Sample records for quantitative wave-particle duality

  1. A rational explanation of wave-particle duality of light

    NASA Astrophysics Data System (ADS)

    Rashkovskiy, S. A.

    2013-10-01

    The wave-particle duality is a fundamental property of the nature. At the same time, it is one of the greatest mysteries of modern physics. This gave rise to a whole direction in quantum physics - the interpretation of quantum mechanics. The Wiener experiments demonstrating the wave-particle duality of light are discussed. It is shown that almost all interpretations of quantum mechanics allow explaining the double-slit experiments, but are powerless to explain the Wiener experiments. The reason of the paradox, associated with the wave-particle duality is analyzed. The quantum theory consists of two independent parts: (i) the dynamic equations describing the behavior of a quantum object (for example, the Schrodinger or Maxwell equations), and (ii) the Born's rule, the relation between the wave function and the probability of finding the particle at a given point. It is shown that precisely the Born's rule results in paradox in explaining the wave-particle duality. In order to eliminate this paradox, we propose a new rational interpretation of the wave-particle duality and associated new rule, connecting the corpuscular and wave properties of quantum objects. It is shown that this new rational interpretation of the wave-particle duality allows using the classic images of particle and wave in explaining the quantum mechanical and optical phenomena, does not result in paradox in explaining the doubleslit experiments and Wiener experiments, and does not contradict to the modern quantum mechanical concepts. It is shown that the Born's rule follows immediately from proposed new rules as an approximation.

  2. A demonstration of particle duality of light

    NASA Astrophysics Data System (ADS)

    Jiang, Haili; Liu, Zhihai; Sun, Qiuhua; Zhao, Yancheng

    2017-08-01

    The need of understanding and teaching about wave-particle duality if light with gets more and more apparent in the background of the attention of modern physics. As early as the beginning of twentieth Century, Einstein dared to "deny" the development of a very perfect light electromagnetic theory, so that the quantum of light can be developed. In 1924, De Broglie put forward wave-particle duality if light to other micro particles and the concept of matter wave, pointed out that all micro particle has wave-particle duality. This is a very abstract concept for students, most college physics teaching all lack of demonstration about particle duality of light. The present article aims to contribute to demonstrate the wave-particle duality of light at the same time using a simple way based on fiber optical tweezers. It is hoped that useful lesson can be absorbed so that students can deepen the understanding of the particle and wave properties of light. To complement the demonstration experiment for this attribute light has momentum.

  3. Wave particle duality, the observer and retrocausality

    NASA Astrophysics Data System (ADS)

    Narasimhan, Ashok; Kafatos, Menas C.

    2017-05-01

    We approach wave particle duality, the role of the observer and implications on Retrocausality, by starting with the results of a well verified quantum experiment. We analyze how some current theoretical approaches interpret these results. We then provide an alternative theoretical framework that is consistent with the observations and in many ways simpler than usual attempts to account for retrocausality, involving a non-local conscious Observer.

  4. What Is Light?. Students' Reflections on the Wave-Particle Duality of Light and the Nature of Physics

    NASA Astrophysics Data System (ADS)

    Henriksen, Ellen Karoline; Angell, Carl; Vistnes, Arnt Inge; Bungum, Berit

    2018-03-01

    Quantum physics describes light as having both particle and wave properties; however, there is no consensus about how to interpret this duality on an ontological level. This article explores how pre-university physics students, while working with learning material focusing on historical-philosophical aspects of quantum physics, interpreted the wave-particle duality of light and which views they expressed on the nature of physics. A thematic analysis was performed on 133 written responses about the nature of light, given in the beginning of the teaching sequence, and 55 audio-recorded small-group discussions addressing the wave-particle duality, given later in the sequence. Most students initially expressed a wave and particle view of light, but some of these gave an "uncritical duality description", accepting without question the two ontologically different descriptions of light. In the small-group discussions, students expressed more nuanced views. Many tried to reconcile the two descriptions using semi-classical reasoning; others entered into philosophical discussions about the status of the current scientific description of light and expected science to come up with a better model. Some found the wave description of light particularly challenging and lacked a conception of "what is waving". Many seemed to implicitly take a realist view on the description of physical phenomena, contrary with the Copenhagen interpretation which is prevalent in textbooks. Results are discussed in light of different interpretations of quantum physics, and we conclude by arguing for a historical-philosophical perspective as an entry point for upper secondary physics students to explore the development and interpretation of quantum physical concepts.

  5. Quantitative Boltzmann-Gibbs Principles via Orthogonal Polynomial Duality

    NASA Astrophysics Data System (ADS)

    Ayala, Mario; Carinci, Gioia; Redig, Frank

    2018-06-01

    We study fluctuation fields of orthogonal polynomials in the context of particle systems with duality. We thereby obtain a systematic orthogonal decomposition of the fluctuation fields of local functions, where the order of every term can be quantified. This implies a quantitative generalization of the Boltzmann-Gibbs principle. In the context of independent random walkers, we complete this program, including also fluctuation fields in non-stationary context (local equilibrium). For other interacting particle systems with duality such as the symmetric exclusion process, similar results can be obtained, under precise conditions on the n particle dynamics.

  6. Different Levels of the Meaning of Wave-Particle Duality and a Suspensive Perspective on the Interpretation of Quantum Theory

    ERIC Educational Resources Information Center

    Cheong, Yong Wook; Song, Jinwoong

    2014-01-01

    There is no consensus on the genuine meaning of wave-particle duality and the interpretation of quantum theory. How can we teach duality and quantum theory despite this lack of consensus? This study attempts to answer this question. This research argues that reality issues are at the core of both the endless debates concerning the interpretation…

  7. Wave-Particle Duality and Uncertainty Principle: Phenomenographic Categories of Description of Tertiary Physics Students' Depictions

    ERIC Educational Resources Information Center

    Ayene, Mengesha; Kriek, Jeanne; Damtie, Baylie

    2011-01-01

    Quantum mechanics is often thought to be a difficult subject to understand, not only in the complexity of its mathematics but also in its conceptual foundation. In this paper we emphasize students' depictions of the uncertainty principle and wave-particle duality of quantum events, phenomena that could serve as a foundation in building an…

  8. Duality and 'particle' democracy

    NASA Astrophysics Data System (ADS)

    Castellani, Elena

    2017-08-01

    Weak/strong duality is usually accompanied by what seems a puzzling ontological feature: the fact that under this kind of duality what is viewed as 'elementary' in one description gets mapped to what is viewed as 'composite' in the dual description. This paper investigates the meaning of this apparent 'particle democracy', as it has been called, by adopting an historical approach. The aim is to clarify the nature of the correspondence between 'dual particles' in the light of a historical analysis of the developments of the idea of weak/strong duality, starting with Dirac's electric-magnetic duality and its successive generalizations in the context of (Abelian and non-Abelian) field theory, to arrive at its first extension to string theory. This analysis is then used as evidential basis for discussing the 'elementary/composite' divide and, after taking another historical detour by analyzing an instructive analogy case (DHS duality and related nuclear democracy), drawing some conclusions on the particle-democracy issue.

  9. Particle-vortex duality from 3D bosonization

    DOE PAGES

    Karch, Andreas; Tong, David

    2016-09-19

    We show how particle-vortex duality in d = 2+1 dimensions arises as part of an intricate web of relationships between different field theories. The starting point is “bosonization,” a conjectured duality that uses flux attachment to transmute the statistics of relativistic particles. From this seed, we derive many old and new dualities. Finally, these include particle-vortex duality for bosons as well as the recently discovered counterpart for fermions.

  10. S -duality for holographic p -wave superconductors

    NASA Astrophysics Data System (ADS)

    Gorsky, Alexander; Gubankova, Elena; Meyer, René; Zayakin, Andrey

    2017-11-01

    We consider the generalization of the S -duality transformation previously investigated in the context of the fractional quantum Hall effect (FQHE) and s -wave superconductivity to p -wave superconductivity in 2 +1 dimensions in the framework of the AdS /CFT correspondence. The vector Cooper condensate transforms under the S -duality action to the pseudovector condensate at the dual side. The 3 +1 -dimensional Einstein-Yang-Mills theory, the holographic dual to p -wave superconductivity, is used to investigate the S -duality action via the AdS /CFT correspondence. It is shown that, in order to implement the duality transformation, chemical potentials on both the electric and magnetic sides of the duality have to be introduced. A relation for the product of the non-Abelian conductivities in the dual models is derived. We also conjecture a flavor S -duality transformation in the holographic dual to 3 +1 -dimensional QCD low-energy QCD with non-Abelian flavor gauge groups. The conjectured S -duality interchanges isospin and baryonic chemical potentials.

  11. Interference and partial which-way information: A quantitative test of duality in two-atom resonance

    NASA Astrophysics Data System (ADS)

    Abranyos, Y.; Jakob, M.; Bergou, J.

    2000-01-01

    We propose for the experimental verification of an inequality concerning wave-particle duality by Englert [Phys. Rev. Lett. 77, 2154 (1996)] relating (or setting) an upper limit on distinguishability and visibility in a two-way interferometer. The inequality, quantifies the concept of wave-particle duality. The considered two-way interferometer is a Young's double-slit experiment involving two four-level atoms and is a slightly modified version of that of the recent experiment by Eichmann et al. [Phys. Rev. Lett. 70, 2359 (1993)]. The fringe visibility depends on the detected polarization direction of the scattered light and a read out of the internal state of one of the two atoms provides a partial which-way information.

  12. Wave-particle duality? not in optical computing

    NASA Astrophysics Data System (ADS)

    Caulfield, H. John

    2011-09-01

    Metaphysics has only one absolute requirement: It must account for the known physics. But many metaphysics account for light and they cannot all be right. We have only one metaphysical principle that is widely accepted (Einstein's minimum simplicity rule) and it gives no one answer. Even if we could enforce it, how would we prove its validity without a (meta)3principle? People like me who work with light are never confused about whether we are dealing with a particle or a wave. I find it useful to view light in terms even broader than the usual wave-particle description. I add a third kind of wave that is not measurable but also not restricted by the physics of the measurable. I find it difficult to account for light any other way.

  13. Particles, Waves, and the Interpretation of Quantum Mechanics

    ERIC Educational Resources Information Center

    Christoudouleas, N. D.

    1975-01-01

    Presents an explanation, without mathematical equations, of the basic principles of quantum mechanics. Includes wave-particle duality, the probability character of the wavefunction, and the uncertainty relations. (MLH)

  14. The photon: Experimental emphasis on its wave-particle duality

    NASA Technical Reports Server (NTRS)

    Shih, Yan-Hua; Sergienko, A. V.; Rubin, Morton H.; Kiess, Thomas E.; Alley, Carroll O.

    1994-01-01

    Two types of Einstein-Podolsky-Rosen experiments were demonstrated recently in our laboratory. It is interesting to see that in an interference experiment (wave-like experiment) the photon exhibits its particle property, and in a beam-splitting experiment (particle-like experiment) the photon exhibits its wave property. The two-photon states are produced from Type 1 and Type 2 optical spontaneous parametric down conversion, respectively.

  15. Core-Shell Particles as Building Blocks for Systems with High Duality Symmetry

    NASA Astrophysics Data System (ADS)

    Rahimzadegan, Aso; Rockstuhl, Carsten; Fernandez-Corbaton, Ivan

    2018-05-01

    Material electromagnetic duality symmetry requires a system to have equal electric and magnetic responses. Intrinsically dual materials that meet the duality conditions at the level of the constitutive relations do not exist in many frequency bands. Nevertheless, discrete objects like metallic helices and homogeneous dielectric spheres can be engineered to approximate the dual behavior. We exploit the extra degrees of freedom of a core-shell dielectric sphere in a particle optimization procedure. The duality symmetry of the resulting particle is more than 1 order of magnitude better than previously reported nonmagnetic objects. We use T -matrix-based multiscattering techniques to show that the improvement is transferred onto the duality symmetry of composite objects when the core-shell particle is used as a building block instead of homogeneous spheres. These results are relevant for the fashioning of systems with high duality symmetry, which are required for some technologically important effects.

  16. Combining Newton's second law and de Broglie's particle-wave duality

    NASA Astrophysics Data System (ADS)

    Hill, James M.

    2018-03-01

    All matter can exhibit wave-like behaviour, and Louis de Broglie first predicted light to display the dual characteristics as both a collection of particles, called photons, or in some respects as a wave. The particle velocity is the group velocity of the wave, and if the particle velocity ug is subluminal then the associated wave or phase velocity up through the de Broglie relation ugup =c2 is necessarily superluminal. This is believed not to contradict the fact that information cannot be carried faster than the velocity of light c because the wave phase is supposed to carry no energy. However, the superluminal phase velocity may well be physically significant, and here we propose that the sub particle world and the super wave world might be equally important, and that each might exert an influence on the other, such that any mechanical equations must not only be Lorentz invariant but they must also be invariant under the transformation connecting the sub and super worlds. Following this approach, Einstein's equation E =mc2 becomes simply E = (m +m‧)c2 , where m and m‧ are masses given by Einstein expressions arising from the perceived sub and superluminal velocities ug and up respectively. This modification, although superficially simple, results from non-conventional physics and gives rise to an extension of Newton's second law, that might well account for the extra energy and mass that is known to exist in the universe, and referred to as dark energy and dark matter. An explicit solution for photons and light predicts a non-zero photon rest-mass m0 = hν / 2c2 , where h is Planck's constant and ν is the light frequency. Interestingly, the associated energy of this mass is the zero-point energy, believed to be the lowest energy that a quantum mechanical system may possess.

  17. Is wave-particle objectivity compatible with determinism and locality?

    PubMed

    Ionicioiu, Radu; Jennewein, Thomas; Mann, Robert B; Terno, Daniel R

    2014-09-26

    Wave-particle duality, superposition and entanglement are among the most counterintuitive features of quantum theory. Their clash with our classical expectations motivated hidden-variable (HV) theories. With the emergence of quantum technologies, we can test experimentally the predictions of quantum theory versus HV theories and put strong restrictions on their key assumptions. Here, we study an entanglement-assisted version of the quantum delayed-choice experiment and show that the extension of HV to the controlling devices only exacerbates the contradiction. We compare HV theories that satisfy the conditions of objectivity (a property of photons being either particles or waves, but not both), determinism and local independence of hidden variables with quantum mechanics. Any two of the above conditions are compatible with it. The conflict becomes manifest when all three conditions are imposed and persists for any non-zero value of entanglement. We propose an experiment to test our conclusions.

  18. Wave "Coherency" and Implications for Wave-Particle Interactions

    NASA Astrophysics Data System (ADS)

    Tsurutani, Bruce; Singh Lakhina, Gurbax; Bhanu, Remya; Lee, Lou-Chuang

    2016-07-01

    Wave "coherency" was introduced in 2009 by Tsurutani et al. (JGR, doi:10.1029/2008JA013353, 2009) to describe the waves detected in the ~10 to 100 ms duration subelements which are the fundamental components of ~0.1 to 0.5 s chorus "elements". In this talk we will show examples of what we mean by coherency, quasi-coherency and incoherency for a variety of magnetospheric plasma waves. We will show how to measure coherency/quasicoherency quantitatively for electromagnetic whistler mode chorus, electromagnetic ion cyclotron (EMIC) waves, plasmaspheric hiss and linearly polarized magnetosonic waves. If plasma waves are coherent, their interactions with resonant particles will be substantially different. Specific examples will be used to show that the pitch angle scattering rates for energetic charged particles is roughly 3 orders of magnitude faster than the Kennel-Petschek diffusion (which assumes incoherent waves) rate. We feel that this mechanism is the only one that can explain ~ 0.1- 0.5 s bremsstrahlung x-ray microbursts.

  19. Quantum Interference: How to Measure the Wavelength of a Particle

    ERIC Educational Resources Information Center

    Brom, Joseph M.

    2017-01-01

    The concept of wave-particle duality in quantum theory is difficult to grasp because it attributes particle-like properties to classical waves and wave-like properties to classical particles. There seems to be an inconsistency involved with the notion that particle-like or wave-like attributes depend on how you look at an entity. The concept comes…

  20. Spin waves, vortices, fermions, and duality in the Ising and Baxter models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogilvie, M.C.

    1981-10-15

    Field-theoretic methods are applied to a number of two-dimensional lattice models with Abelian symmetry groups. It is shown, using a vortex+spin-wave decomposition, that the Z/sub p/-Villain models are related to a class of continuum field theories with analogous duality properties. Fermion operators for these field theories are discussed. In the case of the Ising model, the vortices and spin-waves conspire to produce a free, massive Majorana field theory in the continuum limit. The continuum limit of the Baxter model is also studied, and the recent results of Kadanoff and Brown are rederived and extended.

  1. 3d Abelian dualities with boundaries

    NASA Astrophysics Data System (ADS)

    Aitken, Kyle; Baumgartner, Andrew; Karch, Andreas; Robinson, Brandon

    2018-03-01

    We establish the action of three-dimensional bosonization and particle-vortex duality in the presence of a boundary, which supports a non-anomalous two-dimensional theory. We confirm our prescription using a microscopic realization of the duality in terms of a Euclidean lattice.

  2. Wave - Particle Duality” and Soil Liquefaction in Geotechnical Engineering

    NASA Astrophysics Data System (ADS)

    Wang, Demin

    2017-10-01

    In the disaster situation of multi-earthquake, with the phenomenon of vibrating phenomenon and the occurrence of cracks in the surface soil, the collapse of the buildings on the ground are caused. The author tries to explain the phenomenon of earthquake disaster in this geotechnical engineering by using the wave-particle duality theory of sunlight. And proposed the sun in the physics of the already high frequency of the weak light superimposed into the low frequency of the low light wave volatility, once again superimposed, superimposed as a lower frequency of linear light, the energy from low to high. Sunlight from weak light into a strong sunlight, that is, the sun near the observation may be weak light or black sunspots is composed of black holes. By long distance, the convergence of light becomes into a dazzling luminous body. Light from the numerous light quantum and an energy line form a half-space infinite volatility curve, and the role of light plays under the linear form of particles. When the night is manifested of l black approaching unconnected light quantum. The author plays the earth as the sun, compared to the deep pressure of low-viscosity clay soil pore, water performance is complex. Similar to the surface of the sun’s spectrum, saturated silty sand is showed volatility, Ground surface high-energy clay showed particle properties. Particle performance is shear strength.

  3. Remote creation of hybrid entanglement between particle-like and wave-like optical qubits

    NASA Astrophysics Data System (ADS)

    Morin, Olivier; Huang, Kun; Liu, Jianli; Le Jeannic, Hanna; Fabre, Claude; Laurat, Julien

    2014-07-01

    The wave-particle duality of light has led to two different encodings for optical quantum information processing. Several approaches have emerged based either on particle-like discrete-variable states (that is, finite-dimensional quantum systems) or on wave-like continuous-variable states (that is, infinite-dimensional systems). Here, we demonstrate the generation of entanglement between optical qubits of these different types, located at distant places and connected by a lossy channel. Such hybrid entanglement, which is a key resource for a variety of recently proposed schemes, including quantum cryptography and computing, enables information to be converted from one Hilbert space to the other via teleportation and therefore the connection of remote quantum processors based upon different encodings. Beyond its fundamental significance for the exploration of entanglement and its possible instantiations, our optical circuit holds promise for implementations of heterogeneous network, where discrete- and continuous-variable operations and techniques can be efficiently combined.

  4. Duality in Power-Law Localization in Disordered One-Dimensional Systems

    NASA Astrophysics Data System (ADS)

    Deng, X.; Kravtsov, V. E.; Shlyapnikov, G. V.; Santos, L.

    2018-03-01

    The transport of excitations between pinned particles in many physical systems may be mapped to single-particle models with power-law hopping, 1 /ra . For randomly spaced particles, these models present an effective peculiar disorder that leads to surprising localization properties. We show that in one-dimensional systems almost all eigenstates (except for a few states close to the ground state) are power-law localized for any value of a >0 . Moreover, we show that our model is an example of a new universality class of models with power-law hopping, characterized by a duality between systems with long-range hops (a <1 ) and short-range hops (a >1 ), in which the wave function amplitude falls off algebraically with the same power γ from the localization center.

  5. Mathematical Theory of Generalized Duality Quantum Computers Acting on Vector-States

    NASA Astrophysics Data System (ADS)

    Cao, Huai-Xin; Long, Gui-Lu; Guo, Zhi-Hua; Chen, Zheng-Li

    2013-06-01

    Following the idea of duality quantum computation, a generalized duality quantum computer (GDQC) acting on vector-states is defined as a tuple consisting of a generalized quantum wave divider (GQWD) and a finite number of unitary operators as well as a generalized quantum wave combiner (GQWC). It is proved that the GQWD and GQWC of a GDQC are an isometry and a co-isometry, respectively, and mutually dual. It is also proved that every GDQC gives a contraction, called a generalized duality quantum gate (GDQG). A classification of GDQCs is given and the properties of GDQGs are discussed. Some applications are obtained, including two orthogonal duality quantum computer algorithms for unsorted database search and an understanding of the Mach-Zehnder interferometer.

  6. The Uncertainty Principle, Virtual Particles and Real Forces

    ERIC Educational Resources Information Center

    Jones, Goronwy Tudor

    2002-01-01

    This article provides a simple practical introduction to wave-particle duality, including the energy-time version of the Heisenberg Uncertainty Principle. It has been successful in leading students to an intuitive appreciation of "virtual particles" and the role they play in describing the way ordinary particles, like electrons and protons, exert…

  7. Wave-particle interaction in the Faraday waves.

    PubMed

    Francois, N; Xia, H; Punzmann, H; Shats, M

    2015-10-01

    Wave motion in disordered Faraday waves is analysed in terms of oscillons or quasi-particles. The motion of these oscillons is measured using particle tracking tools and it is compared with the motion of fluid particles on the water surface. Both the real floating particles and the oscillons, representing the collective fluid motion, show Brownian-type dispersion exhibiting ballistic and diffusive mean squared displacement at short and long times, respectively. While the floating particles motion has been previously explained in the context of two-dimensional turbulence driven by Faraday waves, no theoretical description exists for the random walk type motion of oscillons. It is found that the r.m.s velocity ⟨μ̃(osc)⟩(rms) of oscillons is directly related to the turbulent r.m.s. velocity ⟨μ̃⟩(rms) of the fluid particles in a broad range of vertical accelerations. The measured ⟨μ̃(osc)⟩(rms) accurately explains the broadening of the frequency spectra of the surface elevation observed in disordered Faraday waves. These results suggest that 2D turbulence is the driving force behind both the randomization of the oscillons motion and the resulting broadening of the wave frequency spectra. The coupling between wave motion and hydrodynamic turbulence demonstrated here offers new perspectives for predicting complex fluid transport from the knowledge of wave field spectra and vice versa.

  8. From 3 d duality to 2 d duality

    NASA Astrophysics Data System (ADS)

    Aharony, Ofer; Razamat, Shlomo S.; Willett, Brian

    2017-11-01

    In this paper we discuss 3 d N = 2 supersymmetric gauge theories and their IR dualities when they are compactified on a circle of radius r, and when we take the 2 d limit in which r → 0. The 2 d limit depends on how the mass parameters are scaled as r → 0, and often vacua become infinitely distant in the 2 d limit, leading to a direct sum of different 2 d theories. For generic mass parameters, when we take the same limit on both sides of a duality, we obtain 2 d dualities (between gauge theories and/or Landau-Ginzburg theories) that pass all the usual tests. However, when there are non-compact branches the discussion is subtle because the metric on the moduli space, which is not controlled by supersymmetry, plays an important role in the low-energy dynamics after compactification. Generally speaking, for IR dualities of gauge theories, we conjecture that dualities involving non-compact Higgs branches survive. On the other hand when there is a non-compact Coulomb branch on at least one side of the duality, the duality fails already when the 3 d theories are compactified on a circle. Using the valid reductions we reproduce many known 2 d IR dualities, giving further evidence for their validity, and we also find new 2 d dualities.

  9. Dualities and emergent gravity: Gauge/gravity duality

    NASA Astrophysics Data System (ADS)

    de Haro, Sebastian

    2017-08-01

    In this paper I develop a framework for relating dualities and emergence: two notions that are close to each other but also exclude one another. I adopt the conception of duality as 'isomorphism', from the physics literature, cashing it out in terms of three conditions. These three conditions prompt two conceptually different ways in which a duality can be modified to make room for emergence; and I argue that this exhausts the possibilities for combining dualities and emergence (via coarse-graining). I apply this framework to gauge/gravity dualities, considering in detail three examples: AdS/CFT, Verlinde's scheme, and black holes. My main point about gauge/gravity dualities is that the theories involved, qua theories of gravity, must be background-independent. I distinguish two senses of background-independence: (i) minimalistic and (ii) extended. I argue that the former is sufficiently strong to allow for a consistent theory of quantum gravity; and that AdS/CFT is background-independent on this account; while Verlinde's scheme best fits the extended sense of background-independence. I argue that this extended sense should be applied with some caution: on pain of throwing the baby (general relativity) out with the bath-water (extended background-independence). Nevertheless, it is an interesting and potentially fruitful heuristic principle for quantum gravity theory construction. It suggests some directions for possible generalisations of gauge/gravity dualities. The interpretation of dualities is discussed; and the so-called 'internal' vs. 'external' viewpoints are articulated in terms of: (i) epistemic and metaphysical commitments; (ii) parts vs. wholes. I then analyse the emergence of gravity in gauge/gravity dualities in terms of the two available conceptualisations of emergence; and I show how emergence in AdS/CFT and in Verlinde's scenario differ from each other. Finally, I give a novel derivation of the Bekenstein-Hawking black hole entropy formula based on

  10. Particle motions beneath irrotational water waves

    NASA Astrophysics Data System (ADS)

    Bakhoday-Paskyabi, Mostafa

    2015-08-01

    Neutral and buoyant particle motions in an irrotational flow are investigated under the passage of linear, nonlinear gravity, and weakly nonlinear solitary waves at a constant water depth. The developed numerical models for the particle trajectories in a non-turbulent flow incorporate particle momentum, size, and mass (i.e., inertial particles) under the influence of various surface waves such as Korteweg-de Vries waves which admit a three parameter family of periodic cnoidal wave solutions. We then formulate expressions of mass-transport velocities for the neutral and buoyant particles. A series of test cases suggests that the inertial particles possess a combined horizontal and vertical drifts from the locations of their release, with a fall velocity as a function of particle material properties, ambient flow, and wave parameters. The estimated solutions exhibit good agreement with previously explained particle behavior beneath progressive surface gravity waves. We further investigate the response of a neutrally buoyant water parcel trajectories in a rotating fluid when subjected to a series of wind and wave events. The results confirm the importance of the wave-induced Coriolis-Stokes force effect in both amplifying (destroying) the pre-existing inertial oscillations and in modulating the direction of the flow particles. Although this work has mainly focused on wave-current-particle interaction in the absence of turbulence stochastic forcing effects, the exercise of the suggested numerical models provides additional insights into the mechanisms of wave effects on the passive trajectories for both living and nonliving particles such as swimming trajectories of plankton in non-turbulent flows.

  11. Data processing in Software-type Wave-Particle Interaction Analyzer onboard the Arase satellite

    NASA Astrophysics Data System (ADS)

    Hikishima, Mitsuru; Kojima, Hirotsugu; Katoh, Yuto; Kasahara, Yoshiya; Kasahara, Satoshi; Mitani, Takefumi; Higashio, Nana; Matsuoka, Ayako; Miyoshi, Yoshizumi; Asamura, Kazushi; Takashima, Takeshi; Yokota, Shoichiro; Kitahara, Masahiro; Matsuda, Shoya

    2018-05-01

    The software-type wave-particle interaction analyzer (S-WPIA) is an instrument package onboard the Arase satellite, which studies the magnetosphere. The S-WPIA represents a new method for directly observing wave-particle interactions onboard a spacecraft in a space plasma environment. The main objective of the S-WPIA is to quantitatively detect wave-particle interactions associated with whistler-mode chorus emissions and electrons over a wide energy range (from several keV to several MeV). The quantity of energy exchanges between waves and particles can be represented as the inner product of the wave electric-field vector and the particle velocity vector. The S-WPIA requires accurate measurement of the phase difference between wave and particle gyration. The leading edge of the S-WPIA system allows us to collect comprehensive information, including the detection time, energy, and incoming direction of individual particles and instantaneous-wave electric and magnetic fields, at a high sampling rate. All the collected particle and waveform data are stored in the onboard large-volume data storage. The S-WPIA executes calculations asynchronously using the collected electric and magnetic wave data, data acquired from multiple particle instruments, and ambient magnetic-field data. The S-WPIA has the role of handling large amounts of raw data that are dedicated to calculations of the S-WPIA. Then, the results are transferred to the ground station. This paper describes the design of the S-WPIA and its calculations in detail, as implemented onboard Arase.[Figure not available: see fulltext.

  12. System Design of One-chip Wave Particle Interaction Analyzer for SCOPE mission.

    NASA Astrophysics Data System (ADS)

    Fukuhara, Hajime; Ueda, Yoshikatsu; Kojima, Hiro; Yamakawa, Hiroshi

    In past science spacecrafts such like GEOTAIL, we usually capture electric and magnetic field waveforms and observe energetic eletron and ion particles as velocity distributions by each sensor. We analyze plasma wave-particle interactions by these respective data and the discussions are sometimes restricted by the difference of time resolution and by the data loss in desired regions. One-chip Wave Particle Interaction Analyzer (OWPIA) conducts direct quantitative observations of wave-particle interaction by direct 'E dot v' calculation on-board. This new instruments have a capability to use all plasma waveform data and electron particle informations. In the OWPIA system, we have to calibrate the digital observation data and transform the same coordinate system. All necessary calculations are processed in Field Programmable Gate Array(FPGA). In our study, we introduce a basic concept of the OWPIA system and a optimization method for each calculation functions installed in FPGA. And we also discuss the process speed, the FPGA utilization efficiency, the total power consumption.

  13. Wave-particle interactions in rotating mirrorsa)

    NASA Astrophysics Data System (ADS)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2011-05-01

    Wave-particle interactions in E ×B rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation. Energy may also be transferred from the electric field to particles or waves, which may be useful for ion heating and energy generation.

  14. Taking an electron-magnon duality shortcut from electron to magnon transport

    NASA Astrophysics Data System (ADS)

    Mook, Alexander; Göbel, Börge; Henk, Jürgen; Mertig, Ingrid

    2018-04-01

    The quasiparticles in insulating magnets are the charge-neutral magnons, whose magnetic moments couple to electromagnetic fields. For collinear easy-axis magnets, this coupling can be mapped elegantly onto the scenario of charged particles in electromagnetic fields. From this mapping we obtain equations of motion for magnon wave packets equal to those of electron wave packets in metals. Thus, well-established electronic transport phenomena can be carried over to magnons: this duality shortcut facilitates the discussion of magnon transport. We identify the magnon versions of normal and anomalous Hall, Nernst, Ettingshausen, and Righi-Leduc effects. They are discussed for selected types of easy-axis magnets: ferromagnets, antiferromagnets, and ferrimagnets. Besides a magnon Wiedemann-Franz law and the magnon counterpart of the negative magnetoresistance of electrons in Weyl semimetals, we predict that certain low-symmetry ferrimagnets exhibit a nonlinear version of the anomalous magnon Hall-effect family.

  15. Internal waves interacting with particles in suspension

    NASA Astrophysics Data System (ADS)

    Micard, Diane

    2016-04-01

    Internal waves are produced as a consequence of the dynamic balance between buoy- ancy and gravity forces when a particle of fluid is vertically displaced in a stable stratified environment. Geophysical systems such as ocean and atmosphere are naturally stratified and therefore suitable for internal waves to propagate. Furthermore, these two environ- ments stock a vast amount of particles in suspension, which present a large spectrum of physical properties (size, density, shape), and can be organic, mineral or pollutant agents. Therefore, it is reasonable to expect that internal waves will have an active effect over the dynamics of these particles. In order to study the interaction of internal waves and suspended particles, an ide- alized experimental setup has been implemented. A linear stratification is produced in a 80×40×17 cm3 tank, in which two dimensional plane waves are created thanks to the inno- vative wave generator GOAL. In addition, a particle injector has been developed to produce a vertical column of particles within the fluid, displaying the same two-dimensional sym- metry as the waves. The particle injector allows to control the volumic fraction of particles and the size of the column. The presence of internal waves passing through the column of particles allowed to observe two main effects: The column oscillates around an equilibrium position (which is observed in both, the contours an the interior of the column), and the column is displaced as a whole. The column is displaced depending on the characteristics of the column, the gradient of the density, and the intensity and frequency of the wave. When displaced, the particles within the column are sucked towards the source of waves. The direction of the displacement of the column is explained by computing the effect of the Lagrangian drift generated by the wave over the time the particles stay in the wave beam before settling.

  16. Wave-Particle Dualism in Action

    NASA Astrophysics Data System (ADS)

    Schleich, Wolfgang P.

    The wave-particle dualism, that is the wave nature of particles and the particle nature of light together with the uncertainty relation of Werner Heisenberg and the principle of complementarity formulated by Niels Bohr represent pillars of quantum theory. We provide an introduction into these fascinating yet strange aspects of the microscopic world and summarize key experiments confirming these concepts so alien to our daily life.

  17. Dynamics of anisotropic particles under waves

    NASA Astrophysics Data System (ADS)

    Dibenedetto, Michelle; Ouellette, Nicholas; Koseff, Jeffrey

    2017-11-01

    We present results on anisotropic particles in wavy flows in order to gain insight into the transport and mixing of microplastic particles in the near-shore environment. From theory and numerical simulations, we find that the rate of alignment of the particles is not constant and depends strongly on their initial orientation; thus, variations in initial particle orientation result in dispersion of anisotropic-particle plumes. We find that this dispersion is a function of the particle's eccentricity and the ratio of the settling and wave time scales. Experiments in which non-spherical particles of various shapes are released under surface gravity waves were also performed. Our main goal is to explore the effects of particle shape under various wave scenarios. We vary the aspect ratio of the particle in our experiments while holding other variables constant. Our results demonstrate that particle shape can be important when predicting transport.

  18. Software-type Wave-Particle Interaction Analyzer on board the ARASE satellite

    NASA Astrophysics Data System (ADS)

    Katoh, Y.; Kojima, H.; Hikishima, M.; Takashima, T.; Asamura, K.; Miyoshi, Y.; Kasahara, Y.; Kasahara, S.; Mitani, T.; Higashio, N.; Matsuoka, A.; Ozaki, M.; Yagitani, S.; Yokota, S.; Matsuda, S.; Kitahara, M.; Shinohara, I.

    2017-12-01

    Wave-Particle Interaction Analyzer (WPIA) is a new type of instrumentation recently proposed by Fukuhara et al. (2009) for direct and quantitative measurements of wave-particle interactions. WPIA computes an inner product W(ti) = qE(ti)·vi, where ti is the detection timing of the i-th particle, E(ti) is the wave electric field vector at ti, and q and vi is the charge and the velocity vector of the i-th particle, respectively. Since W(ti) is the gain or the loss of the kinetic energy of the i-th particle, by accumulating W for detected particles, we obtain the net amount of the energy exchange in the region of interest. Software-type WPIA (S-WPIA) is installed in the ARASE satellite as a software function running on the mission data processor. S-WPIA on board the ARASE satellite uses electromagnetic field waveform measured by Waveform Capture (WFC) of Plasma Wave Experiment (PWE) and velocity vectors detected by Medium-Energy Particle Experiments - Electron Analyzer (MEP-e), High-Energy Electron Experiments (HEP), and Extremely High-Energy Electron Experiment (XEP). The prime target of S-WPIA is the measurement of the energy exchange between whistler-mode chorus emissions and energetic electrons in the inner magnetosphere. It is essential for S-WPIA to synchronize instruments in the time resolution better than the time scale of wave-particle interactions. Since the typical frequency of chorus emissions is a few kHz in the inner magnetosphere, the time resolution better than 10 micro-sec should be realized so as to measure the relative phase angle between wave and velocity vectors with the accuracy enough to detect the sign of W correctly. In the ARASE satellite, a dedicated system has been developed in order to realize the required time resolution for the inter-instruments communications. In this presentation, we show the principle of the WPIA and its significance as well as the implementation of S-WPIA on the ARASE satellite.

  19. Particle response to shock waves in solids: dynamic witness plate/PIV method for detonations

    NASA Astrophysics Data System (ADS)

    Murphy, Michael J.; Adrian, Ronald J.

    2007-08-01

    Studies using transparent, polymeric witness plates consisting of polydimethlysiloxane (PDMS) have been conducted to measure the output of exploding bridge wire (EBW) detonators and exploding foil initiators (EFI). Polymeric witness plates are utilized to alleviate particle response issues that arise in gaseous flow fields containing shock waves and to allow measurements of shock-induced material velocities to be made using particle image velocimetry (PIV). Quantitative comparisons of velocity profiles across the shock waves in air and in PDMS demonstrate the improved response achieved by the dynamic witness plate method. Schlieren photographs complement the analysis through direct visualization of detonator-induced shock waves in the witness plates.

  20. The Influence of Trapped Particles on the Parametric Decay Instability of Near-Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Affolter, M.; Anderegg, F.; Dubin, D. H. E.; Driscoll, C. F.

    2017-10-01

    We present quantitative measurements of a decay instability to lower frequencies of near-acoustic waves. These experiments are conducted on pure ion plasmas confined in a cylindrical Penning-Malmberg trap. The axisymmetric, standing plasma waves have near-acoustic dispersion, discretized by the axial wave number kz =mz(π /Lp) . The nonlinear coupling rates are measured between large amplitude mz = 2 (pump) waves and small amplitude mz = 1 (daughter) waves, which have a small frequency detuning Δω = 2ω1 -ω2 . Classical 3-wave parametric coupling rates are proportional to pump wave amplitude as Γ (δn2 /n0) , with oscillatory energy exchange for Γ < Δω / 2 and decay instability for Γ > Δω / 2 . Experiments on cold plasmas agree quantitatively for oscillatory energy exchange, and agree within a factor-of-two for decay instability rates. However, nascent theory suggest that this latter agreement is merely fortuitous, and that the instability mechanism is trapped particles. Experiments at higher temperatures show that trapped particles reduce the instability threshold below classical 3-wave theory predictions. Supported by NSF Grant PHY-1414570, and DOE Grants DE-SC0002451 and DE-SC0008693. M. Affolter is supported by the DOE FES Postdoctoral Research Program administered by ORISE for the DOE. ORISE is managed by ORAU under DOE Contract Number DE-SC0014664.

  1. Invasion-wave-induced first-order phase transition in systems of active particles.

    PubMed

    Ihle, Thomas

    2013-10-01

    An instability near the transition to collective motion of self-propelled particles is studied numerically by Enskog-like kinetic theory. While hydrodynamics breaks down, the kinetic approach leads to steep solitonlike waves. These supersonic waves show hysteresis and lead to an abrupt jump of the global order parameter if the noise level is changed. Thus they provide a mean-field mechanism to change the second-order character of the phase transition to first order. The shape of the wave is shown to follow a scaling law and to quantitatively agree with agent-based simulations.

  2. Mechanism of travelling-wave transport of particles

    NASA Astrophysics Data System (ADS)

    Kawamoto, Hiroyuki; Seki, Kyogo; Kuromiya, Naoyuki

    2006-03-01

    Numerical and experimental investigations have been carried out on transport of particles in an electrostatic travelling field. A three-dimensional hard-sphere model of the distinct element method was developed to simulate the dynamics of particles. Forces applied to particles in the model were the Coulomb force, the dielectrophoresis force on polarized dipole particles in a non-uniform field, the image force, gravity and the air drag. Friction and repulsion between particle-particle and particle-conveyer were included in the model to replace initial conditions after mechanical contacts. Two kinds of experiments were performed to confirm the model. One was the measurement of charge of particles that is indispensable to determine the Coulomb force. Charge distribution was measured from the locus of free-fallen particles in a parallel electrostatic field. The averaged charge of the bulk particle was confirmed by measurement with a Faraday cage. The other experiment was measurements of the differential dynamics of particles on a conveyer consisting of parallel electrodes to which a four-phase travelling electrostatic wave was applied. Calculated results agreed with measurements, and the following characteristics were clarified. (1) The Coulomb force is the predominant force to drive particles compared with the other kinds of forces, (2) the direction of particle transport did not always coincide with that of the travelling wave but changed partially. It depended on the frequency of the travelling wave, the particle diameter and the electric field, (3) although some particles overtook the travelling wave at a very low frequency, the motion of particles was almost synchronized with the wave at the low frequency and (4) the transport of some particles was delayed to the wave at medium frequency; the majority of particles were transported backwards at high frequency and particles were not transported but only vibrated at very high frequency.

  3. The birth of wave mechanics (1923-1926)

    NASA Astrophysics Data System (ADS)

    Aspect, Alain; Villain, Jacques

    2017-11-01

    In 1923, in three articles published in the Comptes Rendus of the Académie des Sciences, Louis de Broglie proposed the concept of wave-particle duality. Physicists from many countries seized upon this idea. In particular, Schrödinger developed de Broglie's qualitative idea by writing down the equation that the wave must satisfy in the non-relativistic approximation. A relativistic version of this equation was proposed in 1926 by several scientists, and other ones found a solution to the Schrödinger equation as an expansion in powers of the Planck constant.

  4. Weak values, quantum trajectories, and the cavity-QED experiment on wave-particle correlation

    NASA Astrophysics Data System (ADS)

    Wiseman, H. M.

    2002-03-01

    Weak values as introduced by Aharonov, Albert, and Vaidman (AAV) are ensemble-average values for the results of weak measurements. They are interesting when the ensemble is preselected on a particular initial state and postselected on a particular final measurement result. It is shown that weak values arise naturally in quantum optics, as weak measurements occur whenever an open system is monitored (as by a photodetector). The quantum-trajectory theory is used to derive a generalization of AAV's formula to include (a) mixed initial conditions, (b) nonunitary evolution, (c) a generalized (nonprojective) final measurement, and (d) a non-back-action-evading weak measurement. This theory is applied to the recent cavity-QED experiment demonstrating wave particle duality [G. T. Foster, L. A. Orozco, H. M. Castro-Beltran, and H. J. Carmichael, Phys. Rev. Lett. 85, 3149 (2000)]. It is shown that the ``fractional-order'' correlation function measured in that experiment can be recast as a weak value in a form as simple as that introduced by AAV.

  5. Consequences of repeated discovery and benign neglect of non-interaction of waves (NIW)

    NASA Astrophysics Data System (ADS)

    Roychoudhuri, ChandraSekhar

    2017-08-01

    This paper presents the historical background behind the repeated discovery and repeated ignoring of the generic important property of all propagating waves, the Non-Interaction of Waves (NIW). The focus will be on the implications of NIW in most of the major optical phenomena with brief hints of importance. We argue that the prevailing postulate of wave-particle duality becomes unnecessary, once we accept NIW. Semi-classical model of treating light-matter interactions should be the preferred approach since the quantumness actually arises from within the structure of the energy levels (bands) in materials. Waves, and wave equations, do not support bullet-like propagation. We follow the historical trend starting from the tenth century physicist Alhazen, to the seventeenth century Newton and Huygens, then to the nineteenth century Young and Fresnel. Then we jump to twentieth century physicists Planck, Einstein, Bose, Dirac and Feynman. Had we recognized and appreciated NIW property of waves from the time of Alhazen, the evolutionary history of physics would have been dramatically different from what we have today. The prevailing dominance of the postulate of wave-particle duality is keeping us confused from seeking out actual reality; and hence, we should abandon this concept and search out better models. The paper demonstrates that NIW provides us with a platform for deeper understanding of the nature of EM waves that we have missed; it is not just semantics.

  6. PARTICLE SCATTERING OFF OF RIGHT-HANDED DISPERSIVE WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreiner, C.; Kilian, P.; Spanier, F., E-mail: cschreiner@astro.uni-wuerzburg.de

    Resonant scattering of fast particles off low frequency plasma waves is a major process determining transport characteristics of energetic particles in the heliosphere and contributing to their acceleration. Usually, only Alfvén waves are considered for this process, although dispersive waves are also present throughout the heliosphere. We investigate resonant interaction of energetic electrons with dispersive, right-handed waves. For the interaction of particles and a single wave a variable transformation into the rest frame of the wave can be performed. Here, well-established analytic models derived in the framework of magnetostatic quasi-linear theory can be used as a reference to validate simulationmore » results. However, this approach fails as soon as several dispersive waves are involved. Based on analytic solutions modeling the scattering amplitude in the magnetostatic limit, we present an approach to modify these equations for use in the plasma frame. Thereby we aim at a description of particle scattering in the presence of several waves. A particle-in-cell code is employed to study wave–particle scattering on a micro-physically correct level and to test the modified model equations. We investigate the interactions of electrons at different energies (from 1 keV to 1 MeV) and right-handed waves with various amplitudes. Differences between model and simulation arise in the case of high amplitudes or several waves. Analyzing the trajectories of single particles we find no microscopic diffusion in the case of a single plasma wave, although a broadening of the particle distribution can be observed.« less

  7. Particle Acceleration by Cme-driven Shock Waves

    NASA Technical Reports Server (NTRS)

    Reames, Donald V.

    1999-01-01

    In the largest solar energetic particle (SEP) events, acceleration occurs at shock waves driven out from the Sun by coronal mass ejections (CMEs). Peak particle intensities are a strong function of CME speed, although the intensities, spectra, and angular distributions of particles escaping the shock are highly modified by scattering on Alfven waves produced by the streaming particles themselves. Element abundances vary in complex ways because ions with different values of Q/A resonate with different parts of the wave spectrum, which varies with space and time. Just recently, we have begun to model these systematic variations theoretically and to explore other consequences of proton-generated waves.

  8. Wave-Particle Energy Exchange Directly Observed in a Kinetic Alfven-Branch Wave

    NASA Technical Reports Server (NTRS)

    Gershman, Daniel J.; F-Vinas, Adolfo; Dorelli, John C.; Boardsen, Scott A. (Inventor); Avanov, Levon A.; Bellan, Paul M.; Schwartz, Steven J.; Lavraud, Benoit; Coffey, Victoria N.; Chandler, Michael O.; hide

    2017-01-01

    Alfven waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres, and astrophysical systems, but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASAs Magnetospheric Multiscale (MMS) mission, we utilize Earths magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfven wave. Electrons confined between adjacent wave peaks may have contributed to saturation of damping effects via non-linear particle trapping. The investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.

  9. Schroedinger's Wave Structure of Matter (WSM)

    NASA Astrophysics Data System (ADS)

    Wolff, Milo; Haselhurst, Geoff

    2009-10-01

    The puzzling electron is due to the belief that it is a discrete particle. Einstein deduced this structure was impossible since Nature does not allow the discrete particle. Clifford (1876) rejected discrete matter and suggested structures in `space'. Schroedinger, (1937) also eliminated discrete particles writing: What we observe as material bodies and forces are nothing but shapes and variations in the structure of space. Particles are just schaumkommen (appearances). He rejected wave-particle duality. Schroedinger's concept was developed by Milo Wolff and Geoff Haselhurst (SpaceAndMotion.com) using the Scalar Wave Equation to find spherical wave solutions in a 3D quantum space. This WSM, the origin of all the Natural Laws, contains all the electron's properties including the Schroedinger Equation. The origin of Newton's Law F=ma is no longer a puzzle; It originates from Mach's principle of inertia (1883) that depends on the space medium and the WSM. Carver Mead (1999) at CalTech used the WSM to design Intel micro-chips correcting errors of Maxwell's magnetic Equations. Applications of the WSM also describe matter at molecular dimensions: alloys, catalysts, biology and medicine, molecular computers and memories. See ``Schroedinger's Universe'' - at Amazon.com

  10. On the Presentation of Wave Phenomena of Electrons with the Young-Feynman Experiment

    ERIC Educational Resources Information Center

    Matteucci, Giorgio

    2011-01-01

    The Young-Feynman two-hole interferometer is widely used to present electron wave-particle duality and, in particular, the buildup of interference fringes with single electrons. The teaching approach consists of two steps: (i) electrons come through only one hole but diffraction effects are disregarded and (ii) electrons come through both holes…

  11. Dualities in String Cosmology

    NASA Astrophysics Data System (ADS)

    Meissner, K. A.

    We describe in this chapter a set of duality symmetries present in the string-inspired theory of gravity coupled to the dilaton. These dualities are the cornerstones of String Cosmology, which provides alternatives to the usual inflation scenario. The crucial role of Prof. Gabriele Veneziano in the discovery and the development of string dualities is described and emphasized.

  12. Wave-Particle Interactions and Particle Acceleration in Turbulent Plasmas: Hybrid Simulations

    NASA Astrophysics Data System (ADS)

    Kucharek, Harald; Pogorelov, Nikolai; Mueller, Hans; Gamayunov, Konstantin; Farrugia, Charles

    2015-04-01

    Wave-particle interactions and acceleration processes are present in all key regions inside and outside of the heliosphere. Spacecraft observations measure ion distributions and accelerated ion populations, which are the result of one or several processes. For instance STEREO measures energetic particles associated with interplanetary discontinuities and in the solar wind. Voyager and IBEX provide unique data of energetic particles from the termination shock and the inner and outer heliopause. The range of plasma conditions covered by observations is enormous. However, the physical processes causing particle acceleration and wave-particle interaction and determining the particle distributions are still unknown. Currently two mechanisms, the so-called pumping mechanism (Fisk and Gloeckler, 2010) and merging/contracting island (Fermo, Drake & Swisdak, 2010) are discussed as promising models. In order to determine these individual processes, numerical models or theoretical considerations are needed. Hybrid simulations, which include all kinetic processes self-consistently on the ion level, are a very proven, powerful tool to investigate wave-particle interaction, turbulence, and phase-space evolution of pickup and solar wind ions. In the framework of this study we performed 3D multi-species hybrid simulations for an ion/ion beam instability to study the temporal evolution of ion distributions, their stability, and the influence of self-generated waves. We investigated the energization of ions downstream of interplanetary discontinuities and shocks and downstream of the termination shock, the turbulence, and growth rate of instabilities and compared the results with theoretical predictions. The simulations show that ions can be accelerated downstream of collisionless shocks by trapping of charged particles in coherent wave fronts.

  13. Aspects of String Dualities

    NASA Astrophysics Data System (ADS)

    Orgera, Jacopo

    In this thesis we investigate some aspects of String Dualities. In particular, in the context of Twistor-String/Field Theories duality, we present some partial results toward the understanding of Conformal Supergravity amplitudes. Also, in the context of AdS/CFT duality, we investigate: the role of Euclidean Wormholes in quantum de-coherence and the semiclassical decay of certain non-supersimmetric vacua.

  14. A master bosonization duality

    NASA Astrophysics Data System (ADS)

    Jensen, Kristan

    2018-01-01

    We conjecture a new sequence of dualities between Chern-Simons gauge theories simultaneously coupled to fundamental bosons and fermions. These dualities reduce to those proposed by Aharony when the number of bosons or fermions is zero. Our conjecture passes a number of consistency checks. These include the matching of global symmetries and consistency with level/rank duality in massive phases.

  15. Study of transionospheric signal scintillation: Quasi- particle approach

    NASA Astrophysics Data System (ADS)

    Lyle, Ruthie D.

    1998-07-01

    A quasi-particle approach is applied to study amplitude scintillation of transionospheric signals caused by Bottomside Sinusoidal (BSS) irregularities. The quasi- particle method exploits wave-particle duality, viewing the wave as a distribution of quasi-particles. This is accomplished by transforming the autocorrelation of the wave function into a Wigner distribution function, which serves as a distribution of quasi-particles in the (/vec r,/ /vec k) phase space. The quasi-particle distribution at any instant of time represents the instantaneous state of the wave. Scattering of the signal by the ionospheric irregularities is equivalent to the evolution of the quasi-particle distribution, due to the collision of the quasi-particles with objects arising from the presence of the BSS irregularities. Subsequently, the perturbed quasi-particle distribution facilitates the computation of average space time propagation properties of the wave. Thus, the scintillation index S4 is determined. Incorporation of essential BSS features in the analysis is accomplished by analytically modeling the power spectrum of the BSS irregularities measured in-situ by the low orbiting Atmosphere-E (AE - E) Satellite. The effect of BSS irregularities on transionospheric signals has been studied. The numerical results agree well with multi-satellite scintillation observations made at Huancayo Peru in close time correspondence with BSS irregularities observed by the AE - E satellite over a few nights (December 8-11, 1979). During this period, the severity of the scintillation varied from moderate to intense, S4 = 0.1-0.8.

  16. Optical vortex knots – one photon at a time

    PubMed Central

    Tempone-Wiltshire, Sebastien J.; Johnstone, Shaun P.; Helmerson, Kristian

    2016-01-01

    Feynman described the double slit experiment as “a phenomenon which is impossible, absolutely impossible, to explain in any classical way and which has in it the heart of quantum mechanics”. The double-slit experiment, performed one photon at a time, dramatically demonstrates the particle-wave duality of quantum objects by generating a fringe pattern corresponding to the interference of light (a wave phenomenon) from two slits, even when there is only one photon (a particle) at a time passing through the apparatus. The particle-wave duality of light should also apply to complex three dimensional optical fields formed by multi-path interference, however, this has not been demonstrated. Here we observe particle-wave duality of a three dimensional field by generating a trefoil optical vortex knot – one photon at a time. This result demonstrates a fundamental physical principle, that particle-wave duality implies interference in both space (between spatially distinct modes) and time (through the complex evolution of the superposition of modes), and has implications for topologically entangled single photon states, orbital angular momentum multiplexing and topological quantum computing. PMID:27087642

  17. Quantitative organic vapor-particle sampler

    DOEpatents

    Gundel, Lara; Daisey, Joan M.; Stevens, Robert K.

    1998-01-01

    A quantitative organic vapor-particle sampler for sampling semi-volatile organic gases and particulate components. A semi-volatile organic reversible gas sorbent macroreticular resin agglomerates of randomly packed microspheres with the continuous porous structure of particles ranging in size between 0.05-10 .mu.m for use in an integrated diffusion vapor-particle sampler.

  18. Schroedinger's Wave Structure of Matter (WSM)

    NASA Astrophysics Data System (ADS)

    Wolff, Milo

    2009-05-01

    The puzzling electron is due to the belief that it is a discrete particle. Einstein deduced this structure impossible since Nature does not match the discrete particle. Clifford (1876) rejected discrete matter and suggested structures in `space'. Schroedinger, (1937) also eliminated discrete particles writing: What we observe as material bodies and forces are nothing but shapes and variations in the structure of space. Particles are just schaumkommen (appearances). He rejected wave-particle duality. Schroedinger's concept was developed by Milo Wolff and Geoff Haselhurst (http://www.SpaceAndMotion.com) using the Scalar Wave Equation to find spherical wave solutions in a 3D quantum space. This WSM is the origin of all the Natural Laws; thus it contains all the electron's properties including the Schroedinger Equation. The origin of Newton's Law F=ma is no longer a puzzle; it is shown to originate from Mach's principle of inertia (1883) that depends on the space medium. Carver Mead (1999) applied the WSM to design Intel micro-chips correcting errors of Maxwell's magnetic Equations. Applications of the WSM describe matter at molecular dimensions: alloys, catalysts, the mechanisms of biology and medicine, molecular computers and memories. See http://www.amazon.com/Schro at Amazon.com.

