participants with ASD. This finding about the facial oddity may objectively define measurable differential markers in the facial expressions of individuals with ASD.

  11. Shared activity patterns arising at genetic susceptibility loci reveal underlying genomic and cellular architecture of human disease.

    PubMed

    Baillie, J Kenneth; Bretherick, Andrew; Haley, Christopher S; Clohisey, Sara; Gray, Alan; Neyton, Lucile P A; Barrett, Jeffrey; Stahl, Eli A; Tenesa, Albert; Andersson, Robin; Brown, J Ben; Faulkner, Geoffrey J; Lizio, Marina; Schaefer, Ulf; Daub, Carsten; Itoh, Masayoshi; Kondo, Naoto; Lassmann, Timo; Kawai, Jun; Mole, Damian; Bajic, Vladimir B; Heutink, Peter; Rehli, Michael; Kawaji, Hideya; Sandelin, Albin; Suzuki, Harukazu; Satsangi, Jack; Wells, Christine A; Hacohen, Nir; Freeman, Thomas C; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R R; Hume, David A

    2018-03-01

    Genetic variants underlying complex traits, including disease susceptibility, are enriched within the transcriptional regulatory elements, promoters and enhancers. There is emerging evidence that regulatory elements associated with particular traits or diseases share similar patterns of transcriptional activity. Accordingly, shared transcriptional activity (coexpression) may help prioritise loci associated with a given trait, and help to identify underlying biological processes. Using cap analysis of gene expression (CAGE) profiles of promoter- and enhancer-derived RNAs across 1824 human samples, we have analysed coexpression of RNAs originating from trait-associated regulatory regions using a novel quantitative method (network density analysis; NDA). For most traits studied, phenotype-associated variants in regulatory regions were linked to tightly-coexpressed networks that are likely to share important functional characteristics. Coexpression provides a new signal, independent of phenotype association, to enable fine mapping of causative variants. The NDA coexpression approach identifies new genetic variants associated with specific traits, including an association between the regulation of the OCT1 cation transporter and genetic variants underlying circulating cholesterol levels. NDA strongly implicates particular cell types and tissues in disease pathogenesis. For example, distinct groupings of disease-associated regulatory regions implicate two distinct biological processes in the pathogenesis of ulcerative colitis; a further two separate processes are implicated in Crohn's disease. Thus, our functional analysis of genetic predisposition to disease defines new distinct disease endotypes. We predict that patients with a preponderance of susceptibility variants in each group are likely to respond differently to pharmacological therapy. Together, these findings enable a deeper biological understanding of the causal basis of complex traits.

  12. Shared activity patterns arising at genetic susceptibility loci reveal underlying genomic and cellular architecture of human disease

    PubMed Central

    Gray, Alan; Neyton, Lucile P. A.; Barrett, Jeffrey; Stahl, Eli A.; Tenesa, Albert; Andersson, Robin; Brown, J. Ben; Faulkner, Geoffrey J.; Lizio, Marina; Schaefer, Ulf; Daub, Carsten; Kondo, Naoto; Lassmann, Timo; Kawai, Jun; Kawaji, Hideya; Suzuki, Harukazu; Satsangi, Jack; Wells, Christine A.; Hacohen, Nir; Freeman, Thomas C.; Hayashizaki, Yoshihide; Forrest, Alistair R. R.; Hume, David A.

    2018-01-01

    Genetic variants underlying complex traits, including disease susceptibility, are enriched within the transcriptional regulatory elements, promoters and enhancers. There is emerging evidence that regulatory elements associated with particular traits or diseases share similar patterns of transcriptional activity. Accordingly, shared transcriptional activity (coexpression) may help prioritise loci associated with a given trait, and help to identify underlying biological processes. Using cap analysis of gene expression (CAGE) profiles of promoter- and enhancer-derived RNAs across 1824 human samples, we have analysed coexpression of RNAs originating from trait-associated regulatory regions using a novel quantitative method (network density analysis; NDA). For most traits studied, phenotype-associated variants in regulatory regions were linked to tightly-coexpressed networks that are likely to share important functional characteristics. Coexpression provides a new signal, independent of phenotype association, to enable fine mapping of causative variants. The NDA coexpression approach identifies new genetic variants associated with specific traits, including an association between the regulation of the OCT1 cation transporter and genetic variants underlying circulating cholesterol levels. NDA strongly implicates particular cell types and tissues in disease pathogenesis. For example, distinct groupings of disease-associated regulatory regions implicate two distinct biological processes in the pathogenesis of ulcerative colitis; a further two separate processes are implicated in Crohn’s disease. Thus, our functional analysis of genetic predisposition to disease defines new distinct disease endotypes. We predict that patients with a preponderance of susceptibility variants in each group are likely to respond differently to pharmacological therapy. Together, these findings enable a deeper biological understanding of the causal basis of complex traits. PMID:29494619

  13. An Integrated Model of Emotional Problems, Beta Power of Electroencephalography, and Low Frequency of Heart Rate Variability after Childhood Trauma in a Non-Clinical Sample: A Path Analysis Study.

    PubMed

    Jin, Min Jin; Kim, Ji Sun; Kim, Sungkean; Hyun, Myoung Ho; Lee, Seung-Hwan

    2017-01-01

    Childhood trauma is known to be related to emotional problems, quantitative electroencephalography (EEG) indices, and heart rate variability (HRV) indices in adulthood, whereas directions among these factors have not been reported yet. This study aimed to evaluate pathway models in young and healthy adults: (1) one with physiological factors first and emotional problems later in adulthood as results of childhood trauma and (2) one with emotional problems first and physiological factors later. A total of 103 non-clinical volunteers were included. Self-reported psychological scales, including the Childhood Trauma Questionnaire (CTQ), State-Trait Anxiety Inventory, Beck Depression Inventory, and Affective Lability Scale were administered. For physiological evaluation, EEG record was performed during resting eyes closed condition in addition to the resting-state HRV, and the quantitative power analyses of eight EEG bands and three HRV components were calculated in the frequency domain. After a normality test, Pearson's correlation analysis to make path models and path analyses to examine them were conducted. The CTQ score was significantly correlated with depression, state and trait anxiety, affective lability, and HRV low-frequency (LF) power. LF power was associated with beta2 (18-22 Hz) power that was related to affective lability. Affective lability was associated with state anxiety, trait anxiety, and depression. Based on the correlation and the hypothesis, two models were composed: a model with pathways from CTQ score to affective lability, and a model with pathways from CTQ score to LF power. The second model showed significantly better fit than the first model (AIC model1  = 63.403 > AIC model2  = 46.003), which revealed that child trauma could affect emotion, and then physiology. The specific directions of relationships among emotions, the EEG, and HRV in adulthood after childhood trauma was discussed.

  14. An Integrated Model of Emotional Problems, Beta Power of Electroencephalography, and Low Frequency of Heart Rate Variability after Childhood Trauma in a Non-Clinical Sample: A Path Analysis Study

    PubMed Central

    Jin, Min Jin; Kim, Ji Sun; Kim, Sungkean; Hyun, Myoung Ho; Lee, Seung-Hwan

    2018-01-01

    Childhood trauma is known to be related to emotional problems, quantitative electroencephalography (EEG) indices, and heart rate variability (HRV) indices in adulthood, whereas directions among these factors have not been reported yet. This study aimed to evaluate pathway models in young and healthy adults: (1) one with physiological factors first and emotional problems later in adulthood as results of childhood trauma and (2) one with emotional problems first and physiological factors later. A total of 103 non-clinical volunteers were included. Self-reported psychological scales, including the Childhood Trauma Questionnaire (CTQ), State–Trait Anxiety Inventory, Beck Depression Inventory, and Affective Lability Scale were administered. For physiological evaluation, EEG record was performed during resting eyes closed condition in addition to the resting-state HRV, and the quantitative power analyses of eight EEG bands and three HRV components were calculated in the frequency domain. After a normality test, Pearson’s correlation analysis to make path models and path analyses to examine them were conducted. The CTQ score was significantly correlated with depression, state and trait anxiety, affective lability, and HRV low-frequency (LF) power. LF power was associated with beta2 (18–22 Hz) power that was related to affective lability. Affective lability was associated with state anxiety, trait anxiety, and depression. Based on the correlation and the hypothesis, two models were composed: a model with pathways from CTQ score to affective lability, and a model with pathways from CTQ score to LF power. The second model showed significantly better fit than the first model (AICmodel1 = 63.403 > AICmodel2 = 46.003), which revealed that child trauma could affect emotion, and then physiology. The specific directions of relationships among emotions, the EEG, and HRV in adulthood after childhood trauma was discussed. PMID:29403401

  15. Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp. sativa) berry: a quantitative trait locus to quantitative trait nucleotide integrated study.

    PubMed

    Fournier-Level, Alexandre; Le Cunff, Loïc; Gomez, Camila; Doligez, Agnès; Ageorges, Agnès; Roux, Catherine; Bertrand, Yves; Souquet, Jean-Marc; Cheynier, Véronique; This, Patrice

    2009-11-01

    The combination of QTL mapping studies of synthetic lines and association mapping studies of natural diversity represents an opportunity to throw light on the genetically based variation of quantitative traits. With the positional information provided through quantitative trait locus (QTL) mapping, which often leads to wide intervals encompassing numerous genes, it is now feasible to directly target candidate genes that are likely to be responsible for the observed variation in completely sequenced genomes and to test their effects through association genetics. This approach was performed in grape, a newly sequenced genome, to decipher the genetic architecture of anthocyanin content. Grapes may be either white or colored, ranging from the lightest pink to the darkest purple tones according to the amount of anthocyanin accumulated in the berry skin, which is a crucial trait for both wine quality and human nutrition. Although the determinism of the white phenotype has been fully identified, the genetic bases of the quantitative variation of anthocyanin content in berry skin remain unclear. A single QTL responsible for up to 62% of the variation in the anthocyanin content was mapped on a Syrah x Grenache F(1) pseudo-testcross. Among the 68 unigenes identified in the grape genome within the QTL interval, a cluster of four Myb-type genes was selected on the basis of physiological evidence (VvMybA1, VvMybA2, VvMybA3, and VvMybA4). From a core collection of natural resources (141 individuals), 32 polymorphisms revealed significant association, and extended linkage disequilibrium was observed. Using a multivariate regression method, we demonstrated that five polymorphisms in VvMybA genes except VvMybA4 (one retrotransposon, three single nucleotide polymorphisms and one 2-bp insertion/deletion) accounted for 84% of the observed variation. All these polymorphisms led to either structural changes in the MYB proteins or differences in the VvMybAs promoters. We concluded that the continuous variation in anthocyanin content in grape was explained mainly by a single gene cluster of three VvMybA genes. The use of natural diversity helped to reduce one QTL to a set of five quantitative trait nucleotides and gave a clear picture of how isogenes combined their effects to shape grape color. Such analysis also illustrates how isogenes combine their effect to shape a complex quantitative trait and enables the definition of markers directly targeted for upcoming breeding programs.

  16. Phenotypic integration among trabecular and cortical bone traits establishes mechanical functionality of inbred mouse vertebrae.

    PubMed

    Tommasini, Steven M; Hu, Bin; Nadeau, Joseph H; Jepsen, Karl J

    2009-04-01

    Conventional approaches to identifying quantitative trait loci (QTLs) regulating bone mass and fragility are limited because they examine cortical and trabecular traits independently. Prior work examining long bones from young adult mice and humans indicated that skeletal traits are functionally related and that compensatory interactions among morphological and compositional traits are critical for establishing mechanical function. However, it is not known whether trait covariation (i.e., phenotypic integration) also is important for establishing mechanical function in more complex, corticocancellous structures. Covariation among trabecular, cortical, and compositional bone traits was examined in the context of mechanical functionality for L(4) vertebral bodies across a panel of 16-wk-old female AXB/BXA recombinant inbred (RI) mouse strains. The unique pattern of randomization of the A/J and C57BL/6J (B6) genome among the RI panel provides a powerful tool that can be used to measure the tendency for different traits to covary and to study the biology of complex traits. We tested the hypothesis that genetic variants affecting vertebral size and mass are buffered by changes in the relative amounts of cortical and trabecular bone and overall mineralization. Despite inheriting random sets of A/J and B6 genomes, the RI strains inherited nonrandom sets of cortical and trabecular bone traits. Path analysis, which is a multivariate analysis that shows how multiple traits covary simultaneously when confounding variables like body size are taken into consideration, showed that RI strains that tended to have smaller vertebrae relative to body size achieved mechanical functionality by increasing mineralization and the relative amounts of cortical and trabecular bone. The interdependence among corticocancellous traits in the vertebral body indicated that variation in trabecular bone traits among inbred mouse strains, which is often thought to arise from genetic factors, is also determined in part by the adaptive response to variation in traits describing the cortical shell. The covariation among corticocancellous traits has important implications for genetic analyses and for interpreting the response of bone to genetic and environmental perturbations.

  17. Linkage and Association Mapping for Two Major Traits Used in the Maritime Pine Breeding Program: Height Growth and Stem Straightness

    PubMed Central

    Bink, Marco CAM; van Heerwaarden, Joost; Chancerel, Emilie; Boury, Christophe; Lesur, Isabelle; Isik, Fikret; Bouffier, Laurent; Plomion, Christophe

    2016-01-01

    Background Increasing our understanding of the genetic architecture of complex traits, through analyses of genotype-phenotype associations and of the genes/polymorphisms accounting for trait variation, is crucial, to improve the integration of molecular markers into forest tree breeding. In this study, two full-sib families and one breeding population of maritime pine were used to identify quantitative trait loci (QTLs) for height growth and stem straightness, through linkage analysis (LA) and linkage disequilibrium (LD) mapping approaches. Results The populations used for LA consisted of two unrelated three-generation full-sib families (n = 197 and n = 477). These populations were assessed for height growth or stem straightness and genotyped for 248 and 217 markers, respectively. The population used for LD mapping consisted of 661 founders of the first and second generations of the breeding program. This population was phenotyped for the same traits and genotyped for 2,498 single-nucleotide polymorphism (SNP) markers corresponding to 1,652 gene loci. The gene-based reference genetic map of maritime pine was used to localize and compare the QTLs detected by the two approaches, for both traits. LA identified three QTLs for stem straightness and two QTLs for height growth. The LD study yielded seven significant associations (P ≤ 0.001): four for stem straightness and three for height growth. No colocalisation was found between QTLs identified by LA and SNPs detected by LD mapping for the same trait. Conclusions This study provides the first comparison of LA and LD mapping approaches in maritime pine, highlighting the complementary nature of these two approaches for deciphering the genetic architecture of two mandatory traits of the breeding program. PMID:27806077

  18. Linkage and Association Mapping for Two Major Traits Used in the Maritime Pine Breeding Program: Height Growth and Stem Straightness.

    PubMed

    Bartholomé, Jérôme; Bink, Marco Cam; van Heerwaarden, Joost; Chancerel, Emilie; Boury, Christophe; Lesur, Isabelle; Isik, Fikret; Bouffier, Laurent; Plomion, Christophe

    2016-01-01

    Increasing our understanding of the genetic architecture of complex traits, through analyses of genotype-phenotype associations and of the genes/polymorphisms accounting for trait variation, is crucial, to improve the integration of molecular markers into forest tree breeding. In this study, two full-sib families and one breeding population of maritime pine were used to identify quantitative trait loci (QTLs) for height growth and stem straightness, through linkage analysis (LA) and linkage disequilibrium (LD) mapping approaches. The populations used for LA consisted of two unrelated three-generation full-sib families (n = 197 and n = 477). These populations were assessed for height growth or stem straightness and genotyped for 248 and 217 markers, respectively. The population used for LD mapping consisted of 661 founders of the first and second generations of the breeding program. This population was phenotyped for the same traits and genotyped for 2,498 single-nucleotide polymorphism (SNP) markers corresponding to 1,652 gene loci. The gene-based reference genetic map of maritime pine was used to localize and compare the QTLs detected by the two approaches, for both traits. LA identified three QTLs for stem straightness and two QTLs for height growth. The LD study yielded seven significant associations (P ≤ 0.001): four for stem straightness and three for height growth. No colocalisation was found between QTLs identified by LA and SNPs detected by LD mapping for the same trait. This study provides the first comparison of LA and LD mapping approaches in maritime pine, highlighting the complementary nature of these two approaches for deciphering the genetic architecture of two mandatory traits of the breeding program.

  19. Accuracy of whole-genome prediction using a genetic architecture-enhanced variance-covariance matrix.

    PubMed

    Zhang, Zhe; Erbe, Malena; He, Jinlong; Ober, Ulrike; Gao, Ning; Zhang, Hao; Simianer, Henner; Li, Jiaqi

    2015-02-09

    Obtaining accurate predictions of unobserved genetic or phenotypic values for complex traits in animal, plant, and human populations is possible through whole-genome prediction (WGP), a combined analysis of genotypic and phenotypic data. Because the underlying genetic architecture of the trait of interest is an important factor affecting model selection, we propose a new strategy, termed BLUP|GA (BLUP-given genetic architecture), which can use genetic architecture information within the dataset at hand rather than from public sources. This is achieved by using a trait-specific covariance matrix ( T: ), which is a weighted sum of a genetic architecture part ( S: matrix) and the realized relationship matrix ( G: ). The algorithm of BLUP|GA (BLUP-given genetic architecture) is provided and illustrated with real and simulated datasets. Predictive ability of BLUP|GA was validated with three model traits in a dairy cattle dataset and 11 traits in three public datasets with a variety of genetic architectures and compared with GBLUP and other approaches. Results show that BLUP|GA outperformed GBLUP in 20 of 21 scenarios in the dairy cattle dataset and outperformed GBLUP, BayesA, and BayesB in 12 of 13 traits in the analyzed public datasets. Further analyses showed that the difference of accuracies for BLUP|GA and GBLUP significantly correlate with the distance between the T: and G: matrices. The new strategy applied in BLUP|GA is a favorable and flexible alternative to the standard GBLUP model, allowing to account for the genetic architecture of the quantitative trait under consideration when necessary. This feature is mainly due to the increased similarity between the trait-specific relationship matrix ( T: matrix) and the genetic relationship matrix at unobserved causal loci. Applying BLUP|GA in WGP would ease the burden of model selection. Copyright © 2015 Zhang et al.

  20. Dominance and parent-of-origin effects of coding and non-coding alleles at the acylCoA-diacylglycerol-acyltransferase (DGAT1) gene on milk production traits in German Holstein cows

    PubMed Central

    Kuehn, Christa; Edel, Christian; Weikard, Rosemarie; Thaller, Georg

    2007-01-01

    Background Substantial gene substitution effects on milk production traits have formerly been reported for alleles at the K232A and the promoter VNTR loci in the bovine acylCoA-diacylglycerol-acyltransferase 1 (DGAT1) gene by using data sets including sires with accumulated phenotypic observations of daughters (breeding values, daughter yield deviations). However, these data sets prevented analyses with respect to dominance or parent-of-origin effects, although an increasing number of reports in the literature outlined the relevance of non-additive gene effects on quantitative traits. Results Based on a data set comprising German Holstein cows with direct trait measurements, we first confirmed the previously reported association of DGAT1 promoter VNTR alleles with milk production traits. We detected a dominant mode of effects for the DGAT1 K232A and promoter VNTR alleles. Namely, the contrasts between the effects of heterozygous individuals at the DGAT1 loci differed significantly from the midpoint between the effects for the two homozygous genotypes for several milk production traits, thus indicating the presence of dominance. Furthermore, we identified differences in the magnitude of effects between paternally and maternally inherited DGAT1 promoter VNTR – K232A haplotypes indicating parent-of-origin effects on milk production traits. Conclusion Non-additive effects like those identified at the bovine DGAT1 locus have to be accounted for in more specific QTL detection models as well as in marker assisted selection schemes. The DGAT1 alleles in cattle will be a useful model for further investigations on the biological background of non-additive effects in mammals due to the magnitude and consistency of their effects on milk production traits. PMID:17892573

  1. General Methods for Evolutionary Quantitative Genetic Inference from Generalized Mixed Models.

    PubMed

    de Villemereuil, Pierre; Schielzeth, Holger; Nakagawa, Shinichi; Morrissey, Michael

    2016-11-01

    Methods for inference and interpretation of evolutionary quantitative genetic parameters, and for prediction of the response to selection, are best developed for traits with normal distributions. Many traits of evolutionary interest, including many life history and behavioral traits, have inherently nonnormal distributions. The generalized linear mixed model (GLMM) framework has become a widely used tool for estimating quantitative genetic parameters for nonnormal traits. However, whereas GLMMs provide inference on a statistically convenient latent scale, it is often desirable to express quantitative genetic parameters on the scale upon which traits are measured. The parameters of fitted GLMMs, despite being on a latent scale, fully determine all quantities of potential interest on the scale on which traits are expressed. We provide expressions for deriving each of such quantities, including population means, phenotypic (co)variances, variance components including additive genetic (co)variances, and parameters such as heritability. We demonstrate that fixed effects have a strong impact on those parameters and show how to deal with this by averaging or integrating over fixed effects. The expressions require integration of quantities determined by the link function, over distributions of latent values. In general cases, the required integrals must be solved numerically, but efficient methods are available and we provide an implementation in an R package, QGglmm. We show that known formulas for quantities such as heritability of traits with binomial and Poisson distributions are special cases of our expressions. Additionally, we show how fitted GLMM can be incorporated into existing methods for predicting evolutionary trajectories. We demonstrate the accuracy of the resulting method for evolutionary prediction by simulation and apply our approach to data from a wild pedigreed vertebrate population. Copyright © 2016 de Villemereuil et al.

  2. Validation of a major quantitative trait locus associated with host response to experimental infection with Porcine Reproductive and Respiratory Syndrome virus

    USDA-ARS?s Scientific Manuscript database

    Infectious diseases are costly to the swine industry and porcine reproductive and respiratory syndrome virus (PRRSV) is the most devastating. In earlier work, a quantitative trait locus associated with resistance/susceptibility to PRRSV was identified on Sus scrofa chromosome 4 (SSC4) using ~560 exp...

  3. Use of single nucleotide polymorphisms (SNP) to fine-map quantitative trait loci (QTL) in swine

    USDA-ARS?s Scientific Manuscript database

    Mapping quantitative trait loci (QTL) in swine at the US Meat Animal Research Center has relied heavily on linkage mapping in either F2 or Backcross families. QTL identified in the initial scans typically have very broad confidence intervals and further refinement of the QTL’s position is needed bef...

  4. Educational Software for Mapping Quantitative Trait Loci (QTL)

    ERIC Educational Resources Information Center

    Helms, T. C.; Doetkott, C.

    2007-01-01

    This educational software was developed to aid teachers and students in their understanding of how the process of identifying the most likely quantitative trait loci (QTL) position is determined between two flanking DNA markers. The objective of the software that we developed was to: (1) show how a QTL is mapped to a position on a chromosome using…

  5. The IQ Quantitative Trait Loci Project: A Critique.

    ERIC Educational Resources Information Center

    King, David

    1998-01-01

    Describes the IQ Quantitative Trait Loci (QTL) project, an attempt to identify genes underlying IQ score variations using maps from the Human Genome Project. The essay argues against funding the IQ QTL project because it will end the debates about the genetic basis of intelligence and may lead directly to eugenic programs of genetic testing. (SLD)

  6. Mapping and validation of quantitative trait loci associated with concentrations of 16 elements in unmilled rice grain

    USDA-ARS?s Scientific Manuscript database

    In this study, quantitative trait loci (QTLs) affecting the concentrations of 16 elements in whole, unmilled rice (Oryza sativa L.) grain were identified. Two rice mapping populations, the ‘Lemont’ x ‘TeQing’ recombinant inbred lines (LT-RILs), and the TeQing-into-Lemont backcross introgression lin...

  7. Validation and Estimation of Additive Genetic Variation Associated with DNA Tests for Quantitative Beef Cattle Traits

    USDA-ARS?s Scientific Manuscript database

    The U.S. National Beef Cattle Evaluation Consortium (NBCEC) has been involved in the validation of commercial DNA tests for quantitative beef quality traits since their first appearance on the U.S. market in the early 2000s. The NBCEC Advisory Council initially requested that the NBCEC set up a syst...

  8. Quantitative trait loci for seed isoflavones contents in 'MD96-5722' by 'Spencer' recombinant inbred lines of soybean

    USDA-ARS?s Scientific Manuscript database

    Isoflavones from soybeans (Glycine max L. Merr.) have significant impact on human health in reducing the risk of several major diseases. Breeding soybean for high isoflavones content in the seed is possible through marker assisted selection (MAS), which can be based on quantitative trait loci (QTL)....

  9. Identification of quantitative trait loci (QTL) controlling protein, oil, and five major fatty acids’ contents in soybean

    USDA-ARS?s Scientific Manuscript database

    Improved seed composition in soybean (Glycine max L. Merr.) for protein and oil quality is one of the major goals of soybean breeders. A group of genes that act as quantitative traits with their effects can alter protein, oil, palmitic, stearic, oleic, linoleic, and linolenic acids percentage in soy...

  10. Mapping complex traits as a dynamic system

    PubMed Central

    Sun, Lidan; Wu, Rongling

    2017-01-01

    Despite increasing emphasis on the genetic study of quantitative traits, we are still far from being able to chart a clear picture of their genetic architecture, given an inherent complexity involved in trait formation. A competing theory for studying such complex traits has emerged by viewing their phenotypic formation as a “system” in which a high-dimensional group of interconnected components act and interact across different levels of biological organization from molecules through cells to whole organisms. This system is initiated by a machinery of DNA sequences that regulate a cascade of biochemical pathways to synthesize endophenotypes and further assemble these endophenotypes toward the end-point phenotype in virtue of various developmental changes. This review focuses on a conceptual framework for genetic mapping of complex traits by which to delineate the underlying components, interactions and mechanisms that govern the system according to biological principles and understand how these components function synergistically under the control of quantitative trait loci (QTLs) to comprise a unified whole. This framework is built by a system of differential equations that quantifies how alterations of different components lead to the global change of trait development and function, and provides a quantitative and testable platform for assessing the multiscale interplay between QTLs and development. The method will enable geneticists to shed light on the genetic complexity of any biological system and predict, alter or engineer its physiological and pathological states. PMID:25772476

  11. Testing for biases in selection on avian reproductive traits and partitioning direct and indirect selection using quantitative genetic models.

    PubMed

    Reed, Thomas E; Gienapp, Phillip; Visser, Marcel E

    2016-10-01

    Key life history traits such as breeding time and clutch size are frequently both heritable and under directional selection, yet many studies fail to document microevolutionary responses. One general explanation is that selection estimates are biased by the omission of correlated traits that have causal effects on fitness, but few valid tests of this exist. Here, we show, using a quantitative genetic framework and six decades of life-history data on two free-living populations of great tits Parus major, that selection estimates for egg-laying date and clutch size are relatively unbiased. Predicted responses to selection based on the Robertson-Price Identity were similar to those based on the multivariate breeder's equation (MVBE), indicating that unmeasured covarying traits were not missing from the analysis. Changing patterns of phenotypic selection on these traits (for laying date, linked to climate change) therefore reflect changing selection on breeding values, and genetic constraints appear not to limit their independent evolution. Quantitative genetic analysis of correlational data from pedigreed populations can be a valuable complement to experimental approaches to help identify whether apparent associations between traits and fitness are biased by missing traits, and to parse the roles of direct versus indirect selection across a range of environments. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  12. Novel Applications of Multi-task Learning and Multiple Output Regression to Multiple Genetic Trait Prediction

    USDA-ARS?s Scientific Manuscript database

    Given a set of biallelic molecular markers, such as SNPs, with genotype values encoded numerically on a collection of plant, animal or human samples, the goal of genetic trait prediction is to predict the quantitative trait values by simultaneously modeling all marker effects. Genetic trait predicti...

  13. Detection of linkage between a quantitative trait and a marker locus by the lod score method: sample size and sampling considerations.

    PubMed

    Demenais, F; Lathrop, G M; Lalouel, J M

    1988-07-01

    A simulation study is here conducted to measure the power of the lod score method to detect linkage between a quantitative trait and a marker locus in various situations. The number of families necessary to detect such linkage with 80% power is assessed for different sets of parameters at the trait locus and different values of the recombination fraction. The effects of varying the mode of sampling families and the sibship size are also evaluated.

  14. Genetic architecture of hybrid male sterility in Drosophila: analysis of intraspecies variation for interspecies isolation.

    PubMed

    Reed, Laura K; LaFlamme, Brooke A; Markow, Therese A

    2008-08-27

    The genetic basis of postzygotic isolation is a central puzzle in evolutionary biology. Evolutionary forces causing hybrid sterility or inviability act on the responsible genes while they still are polymorphic, thus we have to study these traits as they arise, before isolation is complete. Isofemale strains of D. mojavensis vary significantly in their production of sterile F(1) sons when females are crossed to D. arizonae males. We took advantage of the intraspecific polymorphism, in a novel design, to perform quantitative trait locus (QTL) mapping analyses directly on F(1) hybrid male sterility itself. We found that the genetic architecture of the polymorphism for hybrid male sterility (HMS) in the F(1) is complex, involving multiple QTL, epistasis, and cytoplasmic effects. The role of extensive intraspecific polymorphism, multiple QTL, and epistatic interactions in HMS in this young species pair shows that HMS is arising as a complex trait in this system. Directional selection alone would be unlikely to maintain polymorphism at multiple loci, thus we hypothesize that directional selection is unlikely to be the only evolutionary force influencing postzygotic isolation.

  15. Sex ratio meiotic drive as a plausible evolutionary mechanism for hybrid male sterility.

    PubMed

    Zhang, Linbin; Sun, Tianai; Woldesellassie, Fitsum; Xiao, Hailian; Tao, Yun

    2015-03-01

    Biological diversity on Earth depends on the multiplication of species or speciation, which is the evolution of reproductive isolation such as hybrid sterility between two new species. An unsolved puzzle is the exact mechanism(s) that causes two genomes to diverge from their common ancestor so that some divergent genes no longer function properly in the hybrids. Here we report genetic analyses of divergent genes controlling male fertility and sex ratio in two very young fruitfly species, Drosophila albomicans and D. nasuta. A majority of the genetic divergence for both traits is mapped to the same regions by quantitative trait loci mappings. With introgressions, six major loci are found to contribute to both traits. This genetic colocalization implicates that genes for hybrid male sterility have evolved primarily for controlling sex ratio. We propose that genetic conflicts over sex ratio may operate as a perpetual dynamo for genome divergence. This particular evolutionary mechanism may largely contribute to the rapid evolution of hybrid male sterility and the disproportionate enrichment of its underlying genes on the X chromosome--two patterns widely observed across animals.

  16. Sex Ratio Meiotic Drive as a Plausible Evolutionary Mechanism for Hybrid Male Sterility

    PubMed Central

    Zhang, Linbin; Xiao, Hailian; Tao, Yun

    2015-01-01

    Biological diversity on Earth depends on the multiplication of species or speciation, which is the evolution of reproductive isolation such as hybrid sterility between two new species. An unsolved puzzle is the exact mechanism(s) that causes two genomes to diverge from their common ancestor so that some divergent genes no longer function properly in the hybrids. Here we report genetic analyses of divergent genes controlling male fertility and sex ratio in two very young fruitfly species, Drosophila albomicans and D. nasuta. A majority of the genetic divergence for both traits is mapped to the same regions by quantitative trait loci mappings. With introgressions, six major loci are found to contribute to both traits. This genetic colocalization implicates that genes for hybrid male sterility have evolved primarily for controlling sex ratio. We propose that genetic conflicts over sex ratio may operate as a perpetual dynamo for genome divergence. This particular evolutionary mechanism may largely contribute to the rapid evolution of hybrid male sterility and the disproportionate enrichment of its underlying genes on the X chromosome – two patterns widely observed across animals. PMID:25822261

  17. Quantitative genetics

    USDA-ARS?s Scientific Manuscript database

    The majority of economically important traits targeted for cotton improvement are quantitatively inherited. In this chapter, the current state of cotton quantitative genetics is described and separated into four components. These components include: 1) traditional quantitative inheritance analysis, ...

  18. Exploiting induced variation to dissect quantitative traits in barley.

    PubMed

    Druka, Arnis; Franckowiak, Jerome; Lundqvist, Udda; Bonar, Nicola; Alexander, Jill; Guzy-Wrobelska, Justyna; Ramsay, Luke; Druka, Ilze; Grant, Iain; Macaulay, Malcolm; Vendramin, Vera; Shahinnia, Fahimeh; Radovic, Slobodanka; Houston, Kelly; Harrap, David; Cardle, Linda; Marshall, David; Morgante, Michele; Stein, Nils; Waugh, Robbie

    2010-04-01

    The identification of genes underlying complex quantitative traits such as grain yield by means of conventional genetic analysis (positional cloning) requires the development of several large mapping populations. However, it is possible that phenotypically related, but more extreme, allelic variants generated by mutational studies could provide a means for more efficient cloning of QTLs (quantitative trait loci). In barley (Hordeum vulgare), with the development of high-throughput genome analysis tools, efficient genome-wide identification of genetic loci harbouring mutant alleles has recently become possible. Genotypic data from NILs (near-isogenic lines) that carry induced or natural variants of genes that control aspects of plant development can be compared with the location of QTLs to potentially identify candidate genes for development--related traits such as grain yield. As yield itself can be divided into a number of allometric component traits such as tillers per plant, kernels per spike and kernel size, mutant alleles that both affect these traits and are located within the confidence intervals for major yield QTLs may represent extreme variants of the underlying genes. In addition, the development of detailed comparative genomic models based on the alignment of a high-density barley gene map with the rice and sorghum physical maps, has enabled an informed prioritization of 'known function' genes as candidates for both QTLs and induced mutant genes.

  19. Genetic variants associated with the root system architecture of oilseed rape (Brassica napus L.) under contrasting phosphate supply.

    PubMed

    Wang, Xiaohua; Chen, Yanling; Thomas, Catherine L; Ding, Guangda; Xu, Ping; Shi, Dexu; Grandke, Fabian; Jin, Kemo; Cai, Hongmei; Xu, Fangsen; Yi, Bin; Broadley, Martin R; Shi, Lei

    2017-08-01

    Breeding crops with ideal root system architecture for efficient absorption of phosphorus is an important strategy to reduce the use of phosphate fertilizers. To investigate genetic variants leading to changes in root system architecture, 405 oilseed rape cultivars were genotyped with a 60K Brassica Infinium SNP array in low and high P environments. A total of 285 single-nucleotide polymorphisms were associated with root system architecture traits at varying phosphorus levels. Nine single-nucleotide polymorphisms corroborate a previous linkage analysis of root system architecture quantitative trait loci in the BnaTNDH population. One peak single-nucleotide polymorphism region on A3 was associated with all root system architecture traits and co-localized with a quantitative trait locus for primary root length at low phosphorus. Two more single-nucleotide polymorphism peaks on A5 for root dry weight at low phosphorus were detected in both growth systems and co-localized with a quantitative trait locus for the same trait. The candidate genes identified on A3 form a haplotype 'BnA3Hap', that will be important for understanding the phosphorus/root system interaction and for the incorporation into Brassica napus breeding programs. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  20. Identification of quantitative trait loci affecting resistance to gastro-intestinal parasites in a double backcross population of Red Maasai and Dorper sheep

    USDA-ARS?s Scientific Manuscript database

    A genome-wide scan for quantitative trait loci (QTL) affecting gastrointestinal (GI) nematode resistance was completed using a double backcross sheep population derived from Red Maasai and Dorper ewes bred to F1 rams. These breeds were chosen, because Red Maasai sheep are known to be more tolerant ...

  1. Quantitative Autism Traits in First Degree Relatives: Evidence for the Broader Autism Phenotype in Fathers, but Not in Mothers and Siblings

    ERIC Educational Resources Information Center

    De la Marche, Wouter; Noens, Ilse; Luts, Jan; Scholte, Evert; Van Huffel, Sabine; Steyaert, Jean

    2012-01-01

    Autism spectrum disorder (ASD) symptoms are present in unaffected relatives and individuals from the general population. Results are inconclusive, however, on whether unaffected relatives have higher levels of quantitative autism traits (QAT) or not. This might be due to differences in research populations, because behavioral data and molecular…

  2. Identification of quantitative trait loci influencing wood specific gravity in an outbred pedigree of loblolly pine

    Treesearch

    A. Groover; M. Devey; T. Fiddler; J. Lee; R. Megraw; T. Mitchel-Olds; B. Sherman; S. Vujcic; C. Williams; D. Neale

    1994-01-01

    We report the identification of quantitative trait loci (QTL) influencing wood specific gravity (WSG) in an outbred pedigree of loblolly pine (Pinus taeda L.) . QTL mapping in an outcrossing species is complicated by the presence of multiple alleles (>2) at QTL and marker loci. Multiple alleles at QTL allow the examination of interaction among...

  3. Quantitative traits and diversification.

    PubMed

    FitzJohn, Richard G

    2010-12-01

    Quantitative traits have long been hypothesized to affect speciation and extinction rates. For example, smaller body size or increased specialization may be associated with increased rates of diversification. Here, I present a phylogenetic likelihood-based method (quantitative state speciation and extinction [QuaSSE]) that can be used to test such hypotheses using extant character distributions. This approach assumes that diversification follows a birth-death process where speciation and extinction rates may vary with one or more traits that evolve under a diffusion model. Speciation and extinction rates may be arbitrary functions of the character state, allowing much flexibility in testing models of trait-dependent diversification. I test the approach using simulated phylogenies and show that a known relationship between speciation and a quantitative character could be recovered in up to 80% of the cases on large trees (500 species). Consistent with other approaches, detecting shifts in diversification due to differences in extinction rates was harder than when due to differences in speciation rates. Finally, I demonstrate the application of QuaSSE to investigate the correlation between body size and diversification in primates, concluding that clade-specific differences in diversification may be more important than size-dependent diversification in shaping the patterns of diversity within this group.

  4. Mapping Quantitative Traits in Unselected Families: Algorithms and Examples

    PubMed Central

    Dupuis, Josée; Shi, Jianxin; Manning, Alisa K.; Benjamin, Emelia J.; Meigs, James B.; Cupples, L. Adrienne; Siegmund, David

    2009-01-01

    Linkage analysis has been widely used to identify from family data genetic variants influencing quantitative traits. Common approaches have both strengths and limitations. Likelihood ratio tests typically computed in variance component analysis can accommodate large families but are highly sensitive to departure from normality assumptions. Regression-based approaches are more robust but their use has primarily been restricted to nuclear families. In this paper, we develop methods for mapping quantitative traits in moderately large pedigrees. Our methods are based on the score statistic which in contrast to the likelihood ratio statistic, can use nonparametric estimators of variability to achieve robustness of the false positive rate against departures from the hypothesized phenotypic model. Because the score statistic is easier to calculate than the likelihood ratio statistic, our basic mapping methods utilize relatively simple computer code that performs statistical analysis on output from any program that computes estimates of identity-by-descent. This simplicity also permits development and evaluation of methods to deal with multivariate and ordinal phenotypes, and with gene-gene and gene-environment interaction. We demonstrate our methods on simulated data and on fasting insulin, a quantitative trait measured in the Framingham Heart Study. PMID:19278016

  5. Quantitative Trait Loci Differentiating the Outbreeding Mimulus Guttatus from the Inbreeding M. Platycalyx

    PubMed Central

    Lin, J. Z.; Ritland, K.

    1997-01-01

    Theoretical predictions about the evolution of selfing depend on the genetic architecture of loci controlling selfing (monogenic vs. polygenic determination, large vs. small effect of alleles, dominance vs. recessiveness), and studies of such architecture are lacking. We inferred the genetic basis of mating system differences between the outbreeding Mimulus guttatus and the inbreeding M. platycalyx by quantitative trait locus (QTL) mapping using random amplified polymorphic DNA and isozyme markers. One to three QTL were detected for each of five mating system characters, and each QTL explained 7.6-28.6% of the phenotypic variance. Taken together, QTL accounted for up to 38% of the variation in mating system characters, and a large proportion of variation was unaccounted for. Inferred QTL often affected more than one trait, contributing to the genetic correlation between those traits. These results are consistent with the hypothesis that quantitative variation in plant mating system characters is primarily controlled by loci with small effect. PMID:9215912

  6. Ensemble learning of QTL models improves prediction of complex traits

    USDA-ARS?s Scientific Manuscript database

    Quantitative trait locus (QTL) models can provide useful insights into trait genetic architecture because of their straightforward interpretability, but are less useful for genetic prediction due to difficulty in including the effects of numerous small effect loci without overfitting. Tight linkage ...

  7. Phylogenetic comparative methods on phylogenetic networks with reticulations.

    PubMed

    Bastide, Paul; Solís-Lemus, Claudia; Kriebel, Ricardo; Sparks, K William; Ané, Cécile

    2018-04-25

    The goal of Phylogenetic Comparative Methods (PCMs) is to study the distribution of quantitative traits among related species. The observed traits are often seen as the result of a Brownian Motion (BM) along the branches of a phylogenetic tree. Reticulation events such as hybridization, gene flow or horizontal gene transfer, can substantially affect a species' traits, but are not modeled by a tree. Phylogenetic networks have been designed to represent reticulate evolution. As they become available for downstream analyses, new models of trait evolution are needed, applicable to networks. One natural extension of the BM is to use a weighted average model for the trait of a hybrid, at a reticulation point. We develop here an efficient recursive algorithm to compute the phylogenetic variance matrix of a trait on a network, in only one preorder traversal of the network. We then extend the standard PCM tools to this new framework, including phylogenetic regression with covariates (or phylogenetic ANOVA), ancestral trait reconstruction, and Pagel's λ test of phylogenetic signal. The trait of a hybrid is sometimes outside of the range of its two parents, for instance because of hybrid vigor or hybrid depression. These two phenomena are rather commonly observed in present-day hybrids. Transgressive evolution can be modeled as a shift in the trait value following a reticulation point. We develop a general framework to handle such shifts, and take advantage of the phylogenetic regression view of the problem to design statistical tests for ancestral transgressive evolution in the evolutionary history of a group of species. We study the power of these tests in several scenarios, and show that recent events have indeed the strongest impact on the trait distribution of present-day taxa. We apply those methods to a dataset of Xiphophorus fishes, to confirm and complete previous analysis in this group. All the methods developed here are available in the Julia package PhyloNetworks.

  8. Genetic Architecture of Sexual Selection: QTL Mapping of Male Song and Female Receiver Traits in an Acoustic Moth

    PubMed Central

    Limousin, Denis; Streiff, Réjane; Courtois, Brigitte; Dupuy, Virginie; Alem, Sylvain; Greenfield, Michael D.

    2012-01-01

    Models of indirect (genetic) benefits sexual selection predict linkage disequilibria between genes that influence male traits and female preferences, owing to non-random mate choice or physical linkage. Such linkage disequilibria can accelerate the evolution of traits and preferences to exaggerated levels. Both theory and recent empirical findings on species recognition suggest that such linkage disequilibria may result from physical linkage or pleiotropy, but very little work has addressed this possibility within the context of sexual selection. We studied the genetic architecture of sexually selected traits by analyzing signals and preferences in an acoustic moth, Achroia grisella, in which males attract females with a train of ultrasound pulses and females prefer loud songs and a fast pulse rhythm. Both male signal characters and female preferences are repeatable and heritable traits. Moreover, female choice is based largely on male song, while males do not appear to provide direct benefits at mating. Thus, some genetic correlation between song and preference traits is expected. We employed a standard crossing design between inbred lines and used AFLP markers to build a linkage map for this species and locate quantitative trait loci (QTL) that influence male song and female preference. Our analyses mostly revealed QTLs of moderate strength that influence various male signal and female receiver traits, but one QTL was found that exerts a major influence on the pulse-pair rate of male song, a critical trait in female attraction. However, we found no evidence of specific co-localization of QTLs influencing male signal and female receiver traits on the same linkage groups. This finding suggests that the sexual selection process would proceed at a modest rate in A. grisella and that evolution toward exaggerated character states may be tempered. We suggest that this equilibrium state may be more the norm than the exception among animal species. PMID:22957082

  9. Genetic dissection of milk yield traits and mastitis resistance quantitative trait loci on chromosome 20 in dairy cattle.

    PubMed

    Kadri, Naveen K; Guldbrandtsen, Bernt; Lund, Mogens S; Sahana, Goutam

    2015-12-01

    Intense selection to increase milk yield has had negative consequences for mastitis incidence in dairy cattle. Due to low heritability of mastitis resistance and an unfavorable genetic correlation with milk yield, a reduction in mastitis through traditional breeding has been difficult to achieve. Here, we examined quantitative trait loci (QTL) that segregate for clinical mastitis and milk yield on Bos taurus autosome 20 (BTA20) to determine whether both traits are affected by a single polymorphism (pleiotropy) or by multiple closely linked polymorphisms. In the latter but not the former situation, undesirable genetic correlation could potentially be broken by selecting animals that have favorable variants for both traits. First, we performed a within-breed association study using a haplotype-based method in Danish Holstein cattle (HOL). Next, we analyzed Nordic Red dairy cattle (RDC) and Danish Jersey cattle (JER) with the goal of determining whether these QTL identified in Holsteins were segregating across breeds. Genotypes for 12,566 animals (5,966 HOL, 5,458 RDC, and 1,142 JER) were determined by using the Illumina Bovine SNP50 BeadChip (50K; Illumina, San Diego, CA), which identifies 1,568 single nucleotide polymorphisms on BTA20. Data were combined, phased, and clustered into haplotype states, followed by within- and across-breed haplotype-based association analyses using a linear mixed model. Association signals for both clinical mastitis and milk yield peaked in the 26- to 40-Mb region on BTA20 in HOL. Single-variant association analyses were carried out in the QTL region using whole sequence level variants imputed from references of 2,036 HD genotypes (BovineHD BeadChip; Illumina) and 242 whole-genome sequences. The milk QTL were also segregating in RDC and JER on the BTA20-targeted region; however, an indication of differences in the causal factor(s) was observed across breeds. A previously reported F279Y mutation (rs385640152) within the growth hormone receptor gene showed strong association with milk, fat, and protein yields. In HOL, the highest peaks for milk yield and susceptibility to mastitis were separated by over 3.5 Mb (3.8 Mb by haplotype analysis, 3.6 Mb by single nucleotide polymorphism analysis), suggesting separate genetic variants for the traits. Further analysis yielded 2 candidate mutations for the mastitis QTL, at 33,642,072 bp (rs378947583) in an intronic region of the caspase recruitment domain protein 6 gene and 35,969,994 bp (rs133596506) in an intronic region of the leukemia-inhibitory factor receptor gene. These findings suggest that it may be possible to separate these beneficial and detrimental genetic factors through targeted selective breeding. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Genome-wide dynamics of alternative polyadenylation in rice

    PubMed Central

    Fu, Haihui; Yang, Dewei; Su, Wenyue; Ma, Liuyin; Shen, Yingjia; Ji, Guoli; Ye, Xinfu; Wu, Xiaohui

    2016-01-01

    Alternative polyadenylation (APA), in which a transcript uses one of the poly(A) sites to define its 3′-end, is a common regulatory mechanism in eukaryotic gene expression. However, the potential of APA in determining crop agronomic traits remains elusive. This study systematically tallied poly(A) sites of 14 different rice tissues and developmental stages using the poly(A) tag sequencing (PAT-seq) approach. The results indicate significant involvement of APA in developmental and quantitative trait loci (QTL) gene expression. About 48% of all expressed genes use APA to generate transcriptomic and proteomic diversity. Some genes switch APA sites, allowing differentially expressed genes to use alternate 3′ UTRs. Interestingly, APA in mature pollen is distinct where differential expression levels of a set of poly(A) factors and different distributions of APA sites are found, indicating a unique mRNA 3′-end formation regulation during gametophyte development. Equally interesting, statistical analyses showed that QTL tends to use APA for regulation of gene expression of many agronomic traits, suggesting a potential important role of APA in rice production. These results provide thus far the most comprehensive and high-resolution resource for advanced analysis of APA in crops and shed light on how APA is associated with trait formation in eukaryotes. PMID:27733415

  11. The genetic basis of speciation in the Giliopsis lineage of Ipomopsis (Polemoniaceae)

    USGS Publications Warehouse

    Nakazato, Takuya; Rieseberg, Loren H.; Wood, Troy E.

    2013-01-01

    One of the most powerful drivers of speciation in plants is pollinator-mediated disruptive selection, which leads to the divergence of floral traits adapted to the morphology and behavior of different pollinators. Despite the widespread importance of this speciation mechanism, its genetic basis has been explored in only a few groups. Here, we characterize the genetic basis of pollinator-mediated divergence of two species in genus Ipomopsis, I. guttata and I. tenuifolia, using quantitative trait locus (QTL) analyses of floral traits and other variable phenotypes. We detected one to six QTLs per trait, with each QTL generally explaining small to modest amounts of the phenotypic variance of a backcross hybrid population. In contrast, flowering time and anthocyanin abundance (a metric of color variation) were controlled by a few QTLs of relatively large effect. QTLs were strongly clustered within linkage groups, with 26 of 37 QTLs localized to six marker-interval ‘hotspots,’ all of which harbored pleiotropic QTLs. In contrast to other studies that have examined the genetic basis of pollinator shifts, our results indicate that, in general, mutations of small to modest effect on phenotype were involved. Thus, the evolutionary transition between the distinct pollination modes of I. guttata and I. tenuifolia likely proceeded incrementally, rather than saltationally.