  19. Interaction of a shock wave with an array of particles and effect of particles on the shock wave weakening

    NASA Astrophysics Data System (ADS)

    Bulat, P. V.; Ilyina, T. E.; Volkov, K. N.; Silnikov, M. V.; Chernyshov, M. V.

    2017-06-01

    Two-phase systems that involve gas-particle or gas-droplet flows are widely used in aerospace and power engineering. The problems of weakening and suppression of detonation during saturation of a gas or liquid flow with the array of solid particles are considered. The tasks, associated with the formation of particles arrays, dust lifting behind a travelling shock wave, ignition of particles in high-speed and high-temperature gas flows are adjoined to safety of space flight. The mathematical models of shock wave interaction with the array of solid particles are discussed, and numerical methods are briefly described. The numerical simulations of interaction between sub- and supersonic flows and an array of particles being in motionless state at the initial time are performed. Calculations are carried out taking into account the influence that the particles cause on the flow of carrier gas. The results obtained show that inert particles significantly weaken the shock waves up to their suppression, which can be used to enhance the explosion safety of spacecrafts.

  20. Modeling Water Waves with Smoothed Particle Hydrodynamics

    DTIC Science & Technology

    2011-09-30

    Lagrangian nature of SPH allows the modeling of wave breaking, surf zones, ship waves, and wave-structure interaction, where the free surface becomes...particle detection--To study free surface flows and analyze their complex deformations, we need to know which particles are located on the free surface ...Hydrodynamics is proving to be a competent modeling scheme for free surface flows in two and three dimensions. As the GPU hardware improves, it is

  1. Wave-particle energy exchange directly observed in a kinetic Alfvén-branch wave

    PubMed Central

    Gershman, Daniel J.; F-Viñas, Adolfo; Dorelli, John C.; Boardsen, Scott A.; Avanov, Levon A.; Bellan, Paul M.; Schwartz, Steven J.; Lavraud, Benoit; Coffey, Victoria N.; Chandler, Michael O.; Saito, Yoshifumi; Paterson, William R.; Fuselier, Stephen A.; Ergun, Robert E.; Strangeway, Robert J.; Russell, Christopher T.; Giles, Barbara L.; Pollock, Craig J.; Torbert, Roy B.; Burch, James L.

    2017-01-01

    Alfvén waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales, they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres and astrophysical systems but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASA's Magnetospheric Multiscale (MMS) mission, we utilize Earth's magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfvén wave. Electrons confined between adjacent wave peaks may have contributed to saturation of damping effects via nonlinear particle trapping. The investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations. PMID:28361881

  2. Wave-particle energy exchange directly observed in a kinetic Alfvén-branch wave.

    PubMed

    Gershman, Daniel J; F-Viñas, Adolfo; Dorelli, John C; Boardsen, Scott A; Avanov, Levon A; Bellan, Paul M; Schwartz, Steven J; Lavraud, Benoit; Coffey, Victoria N; Chandler, Michael O; Saito, Yoshifumi; Paterson, William R; Fuselier, Stephen A; Ergun, Robert E; Strangeway, Robert J; Russell, Christopher T; Giles, Barbara L; Pollock, Craig J; Torbert, Roy B; Burch, James L

    2017-03-31

    Alfvén waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales, they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres and astrophysical systems but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASA's Magnetospheric Multiscale (MMS) mission, we utilize Earth's magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfvén wave. Electrons confined between adjacent wave peaks may have contributed to saturation of damping effects via nonlinear particle trapping. The investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.

  3. A duality web in condensed matter systems

    NASA Astrophysics Data System (ADS)

    Ma, Chen-Te

    2018-03-01

    We study various dualities in condensed matter systems. The dualities in three dimensions can be derived from a conjecture of a duality between a Dirac fermion theory and an interacting scalar field theory at a Wilson-Fisher fixed point and zero temperature in three dimensions. We show that the dualities are not affected by non-trivial holonomy, use a mean-field method to study the dualities, and discuss the dualities at a finite temperature. Finally, we combine a bulk theory, which is an Abelian p-form theory with a theta term in 2 p + 2 dimensions, and a boundary theory, which is a 2 p + 1 dimensional theory, to discuss constraints and difficulties of a 2 p + 1 dimensional duality web.

  4. Wave-particle energy exchange directly observed in a kinetic Alfvén-branch wave

    DOE PAGES

    Gershman, Daniel J.; F-Viñas, Adolfo; Dorelli, John C.; ...

    2017-03-31

    Alfvén waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales, they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres and astrophysical systems but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASA’s Magnetospheric Multiscale (MMS) mission, we utilize Earth’s magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfvén wave. Electronsmore » confined between adjacent wave peaks may have contributed to saturation of damping effects via nonlinear particle trapping. As a result, the investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.« less

  5. Wave-particle energy exchange directly observed in a kinetic Alfvén-branch wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gershman, Daniel J.; F-Viñas, Adolfo; Dorelli, John C.

    Alfvén waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales, they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres and astrophysical systems but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASA’s Magnetospheric Multiscale (MMS) mission, we utilize Earth’s magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfvén wave. Electronsmore » confined between adjacent wave peaks may have contributed to saturation of damping effects via nonlinear particle trapping. As a result, the investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.« less

  6. Electromagnetic duality and entanglement anomalies

    NASA Astrophysics Data System (ADS)

    Donnelly, William; Michel, Ben; Wall, Aron C.

    2017-08-01

    Duality is an indispensable tool for describing the strong-coupling dynamics of gauge theories. However, its actual realization is often quite subtle: quantities such as the partition function can transform covariantly, with degrees of freedom rearranged in a nonlocal fashion. We study this phenomenon in the context of the electromagnetic duality of Abelian p -forms. A careful calculation of the duality anomaly on an arbitrary D -dimensional manifold shows that the effective actions agree exactly in odd D , while in even D they differ by a term proportional to the Euler number. Despite this anomaly, the trace of the stress tensor agrees between the dual theories. We also compute the change in the vacuum entanglement entropy under duality, relating this entanglement anomaly to the duality of an "edge mode" theory in two fewer dimensions. Previous work on this subject has led to conflicting results; we explain and resolve these discrepancies.

  7. Wave particle interactions in Jupiter's magnetosphere: Implications for auroral and magnetospheric particle distributions

    NASA Astrophysics Data System (ADS)

    Saur, Joachim; Schreiner, Anne; Barry, Mauk; Clark, George; Kollman, Peter

    2017-04-01

    We investigate the occurrence and the role of wave particle interaction processes, i.e., Landau and cyclotron damping, in Jupiter's magnetosphere. Therefore we calculate kinetic length and temporal scales, which we cross-compare at various regions within Jupiter's magnetosphere. Based on these scales, we investigate the roles of possible wave particle mechanisms in each region, e.g., Jupiter's plasma sheet, the auroral acceleration region and the polar ionosphere. We thereby consider that the magnetospheric regions are coupled through convective transport, Alfven and other wave modes. We particularly focus on the role of kinetic Alfven waves in contributing to Jupiter's aurora. Our results will aid the interpretation of particle distribution functions measured by the JEDI instrument onboard the JUNO spacecraft.

  8. Pushing Particles with Waves: Current Drive and α-Channeling

    DOE PAGES

    FISCH, Nathaniel J.

    2016-01-01

    It can be advantageous to push particles with waves in tokamaks or other magnetic confinement devices, relying on wave-particle resonances to accomplish specific goals. Waves that damp on electrons or ions in toroidal fusion devises can drive currents if the waves are launched with toroidal asymmetry. Theses currents are important for tokamaks, since they operate in the absence of an electric field with curl, enabling steady state operation. The lower hybrid wave and the electron cyclotron wave have been demonstrated to drive significant currents. Non-inductive current also stabilizes deleterious tearing modes. Waves can also be used to broker the energymore » transfer between energetic alpha particles and the background plasma. Alpha particles born through fusion reactions in a tokamak reactor tend to slow down on electrons, but that could take up to hundreds of milliseconds. Before that happens, the energy in these alpha particles can destabilize on collisionless timescales toroidal Alfven modes and other waves, in a way deleterious to energy confinement. However, it has been speculated that this energy might be instead be channeled instead into useful energy, that heats fuel ions or drives current. Furthermore, an important question is the extent to which these effects can be accomplished together.« less

  9. Trivial solutions of generalized supergravity vs non-abelian T-duality anomaly

    NASA Astrophysics Data System (ADS)

    Wulff, Linus

    2018-06-01

    The equations that follow from kappa symmetry of the type II Green-Schwarz string are a certain deformation, by a Killing vector field K, of the type II supergravity equations. We analyze under what conditions solutions of these 'generalized' supergravity equations are trivial in the sense that they solve also the standard supergravity equations. We argue that for this to happen K must be null and satisfy dK =iK H with H = dB the NSNS three-form field strength. Non-trivial examples are provided by symmetric pp-wave solutions. We then analyze the consequences for non-abelian T-duality and the closely related homogenous Yang-Baxter sigma models. When one performs non-abelian T-duality of a string sigma model on a non-unimodular (sub)algebra one generates a non-vanishing K proportional to the trace of the structure constants. This is expected to lead to an anomaly but we show that when K satisfies the same conditions the anomaly in fact goes away leading to more possibilities for non-anomalous non-abelian T-duality.

  10. Software-type Wave-Particle Interaction Analyzer on board the Arase satellite

    NASA Astrophysics Data System (ADS)

    Katoh, Yuto; Kojima, Hirotsugu; Hikishima, Mitsuru; Takashima, Takeshi; Asamura, Kazushi; Miyoshi, Yoshizumi; Kasahara, Yoshiya; Kasahara, Satoshi; Mitani, Takefumi; Higashio, Nana; Matsuoka, Ayako; Ozaki, Mitsunori; Yagitani, Satoshi; Yokota, Shoichiro; Matsuda, Shoya; Kitahara, Masahiro; Shinohara, Iku

    2018-01-01

    We describe the principles of the Wave-Particle Interaction Analyzer (WPIA) and the implementation of the Software-type WPIA (S-WPIA) on the Arase satellite. The WPIA is a new type of instrument for the direct and quantitative measurement of wave-particle interactions. The S-WPIA is installed on the Arase satellite as a software function running on the mission data processor. The S-WPIA on board the Arase satellite uses an electromagnetic field waveform that is measured by the waveform capture receiver of the plasma wave experiment (PWE), and the velocity vectors of electrons detected by the medium-energy particle experiment-electron analyzer (MEP-e), the high-energy electron experiment (HEP), and the extremely high-energy electron experiment (XEP). The prime objective of the S-WPIA is to measure the energy exchange between whistler-mode chorus emissions and energetic electrons in the inner magnetosphere. It is essential for the S-WPIA to synchronize instruments to a relative time accuracy better than the time period of the plasma wave oscillations. Since the typical frequency of chorus emissions in the inner magnetosphere is a few kHz, a relative time accuracy of better than 10 μs is required in order to measure the relative phase angle between the wave and velocity vectors. In the Arase satellite, a dedicated system has been developed to realize the time resolution required for inter-instrument communication. Here, both the time index distributed over all instruments through the satellite system and an S-WPIA clock signal are used, that are distributed from the PWE to the MEP-e, HEP, and XEP through a direct line, for the synchronization of instruments within a relative time accuracy of a few μs. We also estimate the number of particles required to obtain statistically significant results with the S-WPIA and the expected accumulation time by referring to the specifications of the MEP-e and assuming a count rate for each detector.

  11. Effect of particle-particle interactions on the acoustic radiation force in an ultrasonic standing wave

    NASA Astrophysics Data System (ADS)

    Lipkens, Bart; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.

    2015-10-01

    Ultrasonic standing waves are widely used for separation applications. In MEMS applications, a half wavelength standing wave field is generated perpendicular to a laminar flow. The acoustic radiation force exerted on the particle drives the particle to the center of the MEMS channel, where concentrated particles are harvested. In macro-scale applications, the ultrasonic standing wave spans multiple wavelengths. Examples of such applications are oil/water emulsion splitting [1], and blood/lipid separation [2]. In macro-scale applications, particles are typically trapped in the standing wave, resulting in clumping or coalescence of particles/droplets. Subsequent gravitational settling results in separation of the secondary phase. An often used expression for the radiation force on a particle is that derived by Gorkov [3]. The assumptions are that the particle size is small relative to the wavelength, and therefore, only monopole and dipole scattering contributions are used to calculate the radiation force. This framework seems satisfactory for MEMS scale applications where each particle is treated separately by the standing wave, and concentrations are typically low. In macro-scale applications, particle concentration is high, and particle clumping or droplet coalescence results in particle sizes not necessarily small relative to the wavelength. Ilinskii et al. developed a framework for calculation of the acoustic radiation force valid for any size particle [4]. However, this model does not take into account particle to particle effects, which can become important as particle concentration increases. It is known that an acoustic radiation force on a particle or a droplet is determined by the local field. An acoustic radiation force expression is developed that includes the effect of particle to particle interaction. The case of two neighboring particles is considered. The approach is based on sound scattering by the particles. The acoustic field at the location of

  12. Effect of particle-particle interactions on the acoustic radiation force in an ultrasonic standing wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipkens, Bart, E-mail: blipkens@wne.edu; Ilinskii, Yurii A., E-mail: ilinskii@gmail.com; Zabolotskaya, Evgenia A., E-mail: zheniazabolotskaya@gmail.com

    Ultrasonic standing waves are widely used for separation applications. In MEMS applications, a half wavelength standing wave field is generated perpendicular to a laminar flow. The acoustic radiation force exerted on the particle drives the particle to the center of the MEMS channel, where concentrated particles are harvested. In macro-scale applications, the ultrasonic standing wave spans multiple wavelengths. Examples of such applications are oil/water emulsion splitting [1], and blood/lipid separation [2]. In macro-scale applications, particles are typically trapped in the standing wave, resulting in clumping or coalescence of particles/droplets. Subsequent gravitational settling results in separation of the secondary phase. Anmore » often used expression for the radiation force on a particle is that derived by Gorkov [3]. The assumptions are that the particle size is small relative to the wavelength, and therefore, only monopole and dipole scattering contributions are used to calculate the radiation force. This framework seems satisfactory for MEMS scale applications where each particle is treated separately by the standing wave, and concentrations are typically low. In macro-scale applications, particle concentration is high, and particle clumping or droplet coalescence results in particle sizes not necessarily small relative to the wavelength. Ilinskii et al. developed a framework for calculation of the acoustic radiation force valid for any size particle [4]. However, this model does not take into account particle to particle effects, which can become important as particle concentration increases. It is known that an acoustic radiation force on a particle or a droplet is determined by the local field. An acoustic radiation force expression is developed that includes the effect of particle to particle interaction. The case of two neighboring particles is considered. The approach is based on sound scattering by the particles. The acoustic field at the

  13. Effects of ULF waves on local and global energetic particles: Particle energy and species dependences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, L. Y.; Yu, J.; Cao, J. B.

    After 06:13 UT on 24 August 2005, an interplanetary shock triggers large-amplitude ultralow-frequency (ULF) waves (|δB| ≥ 15 nT) in the Pc4–Pc5 wave band (1.6–9 mHz) near the noon geosynchronous orbit (6.6 RE). The local and global effects of ULF waves on energetic particles are observed by five Los Alamos National Laboratory satellites at different magnetic local times. The large-amplitude ULF waves cause the synchronous oscillations of energetic electrons and protons (≥75 keV) at the noon geosynchronous orbit. When the energetic particles have a negative phase space density radial gradient, they undergo rapid outward radial diffusion and loss in themore » wave activity region. In the particle drift paths without strong ULF waves, only the rapidly drifting energetic electrons (≥225 keV) display energy-dispersive oscillations and flux decays, whereas the slowly drifting electrons (<225 keV) and protons (75–400 keV) have no ULF oscillation and loss feature. When the dayside magnetopause is compressed to the geosynchronous orbit, most of energetic electrons and protons are rapidly lost because of open drift trajectories. Furthermore, the global and multicomposition particle measurements demonstrate that the effect of ULF waves on nonlocal particle flux depends on the particle energy and species, whereas magnetopause shadowing effect is independent of the energetic particle species. For the rapidly drifting outer radiation belt particles (≥225 keV), nonlocal particle loss/acceleration processes could also change their fluxes in the entire drift trajectory in the absence of “ Dst effect” and substorm injection.« less

  14. Effects of ULF waves on local and global energetic particles: Particle energy and species dependences

    DOE PAGES

    Li, L. Y.; Yu, J.; Cao, J. B.; ...

    2016-11-05

    After 06:13 UT on 24 August 2005, an interplanetary shock triggers large-amplitude ultralow-frequency (ULF) waves (|δB| ≥ 15 nT) in the Pc4–Pc5 wave band (1.6–9 mHz) near the noon geosynchronous orbit (6.6 RE). The local and global effects of ULF waves on energetic particles are observed by five Los Alamos National Laboratory satellites at different magnetic local times. The large-amplitude ULF waves cause the synchronous oscillations of energetic electrons and protons (≥75 keV) at the noon geosynchronous orbit. When the energetic particles have a negative phase space density radial gradient, they undergo rapid outward radial diffusion and loss in themore » wave activity region. In the particle drift paths without strong ULF waves, only the rapidly drifting energetic electrons (≥225 keV) display energy-dispersive oscillations and flux decays, whereas the slowly drifting electrons (<225 keV) and protons (75–400 keV) have no ULF oscillation and loss feature. When the dayside magnetopause is compressed to the geosynchronous orbit, most of energetic electrons and protons are rapidly lost because of open drift trajectories. Furthermore, the global and multicomposition particle measurements demonstrate that the effect of ULF waves on nonlocal particle flux depends on the particle energy and species, whereas magnetopause shadowing effect is independent of the energetic particle species. For the rapidly drifting outer radiation belt particles (≥225 keV), nonlocal particle loss/acceleration processes could also change their fluxes in the entire drift trajectory in the absence of “ Dst effect” and substorm injection.« less

  15. Analysis of sediment particle velocity in wave motion based on wave flume experiments

    NASA Astrophysics Data System (ADS)

    Krupiński, Adam

    2012-10-01

    The experiment described was one of the elements of research into sediment transport conducted by the Division of Geotechnics of West-Pomeranian University of Technology. The experimental analyses were performed within the framework of the project "Building a knowledge transfer network on the directions and perspectives of developing wave laboratory and in situ research using innovative research equipment" launched by the Institute of Hydroengineering of the Polish Academy of Sciences in Gdańsk. The objective of the experiment was to determine relations between sediment transport and wave motion parameters and then use the obtained results to modify formulas defining sediment transport in rivers, like Ackers-White formula, by introducing basic parameters of wave motion as the force generating bed material transport. The article presents selected results of the experiment concerning sediment velocity field analysis conducted for different parameters of wave motion. The velocity vectors of particles suspended in water were measured with a Particle Image Velocimetry (PIV) apparatus registering suspended particles in a measurement flume by producing a series of laser pulses and analysing their displacement with a high-sensitivity camera connected to a computer. The article presents velocity fields of suspended bed material particles measured in the longitudinal section of the wave flume and their comparison with water velocity profiles calculated for the definite wave parameters. The results presented will be used in further research for relating parameters essential for the description of monochromatic wave motion to basic sediment transport parameters and "transforming" mean velocity and dynamic velocity in steady motion to mean wave front velocity and dynamic velocity in wave motion for a single wave.

  16. Grothendieck-Verdier duality patterns in quantum algebra

    NASA Astrophysics Data System (ADS)

    Manin, Yu I.

    2017-08-01

    After a brief survey of the basic definitions of Grothendieck-Verdier categories and dualities, I consider in this context dualities introduced earlier in the categories of quadratic algebras and operads, largely motivated by the theory of quantum groups. Finally, I argue that Dubrovin's `almost duality' in the theory of Frobenius manifolds and quantum cohomology must also fit a (possibly extended) version of Grothendieck-Verdier duality.

  17. Theoretical Study of Wave Particle Correlation Measurement via 1-D Electromagnetic Particle Simulation

    NASA Astrophysics Data System (ADS)

    Ueda, Yoshikatsu; Omura, Yoshiharu; Kojima, Hiro

    Spacecraft observation is essentially "one-point measurement", while numerical simulation can reproduce a whole system of physical processes on a computer. By performing particle simulations of plasma wave instabilities and calculating correlation of waves and particles observed at a single point, we examine how well we can infer the characteristics of the whole system by a one-point measurement. We perform various simulation runs with different plasma parameters using one-dimensional electromagnetic particle code (KEMPO1) and calculate 'E dot v' or other moments at a single point. We find good correlation between the measurement and the macroscopic fluctuations of the total simulation region. We make use of the results of the computer experiments in our system design of new instruments 'One-chip Wave Particle Interaction Analyzer (OWPIA)'.

  18. Confronting Seiberg's duality with r duality in N=1 supersymmetric QCD

    NASA Astrophysics Data System (ADS)

    Shifman, M.; Yung, A.

    2012-09-01

    Systematizing our results on r duality obtained previously we focus on comparing r duality with the generalized Seiberg duality in the r vacua of N=2 and N=1 super-Yang-Mills theories with the U(N) gauge group and Nf matter flavors (Nf>N). The number of condensed (s)quarks r is assumed to be in the interval (2)/(3)Nfdualities are demonstrated to coincide in the r=N vacua. In the (2)/(3)Nfdualities do not match. In this window Seiberg’s dual is at strong coupling while our r-dual model is at weak coupling. Thus, we can speak of triality. Seiberg’s dual solution at weak coupling reappears again at r

  19. Analytical treatment of particle motion in circularly polarized slab-mode wave fields

    NASA Astrophysics Data System (ADS)

    Schreiner, Cedric; Vainio, Rami; Spanier, Felix

    2018-02-01

    Wave-particle interaction is a key process in particle diffusion in collisionless plasmas. We look into the interaction of single plasma waves with individual particles and discuss under which circumstances this is a chaotic process, leading to diffusion. We derive the equations of motion for a particle in the fields of a magnetostatic, circularly polarized, monochromatic wave and show that no chaotic particle motion can arise under such circumstances. A novel and exact analytic solution for the equations is presented. Additional plasma waves lead to a breakdown of the analytic solution and chaotic particle trajectories become possible. We demonstrate this effect by considering a linearly polarized, monochromatic wave, which can be seen as the superposition of two circularly polarized waves. Test particle simulations are provided to illustrate and expand our analytical considerations.

  20. Fracton-Elasticity Duality

    NASA Astrophysics Data System (ADS)

    Pretko, Michael; Radzihovsky, Leo

    2018-05-01

    Motivated by recent studies of fractons, we demonstrate that elasticity theory of a two-dimensional quantum crystal is dual to a fracton tensor gauge theory, providing a concrete manifestation of the fracton phenomenon in an ordinary solid. The topological defects of elasticity theory map onto charges of the tensor gauge theory, with disclinations and dislocations corresponding to fractons and dipoles, respectively. The transverse and longitudinal phonons of crystals map onto the two gapless gauge modes of the gauge theory. The restricted dynamics of fractons matches with constraints on the mobility of lattice defects. The duality leads to numerous predictions for phases and phase transitions of the fracton system, such as the existence of gauge theory counterparts to the (commensurate) crystal, supersolid, hexatic, and isotropic fluid phases of elasticity theory. Extensions of this duality to generalized elasticity theories provide a route to the discovery of new fracton models. As a further consequence, the duality implies that fracton phases are relevant to the study of interacting topological crystalline insulators.

  1. Observation and Control of Hamiltonian Chaos in Wave-particle Interaction

    NASA Astrophysics Data System (ADS)

    Doveil, F.; Elskens, Y.; Ruzzon, A.

    2010-11-01

    Wave-particle interactions are central in plasma physics. The paradigm beam-plasma system can be advantageously replaced by a traveling wave tube (TWT) to allow their study in a much less noisy environment. This led to detailed analysis of the self-consistent interaction between unstable waves and an either cold or warm electron beam. More recently a test cold beam has been used to observe its interaction with externally excited wave(s). This allowed observing the main features of Hamiltonian chaos and testing a new method to efficiently channel chaotic transport in phase space. To simulate accurately and efficiently the particle dynamics in the TWT and other 1D particle-wave systems, a new symplectic, symmetric, second order numerical algorithm is developed, using particle position as the independent variable, with a fixed spatial step. This contribution reviews : presentation of the TWT and its connection to plasma physics, resonant interaction of a charged particle in electrostatic waves, observation of particle trapping and transition to chaos, test of control of chaos, and description of the simulation algorithm. The velocity distribution function of the electron beam is recorded with a trochoidal energy analyzer at the output of the TWT. An arbitrary waveform generator is used to launch a prescribed spectrum of waves along the 4m long helix of the TWT. The nonlinear synchronization of particles by a single wave, responsible for Landau damping, is observed. We explore the resonant velocity domain associated with a single wave as well as the transition to large scale chaos when the resonant domains of two waves and their secondary resonances overlap. This transition exhibits a devil's staircase behavior when increasing the excitation level in agreement with numerical simulation. A new strategy for control of chaos by building barriers of transport in phase space as well as its robustness is successfully tested. The underlying concepts extend far beyond the

  2. Wave-Particle Dynamics of Wave Breaking in the Self-Excited Dust Acoustic Wave

    NASA Astrophysics Data System (ADS)

    Teng, Lee-Wen; Chang, Mei-Chu; Tseng, Yu-Ping; I, Lin

    2009-12-01

    The wave-particle microdynamics in the breaking of the self-excited dust acoustic wave growing in a dusty plasma liquid is investigated through directly tracking dust micromotion. It is found that the nonlinear wave growth and steepening stop as the mean oscillating amplitude of dust displacement reaches about 1/k (k is the wave number), where the vertical neighboring dust trajectories start to crossover and the resonant wave heating with uncertain crest trapping onsets. The dephased dust oscillations cause the abrupt dropping and broadening of the wave crest after breaking, accompanied by the transition from the liquid phase with coherent dust oscillation to the gas phase with chaotic dust oscillation. Corkscrew-shaped phase-space distributions measured at the fixed phases of the wave oscillation cycle clearly indicate how dusts move in and constitute the evolving waveform through dust-wave interaction.

  3. Level/rank duality and Chern-Simons-matter theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsin, Po-Shen; Seiberg, Nathan

    We discuss in detail level/rank duality in three-dimensional Chern-Simons theories and various related dualities in three-dimensional Chern-Simons-matter theories. We couple the dual Lagrangians to appropriate background fields (including gauge fields, spin c connections and the metric). The non-trivial maps between the currents and the line operators in the dual theories is accounted for by mixing of these fields. In order for the duality to be valid we must add finite counterterms depending on these background fields. This analysis allows us to resolve a number of puzzles with these dualities, to provide derivations of some of them, and to find newmore » consistency conditions and relations between them. In addition, we find new level/rank dualities of topological Chern-Simons theories and new dualities of Chern-Simons-matter theories, including new boson/boson and fermion/fermion dualities.« less

  4. Level/rank duality and Chern-Simons-matter theories

    DOE PAGES

    Hsin, Po-Shen; Seiberg, Nathan

    2016-09-16

    We discuss in detail level/rank duality in three-dimensional Chern-Simons theories and various related dualities in three-dimensional Chern-Simons-matter theories. We couple the dual Lagrangians to appropriate background fields (including gauge fields, spin c connections and the metric). The non-trivial maps between the currents and the line operators in the dual theories is accounted for by mixing of these fields. In order for the duality to be valid we must add finite counterterms depending on these background fields. This analysis allows us to resolve a number of puzzles with these dualities, to provide derivations of some of them, and to find newmore » consistency conditions and relations between them. In addition, we find new level/rank dualities of topological Chern-Simons theories and new dualities of Chern-Simons-matter theories, including new boson/boson and fermion/fermion dualities.« less

  5. Locality, reflection, and wave-particle duality

    NASA Astrophysics Data System (ADS)

    Mugur-Schächter, Mioara

    1987-08-01

    Bell's theorem is believed to establish that the quantum mechanical predictions do not generally admit a causal representation compatible with Einsten's principle of separability, thereby proving incompatibility between quantum mechanics and relativity. This interpretation is contested via two convergent approaches which lead to a sharp distinction between quantum nonseparability and violation of Einstein's theory of relativity. In a first approach we explicate from the quantum mechanical formalism a concept of “reflected dependence.” Founded on this concept, we produce a causal representation of the quantum mechanical probability measure involved in Bell's proof, which is clearly separable in Einstein's sense, i.e., it does not involve supraluminal velocities, and nevertheless is “nonlocal” in Bell's sense. So Bell locality and Einstein separability are distinct qualifications, and Bell nonlocality (or Bell nonseparability) and Einstein separability are not incompatible. It is then proved explicitly that with respect to the mentioned representation Bell's derivation does not hold. So Bell's derivation does not establish that any Einstein-separable representation is incompatible with quantum mechanics. This first—negative—conclusion is a syntactic fact. The characteristics of the representation and of the reasoning involved in the mentioned counterexample to the usual interpretation of Bell's theorem suggest that the representation used—notwithstanding its ability to bring forth the specified syntactic fact—is not factually true. Factual truth and syntactic properties also have to be radically distinguished in their turn. So, in a second approach, starting from de Broglie's initial relativistic model of a microsystem, a deeper, factually acceptable representation is constructed. The analyses leading to this second representation show that quantum mechanics does indeed involve basically a certain sort of nonseparability, called here de Broglie-Bohr quantum nonseparability. But the de Broglie-Bohr quantum nonseparability is shown to stem directly from the relativistic character of the considerations which led Louis de Broglie to the fundamental relation p = h/λ, thereby being essentially consistent with relativity. As to Einstein separability, it appears to be a still insufficiently specified concept of which a future, improved specification, will probably be explicitly harmonizable with the de Broglie-Bohr quantum nonseparability. The ensemble of the conclusions obtained here brings forth a new concept of causality, a concept of folded, zigzag, reflexive causality, with respect to which the type of causality conceived of up to now appears as a particular case of outstretched, one-way causality. The reflexive causality is found compatible with the results of Aspect's experiment, and it suggests new experiments. Considered globally, the conclusions obtained in the present work might convert the conceptual situation created by Bell's proof into a process of unification of quantum mechanics and relativity.

  6. Physics of Alfvén waves and energetic particles in burning plasmas

    NASA Astrophysics Data System (ADS)

    Chen, Liu; Zonca, Fulvio

    2016-01-01

    Dynamics of shear Alfvén waves and energetic particles are crucial to the performance of burning fusion plasmas. This article reviews linear as well as nonlinear physics of shear Alfvén waves and their self-consistent interaction with energetic particles in tokamak fusion devices. More specifically, the review on the linear physics deals with wave spectral properties and collective excitations by energetic particles via wave-particle resonances. The nonlinear physics deals with nonlinear wave-wave interactions as well as nonlinear wave-energetic particle interactions. Both linear as well as nonlinear physics demonstrate the qualitatively important roles played by realistic equilibrium nonuniformities, magnetic field geometries, and the specific radial mode structures in determining the instability evolution, saturation, and, ultimately, energetic-particle transport. These topics are presented within a single unified theoretical framework, where experimental observations and numerical simulation results are referred to elucidate concepts and physics processes.

  7. Duality in non-linear programming

    NASA Astrophysics Data System (ADS)

    Jeyalakshmi, K.

    2018-04-01

    In this paper we consider duality and converse duality for a programming problem involving convex objective and constraint functions with finite dimensional range. We do not assume any constraint qualification. The dual is presented by reducing the problem to a standard Lagrange multiplier problem.

  8. Dynamic cross correlation studies of wave particle interactions in ULF phenomena

    NASA Technical Reports Server (NTRS)

    Mcpherron, R. L.

    1979-01-01

    Magnetic field observations made by satellites in the earth's magnetic field reveal a wide variety of ULF waves. These waves interact with the ambient particle populations in complex ways, causing modulation of the observed particle fluxes. This modulation is found to be a function of species, pitch angle, energy and time. The characteristics of this modulation provide information concerning the wave mode and interaction process. One important characteristic of wave-particle interactions is the phase of the particle flux modulation relative to the magnetic field variations. To display this phase as a function of time a dynamic cross spectrum program has been developed. The program produces contour maps in the frequency time plane of the cross correlation coefficient between any particle flux time series and the magnetic field vector. This program has been utilized in several studies of ULF wave-particle interactions at synchronous orbit.

  9. Solid-particle jet formation under shock-wave acceleration.

    PubMed

    Rodriguez, V; Saurel, R; Jourdan, G; Houas, L

    2013-12-01

    When solid particles are impulsively dispersed by a shock wave, they develop a spatial distribution which takes the form of particle jets whose selection mechanism is still unidentified. The aim of the present experimental work is to study particle dispersal with fingering effects in an original quasi-two-dimensional experiment facility in order to accurately extract information. Shock and blast waves are generated in the carrier gas at the center of a granular medium ring initially confined inside a Hele-Shaw cell and impulsively accelerated. With the present experimental setup, the particle jet formation is clearly observed. From fast flow visualizations, we notice, in all instances, that the jets are initially generated inside the particle ring and thereafter expelled outward. This point has not been observed in three-dimensional experiments. We highlight that the number of jets is unsteady and decreases with time. For a fixed configuration, considering the very early times following the initial acceleration, the jet size selection is independent of the particle diameter. Moreover, the influence of the initial overpressure and the material density on the particle jet formation have been studied. It is shown that the wave number of particle jets increases with the overpressure and with the decrease of the material density. The normalized number of jets as a function of the initial ring acceleration shows a power law valid for all studied configurations involving various initial pressure ratios, particle sizes, and particle materials.

  10. Dissipation of ionospheric irregularities by wave-particle and collisional interactions

    NASA Technical Reports Server (NTRS)

    Bernhardt, P. A.; Pongratz, M. B.; Gray, S. P.; Thomsen, M. F.

    1982-01-01

    The nonlinear dissipation of plasma irregularities aligned parallel to an ambient magnetic field is studied numerically using a model which employs both wave-particle and collisional diffusion. A wave-particle diffusion coefficient derived from a local theory of the universal drift instability is used. This coefficient is effective in regions of nonzero plasma gradients and produces triangular-shaped irregularities with spectra which vary as f to the -4th, where f is the spatial frequency. Collisional diffusion acts rapidly on the vertices of the irregularities to reduce their amplitude. The simultaneous action of the two dissipative processes is more efficient than collisions acting alone. In this model, wave-particle diffusion mimics the forward cascade process of wave-wave coupling.

  11. Conceptual Foundations of Soliton Versus Particle Dualities Toward a Topological Model for Matter

    NASA Astrophysics Data System (ADS)

    Kouneiher, Joseph

    2016-06-01

    The idea that fermions could be solitons was actually confirmed in theoretical models in 1975 in the case when the space-time is two-dimensional and with the sine-Gordon model. More precisely S. Coleman showed that two different classical models end up describing the same fermions particle, when the quantum theory is constructed. But in one model the fermion is a quantum excitation of the field and in the other model the particle is a soliton. Hence both points of view can be reconciliated.The principal aim in this paper is to exhibit a solutions of topological type for the fermions in the wave zone, where the equations of motion are non-linear field equations, i.e. using a model generalizing sine- Gordon model to four dimensions, and describe the solutions for linear and circular polarized waves. In other words, the paper treat fermions as topological excitations of a bosonic field.

  12. Wave-Particle Dynamics of Wave Breaking in the Self-Excited Dust Acoustic Wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, L.-W.; Chang, M.-C.; Tseng, Y.-P.

    2009-12-11

    The wave-particle microdynamics in the breaking of the self-excited dust acoustic wave growing in a dusty plasma liquid is investigated through directly tracking dust micromotion. It is found that the nonlinear wave growth and steepening stop as the mean oscillating amplitude of dust displacement reaches about 1/k (k is the wave number), where the vertical neighboring dust trajectories start to crossover and the resonant wave heating with uncertain crest trapping onsets. The dephased dust oscillations cause the abrupt dropping and broadening of the wave crest after breaking, accompanied by the transition from the liquid phase with coherent dust oscillation tomore » the gas phase with chaotic dust oscillation. Corkscrew-shaped phase-space distributions measured at the fixed phases of the wave oscillation cycle clearly indicate how dusts move in and constitute the evolving waveform through dust-wave interaction.« less

  13. Transport of underdamped self-propelled particles in active density waves

    NASA Astrophysics Data System (ADS)

    Zhu, Wei-jing; Huang, Xiao-qun; Ai, Bao-quan

    2018-03-01

    Transport of underdamped self-propelled particles is numerically investigated in active density waves. From numerical simulations, it is found that the inertia can strongly affect the transport of self-propelled particles. By changing the wave speed or the friction coefficient, the average velocity can change its direction. The direction of the transport is also determined by the competition between the inertia effect and the traveling waves. Therefore, underdamped active particles can move in different directions and can be separated by suitably tailoring the parameters.

  14. Acceleration of charged particles by crossed cyclotron waves, Resonant Moments Method

    NASA Astrophysics Data System (ADS)

    Ponomarjov, M.; Carati, D.

    A mechanism for enhanced acceleration of charged particles in crossing radio frequency or micro waves propagating at different angles with respect to an external magnetic field is investigated. This mechanism consists in introducing low amplitude secondary waves in order to improve the parallel momentum transfer from the high amplitude primary wave to charged particles. The use of two parallel counter-propagating waves has recently been considered (Gell and Nakach, 1999) and numerical tests (Louies et al, 2001) have shown that the two-wave scheme may lead to higher averaged parallel velocity. On the other hand, it has been concluded that it may be more effective to accelerate electrons when the waves propagate obliquely to the external magnetic field (Karimabadi and Angelopoulos 1989, Cohen et al 1991). The idea considered here is similar although no constraint is imposed on the refraction indices of the primary and the secondary waves. The theoretical analysis of the acceleration mechanism is based on the Resonance Moments Method (RMM) in which moments of the velocity distribution are computed by using an averages over the resonant layers (RL)i only instead of a complete phase-space average. The quantities obtained using this approach, referred to as Resonant Moments (RM), suggest the existence of optimal angles of propagation for the primary and secondary waves as long as the maximization of the parallel flux of charged particles is considered. The fraction of charged particles that are close to the resonance conditions, that correspond to the RL, becomes then as important as the time these particles remain resonant. The secondary wave tends to maintain a pseudo-equilibrium velocity distribution by continuously re-filling the RL. Our suggestions are confirmed by direct numerical simulations for a populations of 105 relativistic electrons. The secondary wave yields a clear increase (up to one order of magnitude) of the average parallel velocity of the particles

  15. ULF Waves and Diffusive Radial Transport of Charged Particles

    NASA Astrophysics Data System (ADS)

    Ali, Ashar Fawad

    The Van Allen radiation belts contain highly energetic particles which interact with a variety of plasma and magnetohydrodynamic (MHD) waves. Waves in the ultra low-frequency (ULF) range play an important role in the loss and acceleration of energetic particles. Considering the geometry of the geomagnetic field, charged particles trapped in the inner magnetosphere undergo three distinct types of periodic motions; an adiabatic invariant is associated with each type of motion. The evolution of the phase space density of charged particles in the magnetosphere in the coordinate space of the three adiabatic invariants is modeled by the Fokker-Planck equation. If we assume that the first two adiabatic invariants are conserved while the third invariant is violated, then the general Fokker-Planck equation reduces to a radial diffusion equation with the radial diffusion coefficient quantifying the rate of the radial diffusion of charged particles, including contributions from perturbations in both the magnetic and the electric fields. This thesis investigates two unanswered questions about ULF wave-driven radial transport of charged particles. First, how important are the ULF fluctuations in the magnetic field compared with the ULF fluctuations in the electric field in driving the radial diffusion of charged particles in the Earth's inner magnetosphere? It has generally been accepted that magnetic field perturbations dominate over electric field perturbations, but several recently published studies suggest otherwise. Second, what is the distribution of ULF wave power in azimuth, and how does ULF wave power depend upon radial distance and the level of geomagnetic activity? Analytic treatments of the diffusion coefficients generally assume uniform distribution of power in azimuth, but in situ measurements suggest that this may not be the case. We used the magnetic field data from the Combined Release and Radiation Effects Satellite (CRRES) and the electric and the magnetic

  16. Particle transport model sensitivity on wave-induced processes

    NASA Astrophysics Data System (ADS)

    Staneva, Joanna; Ricker, Marcel; Krüger, Oliver; Breivik, Oyvind; Stanev, Emil; Schrum, Corinna

    2017-04-01

    Different effects of wind waves on the hydrodynamics in the North Sea are investigated using a coupled wave (WAM) and circulation (NEMO) model system. The terms accounting for the wave-current interaction are: the Stokes-Coriolis force, the sea-state dependent momentum and energy flux. The role of the different Stokes drift parameterizations is investigated using a particle-drift model. Those particles can be considered as simple representations of either oil fractions, or fish larvae. In the ocean circulation models the momentum flux from the atmosphere, which is related to the wind speed, is passed directly to the ocean and this is controlled by the drag coefficient. However, in the real ocean, the waves play also the role of a reservoir for momentum and energy because different amounts of the momentum flux from the atmosphere is taken up by the waves. In the coupled model system the momentum transferred into the ocean model is estimated as the fraction of the total flux that goes directly to the currents plus the momentum lost from wave dissipation. Additionally, we demonstrate that the wave-induced Stokes-Coriolis force leads to a deflection of the current. During the extreme events the Stokes velocity is comparable in magnitude to the current velocity. The resulting wave-induced drift is crucial for the transport of particles in the upper ocean. The performed sensitivity analyses demonstrate that the model skill depends on the chosen processes. The results are validated using surface drifters, ADCP, HF radar data and other in-situ measurements in different regions of the North Sea with a focus on the coastal areas. The using of a coupled model system reveals that the newly introduced wave effects are important for the drift-model performance, especially during extremes. Those effects cannot be neglected by search and rescue, oil-spill, transport of biological material, or larva drift modelling.

  17. Particle physics. Positrons ride the wave

    DOE PAGES

    Piot, Philippe

    2015-08-26

    Here, experiments reveal that positrons — the antimatter equivalents of electrons — can be rapidly accelerated using a plasma wave. The findings pave the way to high-energy electron–positron particle colliders.

  18. Duality, marginal perturbations, and gauging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henningson, M.; Nappi, C.R.

    1993-07-15

    We study duality transformations for two-dimensional [sigma] models with Abelian chiral isometries and prove that generic such transformations are equivalent to integrated marginal perturbations by bilinears in the chiral currents, thus confirming a recent conjecture by Hassan and Sen formulated in the context of Wess-Zumino-Witten models. Specific duality transformations instead give rise to coset models plus free bosons.

  19. Deconfined Quantum Critical Points: Symmetries and Dualities

    DOE PAGES

    Wang, Chong; Nahum, Adam; Metlitski, Max A.; ...

    2017-09-22

    The deconfined quantum critical point (QCP), separating the Néel and valence bond solid phases in a 2D antiferromagnet, was proposed as an example of (2+1)D criticality fundamentally different from standard Landau-Ginzburg-Wilson-Fisher criticality. In this work, we present multiple equivalent descriptions of deconfined QCPs, and use these to address the possibility of enlarged emergent symmetries in the low-energy limit. The easy-plane deconfined QCP, besides its previously discussed self-duality, is dual to N f=2 fermionic quantum electrodynamics, which has its own self-duality and hence may have an O(4)×ZT2 symmetry. We propose several dualities for the deconfined QCP with SU(2) spin symmetry whichmore » together make natural the emergence of a previously suggested SO(5) symmetry rotating the Néel and valence bond solid orders. These emergent symmetries are implemented anomalously. The associated infrared theories can also be viewed as surface descriptions of (3+1) D topological paramagnets, giving further insight into the dualities. We describe a number of numerical tests of these dualities. We also discuss the possibility of “pseudocritical” behavior for deconfined critical points, and the meaning of the dualities and emergent symmetries in such a scenario.« less

  20. Transport of inertial anisotropic particles under surface gravity waves

    NASA Astrophysics Data System (ADS)

    Dibenedetto, Michelle; Koseff, Jeffrey; Ouellette, Nicholas

    2016-11-01

    The motion of neutrally and almost-neutrally buoyant particles under surface gravity waves is relevant to the transport of microplastic debris and other small particulates in the ocean. Consequently, a number of studies have looked at the transport of spherical particles or mobile plankton in these conditions. However, the effects of particle-shape anisotropy on the trajectories and behavior of irregularly shaped particles in this type of oscillatory flow are still relatively unknown. To better understand these issues, we created an idealized numerical model which simulates the three-dimensional behavior of anisotropic spheroids in flow described by Airy wave theory. The particle's response is calculated using a simplified Maxey-Riley equation coupled with Jeffery's equation for particle rotation. We show that the particle dynamics are strongly dependent on their initial conditions and shape, with some some additional dependence on Stokes number.

  1. An Artificial Particle Precipitation Technique Using HAARP-Generated VLF Waves

    DTIC Science & Technology

    2006-11-02

    AFRL-VS-HA-TR-2007-1021 An Artificial Particle Precipitation Technique Using HAARP -Generated VLF Waves O o o r- Q M. J. Kosch T. Pedersen J...Artificial Particle Precipitation Technique Using HAARP Generated VLF Waves. 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62101F...model. The frequency-time modulated VLF wave patterns have been successfully implemented at the HAARP ionospheric modification facility in Alaska

  2. Duality based direct resolution of unique profiles using zero concentration region information.

    PubMed

    Tavakkoli, Elnaz; Rajkó, Róbert; Abdollahi, Hamid

    2018-07-01

    Self Modeling Curve Resolution (SMCR) is a class of techniques concerned with estimating pure profiles underlying a set of measurements on chemical systems. In general, the estimated profiles are ambiguous (non-unique) except if some special conditions fulfilled. Implementing the adequate information can reduce the so-called rotational ambiguity effectively, and in the most desirable cases lead to the unique solution. Therefore, studies on circumstances resulting in unique solution are of particular importance. The conditions of unique solution can particularly be studied based on duality principle. In bilinear chemical (e.g., spectroscopic) data matrix, there is a natural duality between its row and column vector spaces using minimal constraints (non-negativity of concentrations and absorbances). In this article, the conditions of the unique solution according to duality concept and using zero concentration region information is intended to show. A simulated dataset of three components and an experimental system with synthetic mixtures containing three amino acids tyrosine, phenylalanine and tryptophan are analyzed. It is shown that in the presence of sufficient information, the reliable unique solution is obtained that is valuable in analytical qualification and for quantitative verification analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. The Strange (Hi)story of Particles and Waves

    NASA Astrophysics Data System (ADS)

    Zeh, H. Dieter

    2016-03-01

    This is an attempt of a non-technical but conceptually consistent presentation of quantum theory in a historical context. While the first part is written for a general readership, Section 5 may appear a bit provocative to some quantum physicists. I argue that the single-particle wave functions of quantum mechanics have to be correctly interpreted as field modes that are "occupied once" (i.e. first excited states of the corresponding quantum oscillators in the case of boson fields). Multiple excitations lead to apparent many-particle wave functions, while the quantum states proper are defined by wave function(al)s on the "configuration" space of fundamental fields, or on another, as yet elusive, fundamental local basis.

  4. Waves, particles, and interactions in reduced dimensions

    NASA Astrophysics Data System (ADS)

    Zhang, Yiming

    This thesis presents a set of experiments that study the interplay between the wave-particle duality of electrons and the interaction effects in systems of reduced dimensions. Both dc transport and measurements of current noise have been employed in the studies; in particular, techniques for efficiently measuring current noise have been developed specifically for these experiments. The first four experiments study current noise auto- and cross correlations in various mesoscopic devices, including quantum point contacts, single and double quantum dots, and graphene devices. In quantum point contacts, shot noise at zero magnetic field exhibits an asymmetry related to the 0.7 structure in conductance. The asymmetry in noise evolves smoothly into the symmetric signature of spin-resolved electron transmission at high field. Comparison to a phenomenological model with density-dependent level splitting yields good quantitative agreement. Additionally, a device-specific contribution to the finite-bias noise, particularly visible on conductance plateaus where shot noise vanishes, agrees with a model of bias-dependent electron heating. In a three-lead single quantum dot and a capacitively coupled double quantum dot, sign reversal of noise cross correlations have been observed in the Coulomb blockade regime, and found to be tunable by gate voltages and source-drain bias. In the limit of weak output tunneling, cross correlations in the three-lead dot are found to be proportional to the two-lead noise in excess of the Poissonian value. These results can be reproduced with master equation calculations that include multi-level transport in the single dot, and inter-dot charging energy in the double dot. Shot noise measurements in single-layer graphene devices reveal a Fano factor independent of carrier type and density, device geometry, and the presence of a p-n junction. This result contrasts with theory for ballistic graphene sheets and junctions, suggesting that the transport

  5. Duality quantum algorithm efficiently simulates open quantum systems

    PubMed Central

    Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu

    2016-01-01

    Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d3) in contrast to O(d4) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm. PMID:27464855

  6. Generation of Langmuir wave supercontinuum by phase-preserving equilibration of plasmons with irreversible wave-particle interaction

    NASA Astrophysics Data System (ADS)

    Eiichirou, Kawamori

    2018-04-01

    We report the observation of supercontinuum of Langmuir plasma waves, that exhibits broad power spectrum having significant spatio-temporal coherence grown from a monochromatic seed-wave, in one-dimensional particle-in-cell simulations. The Langmuir wave supercontinuum (LWSC) is formed when the seed wave excites side-band fields efficiently by the modulational instabilities. Its identification is achieved by the use of the tricoherence analysis, which detects four wave mixings (FWMs) of plasmons (plasma wave quanta), and evaluation of the first order coherence, which is a measure of temporal coherence, of the wave electric fields. The irreversible evolution to the coherent LWSC from the seed wave is realized by the wave-particle interactions causing stochastic electron motions in the phase space and the coherence of LWSC is maintained by the phase-preserving FWMs of plasmons. The LWSC corresponds to a quasi Bernstein-Greene-Kruskal mode.

  7. Eulerian-Lagrangian analysis for particle velocities and trajectories in a pure wave motion using particle image velocimetry.

    PubMed

    Umeyama, Motohiko

    2012-04-13

    This paper investigates the velocity and the trajectory of water particles under surface waves, which propagate at a constant water depth, using particle image velocimetry (PIV). The vector fields and vertical distributions of velocities are presented at several phases in one wave cycle. The third-order Stokes wave theory was employed to express the physical quantities. The PIV technique's ability to measure both temporal and spatial variations of the velocity was proved after a series of attempts. This technique was applied to the prediction of particle trajectory in an Eulerian scheme. Furthermore, the measured particle path was compared with the positions found theoretically by integrating the Eulerian velocity to the higher order of a Taylor series expansion. The profile of average travelling distance is also presented with a solution of zero net mass flux in a closed wave flume.

  8. Fully resolved simulations of expansion waves propagating into particle beds

    NASA Astrophysics Data System (ADS)

    Marjanovic, Goran; Hackl, Jason; Annamalai, Subramanian; Jackson, Thomas; Balachandar, S.

    2017-11-01

    There is a tremendous amount of research that has been done on compression waves and shock waves moving over particles but very little concerning expansion waves. Using 3-D direct numerical simulations, this study will explore expansion waves propagating into fully resolved particle beds of varying volume fractions and geometric arrangements. The objectives of these simulations are as follows: 1) To fully resolve all (1-way coupled) forces on the particles in a time varying flow and 2) to verify state-of-the-art drag models for such complex flows. We will explore a range of volume fractions, from very low ones that are similar to single particle flows, to higher ones where nozzling effects are observed between neighboring particles. Further, we will explore two geometric arrangements: body centered cubic and face centered cubic. We will quantify the effects that volume fraction and geometric arrangement plays on the drag forces and flow fields experienced by the particles. These results will then be compared to theoretical predictions from a model based on the generalized Faxen's theorem. This work was supported in part by the U.S. Department of Energy under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  9. Particle image velocimetry investigation of a finite amplitude pressure wave

    NASA Astrophysics Data System (ADS)

    Thornhill, D.; Currie, T.; Fleck, R.; Chatfield, G.

    2006-03-01

    Particle image velocimetry is used to study the motion of gas within a duct subject to the passage of a finite amplitude pressure wave. The wave is representative of the pressure waves found in the exhaust systems of internal combustion engines. Gas particles are accelerated from stationary to 150 m/s and then back to stationary in 8 ms. It is demonstrated that gas particles at the head of the wave travel at the same velocity across the duct cross section at a given point in time. Towards the tail of the wave viscous effects are plainly evident causing the flow profile to tend towards parabolic. However, the instantaneous mean particle velocity across the section is shown to match well with the velocity calculated from a corresponding measured pressure history using 1D gas dynamic theory. The measured pressure history at a point in the duct was acquired using a high speed pressure transducer of the type typically used for engine research in intake and exhaust systems. It is demonstrated that these are unable to follow the rapid changes in pressure accurately and that they are prone to resonate under certain circumstances.

  10. Particle separation by phase modulated surface acoustic waves.

    PubMed

    Simon, Gergely; Andrade, Marco A B; Reboud, Julien; Marques-Hueso, Jose; Desmulliez, Marc P Y; Cooper, Jonathan M; Riehle, Mathis O; Bernassau, Anne L

    2017-09-01

    High efficiency isolation of cells or particles from a heterogeneous mixture is a critical processing step in lab-on-a-chip devices. Acoustic techniques offer contactless and label-free manipulation, preserve viability of biological cells, and provide versatility as the applied electrical signal can be adapted to various scenarios. Conventional acoustic separation methods use time-of-flight and achieve separation up to distances of quarter wavelength with limited separation power due to slow gradients in the force. The method proposed here allows separation by half of the wavelength and can be extended by repeating the modulation pattern and can ensure maximum force acting on the particles. In this work, we propose an optimised phase modulation scheme for particle separation in a surface acoustic wave microfluidic device. An expression for the acoustic radiation force arising from the interaction between acoustic waves in the fluid was derived. We demonstrated, for the first time, that the expression of the acoustic radiation force differs in surface acoustic wave and bulk devices, due to the presence of a geometric scaling factor. Two phase modulation schemes are investigated theoretically and experimentally. Theoretical findings were experimentally validated for different mixtures of polystyrene particles confirming that the method offers high selectivity. A Monte-Carlo simulation enabled us to assess performance in real situations, including the effects of particle size variation and non-uniform acoustic field on sorting efficiency and purity, validating the ability to separate particles with high purity and high resolution.