  12. Epistasis interaction of QTL effects as a genetic parameter influencing estimation of the genetic additive effect.

    PubMed

    Bocianowski, Jan

    2013-03-01

    Epistasis, an additive-by-additive interaction between quantitative trait loci, has been defined as a deviation from the sum of independent effects of individual genes. Epistasis between QTLs assayed in populations segregating for an entire genome has been found at a frequency close to that expected by chance alone. Recently, epistatic effects have been considered by many researchers as important for complex traits. In order to understand the genetic control of complex traits, it is necessary to clarify additive-by-additive interactions among genes. Herein we compare estimates of a parameter connected with the additive gene action calculated on the basis of two models: a model excluding epistasis and a model with additive-by-additive interaction effects. In this paper two data sets were analysed: 1) 150 barley doubled haploid lines derived from the Steptoe × Morex cross, and 2) 145 DH lines of barley obtained from the Harrington × TR306 cross. The results showed that in cases when the effect of epistasis was different from zero, the coefficient of determination was larger for the model with epistasis than for the one excluding epistasis. These results indicate that epistatic interaction plays an important role in controlling the expression of complex traits.

  13. Assessing the evidence for shared genetic risks across psychiatric disorders and traits.

    PubMed

    Martin, Joanna; Taylor, Mark J; Lichtenstein, Paul

    2017-12-04

    Genetic influences play a significant role in risk for psychiatric disorders, prompting numerous endeavors to further understand their underlying genetic architecture. In this paper, we summarize and review evidence from traditional twin studies and more recent genome-wide molecular genetic analyses regarding two important issues that have proven particularly informative for psychiatric genetic research. First, emerging results are beginning to suggest that genetic risk factors for some (but not all) clinically diagnosed psychiatric disorders or extreme manifestations of psychiatric traits in the population share genetic risks with quantitative variation in milder traits of the same disorder throughout the general population. Second, there is now evidence for substantial sharing of genetic risks across different psychiatric disorders. This extends to the level of characteristic traits throughout the population, with which some clinical disorders also share genetic risks. In this review, we summarize and evaluate the evidence for these two issues, for a range of psychiatric disorders. We then critically appraise putative interpretations regarding the potential meaning of genetic correlation across psychiatric phenotypes. We highlight several new methods and studies which are already using these insights into the genetic architecture of psychiatric disorders to gain additional understanding regarding the underlying biology of these disorders. We conclude by outlining opportunities for future research in this area.

  14. Quantitative trait locus mapping and analysis of heritable variation in affiliative social behavior and co-occurring traits.

    PubMed

    Knoll, A T; Jiang, K; Levitt, P

    2018-06-01

    Humans exhibit broad heterogeneity in affiliative social behavior. Twin and family studies show that individual differences in core dimensions of social behavior are heritable, yet there are knowledge gaps in understanding the underlying genetic and neurobiological mechanisms. Animal genetic reference panels (GRPs) provide a tractable strategy for examining the behavioral and genetic architecture of complex traits. Here, using males from 50 mouse strains from the BXD GRP, 4 domains of affiliative social behavior-social approach, social recognition, direct social interaction (DSI) (partner sniffing) and vocal communication-were examined in 2 widely used behavioral tasks-the 3-chamber and DSI tasks. There was continuous and broad variation in social and nonsocial traits, with moderate to high heritability of social approach sniff preference (0.31), ultrasonic vocalization (USV) count (0.39), partner sniffing (0.51), locomotor activity (0.54-0.66) and anxiety-like behavior (0.36). Principal component analysis shows that variation in social and nonsocial traits are attributable to 5 independent factors. Genome-wide mapping identified significant quantitative trait loci for USV count on chromosome (Chr) 18 and locomotor activity on Chr X, with suggestive loci and candidate quantitative trait genes identified for all traits with one notable exception-partner sniffing in the DSI task. The results show heritable variation in sociability, which is independent of variation in activity and anxiety-like traits. In addition, a highly heritable and ethological domain of affiliative sociability-partner sniffing-appears highly polygenic. These findings establish a basis for identifying functional natural variants, leading to a new understanding typical and atypical sociability. © 2017 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.

  15. Molecular Dissection of a Major Gene Effect on a Quantitative Trait: The Level of Alcohol Dehydrogenase Expression in Drosophila Melanogaster

    PubMed Central

    Stam, L. F.; Laurie, C. C.

    1996-01-01

    A molecular mapping experiment shows that a major gene effect on a quantitative trait, the level of alcohol dehydrogenase expression in Drosophila melanogaster, is due to multiple polymorphisms within the Adh gene. These polymorphisms are located in an intron, the coding sequence, and the 3' untranslated region. Because of nonrandom associations among polymorphisms at different sites, the individual effects combine (in some cases epistatically) to produce ``superalleles'' with large effect. These results have implications for the interpretation of major gene effects detected by quantitative trait locus mapping methods. They show that large effects due to a single locus may be due to multiple associated polymorphisms (or sequential fixations in isolated populations) rather than individual mutations of large effect. PMID:8978044

  16. Current and future developments in patents for quantitative trait loci in dairy cattle.

    PubMed

    Weller, Joel I

    2007-01-01

    Many studies have proposed that rates of genetic gain in dairy cattle can be increased by direct selection on the individual quantitative loci responsible for the genetic variation in these traits, or selection on linked genetic markers. The development of DNA-level genetic markers has made detection of QTL nearly routine in all major livestock species. The studies that attempted to detect genes affecting quantitative traits can be divided into two categories: analysis of candidate genes, and genome scans based on within-family genetic linkage. To date, 12 patent cooperative treaty (PCT) and US patents have been registered for DNA sequences claimed to be associated with effects on economic traits in dairy cattle. All claim effects on milk production, but other traits are also included in some of the claims. Most of the sequences found by the candidate gene approach are of dubious validity, and have been repeated in only very few independent studies. The two missense mutations on chromosomes 6 and 14 affecting milk concentration derived from genome scans are more solidly based, but the claims are also disputed. A few PCT in dairy cattle are commercialized as genetic tests where commercial dairy farmers are the target market.

  17. Comparative mapping reveals quantitative trait loci that affect spawning time in coho salmon (Oncorhynchus kisutch)

    PubMed Central

    Araneda, Cristian; Díaz, Nelson F.; Gomez, Gilda; López, María Eugenia; Iturra, Patricia

    2012-01-01

    Spawning time in salmonids is a sex-limited quantitative trait that can be modified by selection. In rainbow trout (Oncorhynchus mykiss), various quantitative trait loci (QTL) that affect the expression of this trait have been discovered. In this study, we describe four microsatellite loci associated with two possible spawning time QTL regions in coho salmon (Oncorhynchus kisutch). The four loci were identified in females from two populations (early and late spawners) produced by divergent selection from the same base population. Three of the loci (OmyFGT34TUF, One2ASC and One19ASC) that were strongly associated with spawning time in coho salmon (p < 0.0002) were previously associated with QTL for the same trait in rainbow trout; a fourth loci (Oki10) with a suggestive association (p = 0.00035) mapped 10 cM from locus OmyFGT34TUF in rainbow trout. The changes in allelic frequency observed after three generations of selection were greater than expected because of genetic drift. This work shows that comparing information from closely-related species is a valid strategy for identifying QTLs for marker-assisted selection in species whose genomes are poorly characterized or lack a saturated genetic map. PMID:22888302

  18. A Fast Multiple-Kernel Method With Applications to Detect Gene-Environment Interaction.

    PubMed

    Marceau, Rachel; Lu, Wenbin; Holloway, Shannon; Sale, Michèle M; Worrall, Bradford B; Williams, Stephen R; Hsu, Fang-Chi; Tzeng, Jung-Ying

    2015-09-01

    Kernel machine (KM) models are a powerful tool for exploring associations between sets of genetic variants and complex traits. Although most KM methods use a single kernel function to assess the marginal effect of a variable set, KM analyses involving multiple kernels have become increasingly popular. Multikernel analysis allows researchers to study more complex problems, such as assessing gene-gene or gene-environment interactions, incorporating variance-component based methods for population substructure into rare-variant association testing, and assessing the conditional effects of a variable set adjusting for other variable sets. The KM framework is robust, powerful, and provides efficient dimension reduction for multifactor analyses, but requires the estimation of high dimensional nuisance parameters. Traditional estimation techniques, including regularization and the "expectation-maximization (EM)" algorithm, have a large computational cost and are not scalable to large sample sizes needed for rare variant analysis. Therefore, under the context of gene-environment interaction, we propose a computationally efficient and statistically rigorous "fastKM" algorithm for multikernel analysis that is based on a low-rank approximation to the nuisance effect kernel matrices. Our algorithm is applicable to various trait types (e.g., continuous, binary, and survival traits) and can be implemented using any existing single-kernel analysis software. Through extensive simulation studies, we show that our algorithm has similar performance to an EM-based KM approach for quantitative traits while running much faster. We also apply our method to the Vitamin Intervention for Stroke Prevention (VISP) clinical trial, examining gene-by-vitamin effects on recurrent stroke risk and gene-by-age effects on change in homocysteine level. © 2015 WILEY PERIODICALS, INC.

  19. Genetic Architecture of Micro-Environmental Plasticity in Drosophila melanogaster

    PubMed Central

    Morgante, Fabio; Sørensen, Peter; Sorensen, Daniel A.; Maltecca, Christian; Mackay, Trudy F. C.

    2015-01-01

    Individuals of the same genotype do not have the same phenotype for quantitative traits when reared under common macro-environmental conditions, a phenomenon called micro-environmental plasticity. Genetic variation in micro-environmental plasticity is assumed in models of the evolution of phenotypic variance, and is important in applied breeding and personalized medicine. Here, we quantified genetic variation for micro-environmental plasticity for three quantitative traits in the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel. We found substantial genetic variation for micro-environmental plasticity for all traits, with broad sense heritabilities of the same magnitude or greater than those of trait means. Micro-environmental plasticity is not correlated with residual segregating variation, is trait-specific, and has genetic correlations with trait means ranging from zero to near unity. We identified several candidate genes associated with micro-environmental plasticity of startle response, including Drosophila Hsp90, setting the stage for future genetic dissection of this phenomenon. PMID:25943032

  20. Multiple-Line Inference of Selection on Quantitative Traits

    PubMed Central

    Riedel, Nico; Khatri, Bhavin S.; Lässig, Michael; Berg, Johannes

    2015-01-01

    Trait differences between species may be attributable to natural selection. However, quantifying the strength of evidence for selection acting on a particular trait is a difficult task. Here we develop a population genetics test for selection acting on a quantitative trait that is based on multiple-line crosses. We show that using multiple lines increases both the power and the scope of selection inferences. First, a test based on three or more lines detects selection with strongly increased statistical significance, and we show explicitly how the sensitivity of the test depends on the number of lines. Second, a multiple-line test can distinguish between different lineage-specific selection scenarios. Our analytical results are complemented by extensive numerical simulations. We then apply the multiple-line test to QTL data on floral character traits in plant species of the Mimulus genus and on photoperiodic traits in different maize strains, where we find a signature of lineage-specific selection not seen in two-line tests. PMID:26139839

  1. High-Throughput Phenotyping and QTL Mapping Reveals the Genetic Architecture of Maize Plant Growth.

    PubMed

    Zhang, Xuehai; Huang, Chenglong; Wu, Di; Qiao, Feng; Li, Wenqiang; Duan, Lingfeng; Wang, Ke; Xiao, Yingjie; Chen, Guoxing; Liu, Qian; Xiong, Lizhong; Yang, Wanneng; Yan, Jianbing

    2017-03-01

    With increasing demand for novel traits in crop breeding, the plant research community faces the challenge of quantitatively analyzing the structure and function of large numbers of plants. A clear goal of high-throughput phenotyping is to bridge the gap between genomics and phenomics. In this study, we quantified 106 traits from a maize ( Zea mays ) recombinant inbred line population ( n = 167) across 16 developmental stages using the automatic phenotyping platform. Quantitative trait locus (QTL) mapping with a high-density genetic linkage map, including 2,496 recombinant bins, was used to uncover the genetic basis of these complex agronomic traits, and 988 QTLs have been identified for all investigated traits, including three QTL hotspots. Biomass accumulation and final yield were predicted using a combination of dissected traits in the early growth stage. These results reveal the dynamic genetic architecture of maize plant growth and enhance ideotype-based maize breeding and prediction. © 2017 American Society of Plant Biologists. All Rights Reserved.

  2. High-Throughput Phenotyping and QTL Mapping Reveals the Genetic Architecture of Maize Plant Growth1[OPEN

    PubMed Central

    Huang, Chenglong; Wu, Di; Qiao, Feng; Li, Wenqiang; Duan, Lingfeng; Wang, Ke; Xiao, Yingjie; Chen, Guoxing; Liu, Qian; Yang, Wanneng

    2017-01-01

    With increasing demand for novel traits in crop breeding, the plant research community faces the challenge of quantitatively analyzing the structure and function of large numbers of plants. A clear goal of high-throughput phenotyping is to bridge the gap between genomics and phenomics. In this study, we quantified 106 traits from a maize (Zea mays) recombinant inbred line population (n = 167) across 16 developmental stages using the automatic phenotyping platform. Quantitative trait locus (QTL) mapping with a high-density genetic linkage map, including 2,496 recombinant bins, was used to uncover the genetic basis of these complex agronomic traits, and 988 QTLs have been identified for all investigated traits, including three QTL hotspots. Biomass accumulation and final yield were predicted using a combination of dissected traits in the early growth stage. These results reveal the dynamic genetic architecture of maize plant growth and enhance ideotype-based maize breeding and prediction. PMID:28153923

  3. Autism traits in the RASopathies.

    PubMed

    Adviento, Brigid; Corbin, Iris L; Widjaja, Felicia; Desachy, Guillaume; Enrique, Nicole; Rosser, Tena; Risi, Susan; Marco, Elysa J; Hendren, Robert L; Bearden, Carrie E; Rauen, Katherine A; Weiss, Lauren A

    2014-01-01

    Mutations in Ras/mitogen-activated protein kinase (Ras/MAPK) pathway genes lead to a class of disorders known as RASopathies, including neurofibromatosis type 1 (NF1), Noonan syndrome (NS), Costello syndrome (CS), and cardio-facio-cutaneous syndrome (CFC). Previous work has suggested potential genetic and phenotypic overlap between dysregulation of Ras/MAPK signalling and autism spectrum disorders (ASD). Although the literature offers conflicting evidence for association of NF1 and autism, there has been no systematic evaluation of autism traits in the RASopathies as a class to support a role for germline Ras/MAPK activation in ASDs. We examined the association of autism traits with NF1, NS, CS and CFC, comparing affected probands with unaffected sibling controls and subjects with idiopathic ASDs using the qualitative Social Communication Questionnaire (SCQ) and the quantitative Social Responsiveness Scale (SRS). Each of the four major RASopathies showed evidence for increased qualitative and quantitative autism traits compared with sibling controls. Further, each RASopathy exhibited a distinct distribution of quantitative social impairment. Levels of social responsiveness show some evidence of correlation between sibling pairs, and autism-like impairment showed a male bias similar to idiopathic ASDs. Higher prevalence and severity of autism traits in RASopathies compared to unaffected siblings suggests that dysregulation of Ras/MAPK signalling during development may be implicated in ASD risk. Evidence for sex bias and potential sibling correlation suggests that autism traits in the RASopathies share characteristics with autism traits in the general population and clinical ASD population and can shed light on idiopathic ASDs.

  4. Allelic-based gene-gene interaction associated with quantitative traits.

    PubMed

    Jung, Jeesun; Sun, Bin; Kwon, Deukwoo; Koller, Daniel L; Foroud, Tatiana M

    2009-05-01

    Recent studies have shown that quantitative phenotypes may be influenced not only by multiple single nucleotide polymorphisms (SNPs) within a gene but also by the interaction between SNPs at unlinked genes. We propose a new statistical approach that can detect gene-gene interactions at the allelic level which contribute to the phenotypic variation in a quantitative trait. By testing for the association of allelic combinations at multiple unlinked loci with a quantitative trait, we can detect the SNP allelic interaction whether or not it can be detected as a main effect. Our proposed method assigns a score to unrelated subjects according to their allelic combination inferred from observed genotypes at two or more unlinked SNPs, and then tests for the association of the allelic score with a quantitative trait. To investigate the statistical properties of the proposed method, we performed a simulation study to estimate type I error rates and power and demonstrated that this allelic approach achieves greater power than the more commonly used genotypic approach to test for gene-gene interaction. As an example, the proposed method was applied to data obtained as part of a candidate gene study of sodium retention by the kidney. We found that this method detects an interaction between the calcium-sensing receptor gene (CaSR), the chloride channel gene (CLCNKB) and the Na, K, 2Cl cotransporter gene (CLC12A1) that contributes to variation in diastolic blood pressure.

  5. DNA sequence polymorphisms within the bovine guanine nucleotide-binding protein Gs subunit alpha (Gsα)-encoding (GNAS) genomic imprinting domain are associated with performance traits.

    PubMed

    Sikora, Klaudia M; Magee, David A; Berkowicz, Erik W; Berry, Donagh P; Howard, Dawn J; Mullen, Michael P; Evans, Ross D; Machugh, David E; Spillane, Charles

    2011-01-07

    Genes which are epigenetically regulated via genomic imprinting can be potential targets for artificial selection during animal breeding. Indeed, imprinted loci have been shown to underlie some important quantitative traits in domestic mammals, most notably muscle mass and fat deposition. In this candidate gene study, we have identified novel associations between six validated single nucleotide polymorphisms (SNPs) spanning a 97.6 kb region within the bovine guanine nucleotide-binding protein Gs subunit alpha gene (GNAS) domain on bovine chromosome 13 and genetic merit for a range of performance traits in 848 progeny-tested Holstein-Friesian sires. The mammalian GNAS domain consists of a number of reciprocally-imprinted, alternatively-spliced genes which can play a major role in growth, development and disease in mice and humans. Based on the current annotation of the bovine GNAS domain, four of the SNPs analysed (rs43101491, rs43101493, rs43101485 and rs43101486) were located upstream of the GNAS gene, while one SNP (rs41694646) was located in the second intron of the GNAS gene. The final SNP (rs41694656) was located in the first exon of transcripts encoding the putative bovine neuroendocrine-specific protein NESP55, resulting in an aspartic acid-to-asparagine amino acid substitution at amino acid position 192. SNP genotype-phenotype association analyses indicate that the single intronic GNAS SNP (rs41694646) is associated (P ≤ 0.05) with a range of performance traits including milk yield, milk protein yield, the content of fat and protein in milk, culled cow carcass weight and progeny carcass conformation, measures of animal body size, direct calving difficulty (i.e. difficulty in calving due to the size of the calf) and gestation length. Association (P ≤ 0.01) with direct calving difficulty (i.e. due to calf size) and maternal calving difficulty (i.e. due to the maternal pelvic width size) was also observed at the rs43101491 SNP. Following adjustment for multiple-testing, significant association (q ≤ 0.05) remained between the rs41694646 SNP and four traits (animal stature, body depth, direct calving difficulty and milk yield) only. Notably, the single SNP in the bovine NESP55 gene (rs41694656) was associated (P ≤ 0.01) with somatic cell count--an often-cited indicator of resistance to mastitis and overall health status of the mammary system--and previous studies have demonstrated that the chromosomal region to where the GNAS domain maps underlies an important quantitative trait locus for this trait. This association, however, was not significant after adjustment for multiple testing. The three remaining SNPs assayed were not associated with any of the performance traits analysed in this study. Analysis of all pairwise linkage disequilibrium (r2) values suggests that most allele substitution effects for the assayed SNPs observed are independent. Finally, the polymorphic coding SNP in the putative bovine NESP55 gene was used to test the imprinting status of this gene across a range of foetal bovine tissues. Previous studies in other mammalian species have shown that DNA sequence variation within the imprinted GNAS gene cluster contributes to several physiological and metabolic disorders, including obesity in humans and mice. Similarly, the results presented here indicate an important role for the imprinted GNAS cluster in underlying complex performance traits in cattle such as animal growth, calving, fertility and health. These findings suggest that GNAS domain-associated polymorphisms may serve as important genetic markers for future livestock breeding programs and support previous studies that candidate imprinted loci may act as molecular targets for the genetic improvement of agricultural populations. In addition, we present new evidence that the bovine NESP55 gene is epigenetically regulated as a maternally expressed imprinted gene in placental and intestinal tissues from 8-10 week old bovine foetuses.

  6. DNA sequence polymorphisms within the bovine guanine nucleotide-binding protein Gs subunit alpha (Gsα)-encoding (GNAS) genomic imprinting domain are associated with performance traits

    PubMed Central

    2011-01-01

    Background Genes which are epigenetically regulated via genomic imprinting can be potential targets for artificial selection during animal breeding. Indeed, imprinted loci have been shown to underlie some important quantitative traits in domestic mammals, most notably muscle mass and fat deposition. In this candidate gene study, we have identified novel associations between six validated single nucleotide polymorphisms (SNPs) spanning a 97.6 kb region within the bovine guanine nucleotide-binding protein Gs subunit alpha gene (GNAS) domain on bovine chromosome 13 and genetic merit for a range of performance traits in 848 progeny-tested Holstein-Friesian sires. The mammalian GNAS domain consists of a number of reciprocally-imprinted, alternatively-spliced genes which can play a major role in growth, development and disease in mice and humans. Based on the current annotation of the bovine GNAS domain, four of the SNPs analysed (rs43101491, rs43101493, rs43101485 and rs43101486) were located upstream of the GNAS gene, while one SNP (rs41694646) was located in the second intron of the GNAS gene. The final SNP (rs41694656) was located in the first exon of transcripts encoding the putative bovine neuroendocrine-specific protein NESP55, resulting in an aspartic acid-to-asparagine amino acid substitution at amino acid position 192. Results SNP genotype-phenotype association analyses indicate that the single intronic GNAS SNP (rs41694646) is associated (P ≤ 0.05) with a range of performance traits including milk yield, milk protein yield, the content of fat and protein in milk, culled cow carcass weight and progeny carcass conformation, measures of animal body size, direct calving difficulty (i.e. difficulty in calving due to the size of the calf) and gestation length. Association (P ≤ 0.01) with direct calving difficulty (i.e. due to calf size) and maternal calving difficulty (i.e. due to the maternal pelvic width size) was also observed at the rs43101491 SNP. Following adjustment for multiple-testing, significant association (q ≤ 0.05) remained between the rs41694646 SNP and four traits (animal stature, body depth, direct calving difficulty and milk yield) only. Notably, the single SNP in the bovine NESP55 gene (rs41694656) was associated (P ≤ 0.01) with somatic cell count--an often-cited indicator of resistance to mastitis and overall health status of the mammary system--and previous studies have demonstrated that the chromosomal region to where the GNAS domain maps underlies an important quantitative trait locus for this trait. This association, however, was not significant after adjustment for multiple testing. The three remaining SNPs assayed were not associated with any of the performance traits analysed in this study. Analysis of all pairwise linkage disequilibrium (r2) values suggests that most allele substitution effects for the assayed SNPs observed are independent. Finally, the polymorphic coding SNP in the putative bovine NESP55 gene was used to test the imprinting status of this gene across a range of foetal bovine tissues. Conclusions Previous studies in other mammalian species have shown that DNA sequence variation within the imprinted GNAS gene cluster contributes to several physiological and metabolic disorders, including obesity in humans and mice. Similarly, the results presented here indicate an important role for the imprinted GNAS cluster in underlying complex performance traits in cattle such as animal growth, calving, fertility and health. These findings suggest that GNAS domain-associated polymorphisms may serve as important genetic markers for future livestock breeding programs and support previous studies that candidate imprinted loci may act as molecular targets for the genetic improvement of agricultural populations. In addition, we present new evidence that the bovine NESP55 gene is epigenetically regulated as a maternally expressed imprinted gene in placental and intestinal tissues from 8-10 week old bovine foetuses. PMID:21214909

  7. Genome-Wide Associations Related to Hepatic Histology in Nonalcoholic Fatty Liver Disease in Hispanic Boys.

    PubMed

    Wattacheril, Julia; Lavine, Joel E; Chalasani, Naga P; Guo, Xiuqing; Kwon, Soonil; Schwimmer, Jeffrey; Molleston, Jean P; Loomba, Rohit; Brunt, Elizabeth M; Chen, Yii-Der Ida; Goodarzi, Mark O; Taylor, Kent D; Yates, Katherine P; Tonascia, James; Rotter, Jerome I

    2017-11-01

    To identify genetic loci associated with features of histologic severity of nonalcoholic fatty liver disease in a cohort of Hispanic boys. There were 234 eligible Hispanic boys age 2-17 years with clinical, laboratory, and histologic data enrolled in the Nonalcoholic Steatohepatitis Clinical Research Network included in the analysis of 624 297 single nucleotide polymorphisms (SNPs). After the elimination of 4 outliers and 22 boys with cryptic relatedness, association analyses were performed on 208 DNA samples with corresponding liver histology. Logistic regression analyses were carried out for qualitative traits and linear regression analyses were applied for quantitative traits. The median age and body mass index z-score were 12.0 years (IQR, 11.0-14.0) and 2.4 (IQR, 2.1-2.6), respectively. The nonalcoholic fatty liver disease activity score (scores 1-4 vs 5-8) was associated with SNP rs11166927 on chromosome 8 in the TRAPPC9 region (P = 8.7 -07 ). Fibrosis stage was associated with SNP rs6128907 on chromosome 20, near actin related protein 5 homolog (p = 9.9 -07 ). In comparing our results in Hispanic boys with those of previously reported SNPs in adult nonalcoholic steatohepatitis, 2 of 26 susceptibility loci were associated with nonalcoholic fatty liver disease activity score and 2 were associated with fibrosis stage. In this discovery genome-wide association study, we found significant novel gene effects on histologic traits associated with nonalcoholic fatty liver disease activity score and fibrosis that are distinct from those previously recognized by adult nonalcoholic fatty liver disease genome-wide association studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. A journey from a SSR-based low density map to a SNP-based high density map for identification of disease resistance quantitative trait loci in peanut

    USDA-ARS?s Scientific Manuscript database

    Mapping and identification of quantitative trait loci (QTLs) are important for efficient marker-assisted breeding. Diseases such as leaf spots and Tomato spotted wilt virus (TSWV) cause significant loses to peanut growers. The U.S. Peanut Genome Initiative (PGI) was launched in 2004, and expanded to...

  9. Mapping quantitative trait loci controlling early growth in a (longleaf pine × slash pine) × slash pine BC1 family

    Treesearch

    C. Weng; Thomas L. Kubisiak; C. Dana Nelson; M. Stine

    2002-01-01

    Random amplified polymorphic DNA (RAPD) markers were employed to map the genome and quantitative trait loci controlling the early growth of a pine hybrid F1 tree (Pinus palustris Mill. × P. elliottii Engl.) and a recurrent slash pine tree (P. ellottii Engl.) in a (longleaf pine × slash pine...

  10. Comparison of Maximum Likelihood Estimation Approach and Regression Approach in Detecting Quantitative Trait Lco Using RAPD Markers

    Treesearch

    Changren Weng; Thomas L. Kubisiak; C. Dana Nelson; James P. Geaghan; Michael Stine

    1999-01-01

    Single marker regression and single marker maximum likelihood estimation were tied to detect quantitative trait loci (QTLs) controlling the early height growth of longleaf pine and slash pine using a ((longleaf pine x slash pine) x slash pine) BC, population consisting of 83 progeny. Maximum likelihood estimation was found to be more power than regression and could...

  11. Genome-Wide Association Mapping of Acid Soil Resistance in Barley (Hordeum vulgare L.)

    PubMed Central

    Zhou, Gaofeng; Broughton, Sue; Zhang, Xiao-Qi; Ma, Yanling; Zhou, Meixue; Li, Chengdao

    2016-01-01

    Genome-wide association studies (GWAS) based on linkage disequilibrium (LD) have been used to detect QTLs underlying complex traits in major crops. In this study, we collected 218 barley (Hordeum vulgare L.) lines including wild barley and cultivated barley from China, Canada, Australia, and Europe. A total of 408 polymorphic markers were used for population structure and LD analysis. GWAS for acid soil resistance were performed on the population using a general linkage model (GLM) and a mixed linkage model (MLM), respectively. A total of 22 QTLs (quantitative trait loci) were detected with the GLM and MLM analyses. Two QTLs, close to markers bPb-1959 (133.1 cM) and bPb-8013 (86.7 cM), localized on chromosome 1H and 4H respectively, were consistently detected in two different trials with both the GLM and MLM analyses. Furthermore, bPb-8013, the closest marker to the major Al3+ resistance gene HvAACT1 in barley, was identified to be QTL5. The QTLs could be used in marker-assisted selection to identify and pyramid different loci for improved acid soil resistance in barley. PMID:27064793

  12. Quantitative Trait Loci Mapping in Brassica rapa Revealed the Structural and Functional Conservation of Genetic Loci Governing Morphological and Yield Component Traits in the A, B, and C Subgenomes of Brassica Species

    PubMed Central

    Li, Xiaonan; Ramchiary, Nirala; Dhandapani, Vignesh; Choi, Su Ryun; Hur, Yoonkang; Nou, Ill-Sup; Yoon, Moo Kyoung; Lim, Yong Pyo

    2013-01-01

    Brassica rapa is an important crop species that produces vegetables, oilseed, and fodder. Although many studies reported quantitative trait loci (QTL) mapping, the genes governing most of its economically important traits are still unknown. In this study, we report QTL mapping for morphological and yield component traits in B. rapa and comparative map alignment between B. rapa, B. napus, B. juncea, and Arabidopsis thaliana to identify candidate genes and conserved QTL blocks between them. A total of 95 QTL were identified in different crucifer blocks of the B. rapa genome. Through synteny analysis with A. thaliana, B. rapa candidate genes and intronic and exonic single nucleotide polymorphisms in the parental lines were detected from whole genome resequenced data, a few of which were validated by mapping them to the QTL regions. Semi-quantitative reverse transcriptase PCR analysis showed differences in the expression levels of a few genes in parental lines. Comparative mapping identified five key major evolutionarily conserved crucifer blocks (R, J, F, E, and W) harbouring QTL for morphological and yield components traits between the A, B, and C subgenomes of B. rapa, B. juncea, and B. napus. The information of the identified candidate genes could be used for breeding B. rapa and other related Brassica species. PMID:23223793

  13. Length of FMR1 repeat alleles within the normal range does not substantially affect the risk of early menopause

    PubMed Central

    Ruth, Katherine S.; Bennett, Claire E.; Schoemaker, Minouk J.; Weedon, Michael N.; Swerdlow, Anthony J.; Murray, Anna

    2016-01-01

    STUDY QUESTION Is the length of FMR1 repeat alleles within the normal range associated with the risk of early menopause? SUMMARY ANSWER The length of repeat alleles within the normal range does not substantially affect risk of early menopause. WHAT IS KNOWN ALREADY There is a strong, well-established relationship between length of premutation FMR1 alleles and age at menopause, suggesting that this relationship could continue into the normal range. Within the normal range, there is conflicting evidence; differences in ovarian reserve have been identified with FMR1 repeat allele length, but a recent population-based study did not find any association with age at menopause as a quantitative trait. STUDY DESIGN, SIZE, DURATION We analysed cross-sectional baseline survey data collected at recruitment from 2004 to 2010 from a population-based, prospective epidemiological cohort study of >110 000 women to investigate whether repeat allele length was associated with early menopause. PARTICIPANTS/MATERIALS, SETTING, METHOD We included 4333 women from the Breakthrough Generations Study (BGS), of whom 2118 were early menopause cases (menopause under 46 years) and 2215 were controls. We analysed the relationship between length of FMR1 alleles and early menopause using logistic regression with allele length as continuous and categorical variables. We also conducted analyses with the outcome age at menopause as a quantitative trait as well as appropriate sensitivity and exploratory analyses. MAIN RESULTS AND THE ROLE OF CHANCE There was no association of the shorter or longer FMR1 allele or their combined genotype with the clinically relevant end point of early menopause in our main analysis. Likewise, there were no associations with age at menopause as a quantitative trait in our secondary analysis. LIMITATIONS, REASONS FOR CAUTION Women with homozygous alleles in the normal range may have undetected FMR1 premutation alleles, although there was no evidence to suggest this. We estimate minor dilution of risk of early menopause from the likely inclusion of some women with menopause at over 45 years in the early menopause cases due to age-rounding bias in self-reports. WIDER IMPLICATIONS OF THE FINDINGS There is no robust evidence in this large study that variation within the normal range of FMR1 repeat alleles influences timing of menopause in the general population, which contradicts findings from some earlier, mainly smaller studies. The FMR1 CGG repeat polymorphism in the normal range is unlikely to contribute to genetic susceptibility to early menopause. STUDY FUNDING/COMPETING INTEREST(S) We thank Breast Cancer Now and The Institute of Cancer Research for funding the BGS. The Institute of Cancer Research acknowledges NHS funding to the NIHR Biomedical Research Centre. The study was funded by the Wellcome Trust (grant number 085943). There are no competing interests. TRIAL REGISTRATION NUMBER Not applicable. PMID:27614355

  14. Variation in heading date conceals quantitative trait loci for other traits of importance in breeding selection of rice

    PubMed Central

    Hori, Kiyosumi; Kataoka, Tomomori; Miura, Kiyoyuki; Yamaguchi, Masayuki; Saka, Norikuni; Nakahara, Takahiro; Sunohara, Yoshihiro; Ebana, Kaworu; Yano, Masahiro

    2012-01-01

    To identify quantitative trait loci (QTLs) associated with the primary target traits for selection in practical rice breeding programs, backcross inbred lines (BILs) derived from crosses between temperate japonica rice cultivars Nipponbare and Koshihikari were evaluated for 50 agronomic traits at six experimental fields located throughout Japan. Thirty-three of the 50 traits were significantly correlated with heading date. Using a linkage map including 647 single-nucleotide polymorphisms (SNPs), a total of 122 QTLs for 38 traits were mapped on all rice chromosomes except chromosomes 5 and 9. Fifty-eight of the 122 QTLs were detected near the heading date QTLs Hd16 and Hd17 and the remaining 64 QTLs were found in other chromosome regions. QTL analysis of 51 BILs having homozygous for the Koshihikari chromosome segments around Hd16 and Hd17 allowed us to detect 40 QTLs associated with 27 traits; 23 of these QTLs had not been detected in the original analysis. Among the 97 QTLs for the 30 traits measured in multiple environments, the genotype-by-environment interaction was significant for 44 QTLs and not significant for 53 QTLs. These results led us to propose a new selection strategy to improve agronomic performance in temperate japonica rice cultivars. PMID:23226082

  15. The genetics of domestication of yardlong bean, Vigna unguiculata (L.) Walp. ssp. unguiculata cv.-gr. sesquipedalis

    PubMed Central

    Kongjaimun, Alisa; Kaga, Akito; Tomooka, Norihiko; Somta, Prakit; Vaughan, Duncan A.; Srinives, Peerasak

    2012-01-01

    Background and Aims The genetics of domestication of yardlong bean [Vigna unguiculata (L.) Walp. ssp. unguiculata cv.-gr. sesquipedalis] is of particular interest because the genome of this legume has experienced divergent domestication. Initially, cowpea was domesticated from wild cowpea in Africa; in Asia a vegetable form of cowpea, yardlong bean, subsequently evolved from cowpea. Information on the genetics of domestication-related traits would be useful for yardlong bean and cowpea breeding programmes, as well as comparative genome study among members of the genus Vigna. The objectives of this study were to identify quantitative trait loci (QTLs) for domestication-related traits in yardlong bean and compare them with previously reported QTLs in closely related Vigna. Methods Two linkage maps were developed from BC1F1 and F2 populations from the cross between yardlong bean (V. unguiculata ssp. unguiculata cv.-gr. sesquipedalis) accession JP81610 and wild cowpea (V. unguiculata ssp. unguiculata var. spontanea) accession TVnu457. Using these linkage maps, QTLs for 24 domestication-related traits were analysed and mapped. QTLs were detected for traits related to seed, pod, stem and leaf. Key Results Most traits were controlled by between one and 11 QTLs. QTLs for domestication-related traits show co-location on several narrow genomic regions on almost all linkage groups (LGs), but especially on LGs 3, 7, 8 and 11. Major QTLs for sizes of seed, pod, stem and leaf were principally located on LG7. Pleiotropy or close linkage of genes for the traits is suggested in these chromosome regions. Conclusions This is the first report of QTLs for domestication-related traits in yardlong bean. The results provide a foundation for marker-assisted selection of domestication-related QTLs in yardlong bean and enhance understanding of domestication in the genus Vigna. PMID:22419763

  16. Genetics of phenotypic plasticity and biomass traits in hybrid willows across contrasting environments and years.

    PubMed

    Berlin, Sofia; Hallingbäck, Henrik R; Beyer, Friderike; Nordh, Nils-Erik; Weih, Martin; Rönnberg-Wästljung, Ann-Christin

    2017-07-01

    Phenotypic plasticity can affect the geographical distribution of taxa and greatly impact the productivity of crops across contrasting and variable environments. The main objectives of this study were to identify genotype-phenotype associations in key biomass and phenology traits and the strength of phenotypic plasticity of these traits in a short-rotation coppice willow population across multiple years and contrasting environments to facilitate marker-assisted selection for these traits. A hybrid Salix viminalis  × ( S. viminalis × Salix schwerinii ) population with 463 individuals was clonally propagated and planted in three common garden experiments comprising one climatic contrast between Sweden and Italy and one water availability contrast in Italy. Several key phenotypic traits were measured and phenotypic plasticity was estimated as the trait value difference between experiments. Quantitative trait locus (QTL) mapping analyses were conducted using a dense linkage map and phenotypic effects of S. schwerinii haplotypes derived from detected QTL were assessed. Across the climatic contrast, clone predictor correlations for biomass traits were low and few common biomass QTL were detected. This indicates that the genetic regulation of biomass traits was sensitive to environmental variation. Biomass QTL were, however, frequently shared across years and across the water availability contrast. Phenology QTL were generally shared between all experiments. Substantial phenotypic plasticity was found among the hybrid offspring, that to a large extent had a genetic origin. Individuals carrying influential S. schwerinii haplotypes generally performed well in Sweden but less well in Italy in terms of biomass production. The results indicate that specific genetic elements of S. schwerinii are more suited to Swedish conditions than to those of Italy. Therefore, selection should preferably be conducted separately for such environments in order to maximize biomass production in admixed S. viminalis × S. schwerinii populations. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company.

  17. Genetic linkage map construction and QTL mapping of salt tolerance traits in Zoysiagrass (Zoysia japonica).

    PubMed

    Guo, Hailin; Ding, Wanwen; Chen, Jingbo; Chen, Xuan; Zheng, Yiqi; Wang, Zhiyong; Liu, Jianxiu

    2014-01-01

    Zoysiagrass (Zoysia Willd.) is an important warm season turfgrass that is grown in many parts of the world. Salt tolerance is an important trait in zoysiagrass breeding programs. In this study, a genetic linkage map was constructed using sequence-related amplified polymorphism markers and random amplified polymorphic DNA markers based on an F1 population comprising 120 progeny derived from a cross between Zoysia japonica Z105 (salt-tolerant accession) and Z061 (salt-sensitive accession). The linkage map covered 1211 cM with an average marker distance of 5.0 cM and contained 24 linkage groups with 242 marker loci (217 sequence-related amplified polymorphism markers and 25 random amplified polymorphic DNA markers). Quantitative trait loci affecting the salt tolerance of zoysiagrass were identified using the constructed genetic linkage map. Two significant quantitative trait loci (qLF-1 and qLF-2) for leaf firing percentage were detected; qLF-1 at 36.3 cM on linkage group LG4 with a logarithm of odds value of 3.27, which explained 13.1% of the total variation of leaf firing and qLF-2 at 42.3 cM on LG5 with a logarithm of odds value of 2.88, which explained 29.7% of the total variation of leaf firing. A significant quantitative trait locus (qSCW-1) for reduced percentage of dry shoot clipping weight was detected at 44.1 cM on LG5 with a logarithm of odds value of 4.0, which explained 65.6% of the total variation. This study provides important information for further functional analysis of salt-tolerance genes in zoysiagrass. Molecular markers linked with quantitative trait loci for salt tolerance will be useful in zoysiagrass breeding programs using marker-assisted selection.

  18. Variants in TTC25 affect autistic trait in patients with autism spectrum disorder and general population.

    PubMed

    Vojinovic, Dina; Brison, Nathalie; Ahmad, Shahzad; Noens, Ilse; Pappa, Irene; Karssen, Lennart C; Tiemeier, Henning; van Duijn, Cornelia M; Peeters, Hilde; Amin, Najaf

    2017-08-01

    Autism spectrum disorder (ASD) is a highly heritable neurodevelopmental disorder with a complex genetic architecture. To identify genetic variants underlying ASD, we performed single-variant and gene-based genome-wide association studies using a dense genotyping array containing over 2.3 million single-nucleotide variants in a discovery sample of 160 families with at least one child affected with non-syndromic ASD using a binary (ASD yes/no) phenotype and a quantitative autistic trait. Replication of the top findings was performed in Psychiatric Genomics Consortium and Erasmus Rucphen Family (ERF) cohort study. Significant association of quantitative autistic trait was observed with the TTC25 gene at 17q21.2 (effect size=10.2, P-value=3.4 × 10 -7 ) in the gene-based analysis. The gene also showed nominally significant association in the cohort-based ERF study (effect=1.75, P-value=0.05). Meta-analysis of discovery and replication improved the association signal (P-value meta =1.5 × 10 -8 ). No genome-wide significant signal was observed in the single-variant analysis of either the binary ASD phenotype or the quantitative autistic trait. Our study has identified a novel gene TTC25 to be associated with quantitative autistic trait in patients with ASD. The replication of association in a cohort-based study and the effect estimate suggest that variants in TTC25 may also be relevant for broader ASD phenotype in the general population. TTC25 is overexpressed in frontal cortex and testis and is known to be involved in cilium movement and thus an interesting candidate gene for autistic trait.

  19. Garlic (Allium sativum L.) fertility: transcriptome and proteome analyses provide insight into flower and pollen development

    PubMed Central

    Shemesh-Mayer, Einat; Ben-Michael, Tomer; Rotem, Neta; Rabinowitch, Haim D.; Doron-Faigenboim, Adi; Kosmala, Arkadiusz; Perlikowski, Dawid; Sherman, Amir; Kamenetsky, Rina

    2015-01-01

    Commercial cultivars of garlic, a popular condiment, are sterile, making genetic studies and breeding of this plant challenging. However, recent fertility restoration has enabled advanced physiological and genetic research and hybridization in this important crop. Morphophysiological studies, combined with transcriptome and proteome analyses and quantitative PCR validation, enabled the identification of genes and specific processes involved in gametogenesis in fertile and male-sterile garlic genotypes. Both genotypes exhibit normal meiosis at early stages of anther development, but in the male-sterile plants, tapetal hypertrophy after microspore release leads to pollen degeneration. Transcriptome analysis and global gene-expression profiling showed that >16,000 genes are differentially expressed in the fertile vs. male-sterile developing flowers. Proteome analysis and quantitative comparison of 2D-gel protein maps revealed 36 significantly different protein spots, 9 of which were present only in the male-sterile genotype. Bioinformatic and quantitative PCR validation of 10 candidate genes exhibited significant expression differences between male-sterile and fertile flowers. A comparison of morphophysiological and molecular traits of fertile and male-sterile garlic flowers suggests that respiratory restrictions and/or non-regulated programmed cell death of the tapetum can lead to energy deficiency and consequent pollen abortion. Potential molecular markers for male fertility and sterility in garlic are proposed. PMID:25972879

  20. Genome-wide association study identified three major QTL for carcass weight including the PLAG1-CHCHD7 QTN for stature in Japanese Black cattle

    PubMed Central

    2012-01-01

    Background Significant quantitative trait loci (QTL) for carcass weight were previously mapped on several chromosomes in Japanese Black half-sib families. Two QTL, CW-1 and CW-2, were narrowed down to 1.1-Mb and 591-kb regions, respectively. Recent advances in genomic tools allowed us to perform a genome-wide association study (GWAS) in cattle to detect associations in a general population and estimate their effect size. Here, we performed a GWAS for carcass weight using 1156 Japanese Black steers. Results Bonferroni-corrected genome-wide significant associations were detected in three chromosomal regions on bovine chromosomes (BTA) 6, 8, and 14. The associated single nucleotide polymorphisms (SNP) on BTA 6 were in linkage disequilibrium with the SNP encoding NCAPG Ile442Met, which was previously identified as a candidate quantitative trait nucleotide for CW-2. In contrast, the most highly associated SNP on BTA 14 was located 2.3-Mb centromeric from the previously identified CW-1 region. Linkage disequilibrium mapping led to a revision of the CW-1 region within a 0.9-Mb interval around the associated SNP, and targeted resequencing followed by association analysis highlighted the quantitative trait nucleotides for bovine stature in the PLAG1-CHCHD7 intergenic region. The association on BTA 8 was accounted for by two SNP on the BovineSNP50 BeadChip and corresponded to CW-3, which was simultaneously detected by linkage analyses using half-sib families. The allele substitution effects of CW-1, CW-2, and CW-3 were 28.4, 35.3, and 35.0 kg per allele, respectively. Conclusion The GWAS revealed the genetic architecture underlying carcass weight variation in Japanese Black cattle in which three major QTL accounted for approximately one-third of the genetic variance. PMID:22607022

  1. Analysis of genetic effects of nuclear-cytoplasmic interaction on quantitative traits: genetic model for diploid plants.

    PubMed

    Han, Lide; Yang, Jian; Zhu, Jun

    2007-06-01

    A genetic model was proposed for simultaneously analyzing genetic effects of nuclear, cytoplasm, and nuclear-cytoplasmic interaction (NCI) as well as their genotype by environment (GE) interaction for quantitative traits of diploid plants. In the model, the NCI effects were further partitioned into additive and dominance nuclear-cytoplasmic interaction components. Mixed linear model approaches were used for statistical analysis. On the basis of diallel cross designs, Monte Carlo simulations showed that the genetic model was robust for estimating variance components under several situations without specific effects. Random genetic effects were predicted by an adjusted unbiased prediction (AUP) method. Data on four quantitative traits (boll number, lint percentage, fiber length, and micronaire) in Upland cotton (Gossypium hirsutum L.) were analyzed as a worked example to show the effectiveness of the model.

  2. Exploring the links between personality traits and motivations to play online games.

    PubMed

    Park, Jowon; Song, Yosep; Teng, Ching-I

    2011-12-01

    The present study explores the links between personality traits and motivations to play online games. We identified the underlying dimensions of motivations to play online games, examined how personality traits predict motivation, and investigated how personality traits predict online gaming behavior (i.e., playing time and preference for game genres). Factor analyses identified five motivational factors: relationships, adventure, escapism, relaxation, and achievement. The regression analyses indicated that two personality traits, extraversion and agreeableness, predicted various motivations; however, personality traits did not affect the playing time and game genre preference.

  3. Positive Effects of a Stress Reduction Program Based on Mindfulness Meditation in Brazilian Nursing Professionals: Qualitative and Quantitative Evaluation.

    PubMed

    dos Santos, Teresa Maria; Kozasa, Elisa Harumi; Carmagnani, Isabel Sampaio; Tanaka, Luiza Hiromi; Lacerda, Shirley Silva; Nogueira-Martins, Luiz Antonio

    2016-01-01

    Mindfulness meditation has been shown to effectively mitigate the negative effects of stress among nursing professionals, but in countries like Brazil, these practices are relatively unexplored. To evaluate the effects of a Stress Reduction Program (SRP) including mindfulness and loving kindness meditation among nursing professionals working in a Brazilian hospital setting. Pilot study with a mixed model using quantitative and qualitative methods was used to evaluate a group of participants. The quantitative data were analyzed at three different time points: pre-intervention, post-intervention, and follow-up. The qualitative data were analyzed at post-intervention. Hospital São Paulo (Brazil). Sample 13 nursing professionals, including nurses, technicians, and nursing assistants working in a hospital. Participants underwent mindfulness and loving kindness meditation during a period of six weeks. Perceived Stress Scale (PSS), Maslach Burnout Inventory (MBI), Beck Depression Inventory (BDI), State-Trait Anxiety Inventory (STAI), Satisfaction With Life Scale (SWLS), Self-Compassion Scale (SCS), WHOQOL-BREF quality of life assessment, and Work Stress Scale (WSS). Qualitative data were collected via a group interview following six weeks participation in the SRP. The quantitative analyses revealed a significant reduction (P < .05) between pre-intervention and post-intervention scores for perceived stress, burnout, depression, and anxiety (trait). These variables showed no significant differences between post-intervention and follow-up scores. The WHOQOL-BREF revealed significant increase (P < .05) just in the physical and psychological domains at post-intervention scores, which remained at the follow-up. Qualitative results showed improvement in the reactivity to inner experience; a more attentive perception of internal and external experiences; greater attention and awareness of actions and attitudes at every moment; and a positive influence of the SRP in nursing activities. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Quantitative trait locus mapping and functional genomics of an organophosphate resistance trait in the western corn rootworm, Diabrotica virgifera virgifera

    USDA-ARS?s Scientific Manuscript database

    The western corn rootworm (WCR), Diabrotica virgifera virgifera, is an insect pest of corn, and population suppression with chemical insecticides is an important management tool. Traits conferring organophosphate insecticide resistance have increased in frequency among WCR populations, resulting in...