  11. Quantitative subsurface analysis using frequency modulated thermal wave imaging

    NASA Astrophysics Data System (ADS)

    Subhani, S. K.; Suresh, B.; Ghali, V. S.

    2018-01-01

    Quantitative depth analysis of the anomaly with an enhanced depth resolution is a challenging task towards the estimation of depth of the subsurface anomaly using thermography. Frequency modulated thermal wave imaging introduced earlier provides a complete depth scanning of the object by stimulating it with a suitable band of frequencies and further analyzing the subsequent thermal response using a suitable post processing approach to resolve subsurface details. But conventional Fourier transform based methods used for post processing unscramble the frequencies with a limited frequency resolution and contribute for a finite depth resolution. Spectral zooming provided by chirp z transform facilitates enhanced frequency resolution which can further improves the depth resolution to axially explore finest subsurface features. Quantitative depth analysis with this augmented depth resolution is proposed to provide a closest estimate to the actual depth of subsurface anomaly. This manuscript experimentally validates this enhanced depth resolution using non stationary thermal wave imaging and offers an ever first and unique solution for quantitative depth estimation in frequency modulated thermal wave imaging.

  12. Mode-coupling and wave-particle interactions for unstable ion-acoustic waves.

    NASA Technical Reports Server (NTRS)

    Martin, P.; Fried, B. D.

    1972-01-01

    A theory for the spatial development of linearly unstable, coupled waves is presented in which both quasilinear and mode-coupling effects are treated in a self-consistent manner. Steady-state excitation of two waves is assumed at the boundary x = 0, the plasma being homogeneous in the y and z directions. Coupled equations are derived for the x dependence of the amplitudes of the primary waves and the secondary waves, correct through terms of second order in the wave amplitude, but without the usual approximation of small growth rates. This general formalism is then applied to the case of coupled ion-acoustic waves driven unstable by an ion beam streaming in the direction of the x axis. If the modifications of the ion beam by the waves (quasilinear effects) are ignored, explosive instabilities (singularities in all of the amplitudes at finite x) are found even when all of the waves have positive energy. If these wave-particle interactions are included, the solutions are no longer singular, and all of the amplitudes have finite maxima.

  13. Mode coupling and wave particle interactions for unstable ion acoustic waves

    NASA Technical Reports Server (NTRS)

    Martin, P.; Fried, B. D.

    1972-01-01

    A theory for the spatial development of linearly unstable, coupled waves is presented in which both quasi-linear and mode coupling effects are treated in a self-consistent manner. Steady state excitation of two waves is assumed at the boundary x = 0, the plasma being homogeneous in the y and z directions. Coupled equations are derived for the x dependence of the amplitudes of the primary waves and the secondary waves, correct through second order terms in the wave amplitude, but without usual approximation of small growth rates. This general formalism is then applied to the case of coupled ion acoustic waves driven unstable by an ion beam streaming in the direction of the x axis. If the modifications of the ion beam by the waves (quasi-linear effects) are ignored, explosive instabilities (singularities in all of the amplitudes at finite x) are found, even when all of the waves have positive energy. If these wave-particle interactions are included, the solutions are no longer singular, and all of the amplitudes have finite maxima.

  14. Acoustic tweezing of particles using decaying opposing travelling surface acoustic waves (DOTSAW).

    PubMed

    Ng, Jia Wei; Devendran, Citsabehsan; Neild, Adrian

    2017-10-11

    Surface acoustic waves offer a versatile and biocompatible method of manipulating the location of suspended particles or cells within microfluidic systems. The most common approach uses the interference of identical frequency, counter propagating travelling waves to generate a standing surface acoustic wave, in which particles migrate a distance less than half the acoustic wavelength to their nearest pressure node. The result is the formation of a periodic pattern of particles. Subsequent displacement of this pattern, the prerequisite for tweezing, can be achieved by translation of the standing wave, and with it the pressure nodes; this requires changing either the frequency of the pair of waves, or their relative phase. Here, in contrast, we examine the use of two counterpropagating traveling waves of different frequency. The non-linearity of the acoustic forces used to manipulate particles, means that a small frequency difference between the two waves creates a substantially different force field, which offers significant advantages. Firstly, this approach creates a much longer range force field, in which migration takes place across multiple wavelengths, and causes particles to be gathered together in a single trapping site. Secondly, the location of this single trapping site can be controlled by the relative amplitude of the two waves, requiring simply an attenuation of one of the electrical drive signals. Using this approach, we show that by controlling the powers of the opposing incoherent waves, 5 μm particles can be migrated laterally across a fluid flow to defined locations with an accuracy of ±10 μm.

  15. Theoretical Studies of Alfven Waves and Energetic Particle Physics in Fusion Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Liu

    This report summarizes major theoretical findings in the linear as well as nonlinear physics of Alfvén waves and energetic particles in magnetically confined fusion plasmas. On the linear physics, a variational formulation, based on the separation of singular and regular spatial scales, for drift-Alfvén instabilities excited by energetic particles is established. This variational formulation is then applied to derive the general fishbone-like dispersion relations corresponding to the various Alfvén eigenmodes and energetic-particle modes. It is further employed to explore in depth the low-frequency Alfvén eigenmodes and demonstrate the non-perturbative nature of the energetic particles. On the nonlinear physics, new novelmore » findings are obtained on both the nonlinear wave-wave interactions and nonlinear wave-energetic particle interactions. It is demonstrated that both the energetic particles and the fine radial mode structures could qualitatively affect the nonlinear evolution of Alfvén eigenmodes. Meanwhile, a theoretical approach based on the Dyson equation is developed to treat self-consistently the nonlinear interactions between Alfvén waves and energetic particles, and is then applied to explain simulation results of energetic-particle modes. Relevant list of journal publications on the above findings is also included.« less

  16. Initial results from the LAPD wave-particle experiment and simulation

    NASA Astrophysics Data System (ADS)

    Bortnik, J.; Tao, X.; Albert, J. M.; Thorne, R. M.; Gekelman, W. N.; Pribyl, P.; Van Compernolle, B.

    2011-12-01

    We present the initial results obtained from a unique experiment-theory project. This project is designed to study the detailed nature of the wave-particle interactions between energetic electrons and whistler-mode waves. Using the Large-Plasma device at UCLA, whistler mode waves are injected into one end of the machine and a beam of energetic electrons is injected at the opposite ends. When the first-order resonance condition is met, the electron beam is scattered, which is measured with a novel energy-pitch-angle analyzer. To support the experiment, a flexible test-particle code is constructed which is able to quantify the scattering of charged particles in response to any distribution of waves, in an arbitrary field geometry. The results of the experiment are discussed and placed into the context of space physics and specifically the upcoming Radiation Belt Storm Probes mission.

  17. Managing Dualities in Planned Change Initiatives

    ERIC Educational Resources Information Center

    Barge, J. Kevin; Lee, Michael; Maddux, Kristy; Nabring, Richard; Townsend, Bryan

    2008-01-01

    Dualities play an important role in creating the conditions for change and managing planned change initiatives. Building on Seo, Putnam, and Bartunek's (2003) work, this study focuses on the dualities associated with managing change processes. A case study of a planned change process called the Circle of Prosperity Initiative, a multi-stakeholder…

  18. Quark Hadron Duality - Recent Jefferson Lab Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niculescu, Maria Ioana

    2016-08-01

    The duality between the partonic and hadronic descriptions of electron--nucleon scattering is a remarkable feature of nuclear interactions. When averaged over appropriate energy intervals the cross section at low energy which is dominated by nucleon resonances resembles the smooth behavior expected from perturbative QCD. Recent Jefferson Lab results indicate that quark-hadron duality is present in a variety of observables, not just the proton F2 structure function. An overview of recent results, especially local quark-hadron duality on the neutron, are presented here.

  19. Quark-hadron duality in lepton scattering off nucleons

    NASA Astrophysics Data System (ADS)

    Graczyk, Krzysztof M.

    2010-03-01

    Quark-hadron (QH) duality in lepton scattering off nucleons is studied with the resonance quark model. It is shown that in the case of neutrino scattering off an isoscalar target the duality is simultaneously observed for charged and neutral currents xF1νN, F2νN, and xF3νN weak structure functions. We demonstrate that the QH duality can be a useful property for modeling structure functions in the so-called resonance region. As an example it is shown that combining relativistic quark model predictions with duality arguments allows a construction of the inclusive resonance F2ep structure function.

  20. OGO 5 observations of Pc 5 waves - Particle flux modulations

    NASA Technical Reports Server (NTRS)

    Kokubun, S.; Kivelson, M. G.; Mcpherron, R. L.; Russell, C. T.; West, H. I., Jr.

    1977-01-01

    An investigation is conducted concerning the modulations of particle fluxes associated with Pc 5 waves in the region beyond the plasmapause. A study of thermal flux modulations indicates that some of the density enhancements observed are not spatial structures but are spurious features caused by temporal flux variations associated with hydromagnetic waves. A resonance model of the energetic particle flux modulations is discussed. Energetic particle modulations are also considered. The reported observations reveal that modulations are dominant at energies of about 100 keV for electrons and at 100 keV to 1 MeV for protons. This may indicate that the bounce resonance interaction is not important for Pc 5 waves.

  1. Wind Observations of Wave Heating and/or Particle Energization at Supercritical Interplanetary Shocks

    NASA Technical Reports Server (NTRS)

    Wilson, Lynn Bruce, III; Szabo, Adam; Koval, Andriy; Cattell, Cynthia A.; Kellogg, Paul J.; Goetz, Keith; Breneman, Aaron; Kersten, Kris; Kasper, Justin C.; Pulupa, Marc

    2011-01-01

    We present the first observations at supercritical interplanetary shocks of large amplitude (> 100 mV/m pk-pk) solitary waves, approx.30 mV/m pk-pk waves exhibiting characteristics consistent with electron Bernstein waves, and > 20 nT pk-pk electromagnetic lower hybrid-like waves, with simultaneous evidence for wave heating and particle energization. The solitary waves and the Bernstein-like waves were likely due to instabilities driven by the free energy provided by reflected ions [Wilson III et al., 2010]. They were associated with strong particle heating in both the electrons and ions. We also show a case example of parallel electron energization and perpendicular ion heating due to a electromagnetic lower hybrid-like wave. Both studies provide the first experimental evidence of wave heating and/or particle energization at interplanetary shocks. Our experimental results, together with the results of recent Vlasov [Petkaki and Freeman, 2008] and PIC [Matsukyo and Scholer, 2006] simulations using realistic mass ratios provide new evidence to suggest that the importance of wave-particle dissipation at shocks may be greater than previously thought.

  2. Nonlinear longitudinal resonance interaction of energetic charged particles and VLF waves in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Tkalcevic, S.

    1982-01-01

    The longitudinal resonance of waves and energetic electrons in the Earth's magnetosphere, and the possible role this resonance may play in generating various magnetospheric phenomena are studied. The derivation of time-averaged nonlinear equations of motion for energetic particles longitudinally resonant with a whistler mode wave propagating with nonzero wave normal is considered. It is shown that the wave magnetic forces can be neglected at lower particle pitch angles, while they become equal to or larger than the wave electric forces for alpha 20 deg. The time-averaged equations of motion were used in test particle simulation which were done for a wide range of wave amplitudes, wave normals, particle pitch angles, particle parallel velocities, and in an inhomogeneous medium such as the magnetosphere. It was found that there are two classes of particles, trapped and untrapped, and that the scattering and energy exchange for those two groups exhibit significantly different behavior.

  3. Issues on 3D noncommutative electromagnetic duality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodrigues, Davi C.; Wotzasek, Clovis

    We extend the ordinary 3D electromagnetic duality to the noncommutative (NC) space-time through a Seiberg-Witten map to second order in the noncommutativity parameter {theta}, defining a new scalar field model. There are similarities with the 4D NC duality; these are exploited to clarify properties of both cases. Up to second order in {theta}, we find that duality interchanges the 2-form {theta} with its 1-form Hodge dual *{theta} times the gauge coupling constant, i.e., {theta}{yields}*{theta}g{sup 2} (similar to the 4D NC electromagnetic duality). We directly prove that this property is false in the third order expansion in both 3D and 4Dmore » space-times, unless the slowly varying fields limit is imposed. Outside this limit, starting from the third order expansion, {theta} cannot be rescaled to attain an S-duality. In addition to possible applications on effective models, the 3D space-time is useful for studying general properties of NC theories. In particular, in this dimension, we deduce an expression that significantly simplifies the Seiberg-Witten mapped Lagrangian to all orders in {theta}.« less

  4. T-duality constraints on higher derivatives revisited

    NASA Astrophysics Data System (ADS)

    Hohm, Olaf; Zwiebach, Barton

    2016-04-01

    We ask to what extent are the higher-derivative corrections of string theory constrained by T-duality. The seminal early work by Meissner tests T-duality by reduction to one dimension using a distinguished choice of field variables in which the bosonic string action takes a Gauss-Bonnet-type form. By analyzing all field redefinitions that may or may not be duality covariant and may or may not be gauge covariant we extend the procedure to test T-duality starting from an action expressed in arbitrary field variables. We illustrate the method by showing that it determines uniquely the first-order α' corrections of the bosonic string, up to terms that vanish in one dimension. We also use the method to glean information about the O({α}^' 2}) corrections in the double field theory with Green-Schwarz deformation.

  5. Accurately Characterizing the Importance of Wave-Particle Interactions in Radiation Belt Dynamics: The Pitfalls of Statistical Wave Representations

    NASA Technical Reports Server (NTRS)

    Murphy, Kyle R.; Mann, Ian R.; Rae, I. Jonathan; Sibeck, David G.; Watt, Clare E. J.

    2016-01-01

    Wave-particle interactions play a crucial role in energetic particle dynamics in the Earths radiation belts. However, the relative importance of different wave modes in these dynamics is poorly understood. Typically, this is assessed during geomagnetic storms using statistically averaged empirical wave models as a function of geomagnetic activity in advanced radiation belt simulations. However, statistical averages poorly characterize extreme events such as geomagnetic storms in that storm-time ultralow frequency wave power is typically larger than that derived over a solar cycle and Kp is a poor proxy for storm-time wave power.

  6. Nonlinear evolution of energetic-particles-driven waves in collisionless plasmas

    NASA Astrophysics Data System (ADS)

    Li, Shuhan; Liu, Jinyuan; Wang, Feng; Shen, Wei; Li, Dong

    2018-06-01

    A one-dimensional electrostatic collisionless particle-in-cell code has been developed to study the nonlinear interaction between electrostatic waves and energetic particles (EPs). For a single wave, the results are clear and agree well with the existing theories. For coexisting two waves, although the mode nonlinear coupling between two wave fields is ignored, the second-order phase space islands can still exist between first-order islands generated by the two waves. However, the second-order phase islands are not formed by the superposed wave fields and the perturbed motions of EPs induced by the combined effect of two main resonances make these structures in phase space. Owing to these second-order islands, energy can be transferred between waves, even if the overlap of two main resonances never occurs. Depending on the distance between the main resonance islands in velocity space, the second-order island can affect the nonlinear dynamics and saturations of waves.

  7. Simulation and scaling analysis of a spherical particle-laden blast wave

    NASA Astrophysics Data System (ADS)

    Ling, Y.; Balachandar, S.

    2018-02-01

    A spherical particle-laden blast wave, generated by a sudden release of a sphere of compressed gas-particle mixture, is investigated by numerical simulation. The present problem is a multiphase extension of the classic finite-source spherical blast-wave problem. The gas-particle flow can be fully determined by the initial radius of the spherical mixture and the properties of gas and particles. In many applications, the key dimensionless parameters, such as the initial pressure and density ratios between the compressed gas and the ambient air, can vary over a wide range. Parametric studies are thus performed to investigate the effects of these parameters on the characteristic time and spatial scales of the particle-laden blast wave, such as the maximum radius the contact discontinuity can reach and the time when the particle front crosses the contact discontinuity. A scaling analysis is conducted to establish a scaling relation between the characteristic scales and the controlling parameters. A length scale that incorporates the initial pressure ratio is proposed, which is able to approximately collapse the simulation results for the gas flow for a wide range of initial pressure ratios. This indicates that an approximate similarity solution for a spherical blast wave exists, which is independent of the initial pressure ratio. The approximate scaling is also valid for the particle front if the particles are small and closely follow the surrounding gas.

  8. Simulation and scaling analysis of a spherical particle-laden blast wave

    NASA Astrophysics Data System (ADS)

    Ling, Y.; Balachandar, S.

    2018-05-01

    A spherical particle-laden blast wave, generated by a sudden release of a sphere of compressed gas-particle mixture, is investigated by numerical simulation. The present problem is a multiphase extension of the classic finite-source spherical blast-wave problem. The gas-particle flow can be fully determined by the initial radius of the spherical mixture and the properties of gas and particles. In many applications, the key dimensionless parameters, such as the initial pressure and density ratios between the compressed gas and the ambient air, can vary over a wide range. Parametric studies are thus performed to investigate the effects of these parameters on the characteristic time and spatial scales of the particle-laden blast wave, such as the maximum radius the contact discontinuity can reach and the time when the particle front crosses the contact discontinuity. A scaling analysis is conducted to establish a scaling relation between the characteristic scales and the controlling parameters. A length scale that incorporates the initial pressure ratio is proposed, which is able to approximately collapse the simulation results for the gas flow for a wide range of initial pressure ratios. This indicates that an approximate similarity solution for a spherical blast wave exists, which is independent of the initial pressure ratio. The approximate scaling is also valid for the particle front if the particles are small and closely follow the surrounding gas.

  9. Suspended liquid particle disturbance on laser-induced blast wave and low density distribution

    NASA Astrophysics Data System (ADS)

    Ukai, Takahiro; Zare-Behtash, Hossein; Kontis, Konstantinos

    2017-12-01

    The impurity effect of suspended liquid particles on the laser-induced gas breakdown was experimentally investigated in quiescent gas. The focus of this study is the investigation of the influence of the impurities on the shock wave structure as well as the low density distribution. A 532 nm Nd:YAG laser beam with an 188 mJ/pulse was focused on the chamber filled with suspended liquid particles 0.9 ± 0.63 μm in diameter. Several shock waves are generated by multiple gas breakdowns along the beam path in the breakdown with particles. Four types of shock wave structures can be observed: (1) the dual blast waves with a similar shock radius, (2) the dual blast waves with a large shock radius at the lower breakdown, (3) the dual blast waves with a large shock radius at the upper breakdown, and (4) the triple blast waves. The independent blast waves interact with each other and enhance the shock strength behind the shock front in the lateral direction. The triple blast waves lead to the strongest shock wave in all cases. The shock wave front that propagates toward the opposite laser focal spot impinges on one another, and thereafter a transmitted shock wave (TSW) appears. The TSW interacts with the low density core called a kernel; the kernel then longitudinally expands quickly due to a Richtmyer-Meshkov-like instability. The laser-particle interaction causes an increase in the kernel volume which is approximately five times as large as that in the gas breakdown without particles. In addition, the laser-particle interaction can improve the laser energy efficiency.

  10. Microscopic Lagrangian description of warm plasmas. III - Nonlinear wave-particle interaction

    NASA Technical Reports Server (NTRS)

    Galloway, J. J.; Crawford, F. W.

    1977-01-01

    The averaged-Lagrangian method is applied to nonlinear wave-particle interactions in an infinite, homogeneous, magnetic-field-free plasma. The specific example of Langmuir waves is considered, and the combined effects of four-wave interactions and wave-particle interactions are treated. It is demonstrated how the latter lead to diffusion in velocity space, and the quasilinear diffusion equation is derived. The analysis is generalized to the random phase approximation. The paper concludes with a summary of the method as applied in Parts 1-3 of the paper.

  11. Upstream waves and particles /Tutorial Lecture/. [from shocks in interplanetary space

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Hoppe, M. M.

    1983-01-01

    The plasma waves, MHD waves, energetic electrons and ions associated with the proximity of the region upstream from terrestrial, planetary and interplanetary shocks are discussed in view of observations and current theories concerning their origin. These waves cannot be separated from the study of shock structure. Since the shocks are supersonic, they continually overtake any ULF waves created in the plasma in front of the shock. The upstream particles and waves are also of intrinsic interest because they provide a plasma laboratory for the study of wave-particle interactions in a plasma which, at least at the earth, is accessible to sophisticated probing. Insight may be gained into interstellar medium cosmic ray acceleration through the study of these phenomena.

  12. Experimental Insights into the Mechanisms of Particle Acceleration by Shock Waves

    NASA Astrophysics Data System (ADS)

    Scolamacchia, T.; Scheu, B.; Dingwell, D. B.

    2011-12-01

    The generation of shock waves is common during explosive volcanic eruptions. Particles acceleration following shock wave propagation has been experimentally observed suggesting the potential hazard related to this phenomenon. Experiments and numerical models focused on the dynamics of formation and propagation of different types of shock waves when overpressurized eruptive mixtures are suddenly released in the atmosphere, using a pseudo-gas approximation to model those mixtures. Nevertheless, the results of several studies indicated that the mechanism of coupling between a gas and solid particles is valid for a limited grain-size range, which at present is not well defined. We are investigating particle acceleration mechanisms using a vertical shock tube consisting of a high-pressure steel autoclave (450 mm long, 28 mm in diameter), pressurized with argon, and a low-pressure 140 mm long acrylic glass autoclave, with the same internal diameter of the HP reservoir. Shock waves are generated by Ar decompression at atmospheric pressures at Pres/Pamb 100:1 to 150:1, through the failure of a diaphragm. Experiments were performed either with empty autoclave or suspending solid analogue particles 150 μm in size inside the LP autoclave. Incident Mach number varied from 1.7 to 2.1. Absolute and relative pressure sensors monitored P histories during the entire process, and a high-speed camera recorded particles movement at 20,000 to 30,000 fps. Preliminary results indicate pressure multiplication at the contact between shock waves and the particles in a time lapse of 100s μs, suggesting a possible different mechanism with respect to gas-particle coupling for particle acceleration.

  13. Towards quantitative magnetic particle imaging: A comparison with magnetic particle spectroscopy

    NASA Astrophysics Data System (ADS)

    Paysen, Hendrik; Wells, James; Kosch, Olaf; Steinhoff, Uwe; Trahms, Lutz; Schaeffter, Tobias; Wiekhorst, Frank

    2018-05-01

    Magnetic Particle Imaging (MPI) is a quantitative imaging modality with promising features for several biomedical applications. Here, we study quantitatively the raw data obtained during MPI measurements. We present a method for the calibration of the MPI scanner output using measurements from a magnetic particle spectrometer (MPS) to yield data in units of magnetic moments. The calibration technique is validated in a simplified MPI mode with a 1D excitation field. Using the calibrated results from MPS and MPI, we determine and compare the detection limits for each system. The detection limits were found to be 5.10-12 Am2 for MPS and 3.6.10-10 Am2 for MPI. Finally, the quantitative information contained in a standard MPI measurement with a 3D excitation is analyzed and compared to the previous results, showing a decrease in signal amplitudes of the odd harmonics related to the case of 1D excitation. We propose physical explanations for all acquired results; and discuss the possible benefits for the improvement of MPI technology.

  14. Nonlinear wave particle interaction in the Earth's foreshock

    NASA Technical Reports Server (NTRS)

    Mazelle, C.; LeQueau, D.; Meziane, K.; Lin, R. P.; Parks, G.; Reme, H.; Sanderson, T.; Lepping, R. P.

    1997-01-01

    The possibility that ion beams could provide a free energy source for driving an ion/ion instability responsible for the ULF wave occurrence is investigated. For this, the wave dispersion relation with the observed parameters is solved. Secondly, it is shown that the ring-like distributions could then be produced by a coherent nonlinear wave-particle interaction. It tends to trap the ions into narrow cells in velocity space centered around a well-defined pitch-angle, directly related to the saturation wave amplitude in the analytical theory. The theoretical predictions with the observations are compared.

  15. Kinetics of the chiral phase transition in a linear σ model

    NASA Astrophysics Data System (ADS)

    Wesp, Christian; van Hees, Hendrik; Meistrenko, Alex; Greiner, Carsten

    2018-02-01

    We study the dynamics of the chiral phase transition in a linear quark-meson σ model using a novel approach based on semiclassical wave-particle duality. The quarks are treated as test particles in a Monte Carlo simulation of elastic collisions and the coupling to the σ meson, which is treated as a classical field, via a kinetic approach motivated by wave-particle duality. The exchange of energy and momentum between particles and fields is described in terms of appropriate Gaussian wave packets. It has been demonstrated that energy-momentum conservation and the principle of detailed balance are fulfilled, and that the dynamics leads to the correct equilibrium limit. First schematic studies of the dynamics of matter produced in heavy-ion collisions are presented.

  16. Master 3d bosonization duality with boundaries

    NASA Astrophysics Data System (ADS)

    Aitken, Kyle; Karch, Andreas; Robinson, Brandon

    2018-05-01

    We establish the action of the three-dimensional non-Abelian bosonization dualities in the presence of a boundary, which supports a non-anomalous two-dimensional theory. In particular, we generalize a prescriptive method for assigning duality consistent boundary conditions used originally for Abelian dualities to dual non-Abelian Chern-Simons-matter theories with SU and U gauge groups and fundamental matter sectors. The cases of single species matter sectors and those with both scalars and fermions in the dual theories are considered. Generalization of our methods to SO and USp Chern-Simons theories is also discussed.

  17. (0,4) dualities

    DOE PAGES

    Putrov, Pavel; Song, Jaewon; Yan, Wenbin

    2016-03-29

    We study a class of two-dimensional N = (0; 4) quiver gauge theories that flow to superconformal field theories. We find dualities for the superconformal field theories similar to the 4d N = 2 theories of class S, labelled by a Riemann surface C. The dual descriptions arise from various pair-of-pants decompositions, that involve an analog of the T N theory. Especially, we find the superconformal indices of such theories can be written in terms of a topological field theory on C. In conclusion, we interpret this class of SCFTs as the ones coming from compactifying 6d N = (2;more » 0) theory on CP 1 x C. Moreover, some new dualities of (0; 2) and (2; 2) theories are also discussed.« less

  18. Topological T-duality, automorphisms and classifying spaces

    NASA Astrophysics Data System (ADS)

    Pande, Ashwin S.

    2014-08-01

    We extend the formalism of Topological T-duality to spaces which are the total space of a principal S1-bundle p:E→W with an H-flux in H3(E,Z) together with an automorphism of the continuous-trace algebra on E determined by H. The automorphism is a ‘topological approximation’ to a gerby gauge transformation of spacetime. We motivate this physically from Buscher’s Rules for T-duality. Using the Equivariant Brauer Group, we connect this problem to the C∗-algebraic formalism of Topological T-duality of Mathai and Rosenberg (2005). We show that the study of this problem leads to the study of a purely topological problem, namely, Topological T-duality of triples (p,b,H) consisting of isomorphism classes of a principal circle bundle p:X→B and classes b∈H2(X,Z) and H∈H3(X,Z). We construct a classifying space R for triples in a manner similar to the work of Bunke and Schick (2005). We characterize R up to homotopy and study some of its properties. We show that it possesses a natural self-map which induces T-duality for triples. We study some properties of this map.

  19. Unmagnetized diffusion for azimuthally symmetric wave and particle distributions

    NASA Technical Reports Server (NTRS)

    Dusenbery, P. B.; Lyons, L. R.

    1988-01-01

    The quasi-linear diffusion of particles from resonant interactions with a spectrum of electrostatic waves is investigated theoretically, extending results obtained for no magnetic field and for strong magnetic fields to cases where the ambient magnetic field which organizes azimuthally symmetric wave and particle distributions does not have to be taken into consideration in evaluating the local interaction. The derivation of the governing equations is explained, and numerical results are presented in extensive graphs and characterized in detail. Slow-mode ion-acoustic waves are shown to be unstable under the plasma conditions studied, and the dependence of resonant-ion diffusion rates with pitch angle, speed, and the distribution of wave energy in wavenumber space is explored. The implications of the present findings for theoretical models of the earth bow shock and plasma-sheet boundary layer are indicated.

  20. Simulations of Shock Wave Interaction with a Particle Cloud

    NASA Astrophysics Data System (ADS)

    Koneru, Rahul; Rollin, Bertrand; Ouellet, Frederick; Annamalai, Subramanian; Balachandar, S.'Bala'

    2016-11-01

    Simulations of a shock wave interacting with a cloud of particles are performed in an attempt to understand similar phenomena observed in dispersal of solid particles under such extreme environment as an explosion. We conduct numerical experiments in which a particle curtain fills only 87% of the shock tube from bottom to top. As such, the particle curtain upon interaction with the shock wave is expected to experience Kelvin-Helmholtz (KH) and Richtmyer-Meshkov (RM) instabilities. In this study, the initial volume fraction profile matches with that of Sandia Multiphase Shock Tube experiments, and the shock Mach number is limited to M =1.66. In these simulations we use a Eulerian-Lagrangian approach along with state-of-the-art point-particle force and heat transfer models. Measurements of particle dispersion are made at different initial volume fractions of the particle cloud. A detailed analysis of the evolution of the particle curtain with respect to the initial conditions is presented. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.

  1. Exploiting evanescent-wave amplification for subwavelength low-contrast particle detection

    NASA Astrophysics Data System (ADS)

    Roy, S.; Pereira, S. F.; Urbach, H. P.; Wei, Xukang; El Gawhary, O.

    2017-07-01

    The classical problem of subwavelength particle detection on a flat surface is especially challenging when the refractive index of the particle is close to that of the substrate. We demonstrate a method to improve the detection ability several times for such a situation, by enhancing the "forbidden" evanescent waves in the substrate using the principle of super-resolution with evanescent waves amplification. The working mechanism of the system and experimental validation from a design with a thin single dielectric layer is presented. The resulting system is a simple but complete example of evanescent-wave generation, amplification, and the consequent modulation of the far field. This principle can have far reaching impact in the field of particle detection in several applications ranging from contamination control to interferometric scattering microscopy for biological samples.

  2. S-duality constraint on higher-derivative couplings

    NASA Astrophysics Data System (ADS)

    Garousi, Mohammad R.

    2014-05-01

    The Riemann curvature correction to the type II supergravity at eightderivative level in string frame is given as . For constant dilaton, it has been extended in the literature to the S-duality invariant form by extending the dilaton factor in the Einstein frame to the non-holomorphic Eisenstein series. For non-constant dilaton, however, there are various couplings in the Einstein frame which are not consistent with the S-duality. By constructing the tensors t 2 n from Born-Infeld action, we include the appropriate Ricci and scalar curvatures as well as the dilaton couplings to make the above action to be consistent with the S-duality.

  3. Reversible electron heating vs. wave-particle interactions in quasi-perpendicular shocks

    NASA Technical Reports Server (NTRS)

    Veltri, P.; Mangeney, A.; Scudder, J. D.

    1992-01-01

    The energy necessary to explain the electron heating in quasi-perpendicular collisionless shocks can be derived either from the electron acceleration in the d.c. cross shock electric potential, or by the interactions between the electrons and the waves existing in the shock. A Monte Carlo simulation has been performed to study the electron distribution function evolution through the shock structure, with and without particle diffusion on waves. This simulation has allowed us to clarify the relative importance of the two possible energy sources; in particular it has been shown that the electron parallel temperature is determined by the d.c. electromagnetic field and not by any wave-particle-induced heating. Wave particle interactions are effective in smoothing out the large gradients in phase space produced by the 'reversible' motion of the electrons, thus producing a 'cooling' of the electrons.

  4. K-theoretic aspects of string theory dualities

    NASA Astrophysics Data System (ADS)

    Mendez-Diez, Stefan Milo

    String theory is a a physical field theory in which point particles are replaced by 1-manifolds propagating in time, called strings. The 2-manifold representing the time evolution of a string is called the string worldsheet. Strings can be either closed (meaning their worldsheets are closed surfaces) or open (meaning their worldsheets have boundary). A D-brane is a submanifold of the spacetime manifold on which string endpoints are constrained to lie. There are five different string theories that have supersymmetry, and they are all related by various dualities. This dissertation will review how D-branes are classified by K-theory. We will then explore the K-theoretic aspects of a hypothesized duality between the type I theory compactified on a 4-torus and the type IIA theory compactified on a K3 surface, by looking at a certain blow down of the singular limit of K3. This dissertation concludes by classifying D-branes on the type II orientifold Tn/Z2 when the Z2 action is multiplication by -1 and the H-flux is trivial. We find that classifying D-branes on the singular limit of K3, T4/Z2 by equivariant K-theory agrees with the classification of D-branes on a smooth K3 surface by ordinary K-theory.

  5. Ultrasonic tracking of shear waves using a particle filter.

    PubMed

    Ingle, Atul N; Ma, Chi; Varghese, Tomy

    2015-11-01

    This paper discusses an application of particle filtering for estimating shear wave velocity in tissue using ultrasound elastography data. Shear wave velocity estimates are of significant clinical value as they help differentiate stiffer areas from softer areas which is an indicator of potential pathology. Radio-frequency ultrasound echo signals are used for tracking axial displacements and obtaining the time-to-peak displacement at different lateral locations. These time-to-peak data are usually very noisy and cannot be used directly for computing velocity. In this paper, the denoising problem is tackled using a hidden Markov model with the hidden states being the unknown (noiseless) time-to-peak values. A particle filter is then used for smoothing out the time-to-peak curve to obtain a fit that is optimal in a minimum mean squared error sense. Simulation results from synthetic data and finite element modeling suggest that the particle filter provides lower mean squared reconstruction error with smaller variance as compared to standard filtering methods, while preserving sharp boundary detail. Results from phantom experiments show that the shear wave velocity estimates in the stiff regions of the phantoms were within 20% of those obtained from a commercial ultrasound scanner and agree with estimates obtained using a standard method using least-squares fit. Estimates of area obtained from the particle filtered shear wave velocity maps were within 10% of those obtained from B-mode ultrasound images. The particle filtering approach can be used for producing visually appealing SWV reconstructions by effectively delineating various areas of the phantom with good image quality properties comparable to existing techniques.

  6. Ultrasonic tracking of shear waves using a particle filter

    PubMed Central

    Ingle, Atul N.; Ma, Chi; Varghese, Tomy

    2015-01-01

    Purpose: This paper discusses an application of particle filtering for estimating shear wave velocity in tissue using ultrasound elastography data. Shear wave velocity estimates are of significant clinical value as they help differentiate stiffer areas from softer areas which is an indicator of potential pathology. Methods: Radio-frequency ultrasound echo signals are used for tracking axial displacements and obtaining the time-to-peak displacement at different lateral locations. These time-to-peak data are usually very noisy and cannot be used directly for computing velocity. In this paper, the denoising problem is tackled using a hidden Markov model with the hidden states being the unknown (noiseless) time-to-peak values. A particle filter is then used for smoothing out the time-to-peak curve to obtain a fit that is optimal in a minimum mean squared error sense. Results: Simulation results from synthetic data and finite element modeling suggest that the particle filter provides lower mean squared reconstruction error with smaller variance as compared to standard filtering methods, while preserving sharp boundary detail. Results from phantom experiments show that the shear wave velocity estimates in the stiff regions of the phantoms were within 20% of those obtained from a commercial ultrasound scanner and agree with estimates obtained using a standard method using least-squares fit. Estimates of area obtained from the particle filtered shear wave velocity maps were within 10% of those obtained from B-mode ultrasound images. Conclusions: The particle filtering approach can be used for producing visually appealing SWV reconstructions by effectively delineating various areas of the phantom with good image quality properties comparable to existing techniques. PMID:26520761

  7. Local Quark-Hadron Duality in Electron Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wally Melnitchouk

    2007-09-10

    We present some recent developments in the study of quark-hadron duality in structure functions in the resonance region. To understand the workings of local duality we introduce the concept of truncated moments, which are used to describe the Q^2 dependence of specific resonance regions within a QCD framework.

  8. Wave-particle and wave-wave interactions in hot plasmas: a French historical point of view

    NASA Astrophysics Data System (ADS)

    Laval, Guy; Pesme, Denis; Adam, Jean-Claude

    2016-11-01

    The first researches on nuclear fusion for energy applications marked the entrance of hot plasmas into the laboratory. It became necessary to understand the behavior of such plasmas and to learn how to manipulate them. Theoreticians and experimentalists, building on the foundations of empirical laws, had to construct this new plasma physics from first principles and to explain the results of more and more complicated experiments. Along this line, two important topics emerged: wave-particle and wave-wave interactions. Here, their history is recalled as it has been lived by a French team from the end of the sixties to the beginning of the twenty-first century.

  9. Wave-Particle Interactions in the Radiation Belts, Aurora,and Solar Wind: Opportunities for Lab Experiments

    NASA Astrophysics Data System (ADS)

    Kletzing, C.

    2017-12-01

    The physics of the creation, loss, and transport of radiation belt particles is intimately connected to the electric and magnetic fields which mediate these processes. A large range of field and particle interactions are involved in this physics from large-scale ring current ion and magnetic field dynamics to microscopic kinetic interactions of whistler-mode chorus waves with energetic electrons. To measure these kinds of radiation belt interactions, NASA implemented the two-satellite Van Allen Probes mission. As part of the mission, the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) investigation is an integrated set of instruments consisting of a triaxial fluxgate magnetometer (MAG) and a Waves instrument which includes a triaxial search coil magnetometer (MSC). We show a variety of waves thought to be important for wave particle interactionsin the radiation belts: low frequency ULF pulsations, EMIC waves, and whistler mode waves including upper and lower band chorus. Outside ofthe radiation belts, Alfven waves play a key role in both solar wind turbulenceand auroral particle acceleration. Several of these wave modes could benefit (or have benefitted) from laboratory studies to further refineour understanding of the detailed physics of the wave-particle interactionswhich lead to energization, pitch angle scattering, and cross-field transportWe illustrate some of the processes and compare the wave data with particle measurements to show relationships between wave activity and particle processobserved in the inner magnetosphere and heliosphere.

  10. A Hamiltonian Model of Dissipative Wave-particle Interactions and the Negative-mass Effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Zhmoginov

    2011-02-07

    The effect of radiation friction is included in the Hamiltonian treatment of wave-particle interactions with autoresonant phase-locking, yielding a generalized canonical approach to the problem of dissipative dynamics near a nonlinear resonance. As an example, the negativemass eff ect exhibited by a charged particle in a pump wave and a static magnetic field is studied in the presence of the friction force due to cyclotron radiation. Particles with negative parallel masses m! are shown to transfer their kinetic energy to the pump wave, thus amplifying it. Counterintuitively, such particles also undergo stable dynamics, decreasing their transverse energy monotonically due tomore » cyclotron cooling, whereas some of those with positive m! undergo cyclotron heating instead, extracting energy from the pump wave.« less

  11. Particle Pusher for the Investigation of Wave-Particle Interactions in the Magnetic Centrifugal Mass Filter (MCMF)

    NASA Astrophysics Data System (ADS)

    Kulp-McDowall, Taylor; Ochs, Ian; Fisch, Nathaniel

    2016-10-01

    A particle pusher was constructed in MATLAB using a fourth order Runge-Kutta algorithm to investigate the wave-particle interactions within theoretical models of the MCMF. The model simplified to a radial electric field and a magnetic field focused in the z direction. Studies on an average velocity calculation were conducted in order to test the program's behavior in the large radius limit. The results verified that the particle pusher was behaving correctly. Waves were then simulated on the rotating particles with a periodic divergenceless perturbation in the Bz component of the magnetic field. Preliminary runs indicate an agreement of the particle's motion with analytical predictions-ie. cyclic contractions of the doubly rotating particle's gyroradius.The next stage of the project involves the implementation of particle collisions and turbulence within the particle pusher in order to increase its accuracy and applicability. This will allow for a further investigation of the alpha channeling electrode replacement thesis first proposed by Abraham Fetterman in 2011. Made possible by Grants from the Princeton Environmental Institute (PEI) and the Program for Plasma Science and Technology (PPST).

  12. Focused interplanetary transport of solar energetic particles through self-generated Alfven waves

    NASA Technical Reports Server (NTRS)

    Ng, C. K.; Reames, D. V.

    1991-01-01

    The coupled evolution of solar-flare protons and interplanetary Alfven waves based on the quasi-linear theory implies an order of magnitude amplification (damping) in the outward (inward) propagating left helical resonant Alfven waves at less than 0.4-AU helioradius, if the proton intensity at 1 AU exceeds 300 particles/(sq cm s sr MeV) at 1 MeV, and the initial wave intensities give mean free paths of more than 0.5 AU. The wave growth significantly retards solar-particle transport, and has implications on the nature of solar-wind turbulence.

  13. Exclusive QCD processes, quark-hadron duality, and the transition to perturbative QCD

    NASA Astrophysics Data System (ADS)

    Corianò, Claudio; Li, Hsiang-nan; Savkli, Cetin

    1998-07-01

    Experiments at CEBAF will scan the intermediate-energy region of the QCD dynamics for the nucleon form factors and for Compton Scattering. These experiments will definitely clarify the role of resummed perturbation theory and of quark-hadron duality (QCD sum rules) in this regime. With this perspective in mind, we review the factorization theorem of perturbative QCD for exclusive processes at intermediate energy scales, which embodies the transverse degrees of freedom of a parton and the Sudakov resummation of the corresponding large logarithms. We concentrate on the pion and proton electromagnetic form factors and on pion Compton scattering. New ingredients, such as the evolution of the pion wave function and the complete two-loop expression of the Sudakov factor, are included. The sensitivity of our predictions to the infrared cutoff for the Sudakov evolution is discussed. We also elaborate on QCD sum rule methods for Compton Scattering, which provide an alternative description of this process. We show that, by comparing the local duality analysis to resummed perturbation theory, it is possible to describe the transition of exclusive processes to perturbative QCD.

  14. Strings on plane-waves and spin chains on orbifolds

    NASA Astrophysics Data System (ADS)

    Sadri, Darius

    This thesis covers a number of topics in string theory focusing on various aspects of the AdS/CFT duality in various guises and regimes. In the first chapter we present a self-contained review of the Plane-wave/super-Yang-Mills duality. This duality is a specification of the usual AdS/CFT correspondence in the "Penrose limit". In chapter two we study the most general parallelizable pp-wave backgrounds which are non-dilatonic solutions in the NS-NS sector of type IIA and IIB string theories. We demonstrate that parallelizable pp-wave backgrounds are necessarily homogeneous plane-waves, and that a large class of homogeneous plane-waves are parallelizable, stating the necessary conditions. Quantization of string modes, their compactification and behaviour under T-duality are also studied, as are BPS Dp-branes on such backgrounds. In chapter three we consider giant gravitons on the maximally supersymmetric plane-wave background. We deduce the low energy effective light-cone Hamiltonian of the three-sphere giant graviton, and place sources in this effective gauge theory. Although non-vanishing net electric charge configurations are disallowed by Gauss' law, electric dipoles can be formed. From the string theory point of view these dipoles can be understood as open strings piercing the three-sphere, giving a two dimensional (worldsheet) description of giant gravitons. Chapter four presents some new ideas regarding the relation between super-conformal gauge theories and string theories with three-dimensional target spaces, possible relations of these systems to Hamiltonian lattice gauge theories, and integrable spin chains. We consider N = 1, D = 4 superconformal SU( N)px q Yang-Mills theories dual to AdS5 x S5/Zp x Zq orbifolds. We show that a specific sector of this dilatation operator can be thought of as the transfer matrix for a three-dimensional statistical mechanical system, which in turn is equivalent to a 2 + 1-dimensional string theory where the spatial slices

  15. Killings, duality and characteristic polynomials

    NASA Astrophysics Data System (ADS)

    Álvarez, Enrique; Borlaf, Javier; León, José H.

    1998-03-01

    In this paper the complete geometrical setting of (lowest order) abelian T-duality is explored with the help of some new geometrical tools (the reduced formalism). In particular, all invariant polynomials (the integrands of the characteristic classes) can be explicitly computed for the dual model in terms of quantities pertaining to the original one and with the help of the canonical connection whose intrinsic characterization is given. Using our formalism the physically, and T-duality invariant, relevant result that top forms are zero when there is an isometry without fixed points is easily proved. © 1998

  16. Quantitative filter forensics for indoor particle sampling.

    PubMed

    Haaland, D; Siegel, J A

    2017-03-01

    Filter forensics is a promising indoor air investigation technique involving the analysis of dust which has collected on filters in central forced-air heating, ventilation, and air conditioning (HVAC) or portable systems to determine the presence of indoor particle-bound contaminants. In this study, we summarize past filter forensics research to explore what it reveals about the sampling technique and the indoor environment. There are 60 investigations in the literature that have used this sampling technique for a variety of biotic and abiotic contaminants. Many studies identified differences between contaminant concentrations in different buildings using this technique. Based on this literature review, we identified a lack of quantification as a gap in the past literature. Accordingly, we propose an approach to quantitatively link contaminants extracted from HVAC filter dust to time-averaged integrated air concentrations. This quantitative filter forensics approach has great potential to measure indoor air concentrations of a wide variety of particle-bound contaminants. Future studies directly comparing quantitative filter forensics to alternative sampling techniques are required to fully assess this approach, but analysis of past research suggests the enormous possibility of this approach. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Exact Boson-Fermion Duality on a 3D Euclidean Lattice

    DOE PAGES

    Chen, Jing-Yuan; Son, Jun Ho; Wang, Chao; ...

    2018-01-05

    The idea of statistical transmutation plays a crucial role in descriptions of the fractional quantum Hall effect. However, a recently conjectured duality between a critical boson and a massless two-component Dirac fermion extends this notion to gapless systems. This duality sheds light on highly nontrivial problems such as the half-filled Landau level, the superconductor-insulator transition, and surface states of strongly coupled topological insulators. Although this boson-fermion duality has undergone many consistency checks, it has remained unproven. Here, we describe the duality in a nonperturbative fashion using an exact UV mapping of partition functions on a 3D Euclidean lattice.

  18. Exact Boson-Fermion Duality on a 3D Euclidean Lattice.

    PubMed

    Chen, Jing-Yuan; Son, Jun Ho; Wang, Chao; Raghu, S

    2018-01-05

    The idea of statistical transmutation plays a crucial role in descriptions of the fractional quantum Hall effect. However, a recently conjectured duality between a critical boson and a massless two-component Dirac fermion extends this notion to gapless systems. This duality sheds light on highly nontrivial problems such as the half-filled Landau level, the superconductor-insulator transition, and surface states of strongly coupled topological insulators. Although this boson-fermion duality has undergone many consistency checks, it has remained unproven. We describe the duality in a nonperturbative fashion using an exact UV mapping of partition functions on a 3D Euclidean lattice.

  19. Exact Boson-Fermion Duality on a 3D Euclidean Lattice

    NASA Astrophysics Data System (ADS)

    Chen, Jing-Yuan; Son, Jun Ho; Wang, Chao; Raghu, S.

    2018-01-01

    The idea of statistical transmutation plays a crucial role in descriptions of the fractional quantum Hall effect. However, a recently conjectured duality between a critical boson and a massless two-component Dirac fermion extends this notion to gapless systems. This duality sheds light on highly nontrivial problems such as the half-filled Landau level, the superconductor-insulator transition, and surface states of strongly coupled topological insulators. Although this boson-fermion duality has undergone many consistency checks, it has remained unproven. We describe the duality in a nonperturbative fashion using an exact UV mapping of partition functions on a 3D Euclidean lattice.

  20. Software-type Wave-Particle Interaction Analyzer (SWPIA) by RPWI for JUICE

    NASA Astrophysics Data System (ADS)

    Katoh, Y.; Kojima, H.; Asamura, K.; Kasaba, Y.; Tsuchiya, F.; Kasahara, Y.; Ishisaka, S.; Kimura, T.; Miyoshi, Y.; Santolik, O.; Bergman, J.; Puccio, W.; Gill, R.; Wieser, M.; Schmidt, W.; Barabash, S.; Wahlund, J.-E.

    2017-09-01

    Software-type Wave-Particle Interaction Analyzer (SWPIA) will be realized as a software function of Low-Frequency receiver (LF) running on the DPU of RPWI (Radio and Plasma Waves Investigation) for the ESA JUICE mission. SWPIA conducts onboard computations of physical quantities indicating the energy exchange between plasma waves and energetic ions. Onboard inter-instruments communications are necessary to realize SWPIA, which will be implemented by efforts of RPWI, PEP (Particle Environment Package) and J-MAG (JUICE Magnetometer). By providing the direct evidence of ion energization processes by plasma waves around Jovian satellites, SWPIA contributes scientific output of JUICE as much as possible with keeping its impact on the telemetry data size to a minimum.

  1. Interaction for solitary waves in coasting charged particle beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Shi-Wei; Hong, Xue-Ren; Shi, Yu-Ren

    2014-03-15

    By using the extended Poincare-Lighthill-Kuo perturbation method, the collision of solitary waves in a coasting charged particle beams is studied. The results show that the system admits a solution with two solitary waves, which move in opposite directions and can be described by two Korteweg-deVries equation in small-amplitude limit. The collision of two solitary waves is elastic, and after the interaction they preserve their original properties. Then the weak phase shift in traveling direction of collision between two solitary waves is derived explicitly.

  2. Shock Wave Structure Mediated by Energetic Particles

    NASA Astrophysics Data System (ADS)

    Mostafavi, P.; Zank, G. P.; Webb, G. M.

    2016-12-01

    Energetic particles such as cosmic rays, Pick Up Ions (PUIs), and solar energetic particles can affect all facets of plasma physics and astrophysical plasma. Energetic particles play an especially significant role in the dissipative process at shocks and in determining their structure. The very interesting recent observations of shocks in the inner heliosphere found that many shocks appear to be significantly mediated by solar energetic particles which have a pressure that exceeds considerably both the thermal gas pressure and the magnetic field pressure. Energetic particles contribute an isotropic scalar pressure to the plasma system at the leading order, as well as introducing dissipation via a collisionless heat flux (diffusion) at the next order and a collisionless stress tensor (viscosity) at the second order. Cosmic-ray modified shocks were discussed by Axford et al. (1982), Drury (1983), and Webb (1983). Zank et al. (2014) investigated the incorporation of PUIs in the supersonic solar wind beyond 10AU, in the inner Heliosheath and in the Very Local Interstellar Medium. PUIs do not equilibrate collisionally with the background plasma in these regimes. In the absence of equilibration between plasma components, a separate coupled plasma description for the energetic particles is necessary. This model is used to investigate the structure of shock waves assuming that we can neglect the magnetic field. Specifically, we consider the dissipative role that both the energetic particle collisionless heat flux and viscosity play in determining the structure of collisionless shock waves. We show that the incorporation of both energetic particle collisionless heat flux and viscosity is sufficient to completely determine the structure of a shock. Moreover, shocks with three sub-shocks converge to the weak sub-shocks. This work differs from the investigation of Jokipii and Williams (1992) who restricted their attention to a cold thermal gas. For a cold thermal non

  3. An uplifting discussion of T-duality

    NASA Astrophysics Data System (ADS)

    Harvey, Jeffrey A.; Moore, Gregory W.

    2018-05-01

    It is well known that string theory has a T-duality symmetry relating circle compactifications of large and small radius. This symmetry plays a foundational role in string theory. We note here that while T-duality is order two acting on the moduli space of compactifications, it is order four in its action on the conformal field theory state space. More generally, involutions in the Weyl group W ( G) which act at points of enhanced G symmetry have canonical lifts to order four elements of G, a phenomenon first investigated by J. Tits in the mathematical literature on Lie groups and generalized here to conformal field theory. This simple fact has a number of interesting consequences. One consequence is a reevaluation of a mod two condition appearing in asymmetric orbifold constructions. We also briefly discuss the implications for the idea that T-duality and its generalizations should be thought of as discrete gauge symmetries in spacetime.

  4. Patching DFT, T-duality and gerbes

    NASA Astrophysics Data System (ADS)

    Howe, P. S.; Papadopoulos, G.

    2017-04-01

    We clarify the role of the dual coordinates as described from the perspectives of the Buscher T-duality rules and Double Field Theory. We show that the T-duality angular dual coordinates cannot be identified with Double Field Theory dual coordinates in any of the proposals that have been made in the literature for patching the doubled spaces. In particular, we show with explicit examples that the T-duality angular dual coordinates can have non-trivial transition functions over a spacetime and that their identification with the Double Field Theory dual coordinates is in conflict with proposals in which the latter remain inert under the patching of the B-field. We then demonstrate that the Double Field Theory coordinates can be identified with some C-space coordinates and that the T-dual spaces of a spacetime are subspaces of the gerbe in C-space. The construction provides a description of both the local O( d, d) symmetry and the T-dual spaces of spacetime.

  5. Argyres-Douglas theories and S-duality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buican, Matthew; Giacomelli, Simone; Nishinaka, Takahiro

    We generalize S-duality to N=2 superconformal field theories (SCFTs) with Coulomb branch operators of non-integer scaling dimension. As simple examples, we find minimal generalizations of the S-dualities discovered in SU(2) gauge theory with four fundamental flavors by Seiberg and Witten and in SU(3) gauge theory with six fundamental flavors by Argyres and Seiberg. Our constructions start by weakly gauging diagonal SU(2) and SU(3) flavor symmetry subgroups of two copies of a particular rank-one Argyres-Douglas theory (along with sufficient numbers of hypermultiplets to guarantee conformality of the gauging). Here, as we explore the resulting conformal manifold of the SU(2) SCFT, wemore » find an action of S-duality on the parameters of the theory that is reminiscent of Spin(8) triality. On the other hand, as we explore the conformal manifold of the SU(3) theory, we find that an exotic rank-two SCFT emerges in a dual SU(2) description.« less

  6. Study of Wave-Particle Interactions for Whistler Mode Waves at Oblique Angles by Utilizing the Gyroaveraging Method

    NASA Astrophysics Data System (ADS)

    Hsieh, Yi-Kai; Omura, Yoshiharu

    2017-10-01

    We investigate the properties of whistler mode wave-particle interactions at oblique wave normal angles to the background magnetic field. We find that electromagnetic energy of waves at frequencies below half the electron cyclotron frequency can flow nearly parallel to the ambient magnetic field. We thereby confirm that the gyroaveraging method, which averages the cyclotron motion to the gyrocenter and reduces the simulation from two-dimensional to one-dimensional, is valid for oblique wave-particle interaction. Multiple resonances appear for oblique propagation but not for parallel propagation. We calculate the possible range of resonances with the first-order resonance condition as a function of electron kinetic energy and equatorial pitch angle. To reveal the physical process and the efficiency of electron acceleration by multiple resonances, we assume a simple uniform wave model with constant amplitude and frequency in space and time. We perform test particle simulations with electrons starting at specific equatorial pitch angles and kinetic energies. The simulation results show that multiple resonances contribute to acceleration and pitch angle scattering of energetic electrons. Especially, we find that electrons with energies of a few hundred keV can be accelerated efficiently to a few MeV through the n = 0 Landau resonance.

  7. Towards Reconciliation of Several Dualities in Physician Leadership

    PubMed Central

    Walker, Keith; Kraines, Gerry

    2015-01-01

    Leadership has a renewed focus in healthcare, and physicians are being increasingly involved in a range of leadership roles. The aim of this paper is to discuss several dualities that exert tensions at the systems and individual levels. Although oppositional, the common dualities of physician leadership are not mutually exclusive but represent a complex, dynamic and interdependent relationship, often coexisting with each other and exerting tensions in multiple dimensions. The authors contend that a dialectic understanding – instead of either/or or finding a middle ground – of the opposite poles of these dualities allows for generating meaningful leadership perspectives and choices. PMID:25947031

  8. Higher T-duality in M-theory via local supersymmetry

    NASA Astrophysics Data System (ADS)

    Sati, Hisham; Schreiber, Urs

    2018-06-01

    By analyzing super-torsion and brane super-cocycles, we derive a new duality in M-theory, which takes the form of a higher version of T-duality in string theory. This involves a new topology change mechanism abelianizing the 3-sphere associated with the C-field topology to the 517-torus associated with exceptional-generalized super-geometry. Finally we explain parity symmetry in M-theory within exceptional-generalized super-spacetime at the same level of spherical T-duality, namely as an isomorphism on 7-twisted cohomology.

  9. Dynamic behavior of microscale particles controlled by standing bulk acoustic waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenhall, J.; Raeymaekers, B., E-mail: bart.raeymaekers@utah.edu; Guevara Vasquez, F.

    2014-10-06

    We analyze the dynamic behavior of a spherical microparticle submerged in a fluid medium, driven to the node of a standing bulk acoustic wave created by two opposing transducers. We derive the dynamics of the fluid-particle system taking into account the acoustic radiation force and the time-dependent and time-independent drag force acting on the particle. Using this dynamic model, we characterize the transient and steady-state behavior of the fluid-particle system as a function of the particle and fluid properties and the transducer operating parameters. The results show that the settling time and percent overshoot of the particle trajectory are dependentmore » on the ratio of the acoustic radiation force and time-independent damping force. In addition, we show that the particle oscillates around the node of the standing wave with an amplitude that depends on the ratio of the time-dependent drag forces and the particle inertia.« less

  10. Studies of Shock Wave Interaction with a Curtain of Massive Particles

    NASA Astrophysics Data System (ADS)

    Lingampally, Sumanth Reddy; Wayne, Patrick; Cooper, Sean; Izard, Ricardo Gonzalez; Jacobs, Gustaaf; Vorobieff, Peter

    2017-11-01

    Interaction of a shock wave with planar and perturbed curtain of massive particles is studied experimentally. To form the curtain, solid soda lime particles (30-50 micron diameter) are dropped from a hopper fitted with mesh sieves and vibrated with a motor. The curtain forms when the particles move through a rectangular slot in the top of the test section of the shock tube used in experiment. The curtain can be either planar or perturbed in the horizontal plane (parallel to the shock direction) based on the shape of the slot. This setup generates a particle curtain with a volume fraction varying between 2 and 8 percent along its vertical height. A laser illuminates the curtain in vertical and horizontal planes. When the diaphragm separating the driver and the driven section is ruptured, shock waves with Mach numbers ranging from 1 to 2, depending on the pressure, propagate down the driven section and into test section. The phenomena following the shock wave impingement on the particle curtain are captured using an Apogee Alta U42 camera. This work is supported by the National Science Foundation Grant 1603915/1603326.

  11. Kinetic energy and angular momentum of free particles in the gyratonic pp-waves space-times

    NASA Astrophysics Data System (ADS)

    Maluf, J. W.; da Rocha-Neto, J. F.; Ulhoa, S. C.; Carneiro, F. L.

    2018-06-01

    Gyratonic pp-waves are exact solutions of Einstein’s equations that represent non-linear gravitational waves endowed with angular momentum. We consider gyratonic pp-waves that travel in the z direction and whose time dependence on the variable is given by Gaussians, so that the waves represent short bursts of gravitational radiation propagating in the z direction. We evaluate numerically the geodesics and velocities of free particles in the space-time of these waves, and find that after the passage of the waves both the kinetic energy and the angular momentum per unit mass of the particles are changed. Therefore there is a transfer of energy and angular momentum between the gravitational field and the free particles, so that the final values of the energy and angular momentum of the free particles may be smaller or larger in magnitude than the initial values.

  12. A proposed physical analog for a quantum probability amplitude

    NASA Astrophysics Data System (ADS)

    Boyd, Jeffrey

    What is the physical analog of a probability amplitude? All quantum mathematics, including quantum information, is built on amplitudes. Every other science uses probabilities; QM alone uses their square root. Why? This question has been asked for a century, but no one previously has proposed an answer. We will present cylindrical helices moving toward a particle source, which particles follow backwards. Consider Feynman's book QED. He speaks of amplitudes moving through space like the hand of a spinning clock. His hand is a complex vector. It traces a cylindrical helix in Cartesian space. The Theory of Elementary Waves changes direction so Feynman's clock faces move toward the particle source. Particles follow amplitudes (quantum waves) backwards. This contradicts wave particle duality. We will present empirical evidence that wave particle duality is wrong about the direction of particles versus waves. This involves a paradigm shift; which are always controversial. We believe that our model is the ONLY proposal ever made for the physical foundations of probability amplitudes. We will show that our ``probability amplitudes'' in physical nature form a Hilbert vector space with adjoints, an inner product and support both linear algebra and Dirac notation.

  13. Chern-Simons-matter dualities with SO and USp gauge groups

    DOE PAGES

    Aharony, Ofer; Benini, Francesco; Hsin, Po -Shen; ...

    2017-02-14

    In the last few years several dualities were found between the low-energy behaviors of Chern-Simons-matter theories with unitary gauge groups coupled to scalars, and similar theories coupled to fermions. In this paper we generalize those dualities to orthogonal and symplectic gauge groups. In particular, we conjecture dualities between SO(N) k Chern-Simons theories coupled to N f real scalars in the fundamental representation, and SO(k)- N+N f /2 coupled to N f real (Majorana) fermions in the fundamental. For N f = 0 these are just level-rank dualities of pure Chern-Simons theories, whose precise form we clarify. They lead us tomore » propose new gapped boundary states of topological insulators and superconductors. As a result, for k = 1 we get an interesting low-energy duality between N f free Majorana fermions and an SO( N) 1 Chern-Simons theory coupled to N f scalar fields (with N f ≤ N-2).« less

  14. Lagrangian geometrical optics of nonadiabatic vector waves and spin particles

    DOE PAGES

    Ruiz, D. E.; Dodin, I. Y.

    2015-07-29

    Linear vector waves, both quantum and classical, experience polarization-driven bending of ray trajectories and polarization dynamics that can be interpreted as the precession of the "wave spin". Here, both phenomena are governed by an effective gauge Hamiltonian vanishing in leading-order geometrical optics. This gauge Hamiltonian can be recognized as a generalization of the Stern-Gerlach Hamiltonian that is commonly known for spin-1/2 quantum particles. The corresponding reduced Lagrangians for continuous nondissipative waves and their geometrical-optics rays are derived from the fundamental wave Lagrangian. The resulting Euler-Lagrange equations can describe simultaneous interactions of N resonant modes, where N is arbitrary, and leadmore » to equations for the wave spin, which happens to be an (N 2 - 1)-dimensional spin vector. As a special case, classical equations for a Dirac particle (N = 2) are deduced formally, without introducing additional postulates or interpretations, from the Dirac quantum Lagrangian with the Pauli term. The model reproduces the Bargmann-Michel-Telegdi equations with added Stern-Gerlach force.« less

  15. Advanced Accelerators: Particle, Photon and Plasma Wave Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Ronald L.

    2017-06-29

    The overall objective of this project was to study the acceleration of electrons to very high energies over very short distances based on trapping slowly moving electrons in the fast moving potential wells of large amplitude plasma waves, which have relativistic phase velocities. These relativistic plasma waves, or wakefields, are the basis of table-top accelerators that have been shown to accelerate electrons to the same high energies as kilometer-length linear particle colliders operating using traditional decades-old acceleration techniques. The accelerating electrostatic fields of the relativistic plasma wave accelerators can be as large as GigaVolts/meter, and our goal was to studymore » techniques for remotely measuring these large fields by injecting low energy probe electron beams across the plasma wave and measuring the beam’s deflection. Our method of study was via computer simulations, and these results suggested that the deflection of the probe electron beam was directly proportional to the amplitude of the plasma wave. This is the basis of a proposed diagnostic technique, and numerous studies were performed to determine the effects of changing the electron beam, plasma wave and laser beam parameters. Further simulation studies included copropagating laser beams with the relativistic plasma waves. New interesting results came out of these studies including the prediction that very small scale electron beam bunching occurs, and an anomalous line focusing of the electron beam occurs under certain conditions. These studies were summarized in the dissertation of a graduate student who obtained the Ph.D. in physics. This past research program has motivated ideas for further research to corroborate these results using particle-in-cell simulation tools which will help design a test-of-concept experiment in our laboratory and a scaled up version for testing at a major wakefield accelerator facility.« less

  16. Higher-order geodesic deviation for charged particles and resonance induced by gravitational waves

    NASA Astrophysics Data System (ADS)

    Heydari-Fard, M.; Hasani, S. N.

    We generalize the higher-order geodesic deviation for the structure-less test particles to the higher-order geodesic deviation equations of the charged particles [R. Kerner, J. W. van Holten and R. Colistete Jr., Class. Quantum Grav. 18 (2001) 4725]. By solving these equations for charged particles moving in a constant magnetic field in the spacetime of a gravitational wave, we show for both cases when the gravitational wave is parallel and perpendicular to the constant magnetic field, a magnetic resonance appears at wg = Ω. This feature might be useful to detect the gravitational wave with high frequencies.

  17. Duality linking standard and tachyon scalar field cosmologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avelino, P. P.; Bazeia, D.; Losano, L.

    2010-09-15

    In this work we investigate the duality linking standard and tachyon scalar field homogeneous and isotropic cosmologies in N+1 dimensions. We determine the transformation between standard and tachyon scalar fields and between their associated potentials, corresponding to the same background evolution. We show that, in general, the duality is broken at a perturbative level, when deviations from a homogeneous and isotropic background are taken into account. However, we find that for slow-rolling fields the duality is still preserved at a linear level. We illustrate our results with specific examples of cosmological relevance, where the correspondence between scalar and tachyon scalarmore » field models can be calculated explicitly.« less

  18. Hyperasymptotics and quark-hadron duality violations in QCD

    NASA Astrophysics Data System (ADS)

    Boito, Diogo; Caprini, Irinel; Golterman, Maarten; Maltman, Kim; Peris, Santiago

    2018-03-01

    We investigate the origin of the quark-hadron duality-violating terms in the expansion of the QCD two-point vector correlation function at large energies in the complex q2 plane. Starting from the dispersive representation for the associated polarization, the analytic continuation of the operator product expansion from the Euclidean to the Minkowski region is performed by means of a generalized Borel-Laplace transform, borrowing techniques from hyperasymptotics. We establish a connection between singularities in the Borel plane and quark-hadron duality-violating contributions. Starting with the assumption that for QCD at Nc=∞ the spectrum approaches a Regge trajectory at large energy, we obtain an expression for quark-hadron duality violations at large, but finite Nc.

  19. On the universe's cybernetics duality behavior

    NASA Astrophysics Data System (ADS)

    Feria, Erlan H.

    2015-05-01

    Universal cybernetics is the study of control and communications in living and non-living systems. In this paper the universal cybernetics duality principle (UCDP), first identified in control theory in 1978 and expressing a cybernetic duality behavior for our universe, is reviewed. The review is given on the heels of major prizes given to physicists for their use of mathematical dualities in solving intractable problems in physics such as those of cosmology's `dark energy', an area that according to a recent New York Times article has become "a cottage industry in physics today". These dualities are not unlike those of our UCDP that are further enhanced with physical dualities. For instance, in 2008 the UCDP guided us to the derivation of the laws of retention in physics as the space-penalty dual of the laws of motion in physics, including the dark energy thought responsible for the observed increase of the volume of our Universe as it ages. The UCDP has also guided us to the discovery of significant results in other fields such as: 1) in matched processors for quantized control with applications in the modeling of central nervous system (CNS) control mechanisms; 2) in radar designs where the discovery of latency theory, the time-penalty dual of information-theory, has led us to high-performance radar solutions that evade the use of `big data' in the form of SAR imagery of the earth; and 3) in unveiling biological lifespan bounds where the life-expectancy of an organism is sensibly predicted through lingerdynamics, the identified time-penalty dual of thermodynamics, which relates its adult lifespan to either: a. the ratio of its body size to its nutritional consumption rate; or b. its specific heat-capacity; or c. the ratio of its nutritional consumption rate energy to its entropic volume energy, a type of dark energy that is consistent with the observed decrease in the mass density of the organism as it ages.

  20. Is wave–particle objectivity compatible with determinism and locality?

    PubMed Central

    Ionicioiu, Radu; Jennewein, Thomas; Mann, Robert B.; Terno, Daniel R.

    2014-01-01

    Wave–particle duality, superposition and entanglement are among the most counterintuitive features of quantum theory. Their clash with our classical expectations motivated hidden-variable (HV) theories. With the emergence of quantum technologies, we can test experimentally the predictions of quantum theory versus HV theories and put strong restrictions on their key assumptions. Here, we study an entanglement-assisted version of the quantum delayed-choice experiment and show that the extension of HV to the controlling devices only exacerbates the contradiction. We compare HV theories that satisfy the conditions of objectivity (a property of photons being either particles or waves, but not both), determinism and local independence of hidden variables with quantum mechanics. Any two of the above conditions are compatible with it. The conflict becomes manifest when all three conditions are imposed and persists for any non-zero value of entanglement. We propose an experiment to test our conclusions. PMID:25256419

  1. Particle scavenging in a cylindrical ultrasonic standing wave field using levitated drops

    NASA Astrophysics Data System (ADS)

    Merrell, Tyler; Saylor, J. R.

    2015-11-01

    A cylindrical ultrasonic standing wave field was generated in a tube containing a flow of particles and fog. Both the particles and fog drops were concentrated in the nodes of the standing wave field where they combined and then grew large enough to fall out of the system. In this way particles were scavenged from the system, cleaning the air. While this approach has been attempted using a standing wave field established between disc-shaped transducers, a cylindrical resonator has not been used for this purpose heretofore. The resonator was constructed by bolting three Langevin transducers to an aluminum tube. The benefit of the cylindrical geometry is that the acoustic energy is focused. Furthermore, the residence time of the particle in the field can be increased by increasing the length of the resonator. An additional benefit of this approach is that tubes located downstream of the resonator were acoustically excited, acting as passive resonators that enhanced the scavenging process. The performance of this system on scavenging particles is presented as a function of particle diameter and volumetric flow rate. It is noted that, when operated without particles, the setup can be used to remove drops and shows promise for liquid aerosol retention from systems where these losses can be financially disadvantageous and/or hazardous.

  2. High-Speed Transport of Fluid Drops and Solid Particles via Surface Acoustic Waves

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Bao, Xiaoqi; Sherrit, Stewart; Badescu, Mircea; Lih, Shyh-shiuh

    2012-01-01

    A compact sampling tool mechanism that can operate at various temperatures, and transport and sieve particle sizes of powdered cuttings and soil grains with no moving parts, has been created using traveling surface acoustic waves (SAWs) that are emitted by an inter-digital transducer (IDT). The generated waves are driven at about 10 MHz, and it causes powder to move towards the IDT at high speed with different speeds for different sizes of particles, which enables these particles to be sieved. This design is based on the use of SAWs and their propelling effect on powder particles and fluids along the path of the waves. Generally, SAWs are elastic waves propagating in a shallow layer of about one wavelength beneath the surface of a solid substrate. To generate SAWs, a piezoelectric plate is used that is made of LiNbO3 crystal cut along the x-axis with rotation of 127.8 along the y-axis. On this plate are printed pairs of fingerlike electrodes in the form of a grating that are activated by subjecting the gap between the electrodes to electric field. This configuration of a surface wave transmitter is called IDT. The IDT that was used consists of 20 pairs of fingers with 0.4-mm spacing, a total length of 12.5 mm. The surface wave is produced by the nature of piezoelectric material to contract or expand when subjected to an electric field. Driving the IDT to generate wave at high amplitudes provides an actuation mechanism where the surface particles move elliptically, pulling powder particles on the surface toward the wavesource and pushing liquids in the opposite direction. This behavior allows the innovation to separate large particles and fluids that are mixed. Fluids are removed at speed (7.5 to 15 cm/s), enabling this innovation of acting as a bladeless wiper for raindrops. For the windshield design, the electrodes could be made transparent so that they do not disturb the driver or pilot. Multiple IDTs can be synchronized to transport water or powder over larger

  3. The VLF Wave and Particle Precipitation Mapper (VPM) Cubesat Payload Suite

    NASA Astrophysics Data System (ADS)

    Inan, U.; Linscott, I.; Marshall, R. A.; Lauben, D.; Starks, M. J.; Doolittle, J. H.

    2012-12-01

    The VLF Wave and Particle Precipitation Mapper (VPM) payload is under development at Stanford University for a Cubesat mission that is planned to fly in low-earth-orbit in 2015. The VPM payload suite includes a 2-meter electric-field dipole antenna; a single-axis magnetic search coil; and a two-channel relativistic electron detector, measuring both trapped and loss-cone electrons. VPM will measure waves and relativistic electrons with the following primary goals: i) develop an improved climatology of plasmaspheric hiss in the L-shell range 1 < L < 3 at all local times; ii) detect VLF waves launched by space-based VLF transmitters, as well as energetic electrons scattered by those in-situ injected waves; iii) develop an improved climatology of lightning-generated whistlers and lightning-induced electron precipitation; iv)measure waves and electron precipitation produced by ground-based VLF transmitters; and v) validate propagation and wave-particle interaction models. In this paper we outline these science objectives of the VPM payload instrument suite, and describe the payload instruments and data products that will meet these science goals.

  4. Observation of Hamiltonian chaos and its control in wave particle interaction

    NASA Astrophysics Data System (ADS)

    Doveil, F.; Macor, A.; Aïssi, A.

    2007-12-01

    Wave-particle interactions are central in plasma physics. They can be studied in a traveling wave tube (TWT) to avoid intrinsic plasma noise. This led to detailed experimental analysis of the self-consistent interaction between unstable waves and an either cold or warm beam. More recently a test cold electron beam has been used to observe its non-self-consistent interaction with externally excited wave(s). The velocity distribution function of the electron beam is recorded with a trochoidal energy analyzer at the output of the TWT. An arbitrary waveform generator is used to launch a prescribed spectrum of waves along the slow wave structure (a 4 m long helix) of the TWT. The nonlinear synchronization of particles by a single wave responsible for Landau damping is observed. The resonant velocity domain associated with a single wave is also observed, as well as the transition to large scale chaos when the resonant domains of two waves and their secondary resonances overlap. This transition exhibits a 'devil's staircase' behavior when increasing the excitation amplitude in agreement with numerical simulation. A new strategy for control of chaos by building barriers of transport which prevent electrons from escaping from a given velocity region as well as its robustness are successfully tested. The underlying concepts extend far beyond the field of electron devices and plasma physics.

  5. One-dimensional numerical study of charged particle trajectories in turbulent electrostatic wave fields

    NASA Technical Reports Server (NTRS)

    Graham, K. N.; Fejer, J. A.

    1976-01-01

    The paper describes a numerical simulation of electron trajectories in weak random electric fields under conditions that are approximately true for Langmuir waves whose wavelength is much longer than the Debye length. Two types of trajectory calculations were made: (1) the initial particle velocity was made equal to the mean phase velocity of the waves, or (2) it was equal to 0.7419 times the mean velocity of the waves, so that the initial velocity differed substantially from all phase velocities of the wave spectrum. When the autocorrelation time is much greater than the trapping time, the particle motion can change virtually instantaneously from one of three states - high-velocity, low-velocity, or trapped state - to another. The probability of instantaneous transition from a high- or low-velocity state becomes small when the difference between the particle velocity and the mean phase velocity of the waves becomes high in comparison to the trapping velocity. Diffusive motion becomes negligible under these conditions also.

  6. Some Basic Concepts of Wave-Particle Interactions in Collisionless Plasmas

    NASA Technical Reports Server (NTRS)

    Lakhina, Gurbax S.; Tsurutani, Bruce T.

    1997-01-01

    The physical concepts of wave-particle interactions in a collisionless plasma are developed from first principles. Using the Lorentz force, starting with the concepts of gyromotion, particle mirroring and the loss-cone, normal and anomalous cyclotron resonant interactions, pitch-angle scattering, and cross-field diffusion are developed.

  7. Stringy horizons and generalized FZZ duality in perturbation theory

    NASA Astrophysics Data System (ADS)

    Giribet, Gaston

    2017-02-01

    We study scattering amplitudes in two-dimensional string theory on a black hole bakground. We start with a simple derivation of the Fateev-Zamolodchikov-Zamolodchikov (FZZ) duality, which associates correlation functions of the sine-Liouville integrable model on the Riemann sphere to tree-level string amplitudes on the Euclidean two-dimensional black hole. This derivation of FZZ duality is based on perturbation theory, and it relies on a trick originally due to Fateev, which involves duality relations between different Selberg type integrals. This enables us to rewrite the correlation functions of sine-Liouville theory in terms of a special set of correlators in the gauged Wess-Zumino-Witten (WZW) theory, and use this to perform further consistency checks of the recently conjectured Generalized FZZ (GFZZ) duality. In particular, we prove that n-point correlation functions in sine-Liouville theory involving n - 2 winding modes actually coincide with the correlation functions in the SL(2,R)/U(1) gauged WZW model that include n - 2 oscillator operators of the type described by Giveon, Itzhaki and Kutasov in reference [1]. This proves the GFZZ duality for the case of tree level maximally winding violating n-point amplitudes with arbitrary n. We also comment on the connection between GFZZ and other marginal deformations previously considered in the literature.

  8. Rarefaction shock waves and Hugoniot curve in the presence of free and trapped particles

    NASA Astrophysics Data System (ADS)

    Niknam, A. R.; Hashemzadeh, M.; Shokri, B.; Rouhani, M. R.

    2009-12-01

    The effects of the relativistic ponderomotive force and trapped particles in the presence of ponderomotive force on the rarefaction shock waves are investigated. The ponderomotive force alters the electron density distribution. This force and relativistic mass affect the plasma frequency. These physical parameters modify the total pressure and the existence condition of the rarefaction shock wave. Furthermore, the trapping of particles by the high frequency electromagnetic field considerably changes the existence condition of the rarefaction shock wave. The total pressure and Hugoniot curve are obtained by considering the relativistic ponderomotive force and trapped particles.

  9. Adiabatic description of capture into resonance and surfatron acceleration of charged particles by electromagnetic waves.

    PubMed

    Artemyev, A V; Neishtadt, A I; Zelenyi, L M; Vainchtein, D L

    2010-12-01

    We present an analytical and numerical study of the surfatron acceleration of nonrelativistic charged particles by electromagnetic waves. The acceleration is caused by capture of particles into resonance with one of the waves. We investigate capture for systems with one or two waves and provide conditions under which the obtained results can be applied to systems with more than two waves. In the case of a single wave, the once captured particles never leave the resonance and their velocity grows linearly with time. However, if there are two waves in the system, the upper bound of the energy gain may exist and we find the analytical value of that bound. We discuss several generalizations including the relativistic limit, different wave amplitudes, and a wide range of the waves' wavenumbers. The obtained results are used for qualitative description of some phenomena observed in the Earth's magnetosphere. © 2010 American Institute of Physics.

  10. Cosmic distance duality and cosmic transparency

    NASA Astrophysics Data System (ADS)

    Nair, Remya; Jhingan, Sanjay; Jain, Deepak

    2012-12-01

    We compare distance measurements obtained from two distance indicators, Supernovae observations (standard candles) and Baryon acoustic oscillation data (standard rulers). The Union2 sample of supernovae with BAO data from SDSS, 6dFGS and the latest BOSS and WiggleZ surveys is used in search for deviations from the distance duality relation. We find that the supernovae are brighter than expected from BAO measurements. The luminosity distances tend to be smaller then expected from angular diameter distance estimates as also found in earlier works on distance duality, but the trend is not statistically significant. This further constrains the cosmic transparency.

  11. The origins of duality of patterning in artificial whistled languages

    PubMed Central

    Verhoef, Tessa

    2012-01-01

    In human speech, a finite set of basic sounds is combined into a (potentially) unlimited set of well-formed morphemes. Hockett (1960) placed this phenomenon under the term ‘duality of patterning’ and included it as one of the basic design features of human language. Of the thirteen basic design features Hockett proposed, duality of patterning is the least studied and it is still unclear how it evolved in language. Recent work shedding light on this is summarized in this paper and experimental data is presented. This data shows that combinatorial structure can emerge in an artificial whistled language through cultural transmission as an adaptation to human cognitive biases and learning. In this work the method of experimental iterated learning (Kirby et al. 2008) is used, in which a participant is trained on the reproductions of the utterances the previous participant learned. Participants learn and recall a system of sounds that are produced with a slide whistle. Transmission from participant to participant causes the whistle systems to change and become more learnable and more structured. These findings follow from qualitative observations, quantitative measures and a follow-up experiment that tests how well participants can learn the emerged whistled languages by generalizing from a few examples. PMID:23637710

  12. Spin dynamics of counterrotating Kitaev spirals via duality

    NASA Astrophysics Data System (ADS)

    Kimchi, Itamar; Coldea, Radu

    2016-11-01

    Incommensurate spiral order is a common occurrence in frustrated magnetic insulators. Typically, all magnetic moments rotate uniformly, through the same wavevector. However the honeycomb iridates family Li2IrO3 shows an incommensurate order where spirals on neighboring sublattices are counterrotating, giving each moment a different local environment. Theoretically describing its spin dynamics has remained a challenge: The Kitaev interactions proposed to stabilize this state, which arise from strong spin-orbit effects, induce magnon umklapp scattering processes in spin-wave theory. Here we propose an approach via a (Klein) duality transformation into a conventional spiral of a frustrated Heisenberg model, allowing a direct derivation of the dynamical structure factor. We analyze both Kitaev and Dzyaloshinskii-Moriya based models, both of which can stabilize counterrotating spirals, but with different spin dynamics, and we propose experimental tests to identify the origin of counterrotation.

  13. Non-Abelian Yang-Mills analogue of classical electromagnetic duality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Hong-Mo; Faridani, J.; Tsun, T.S.

    The classic question of non-Abelian Yang-Mills analogue to electromagnetic duality is examined here in a minimalist fashion at the strictly four-dimensional, classical field, and point charge level. A generalization of the Abelian Hodge star duality is found which, though not yet known to give dual symmetry, reproduces analogues to many dual properties of the Abelian theory. For example, there is a dual potential, but it is a two-indexed tensor {ital T}{sub {mu}{nu}} of the Freedman-Townsend-type. Though not itself functioning as such, {ital T}{sub {mu}{nu}} gives rise to a dual parallel transport {ital {tilde A}}{sub {mu}} for the phase of themore » wave function of the color magnetic charge, this last being a monopole of the Yang-Mills field but a source of the dual field. The standard color (electric) charge itself is found to be a monpole of {ital {tilde A}}{sub {mu}}. At the same time, the gauge symmetry is found doubled from say SU({ital N}) to SU({ital N}){times}SU({ital N}). A novel feature is that all equations of motion, including the standard Yang-Mills and Wong equations, are here derived from a ``universal`` principle, namely, the Wu-Yang criterion for monpoles, where interactions arise purely as a consequence of the topological definition of the monopole charge. The technique used is the loop space formulation of Polyakov.« less

  14. A Versatile Applet to Explore the Wave Behaviour of Particles

    ERIC Educational Resources Information Center

    Fernandez Palop, J. I.

    2009-01-01

    A pedagogical tool that consists of a Java applet has been developed so that undergraduate students in physics can explore the wave behaviour of particles. The applet executes a simulation in which a two-dimensional wave packet moves towards a slit and an obstacle with variable widths. By changing three parameters, slit width, obstacle width and…

  15. Embedding the photon with its relativistic mass as a particle into the electromagnetic wave.

    PubMed

    Altmann, Konrad

    2018-01-22

    The particle picture presented by the author in the paper "A particle picture of the optical resonator" [K. Altmann, ASSL 2014 Conference Paper ATu2A.29], which shows that the probability density of a photon propagating with a Gaussian wave can be computed by the use of a Schrödinger equation, is generalized to the case of a wave with arbitrary shape of the phase front. Based on a consideration of the changing propagation direction of the relativistic mass density propagating with the electromagnetic wave, a transverse force acting on the photon is derived. The expression obtained for this force makes it possible to show that the photon moves within a transverse potential that in combination with a Schrödinger equation allows to describe the transverse quantum mechanical motion of the photon by the use of matter wave theory, even though the photon has no rest mass. The obtained results are verified for the plane, the spherical, and the Gaussian wave. Additional verification could be provided also by the fact that the mathematical equation describing the Guoy phase shift could be derived from this particle picture in full agreement with wave optics. One more verification could be obtained by the fact that within the range of the validity of paraxial wave optics, Snell's law could also be derived from this particle picture. Numerical validation of the obtained results for the case of the general wave is under development.

  16. Charged Particle Detection: Potential of Love Wave Acoustic Devices

    NASA Astrophysics Data System (ADS)

    Pedrick, Michael; Tittmann, Bernhard

    2006-03-01

    An investigation of the dependence of film density on group and phase velocities in a Love Wave Device shows potential for acoustic-based charged particle detection (CPD). Exposure of an ion sensitive photoresist to charged particles causes localized changes in density through either scission or cross-linking. A theoretical model was developed to study ion fluence effects on Love Wave sensitivity based on: ion energy, effective density changes, layer thickness and mode selection. The model is based on a Poly(Methyl Methacralate) (PMMA) film deposited on a Quartz substrate. The effect of Helium ion fluence on the properties of PMMA has previously been studied. These guidelines were used as an initial basis for the prediction of helium ion detection in a PMMA layer. Procedures for experimental characterization of ion effects on the material properties of PMMA are reviewed. Techniques for experimental validation of the predicted velocity shifts are discussed. A Love Wave Device for CPD could potentially provide a cost-effective alternative to semiconductor or photo-based counterparts. The potential for monitoring ion implantation effects on material properties is also discussed.

  17. Particle-based simulations of bilayer membranes: self-assembly, structural analysis, and shock-wave damage

    NASA Astrophysics Data System (ADS)

    Steinhauser, Martin O.; Schindler, Tanja

    2017-01-01

    We report on the results of particle-based, coarse-grained molecular dynamics simulations of amphiphilic lipid molecules in aqueous environment where the membrane structures at equilibrium are subsequently exposed to strong shock waves, and their damage is analyzed. The lipid molecules self-assemble from unbiased random initial configurations to form stable bilayer membranes, including closed vesicles. During self-assembly of lipid molecules, we observe several stages of clustering, starting with many small clusters of lipids, gradually merging together to finally form one single bilayer membrane. We find that the clustering of lipids sensitively depends on the hydrophobic interaction h_c of the lipid tails in our model and on temperature T of the system. The self-assembled bilayer membranes are quantitatively analyzed at equilibrium with respect to their degree of order and their local structure. We also show that—by analyzing the membrane fluctuations and using a linearized theory— we obtain area compression moduli K_A and bending stiffnesses κ _B for our bilayer membranes which are within the experimental range of in vivo and in vitro measurements of biological membranes. We also discuss the density profile and the pair correlation function of our model membranes at equilibrium which has not been done in previous studies of particle-based membrane models. Furthermore, we present a detailed phase diagram of our lipid model that exhibits a sol-gel transition between quasi-solid and fluid domains, and domains where no self-assembly of lipids occurs. In addition, we present in the phase diagram the conditions for temperature T and hydrophobicity h_c of the lipid tails of our model to form closed vesicles. The stable bilayer membranes obtained at equilibrium are then subjected to strong shock waves in a shock tube setup, and we investigate the damage in the membranes due to their interaction with shock waves. Here, we find a transition from self

  18. Effect of particle momentum transfer on an oblique-shock-wave/laminar-boundary-layer interaction

    NASA Astrophysics Data System (ADS)

    Teh, E.-J.; Johansen, C. T.

    2016-11-01

    Numerical simulations of solid particles seeded into a supersonic flow containing an oblique shock wave reflection were performed. The momentum transfer mechanism between solid and gas phases in the shock-wave/boundary-layer interaction was studied by varying the particle size and mass loading. It was discovered that solid particles were capable of significant modulation of the flow field, including suppression of flow separation. The particle size controlled the rate of momentum transfer while the particle mass loading controlled the magnitude of momentum transfer. The seeding of micro- and nano-sized particles upstream of a supersonic/hypersonic air-breathing propulsion system is proposed as a flow control concept.

  19. Quantitative shear wave imaging optical coherence tomography for noncontact mechanical characterization of myocardium

    NASA Astrophysics Data System (ADS)

    Wang, Shang; Lopez, Andrew L.; Morikawa, Yuka; Tao, Ge; Li, Jiasong; Larina, Irina V.; Martin, James F.; Larin, Kirill V.

    2015-03-01

    Optical coherence elastography (OCE) is an emerging low-coherence imaging technique that provides noninvasive assessment of tissue biomechanics with high spatial resolution. Among various OCE methods, the capability of quantitative measurement of tissue elasticity is of great importance for tissue characterization and pathology detection across different samples. Here we report a quantitative OCE technique, termed quantitative shear wave imaging optical coherence tomography (Q-SWI-OCT), which enables noncontact measurement of tissue Young's modulus based on the ultra-fast imaging of the shear wave propagation inside the sample. A focused air-puff device is used to interrogate the tissue with a low-pressure short-duration air stream that stimulates a localized displacement with the scale at micron level. The propagation of this tissue deformation in the form of shear wave is captured by a phase-sensitive OCT system running with the scan of the M-mode imaging over the path of the wave propagation. The temporal characteristics of the shear wave is quantified based on the cross-correlation of the tissue deformation profiles at all the measurement locations, and linear regression is utilized to fit the data plotted in the domain of time delay versus wave propagation distance. The wave group velocity is thus calculated, which results in the quantitative measurement of the Young's modulus. As the feasibility demonstration, experiments are performed on tissuemimicking phantoms with different agar concentrations and the quantified elasticity values with Q-SWI-OCT agree well with the uniaxial compression tests. For functional characterization of myocardium with this OCE technique, we perform our pilot experiments on ex vivo mouse cardiac muscle tissues with two studies, including 1) elasticity difference of cardiac muscle under relaxation and contract conditions and 2) mechanical heterogeneity of the heart introduced by the muscle fiber orientation. Our results suggest the

  20. Alternative descriptions of wave and particle aspects of the harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Schuch, Dieter

    1993-01-01

    The dynamical properties of the wave and particle aspects of the harmonic oscillator can be studied with the help of the time-dependent Schroedinger equation (SE). Especially the time-dependence of maximum and width of Gaussian wave packet solutions allow to show the evolution and connections of those two complementary aspects. The investigation of the relations between the equations describing wave and particle aspects leads to an alternative description of the considered systems. This can be achieved by means of a Newtonian equation for a complex variable in connection with a conservation law for a nonclassical angular momentum-type quantity. With the help of this complex variable, it is also possible to develop a Hamiltonian formalism for the wave aspect contained in the SE, which allows to describe the dynamics of the position and momentum uncertainties. In this case the Hamiltonian function is equivalent to the difference between the mean value of the Hamiltonian operator and the classical Hamiltonian function.

  1. Particle production in a gravitational wave background

    NASA Astrophysics Data System (ADS)

    Jones, Preston; McDougall, Patrick; Singleton, Douglas

    2017-03-01

    We study the possibility that massless particles, such as photons, are produced by a gravitational wave. That such a process should occur is implied by tree-level Feynman diagrams such as two gravitons turning into two photons, i.e., g +g →γ +γ . Here we calculate the rate at which a gravitational wave creates a massless scalar field. This is done by placing the scalar field in the background of a plane gravitational wave and calculating the 4-current of the scalar field. Even in the vacuum limit of the scalar field it has a nonzero vacuum expectation value (similar to what occurs in the Higgs mechanism) and a nonzero current. We associate this with the production of scalar field quanta by the gravitational field. This effect has potential consequences for the attenuation of gravitational waves since the massless field is being produced at the expense of the gravitational field. This is related to the time-dependent Schwinger effect, but with the electric field replaced by the gravitational wave background and the electron/positron field quanta replaced by massless scalar "photons." Since the produced scalar quanta are massless there is no exponential suppression, as occurs in the Schwinger effect due to the electron mass.

  2. String duality transformations in f(R) gravity from Noether symmetry approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capozziello, Salvatore; Gionti, Gabriele S.J.; Vernieri, Daniele, E-mail: capozziello@na.inf.it, E-mail: ggionti@as.arizona.edu, E-mail: vernieri@iap.fr

    2016-01-01

    We select f(R) gravity models that undergo scale factor duality transformations. As a starting point, we consider the tree-level effective gravitational action of bosonic String Theory coupled with the dilaton field. This theory inherits the Busher's duality of its parent String Theory. Using conformal transformations of the metric tensor, it is possible to map the tree-level dilaton-graviton string effective action into f(R) gravity, relating the dilaton field to the Ricci scalar curvature. Furthermore, the duality can be framed under the standard of Noether symmetries and exact cosmological solutions are derived. Using suitable changes of variables, the string-based f(R) Lagrangians aremore » shown in cases where the duality transformation becomes a parity inversion.« less

  3. Stochastic analysis of pitch angle scattering of charged particles by transverse magnetic waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemons, Don S.; Liu Kaijun; Winske, Dan

    2009-11-15

    This paper describes a theory of the velocity space scattering of charged particles in a static magnetic field composed of a uniform background field and a sum of transverse, circularly polarized, magnetic waves. When that sum has many terms the autocorrelation time required for particle orbits to become effectively randomized is small compared with the time required for the particle velocity distribution to change significantly. In this regime the deterministic equations of motion can be transformed into stochastic differential equations of motion. The resulting stochastic velocity space scattering is described, in part, by a pitch angle diffusion rate that ismore » a function of initial pitch angle and properties of the wave spectrum. Numerical solutions of the deterministic equations of motion agree with the theory at all pitch angles, for wave energy densities up to and above the energy density of the uniform field, and for different wave spectral shapes.« less

  4. Hidden isometry of "T-duality without isometry"

    NASA Astrophysics Data System (ADS)

    Bouwknegt, Peter; Bugden, Mark; Klimčík, Ctirad; Wright, Kyle

    2017-08-01

    We study the T-dualisability criteria of Chatzistavrakidis, Deser and Jonke [3] who recently used Lie algebroid gauge theories to obtain sigma models exhibiting a "Tduality without isometry". We point out that those T-dualisability criteria are not written invariantly in [3] and depend on the choice of the algebroid framing. We then show that there always exists an isometric framing for which the Lie algebroid gauging boils down to standard Yang-Mills gauging. The "T-duality without isometry" of [3] is therefore nothing but traditional isometric non-Abelian T-duality in disguise.

  5. Three-dimensional dualities with bosons and fermions

    NASA Astrophysics Data System (ADS)

    Benini, Francesco

    2018-02-01

    We propose new infinite families of non-supersymmetric IR dualities in three space-time dimensions, between Chern-Simons gauge theories (with classical gauge groups) with both scalars and fermions in the fundamental representation. In all cases we study the phase diagram as we vary two relevant couplings, finding interesting lines of phase transitions. In various cases the dualities lead to predictions about multi-critical fixed points and the emergence of IR quantum symmetries. For unitary groups we also discuss the coupling to background gauge fields and the map of simple monopole operators.

  6. Wave-Particle Interactions in the Earth's Radiation Belts: Recent Advances and Unprecedented Future Opportunities

    NASA Astrophysics Data System (ADS)

    Li, W.

    2017-12-01

    In the collisionless heliospheric plasmas, wave-particle interaction is a fundamental physical process in transferring energy and momentum between particles with different species and energies. This presentation focuses on one of the important wave-particle interaction processes: interaction between whistler-mode waves and electrons. Whistler-mode waves have frequencies between proton and electron cyclotron frequency and are ubiquitously present in the heliospheric plasmas including solar wind and planetary magnetospheres. I use Earth's Van Allen radiation belt as "local space laboratory" to discuss the role of whistler-mode waves in energetic electron dynamics using multi-satellite observations, theory and modeling. I further discuss solar wind drivers leading to energetic electron dynamics in the Earth's radiation belts, which is critical in predicting space weather that has broad impacts on our technological systems and society. At last, I discuss the unprecedented future opportunities of exploring space science using multi-satellite observations and state-of-the-art theory and modeling.

  7. Stochastic particle instability for electron motion in combined helical wiggler, radiation, and longitudinal wave fields

    NASA Astrophysics Data System (ADS)

    Davidson, Ronald C.; McMullin, Wayne A.

    1982-07-01

    The relativistic motion of an electron is calculated in the combined fields of a transverse helical wiggler field (axial wavelength is λ0=2πk0) and the constant-amplitude, circularly polarized primary electromagnetic wave (δBT,ω,k) propagating in the z direction. For particle velocity near the beat-wave phase velocity ω(k+k0) of the primary wave, it is shown that the presence of a second, moderate-amplitude longitudinal wave (δÊL,ω,k) or transverse electromagnetic wave (δB2,ω2,k2) can lead to stochastic particle instability in which particles trapped near the separatrix of the primary wave undergo a systematic departure from the potential well. The condition for onset of instability is calculated, and the importance of these results for free-electron-laser (FEL) application is discussed. For development of long-pulse or steady-state free-electron lasers, the maintenance of beam integrity for an extended period of time will be of considerable practical importance. The fact that the presence of secondary, moderate-amplitude longitudinal or transverse electromagnetic waves can destroy coherent motion for certain classes of beam particles moving with velocity near ω(k+k0) may lead to a degradation of beam quality and concomitant modification of FEL emission properties.

  8. Verification of nonlinear particle simulation of radio frequency waves in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Kuley, Animesh; Bao, Jian; Lin, Zhihong

    2015-11-01

    Nonlinear global particle simulation model has been developed in GTC to study the nonlinear interactions of radio frequency (RF) waves with plasmas in tokamak. In this model, ions are considered as fully kinetic particles using the Vlasov equation and electrons are treated as guiding centers using the drift kinetic. Boris push scheme for the ion motion has been implemented in the toroidal geometry using magnetic coordinates and successfully verified for the ion cyclotron, ion Bernstein and lower hybrid waves. The nonlinear GTC simulation of the lower hybrid wave shows that the amplitude of the electrostatic potential is oscillatory due to the trapping of resonant electrons by the electric field of the lower hybrid wave. The nonresonant parametric decay is observed an IBW sideband and an ion cyclotron quasimode (ICQM). The ICQM induces an ion perpendicular heating with a heating rate proportional to the pump wave intensity. This work is supported by PPPL subcontract number S013849-F and US Department of Energy (DOE) SciDAC GSEP Program.

  9. Fundamental theories of waves and particles formulated without classical mass

    NASA Astrophysics Data System (ADS)

    Fry, J. L.; Musielak, Z. E.

    2010-12-01

    Quantum and classical mechanics are two conceptually and mathematically different theories of physics, and yet they do use the same concept of classical mass that was originally introduced by Newton in his formulation of the laws of dynamics. In this paper, physical consequences of using the classical mass by both theories are explored, and a novel approach that allows formulating fundamental (Galilean invariant) theories of waves and particles without formally introducing the classical mass is presented. In this new formulation, the theories depend only on one common parameter called 'wave mass', which is deduced from experiments for selected elementary particles and for the classical mass of one kilogram. It is shown that quantum theory with the wave mass is independent of the Planck constant and that higher accuracy of performing calculations can be attained by such theory. Natural units in connection with the presented approach are also discussed and justification beyond dimensional analysis is given for the particular choice of such units.

  10. Turbulence and wave particle interactions in solar-terrestrial plasmas

    NASA Technical Reports Server (NTRS)

    Dulk, G. A.; Goldman, M. V.; Toomre, J.

    1985-01-01

    Activities in the following study areas are reported: (1) particle and wave processes in solar flares; (2) solar convection zone turbulence; and (3) solar radiation emission. To investigate the amplification of cyclotron maser radiation in solar flares, a radio frequency. (RF) heating model was developed for the corona surrounding the energy release site. Then nonlinear simulations of compressible convection display prominent penetration by plumes into regions of stable stratification at the base of the solar convection zone, leading to the excitation of internal gravity waves there. Lastly, linear saturation of electron-beam-driven Langmuir waves by ambient density fluctuations, nonlinear saturation by strong turbulence processes, and radiation emission mechanisms are examined. An additional section discusses solar magnetic fields and hydromagnetic waves in inhomogeneous media, and the effect of magnetic fields on stellar oscillation.

  11. Compact, singular G 2-holonomy manifolds and M/heterotic/F-theory duality

    NASA Astrophysics Data System (ADS)

    Braun, Andreas P.; Schäfer-Nameki, Sakura

    2018-04-01

    We study the duality between M-theory on compact holonomy G 2-manifolds and the heterotic string on Calabi-Yau three-folds. The duality is studied for K3-fibered G 2-manifolds, called twisted connected sums, which lend themselves to an application of fiber-wise M-theory/Heterotic Duality. For a large class of such G 2-manifolds we are able to identify the dual heterotic as well as F-theory realizations. First we establish this chain of dualities for smooth G 2-manifolds. This has a natural generalization to situations with non-abelian gauge groups, which correspond to singular G 2-manifolds, where each of the K3-fibers degenerates. We argue for their existence through the chain of dualities, supported by non-trivial checks of the spectra. The corresponding 4d gauge groups can be both Higgsable and non-Higgsable, and we provide several explicit examples of the general construction.

  12. Challenges in assessing college students' conception of duality: the case of infinity

    NASA Astrophysics Data System (ADS)

    Babarinsa-Ochiedike, Grace Olutayo

    Interpreting students' views of infinity posits a challenge for researchers due to the dynamic nature of the conception. There is diversity and variation among students' process-object perceptions. The fluctuations between students' views however reveal an undeveloped duality conception. This study examined college students' conception of duality in understanding and representing infinity with the intent to design strategies that could guide researchers in categorizing students' views of infinity into different levels. Data for the study were collected from N=238 college students enrolled in Calculus sequence courses (Pre-Calculus, Calculus I through Calculus III) at one of the southwestern universities in the U.S. using self-report questionnaires and semi-structured individual task-based interviews. Data was triangulated using multiple measures analyzed by three independent experts using self-designed coding sheets to assess students' externalization of the duality conception of infinity. Results of this study reveal that college students' experiences in traditional Calculus sequence courses are not supportive of the development of duality conception. On the contrary, it strengthens the singularity perspective on fundamental ideas of mathematics such as infinity. The study also found that coding and assessing college students' conception of duality is a challenging and complex process due to the dynamic nature of the conception that is task-dependent and context-dependent. Practical significance of the study is that it helps to recognize misconceptions and starts addressing them so students will have a more comprehensive view of fundamental mathematical ideas as they progress through the Calculus coursework sequence. The developed duality concept development framework called Action-Process-Object-Duality (APOD) adapted from the APOS theory could guide educators and researchers as they engage in assessing students' conception of duality. The results of this study

  13. Holographic duality: Stealing dimensions from metals

    NASA Astrophysics Data System (ADS)

    Zaanen, Jan

    2013-10-01

    Although electrically charged black holes seem remote from superconductors and strange metals in the laboratory, they might be intimately related by the holographic dualities discovered in string theory.

  14. Monte Carlo study of exact {ital S}-matrix duality in nonsimply laced affine Toda theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beccaria, M.

    The ({ital g}{sub 2}{sup (1)},{ital d}{sub 4}{sup (3)}) pair of nonsimply laced affine Toda theories is studied from the point of view of nonperturbative duality. The classical spectrum of each member is composed of two massive scalar particles. The exact {ital S}-matrix prediction for the dual behavior of the coupling-dependent mass ratio is found to be in strong agreement with Monte Carlo data. {copyright} {ital 1996 The American Physical Society.}

  15. Smoothed-particle-hydrodynamics modeling of dissipation mechanisms in gravity waves.

    PubMed

    Colagrossi, Andrea; Souto-Iglesias, Antonio; Antuono, Matteo; Marrone, Salvatore

    2013-02-01

    The smoothed-particle-hydrodynamics (SPH) method has been used to study the evolution of free-surface Newtonian viscous flows specifically focusing on dissipation mechanisms in gravity waves. The numerical results have been compared with an analytical solution of the linearized Navier-Stokes equations for Reynolds numbers in the range 50-5000. We found that a correct choice of the number of neighboring particles is of fundamental importance in order to obtain convergence towards the analytical solution. This number has to increase with higher Reynolds numbers in order to prevent the onset of spurious vorticity inside the bulk of the fluid, leading to an unphysical overdamping of the wave amplitude. This generation of spurious vorticity strongly depends on the specific kernel function used in the SPH model.

  16. Drift-Alfven wave mediated particle transport in an elongated density depression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vincena, Stephen; Gekelman, Walter

    Cross-field particle transport due to drift-Alfven waves is measured in an elongated density depression within an otherwise uniform, magnetized helium plasma column. The depression is formed by drawing an electron current to a biased copper plate with cross-field dimensions of 28x0.24 ion sound-gyroradii {rho}{sub s}=c{sub s}/{omega}{sub ci}. The process of density depletion and replenishment via particle flux repeats in a quasiperiodic fashion for the duration of the current collection. The mode structure of the wave density fluctuations in the plane perpendicular to the background magnetic field is revealed using a two-probe correlation technique. The particle flux as a function ofmore » frequency is measured using a linear array of Langmuir probes and the only significant transport occurs for waves with frequencies between 15%-25% of the ion cyclotron frequency (measured in the laboratory frame) and with perpendicular wavelengths k{sub perpendicular}{rho}{sub s}{approx}0.7. The frequency-integrated particle flux is in rough agreement with observed increases in density in the center of the depletion as a function of time. The experiments are carried out in the Large Plasma Device (LAPD) [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] at the Basic Plasma Science Facility located at the University of California, Los Angeles.« less

  17. Nonlinear Wave-Particle Interaction: Implications for Newborn Planetary and Backstreaming Proton Velocity Distribution Functions

    NASA Astrophysics Data System (ADS)

    Romanelli, N.; Mazelle, C.; Meziane, K.

    2018-02-01

    Seen from the solar wind (SW) reference frame, the presence of newborn planetary protons upstream from the Martian and Venusian bow shocks and SW protons reflected from each of them constitutes two sources of nonthermal proton populations. In both cases, the resulting proton velocity distribution function is highly unstable and capable of giving rise to ultralow frequency quasi-monochromatic electromagnetic plasma waves. When these instabilities take place, the resulting nonlinear waves are convected by the SW and interact with nonthermal protons located downstream from the wave generation region (upstream from the bow shock), playing a predominant role in their dynamics. To improve our understanding of these phenomena, we study the interaction between a charged particle and a large-amplitude monochromatic circularly polarized electromagnetic wave propagating parallel to a background magnetic field, from first principles. We determine the number of fix points in velocity space, their stability, and their dependence on different wave-particle parameters. Particularly, we determine the temporal evolution of a charged particle in the pitch angle-gyrophase velocity plane under nominal conditions expected for backstreaming protons in planetary foreshocks and for newborn planetary protons in the upstream regions of Venus and Mars. In addition, the inclusion of wave ellipticity effects provides an explanation for pitch angle distributions of suprathermal protons observed at the Earth's foreshock, reported in previous studies. These analyses constitute a mean to evaluate if nonthermal proton velocity distribution functions observed at these plasma environments present signatures that can be understood in terms of nonlinear wave-particle processes.

  18. Causal Wave Propagation for Relativistic Massive Particles: Physical Asymptotics in Action

    ERIC Educational Resources Information Center

    Berry, M. V.

    2012-01-01

    Wavepackets representing relativistic quantum particles injected into a half-space, from a source that is switched on at a definite time, are represented by superpositions of plane waves that must include negative frequencies. Propagation is causal: it is a consequence of analyticity that at time t no part of the wave has travelled farther than…

  19. Qualitative numerical studies of the modification of the pitch angle distribution of test particles by alfvènic wave activity

    NASA Astrophysics Data System (ADS)

    Keilbach, D.; Drews, C.; Berger, L.; Marsch, E.; Wimmer-Schweingruber, R. F.

    2017-12-01

    Using a test particle approach we have investigated, how an oxygen pickup ion torus velocity distribution is modified by continuous and intermittent alfvènic waves on timescales, where the gyro trajectory of each particle can be traced.We have therefore exposed the test particles to mono frequent waves, which expanded through the whole simulation in time and space. The general behavior of the pitch angle distribution is found to be stationary and a nonlinear function of the wave frequency, amplitude and the initial angle between wave elongation and field-perpendicular particle velocity vector. The figure shows the time-averaged pitch angle distributions as a function of the Doppler shifted wave frequency (where the Doppler shift was calculated with respect to the particles initial velocity) for three different wave amplitudes (labeled in each panel). The background field is chosen to be 5 nT and the 500 test particles were initially distributed on a torus with 120° pitch angle at a solar wind velocity of 450 km/s. Each y-slice of the histogram (which has been normalized to it's respective maximum) represents an individual run of the simulation.The frequency-dependent behavior of the test particles is found to be classifiable into the regimes of very low/high frequencies and frequencies close to first order resonance. We have found, that only in the latter regime the particles interact strongly with the wave, where in the time averaged histograms a branch structure is found, which was identified as a trace of particles co-moving with the wave phase. The magnitude of pitch angle change of these particles is as well as the frequency margin, where the branch structure is found, an increasing function with the wave amplitude.We have also investigated the interaction with mono frequent intermittent waves. Exposed to such waves a torus distribution is scattered in pitch angle space, whereas the pitch angle distribution is broadened systematically over time similar to

  20. Supersymmetry: Compactification, flavor, and dualities

    NASA Astrophysics Data System (ADS)

    Heidenreich, Benjamin Jones

    N = 1 gauge theory dualities relating different world-volume gauge theories of D3 branes probing an orientifold singularity. We argue that these dualities originate from the S-duality of type IIB string theory, much like electromagnetic dualities of N = 4 gauge theories.

  1. Lagrangian particle statistics of numerically simulated shear waves

    NASA Astrophysics Data System (ADS)

    Kirby, J.; Briganti, R.; Brocchini, M.; Chen, Q. J.