  5. Robust LOD scores for variance component-based linkage analysis.

    PubMed

    Blangero, J; Williams, J T; Almasy, L

    2000-01-01

    The variance component method is now widely used for linkage analysis of quantitative traits. Although this approach offers many advantages, the importance of the underlying assumption of multivariate normality of the trait distribution within pedigrees has not been studied extensively. Simulation studies have shown that traits with leptokurtic distributions yield linkage test statistics that exhibit excessive Type I error when analyzed naively. We derive analytical formulae relating the deviation from the expected asymptotic distribution of the lod score to the kurtosis and total heritability of the quantitative trait. A simple correction constant yields a robust lod score for any deviation from normality and for any pedigree structure, and effectively eliminates the problem of inflated Type I error due to misspecification of the underlying probability model in variance component-based linkage analysis.

  6. Quantitative genetic models of sexual selection by male choice.

    PubMed

    Nakahashi, Wataru

    2008-09-01

    There are many examples of male mate choice for female traits that tend to be associated with high fertility. I develop quantitative genetic models of a female trait and a male preference to show when such a male preference can evolve. I find that a disagreement between the fertility maximum and the viability maximum of the female trait is necessary for directional male preference (preference for extreme female trait values) to evolve. Moreover, when there is a shortage of available male partners or variance in male nongenetic quality, strong male preference can evolve. Furthermore, I also show that males evolve to exhibit a stronger preference for females that are more feminine (less resemblance to males) than the average female when there is a sexual dimorphism caused by fertility selection which acts only on females.

  7. Variation in life-history traits and their plasticities to elevational transplantation among seed families suggests potential for adaptative evolution of 15 tropical plant species to climate change.

    PubMed

    Ensslin, Andreas; Fischer, Markus

    2015-08-01

    • Because not all plant species will be able to move in response to global warming, adaptive evolution matters largely for plant persistence. As prerequisites for adaptive evolution, genetic variation in and selection on phenotypic traits are needed, but these aspects have not been studied in tropical species. We studied how plants respond to transplantation to different elevations on Mt. Kilimanjaro, Tanzania, and whether there is quantitative genetic (among-seed family) variation in and selection on life-history traits and their phenotypic plasticity to the different environments.• We reciprocally transplanted seed families of 15 common tropical, herbaceous species of the montane and savanna vegetation zone at Mt. Kilimanjaro to a watered experimental garden in the montane (1450 m) and in the savanna (880 m) zone at the mountain's slope and measured performance, reproductive, and phenological traits.• Plants generally performed worse in the savanna garden, indicating that the savanna climate was more stressful and thus that plants may suffer from future climate warming. We found significant quantitative genetic variation in all measured performance and reproductive traits in both gardens and for several measures of phenotypic plasticity in response to elevational transplantation. Moreover, we found positive selection on traits at low and intermediate trait values levelling to neutral or negative selection at high values.• We conclude that common plants at Mt. Kilimanjaro express quantitative genetic variation in fitness-relevant traits and in their plasticities, suggesting potential to adapt evolutionarily to future climate warming and increased temperature variability. © 2015 Botanical Society of America, Inc.

  8. Quantitative Trait Loci for High-Temperature Adult-Plant Resistance to Stripe Rust (Puccinia Striiformis f. sp. tritici) in a Hard Red Winter Wheat Germplasm IDO444

    USDA-ARS?s Scientific Manuscript database

    High-temperature adult-plant (HTAP) resistance to stripe rust (Puccinia striiformis f. sp. tritici) is a durable type of resistance in wheat. The objective of this study was to identify quantitative trait loci (QTL) conferring the HTAP resistance to stripe rust in a population consisted of 179 F7:8...

  9. Identification of qSOR1, a major rice QTL involved in soil-surface rooting in paddy fields.

    PubMed

    Uga, Yusaku; Hanzawa, Eiko; Nagai, Shinsei; Sasaki, Kazuhiro; Yano, Masahiro; Sato, Tadashi

    2012-01-01

    Specific Indonesian lowland rice (Oryza sativa L.) cultivars elongate thick primary roots on the soil surface of paddy fields. To clarify the genetic factors controlling soil-surface rooting, we performed quantitative trait locus (QTL) analyses using 124 recombinant inbred lines (RILs) derived from a cross between Gemdjah Beton, an Indonesian lowland rice cultivar with soil-surface roots, and Sasanishiki, a Japanese lowland rice cultivar without soil-surface roots. These cultivars and the RILs were tested for soil-surface rooting in a paddy field. We identified four regions of chromosomes 3, 4, 6, and 7 that were associated with soil-surface rooting in the field. Among them, one major QTL was located on the long arm of chromosome 7. This QTL explained 32.5-53.6% of the total phenotypic variance across three field evaluations. To perform fine mapping of this QTL, we measured the basal root growth angle of crown roots at the seedling stage in seven BC(2)F(3) recombinant lines grown in small cups in a greenhouse. The QTL was mapped between markers RM21941 and RM21976, which delimit an 812-kb interval in the reference cultivar Nipponbare. We have designated this QTL qSOR1 (quantitative trait locus for SOIL SURFACE ROOTING 1).

  10. Ascertainment correction for Markov chain Monte Carlo segregation and linkage analysis of a quantitative trait.

    PubMed

    Ma, Jianzhong; Amos, Christopher I; Warwick Daw, E

    2007-09-01

    Although extended pedigrees are often sampled through probands with extreme levels of a quantitative trait, Markov chain Monte Carlo (MCMC) methods for segregation and linkage analysis have not been able to perform ascertainment corrections. Further, the extent to which ascertainment of pedigrees leads to biases in the estimation of segregation and linkage parameters has not been previously studied for MCMC procedures. In this paper, we studied these issues with a Bayesian MCMC approach for joint segregation and linkage analysis, as implemented in the package Loki. We first simulated pedigrees ascertained through individuals with extreme values of a quantitative trait in spirit of the sequential sampling theory of Cannings and Thompson [Cannings and Thompson [1977] Clin. Genet. 12:208-212]. Using our simulated data, we detected no bias in estimates of the trait locus location. However, in addition to allele frequencies, when the ascertainment threshold was higher than or close to the true value of the highest genotypic mean, bias was also found in the estimation of this parameter. When there were multiple trait loci, this bias destroyed the additivity of the effects of the trait loci, and caused biases in the estimation all genotypic means when a purely additive model was used for analyzing the data. To account for pedigree ascertainment with sequential sampling, we developed a Bayesian ascertainment approach and implemented Metropolis-Hastings updates in the MCMC samplers used in Loki. Ascertainment correction greatly reduced biases in parameter estimates. Our method is designed for multiple, but a fixed number of trait loci. Copyright (c) 2007 Wiley-Liss, Inc.

  11. Preliminary evidence for associations between molecular markers and quantitative traits in a set of bread wheat (Triticum aestivum L.) cultivars and breeding lines.

    PubMed

    Abdollahi Mandoulakani, Babak; Nasri, Shilan; Dashchi, Sahar; Arzhang, Sorour; Bernousi, Iraj; Abbasi Holasou, Hossein

    The identification of polymorphic markers associated with various quantitative traits allows us to test their performance for the exploitation of the extensive quantitative variation maintained in gene banks. In the current study, a set of 97 wheat germplasm accessions including 48 cultivars and 49 breeding lines were evaluated for 18 agronomic traits. The accessions were also genotyped with 23 ISSR, nine IRAP and 20 REMAP markers, generating a total of 658 clear and scorable bands, 86% of which were polymorphic. Both neighbor-joining dendrogram and Bayesian analysis of clustering of individuals revealed that the accessions could be divided into four genetically distinct groups, indicating the presence of a population structure in current wheat germplasm. Associations between molecular markers and 18 agronomic traits were analyzed using the mixed linear model (MLM) approach. A total of 94 loci were found to be significantly associated with agronomic traits (P≤0.01). The highest number of bands significantly associated with the 18 traits varied from 11 for number of spikelets spike -1 (NSS) to two for grain yield in row (GRY). Loci ISSR16-9 and REMAP13-10 were associated with three different traits. The results of the current study provide useful information about the performance of retrotransposon-based and ISSR molecular markers that could be helpful in selecting potentially elite gene bank samples for wheat-breeding programs. Copyright © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  12. The Power to Detect Linkage Disequilibrium with Quantitative Traits in Selected Samples

    PubMed Central

    Abecasis, Gonçalo R.; Cookson, William O. C.; Cardon, Lon R.

    2001-01-01

    Results from power studies for linkage detection have led to many ongoing and planned collections of phenotypically extreme nuclear families. Given the great expense of collecting these families and the imminent availability of a dense diallelic marker map, the families are likely to be used in allelic-association as well as linkage studies. However, optimal selection strategies for linkage may not be equally powerful for association. We examine the power to detect linkage disequilibrium for quantitative traits after phenotypic selection. The results encompass six selection strategies that are in widespread use, including single selection (two designs), affected sib pairs, concordant and discordant pairs, and the extreme-concordant and -discordant design. Selection of sibships on the basis of one extreme proband with high or low trait scores provides as much power as discordant sib pairs but requires the screening and phenotyping of substantially fewer initial families from which to select. Analysis of the role of allele frequencies within each selection design indicates that common trait alleles generally offer the most power, but similarities between the marker- and trait-allele frequencies are much more important than the trait-locus frequency alone. Some of the most widespread selection designs, such as single selection, yield power gains only when both the marker and quantitative trait loci (QTL) are relatively rare in the population. In contrast, discordant pairs and the extreme-proband design provide power for the broadest range of QTL–marker-allele frequency differences. Overall, proband selection from either tail provides the best balance of power, robustness, and simplicity of ascertainment for family-based association analysis. PMID:11349228

  13. Quantitative Analysis of Cotton Canopy Size in Field Conditions Using a Consumer-Grade RGB-D Camera.

    PubMed

    Jiang, Yu; Li, Changying; Paterson, Andrew H; Sun, Shangpeng; Xu, Rui; Robertson, Jon

    2017-01-01

    Plant canopy structure can strongly affect crop functions such as yield and stress tolerance, and canopy size is an important aspect of canopy structure. Manual assessment of canopy size is laborious and imprecise, and cannot measure multi-dimensional traits such as projected leaf area and canopy volume. Field-based high throughput phenotyping systems with imaging capabilities can rapidly acquire data about plants in field conditions, making it possible to quantify and monitor plant canopy development. The goal of this study was to develop a 3D imaging approach to quantitatively analyze cotton canopy development in field conditions. A cotton field was planted with 128 plots, including four genotypes of 32 plots each. The field was scanned by GPhenoVision (a customized field-based high throughput phenotyping system) to acquire color and depth images with GPS information in 2016 covering two growth stages: canopy development, and flowering and boll development. A data processing pipeline was developed, consisting of three steps: plot point cloud reconstruction, plant canopy segmentation, and trait extraction. Plot point clouds were reconstructed using color and depth images with GPS information. In colorized point clouds, vegetation was segmented from the background using an excess-green (ExG) color filter, and cotton canopies were further separated from weeds based on height, size, and position information. Static morphological traits were extracted on each day, including univariate traits (maximum and mean canopy height and width, projected canopy area, and concave and convex volumes) and a multivariate trait (cumulative height profile). Growth rates were calculated for univariate static traits, quantifying canopy growth and development. Linear regressions were performed between the traits and fiber yield to identify the best traits and measurement time for yield prediction. The results showed that fiber yield was correlated with static traits after the canopy development stage ( R 2 = 0.35-0.71) and growth rates in early canopy development stages ( R 2 = 0.29-0.52). Multi-dimensional traits (e.g., projected canopy area and volume) outperformed one-dimensional traits, and the multivariate trait (cumulative height profile) outperformed univariate traits. The proposed approach would be useful for identification of quantitative trait loci (QTLs) controlling canopy size in genetics/genomics studies or for fiber yield prediction in breeding programs and production environments.

  14. Impacts of Population Structure and Analytical Models in Genome-Wide Association Studies of Complex Traits in Forest Trees: A Case Study in Eucalyptus globulus

    PubMed Central

    Garcia, Martín N.; Acuña, Cintia; Borralho, Nuno M. G.; Grattapaglia, Dario; Marcucci Poltri, Susana N.

    2013-01-01

    The promise of association genetics to identify genes or genomic regions controlling complex traits has generated a flurry of interest. Such phenotype-genotype associations could be useful to accelerate tree breeding cycles, increase precision and selection intensity for late expressing, low heritability traits. However, the prospects of association genetics in highly heterozygous undomesticated forest trees can be severely impacted by the presence of cryptic population and pedigree structure. To investigate how to better account for this, we compared the GLM and five combinations of the Unified Mixed Model (UMM) on data of a low-density genome-wide association study for growth and wood property traits carried out in a Eucalyptus globulus population (n = 303) with 7,680 Diversity Array Technology (DArT) markers. Model comparisons were based on the degree of deviation from the uniform distribution and estimates of the mean square differences between the observed and expected p-values of all significant marker-trait associations detected. Our analysis revealed the presence of population and family structure. There was not a single best model for all traits. Striking differences in detection power and accuracy were observed among the different models especially when population structure was not accounted for. The UMM method was the best and produced superior results when compared to GLM for all traits. Following stringent correction for false discoveries, 18 marker-trait associations were detected, 16 for tree diameter growth and two for lignin monomer composition (S∶G ratio), a key wood property trait. The two DArT markers associated with S∶G ratio on chromosome 10, physically map within 1 Mbp of the ferulate 5-hydroxylase (F5H) gene, providing a putative independent validation of this marker-trait association. This study details the merit of collectively integrate population structure and relatedness in association analyses in undomesticated, highly heterozygous forest trees, and provides additional insights into the nature of complex quantitative traits in Eucalyptus. PMID:24282578

  15. Mapping of a quantitative trait locus for resistance against infectious salmon anaemia in Atlantic salmon (Salmo Salar): comparing survival analysis with analysis on affected/resistant data

    PubMed Central

    Moen, Thomas; Sonesson, Anna K; Hayes, Ben; Lien, Sigbjørn; Munck, Hege; Meuwissen, Theo HE

    2007-01-01

    Background Infectious Salmon Anaemia (ISA) is a viral disease affecting farmed Atlantic salmon (Salmo salar) worldwide. The identification of Quantitative Trait Loci (QTL) affecting resistance to the disease could improve our understanding of the genetics underlying the trait and provide a means for Marker-Assisted Selection. We previously performed a genome scan on commercial Atlantic salmon families challenge tested for ISA resistance, identifying several putative QTL. In the present study, we set out to validate the strongest of these QTL in a larger family material coming from the same challenge test, and to determine the position of the QTL by interval mapping. We also wanted to explore different ways of performing QTL analysis within a survival analysis framework (i.e. using time-to-event data), and to compare results using survival analysis with results from analysis on the dichotomous trait 'affected/resistant'. Results The QTL, located on Atlantic salmon linkage group 8 (following SALMAP notation), was confirmed in the new data set. Its most likely position was at a marker cluster containing markers BHMS130, BHMS170 and BHMS553. Significant segregation distortion was observed in the same region, but was shown to be unrelated to the QTL. A maximum likelihood procedure for identifying QTL, based on the Cox proportional hazard model, was developed. QTL mapping was also done using the Haley-Knott method (affected/resistant data), and within a variance-component framework (affected/resistant data and time-to-event data). In all cases, analysis using affected/resistant data gave stronger evidence for a QTL than did analysis using time-to-event data. Conclusion A QTL for resistance to Infectious Salmon Anaemia in Atlantic salmon was validated in this study, and its more precise location on linkage group eight was determined. The QTL explained 6% of the phenotypic variation in resistance to the disease. The linkage group also displayed significant segregation distortion. Survival models proved in this case not to be more suitable than models based on the dichotomous trait 'affected/resistant' for analysing the data. PMID:17697344

  16. Comparing GWAS Results of Complex Traits Using Full Genetic Model and Additive Models for Revealing Genetic Architecture

    PubMed Central

    Monir, Md. Mamun; Zhu, Jun

    2017-01-01

    Most of the genome-wide association studies (GWASs) for human complex diseases have ignored dominance, epistasis and ethnic interactions. We conducted comparative GWASs for total cholesterol using full model and additive models, which illustrate the impacts of the ignoring genetic variants on analysis results and demonstrate how genetic effects of multiple loci could differ across different ethnic groups. There were 15 quantitative trait loci with 13 individual loci and 3 pairs of epistasis loci identified by full model, whereas only 14 loci (9 common loci and 5 different loci) identified by multi-loci additive model. Again, 4 full model detected loci were not detected using multi-loci additive model. PLINK-analysis identified two loci and GCTA-analysis detected only one locus with genome-wide significance. Full model identified three previously reported genes as well as several new genes. Bioinformatics analysis showed some new genes are related with cholesterol related chemicals and/or diseases. Analyses of cholesterol data and simulation studies revealed that the full model performs were better than the additive-model performs in terms of detecting power and unbiased estimations of genetic variants of complex traits. PMID:28079101

  17. Genetic Architecture of Hybrid Male Sterility in Drosophila: Analysis of Intraspecies Variation for Interspecies Isolation

    PubMed Central

    Reed, Laura K.; LaFlamme, Brooke A.; Markow, Therese A.

    2008-01-01

    Background The genetic basis of postzygotic isolation is a central puzzle in evolutionary biology. Evolutionary forces causing hybrid sterility or inviability act on the responsible genes while they still are polymorphic, thus we have to study these traits as they arise, before isolation is complete. Methodology/Principal Findings Isofemale strains of D. mojavensis vary significantly in their production of sterile F1 sons when females are crossed to D. arizonae males. We took advantage of the intraspecific polymorphism, in a novel design, to perform quantitative trait locus (QTL) mapping analyses directly on F1 hybrid male sterility itself. We found that the genetic architecture of the polymorphism for hybrid male sterility (HMS) in the F1 is complex, involving multiple QTL, epistasis, and cytoplasmic effects. Conclusions/Significance The role of extensive intraspecific polymorphism, multiple QTL, and epistatic interactions in HMS in this young species pair shows that HMS is arising as a complex trait in this system. Directional selection alone would be unlikely to maintain polymorphism at multiple loci, thus we hypothesize that directional selection is unlikely to be the only evolutionary force influencing postzygotic isolation. PMID:18728782

  18. Genome re-sequencing reveals the history of apple and supports a two-stage model for fruit enlargement.

    PubMed

    Duan, Naibin; Bai, Yang; Sun, Honghe; Wang, Nan; Ma, Yumin; Li, Mingjun; Wang, Xin; Jiao, Chen; Legall, Noah; Mao, Linyong; Wan, Sibao; Wang, Kun; He, Tianming; Feng, Shouqian; Zhang, Zongying; Mao, Zhiquan; Shen, Xiang; Chen, Xiaoliu; Jiang, Yuanmao; Wu, Shujing; Yin, Chengmiao; Ge, Shunfeng; Yang, Long; Jiang, Shenghui; Xu, Haifeng; Liu, Jingxuan; Wang, Deyun; Qu, Changzhi; Wang, Yicheng; Zuo, Weifang; Xiang, Li; Liu, Chang; Zhang, Daoyuan; Gao, Yuan; Xu, Yimin; Xu, Kenong; Chao, Thomas; Fazio, Gennaro; Shu, Huairui; Zhong, Gan-Yuan; Cheng, Lailiang; Fei, Zhangjun; Chen, Xuesen

    2017-08-15

    Human selection has reshaped crop genomes. Here we report an apple genome variation map generated through genome sequencing of 117 diverse accessions. A comprehensive model of apple speciation and domestication along the Silk Road is proposed based on evidence from diverse genomic analyses. Cultivated apples likely originate from Malus sieversii in Kazakhstan, followed by intensive introgressions from M. sylvestris. M. sieversii in Xinjiang of China turns out to be an "ancient" isolated ecotype not directly contributing to apple domestication. We have identified selective sweeps underlying quantitative trait loci/genes of important fruit quality traits including fruit texture and flavor, and provide evidences supporting a model of apple fruit size evolution comprising two major events with one occurring prior to domestication and the other during domestication. This study outlines the genetic basis of apple domestication and evolution, and provides valuable information for facilitating marker-assisted breeding and apple improvement.Apple is one of the most important fruit crops. Here, the authors perform deep genome resequencing of 117 diverse accessions and reveal comprehensive models of apple origin, speciation, domestication, and fruit size evolution as well as candidate genes associated with important agronomic traits.

  19. Metabolomics for Plant Improvement: Status and Prospects

    PubMed Central

    Kumar, Rakesh; Bohra, Abhishek; Pandey, Arun K.; Pandey, Manish K.; Kumar, Anirudh

    2017-01-01

    Post-genomics era has witnessed the development of cutting-edge technologies that have offered cost-efficient and high-throughput ways for molecular characterization of the function of a cell or organism. Large-scale metabolite profiling assays have allowed researchers to access the global data sets of metabolites and the corresponding metabolic pathways in an unprecedented way. Recent efforts in metabolomics have been directed to improve the quality along with a major focus on yield related traits. Importantly, an integration of metabolomics with other approaches such as quantitative genetics, transcriptomics and genetic modification has established its immense relevance to plant improvement. An effective combination of these modern approaches guides researchers to pinpoint the functional gene(s) and the characterization of massive metabolites, in order to prioritize the candidate genes for downstream analyses and ultimately, offering trait specific markers to improve commercially important traits. This in turn will improve the ability of a plant breeder by allowing him to make more informed decisions. Given this, the present review captures the significant leads gained in the past decade in the field of plant metabolomics accompanied by a brief discussion on the current contribution and the future scope of metabolomics to accelerate plant improvement. PMID:28824660

  20. In-Silico Genomic Approaches To Understanding Lactation, Mammary Development, And Breast Cancer

    USDA-ARS?s Scientific Manuscript database

    Lactation-related traits are influenced by genetics. From a quantitative standpoint, these traits have been well studied in dairy species, but there has also been work on the genetics of lactation in humans and mice. In addition, there is evidence to support the notion that other mammary gland trait...

  1. Fine phenotyping of pod and seed traits in Arachis germplasm accessions using digital image analysis

    USDA-ARS?s Scientific Manuscript database

    Reliable and objective phenotyping of peanut pod and seed traits is important for cultivar selection and genetic mapping of yield components. To develop useful and efficient methods to quantitatively define peanut pod and seed traits, a group of peanut germplasm with high levels of phenotypic varia...

  2. Harvesting the Pea Genome: Association Mapping of the Pisum Single Plant Plus Collection

    USDA-ARS?s Scientific Manuscript database

    Yield per se is a difficult trait to improve due to the quantitative nature and low heritability of this trait. Nevertheless, yield is the most important trait for crop improvement. Development of higher yielding pea cultivars will depend on harvesting allelic diversity harbored in ex situ germpla...

  3. Quantitative trait loci affecting response to crowding stress in an F2 generation of rainbow trout produced through phenotypic selection

    USDA-ARS?s Scientific Manuscript database

    Selective breeding programs for salmonids typically aim to improve traits associated with growth and disease resistance. It has been established that stressors common to production environments can adversely affect these and other traits which are important to producers and consumers. Previously,...

  4. A comparative meta-analysis of QTL between intraspecific Gossypium hirsutum interspecific populations and Gossypium hirsutum x Gossypium barbadense populations

    USDA-ARS?s Scientific Manuscript database

    Recent Meta-analysis of quantitative trait loci (QTL) in tetraploid cotton (Gossypium spp.) has identified regions of the genome with high concentrations of various trait QTL called clusters, and specific trait QTL called hotspots. The Meta-analysis included all population types of Gossypium mixing ...

  5. A simple linear regression method for quantitative trait loci linkage analysis with censored observations.

    PubMed

    Anderson, Carl A; McRae, Allan F; Visscher, Peter M

    2006-07-01

    Standard quantitative trait loci (QTL) mapping techniques commonly assume that the trait is both fully observed and normally distributed. When considering survival or age-at-onset traits these assumptions are often incorrect. Methods have been developed to map QTL for survival traits; however, they are both computationally intensive and not available in standard genome analysis software packages. We propose a grouped linear regression method for the analysis of continuous survival data. Using simulation we compare this method to both the Cox and Weibull proportional hazards models and a standard linear regression method that ignores censoring. The grouped linear regression method is of equivalent power to both the Cox and Weibull proportional hazards methods and is significantly better than the standard linear regression method when censored observations are present. The method is also robust to the proportion of censored individuals and the underlying distribution of the trait. On the basis of linear regression methodology, the grouped linear regression model is computationally simple and fast and can be implemented readily in freely available statistical software.

  6. Quantitative trait nucleotide analysis using Bayesian model selection.

    PubMed

    Blangero, John; Goring, Harald H H; Kent, Jack W; Williams, Jeff T; Peterson, Charles P; Almasy, Laura; Dyer, Thomas D

    2005-10-01

    Although much attention has been given to statistical genetic methods for the initial localization and fine mapping of quantitative trait loci (QTLs), little methodological work has been done to date on the problem of statistically identifying the most likely functional polymorphisms using sequence data. In this paper we provide a general statistical genetic framework, called Bayesian quantitative trait nucleotide (BQTN) analysis, for assessing the likely functional status of genetic variants. The approach requires the initial enumeration of all genetic variants in a set of resequenced individuals. These polymorphisms are then typed in a large number of individuals (potentially in families), and marker variation is related to quantitative phenotypic variation using Bayesian model selection and averaging. For each sequence variant a posterior probability of effect is obtained and can be used to prioritize additional molecular functional experiments. An example of this quantitative nucleotide analysis is provided using the GAW12 simulated data. The results show that the BQTN method may be useful for choosing the most likely functional variants within a gene (or set of genes). We also include instructions on how to use our computer program, SOLAR, for association analysis and BQTN analysis.

  7. Copy number variation identification and analysis of the chicken genome using a 60K SNP BeadChip.

    PubMed

    Rao, Y S; Li, J; Zhang, R; Lin, X R; Xu, J G; Xie, L; Xu, Z Q; Wang, L; Gan, J K; Xie, X J; He, J; Zhang, X Q

    2016-08-01

    Copy number variation (CNV) is an important source of genetic variation in organisms and a main factor that affects phenotypic variation. A comprehensive study of chicken CNV can provide valuable information on genetic diversity and facilitate future analyses of associations between CNV and economically important traits in chickens. In the present study, an F2 full-sib chicken population (554 individuals), established from a cross between Xinghua and White Recessive Rock chickens, was used to explore CNV in the chicken genome. Genotyping was performed using a chicken 60K SNP BeadChip. A total of 1,875 CNV were detected with the PennCNV algorithm, and the average number of CNV was 3.42 per individual. The CNV were distributed across 383 independent CNV regions (CNVR) and covered 41 megabases (3.97%) of the chicken genome. Seven CNVR in 108 individuals were validated by quantitative real-time PCR, and 81 of these individuals (75%) also were detected with the PennCNV algorithm. In total, 274 CNVR (71.54%) identified in the current study were previously reported. Of these, 147 (38.38%) were reported in at least 2 studies. Additionally, 109 of the CNVR (28.46%) discovered here are novel. A total of 709 genes within or overlapping with the CNVR was retrieved. Out of the 2,742 quantitative trait loci (QTL) collected in the chicken QTL database, 43 QTL had confidence intervals overlapping with the CNVR, and 32 CNVR encompassed one or more functional genes. The functional genes located in the CNVR are likely to be the QTG that are associated with underlying economic traits. This study considerably expands our insight into the structural variation in the genome of chickens and provides an important resource for genomic variation, especially for genomic structural variation related to economic traits in chickens. © 2016 Poultry Science Association Inc.

  8. Quantitative Trait Loci Controlling Vegetative Growth Rate in the Edible Basidiomycete Pleurotus ostreatus

    PubMed Central

    Larraya, Luis M.; Idareta, Eneko; Arana, Dani; Ritter, Enrique; Pisabarro, Antonio G.; Ramírez, Lucia

    2002-01-01

    Mycelium growth rate is a quantitative characteristic that exhibits continuous variation. This trait has applied interest, as growth rate is correlated with production yield and increased advantage against competitors. In this work, we studied growth rate variation in the edible basidiomycete Pleurotus ostreatus growing as monokaryotic or dikaryotic mycelium on Eger medium or on wheat straw. Our analysis resulted in identification of several genomic regions (quantitative trait loci [QTLs]) involved in the control of growth rate that can be mapped on the genetic linkage map of this fungus. In some cases monokaryotic and dikaryotic QTLs clustered at the same map position, indicating that there are principal genomic areas responsible for growth rate control. The availability of this linkage map of growth rate QTLs can help in the design of rational strain breeding programs based on genomic information. PMID:11872457

  9. Identification of Quantitative Trait Loci Controlling Gene Expression during the Innate Immunity Response of Soybean1[W][OA

    PubMed Central

    Valdés-López, Oswaldo; Thibivilliers, Sandra; Qiu, Jing; Xu, Wayne Wenzhong; Nguyen, Tran H.N.; Libault, Marc; Le, Brandon H.; Goldberg, Robert B.; Hill, Curtis B.; Hartman, Glen L.; Diers, Brian; Stacey, Gary

    2011-01-01

    Microbe-associated molecular pattern-triggered immunity (MTI) is an important component of the plant innate immunity response to invading pathogens. However, most of our knowledge of MTI comes from studies of model systems with relatively little work done with crop plants. In this work, we report on variation in both the microbe-associated molecular pattern-triggered oxidative burst and gene expression across four soybean (Glycine max) genotypes. Variation in MTI correlated with the level of pathogen resistance for each genotype. A quantitative trait locus analysis on these traits identified four loci that appeared to regulate gene expression during MTI in soybean. Likewise, we observed that both MTI variation and pathogen resistance were quantitatively inherited. The approach utilized in this study may have utility for identifying key resistance loci useful for developing improved soybean cultivars. PMID:21963820

  10. Identification of quantitative trait loci for body temperature, body weight, breast yield, and digestibility in an advanced intercross line of chickens under heat stress.

    PubMed

    Van Goor, Angelica; Bolek, Kevin J; Ashwell, Chris M; Persia, Mike E; Rothschild, Max F; Schmidt, Carl J; Lamont, Susan J

    2015-12-17

    Losses in poultry production due to heat stress have considerable negative economic consequences. Previous studies in poultry have elucidated a genetic influence on response to heat. Using a unique chicken genetic resource, we identified genomic regions associated with body temperature (BT), body weight (BW), breast yield, and digestibility measured during heat stress. Identifying genes associated with a favorable response during high ambient temperature can facilitate genetic selection of heat-resilient chickens. Generations F18 and F19 of a broiler (heat-susceptible) × Fayoumi (heat-resistant) advanced intercross line (AIL) were used to fine-map quantitative trait loci (QTL). Six hundred and thirty-one birds were exposed to daily heat cycles from 22 to 28 days of age, and phenotypes were measured before heat treatment, on the 1st day and after 1 week of heat treatment. BT was measured at these three phases and BW at pre-heat treatment and after 1 week of heat treatment. Breast muscle yield was calculated as the percentage of BW at day 28. Ileal feed digestibility was assayed from digesta collected from the ileum at day 28. Four hundred and sixty-eight AIL were genotyped using the 600 K Affymetrix chicken SNP (single nucleotide polymorphism) array. Trait heritabilities were estimated using an animal model. A genome-wide association study (GWAS) for these traits and changes in BT and BW was conducted using Bayesian analyses. Candidate genes were identified within 200-kb regions around SNPs with significant association signals. Heritabilities were low to moderate (0.03 to 0.35). We identified QTL for BT on Gallus gallus chromosome (GGA)14, 15, 26, and 27; BW on GGA1 to 8, 10, 14, and 21; dry matter digestibility on GGA19, 20 and 21; and QTL of very large effect for breast muscle yield on GGA1, 15, and 22 with a single 1-Mb window on GGA1 explaining more than 15% of the genetic variation. This is the first study to estimate heritabilities and perform GWAS using this AIL for traits measured during heat stress. Significant QTL as well as low to moderate heritabilities were found for each trait, and these QTL may facilitate selection for improved animal performance in hot climatic conditions.

  11. Berry and phenology-related traits in grapevine (Vitis vinifera L.): From Quantitative Trait Loci to underlying genes

    PubMed Central

    Costantini, Laura; Battilana, Juri; Lamaj, Flutura; Fanizza, Girolamo; Grando, Maria Stella

    2008-01-01

    Background The timing of grape ripening initiation, length of maturation period, berry size and seed content are target traits in viticulture. The availability of early and late ripening varieties is desirable for staggering harvest along growing season, expanding production towards periods when the fruit gets a higher value in the market and ensuring an optimal plant adaptation to climatic and geographic conditions. Berry size determines grape productivity; seedlessness is especially demanded in the table grape market and is negatively correlated to fruit size. These traits result from complex developmental processes modified by genetic, physiological and environmental factors. In order to elucidate their genetic determinism we carried out a quantitative analysis in a 163 individuals-F1 segregating progeny obtained by crossing two table grape cultivars. Results Molecular linkage maps covering most of the genome (2n = 38 for Vitis vinifera) were generated for each parent. Eighteen pairs of homologous groups were integrated into a consensus map spanning over 1426 cM with 341 markers (mainly microsatellite, AFLP and EST-derived markers) and an average map distance between loci of 4.2 cM. Segregating traits were evaluated in three growing seasons by recording flowering, veraison and ripening dates and by measuring berry size, seed number and weight. QTL (Quantitative Trait Loci) analysis was carried out based on single marker and interval mapping methods. QTLs were identified for all but one of the studied traits, a number of them steadily over more than one year. Clusters of QTLs for different characters were detected, suggesting linkage or pleiotropic effects of loci, as well as regions affecting specific traits. The most interesting QTLs were investigated at the gene level through a bioinformatic analysis of the underlying Pinot noir genomic sequence. Conclusion Our results revealed novel insights into the genetic control of relevant grapevine features. They provide a basis for performing marker-assisted selection and testing the role of specific genes in trait variation. PMID:18419811

  12. Factor Structure of Autistic Traits in Children with ADHD

    ERIC Educational Resources Information Center

    Martin, Joanna; Hamshere, Marian L.; O'Donovan, Michael C.; Rutter, Michael; Thapar, Anita

    2014-01-01

    Attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) often co-occur. Factor analyses of ASD traits in children with and without ASD indicate the presence of social and restrictive-repetitive behaviour (RRB) factors. This study used exploratory factor analyses to determine the structure of ASD traits (assessed using…

  13. Meta-analysis of sex-specific genome-wide association studies.

    PubMed

    Magi, Reedik; Lindgren, Cecilia M; Morris, Andrew P

    2010-12-01

    Despite the success of genome-wide association studies, much of the genetic contribution to complex human traits is still unexplained. One potential source of genetic variation that may contribute to this "missing heritability" is that which differs in magnitude and/or direction between males and females, which could result from sexual dimorphism in gene expression. Such sex-differentiated effects are common in model organisms, and are becoming increasingly evident in human complex traits through large-scale male- and female-specific meta-analyses. In this article, we review the methodology for meta-analysis of sex-specific genome-wide association studies, and propose a sex-differentiated test of association with quantitative or dichotomous traits, which allows for heterogeneity of allelic effects between males and females. We perform detailed simulations to compare the power of the proposed sex-differentiated meta-analysis with the more traditional "sex-combined" approach, which is ambivalent to gender. The results of this study highlight only a small loss in power for the sex-differentiated meta-analysis when the allelic effects of the causal variant are the same in males and females. However, over a range of models of heterogeneity in allelic effects between genders, our sex-differentiated meta-analysis strategy offers substantial gains in power, and thus has the potential to discover novel loci contributing effects to complex human traits with existing genome-wide association data. © 2010 Wiley-Liss, Inc.

  14. Application of a new IBD-based QTL mapping method to common wheat breeding population: analysis of kernel hardness and dough strength.

    PubMed

    Crepieux, Sebastien; Lebreton, Claude; Flament, Pascal; Charmet, Gilles

    2005-11-01

    Mapping quantitative trait loci (QTL) in plants is usually conducted using a population derived from a cross between two inbred lines. The power of such QTL detection and the estimation of the effects highly depend on the choice of the two parental lines. Thus, the QTL found represent only a small part of the genetic architecture and can be of limited economical interest in marker-assisted selection. On the other hand, applied breeding programmes evaluate large numbers of progeny derived from multiple-related crosses for a wide range of agronomic traits. It is assumed that the development of statistical techniques to deal with pedigrees in existing plant populations would increase the relevance and cost effectiveness of QTL mapping in a breeding context. In this study, we applied a two-step IBD-based-variance component method to a real wheat breeding population, composed of 374 F6 lines derived from 80 different parents. Two bread wheat quality related traits were analysed by the method. Results obtained show very close agreement with major genes and QTL already known for those two traits. With this new QTL mapping strategy, inferences about QTL can be drawn across the breeding programme rather than being limited to the sample of progeny from a single cross and thus the use of the detected QTL in assisting breeding would be facilitated.

  15. Rapid genotyping by low-coverage resequencing to construct genetic linkage maps of fungi: a case study in Lentinula edodes

    PubMed Central

    2013-01-01

    Background Genetic linkage maps are important tools in breeding programmes and quantitative trait analyses. Traditional molecular markers used for genotyping are limited in throughput and efficiency. The advent of next-generation sequencing technologies has facilitated progeny genotyping and genetic linkage map construction in the major grains. However, the applicability of the approach remains untested in the fungal system. Findings Shiitake mushroom, Lentinula edodes, is a basidiomycetous fungus that represents one of the most popular cultivated edible mushrooms. Here, we developed a rapid genotyping method based on low-coverage (~0.5 to 1.5-fold) whole-genome resequencing. We used the approach to genotype 20 single-spore isolates derived from L. edodes strain L54 and constructed the first high-density sequence-based genetic linkage map of L. edodes. The accuracy of the proposed genotyping method was verified experimentally with results from mating compatibility tests and PCR-single-strand conformation polymorphism on a few known genes. The linkage map spanned a total genetic distance of 637.1 cM and contained 13 linkage groups. Two hundred sequence-based markers were placed on the map, with an average marker spacing of 3.4 cM. The accuracy of the map was confirmed by comparing with previous maps the locations of known genes such as matA and matB. Conclusions We used the shiitake mushroom as an example to provide a proof-of-principle that low-coverage resequencing could allow rapid genotyping of basidiospore-derived progenies, which could in turn facilitate the construction of high-density genetic linkage maps of basidiomycetous fungi for quantitative trait analyses and improvement of genome assembly. PMID:23915543

  16. The genetic basis of female multiple mating in a polyandrous livebearing fish

    PubMed Central

    Evans, Jonathan P; Gasparini, Clelia

    2013-01-01

    The widespread occurrence of female multiple mating (FMM) demands evolutionary explanation, particularly in the light of the costs of mating. One explanation encapsulated by “good sperm” and “sexy-sperm” (GS-SS) theoretical models is that FMM facilitates sperm competition, thus ensuring paternity by males that pass on genes for elevated sperm competitiveness to their male offspring. While support for this component of GS-SS theory is accumulating, a second but poorly tested assumption of these models is that there should be corresponding heritable genetic variation in FMM – the proposed mechanism of postcopulatory preferences underlying GS-SS models. Here, we conduct quantitative genetic analyses on paternal half-siblings to test this component of GS-SS theory in the guppy (Poecilia reticulata), a freshwater fish with some of the highest known rates of FMM in vertebrates. As with most previous quantitative genetic analyses of FMM in other species, our results reveal high levels of phenotypic variation in this trait and a correspondingly low narrow-sense heritability (h2 = 0.11). Furthermore, although our analysis of additive genetic variance in FMM was not statistically significant (probably owing to limited statistical power), the ensuing estimate of mean-standardized additive genetic variance (IA = 0.7) was nevertheless relatively low compared with estimates published for life-history traits across a broad range of taxa. Our results therefore add to a growing body of evidence that FMM is characterized by relatively low additive genetic variation, thus apparently contradicting GS-SS theory. However, we qualify this conclusion by drawing attention to potential deficiencies in most designs (including ours) that have tested for genetic variation in FMM, particularly those that fail to account for intersexual interactions that underlie FMM in many systems. PMID:23403856

  17. Fruit Self-Thinning: A Trait to Consider for Genetic Improvement of Apple Tree

    PubMed Central

    Celton, Jean-Marc; Kelner, Jean-Jacques; Martinez, Sébastien; Bechti, Abdel; Khelifi Touhami, Amina; James, Marie José; Durel, Charles-Eric; Laurens, François; Costes, Evelyne

    2014-01-01

    In apple (Malus×domestica Borkh), as in many fruiting crops, fruit maintenance vs abscission is a major criteria for production profitability. Growers routinely make use of chemical thinning agents to control total fruit load. However, serious threats for the environment lead to the demand for new apple cultivars with self-thinning properties. In this project, we studied the genetic determinism of this trait using a F1 progeny derived from the cross between the hybrid INRA X3263, assumed to possess the self-thinning trait, and the cultivar ‘Belrène’. Both counting and percentage variables were considered to capture the fruiting behaviour on different shoot types and over three consecutive years. Besides low to moderate but significant genetic effects, mixed models showed considerable effects of the year and the shoot type, as well as an interaction effect. Year effect resulted mainly from biennial fruiting. Eight Quantitative Trait Locus (QTL) were detected on several linkage groups (LG), either independent or specific of the year of observation or the shoot type. The QTL with highest LOD value was located on the top third of LG10. The screening of three QTL zones for candidate genes revealed a list of transcription factors and genes involved in fruit nutrition, xylem differentiation, plant responses to starvation and organ abscission that open new avenues for further molecular investigations. The detailed phenotyping performed revealed the dependency between the self-thinning trait and the fruiting status of the trees. Despite a moderate genetic control of the self-thinning trait, QTL and candidate genes were identified which will need further analyses involving other progenies and molecular investigations. PMID:24625529

  18. Genetic dissection of grain traits in Yamadanishiki, an excellent sake-brewing rice cultivar.

    PubMed

    Okada, Satoshi; Suehiro, Miki; Ebana, Kaworu; Hori, Kiyosumi; Onogi, Akio; Iwata, Hiroyoshi; Yamasaki, Masanori

    2017-12-01

    The grain traits of Yamadanishiki, an excellent sake-brewing rice cultivar in Japan, are governed by multiple QTLs, namely, a total of 42 QTLs including six major QTLs. Japanese rice wine (sake) is produced using brewing rice (Oryza sativa L.) that carries traits desirable for sake-brewing, such as a larger grain size and higher white-core expression rate (WCE) compared to cooking rice cultivars. However, the genetic basis for these traits in brewing rice cultivars is still unclear. We performed analyses of quantitative trait locus (QTL) of grain and days to heading over 3 years on populations derived from crosses between Koshihikari, a cooking rice, and Yamadanishiki, an excellent sake-brewing rice. A total of 42 QTLs were detected for the grain traits, and the Yamadanishiki alleles at 16 QTLs contributed to larger grain size. Two major QTLs essential for regulating both 100-grain weight (GWt) and grain width (GWh) were harbored in the same regions on chromosomes 5 and 10. An interaction was noted between the environment and the QTL associated with WCE on chromosome 6, which was detected in two of 3 years. In addition, two QTLs for WCE on chromosomes 3 and 10 overlapped with the QTLs for GWt and GWh, suggesting that QTLs associated with grain size also play an important role in the formation of white-core. Despite differences in the rate of grain growth in both Koshihikari and Yamadanishiki across 2 years, the WCE in Yamadanishiki remained consistent, thus demonstrating that the formation of white-core does not depend on grain filling speed. These data can be informative for programs involved in breeding better cooking and brewing rice cultivars.

  19. The quantitative LOD score: test statistic and sample size for exclusion and linkage of quantitative traits in human sibships.

    PubMed

    Page, G P; Amos, C I; Boerwinkle, E

    1998-04-01

    We present a test statistic, the quantitative LOD (QLOD) score, for the testing of both linkage and exclusion of quantitative-trait loci in randomly selected human sibships. As with the traditional LOD score, the boundary values of 3, for linkage, and -2, for exclusion, can be used for the QLOD score. We investigated the sample sizes required for inferring exclusion and linkage, for various combinations of linked genetic variance, total heritability, recombination distance, and sibship size, using fixed-size sampling. The sample sizes required for both linkage and exclusion were not qualitatively different and depended on the percentage of variance being linked or excluded and on the total genetic variance. Information regarding linkage and exclusion in sibships larger than size 2 increased as approximately all possible pairs n(n-1)/2 up to sibships of size 6. Increasing the recombination (theta) distance between the marker and the trait loci reduced empirically the power for both linkage and exclusion, as a function of approximately (1-2theta)4.

  20. Revision of the Malagasy Camponotus edmondi species group (Hymenoptera, Formicidae, Formicinae): integrating qualitative morphology and multivariate morphometric analysis.

    PubMed

    Rakotonirina, Jean Claude; Csősz, Sándor; Fisher, Brian L

    2016-01-01

    The Malagasy Camponotus edmondi species group is revised based on both qualitative morphological traits and multivariate analysis of continuous morphometric data. To minimize the effect of the scaling properties of diverse traits due to worker caste polymorphism, and to achieve the desired near-linearity of data, morphometric analyses were done only on minor workers. The majority of traits exhibit broken scaling on head size, dividing Camponotus workers into two discrete subcastes, minors and majors. This broken scaling prevents the application of algorithms that uses linear combination of data to the entire dataset, hence only minor workers were analyzed statistically. The elimination of major workers resulted in linearity and the data meet required assumptions. However, morphometric ratios for the subsets of minor and major workers were used in species descriptions and redefinitions. Prior species hypotheses and the goodness of clusters were tested on raw data by confirmatory linear discriminant analysis. Due to the small sample size available for some species, a factor known to reduce statistical reliability, hypotheses generated by exploratory analyses were tested with extreme care and species delimitations were inferred via the combined evidence of both qualitative (morphology and biology) and quantitative data. Altogether, fifteen species are recognized, of which 11 are new to science: Camponotus alamaina sp. n. , Camponotus androy sp. n. , Camponotus bevohitra sp. n. , Camponotus galoko sp. n. , Camponotus matsilo sp. n. , Camponotus mifaka sp. n. , Camponotus orombe sp. n. , Camponotus tafo sp. n. , Camponotus tratra sp. n. , Camponotus varatra sp. n. , and Camponotus zavo sp. n. Four species are redescribed: Camponotus echinoploides Forel, Camponotus edmondi André, Camponotus ethicus Forel, and Camponotus robustus Roger. Camponotus edmondi ernesti Forel, syn. n. is synonymized under Camponotus edmondi . This revision also includes an identification key to species for both minor and major castes, information on geographic distribution and biology, taxonomic discussions, and descriptions of intraspecific variation. Traditional taxonomy and multivariate morphometric analysis are independent sources of information which, in combination, allow more precise species delimitation. Moreover, quantitative characters included in identification keys improve accuracy of determination in difficult cases.

  1. Revision of the Malagasy Camponotus edmondi species group (Hymenoptera, Formicidae, Formicinae): integrating qualitative morphology and multivariate morphometric analysis

    PubMed Central

    Rakotonirina, Jean Claude; Csősz, Sándor; Fisher, Brian L.