    2006-12-01

    The properties of numerical solutions of various circulation models (Boussinesq-type and wave-averaged NLSWE) have been investigated on the basis of the induced horizontal flow mixing, for the case of shear waves. The mixing properties of the flow have been investigated using particle statistics, following the approach of LaCasce (2001) and Piattella et al. (2006). Both an idealized barred beach bathymetry and a test case taken from SANDYDUCK '97 have been considered. Random seeding patterns of passive tracer particles are used. The flow exhibits features similar to those discussed in literature. Differences are also evident due both to the physics (intense longshore shear shoreward of the bar) and the procedure used to obtain the statistics (lateral conditions limit the time/space window for the longshore flow). Within the Boussinesq framework, different formulations of Boussinesq type equations have been used and the results compared (Wei et al. 1995, Chen et al. (2003), Chen et al. (2006)). Analysis based on the Eulerian velocity fields suggests a close similarity between Wei et al. (1995) and Chen et. al (2006), while examination of particle displacements and implied mixing suggests a closer behaviour between Chen et al. (2003) and Chen et al. (2006). Two distinct stages of mixing are evident in all simulations: i) the first stage ends at t

  2. Analytical method for analysis of electromagnetic scattering from inhomogeneous spherical structures using duality principles

    NASA Astrophysics Data System (ADS)

    Kiani, M.; Abdolali, A.; Safari, M.

    2018-03-01

    In this article, an analytical approach is presented for the analysis of electromagnetic (EM) scattering from radially inhomogeneous spherical structures (RISSs) based on the duality principle. According to the spherical symmetry, similar angular dependencies in all the regions are considered using spherical harmonics. To extract the radial dependency, the system of differential equations of wave propagation toward the inhomogeneity direction is equated with the dual planar ones. A general duality between electromagnetic fields and parameters and scattering parameters of the two structures is introduced. The validity of the proposed approach is verified through a comprehensive example. The presented approach substitutes a complicated problem in spherical coordinate to an easy, well posed, and previously solved problem in planar geometry. This approach is valid for all continuously varying inhomogeneity profiles. One of the major advantages of the proposed method is the capability of studying two general and applicable types of RISSs. As an interesting application, a class of lens antenna based on the physical concept of the gradient refractive index material is introduced. The approach is used to analyze the EM scattering from the structure and validate strong performance of the lens.

  3. Dual formulation of covariant nonlinear duality-symmetric action of kappa-symmetric D3-brane

    NASA Astrophysics Data System (ADS)

    Vanichchapongjaroen, Pichet

    2018-02-01

    We study the construction of covariant nonlinear duality-symmetric actions in dual formulation. Essentially, the construction is the PST-covariantisation and nonlinearisation of Zwanziger action. The covariantisation made use of three auxiliary scalar fields. Apart from these, the construction proceed in a similar way to that of the standard formulation. For example, the theories can be extended to include interactions with external fields, and that the theories possess two local PST symmetries. We then explicitly demonstrate the construction of covariant nonlinear duality-symmetric actions in dual formulation of DBI theory, and D3-brane. For each of these theories, the twisted selfduality condition obtained from duality-symmetric actions are explicitly shown to match with the duality relation between field strength and its dual from the one-potential actions. Their on-shell actions between the duality-symmetric and the one-potential versions are also shown to match. We also explicitly prove kappa-symmetry of the covariant nonlinear duality-symmetric D3-brane action in dual formulation.

  4. Double-slit experiment with single wave-driven particles and its relation to quantum mechanics.

    PubMed

    Andersen, Anders; Madsen, Jacob; Reichelt, Christian; Rosenlund Ahl, Sonja; Lautrup, Benny; Ellegaard, Clive; Levinsen, Mogens T; Bohr, Tomas

    2015-07-01

    In a thought-provoking paper, Couder and Fort [Phys. Rev. Lett. 97, 154101 (2006)] describe a version of the famous double-slit experiment performed with droplets bouncing on a vertically vibrated fluid surface. In the experiment, an interference pattern in the single-particle statistics is found even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes place between different classical paths with precise amplitude and phase relations. In the double-slit experiment with walking droplets, these relations are lost since one of the paths is singled out by the droplet. To support our conclusions, we have carried out our own double-slit experiment, and our results, in particular the long and variable slit passage times of the droplets, cast strong doubt on the feasibility of the interference claimed by Couder and Fort. To understand theoretically the limitations of wave-driven particle systems as analogs to quantum mechanics, we introduce a Schrödinger equation with a source term originating from a localized particle that generates a wave while being simultaneously guided by it. We show that the ensuing particle-wave dynamics can capture some characteristics of quantum mechanics such as orbital quantization. However, the particle-wave dynamics can not reproduce quantum mechanics in general, and we show that the single-particle statistics for our model in a double-slit experiment with an additional splitter plate differs qualitatively from that of quantum mechanics.

  5. Atom Interferometry for Fundamental Physics and Gravity Measurements in Space

    NASA Technical Reports Server (NTRS)

    Kohel, James M.

    2012-01-01

    Laser-cooled atoms are used as freefall test masses. The gravitational acceleration on atoms is measured by atom-wave interferometry. The fundamental concept behind atom interferometry is the quantum mechanical particle-wave duality. One can exploit the wave-like nature of atoms to construct an atom interferometer based on matter waves analogous to laser interferometers.

  6. Limits of shock wave ignition of hydrogen-oxygen mixture in the presence of particles

    NASA Astrophysics Data System (ADS)

    Efremov, V. P.; Obruchkova, L. R.; Ivanov, M. F.; Kiverin, A. D.

    2018-01-01

    It is a well known fact that the cloud of non-reacting particles in the flow weakens or even suppresses the detonation. Contrary to this phenomenon there are experimental data showing that the presence of solid particles in the combustible mixtures shorten significantly the ignition delay time. In other words particles could promote the initiation of detonation. This paper analyzes numerically the phenomenon of detonation initiation behind the shock wave in the combustible mixture containing only one solid particle. Numerical results demonstrate a significant degree of lowering of ignition limits. Namely, it is shown that it becomes possible to ignite the gaseous mixture much earlier due to the shock wave interaction with solid particle surface. It is found that ignition arises in subsonic region located between the particle and the bow shock front.

  7. Analysis of the dependence of surfatron acceleration of electrons by an electromagnetic wave in space plasma on the particle momentum along the wave front

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erokhin, A. N., E-mail: nerokhin@mx.iki.rssi.ru; Zol’nikova, N. N.; Erokhin, N. S.

    Based on the numerical solution of the nonlinear nonstationary second-order equation for the wave phase on the particle trajectory, the dynamics of surfatron acceleration of electrons by an electromagnetic wave propagating across the external magnetic field in space plasma is analyzed as a function of the electron momentum along the wave front. Numerical calculations show that, for strongly relativistic initial values of the electron momentum component along the wave front g{sub y}(0) (the other parameters of the problem being the same), electrons are trapped into the regime of ultrarelativistic surfatron acceleration within a certain interval of the initial wave phasemore » Ψ(0) on the particle trajectory. It is assumed in the calculations that vertical bar Ψ(0) vertical bar ≤ π. For strongly relativistic values of g{sub y}(0), electrons are immediately trapped by the wave for 19% of the initial values of the phase Ψ(0) (favorable phases). For the rest of the values of Ψ(0), trapping does not occur even at long times. This circumstance substantially simplifies estimations of the wave damping due to particle acceleration in subsequent calculations. The dynamics of the relativistic factor and the components of the electron velocity and momentum under surfatron acceleration is also analyzed. The obtained results are of interest for the development of modern concepts of possible mechanisms of generation of ultrarelativistic particle fluxes in relatively calm space plasma, as well as for correct interpretation of observational data on the fluxes of such particles and explanation of possible reasons for the deviation of ultrarelativistic particle spectra detected in the heliosphere from the standard power-law scalings and the relation of these variations to space weather and large-scale atmospheric processes similar to tropical cyclones.« less

  8. New localization mechanism and Hodge duality for q -form field

    NASA Astrophysics Data System (ADS)

    Fu, Chun-E.; Liu, Yu-Xiao; Guo, Heng; Zhang, Sheng-Li

    2016-03-01

    In this paper, we investigate the problem of localization and the Hodge duality for a q -form field on a p -brane with codimension one. By a general Kaluza-Klein (KK) decomposition without gauge fixing, we obtain two Schrödinger-like equations for two types of KK modes of the bulk q -form field, which determine the localization and mass spectra of these KK modes. It is found that there are two types of zero modes (the 0-level modes): a q -form zero mode and a (q -1 )-form one, which cannot be localized on the brane at the same time. For the n -level KK modes, there are two interacting KK modes, a massive q -form KK mode and a massless (q -1 )-form one. By analyzing gauge invariance of the effective action and choosing a gauge condition, the n -level massive q -form KK mode decouples from the n -level massless (q -1 )-form one. It is also found that the Hodge duality in the bulk naturally becomes two dualities on the brane. The first one is the Hodge duality between a q -form zero mode and a (p -q -1 )-form one, or between a (q -1 )-form zero mode and a (p -q )-form one. The second duality is between two group KK modes: one is an n -level massive q -form KK mode with mass mn and an n -level massless (q -1 )-form mode; another is an n -level (p -q )-form one with the same mass mn and an n -level massless (p -q -1 )-form mode. Because of the dualities, the effective field theories on the brane for the KK modes of the two dual bulk form fields are physically equivalent.

  9. Spontaneous emergence of rogue waves in partially coherent waves: A quantitative experimental comparison between hydrodynamics and optics

    NASA Astrophysics Data System (ADS)

    El Koussaifi, R.; Tikan, A.; Toffoli, A.; Randoux, S.; Suret, P.; Onorato, M.

    2018-01-01

    Rogue waves are extreme and rare fluctuations of the wave field that have been discussed in many physical systems. Their presence substantially influences the statistical properties of a partially coherent wave field, i.e., a wave field characterized by a finite band spectrum with random Fourier phases. Their understanding is fundamental for the design of ships and offshore platforms. In many meteorological conditions waves in the ocean are characterized by the so-called Joint North Sea Wave Project (JONSWAP) spectrum. Here we compare two unique experimental results: the first one has been performed in a 270 m wave tank and the other in optical fibers. In both cases, waves characterized by a JONSWAP spectrum and random Fourier phases have been launched at the input of the experimental device. The quantitative comparison, based on an appropriate scaling of the two experiments, shows a very good agreement between the statistics in hydrodynamics and optics. Spontaneous emergence of heavy tails in the probability density function of the wave amplitude is observed in both systems. The results demonstrate the universal features of rogue waves and provide a fundamental and explicit bridge between two important fields of research. Numerical simulations are also compared with experimental results.

  10. Spontaneous emergence of rogue waves in partially coherent waves: A quantitative experimental comparison between hydrodynamics and optics.

    PubMed

    El Koussaifi, R; Tikan, A; Toffoli, A; Randoux, S; Suret, P; Onorato, M

    2018-01-01

    Rogue waves are extreme and rare fluctuations of the wave field that have been discussed in many physical systems. Their presence substantially influences the statistical properties of a partially coherent wave field, i.e., a wave field characterized by a finite band spectrum with random Fourier phases. Their understanding is fundamental for the design of ships and offshore platforms. In many meteorological conditions waves in the ocean are characterized by the so-called Joint North Sea Wave Project (JONSWAP) spectrum. Here we compare two unique experimental results: the first one has been performed in a 270 m wave tank and the other in optical fibers. In both cases, waves characterized by a JONSWAP spectrum and random Fourier phases have been launched at the input of the experimental device. The quantitative comparison, based on an appropriate scaling of the two experiments, shows a very good agreement between the statistics in hydrodynamics and optics. Spontaneous emergence of heavy tails in the probability density function of the wave amplitude is observed in both systems. The results demonstrate the universal features of rogue waves and provide a fundamental and explicit bridge between two important fields of research. Numerical simulations are also compared with experimental results.

  11. Two-component duality and flavoring in the P+f model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dash, J.W.; Jones, S.T.; Martin, A.

    We show that modern Regge fits to rising ..pi..N total cross sections sigma/sub piN/ using the Harari-Freund P+f model of diffraction are not consistent with two-component duality. If a conventional Pomeron is chosen (dominant j-plane pole plus weak cuts), the resulting f is ''dual'' to the resonances plus one-half the background. Conversely, constraining the f-pole amplitude by duality does not allow a reasonable fit to sigma/sub piN/. In contrast, the P-f identity model of diffraction is shown to satisfy a modified form of two-component duality. We show that by incorporating flavoring renormalization, the P+f picture can be made consistent withmore » duality. The unflavored P intercept is 0.91 and the flavored P intercept is 1.1. Significant absorptive j-plane cuts are also required, though these are small enough to be consistent with dominant short-range order. Thus flavoring, which is so essential in P-f identity phenomenology, seems to play a positive role in diffraction scattering generally.« less

  12. Conditions for duality between fluxes and concentrations in biochemical networks

    PubMed Central

    Fleming, Ronan M.T.; Vlassis, Nikos; Thiele, Ines; Saunders, Michael A.

    2016-01-01

    Mathematical and computational modelling of biochemical networks is often done in terms of either the concentrations of molecular species or the fluxes of biochemical reactions. When is mathematical modelling from either perspective equivalent to the other? Mathematical duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one manner. We present a novel stoichiometric condition that is necessary and sufficient for duality between unidirectional fluxes and concentrations. Our numerical experiments, with computational models derived from a range of genome-scale biochemical networks, suggest that this flux-concentration duality is a pervasive property of biochemical networks. We also provide a combinatorial characterisation that is sufficient to ensure flux-concentration duality. The condition prescribes that, for every two disjoint sets of molecular species, there is at least one reaction complex that involves species from only one of the two sets. When unidirectional fluxes and molecular species concentrations are dual vectors, this implies that the behaviour of the corresponding biochemical network can be described entirely in terms of either concentrations or unidirectional fluxes. PMID:27345817

  13. Conditions for duality between fluxes and concentrations in biochemical networks

    DOE PAGES

    Fleming, Ronan M. T.; Vlassis, Nikos; Thiele, Ines; ...

    2016-06-23

    Mathematical and computational modelling of biochemical networks is often done in terms of either the concentrations of molecular species or the fluxes of biochemical reactions. When is mathematical modelling from either perspective equivalent to the other? Mathematical duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one manner. We present a novel stoichiometric condition that is necessary and sufficient for duality between unidirectional fluxes and concentrations. Our numerical experiments, with computational models derived from a range of genome-scale biochemical networks, suggest that this flux-concentration duality is a pervasive property of biochemical networks. We alsomore » provide a combinatorial characterisation that is sufficient to ensure flux-concentration duality.The condition prescribes that, for every two disjoint sets of molecular species, there is at least one reaction complex that involves species from only one of the two sets. When unidirectional fluxes and molecular species concentrations are dual vectors, this implies that the behaviour of the corresponding biochemical network can be described entirely in terms of either concentrations or unidirectional fluxes« less

  14. Conditions for duality between fluxes and concentrations in biochemical networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, Ronan M. T.; Vlassis, Nikos; Thiele, Ines

    Mathematical and computational modelling of biochemical networks is often done in terms of either the concentrations of molecular species or the fluxes of biochemical reactions. When is mathematical modelling from either perspective equivalent to the other? Mathematical duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one manner. We present a novel stoichiometric condition that is necessary and sufficient for duality between unidirectional fluxes and concentrations. Our numerical experiments, with computational models derived from a range of genome-scale biochemical networks, suggest that this flux-concentration duality is a pervasive property of biochemical networks. We alsomore » provide a combinatorial characterisation that is sufficient to ensure flux-concentration duality.The condition prescribes that, for every two disjoint sets of molecular species, there is at least one reaction complex that involves species from only one of the two sets. When unidirectional fluxes and molecular species concentrations are dual vectors, this implies that the behaviour of the corresponding biochemical network can be described entirely in terms of either concentrations or unidirectional fluxes« less

  15. Gas dynamic and force effects of a solid particle in a shock wave in air

    NASA Astrophysics Data System (ADS)

    Obruchkova, L. R.; Baldina, E. G.; Efremov, V. P.

    2017-03-01

    Shock wave interaction with an adiabatic solid microparticle is numerically simulated. In the simulation, the shock wave is initiated by the Riemann problem with instantaneous removal of a diaphragm between the high- and low-pressure chambers. The calculation is performed in the two-dimensional formulation using the ideal gas equation of state. The left end of the tube is impermeable, while outflow from the right end is permitted. The particle is assumed to be motionless, impermeable, and adiabatic, and the simulation is performed for time intervals shorted than the time of velocity and temperature relaxation of the particle. The numerical grid is chosen for each particle size to ensure convergence. For each particle size, the calculated hydraulic resistance coefficient describing the particle force impact on the flow is compared with that obtained from the analytical Stokes formula. It is discovered that the Stokes formula can be used for calculation of hydraulic resistance of a motionless particle in a shock wave flow. The influence of the particle diameter on the flow perturbation behind the shock front is studied. Specific heating of the flow in front of the particle is calculated and a simple estimate is proposed. The whole heated region is divided by the acoustic line into the subsonic and supersonic regions. It is demonstrated that the main heat generated by the particle in the flow is concentrated in the subsonic region. The calculations are performed using two different 2D hydro codes. The energy release in the flow induced by the particle is compared with the maximum possible heating at complete termination of the flow. The results can be used for estimating the possibility of gas ignition in front of the particle by a shock wave whose amplitude is insufficient for initiating detonation in the absence of a particle.

  16. Real weights, bound states and duality orbits

    NASA Astrophysics Data System (ADS)

    Marrani, Alessio; Riccioni, Fabio; Romano, Luca

    2016-01-01

    We show that the duality orbits of extremal black holes in supergravity theories with symmetric scalar manifolds can be derived by studying the stabilizing subalgebras of suitable representatives, realized as bound states of specific weight vectors of the corresponding representation of the duality symmetry group. The weight vectors always correspond to weights that are real, where the reality properties are derived from the Tits-Satake diagram that identifies the real form of the Lie algebra of the duality symmetry group. Both 𝒩 = 2 magic Maxwell-Einstein supergravities and the semisimple infinite sequences of 𝒩 = 2 and 𝒩 = 4 theories in D = 4 and 5 are considered, and various results, obtained over the years in the literature using different methods, are retrieved. In particular, we show that the stratification of the orbits of these theories occurs because of very specific properties of the representations: in the case of the theory based on the real numbers, whose symmetry group is maximally noncompact and therefore all the weights are real, the stratification is due to the presence of weights of different lengths, while in the other cases it is due to the presence of complex weights.

  17. Particle transport in a wave spectrum with a thermal distribution of Larmor radii

    NASA Astrophysics Data System (ADS)

    Martinell, Julio; Kryukov, Nikolay; Del Castillo-Negrete, Diego

    2017-10-01

    Test particle E × B transport is studied due to an infinite spectrum of drift waves in two dimensions using a Hamiltonian approach, which can be reduced to a 2D mapping. Finite Larmor radius (FLR) effects are included taking a gyroaverage. When the wave amplitude is increased there is a gradual transition to chaos but the chaos level is reduced when FLR grows, implying that fast particles are better confined. The fraction of confined particles is found to be reduced as the wave amplitude rises. The statistical properties of transport are studied finding that, in the absence of a background flow, it is diffusive with a Gaussian PDF, when all particles have the same FLR. In contrast, for a thermal FLR distribution, the PDF is non-Gaussian but the transport remains diffusive. A theoretical explanation of this is given showing that a superposition of Gaussians produces a PDF with long tails. When a background flow is introduced that varies monotonically with radius, the transport becomes strongly super-diffusive due to the appearance of long Levy flights which dominate the particles. The PDF develops long tails as the flow strength is increased. The particle variance scales as σ t3 for chaotic regime but reduces to ballistic ( t2) for low chaos. Work funded by PAPIIT-UNAM project IN109115.

  18. Quantum Physics in School.

    ERIC Educational Resources Information Center

    Lawrence, I.

    1996-01-01

    Discusses a teaching strategy for introducing quantum ideas into the school classroom using modern devices. Develops the concepts of quantization, wave-particle duality, nonlocality, and tunneling. (JRH)

  19. Holographic dark energy from fluid/gravity duality constraint by cosmological observations

    NASA Astrophysics Data System (ADS)

    Pourhassan, Behnam; Bonilla, Alexander; Faizal, Mir; Abreu, Everton M. C.

    2018-06-01

    In this paper, we obtain a holographic model of dark energy using the fluid/gravity duality. This model will be dual to a higher dimensional Schwarzschild black hole, and we would use fluid/gravity duality to relate to the parameters of this black hole to such a cosmological model. We will also analyze the thermodynamics of such a solution, and discuss the stability model. Finally, we use cosmological data to constraint the parametric space of this dark energy model. Thus, we will use observational data to perform cosmography for this holographic model based on fluid/gravity duality.

  20. Power centroid radar and its rise from the universal cybernetics duality

    NASA Astrophysics Data System (ADS)

    Feria, Erlan H.

    2014-05-01

    Power centroid radar (PC-Radar) is a fast and powerful adaptive radar scheme that naturally surfaced from the recent discovery of the time-dual for information theory which has been named "latency theory." Latency theory itself was born from the universal cybernetics duality (UC-Duality), first identified in the late 1970s, that has also delivered a time dual for thermodynamics that has been named "lingerdynamics" and anchors an emerging lifespan theory for biological systems. In this paper the rise of PC-Radar from the UC-Duality is described. The development of PC-Radar, US patented, started with Defense Advanced Research Projects Agency (DARPA) funded research on knowledge-aided (KA) adaptive radar of the last decade. The outstanding signal to interference plus noise ratio (SINR) performance of PC-Radar under severely taxing environmental disturbances will be established. More specifically, it will be seen that the SINR performance of PC-Radar, either KA or knowledgeunaided (KU), approximates that of an optimum KA radar scheme. The explanation for this remarkable result is that PC-Radar inherently arises from the UC-Duality, which advances a "first principles" duality guidance theory for the derivation of synergistic storage-space/computational-time compression solutions. Real-world synthetic aperture radar (SAR) images will be used as prior-knowledge to illustrate these results.

  1. Investigation of EMIC wave scattering as the cause for the BARREL 17 January 2013 relativistic electron precipitation event: A quantitative comparison of simulation with observations

    DOE PAGES

    Li, Zan; Millan, Robyn M.; Hudson, Mary K.; ...

    2014-12-23

    Electromagnetic ion cyclotron (EMIC) waves were observed at multiple observatory locations for several hours on 17 January 2013. During the wave activity period, a duskside relativistic electron precipitation (REP) event was observed by one of the Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) balloons and was magnetically mapped close to Geostationary Operational Environmental Satellite (GOES) 13. We simulate the relativistic electron pitch angle diffusion caused by gyroresonant interactions with EMIC waves using wave and particle data measured by multiple instruments on board GOES 13 and the Van Allen Probes. We show that the count rate, the energy distribution,more » and the time variation of the simulated precipitation all agree very well with the balloon observations, suggesting that EMIC wave scattering was likely the cause for the precipitation event. The event reported here is the first balloon REP event with closely conjugate EMIC wave observations, and our study employs the most detailed quantitative analysis on the link of EMIC waves with observed REP to date.« less

  2. Investigation of EMIC wave scattering as the cause for the BARREL 17 January 2013 relativistic electron precipitation event: A quantitative comparison of simulation with observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zan; Millan, Robyn M.; Hudson, Mary K.

    Electromagnetic ion cyclotron (EMIC) waves were observed at multiple observatory locations for several hours on 17 January 2013. During the wave activity period, a duskside relativistic electron precipitation (REP) event was observed by one of the Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) balloons and was magnetically mapped close to Geostationary Operational Environmental Satellite (GOES) 13. We simulate the relativistic electron pitch angle diffusion caused by gyroresonant interactions with EMIC waves using wave and particle data measured by multiple instruments on board GOES 13 and the Van Allen Probes. We show that the count rate, the energy distribution,more » and the time variation of the simulated precipitation all agree very well with the balloon observations, suggesting that EMIC wave scattering was likely the cause for the precipitation event. The event reported here is the first balloon REP event with closely conjugate EMIC wave observations, and our study employs the most detailed quantitative analysis on the link of EMIC waves with observed REP to date.« less

  3. Focal Point Theory Models for Dissecting Dynamic Duality Problems of Microbial Infections

    PubMed Central

    Huang, S.-H.; Zhou, W.; Jong, A.

    2008-01-01

    Extending along the dynamic continuum from conflict to cooperation, microbial infections always involve symbiosis (Sym) and pathogenesis (Pat). There exists a dynamic Sym-Pat duality (DSPD) in microbial infection that is the most fundamental problem in infectomics. DSPD is encoded by the genomes of both the microbes and their hosts. Three focal point (FP) theory-based game models (pure cooperative, dilemma, and pure conflict) are proposed for resolving those problems. Our health is associated with the dynamic interactions of three microbial communities (nonpathogenic microbiota (NP) (Cooperation), conditional pathogens (CP) (Dilemma), and unconditional pathogens (UP) (Conflict)) with the hosts at different health statuses. Sym and Pat can be quantitated by measuring symbiotic index (SI), which is quantitative fitness for the symbiotic partnership, and pathogenic index (PI), which is quantitative damage to the symbiotic partnership, respectively. Symbiotic point (SP), which bears analogy to FP, is a function of SI and PI. SP-converting and specific pathogen-targeting strategies can be used for the rational control of microbial infections. PMID:18350122

  4. Metaphorical Duality: High School Subject Departments as Both Communities and Organizations

    ERIC Educational Resources Information Center

    Melville, Wayne; Wallace, John

    2007-01-01

    This article investigates the metaphorical duality that exists when school subject departments are concurrently conceptualized as both communities and organizations. Employing a narrative methodology, we use the metaphorical duality to examine the manner in which science teachers negotiate two key aspects of their work; professional learning and…

  5. Quantum interference experiments with large molecules

    NASA Astrophysics Data System (ADS)

    Nairz, Olaf; Arndt, Markus; Zeilinger, Anton

    2003-04-01

    Wave-particle duality is frequently the first topic students encounter in elementary quantum physics. Although this phenomenon has been demonstrated with photons, electrons, neutrons, and atoms, the dual quantum character of the famous double-slit experiment can be best explained with the largest and most classical objects, which are currently the fullerene molecules. The soccer-ball-shaped carbon cages C60 are large, massive, and appealing objects for which it is clear that they must behave like particles under ordinary circumstances. We present the results of a multislit diffraction experiment with such objects to demonstrate their wave nature. The experiment serves as the basis for a discussion of several quantum concepts such as coherence, randomness, complementarity, and wave-particle duality. In particular, the effect of longitudinal (spectral) coherence can be demonstrated by a direct comparison of interferograms obtained with a thermal beam and a velocity selected beam in close analogy to the usual two-slit experiments using light.

  6. Supersymmetric black holes and Freudenthal duality

    NASA Astrophysics Data System (ADS)

    Marrani, Alessio; Mandal, Taniya; Tripathy, Prasanta K.

    2017-07-01

    We study the effect of Freudenthal duality on supersymmetric extremal black hole attractors in 𝒩 = 2, D = 4 ungauged supergravity. Freudenthal duality acts on the dyonic black hole charges as an anti-involution which keeps the black hole entropy and the critical points of the effective black hole potential invariant. We analyze its effect on the recently discovered distinct, mutually exclusive phases of axionic supersymmetric black holes, related to the existence of nontrivial involutory constant matrices. In particular, we consider a supersymmetric D0 - D4 - D6 black hole and we explicitly Freudenthal-map it to a supersymmetric D0 - D2 - D4 - D6 black hole. We thus show that the charge representation space of a supersymmetric D0 - D2 - D4 - D6 black hole also contains mutually exclusive domains.

  7. Quantitative damage imaging using Lamb wave diffraction tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Yan; Ruan, Min; Zhu, Wen-Fa; Chai, Xiao-Dong

    2016-12-01

    In this paper, we investigate the diffraction tomography for quantitative imaging damages of partly through-thickness holes with various shapes in isotropic plates by using converted and non-converted scattered Lamb waves generated numerically. Finite element simulations are carried out to provide the scattered wave data. The validity of the finite element model is confirmed by the comparison of scattering directivity pattern (SDP) of circle blind hole damage between the finite element simulations and the analytical results. The imaging method is based on a theoretical relation between the one-dimensional (1D) Fourier transform of the scattered projection and two-dimensional (2D) spatial Fourier transform of the scattering object. A quantitative image of the damage is obtained by carrying out the 2D inverse Fourier transform of the scattering object. The proposed approach employs a circle transducer network containing forward and backward projections, which lead to so-called transmission mode (TMDT) and reflection mode diffraction tomography (RMDT), respectively. The reconstructed results of the two projections for a non-converted S0 scattered mode are investigated to illuminate the influence of the scattering field data. The results show that Lamb wave diffraction tomography using the combination of TMDT and RMDT improves the imaging effect compared with by using only the TMDT or RMDT. The scattered data of the converted A0 mode are also used to assess the performance of the diffraction tomography method. It is found that the circle and elliptical shaped damages can still be reasonably identified from the reconstructed images while the reconstructed results of other complex shaped damages like crisscross rectangles and racecourse are relatively poor. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474195, 11274226, 11674214, and 51478258).

  8. SL(2,R) duality-symmetric action for electromagnetic theory with electric and magnetic sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Choonkyu, E-mail: cklee@phya.snu.ac.kr; School of Physics, Korea Institute for Advanced Study, Seoul 130-722; Min, Hyunsoo, E-mail: hsmin@dirac.uos.ac.kr

    2013-12-15

    For the SL(2,R) duality-invariant generalization of Maxwell electrodynamics in the presence of both electric and magnetic sources, we formulate a local, manifestly duality-symmetric, Zwanziger-type action by introducing a pair of four-potentials A{sup μ} and B{sup μ} in a judicious way. On the two potentials A{sup μ} and B{sup μ} the SL(2,R) duality transformation acts in a simple linear manner. In quantum theory including charged source fields, this action can be recast as a SL(2,Z)-invariant action. Also given is a Zwanziger-type action for SL(2,R) duality-invariant Born–Infeld electrodynamics which can be important for D-brane dynamics in string theory. -- Highlights: •We formulatemore » a local, manifestly duality-symmetric, Zwanziger-type action. •Maxwell electrodynamics is generalized to include dilaton and axion fields. •SL(2,R) symmetry is manifest. •We formulate a local, manifestly duality-symmetric, nonlinear Born–Infeld action with SL(2,R) symmetry.« less

  9. Self-duality of the compactified Ruijsenaars-Schneider system from quasi-Hamiltonian reduction

    NASA Astrophysics Data System (ADS)

    Fehér, L.; Klimčík, C.

    2012-07-01

    The Delzant theorem of symplectic topology is used to derive the completely integrable compactified Ruijsenaars-Schneider IIIb system from a quasi-Hamiltonian reduction of the internally fused double SU(n)×SU(n). In particular, the reduced spectral functions depending respectively on the first and second SU(n) factor of the double engender two toric moment maps on the IIIb phase space CP(n-1) that play the roles of action-variables and particle-positions. A suitable central extension of the SL(2,Z) mapping class group of the torus with one boundary component is shown to act on the quasi-Hamiltonian double by automorphisms and, upon reduction, the standard generator S of the mapping class group is proved to descend to the Ruijsenaars self-duality symplectomorphism that exchanges the toric moment maps. We give also two new presentations of this duality map: one as the composition of two Delzant symplectomorphisms and the other as the composition of three Dehn twist symplectomorphisms realized by Goldman twist flows. Through the well-known relation between quasi-Hamiltonian manifolds and moduli spaces, our results rigorously establish the validity of the interpretation [going back to Gorsky and Nekrasov] of the IIIb system in terms of flat SU(n) connections on the one-holed torus.

  10. Eifel maars: Quantitative shape characterization of juvenile ash particles (Eifel Volcanic Field, Germany)

    NASA Astrophysics Data System (ADS)

    Rausch, Juanita; Grobéty, Bernard; Vonlanthen, Pierre

    2015-01-01

    The Eifel region in western central Germany is the type locality for maar volcanism, which is classically interpreted to be the result of explosive eruptions due to shallow interaction between magma and external water (i.e. phreatomagmatic eruptions). Sedimentary structures, deposit features and particle morphology found in many maar deposits of the West Eifel Volcanic Field (WEVF), in contrast to deposits in the East Eifel Volcanic Field (EEVF), lack the diagnostic criteria of typical phreatomagmatic deposits. The aim of this study was to determine quantitatively the shape of WEVF and EEVF maar ash particles in order to infer the governing eruption style in Eifel maar volcanoes. The quantitative shape characterization was done by analyzing fractal dimensions of particle contours (125-250 μm sieve fraction) obtained from Scanning electron microscopy (SEM) and SEM micro-computed tomography (SEM micro-CT) images. The fractal analysis (dilation method) and the fractal spectrum technique confirmed that the WEVF and EEVF maar particles have contrasting multifractal shapes. Whereas the low small-scale dimensions of EEVF particles (Eppelsberg Green Unit) coincide with previously published values for phreatomagmatic particles, the WEVF particles (Meerfelder Maar, Pulvermaar and Ulmener Maar) have larger values indicating more complex small-scale features, which are characteristic for magmatic particles. These quantitative results are strengthening the qualitative microscopic observations, that the studied WEVF maar eruptions are rather dominated by magmatic processes. The different eruption styles in the two volcanic fields can be explained by the different geological and hydrological settings found in both regions and the different chemical compositions of the magmas.

  11. Sleep stage 2: an electroencephalographic, autonomic, and hormonal duality.

    PubMed

    Brandenberger, Gabrielle; Ehrhart, Jean; Buchheit, Martin

    2005-12-01

    It is generally thought that the electroencephalogram of sleep stage 2 is not uniform, depending on whether sleep stage 2 evolves toward slow-wave sleep (SWS) or toward rapid eye movement (REM) sleep. We provide here further evidence of the duality of sleep stage 2 on the basis of its autonomic and hormonal background. Fourteen healthy men (aged 21-29 years) underwent 1 experimental night. Sleep and cardiac recordings were taken from 11:00 PM to 7:00 AM. Blood was sampled continuously over 10-minute periods. Autonomic activity, as inferred from heart rate variability analysis and hormone profiles, were examined with regard to the normalized hypnograms. We found a dual activity of the autonomic nervous system during sleep stage 2, with a progressive decrease in heart rate variability sympathetic indexes during the transition toward SWS contrasting with high and rather stable levels during sleep stage 2 that evolve toward REM sleep. Also, different profiles were observed in 2 major hormone systems, the activating adrenocorticotropic system and the renin-angiotensin system. Cortisol, in its active period of circadian secretion, was stable during sleep stage 2 preceding SWS and increased significantly when sleep stage 2 preceded REM sleep. For plasma renin activity, sleep stage 2 played a transitional role, initiating increasing levels that peaked during SWS and decreasing levels that reached a nadir during REM sleep. These results indicate an autonomic and hormonal duality of sleep stage 2 that is characterized by a "quiet" period preparing SWS and an "active" period preceding REM sleep. These differences may confer a fundamental role on this sleep stage in ultradian sleep regulation.

  12. Quantitative Reflectance Spectra of Solid Powders as a Function of Particle Size

    DOE PAGES

    Myers, Tanya L.; Brauer, Carolyn S.; Su, Yin-Fong; ...

    2015-05-19

    We have recently developed vetted methods for obtaining quantitative infrared directional-hemispherical reflectance spectra using a commercial integrating sphere. In this paper, the effects of particle size on the spectral properties are analyzed for several samples such as ammonium sulfate, calcium carbonate, and sodium sulfate as well as one organic compound, lactose. We prepared multiple size fractions for each sample and confirmed the mean sizes using optical microscopy. Most species displayed a wide range of spectral behavior depending on the mean particle size. General trends of reflectance vs. particle size are observed such as increased albedo for smaller particles: for mostmore » wavelengths, the reflectivity drops with increased size, sometimes displaying a factor of 4 or more drop in reflectivity along with a loss of spectral contrast. In the longwave infrared, several species with symmetric anions or cations exhibited reststrahlen features whose amplitude was nearly invariant with particle size, at least for intermediate- and large-sized sample fractions; that is, > ~150 microns. Trends of other types of bands (Christiansen minima, transparency features) are also investigated as well as quantitative analysis of the observed relationship between reflectance vs. particle diameter.« less

  13. Quantitative Reflectance Spectra of Solid Powders as a Function of Particle Size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, Tanya L.; Brauer, Carolyn S.; Su, Yin-Fong

    We have recently developed vetted methods for obtaining quantitative infrared directional-hemispherical reflectance spectra using a commercial integrating sphere. In this paper, the effects of particle size on the spectral properties are analyzed for several samples such as ammonium sulfate, calcium carbonate, and sodium sulfate as well as one organic compound, lactose. We prepared multiple size fractions for each sample and confirmed the mean sizes using optical microscopy. Most species displayed a wide range of spectral behavior depending on the mean particle size. General trends of reflectance vs. particle size are observed such as increased albedo for smaller particles: for mostmore » wavelengths, the reflectivity drops with increased size, sometimes displaying a factor of 4 or more drop in reflectivity along with a loss of spectral contrast. In the longwave infrared, several species with symmetric anions or cations exhibited reststrahlen features whose amplitude was nearly invariant with particle size, at least for intermediate- and large-sized sample fractions; that is, > ~150 microns. Trends of other types of bands (Christiansen minima, transparency features) are also investigated as well as quantitative analysis of the observed relationship between reflectance vs. particle diameter.« less

  14. Computation of NLO processes involving heavy quarks using Loop-Tree Duality

    NASA Astrophysics Data System (ADS)

    Driencourt-Mangin, Félix

    2017-03-01

    We present a new method to compute higher-order corrections to physical cross-sections, at Next-to-Leading Order and beyond. This method, based on the Loop Tree Duality, leads to locally integrable expressions in four dimensions. By introducing a physically motivated momentum mapping between the momenta involved in the real and the virtual contributions, infrared singularities naturally cancel at integrand level, without the need to introduce subtraction counter-terms. Ultraviolet singularities are dealt with by using dual representations of suitable counter-terms, with some subtleties regarding the self-energy contributions. As an example, we apply this method to compute the 1 → 2 decay rate in the context of a scalar toy model with massive particles.

  15. Giant adsorption of microswimmers: Duality of shape asymmetry and wall curvature

    NASA Astrophysics Data System (ADS)

    Wysocki, Adam; Elgeti, Jens; Gompper, Gerhard

    2015-05-01

    The effect of shape asymmetry of microswimmers on their adsorption capacity at confining channel walls is studied by a simple dumbbell model. For a shape polarity of a forward-swimming cone, like the stroke-averaged shape of a sperm, extremely long wall retention times are found, caused by a nonvanishing component of the propulsion force pointing steadily into the wall, which grows exponentially with the self-propulsion velocity and the shape asymmetry. A direct duality relation between shape asymmetry and wall curvature is proposed and verified. Our results are relevant for the design microswimmer with controlled wall-adhesion properties. In addition, we confirm that pressure in active systems is strongly sensitive to the details of the particle-wall interactions.

  16. Current-drive by lower hybrid waves in the presence of energetic alpha-particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisch, N.J.; Rax, J.M.

    1991-10-01

    Many experiments have now proved the effectiveness of lower hybrid waves for driving toroidal current in tokamaks. The use of these waves, however, to provide all the current in a reactor is thought to be uncertain because the waves may not penetrate the center of the more energetic reactor plasma, and, if they did, the wave power may be absorbed by alpha particles rather than by electrons. This paper explores the conditions under which lower-hybrid waves might actually drive all the current. 26 refs.

  17. Resolving the Quantitative-Qualitative Dilemma: A Critical Realist Approach

    ERIC Educational Resources Information Center

    Scott, David

    2007-01-01

    The philosophical issues underpinning the quantitative-qualitative divide in educational research are examined. Three types of argument which support a resolution are considered: pragmatism, false duality and warranty through triangulation. In addition a number of proposed strategies--alignment, sequencing, translation and triangulation--are…

  18. Using graphene nano-particle embedded in photonic crystal fiber for evanescent wave mode-locking of fiber laser.

    PubMed

    Lin, Yung-Hsiang; Yang, Chun-Yu; Liou, Jia-Hong; Yu, Chin-Ping; Lin, Gong-Ru

    2013-07-15

    A photonic crystal fiber (PCF) with high-quality graphene nano-particles uniformly dispersed in the hole cladding are demonstrated to passively mode-lock the erbium-doped fiber laser (EDFL) by evanescent-wave interaction. The few-layer graphene nano-particles are obtained by a stabilized electrochemical exfoliation at a threshold bias. These slowly and softly exfoliated graphene nano-particle exhibits an intense 2D band and an almost disappeared D band in the Raman scattering spectrum. The saturable phenomena of the extinction coefficient β in the cladding provides a loss modulation for the intracavity photon intensity by the evanescent-wave interaction. The evanescent-wave mode-locking scheme effectively enlarges the interaction length of saturable absorption with graphene nano-particle to provide an increasing transmittance ΔT of 5% and modulation depth of 13%. By comparing the core-wave and evanescent-wave mode-locking under the same linear transmittance, the transmittance of the graphene nano-particles on the end-face of SMF only enlarges from 0.54 to 0.578 with ΔT = 3.8% and the modulation depth of 10.8%. The evanescent wave interaction is found to be better than the traditional approach which confines the graphene nano-particles at the interface of two SMF patchcords. When enlarging the intra-cavity gain by simultaneously increasing the pumping current of 980-nm and 1480-nm pumping laser diodes (LDs) to 900 mA, the passively mode-locked EDFL shortens its pulsewidth to 650 fs and broadens its spectral linewidth to 3.92 nm. An extremely low carrier amplitude jitter (CAJ) of 1.2-1.6% is observed to confirm the stable EDFL pulse-train with the cladding graphene nano-particle based evanescent-wave mode-locking.

  19. Duality between a dark state and a quasi-dark state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirokawa, Masao, E-mail: hirokawa@amath.hiroshima-u.ac.jp

    We study a physical system coupled with two one-mode Bose fields. The physical system is a two-level system or a harmonic oscillator. We prove that each dark and quasi-dark state appears under a proper condition, and then, we derive a duality between the dark state and the quasi-dark state. This duality induces the switch between the dark state and the quasi-dark state.

  20. Saturation of energetic-particle-driven geodesic acoustic modes due to wave-particle nonlinearity

    NASA Astrophysics Data System (ADS)

    Biancalani, A.; Chavdarovski, I.; Qiu, Z.; Bottino, A.; Del Sarto, D.; Ghizzo, A.; Gürcan, Ö.; Morel, P.; Novikau, I.

    2017-12-01

    The nonlinear dynamics of energetic-particle (EP) driven geodesic acoustic modes (EGAM) is investigated here. A numerical analysis with the global gyrokinetic particle-in-cell code ORB5 is performed, and the results are interpreted with the analytical theory, in close comparison with the theory of the beam-plasma instability. Only axisymmetric modes are considered, with a nonlinear dynamics determined by wave-particle interaction. Quadratic scalings of the saturated electric field with respect to the linear growth rate are found for the case of interest. As a main result, the formula for the saturation level is provided. Near the saturation, we observe a transition from adiabatic to non-adiabatic dynamics, i.e. the frequency chirping rate becomes comparable to the resonant EP bounce frequency. The numerical analysis is performed here with electrostatic simulations with circular flux surfaces, and kinetic effects of the electrons are neglected.

  1. Chern-Simons theory and S-duality

    NASA Astrophysics Data System (ADS)

    Dimofte, Tudor; Gukov, Sergei

    2013-05-01

    We study S-dualities in analytically continued SL(2) Chern-Simons theory on a 3-manifold M. By realizing Chern-Simons theory via a compactification of a 6d five-brane theory on M, various objects and symmetries in Chern-Simons theory become related to objects and operations in dual 2d, 3d, and 4d theories. For example, the space of flat SL(2 , {C} ) connections on M is identified with the space of supersymmetric vacua in a dual 3d gauge theory. The hidden symmetry [InlineMediaObject not available: see fulltext.] of SL(2) Chern-Simons theory can be identified as the S-duality transformation of {N}=4 super-Yang-Mills theory (obtained by compactifying the five-brane theory on a torus); whereas the mapping class group action in Chern-Simons theory on a three-manifold M with boundary C is realized as S-duality in 4d {N}=2 super-Yang-Mills theory associated with the Riemann surface C. We illustrate these symmetries by considering simple examples of 3-manifolds that include knot complements and punctured torus bundles, on the one hand, and mapping cylinders associated with mapping class group transformations, on the other. A generalization of mapping class group actions further allows us to study the transformations between several distinguished coordinate systems on the phase space of Chern-Simons theory, the SL(2) Hitchin moduli space.

  2. A new mechanism for relativistic particle acceleration via wave-particle interaction

    NASA Astrophysics Data System (ADS)

    Lapenta, Giovanni; Markidis, Stefano; Marocchino, Alberto

    2006-10-01

    Often in laboratory, space and astrophysical plasma, high energy populations are observed. Two puzzling factors still defy our understanding. First, such populations of high energy particles produce power law distributions that are not only ubiquitous but also persistent in time. Such persistence is in direct contradiction to the H theorem that states the ineluctable transition of physical systems towards thermodynamic equilibrium, and ergo Maxwellian distributions. Second, such high energy populations are efficiently produced, much more efficiently than processes that we know can produce. A classic example of such a situation is cosmic rays where power alws extend up to tremendolus energy ranges. In the present work, we identify a new mechanism for particle acceleration via wave-particle interaction. The mechanism is peculiar to special relativity and has no classical equivalent. That explains why it is not observed in most simulation studies of plasma processes, based on classical physics. The mechanism is likely to be active in systems undergoing streaming instabilities and in particular shocked systems. The new mechanism can produce energy increases vastly superior to previously known mechanisms (such as Fermi acceleration) and can hold the promise of explaining at least some of the observed power laws.

  3. Mordell integrals and Giveon-Kutasov duality

    NASA Astrophysics Data System (ADS)

    Giasemidis, Georgios; Tierz, Miguel

    2016-01-01

    We solve, for finite N, the matrix model of supersymmetric U( N) Chern-Simons theory coupled to N f massive hypermultiplets of R-charge 1/2 , together with a Fayet-Iliopoulos term. We compute the partition function by identifying it with a determinant of a Hankel matrix, whose entries are parametric derivatives (of order N f - 1) of Mordell integrals. We obtain finite Gauss sums expressions for the partition functions. We also apply these results to obtain an exhaustive test of Giveon-Kutasov (GK) duality in the N=3 setting, by systematic computation of the matrix models involved. The phase factor that arises in the duality is then obtained explicitly. We give an expression characterized by modular arithmetic (mod 4) behavior that holds for all tested values of the parameters (checked up to N f = 12 flavours).

  4. Quantitative shear-wave optical coherence elastography with a programmable phased array ultrasound as the wave source.

    PubMed

    Song, Shaozhen; Le, Nhan Minh; Huang, Zhihong; Shen, Tueng; Wang, Ruikang K

    2015-11-01

    The purpose of this study is to implement a beam-steering ultrasound as the wave source for shear-wave optical coherence elastography (SW-OCE) to achieve an extended range of elastic imaging of the tissue sample. We introduce a linear phased array ultrasound transducer (LPAUT) as the remote and programmable wave source and a phase-sensitive optical coherence tomography (OCT) as the sensitive shear-wave detector. The LPAUT is programmed to launch acoustic radiation force impulses (ARFI) focused at desired locations within the range of OCT imaging, upon which the elasticity map of the entire OCT B-scan cross section is recovered by spatial compounding of the elastic maps derived from each launch of AFRIs. We also propose a directional filter to separate the shear-wave propagation at different directions in order to reduce the effect of tissue heterogeneity on the shear-wave propagation within tissue. The feasibility of this proposed approach is then demonstrated by determining the stiffness of tissue-mimicking phantoms with agarose concentrations of 0.5% and 1% and also by imaging the Young's modulus of retinal and choroidal tissues within a porcine eye ball ex vivo. The approach opens up opportunities to combine medical ultrasound imaging and SW-OCE for high-resolution localized quantitative assessment of tissue biomechanical property.

  5. The particle valve: On-demand particle trapping, filtering, and release from a microfabricated polydimethylsiloxane membrane using surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Collins, David J.; Alan, Tuncay; Neild, Adrian

    2014-07-01

    We introduce a surface acoustic wave (SAW) based method for acoustically controlled concentration, capture, release, and sorting of particles in a microfluidic system. This method is power efficient by the nature of its design: the vertical direction of a traveling acoustic wave, in which the majority of the energy at the SAW-water interface is directed, is used to concentrate particles behind a microfabricated polydimethylsiloxane membrane extending partially into a channel. Sorting is also demonstrated with this concentration shown to be size-dependent. Low-power, miniature SAW devices, using methods such as the one demonstrated here, are well placed for future integration into point-of-care diagnostic systems.

  6. Development of a single-photon-counting camera with use of a triple-stacked micro-channel plate.

    PubMed

    Yasuda, Naruomi; Suzuki, Hitoshi; Katafuchi, Tetsuro

    2016-01-01

    At the quantum-mechanical level, all substances (not merely electromagnetic waves such as light and X-rays) exhibit wave–particle duality. Whereas students of radiation science can easily understand the wave nature of electromagnetic waves, the particle (photon) nature may elude them. Therefore, to assist students in understanding the wave–particle duality of electromagnetic waves, we have developed a photon-counting camera that captures single photons in two-dimensional images. As an image intensifier, this camera has a triple-stacked micro-channel plate (MCP) with an amplification factor of 10(6). The ultra-low light of a single photon entering the camera is first converted to an electron through the photoelectric effect on the photocathode. The electron is intensified by the triple-stacked MCP and then converted to a visible light distribution, which is measured by a high-sensitivity complementary metal oxide semiconductor image sensor. Because it detects individual photons, the photon-counting camera is expected to provide students with a complete understanding of the particle nature of electromagnetic waves. Moreover, it measures ultra-weak light that cannot be detected by ordinary low-sensitivity cameras. Therefore, it is suitable for experimental research on scintillator luminescence, biophoton detection, and similar topics.

  7. Particle orbits in a force-balanced, wave-driven, rotating torus

    NASA Astrophysics Data System (ADS)

    Ochs, I. E.; Fisch, N. J.

    2017-09-01

    A wave-driven rotating torus is a recently proposed fusion concept where the rotational transform is provided by the E × B drift resulting from a minor radial electric field. This field can be produced, for instance, by the RF-wave-mediated extraction of fusion-born alpha particles. In this paper, we discuss how macroscopic force balance, i.e., balance of the thermal hoop force, can be achieved in such a device. We show that this requires the inclusion of a small plasma current and vertical magnetic field and identify the desirable reactor regime through free energy considerations. We then analyze particle orbits in this desirable regime, identifying velocity-space anisotropies in trapped (banana) orbits, resulting from the cancellation of rotational transforms due to the radial electric and poloidal magnetic fields. The potential neoclassical effects of these orbits on the perpendicular conductivity, current drive, and transport are discussed.

  8. The acceleration of charged particles in interplanetary shock waves

    NASA Technical Reports Server (NTRS)

    Pesses, M. E.; Decker, R. B.; Armstrong, T. P.

    1982-01-01

    Consideration of the theoretical and observational literature on energetic ion acceleration in interplanetary shock waves is the basis for the present discussion of the shock acceleration of the solar wind plasma and particle transport effects. It is suggested that ISEE data be used to construct data sets for shock events that extend continuously from solar wind to galactic cosmic ray energies, including data for electrons, protons, alphas and ions with Z values greater than 2.0, and that the temporal and spatial evolution of two- and three-dimensional particle distribution functions be studied by means of two or more spacecraft.

  9. Slow waves in microchannel metal waveguides and application to particle acceleration

    NASA Astrophysics Data System (ADS)

    Steinhauer, L. C.; Kimura, W. D.

    2003-06-01

    Conventional metal-wall waveguides support waveguide modes with phase velocities exceeding the speed of light. However, for infrared frequencies and guide dimensions of a fraction of a millimeter, one of the waveguide modes can have a phase velocity equal to or less than the speed of light. Such a metal microchannel then acts as a slow-wave structure. Furthermore, if it is a transverse magnetic mode, the electric field has a component along the direction of propagation. Therefore, a strong exchange of energy can occur between a beam of charged particles and this slow-waveguide mode. Moreover, the energy exchange can be sustained over a distance limited only by the natural damping of the wave. This makes the microchannel metal waveguide an attractive possibility for high-gradient electron laser acceleration because the wave can be directly energized by a long-wavelength laser. Indeed the frequency of CO2 lasers lies at a fortuitous wavelength that produces a strong laser-particle interaction in a channel of reasonable macroscopic size (e.g., ˜0.6 mm). The dispersion properties including phase velocity and damping for the slow wave are developed. The performance and other issues related to laser accelerator applications are discussed.

  10. Self-duality in higher dimensions

    NASA Astrophysics Data System (ADS)

    Bilge, A. H.; Dereli, T.; Kocak, S.

    2017-01-01

    Let ω be a 2-form on a 2n dimensional manifold. In previous work, we called ω “strong self-dual, if the eigenvalues of its matrix with respect to an orthonormal frame are equal in absolute value. In a series of papers, we showed that strong self-duality agrees with previous definitions; in particular if ω is strong self-dual, then, in 2n dimensions, ωn is proportional to its Hodge dual ω and in 4n dimensions, ωn is Hodge self-dual. We also obtained a local expression of the Bonan 4-form on 8 manifolds with Spin 7 holonomy, as the sum of the squares of any orthonormal basis of a maximal linear subspace of strong self-dual 2-forms. In the present work we generalize the notion of strong self-duality to odd dimensional manifolds and we express the dual of the Fundamental 3-form 7 manifolds with G 2 holonomy, as a sum of the squares of an orthonormal basis of a maximal linear subspace of strong self-dual 2-forms.

  11. Wave-Induced Momentum Flux over Wind-driven Surface Waves

    NASA Astrophysics Data System (ADS)

    Yousefi, Kianoosh; Veron, Fabrice; Buckley, Marc; Husain, Nyla; Hara, Tetsu

    2017-11-01

    In recent years, the exchange of momentum between the atmosphere and the ocean has been the subject of several investigations. Although the role of surface waves on the air-sea momentum flux is now well established, detailed quantitative measurements of wave-induced momentum fluxes are lacking. In the current study, using a combined Particle Image Velocimetry (PIV) and Laser Induced Fluorescence (LIF) system, we obtained laboratory measurements of the airflow velocity above surface waves for wind speeds ranging from 0.86 to 16.63 m s-1. The mean, turbulent, and wave-coherent velocity fields are then extracted from instantaneous measurements. Wave-induced stress can, therefore, be estimated. In strongly forced cases in high wind speeds, the wave-induced stress near the surface is a significant fraction of the total stress. At lower wind speeds and larger wave ages, the wave-induced stress is positive very close to the surface, below the critical height and decreases to a negative value further above the critical height. This indicates a shift in the direction of the wave-coherent momentum flux across the critical layer. NSF OCE1458977, NSF OCE1634051.

  12. Simulation studies of plasma waves in the electron foreshock - The generation of Langmuir waves by a gentle bump-on-tail electron distribution

    NASA Technical Reports Server (NTRS)

    Dum, C. T.