    2016-01-01

    Abstract The Malagasy Camponotus edmondi species group is revised based on both qualitative morphological traits and multivariate analysis of continuous morphometric data. To minimize the effect of the scaling properties of diverse traits due to worker caste polymorphism, and to achieve the desired near-linearity of data, morphometric analyses were done only on minor workers. The majority of traits exhibit broken scaling on head size, dividing Camponotus workers into two discrete subcastes, minors and majors. This broken scaling prevents the application of algorithms that uses linear combination of data to the entire dataset, hence only minor workers were analyzed statistically. The elimination of major workers resulted in linearity and the data meet required assumptions. However, morphometric ratios for the subsets of minor and major workers were used in species descriptions and redefinitions. Prior species hypotheses and the goodness of clusters were tested on raw data by confirmatory linear discriminant analysis. Due to the small sample size available for some species, a factor known to reduce statistical reliability, hypotheses generated by exploratory analyses were tested with extreme care and species delimitations were inferred via the combined evidence of both qualitative (morphology and biology) and quantitative data. Altogether, fifteen species are recognized, of which 11 are new to science: Camponotus alamaina sp. n., Camponotus androy sp. n., Camponotus bevohitra sp. n., Camponotus galoko sp. n., Camponotus matsilo sp. n., Camponotus mifaka sp. n., Camponotus orombe sp. n., Camponotus tafo sp. n., Camponotus tratra sp. n., Camponotus varatra sp. n., and Camponotus zavo sp. n. Four species are redescribed: Camponotus echinoploides Forel, Camponotus edmondi André, Camponotus ethicus Forel, and Camponotus robustus Roger. Camponotus edmondi ernesti Forel, syn. n. is synonymized under Camponotus edmondi. This revision also includes an identification key to species for both minor and major castes, information on geographic distribution and biology, taxonomic discussions, and descriptions of intraspecific variation. Traditional taxonomy and multivariate morphometric analysis are independent sources of information which, in combination, allow more precise species delimitation. Moreover, quantitative characters included in identification keys improve accuracy of determination in difficult cases. PMID:28050160

  2. Distinguishing State Variability From Trait Change in Longitudinal Data: The Role of Measurement (Non)Invariance in Latent State-Trait Analyses

    PubMed Central

    Geiser, Christian; Keller, Brian T.; Lockhart, Ginger; Eid, Michael; Cole, David A.; Koch, Tobias

    2014-01-01

    Researchers analyzing longitudinal data often want to find out whether the process they study is characterized by (1) short-term state variability, (2) long-term trait change, or (3) a combination of state variability and trait change. Classical latent state-trait (LST) models are designed to measure reversible state variability around a fixed set-point or trait, whereas latent growth curve (LGC) models focus on long-lasting and often irreversible trait changes. In the present paper, we contrast LST and LGC models from the perspective of measurement invariance (MI) testing. We show that establishing a pure state-variability process requires (a) the inclusion of a mean structure and (b) establishing strong factorial invariance in LST analyses. Analytical derivations and simulations demonstrate that LST models with non-invariant parameters can mask the fact that a trait-change or hybrid process has generated the data. Furthermore, the inappropriate application of LST models to trait change or hybrid data can lead to bias in the estimates of consistency and occasion-specificity, which are typically of key interest in LST analyses. Four tips for the proper application of LST models are provided. PMID:24652650

  3. A functional-structural model of rice linking quantitative genetic information with morphological development and physiological processes.

    PubMed

    Xu, Lifeng; Henke, Michael; Zhu, Jun; Kurth, Winfried; Buck-Sorlin, Gerhard

    2011-04-01

    Although quantitative trait loci (QTL) analysis of yield-related traits for rice has developed rapidly, crop models using genotype information have been proposed only relatively recently. As a first step towards a generic genotype-phenotype model, we present here a three-dimensional functional-structural plant model (FSPM) of rice, in which some model parameters are controlled by functions describing the effect of main-effect and epistatic QTLs. The model simulates the growth and development of rice based on selected ecophysiological processes, such as photosynthesis (source process) and organ formation, growth and extension (sink processes). It was devised using GroIMP, an interactive modelling platform based on the Relational Growth Grammar formalism (RGG). RGG rules describe the course of organ initiation and extension resulting in final morphology. The link between the phenotype (as represented by the simulated rice plant) and the QTL genotype was implemented via a data interface between the rice FSPM and the QTLNetwork software, which computes predictions of QTLs from map data and measured trait data. Using plant height and grain yield, it is shown how QTL information for a given trait can be used in an FSPM, computing and visualizing the phenotypes of different lines of a mapping population. Furthermore, we demonstrate how modification of a particular trait feeds back on the entire plant phenotype via the physiological processes considered. We linked a rice FSPM to a quantitative genetic model, thereby employing QTL information to refine model parameters and visualizing the dynamics of development of the entire phenotype as a result of ecophysiological processes, including the trait(s) for which genetic information is available. Possibilities for further extension of the model, for example for the purposes of ideotype breeding, are discussed.

  4. The genetic basis of local adaptation for pathogenic fungi in agricultural ecosystems.

    PubMed

    Croll, Daniel; McDonald, Bruce A

    2017-04-01

    Local adaptation plays a key role in the evolutionary trajectory of host-pathogen interactions. However, the genetic architecture of local adaptation in host-pathogen systems is poorly understood. Fungal plant pathogens in agricultural ecosystems provide highly tractable models to quantify phenotypes and map traits to corresponding genomic loci. The outcome of crop-pathogen interactions is thought to be governed largely by gene-for-gene interactions. However, recent studies showed that virulence can be governed by quantitative trait loci and that many abiotic factors contribute to the outcome of the interaction. After introducing concepts of local adaptation and presenting examples from wild plant pathosystems, we focus this review on a major pathogen of wheat, Zymoseptoria tritici, to show how a multitude of traits can affect local adaptation. Zymoseptoria tritici adapted to different thermal environments across its distribution range, indicating that thermal adaptation may limit effective dispersal to different climates. The application of fungicides led to the rapid evolution of multiple, independent resistant populations. The degree of colony melanization showed strong pleiotropic effects with other traits, including trade-offs with colony growth rates and fungicide sensitivity. The success of the pathogen on its host can be assessed quantitatively by counting pathogen reproductive structures and measuring host damage based on necrotic lesions. Interestingly, these two traits can be weakly correlated and depend both on host and pathogen genotypes. Quantitative trait mapping studies showed that the genetic architecture of locally adapted traits varies from single loci with large effects to many loci with small individual effects. We discuss how local adaptation could hinder or accelerate the development of epidemics in agricultural ecosystems. © 2016 John Wiley & Sons Ltd.

  5. Integrated genomic approaches to identification of candidate genes underlying metabolic and cardiovascular phenotypes in the spontaneously hypertensive rat.

    PubMed

    Morrissey, Catherine; Grieve, Ian C; Heinig, Matthias; Atanur, Santosh; Petretto, Enrico; Pravenec, Michal; Hubner, Norbert; Aitman, Timothy J

    2011-11-07

    The spontaneously hypertensive rat (SHR) is a widely used rodent model of hypertension and metabolic syndrome. Previously we identified thousands of cis-regulated expression quantitative trait loci (eQTLs) across multiple tissues using a panel of rat recombinant inbred (RI) strains derived from Brown Norway and SHR progenitors. These cis-eQTLs represent potential susceptibility loci underlying physiological and pathophysiological traits manifested in SHR. We have prioritized 60 cis-eQTLs and confirmed differential expression between the parental strains by quantitative PCR in 43 (72%) of the eQTL transcripts. Quantitative trait transcript (QTT) analysis in the RI strains showed highly significant correlation between cis-eQTL transcript abundance and clinically relevant traits such as systolic blood pressure and blood glucose, with the physical location of a subset of the cis-eQTLs colocalizing with "physiological" QTLs (pQTLs) for these same traits. These colocalizing correlated cis-eQTLs (c3-eQTLs) are highly attractive as primary susceptibility loci for the colocalizing pQTLs. Furthermore, sequence analysis of the c3-eQTL genes identified single nucleotide polymorphisms (SNPs) that are predicted to affect transcription factor binding affinity, splicing and protein function. These SNPs, which potentially alter transcript abundance and stability, represent strong candidate factors underlying not just eQTL expression phenotypes, but also the correlated metabolic and physiological traits. In conclusion, by integration of genomic sequence, eQTL and QTT datasets we have identified several genes that are strong positional candidates for pathophysiological traits observed in the SHR strain. These findings provide a basis for the functional testing and ultimate elucidation of the molecular basis of these metabolic and cardiovascular phenotypes.

  6. A functional–structural model of rice linking quantitative genetic information with morphological development and physiological processes

    PubMed Central

    Xu, Lifeng; Henke, Michael; Zhu, Jun; Kurth, Winfried; Buck-Sorlin, Gerhard

    2011-01-01

    Background and Aims Although quantitative trait loci (QTL) analysis of yield-related traits for rice has developed rapidly, crop models using genotype information have been proposed only relatively recently. As a first step towards a generic genotype–phenotype model, we present here a three-dimensional functional–structural plant model (FSPM) of rice, in which some model parameters are controlled by functions describing the effect of main-effect and epistatic QTLs. Methods The model simulates the growth and development of rice based on selected ecophysiological processes, such as photosynthesis (source process) and organ formation, growth and extension (sink processes). It was devised using GroIMP, an interactive modelling platform based on the Relational Growth Grammar formalism (RGG). RGG rules describe the course of organ initiation and extension resulting in final morphology. The link between the phenotype (as represented by the simulated rice plant) and the QTL genotype was implemented via a data interface between the rice FSPM and the QTLNetwork software, which computes predictions of QTLs from map data and measured trait data. Key Results Using plant height and grain yield, it is shown how QTL information for a given trait can be used in an FSPM, computing and visualizing the phenotypes of different lines of a mapping population. Furthermore, we demonstrate how modification of a particular trait feeds back on the entire plant phenotype via the physiological processes considered. Conclusions We linked a rice FSPM to a quantitative genetic model, thereby employing QTL information to refine model parameters and visualizing the dynamics of development of the entire phenotype as a result of ecophysiological processes, including the trait(s) for which genetic information is available. Possibilities for further extension of the model, for example for the purposes of ideotype breeding, are discussed. PMID:21247905

  7. A novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China

    PubMed Central

    Yang, Yanzheng; Zhu, Qiuan; Peng, Changhui; Wang, Han; Xue, Wei; Lin, Guanghui; Wen, Zhongming; Chang, Jie; Wang, Meng; Liu, Guobin; Li, Shiqing

    2016-01-01

    Increasing evidence indicates that current dynamic global vegetation models (DGVMs) have suffered from insufficient realism and are difficult to improve, particularly because they are built on plant functional type (PFT) schemes. Therefore, new approaches, such as plant trait-based methods, are urgently needed to replace PFT schemes when predicting the distribution of vegetation and investigating vegetation sensitivity. As an important direction towards constructing next-generation DGVMs based on plant functional traits, we propose a novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China. The results demonstrated that a Gaussian mixture model (GMM) trained with a LMA-Nmass-LAI data combination yielded an accuracy of 72.82% in simulating vegetation distribution, providing more detailed parameter information regarding community structures and ecosystem functions. The new approach also performed well in analyses of vegetation sensitivity to different climatic scenarios. Although the trait-climate relationship is not the only candidate useful for predicting vegetation distributions and analysing climatic sensitivity, it sheds new light on the development of next-generation trait-based DGVMs. PMID:27052108

  8. The correlation between relatives on the supposition of genomic imprinting.

    PubMed Central

    Spencer, Hamish G

    2002-01-01

    Standard genetic analyses assume that reciprocal heterozygotes are, on average, phenotypically identical. If a locus is subject to genomic imprinting, however, this assumption does not hold. We incorporate imprinting into the standard quantitative-genetic model for two alleles at a single locus, deriving expressions for the additive and dominance components of genetic variance, as well as measures of resemblance among relatives. We show that, in contrast to the case with Mendelian expression, the additive and dominance deviations are correlated. In principle, this correlation allows imprinting to be detected solely on the basis of different measures of familial resemblances, but in practice, the standard error of the estimate is likely to be too large for a test to have much statistical power. The effects of genomic imprinting will need to be incorporated into quantitative-genetic models of many traits, for example, those concerned with mammalian birthweight. PMID:12019254

  9. The correlation between relatives on the supposition of genomic imprinting.

    PubMed

    Spencer, Hamish G

    2002-05-01

    Standard genetic analyses assume that reciprocal heterozygotes are, on average, phenotypically identical. If a locus is subject to genomic imprinting, however, this assumption does not hold. We incorporate imprinting into the standard quantitative-genetic model for two alleles at a single locus, deriving expressions for the additive and dominance components of genetic variance, as well as measures of resemblance among relatives. We show that, in contrast to the case with Mendelian expression, the additive and dominance deviations are correlated. In principle, this correlation allows imprinting to be detected solely on the basis of different measures of familial resemblances, but in practice, the standard error of the estimate is likely to be too large for a test to have much statistical power. The effects of genomic imprinting will need to be incorporated into quantitative-genetic models of many traits, for example, those concerned with mammalian birthweight.

  10. Fine-Scale Linkage Mapping Reveals a Small Set of Candidate Genes Influencing Honey Bee Grooming Behavior in Response to Varroa Mites

    PubMed Central

    Arechavaleta-Velasco, Miguel E.; Alcala-Escamilla, Karla; Robles-Rios, Carlos; Tsuruda, Jennifer M.; Hunt, Greg J.

    2012-01-01

    Populations of honey bees in North America have been experiencing high annual colony mortality for 15–20 years. Many apicultural researchers believe that introduced parasites called Varroa mites (V. destructor) are the most important factor in colony deaths. One important resistance mechanism that limits mite population growth in colonies is the ability of some lines of honey bees to groom mites from their bodies. To search for genes influencing this trait, we used an Illumina Bead Station genotyping array to determine the genotypes of several hundred worker bees at over a thousand single-nucleotide polymorphisms in a family that was apparently segregating for alleles influencing this behavior. Linkage analyses provided a genetic map with 1,313 markers anchored to genome sequence. Genotypes were analyzed for association with grooming behavior, measured as the time that individual bees took to initiate grooming after mites were placed on their thoraces. Quantitative-trait-locus interval mapping identified a single chromosomal region that was significant at the chromosome-wide level (p<0.05) on chromosome 5 with a LOD score of 2.72. The 95% confidence interval for quantitative trait locus location contained only 27 genes (honey bee official gene annotation set 2) including Atlastin, Ataxin and Neurexin-1 (AmNrx1), which have potential neurodevelopmental and behavioral effects. Atlastin and Ataxin homologs are associated with neurological diseases in humans. AmNrx1 codes for a presynaptic protein with many alternatively spliced isoforms. Neurexin-1 influences the growth, maintenance and maturation of synapses in the brain, as well as the type of receptors most prominent within synapses. Neurexin-1 has also been associated with autism spectrum disorder and schizophrenia in humans, and self-grooming behavior in mice. PMID:23133594

  11. Fine-scale linkage mapping reveals a small set of candidate genes influencing honey bee grooming behavior in response to Varroa mites.

    PubMed

    Arechavaleta-Velasco, Miguel E; Alcala-Escamilla, Karla; Robles-Rios, Carlos; Tsuruda, Jennifer M; Hunt, Greg J

    2012-01-01

    Populations of honey bees in North America have been experiencing high annual colony mortality for 15-20 years. Many apicultural researchers believe that introduced parasites called Varroa mites (V. destructor) are the most important factor in colony deaths. One important resistance mechanism that limits mite population growth in colonies is the ability of some lines of honey bees to groom mites from their bodies. To search for genes influencing this trait, we used an Illumina Bead Station genotyping array to determine the genotypes of several hundred worker bees at over a thousand single-nucleotide polymorphisms in a family that was apparently segregating for alleles influencing this behavior. Linkage analyses provided a genetic map with 1,313 markers anchored to genome sequence. Genotypes were analyzed for association with grooming behavior, measured as the time that individual bees took to initiate grooming after mites were placed on their thoraces. Quantitative-trait-locus interval mapping identified a single chromosomal region that was significant at the chromosome-wide level (p<0.05) on chromosome 5 with a LOD score of 2.72. The 95% confidence interval for quantitative trait locus location contained only 27 genes (honey bee official gene annotation set 2) including Atlastin, Ataxin and Neurexin-1 (AmNrx1), which have potential neurodevelopmental and behavioral effects. Atlastin and Ataxin homologs are associated with neurological diseases in humans. AmNrx1 codes for a presynaptic protein with many alternatively spliced isoforms. Neurexin-1 influences the growth, maintenance and maturation of synapses in the brain, as well as the type of receptors most prominent within synapses. Neurexin-1 has also been associated with autism spectrum disorder and schizophrenia in humans, and self-grooming behavior in mice.

  12. Across-cohort QC analyses of GWAS summary statistics from complex traits.

    PubMed

    Chen, Guo-Bo; Lee, Sang Hong; Robinson, Matthew R; Trzaskowski, Maciej; Zhu, Zhi-Xiang; Winkler, Thomas W; Day, Felix R; Croteau-Chonka, Damien C; Wood, Andrew R; Locke, Adam E; Kutalik, Zoltán; Loos, Ruth J F; Frayling, Timothy M; Hirschhorn, Joel N; Yang, Jian; Wray, Naomi R; Visscher, Peter M

    2016-01-01

    Genome-wide association studies (GWASs) have been successful in discovering SNP trait associations for many quantitative traits and common diseases. Typically, the effect sizes of SNP alleles are very small and this requires large genome-wide association meta-analyses (GWAMAs) to maximize statistical power. A trend towards ever-larger GWAMA is likely to continue, yet dealing with summary statistics from hundreds of cohorts increases logistical and quality control problems, including unknown sample overlap, and these can lead to both false positive and false negative findings. In this study, we propose four metrics and visualization tools for GWAMA, using summary statistics from cohort-level GWASs. We propose methods to examine the concordance between demographic information, and summary statistics and methods to investigate sample overlap. (I) We use the population genetics F st statistic to verify the genetic origin of each cohort and their geographic location, and demonstrate using GWAMA data from the GIANT Consortium that geographic locations of cohorts can be recovered and outlier cohorts can be detected. (II) We conduct principal component analysis based on reported allele frequencies, and are able to recover the ancestral information for each cohort. (III) We propose a new statistic that uses the reported allelic effect sizes and their standard errors to identify significant sample overlap or heterogeneity between pairs of cohorts. (IV) To quantify unknown sample overlap across all pairs of cohorts, we propose a method that uses randomly generated genetic predictors that does not require the sharing of individual-level genotype data and does not breach individual privacy.

  13. Inherited behavioral susceptibility to adiposity in infancy: a multivariate genetic analysis of appetite and weight in the Gemini birth cohort.

    PubMed

    Llewellyn, Clare H; van Jaarsveld, Cornelia H M; Plomin, Robert; Fisher, Abigail; Wardle, Jane

    2012-03-01

    The behavioral susceptibility model proposes that inherited differences in traits such as appetite confer differential risk of weight gain and contribute to the heritability of weight. Evidence that the FTO gene may influence weight partly through its effects on appetite supports this model, but testing the behavioral pathways for multiple genes with very small effects is not feasible. Twin analyses make it possible to get a broad-based estimate of the extent of shared genetic influence between appetite and weight. The objective was to use multivariate twin analyses to test the hypothesis that associations between appetite and weight are underpinned by shared genetic effects. Data were from Gemini, a population-based birth cohort of twins (n = 4804) born in 2007. Infant weights at 3 mo were taken from the records of health professionals. Appetite was assessed at 3 mo for the milk-feeding period by using the Baby Eating Behaviour Questionnaire (BEBQ), a parent-reported measure of appetite [enjoyment of food, food responsiveness, slowness in eating (SE), satiety responsiveness (SR), and appetite size (AS)]. Multivariate quantitative genetic modeling was used to test for shared genetic influences. Significant correlations were found between all BEBQ traits and weight. Significant shared genetic influence was identified for weight with SE, SR, and AS; genetic correlations were between 0.22 and 0.37. Shared genetic effects explained 41-45% of these phenotypic associations. Differences in weight in infancy may be due partly to genetically determined differences in appetitive traits that confer differential susceptibility to obesogenic environments.

  14. Across-cohort QC analyses of GWAS summary statistics from complex traits

    PubMed Central

    Chen, Guo-Bo; Lee, Sang Hong; Robinson, Matthew R; Trzaskowski, Maciej; Zhu, Zhi-Xiang; Winkler, Thomas W; Day, Felix R; Croteau-Chonka, Damien C; Wood, Andrew R; Locke, Adam E; Kutalik, Zoltán; Loos, Ruth J F; Frayling, Timothy M; Hirschhorn, Joel N; Yang, Jian; Wray, Naomi R; Visscher, Peter M

    2017-01-01

    Genome-wide association studies (GWASs) have been successful in discovering SNP trait associations for many quantitative traits and common diseases. Typically, the effect sizes of SNP alleles are very small and this requires large genome-wide association meta-analyses (GWAMAs) to maximize statistical power. A trend towards ever-larger GWAMA is likely to continue, yet dealing with summary statistics from hundreds of cohorts increases logistical and quality control problems, including unknown sample overlap, and these can lead to both false positive and false negative findings. In this study, we propose four metrics and visualization tools for GWAMA, using summary statistics from cohort-level GWASs. We propose methods to examine the concordance between demographic information, and summary statistics and methods to investigate sample overlap. (I) We use the population genetics Fst statistic to verify the genetic origin of each cohort and their geographic location, and demonstrate using GWAMA data from the GIANT Consortium that geographic locations of cohorts can be recovered and outlier cohorts can be detected. (II) We conduct principal component analysis based on reported allele frequencies, and are able to recover the ancestral information for each cohort. (III) We propose a new statistic that uses the reported allelic effect sizes and their standard errors to identify significant sample overlap or heterogeneity between pairs of cohorts. (IV) To quantify unknown sample overlap across all pairs of cohorts, we propose a method that uses randomly generated genetic predictors that does not require the sharing of individual-level genotype data and does not breach individual privacy. PMID:27552965

  15. Using genetic markers to orient the edges in quantitative trait networks: the NEO software.

    PubMed

    Aten, Jason E; Fuller, Tova F; Lusis, Aldons J; Horvath, Steve

    2008-04-15

    Systems genetic studies have been used to identify genetic loci that affect transcript abundances and clinical traits such as body weight. The pairwise correlations between gene expression traits and/or clinical traits can be used to define undirected trait networks. Several authors have argued that genetic markers (e.g expression quantitative trait loci, eQTLs) can serve as causal anchors for orienting the edges of a trait network. The availability of hundreds of thousands of genetic markers poses new challenges: how to relate (anchor) traits to multiple genetic markers, how to score the genetic evidence in favor of an edge orientation, and how to weigh the information from multiple markers. We develop and implement Network Edge Orienting (NEO) methods and software that address the challenges of inferring unconfounded and directed gene networks from microarray-derived gene expression data by integrating mRNA levels with genetic marker data and Structural Equation Model (SEM) comparisons. The NEO software implements several manual and automatic methods for incorporating genetic information to anchor traits. The networks are oriented by considering each edge separately, thus reducing error propagation. To summarize the genetic evidence in favor of a given edge orientation, we propose Local SEM-based Edge Orienting (LEO) scores that compare the fit of several competing causal graphs. SEM fitting indices allow the user to assess local and overall model fit. The NEO software allows the user to carry out a robustness analysis with regard to genetic marker selection. We demonstrate the utility of NEO by recovering known causal relationships in the sterol homeostasis pathway using liver gene expression data from an F2 mouse cross. Further, we use NEO to study the relationship between a disease gene and a biologically important gene co-expression module in liver tissue. The NEO software can be used to orient the edges of gene co-expression networks or quantitative trait networks if the edges can be anchored to genetic marker data. R software tutorials, data, and supplementary material can be downloaded from: http://www.genetics.ucla.edu/labs/horvath/aten/NEO.

  16. Analysis of quantitative lipid traits in the genetics of NIDDM (GENNID) study.

    PubMed

    Malhotra, Alka; Wolford, Johanna K

    2005-10-01

    Coronary heart disease (CHD) is the leading cause of death among individuals with type 2 diabetes. Dyslipidemia contributes significantly to CHD in diabetic patients, in whom lipid abnormalities include hypertriglyceridemia, low HDL cholesterol, and increased levels of small, dense LDL particles. To identify genes for lipid-related traits, we performed genome-wide linkage analyses for levels of triglycerides and HDL, LDL, and total cholesterol in Caucasian, Hispanic, and African-American families from the Genetics of NIDDM (GENNID) study. Most lipid traits showed significant estimates of heritability (P < 0.001) with the exception of triglycerides and the triglyceride/HDL ratio in African Americans. Variance components analysis identified linkage on chromosome 3p12.1-3q13.31 for the triglyceride/HDL ratio (logarithm of odds [LOD] = 3.36) and triglyceride (LOD = 3.27) in Caucasian families. Statistically significant evidence for linkage was identified for the triglyceride/HDL ratio (LOD = 2.45) on 11p in Hispanic families in a region that showed suggestive evidence for linkage (LOD = 2.26) for triglycerides in this population. In African Americans, the strongest evidence for linkage (LOD = 2.26) was found on 19p13.2-19q13.42 for total cholesterol. Our findings provide strong support for previous reports of linkage for lipid-related traits, suggesting the presence of genes on 3p12.1-3q13.31, 11p15.4-11p11.3, and 19p13.2-19q13.42 that may influence traits underlying lipid abnormalities associated with type 2 diabetes.

  17. The Prevalence and Role of Hemoglobin Variants in Biometric Screening of a Multiethnic Population: One Large Health System's Experience.

    PubMed

    Wilburn, Clayton R; Bernard, David W; Zieske, Arthur W; Andrieni, Julia; Miller, Tara; Wang, Ping

    2017-06-01

    To characterize and quantitate hemoglobin (Hb) variants discovered during biometric hemoglobin A1c (HbA1c) analyses in a large multiethnic population with a focus on the effect of variants on testing method and results. In total, 13,913 individuals had their HbA1c measured via ion-exchange high-performance liquid chromatography. Samples that had a variant Hb detected or HbF fraction more than 25% underwent variant Hb characterization and confirmation by gel electrophoresis. RBC indices were also evaluated for possible concomitant thalassemia. Of the 13,913 individuals evaluated, 524 (3.77%) had an Hb variant. The prevalence of each variant was as follows: HbS trait (n = 396, 2.85%), HbSS disease (n = 4, 0.03%), HbC trait (n = 85, 0.61%), HbCC disease (n = 2, 0.01%), HbSC disease (n = 5, 0.04%), HbE trait (n = 18, 0.13%), HbD or G trait (n = 9, 0.06%), HbS β-thalassemia + disease (n = 1, 0.01%), hereditary persistence of HbF (n = 2, 0.01%), and HbMontgomery trait (n = 1, 0.01%). Concomitant α-thalassemia was detected in 20 (3.82%) of the 524 individuals with an Hb variant. This study represents one of the largest epidemiologic investigations into the prevalence of Hb variants in a North American metropolitan, multiethnic workforce and their dependents and reinforces the importance of method selection in populations with Hb variants. © American Society for Clinical Pathology, 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  18. [Fine mapping of complex disease susceptibility loci].

    PubMed

    Song, Qingfeng; Zhang, Hongxing; Ma, Yilong; Zhou, Gangqiao

    2014-01-01

    Genome-wide association studies (GWAS) using single nucleotide polymorphism (SNP) markers have identified more than 3800 susceptibility loci for more than 660 diseases or traits. However, the most significantly associated variants or causative variants in these loci and their biological functions have remained to be clarified. These causative variants can help to elucidate the pathogenesis and discover new biomarkers of complex diseases. One of the main goals in the post-GWAS era is to identify the causative variants and susceptibility genes, and clarify their functional aspects by fine mapping. For common variants, imputation or re-sequencing based strategies were implemented to increase the number of analyzed variants and help to identify the most significantly associated variants. In addition, functional element, expression quantitative trait locus (eQTL) and haplotype analyses were performed to identify functional common variants and susceptibility genes. For rare variants, fine mapping was carried out by re-sequencing, rare haplotype analysis, family-based analysis, burden test, etc.This review summarizes the strategies and problems for fine mapping.

  19. Population- and individual-specific regulatory variation in Sardinia.

    PubMed

    Pala, Mauro; Zappala, Zachary; Marongiu, Mara; Li, Xin; Davis, Joe R; Cusano, Roberto; Crobu, Francesca; Kukurba, Kimberly R; Gloudemans, Michael J; Reinier, Frederic; Berutti, Riccardo; Piras, Maria G; Mulas, Antonella; Zoledziewska, Magdalena; Marongiu, Michele; Sorokin, Elena P; Hess, Gaelen T; Smith, Kevin S; Busonero, Fabio; Maschio, Andrea; Steri, Maristella; Sidore, Carlo; Sanna, Serena; Fiorillo, Edoardo; Bassik, Michael C; Sawcer, Stephen J; Battle, Alexis; Novembre, John; Jones, Chris; Angius, Andrea; Abecasis, Gonçalo R; Schlessinger, David; Cucca, Francesco; Montgomery, Stephen B

    2017-05-01

    Genetic studies of complex traits have mainly identified associations with noncoding variants. To further determine the contribution of regulatory variation, we combined whole-genome and transcriptome data for 624 individuals from Sardinia to identify common and rare variants that influence gene expression and splicing. We identified 21,183 expression quantitative trait loci (eQTLs) and 6,768 splicing quantitative trait loci (sQTLs), including 619 new QTLs. We identified high-frequency QTLs and found evidence of selection near genes involved in malarial resistance and increased multiple sclerosis risk, reflecting the epidemiological history of Sardinia. Using family relationships, we identified 809 segregating expression outliers (median z score of 2.97), averaging 13.3 genes per individual. Outlier genes were enriched for proximal rare variants, providing a new approach to study large-effect regulatory variants and their relevance to traits. Our results provide insight into the effects of regulatory variants and their relationship to population history and individual genetic risk.

  20. Meta-analysis of quantitative pleiotropic traits for next-generation sequencing with multivariate functional linear models

    PubMed Central

    Chiu, Chi-yang; Jung, Jeesun; Chen, Wei; Weeks, Daniel E; Ren, Haobo; Boehnke, Michael; Amos, Christopher I; Liu, Aiyi; Mills, James L; Ting Lee, Mei-ling; Xiong, Momiao; Fan, Ruzong

    2017-01-01

    To analyze next-generation sequencing data, multivariate functional linear models are developed for a meta-analysis of multiple studies to connect genetic variant data to multiple quantitative traits adjusting for covariates. The goal is to take the advantage of both meta-analysis and pleiotropic analysis in order to improve power and to carry out a unified association analysis of multiple studies and multiple traits of complex disorders. Three types of approximate F -distributions based on Pillai–Bartlett trace, Hotelling–Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants. Simulation analysis is performed to evaluate false-positive rates and power of the proposed tests. The proposed methods are applied to analyze lipid traits in eight European cohorts. It is shown that it is more advantageous to perform multivariate analysis than univariate analysis in general, and it is more advantageous to perform meta-analysis of multiple studies instead of analyzing the individual studies separately. The proposed models require individual observations. The value of the current paper can be seen at least for two reasons: (a) the proposed methods can be applied to studies that have individual genotype data; (b) the proposed methods can be used as a criterion for future work that uses summary statistics to build test statistics to meta-analyze the data. PMID:28000696

  1. Meta-analysis of quantitative pleiotropic traits for next-generation sequencing with multivariate functional linear models.

    PubMed

    Chiu, Chi-Yang; Jung, Jeesun; Chen, Wei; Weeks, Daniel E; Ren, Haobo; Boehnke, Michael; Amos, Christopher I; Liu, Aiyi; Mills, James L; Ting Lee, Mei-Ling; Xiong, Momiao; Fan, Ruzong

    2017-02-01

    To analyze next-generation sequencing data, multivariate functional linear models are developed for a meta-analysis of multiple studies to connect genetic variant data to multiple quantitative traits adjusting for covariates. The goal is to take the advantage of both meta-analysis and pleiotropic analysis in order to improve power and to carry out a unified association analysis of multiple studies and multiple traits of complex disorders. Three types of approximate F -distributions based on Pillai-Bartlett trace, Hotelling-Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants. Simulation analysis is performed to evaluate false-positive rates and power of the proposed tests. The proposed methods are applied to analyze lipid traits in eight European cohorts. It is shown that it is more advantageous to perform multivariate analysis than univariate analysis in general, and it is more advantageous to perform meta-analysis of multiple studies instead of analyzing the individual studies separately. The proposed models require individual observations. The value of the current paper can be seen at least for two reasons: (a) the proposed methods can be applied to studies that have individual genotype data; (b) the proposed methods can be used as a criterion for future work that uses summary statistics to build test statistics to meta-analyze the data.

  2. Genetic divergence in northern Benin sorghum (Sorghum bicolor L. Moench) landraces as revealed by agromorphological traits and selection of candidate genotypes.

    PubMed

    Dossou-Aminon, Innocent; Loko, Laura Yêyinou; Adjatin, Arlette; Ewédjè, Eben-Ezer B K; Dansi, Alexandre; Rakshit, Sujay; Cissé, Ndiaga; Patil, Jagannath Vishnu; Agbangla, Clément; Sanni, Ambaliou; Akoègninou, Akpovi; Akpagana, Koffi

    2015-01-01

    Sorghum [Sorghum bicolor (L.) Moench] is an important staple food crop in northern Benin. In order to assess its diversity in Benin, 142 accessions of landraces collected from Northern Benin were grown in Central Benin and characterised using 10 qualitative and 14 quantitative agromorphological traits. High variability among both qualitative and quantitative traits was observed. Grain yield (0.72-10.57 tons/ha), panicle weight (15-215.95 g), days to 50% flowering (57-200 days), and plant height (153.27-636.5 cm) were among traits that exhibited broader variability. Correlations between quantitative traits were determined. Grain yield for instance exhibited highly positive association with panicle weight (r = 0.901, P = 0.000) and 100 seed weight (r = 0.247, P = 0.000). UPGMA cluster analysis classified the 142 accessions into 89 morphotypes. Based on multivariate analysis, twenty promising sorghum genotypes were selected. Among them, AT41, AT14, and AT29 showed early maturity (57 to 66 days to 50% flowering), high grain yields (4.85 to 7.85 tons/ha), and shorter plant height (153.27 to 180.37 cm). The results obtained will help enhancing sorghum production and diversity and developing new varieties that will be better adapted to the current soil and climate conditions in Benin.

  3. Local selection modifies phenotypic divergence among Rana temporaria populations in the presence of gene flow.

    PubMed

    Richter-Boix, Alex; Teplitsky, Céline; Rogell, Björn; Laurila, Anssi

    2010-02-01

    In ectotherms, variation in life history traits among populations is common and suggests local adaptation. However, geographic variation itself is not a proof for local adaptation, as genetic drift and gene flow may also shape patterns of quantitative variation. We studied local and regional variation in means and phenotypic plasticity of larval life history traits in the common frog Rana temporaria using six populations from central Sweden, breeding in either open-canopy or partially closed-canopy ponds. To separate local adaptation from genetic drift, we compared differentiation in quantitative genetic traits (Q(ST)) obtained from a common garden experiment with differentiation in presumably neutral microsatellite markers (F(ST)). We found that R. temporaria populations differ in means and plasticities of life history traits in different temperatures at local, and in F(ST) at regional scale. Comparisons of differentiation in quantitative traits and in molecular markers suggested that natural selection was responsible for the divergence in growth and development rates as well as in temperature-induced plasticity, indicating local adaptation. However, at low temperature, the role of genetic drift could not be separated from selection. Phenotypes were correlated with forest canopy closure, but not with geographical or genetic distance. These results indicate that local adaptation can evolve in the presence of ongoing gene flow among the populations, and that natural selection is strong in this system.

  4. The effects of dominance, regular inbreeding and sampling design on Q(ST), an estimator of population differentiation for quantitative traits.

    PubMed

    Goudet, Jérôme; Büchi, Lucie

    2006-02-01

    To test whether quantitative traits are under directional or homogenizing selection, it is common practice to compare population differentiation estimates at molecular markers (F(ST)) and quantitative traits (Q(ST)). If the trait is neutral and its determinism is additive, then theory predicts that Q(ST) = F(ST), while Q(ST) > F(ST) is predicted under directional selection for different local optima, and Q(ST) < F(ST) is predicted under homogenizing selection. However, nonadditive effects can alter these predictions. Here, we investigate the influence of dominance on the relation between Q(ST) and F(ST) for neutral traits. Using analytical results and computer simulations, we show that dominance generally deflates Q(ST) relative to F(ST). Under inbreeding, the effect of dominance vanishes, and we show that for selfing species, a better estimate of Q(ST) is obtained from selfed families than from half-sib families. We also compare several sampling designs and find that it is always best to sample many populations (>20) with few families (five) rather than few populations with many families. Provided that estimates of Q(ST) are derived from individuals originating from many populations, we conclude that the pattern Q(ST) > F(ST), and hence the inference of directional selection for different local optima, is robust to the effect of nonadditive gene actions.

  5. Quantitative genetics of immunity and life history under different photoperiods.

    PubMed

    Hammerschmidt, K; Deines, P; Wilson, A J; Rolff, J

    2012-05-01

    Insects with complex life-cycles should optimize age and size at maturity during larval development. When inhabiting seasonal environments, organisms have limited reproductive periods and face fundamental decisions: individuals that reach maturity late in season have to either reproduce at a small size or increase their growth rates. Increasing growth rates is costly in insects because of higher juvenile mortality, decreased adult survival or increased susceptibility to parasitism by bacteria and viruses via compromised immune function. Environmental changes such as seasonality can also alter the quantitative genetic architecture. Here, we explore the quantitative genetics of life history and immunity traits under two experimentally induced seasonal environments in the cricket Gryllus bimaculatus. Seasonality affected the life history but not the immune phenotypes. Individuals under decreasing day length developed slower and grew to a bigger size. We found ample additive genetic variance and heritability for components of immunity (haemocyte densities, proPhenoloxidase activity, resistance against Serratia marcescens), and for the life history traits, age and size at maturity. Despite genetic covariance among traits, the structure of G was inconsistent with genetically based trade-off between life history and immune traits (for example, a strong positive genetic correlation between growth rate and haemocyte density was estimated). However, conditional evolvabilities support the idea that genetic covariance structure limits the capacity of individual traits to evolve independently. We found no evidence for G × E interactions arising from the experimentally induced seasonality.

  6. Major Quantitative Trait Loci Affecting Honey Bee Foraging Behavior

    PubMed Central

    Hunt, G. J.; Page-Jr., R. E.; Fondrk, M. K.; Dullum, C. J.

    1995-01-01

    We identified two genomic regions that affect the amount of pollen stored in honey bee colonies and influence whether foragers will collect pollen or nectar. We selected for the amount of pollen stored in combs of honey bee colonies, a colony-level trait, and then used random amplified polymorphic DNA (RAPD) markers and interval mapping procedures with data from backcross colonies to identify two quantitative trait loci (pln1 and pln2, LOD 3.1 and 2.3, respectively). Quantitative trait loci effects were confirmed in a separate cross by demonstrating the cosegregation of marker alleles with the foraging behavior of individual workers. Both pln1 and pln2 had an effect on the amount of pollen carried by foragers returning to the colony, as inferred by the association between linked RAPD marker alleles, D8-.3f and 301-.55, and the individual pollen load weights of returning foragers. The alleles of the two marker loci were nonrandomly distributed with respect to foraging task. The two loci appeared to have different effects on foraging behavior. Individuals with alternative alleles for the marker linked to pln2 (but not pln1) differed with respect to the nectar sugar concentration of their nectar loads. PMID:8601492

  7. Quantitative trait loci from the host genetic background modulate the durability of a resistance gene: a rational basis for sustainable resistance breeding in plants.

    PubMed

    Quenouille, J; Paulhiac, E; Moury, B; Palloix, A

    2014-06-01

    The combination of major resistance genes with quantitative resistance factors is hypothesized as a promising breeding strategy to preserve the durability of resistant cultivar, as recently observed in different pathosystems. Using the pepper (Capsicum annuum)/Potato virus Y (PVY, genus Potyvirus) pathosystem, we aimed at identifying plant genetic factors directly affecting the frequency of virus adaptation to the major resistance gene pvr2(3) and at comparing them with genetic factors affecting quantitative resistance. The resistance breakdown frequency was a highly heritable trait (h(2)=0.87). Four loci including additive quantitative trait loci (QTLs) and epistatic interactions explained together 70% of the variance of pvr2(3) breakdown frequency. Three of the four QTLs controlling pvr2(3) breakdown frequency were also involved in quantitative resistance, strongly suggesting that QTLs controlling quantitative resistance have a pleiotropic effect on the durability of the major resistance gene. With the first mapping of QTLs directly affecting resistance durability, this study provides a rationale for sustainable resistance breeding. Surprisingly, a genetic trade-off was observed between the durability of PVY resistance controlled by pvr2(3) and the spectrum of the resistance against different potyviruses. This trade-off seemed to have been resolved by the combination of minor-effect durability QTLs under long-term farmer selection.

  8. Genetic parameter estimation for pre- and post-weaning traits in Brahman cattle in Brazil.

    PubMed

    Vargas, Giovana; Buzanskas, Marcos Eli; Guidolin, Diego Gomes Freire; Grossi, Daniela do Amaral; Bonifácio, Alexandre da Silva; Lôbo, Raysildo Barbosa; da Fonseca, Ricardo; Oliveira, João Ademir de; Munari, Danísio Prado

    2014-10-01

    Beef cattle producers in Brazil use body weight traits as breeding program selection criteria due to their great economic importance. The objectives of this study were to evaluate different animal models, estimate genetic parameters, and define the most fitting model for Brahman cattle body weight standardized at 120 (BW120), 210 (BW210), 365 (BW365), 450 (BW450), and 550 (BW550) days of age. To estimate genetic parameters, single-, two-, and multi-trait analyses were performed using the animal model. The likelihood ratio test was verified between all models. For BW120 and BW210, additive direct genetic, maternal genetic, maternal permanent environment, and residual effects were considered, while for BW365 and BW450, additive direct genetic, maternal genetic, and residual effects were considered. Finally, for BW550, additive direct genetic and residual effects were considered. Estimates of direct heritability for BW120 were similar in all analyses; however, for the other traits, multi-trait analysis resulted in higher estimates. The maternal heritability and proportion of maternal permanent environmental variance to total variance were minimal in multi-trait analyses. Genetic, environmental, and phenotypic correlations were of high magnitude between all traits. Multi-trait analyses would aid in the parameter estimation for body weight at older ages because they are usually affected by a lower number of animals with phenotypic information due to culling and mortality.

  9. A simple genetic architecture underlies morphological variation in dogs.

    PubMed

    Boyko, Adam R; Quignon, Pascale; Li, Lin; Schoenebeck, Jeffrey J; Degenhardt, Jeremiah D; Lohmueller, Kirk E; Zhao, Keyan; Brisbin, Abra; Parker, Heidi G; vonHoldt, Bridgett M; Cargill, Michele; Auton, Adam; Reynolds, Andy; Elkahloun, Abdel G; Castelhano, Marta; Mosher, Dana S; Sutter, Nathan B; Johnson, Gary S; Novembre, John; Hubisz, Melissa J; Siepel, Adam; Wayne, Robert K; Bustamante, Carlos D; Ostrander, Elaine A

    2010-08-10

    Domestic dogs exhibit tremendous phenotypic diversity, including a greater variation in body size than any other terrestrial mammal. Here, we generate a high density map of canine genetic variation by genotyping 915 dogs from 80 domestic dog breeds, 83 wild canids, and 10 outbred African shelter dogs across 60,968 single-nucleotide polymorphisms (SNPs). Coupling this genomic resource with external measurements from breed standards and individuals as well as skeletal measurements from museum specimens, we identify 51 regions of the dog genome associated with phenotypic variation among breeds in 57 traits. The complex traits include average breed body size and external body dimensions and cranial, dental, and long bone shape and size with and without allometric scaling. In contrast to the results from association mapping of quantitative traits in humans and domesticated plants, we find that across dog breeds, a small number of quantitative trait loci (< or = 3) explain the majority of phenotypic variation for most of the traits we studied. In addition, many genomic regions show signatures of recent selection, with most of the highly differentiated regions being associated with breed-defining traits such as body size, coat characteristics, and ear floppiness. Our results demonstrate the efficacy of mapping multiple traits in the domestic dog using a database of genotyped individuals and highlight the important role human-directed selection has played in altering the genetic architecture of key traits in this important species.

  10. A Simple Genetic Architecture Underlies Morphological Variation in Dogs

    PubMed Central

    Schoenebeck, Jeffrey J.; Degenhardt, Jeremiah D.; Lohmueller, Kirk E.; Zhao, Keyan; Brisbin, Abra; Parker, Heidi G.; vonHoldt, Bridgett M.; Cargill, Michele; Auton, Adam; Reynolds, Andy; Elkahloun, Abdel G.; Castelhano, Marta; Mosher, Dana S.; Sutter, Nathan B.; Johnson, Gary S.; Novembre, John; Hubisz, Melissa J.; Siepel, Adam; Wayne, Robert K.; Bustamante, Carlos D.; Ostrander, Elaine A.

    2010-01-01

    Domestic dogs exhibit tremendous phenotypic diversity, including a greater variation in body size than any other terrestrial mammal. Here, we generate a high density map of canine genetic variation by genotyping 915 dogs from 80 domestic dog breeds, 83 wild canids, and 10 outbred African shelter dogs across 60,968 single-nucleotide polymorphisms (SNPs). Coupling this genomic resource with external measurements from breed standards and individuals as well as skeletal measurements from museum specimens, we identify 51 regions of the dog genome associated with phenotypic variation among breeds in 57 traits. The complex traits include average breed body size and external body dimensions and cranial, dental, and long bone shape and size with and without allometric scaling. In contrast to the results from association mapping of quantitative traits in humans and domesticated plants, we find that across dog breeds, a small number of quantitative trait loci (≤3) explain the majority of phenotypic variation for most of the traits we studied. In addition, many genomic regions show signatures of recent selection, with most of the highly differentiated regions being associated with breed-defining traits such as body size, coat characteristics, and ear floppiness. Our results demonstrate the efficacy of mapping multiple traits in the domestic dog using a database of genotyped individuals and highlight the important role human-directed selection has played in altering the genetic architecture of key traits in this important species. PMID:20711490

  11. Quantitative variation in water-use efficiency across water regimes and its relationship with circadian, vegetative, reproductive, and leaf gas-exchange traits.

    PubMed

    Edwards, Christine E; Ewers, Brent E; McClung, C Robertson; Lou, Ping; Weinig, Cynthia

    2012-05-01

    Drought limits light harvesting, resulting in lower plant growth and reproduction. One trait important for plant drought response is water-use efficiency (WUE). We investigated (1) how the joint genetic architecture of WUE, reproductive characters, and vegetative traits changed across drought and well-watered conditions, (2) whether traits with distinct developmental bases (e.g. leaf gas exchange versus reproduction) differed in the environmental sensitivity of their genetic architecture, and (3) whether quantitative variation in circadian period was related to drought response in Brassica rapa. Overall, WUE increased in drought, primarily because stomatal conductance, and thus water loss, declined more than carbon fixation. Genotypes with the highest WUE in drought expressed the lowest WUE in well-watered conditions, and had the largest vegetative and floral organs in both treatments. Thus, large changes in WUE enabled some genotypes to approach vegetative and reproductive trait optima across environments. The genetic architecture differed for gas-exchange and vegetative traits across drought and well-watered conditions, but not for floral traits. Correlations between circadian and leaf gas-exchange traits were significant but did not vary across treatments, indicating that circadian period affects physiological function regardless of water availability. These results suggest that WUE is important for drought tolerance in Brassica rapa and that artificial selection for increased WUE in drought will not result in maladaptive expression of other traits that are correlated with WUE.

  12. Genomic Prediction for Quantitative Traits Is Improved by Mapping Variants to Gene Ontology Categories in Drosophila melanogaster

    PubMed Central

    Edwards, Stefan M.; Sørensen, Izel F.; Sarup, Pernille; Mackay, Trudy F. C.; Sørensen, Peter

    2016-01-01

    Predicting individual quantitative trait phenotypes from high-resolution genomic polymorphism data is important for personalized medicine in humans, plant and animal breeding, and adaptive evolution. However, this is difficult for populations of unrelated individuals when the number of causal variants is low relative to the total number of polymorphisms and causal variants individually have small effects on the traits. We hypothesized that mapping molecular polymorphisms to genomic features such as genes and their gene ontology categories could increase the accuracy of genomic prediction models. We developed a genomic feature best linear unbiased prediction (GFBLUP) model that implements this strategy and applied it to three quantitative traits (startle response, starvation resistance, and chill coma recovery) in the unrelated, sequenced inbred lines of the Drosophila melanogaster Genetic Reference Panel. Our results indicate that subsetting markers based on genomic features increases the predictive ability relative to the standard genomic best linear unbiased prediction (GBLUP) model. Both models use all markers, but GFBLUP allows differential weighting of the individual genetic marker relationships, whereas GBLUP weighs the genetic marker relationships equally. Simulation studies show that it is possible to further increase the accuracy of genomic prediction for complex traits using this model, provided the genomic features are enriched for causal variants. Our GFBLUP model using prior information on genomic features enriched for causal variants can increase the accuracy of genomic predictions in populations of unrelated individuals and provides a formal statistical framework for leveraging and evaluating information across multiple experimental studies to provide novel insights into the genetic architecture of complex traits. PMID:27235308

  13. Callous-Unemotional (CU) Traits in Adolescent Boys and Response to Teacher Reward and Discipline Strategies

    ERIC Educational Resources Information Center

    Allen, Jennifer L.; Morris, Amy; Chhoa, Celine Y.

    2016-01-01

    The aim of this study was to investigate the relationship between callous-unemotional (CU) traits and response to rewards and discipline in adolescent boys using a mixed-methods approach. Participants comprised 39 boys aged between 12 and 13 years and 8 teachers. Quantitative findings showed that CU traits were significantly related to punishment…

  14. Quantitative trait loci affecting oil content, oil composition, and other agronomically important traits in Oat (Avena sativa L.)

    USDA-ARS?s Scientific Manuscript database

    Groat oil content and composition are important determinants of oat quality. We investigated these traits in a population of 146 recombinant inbred lines from a cross between 'Dal' (high oil) and 'Exeter' (low oil). A linkage map consisting of 475 DArT markers spanning 1271.8 cM across 40 linkage gr...

  15. New QTL alleles for quality-related traits in spring wheat revealed by RIL population derived from supernumerary x non-supernumerary spikelet genotypes

    USDA-ARS?s Scientific Manuscript database

    Identifying new quantitative trait loci (QTLs) and alleles in exotic germplasm is paramount for further improvement of quality traits in wheat. In the present study, a population of recombinant inbred lines (RILs) developed from a cross between an elite wheat line (WCB414) and an exotic genotype wi...

  16. Distribution of lod scores in oligogenic linkage analysis.

    PubMed

    Williams, J T; North, K E; Martin, L J; Comuzzie, A G; Göring, H H; Blangero, J

    2001-01-01

    In variance component oligogenic linkage analysis it can happen that the residual additive genetic variance bounds to zero when estimating the effect of the ith quantitative trait locus. Using quantitative trait Q1 from the Genetic Analysis Workshop 12 simulated general population data, we compare the observed lod scores from oligogenic linkage analysis with the empirical lod score distribution under a null model of no linkage. We find that zero residual additive genetic variance in the null model alters the usual distribution of the likelihood-ratio statistic.

  17. Genomic approaches for the elucidation of genes and gene networks underlying cardiovascular traits.

    PubMed

    Adriaens, M E; Bezzina, C R

    2018-06-22

    Genome-wide association studies have shed light on the association between natural genetic variation and cardiovascular traits. However, linking a cardiovascular trait associated locus to a candidate gene or set of candidate genes for prioritization for follow-up mechanistic studies is all but straightforward. Genomic technologies based on next-generation sequencing technology nowadays offer multiple opportunities to dissect gene regulatory networks underlying genetic cardiovascular trait associations, thereby aiding in the identification of candidate genes at unprecedented scale. RNA sequencing in particular becomes a powerful tool when combined with genotyping to identify loci that modulate transcript abundance, known as expression quantitative trait loci (eQTL), or loci modulating transcript splicing known as splicing quantitative trait loci (sQTL). Additionally, the allele-specific resolution of RNA-sequencing technology enables estimation of allelic imbalance, a state where the two alleles of a gene are expressed at a ratio differing from the expected 1:1 ratio. When multiple high-throughput approaches are combined with deep phenotyping in a single study, a comprehensive elucidation of the relationship between genotype and phenotype comes into view, an approach known as systems genetics. In this review, we cover key applications of systems genetics in the broad cardiovascular field.

  18. Distributions of Mutational Effects and the Estimation of Directional Selection in Divergent Lineages of Arabidopsis thaliana.

    PubMed

    Park, Briton; Rutter, Matthew T; Fenster, Charles B; Symonds, V Vaughan; Ungerer, Mark C; Townsend, Jeffrey P

    2017-08-01

    Mutations are crucial to evolution, providing the ultimate source of variation on which natural selection acts. Due to their key role, the distribution of mutational effects on quantitative traits is a key component to any inference regarding historical selection on phenotypic traits. In this paper, we expand on a previously developed test for selection that could be conducted assuming a Gaussian mutation effect distribution by developing approaches to also incorporate any of a family of heavy-tailed Laplace distributions of mutational effects. We apply the test to detect directional natural selection on five traits along the divergence of Columbia and Landsberg lineages of Arabidopsis thaliana , constituting the first test for natural selection in any organism using quantitative trait locus and mutation accumulation data to quantify the intensity of directional selection on a phenotypic trait. We demonstrate that the results of the test for selection can depend on the mutation effect distribution specified. Using the distributions exhibiting the best fit to mutation accumulation data, we infer that natural directional selection caused divergence in the rosette diameter and trichome density traits of the Columbia and Landsberg lineages. Copyright © 2017 by the Genetics Society of America.

  19. Analysis of Sequence Data Under Multivariate Trait-Dependent Sampling.

    PubMed

    Tao, Ran; Zeng, Donglin; Franceschini, Nora; North, Kari E; Boerwinkle, Eric; Lin, Dan-Yu

    2015-06-01

    High-throughput DNA sequencing allows for the genotyping of common and rare variants for genetic association studies. At the present time and for the foreseeable future, it is not economically feasible to sequence all individuals in a large cohort. A cost-effective strategy is to sequence those individuals with extreme values of a quantitative trait. We consider the design under which the sampling depends on multiple quantitative traits. Under such trait-dependent sampling, standard linear regression analysis can result in bias of parameter estimation, inflation of type I error, and loss of power. We construct a likelihood function that properly reflects the sampling mechanism and utilizes all available data. We implement a computationally efficient EM algorithm and establish the theoretical properties of the resulting maximum likelihood estimators. Our methods can be used to perform separate inference on each trait or simultaneous inference on multiple traits. We pay special attention to gene-level association tests for rare variants. We demonstrate the superiority of the proposed methods over standard linear regression through extensive simulation studies. We provide applications to the Cohorts for Heart and Aging Research in Genomic Epidemiology Targeted Sequencing Study and the National Heart, Lung, and Blood Institute Exome Sequencing Project.

  20. Quantitative trait loci for energy balance traits in an advanced intercross line derived from mice divergently selected for heat loss

    PubMed Central

    Nielsen, Merlyn K.; Thorn, Stephanie R.; Valdar, William; Pomp, Daniel

    2014-01-01

    Obesity in human populations, currently a serious health concern, is considered to be the consequence of an energy imbalance in which more energy in calories is consumed than is expended. We used interval mapping techniques to investigate the genetic basis of a number of energy balance traits in an F11 advanced intercross population of mice created from an original intercross of lines selected for increased and decreased heat loss. We uncovered a total of 137 quantitative trait loci (QTLs) for these traits at 41 unique sites on 18 of the 20 chromosomes in the mouse genome, with X-linked QTLs being most prevalent. Two QTLs were found for the selection target of heat loss, one on distal chromosome 1 and another on proximal chromosome 2. The number of QTLs affecting the various traits generally was consistent with previous estimates of heritabilities in the same population, with the most found for two bone mineral traits and the least for feed intake and several body composition traits. QTLs were generally additive in their effects, and some, especially those affecting the body weight traits, were sex-specific. Pleiotropy was extensive within trait groups (body weights, adiposity and organ weight traits, bone traits) and especially between body composition traits adjusted and not adjusted for body weight at sacrifice. Nine QTLs were found for one or more of the adiposity traits, five of which appeared to be unique. The confidence intervals among all QTLs averaged 13.3 Mb, much smaller than usually observed in an F2 cross, and in some cases this allowed us to make reasonable inferences about candidate genes underlying these QTLs. This study combined QTL mapping with genetic parameter analysis in a large segregating population, and has advanced our understanding of the genetic architecture of complex traits related to obesity. PMID:24918027

  1. BlueSNP: R package for highly scalable genome-wide association studies using Hadoop clusters.

    PubMed

    Huang, Hailiang; Tata, Sandeep; Prill, Robert J

    2013-01-01

    Computational workloads for genome-wide association studies (GWAS) are growing in scale and complexity outpacing the capabilities of single-threaded software designed for personal computers. The BlueSNP R package implements GWAS statistical tests in the R programming language and executes the calculations across computer clusters configured with Apache Hadoop, a de facto standard framework for distributed data processing using the MapReduce formalism. BlueSNP makes computationally intensive analyses, such as estimating empirical p-values via data permutation, and searching for expression quantitative trait loci over thousands of genes, feasible for large genotype-phenotype datasets. http://github.com/ibm-bioinformatics/bluesnp

  2. QEEG and LORETA in Teenagers With Conduct Disorder and Psychopathic Traits.

    PubMed

    Calzada-Reyes, Ana; Alvarez-Amador, Alfredo; Galán-García, Lídice; Valdés-Sosa, Mitchell

    2017-05-01

    Few studies have investigated the impact of the psychopathic traits on the EEG of teenagers with conduct disorder (CD). To date, there is no other research studying low-resolution brain electromagnetic tomography (LORETA) technique using quantitative EEG (QEEG) analysis in adolescents with CD and psychopathic traits. To find electrophysiological differences specifically related to the psychopathic traits. The current investigation compares the QEEG and the current source density measures between adolescents with CD and psychopathic traits and adolescents with CD without psychopathic traits. The resting EEG activity and LORETA for the EEG fast spectral bands were evaluated in 42 teenagers with CD, 25 with and 17 without psychopathic traits according to the Antisocial Process Screening Device. All adolescents were assessed using the DSM-IV-TR criteria. The EEG visual inspection characteristics and the use of frequency domain quantitative analysis techniques (narrow band spectral parameters) are described. QEEG analysis showed a pattern of beta activity excess on the bilateral frontal-temporal regions and decreases of alpha band power on the left central-temporal and right frontal-central-temporal regions in the psychopathic traits group. Current source density calculated at 17.18 Hz showed an increase within fronto-temporo-striatal regions in the psychopathic relative to the nonpsychopathic traits group. These findings indicate that QEEG analysis and techniques of source localization may reveal differences in brain electrical activity among teenagers with CD and psychopathic traits, which was not obvious to visual inspection. Taken together, these results suggest that abnormalities in a fronto-temporo-striatal network play a relevant role in the neurobiological basis of psychopathic behavior.

  3. Field-Based High-Throughput Plant Phenotyping Reveals the Temporal Patterns of Quantitative Trait Loci Associated with Stress-Responsive Traits in Cotton

    PubMed Central

    Pauli, Duke; Andrade-Sanchez, Pedro; Carmo-Silva, A. Elizabete; Gazave, Elodie; French, Andrew N.; Heun, John; Hunsaker, Douglas J.; Lipka, Alexander E.; Setter, Tim L.; Strand, Robert J.; Thorp, Kelly R.; Wang, Sam; White, Jeffrey W.; Gore, Michael A.

    2016-01-01

    The application of high-throughput plant phenotyping (HTPP) to continuously study plant populations under relevant growing conditions creates the possibility to more efficiently dissect the genetic basis of dynamic adaptive traits. Toward this end, we employed a field-based HTPP system that deployed sets of sensors to simultaneously measure canopy temperature, reflectance, and height on a cotton (Gossypium hirsutum L.) recombinant inbred line mapping population. The evaluation trials were conducted under well-watered and water-limited conditions in a replicated field experiment at a hot, arid location in central Arizona, with trait measurements taken at different times on multiple days across 2010–2012. Canopy temperature, normalized difference vegetation index (NDVI), height, and leaf area index (LAI) displayed moderate-to-high broad-sense heritabilities, as well as varied interactions among genotypes with water regime and time of day. Distinct temporal patterns of quantitative trait loci (QTL) expression were mostly observed for canopy temperature and NDVI, and varied across plant developmental stages. In addition, the strength of correlation between HTPP canopy traits and agronomic traits, such as lint yield, displayed a time-dependent relationship. We also found that the genomic position of some QTL controlling HTPP canopy traits were shared with those of QTL identified for agronomic and physiological traits. This work demonstrates the novel use of a field-based HTPP system to study the genetic basis of stress-adaptive traits in cotton, and these results have the potential to facilitate the development of stress-resilient cotton cultivars. PMID:26818078

  4. Measuring quantitative autism traits in families: informant effect or intergenerational transmission?

    PubMed

    De la Marche, Wouter; Noens, Ilse; Kuppens, Sofie; Spilt, Jantine L; Boets, Bart; Steyaert, Jean

    2015-04-01

    Autism spectrum disorders (ASD) have a high degree of heritability, but there is still much debate about specific causal genes and pathways. To gain insight into patterns of transmission, research has focused on the relatedness of quantitative autism traits (QAT) between family members, mostly using questionnaires. Yet, different kinds of bias may influence research results. In this paper, we focus on possible informant effects and, taking these into account, on possible intergenerational transmission of QAT. This study used multiple informant data retrieved via the Social Responsiveness Scale from 170 families with at least one member with ASD. Using intraclass correlations (ICCs) and mixed model analyses, we investigated inter-informant agreement and differences between parent and teacher reports on children and between self- and other-reports on adults. Using structural equation modelling (SEM), we investigated the relatedness of QAT between family members in ASD families. Parent-teacher agreement about social responsiveness was poor, especially for children with ASD, though agreement between parents was moderate to strong for affected and unaffected children. Agreement between self- and other-report in adult men was good, but only moderate in women. Agreement did not differ between adults with and without ASD. While accounting for informant effects, our SEM results corroborated the assortative mating theory and the intergenerational transmission of QAT from both fathers and mothers to their offspring.

  5. A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape

    PubMed Central

    Ried, Janina S.; Jeff M., Janina; Chu, Audrey Y.; Bragg-Gresham, Jennifer L.; van Dongen, Jenny; Huffman, Jennifer E.; Ahluwalia, Tarunveer S.; Cadby, Gemma; Eklund, Niina; Eriksson, Joel; Esko, Tõnu; Feitosa, Mary F.; Goel, Anuj; Gorski, Mathias; Hayward, Caroline; Heard-Costa, Nancy L.; Jackson, Anne U.; Jokinen, Eero; Kanoni, Stavroula; Kristiansson, Kati; Kutalik, Zoltán; Lahti, Jari; Luan, Jian'an; Mägi, Reedik; Mahajan, Anubha; Mangino, Massimo; Medina-Gomez, Carolina; Monda, Keri L.; Nolte, Ilja M.; Pérusse, Louis; Prokopenko, Inga; Qi, Lu; Rose, Lynda M.; Salvi, Erika; Smith, Megan T.; Snieder, Harold; Stančáková, Alena; Ju Sung, Yun; Tachmazidou, Ioanna; Teumer, Alexander; Thorleifsson, Gudmar; van der Harst, Pim; Walker, Ryan W.; Wang, Sophie R.; Wild, Sarah H.; Willems, Sara M.; Wong, Andrew; Zhang, Weihua; Albrecht, Eva; Couto Alves, Alexessander; Bakker, Stephan J. L.; Barlassina, Cristina; Bartz, Traci M.; Beilby, John; Bellis, Claire; Bergman, Richard N.; Bergmann, Sven; Blangero, John; Blüher, Matthias; Boerwinkle, Eric; Bonnycastle, Lori L.; Bornstein, Stefan R.; Bruinenberg, Marcel; Campbell, Harry; Chen, Yii-Der Ida; Chiang, Charleston W. K.; Chines, Peter S.; Collins, Francis S; Cucca, Fracensco; Cupples, L Adrienne; D'Avila, Francesca; de Geus, Eco J .C.; Dedoussis, George; Dimitriou, Maria; Döring, Angela; Eriksson, Johan G.; Farmaki, Aliki-Eleni; Farrall, Martin; Ferreira, Teresa; Fischer, Krista; Forouhi, Nita G.; Friedrich, Nele; Gjesing, Anette Prior; Glorioso, Nicola; Graff, Mariaelisa; Grallert, Harald; Grarup, Niels; Gräßler, Jürgen; Grewal, Jagvir; Hamsten, Anders; Harder, Marie Neergaard; Hartman, Catharina A.; Hassinen, Maija; Hastie, Nicholas; Hattersley, Andrew Tym; Havulinna, Aki S.; Heliövaara, Markku; Hillege, Hans; Hofman, Albert; Holmen, Oddgeir; Homuth, Georg; Hottenga, Jouke-Jan; Hui, Jennie; Husemoen, Lise Lotte; Hysi, Pirro G.; Isaacs, Aaron; Ittermann, Till; Jalilzadeh, Shapour; James, Alan L.; Jørgensen, Torben; Jousilahti, Pekka; Jula, Antti; Marie Justesen, Johanne; Justice, Anne E.; Kähönen, Mika; Karaleftheri, Maria; Tee Khaw, Kay; Keinanen-Kiukaanniemi, Sirkka M.; Kinnunen, Leena; Knekt, Paul B.; Koistinen, Heikki A.; Kolcic, Ivana; Kooner, Ishminder K.; Koskinen, Seppo; Kovacs, Peter; Kyriakou, Theodosios; Laitinen, Tomi; Langenberg, Claudia; Lewin, Alexandra M.; Lichtner, Peter; Lindgren, Cecilia M.; Lindström, Jaana; Linneberg, Allan; Lorbeer, Roberto; Lorentzon, Mattias; Luben, Robert; Lyssenko, Valeriya; Männistö, Satu; Manunta, Paolo; Leach, Irene Mateo; McArdle, Wendy L.; Mcknight, Barbara; Mohlke, Karen L.; Mihailov, Evelin; Milani, Lili; Mills, Rebecca; Montasser, May E.; Morris, Andrew P.; Müller, Gabriele; Musk, Arthur W.; Narisu, Narisu; Ong, Ken K.; Oostra, Ben A.; Osmond, Clive; Palotie, Aarno; Pankow, James S.; Paternoster, Lavinia; Penninx, Brenda W.; Pichler, Irene; Pilia, Maria G.; Polašek, Ozren; Pramstaller, Peter P.; Raitakari, Olli T; Rankinen, Tuomo; Rao, D. C.; Rayner, Nigel W.; Ribel-Madsen, Rasmus; Rice, Treva K.; Richards, Marcus; Ridker, Paul M.; Rivadeneira, Fernando; Ryan, Kathy A.; Sanna, Serena; Sarzynski, Mark A.; Scholtens, Salome; Scott, Robert A.; Sebert, Sylvain; Southam, Lorraine; Sparsø, Thomas Hempel; Steinthorsdottir, Valgerdur; Stirrups, Kathleen; Stolk, Ronald P.; Strauch, Konstantin; Stringham, Heather M.; Swertz, Morris A.; Swift, Amy J.; Tönjes, Anke; Tsafantakis, Emmanouil; van der Most, Peter J.; Van Vliet-Ostaptchouk, Jana V.; Vandenput, Liesbeth; Vartiainen, Erkki; Venturini, Cristina; Verweij, Niek; Viikari, Jorma S.; Vitart, Veronique; Vohl, Marie-Claude; Vonk, Judith M.; Waeber, Gérard; Widén, Elisabeth; Willemsen, Gonneke; Wilsgaard, Tom; Winkler, Thomas W.; Wright, Alan F.; Yerges-Armstrong, Laura M.; Hua Zhao, Jing; Carola Zillikens, M.; Boomsma, Dorret I.; Bouchard, Claude; Chambers, John C.; Chasman, Daniel I.; Cusi, Daniele; Gansevoort, Ron T.; Gieger, Christian; Hansen, Torben; Hicks, Andrew A.; Hu, Frank; Hveem, Kristian; Jarvelin, Marjo-Riitta; Kajantie, Eero; Kooner, Jaspal S.; Kuh, Diana; Kuusisto, Johanna; Laakso, Markku; Lakka, Timo A.; Lehtimäki, Terho; Metspalu, Andres; Njølstad, Inger; Ohlsson, Claes; Oldehinkel, Albertine J.; Palmer, Lyle J.; Pedersen, Oluf; Perola, Markus; Peters, Annette; Psaty, Bruce M.; Puolijoki, Hannu; Rauramaa, Rainer; Rudan, Igor; Salomaa, Veikko; Schwarz, Peter E. H.; Shudiner, Alan R.; Smit, Jan H.; Sørensen, Thorkild I. A.; Spector, Timothy D.; Stefansson, Kari; Stumvoll, Michael; Tremblay, Angelo; Tuomilehto, Jaakko; Uitterlinden, André G.; Uusitupa, Matti; Völker, Uwe; Vollenweider, Peter; Wareham, Nicholas J.; Watkins, Hugh; Wilson, James F.; Zeggini, Eleftheria; Abecasis, Goncalo R.; Boehnke, Michael; Borecki, Ingrid B.; Deloukas, Panos; van Duijn, Cornelia M.; Fox, Caroline; Groop, Leif C.; Heid, Iris M.; Hunter, David J.; Kaplan, Robert C.; McCarthy, Mark I.; North, Kari E.; O'Connell, Jeffrey R.; Schlessinger, David; Thorsteinsdottir, Unnur; Strachan, David P.; Frayling, Timothy; Hirschhorn, Joel N.; Müller-Nurasyid, Martina; Loos, Ruth J. F.

    2016-01-01

    Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways. PMID:27876822

  6. Combining cow and bull reference populations to increase accuracy of genomic prediction and genome-wide association studies.

    PubMed

    Calus, M P L; de Haas, Y; Veerkamp, R F

    2013-10-01

    Genomic selection holds the promise to be particularly beneficial for traits that are difficult or expensive to measure, such that access to phenotypes on large daughter groups of bulls is limited. Instead, cow reference populations can be generated, potentially supplemented with existing information from the same or (highly) correlated traits available on bull reference populations. The objective of this study, therefore, was to develop a model to perform genomic predictions and genome-wide association studies based on a combined cow and bull reference data set, with the accuracy of the phenotypes differing between the cow and bull genomic selection reference populations. The developed bivariate Bayesian stochastic search variable selection model allowed for an unbalanced design by imputing residuals in the residual updating scheme for all missing records. The performance of this model is demonstrated on a real data example, where the analyzed trait, being milk fat or protein yield, was either measured only on a cow or a bull reference population, or recorded on both. Our results were that the developed bivariate Bayesian stochastic search variable selection model was able to analyze 2 traits, even though animals had measurements on only 1 of 2 traits. The Bayesian stochastic search variable selection model yielded consistently higher accuracy for fat yield compared with a model without variable selection, both for the univariate and bivariate analyses, whereas the accuracy of both models was very similar for protein yield. The bivariate model identified several additional quantitative trait loci peaks compared with the single-trait models on either trait. In addition, the bivariate models showed a marginal increase in accuracy of genomic predictions for the cow traits (0.01-0.05), although a greater increase in accuracy is expected as the size of the bull population increases. Our results emphasize that the chosen value of priors in Bayesian genomic prediction models are especially important in small data sets. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. QTL Analysis of Kernel-Related Traits in Maize Using an Immortalized F2 Population

    PubMed Central

    Hu, Yanmin; Li, Weihua; Fu, Zhiyuan; Ding, Dong; Li, Haochuan; Qiao, Mengmeng; Tang, Jihua

    2014-01-01

    Kernel size and weight are important determinants of grain yield in maize. In this study, multivariate conditional and unconditional quantitative trait loci (QTL), and digenic epistatic analyses were utilized in order to elucidate the genetic basis for these kernel-related traits. Five kernel-related traits, including kernel weight (KW), volume (KV), length (KL), thickness (KT), and width (KWI), were collected from an immortalized F2 (IF2) maize population comprising of 243 crosses performed at two separate locations over a span of two years. A total of 54 unconditional main QTL for these five kernel-related traits were identified, many of which were clustered in chromosomal bins 6.04–6.06, 7.02–7.03, and 10.06–10.07. In addition, qKL3, qKWI6, qKV10a, qKV10b, qKW10a, and qKW7a were detected across multiple environments. Sixteen main QTL were identified for KW conditioned on the other four kernel traits (KL, KWI, KT, and KV). Thirteen main QTL were identified for KV conditioned on three kernel-shape traits. Conditional mapping analysis revealed that KWI and KV had the strongest influence on KW at the individual QTL level, followed by KT, and then KL; KV was mostly strongly influenced by KT, followed by KWI, and was least impacted by KL. Digenic epistatic analysis identified 18 digenic interactions involving 34 loci over the entire genome. However, only a small proportion of them were identical to the main QTL we detected. Additionally, conditional digenic epistatic analysis revealed that the digenic epistasis for KW and KV were entirely determined by their constituent traits. The main QTL identified in this study for determining kernel-related traits with high broad-sense heritability may play important roles during kernel development. Furthermore, digenic interactions were shown to exert relatively large effects on KL (the highest AA and DD effects were 4.6% and 6.7%, respectively) and KT (the highest AA effects were 4.3%). PMID:24586932

  8. Harnessing quantitative genetics and genomics for understanding and improving complex traits in crops

    USDA-ARS?s Scientific Manuscript database

    Classical quantitative genetics aids crop improvement by providing the means to estimate heritability, genetic correlations, and predicted responses to various selection schemes. Genomics has the potential to aid quantitative genetics and applied crop improvement programs via large-scale, high-thro...

  9. Cloning of quantitative trait genes from rice reveals conservation and divergence of photoperiod flowering pathways in Arabidopsis and rice

    PubMed Central

    Matsubara, Kazuki; Hori, Kiyosumi; Ogiso-Tanaka, Eri; Yano, Masahiro

    2014-01-01

    Flowering time in rice (Oryza sativa L.) is determined primarily by daylength (photoperiod), and natural variation in flowering time is due to quantitative trait loci involved in photoperiodic flowering. To date, genetic analysis of natural variants in rice flowering time has resulted in the positional cloning of at least 12 quantitative trait genes (QTGs), including our recently cloned QTGs, Hd17, and Hd16. The QTGs have been assigned to specific photoperiodic flowering pathways. Among them, 9 have homologs in the Arabidopsis genome, whereas it was evident that there are differences in the pathways between rice and Arabidopsis, such that the rice Ghd7–Ehd1–Hd3a/RFT1 pathway modulated by Hd16 is not present in Arabidopsis. In this review, we describe QTGs underlying natural variation in rice flowering time. Additionally, we discuss the implications of the variation in adaptive divergence and its importance in rice breeding. PMID:24860584

  10. Variation in seed dormancy quantitative trait loci in Arabidopsis thaliana originating from one site.

    PubMed

    Silady, Rebecca A; Effgen, Sigi; Koornneef, Maarten; Reymond, Matthieu

    2011-01-01

    A Quantitative Trait Locus (QTL) analysis was performed using two novel Recombinant Inbred Line (RIL) populations, derived from the progeny between two Arabidopsis thaliana genotypes collected at the same site in Kyoto (Japan) crossed with the reference laboratory strain Landsberg erecta (Ler). We used these two RIL populations to determine the genetic basis of seed dormancy and flowering time, which are assumed to be the main traits controlling life history variation in Arabidopsis. The analysis revealed quantitative variation for seed dormancy that is associated with allelic variation at the seed dormancy QTL DOG1 (for Delay Of Germination 1) in one population and at DOG6 in both. These DOG QTL have been previously identified using mapping populations derived from accessions collected at different sites around the world. Genetic variation within a population may enhance its ability to respond accurately to variation within and between seasons. In contrast, variation for flowering time, which also segregated within each mapping population, is mainly governed by the same QTL.

  11. Quantitative Trait Loci (QTL)-Guided Metabolic Engineering of a Complex Trait.

    PubMed

    Maurer, Matthew J; Sutardja, Lawrence; Pinel, Dominic; Bauer, Stefan; Muehlbauer, Amanda L; Ames, Tyler D; Skerker, Jeffrey M; Arkin, Adam P

    2017-03-17

    Engineering complex phenotypes for industrial and synthetic biology applications is difficult and often confounds rational design. Bioethanol production from lignocellulosic feedstocks is a complex trait that requires multiple host systems to utilize, detoxify, and metabolize a mixture of sugars and inhibitors present in plant hydrolysates. Here, we demonstrate an integrated approach to discovering and optimizing host factors that impact fitness of Saccharomyces cerevisiae during fermentation of a Miscanthus x giganteus plant hydrolysate. We first used high-resolution Quantitative Trait Loci (QTL) mapping and systematic bulk Reciprocal Hemizygosity Analysis (bRHA) to discover 17 loci that differentiate hydrolysate tolerance between an industrially related (JAY291) and a laboratory (S288C) strain. We then used this data to identify a subset of favorable allelic loci that were most amenable for strain engineering. Guided by this "genetic blueprint", and using a dual-guide Cas9-based method to efficiently perform multikilobase locus replacements, we engineered an S288C-derived strain with superior hydrolysate tolerance than JAY291. Our methods should be generalizable to engineering any complex trait in S. cerevisiae, as well as other organisms.

  12. Deciphering mechanisms underlying the genetic variation of general production and liver quality traits in the overfed mule duck by pQTL analyses.

    PubMed

    François, Yoannah; Vignal, Alain; Molette, Caroline; Marty-Gasset, Nathalie; Davail, Stéphane; Liaubet, Laurence; Marie-Etancelin, Christel

    2017-04-19

    The aim of this study was to analyse the mechanisms that underlie phenotypic quantitative trait loci (QTL) in overfed mule ducks by identifying co-localized proteomic QTL (pQTL). The QTL design consisted of three families of common ducks that were progeny-tested by using 294 male mule ducks. This population of common ducks was genotyped using a genetic map that included 334 genetic markers located across 28 APL chromosomes (APL for Anas platyrhynchos). Mule ducks were phenotyped for 49 traits related to growth, metabolism, overfeeding ability and meat and fatty liver quality, and 326 soluble fatty liver proteins were quantified. One hundred and seventy-six pQTL and 80 phenotypic QTL were detected at the 5% chromosome-wide significance threshold. The great majority of the identified pQTL were trans-acting and localized on a chromosome other than that carrying the coding gene. The most significant pQTL (1% genome-wide significance) were found for alpha-enolase on APL18 and fatty acid synthase on APL24. Some proteins were associated with numerous pQTL (for example, 17 and 14 pQTL were detected for alpha-enolase and apolipoprotein A1, respectively) and pQTL hotspots were observed on some chromosomes (APL18, 24, 25 and 29). We detected 66 co-localized phenotypic QTL and pQTL for which the significance of the two-trait QTL (2t-QTL) analysis was higher than that of the strongest QTL using a single-trait approach. Among these, 16 2t-QTL were pleiotropic. For example, on APL15, melting rate and abundance of two alpha-enolase spots appeared to be impacted by a single locus that is involved in the glycolytic process. On APLZ, we identified a pleiotropic QTL that modified both the blood level of glucose at the beginning of the force-feeding period and the concentration of glutamate dehydrogenase, which, in humans, is involved in increased glucose absorption by the liver when the glutamate dehydrogenase 1 gene is mutated. We identified pleiotropic loci that affect metabolic pathways linked to glycolysis or lipogenesis, and in the end to fatty liver quality. Further investigation, via transcriptomics and metabolomics approaches, is required to confirm the biomarkers that were found to impact the genetic variability of these phenotypic traits.

  13. A Simple and Computationally Efficient Approach to Multifactor Dimensionality Reduction Analysis of Gene-Gene Interactions for Quantitative Traits

    PubMed Central

    Gui, Jiang; Moore, Jason H.; Williams, Scott M.; Andrews, Peter; Hillege, Hans L.; van der Harst, Pim; Navis, Gerjan; Van Gilst, Wiek H.; Asselbergs, Folkert W.; Gilbert-Diamond, Diane

    2013-01-01

    We present an extension of the two-class multifactor dimensionality reduction (MDR) algorithm that enables detection and characterization of epistatic SNP-SNP interactions in the context of a quantitative trait. The proposed Quantitative MDR (QMDR) method handles continuous data by modifying MDR’s constructive induction algorithm to use a T-test. QMDR replaces the balanced accuracy metric with a T-test statistic as the score to determine the best interaction model. We used a simulation to identify the empirical distribution of QMDR’s testing score. We then applied QMDR to genetic data from the ongoing prospective Prevention of Renal and Vascular End-Stage Disease (PREVEND) study. PMID:23805232

  14. SNPassoc: an R package to perform whole genome association studies.

    PubMed

    González, Juan R; Armengol, Lluís; Solé, Xavier; Guinó, Elisabet; Mercader, Josep M; Estivill, Xavier; Moreno, Víctor

    2007-03-01

    The popularization of large-scale genotyping projects has led to the widespread adoption of genetic association studies as the tool of choice in the search for single nucleotide polymorphisms (SNPs) underlying susceptibility to complex diseases. Although the analysis of individual SNPs is a relatively trivial task, when the number is large and multiple genetic models need to be explored it becomes necessary a tool to automate the analyses. In order to address this issue, we developed SNPassoc, an R package to carry out most common analyses in whole genome association studies. These analyses include descriptive statistics and exploratory analysis of missing values, calculation of Hardy-Weinberg equilibrium, analysis of association based on generalized linear models (either for quantitative or binary traits), and analysis of multiple SNPs (haplotype and epistasis analysis). Package SNPassoc is available at CRAN from http://cran.r-project.org. A tutorial is available on Bioinformatics online and in http://davinci.crg.es/estivill_lab/snpassoc.

  15. Mapping Late Leaf Spot Resistance in Peanut (Arachis hypogaea) Using QTL-seq Reveals Markers for Marker-Assisted Selection.

    PubMed

    Clevenger, Josh; Chu, Ye; Chavarro, Carolina; Botton, Stephanie; Culbreath, Albert; Isleib, Thomas G; Holbrook, C C; Ozias-Akins, Peggy

    2018-01-01

    Late leaf spot (LLS; Cercosporidium personatum ) is a major fungal disease of cultivated peanut ( Arachis hypogaea ). A recombinant inbred line population segregating for quantitative field resistance was used to identify quantitative trait loci (QTL) using QTL-seq. High rates of false positive SNP calls using established methods in this allotetraploid crop obscured significant QTLs. To resolve this problem, robust parental SNPs were first identified using polyploid-specific SNP identification pipelines, leading to discovery of significant QTLs for LLS resistance. These QTLs were confirmed over 4 years of field data. Selection with markers linked to these QTLs resulted in a significant increase in resistance, showing that these markers can be immediately applied in breeding programs. This study demonstrates that QTL-seq can be used to rapidly identify QTLs controlling highly quantitative traits in polyploid crops with complex genomes. Markers identified can then be deployed in breeding programs, increasing the efficiency of selection using molecular tools. Key Message: Field resistance to late leaf spot is a quantitative trait controlled by many QTLs. Using polyploid-specific methods, QTL-seq is faster and more cost effective than QTL mapping.

  16. Mapping Late Leaf Spot Resistance in Peanut (Arachis hypogaea) Using QTL-seq Reveals Markers for Marker-Assisted Selection

    PubMed Central

    Clevenger, Josh; Chu, Ye; Chavarro, Carolina; Botton, Stephanie; Culbreath, Albert; Isleib, Thomas G.; Holbrook, C. C.; Ozias-Akins, Peggy

    2018-01-01

    Late leaf spot (LLS; Cercosporidium personatum) is a major fungal disease of cultivated peanut (Arachis hypogaea). A recombinant inbred line population segregating for quantitative field resistance was used to identify quantitative trait loci (QTL) using QTL-seq. High rates of false positive SNP calls using established methods in this allotetraploid crop obscured significant QTLs. To resolve this problem, robust parental SNPs were first identified using polyploid-specific SNP identification pipelines, leading to discovery of significant QTLs for LLS resistance. These QTLs were confirmed over 4 years of field data. Selection with markers linked to these QTLs resulted in a significant increase in resistance, showing that these markers can be immediately applied in breeding programs. This study demonstrates that QTL-seq can be used to rapidly identify QTLs controlling highly quantitative traits in polyploid crops with complex genomes. Markers identified can then be deployed in breeding programs, increasing the efficiency of selection using molecular tools. Key Message: Field resistance to late leaf spot is a quantitative trait controlled by many QTLs. Using polyploid-specific methods, QTL-seq is faster and more cost effective than QTL mapping. PMID:29459876

  17. Teacher Perception of Principals' Leadership Traits and Middle School Math and Science Teachers' Job Satisfaction: A Causal-Comparative and Correlational Study

    ERIC Educational Resources Information Center

    Cousar, Theresa Ann

    2017-01-01

    The purpose of this quantitative study was to examine middle school teachers' job satisfaction (low vs. high) and how teachers perceive principals' leadership traits. The study used a causal-comparative and correlational design. The teachers were divided into two job satisfaction level groups. Teacher perception of principal leadership traits for…

  18. Muscle transcriptomic profiles in pigs with divergent phenotypes for fatness traits.

    PubMed

    Cánovas, Angela; Quintanilla, Raquel; Amills, Marcel; Pena, Ramona N

    2010-06-11

    Selection for increasing intramuscular fat content would definitively improve the palatability and juiciness of pig meat as well as the sensorial and organoleptic properties of cured products. However, evidences obtained in human and model organisms suggest that high levels of intramuscular fat might alter muscle lipid and carbohydrate metabolism. We have analysed this issue by determining the transcriptomic profiles of Duroc pigs with divergent phenotypes for 13 fatness traits. The strong aptitude of Duroc pigs to have high levels of intramuscular fat makes them a valuable model to analyse the mechanisms that regulate muscle lipid metabolism, an issue with evident implications in the elucidation of the genetic basis of human metabolic diseases such as obesity and insulin resistance. Muscle gene expression profiles of 68 Duroc pigs belonging to two groups (HIGH and LOW) with extreme phenotypes for lipid deposition and composition traits have been analysed. Microarray and quantitative PCR analysis showed that genes related to fatty acid uptake, lipogenesis and triacylglycerol synthesis were upregulated in the muscle tissue of HIGH pigs, which are fatter and have higher amounts of intramuscular fat than their LOW counterparts. Paradoxically, lipolytic genes also showed increased mRNA levels in the HIGH group suggesting the existence of a cycle where triacylglycerols are continuously synthesized and degraded. Several genes related to the insulin-signalling pathway, that is usually impaired in obese humans, were also upregulated. Finally, genes related to antigen-processing and presentation were downregulated in the HIGH group. Our data suggest that selection for increasing intramuscular fat content in pigs would lead to a shift but not a disruption of the metabolic homeostasis of muscle cells. Future studies on the post-translational changes affecting protein activity or expression as well as information about protein location within the cell would be needed to to elucidate the effects of lipid deposition on muscle metabolism in pigs.

  19. Colour ornamentation in the blue tit: quantitative genetic (co)variances across sexes

    PubMed Central

    Charmantier, A; Wolak, M E; Grégoire, A; Fargevieille, A; Doutrelant, C

    2017-01-01

    Although secondary sexual traits are commonly more developed in males than females, in many animal species females also display elaborate ornaments or weaponry. Indirect selection on correlated traits in males and/or direct sexual or social selection in females are hypothesized to drive the evolution and maintenance of female ornaments. Yet, the relative roles of these evolutionary processes remain unidentified, because little is known about the genetic correlation that might exist between the ornaments of both sexes, and few estimates of sex-specific autosomal or sex-linked genetic variances are available. In this study, we used two wild blue tit populations with 9 years of measurements on two colour ornaments: one structurally based (blue crown) and one carotenoid based (yellow chest). We found significant autosomal heritability for the chromatic part of the structurally based colouration in both sexes, whereas carotenoid chroma was heritable only in males, and the achromatic part of both colour patches was mostly non heritable. Power limitations, which are probably common among most data sets collected so far in wild populations, prevented estimation of sex-linked genetic variance. Bivariate analyses revealed very strong cross-sex genetic correlations in all heritable traits, although the strength of these correlations was not related to the level of sexual dimorphism. In total, our results suggest that males and females share a majority of their genetic variation underlying colour ornamentation, and hence the evolution of these sex-specific traits may depend greatly on correlated responses to selection in the opposite sex. PMID:27577691

  20. Eating Behaviour and Weight in Children

    PubMed Central

    Webber, L; Hill, C; Saxton, J; Van Jaarsveld, CHM; Wardle, J

    2010-01-01

    Objective: To test the hypothesis that quantitative variation in eating behaviour traits shows a graded association with weight in children. Design: Cross-sectional design in a community setting. Subjects: Data were from 406 families participating in the Physical Exercise and Appetite in CHildren Study (PEACHES) or the Twins Early Development Study (TEDS). Children were aged 7 to 9 years (PEACHES) and 9 to 12 years old (TEDS). Measurements: Weights and heights were measured by researchers. BMI SD-scores were used to categorise participants into healthy-weight, overweight and obese groups, with an additional division of the healthy-weight group into higher- and lower-healthy-weight at the 50th centile. Eating behaviour traits were assessed with the Child Eating Behaviour Questionnaire (CEBQ), completed by the parent on behalf of their child. Linear trend analyses compared CEBQ sub-scale scores across the five weight groups. Results: Satiety Responsiveness/Slowness in Eating and Food Fussiness showed a graded negative association with weight, while Food Responsiveness, Enjoyment of Food, Emotional Overeating and Desire to Drink were positively associated. All effects were maintained after controlling for age, sex, ethnicity, parental education and sample. There was no systematic association with weight for Emotional Undereating. Conclusion: These results support the idea that approach-related and avoidance-related appetitive traits are systematically (and oppositely) related to adiposity, and not exclusively associated with obesity. Early assessment of these traits could be used as indicators of susceptibility to weight gain. PMID:19002146

  1. INS VNTR is not associated with childhood obesity in 1,023 families: a family-based study.

    PubMed

    Bouatia-Naji, Nabila; De Graeve, Franck; Brönner, Günter; Lecoeur, Cécile; Vatin, Vincent; Durand, Emmanuelle; Lichtner, Peter; Nguyen, Thuy T; Heude, Barbara; Weill, Jacques; Lévy-Marchal, Claire; Hebebrand, Johannes; Froguel, Philippe; Meyre, David

    2008-06-01

    Previous studies have described genetic associations of the insulin gene variable number tandem repeat (INS VNTR) variant with childhood obesity and associated phenotypes. We aimed to assess the contribution of INS VNTR genotypes to childhood obesity and variance of insulin resistance, insulin secretion, and birth weight using family-based design. Participants were either French or German whites. We used transmission disequilibrium tests (TDTs) for assessing binary traits and quantitative pedigree disequilibrium tests for assessing continuous traits. In contrast to previous findings, we did not observe any familial association with childhood obesity (T = 50%, P = 0.77) in the 1,023 families tested. In French obese children, INS VNTR did not associate with fasting insulin levels (P = 0.23) and class I allele showed only borderline association with increased insulin secretion index at 30 min (P = 0.03). INS VNTR did not associate with birth weight in obese children (P = 0.98) and TDT analyses in 350 French families with history of low birth weight (LBW) showed no association with this condition (P = 0.92). In summary, our study, the largest performed so far, does not support the previously reported associations between INS VNTR and childhood obesity, insulin resistance, or birth weight, and does not suggest any major role for this variant in modulating these traits.

  2. Diversification dynamics of rhynchostomatian ciliates: the impact of seven intrinsic traits on speciation and extinction in a microbial group.

    PubMed

    Vďačný, Peter; Rajter, Ľubomír; Shazib, Shahed Uddin Ahmed; Jang, Seok Won; Shin, Mann Kyoon

    2017-08-30

    Ciliates are a suitable microbial model to investigate trait-dependent diversification because of their comparatively complex morphology and high diversity. We examined the impact of seven intrinsic traits on speciation, extinction, and net-diversification of rhynchostomatians, a group of comparatively large, predatory ciliates with proboscis carrying a dorsal brush (sensoric structure) and toxicysts (organelles used to kill the prey). Bayesian estimates under the binary-state speciation and extinction model indicate that two types of extrusomes and two-rowed dorsal brush raise diversification through decreasing extinction. On the other hand, the higher number of contractile vacuoles and their dorsal location likely increase diversification via elevating speciation rate. Particular nuclear characteristics, however, do not significantly differ in their diversification rates and hence lineages with various macronuclear patterns and number of micronuclei have similar probabilities to generate new species. Likelihood-based quantitative state diversification analyses suggest that rhynchostomatians conform to Cope's rule in that their diversity linearly grows with increasing body length and relative length of the proboscis. Comparison with other litostomatean ciliates indicates that rhynchostomatians are not among the cladogenically most successful lineages and their survival over several hundred million years could be associated with their comparatively large and complex bodies that reduce the risk of extinction.

  3. LOD score exclusion analyses for candidate QTLs using random population samples.

    PubMed

    Deng, Hong-Wen

    2003-11-01

    While extensive analyses have been conducted to test for, no formal analyses have been conducted to test against, the importance of candidate genes as putative QTLs using random population samples. Previously, we developed an LOD score exclusion mapping approach for candidate genes for complex diseases. Here, we extend this LOD score approach for exclusion analyses of candidate genes for quantitative traits. Under this approach, specific genetic effects (as reflected by heritability) and inheritance models at candidate QTLs can be analyzed and if an LOD score is < or = -2.0, the locus can be excluded from having a heritability larger than that specified. Simulations show that this approach has high power to exclude a candidate gene from having moderate genetic effects if it is not a QTL and is robust to population admixture. Our exclusion analysis complements association analysis for candidate genes as putative QTLs in random population samples. The approach is applied to test the importance of Vitamin D receptor (VDR) gene as a potential QTL underlying the variation of bone mass, an important determinant of osteoporosis.

  4. Whole-genome scan to detect quantitative trait loci associated with milk protein composition in 3 French dairy cattle breeds.

    PubMed

    Sanchez, M P; Govignon-Gion, A; Ferrand, M; Gelé, M; Pourchet, D; Amigues, Y; Fritz, S; Boussaha, M; Capitan, A; Rocha, D; Miranda, G; Martin, P; Brochard, M; Boichard, D

    2016-10-01

    In the context of the PhénoFinLait project, a genome-wide analysis was performed to detect quantitative trait loci (QTL) that affect milk protein composition estimated using mid-infrared spectrometry in the Montbéliarde (MO), Normande (NO), and Holstein (HO) French dairy cattle breeds. The 6 main milk proteins (α-lactalbumin, β-lactoglobulin, and αS1-, αS2-, β-, and κ-caseins) expressed as grams per 100g of milk (% of milk) or as grams per 100g of protein (% of protein) were estimated in 848,068 test-day milk samples from 156,660 cows. Genotyping was performed for 2,773 MO, 2,673 NO, and 2,208 HO cows using the Illumina BovineSNP50 BeadChip (Illumina Inc., San Diego, CA). Individual test-day records were adjusted for environmental effects and then averaged per cow to define the phenotypes analyzed. Quantitative trait loci detection was performed within each breed using a linkage disequilibrium and linkage analysis approach. A total of 39 genomic regions distributed on 20 of the 29 Bos taurus autosomes (BTA) were significantly associated with milk protein composition at a genome-wide level of significance in at least 1 of the 3 breeds. The 9 most significant QTL were located on BTA2 (133 Mbp), BTA6 (38, 47, and 87 Mbp), BTA11 (103 Mbp), BTA14 (1.8 Mbp), BTA20 (32 and 58 Mbp), and BTA29 (8 Mbp). The BTA6 (87 Mbp), BTA11, and BTA20 (58 Mbp) QTL were found in all 3 breeds, and they had highly significant effects on κ-casein, β-lactoglobulin, and α-lactalbumin, expressed as a percentage of protein, respectively. Each of these QTL explained between 13% (BTA14) and 51% (BTA11) of the genetic variance of the trait. Many other QTL regions were also identified in at least one breed. They were located on 14 additional chromosomes (1, 3, 4, 5, 7, 15, 17, 19, 21, 22, 24, 25, 26, and 27), and they explained 2 to 8% of the genetic variance of 1 or more protein composition traits. Concordance analyses, performed between QTL status and sequence-derived polymorphisms from 13 bulls, revealed previously known causal polymorphisms in LGB (BTA11) and GHR (BTA20 at 32 Mbp) and excluded some other previously described mutations. These results constitute a first step in identifying causal mutations and using routinely collected mid-infrared predictions in future genomic selection programs to improve bovine milk protein composition. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. A strategy to apply quantitative epistasis analysis on developmental traits.

    PubMed

    Labocha, Marta K; Yuan, Wang; Aleman-Meza, Boanerges; Zhong, Weiwei

    2017-05-15

    Genetic interactions are keys to understand complex traits and evolution. Epistasis analysis is an effective method to map genetic interactions. Large-scale quantitative epistasis analysis has been well established for single cells. However, there is a substantial lack of such studies in multicellular organisms and their complex phenotypes such as development. Here we present a method to extend quantitative epistasis analysis to developmental traits. In the nematode Caenorhabditis elegans, we applied RNA interference on mutants to inactivate two genes, used an imaging system to quantitatively measure phenotypes, and developed a set of statistical methods to extract genetic interactions from phenotypic measurement. Using two different C. elegans developmental phenotypes, body length and sex ratio, as examples, we showed that this method could accommodate various metazoan phenotypes with performances comparable to those methods in single cell growth studies. Comparing with qualitative observations, this method of quantitative epistasis enabled detection of new interactions involving subtle phenotypes. For example, several sex-ratio genes were found to interact with brc-1 and brd-1, the orthologs of the human breast cancer genes BRCA1 and BARD1, respectively. We confirmed the brc-1 interactions with the following genes in DNA damage response: C34F6.1, him-3 (ortholog of HORMAD1, HORMAD2), sdc-1, and set-2 (ortholog of SETD1A, SETD1B, KMT2C, KMT2D), validating the effectiveness of our method in detecting genetic interactions. We developed a reliable, high-throughput method for quantitative epistasis analysis of developmental phenotypes.