    1990-01-01

    Particle simulation experiments were used to study the basic physical ingredients needed for building a global model of foreshock wave phenomena. In particular, the generation of Langmuir waves by a gentle bump-on-tail electron distribution is analyzed. It is shown that, with appropriately designed simulations experiments, quasi-linear theory can be quantitatively verified for parameters corresponding to the electron foreshock.

  13. Cosmology of Universe Particles and Beyond

    NASA Astrophysics Data System (ADS)

    Xu, Wei

    2016-06-01

    For the first time in history, all properties of cosmology particles are uncovered and described concisely and systematically, known as the elementary particles in contemporary physics.Aligning with the synthesis of the virtual and physical worlds in a hierarchical taxonomy of the universe, this theory refines the topology framework of cosmology, and presents a new perspective of the Yin Yang natural laws that, through the processes of creation and reproduction, the fundamental elements generate an infinite series of circular objects and a Yin Yang duality of dynamic fields that are sequenced and transformed states of matter between the virtual and physical worlds.Once virtual objects are transformed, they embody various enclaves of energy states, known as dark energy, quarks, leptons, bosons, protons, and neutrons, characterized by their incentive oscillations of timestate variables in a duality of virtual realities: energy and time, spin and charge, mass and space, symmetry and antisymmetry.As a consequence, it derives the fully-scaled quantum properties of physical particles in accordance with numerous historical experiments, and has overcome the limitations of uncertainty principle and the Standard Model, towards concisely exploring physical nature and beyond...

  14. An Algebraic Construction of Duality Functions for the Stochastic {U_q( A_n^{(1)})} Vertex Model and Its Degenerations

    NASA Astrophysics Data System (ADS)

    Kuan, Jeffrey

    2018-03-01

    A recent paper (Kuniba in Nucl Phys B 913:248-277, 2016) introduced the stochastic U}_q(A_n^{(1)})} vertex model. The stochastic S-matrix is related to the R-matrix of the quantum group {U_q(A_n^{(1)})} by a gauge transformation. We will show that a certain function {D^+_{m intertwines with the transfer matrix and its space reversal. When interpreting the transfer matrix as the transition matrix of a discrete-time totally asymmetric particle system on the one-dimensional lattice Z , the function {D^+m} becomes a Markov duality function {Dm} which only depends on q and the vertical spin parameters μ_x. By considering degenerations in the spectral parameter, the duality results also hold on a finite lattice with closed boundary conditions, and for a continuous-time degeneration. This duality function had previously appeared in a multi-species ASEP(q, j) process (Kuan in A multi-species ASEP(q, j) and q-TAZRP with stochastic duality, 2017). The proof here uses that the R-matrix intertwines with the co-product, but does not explicitly use the Yang-Baxter equation. It will also be shown that the stochastic U}_q(A_n^{(1)})} is a multi-species version of a stochastic vertex model studied in Borodin and Petrov (Higher spin six vertex model and symmetric rational functions, 2016) and Corwin and Petrov (Commun Math Phys 343:651-700, 2016). This will be done by generalizing the fusion process of Corwin and Petrov (2016) and showing that it matches the fusion of Kulish and yu (Lett Math Phys 5:393-403, 1981) up to the gauge transformation. We also show, by direct computation, that the multi-species q-Hahn Boson process (which arises at a special value of the spectral parameter) also satisfies duality with respect to D_∞, generalizing the single-species result of Corwin (Int Math Res Not 2015:5577-5603, 2015).

  15. Development of a particle method of characteristics (PMOC) for one-dimensional shock waves

    NASA Astrophysics Data System (ADS)

    Hwang, Y.-H.

    2018-03-01

    In the present study, a particle method of characteristics is put forward to simulate the evolution of one-dimensional shock waves in barotropic gaseous, closed-conduit, open-channel, and two-phase flows. All these flow phenomena can be described with the same set of governing equations. The proposed scheme is established based on the characteristic equations and formulated by assigning the computational particles to move along the characteristic curves. Both the right- and left-running characteristics are traced and represented by their associated computational particles. It inherits the computational merits from the conventional method of characteristics (MOC) and moving particle method, but without their individual deficiencies. In addition, special particles with dual states deduced to the enforcement of the Rankine-Hugoniot relation are deliberately imposed to emulate the shock structure. Numerical tests are carried out by solving some benchmark problems, and the computational results are compared with available analytical solutions. From the derivation procedure and obtained computational results, it is concluded that the proposed PMOC will be a useful tool to replicate one-dimensional shock waves.

  16. Quantitative estimation of minimum offset for multichannel surface-wave survey with actively exciting source

    USGS Publications Warehouse

    Xu, Y.; Xia, J.; Miller, R.D.

    2006-01-01

    Multichannel analysis of surface waves is a developing method widely used in shallow subsurface investigations. The field procedures and related parameters are very important for successful applications. Among these parameters, the source-receiver offset range is seldom discussed in theory and normally determined by empirical or semi-quantitative methods in current practice. This paper discusses the problem from a theoretical perspective. A formula for quantitatively evaluating a layered homogenous elastic model was developed. The analytical results based on simple models and experimental data demonstrate that the formula is correct for surface wave surveys for near-surface applications. ?? 2005 Elsevier B.V. All rights reserved.

  17. Wave-particle dualism and complementarity unraveled by a different mode

    PubMed Central

    Menzel, Ralf; Puhlmann, Dirk; Heuer, Axel; Schleich, Wolfgang P.

    2012-01-01

    The precise knowledge of one of two complementary experimental outcomes prevents us from obtaining complete information about the other one. This formulation of Niels Bohr’s principle of complementarity when applied to the paradigm of wave-particle dualism—that is, to Young’s double-slit experiment—implies that the information about the slit through which a quantum particle has passed erases interference. In the present paper we report a double-slit experiment using two photons created by spontaneous parametric down-conversion where we observe interference in the signal photon despite the fact that we have located it in one of the slits due to its entanglement with the idler photon. This surprising aspect of complementarity comes to light by our special choice of the TEM01 pump mode. According to quantum field theory the signal photon is then in a coherent superposition of two distinct wave vectors giving rise to interference fringes analogous to two mechanical slits. PMID:22628561

  18. Particle orbits in a force-balanced, wave-driven, rotating torus

    DOE PAGES

    Ochs, I. E.; Fisch, N. J.

    2017-09-01

    A wave-driven rotating torus is a recently proposed fusion concept where the rotational transform is provided by the E × B drift resulting from a minor radial electric field. This field can be produced, for instance, by the RF-wave-mediated extraction of fusion-born alpha particles. In this paper, we discuss how macroscopic force balance, i.e., balance of the thermal hoop force, can be achieved in such a device. We show that this requires the inclusion of a small plasma current and vertical magnetic field and identify the desirable reactor regime through free energy considerations. We then analyze particle orbits in thismore » desirable regime, identifying velocity-space anisotropies in trapped (banana) orbits, resulting from the cancellation of rotational transforms due to the radial electric and poloidal magnetic fields. The potential neoclassical effects of these orbits on the perpendicular conductivity, current drive, and transport are discussed.« less

  19. Particle orbits in a force-balanced, wave-driven, rotating torus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochs, I. E.; Fisch, N. J.

    A wave-driven rotating torus is a recently proposed fusion concept where the rotational transform is provided by the E × B drift resulting from a minor radial electric field. This field can be produced, for instance, by the RF-wave-mediated extraction of fusion-born alpha particles. In this paper, we discuss how macroscopic force balance, i.e., balance of the thermal hoop force, can be achieved in such a device. We show that this requires the inclusion of a small plasma current and vertical magnetic field and identify the desirable reactor regime through free energy considerations. We then analyze particle orbits in thismore » desirable regime, identifying velocity-space anisotropies in trapped (banana) orbits, resulting from the cancellation of rotational transforms due to the radial electric and poloidal magnetic fields. The potential neoclassical effects of these orbits on the perpendicular conductivity, current drive, and transport are discussed.« less

  20. Euler-Lagrange Simulations of Shock Wave-Particle Cloud Interaction

    NASA Astrophysics Data System (ADS)

    Koneru, Rahul; Rollin, Bertrand; Ouellet, Frederick; Park, Chanyoung; Balachandar, S.

    2017-11-01

    Numerical experiments of shock interacting with an evolving and fixed cloud of particles are performed. In these simulations we use Eulerian-Lagrangian approach along with state-of-the-art point-particle force and heat transfer models. As validation, we use Sandia Multiphase Shock Tube experiments and particle-resolved simulations. The particle curtain upon interaction with the shock wave is expected to experience Kelvin-Helmholtz (KH) and Richtmyer-Meshkov (RM) instabilities. In the simulations evolving the particle cloud, the initial volume fraction profile matches with that of Sandia Multiphase Shock Tube experiments, and the shock Mach number is limited to M =1.66. Measurements of particle dispersion are made at different initial volume fractions. A detailed analysis of the influence of initial conditions on the evolution of the particle cloudis presented. The early time behavior of the models is studied in the fixed bed simulations at varying volume fractions and shock Mach numbers.The mean gas quantities are measured in the context of 1-way and 2-way coupled simulations. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.

  1. A Duality Theory for Non-convex Problems in the Calculus of Variations

    NASA Astrophysics Data System (ADS)

    Bouchitté, Guy; Fragalà, Ilaria

    2018-07-01

    We present a new duality theory for non-convex variational problems, under possibly mixed Dirichlet and Neumann boundary conditions. The dual problem reads nicely as a linear programming problem, and our main result states that there is no duality gap. Further, we provide necessary and sufficient optimality conditions, and we show that our duality principle can be reformulated as a min-max result which is quite useful for numerical implementations. As an example, we illustrate the application of our method to a celebrated free boundary problem. The results were announced in Bouchitté and Fragalà (C R Math Acad Sci Paris 353(4):375-379, 2015).

  2. A Duality Theory for Non-convex Problems in the Calculus of Variations

    NASA Astrophysics Data System (ADS)

    Bouchitté, Guy; Fragalà, Ilaria

    2018-02-01

    We present a new duality theory for non-convex variational problems, under possibly mixed Dirichlet and Neumann boundary conditions. The dual problem reads nicely as a linear programming problem, and our main result states that there is no duality gap. Further, we provide necessary and sufficient optimality conditions, and we show that our duality principle can be reformulated as a min-max result which is quite useful for numerical implementations. As an example, we illustrate the application of our method to a celebrated free boundary problem. The results were announced in Bouchitté and Fragalà (C R Math Acad Sci Paris 353(4):375-379, 2015).

  3. Aspects of some dualities in string theory

    NASA Astrophysics Data System (ADS)

    Kim, Bom Soo

    AdS/CFT correspondence in string theory has changed landscape of the theoretical physics. Through this celebrated duality between gravity theory and field theory, one can investigate analytically strongly coupled gauge theories such as Quantum Chromodynamics (QCD) in terms of weakly coupled string theory such as supergravity theory and vice versa. In the first part of this thesis we used this duality to construct a new type of nonlocal field theory, called Puff Field Theory, in terms of D3 branes in type IIB string theory with a geometric twist. In addition to the strong-weak duality of AdS/CFT, there also exists a weak-weak duality, called Twistor String Theory. Twistor technique is successfully used to calculate the SYM scattering amplitude in an elegant fashion. Yet, the progress in the string theory side was hindered by a non-unitary conformal gravity. We extend the Twistor string theory by introducing mass terms, in the second part of the thesis. A chiral mass term is identified as a vacuum expectation value of a conformal supergravity field and is tied with the breaking of the conformal symmetry of gravity. As a prime candidate for a quantum theory of gravity, string theory revealed many promising successes such as counting the number of microstates in supersymmetric Black Holes thermodynamics and resolution of timelike and null singularities, to name a few. Yet, the fundamental string and M-theroy formulations are not yet available. Various string theories without gravity, such as Non-Commutative Open String (NCOS) and Open Membrane (OM) theories, are very nice playground to investigate the fundamental structure of string and M-theory without the complication of gravity. In the last part of the thesis, simpler Non-Relativistic String Theories are constructed and investigated. One important motivation for those theories is related to the connection between Non-Relativistic String Theories and Non-critical String Theories through the bosonization of betagamma

  4. Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    A development of quantum theory that was initiated in the 1920s by Werner Heisenberg (1901-76) and Erwin Schrödinger (1887-1961). The theory drew on a proposal made in 1925 Prince Louis de Broglie (1892-1987), that particles have wavelike properties (the wave-particle duality) and that an electron, for example, could in some respects be regarded as a wave with a wavelength that depended on its mo...

  5. A TWT upgrade to study wave-particle interactions in plasma

    NASA Astrophysics Data System (ADS)

    Doveil, Fabrice; Caetano de Sousa, Meirielen; Guyomarc'h, Didier; Kahli, Aissa; Elskens, Yves

    2015-11-01

    Beside industrial applications, Traveling Wave Tubes (TWT) are useful to mimic and study wave-particle interaction in plasma. We upgraded a TWT, whose slow wave structure is a 4 m long helix (diameter 3.4 cm, pitch 1 mm) of Be-Cu wire (diameter 0.6 mm) wrapped in insulating tape. The helix is inserted in a vacuum glass tube. At one end, an electron gun produces a beam propagating along the helix, radially confined by a constant axial magnetic field. Movable probes, capacitively coupled to the helix through the glass tube, launch and monitor waves generated by an arbitrary waveform generator at a few tens of MHz. At the other end of the helix, a trochoidal analyzer allows to reconstruct the electron distribution functions of the beam after its self-consistent interaction with the waves. Linear properties of the new device will be reported. The measured coupling coefficients of each probe with the helix are used to reconstruct the growth and saturation of a launched wave as it interacts with the electron beam. J-B. Faure and V. Long are thanked for their efficient help in designing and using a new way to build the helix.

  6. E11, brane dynamics and duality symmetries

    NASA Astrophysics Data System (ADS)

    West, Peter

    2018-05-01

    Following arXiv:hep-th/0412336 we use the nonlinear realisation of the semi-direct product of E11 and its vector representation to construct brane dynamics. The brane moves through a space-time which arises in the nonlinear realisation from the vector representation and it contains the usual embedding coordinates as well as the worldvolume fields. The resulting equations of motion are first order in derivatives and can be thought of as duality relations. Each brane carries the full E11 symmetry and so the Cremmer-Julia duality symmetries. We apply this theory to find the dynamics of the IIA and IIB strings, the M2 and M5 branes, the IIB D3 brane as well as the one and two branes in seven dimensions.

  7. Dualities in the analysis of phage DNA packaging motors

    PubMed Central

    Serwer, Philip; Jiang, Wen

    2012-01-01

    The DNA packaging motors of double-stranded DNA phages are models for analysis of all multi-molecular motors and for analysis of several fundamental aspects of biology, including early evolution, relationship of in vivo to in vitro biochemistry and targets for anti-virals. Work on phage DNA packaging motors both has produced and is producing dualities in the interpretation of data obtained by use of both traditional techniques and the more recently developed procedures of single-molecule analysis. The dualities include (1) reductive vs. accretive evolution, (2) rotation vs. stasis of sub-assemblies of the motor, (3) thermal ratcheting vs. power stroking in generating force, (4) complete motor vs. spark plug role for the packaging ATPase, (5) use of previously isolated vs. new intermediates for analysis of the intermediate states of the motor and (6) a motor with one cycle vs. a motor with two cycles. We provide background for these dualities, some of which are under-emphasized in the literature. We suggest directions for future research. PMID:23532204

  8. Correlated wave functions for three-particle systems with Coulomb interaction - The muonic helium atom

    NASA Technical Reports Server (NTRS)

    Huang, K.-N.

    1977-01-01

    A computational procedure for calculating correlated wave functions is proposed for three-particle systems interacting through Coulomb forces. Calculations are carried out for the muonic helium atom. Variational wave functions which explicitly contain interparticle coordinates are presented for the ground and excited states. General Hylleraas-type trial functions are used as the basis for the correlated wave functions. Excited-state energies of the muonic helium atom computed from 1- and 35-term wave functions are listed for four states.

  9. Dynamics of Solar Energetic Particles in the Presence of a Shock Wave

    NASA Astrophysics Data System (ADS)

    Timofeev, V. E.; Petukhov, Ivan; Petukhov, Stanislav; Starodubtsev, Sergei

    2003-07-01

    From the analysis of problem solutions on the solar energetic particle propagation in the presence of a plane shock wave described by the diffusion convective transport equation, the condition and manifestations for the influence of a shock wave on the SEP propagation in the solar wind have been determined. Solar energetic particles (SEP) in gradual events are generated by shock waves (see, for example, [1] and references there). The SEP generation region is limited, on the whole, by the solar corona. Proton fluxes of 470 MeV to 21 GeV energies, a maximum of which occur at a time when the shock in the atmosphere of the Sun reaches heights equal to 5 10 solar radii [2] indicate to it. It is also confirmed by the significant advancing of the occurrence time of maximum in the SEP intensity with kinetic energies more than 10 MeV relative to the shock front arrival moment to Earth's orbit. model calculations for the particles acceleration by the diffusive mechanism in conditions, typical for the solar corona, show that the time taken to pass the solar atmosphere by the shock is quite sufficient to form the particle spectrum corresponding to the SEP characteristics observed [3,4]. Lee and Ryan [5] investigated the problem of SEP gradual event generation, propagation and confirmed the close association between the diffusive acceleration mechanism and SEP events. The absence of depending of particle diffusion coefficients on the energy is a lack of this model. As an extension of preceding investigations, in this work the temporal dynamics of the particle spectrum in the presence of a plane shock for diffusion coefficients depending on the particle energy and also their change in time is studied. The SEP event from a moment of arising of a shock to a moment of it's arrival on the Earth's orbit can be divided on two stages: the first stage (duration is ˜ 1 hour) is a generation of SEP in the solar corona, the second stage (duration is ˜ 1 day) is a propagation in

  10. Observations of wave-particle interactions in the flux pile-up region of asymmetric reconnection

    NASA Astrophysics Data System (ADS)

    Argall, M. R.; Paulson, K. W.; Ahmadi, N.; Matsui, H.; Torbert, R. B.; Alm, L.; Le Contel, O.; Khotyaintsev, Y. V.; Wilder, F. D.; Turner, D. L.; Strangeway, R. J.; Schwartz, S. J.; Magnes, W.; Giles, B. L.; Lindqvist, P. A.; Ergun, R.; Mauk, B.; Leonard, T. W.

    2017-12-01

    Recent observations have shown electron energization to >100keV with simultaneous whistler wave activity in the vicinity of the dayside reconnection site. We investigate one possible mechanism for producing these energetic particles. Counter-streaming electrons from the magnetosphere enter the diffusion region and are scattered to all pitch angles (PAs) by strong field-line curvature. As the electrons flow outward into the exhaust, they remagnetize and are focused toward 90° at mirror points within the flux pile-up region. This effect, combined with heating mechanisms in the EDR, produces a temperature anisotropy, while the weak magnetic field lowers the resonant energy into the bulk energy of the plasma. In the end, whistler waves are produced near 100Hz with a wave normal angle of 20°. Simultaneous with the waves, the Electron Drift Instrument observes particle flux modulations of 0° and 180° PA, 500 eV electrons. Multi-spacecraft analysis and Liouville mapping techniques allow us to determine the parallel wave current, potential, and associated energy dissipation. Bursts of 100keV electrons are observed and may interact with the whistler waves.

  11. Dualities and Topological Field Theories from Twisted Geometries

    NASA Astrophysics Data System (ADS)

    Markov, Ruza

    I will present three studies of string theory on twisted geometries. In the first calculation included in this dissertation we use gauge/gravity duality to study the Coulomb branch of an unusual type of nonlocal field theory, called Puff Field Theory. On the gravity side, this theory is given in terms of D3-branes in type IIB string theory with a geometric twist. While the field theory description, available in the IR limit, is a deformation of Yang-Mills gauge theory by an order seven operator which we here compute. In the rest of this dissertation we explore N = 4 super Yang-Mills (SYM) theory compactied on a circle with S-duality and R-symmetry twists that preserve N = 6 supersymmetry in 2 + 1D. It was shown that abelian theory on a flat manifold gives Chern-Simons theory in the low-energy limit and here we are interested in the non-abelian counterpart. To that end, we introduce external static supersymmetric quark and anti-quark sources into the theory and calculate the Witten Index of the resulting Hilbert space of ground states on a two-torus. Using these results we compute the action of simple Wilson loops on the Hilbert space of ground states without sources. In some cases we find disagreement between our results for the Wilson loop eigenvalues and previous conjectures about a connection with Chern-Simons theory. The last result discussed in this dissertation demonstrates a connection between gravitational Chern-Simons theory and N = 4 four-dimensional SYM theory compactified on a circle twisted by S-duality where the remaining three-manifold is not flat starting with the explicit geometric realization of S-duality in terms of (2, 0) theory.

  12. Non Abelian T-duality in Gauged Linear Sigma Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bizet, Nana Cabo; Martínez-Merino, Aldo; Zayas, Leopoldo A. Pando

    Abelian T-duality in Gauged Linear Sigma Models (GLSM) forms the basis of the physical understanding of Mirror Symmetry as presented by Hori and Vafa. We consider an alternative formulation of Abelian T-duality on GLSM’s as a gauging of a global U(1) symmetry with the addition of appropriate Lagrange multipliers. For GLSMs with Abelian gauge groups and without superpotential we reproduce the dual models introduced by Hori and Vafa. We extend the construction to formulate non-Abelian T-duality on GLSMs with global non-Abelian symmetries. The equations of motion that lead to the dual model are obtained for a general group, they dependmore » in general on semi-chiral superfields; for cases such as SU(2) they depend on twisted chiral superfields. We solve the equations of motion for an SU(2) gauged group with a choice of a particular Lie algebra direction of the vector superfield. This direction covers a non-Abelian sector that can be described by a family of Abelian dualities. The dual model Lagrangian depends on twisted chiral superfields and a twisted superpotential is generated. We explore some non-perturbative aspects by making an Ansatz for the instanton corrections in the dual theories. We verify that the effective potential for the U(1) field strength in a fixed configuration on the original theory matches the one of the dual theory. Imposing restrictions on the vector superfield, more general non-Abelian dual models are obtained. We analyze the dual models via the geometry of their susy vacua.« less

  13. Non Abelian T-duality in Gauged Linear Sigma Models

    NASA Astrophysics Data System (ADS)

    Bizet, Nana Cabo; Martínez-Merino, Aldo; Zayas, Leopoldo A. Pando; Santos-Silva, Roberto

    2018-04-01

    Abelian T-duality in Gauged Linear Sigma Models (GLSM) forms the basis of the physical understanding of Mirror Symmetry as presented by Hori and Vafa. We consider an alternative formulation of Abelian T-duality on GLSM's as a gauging of a global U(1) symmetry with the addition of appropriate Lagrange multipliers. For GLSMs with Abelian gauge groups and without superpotential we reproduce the dual models introduced by Hori and Vafa. We extend the construction to formulate non-Abelian T-duality on GLSMs with global non-Abelian symmetries. The equations of motion that lead to the dual model are obtained for a general group, they depend in general on semi-chiral superfields; for cases such as SU(2) they depend on twisted chiral superfields. We solve the equations of motion for an SU(2) gauged group with a choice of a particular Lie algebra direction of the vector superfield. This direction covers a non-Abelian sector that can be described by a family of Abelian dualities. The dual model Lagrangian depends on twisted chiral superfields and a twisted superpotential is generated. We explore some non-perturbative aspects by making an Ansatz for the instanton corrections in the dual theories. We verify that the effective potential for the U(1) field strength in a fixed configuration on the original theory matches the one of the dual theory. Imposing restrictions on the vector superfield, more general non-Abelian dual models are obtained. We analyze the dual models via the geometry of their susy vacua.

  14. Non Abelian T-duality in Gauged Linear Sigma Models

    DOE PAGES

    Bizet, Nana Cabo; Martínez-Merino, Aldo; Zayas, Leopoldo A. Pando; ...

    2018-04-01

    Abelian T-duality in Gauged Linear Sigma Models (GLSM) forms the basis of the physical understanding of Mirror Symmetry as presented by Hori and Vafa. We consider an alternative formulation of Abelian T-duality on GLSM’s as a gauging of a global U(1) symmetry with the addition of appropriate Lagrange multipliers. For GLSMs with Abelian gauge groups and without superpotential we reproduce the dual models introduced by Hori and Vafa. We extend the construction to formulate non-Abelian T-duality on GLSMs with global non-Abelian symmetries. The equations of motion that lead to the dual model are obtained for a general group, they dependmore » in general on semi-chiral superfields; for cases such as SU(2) they depend on twisted chiral superfields. We solve the equations of motion for an SU(2) gauged group with a choice of a particular Lie algebra direction of the vector superfield. This direction covers a non-Abelian sector that can be described by a family of Abelian dualities. The dual model Lagrangian depends on twisted chiral superfields and a twisted superpotential is generated. We explore some non-perturbative aspects by making an Ansatz for the instanton corrections in the dual theories. We verify that the effective potential for the U(1) field strength in a fixed configuration on the original theory matches the one of the dual theory. Imposing restrictions on the vector superfield, more general non-Abelian dual models are obtained. We analyze the dual models via the geometry of their susy vacua.« less

  15. The interaction of ultra-low-frequency pc3-5 waves with charged particles in Earth's magnetosphere

    NASA Astrophysics Data System (ADS)

    Zong, Qiugang; Rankin, Robert; Zhou, Xuzhi

    2017-12-01

    One of the most important issues in space physics is to identify the dominant processes that transfer energy from the solar wind to energetic particle populations in Earth's inner magnetosphere. Ultra-low-frequency (ULF) waves are an important consideration as they propagate electromagnetic energy over vast distances with little dissipation and interact with charged particles via drift resonance and drift-bounce resonance. ULF waves also take part in magnetosphere-ionosphere coupling and thus play an essential role in regulating energy flow throughout the entire system. This review summarizes recent advances in the characterization of ULF Pc3-5 waves in different regions of the magnetosphere, including ion and electron acceleration associated with these waves.

  16. Background Independence and Duality Invariance in String Theory.

    PubMed

    Hohm, Olaf

    2017-03-31

    Closed string theory exhibits an O(D,D) duality symmetry on tori, which in double field theory is manifest before compactification. I prove that to first order in α^{'} there is no manifestly background independent and duality invariant formulation of bosonic string theory in terms of a metric, b field, and dilaton. To this end I use O(D,D) invariant second order perturbation theory around flat space to show that the unique background independent candidate expression for the gauge algebra at order α^{'} is inconsistent with the Jacobi identity. A background independent formulation exists instead for frame variables subject to α^{'}-deformed frame transformations (generalized Green-Schwarz transformations). Potential applications for curved backgrounds, as in cosmology, are discussed.

  17. Topological T-duality for torus bundles with monodromy

    NASA Astrophysics Data System (ADS)

    Baraglia, David

    2015-05-01

    We give a simplified definition of topological T-duality that applies to arbitrary torus bundles. The new definition does not involve Chern classes or spectral sequences, only gerbes and morphisms between them. All the familiar topological conditions for T-duals are shown to follow. We determine necessary and sufficient conditions for existence of a T-dual in the case of affine torus bundles. This is general enough to include all principal torus bundles as well as torus bundles with arbitrary monodromy representations. We show that isomorphisms in twisted cohomology, twisted K-theory and of Courant algebroids persist in this general setting. We also give an example where twisted K-theory groups can be computed by iterating T-duality.

  18. Duality and topology

    NASA Astrophysics Data System (ADS)

    Sacramento, P. D.; Vieira, V. R.

    2018-04-01

    Mappings between models may be obtained by unitary transformations with preservation of the spectra but in general a change in the states. Non-canonical transformations in general also change the statistics of the operators involved. In these cases one may expect a change of topological properties as a consequence of the mapping. Here we consider some dualities resulting from mappings, by systematically using a Majorana fermion representation of spin and fermionic problems. We focus on the change of topological invariants that results from unitary transformations taking as examples the mapping between a spin system and a topological superconductor, and between different fermionic systems.

  19. Duality-mediated critical amplitude ratios for the (2 + 1)-dimensional S = 1XY model

    NASA Astrophysics Data System (ADS)

    Nishiyama, Yoshihiro

    2017-09-01

    The phase transition for the (2 + 1)-dimensional spin-S = 1XY model was investigated numerically. Because of the boson-vortex duality, the spin stiffness ρs in the ordered phase and the vortex-condensate stiffness ρv in the disordered phase should have a close relationship. We employed the exact diagonalization method, which yields the excitation gap directly. As a result, we estimate the amplitude ratios ρs,v/Δ (Δ: Mott insulator gap) by means of the scaling analyses for the finite-size cluster with N ≤ 22 spins. The ratio ρs/ρv admits a quantitative measure of deviation from selfduality.

  20. Test particle simulation study of whistler wave packets observed near Comet Giacobini-Zinner

    NASA Astrophysics Data System (ADS)

    Kaya, N.; Matsumoto, H.; Tsurutani, B. T.

    1989-01-01

    Nonlinear interactions of water group ions with large-amplitude whistler wave packets detected at the leading edge of steepened magnetosonic waves observed near Comet Giacobini-Zinner (GZ) are studied using test particle simulations of water-ion interactions with a model wave based on GZ data. Some of the water ions are found to be decelerated in the steepened portion of the magnetosonic wave to the resonance velocity with the whistler wave packets. Through resonance and related nonlinear interaction with the large-amplitude whistler waves, the water ions become trapped by the packet. An energy balance calculation demonstrates that the trapped ions lose their kinetic energy during the trapped motion in the packet. Thus, the nonlinear trapping motion in the wave structure leads to effective energy transfer from the water group ions to the whistler wave packets in the leading edge of the steepened MHD waves.

  1. Quasilinear diffusion operator for wave-particle interactions in inhomogeneous magnetic fields

    NASA Astrophysics Data System (ADS)

    Catto, P. J.; Lee, J.; Ram, A. K.

    2017-10-01

    The Kennel-Engelmann quasilinear diffusion operator for wave-particle interactions is for plasmas in a uniform magnetic field. The operator is not suitable for fusion devices with inhomogeneous magnetic fields. Using drift kinetic and high frequency gyrokinetic equations for the particle distribution function, we have derived a quasilinear operator which includes magnetic drifts. The operator applies to RF waves in any frequency range and is particularly relevant for minority ion heating. In order to obtain a physically meaningful operator, the first order correction to the particle's magnetic moment has to be retained. Consequently, the gyrokinetic change of variables has to be retained to a higher order than usual. We then determine the perturbed distribution function from the gyrokinetic equation using a novel technique that solves the kinetic equation explicitly for certain parts of the function. The final form of the diffusion operator is compact and completely expressed in terms of the drift kinetic variables. It is not transit averaged and retains the full poloidal angle variation without any Fourier decomposition. The quasilinear diffusion operator reduces to the Kennel-Engelmann operator for uniform magnetic fields. Supported by DoE Grant DE-FG02-91ER-54109.

  2. Synchronization of finite-size particles by a traveling wave in a cylindrical flow

    NASA Astrophysics Data System (ADS)

    Melnikov, D. E.; Pushkin, D. O.; Shevtsova, V. M.

    2013-09-01

    Motion of small finite-size particles suspended in a cylindrical thermocapillary flow with an azimuthally traveling wave is studied experimentally and numerically. At certain flow regimes the particles spontaneously align in dynamic accumulation structures (PAS) of spiral shape. We find that long-time trajectories of individual particles in this flow fall into three basic categories that can be described, borrowing the dynamical systems terminology, as the stable periodic, the quasiperiodic, and the quasistable periodic orbits. Besides these basic types of orbits, we observe the "doubled" periodic orbits and shuttle-like particle trajectories. We find that ensembles of particles having periodic orbits give rise to one-dimensional spiral PAS, while ensembles of particles having quasiperiodic orbits form two-dimensional PAS of toroidal shape. We expound the reasons why these types of orbits and the emergence of the corresponding accumulation structures should naturally be anticipated based on the phase locking theory of PAS formation. We give a further discussion of PAS features, such as the finite thickness of PAS spirals and the probable scenarios of the spiral PAS destruction. Finally, in numerical simulations of inertial particles we observe formation of the spiral structures corresponding to the 3:1 "resonance" between the particle turnover frequency and the wave oscillations frequency, thus confirming another prediction of the phase locking theory. In view of the generality of the arguments involved, we expect the importance of this structure-forming mechanism to go far beyond the realm of the laboratory-friendly thermocapillary flows.

  3. Hyperunified field theory and gravitational gauge-geometry duality

    NASA Astrophysics Data System (ADS)

    Wu, Yue-Liang

    2018-01-01

    A hyperunified field theory is built in detail based on the postulates of gauge invariance and coordinate independence along with the conformal scaling symmetry. All elementary particles are merged into a single hyper-spinor field and all basic forces are unified into a fundamental interaction governed by the hyper-spin gauge symmetry SP(1, D_h-1). The dimension D_h of hyper-spacetime is conjectured to have a physical origin in correlation with the hyper-spin charge of elementary particles. The hyper-gravifield fiber bundle structure of biframe hyper-spacetime appears naturally with the globally flat Minkowski hyper-spacetime as a base spacetime and the locally flat hyper-gravifield spacetime as a fiber that is viewed as a dynamically emerged hyper-spacetime characterized by a non-commutative geometry. The gravitational origin of gauge symmetry is revealed with the hyper-gravifield that plays an essential role as a Goldstone-like field. The gauge-gravity and gravity-geometry correspondences bring about the gravitational gauge-geometry duality. The basic properties of hyperunified field theory and the issue on the fundamental scale are analyzed within the framework of quantum field theory, which allows us to describe the laws of nature in deriving the gauge gravitational equation with the conserved current and the geometric gravitational equations of Einstein-like type and beyond.

  4. Rayleigh wave dispersion curve inversion by using particle swarm optimization and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Buyuk, Ersin; Zor, Ekrem; Karaman, Abdullah

    2017-04-01

    Inversion of surface wave dispersion curves with its highly nonlinear nature has some difficulties using traditional linear inverse methods due to the need and strong dependence to the initial model, possibility of trapping in local minima and evaluation of partial derivatives. There are some modern global optimization methods to overcome of these difficulties in surface wave analysis such as Genetic algorithm (GA) and Particle Swarm Optimization (PSO). GA is based on biologic evolution consisting reproduction, crossover and mutation operations, while PSO algorithm developed after GA is inspired from the social behaviour of birds or fish of swarms. Utility of these methods require plausible convergence rate, acceptable relative error and optimum computation cost that are important for modelling studies. Even though PSO and GA processes are similar in appearence, the cross-over operation in GA is not used in PSO and the mutation operation is a stochastic process for changing the genes within chromosomes in GA. Unlike GA, the particles in PSO algorithm changes their position with logical velocities according to particle's own experience and swarm's experience. In this study, we applied PSO algorithm to estimate S wave velocities and thicknesses of the layered earth model by using Rayleigh wave dispersion curve and also compared these results with GA and we emphasize on the advantage of using PSO algorithm for geophysical modelling studies considering its rapid convergence, low misfit error and computation cost.

  5. Simulation of wave packet tunneling of interacting identical particles

    NASA Astrophysics Data System (ADS)

    Lozovik, Yu. E.; Filinov, A. V.; Arkhipov, A. S.

    2003-02-01

    We demonstrate a different method of simulation of nonstationary quantum processes, considering the tunneling of two interacting identical particles, represented by wave packets. The used method of quantum molecular dynamics (WMD) is based on the Wigner representation of quantum mechanics. In the context of this method ensembles of classical trajectories are used to solve quantum Wigner-Liouville equation. These classical trajectories obey Hamiltonian-like equations, where the effective potential consists of the usual classical term and the quantum term, which depends on the Wigner function and its derivatives. The quantum term is calculated using local distribution of trajectories in phase space, therefore, classical trajectories are not independent, contrary to classical molecular dynamics. The developed WMD method takes into account the influence of exchange and interaction between particles. The role of direct and exchange interactions in tunneling is analyzed. The tunneling times for interacting particles are calculated.

  6. A Study of Saturn's E-Ring Particles Using the Voyager 1 Plasma Wave Instrument

    NASA Technical Reports Server (NTRS)

    Tsintikidis, D.; Kurth, W. S.; Gurnett, D. A.; Barbosa, D. D.

    1993-01-01

    The flyby of Voyager 1 at Saturn resulted in the detection of a large variety of plasma waves, e.g., chorus, hiss, and electron cyclotron harmonics. Just before the outbound equator crossing, at about 6.1 R(sub s), the Voyager 1 plasma wave instrument detected a strong, well-defined low-frequency enhancement. Initially it was suggested that plasma waves might be responsible for the spectral feature but more recently dust was suggested as at least a partial contributor to the enhancement. In this report we present evidence which supports the conclusion that dust contributes to the low-frequency enhancement. A new method has been used to derive the dust impact rate. The method relies mainly on the 16-channel spectrum analyzer data. The few wide band waveform observations available (which have been used to study dust impacts during the Voyager 2 ring plane crossing) were useful for calibrating the impact rate from the spectrum analyzer data. The mass and, hence, the size of the dust particles were also obtained by analyzing the response of the plasma wave spectrum analyzer. The results show that the region sampled by Voyager 1 is populated by dust particles that have rms masses of up to few times 10(exp -11) g and sizes of up to a few microns. The dust particle number density is on the order of 10(exp -3) m(exp 3). The optical depth of the region sampled by the spacecraft is 1.04 x 10(exp -6). The particle population is centered about 2500 km south of the equatorial plane and has a north-south thickness of about 4000 km. Possible sources of these particles are the moons Enceladus and Tethys whose orbits lie within the E-ring radial extent. These results are in reasonable agreement with photometric studies and numerical simulations.

  7. Particle swarm optimization of the sensitivity of a cryogenic gravitational wave detector

    NASA Astrophysics Data System (ADS)

    Michimura, Yuta; Komori, Kentaro; Nishizawa, Atsushi; Takeda, Hiroki; Nagano, Koji; Enomoto, Yutaro; Hayama, Kazuhiro; Somiya, Kentaro; Ando, Masaki

    2018-06-01

    Cryogenic cooling of the test masses of interferometric gravitational wave detectors is a promising way to reduce thermal noise. However, cryogenic cooling limits the incident power to the test masses, which limits the freedom of shaping the quantum noise. Cryogenic cooling also requires short and thick suspension fibers to extract heat, which could result in the worsening of thermal noise. Therefore, careful tuning of multiple parameters is necessary in designing the sensitivity of cryogenic gravitational wave detectors. Here, we propose the use of particle swarm optimization to optimize the parameters of these detectors. We apply it for designing the sensitivity of the KAGRA detector, and show that binary neutron star inspiral range can be improved by 10%, just by retuning seven parameters of existing components. We also show that the sky localization of GW170817-like binaries can be further improved by a factor of 1.6 averaged across the sky. Our results show that particle swarm optimization is useful for designing future gravitational wave detectors with higher dimensionality in the parameter space.

  8. Quantitative Magnetic Separation of Particles and Cells using Gradient Magnetic Ratcheting

    PubMed Central

    Murray, Coleman; Pao, Edward; Tseng, Peter; Aftab, Shayan; Kulkarni, Rajan; Rettig, Matthew; Di Carlo, Dino

    2016-01-01

    Extraction of rare target cells from biosamples is enabling for life science research. Traditional rare cell separation techniques, such as magnetic activated cell sorting (MACS), are robust but perform coarse, qualitative separations based on surface antigen expression. We report a quantitative magnetic separation technology using high-force magnetic ratcheting over arrays of magnetically soft micro-pillars with gradient spacing, and use the system to separate and concentrate magnetic beads based on iron oxide content (IOC) and cells based on surface expression. The system consists of a microchip of permalloy micro-pillar arrays with increasing lateral pitch and a mechatronic device to generate a cycling magnetic-field. Particles with higher IOC separate and equilibrate along the miro-pillar array at larger pitches. We develop a semi-analytical model that predicts behavior for particles and cells. Using the system, LNCaP cells were separated based on the bound quantity of 1μm anti-EpCAM particles as a metric for expression. The ratcheting cytometry system was able to resolve a ±13 bound particle differential, successfully distinguishing LNCaP from PC3 populations based on EpCAM expression, correlating with flow cytometry analysis. As a proof of concept, EpCAM-labeled cells from patient blood were isolated with 74% purity, demonstrating potential towards a quantitative magnetic separation instrument. PMID:26890496

  9. Quantitative Magnetic Separation of Particles and Cells Using Gradient Magnetic Ratcheting.

    PubMed

    Murray, Coleman; Pao, Edward; Tseng, Peter; Aftab, Shayan; Kulkarni, Rajan; Rettig, Matthew; Di Carlo, Dino

    2016-04-13

    Extraction of rare target cells from biosamples is enabling for life science research. Traditional rare cell separation techniques, such as magnetic activated cell sorting, are robust but perform coarse, qualitative separations based on surface antigen expression. A quantitative magnetic separation technology is reported using high-force magnetic ratcheting over arrays of magnetically soft micropillars with gradient spacing, and the system is used to separate and concentrate magnetic beads based on iron oxide content (IOC) and cells based on surface expression. The system consists of a microchip of permalloy micropillar arrays with increasing lateral pitch and a mechatronic device to generate a cycling magnetic field. Particles with higher IOC separate and equilibrate along the miropillar array at larger pitches. A semi-analytical model is developed that predicts behavior for particles and cells. Using the system, LNCaP cells are separated based on the bound quantity of 1 μm anti-epithelial cell adhesion molecule (EpCAM) particles as a metric for expression. The ratcheting cytometry system is able to resolve a ±13 bound particle differential, successfully distinguishing LNCaP from PC3 populations based on EpCAM expression, correlating with flow cytometry analysis. As a proof-of-concept, EpCAM-labeled cells from patient blood are isolated with 74% purity, demonstrating potential toward a quantitative magnetic separation instrument. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Quantitative Estimation of Seismic Velocity Changes Using Time-Lapse Seismic Data and Elastic-Wave Sensitivity Approach

    NASA Astrophysics Data System (ADS)

    Denli, H.; Huang, L.

    2008-12-01

    Quantitative monitoring of reservoir property changes is essential for safe geologic carbon sequestration. Time-lapse seismic surveys have the potential to effectively monitor fluid migration in the reservoir that causes geophysical property changes such as density, and P- and S-wave velocities. We introduce a novel method for quantitative estimation of seismic velocity changes using time-lapse seismic data. The method employs elastic sensitivity wavefields, which are the derivatives of elastic wavefield with respect to density, P- and S-wave velocities of a target region. We derive the elastic sensitivity equations from analytical differentiations of the elastic-wave equations with respect to seismic-wave velocities. The sensitivity equations are coupled with the wave equations in a way that elastic waves arriving in a target reservoir behave as a secondary source to sensitivity fields. We use a staggered-grid finite-difference scheme with perfectly-matched layers absorbing boundary conditions to simultaneously solve the elastic-wave equations and the elastic sensitivity equations. By elastic-wave sensitivities, a linear relationship between relative seismic velocity changes in the reservoir and time-lapse seismic data at receiver locations can be derived, which leads to an over-determined system of equations. We solve this system of equations using a least- square method for each receiver to obtain P- and S-wave velocity changes. We validate the method using both surface and VSP synthetic time-lapse seismic data for a multi-layered model and the elastic Marmousi model. Then we apply it to the time-lapse field VSP data acquired at the Aneth oil field in Utah. A total of 10.5K tons of CO2 was injected into the oil reservoir between the two VSP surveys for enhanced oil recovery. The synthetic and field data studies show that our new method can quantitatively estimate changes in seismic velocities within a reservoir due to CO2 injection/migration.

  11. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves.

    PubMed

    Nama, Nitesh; Barnkob, Rune; Mao, Zhangming; Kähler, Christian J; Costanzo, Francesco; Huang, Tony Jun

    2015-06-21

    We present a numerical study of the acoustophoretic motion of particles suspended in a liquid-filled PDMS microchannel on a lithium niobate substrate acoustically driven by surface acoustic waves. We employ a perturbation approach where the flow variables are divided into first- and second-order fields. We use impedance boundary conditions to model the PDMS microchannel walls and we model the acoustic actuation by a displacement function from the literature based on a numerical study of piezoelectric actuation. Consistent with the type of actuation, the obtained first-order field is a horizontal standing wave that travels vertically from the actuated wall towards the upper PDMS wall. This is in contrast to what is observed in bulk acoustic wave devices. The first-order fields drive the acoustic streaming, as well as the time-averaged acoustic radiation force acting on suspended particles. We analyze the motion of suspended particles driven by the acoustic streaming drag and the radiation force. We examine a range of particle diameters to demonstrate the transition from streaming-drag-dominated acoustophoresis to radiation-force-dominated acoustophoresis. Finally, as an application of our numerical model, we demonstrate the capability to tune the position of the vertical pressure node along the channel width by tuning the phase difference between two incoming surface acoustic waves.

  12. FDTD-based quantitative analysis of terahertz wave detection for multilayered structures.

    PubMed

    Tu, Wanli; Zhong, Shuncong; Shen, Yaochun; Zhou, Qing; Yao, Ligang

    2014-10-01

    Experimental investigations have shown that terahertz pulsed imaging (TPI) is able to quantitatively characterize a range of multilayered media (e.g., biological issues, pharmaceutical tablet coatings, layered polymer composites, etc.). Advanced modeling of the interaction of terahertz radiation with a multilayered medium is required to enable the wide application of terahertz technology in a number of emerging fields, including nondestructive testing. Indeed, there have already been many theoretical analyses performed on the propagation of terahertz radiation in various multilayered media. However, to date, most of these studies used 1D or 2D models, and the dispersive nature of the dielectric layers was not considered or was simplified. In the present work, the theoretical framework of using terahertz waves for the quantitative characterization of multilayered media was established. A 3D model based on the finite difference time domain (FDTD) method is proposed. A batch of pharmaceutical tablets with a single coating layer of different coating thicknesses and different refractive indices was modeled. The reflected terahertz wave from such a sample was computed using the FDTD method, assuming that the incident terahertz wave is broadband, covering a frequency range up to 3.5 THz. The simulated results for all of the pharmaceutical-coated tablets considered were found to be in good agreement with the experimental results obtained using a commercial TPI system. In addition, we studied a three-layered medium to mimic the occurrence of defects in the sample.

  13. Internal and surface waves in vibrofluidized granular materials: Role of cohesion

    NASA Astrophysics Data System (ADS)

    Huang, Kai

    2018-05-01

    Wave phenomena in vibrofluidized dry and partially wet granular materials confined in a quasi-two-dimensional geometry are investigated with numerical simulations considering individual particles as hard spheres. Short-ranged cohesive interactions arising from the formation of liquid bridges between adjacent particles are modeled by changing the velocity-dependent coefficient of restitution. Such a change effectively suppresses the formation of surface waves, in agreement with previous experimental observations. The difference in pattern creation arises from the suppressed momentum transfer due to wetting and it can be quantitatively understood from an analysis of binary impacts.

  14. Path integral formulation of the Hodge duality on the brane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, Sang-Ok; Kiem, Youngjai; Kim, Yoonbai

    In the warped compactification with a single Randall-Sundrum brane, a puzzling claim has been made that scalar fields can be bound to the brane but their Hodge dual higher-rank antisymmetric tensors cannot. By explicitly requiring the Hodge duality, a prescription to resolve this puzzle was recently proposed by Duff and Liu. In this Brief Report, we implement the Hodge duality via the path integral formulation in the presence of the background gravity fields of warped compactifications. It is shown that the prescription of Duff and Liu can be naturally understood within this framework.

  15. Investigating the mechanism of aggregation of colloidal particles during electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Guelcher, Scott Arthur

    Charged particles deposited near an electrode aggregate to form ordered clusters in the presence of both dc and ac applied electric fields. The aggregation process could have important applications in areas such as coatings technology and ceramics processing. This thesis has sought to identify the phenomena driving the aggregation process. According to the electroosmotic flow developed by Solomentsev et al. (1997), aggregation in dc electric fields is caused by convection in the electroosmotic flow about deposited particles, and it is therefore an electrokinetic phenomenon which scales linearly with the electric field and the zeta-potential of the particles. Trajectories of pairs of particles aggregating to form doublets have been shown to scale linearly with the electric field and the zeta-potential of the particles, as predicted by the electroosmotic flow model. Furthermore, quantitative agreement has been demonstrated between the experimental and calculated trajectories for surface-to-surface separation distances between the particles ranging from one to two radii. The trajectories were calculated from the electroosmotic flow model with no fitting parameters; the only inputs to the model were the mobility of the deposited particles, the zeta- potential of the particles, and the applied electric field, all of which were measured independently. Clustering of colloidal particles deposited near an electrode in ac fields has also been observed, but a suitable model for the aggregation process has not been proposed and quantitative data in the literature are scarce. Trajectories of pairs of particles aggregating to form doublets in an ac field have been shown to scale with the root-mean-square (rms) electric field raised to the power 1.4 over the range of electric fields 10-35 V/cm (100-Hz sine and square waves). The aggregation is also frequency dependent; the doublets aggregate fastest at 30 Hz (square wave) and slowest at 500 Hz (square wave), while the interaction

  16. Resonance frequency broadening of wave-particle interaction in tokamaks due to Alfvénic eigenmode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Guo; Gorelenkov, Nikolai N.; Duarte, Vinicius N.

    We use the guiding center code ORBIT to study the broadening of resonances and the parametric dependence of the resonance frequency broadening widthmore » $$\\Delta\\Omega$$ on the nonlinear particle trapping frequency $$\\omega_b$$ of wave-particle interaction with specific examples using realistic equilibrium DIII-D shot 159243 (Collins et al. 2016 Phys. Rev. Lett. 116 095001). When the mode amplitude is small, the pendulum approximation for energetic particle dynamics near the resonance is found to be applicable and the ratio of the resonance frequency width to the deeply trapped bounce frequency $$\\Delta\\Omega/\\omega_b$$ equals 4, as predicted by theory. Lastly, it is found that as the mode amplitude increases, the coefficient $$a=\\Delta\\Omega/\\omega_b$$ becomes increasingly smaller because of the breaking down of the nonlinear pendulum approximation for the wave-particle interaction.« less

  17. Resonance frequency broadening of wave-particle interaction in tokamaks due to Alfvénic eigenmode

    DOE PAGES

    Meng, Guo; Gorelenkov, Nikolai N.; Duarte, Vinicius N.; ...

    2018-01-19

    We use the guiding center code ORBIT to study the broadening of resonances and the parametric dependence of the resonance frequency broadening widthmore » $$\\Delta\\Omega$$ on the nonlinear particle trapping frequency $$\\omega_b$$ of wave-particle interaction with specific examples using realistic equilibrium DIII-D shot 159243 (Collins et al. 2016 Phys. Rev. Lett. 116 095001). When the mode amplitude is small, the pendulum approximation for energetic particle dynamics near the resonance is found to be applicable and the ratio of the resonance frequency width to the deeply trapped bounce frequency $$\\Delta\\Omega/\\omega_b$$ equals 4, as predicted by theory. Lastly, it is found that as the mode amplitude increases, the coefficient $$a=\\Delta\\Omega/\\omega_b$$ becomes increasingly smaller because of the breaking down of the nonlinear pendulum approximation for the wave-particle interaction.« less

  18. Spectral Interpretation of Wave-vortex Duality in Northern South China Sea

    NASA Astrophysics Data System (ADS)

    Cao, H.; Jing, Z.; Yan, T.

    2017-12-01

    The mesoscale to submesocale oceanic dynamics are characterized by a joint effect of vortex and wave component, which primarily declares the partition between geostrophic balanced and unbalanced flows. The spectral method is a favorable approach that can afford the muti-scale analysis. This study investigates the characteristics of horizontal wavenumber spectra in Nothern South China Sea using orbital altimeter data (SARA/AltiKa), 13-yr shipboard ADCP (Acoustic Doppler Current Profiler) measurements (2014-2016), and a high-resolution numerical simulation (llc4320 Mitgcm). The observed SSH (sea surface height) spectrum presents a conspicuous transition at scales of 50-100 km, which clearly shows the inconsistency with geostrophic balance. The Helmholtz decomposition separating the wave and vortex energy for the spectra of ADCP and numerical model data shows that ageostrophic flows should be responsible for the spectral discrepancy with the QG (qusi-geostrophic) turbulence theory. Generally, it is found that inertia-gravity waves (including internal tides) govern the significant kinetic energy in the submesoscale range in Northern South China Sea. More specific analysis suggests that the wave kinetic energy can extend to a large scale of 500 km or more from the zonal velocity spectra at the left-center of Luzon Strait, which appears to be dominated by inertia-gravity waves likely emitted by the intrusion of the west pacific at Luzon Strait. Instead, the development of eddy kinetic energy at this place is strictly constrained by the width of the strait.

  19. Computational study of nonlinear plasma waves. [plasma simulation model applied to electrostatic waves in collisionless plasma

    NASA Technical Reports Server (NTRS)

    Matsuda, Y.

    1974-01-01

    A low-noise plasma simulation model is developed and applied to a series of linear and nonlinear problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. It is demonstrated that use of the hybrid simulation model allows economical studies to be carried out in both the linear and nonlinear regimes with better quantitative results, for comparable computing time, than can be obtained by conventional particle simulation models, or direct solution of the Vlasov equation. The characteristics of the hybrid simulation model itself are first investigated, and it is shown to be capable of verifying the theoretical linear dispersion relation at wave energy levels as low as .000001 of the plasma thermal energy. Having established the validity of the hybrid simulation model, it is then used to study the nonlinear dynamics of monochromatic wave, sideband instability due to trapped particles, and satellite growth.

  20. Wave-Particle Interactions Involving Correlated Electron Bursts and Whistler Chorus in Earth's Radiation Belts

    NASA Astrophysics Data System (ADS)

    Echterling, N.; Schriver, D.; Roeder, J. L.; Fennell, J. F.

    2017-12-01

    During the recovery phase of substorm plasma injections, the Van Allen Probes commonly observe events of quasi-periodic energetic electron bursts correlating with simultaneously detected upper-band, whistler-mode chorus emissions. These electron bursts exhibit narrow ranges of pitch angles (75-80° and 100-105°) and energies (20-40 keV). Electron cyclotron harmonic (ECH) emissions are also commonly detected, but typically do not display correlation with the electron bursts. To examine sources of free energy and the generation of these wave emissions, an observed electron velocity distribution on January 13, 2013 is used as the starting condition for a particle in cell (PIC) simulation. Effects of temperature anisotropy (perpendicular temperature greater than parallel temperature), the presence of a loss cone and a cold electron population on the generation of whistler and ECH waves are examined to understand wave generation and nonlinear interactions with the particle population. These nonlinear interactions produce energy diffusion along with strong pitch angle scattering into the loss cone on the order of milliseconds, which is faster than a typical bounce period of seconds. To examine the quasi-periodic nature of the electron bursts, a loss-cone recycling technique is implemented to model the effects of the periodic emptying of the loss cone and electron injection on the growth of whistler and ECH waves. The results of the simulations are compared to the Van Allen Probe observations to determine electron acceleration, heating and transport in Earth's radiation belts due to wave-particle interactions.