  6. Genetic Complexity and Quantitative Trait Loci Mapping of Yeast Morphological Traits

    PubMed Central

    Nogami, Satoru; Ohya, Yoshikazu; Yvert, Gaël

    2007-01-01

    Functional genomics relies on two essential parameters: the sensitivity of phenotypic measures and the power to detect genomic perturbations that cause phenotypic variations. In model organisms, two types of perturbations are widely used. Artificial mutations can be introduced in virtually any gene and allow the systematic analysis of gene function via mutants fitness. Alternatively, natural genetic variations can be associated to particular phenotypes via genetic mapping. However, the access to genome manipulation and breeding provided by model organisms is sometimes counterbalanced by phenotyping limitations. Here we investigated the natural genetic diversity of Saccharomyces cerevisiae cellular morphology using a very sensitive high-throughput imaging platform. We quantified 501 morphological parameters in over 50,000 yeast cells from a cross between two wild-type divergent backgrounds. Extensive morphological differences were found between these backgrounds. The genetic architecture of the traits was complex, with evidence of both epistasis and transgressive segregation. We mapped quantitative trait loci (QTL) for 67 traits and discovered 364 correlations between traits segregation and inheritance of gene expression levels. We validated one QTL by the replacement of a single base in the genome. This study illustrates the natural diversity and complexity of cellular traits among natural yeast strains and provides an ideal framework for a genetical genomics dissection of multiple traits. Our results did not overlap with results previously obtained from systematic deletion strains, showing that both approaches are necessary for the functional exploration of genomes. PMID:17319748

  7. Genetic Map Construction and Quantitative Trait Locus (QTL) Detection of Growth-Related Traits in Litopenaeus vannamei for Selective Breeding Applications

    PubMed Central

    Andriantahina, Farafidy; Liu, Xiaolin; Huang, Hao

    2013-01-01

    Growth is a priority trait from the point of view of genetic improvement. Molecular markers linked to quantitative trait loci (QTL) have been regarded as useful for marker-assisted selection (MAS) in complex traits as growth. Using an intermediate F2 cross of slow and fast growth parents, a genetic linkage map of Pacific whiteleg shrimp, Litopenaeusvannamei , based on amplified fragment length polymorphisms (AFLP) and simple sequence repeats (SSR) markers was constructed. Meanwhile, QTL analysis was performed for growth-related traits. The linkage map consisted of 451 marker loci (429 AFLPs and 22 SSRs) which formed 49 linkage groups with an average marker space of 7.6 cM; they spanned a total length of 3627.6 cM, covering 79.50% of estimated genome size. 14 QTLs were identified for growth-related traits, including three QTLs for body weight (BW), total length (TL) and partial carapace length (PCL), two QTLs for body length (BL), one QTL for first abdominal segment depth (FASD), third abdominal segment depth (TASD) and first abdominal segment width (FASW), which explained 2.62 to 61.42% of phenotypic variation. Moreover, comparison of linkage maps between L . vannamei and Penaeus japonicus was applied, providing a new insight into the genetic base of QTL affecting the growth-related traits. The new results will be useful for conducting MAS breeding schemes in L . vannamei . PMID:24086466

  8. Identification of Immune Traits Correlated with Dairy Cow Health, Reproduction and Productivity

    PubMed Central

    Banos, Georgios; Wall, Eileen; Coffey, Michael P.; Bagnall, Ainsley; Gillespie, Sandra; Russell, George C.; McNeilly, Tom N.

    2013-01-01

    Detailed biological analyses (e.g. epidemiological, genetic) of animal health and fitness in the field are limited by the lack of large-scale recording of individual animals. An alternative approach is to identify immune traits that are associated with these important functions and can be subsequently used in more detailed studies. We have used an experimental dairy herd with uniquely dense phenotypic data to identify a range of potentially useful immune traits correlated with enhanced (or depressed) health and fitness. Blood samples from 248 dairy cows were collected at two-monthly intervals over a 10-month period and analysed for a number of immune traits, including levels of serum proteins associated with the innate immune response and circulating leukocyte populations. Immune measures were matched to individual cow records related to productivity, fertility and disease. Correlations between traits were calculated using bivariate analyses based on animal repeatability and random regression models with a Bonferroni correction to account for multiple testing. A number of significant correlations were found between immune traits and other recorded traits including: CD4+:CD8+ T lymphocyte ratio and subclinical mastitis; % CD8+ lymphocytes and fertility; % CD335+ natural killer cells and lameness episodes; and serum haptoglobin levels and clinical mastitis. Importantly these traits were not associated with reduced productivity and, in the case of cellular immune traits, were highly repeatable. Moreover these immune traits displayed significant between-animal variation suggesting that they may be altered by genetic selection. This study represents the largest simultaneous analysis of multiple immune traits in dairy cattle to-date and demonstrates that a number of immune traits are associated with health events. These traits represent useful selection markers for future programmes aimed at improving animal health and fitness. PMID:23776543

  9. Quantile-based permutation thresholds for quantitative trait loci hotspots.

    PubMed

    Neto, Elias Chaibub; Keller, Mark P; Broman, Andrew F; Attie, Alan D; Jansen, Ritsert C; Broman, Karl W; Yandell, Brian S

    2012-08-01

    Quantitative trait loci (QTL) hotspots (genomic locations affecting many traits) are a common feature in genetical genomics studies and are biologically interesting since they may harbor critical regulators. Therefore, statistical procedures to assess the significance of hotspots are of key importance. One approach, randomly allocating observed QTL across the genomic locations separately by trait, implicitly assumes all traits are uncorrelated. Recently, an empirical test for QTL hotspots was proposed on the basis of the number of traits that exceed a predetermined LOD value, such as the standard permutation LOD threshold. The permutation null distribution of the maximum number of traits across all genomic locations preserves the correlation structure among the phenotypes, avoiding the detection of spurious hotspots due to nongenetic correlation induced by uncontrolled environmental factors and unmeasured variables. However, by considering only the number of traits above a threshold, without accounting for the magnitude of the LOD scores, relevant information is lost. In particular, biologically interesting hotspots composed of a moderate to small number of traits with strong LOD scores may be neglected as nonsignificant. In this article we propose a quantile-based permutation approach that simultaneously accounts for the number and the LOD scores of traits within the hotspots. By considering a sliding scale of mapping thresholds, our method can assess the statistical significance of both small and large hotspots. Although the proposed approach can be applied to any type of heritable high-volume "omic" data set, we restrict our attention to expression (e)QTL analysis. We assess and compare the performances of these three methods in simulations and we illustrate how our approach can effectively assess the significance of moderate and small hotspots with strong LOD scores in a yeast expression data set.

  10. Analysis and implications of mutational variation.

    PubMed

    Keightley, Peter D; Halligan, Daniel L

    2009-06-01

    Variation from new mutations is important for several questions in quantitative genetics. Key parameters are the genomic mutation rate and the distribution of effects of mutations (DEM), which determine the amount of new quantitative variation that arises per generation from mutation (V(M)). Here, we review methods and empirical results concerning mutation accumulation (MA) experiments that have shed light on properties of mutations affecting quantitative traits. Surprisingly, most data on fitness traits from laboratory assays of MA lines indicate that the DEM is platykurtic in form (i.e., substantially less leptokurtic than an exponential distribution), and imply that most variation is produced by mutations of moderate to large effect. This finding contrasts with results from MA or mutagenesis experiments in which mutational changes to the DNA can be assayed directly, which imply that the vast majority of mutations have very small phenotypic effects, and that the distribution has a leptokurtic form. We compare these findings with recent approaches that attempt to infer the DEM for fitness based on comparing the frequency spectra of segregating nucleotide polymorphisms at putatively neutral and selected sites in population samples. When applied to data for humans and Drosophila, these analyses also indicate that the DEM is strongly leptokurtic. However, by combining the resultant estimates of parameters of the DEM with estimates of the mutation rate per nucleotide, the predicted V(M) for fitness is only a tiny fraction of V(M) observed in MA experiments. This discrepancy can be explained if we postulate that a few deleterious mutations of large effect contribute most of the mutational variation observed in MA experiments and that such mutations segregate at very low frequencies in natural populations, and effectively are never seen in population samples.

  11. Major Quantitative Trait Loci and Putative Candidate Genes for Powdery Mildew Resistance and Fruit-Related Traits Revealed by an Intraspecific Genetic Map for Watermelon (Citrullus lanatus var. lanatus).

    PubMed

    Kim, Kwang-Hwan; Hwang, Ji-Hyun; Han, Dong-Yeup; Park, Minkyu; Kim, Seungill; Choi, Doil; Kim, Yongjae; Lee, Gung Pyo; Kim, Sun-Tae; Park, Young-Hoon

    2015-01-01

    An intraspecific genetic map for watermelon was constructed using an F2 population derived from 'Arka Manik' × 'TS34' and transcript sequence variants and quantitative trait loci (QTL) for resistance to powdery mildew (PMR), seed size (SS), and fruit shape (FS) were analyzed. The map consists of 14 linkage groups (LGs) defined by 174 cleaved amplified polymorphic sequences (CAPS), 2 derived-cleaved amplified polymorphic sequence markers, 20 sequence-characterized amplified regions, and 8 expressed sequence tag-simple sequence repeat markers spanning 1,404.3 cM, with a mean marker interval of 6.9 cM and an average of 14.6 markers per LG. Genetic inheritance and QTL analyses indicated that each of the PMR, SS, and FS traits is controlled by an incompletely dominant effect of major QTLs designated as pmr2.1, ss2.1, and fsi3.1, respectively. The pmr2.1, detected on chromosome 2 (Chr02), explained 80.0% of the phenotypic variation (LOD = 30.76). This QTL was flanked by two CAPS markers, wsb2-24 (4.00 cM) and wsb2-39 (13.97 cM). The ss2.1, located close to pmr2.1 and CAPS marker wsb2-13 (1.00 cM) on Chr02, explained 92.3% of the phenotypic variation (LOD = 68.78). The fsi3.1, detected on Chr03, explained 79.7% of the phenotypic variation (LOD = 31.37) and was flanked by two CAPS, wsb3-24 (1.91 cM) and wsb3-9 (7.00 cM). Candidate gene-based CAPS markers were developed from the disease resistance and fruit shape gene homologs located on Chr.02 and Chr03 and were mapped on the intraspecific map. Colocalization of these markers with the major QTLs indicated that watermelon orthologs of a nucleotide-binding site-leucine-rich repeat class gene containing an RPW8 domain and a member of SUN containing the IQ67 domain are candidate genes for pmr2.1 and fsi3.1, respectively. The results presented herein provide useful information for marker-assisted breeding and gene cloning for PMR and fruit-related traits.

  12. Major Quantitative Trait Loci and Putative Candidate Genes for Powdery Mildew Resistance and Fruit-Related Traits Revealed by an Intraspecific Genetic Map for Watermelon (Citrullus lanatus var. lanatus)

    PubMed Central

    Kim, Kwang-Hwan; Hwang, Ji-Hyun; Han, Dong-Yeup; Park, Minkyu; Kim, Seungill; Choi, Doil; Kim, Yongjae; Lee, Gung Pyo; Kim, Sun-Tae; Park, Young-Hoon

    2015-01-01

    An intraspecific genetic map for watermelon was constructed using an F2 population derived from ‘Arka Manik’ × ‘TS34’ and transcript sequence variants and quantitative trait loci (QTL) for resistance to powdery mildew (PMR), seed size (SS), and fruit shape (FS) were analyzed. The map consists of 14 linkage groups (LGs) defined by 174 cleaved amplified polymorphic sequences (CAPS), 2 derived-cleaved amplified polymorphic sequence markers, 20 sequence-characterized amplified regions, and 8 expressed sequence tag-simple sequence repeat markers spanning 1,404.3 cM, with a mean marker interval of 6.9 cM and an average of 14.6 markers per LG. Genetic inheritance and QTL analyses indicated that each of the PMR, SS, and FS traits is controlled by an incompletely dominant effect of major QTLs designated as pmr2.1, ss2.1, and fsi3.1, respectively. The pmr2.1, detected on chromosome 2 (Chr02), explained 80.0% of the phenotypic variation (LOD = 30.76). This QTL was flanked by two CAPS markers, wsb2-24 (4.00 cM) and wsb2-39 (13.97 cM). The ss2.1, located close to pmr2.1 and CAPS marker wsb2-13 (1.00 cM) on Chr02, explained 92.3% of the phenotypic variation (LOD = 68.78). The fsi3.1, detected on Chr03, explained 79.7% of the phenotypic variation (LOD = 31.37) and was flanked by two CAPS, wsb3-24 (1.91 cM) and wsb3-9 (7.00 cM). Candidate gene-based CAPS markers were developed from the disease resistance and fruit shape gene homologs located on Chr.02 and Chr03 and were mapped on the intraspecific map. Colocalization of these markers with the major QTLs indicated that watermelon orthologs of a nucleotide-binding site-leucine-rich repeat class gene containing an RPW8 domain and a member of SUN containing the IQ67 domain are candidate genes for pmr2.1 and fsi3.1, respectively. The results presented herein provide useful information for marker-assisted breeding and gene cloning for PMR and fruit-related traits. PMID:26700647

  13. Quantitative genetics of disease traits.

    PubMed

    Wray, N R; Visscher, P M

    2015-04-01

    John James authored two key papers on the theory of risk to relatives for binary disease traits and the relationship between parameters on the observed binary scale and an unobserved scale of liability (James Annals of Human Genetics, 1971; 35: 47; Reich, James and Morris Annals of Human Genetics, 1972; 36: 163). These two papers are John James' most cited papers (198 and 328 citations, November 2014). They have been influential in human genetics and have recently gained renewed popularity because of their relevance to the estimation of quantitative genetics parameters for disease traits using SNP data. In this review, we summarize the two early papers and put them into context. We show recent extensions of the theory for ascertained case-control data and review recent applications in human genetics. © 2015 Blackwell Verlag GmbH.

  14. Construction of a genetic linkage map and analysis of quantitative trait loci associated with the agronomically important traits of Pleurotus eryngii

    Treesearch

    Chak Han Im; Young-Hoon Park; Kenneth E. Hammel; Bokyung Park; Soon Wook Kwon; Hojin Ryu; Jae-San Ryu

    2016-01-01

    Breeding new strains with improved traits is a long-standing goal of mushroom breeders that can be expedited by marker-assisted selection (MAS). We constructed a genetic linkage map of Pleurotus eryngii based on segregation analysis of markers in postmeiotic monokaryons from KNR2312. In total, 256 loci comprising 226 simple sequence-repeat (SSR) markers, 2 mating-type...

  15. A genome scan for selection signatures comparing farmed Atlantic salmon with two wild populations: Testing colocalization among outlier markers, candidate genes, and quantitative trait loci for production traits.

    PubMed

    Liu, Lei; Ang, Keng Pee; Elliott, J A K; Kent, Matthew Peter; Lien, Sigbjørn; MacDonald, Danielle; Boulding, Elizabeth Grace

    2017-03-01

    Comparative genome scans can be used to identify chromosome regions, but not traits, that are putatively under selection. Identification of targeted traits may be more likely in recently domesticated populations under strong artificial selection for increased production. We used a North American Atlantic salmon 6K SNP dataset to locate genome regions of an aquaculture strain (Saint John River) that were highly diverged from that of its putative wild founder population (Tobique River). First, admixed individuals with partial European ancestry were detected using STRUCTURE and removed from the dataset. Outlier loci were then identified as those showing extreme differentiation between the aquaculture population and the founder population. All Arlequin methods identified an overlapping subset of 17 outlier loci, three of which were also identified by BayeScan. Many outlier loci were near candidate genes and some were near published quantitative trait loci (QTLs) for growth, appetite, maturity, or disease resistance. Parallel comparisons using a wild, nonfounder population (Stewiacke River) yielded only one overlapping outlier locus as well as a known maturity QTL. We conclude that genome scans comparing a recently domesticated strain with its wild founder population can facilitate identification of candidate genes for traits known to have been under strong artificial selection.

  16. Genetic Mapping of Quantitative Trait Loci Controlling Growth and Wood Quality Traits in Eucalyptus Grandis Using a Maternal Half-Sib Family and Rapd Markers

    PubMed Central

    Grattapaglia, D.; Bertolucci, FLG.; Penchel, R.; Sederoff, R. R.

    1996-01-01

    Quantitative trait loci (QTL) mapping of forest productivity traits was performed using an open pollinated half-sib family of Eucalyptus grandis. For volume growth, a sequential QTL mapping approach was applied using bulk segregant analysis (BSA), selective genotyping (SG) and cosegregation analysis (CSA). Despite the low heritability of this trait and the heterogeneous genetic background employed for mapping. BSA detected one putative QTL and SG two out of the three later found by CSA. The three putative QTL for volume growth were found to control 13.7% of the phenotypic variation, corresponding to an estimated 43.7% of the genetic variation. For wood specific gravity five QTL were identified controlling 24.7% of the phenotypic variation corresponding to 49% of the genetic variation. Overlapping QTL for CBH, WSG and percentage dry weight of bark were observed. A significant case of digenic epistasis was found, involving unlinked QTL for volume. Our results demonstrate the applicability of the within half-sib design for QTL mapping in forest trees and indicate the existence of major genes involved in the expression of economically important traits related to forest productivity in Eucalyptus grandis. These findings have important implications for marker-assisted tree breeding. PMID:8913761

  17. Germplasm-regression-combined (GRC) marker-trait association identification in plant breeding: a challenge for plant biotechnological breeding under soil water deficit conditions.

    PubMed

    Ruan, Cheng-Jiang; Xu, Xue-Xuan; Shao, Hong-Bo; Jaleel, Cheruth Abdul

    2010-09-01

    In the past 20 years, the major effort in plant breeding has changed from quantitative to molecular genetics with emphasis on quantitative trait loci (QTL) identification and marker assisted selection (MAS). However, results have been modest. This has been due to several factors including absence of tight linkage QTL, non-availability of mapping populations, and substantial time needed to develop such populations. To overcome these limitations, and as an alternative to planned populations, molecular marker-trait associations have been identified by the combination between germplasm and the regression technique. In the present preview, the authors (1) survey the successful applications of germplasm-regression-combined (GRC) molecular marker-trait association identification in plants; (2) describe how to do the GRC analysis and its differences from mapping QTL based on a linkage map reconstructed from the planned populations; (3) consider the factors that affect the GRC association identification, including selections of optimal germplasm and molecular markers and testing of identification efficiency of markers associated with traits; and (4) finally discuss the future prospects of GRC marker-trait association analysis used in plant MAS/QTL breeding programs, especially in long-juvenile woody plants when no other genetic information such as linkage maps and QTL are available.

  18. Genetic Linkage Mapping of Economically Important Traits in Cultivated Tetraploid Potato (Solanum tuberosum L.).

    PubMed

    Massa, Alicia N; Manrique-Carpintero, Norma C; Coombs, Joseph J; Zarka, Daniel G; Boone, Anne E; Kirk, William W; Hackett, Christine A; Bryan, Glenn J; Douches, David S

    2015-09-14

    The objective of this study was to construct a single nucleotide polymorphism (SNP)-based genetic map at the cultivated tetraploid level to locate quantitative trait loci (QTL) contributing to economically important traits in potato (Solanum tuberosum L.). The 156 F1 progeny and parents of a cross (MSL603) between "Jacqueline Lee" and "MSG227-2" were genotyped using the Infinium 8303 Potato Array. Furthermore, the progeny and parents were evaluated for foliar late blight reaction to isolates of the US-8 genotype of Phytophthora infestans (Mont.) de Bary and vine maturity. Linkage analyses and QTL mapping were performed using a novel approach that incorporates allele dosage information. The resulting genetic maps contained 1972 SNP markers with an average density of 1.36 marker per cM. QTL mapping identified the major source of late blight resistance in "Jacqueline Lee." The best SNP marker mapped ~0.54 Mb from a resistance hotspot on the long arm of chromosome 9. For vine maturity, the major-effect QTL was located on chromosome 5 with allelic effects from both parents. A candidate SNP marker for this trait mapped ~0.25 Mb from the StCDF1 gene, which is a candidate gene for the maturity trait. The identification of markers for P. infestans resistance will enable the introgression of multiple sources of resistance through marker-assisted selection. Moreover, the discovery of a QTL for late blight resistance not linked to the QTL for vine maturity provides the opportunity to use marker-assisted selection for resistance independent of the selection for vine maturity classifications. Copyright © 2015 Massa et al.

  19. Genetic Linkage Mapping of Economically Important Traits in Cultivated Tetraploid Potato (Solanum tuberosum L.)

    PubMed Central

    Massa, Alicia N.; Manrique-Carpintero, Norma C.; Coombs, Joseph J.; Zarka, Daniel G.; Boone, Anne E.; Kirk, William W.; Hackett, Christine A.; Bryan, Glenn J.; Douches, David S.

    2015-01-01

    The objective of this study was to construct a single nucleotide polymorphism (SNP)-based genetic map at the cultivated tetraploid level to locate quantitative trait loci (QTL) contributing to economically important traits in potato (Solanum tuberosum L.). The 156 F1 progeny and parents of a cross (MSL603) between “Jacqueline Lee” and “MSG227-2” were genotyped using the Infinium 8303 Potato Array. Furthermore, the progeny and parents were evaluated for foliar late blight reaction to isolates of the US-8 genotype of Phytophthora infestans (Mont.) de Bary and vine maturity. Linkage analyses and QTL mapping were performed using a novel approach that incorporates allele dosage information. The resulting genetic maps contained 1972 SNP markers with an average density of 1.36 marker per cM. QTL mapping identified the major source of late blight resistance in “Jacqueline Lee.” The best SNP marker mapped ∼0.54 Mb from a resistance hotspot on the long arm of chromosome 9. For vine maturity, the major-effect QTL was located on chromosome 5 with allelic effects from both parents. A candidate SNP marker for this trait mapped ∼0.25 Mb from the StCDF1 gene, which is a candidate gene for the maturity trait. The identification of markers for P. infestans resistance will enable the introgression of multiple sources of resistance through marker-assisted selection. Moreover, the discovery of a QTL for late blight resistance not linked to the QTL for vine maturity provides the opportunity to use marker-assisted selection for resistance independent of the selection for vine maturity classifications. PMID:26374597

  20. Interactions between Glu-1 and Glu-3 loci and associations of selected molecular markers with quality traits in winter wheat (Triticum aestivum L.) DH lines.

    PubMed

    Krystkowiak, Karolina; Langner, Monika; Adamski, Tadeusz; Salmanowicz, Bolesław P; Kaczmarek, Zygmunt; Krajewski, Paweł; Surma, Maria

    2017-02-01

    The quality of wheat depends on a large complex of genes and environmental factors. The objective of this study was to identify quantitative trait loci controlling technological quality traits and their stability across environments, and to assess the impact of interaction between alleles at loci Glu-1 and Glu-3 on grain quality. DH lines were evaluated in field experiments over a period of 4 years, and genotyped using simple sequence repeat markers. Lines were analysed for grain yield (GY), thousand grain weight (TGW), protein content (PC), starch content (SC), wet gluten content (WG), Zeleny sedimentation value (ZS), alveograph parameter W (APW), hectolitre weight (HW), and grain hardness (GH). A number of QTLs for these traits were identified in all chromosome groups. The Glu-D1 locus influenced TGW, PC, SC, WG, ZS, APW, GH, while locus Glu-B1 affected only PC, ZS, and WG. Most important marker-trait associations were found on chromosomes 1D and 5D. Significant effects of interaction between Glu-1 and Glu-3 loci on technological properties were recorded, and in all types of this interaction positive effects of Glu-D1 locus on grain quality were observed, whereas effects of Glu-B1 locus depended on alleles at Glu-3 loci. Effects of Glu-A3 and Glu-D3 loci per se were not significant, while their interaction with alleles present at other loci encoding HMW and LMW were important. These results indicate that selection of wheat genotypes with predicted good bread-making properties should be based on the allelic composition both in Glu-1 and Glu-3 loci, and confirm the predominant effect of Glu-D1d allele on technological properties of wheat grains.

  1. Association analysis for udder index and milking speed with imputed whole-genome sequence variants in Nordic Holstein cattle.

    PubMed

    Jardim, Júlia Gazzoni; Guldbrandtsen, Bernt; Lund, Mogens Sandø; Sahana, Goutam

    2018-03-01

    Genome-wide association testing facilitates the identification of genetic variants associated with complex traits. Mapping genes that promote genetic resistance to mastitis could reduce the cost of antibiotic use and enhance animal welfare and milk production by improving outcomes of breeding for udder health. Using imputed whole-genome sequence variants, we carried out association studies for 2 traits related to udder health, udder index, and milking speed in Nordic Holstein cattle. A total of 4,921 bulls genotyped with the BovineSNP50 BeadChip array were imputed to high-density genotypes (Illumina BovineHD BeadChip, Illumina, San Diego, CA) and, subsequently, to whole-genome sequence variants. An association analysis was carried out using a linear mixed model. Phenotypes used in the association analyses were deregressed breeding values. Multitrait meta-analysis was carried out for these 2 traits. We identified 10 and 8 chromosomes harboring markers that were significantly associated with udder index and milking speed, respectively. Strongest association signals were observed on chromosome 20 for udder index and chromosome 19 for milking speed. Multitrait meta-analysis identified 13 chromosomes harboring associated markers for the combination of udder index and milking speed. The associated region on chromosome 20 overlapped with earlier reported quantitative trait loci for similar traits in other cattle populations. Moreover, this region was located close to the FYB gene, which is involved in platelet activation and controls IL-2 expression; FYB is a strong candidate gene for udder health and worthy of further investigation. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Dissection of Genetic Factors underlying Wheat Kernel Shape and Size in an Elite × Nonadapted Cross using a High Density SNP Linkage Map.

    PubMed

    Kumar, Ajay; Mantovani, E E; Seetan, R; Soltani, A; Echeverry-Solarte, M; Jain, S; Simsek, S; Doehlert, D; Alamri, M S; Elias, E M; Kianian, S F; Mergoum, M

    2016-03-01

    Wheat kernel shape and size has been under selection since early domestication. Kernel morphology is a major consideration in wheat breeding, as it impacts grain yield and quality. A population of 160 recombinant inbred lines (RIL), developed using an elite (ND 705) and a nonadapted genotype (PI 414566), was extensively phenotyped in replicated field trials and genotyped using Infinium iSelect 90K assay to gain insight into the genetic architecture of kernel shape and size. A high density genetic map consisting of 10,172 single nucleotide polymorphism (SNP) markers, with an average marker density of 0.39 cM/marker, identified a total of 29 genomic regions associated with six grain shape and size traits; ∼80% of these regions were associated with multiple traits. The analyses showed that kernel length (KL) and width (KW) are genetically independent, while a large number (∼59%) of the quantitative trait loci (QTL) for kernel shape traits were in common with genomic regions associated with kernel size traits. The most significant QTL was identified on chromosome 4B, and could be an ortholog of major rice grain size and shape gene or . Major and stable loci also were identified on the homeologous regions of Group 5 chromosomes, and in the regions of (6A) and (7A) genes. Both parental genotypes contributed equivalent positive QTL alleles, suggesting that the nonadapted germplasm has a great potential for enhancing the gene pool for grain shape and size. This study provides new knowledge on the genetic dissection of kernel morphology, with a much higher resolution, which may aid further improvement in wheat yield and quality using genomic tools. Copyright © 2016 Crop Science Society of America.

  3. Partially incorrect fossil data augment analyses of discrete trait evolution in living species.

    PubMed

    Puttick, Mark N

    2016-08-01

    Ancestral state reconstruction of discrete character traits is often vital when attempting to understand the origins and homology of traits in living species. The addition of fossils has been shown to alter our understanding of trait evolution in extant taxa, but researchers may avoid using fossils alongside extant species if only few are known, or if the designation of the trait of interest is uncertain. Here, I investigate the impacts of fossils and incorrectly coded fossils in the ancestral state reconstruction of discrete morphological characters under a likelihood model. Under simulated phylogenies and data, likelihood-based models are generally accurate when estimating ancestral node values. Analyses with combined fossil and extant data always outperform analyses with extant species alone, even when around one quarter of the fossil information is incorrect. These results are especially pronounced when model assumptions are violated, such as when there is a trend away from the root value. Fossil data are of particular importance when attempting to estimate the root node character state. Attempts should be made to include fossils in analysis of discrete traits under likelihood, even if there is uncertainty in the fossil trait data. © 2016 The Authors.

  4. Which plant trait explains the variations in relative growth rate and its response to elevated carbon dioxide concentration among Arabidopsis thaliana ecotypes derived from a variety of habitats?

    PubMed

    Oguchi, Riichi; Ozaki, Hiroshi; Hanada, Kousuke; Hikosaka, Kouki

    2016-03-01

    Elevated atmospheric carbon dioxide (CO2) concentration ([CO2]) enhances plant growth, but this enhancement varies considerably. It is still uncertain which plant traits are quantitatively related to the variation in plant growth. To identify the traits responsible, we developed a growth analysis model that included primary parameters associated with morphology, nitrogen (N) use, and leaf and root activities. We analysed the vegetative growth of 44 ecotypes of Arabidopsis thaliana L. grown at ambient and elevated [CO2] (800 μmol mol(-1)). The 44 ecotypes were selected such that they were derived from various altitudes and latitudes. Relative growth rate (RGR; growth rate per unit plant mass) and its response to [CO2] varied by 1.5- and 1.7-fold among ecotypes, respectively. The variation in RGR at both [CO2]s was mainly explained by the variation in leaf N productivity (LNP; growth rate per leaf N),which was strongly related to photosynthetic N use efficiency (PNUE). The variation in the response of RGR to [CO2] was also explained by the variation in the response of LNP to [CO2]. Genomic analyses indicated that there was no phylogenetic constraint on inter-ecotype variation in the CO2 response of RGR or LNP. We conclude that the significant variation in plant growth and its response to [CO2] among ecotypes reflects the variation in N use for photosynthesis among ecotypes, and that the response of PNUE to CO2 is an important target for predicting and/or breeding plants that have high growth rates at elevated [CO2].

  5. A novel variant associated with HDL-C levels by modifying DAGLB expression levels: An annotation-based genome-wide association study.

    PubMed

    Zhou, Dan; Zhang, Dandan; Sun, Xiaohui; Li, Zhiqiang; Ni, Yaqin; Shan, Zhongyan; Li, Hong; Liu, Chengguo; Zhang, Shuai; Liu, Yi; Zheng, Ruizhi; Pan, Feixia; Zhu, Yimin; Shi, Yongyong; Lai, Maode

    2018-06-01

    Although numbers of genome-wide association studies (GWAS) have been performed for serum lipid levels, limited heritability has been explained. Studies showed that combining data from GWAS and expression quantitative trait loci (eQTLs) signals can both enhance the discovery of trait-associated SNPs and gain a better understanding of the mechanism. We performed an annotation-based, multistage genome-wide screening for serum-lipid-level-associated loci in totally 6863 Han Chinese. A serum high-density lipoprotein cholesterol (HDL-C) associated variant rs1880118 (hg19 chr7:g. 6435220G>C) was replicated (P combined  = 1.4E-10). rs1880118 was associated with DAGLB (diacylglycerol lipase, beta) expression levels in subcutaneous adipose tissue (P = 5.9E-42) and explained 47.7% of the expression variance. After the replication, an active segment covering variants tagged by rs1880118 near 5' of DAGLB was annotated using histone modification and transcription factor binding signals. The luciferase report assay revealed that the segment containing the minor alleles showed increased transcriptional activity compared with segment contains the major alleles, which was consistent with the eQTL analyses. The expression-trait association tests indicated the association between the DAGLB and serum HDL-C levels using gene-based approaches called "TWAS" (P = 3.0E-8), "SMR" (P = 1.1E-4), and "Sherlock" (P = 1.6E-6). To summarize, we identified a novel HDL-C-associated variant which explained nearly half of the expression variance of DAGLB. Integrated analyses established a genotype-gene-phenotype three-way association and expanded our knowledge of DAGLB in lipid metabolism.

  6. Phenotypic and genetic analyses of the varroa sensitive hygienic trait in Russian honey bee (hymenoptera: apidae) colonies.

    PubMed

    Kirrane, Maria J; de Guzman, Lilia I; Holloway, Beth; Frake, Amanda M; Rinderer, Thomas E; Whelan, Pádraig M

    2014-01-01

    Varroa destructor continues to threaten colonies of European honey bees. General hygiene, and more specific Varroa Sensitive Hygiene (VSH), provide resistance towards the Varroa mite in a number of stocks. In this study, 32 Russian (RHB) and 14 Italian honey bee colonies were assessed for the VSH trait using two different assays. Firstly, colonies were assessed using the standard VSH behavioural assay of the change in infestation of a highly infested donor comb after a one-week exposure. Secondly, the same colonies were assessed using an "actual brood removal assay" that measured the removal of brood in a section created within the donor combs as a potential alternative measure of hygiene towards Varroa-infested brood. All colonies were then analysed for the recently discovered VSH quantitative trait locus (QTL) to determine whether the genetic mechanisms were similar across different stocks. Based on the two assays, RHB colonies were consistently more hygienic toward Varroa-infested brood than Italian honey bee colonies. The actual number of brood cells removed in the defined section was negatively correlated with the Varroa infestations of the colonies (r2 = 0.25). Only two (percentages of brood removed and reproductive foundress Varroa) out of nine phenotypic parameters showed significant associations with genotype distributions. However, the allele associated with each parameter was the opposite of that determined by VSH mapping. In this study, RHB colonies showed high levels of hygienic behaviour towards Varroa -infested brood. The genetic mechanisms are similar to those of the VSH stock, though the opposite allele associates in RHB, indicating a stable recombination event before the selection of the VSH stock. The measurement of brood removal is a simple, reliable alternative method of measuring hygienic behaviour towards Varroa mites, at least in RHB stock.

  7. Phenotypic and Genetic Analyses of the Varroa Sensitive Hygienic Trait in Russian Honey Bee (Hymenoptera: Apidae) Colonies

    PubMed Central

    Kirrane, Maria J.; de Guzman, Lilia I.; Holloway, Beth; Frake, Amanda M.; Rinderer, Thomas E.; Whelan, Pádraig M.

    2015-01-01

    Varroa destructor continues to threaten colonies of European honey bees. General hygiene, and more specific Varroa Sensitive Hygiene (VSH), provide resistance towards the Varroa mite in a number of stocks. In this study, 32 Russian (RHB) and 14 Italian honey bee colonies were assessed for the VSH trait using two different assays. Firstly, colonies were assessed using the standard VSH behavioural assay of the change in infestation of a highly infested donor comb after a one-week exposure. Secondly, the same colonies were assessed using an “actual brood removal assay” that measured the removal of brood in a section created within the donor combs as a potential alternative measure of hygiene towards Varroa-infested brood. All colonies were then analysed for the recently discovered VSH quantitative trait locus (QTL) to determine whether the genetic mechanisms were similar across different stocks. Based on the two assays, RHB colonies were consistently more hygienic toward Varroa-infested brood than Italian honey bee colonies. The actual number of brood cells removed in the defined section was negatively correlated with the Varroa infestations of the colonies (r2 = 0.25). Only two (percentages of brood removed and reproductive foundress Varroa) out of nine phenotypic parameters showed significant associations with genotype distributions. However, the allele associated with each parameter was the opposite of that determined by VSH mapping. In this study, RHB colonies showed high levels of hygienic behaviour towards Varroa -infested brood. The genetic mechanisms are similar to those of the VSH stock, though the opposite allele associates in RHB, indicating a stable recombination event before the selection of the VSH stock. The measurement of brood removal is a simple, reliable alternative method of measuring hygienic behaviour towards Varroa mites, at least in RHB stock. PMID:25909856

  8. Contrasting outcomes of species- and community-level analyses of the temporal consistency of functional composition.

    PubMed

    Katabuchi, Masatoshi; Wright, S Joseph; Swenson, Nathan G; Feeley, Kenneth J; Condit, Richard; Hubbell, Stephen P; Davies, Stuart J

    2017-09-01

    Multiple anthropogenic drivers affect every natural community, and there is broad interest in using functional traits to understand and predict the consequences for future biodiversity. There is, however, no consensus regarding the choice of analytical methods. We contrast species- and community-level analyses of change in the functional composition for four traits related to drought tolerance using three decades of repeat censuses of trees in the 50-ha Forest Dynamics Plot on Barro Colorado Island, Panama. Community trait distributions shifted significantly through time, which may indicate a shift toward more drought tolerant species. However, at the species level, changes in abundance were unrelated to trait values. To reconcile these seemingly contrasting results, we evaluated species-specific contributions to the directional shifts observed at the community level. Abundance changes of just one to six of 312 species were responsible for the community-level shifts observed for each trait. Our results demonstrate that directional changes in community-level functional composition can result from idiosyncratic change in a few species rather than widespread community-wide changes associated with functional traits. Future analyses of directional change in natural communities should combine community-, species-, and possibly individual-level analyses to uncover relationships with function that can improve understanding and enable prediction. © 2017 by the Ecological Society of America.

  9. The Role of Adiposity in Cardiometabolic Traits: A Mendelian Randomization Analysis

    PubMed Central

    Ploner, Alexander; Fischer, Krista; Horikoshi, Momoko; Sarin, Antti-Pekka; Thorleifsson, Gudmar; Ladenvall, Claes; Kals, Mart; Kuningas, Maris; Draisma, Harmen H. M.; Ried, Janina S.; van Zuydam, Natalie R.; Huikari, Ville; Mangino, Massimo; Sonestedt, Emily; Benyamin, Beben; Nelson, Christopher P.; Rivera, Natalia V.; Kristiansson, Kati; Shen, Huei-yi; Havulinna, Aki S.; Dehghan, Abbas; Donnelly, Louise A.; Kaakinen, Marika; Nuotio, Marja-Liisa; Robertson, Neil; de Bruijn, Renée F. A. G.; Ikram, M. Arfan; Amin, Najaf; Balmforth, Anthony J.; Braund, Peter S.; Doney, Alexander S. F.; Döring, Angela; Elliott, Paul; Esko, Tõnu; Franco, Oscar H.; Gretarsdottir, Solveig; Hartikainen, Anna-Liisa; Heikkilä, Kauko; Herzig, Karl-Heinz; Holm, Hilma; Hottenga, Jouke Jan; Hyppönen, Elina; Illig, Thomas; Isaacs, Aaron; Isomaa, Bo; Karssen, Lennart C.; Kettunen, Johannes; Koenig, Wolfgang; Kuulasmaa, Kari; Laatikainen, Tiina; Laitinen, Jaana; Lindgren, Cecilia; Lyssenko, Valeriya; Läärä, Esa; Rayner, Nigel W.; Männistö, Satu; Pouta, Anneli; Rathmann, Wolfgang; Rivadeneira, Fernando; Ruokonen, Aimo; Savolainen, Markku J.; Sijbrands, Eric J. G.; Small, Kerrin S.; Smit, Jan H.; Steinthorsdottir, Valgerdur; Syvänen, Ann-Christine; Taanila, Anja; Tobin, Martin D.; Uitterlinden, Andre G.; Willems, Sara M.; Willemsen, Gonneke; Witteman, Jacqueline; Perola, Markus; Evans, Alun; Ferrières, Jean; Virtamo, Jarmo; Kee, Frank; Tregouet, David-Alexandre; Arveiler, Dominique; Amouyel, Philippe; Ferrario, Marco M.; Brambilla, Paolo; Hall, Alistair S.; Heath, Andrew C.; Madden, Pamela A. F.; Martin, Nicholas G.; Montgomery, Grant W.; Whitfield, John B.; Jula, Antti; Knekt, Paul; Oostra, Ben; van Duijn, Cornelia M.; Penninx, Brenda W. J. H.; Davey Smith, George; Kaprio, Jaakko; Samani, Nilesh J.; Gieger, Christian; Peters, Annette; Wichmann, H.-Erich; Boomsma, Dorret I.; de Geus, Eco J. C.; Tuomi, TiinaMaija; Power, Chris; Hammond, Christopher J.; Spector, Tim D.; Lind, Lars; Orho-Melander, Marju; Palmer, Colin Neil Alexander; Morris, Andrew D.; Groop, Leif; Järvelin, Marjo-Riitta; Salomaa, Veikko; Vartiainen, Erkki; Hofman, Albert; Ripatti, Samuli; Metspalu, Andres; Thorsteinsdottir, Unnur; Stefansson, Kari; Pedersen, Nancy L.; McCarthy, Mark I.; Ingelsson, Erik; Prokopenko, Inga

    2013-01-01

    Background The association between adiposity and cardiometabolic traits is well known from epidemiological studies. Whilst the causal relationship is clear for some of these traits, for others it is not. We aimed to determine whether adiposity is causally related to various cardiometabolic traits using the Mendelian randomization approach. Methods and Findings We used the adiposity-associated variant rs9939609 at the FTO locus as an instrumental variable (IV) for body mass index (BMI) in a Mendelian randomization design. Thirty-six population-based studies of individuals of European descent contributed to the analyses. Age- and sex-adjusted regression models were fitted to test for association between (i) rs9939609 and BMI (n = 198,502), (ii) rs9939609 and 24 traits, and (iii) BMI and 24 traits. The causal effect of BMI on the outcome measures was quantified by IV estimators. The estimators were compared to the BMI–trait associations derived from the same individuals. In the IV analysis, we demonstrated novel evidence for a causal relationship between adiposity and incident heart failure (hazard ratio, 1.19 per BMI-unit increase; 95% CI, 1.03–1.39) and replicated earlier reports of a causal association with type 2 diabetes, metabolic syndrome, dyslipidemia, and hypertension (odds ratio for IV estimator, 1.1–1.4; all p<0.05). For quantitative traits, our results provide novel evidence for a causal effect of adiposity on the liver enzymes alanine aminotransferase and gamma-glutamyl transferase and confirm previous reports of a causal effect of adiposity on systolic and diastolic blood pressure, fasting insulin, 2-h post-load glucose from the oral glucose tolerance test, C-reactive protein, triglycerides, and high-density lipoprotein cholesterol levels (all p<0.05). The estimated causal effects were in agreement with traditional observational measures in all instances except for type 2 diabetes, where the causal estimate was larger than the observational estimate (p = 0.001). Conclusions We provide novel evidence for a causal relationship between adiposity and heart failure as well as between adiposity and increased liver enzymes. Please see later in the article for the Editors' Summary PMID:23824655

  10. A genome-wide association study of production traits in a commercial population of Large White pigs: evidence of haplotypes affecting meat quality

    PubMed Central

    2014-01-01

    Background Numerous quantitative trait loci (QTL) have been detected in pigs over the past 20 years using microsatellite markers. However, due to the low density of these markers, the accuracy of QTL location has generally been poor. Since 2009, the dense genome coverage provided by the Illumina PorcineSNP60 BeadChip has made it possible to more accurately map QTL using genome-wide association studies (GWAS). Our objective was to perform high-density GWAS in order to identify genomic regions and corresponding haplotypes associated with production traits in a French Large White population of pigs. Methods Animals (385 Large White pigs from 106 sires) were genotyped using the PorcineSNP60 BeadChip and evaluated for 19 traits related to feed intake, growth, carcass composition and meat quality. Of the 64 432 SNPs on the chip, 44 412 were used for GWAS with an animal mixed model that included a regression coefficient for the tested SNPs and a genomic kinship matrix. SNP haplotype effects in QTL regions were then tested for association with phenotypes following phase reconstruction based on the Sscrofa10.2 pig genome assembly. Results Twenty-three QTL regions were identified on autosomes and their effects ranged from 0.25 to 0.75 phenotypic standard deviation units for feed intake and feed efficiency (four QTL), carcass (12 QTL) and meat quality traits (seven QTL). The 10 most significant QTL regions had effects on carcass (chromosomes 7, 10, 16, 17 and 18) and meat quality traits (two regions on chromosome 1 and one region on chromosomes 8, 9 and 13). Thirteen of the 23 QTL regions had not been previously described. A haplotype block of 183 kb on chromosome 1 (six SNPs) was identified and displayed three distinct haplotypes with significant (0.0001 < P < 0.03) associations with all evaluated meat quality traits. Conclusions GWAS analyses with the PorcineSNP60 BeadChip enabled the detection of 23 QTL regions that affect feed consumption, carcass and meat quality traits in a LW population, of which 13 were novel QTL. The proportionally larger number of QTL found for meat quality traits suggests a specific opportunity for improving these traits in the pig by genomic selection. PMID:24528607

  11. Comparing power and precision of within-breed and multibreed genome-wide association studies of production traits using whole-genome sequence data for 5 French and Danish dairy cattle breeds.

    PubMed

    van den Berg, Irene; Boichard, Didier; Lund, Mogens Sandø

    2016-11-01

    The objective of this study was to compare mapping precision and power of within-breed and multibreed genome-wide association studies (GWAS) and to compare the results obtained by the multibreed GWAS with 3 meta-analysis methods. The multibreed GWAS was expected to improve mapping precision compared with a within-breed GWAS because linkage disequilibrium is conserved over shorter distances across breeds than within breeds. The multibreed GWAS was also expected to increase detection power for quantitative trait loci (QTL) segregating across breeds. GWAS were performed for production traits in dairy cattle, using imputed full genome sequences of 16,031 bulls, originating from 6 French and Danish dairy cattle populations. Our results show that a multibreed GWAS can be a valuable tool for the detection and fine mapping of quantitative trait loci. The number of QTL detected with the multibreed GWAS was larger than the number detected by the within-breed GWAS, indicating an increase in power, especially when the 2 Holstein populations were combined. The largest number of QTL was detected when all populations were combined. The analysis combining all breeds was, however, dominated by Holstein, and QTL segregating in other breeds but not in Holstein were sometimes overshadowed by larger QTL segregating in Holstein. Therefore, the GWAS combining all breeds except Holstein was useful to detect such peaks. Combining all breeds except Holstein resulted in smaller QTL intervals on average, but this outcome was not the case when the Holstein populations were included in the analysis. Although no decrease in the average QTL size was observed, mapping precision did improve for several QTL. Out of 3 different multibreed meta-analysis methods, the weighted z-scores model resulted in the most similar results to the full multibreed GWAS and can be useful as an alternative to a full multibreed GWAS. Differences between the multibreed GWAS and the meta-analyses were larger when different breeds were combined than when the 2 Holstein populations were combined. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Evolution of an adaptive behavior and its sensory receptors promotes eye regression in blind cavefish.

    PubMed

    Yoshizawa, Masato; Yamamoto, Yoshiyuki; O'Quin, Kelly E; Jeffery, William R

    2012-12-27

    How and why animals lose eyesight during adaptation to the dark and food-limited cave environment has puzzled biologists since the time of Darwin. More recently, several different adaptive hypotheses have been proposed to explain eye degeneration based on studies in the teleost Astyanax mexicanus, which consists of blind cave-dwelling (cavefish) and sighted surface-dwelling (surface fish) forms. One of these hypotheses is that eye regression is the result of indirect selection for constructive characters that are negatively linked to eye development through the pleiotropic effects of Sonic Hedgehog (SHH) signaling. However, subsequent genetic analyses suggested that other mechanisms also contribute to eye regression in Astyanax cavefish. Here, we introduce a new approach to this problem by investigating the phenotypic and genetic relationships between a suite of non-visual constructive traits and eye regression. Using quantitative genetic analysis of crosses between surface fish, the Pachón cavefish population and their hybrid progeny, we show that the adaptive vibration attraction behavior (VAB) and its sensory receptors, superficial neuromasts (SN) specifically found within the cavefish eye orbit (EO), are genetically correlated with reduced eye size. The quantitative trait loci (QTL) for these three traits form two clusters of congruent or overlapping QTL on Astyanax linkage groups (LG) 2 and 17, but not at the shh locus on LG 13. Ablation of EO SN in cavefish demonstrated a major role for these sensory receptors in VAB expression. Furthermore, experimental induction of eye regression in surface fish via shh overexpression showed that the absence of eyes was insufficient to promote the appearance of VAB or EO SN. We conclude that natural selection for the enhancement of VAB and EO SN indirectly promotes eye regression in the Pachón cavefish population through an antagonistic relationship involving genetic linkage or pleiotropy among the genetic factors underlying these traits. This study demonstrates a trade-off between the evolution of a non-visual sensory system and eye regression during the adaptive evolution of Astyanax to the cave environment.

  13. Genetic data analysis for plant and animal breeding

    USDA-ARS?s Scientific Manuscript database

    This book is an advanced textbook covering the application of quantitative genetics theory to analysis of actual data (both trait and DNA marker information) for breeding populations of crops, trees, and animals. Chapter 1 is an introduction to basic software used for trait data analysis. Chapter 2 ...

  14. Genomic Studies in Soybean: Toward Understanding Seed Oil and Protein Production

    USDA-ARS?s Scientific Manuscript database

    The molecular mechanisms that influence soybean seed composition are not well understood. Insight into the genetic controls involved in these traits is important for future soybean improvement. In this study, we identified candidate genes at the major soybean protein quantitative trait locus at Link...