  1. Electron Fluid Description of Wave-Particle Interactions in Strong Buneman Turbulence

    NASA Astrophysics Data System (ADS)

    Che, Haihong

    2013-10-01

    To understand the nature of anomalous resistivity in magnetic reconnection, we investigate turbulence-induced momentum transport and energy dissipation associated with electron heating in Buneman instability. Using 3D particle-in-cell simulations, we find that the macroscopic effects generated by wave-particle interactions can be described by a set of electron fluid equations. These equations show that the energy dissipation and momentum transports in Buneman instability are locally quasi-static but globally non-static and irreversible. Turbulence drag dissipates both the bulk energy of electron streams and the associated magnetic energy. The decrease of magnetic field maintains an inductive electric field that re-accelerates electrons. The net loss of streaming energy is converted into electron heat and increases the electron Boltzmann entropy. The growth of self-sustained Buneman waves satisfies a Bernoulli-like equation which relates the turbulence-induced convective momentum transport and thermal momentum transport. Electron trapping and de-trapping drives local momentum transports, while phase mixing converts convective momentum into thermal momentum.These two local momentum transports sustain the Buneman waves and act as the micro-macro link in the anomalous heating process. This research is supported by the NASA Postdoctoral Program at NASA/GSFC administered by Oak Ridge Associated Universities through a contract with NASA.

  2. Using Wave and Energetic Particle Observation on Juno to Investigate Low Altitude Magnetospheric Process on Jupiter.

    NASA Astrophysics Data System (ADS)

    Thorne, R. M.; Li, W.; Ma, Q.; Zhang, X.

    2017-12-01

    The Juno spacecraft has now made several passes across the polar regions and low altitude equatorial region in the Jovian upper atmosphere. Here we report on a recent analysis of unique Landau resonant wave-particle interactions between low frequency waves and energetic particles which leads to characteristic butterfly distributions in the sub-auroral upper atmosphere of Jupiter. We also report on the characteristics of diffuse auroral precipitation observed by the JEDI and JADE energetic particle detectors equatorward of the main auroral oval, and relate this to remote sensing of the Jovian aurora by the UVS instrument on Juno. The loss cone distributions, measured by the JEDI particle detector, have also been used to investigate the spatial distribution of low altitude anomalies in the Jovian magnetic field.

  3. Bounce-harmonic Landau Damping of Plasma Waves

    NASA Astrophysics Data System (ADS)

    Anderegg, Francois

    2015-11-01

    We present measurement of plasma wave damping, spanning the temperature regimes of direct Landau damping, bounce-harmonic Landau damping, inter-species drag damping, and viscous damping. Direct Landau damping is dominant at high temperatures, but becomes negligible as v wave-coherent LIF diagnostics of particle velocities. Our focus is on bounce harmonics damping, controlled by an applied ``squeeze'' potential, which generates harmonics in the wave potential and in the particle dynamics. A particle moving in z experiences a non-sinusoidal mode potential caused by the squeeze, producing high spatial harmonics with lower phase velocity. These harmonics are Landau damped even when the mode phase velocity vph is large compared to the thermal velocity v , since the nth harmonic is resonant with a particle bouncing at velocity vb =vph / n . Here we increase the bounce harmonics through applied squeeze potential; but some harmonics are always present in finite length systems. For our centered squeeze geometry, theory shows that only odd harmonics are generated, and predicts the Landau damping rate from vph / n . Experimentally, the squeeze potential increases the wave damping and reduces its frequency. The frequency shift occurs because the squeeze potential reduces the number of particle where the mode velocity is the largest, therefore reducing the mode frequency. We observe an increase in the damping proportional to Vs2,and a frequency reduction proportional to Vs , in quantitative agreement with theory. Wave-coherent laser induced fluorescence allows direct observation of bounce resonances on the particle distribution, here predominantly at vph / 3 . A clear increase of the bounce harmonics is visible on the particle distribution when the squeeze potential is applied. Supported by NSF Grant PHY-1414570, and DOE Grants DE-SC0002451 and DE-SC0008693.

  4. Surface Waves as Major Controls on Particle Backscattering in Southern California Coastal Waters

    NASA Astrophysics Data System (ADS)

    Henderikx Freitas, F.; Fields, E.; Maritorena, S.; Siegel, D.

    2016-02-01

    Satellite observations of particle loads and optical backscattering coefficients (bbp) in the Southern California Bight (SCB) have been thought to be driven by episodic inputs from storm runoff. Here we show however that surface waves have a larger role in controlling remotely sensed bbp values than previously considered. More than 14 years of 2-km resolution SeaWiFS, MODIS and MERIS satellite imagery spectrally-merged with the Garver-Siegel-Maritorena bio-optical model were used to assess the relative importance of terrestrial runoff and surface wave forcings in determining changes in particle load in the SCB. The space-time distributions of particle backscattering at 443nm and chlorophyll concentration estimates from the model were analyzed using Empirical Orthogonal Function analysis, and patterns were compared with several environmental variables. While offshore values of bbp are tightly related to chlorophyll concentrations, as expected for productive Case-1 waters, values of bbp in a 10km band near the coast are primarily modulated by surface waves. The relationship with waves holds throughout all seasons and is most apparent around the 40m isobath, but extends offshore until about 100m in depth. Riverine inputs are associated with elevated bbp near the coast mostly during the larger El Nino events of 1997/1998 and 2005. These findings are consistent with bio-optical glider and field observations from the Santa Barbara Channel taken as part of the Santa Barbara Coastal Long-Term Ecological Research and Plumes and Blooms programs. The implication of surface waves determining bbp variability beyond the surf zone has large consequences for the life cycle of many marine organisms, as well as for the interpretation of remote sensing signals near the coast.

  5. Stability analysis of a Vlasov-Wave system describing particles interacting with their environment

    NASA Astrophysics Data System (ADS)

    De Bièvre, Stephan; Goudon, Thierry; Vavasseur, Arthur

    2018-06-01

    We study a kinetic equation of the Vlasov-Wave type, which arises in the description of the behavior of a large number of particles interacting weakly with an environment, composed of an infinite collection of local vibrational degrees of freedom, modeled by wave equations. We use variational techniques to establish the existence of large families of stationary states for this system, and analyze their stability.

  6. Rapid decay of nonlinear whistler waves in two dimensions: Full particle simulation

    NASA Astrophysics Data System (ADS)

    Umeda, Takayuki; Saito, Shinji; Nariyuki, Yasuhiro

    2017-05-01

    The decay of a nonlinear, short-wavelength, and monochromatic electromagnetic whistler wave is investigated by utilizing a two-dimensional (2D) fully relativistic electromagnetic particle-in-cell code. The simulation is performed under a low-beta condition in which the plasma pressure is much lower than the magnetic pressure. It has been shown that the nonlinear (large-amplitude) parent whistler wave decays through the parametric instability in a one-dimensional (1D) system. The present study shows that there is another channel for the decay of the parent whistler wave in 2D, which is much faster than in the timescale of the parametric decay in 1D. The parent whistler wave decays into two sideband daughter whistlers propagating obliquely with respect to the ambient magnetic field with a frequency close to the parent wave and two quasi-perpendicular electromagnetic modes with a frequency close to zero via a 2D decay instability. The two sideband daughter oblique whistlers also enhance a nonlinear longitudinal electrostatic wave via a three-wave interaction as a secondary process.

  7. Noncontact quantitative biomechanical characterization of cardiac muscle using shear wave imaging optical coherence tomography

    PubMed Central

    Wang, Shang; Lopez, Andrew L.; Morikawa, Yuka; Tao, Ge; Li, Jiasong; Larina, Irina V.; Martin, James F.; Larin, Kirill V.

    2014-01-01

    We report on a quantitative optical elastographic method based on shear wave imaging optical coherence tomography (SWI-OCT) for biomechanical characterization of cardiac muscle through noncontact elasticity measurement. The SWI-OCT system employs a focused air-puff device for localized loading of the cardiac muscle and utilizes phase-sensitive OCT to monitor the induced tissue deformation. Phase information from the optical interferometry is used to reconstruct 2-D depth-resolved shear wave propagation inside the muscle tissue. Cross-correlation of the displacement profiles at various spatial locations in the propagation direction is applied to measure the group velocity of the shear waves, based on which the Young’s modulus of tissue is quantified. The quantitative feature and measurement accuracy of this method is demonstrated from the experiments on tissue-mimicking phantoms with the verification using uniaxial compression test. The experiments are performed on ex vivo cardiac muscle tissue from mice with normal and genetically altered myocardium. Our results indicate this optical elastographic technique is useful as a noncontact tool to assist the cardiac muscle studies. PMID:25071943

  8. Solar-flare-induced Forbush decreases - Dependence on shock wave geometry

    NASA Technical Reports Server (NTRS)

    Thomas, B. T.; Gall, R.

    1984-01-01

    It is argued that the principal mechanism for the association of Forbush decreases with the passage of a solar flare shock wave is prolonged containment of cosmic ray particles behind the flare compression region, which acts as a semipermeable obstacle to particle motion along the field lines, leading to additional adiabatic cooling of the particles. Liouville's theorem is used to calculate the instantaneous distribution function at 1 AU for each particle arriving at the earth. By averaging over a large number of individual estimates, a representative estimate of the omnidirectional phase space density and the corresponding particle intensity is obtained. The energy change of individual particles at the shocks is found to be small in comparison to the energy lost by adiabatic cooling of the cosmic rays between the shock wave and the sun. The effects of particle rigidity, diffusion coefficient, and flare longitude on the magnitude of the Forbush decrease are quantitatively investigated.

  9. Alpha channeling with high-field launch of lower hybrid waves

    DOE PAGES

    Ochs, I. E.; Bertelli, N.; Fisch, N. J.

    2015-11-04

    Although lower hybrid waves are effective at driving currents in present-day tokamaks, they are expected to interact strongly with high-energy particles in extrapolating to reactors. In the presence of a radial alpha particle birth gradient, this interaction can take the form of wave amplification rather than damping. While it is known that this amplification more easily occurs when launching from the tokamak high-field side, the extent of this amplification has not been made quantitative. Here, by tracing rays launched from the high- field-side of a tokamak, the required radial gradients to achieve amplification are calculated for a temperature and densitymore » regime consistent with a hot-ion-mode fusion reactor. As a result, these simulations, while valid only in the linear regime of wave amplification, nonetheless illustrate the possibilities for wave amplification using high-field launch of the lower hybrid wave.« less

  10. Nonequilibrium restoration of duality symmetry in the vicinity of the superconductor-to-insulator transition

    NASA Astrophysics Data System (ADS)

    Tamir, I.; Doron, A.; Levinson, T.; Gorniaczyk, F.; Tewari, G. C.; Shahar, D.

    2017-09-01

    The magnetic field driven superconductor-to-insulator transition in thin films is theoretically understood in terms of the notion of vortex-charge duality symmetry. The manifestation of such symmetry is the exchange of roles of current and voltage between the superconductor and the insulator. While experimental evidence obtained from amorphous indium oxide films supported such duality symmetry, it is shown to be broken, counterintuitively, at low temperatures where the insulating phase exhibits discontinuous current-voltage characteristics. Here, we demonstrate that it is possible to effectively restore duality symmetry by driving the system beyond the discontinuity into its high current, far from equilibrium, state.

  11. The Particle/Wave-in-a-Box Model in Dutch Secondary Schools

    ERIC Educational Resources Information Center

    Hoekzema, Dick; van den Berg, Ed; Schooten, Gert; van Dijk, Leo

    2007-01-01

    The combination of mathematical and conceptual difficulties makes teaching quantum physics at secondary schools a precarious undertaking. With many of the conceptual difficulties being unavoidable, simplifying the mathematics becomes top priority. The particle/wave-in-a-box provides a teaching model which includes many aspects of serious …

  12. A Statistical Examination of the Effect of EMIC Waves on Relativistic Electron Pitch-Angle Distributions

    NASA Astrophysics Data System (ADS)

    Bingley, L.; Angelopoulos, V.; Zhang, X. J.; Sibeck, D. G.; Halford, A. J.

    2017-12-01

    While many advances have been made in the understanding of particle acceleration processes in the radiation belts, many questions regarding the loss processes remain. One such loss process is the resonant interaction between relativistic electrons and Electromagnetic Ion Cyclotron (EMIC) waves. This study examines statistically the association of equatorial pitch-angle distributions of > 1 MeV particles measured on Van Allen Probes and in-situ EMIC wave observations measured on Van Allen Probes and THEMIS during a unique three-month period of line-of-apsides conjunctions between the two missions. We find a large sample of EMIC wave events associated with widening of the particle loss cone. The availability of multiple spacecraft enables the review of the spatial and temporal extent of EMIC waves that result in changes in particle pitch-angle distributions, as well as a quantitative look at background plasma and magnetic field conditions. We compare our results with expectations from diffusion theory. We are thus able to assess more directly than previous studies the role of EMIC waves in particle scattering.

  13. A Portable Double-Slit Quantum Eraser with Individual Photons

    ERIC Educational Resources Information Center

    Dimitrova, T. L.; Weis, A.

    2011-01-01

    The double-slit experiment has played an important role in physics, from supporting the wave theory of light, via the discussions of the wave-particle duality of light (and matter) to the foundations of modern quantum optics. Today it keeps playing an active role in the context of quantum optics experiments involving single photons. In this paper,…

  14. Dualities of fields and strings

    NASA Astrophysics Data System (ADS)

    Polchinski, Joseph

    2017-08-01

    Duality, the equivalence between seemingly distinct quantum systems, is a curious property that has been known for at least three quarters of a century. In the past two decades it has played a central role in mapping out the structure of theoretical physics. I discuss the unexpected connections that have been revealed among quantum field theories and string theories. Written for a special issue of Studies in History and Philosophy of Modern Physics.

  15. Duality between electric and magnetic black holes

    NASA Astrophysics Data System (ADS)

    Hawking, S. W.; Ross, Simon F.

    1995-11-01

    A number of attempts have recently been made to extend the conjectured S duality of Yang-Mills theory to gravity. Central to these speculations has been the belief that electrically and magnetically charged black holes, the solitons of quantum gravity, have identical quantum properties. This is not obvious, because, although duality is a symmetry of the classical equations of motion, it changes the sign of the Maxwell action. Nevertheless, we show that the chemical potential and charge projection that one has to introduce for electric but not magnetic black holes exactly compensate for the difference in action in the semiclassical approximation. In particular, we show that the pair production of electric black holes is not a runaway process, as one might think if one just went by the action of the relevant instanton. We also comment on the definition of the entropy in cosmological situations, and show that we need to be more careful when defining the entropy than we are in an asymptotically flat case.

  16. Distinguishing nanomaterial particles from background airborne particulate matter for quantitative exposure assessment

    NASA Astrophysics Data System (ADS)

    Ono-Ogasawara, Mariko; Serita, Fumio; Takaya, Mitsutoshi

    2009-10-01

    As the production of engineered nanomaterials quantitatively expands, the chance that workers involved in the manufacturing process will be exposed to nanoparticles also increases. A risk management system is needed for workplaces in the nanomaterial industry based on the precautionary principle. One of the problems in the risk management system is difficulty of exposure assessment. In this article, examples of exposure assessment in nanomaterial industries are reviewed with a focus on distinguishing engineered nanomaterial particles from background nanoparticles in workplace atmosphere. An approach by JNIOSH (Japan National Institute of Occupational Safety and Health) to quantitatively measure exposure to carbonaceous nanomaterials is also introduced. In addition to real-time measurements and qualitative analysis by electron microscopy, quantitative chemical analysis is necessary for quantitatively assessing exposure to nanomaterials. Chemical analysis is suitable for quantitative exposure measurement especially at facilities with high levels of background NPs.

  17. On non-abelian T-duality and deformations of supercoset string sigma-models

    NASA Astrophysics Data System (ADS)

    Borsato, Riccardo; Wulff, Linus

    2017-10-01

    We elaborate on the class of deformed T-dual (DTD) models obtained by first adding a topological term to the action of a supercoset sigma model and then performing (non-abelian) T-duality on a subalgebra \\tilde{g} of the superisometry algebra. These models inherit the classical integrability of the parent one, and they include as special cases the so-called homogeneous Yang-Baxter sigma models as well as their non-abelian T-duals. Many properties of DTD models have simple algebraic interpretations. For example we show that their (non-abelian) T-duals — including certain deformations — are again in the same class, where \\tilde{g} gets enlarged or shrinks by adding or removing generators corresponding to the dualised isometries. Moreover, we show that Weyl invariance of these models is equivalent to \\tilde{g} being unimodular; when this property is not satisfied one can always remove one generator to obtain a unimodular \\tilde{g} , which is equivalent to (formal) T-duality. We also work out the target space superfields and, as a by-product, we prove the conjectured transformation law for Ramond-Ramond (RR) fields under bosonic non-abelian T-duality of supercosets, generalising it to cases involving also fermionic T-dualities.

  18. Global-local duality in eternal inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bousso, Raphael; Yang, I-S.

    2009-12-15

    We prove that the light-cone time cutoff on the multiverse defines the same probabilities as a causal patch with initial conditions in the longest-lived metastable vacuum. This establishes the equivalence of two measures of eternal inflation which naively appear very different (though both are motivated by holography). The duality can be traced to an underlying geometric relation which we identify.

  19. Non-linear duality invariant partially massless models?

    DOE PAGES

    Cherney, D.; Deser, S.; Waldron, A.; ...

    2015-12-15

    We present manifestly duality invariant, non-linear, equations of motion for maximal depth, partially massless higher spins. These are based on a first order, Maxwell-like formulation of the known partially massless systems. Lastly, our models mimic Dirac–Born–Infeld theory but it is unclear whether they are Lagrangian.

  20. Fluid equations with nonlinear wave-particle resonances^

    NASA Astrophysics Data System (ADS)

    Mattor, Nathan

    1997-11-01

    We have derived fluid equations that include linear and nonlinear wave-particle resonance effects. This greatly extends previous ``Landau-fluid'' closures, which include linear Landau damping. (G.W. Hammett and F.W. Perkins, Phys. Rev. Lett. 64,) 3019 (1990).^, (Z. Chang and J. D. Callen, Phys. Fluids B 4,) 1167 (1992). The new fluid equations are derived with no approximation regarding nonlinear kinetic interaction, and so additionally include numerous nonlinear kinetic effects. The derivation starts with the electrostatic drift kinetic equation for simplicity, with a Maxwellian distribution function. Fluid closure is accomplished through a simple integration trick applied to the drift kinetic equation, using the property that the nth moment of Maxwellian distribution is related to the nth derivative. The result is a compact closure term appearing in the highest moment equation, a term which involves a plasma dispersion function of the electrostatic field and its derivatives. The new term reduces to the linear closures in appropriate limits, so both approaches retain linear Landau damping. But the nonlinearly closed equations have additional desirable properties. Unlike linear closures, the nonlinear closure retains the time-reversibility of the original kinetic equation. We have shown directly that the nonlinear closure retains at least two nonlinear resonance effects: wave-particle trapping and Compton scattering. Other nonlinear kinetic effects are currently under investigation. The new equations correct two previous discrepancies between kinetic and Landau-fluid predictions, including a propagator discrepancy (N. Mattor, Phys. Fluids B 4,) 3952 (1992). and a numerical discrepancy for the 3-mode shearless bounded slab ITG problem. (S. E. Parker et al.), Phys. Plasmas 1, 1461 (1994). ^* In collaboration with S. E. Parker, Department of Physics, University of Colorado, Boulder. ^ Work performed at LLNL under DoE contract No. W7405-ENG-48.

  1. Evanescent-wave particle velocimetry measurements of zeta-potentials in fused-silica microchannels.

    PubMed

    Cevheri, Necmettin; Yoda, Minami

    2013-07-01

    The wall ζ-potential ζ(w), the potential at the shear plane of the electric double layer, depends on the properties of the BGE solution such as the valence and type of electrolyte, the pH and the ionic strength. Most of the methods estimate ζ(w) from measurements of the EOF velocity magnitude ueo , usually spatially averaged over the entire capillary. In these initial studies, evanescent-wave particle velocimetry was used to measure ueo in steady EOF for a variety of monovalent aqueous solutions to evaluate the effect of small amounts of divalent cations, as well as the pH and ionic strength of BGE solutions. In brief, the magnitude of the EOF velocity of NaCl-NaOH and borate buffer-NaOH solutions was estimated from the measured velocities of radius α = 104 nm fluorescent polystyrene particles in 33 μm fused-silica microchannels. The particle ζ-potentials were measured separately using laser-Doppler micro-electrophoresis; ζ(w) was then determined from ueo. The results suggest that evanescent-wave particle velocimetry can be used to estimate ζ(w) for a variety of BGE solutions, and that it can be used in the future to estimate local wall ζ-potential, and hence spatial variations in ζ(w). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Quantitative shear wave ultrasound elastography: initial experience in solid breast masses

    PubMed Central

    2010-01-01

    Introduction Shear wave elastography is a new method of obtaining quantitative tissue elasticity data during breast ultrasound examinations. The aims of this study were (1) to determine the reproducibility of shear wave elastography (2) to correlate the elasticity values of a series of solid breast masses with histological findings and (3) to compare shear wave elastography with greyscale ultrasound for benign/malignant classification. Methods Using the Aixplorer® ultrasound system (SuperSonic Imagine, Aix en Provence, France), 53 solid breast lesions were identified in 52 consecutive patients. Two orthogonal elastography images were obtained of each lesion. Observers noted the mean elasticity values in regions of interest (ROI) placed over the stiffest areas on the two elastography images and a mean value was calculated for each lesion. A sub-set of 15 patients had two elastography images obtained by an additional operator. Reproducibility of observations was assessed between (1) two observers analysing the same pair of images and (2) findings from two pairs of images of the same lesion taken by two different operators. All lesions were subjected to percutaneous biopsy. Elastography measurements were correlated with histology results. After preliminary experience with 10 patients a mean elasticity cut off value of 50 kilopascals (kPa) was selected for benign/malignant differentiation. Greyscale images were classified according to the American College of Radiology (ACR) Breast Imaging Reporting and Data System (BI-RADS). BI-RADS categories 1-3 were taken as benign while BI-RADS categories 4 and 5 were classified as malignant. Results Twenty-three benign lesions and 30 cancers were diagnosed on histology. Measurement of mean elasticity yielded an intraclass correlation coefficient of 0.99 for two observers assessing the same pairs of elastography images. Analysis of images taken by two independent operators gave an intraclass correlation coefficient of 0.80. Shear

  3. Quantitative shear wave ultrasound elastography: initial experience in solid breast masses.

    PubMed

    Evans, Andrew; Whelehan, Patsy; Thomson, Kim; McLean, Denis; Brauer, Katrin; Purdie, Colin; Jordan, Lee; Baker, Lee; Thompson, Alastair

    2010-01-01

    Shear wave elastography is a new method of obtaining quantitative tissue elasticity data during breast ultrasound examinations. The aims of this study were (1) to determine the reproducibility of shear wave elastography (2) to correlate the elasticity values of a series of solid breast masses with histological findings and (3) to compare shear wave elastography with greyscale ultrasound for benign/malignant classification. Using the Aixplorer® ultrasound system (SuperSonic Imagine, Aix en Provence, France), 53 solid breast lesions were identified in 52 consecutive patients. Two orthogonal elastography images were obtained of each lesion. Observers noted the mean elasticity values in regions of interest (ROI) placed over the stiffest areas on the two elastography images and a mean value was calculated for each lesion. A sub-set of 15 patients had two elastography images obtained by an additional operator. Reproducibility of observations was assessed between (1) two observers analysing the same pair of images and (2) findings from two pairs of images of the same lesion taken by two different operators. All lesions were subjected to percutaneous biopsy. Elastography measurements were correlated with histology results. After preliminary experience with 10 patients a mean elasticity cut off value of 50 kilopascals (kPa) was selected for benign/malignant differentiation. Greyscale images were classified according to the American College of Radiology (ACR) Breast Imaging Reporting and Data System (BI-RADS). BI-RADS categories 1-3 were taken as benign while BI-RADS categories 4 and 5 were classified as malignant. Twenty-three benign lesions and 30 cancers were diagnosed on histology. Measurement of mean elasticity yielded an intraclass correlation coefficient of 0.99 for two observers assessing the same pairs of elastography images. Analysis of images taken by two independent operators gave an intraclass correlation coefficient of 0.80. Shear wave elastography versus

  4. Equilibrium statistical mechanics of self-consistent wave-particle system

    NASA Astrophysics Data System (ADS)

    Elskens, Yves

    2005-10-01

    The equilibrium distribution of N particles and M waves (e.g. Langmuir) is analysed in the weak-coupling limit for the self-consistent hamiltonian model H = ∑rpr^2 /(2m) + ∑jφjIj+ ɛ∑r,j(βj/ kj) (kjxr- θj) [1]. In the canonical ensemble, with temperature T and reservoir velocity v < jφj/kj, the wave intensities are almost independent and exponentially distributed, with expectation = kBT / (φj- kjv). These equilibrium predictions are in agreement with Monte Carlo samplings [2] and with direct simulations of the dynamics, indicating equivalence between canonical and microcanonical ensembles. [1] Y. Elskens and D.F. Escande, Microscopic dynamics of plasmas and chaos (IoP publishing, Bristol, 2003). [2] M-C. Firpo and F. Leyvraz, 30th EPS conf. contr. fusion and plasma phys., P-2.8 (2003).

  5. Asymptotic M5-brane entropy from S-duality

    NASA Astrophysics Data System (ADS)

    Kim, Seok; Nahmgoong, June

    2017-12-01

    We study M5-branes compactified on S 1 from the D0-D4 Witten index in the Coulomb phase. We first show that the prepotential of this index is S-dual, up to a simple anomalous part. This is an extension of the well-known S-duality of the 4d N=4 theory to the 6d (2, 0) theory on finite T 2. Using this anomalous S-duality, we find that the asymptotic free energy scales like N 3 when various temperature-like parameters are large. This shows that the number of 5d Kaluza-Klein fields for light D0-brane bound states is proportional to N 3. We also compute some part of the asymptotic free energy from 6d chiral anomalies, which precisely agrees with our D0-D4 calculus.

  6. An exact solution to the relativistic equation of motion of a charged particle driven by a linearly polarized electromagnetic wave

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1988-01-01

    An exact analytic solution is found for a basic electromagnetic wave-charged particle interaction by solving the nonlinear equations of motion. The particle position, velocity, and corresponding time are found to be explicit functions of the total phase of the wave. Particle position and velocity are thus implicit functions of time. Applications include describing the motion of a free electron driven by an intense laser beam..

  7. Deviations from plane-wave Mie scattering and precise retrieval of refractive index for a single spherical particle in an optical cavity.

    PubMed

    Mason, Bernard J; Walker, Jim S; Reid, Jonathan P; Orr-Ewing, Andrew J

    2014-03-20

    The extinction cross-sections of individual, optically confined aerosol particles with radii of a micrometer or less can, in principle, be measured using cavity ring-down spectroscopy (CRDS). However, when the particle radius is comparable in magnitude to the wavelength of light stored in a high-finesse cavity, the phenomenological cross-section retrieved from a CRDS experiment depends on the location of the particle in the intracavity standing wave and differs from the Mie scattering cross-section for plane-wave irradiation. Using an evaporating 1,2,6-hexanetriol particle of initial radius ∼1.75 μm confined within the 4.5 μm diameter core of a Bessel beam, we demonstrate that the scatter in the retrieved extinction efficiency of a single particle is determined by its lateral motion, which spans a few wavelengths of the intracavity standing wave used for CRDS measurements. Fits of experimental measurements to Mie calculations, modified to account for the intracavity standing wave, allow precise retrieval of the refractive index of 1,2,6-hexanetriol particles (with relative humidity, RH < 10%) of 1.47824 ± 0.00072.

  8. Identifying Wave-Particle Interactions in the Solar Wind using Statistical Correlations

    NASA Astrophysics Data System (ADS)

    Broiles, T. W.; Jian, L. K.; Gary, S. P.; Lepri, S. T.; Stevens, M. L.

    2017-12-01

    Heavy ions are a trace component of the solar wind, which can resonate with plasma waves, causing heating and acceleration relative to the bulk plasma. While wave-particle interactions are generally accepted as the cause of heavy ion heating and acceleration, observations to constrain the physics are lacking. In this work, we statistically link specific wave modes to heavy ion heating and acceleration. We have computed the Fast Fourier Transform (FFT) of transverse and compressional magnetic waves between 0 and 5.5 Hz using 9 days of ACE and Wind Magnetometer data. The FFTs are averaged over plasma measurement cycles to compute statistical correlations between magnetic wave power at each discrete frequency, and ion kinetic properties measured by ACE/SWICS and Wind/SWE. The results show that lower frequency transverse oscillations (< 0.2 Hz) and higher frequency compressional oscillations (> 0.4 Hz) are positively correlated with enhancements in the heavy ion thermal and drift speeds. Moreover, the correlation results for the He2+ and O6+ were similar on most days. The correlations were often weak, but most days had some frequencies that correlated with statistical significance. This work suggests that the solar wind heavy ions are possibly being heated and accelerated by both transverse and compressional waves at different frequencies.

  9. Boundaries, mirror symmetry, and symplectic duality in 3d N = 4 gauge theory

    DOE PAGES

    Bullimore, Mathew; Dimofte, Tudor; Gaiotto, Davide; ...

    2016-10-20

    We introduce several families of N = (2, 2) UV boundary conditions in 3d N=4 gauge theories and study their IR images in sigma-models to the Higgs and Coulomb branches. In the presence of Omega deformations, a UV boundary condition defines a pair of modules for quantized algebras of chiral Higgs- and Coulomb-branch operators, respectively, whose structure we derive. In the case of abelian theories, we use the formalism of hyperplane arrangements to make our constructions very explicit, and construct a half-BPS interface that implements the action of 3d mirror symmetry on gauge theories and boundary conditions. Finally, by studyingmore » two-dimensional compactifications of 3d N = 4 gauge theories and their boundary conditions, we propose a physical origin for symplectic duality $-$ an equivalence of categories of modules associated to families of Higgs and Coulomb branches that has recently appeared in the mathematics literature, and generalizes classic results on Koszul duality in geometric representation theory. We make several predictions about the structure of symplectic duality, and identify Koszul duality as a special case of wall crossing.« less

  10. Duality invariance of s ≥ 3/2 fermions in AdS

    DOE PAGES

    Deser, S.; Seminara, D.

    2014-09-30

    The research show that in D = 4 AdS, s ≥ 3/2 partially massless (PM) fermions retain the duality invariances of their flat space massless counterparts. They have tuned ratios m 2/M 2 ≠ 0 that turn them into sums of effectively massless unconstrained helicity ±(s, ···, 3/2) excitations, shorn of the lowest (non-dual) helicity ±1/2-rung and — more generally — of succeeding higher rung as well. Each helicity mode is separately duality invariant, like its flat space counterpart.

  11. Quantitative characterization of the spatial distribution of particles in materials: Application to materials processing

    NASA Technical Reports Server (NTRS)

    Parse, Joseph B.; Wert, J. A.

    1991-01-01

    Inhomogeneities in the spatial distribution of second phase particles in engineering materials are known to affect certain mechanical properties. Progress in this area has been hampered by the lack of a convenient method for quantitative description of the spatial distribution of the second phase. This study intends to develop a broadly applicable method for the quantitative analysis and description of the spatial distribution of second phase particles. The method was designed to operate on a desktop computer. The Dirichlet tessellation technique (geometrical method for dividing an area containing an array of points into a set of polygons uniquely associated with the individual particles) was selected as the basis of an analysis technique implemented on a PC. This technique is being applied to the production of Al sheet by PM processing methods; vacuum hot pressing, forging, and rolling. The effect of varying hot working parameters on the spatial distribution of aluminum oxide particles in consolidated sheet is being studied. Changes in distributions of properties such as through-thickness near-neighbor distance correlate with hot-working reduction.

  12. Polemics in Public: Poncelet, Gergonne, Plücker, and the Duality Controversy.

    PubMed

    Lorenat, Jemma

    2015-12-01

    A plagiarism charge in 1827 sparked a public controversy centered between Jean-Victor Poncelet (1788-1867) and Joseph-Diez Gergonne (1771-1859) over the origin and applications of the principle of duality in geometry. Over the next three years and through the pages of various journals, monographs, letters, reviews, reports, and footnotes, vitriol between the antagonists increased as their potential publicity grew. While the historical literature offers valuable resources toward understanding the development, content, and applications of geometric duality, the hostile nature of the exchange seems to have deterred an in-depth textual study of the explicitly polemical writings. We argue that the necessary collective endeavor of beginning and ending this controversy constitutes a case study in the circulation of geometry. In particular, we consider how the duality controversy functioned as a medium of communicating new fundamental principles to a wider audience of practitioners.

  13. Radiation dominated acoustophoresis driven by surface acoustic waves.

    PubMed

    Guo, Jinhong; Kang, Yuejun; Ai, Ye

    2015-10-01

    Acoustophoresis-based particle manipulation in microfluidics has gained increasing attention in recent years. Despite the fact that experimental studies have been extensively performed to demonstrate this technique for various microfluidic applications, numerical simulation of acoustophoresis driven by surface acoustic waves (SAWs) has still been largely unexplored. In this work, a numerical model taking into account the acoustic-piezoelectric interaction was developed to simulate the generation of a standing surface acoustic wave (SSAW) field and predict the acoustic pressure field in the liquid. Acoustic radiation dominated particle tracing was performed to simulate acoustophoresis of particles with different sizes undergoing a SSAW field. A microfluidic device composed of two interdigital transducers (IDTs) for SAW generation and a microfluidic channel was fabricated for experimental validation. Numerical simulations could well capture the focusing phenomenon of particles to the pressure nodes in the experimental observation. Further comparison of particle trajectories demonstrated considerably quantitative agreement between numerical simulations and experimental results with fitting in the applied voltage. Particle switching was also demonstrated using the fabricated device that could be further developed as an active particle sorting device. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Experimental particle acceleration by water evaporation induced by shock waves

    NASA Astrophysics Data System (ADS)

    Scolamacchia, T.; Alatorre Ibarguengoitia, M.; Scheu, B.; Dingwell, D. B.; Cimarelli, C.

    2010-12-01

    Shock waves are commonly generated during volcanic eruptions. They induce sudden changes in pressure and temperature causing phase changes. Nevertheless, their effects on flowfield properties are not well understood. Here we investigate the role of gas expansion generated by shock wave propagation in the acceleration of ash particles. We used a shock tube facility consisting of a high-pressure (HP) steel autoclave (450 mm long, 28 mm in internal diameter), pressurized with Ar gas, and a low-pressure tank at atmospheric conditions (LP). A copper diaphragm separated the HP autoclave from a 180 mm tube (PVC or acrylic glass) at ambient P, with the same internal diameter of the HP reservoir. Around the tube, a 30 cm-high acrylic glass cylinder, with the same section of the LP tank (40 cm), allowed the observation of the processes occurring downstream from the nozzle throat, and was large enough to act as an unconfined volume in which the initial diffracting shock and gas jet expand. All experiments were performed at Pres/Pamb ratios of 150:1. Two ambient conditions were used: dry air and air saturated with steam. Carbon fibers and glass spheres in a size range between 150 and 210 μm, were placed on a metal wire at the exit of the PVC tube. The sudden decompression of the Ar gas, due to the failure of the diaphragm, generated an initial air shock wave. A high-speed camera recorded the processes between the first 100 μsec and several ms after the diaphragm failure at frame rates ranging between 30,000 and 50,000 fps. In the experiments with ambient air saturated with steam, the high-speed camera allowed to visualize the condensation front associated with the initial air shock; a maximum velocity of 788 m/s was recorded, which decreases to 524 m/s at distance of 0.5 ±0.2 cm, 1.1 ms after the diaphragm rupture. The condensation front preceded the Ar jet front exhausting from the reservoir, by 0.2-0.5 ms. In all experiments particles velocities following the initial

  15. Estimates of Lagrangian particle transport by wave groups: forward transport by Stokes drift and backward transport by the return flow

    NASA Astrophysics Data System (ADS)

    van den Bremer, Ton S.; Taylor, Paul H.

    2014-11-01

    Although the literature has examined Stokes drift, the net Lagrangian transport by particles due to of surface gravity waves, in great detail, the motion of fluid particles transported by surface gravity wave groups has received considerably less attention. In practice nevertheless, the wave field on the open sea often has a group-like structure. The motion of particles is different, as particles at sufficient depth are transported backwards by the Eulerian return current that was first described by Longuet-Higgins & Stewart (1962) and forms an inseparable counterpart of Stokes drift for wave groups ensuring the (irrotational) mass balance holds. We use WKB theory to study the variation of the Lagrangian transport by the return current with depth distinguishing two-dimensional seas, three-dimensional seas, infinite depth and finite depth. We then provide dimensional estimates of the net horizontal Lagrangian transport by the Stokes drift on the one hand and the return flow on the other hand for realistic sea states in all four cases. Finally we propose a simple scaling relationship for the transition depth: the depth above which Lagrangian particles are transported forwards by the Stokes drift and below which such particles are transported backwards by the return current.

  16. Topological T-duality via Lie algebroids and Q-flux in Poisson-generalized geometry

    NASA Astrophysics Data System (ADS)

    Asakawa, Tsuguhiko; Muraki, Hisayoshi; Watamura, Satoshi

    2015-10-01

    It is known that the topological T-duality exchanges H- and F-fluxes. In this paper, we reformulate the topological T-duality as an exchange of two Lie algebroids in the generalized tangent bundle. Then, we apply the same formulation to the Poisson-generalized geometry, which is introduced [T. Asakawa, H. Muraki, S. Sasa and S. Watamura, Int. J. Mod. Phys. A 30, 1550097 (2015), arXiv:1408.2649 [hep-th

  17. Standing surface acoustic wave technology applied for micro-particle concentration in oil

    NASA Astrophysics Data System (ADS)

    Wang, Ziping; Xue, Xian; Luo, Ying; Yuan, Fuh-Gwo

    2018-03-01

    Oil lubrication plays an important role in a variety of mechanical equipment. The traditional purification method is difficult to remove the tiny impurity size of 5-15 μm. Three different types of the transducers and its preparation methods were used in the experiment. The phenomenon that the impurity particles in viscous fluid by the acoustic radiation force was moved the wave node position and focused on the center line was observed by the super-depth microscope. The influence factors of the produced SSAW, particle force condition and movement track were analyzed. The experimental results show that the interdigital transducer can be used to generate SSAW, so as to achieve the separation effect of oil and suspended particles.

  18. Solar energetic particle transport and the possibility of wave generation by streaming electrons

    NASA Astrophysics Data System (ADS)

    Strauss, R. D. T.; le Roux, J. A.

    2017-12-01

    After being accelerated close to the Sun, solar energetic particles (SEPs) are transported (mainly) along the turbulent interplanetary magnetic field. In this study, we simulate the propagation of 100 keV electrons as they are scattered in the interplanetary medium. A consequence of these wave-particle interactions is the possible modification (either growth or damping) of the background turbulence by anisotropic SEP electron beams. This process was thought to be negligible, and therefore neglected in past modeling approaches. However, recent observations and modeling by Agueda and Lario (2016) suggest that wave generation may be significant and is therefore included and evaluated in our present model. Our results suggest that wave amplification by streaming SEP electrons is indeed possible and may even significantly alter the background turbulent field. However, the simulations show that this process is much too weak to produce observable effects at Earth's orbit, but such effects may well be observed in future by spacecraft closer to the Sun, presenting an intriguing observational opportunity for either the Solar Orbiter or the Parker Solar Probe spacecraft. Lastly, we note that the level of perpendicular diffusion may also play an important role in determining the effectiveness of the wave growth process. Reference: Agueda, N. and Lario, D. Release History and Transport Parameters of Relativistic Solar Electrons Inferred From Near-the-Sun In Situ Observations, ApJ, 829, 131, 2016.

  19. Electric-magnetic dualities in non-abelian and non-commutative gauge theories

    NASA Astrophysics Data System (ADS)

    Ho, Jun-Kai; Ma, Chen-Te

    2016-08-01

    Electric-magnetic dualities are equivalence between strong and weak coupling constants. A standard example is the exchange of electric and magnetic fields in an abelian gauge theory. We show three methods to perform electric-magnetic dualities in the case of the non-commutative U (1) gauge theory. The first method is to use covariant field strengths to be the electric and magnetic fields. We find an invariant form of an equation of motion after performing the electric-magnetic duality. The second method is to use the Seiberg-Witten map to rewrite the non-commutative U (1) gauge theory in terms of abelian field strength. The third method is to use the large Neveu Schwarz-Neveu Schwarz (NS-NS) background limit (non-commutativity parameter only has one degree of freedom) to consider the non-commutative U (1) gauge theory or D3-brane. In this limit, we introduce or dualize a new one-form gauge potential to get a D3-brane in a large Ramond-Ramond (R-R) background via field redefinition. We also use perturbation to study the equivalence between two D3-brane theories. Comparison of these methods in the non-commutative U (1) gauge theory gives different physical implications. The comparison reflects the differences between the non-abelian and non-commutative gauge theories in the electric-magnetic dualities. For a complete study, we also extend our studies to the simplest abelian and non-abelian p-form gauge theories, and a non-commutative theory with the non-abelian structure.

  20. Scale factor duality for conformal cyclic cosmologies

    NASA Astrophysics Data System (ADS)

    Camara da Silva, U.; Alves Lima, A. L.; Sotkov, G. M.

    2016-11-01

    The scale factor duality is a symmetry of dilaton gravity which is known to lead to pre-big-bang cosmologies. A conformal time version of the scale factor duality (SFD) was recently implemented as a UV/IR symmetry between decelerated and accelerated phases of the post-big-bang evolution within Einstein gravity coupled to a scalar field. The problem investigated in the present paper concerns the employment of the conformal time SFD methods to the construction of pre-big-bang and cyclic extensions of these models. We demonstrate that each big-bang model gives rise to two qualitatively different pre-big-bang evolutions: a contraction/expansion SFD model and Penrose's Conformal Cyclic Cosmology (CCC). A few examples of SFD symmetric cyclic universes involving certain gauged Kähler sigma models minimally coupled to Einstein gravity are studied. We also describe the specific SFD features of the thermodynamics and the conditions for validity of the generalized second law in the case of Gauss-Bonnet (GB) extension of these selected CCC models.

  1. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Radiation emitted by a beam of particles crossing an inhomogeneous electromagnetic wave

    NASA Astrophysics Data System (ADS)

    Kol'tsov, A. V.; Serov, Alexander V.

    1995-03-01

    A theoretical investigation is made of the time dependence of the spatial distribution of particles injected perpendicular to the direction of propagation of a linearly polarised inhomogeneous electromagnetic wave and reflected by this wave. It is shown that such reflection modulates the particle density in a beam which is homogeneous at injection. Stimulated emission of radiation from a ribbon electron beam reflected by a wave is considered. The spectral—angular and polarisation characteristics of such radiation are investigated.

  2. Search for optimal 3D wave launching configurations for the acceleration of charged particles in a magnetized plasma: Resonant Moments Method

    NASA Astrophysics Data System (ADS)

    Ponomarjov, Maxim; Carati, Daniele

    2004-11-01

    Three-dimensional electromagnetic wave configurations are proposed for accelerating charged particles in an external magnetic field. A primary wave responsible for the acceleration is coupled to a secondary wave generating the chaotic motion of the particles. The wave vectors and the magnetic field are not supposed to be co-planar and create a fully three dimensional system. This configuration produces faster acceleration with low amplitude. The idea considered here is similar to Refs. [1-2] although no constraint is imposed on the refraction indices. The theoretical analysis of the acceleration mechanism is based on the Resonance Moments Method (RMM) in which the velocity distribution and its moments are approximated by using an average over the resonant layers (RL)i only instead of a complete phase-space averages. The quantities obtained using this approach, referred to as Resonant Moments (RM), suggest the existence of optimal angles of propagation for the primary and secondary waves as long as the maximization of the parallel flux of charged particles is considered The secondary wave tends to maintain a pseudo-equilibrium velocity distribution by continuously re-filling the RL. Our suggestions are confirmed by direct numerical simulations of particle trajectories. The parameters for these simulations are relevant to magnetic plasma fusion experiments in electron cyclotron resonance heating and electron acceleration in planetary magnetospheres. Although measures of the distributions clearly show a departure from thermal equilibrium, the stochastization effect of the secondary wave yields a clear increase (up to one order of magnitude) of the average parallel velocity of the particles. It is a quite promising result since the amplitude of the secondary wave is ten times lower the one of the first wave. 1 H. Karimabadi and V. Angelopoulos, Phys. Rev. Lett., 62, 2342 (1989). 2 B. I. Cohen, R. H Cohen, W. M. Nevins, and T. D. Rognlien, Rev. Mod. Phys., 63, 949 (1991).

  3. Dualities and Curved Space Partition Functions of Supersymmetric Theories

    NASA Astrophysics Data System (ADS)

    Agarwal, Prarit

    In this dissertation we discuss some conjectured dualities in supersymmetric field theories and provide non-trivial checks for these conjectures. A quick review of supersymmetry and related topics is provided in chapter 1. In chapter 2, we develop a method to identify the so called BPS states in the Hilbert space of a supersymmetric field theory (that preserves at least two real supercharges) on a generic curved space. As an application we obtain the superconformal index (SCI) of 4d theories. The large N SCI of quiver gauge theories has been previously noticed to factorize over the set of extremal BPS mesonic operators. In chapter 3, we reformulate this factorization in terms of the zigzag paths in the dimer model associated to the quiver and extend the factorization theorem of the index to include theories obtained from D-branes probing orbifold singularities. In chapter 4, we consider the dualities in two classes of 3 dimensional theories. The first class consist of dualities of certain necklace type Chern-Simons (CS) quiver gauge theories. A non trivial check of these dualities is provided by matching their squashed sphere partition functions. The second class consists of theories whose duals are described by a collection of free fields. In such cases, due to mixing between the superconformal R-symmetry and accidental symmetries, the matching of electric and magnetic partition functions is not straightforward. We provide a prescription to rectify this mismatch. In chapter 5, we consider some the N = 1 4d theories with orthogonal and symplectic gauge groups, arising from N = 1 preserving reduction of 6d theories on a Riemann surface. This construction allows us to dual descriptions of 4d theories. Some of the dual frames have no known Lagrangian description. We check the dualities by computing the anomaly coefficients and the superconformal indices. We also give a prescription to write the index of the theory obtained by reduction of 6d theories on a three

  4. The thermal-wave model: A Schroedinger-like equation for charged particle beam dynamics

    NASA Technical Reports Server (NTRS)

    Fedele, Renato; Miele, G.

    1994-01-01

    We review some results on longitudinal beam dynamics obtained in the framework of the Thermal Wave Model (TWM). In this model, which has recently shown the capability to describe both longitudinal and transverse dynamics of charged particle beams, the beam dynamics is ruled by Schroedinger-like equations for the beam wave functions, whose squared modulus is proportional to the beam density profile. Remarkably, the role of the Planck constant is played by a diffractive constant epsilon, the emittance, which has a thermal nature.

  5. The Duality Principle in Teaching Arithmetic and Geometric Series

    ERIC Educational Resources Information Center

    Yeshurun, Shraga

    1978-01-01

    The author discusses the use of the duality principle in combination with the hierarchy of algebraic operations in helping students to retain and use definitions and rules for arithmetic and geometric sequences and series. (MN)

  6. PIC simulations of wave-particle interactions with an initial electron velocity distribution from a kinetic ring current model

    DOE PAGES

    Yu, Yiqun; Delzanno, Gian Luca; Jordanova, Vania Koleva; ...

    2017-07-15

    Whistler wave-particle interactions play an important role in the Earth inner magnetospheric dynamics and have been the subject of numerous investigations. By running a global kinetic ring current model (RAM-SCB) in a storm event occurred on Oct 23–24 2002, we obtain the ring current electron distribution at a selected location at MLT of 9 and L of 6 where the electron distribution is composed of a warm population in the form of a partial ring in the velocity space (with energy around 15 keV) in addition to a cool population with a Maxwellian-like distribution. The warm population is likely frommore » the injected plasma sheet electrons during substorm injections that supply fresh source to the inner magnetosphere. These electron distributions are then used as input in an implicit particle-in-cell code (iPIC3D) to study whistler-wave generation and the subsequent wave-particle interactions. Here, we find that whistler waves are excited and propagate in the quasi-parallel direction along the background magnetic field. Several different wave modes are instantaneously generated with different growth rates and frequencies. The wave mode at the maximum growth rate has a frequency around 0.62ω ce, which corresponds to a parallel resonant energy of 2.5 keV. Linear theory analysis of wave growth is in excellent agreement with the simulation results. These waves grow initially due to the injected warm electrons and are later damped due to cyclotron absorption by electrons whose energy is close to the resonant energy and can effectively attenuate waves. The warm electron population overall experiences net energy loss and anisotropy drop while moving along the diffusion surfaces towards regions of lower phase space density, while the cool electron population undergoes heating when the waves grow, suggesting the cross-population interactions.« less

  7. PIC simulations of wave-particle interactions with an initial electron velocity distribution from a kinetic ring current model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yiqun; Delzanno, Gian Luca; Jordanova, Vania Koleva

    Whistler wave-particle interactions play an important role in the Earth inner magnetospheric dynamics and have been the subject of numerous investigations. By running a global kinetic ring current model (RAM-SCB) in a storm event occurred on Oct 23–24 2002, we obtain the ring current electron distribution at a selected location at MLT of 9 and L of 6 where the electron distribution is composed of a warm population in the form of a partial ring in the velocity space (with energy around 15 keV) in addition to a cool population with a Maxwellian-like distribution. The warm population is likely frommore » the injected plasma sheet electrons during substorm injections that supply fresh source to the inner magnetosphere. These electron distributions are then used as input in an implicit particle-in-cell code (iPIC3D) to study whistler-wave generation and the subsequent wave-particle interactions. Here, we find that whistler waves are excited and propagate in the quasi-parallel direction along the background magnetic field. Several different wave modes are instantaneously generated with different growth rates and frequencies. The wave mode at the maximum growth rate has a frequency around 0.62ω ce, which corresponds to a parallel resonant energy of 2.5 keV. Linear theory analysis of wave growth is in excellent agreement with the simulation results. These waves grow initially due to the injected warm electrons and are later damped due to cyclotron absorption by electrons whose energy is close to the resonant energy and can effectively attenuate waves. The warm electron population overall experiences net energy loss and anisotropy drop while moving along the diffusion surfaces towards regions of lower phase space density, while the cool electron population undergoes heating when the waves grow, suggesting the cross-population interactions.« less

  8. Kinetic Alfvén waves and particle response associated with a shock-induced, global ULF perturbation of the terrestrial magnetosphere

    DOE PAGES

    Malaspina, David M.; Claudepierre, Seth G.; Takahashi, Kazue; ...

    2015-11-14

    On 2 October 2013, the arrival of an interplanetary shock compressed the Earth's magnetosphere and triggered a global ULF (ultra low frequency) oscillation. Furthermore, the Van Allen Probe B spacecraft observed this large-amplitude ULF wave in situ with both magnetic and electric field data. Broadband waves up to approximately 100 Hz were observed in conjunction with, and modulated by, this ULF wave. Detailed analysis of fields and particle data reveals that these broadband waves are Doppler-shifted kinetic Alfvén waves. This event then suggests that magnetospheric compression by interplanetary shocks can induce abrupt generation of kinetic Alfvén waves over large portionsmore » of the inner magnetosphere, potentially driving previously unconsidered wave-particle interactions throughout the inner magnetosphere during the initial response of the magnetosphere to shock impacts.« less

  9. Quantitative kinetic theory of active matter

    NASA Astrophysics Data System (ADS)

    Ihle, Thomas; Chou, Yen-Liang

    2014-03-01

    Models of self-driven agents similar to the Vicsek model [Phys. Rev. Lett. 75 (1995) 1226] are studied by means of kinetic theory. In these models, particles try to align their travel directions with the average direction of their neighbours. At strong alignment a globally ordered state of collective motion forms. An Enskog-like kinetic theory is derived from the exact Chapman-Kolmogorov equation in phase space using Boltzmann's mean-field approximation of molecular chaos. The kinetic equation is solved numerically by a nonlocal Lattice-Boltzmann-like algorithm. Steep soliton-like waves are observed that lead to an abrupt jump of the global order parameter if the noise level is changed. The shape of the wave is shown to follow a novel scaling law and to quantitatively agree within 3 % with agent-based simulations at large particle speeds. This provides a mean-field mechanism to change the second-order character of the flocking transition to first order. Diagrammatic techniques are used to investigate small particle speeds, where the mean-field assumption of Molecular Chaos is invalid and where correlation effects need to be included.

  10. Quantitative determination of carbonaceous particle mixing state in Paris using single particle mass spectrometer and aerosol mass spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Healy, R. M.; Sciare, J.; Poulain, L.; Crippa, M.; Wiedensohler, A.; Prévôt, A. S. H.; Baltensperger, U.; Sarda-Estève, R.; McGuire, M. L.; Jeong, C.-H.; McGillicuddy, E.; O'Connor, I. P.; Sodeau, J. R.; Evans, G. J.; Wenger, J. C.