  15. Genetics of common forms of heart failure: challenges and potential solutions.

    PubMed

    Rau, Christoph D; Lusis, Aldons J; Wang, Yibin

    2015-05-01

    In contrast to many other human diseases, the use of genome-wide association studies (GWAS) to identify genes for heart failure (HF) has had limited success. We will discuss the underlying challenges as well as potential new approaches to understanding the genetics of common forms of HF. Recent research using intermediate phenotypes, more detailed and quantitative stratification of HF symptoms, founder populations and novel animal models has begun to allow researchers to make headway toward explaining the genetics underlying HF using GWAS techniques. By expanding analyses of HF to improved clinical traits, additional HF classifications and innovative model systems, the intractability of human HF GWAS should be ameliorated significantly.

  16. Frontotemporal dementia and its subtypes: a genome-wide association study

    PubMed Central

    Ferrari, Raffaele; Hernandez, Dena G; Nalls, Michael A; Rohrer, Jonathan D; Ramasamy, Adaikalavan; Kwok, John B J; Dobson-Stone, Carol; Brooks, William S; Schofield, Peter R; Halliday, Glenda M; Hodges, John R; Piguet, Olivier; Bartley, Lauren; Thompson, Elizabeth; Haan, Eric; Hernández, Isabel; Ruiz, Agustín; Boada, Mercè; Borroni, Barbara; Padovani, Alessandro; Cruchaga, Carlos; Cairns, Nigel J; Benussi, Luisa; Binetti, Giuliano; Ghidoni, Roberta; Forloni, Gianluigi; Galimberti, Daniela; Fenoglio, Chiara; Serpente, Maria; Scarpini, Elio; Clarimón, Jordi; Lleó, Alberto; Blesa, Rafael; Waldö, Maria Landqvist; Nilsson, Karin; Nilsson, Christer; Mackenzie, Ian R A; Hsiung, Ging-Yuek R; Mann, David M A; Grafman, Jordan; Morris, Christopher M; Attems, Johannes; Griffiths, Timothy D; McKeith, Ian G; Thomas, Alan J; Pietrini, P; Huey, Edward D; Wassermann, Eric M; Baborie, Atik; Jaros, Evelyn; Tierney, Michael C; Pastor, Pau; Razquin, Cristina; Ortega-Cubero, Sara; Alonso, Elena; Perneczky, Robert; Diehl-Schmid, Janine; Alexopoulos, Panagiotis; Kurz, Alexander; Rainero, Innocenzo; Rubino, Elisa; Pinessi, Lorenzo; Rogaeva, Ekaterina; George-Hyslop, Peter St; Rossi, Giacomina; Tagliavini, Fabrizio; Giaccone, Giorgio; Rowe, James B; Schlachetzki, J C M; Uphill, James; Collinge, John; Mead, S; Danek, Adrian; Van Deerlin, Vivianna M; Grossman, Murray; Trojanowsk, John Q; van der Zee, Julie; Deschamps, William; Van Langenhove, Tim; Cruts, Marc; Van Broeckhoven, Christine; Cappa, Stefano F; Le Ber, Isabelle; Hannequin, Didier; Golfier, Véronique; Vercelletto, Martine; Brice, Alexis; Nacmias, Benedetta; Sorbi, Sandro; Bagnoli, Silvia; Piaceri, Irene; Nielsen, Jørgen E; Hjermind, Lena E; Riemenschneider, Matthias; Mayhaus, Manuel; Ibach, Bernd; Gasparoni, Gilles; Pichler, Sabrina; Gu, Wei; Rossor, Martin N; Fox, Nick C; Warren, Jason D; Spillantini, Maria Grazia; Morris, Huw R; Rizzu, Patrizia; Heutink, Peter; Snowden, Julie S; Rollinson, Sara; Richardson, Anna; Gerhard, Alexander; Bruni, Amalia C; Maletta, Raffaele; Frangipane, Francesca; Cupidi, Chiara; Bernardi, Livia; Anfossi, Maria; Gallo, Maura; Conidi, Maria Elena; Smirne, Nicoletta; Rademakers, Rosa; Baker, Matt; Dickson, Dennis W; Graff-Radford, Neill R; Petersen, Ronald C; Knopman, David; Josephs, Keith A; Boeve, Bradley F; Parisi, Joseph E; Seeley, William W; Miller, Bruce L; Karydas, Anna M; Rosen, Howard; van Swieten, John C; Dopper, Elise G P; Seelaar, Harro; Pijnenburg, Yolande AL; Scheltens, Philip; Logroscino, Giancarlo; Capozzo, Rosa; Novelli, Valeria; Puca, Annibale A; Franceschi, M; Postiglione, Alfredo; Milan, Graziella; Sorrentino, Paolo; Kristiansen, Mark; Chiang, Huei-Hsin; Graff, Caroline; Pasquier, Florence; Rollin, Adeline; Deramecourt, Vincent; Lebert, Florence; Kapogiannis, Dimitrios; Ferrucci, Luigi; Pickering-Brown, Stuart; Singleton, Andrew B; Hardy, John; Momeni, Parastoo

    2014-01-01

    Summary Background Frontotemporal dementia (FTD) is a complex disorder characterised by a broad range of clinical manifestations, differential pathological signatures, and genetic variability. Mutations in three genes—MAPT, GRN, and C9orf72—have been associated with FTD. We sought to identify novel genetic risk loci associated with the disorder. Methods We did a two-stage genome-wide association study on clinical FTD, analysing samples from 3526 patients with FTD and 9402 healthy controls. All participants had European ancestry. In the discovery phase (samples from 2154 patients with FTD and 4308 controls), we did separate association analyses for each FTD subtype (behavioural variant FTD, semantic dementia, progressive non-fluent aphasia, and FTD overlapping with motor neuron disease [FTD-MND]), followed by a meta-analysis of the entire dataset. We carried forward replication of the novel suggestive loci in an independent sample series (samples from 1372 patients and 5094 controls) and then did joint phase and brain expression and methylation quantitative trait loci analyses for the associated (p<5 × 10−8) and suggestive single-nucleotide polymorphisms. Findings We identified novel associations exceeding the genome-wide significance threshold (p<5 × 10−8) that encompassed the HLA locus at 6p21.3 in the entire cohort. We also identified a potential novel locus at 11q14, encompassing RAB38/CTSC, for the behavioural FTD subtype. Analysis of expression and methylation quantitative trait loci data suggested that these loci might affect expression and methylation incis. Interpretation Our findings suggest that immune system processes (link to 6p21.3) and possibly lysosomal and autophagy pathways (link to 11q14) are potentially involved in FTD. Our findings need to be replicated to better define the association of the newly identified loci with disease and possibly to shed light on the pathomechanisms contributing to FTD. Funding The National Institute of Neurological Disorders and Stroke and National Institute on Aging, the Wellcome/ MRC Centre on Parkinson’s disease, Alzheimer’s Research UK, and Texas Tech University Health Sciences Center. PMID:24943344

  17. An independent component analysis confounding factor correction framework for identifying broad impact expression quantitative trait loci

    PubMed Central

    Ju, Jin Hyun; Crystal, Ronald G.

    2017-01-01

    Genome-wide expression Quantitative Trait Loci (eQTL) studies in humans have provided numerous insights into the genetics of both gene expression and complex diseases. While the majority of eQTL identified in genome-wide analyses impact a single gene, eQTL that impact many genes are particularly valuable for network modeling and disease analysis. To enable the identification of such broad impact eQTL, we introduce CONFETI: Confounding Factor Estimation Through Independent component analysis. CONFETI is designed to address two conflicting issues when searching for broad impact eQTL: the need to account for non-genetic confounding factors that can lower the power of the analysis or produce broad impact eQTL false positives, and the tendency of methods that account for confounding factors to model broad impact eQTL as non-genetic variation. The key advance of the CONFETI framework is the use of Independent Component Analysis (ICA) to identify variation likely caused by broad impact eQTL when constructing the sample covariance matrix used for the random effect in a mixed model. We show that CONFETI has better performance than other mixed model confounding factor methods when considering broad impact eQTL recovery from synthetic data. We also used the CONFETI framework and these same confounding factor methods to identify eQTL that replicate between matched twin pair datasets in the Multiple Tissue Human Expression Resource (MuTHER), the Depression Genes Networks study (DGN), the Netherlands Study of Depression and Anxiety (NESDA), and multiple tissue types in the Genotype-Tissue Expression (GTEx) consortium. These analyses identified both cis-eQTL and trans-eQTL impacting individual genes, and CONFETI had better or comparable performance to other mixed model confounding factor analysis methods when identifying such eQTL. In these analyses, we were able to identify and replicate a few broad impact eQTL although the overall number was small even when applying CONFETI. In light of these results, we discuss the broad impact eQTL that have been previously reported from the analysis of human data and suggest that considerable caution should be exercised when making biological inferences based on these reported eQTL. PMID:28505156

  18. An independent component analysis confounding factor correction framework for identifying broad impact expression quantitative trait loci.

    PubMed

    Ju, Jin Hyun; Shenoy, Sushila A; Crystal, Ronald G; Mezey, Jason G

    2017-05-01

    Genome-wide expression Quantitative Trait Loci (eQTL) studies in humans have provided numerous insights into the genetics of both gene expression and complex diseases. While the majority of eQTL identified in genome-wide analyses impact a single gene, eQTL that impact many genes are particularly valuable for network modeling and disease analysis. To enable the identification of such broad impact eQTL, we introduce CONFETI: Confounding Factor Estimation Through Independent component analysis. CONFETI is designed to address two conflicting issues when searching for broad impact eQTL: the need to account for non-genetic confounding factors that can lower the power of the analysis or produce broad impact eQTL false positives, and the tendency of methods that account for confounding factors to model broad impact eQTL as non-genetic variation. The key advance of the CONFETI framework is the use of Independent Component Analysis (ICA) to identify variation likely caused by broad impact eQTL when constructing the sample covariance matrix used for the random effect in a mixed model. We show that CONFETI has better performance than other mixed model confounding factor methods when considering broad impact eQTL recovery from synthetic data. We also used the CONFETI framework and these same confounding factor methods to identify eQTL that replicate between matched twin pair datasets in the Multiple Tissue Human Expression Resource (MuTHER), the Depression Genes Networks study (DGN), the Netherlands Study of Depression and Anxiety (NESDA), and multiple tissue types in the Genotype-Tissue Expression (GTEx) consortium. These analyses identified both cis-eQTL and trans-eQTL impacting individual genes, and CONFETI had better or comparable performance to other mixed model confounding factor analysis methods when identifying such eQTL. In these analyses, we were able to identify and replicate a few broad impact eQTL although the overall number was small even when applying CONFETI. In light of these results, we discuss the broad impact eQTL that have been previously reported from the analysis of human data and suggest that considerable caution should be exercised when making biological inferences based on these reported eQTL.

  19. A comparison of recovered bipolar patients, healthy relatives of bipolar probands, and normal controls using the short TEMPS-A.

    PubMed

    Mendlowicz, Mauro V; Jean-Louis, Girardin; Kelsoe, John R; Akiskal, Hagop S

    2005-03-01

    To investigate the presence of temperament dysregulation in healthy relatives of bipolar probands (RBP), a population at high risk for developing mood disorders, by comparing them with clinically recovered bipolar patients (BP) and normal controls (NC). 52 RBP and 23 BP were originally recruited for a multicenter genetic study in bipolar disorders. NC (n=102) were also recruited by newspaper advertisement, radio and television announcements, flyers, newsletters, or word of mouth. All volunteers were asked to complete the TEMPS-A Scale, a self-report questionnaire designed to measure temperamental variations in psychiatric patients and healthy volunteers. In scoring temperaments, we relied upon the short validated version of the TEMPS-A [J. Affect. Disord. (2004)], from which traits with loadings <0.035 had been deleted. To examine differences in temperament dimensions among the three groups, a MANCOVA model was constructed using diagnostic group as the fixed factor (BP vs. RBP vs. NC); effects of age and gender were adjusted as covariates. MANCOVA showed overall group effect on the dependent variables (Hotelling's F5,175=6.64, p<0.001). Four dependent variables (dysthymic, cyclothymic, irritable, and anxious temperaments) showed significant between-group differences. RBP showed lower cyclothymic temperament scores than BP, but higher scores than NC. BP and RBP showed higher anxious temperament scores than NC. Hyperthymic scores were significantly highest in the NC. In view of the small cell sizes, bipolar I vs. bipolar II subanalyses could not be conducted. Methodologic strengths of the present analyses is that the BP group had clinically recovered, and we used the validated short version of the TEMPS-A for the present analyses. Our findings suggest that some clinically healthy relatives of bipolar probands exhibit a subclinical cyclothymic instability in mood, interest, self-confidence, sleep, and/or energy as well as anxiety proneness that is not observed among normal controls. These traits may represent vulnerability markers and could presumably be used to identify individuals at high risk for developing bipolar spectrum disorders, or specific clinical subtypes (e.g., bipolar I, bipolar II) within this spectrum. This is a conceptual perspective with many unanswered questions. Resolution of these questions will require innovative definitions of phenotypes to be included in the analyses of the temperament subscales in different populations. The temperament subscales themselves need to be calibrated properly, to find out which traits or specific combinations of trains are most promising. More extensive and complex quantitative trait analyses of these temperaments in a much expanded sample are reported elsewhere in this issue [J. Affect. Disord. (2004)].

  20. The genetic architecture of photosynthesis and plant growth-related traits in tomato.

    PubMed

    de Oliveira Silva, Franklin Magnum; Lichtenstein, Gabriel; Alseekh, Saleh; Rosado-Souza, Laise; Conte, Mariana; Suguiyama, Vanessa Fuentes; Lira, Bruno Silvestre; Fanourakis, Dimitrios; Usadel, Björn; Bhering, Leonardo Lopes; DaMatta, Fábio M; Sulpice, Ronan; Araújo, Wagner L; Rossi, Magdalena; de Setta, Nathalia; Fernie, Alisdair R; Carrari, Fernando; Nunes-Nesi, Adriano

    2018-02-01

    To identify genomic regions involved in the regulation of fundamental physiological processes such as photosynthesis and respiration, a population of Solanum pennellii introgression lines was analyzed. We determined phenotypes for physiological, metabolic, and growth related traits, including gas exchange and chlorophyll fluorescence parameters. Data analysis allowed the identification of 208 physiological and metabolic quantitative trait loci with 33 of these being associated to smaller intervals of the genomic regions, termed BINs. Eight BINs were identified that were associated with higher assimilation rates than the recurrent parent M82. Two and 10 genomic regions were related to shoot and root dry matter accumulation, respectively. Nine genomic regions were associated with starch levels, whereas 12 BINs were associated with the levels of other metabolites. Additionally, a comprehensive and detailed annotation of the genomic regions spanning these quantitative trait loci allowed us to identify 87 candidate genes that putatively control the investigated traits. We confirmed 8 of these at the level of variance in gene expression. Taken together, our results allowed the identification of candidate genes that most likely regulate photosynthesis, primary metabolism, and plant growth and as such provide new avenues for crop improvement. © 2017 John Wiley & Sons Ltd.

  1. Random forests on Hadoop for genome-wide association studies of multivariate neuroimaging phenotypes

    PubMed Central

    2013-01-01

    Motivation Multivariate quantitative traits arise naturally in recent neuroimaging genetics studies, in which both structural and functional variability of the human brain is measured non-invasively through techniques such as magnetic resonance imaging (MRI). There is growing interest in detecting genetic variants associated with such multivariate traits, especially in genome-wide studies. Random forests (RFs) classifiers, which are ensembles of decision trees, are amongst the best performing machine learning algorithms and have been successfully employed for the prioritisation of genetic variants in case-control studies. RFs can also be applied to produce gene rankings in association studies with multivariate quantitative traits, and to estimate genetic similarities measures that are predictive of the trait. However, in studies involving hundreds of thousands of SNPs and high-dimensional traits, a very large ensemble of trees must be inferred from the data in order to obtain reliable rankings, which makes the application of these algorithms computationally prohibitive. Results We have developed a parallel version of the RF algorithm for regression and genetic similarity learning tasks in large-scale population genetic association studies involving multivariate traits, called PaRFR (Parallel Random Forest Regression). Our implementation takes advantage of the MapReduce programming model and is deployed on Hadoop, an open-source software framework that supports data-intensive distributed applications. Notable speed-ups are obtained by introducing a distance-based criterion for node splitting in the tree estimation process. PaRFR has been applied to a genome-wide association study on Alzheimer's disease (AD) in which the quantitative trait consists of a high-dimensional neuroimaging phenotype describing longitudinal changes in the human brain structure. PaRFR provides a ranking of SNPs associated to this trait, and produces pair-wise measures of genetic proximity that can be directly compared to pair-wise measures of phenotypic proximity. Several known AD-related variants have been identified, including APOE4 and TOMM40. We also present experimental evidence supporting the hypothesis of a linear relationship between the number of top-ranked mutated states, or frequent mutation patterns, and an indicator of disease severity. Availability The Java codes are freely available at http://www2.imperial.ac.uk/~gmontana. PMID:24564704

  2. Random forests on Hadoop for genome-wide association studies of multivariate neuroimaging phenotypes.

    PubMed

    Wang, Yue; Goh, Wilson; Wong, Limsoon; Montana, Giovanni

    2013-01-01

    Multivariate quantitative traits arise naturally in recent neuroimaging genetics studies, in which both structural and functional variability of the human brain is measured non-invasively through techniques such as magnetic resonance imaging (MRI). There is growing interest in detecting genetic variants associated with such multivariate traits, especially in genome-wide studies. Random forests (RFs) classifiers, which are ensembles of decision trees, are amongst the best performing machine learning algorithms and have been successfully employed for the prioritisation of genetic variants in case-control studies. RFs can also be applied to produce gene rankings in association studies with multivariate quantitative traits, and to estimate genetic similarities measures that are predictive of the trait. However, in studies involving hundreds of thousands of SNPs and high-dimensional traits, a very large ensemble of trees must be inferred from the data in order to obtain reliable rankings, which makes the application of these algorithms computationally prohibitive. We have developed a parallel version of the RF algorithm for regression and genetic similarity learning tasks in large-scale population genetic association studies involving multivariate traits, called PaRFR (Parallel Random Forest Regression). Our implementation takes advantage of the MapReduce programming model and is deployed on Hadoop, an open-source software framework that supports data-intensive distributed applications. Notable speed-ups are obtained by introducing a distance-based criterion for node splitting in the tree estimation process. PaRFR has been applied to a genome-wide association study on Alzheimer's disease (AD) in which the quantitative trait consists of a high-dimensional neuroimaging phenotype describing longitudinal changes in the human brain structure. PaRFR provides a ranking of SNPs associated to this trait, and produces pair-wise measures of genetic proximity that can be directly compared to pair-wise measures of phenotypic proximity. Several known AD-related variants have been identified, including APOE4 and TOMM40. We also present experimental evidence supporting the hypothesis of a linear relationship between the number of top-ranked mutated states, or frequent mutation patterns, and an indicator of disease severity. The Java codes are freely available at http://www2.imperial.ac.uk/~gmontana.

  3. Using IRT Trait Estimates versus Summated Scores in Predicting Outcomes

    ERIC Educational Resources Information Center

    Xu, Ting; Stone, Clement A.

    2012-01-01

    It has been argued that item response theory trait estimates should be used in analyses rather than number right (NR) or summated scale (SS) scores. Thissen and Orlando postulated that IRT scaling tends to produce trait estimates that are linearly related to the underlying trait being measured. Therefore, IRT trait estimates can be more useful…

  4. Dissecting the genetics of complex traits using summary association statistics.

    PubMed

    Pasaniuc, Bogdan; Price, Alkes L

    2017-02-01

    During the past decade, genome-wide association studies (GWAS) have been used to successfully identify tens of thousands of genetic variants associated with complex traits and diseases. These studies have produced extensive repositories of genetic variation and trait measurements across large numbers of individuals, providing tremendous opportunities for further analyses. However, privacy concerns and other logistical considerations often limit access to individual-level genetic data, motivating the development of methods that analyse summary association statistics. Here, we review recent progress on statistical methods that leverage summary association data to gain insights into the genetic basis of complex traits and diseases.

  5. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the α subunit of protein kinase CK2

    PubMed Central

    Takahashi, Yuji; Shomura, Ayahiko; Sasaki, Takuji; Yano, Masahiro

    2001-01-01

    Hd6 is a quantitative trait locus involved in rice photoperiod sensitivity. It was detected in backcross progeny derived from a cross between the japonica variety Nipponbare and the indica variety Kasalath. To isolate a gene at Hd6, we used a large segregating population for the high-resolution and fine-scale mapping of Hd6 and constructed genomic clone contigs around the Hd6 region. Linkage analysis with P1-derived artificial chromosome clone-derived DNA markers delimited Hd6 to a 26.4-kb genomic region. We identified a gene encoding the α subunit of protein kinase CK2 (CK2α) in this region. The Nipponbare allele of CK2α contains a premature stop codon, and the resulting truncated product is undoubtedly nonfunctional. Genetic complementation analysis revealed that the Kasalath allele of CK2α increases days-to-heading. Map-based cloning with advanced backcross progeny enabled us to identify a gene underlying a quantitative trait locus even though it exhibited a relatively small effect on the phenotype. PMID:11416158

  6. Little effect of HSP90 inhibition on the quantitative wing traits variation in Drosophila melanogaster.

    PubMed

    Takahashi, Kazuo H

    2017-02-01

    Drosophila wings have been a model system to study the effect of HSP90 on quantitative trait variation. The effect of HSP90 inhibition on environmental buffering of wing morphology varies among studies while the genetic buffering effect of it was examined in only one study and was not detected. Variable results so far might show that the genetic background influences the environmental and genetic buffering effect of HSP90. In the previous studies, the number of the genetic backgrounds used is limited. To examine the effect of HSP90 inhibition with a larger number of genetic backgrounds than the previous studies, 20 wild-type strains of Drosophila melanogaster were used in this study. Here I investigated the effect of HSP90 inhibition on the environmental buffering of wing shape and size by assessing within-individual and among-individual variations, and as a result, I found little or very weak effects on environmental and genetic buffering. The current results suggest that the role of HSP90 as a global regulator of environmental and genetic buffering is limited at least in quantitative traits.

  7. Genetic Architecture of Ear Fasciation in Maize (Zea mays) under QTL Scrutiny

    PubMed Central

    Mendes-Moreira, Pedro; Alves, Mara L.; Satovic, Zlatko; dos Santos, João Pacheco; Santos, João Nina; Souza, João Cândido; Pêgo, Silas E.; Hallauer, Arnel R.; Vaz Patto, Maria Carlota

    2015-01-01

    Maize ear fasciation Knowledge of the genes affecting maize ear inflorescence may lead to better grain yield modeling. Maize ear fasciation, defined as abnormal flattened ears with high kernel row number, is a quantitative trait widely present in Portuguese maize landraces. Material and Methods Using a segregating population derived from an ear fasciation contrasting cross (consisting of 149 F2:3 families) we established a two location field trial using a complete randomized block design. Correlations and heritabilities for several ear fasciation-related traits and yield were determined. Quantitative Trait Loci (QTL) involved in the inheritance of those traits were identified and candidate genes for these QTL proposed. Results and Discussion Ear fasciation broad-sense heritability was 0.73. Highly significant correlations were found between ear fasciation and some ear and cob diameters and row number traits. For the 23 yield and ear fasciation-related traits, 65 QTL were identified, out of which 11 were detected in both environments, while for the three principal components, five to six QTL were detected per environment. Detected QTL were distributed across 17 genomic regions and explained individually, 8.7% to 22.4% of the individual traits or principal components phenotypic variance. Several candidate genes for these QTL regions were proposed, such as bearded-ear1, branched silkless1, compact plant1, ramosa2, ramosa3, tasselseed4 and terminal ear1. However, many QTL mapped to regions without known candidate genes, indicating potential chromosomal regions not yet targeted for maize ear traits selection. Conclusions Portuguese maize germplasm represents a valuable source of genes or allelic variants for yield improvement and elucidation of the genetic basis of ear fasciation traits. Future studies should focus on fine mapping of the identified genomic regions with the aim of map-based cloning. PMID:25923975

  8. Genetic Architecture of Ear Fasciation in Maize (Zea mays) under QTL Scrutiny.

    PubMed

    Mendes-Moreira, Pedro; Alves, Mara L; Satovic, Zlatko; Dos Santos, João Pacheco; Santos, João Nina; Souza, João Cândido; Pêgo, Silas E; Hallauer, Arnel R; Vaz Patto, Maria Carlota

    2015-01-01

    Knowledge of the genes affecting maize ear inflorescence may lead to better grain yield modeling. Maize ear fasciation, defined as abnormal flattened ears with high kernel row number, is a quantitative trait widely present in Portuguese maize landraces. Using a segregating population derived from an ear fasciation contrasting cross (consisting of 149 F2:3 families) we established a two location field trial using a complete randomized block design. Correlations and heritabilities for several ear fasciation-related traits and yield were determined. Quantitative Trait Loci (QTL) involved in the inheritance of those traits were identified and candidate genes for these QTL proposed. Ear fasciation broad-sense heritability was 0.73. Highly significant correlations were found between ear fasciation and some ear and cob diameters and row number traits. For the 23 yield and ear fasciation-related traits, 65 QTL were identified, out of which 11 were detected in both environments, while for the three principal components, five to six QTL were detected per environment. Detected QTL were distributed across 17 genomic regions and explained individually, 8.7% to 22.4% of the individual traits or principal components phenotypic variance. Several candidate genes for these QTL regions were proposed, such as bearded-ear1, branched silkless1, compact plant1, ramosa2, ramosa3, tasselseed4 and terminal ear1. However, many QTL mapped to regions without known candidate genes, indicating potential chromosomal regions not yet targeted for maize ear traits selection. Portuguese maize germplasm represents a valuable source of genes or allelic variants for yield improvement and elucidation of the genetic basis of ear fasciation traits. Future studies should focus on fine mapping of the identified genomic regions with the aim of map-based cloning.

  9. Genetic regulation of bone metabolism in the chicken: similarities and differences to Mammalian systems.

    PubMed

    Johnsson, Martin; Jonsson, Kenneth B; Andersson, Leif; Jensen, Per; Wright, Dominic

    2015-05-01

    Birds have a unique bone physiology, due to the demands placed on them through egg production. In particular their medullary bone serves as a source of calcium for eggshell production during lay and undergoes continuous and rapid remodelling. We take advantage of the fact that bone traits have diverged massively during chicken domestication to map the genetic basis of bone metabolism in the chicken. We performed a quantitative trait locus (QTL) and expression QTL (eQTL) mapping study in an advanced intercross based on Red Junglefowl (the wild progenitor of the modern domestic chicken) and White Leghorn chickens. We measured femoral bone traits in 456 chickens by peripheral computerised tomography and femoral gene expression in a subset of 125 females from the cross with microarrays. This resulted in 25 loci for female bone traits, 26 loci for male bone traits and 6318 local eQTL loci. We then overlapped bone and gene expression loci, before checking for an association between gene expression and trait values to identify candidate quantitative trait genes for bone traits. A handful of our candidates have been previously associated with bone traits in mice, but our results also implicate unexpected and largely unknown genes in bone metabolism. In summary, by utilising the unique bone metabolism of an avian species, we have identified a number of candidate genes affecting bone allocation and metabolism. These findings can have ramifications not only for the understanding of bone metabolism genetics in general, but could also be used as a potential model for osteoporosis as well as revealing new aspects of vertebrate bone regulation or features that distinguish avian and mammalian bone.

  10. Male pregnancy and the evolution of body segmentation in seahorses and pipefishes.

    PubMed

    Hoffman, Eric A; Mobley, Kenyon B; Jones, Adam G

    2006-02-01

    The evolution of complex traits, which are specified by the interplay of multiple genetic loci and environmental effects, is a topic of central importance in evolutionary biology. Here, we show that body and tail vertebral numbers in fishes of the pipefish and seahorse family (Syngnathidae) can serve as a model for studies of quantitative trait evolution. A quantitative genetic analysis of body and tail vertebrae from field-collected families of the Gulf pipefish, Syngnathus scovelli, shows that both traits exhibit significantly positive additive genetic variance, with heritabilities of 0.75 +/- 0.13 (mean +/- standard error) and 0.46 +/- 0.18, respectively. We do not find any evidence for either phenotypic or genetic correlations between the two traits. Pipefish are characterized by male pregnancy, and phylogenetic consideration of body proportions suggests that the position of eggs on the pregnant male's body may have contributed to the evolution of vertebral counts. In terms of numbers of vertebrae, tail-brooding males have longer tails for a given trunk size than do trunk-brooding males. Overall, these results suggest that vertebral counts in pipefish are heritable traits, capable of a response to selection, and they may have experienced an interesting history of selection due to the phenomenon of male pregnancy. Given that these traits vary among populations within species as well as among species, they appear to provide an excellent model for further research on complex trait evolution. Body segmentation may thus afford excellent opportunities for comparative study of homologous complex traits among disparate vertebrate taxa.

  11. Deep machine learning provides state-of-the-art performance in image-based plant phenotyping.

    PubMed

    Pound, Michael P; Atkinson, Jonathan A; Townsend, Alexandra J; Wilson, Michael H; Griffiths, Marcus; Jackson, Aaron S; Bulat, Adrian; Tzimiropoulos, Georgios; Wells, Darren M; Murchie, Erik H; Pridmore, Tony P; French, Andrew P

    2017-10-01

    In plant phenotyping, it has become important to be able to measure many features on large image sets in order to aid genetic discovery. The size of the datasets, now often captured robotically, often precludes manual inspection, hence the motivation for finding a fully automated approach. Deep learning is an emerging field that promises unparalleled results on many data analysis problems. Building on artificial neural networks, deep approaches have many more hidden layers in the network, and hence have greater discriminative and predictive power. We demonstrate the use of such approaches as part of a plant phenotyping pipeline. We show the success offered by such techniques when applied to the challenging problem of image-based plant phenotyping and demonstrate state-of-the-art results (>97% accuracy) for root and shoot feature identification and localization. We use fully automated trait identification using deep learning to identify quantitative trait loci in root architecture datasets. The majority (12 out of 14) of manually identified quantitative trait loci were also discovered using our automated approach based on deep learning detection to locate plant features. We have shown deep learning-based phenotyping to have very good detection and localization accuracy in validation and testing image sets. We have shown that such features can be used to derive meaningful biological traits, which in turn can be used in quantitative trait loci discovery pipelines. This process can be completely automated. We predict a paradigm shift in image-based phenotyping bought about by such deep learning approaches, given sufficient training sets. © The Authors 2017. Published by Oxford University Press.

  12. Genomic Rearrangements in Arabidopsis Considered as Quantitative Traits.

    PubMed

    Imprialou, Martha; Kahles, André; Steffen, Joshua G; Osborne, Edward J; Gan, Xiangchao; Lempe, Janne; Bhomra, Amarjit; Belfield, Eric; Visscher, Anne; Greenhalgh, Robert; Harberd, Nicholas P; Goram, Richard; Hein, Jotun; Robert-Seilaniantz, Alexandre; Jones, Jonathan; Stegle, Oliver; Kover, Paula; Tsiantis, Miltos; Nordborg, Magnus; Rätsch, Gunnar; Clark, Richard M; Mott, Richard

    2017-04-01

    To understand the population genetics of structural variants and their effects on phenotypes, we developed an approach to mapping structural variants that segregate in a population sequenced at low coverage. We avoid calling structural variants directly. Instead, the evidence for a potential structural variant at a locus is indicated by variation in the counts of short-reads that map anomalously to that locus. These structural variant traits are treated as quantitative traits and mapped genetically, analogously to a gene expression study. Association between a structural variant trait at one locus, and genotypes at a distant locus indicate the origin and target of a transposition. Using ultra-low-coverage (0.3×) population sequence data from 488 recombinant inbred Arabidopsis thaliana genomes, we identified 6502 segregating structural variants. Remarkably, 25% of these were transpositions. While many structural variants cannot be delineated precisely, we validated 83% of 44 predicted transposition breakpoints by polymerase chain reaction. We show that specific structural variants may be causative for quantitative trait loci for germination and resistance to infection by the fungus Albugo laibachii , isolate Nc14. Further we show that the phenotypic heritability attributable to read-mapping anomalies differs from, and, in the case of time to germination and bolting, exceeds that due to standard genetic variation. Genes within structural variants are also more likely to be silenced or dysregulated. This approach complements the prevalent strategy of structural variant discovery in fewer individuals sequenced at high coverage. It is generally applicable to large populations sequenced at low-coverage, and is particularly suited to mapping transpositions. Copyright © 2017 by the Genetics Society of America.

  13. A powerful test of parent-of-origin effects for quantitative traits using haplotypes

    USDA-ARS?s Scientific Manuscript database

    Imprinting is an epigenetic phenomenon where the same alleles have unequal transcriptions and thus contribute differently to a trait depending on their parent of origin. This mechanism has been found to affect a variety of human disorders. Although various methods for testing parent-of-origin effect...

  14. Identification of quantitative trait loci for popping traits and kernel characteristics in sorghum grain

    USDA-ARS?s Scientific Manuscript database

    Popped grain sorghum has developed a niche among specialty snack-food consumers. In contrast to popcorn, sorghum has not benefited from persistent selective breeding for popping efficiency and kernel expansion ratio. While recent studies have already demonstrated that popping characteristics are h...

  15. Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach [Prunus persica (L.) Batsch

    USDA-ARS?s Scientific Manuscript database

    Chilling requirement (CR), together with heat requirement (HR), determines blooming date (BD) and climatic distribution of genotypes of temperate tree species. However, information on the genetic components underlying these important traits remains unknown or fragmentary. Here the identification o...

  16. Development of low temperature germinability markers for evaluation of rice (Oryza sativa L.) germplasm

    USDA-ARS?s Scientific Manuscript database

    Low temperature germinability (LTG) is an important trait for breeding of varieties for use in direct-seeding rice production systems. Although rice (Oryza sativa L.) is generally sensitive to low temperatures, genetic variation for LTG exists and several quantitative trait loci (QTLs) have been rep...

  17. Integration of least angle regression with empirical Bayes for multi-locus genome-wide association studies

    USDA-ARS?s Scientific Manuscript database

    Multi-locus genome-wide association studies has become the state-of-the-art procedure to identify quantitative trait loci (QTL) associated with traits simultaneously. However, implementation of multi-locus model is still difficult. In this study, we integrated least angle regression with empirical B...

  18. Genome-wide association mapping of qualitatively inherited traits in a germplasm collection

    USDA-ARS?s Scientific Manuscript database

    Genome-wide association (GWA) has been used as a tool for dissecting the genetic architecture of quantitatively inherited traits. We demonstrate here that GWA can also be highly useful for detecting the genomic locations of major genes governing categorically defined phenotype variants that exist fo...

  19. Bayesian estimation and use of high-throughput remote sensing indices for quantitative genetic analyses of leaf growth.

    PubMed

    Baker, Robert L; Leong, Wen Fung; An, Nan; Brock, Marcus T; Rubin, Matthew J; Welch, Stephen; Weinig, Cynthia

    2018-02-01

    We develop Bayesian function-valued trait models that mathematically isolate genetic mechanisms underlying leaf growth trajectories by factoring out genotype-specific differences in photosynthesis. Remote sensing data can be used instead of leaf-level physiological measurements. Characterizing the genetic basis of traits that vary during ontogeny and affect plant performance is a major goal in evolutionary biology and agronomy. Describing genetic programs that specifically regulate morphological traits can be complicated by genotypic differences in physiological traits. We describe the growth trajectories of leaves using novel Bayesian function-valued trait (FVT) modeling approaches in Brassica rapa recombinant inbred lines raised in heterogeneous field settings. While frequentist approaches estimate parameter values by treating each experimental replicate discretely, Bayesian models can utilize information in the global dataset, potentially leading to more robust trait estimation. We illustrate this principle by estimating growth asymptotes in the face of missing data and comparing heritabilities of growth trajectory parameters estimated by Bayesian and frequentist approaches. Using pseudo-Bayes factors, we compare the performance of an initial Bayesian logistic growth model and a model that incorporates carbon assimilation (A max ) as a cofactor, thus statistically accounting for genotypic differences in carbon resources. We further evaluate two remotely sensed spectroradiometric indices, photochemical reflectance (pri2) and MERIS Terrestrial Chlorophyll Index (mtci) as covariates in lieu of A max , because these two indices were genetically correlated with A max across years and treatments yet allow much higher throughput compared to direct leaf-level gas-exchange measurements. For leaf lengths in uncrowded settings, including A max improves model fit over the initial model. The mtci and pri2 indices also outperform direct A max measurements. Of particular importance for evolutionary biologists and plant breeders, hierarchical Bayesian models estimating FVT parameters improve heritabilities compared to frequentist approaches.

  20. Candidate gene association analyses for ketosis resistance in Holsteins.

    PubMed

    Kroezen, V; Schenkel, F S; Miglior, F; Baes, C F; Squires, E J

    2018-06-01

    High-yielding dairy cattle are susceptible to ketosis, a metabolic disease that negatively affects the health, fertility, and milk production of the cow. Interest in breeding for more robust dairy cattle with improved resistance to disease is global; however, genetic evaluations for ketosis would benefit from the additional information provided by genetic markers. Candidate genes that are proposed to have a biological role in the pathogenesis of ketosis were investigated in silico and a custom panel of 998 putative single nucleotide polymorphism (SNP) markers was developed. The objective of this study was to test the associations of these new markers with deregressed estimated breeding values (EBV) for ketosis. A sample of 653 Canadian Holstein cows that had been previously genotyped with a medium-density SNP chip were regenotyped with the custom panel. The EBV for ketosis in first and later lactations were obtained for each animal and deregressed for use as pseudo-phenotypes for association analyses. Results of the mixed inheritance model for single SNP association analyses suggested 15 markers in 6 unique candidate genes were associated with the studied trait. Genes encoding proteins involved in metabolic processes, including the synthesis and degradation of fatty acids and ketone bodies, gluconeogenesis, lipid mobilization, and the citric acid cycle, were identified to contain SNP associated with ketosis resistance. This work confirmed the presence of previously described quantitative trait loci for dairy cattle, suggested novel markers for ketosis-resistance, and provided insight into the underlying biology of this disease. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Adjusting data to body size: a comparison of methods as applied to quantitative trait loci analysis of musculoskeletal phenotypes.

    PubMed

    Lang, Dean H; Sharkey, Neil A; Lionikas, Arimantas; Mack, Holly A; Larsson, Lars; Vogler, George P; Vandenbergh, David J; Blizard, David A; Stout, Joseph T; Stitt, Joseph P; McClearn, Gerald E

    2005-05-01

    The aim of this study was to compare three methods of adjusting skeletal data for body size and examine their use in QTL analyses. It was found that dividing skeletal phenotypes by body mass index induced erroneous QTL results. The preferred method of body size adjustment was multiple regression. Many skeletal studies have reported strong correlations between phenotypes for muscle, bone, and body size, and these correlations add to the difficulty in identifying genetic influence on skeletal traits that are not mediated through overall body size. Quantitative trait loci (QTL) identified for skeletal phenotypes often map to the same chromosome regions as QTLs for body size. The actions of a QTL identified as influencing BMD could therefore be mediated through the generalized actions of growth on body size or muscle mass. Three methods of adjusting skeletal phenotypes to body size were performed on morphologic, structural, and compositional measurements of the femur and tibia in 200-day-old C57BL/6J x DBA/2 (BXD) second generation (F(2)) mice (n = 400). A common method of removing the size effect has been through the use of ratios. This technique and two alternative techniques using simple and multiple regression were performed on muscle and skeletal data before QTL analyses, and the differences in QTL results were examined. The use of ratios to remove the size effect was shown to increase the size effect by inducing spurious correlations, thereby leading to inaccurate QTL results. Adjustments for body size using multiple regression eliminated these problems. Multiple regression should be used to remove the variance of co-factors related to skeletal phenotypes to allow for the study of genetic influence independent of correlated phenotypes. However, to better understand the genetic influence, adjusted and unadjusted skeletal QTL results should be compared. Additional insight can be gained by observing the difference in LOD score between the adjusted and nonadjusted phenotypes. Identifying QTLs that exert their effects on skeletal phenotypes through body size-related pathways as well as those having a more direct and independent influence on bone are equally important in deciphering the complex physiologic pathways responsible for the maintenance of bone health.

  2. Comprehensive comparison of self-administered questionnaires for measuring quantitative autistic traits in adults.

    PubMed

    Nishiyama, Takeshi; Suzuki, Masako; Adachi, Katsunori; Sumi, Satoshi; Okada, Kensuke; Kishino, Hirohisa; Sakai, Saeko; Kamio, Yoko; Kojima, Masayo; Suzuki, Sadao; Kanne, Stephen M

    2014-05-01

    We comprehensively compared all available questionnaires for measuring quantitative autistic traits (QATs) in terms of reliability and construct validity in 3,147 non-clinical and 60 clinical subjects with normal intelligence. We examined four full-length forms, the Subthreshold Autism Trait Questionnaire (SATQ), the Broader Autism Phenotype Questionnaire, the Social Responsiveness Scale2-Adult Self report (SRS2-AS), and the Autism-Spectrum Quotient (AQ). The SRS2-AS and the AQ each had several short forms that we also examined, bringing the total to 11 forms. Though all QAT questionnaires showed acceptable levels of test-retest reliability, the AQ and SRS2-AS, including their short forms, exhibited poor internal consistency and discriminant validity, respectively. The SATQ excelled in terms of classical test theory and due to its short length.

  3. Improving breeding efficiency in potato using molecular and quantitative genetics.

    PubMed

    Slater, Anthony T; Cogan, Noel O I; Hayes, Benjamin J; Schultz, Lee; Dale, M Finlay B; Bryan, Glenn J; Forster, John W

    2014-11-01

    Potatoes are highly heterozygous and the conventional breeding of superior germplasm is challenging, but use of a combination of MAS and EBVs can accelerate genetic gain. Cultivated potatoes are highly heterozygous due to their outbreeding nature, and suffer acute inbreeding depression. Modern potato cultivars also exhibit tetrasomic inheritance. Due to this genetic heterogeneity, the large number of target traits and the specific requirements of commercial cultivars, potato breeding is challenging. A conventional breeding strategy applies phenotypic recurrent selection over a number of generations, a process which can take over 10 years. Recently, major advances in genetics and molecular biology have provided breeders with molecular tools to accelerate gains for some traits. Marker-assisted selection (MAS) can be effectively used for the identification of major genes and quantitative trait loci that exhibit large effects. There are also a number of complex traits of interest, such as yield, that are influenced by a large number of genes of individual small effect where MAS will be difficult to deploy. Progeny testing and the use of pedigree in the analysis can provide effective identification of the superior genetic factors that underpin these complex traits. Recently, it has been shown that estimated breeding values (EBVs) can be developed for complex potato traits. Using a combination of MAS and EBVs for simple and complex traits can lead to a significant reduction in the length of the breeding cycle for the identification of superior germplasm.

  4. Investigation of four porcine candidate genes (H-FABP, MYOD1, UCP3 and MASTR) for meat quality traits in Large White pigs.

    PubMed

    Han, Xuelei; Jiang, Tengfei; Yang, Huawei; Zhang, Qingde; Wang, Weimin; Fan, Bin; Liu, Bang

    2012-06-01

    Meat quality traits are economically important traits of swine, and are controlled by multiple genes as complex quantitative traits. In the present study four genes, H-FABP (heart fatty acid-binding protein), MASTR (MEF2 activating motif and SAP domain containing transcriptional regulator), UCP3 (uncoupling protein 3) and MYOD1 (myogenic differentiation 1) were researched in Large White pigs. The polymorphisms H-FABP T/C of 5'UTR, MYOD1 g.257 A>C, UCP3 g.1406 G>A in exon 3 and MASTR c.187 C>T have been reported to be associated with meat quality traits in pigs. The aim of this study was to analyze the effect of single and multiple markers for single traits in Large White pigs. The single marker association analysis showed that the H-FABP and MASTR genes were associated with IMF (intramuscular fat content) (P < 0.05), and that the g.257 A>C of MYOD1 gene was most significantly related to muscle pH value (P < 0.01). The multiple markers for IMF were analyzed by combining the markers and quantitative trait modes into the linear regression. The results revealed that H-FABP and MASTR integrate gene networks for IMF. Thus, our study results suggested that H-FABP and MASTR polymorphisms could be used as genetic markers in the marker-assisted selection towards the improvement of IMF in Large White pigs.

  5. Taxometric analyses and predictive accuracy of callous-unemotional traits regarding quality of life and behavior problems in non-conduct disorder diagnoses.

    PubMed

    Herpers, Pierre C M; Klip, Helen; Rommelse, Nanda N J; Taylor, Mark J; Greven, Corina U; Buitelaar, Jan K

    2017-07-01

    Callous-unemotional (CU) traits have mainly been studied in relation to conduct disorder (CD), but can also occur in other disorder groups. However, it is unclear whether there is a clinically relevant cut-off value of levels of CU traits in predicting reduced quality of life (QoL) and clinical symptoms, and whether CU traits better fit a categorical (taxonic) or dimensional model. Parents of 979 youths referred to a child and adolescent psychiatric clinic rated their child's CU traits on the Inventory of Callous-Unemotional traits (ICU), QoL on the Kidscreen-27, and clinical symptoms on the Child Behavior Checklist. Experienced clinicians conferred DSM-IV-TR diagnoses of ADHD, ASD, anxiety/mood disorders and DBD-NOS/ODD. The ICU was also used to score the DSM-5 specifier 'with limited prosocial emotions' (LPE) of Conduct Disorder. Receiver operating characteristic (ROC) analyses revealed that the predictive accuracy of the ICU and LPE regarding QoL and clinical symptoms was poor to fair, and similar across diagnoses. A clinical cut-off point could not be defined. Taxometric analyses suggested that callous-unemotional traits on the ICU best reflect a dimension rather than taxon. More research is needed on the impact of CU traits on the functional adaptation, course, and response to treatment of non-CD conditions. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  6. Do conscientious individuals live longer? A quantitative review.

    PubMed

    Kern, Margaret L; Friedman, Howard S

    2008-09-01

    Following up on growing evidence that higher levels of conscientiousness are associated with greater health protection, the authors conducted a meta-analysis of the association between conscientiousness-related traits and longevity. Using a random-effects analysis model, the authors statistically combined 20 independent samples. In addition, the authors used fixed-effects analyses to examine specific facets of conscientiousness and study characteristics as potential moderators of this relationship. Effect sizes were computed for each individual sample as the correlation coefficient r, based on the relationship between conscientiousness and mortality risk (all-cause mortality risk, longevity, or length of survival). Higher levels of conscientiousness were significantly and positively related to longevity (r = .11, 95% confidence interval = .05-.17). Associations were strongest for the achievement (persistent, industrious) and order (organized, disciplined) facets of conscientiousness. Results strongly support the importance of conscientiousness-related traits to health across the life span. Future research and interventions should consider how individual differences in conscientiousness may cause and be shaped by health-relevant biopsychosocial events across many years. PsycINFO Database Record (c) 2008 APA, all rights reserved.

  7. The DSM-5 alternative model of personality disorders from the perspective of adult attachment: a study in community-dwelling adults.

    PubMed

    Fossati, Andrea; Krueger, Robert F; Markon, Kristian E; Borroni, Serena; Maffei, Cesare; Somma, Antonella

    2015-04-01

    To assess how the maladaptive personality domains and facets that were included in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) Alternative Model of Personality Disorders relate to adult attachment styles, 480 Italian nonclinical adults were administered the Personality Inventory for DSM-5 (PID-5) and the Attachment Style Questionnaire (ASQ). To evaluate the uniqueness of the associations between the PID-5 scales and the ASQ scales, the participants were also administered the Big Five Inventory (BFI). Multiple regression analyses showed that the ASQ scales significantly predicted both PID-5 domain scales and BFI scales; however, the relationships were different both qualitatively and quantitatively. With the exception of the PID-5 risk taking scale (adjusted R(2) = 0.02), all other PID-5 trait scales were significantly predicted by the ASQ scales, median adjusted R(2) value = 0.25, all ps < 0.001. Our findings suggest that the maladaptive personality domains and traits listed in the DSM-5 Alternative Model of Personality Disorders show meaningful associations with adult attachment styles.

  8. Genetic loci associated with heart rate variability and their effects on cardiac disease risk

    PubMed Central

    Nolte, Ilja M.; Munoz, M. Loretto; Tragante, Vinicius; Amare, Azmeraw T.; Jansen, Rick; Vaez, Ahmad; von der Heyde, Benedikt; Avery, Christy L.; Bis, Joshua C.; Dierckx, Bram; van Dongen, Jenny; Gogarten, Stephanie M.; Goyette, Philippe; Hernesniemi, Jussi; Huikari, Ville; Hwang, Shih-Jen; Jaju, Deepali; Kerr, Kathleen F.; Kluttig, Alexander; Krijthe, Bouwe P.; Kumar, Jitender; van der Laan, Sander W.; Lyytikäinen, Leo-Pekka; Maihofer, Adam X.; Minassian, Arpi; van der Most, Peter J.; Müller-Nurasyid, Martina; Nivard, Michel; Salvi, Erika; Stewart, James D.; Thayer, Julian F.; Verweij, Niek; Wong, Andrew; Zabaneh, Delilah; Zafarmand, Mohammad H.; Abdellaoui, Abdel; Albarwani, Sulayma; Albert, Christine; Alonso, Alvaro; Ashar, Foram; Auvinen, Juha; Axelsson, Tomas; Baker, Dewleen G.; de Bakker, Paul I. W.; Barcella, Matteo; Bayoumi, Riad; Bieringa, Rob J.; Boomsma, Dorret; Boucher, Gabrielle; Britton, Annie R.; Christophersen, Ingrid; Dietrich, Andrea; Ehret, George B.; Ellinor, Patrick T.; Eskola, Markku; Felix, Janine F.; Floras, John S.; Franco, Oscar H.; Friberg, Peter; Gademan, Maaike G. J.; Geyer, Mark A.; Giedraitis, Vilmantas; Hartman, Catharina A.; Hemerich, Daiane; Hofman, Albert; Hottenga, Jouke-Jan; Huikuri, Heikki; Hutri-Kähönen, Nina; Jouven, Xavier; Junttila, Juhani; Juonala, Markus; Kiviniemi, Antti M.; Kors, Jan A.; Kumari, Meena; Kuznetsova, Tatiana; Laurie, Cathy C.; Lefrandt, Joop D.; Li, Yong; Li, Yun; Liao, Duanping; Limacher, Marian C.; Lin, Henry J.; Lindgren, Cecilia M.; Lubitz, Steven A.; Mahajan, Anubha; McKnight, Barbara; zu Schwabedissen, Henriette Meyer; Milaneschi, Yuri; Mononen, Nina; Morris, Andrew P.; Nalls, Mike A.; Navis, Gerjan; Neijts, Melanie; Nikus, Kjell; North, Kari E.; O'Connor, Daniel T.; Ormel, Johan; Perz, Siegfried; Peters, Annette; Psaty, Bruce M.; Raitakari, Olli T.; Risbrough, Victoria B.; Sinner, Moritz F.; Siscovick, David; Smit, Johannes H.; Smith, Nicholas L.; Soliman, Elsayed Z.; Sotoodehnia, Nona; Staessen, Jan A.; Stein, Phyllis K.; Stilp, Adrienne M.; Stolarz-Skrzypek, Katarzyna; Strauch, Konstantin; Sundström, Johan; Swenne, Cees A.; Syvänen, Ann-Christine; Tardif, Jean-Claude; Taylor, Kent D.; Teumer, Alexander; Thornton, Timothy A.; Tinker, Lesley E.; Uitterlinden, André G.; van Setten, Jessica; Voss, Andreas; Waldenberger, Melanie; Wilhelmsen, Kirk C.; Willemsen, Gonneke; Wong, Quenna; Zhang, Zhu-Ming; Zonderman, Alan B.; Cusi, Daniele; Evans, Michele K.; Greiser, Halina K.; van der Harst, Pim; Hassan, Mohammad; Ingelsson, Erik; Järvelin, Marjo-Riitta; Kääb, Stefan; Kähönen, Mika; Kivimaki, Mika; Kooperberg, Charles; Kuh, Diana; Lehtimäki, Terho; Lind, Lars; Nievergelt, Caroline M.; O'Donnell, Chris J.; Oldehinkel, Albertine J.; Penninx, Brenda; Reiner, Alexander P.; Riese, Harriëtte; van Roon, Arie M.; Rioux, John D.; Rotter, Jerome I.; Sofer, Tamar; Stricker, Bruno H.; Tiemeier, Henning; Vrijkotte, Tanja G. M.; Asselbergs, Folkert W.; Brundel, Bianca J. J. M.; Heckbert, Susan R.; Whitsel, Eric A.; den Hoed, Marcel; Snieder, Harold; de Geus, Eco J. C.

    2017-01-01

    Reduced cardiac vagal control reflected in low heart rate variability (HRV) is associated with greater risks for cardiac morbidity and mortality. In two-stage meta-analyses of genome-wide association studies for three HRV traits in up to 53,174 individuals of European ancestry, we detect 17 genome-wide significant SNPs in eight loci. HRV SNPs tag non-synonymous SNPs (in NDUFA11 and KIAA1755), expression quantitative trait loci (eQTLs) (influencing GNG11, RGS6 and NEO1), or are located in genes preferentially expressed in the sinoatrial node (GNG11, RGS6 and HCN4). Genetic risk scores account for 0.9 to 2.6% of the HRV variance. Significant genetic correlation is found for HRV with heart rate (−0.74

  9. Heritabilities of somatotype components in a population from rural Mozambique.

    PubMed

    Saranga, Sílvio Pedro José; Prista, António; Nhantumbo, Leonardo; Beunen, Gaston; Rocha, Jorge; Williams-Blangero, Sarah; Maia, José A

    2008-01-01

    There have been few genetic studies of normal variation in body size and composition conducted in Africa. In particular, the genetic determinants of somatotype remain to be established for an African population. (1) To estimate the heritabilities of aspects of somatotype and (2) to compare the quantitative genetic effects in an African population to those that have been assessed in European and American populations. The sample composed of 329 subjects (173 males and 156 females) aged 7-17 years, belonging to 132 families. The sibships in the sample ranged in size from two to seven individuals. All sampled individuals were residents of the Calanga region, an area located to the north of Maputo in Mozambique. Somatotype was assessed using the Heath-Carter technique. Herit abilities were estimated using SAGE software. Moderate heritabilities were determined for each trait. Between 30 and 40% of the variation in each somatotype measure was attributable to genetic factors. The heritability of ectomorphy was 31%. Mesomorphy was similarly moderately heritable, with approximately 30% of the variationattributable to genetic factors. The heritability of endomorph was higher in the Calanga population (h(2) = 0.40). Quantitative genetic analyses of somatotype variation among siblings indicate that genetic factors significantly influence endomorphy, mesomorhpy, and ectomorphy. However, environmental factors also have significant effects on the variation in physique present in the population of Calanga. Lack of proper nutrition, housing, medical assistance, and primary health care, together with very demanding and sex-specific daily chores may contribute to the environmental effects on these traits.

  10. Integrating CNVs into meta-QTL identified GBP4 as positional candidate for adult cattle stature.

    PubMed

    Cao, Xiu-Kai; Huang, Yong-Zhen; Ma, Yi-Lei; Cheng, Jie; Qu, Zhen-Xian; Ma, Yun; Bai, Yue-Yu; Tian, Feng; Lin, Feng-Peng; Ma, Yu-Lin; Chen, Hong

    2018-05-08

    Copy number variation (CNV) of DNA sequences, functionally significant but yet fully ascertained, is believed to confer considerable increments in unexplained heritability of quantitative traits. Identification of phenotype-associated CNVs (paCNVs) therefore is a pressing need in CNV studies to speed up their exploitation in cattle breeding programs. Here, we provided a new avenue to achieve this goal that is to project the published CNV data onto meta-quantitative trait loci (meta-QTL) map which connects causal genes with phenotypes. Any CNVs overlapping meta-QTL therefore will be potential paCNVs. This study reported potential paCNVs in Bos taurus autosome 3 (BTA3). Notably, overview indexes and CNVs both highlighted a narrower region (BTA3 54,500,000-55,000,000 bp, named BTA3_INQTL_6) within one constructed meta-QTL. Then, we ascertained guanylate-binding protein 4 (GBP4) among the nine positional candidate genes was significantly associated with adult cattle stature, including body weight (BW, P < 0.05) and withers height (WHT, P < 0.05), fitting GBP4 CNV either with three levels or with six levels in the model. Although higher copy number downregulated the mRNA levels of GBP2 (P < 0.05) and GBP4 (P < 0.05) in 1-Mb window (54.0-55.0 Mb) in muscle and adipose, additional analyses will be needed to clarify the causality behind the ascertained association.

  11. Whole-genome scan identifies quantitative trait loci for chronic pastern dermatitis in German draft horses.

    PubMed

    Mittmann, E Henrike; Mömke, Stefanie; Distl, Ottmar

    2010-02-01

    Chronic pastern dermatitis (CPD), also known as chronic progressive lymphedema (CPL), is a skin disease that affects draft horses. This disease causes painful lower-leg swelling, nodule formation, and skin ulceration, interfering with movement. The aim of this whole-genome scan was to identify quantitative trait loci (QTL) for CPD in German draft horses. We recorded clinical data for CPD in 917 German draft horses and collected blood samples from these horses. Of these 917 horses, 31 paternal half-sib families comprising 378 horses from the breeds Rhenish German, Schleswig, Saxon-Thuringian, and South German were chosen for genotyping. Each half-sib family was constituted by only one draft horse breed. Genotyping was done for 318 polymorphic microsatellites evenly distributed on all equine autosomes and the X chromosome with a mean distance of 7.5 Mb. An across-breed multipoint linkage analysis revealed chromosome-wide significant QTL on horse chromosomes (ECA) 1, 9, 16, and 17. Analyses by breed confirmed the QTL on ECA1 in South German and the QTL on ECA9, 16, and 17 in Saxon-Thuringian draft horses. For the Rhenish German and Schleswig draft horses, additional QTL on ECA4 and 10 and for the South German draft horses an additional QTL on ECA7 were found. This is the first whole-genome scan for CPD in draft horses and it is an important step toward the identification of candidate genes.

  12. Quantitative trait loci segregating in crosses between New Hampshire and White Leghorn chicken lines: III. Fat deposition and intramuscular fat content.

    PubMed

    Nassar, M K; Goraga, Z S; Brockmann, G A

    2013-02-01

    In this study, a genome scan was performed to detect genomic loci that affect fat deposition in white adipose tissues and muscles in 278 F (2) males of reciprocal crosses between the genetically and phenotypically extreme inbred chicken lines New Hampshire (NHI) and White Leghorn (WL77). Genome-wide highly significant quantitative trait loci (QTL) influencing fat deposition in white adipose tissues were found on GGA2 and 4. The peak QTL positions for different visceral and subcutaneous white adipose tissues were located between 41.4 and 112.4 Mb on GGA2 and between 76.2 and 78.7 Mb on GGA4, which explained 4.2-10.4% and 4.3-11.6% respectively of the phenotypic F (2) variances. Contrary to our expectations, the QTL allele descending from the lean line WL77 on GGA4 led to increased fat deposition. We suggest a transgressive action of the obesity allele only if it is not in the genetic background of the line WL77. Additional highly significant loci for subcutaneous adipose tissue mass were identified on GGA12 and 15. For intramuscular fat content, a suggestive QTL was located on GGA14. The analysed crosses provide a valuable resource for further fine mapping of fatness genes and subsequent gene discovery. © 2012 The Authors, Animal Genetics © 2012 Stichting International Foundation for Animal Genetics.

  13. Dissection of expression-quantitative trait locus and allele specificity using a haploid/diploid plant system - insights into compensatory evolution of transcriptional regulation within populations.

    PubMed

    Verta, Jukka-Pekka; Landry, Christian R; MacKay, John

    2016-07-01

    Regulation of gene expression plays a central role in translating genotypic variation into phenotypic variation. Dissection of the genetic basis of expression variation is key to understanding how expression regulation evolves. Such analyses remain challenging in contexts where organisms are outbreeding, highly heterozygous and long-lived such as in the case of conifer trees. We developed an RNA sequencing (RNA-seq)-based approach for both expression-quantitative trait locus (eQTL) mapping and the detection of cis-acting (allele-specific) vs trans-acting (non-allele-specific) eQTLs. This method can be potentially applied to many conifers. We used haploid and diploid meiotic seed tissues of a single self-fertilized white spruce (Picea glauca) individual to dissect eQTLs according to linkage and allele specificity. The genetic architecture of local eQTLs linked to the expressed genes was particularly complex, consisting of cis-acting, trans-acting and, surprisingly, compensatory cis-trans effects. These compensatory effects influence expression in opposite directions and are neutral when combined in homozygotes. Nearly half of local eQTLs were under compensation, indicating that close linkage between compensatory cis-trans factors is common in spruce. Compensated genes were overrepresented in developmental and cell organization functions. Our haploid-diploid eQTL analysis in spruce revealed that compensatory cis-trans eQTLs segregate within populations and evolve in close genetic linkage. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  14. Characterization of Cq3, a quantitative trait locus that controls plasma cholesterol and phospholipid levels in mice.

    PubMed

    Suto, Jun-ichi

    2006-04-01

    Cq3 was identified in C57BL/6J (B6) x KK-Ay F2 mice as a quantitative trait locus (QTL) that controls plasma cholesterol and phospholipid levels, and normolipidemic B6 allele was associated with increased lipids. Cq3 was statistically significant in F2-a/a, but not in F2-Ay/a; probably because the Cq3 effect was obscured by introduction of the Ay allele, which in itself has a strong hyperlipidemic effect. Because the peak LOD score for Cq3 was identified near D3Mit102 (49.7 cM) on chromosome 3, linkage analyses with microsatellite markers located at 49.7 cM were performed in KK x RR F2, B6 x RR F2, and KK x CF1 F2. However, even a suggestive QTL was not identified in any of the three F2. By testing all pairs of marker loci, I found a significant interaction between Cq3 and the Apoa2 locus, and F2 mice with the Apoa2(KK)/Apoa2(KK); D3Mit102(B6)/D3Mit102(B6) genotype had significantly higher cholesterol levels than did F2 mice with other genotypes. The results showed that the ;round-robin' strategy was not always applicable to the search for QTL genes; probably because specific gene-to-gene interaction limited the validity of the strategy to the utmost extent.

  15. Social traits, social networks and evolutionary biology.

    PubMed

    Fisher, D N; McAdam, A G

    2017-12-01

    The social environment is both an important agent of selection for most organisms, and an emergent property of their interactions. As an aggregation of interactions among members of a population, the social environment is a product of many sets of relationships and so can be represented as a network or matrix. Social network analysis in animals has focused on why these networks possess the structure they do, and whether individuals' network traits, representing some aspect of their social phenotype, relate to their fitness. Meanwhile, quantitative geneticists have demonstrated that traits expressed in a social context can depend on the phenotypes and genotypes of interacting partners, leading to influences of the social environment on the traits and fitness of individuals and the evolutionary trajectories of populations. Therefore, both fields are investigating similar topics, yet have arrived at these points relatively independently. We review how these approaches are diverged, and yet how they retain clear parallelism and so strong potential for complementarity. This demonstrates that, despite separate bodies of theory, advances in one might inform the other. Techniques in network analysis for quantifying social phenotypes, and for identifying community structure, should be useful for those studying the relationship between individual behaviour and group-level phenotypes. Entering social association matrices into quantitative genetic models may also reduce bias in heritability estimates, and allow the estimation of the influence of social connectedness on trait expression. Current methods for measuring natural selection in a social context explicitly account for the fact that a trait is not necessarily the property of a single individual, something the network approaches have not yet considered when relating network metrics to individual fitness. Harnessing evolutionary models that consider traits affected by genes in other individuals (i.e. indirect genetic effects) provides the potential to understand how entire networks of social interactions in populations influence phenotypes and predict how these traits may evolve. By theoretical integration of social network analysis and quantitative genetics, we hope to identify areas of compatibility and incompatibility and to direct research efforts towards the most promising areas. Continuing this synthesis could provide important insights into the evolution of traits expressed in a social context and the evolutionary consequences of complex and nuanced social phenotypes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  16. A genome-wide linkage scan for quantitative trait loci underlying obesity related phenotypes in 434 Caucasian families.

    PubMed

    Zhao, Lan-Juan; Xiao, Peng; Liu, Yong-Jun; Xiong, Dong-Hai; Shen, Hui; Recker, Robert R; Deng, Hong-Wen

    2007-03-01

    To identify quantitative trait loci (QTLs) that contribute to obesity, we performed a large-scale whole genome linkage scan (WGS) involving 4,102 individuals from 434 Caucasian families. The most pronounced linkage evidence was found at the genomic region 20p11-12 for fat mass (LOD = 3.31) and percentage fat mass (PFM) (LOD = 2.92). We also identified several regions showing suggestive linkage signals (threshold LOD = 1.9) for obesity phenotypes, including 5q35, 8q13, 10p12, and 17q11.

  17. Mapping genomic features to functional traits through microbial whole genome sequences.

    PubMed

    Zhang, Wei; Zeng, Erliang; Liu, Dan; Jones, Stuart E; Emrich, Scott

    2014-01-01

    Recently, the utility of trait-based approaches for microbial communities has been identified. Increasing availability of whole genome sequences provide the opportunity to explore the genetic foundations of a variety of functional traits. We proposed a machine learning framework to quantitatively link the genomic features with functional traits. Genes from bacteria genomes belonging to different functional traits were grouped to Cluster of Orthologs (COGs), and were used as features. Then, TF-IDF technique from the text mining domain was applied to transform the data to accommodate the abundance and importance of each COG. After TF-IDF processing, COGs were ranked using feature selection methods to identify their relevance to the functional trait of interest. Extensive experimental results demonstrated that functional trait related genes can be detected using our method. Further, the method has the potential to provide novel biological insights.

  18. Image Harvest: an open-source platform for high-throughput plant image processing and analysis

    PubMed Central

    Knecht, Avi C.; Campbell, Malachy T.; Caprez, Adam; Swanson, David R.; Walia, Harkamal

    2016-01-01

    High-throughput plant phenotyping is an effective approach to bridge the genotype-to-phenotype gap in crops. Phenomics experiments typically result in large-scale image datasets, which are not amenable for processing on desktop computers, thus creating a bottleneck in the image-analysis pipeline. Here, we present an open-source, flexible image-analysis framework, called Image Harvest (IH), for processing images originating from high-throughput plant phenotyping platforms. Image Harvest is developed to perform parallel processing on computing grids and provides an integrated feature for metadata extraction from large-scale file organization. Moreover, the integration of IH with the Open Science Grid provides academic researchers with the computational resources required for processing large image datasets at no cost. Image Harvest also offers functionalities to extract digital traits from images to interpret plant architecture-related characteristics. To demonstrate the applications of these digital traits, a rice (Oryza sativa) diversity panel was phenotyped and genome-wide association mapping was performed using digital traits that are used to describe different plant ideotypes. Three major quantitative trait loci were identified on rice chromosomes 4 and 6, which co-localize with quantitative trait loci known to regulate agronomically important traits in rice. Image Harvest is an open-source software for high-throughput image processing that requires a minimal learning curve for plant biologists to analyzephenomics datasets. PMID:27141917

  19. Magnetic resonance imaging traits in siblings discordant for Alzheimer disease.

    PubMed

    Cuenco, Karen T; Green, Robert C; Zhang, J; Lunetta, Kathryn; Erlich, Porat M; Cupples, L Adrienne; Farrer, Lindsay A; DeCarli, Charles

    2008-07-01

    Magnetic resonance imaging (MRI) can aid clinical assessment of brain changes potentially correlated with Alzheimer disease (AD). MRI traits may improve our ability to identify genes associated with AD-outcomes. We evaluated semi-quantitative MRI measures as endophenotypes for genetic studies by assessing their association with AD in families from the Multi-Institutional Research in Alzheimer Genetic Epidemiology (MIRAGE) Study. Discordant siblings from multiple ethnicities were ascertained through a single affected proband. Semi-quantitative MRI measures were obtained for each individual. The association between continuous/ordinal MRI traits and AD were analyzed using generalized estimating equations. Medical history and Apolipoprotein E (APOE)epsilon4 status were evaluated as potential confounders. Comparisons of 214 affected and 234 unaffected subjects from 229 sibships revealed that general cerebral atrophy, white matter hyperintensities (WMH), and mediotemporal atrophy differed significantly between groups (each at P < .0001) and varied by ethnicity. Age at MRI and duration of AD confounded all associations between AD and MRI traits. Among unaffected sibs, the presence of at least one APOEepsilon4 allele and MRI infarction was associated with more WMH after adjusting for age at MRI. The strong association between MRI traits and AD suggests that MRI traits may be informative endophenotypes for basic and clinical studies of AD. In particular, WMH may be a marker of vascular disease that contributes to AD pathogenesis.

  20. Quantitative Genetic Architecture at Latitudinal Range Boundaries: Reduced Variation but Higher Trait Independence.

    PubMed

    Paccard, Antoine; Van Buskirk, Josh; Willi, Yvonne

    2016-05-01

    Species distribution limits are hypothesized to be caused by small population size and limited genetic variation in ecologically relevant traits, but earlier studies have not evaluated genetic variation in multivariate phenotypes. We asked whether populations at the latitudinal edges of the distribution have altered quantitative genetic architecture of ecologically relevant traits compared with midlatitude populations. We calculated measures of evolutionary potential in nine Arabidopsis lyrata populations spanning the latitudinal range of the species in eastern and midwestern North America. Environments at the latitudinal extremes have reduced water availability, and therefore plants were assessed under wet and dry treatments. We estimated genetic variance-covariance (G-) matrices for 10 traits related to size, development, and water balance. Populations at southern and northern distribution edges had reduced levels of genetic variation across traits, but their G-matrices were more spherical; G-matrix orientation was unrelated to latitude. As a consequence, the predicted short-term response to selection was at least as strong in edge populations as in central populations. These results are consistent with genetic drift eroding variation and reducing the effectiveness of correlational selection at distribution margins. We conclude that genetic variation of isolated traits poorly predicts the capacity to evolve in response to multivariate selection and that the response to selection may frequently be greater than expected at species distribution margins because of genetic drift.

  1. Quantitative Trait Loci for Light Sensitivity, Body Weight, Body Size, and Morphological Eye Parameters in the Bumblebee, Bombus terrestris.

    PubMed

    Maebe, Kevin; Meeus, Ivan; De Riek, Jan; Smagghe, Guy

    2015-01-01

    Bumblebees such as Bombus terrestris are essential pollinators in natural and managed ecosystems. In addition, this species is intensively used in agriculture for its pollination services, for instance in tomato and pepper greenhouses. Here we performed a quantitative trait loci (QTL) analysis on B. terrestris using 136 microsatellite DNA markers to identify genes linked with 20 traits including light sensitivity, body size and mass, and eye and hind leg measures. By composite interval mapping (IM), we found 83 and 34 suggestive QTLs for 19 of the 20 traits at the linkage group wide significance levels of p = 0.05 and 0.01, respectively. Furthermore, we also found five significant QTLs at the genome wide significant level of p = 0.05. Individual QTLs accounted for 7.5-53.3% of the phenotypic variation. For 15 traits, at least one QTL was confirmed with multiple QTL model mapping. Multivariate principal components analysis confirmed 11 univariate suggestive QTLs but revealed three suggestive QTLs not identified by the individual traits. We also identified several candidate genes linked with light sensitivity, in particular the Phosrestin-1-like gene is a primary candidate for its phototransduction function. In conclusion, we believe that the suggestive and significant QTLs, and markers identified here, can be of use in marker-assisted breeding to improve selection towards light sensitive bumblebees, and thus also the pollination service of bumblebees.

  2. Quantitative trait loci for organ weights and adipose fat composition in Jersey and Limousin back-cross cattle finished on pasture or feedlot.

    PubMed

    Morris, C A; Bottema, C D K; Cullen, N G; Hickey, S M; Esmailizadeh, A K; Siebert, B D; Pitchford, W S

    2010-12-01

    A QTL study of live animal and carcass traits in beef cattle was carried out in New Zealand and Australia. Back-cross calves (385 heifers and 398 steers) were generated, with Jersey and Limousin backgrounds. This paper reports on weights of eight organs (heart, liver, lungs, kidneys, spleen, gastro-intestinal tract, fat, and rumen contents) and 12 fat composition traits (fatty acid (FA) percentages, saturated and monounsaturated FA subtotals, and fat melting point). The New Zealand cattle were reared and finished on pasture, whilst Australian cattle were reared on grass and finished on grain for at least 180 days. For organ weights and fat composition traits, 10 and 12 significant QTL locations (P<0.05), respectively, were detected on a genome-wide basis, in combined-sire or within-sire analyses. Seven QTL significant for organ weights were found at the proximal end of chromosome 2. This chromosome carries a variant myostatin allele (F94L), segregating from the Limousin ancestry, and this is a positional candidate for the QTL. Ten significant QTL for fat composition were found on chromosomes 19 and 26. Fatty acid synthase and stearoyl-CoA desaturase (SCD1), respectively, are positional candidate genes for these QTL. Two FA QTL found to be common to sire groups in both populations were for percentages of C14:0 and C14:1 (relative to all FAs) on chromosome 26, near the SCD1 candidate gene. © 2010 AgResearch Ltd, Animal Genetics © 2010 Stichting International Foundation for Animal Genetics.

  3. Behavioral genomics of honeybee foraging and nest defense

    NASA Astrophysics Data System (ADS)

    Hunt, Greg J.; Amdam, Gro V.; Schlipalius, David; Emore, Christine; Sardesai, Nagesh; Williams, Christie E.; Rueppell, Olav; Guzmán-Novoa, Ernesto; Arechavaleta-Velasco, Miguel; Chandra, Sathees; Fondrk, M. Kim; Beye, Martin; Page, Robert E.

    2007-04-01

    The honeybee has been the most important insect species for study of social behavior. The recently released draft genomic sequence for the bee will accelerate honeybee behavioral genetics. Although we lack sufficient tools to manipulate this genome easily, quantitative trait loci (QTLs) that influence natural variation in behavior have been identified and tested for their effects on correlated behavioral traits. We review what is known about the genetics and physiology of two behavioral traits in honeybees, foraging specialization (pollen versus nectar), and defensive behavior, and present evidence that map-based cloning of genes is more feasible in the bee than in other metazoans. We also present bioinformatic analyses of candidate genes within QTL confidence intervals (CIs). The high recombination rate of the bee made it possible to narrow the search to regions containing only 17-61 predicted peptides for each QTL, although CIs covered large genetic distances. Knowledge of correlated behavioral traits, comparative bioinformatics, and expression assays facilitated evaluation of candidate genes. An overrepresentation of genes involved in ovarian development and insulin-like signaling components within pollen foraging QTL regions suggests that an ancestral reproductive gene network was co-opted during the evolution of foraging specialization. The major QTL influencing defensive/aggressive behavior contains orthologs of genes involved in central nervous system activity and neurogenesis. Candidates at the other two defensive-behavior QTLs include modulators of sensory signaling ( Am5HT 7 serotonin receptor, AmArr4 arrestin, and GABA-B-R1 receptor). These studies are the first step in linking natural variation in honeybee social behavior to the identification of underlying genes.

  4. The co-occurrence of autistic traits and borderline personality disorder traits is associated to increased suicidal ideation in nonclinical young adults.

    PubMed

    Chabrol, Henri; Raynal, Patrick

    2018-04-01

    The co-occurrence of Autism Spectrum Disorder (ASD) and Borderline Personality Disorder (BPD) is not rare and has been linked to increased suicidality. Despite this significant comorbidity between ASD and BPD, no study had examined the co-occurrence of autistic traits and borderline personality disorder traits in the general population. The aim of the present study was to examine the co-occurrence of autistic and borderline traits in a non-clinical sample of young adults and its influence on the levels of suicidal ideation and depressive symptomatology. Participants were 474 college students who completed self-report questionnaires. Data were analysed using correlation and cluster analyses. Borderline personality traits and autistic traits were weakly correlated. However, cluster analysis yielded four groups: a low traits group, a borderline traits group, an autistic traits group, and a group characterized by high levels of both traits. Cluster analysis revealed that autistic and borderline traits can co-occur in a significant proportion of young adults. The high autistic and borderline traits group constituted 17% of the total sample and had higher level of suicidal ideation than the borderline traits group, despite similar levels of depressive symptoms. This result suggests that the higher suicidality observed in patients with comorbid ASD and BPD may extent to non-clinical individuals with high levels of co-occurrent autistic and borderline traits. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. How (much) do flowers vary? Unbalanced disparity among flower functional modules and a mosaic pattern of morphospace occupation in the order Ericales.

    PubMed

    Chartier, Marion; Löfstrand, Stefan; von Balthazar, Maria; Gerber, Sylvain; Jabbour, Florian; Sauquet, Hervé; Schönenberger, Jürg

    2017-04-12

    The staggering diversity of angiosperms and their flowers has fascinated scientists for centuries. However, the quantitative distribution of floral morphological diversity (disparity) among lineages and the relative contribution of functional modules (perianth, androecium and gynoecium) to total floral disparity have rarely been addressed. Focusing on a major angiosperm order (Ericales), we compiled a dataset of 37 floral traits scored for 381 extant species and nine fossils. We conducted morphospace analyses to explore phylogenetic, temporal and functional patterns of disparity. We found that the floral morphospace is organized as a continuous cloud in which most clades occupy distinct regions in a mosaic pattern, that disparity increases with clade size rather than age, and that fossils fall in a narrow portion of the space. Surprisingly, our study also revealed that among functional modules, it is the androecium that contributes most to total floral disparity in Ericales. We discuss our findings in the light of clade history, selective regimes as well as developmental and functional constraints acting on the evolution of the flower and thereby demonstrate that quantitative analyses such as the ones used here are a powerful tool to gain novel insights into the evolution and diversity of flowers. © 2017 The Authors.

  6. Single-trait and multi-trait genome-wide association analyses identify novel loci for blood pressure in African-ancestry populations

    PubMed Central

    Liang, Jingjing; Le, Thu H.; Edwards, Digna R. Velez; Tayo, Bamidele O.; Gaulton, Kyle J.; Lu, Yingchang; Jensen, Richard A.; Chen, Guanjie; Schwander, Karen; McKenzie, Colin A.; Fox, Ervin; Nalls, Michael A.; Young, J. Hunter; Lane, Jacqueline M.; Zhou, Jie; Tang, Hua; Fornage, Myriam; Musani, Solomon K.; Wang, Heming; Forrester, Terrence; Chu, Pei-Lun; Evans, Michele K.; Morrison, Alanna C.; Martin, Lisa W.; Wiggins, Kerri L.; Hui, Qin; Zhao, Wei; Jackson, Rebecca D.; Faul, Jessica D.; Reiner, Alex P.; Bray, Michael; Denny, Joshua C.; Mosley, Thomas H.; Palmas, Walter; Guo, Xiuqing; Polak, Joseph F.; Taylor, Ken D.; Boerwinkle, Eric; Bottinger, Erwin P.; Liu, Kiang; Risch, Neil; Hunt, Steven C.; Kooperberg, Charles; Zonderman, Alan B.; Becker, Diane M.; Cai, Jianwen; Loos, Ruth J. F.; Psaty, Bruce M.; Weir, David R.; Kardia, Sharon L. R.; Arnett, Donna K.; Won, Sungho; Edwards, Todd L.; Redline, Susan; Cooper, Richard S.; Rao, D. C.; Rotimi, Charles; Levy, Daniel; Chakravarti, Aravinda

    2017-01-01

    Hypertension is a leading cause of global disease, mortality, and disability. While individuals of African descent suffer a disproportionate burden of hypertension and its complications, they have been underrepresented in genetic studies. To identify novel susceptibility loci for blood pressure and hypertension in people of African ancestry, we performed both single and multiple-trait genome-wide association analyses. We analyzed 21 genome-wide association studies comprised of 31,968 individuals of African ancestry, and validated our results with additional 54,395 individuals from multi-ethnic studies. These analyses identified nine loci with eleven independent variants which reached genome-wide significance (P < 1.25×10−8) for either systolic and diastolic blood pressure, hypertension, or for combined traits. Single-trait analyses identified two loci (TARID/TCF21 and LLPH/TMBIM4) and multiple-trait analyses identified one novel locus (FRMD3) for blood pressure. At these three loci, as well as at GRP20/CDH17, associated variants had alleles common only in African-ancestry populations. Functional annotation showed enrichment for genes expressed in immune and kidney cells, as well as in heart and vascular cells/tissues. Experiments driven by these findings and using angiotensin-II induced hypertension in mice showed altered kidney mRNA expression of six genes, suggesting their potential role in hypertension. Our study provides new evidence for genes related to hypertension susceptibility, and the need to study African-ancestry populations in order to identify biologic factors contributing to hypertension. PMID:28498854

  7. Genome-wide analysis of ivermectin response by Onchocerca volvulus reveals that genetic drift and soft selective sweeps contribute to loss of drug sensitivity

    PubMed Central

    Nana-Djeunga, Hugues C.; Kengne-Ouafo, Jonas A.; Pion, Sébastien D. S.; Bopda, Jean; Kamgno, Joseph; Wanji, Samuel; Che, Hua; Kuesel, Annette C.; Walker, Martin; Basáñez, Maria-Gloria; Boakye, Daniel A.; Osei-Atweneboana, Mike Y.; Boussinesq, Michel; Prichard, Roger K.; Grant, Warwick N.

    2017-01-01

    Background Treatment of onchocerciasis using mass ivermectin administration has reduced morbidity and transmission throughout Africa and Central/South America. Mass drug administration is likely to exert selection pressure on parasites, and phenotypic and genetic changes in several Onchocerca volvulus populations from Cameroon and Ghana—exposed to more than a decade of regular ivermectin treatment—have raised concern that sub-optimal responses to ivermectin's anti-fecundity effect are becoming more frequent and may spread. Methodology/Principal findings Pooled next generation sequencing (Pool-seq) was used to characterise genetic diversity within and between 108 adult female worms differing in ivermectin treatment history and response. Genome-wide analyses revealed genetic variation that significantly differentiated good responder (GR) and sub-optimal responder (SOR) parasites. These variants were not randomly distributed but clustered in ~31 quantitative trait loci (QTLs), with little overlap in putative QTL position and gene content between the two countries. Published candidate ivermectin SOR genes were largely absent in these regions; QTLs differentiating GR and SOR worms were enriched for genes in molecular pathways associated with neurotransmission, development, and stress responses. Finally, single worm genotyping demonstrated that geographic isolation and genetic change over time (in the presence of drug exposure) had a significantly greater role in shaping genetic diversity than the evolution of SOR. Conclusions/Significance This study is one of the first genome-wide association analyses in a parasitic nematode, and provides insight into the genomics of ivermectin response and population structure of O. volvulus. We argue that ivermectin response is a polygenically-determined quantitative trait (QT) whereby identical or related molecular pathways but not necessarily individual genes are likely to determine the extent of ivermectin response in different parasite populations. Furthermore, we propose that genetic drift rather than genetic selection of SOR is the underlying driver of population differentiation, which has significant implications for the emergence and potential spread of SOR within and between these parasite populations. PMID:28746337

  8. Integrative genomic analysis identifies ancestry-related expression quantitative trait loci on DNA polymerase β and supports the association of genetic ancestry with survival disparities in head and neck squamous cell carcinoma.

    PubMed

    Ramakodi, Meganathan P; Devarajan, Karthik; Blackman, Elizabeth; Gibbs, Denise; Luce, Danièle; Deloumeaux, Jacqueline; Duflo, Suzy; Liu, Jeffrey C; Mehra, Ranee; Kulathinal, Rob J; Ragin, Camille C

    2017-03-01

    African Americans with head and neck squamous cell carcinoma (HNSCC) have a lower survival rate than whites. This study investigated the functional importance of ancestry-informative single-nucleotide polymorphisms (SNPs) in HNSCC and also examined the effect of functionally important genetic elements on racial disparities in HNSCC survival. Ancestry-informative SNPs, RNA sequencing, methylation, and copy number variation data for 316 oral cavity and laryngeal cancer patients were analyzed across 178 DNA repair genes. The results of expression quantitative trait locus (eQTL) analyses were also replicated with a Gene Expression Omnibus (GEO) data set. The effects of eQTLs on overall survival (OS) and disease-free survival (DFS) were evaluated. Five ancestry-related SNPs were identified as cis-eQTLs in the DNA polymerase β (POLB) gene (false discovery rate [FDR] < 0.01). The homozygous/heterozygous genotypes containing the African allele showed higher POLB expression than the homozygous white allele genotype (P < .001). A replication study using a GEO data set validated all 5 eQTLs and also showed a statistically significant difference in POLB expression based on genetic ancestry (P = .002). An association was observed between these eQTLs and OS (P < .037; FDR < 0.0363) as well as DFS (P = .018 to .0629; FDR < 0.079) for oral cavity and laryngeal cancer patients treated with platinum-based chemotherapy and/or radiotherapy. Genotypes containing the African allele were associated with poor OS/DFS in comparison with homozygous genotypes harboring the white allele. Analyses show that ancestry-related alleles could act as eQTLs in HNSCC and support the association of ancestry-related genetic factors with survival disparities in patients diagnosed with oral cavity and laryngeal cancer. Cancer 2017;123:849-60. © 2016 American Cancer Society. © 2016 American Cancer Society.

  9. Marker-based linkage map of Andean common bean (Phaseolus vulgaris L.) and mapping of QTLs underlying popping ability traits

    PubMed Central

    2012-01-01

    Background Nuña bean is a type of ancient common bean (Phaseolus vulgaris L.) native to the Andean region of South America, whose seeds possess the unusual property of popping. The nutritional features of popped seeds make them a healthy low fat and high protein snack. However, flowering of nuña bean only takes place under short-day photoperiod conditions, which means a difficulty to extend production to areas where such conditions do not prevail. Therefore, breeding programs of adaptation traits will facilitate the diversification of the bean crops and the development of new varieties with enhanced healthy properties. Although the popping trait has been profusely studied in maize (popcorn), little is known about the biology and genetic basis of the popping ability in common bean. To obtain insights into the genetics of popping ability related traits of nuña bean, a comprehensive quantitative trait loci (QTL) analysis was performed to detect single-locus and epistatic QTLs responsible for the phenotypic variance observed in these traits. Results A mapping population of 185 recombinant inbred lines (RILs) derived from a cross between two Andean common bean genotypes was evaluated for three popping related traits, popping dimension index (PDI), expansion coefficient (EC), and percentage of unpopped seeds (PUS), in five different environmental conditions. The genetic map constructed included 193 loci across 12 linkage groups (LGs), covering a genetic distance of 822.1 cM, with an average of 4.3 cM per marker. Individual and multi-environment QTL analyses detected a total of nineteen single-locus QTLs, highlighting among them the co-localized QTLs for the three popping ability traits placed on LGs 3, 5, 6, and 7, which together explained 24.9, 14.5, and 25.3% of the phenotypic variance for PDI, EC, and PUS, respectively. Interestingly, epistatic interactions among QTLs have been detected, which could have a key role in the genetic control of popping. Conclusions The QTLs here reported constitute useful tools for marker assisted selection breeding programs aimed at improving nuña bean cultivars, as well as for extending our knowledge of the genetic determinants and genotype x environment interaction involved in the popping ability traits of this bean crop. PMID:22873566

  10. Maternal genetic effects on adaptive divergence between anadromous and resident brook charr during early life history.

    PubMed

    Perry, G M L; Audet, C; Bernatchez, L

    2005-09-01

    The importance of directional selection relative to neutral evolution may be determined by comparing quantitative genetic variation in phenotype (Q(ST)) to variation at neutral molecular markers (F(ST)). Quantitative divergence between salmonid life history types is often considerable, but ontogenetic changes in the significance of major sources of genetic variance during post-hatch development suggest that selective differentiation varies by developmental stage. In this study, we tested the hypothesis that maternal genetic differentiation between anadromous and resident brook charr (Salvelinus fontinalis Mitchill) populations for early quantitative traits (embryonic size/growth, survival, egg number and developmental time) would be greater than neutral genetic differentiation, but that the maternal genetic basis for differentiation would be higher for pre-resorption traits than post-resorption traits. Quantitative genetic divergence between anadromous (seawater migratory) and resident Laval River (Québec) brook charr based on maternal genetic variance was high (Q(ST) > 0.4) for embryonic length, yolk sac volume, embryonic growth rate and time to first response to feeding relative to neutral genetic differentiation [F(ST) = 0.153 (0.071-0.214)], with anadromous females having positive genetic coefficients for all of the above characters. However, Q(ST) was essentially zero for all traits post-resorption of the yolk sac. Our results indicate that the observed divergence between resident and anadromous brook charr has been driven by directional selection, and may therefore be adaptive. Moreover, they provide among the first evidence that the relative importance of selective differentiation may be highly context-specific, and varies by genetic contributions to phenotype by parental sex at specific points in offspring ontogeny. This in turn suggests that interpretations of Q(ST)-F(ST) comparisons may be improved by considering the structure of quantitative genetic architecture by age category and the sex of the parent used in estimation.

  11. Bayesian inference for unidirectional misclassification of a binary response trait.

    PubMed

    Xia, Michelle; Gustafson, Paul

    2018-03-15

    When assessing association between a binary trait and some covariates, the binary response may be subject to unidirectional misclassification. Unidirectional misclassification can occur when revealing a particular level of the trait is associated with a type of cost, such as a social desirability or financial cost. The feasibility of addressing misclassification is commonly obscured by model identification issues. The current paper attempts to study the efficacy of inference when the binary response variable is subject to unidirectional misclassification. From a theoretical perspective, we demonstrate that the key model parameters possess identifiability, except for the case with a single binary covariate. From a practical standpoint, the logistic model with quantitative covariates can be weakly identified, in the sense that the Fisher information matrix may be near singular. This can make learning some parameters difficult under certain parameter settings, even with quite large samples. In other cases, the stronger identification enables the model to provide more effective adjustment for unidirectional misclassification. An extension to the Poisson approximation of the binomial model reveals the identifiability of the Poisson and zero-inflated Poisson models. For fully identified models, the proposed method adjusts for misclassification based on learning from data. For binary models where there is difficulty in identification, the method is useful for sensitivity analyses on the potential impact from unidirectional misclassification. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Natural Genetic Variation Influences Protein Abundances in C. elegans Developmental Signalling Pathways

    PubMed Central

    Singh, Kapil Dev; Roschitzki, Bernd; Snoek, L. Basten; Grossmann, Jonas; Zheng, Xue; Elvin, Mark; Kamkina, Polina; Schrimpf, Sabine P.; Poulin, Gino B.; Kammenga, Jan E.; Hengartner, Michael O.

    2016-01-01

    Complex traits, including common disease-related traits, are affected by many different genes that function in multiple pathways and networks. The apoptosis, MAPK, Notch, and Wnt signalling pathways play important roles in development and disease progression. At the moment we have a poor understanding of how allelic variation affects gene expression in these pathways at the level of translation. Here we report the effect of natural genetic variation on transcript and protein abundance involved in developmental signalling pathways in Caenorhabditis elegans. We used selected reaction monitoring to analyse proteins from the abovementioned four pathways in a set of recombinant inbred lines (RILs) generated from the wild-type strains N2 (Bristol) and CB4856 (Hawaii) to enable quantitative trait locus (QTL) mapping. About half of the cases from the 44 genes tested showed a statistically significant change in protein abundance between various strains, most of these were however very weak (below 1.3-fold change). We detected a distant QTL on the left arm of chromosome II that affected protein abundance of the phosphatidylserine receptor protein PSR-1, and two separate QTLs that influenced embryonic and ionizing radiation-induced apoptosis on chromosome IV. Our results demonstrate that natural variation in C. elegans is sufficient to cause significant changes in signalling pathways both at the gene expression (transcript and protein abundance) and phenotypic levels. PMID:26985669

  13. Development of DArT-based PCR markers for selecting drought-tolerant spring barley.

    PubMed

    Fiust, Anna; Rapacz, Marcin; Wójcik-Jagła, Magdalena; Tyrka, Mirosław

    2015-08-01

    The tolerance of spring barley (Hordeum vulgare L.) cultivars to spring drought is an important agronomic trait affecting crop yield and quality in Poland. Therefore, breeders require new molecular markers to select plants with lower spring drought susceptibility. With the advent of genomic selection technology, simple molecular tools may still be applicable to screen material for markers of the most important traits and in-depth genome scanning. In previous studies, diversity arrays technology (DArT)-based genetic maps were constructed for F2 populations of Polish fodder and malt barley elite breeding lines, and 15 and 18 quantitative trait loci (QTLs) related to spring drought tolerance were identified, respectively. In this paper, we show the results of a conversion of 30 DArT markers corresponding to 11 QTLs into simple sequence repeat (SSR) and sequence tagged site (STS) markers. Twenty-two polymorphic markers were obtained, including 13 DArT-based SSRs. Additionally, 31 SSR markers, located in close proximity to the DArT markers, were selected from the GrainGenes database and tested. Further analyses of 24 advanced breeding lines with different drought tolerances confirmed that five out of the 30 converted markers, as well as three out of the 31 additional SSR markers, were effective in marker-assisted selection for drought tolerance. The possible function of clones related to these markers in drought tolerance is discussed.

  14. Genome-Wide Association Study Dissects the Genetic Architecture of Seed Weight and Seed Quality in Rapeseed (Brassica napus L.)

    PubMed Central

    Li, Feng; Chen, Biyun; Xu, Kun; Wu, Jinfeng; Song, Weilin; Bancroft, Ian; Harper, Andrea L.; Trick, Martin; Liu, Shengyi; Gao, Guizhen; Wang, Nian; Yan, Guixin; Qiao, Jiangwei; Li, Jun; Li, Hao; Xiao, Xin; Zhang, Tianyao; Wu, Xiaoming

    2014-01-01

    Association mapping can quickly and efficiently dissect complex agronomic traits. Rapeseed is one of the most economically important polyploid oil crops, although its genome sequence is not yet published. In this study, a recently developed 60K Brassica Infinium® SNP array was used to analyse an association panel with 472 accessions. The single-nucleotide polymorphisms (SNPs) of the array were in silico mapped using ‘pseudomolecules’ representative of the genome of rapeseed to establish their hypothetical order and to perform association mapping of seed weight and seed quality. As a result, two significant associations on A8 and C3 of Brassica napus were detected for erucic acid content, and the peak SNPs were found to be only 233 and 128 kb away from the key genes BnaA.FAE1 and BnaC.FAE1. BnaA.FAE1 was also identified to be significantly associated with the oil content. Orthologues of Arabidopsis thaliana HAG1 were identified close to four clusters of SNPs associated with glucosinolate content on A9, C2, C7 and C9. For seed weight, we detected two association signals on A7 and A9, which were consistent with previous studies of quantitative trait loci mapping. The results indicate that our association mapping approach is suitable for fine mapping of the complex traits in rapeseed. PMID:24510440

  15. Mapping quantitative trait loci controlling seed and grain production traits of intermediate wheatgrass (Thinopyrum intermedium)

    USDA-ARS?s Scientific Manuscript database

    Intermediate wheatgrass (Thinopyrum intermedium) is a cool-season perennial grass cultivated for seed used in forage production, conservation plantings, and consumable grain products such as flour. Intermediate wheatgrass (2n=6x=42) has a large, allohexploid genome (~13 GB) and is a distant relativ...

  16. Brief Report: Autism-Like Traits Are Associated with Enhanced Ability to Disembed Visual Forms

    ERIC Educational Resources Information Center

    Sabatino DiCriscio, Antoinette; Troiani, Vanessa

    2017-01-01

    Atypical visual perceptual skills are thought to underlie unusual visual attention in autism spectrum disorders. We assessed whether individual differences in visual processing skills scaled with quantitative traits associated with the broader autism phenotype (BAP). Visual perception was assessed using the Figure-ground subtest of the Test of…

  17. Mapping quantitative trait loci for a unique 'super soft' kernel trait in soft white wheat

    USDA-ARS?s Scientific Manuscript database

    Wheat (Triticum sp.) kernel texture is an important factor affecting milling, flour functionality, and end-use quality. Kernel texture is normally characterized as either hard or soft, the two major classes of texture. However, further variation is typically encountered in each class. Soft wheat var...

  18. Candidate causative mutation on BTA18 associated with calving and conformation traits in Holstein bulls

    USDA-ARS?s Scientific Manuscript database

    Complementing quantitative methods with sequence data analysis is a major goal of the post-genome era of biology. In this study, we analyzed Illumina HiSeq sequence data derived from 11 US Holstein bulls in order to identify putative causal mutations associated with calving and conformation traits. ...

  19. An Investigation of Personality Traits in Relation to Job Performance of Online Instructors

    ERIC Educational Resources Information Center

    Holmes, Charles; Kirwan, Jeral R.; Bova, Mark; Belcher, Trevor

    2015-01-01

    This quantitative study examined the relationship between the Big 5 personality traits and how they relate to online teacher effectiveness. The primary method of data collection for this study was through the use of surveys primarily building upon the Personality Style Inventory (PSI) (Lounsbury & Gibson, 2010), a work-based personality…

  20. Linking "Big" Personality Traits to Anxiety, Depressive, and Substance Use Disorders: A Meta-Analysis

    ERIC Educational Resources Information Center

    Kotov, Roman; Gamez, Wakiza; Schmidt, Frank; Watson, David

    2010-01-01

    We performed a quantitative review of associations between the higher order personality traits in the Big Three and Big Five models (i.e., neuroticism, extraversion, disinhibition, conscientiousness, agreeableness, and openness) and specific depressive, anxiety, and substance use disorders (SUD) in adults. This approach resulted in 66…

Top