    2013-04-01

    Single particle mixing state information can be a powerful tool for assessing the relative impact of local and regional sources of ambient particulate matter in urban environments. However, quantitative mixing state data are challenging to obtain using single particle mass spectrometers. In this study, the quantitative chemical composition of carbonaceous single particles has been estimated using an aerosol time-of-flight mass spectrometer (ATOFMS) as part of the MEGAPOLI 2010 winter campaign in Paris, France. Relative peak areas of marker ions for elemental carbon (EC), organic aerosol (OA), ammonium, nitrate, sulphate and potassium were compared with concurrent measurements from an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), a thermal/optical OCEC analyser and a particle into liquid sampler coupled with ion chromatography (PILS-IC). ATOFMS-derived mass concentrations reproduced the variability of these species well (R2 = 0.67-0.78), and ten discrete mixing states for carbonaceous particles were identified and quantified. Potassium content was used to identify particles associated with biomass combustion. The chemical mixing state of HR-ToF-AMS organic aerosol factors, resolved using positive matrix factorization, was also investigated through comparison with the ATOFMS dataset. The results indicate that hydrocarbon-like OA (HOA) detected in Paris is associated with two EC-rich mixing states which differ in their relative sulphate content, while fresh biomass burning OA (BBOA) is associated with two mixing states which differ significantly in their OA/EC ratios. Aged biomass burning OA (OOA2-BBOA) was found to be significantly internally mixed with nitrate, while secondary, oxidized OA (OOA) was associated with five particle mixing states, each exhibiting different relative secondary inorganic ion content. Externally mixed secondary organic aerosol was not observed. These findings demonstrate the heterogeneity of primary and

  11. Fricke S-duality in CHL models

    DOE PAGES

    Persson, Daniel; Volpato, Roberto

    2015-12-23

    In this study, we consider four dimensional CHL models with sixteen spacetime supersymmetries obtained from orbifolds of type IIA superstring on K3×T 2 by a Z N symmetry acting (possibly) non-geometrically on K3. We show that most of these models (in particular, for geometric symmetries) are self-dual under a weak-strong duality acting on the heterotic axio-dilaton modulus S by a “Fricke involution” S → -1/NS. This is a novel symmetry of CHL models that lies outside of the standard SL(2,Z)-symmetry of the parent theory, heterotic strings on T 6. For self-dual models this implies that the lattice of purely electricmore » charges is N-modular, i.e. isometric to its dual up to a rescaling of its quadratic form by N. We verify this prediction by determining the lattices of electric and magnetic charges in all relevant examples. We also calculate certain BPS-saturated couplings and verify that they are invariant under the Fricke S-duality. For CHL models that are not self-dual, the strong coupling limit is dual to type IIA compactified on T 6/Z N, for some Z N-symmetry preserving half of the spacetime supersymmetries.« less

  12. Effects of Initial Particle Distribution on an Energetic Dispersal of Particles

    NASA Astrophysics Data System (ADS)

    Rollin, Bertrand; Ouellet, Frederick; Koneru, Rahul; Garno, Joshua; Durant, Bradford

    2017-11-01

    Accurate predictions of the late time solid particle cloud distribution ensuing an explosive dispersal of particles is an extremely challenging problem for compressible multiphase flow simulations. The source of this difficulty is twofold: (i) The complex sequence of events taking place. Indeed, as the blast wave crosses the surrounding layer of particles, compaction occurs shortly before particles disperse radially at high speed. Then, during the dispersion phase, complex multiphase interactions occurs between particles and detonation products. (ii) Precise characterization of the explosive and particle distribution is virtually impossible. In this numerical experiment, we focus on the sensitivity of late time particle cloud distributions relative to carefully designed initial distributions, assuming the explosive is well described. Using point particle simulations, we study the case of a bed of glass particles surrounding an explosive. Constraining our simulations to relatively low initial volume fractions to prevent reaching of the close packing limit, we seek to describe qualitatively and quantitatively the late time dependency of a solid particle cloud on its distribution before the energy release of an explosive. This work was supported by the U.S. DoE, NNSA, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  13. Lagrangian particle drift and surface deformation in a rotating wave on a free liquid surface

    NASA Astrophysics Data System (ADS)

    Fontana, Paul W.; Francois, Nicolas; Xia, Hua; Punzmann, Horst; Shats, Michael

    2017-11-01

    A nonlinear model of a rotating wave on the free surface of a liquid is presented. The flow is assumed to be inviscid and irrotational. The wave is constructed as a superposition of two perpendicular, monochromatic standing Stokes waves and is standing-wave-like, but with ``antinodes'' or cells consisting of rotating surface gradients of alternating polarity. Lagrangian fluid particle trajectories show a rotational drift about each cell in the direction of wave rotation, corresponding to a rotating Stokes drift. Each cell therefore has a circulating flow and localized angular momentum even though the Eulerian flow is irrotational. Meanwhile, the wave sets up a static displacement of the free surface, making a trough in each cell. This static surface gradient provides a centripetal force that may account for additional rotation seen in experiments.

  14. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields

    PubMed Central

    Yang, Yanye; Ni, Zhengyang; Guo, Xiasheng; Luo, Linjiao; Tu, Juan; Zhang, Dong

    2017-01-01

    Acoustic standing waves have been widely used in trapping, patterning, and manipulating particles, whereas one barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF) and acoustic streaming (AS). In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing wave fields were investigated. The COMSOL® Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV). Through experimental and numerical simulation, the functions of ARF and AS in trapping and patterning were analyzed. It is shown that ARF is dominant in trapping and patterning large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different patterns with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle patterning. PMID:28753955

  15. A New Approach for Quantitative Evaluation of Ultrasonic Wave Attenuation in Composites

    NASA Astrophysics Data System (ADS)

    Ni, Qing-Qing; Li, Ran; Xia, Hong

    2017-02-01

    When ultrasonic waves propagate in composite materials, the propagation behaviors result from the combination effects of various factors, such as material anisotropy and viscoelastic property, internal microstructure and defects, incident wave characteristics and interface condition between composite components. It is essential to make it clear how these factors affect the ultrasonic wave propagation and attenuation characteristics, and how they mutually interact on each other. In the present paper, based on a newly developed time-domain finite element analysis code, PZflex, a unique approach for clarifying the detailed influence mechanism of aforementioned factors is proposed, in which each attenuation component can be extracted from the overall attenuation and analyzed respectively. By taking into consideration the interrelation between each individual attenuation component, the variation behaviors of each component and internal dynamic stress distribution against material anisotropy and matrix viscosity are separately and quantitatively evaluated. From the detailed analysis results of each attenuation component, the energy dissipation at interface is a major component in ultrasonic wave attenuation characteristics, which can provide a maximum contribution rate of 68.2 % to the overall attenuation, and each attenuation component is closely related to the material anisotropy and viscoelasticity. The results clarify the correlation between ultrasonic wave propagation characteristics and material viscoelastic properties, which will be useful in the further development of ultrasonic technology in defect detection.

  16. Leadership of International Schools: Understanding and Managing Dualities

    ERIC Educational Resources Information Center

    Keller, Dan

    2015-01-01

    Leaders of international schools find themselves operating within a loosely defined, yet rapidly growing, specialty niche of education. The leadership context for these schools is often filled with ambiguity and complex tensions between opposing forces. This article proposes a two-stage framework for critically analyzing the dualities of…

  17. Hairy black holes and duality in an extended supergravity model

    NASA Astrophysics Data System (ADS)

    Anabalón, Andrés; Astefanesei, Dumitru; Gallerati, Antonio; Trigiante, Mario

    2018-04-01

    We consider a D = 4, N=2 gauged supergravity with an electromagnetic Fayet-Iliopoulos term. We restrict to the uncharged, single dilaton consistent truncation and point out that the bulk Lagrangian is self-dual under electromagnetic duality. Within this truncation, we construct two families of exact hairy black hole solutions, which are asymptotically AdS 4. When a duality transformation is applied on these solutions, they are mapped to two other inequivalent families of hairy black hole solutions. The mixed boundary conditions of the scalar field correspond to adding a triple-trace operator to the dual field theory action. We also show that this truncation contains all the consistent single dilaton truncations of gauged N=8 supergravity with a possible ω-deformation.

  18. Investigating and Improving Student Understanding of Quantum Mechanics in the Context of Single Photon Interference

    ERIC Educational Resources Information Center

    Marshman, Emily; Singh, Chandralekha

    2017-01-01

    Single photon experiments involving a Mach-Zehnder interferometer can illustrate the fundamental principles of quantum mechanics, e.g., the wave-particle duality of a single photon, single photon interference, and the probabilistic nature of quantum measurement involving single photons. These experiments explicitly make the connection between the…

  19. Chemistry Is Like A...

    ERIC Educational Resources Information Center

    Licata, Kenneth P.

    1988-01-01

    Explains the use of constructing and analyzing analogies as a way to enhance student understanding and recollection of scientific concepts. Offers suggestions for topics including energy activation, phases of matter, electron transitions, equilibrium, covalent bonds, wave and particle duality, reaction types, ideal versus real gases, and oxidation…

  20. Survey of shock-wave structures of smooth-particle granular flows.

    PubMed

    Padgett, D A; Mazzoleni, A P; Faw, S D

    2015-12-01

    We show the effects of simulated supersonic granular flow made up of smooth particles passing over two prototypical bodies: a wedge and a disk. We describe a way of computationally identifying shock wave locations in granular flows and tabulate the shock wave locations for flow over wedges and disks. We quantify the shock structure in terms of oblique shock angle for wedge impediments and shock standoff distance for disk impediments. We vary granular flow parameters including upstream volume fraction, average upstream velocity, granular temperature, and the collision coefficient of restitution. Both wedges and disks have been used in the aerospace community as prototypical impediments to flowing air in order to investigate the fundamentally different shock structures emanating from sharp and blunt bodies, and we present these results in order to increase the understanding of the fundamental behavior of supersonic granular flow.

  1. Quantitative determination of carbonaceous particle mixing state in Paris using single-particle mass spectrometer and aerosol mass spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Healy, R. M.; Sciare, J.; Poulain, L.; Crippa, M.; Wiedensohler, A.; Prévôt, A. S. H.; Baltensperger, U.; Sarda-Estève, R.; McGuire, M. L.; Jeong, C.-H.; McGillicuddy, E.; O'Connor, I. P.; Sodeau, J. R.; Evans, G. J.; Wenger, J. C.

    2013-09-01

    Single-particle mixing state information can be a powerful tool for assessing the relative impact of local and regional sources of ambient particulate matter in urban environments. However, quantitative mixing state data are challenging to obtain using single-particle mass spectrometers. In this study, the quantitative chemical composition of carbonaceous single particles has been determined using an aerosol time-of-flight mass spectrometer (ATOFMS) as part of the MEGAPOLI 2010 winter campaign in Paris, France. Relative peak areas of marker ions for elemental carbon (EC), organic aerosol (OA), ammonium, nitrate, sulfate and potassium were compared with concurrent measurements from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), a thermal-optical OCEC analyser and a particle into liquid sampler coupled with ion chromatography (PILS-IC). ATOFMS-derived estimated mass concentrations reproduced the variability of these species well (R2 = 0.67-0.78), and 10 discrete mixing states for carbonaceous particles were identified and quantified. The chemical mixing state of HR-ToF-AMS organic aerosol factors, resolved using positive matrix factorisation, was also investigated through comparison with the ATOFMS dataset. The results indicate that hydrocarbon-like OA (HOA) detected in Paris is associated with two EC-rich mixing states which differ in their relative sulfate content, while fresh biomass burning OA (BBOA) is associated with two mixing states which differ significantly in their OA / EC ratios. Aged biomass burning OA (OOA2-BBOA) was found to be significantly internally mixed with nitrate, while secondary, oxidised OA (OOA) was associated with five particle mixing states, each exhibiting different relative secondary inorganic ion content. Externally mixed secondary organic aerosol was not observed. These findings demonstrate the range of primary and secondary organic aerosol mixing states in Paris. Examination of the temporal

  2. Full skin quantitative optical coherence elastography achieved by combining vibration and surface acoustic wave methods

    NASA Astrophysics Data System (ADS)

    Li, Chunhui; Guan, Guangying; Huang, Zhihong; Wang, Ruikang K.; Nabi, Ghulam

    2015-03-01

    By combining with the phase sensitive optical coherence tomography (PhS-OCT), vibration and surface acoustic wave (SAW) methods have been reported to provide elastography of skin tissue respectively. However, neither of these two methods can provide the elastography in full skin depth in current systems. This paper presents a feasibility study on an optical coherence elastography method which combines both vibration and SAW in order to give the quantitative mechanical properties of skin tissue with full depth range, including epidermis, dermis and subcutaneous fat. Experiments are carried out on layered tissue mimicking phantoms and in vivo human forearm and palm skin. A ring actuator generates vibration while a line actuator were used to excited SAWs. A PhS-OCT system is employed to provide the ultrahigh sensitive measurement of the generated waves. The experimental results demonstrate that by the combination of vibration and SAW method the full skin bulk mechanical properties can be quantitatively measured and further the elastography can be obtained with a sensing depth from ~0mm to ~4mm. This method is promising to apply in clinics where the quantitative elasticity of localized skin diseases is needed to aid the diagnosis and treatment.

  3. An ultra-small NiFe2O4 hollow particle/graphene hybrid: fabrication and electromagnetic wave absorption property.

    PubMed

    Yan, Feng; Guo, Dong; Zhang, Shen; Li, Chunyan; Zhu, Chunling; Zhang, Xitian; Chen, Yujin

    2018-02-08

    Herein, ultra-small NiFe 2 O 4 hollow particles, with the diameter and wall thickness of only 6 and 1.8 nm, respectively, were anchored on a graphene surface based on the nanoscale Kirkendall effect. The hybrid exhibits an excellent electromagnetic wave absorption property, comparable or superior to that of most reported absorbers. Our strategy may open a way to grow ultra-small hollow particles on graphene for applications in many fields such as eletromagnetic wave absorption and energy storage and conversion.

  4. Detection of in-plane displacements of acoustic wave fields using extrinsic Fizeau fiber interferometric sensors

    NASA Technical Reports Server (NTRS)

    Dhawan, R.; Gunther, M. F.; Claus, R. O.

    1991-01-01

    Quantitative measurements of the in-plane particle displacement components of ultrasonic surface acoustic wave fields using extrinsic Fizeau fiber interferometric (EFFI) sensors are reported. Wave propagation in materials and the fiber sensor elements are briefly discussed. Calibrated experimental results obtained for simulated acoustic emission events on homogeneous metal test specimens are reported and compared to previous results obtained using piezoelectric transducers.

  5. Spectral properties and associated plasma energization by magnetosonic waves in the Earth's magnetosphere: Particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Sun, Jicheng; Gao, Xinliang; Lu, Quanming; Chen, Lunjin; Liu, Xu; Wang, Xueyi; Tao, Xin; Wang, Shui

    2017-05-01

    In this paper, we perform a 1-D particle-in-cell (PIC) simulation model consisting of three species, cold electrons, cold ions, and energetic ion ring, to investigate spectral structures of magnetosonic waves excited by ring distribution protons in the Earth's magnetosphere, and dynamics of charged particles during the excitation of magnetosonic waves. As the wave normal angle decreases, the spectral range of excited magnetosonic waves becomes broader with upper frequency limit extending beyond the lower hybrid resonant frequency, and the discrete spectra tends to merge into a continuous one. This dependence on wave normal angle is consistent with the linear theory. The effects of magnetosonic waves on the background cold plasma populations also vary with wave normal angle. For exactly perpendicular magnetosonic waves (parallel wave number k|| = 0), there is no energization in the parallel direction for both background cold protons and electrons due to the negligible fluctuating electric field component in the parallel direction. In contrast, the perpendicular energization of background plasmas is rather significant, where cold protons follow unmagnetized motion while cold electrons follow drift motion due to wave electric fields. For magnetosonic waves with a finite k||, there exists a nonnegligible parallel fluctuating electric field, leading to a significant and rapid energization in the parallel direction for cold electrons. These cold electrons can also be efficiently energized in the perpendicular direction due to the interaction with the magnetosonic wave fields in the perpendicular direction. However, cold protons can be only heated in the perpendicular direction, which is likely caused by the higher-order resonances with magnetosonic waves. The potential impacts of magnetosonic waves on the energization of the background cold plasmas in the Earth's inner magnetosphere are also discussed in this paper.

  6. Fluctuations and discrete particle noise in gyrokinetic simulation of drift waves

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Lee, W. W.

    2007-03-01

    The relevance of the gyrokinetic fluctuation-dissipation theorem (FDT) to thermal equilibrium and nonequilibrium states of the gyrokinetic plasma is explored, with particular focus being given to the contribution of weakly damped normal modes to the fluctuation spectrum. It is found that the fluctuation energy carried in the normal modes exhibits the proper scaling with particle count (as predicted by the FDT in thermal equilibrium) even in the presence of drift waves, which grow linearly and attain a nonlinearly saturated steady state. This favorable scaling is preserved, and the saturation amplitude of the drift wave unaffected, for parameter regimes in which the normal modes become strongly damped and introduce a broad spectrum of discreteness-induced background noise in frequency space.

  7. Bukhvostov-Lipatov model and quantum-classical duality

    NASA Astrophysics Data System (ADS)

    Bazhanov, Vladimir V.; Lukyanov, Sergei L.; Runov, Boris A.

    2018-02-01

    The Bukhvostov-Lipatov model is an exactly soluble model of two interacting Dirac fermions in 1 + 1 dimensions. The model describes weakly interacting instantons and anti-instantons in the O (3) non-linear sigma model. In our previous work [arxiv:arXiv:1607.04839] we have proposed an exact formula for the vacuum energy of the Bukhvostov-Lipatov model in terms of special solutions of the classical sinh-Gordon equation, which can be viewed as an example of a remarkable duality between integrable quantum field theories and integrable classical field theories in two dimensions. Here we present a complete derivation of this duality based on the classical inverse scattering transform method, traditional Bethe ansatz techniques and analytic theory of ordinary differential equations. In particular, we show that the Bethe ansatz equations defining the vacuum state of the quantum theory also define connection coefficients of an auxiliary linear problem for the classical sinh-Gordon equation. Moreover, we also present details of the derivation of the non-linear integral equations determining the vacuum energy and other spectral characteristics of the model in the case when the vacuum state is filled by 2-string solutions of the Bethe ansatz equations.

  8. Method for coating ultrafine particles, system for coating ultrafine particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jie; Liu, Yung

    The invention provides a method for dispersing particles within a reaction field, the method comprising confining the particles to the reaction field using a standing wave. The invention also provides a system for coating particles, the system comprising a reaction zone; a means for producing fluidized particles within the reaction zone; a fluid to produce a standing wave within the reaction zone; and a means for introducing coating moieties to the reaction zone. The invention also provides a method for coating particles, the method comprising fluidizing the particles, subjecting the particles to a standing wave; and contacting the subjected particlesmore » with a coating moiety.« less

  9. Velocity lag of solid particles in oscillating gases and in gases passing through normal shock waves

    NASA Technical Reports Server (NTRS)

    Maxwell, B. R.; Seasholtz, R. G.

    1974-01-01

    The velocity lag of micrometer size spherical particles is theoretically determined for gas particle mixtures passing through a stationary normal shock wave and also for particles embedded in an oscillating gas flow. The particle sizes and densities chosen are those considered important for laser Doppler velocimeter applications. The governing equations for each flow system are formulated. The deviation from Stokes flow caused by inertial, compressibility, and rarefaction effects is accounted for in both flow systems by use of an empirical drag coefficient. Graphical results are presented which characterize particle tracking as a function of system parameters.

  10. Quark-hadron duality constraints on $$\\gamma Z$$ box corrections to parity-violating elastic scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Nathan L.; Blunden, Peter G.; Melnitchouk, Wally

    2015-12-08

    We examine the interference \\gamma Z box corrections to parity-violating elastic electron--proton scattering in the light of the recent observation of quark-hadron duality in parity-violating deep-inelastic scattering from the deuteron, and the approximate isospin independence of duality in the electromagnetic nucleon structure functions down to Q 2 \\approx 1 GeV 2. Assuming that a similar behavior also holds for the \\gamma Z proton structure functions, we find that duality constrains the γ Z box correction to the proton's weak charge to be Re V γ Z V = (5.4 \\pm 0.4) \\times 10 -3 at the kinematics of the Qmore » weak experiment. Within the same model we also provide estimates of the γ Z corrections for future parity-violating experiments, such as MOLLER at Jefferson Lab and MESA at Mainz.« less

  11. Thermofield duality for higher spin Rindler Gravity

    DOE PAGES

    Jevicki, Antal; Suzuki, Kenta

    2016-02-15

    In this paper, we study the Thermo-field realization of the duality between the Rindler-AdS higher spin theory and O(N) vector theory. The CFT represents a decoupled pair of free O(N) vector field theories. It is shown how this decoupled domain CFT is capable of generating the connected Rindler-AdS background with the full set of Higher Spin fields.

  12. On pp wave limit for η deformed superstrings

    NASA Astrophysics Data System (ADS)

    Roychowdhury, Dibakar

    2018-05-01

    In this paper, based on the notion of plane wave string/gauge theory duality, we explore the pp wave limit associated with the bosonic sector of η deformed superstrings propagating in ( AdS 5 × S 5) η . Our analysis reveals that in the presence of NS-NS and RR fluxes, the pp wave limit associated to full ABF background satisfies type IIB equations in its standard form. However, the beta functions as well as the string Hamiltonian start receiving non trivial curvature corrections as one starts probing beyond pp wave limit which thereby takes solutions away from the standard type IIB form. Furthermore, using uniform gauge, we also explore the BMN dynamics associated with short strings and compute the corresponding Hamiltonian density. Finally, we explore the Penrose limit associated with the HT background and compute the corresponding stringy spectrum for the bosonic sector.

  13. Roles Played by Electrostatic Waves in Producing Radio Emissions

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    2000-01-01

    Processes in which electromagnetic radiation is produced directly or indirectly via intermediate waves are reviewed. It is shown that strict theoretical constraints exist for electrons to produce nonthermal levels of radiation directly by the Cerenkov or cyclotron resonances. In contrast, indirect emission processes in which intermediary plasma waves are converted into radiation are often favored on general and specific grounds. Four classes of mechanisms involving the conversion of electrostatic waves into radiation are linear mode conversion, hybrid linear/nonlinear mechanisms, nonlinear wave-wave and wave-particle processes, and radiation from localized wave packets. These processes are reviewed theoretically and observational evidence summarized for their occurrence. Strong evidence exists that specific nonlinear wave processes and mode conversion can explain quantitatively phenomena involving type III solar radio bursts and ionospheric emissions. On the other hand, no convincing evidence exists that magnetospheric continuum radiation is produced by mode conversion instead of nonlinear wave processes. Further research on these processes is needed.

  14. N = 2 S-duality revisited

    NASA Astrophysics Data System (ADS)

    Buican, Matthew; Laczko, Zoltan; Nishinaka, Takahiro

    2017-09-01

    Using the chiral algebra bootstrap, we revisit the simplest Argyres-Douglas (AD) generalization of Argyres-Seiberg S-duality. We argue that the exotic AD superconformal field theory (SCFT), T_{3,3/2} , emerging in this duality splits into a free piece and an interacting piece, T_X , even though this factorization seems invisible in the Seiberg-Witten (SW) curve derived from the corresponding M5-brane construction. Without a Lagrangian, an associated topological field theory, a BPS spectrum, or even an SW curve, we nonetheless obtain exact information about T_X by bootstrapping its chiral algebra, {}_X(T_X) , and finding the corresponding vacuum character in terms of Affine Kac-Moody characters. By a standard 4D/2D correspondence, this result gives us the Schur index for T_X and, by studying this quantity in the limit of small S 1, we make contact with a proposed S 1 reduction. Along the way, we discuss various properties of T_X : as an N = 1 theory, it has flavor symmetry SU(3) × SU(2) × U(1), the central charge of {}_X(T_X) matches the central charge of the bc ghosts in bosonic string theory, and its global SU(2) symmetry has a Witten anomaly. This anomaly does not prevent us from building conformal manifolds out of arbitrary numbers of T_X theories (giving us a surprisingly close AD relative of Gaiotto's T N theories), but it does lead to some open questions in the context of the chiral algebra/4D N =2SCFT correspondence.

  15. The duality in using information and communication technology in elder care.

    PubMed

    Sävenstedt, Stefan; Sandman, P O; Zingmark, Karin

    2006-10-01

    The aim of this paper is to report a study illuminating values and perceptions held by professional carers of older people about the use of information and communication technology applications. Various information and communication technology applications have successfully been developed to help solve a variety of problems in elder care. Beside different technical barriers and the assumed negative attitudes among older people, staff values and attitudes have been found to be an important cause of resistance to change and slowness in introduction of information and communication technology in health care of older people. An interview study was conducted in 2004 with 10 healthcare personnel with 3-26 years experience of working in home care and nursing homes in Northern Sweden. Qualitative content analysis was used to identify recurring themes in the data. The interpretation of values and perceptions among carers revealed a duality where the carers perceived information and communication technology as a promoter of both inhumane and humane care, a duality that seemed to make them defensive and resistant to change. Within the overall duality, other dualities were embedded that described both perceptions about the care of older people and about being a carer. There was evidence of resistance among professional carers towards an introduction of information and communication technology applications in elder care. Carers considered that the same attributes of information and communication technology that could promote humane care could also lead to dehumanized care. There should be an ethical discussion when introducing information and communication technology applications in elder care. The best caring alternative for all those concerned should be considered. It should promote aspects of wellbeing and dignity for frail older people and fears of inhumane care among carers must be recognized and discussed.

  16. Dose limited reliability of quantitative annular dark field scanning transmission electron microscopy for nano-particle atom-counting.

    PubMed

    De Backer, A; Martinez, G T; MacArthur, K E; Jones, L; Béché, A; Nellist, P D; Van Aert, S

    2015-04-01

    Quantitative annular dark field scanning transmission electron microscopy (ADF STEM) has become a powerful technique to characterise nano-particles on an atomic scale. Because of their limited size and beam sensitivity, the atomic structure of such particles may become extremely challenging to determine. Therefore keeping the incoming electron dose to a minimum is important. However, this may reduce the reliability of quantitative ADF STEM which will here be demonstrated for nano-particle atom-counting. Based on experimental ADF STEM images of a real industrial catalyst, we discuss the limits for counting the number of atoms in a projected atomic column with single atom sensitivity. We diagnose these limits by combining a thorough statistical method and detailed image simulations. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Coronal Shock Waves and Solar Energetic Particle Events

    NASA Astrophysics Data System (ADS)

    Cliver, Edward

    Recent evidence supports the view first expressed by Wild, Smerd, and Weiss in 1963 that large solar energetic particle (SEP) events are a consequence of shock waves manifested by radio type II bursts. Following Tylka et al. (ApJ 625, 474, 2005), our picture of SEP acceleration at shocks now includes the effects of variable seed particle population and shock geometry. By taking these factors into account, Tylka and Lee (ApJ 646, 1319, 2006; see also Sandroos Vainio, ApJ 662, L127, 2007; AA 507, L21, 2009) were able to account for the charge-to-mass variability in high-Z ions first reported by Breneman and Stone in 1985. Recent studies of electron-to-proton ratios, both in interplanetary space (Cliver Ling, ApJ 658, 1349, 2007; Dietrich et al., in preparation, 2010) and in gamma-ray-line events (Shih et al., ApJ 698, L152, 2009), also support the view that large SEP events originate in coronal shocks and not in solar flares. Concurrent with the above developments, there is growing evidence that coronal shocks are driven by coronal mass ejections rather than by flare pressure pulses.

  18. Models of Jovian decametric radiation. [astronomical models of decametric waves

    NASA Technical Reports Server (NTRS)

    Smith, R. A.

    1975-01-01

    A critical review is presented of theoretical models of Jovian decametric radiation, with particular emphasis on the Io-modulated emission. The problem is divided into three broad aspects: (1) the mechanism coupling Io's orbital motion to the inner exosphere, (2) the consequent instability mechanism by which electromagnetic waves are amplified, and (3) the subsequent propagation of the waves in the source region and the Jovian plasmasphere. At present there exists no comprehensive theory that treats all of these aspects quantitatively within a single framework. Acceleration of particles by plasma sheaths near Io is proposed as an explanation for the coupling mechanism, while most of the properties of the emission may be explained in the context of cyclotron instability of a highly anisotropic distribution of streaming particles.

  19. Medium-energy electrons and heavy ions in Jupiter's magnetosphere - Effects of lower hybrid wave-particle interactions

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.

    1986-01-01

    A theory of medium-energy (about keV) electrons and heavy ions in Jupiter's magnetosphere is presented. Lower hybrid waves are generated by the combined effects of a ring instability of neutral wind pickup ions and the modified two-stream instability associated with transport of cool Iogenic plasma. The quasi-linear energy diffusion coefficient for lower hybrid wave-particle interactions is evaluated, and several solutions to the diffusion equation are given. Calculations based on measured wave properties show that the noise substantially modifies the particle distribution functions. The effects are to accelerate superthermal ions and electrons to keV energies and to thermalize the pickup ions on time scales comparable to the particle residence time. The S(2+)/S(+) ratio at medium energies is a measure of the relative contribution from Iogenic thermal plasma and neutral wind ions, and this important quantity should be determined from future measurements. The theory also predicts a preferential acceleration of heavy ions with an accleration time that scales inversely with the root of the ion mass. Electrons accelerated by the process contribute to further reionization of the neutral wind by electron impact, thus providing a possible confirmation of Alfven's critical velocity effect in the Jovian magnetosphere.

  20. Wave chaos in the elastic disk.

    PubMed

    Sondergaard, Niels; Tanner, Gregor

    2002-12-01

    The relation between the elastic wave equation for plane, isotropic bodies and an underlying classical ray dynamics is investigated. We study, in particular, the eigenfrequencies of an elastic disk with free boundaries and their connection to periodic rays inside the circular domain. Even though the problem is separable, wave mixing between the shear and pressure component of the wave field at the boundary leads to an effective stochastic part in the ray dynamics. This introduces phenomena typically associated with classical chaos as, for example, an exponential increase in the number of periodic orbits. Classically, the problem can be decomposed into an integrable part and a simple binary Markov process. Similarly, the wave equation can, in the high-frequency limit, be mapped onto a quantum graph. Implications of this result for the level statistics are discussed. Furthermore, a periodic trace formula is derived from the scattering matrix based on the inside-outside duality between eigenmodes and scattering solutions and periodic orbits are identified by Fourier transforming the spectral density.

  1. Thai University Students' Prior Knowledge about P-Waves Generated during Particle Motion

    ERIC Educational Resources Information Center

    Rakkapao, Suttida; Arayathanikul, Kwan; Pananont, Passakorn

    2009-01-01

    The goal of this study is to identify Thai students' prior knowledge about particle motion when P-waves arrive. This existing idea significantly influences what and how students learn in the classroom. The data were collected via conceptual open-ended questions designed by the researchers and through explanatory follow-up interviews. Participants…

  2. Dualities in CHL-models

    NASA Astrophysics Data System (ADS)

    Persson, Daniel; Volpato, Roberto

    2018-04-01

    We define a very general class of CHL-models associated with any string theory S (bosonic or supersymmetric) compactified on an internal CFT C× Td . We take the orbifold by a pair (g, δ) , where g is a (possibly non-geometric) symmetry of C and δ is a translation along T n . We analyze the T-dualities of these models and show that in general they contain Atkin–Lehner type symmetries. This generalizes our previous work on N=4 CHL-models based on heterotic string theory on T 6 or type II on K3× T2 , as well as the ‘monstrous’ CHL-models based on a compactification of heterotic string theory on the Frenkel–Lepowsky–Meurman CFT V\

  3. Duality-symmetric supersymmetric Yang-Mills theory in three dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishino, Hitoshi; Rajpoot, Subhash

    We formulate a duality-symmetric N=1 supersymmetric Yang-Mills theory in three dimensions. Our field content is (A{sub {mu}}{sup I},{lambda}{sup I},{phi}{sup I}), where the index I is for the adjoint representation of an arbitrary gauge group G. Our Hodge duality symmetry is F{sub {mu}{nu}}{sup I}=+{epsilon}{sub {mu}{nu}}{sup {rho}D}{sub {rho}{phi}}{sup I}. Because of this relationship, the presence of two physical fields A{sub {mu}}{sup I} and {phi}{sup I} within the same N=1 supermultiplet poses no problem. We can couple this multiplet to another vector multiplet (C{sub {mu}}{sup I},{chi}{sup I};B{sub {mu}{nu}}{sup I}) with 1+1 physical degrees of freedom modulo dim G. Thanks to peculiar couplings andmore » supersymmetry, the usual problem with an extra vector field in a nontrivial representation does not arise in our system.« less

  4. Unsteady drag following shock wave impingement on a dense particle curtain measured using pulse-burst PIV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeMauro, Edward Paisley; Wagner, Justin L.; Beresh, Steven J.

    High-speed, time-resolved particle image velocimetry with a pulse-burst laser was used to measure the gas-phase velocity upstream and downstream of a shock wave–particle curtain interaction at three shock Mach numbers (1.22, 1.40, and 1.45) at a repetition rate of 37.5 kHz. The particle curtain was formed from free-falling soda-lime particles resulting in volume fractions of 9% or 23% at mid-height, depending on particle diameter (106–125 and 300–355 μm, respectively). Following impingement by a shock wave, a pressure difference was created between the upstream and downstream sides of the curtain, which accelerated flow through the curtain. Jetting of flow through themore » curtain was observed downstream once deformation of the curtain began, demonstrating a long-term unsteady effect. Using a control volume approach, the unsteady drag on the curtain was estimated from velocity and pressure data. The drag imposed on the curtain has a strong volume fraction dependence with a prolonged unsteadiness following initial shock impingement. Additionally, the data suggest that the resulting pressure difference following the propagation of the reflected and transmitted shock waves is the primary component to curtain drag.« less

  5. Unsteady drag following shock wave impingement on a dense particle curtain measured using pulse-burst PIV

    DOE PAGES

    DeMauro, Edward Paisley; Wagner, Justin L.; Beresh, Steven J.; ...

    2017-06-08

    High-speed, time-resolved particle image velocimetry with a pulse-burst laser was used to measure the gas-phase velocity upstream and downstream of a shock wave–particle curtain interaction at three shock Mach numbers (1.22, 1.40, and 1.45) at a repetition rate of 37.5 kHz. The particle curtain was formed from free-falling soda-lime particles resulting in volume fractions of 9% or 23% at mid-height, depending on particle diameter (106–125 and 300–355 μm, respectively). Following impingement by a shock wave, a pressure difference was created between the upstream and downstream sides of the curtain, which accelerated flow through the curtain. Jetting of flow through themore » curtain was observed downstream once deformation of the curtain began, demonstrating a long-term unsteady effect. Using a control volume approach, the unsteady drag on the curtain was estimated from velocity and pressure data. The drag imposed on the curtain has a strong volume fraction dependence with a prolonged unsteadiness following initial shock impingement. Additionally, the data suggest that the resulting pressure difference following the propagation of the reflected and transmitted shock waves is the primary component to curtain drag.« less

  6. Hybrid fluid-particle simulation of whistler-mode waves in a compressed dipole magnetic field: Implications for dayside high-latitude chorus

    NASA Astrophysics Data System (ADS)

    da Silva, C. L.; Wu, S.; Denton, R. E.; Hudson, M. K.; Millan, R. M.

    2017-01-01

    In this work we present a methodology for simulating whistler-mode waves self-consistently generated by electron temperature anisotropy in the inner magnetosphere. We present simulation results using a hybrid fluid/particle-in-cell code that treats the hot, anisotropic (i.e., ring current) electron population as particles and the background (i.e., the cold and inertialess) electrons as fluid. Since the hot electrons are only a small fraction of the total population, warm (and isotropic) particle electrons are added to the simulation to increase the fraction of particles with mass, providing a more accurate characterization of the wave dispersion relation. Ions are treated as a fixed background of positive charge density. The plasma transport equations are coupled to Maxwell's equations and solved in a meridional plane (a 2-D simulation with 3-D fields). We use a curvilinear coordinate system that follows the topological curvature of Earth's geomagnetic field lines, based on an analytic expression for a compressed dipole magnetic field. Hence, we are able to simulate whistler wave generation at dawn (pure dipole field lines) and dayside (compressed dipole) by simply adjusting one scalar quantity. We demonstrate how, on the dayside, whistler-mode waves can be locally generated at a range of high latitudes, within pockets of minimum magnetic field, and propagate equatorward. The obtained dayside waves (in a compressed dipole field) have similar amplitude and frequency content to their dawn sector counterparts (in a pure dipole field) but tend to propagate more field aligned.

  7. Parables of Physics and a Quantum Romance

    ERIC Educational Resources Information Center

    Machacek, A. C.

    2014-01-01

    Teachers regularly use stories to amplify the concepts taught and to encourage student engagement. The literary form of a parable is particularly suitable for classroom use, and examples are given, including a longer one intended to stimulate discussion on the nature of quantum physics (and the wave-particle duality in particular).

  8. Quantum Theory from Observer's Mathematics Point of View

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khots, Dmitriy; Khots, Boris

    2010-05-04

    This work considers the linear (time-dependent) Schrodinger equation, quantum theory of two-slit interference, wave-particle duality for single photons, and the uncertainty principle in a setting of arithmetic, algebra, and topology provided by Observer's Mathematics, see [1]. Certain theoretical results and communications pertaining to these theorems are also provided.

  9. Parables of physics and a quantum romance

    NASA Astrophysics Data System (ADS)

    Machacek, A. C.

    2014-01-01

    Teachers regularly use stories to amplify the concepts taught and to encourage student engagement. The literary form of a parable is particularly suitable for classroom use, and examples are given, including a longer one intended to stimulate discussion on the nature of quantum physics (and the wave-particle duality in particular).

  10. Intense plasma waves at and near the solar wind termination shock.

    PubMed

    Gurnett, D A; Kurth, W S

    2008-07-03

    Plasma waves are a characteristic feature of shocks in plasmas, and are produced by non-thermal particle distributions that develop in the shock transition layer. The electric fields of these waves have a key role in dissipating energy in the shock and driving the particle distributions back towards thermal equilibrium. Here we report the detection of intense plasma-wave electric fields at the solar wind termination shock. The observations were obtained from the plasma-wave instrument on the Voyager 2 spacecraft. The first evidence of the approach to the shock was the detection of upstream electron plasma oscillations on 1 August 2007 at a heliocentric radial distance of 83.4 au (1 au is the Earth-Sun distance). These narrowband oscillations continued intermittently for about a month until, starting on 31 August 2007 and ending on 1 September 2007, a series of intense bursts of broadband electrostatic waves signalled a series of crossings of the termination shock at a heliocentric radial distance of 83.7 au. The spectrum of these waves is quantitatively similar to those observed at bow shocks upstream of Jupiter, Saturn, Uranus and Neptune.

  11. SCIDAC Center for simulation of wave particle interactions CompX participation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, R.W.

    Harnessing the energy that is released in fusion reactions would provide a safe and abundant source of power to meet the growing energy needs of the world population. The next step toward the development of fusion as a practical energy source is the construction of ITER, a device capable of producing and controlling the high performance plasma required for self-sustaining fusion reactions, or “burning” plasma. The input power required to drive the ITER plasma into the burning regime will be supplied primarily with a combination of external power from radio frequency waves in the ion cyclotron range of frequencies andmore » energetic ions from neutral beam injection sources, in addition to internally generated Ohmic heating from the induced plasma current that also serves to create the magnetic equilibrium for the discharge. The ITER project is a large multi-billion dollar international project in which the US participates. The success of the ITER project depends critically on the ability to create and maintain burning plasma conditions, it is absolutely necessary to have physics-based models that can accurately simulate the RF processes that affect the dynamical evolution of the ITER discharge. The Center for Simulation of WavePlasma Interactions (CSWPI), also known as RF-SciDAC, is a multi-institutional collaboration that has conducted ongoing research aimed at developing: (1) Coupled core-to-edge simulations that will lead to an increased understanding of parasitic losses of the applied RF power in the boundary plasma between the RF antenna and the core plasma; (2) Development of models for core interactions of RF waves with energetic electrons and ions (including fusion alpha particles and fast neutral beam ions) that include a more accurate representation of the particle dynamics in the combined equilibrium and wave fields; and (3) Development of improved algorithms that will take advantage of massively parallel computing platforms at the petascale level

  12. On the feasibility of quantitative ultrasonic determination of fracture toughness: A literature review

    NASA Technical Reports Server (NTRS)

    Fu, L. S.

    1980-01-01

    The three main topics covered are: (1) fracture toughness and microstructure, (2) quantitative ultrasonic and microstructure; and (3) scattering and related mathematical methods. Literature in these areas is reviewed to give insight to the search of a theoretical foundation for quantitative ultrasonic measurement of fracture toughness. The literature review shows that fracture toughness is inherently related to the microstructure and in particular, it depends upon the spacing of inclusions or second particles and the aspect ratio of second phase particles. There are indications that ultrasonic velocity attenuation measurements can be used to determine fracture toughness. The leads to a review of the mathematical models available in solving boundary value problems related to microstructural factors that govern facture toughness and wave motion. A framework towards the theoretical study for the quantitative determination of fracture toughness is described and suggestions for future research are proposed.

  13. Open/closed string duality and relativistic fluids

    NASA Astrophysics Data System (ADS)

    Niarchos, Vasilis

    2016-07-01

    We propose an open/closed string duality in general backgrounds extending previous ideas about open string completeness by Ashoke Sen. Our proposal sets up a general version of holography that works in gravity as a tomographic principle. We argue, in particular, that previous expectations of a supergravity/Dirac-Born-Infeld (DBI) correspondence are naturally embedded in this conjecture and can be tested in a well-defined manner. As an example, we consider the correspondence between open string field theories on extremal D-brane setups in flat space in the large-N , large 't Hooft limit, and asymptotically flat solutions in ten-dimensional type II supergravity. We focus on a convenient long-wavelength regime, where specific effects of higher-spin open string modes can be traced explicitly in the dual supergravity computation. For instance, in this regime we show how the full Abelian DBI action arises from supergravity as a straightforward reformulation of relativistic hydrodynamics. In the example of a (2 +1 )-dimensional open string theory this reformulation involves an Abelian Hodge duality. We also point out how different deformations of the DBI action, related to higher-derivative corrections and non-Abelian effects, can arise in this context as deformations in corresponding relativistic hydrodynamics.

  14. T-duality invariant effective actions at orders α', α'2

    NASA Astrophysics Data System (ADS)

    Razaghian, Hamid; Garousi, Mohammad R.

    2018-02-01

    We use compatibility of the D-dimensional effective actions for diagonal metric and for dilaton with the T-duality when theory is compactified on a circle, to find the D-dimensional couplings of curvatures and dilaton as well as the higher derivative corrections to the ( D - 1)-dimensional Buscher rules at orders α' and α'2. We observe that the T-duality constraint on the effective actions fixes the covariant effective actions at each order of α' up to field redefinitions and up to an overall factor. Inspired by these results, we speculate that the D-dimensional effective actions at any order of α' must be consistent with the standard Buscher rules provided that one uses covariant field redefinitions in the corresponding reduced ( D - 1)-dimensional effective actions. This constraint may be used to find effective actions at all higher orders of α'.

  15. T-duality of singular spacetime compactifications in an H-flux

    NASA Astrophysics Data System (ADS)

    Linshaw, Andrew; Mathai, Varghese

    2018-07-01

    We begin by presenting a symmetric version of the circle equivariant T-duality result in a joint work of the second author with Siye Wu, thereby generalizing the results there. We then initiate the study of twisted equivariant Courant algebroids and equivariant generalized geometry and apply it to our context. As before, T-duality exchanges type IIA and type IIB string theories. In our theory, both spacetime and the T-dual spacetime can be singular spaces when the fixed point set is non-empty; the singularities correspond to Kaluza-Klein monopoles. We propose that the Ramond-Ramond charges of type II string theories on the singular spaces are classified by twisted equivariant cohomology groups, consistent with the previous work of Mathai and Wu, and prove that they are naturally isomorphic. We also establish the corresponding isomorphism of twisted equivariant Courant algebroids.

  16. RESONATOR PARTICLE SEPARATOR

    DOEpatents

    Blewett, J.P.; Kiesling, J.D.

    1963-06-11

    A wave-guide resonator structure is designed for use in separating particles of equal momentum but differing in mass, having energies exceeding one billion eiectron volts. The particles referred to are those of sub-atomic size and are generally produced as a result of the bombardment of a target by a beam such as protons produced in a high energy accelerator. In the resonator a travelling electric wave is produced which travels at the same rate of speed as the unwanted particle which is thus deflected continuously over the length of the resonator. The wanted particle is slightly out of phase with the travelling wave so that over the whole length of the resonator it has a net deflection of substantially zero. The travelling wave is established in a wave guide of rectangular cross section in which stubs are provided to store magnetic wave energy leaving the electric wave energy in the main structure to obtain the desired travelling wave and deflection. The stubs are of such shape and spacing to establish a critical mathemitical relationship. (AEC)

  17. Direct counterfactual communication via quantum Zeno effect

    NASA Astrophysics Data System (ADS)

    Cao, Yuan; Li, Yu-Huai; Cao, Zhu; Yin, Juan; Chen, Yu-Ao; Yin, Hua-Lei; Chen, Teng-Yun; Ma, Xiongfeng; Peng, Cheng-Zhi; Pan, Jian-Wei

    2017-05-01

    Intuition from our everyday lives gives rise to the belief that information exchanged between remote parties is carried by physical particles. Surprisingly, in a recent theoretical study [Salih H, Li ZH, Al-Amri M, Zubairy MS (2013) Phys Rev Lett 110:170502], quantum mechanics was found to allow for communication, even without the actual transmission of physical particles. From the viewpoint of communication, this mystery stems from a (nonintuitive) fundamental concept in quantum mechanics—wave-particle duality. All particles can be described fully by wave functions. To determine whether light appears in a channel, one refers to the amplitude of its wave function. However, in counterfactual communication, information is carried by the phase part of the wave function. Using a single-photon source, we experimentally demonstrate the counterfactual communication and successfully transfer a monochrome bitmap from one location to another by using a nested version of the quantum Zeno effect.

  18. Direct counterfactual communication via quantum Zeno effect.

    PubMed

    Cao, Yuan; Li, Yu-Huai; Cao, Zhu; Yin, Juan; Chen, Yu-Ao; Yin, Hua-Lei; Chen, Teng-Yun; Ma, Xiongfeng; Peng, Cheng-Zhi; Pan, Jian-Wei

    2017-05-09

    Intuition from our everyday lives gives rise to the belief that information exchanged between remote parties is carried by physical particles. Surprisingly, in a recent theoretical study [Salih H, Li ZH, Al-Amri M, Zubairy MS (2013) Phys Rev Lett 110:170502], quantum mechanics was found to allow for communication, even without the actual transmission of physical particles. From the viewpoint of communication, this mystery stems from a (nonintuitive) fundamental concept in quantum mechanics-wave-particle duality. All particles can be described fully by wave functions. To determine whether light appears in a channel, one refers to the amplitude of its wave function. However, in counterfactual communication, information is carried by the phase part of the wave function. Using a single-photon source, we experimentally demonstrate the counterfactual communication and successfully transfer a monochrome bitmap from one location to another by using a nested version of the quantum Zeno effect.

  19. Low Energy Particle Oscillations and Correlations with Hydromagnetic Waves in the Jovian Magnetosphere: Ulysses Measurements

    NASA Technical Reports Server (NTRS)

    Krupp, N.; Tsurutani, B. T.; Lanzerotti, L. J.; Maclennan, C. G.

    1996-01-01

    We report on measurements of energetic particle modulations observed by the HI-SCALE instrument aboard the Ulysses Spacecraft that were associated with the only hydromagnetic wave event measured inside the Jovian magnetosphere by the Ulysses magnetometer investigation.

  20. Evaluation of shear wave elastography for differential diagnosis of breast lesions: A new qualitative analysis versus conventional quantitative analysis.

    PubMed

    Ren, Wei-Wei; Li, Xiao-Long; Wang, Dan; Liu, Bo-Ji; Zhao, Chong-Ke; Xu, Hui-Xiong

    2018-04-13

    To evaluate a special kind of ultrasound (US) shear wave elastography for differential diagnosis of breast lesions, using a new qualitative analysis (i.e. the elasticity score in the travel time map) compared with conventional quantitative analysis. From June 2014 to July 2015, 266 pathologically proven breast lesions were enrolled in this study. The maximum, mean, median, minimum, and standard deviation of shear wave speed (SWS) values (m/s) were assessed. The elasticity score, a new qualitative feature, was evaluated in the travel time map. The area under the receiver operating characteristic (AUROC) curves were plotted to evaluate the diagnostic performance of both qualitative and quantitative analyses for differentiation of breast lesions. Among all quantitative parameters, SWS-max showed the highest AUROC (0.805; 95% CI: 0.752, 0.851) compared with SWS-mean (0.786; 95% CI:0.732, 0.834; P = 0.094), SWS-median (0.775; 95% CI:0.720, 0.824; P = 0.046), SWS-min (0.675; 95% CI:0.615, 0.731; P = 0.000), and SWS-SD (0.768; 95% CI:0.712, 0.817; P = 0.074). The AUROC of qualitative analysis in this study obtained the best diagnostic performance (0.871; 95% CI: 0.825, 0.909, compared with the best parameter of SWS-max in quantitative analysis, P = 0.011). The new qualitative analysis of shear wave travel time showed the superior diagnostic performance in the differentiation of breast lesions in comparison with conventional quantitative analysis.

  1. The Spiral Wave Instability Induced by a Giant Planet. I. Particle Stirring in the Inner Regions of Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Bae, Jaehan; Nelson, Richard P.; Hartmann, Lee

    2016-12-01

    We have recently shown that spiral density waves propagating in accretion disks can undergo a parametric instability by resonantly coupling with and transferring energy into pairs of inertial waves (or inertial-gravity waves when buoyancy is important). In this paper, we perform inviscid three-dimensional global hydrodynamic simulations to examine the growth and consequence of this instability operating on the spiral waves driven by a Jupiter-mass planet in a protoplanetary disk. We find that the spiral waves are destabilized via the spiral wave instability (SWI), generating hydrodynamic turbulence and sustained radially alternating vertical flows that appear to be associated with long wavelength inertial modes. In the interval 0.3 {R}{{p}}≤slant R≤slant 0.7{R}{{p}}, where R p denotes the semimajor axis of the planetary orbit (assumed to be 5 au), the estimated vertical diffusion rate associated with the turbulence is characterized by {α }{diff}∼ (0.2{--}1.2)× {10}-2. For the disk model considered here, the diffusion rate is such that particles with sizes up to several centimeters are vertically mixed within the first pressure scale height. This suggests that the instability of spiral waves launched by a giant planet can significantly disperse solid particles and trace chemical species from the midplane. In planet formation models where the continuous local production of chondrules/pebbles occurs over Myr timescales to provide a feedstock for pebble accretion onto these bodies, this stirring of solid particles may add a time constraint: planetary embryos and large asteroids have to form before a gas giant forms in the outer disk, otherwise the SWI will significantly decrease the chondrule/pebble accretion efficiency.

  2. Combinatorial approach to the representation of the Schur-Weyl duality in one-dimensional spin systems

    NASA Astrophysics Data System (ADS)

    Jakubczyk, Dorota; Jakubczyk, Paweł

    2018-02-01

    We propose combinatorial approach to the representation of Schur-Weyl duality in physical systems on the example of one-dimensional spin chains. Exploiting the Robinson-Schensted-Knuth algorithm, we perform decomposition of the dual group representations into irreducible representations in a fully combinatorial way. As representation space, we choose the Hilbert space of the spin chains, but this approach can be easily generalized to an arbitrary physical system where the Schur-Weyl duality works.

  3. Particle swarm optimization and gravitational wave data analysis: Performance on a binary inspiral testbed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Yan; Mohanty, Soumya D.; Center for Gravitational Wave Astronomy, Department of Physics and Astronomy, University of Texas at Brownsville, 80 Fort Brown, Brownsville, Texas 78520

    2010-03-15

    The detection and estimation of gravitational wave signals belonging to a parameterized family of waveforms requires, in general, the numerical maximization of a data-dependent function of the signal parameters. Because of noise in the data, the function to be maximized is often highly multimodal with numerous local maxima. Searching for the global maximum then becomes computationally expensive, which in turn can limit the scientific scope of the search. Stochastic optimization is one possible approach to reducing computational costs in such applications. We report results from a first investigation of the particle swarm optimization method in this context. The method ismore » applied to a test bed motivated by the problem of detection and estimation of a binary inspiral signal. Our results show that particle swarm optimization works well in the presence of high multimodality, making it a viable candidate method for further applications in gravitational wave data analysis.« less

  4. Research on a Lamb Wave and Particle Filter-Based On-Line Crack Propagation Prognosis Method.

    PubMed

    Chen, Jian; Yuan, Shenfang; Qiu, Lei; Cai, Jian; Yang, Weibo

    2016-03-03

    Prognostics and health management techniques have drawn widespread attention due to their ability to facilitate maintenance activities based on need. On-line prognosis of fatigue crack propagation can offer information for optimizing operation and maintenance strategies in real-time. This paper proposes a Lamb wave-particle filter (LW-PF)-based method for on-line prognosis of fatigue crack propagation which takes advantages of the possibility of on-line monitoring to evaluate the actual crack length and uses a particle filter to deal with the crack evolution and monitoring uncertainties. The piezoelectric transducers (PZTs)-based active Lamb wave method is adopted for on-line crack monitoring. The state space model relating to crack propagation is established by the data-driven and finite element methods. Fatigue experiments performed on hole-edge crack specimens have validated the advantages of the proposed method.

  5. Open-quantum-systems approach to complementarity in neutral-kaon interferometry

    NASA Astrophysics Data System (ADS)

    de Souza, Gustavo; de Oliveira, J. G. G.; Varizi, Adalberto D.; Nogueira, Edson C.; Sampaio, Marcos D.

    2016-12-01

    In bipartite quantum systems, entanglement correlations between the parties exerts direct influence in the phenomenon of wave-particle duality. This effect has been quantitatively analyzed in the context of two qubits by Jakob and Bergou [Opt. Commun. 283, 827 (2010), 10.1016/j.optcom.2009.10.044]. Employing a description of the K -meson propagation in free space where its weak decay states are included as a second party, we study here this effect in the kaon-antikaon oscillations. We show that a new quantitative "triality" relation holds, similar to the one considered by Jakob and Bergou. In our case, it relates the distinguishability between the decay-product states corresponding to the distinct kaon propagation modes KS, KL, the amount of wave-like path interference between these states, and the amount of entanglement given by the reduced von Neumann entropy. The inequality can account for the complementarity between strangeness oscillations and lifetime information previously considered in the literature, therefore allowing one to see how it is affected by entanglement correlations. As we will discuss, it allows one to visualize clearly through the K0-K ¯0 oscillations the fundamental role of entanglement in quantum complementarity.

  6. Quantitative Understanding on the Amplitude Decay Characteristic of the Evanescent Electromagnetic Waves Generated by Seismoelectric Conversion

    NASA Astrophysics Data System (ADS)

    Ren, Hengxin; Huang, Qinghua; Chen, Xiaofei

    2018-03-01

    We conduct numerical simulations and theoretical analyses to quantitatively study the amplitude decay characteristic of the evanescent electromagnetic (EM) waves, which has been neglected in previous studies on the seismoelectric conversion occurring at a porous-porous interface. Time slice snapshots of seismic and EM wave-fields generated by a vertical single force point source in a two-layer porous model show that evanescent EM waves can be induced at a porous-porous interface. The seismic and EM wave-fields computed for a receiver array located in a vertical line nearby the interface are investigated in detail. In addition to the direct and interface-response radiation EM waves, we identify three groups of coseismic EM fields and evanescent EM waves associated with the direct P, refracted SV-P and direct SV waves, respectively. Thereafter, we derive the mathematical expression of the amplitude decay factor of the evanescent EM waves. This mathematical expression is further validated by our numerical simulations. It turns out the amplitude decay of the evanescent EM waves generated by seismoelectric conversion is greatly dependent on the horizontal wavenumber of seismic waves. It is also found the evanescent EM waves have a higher detectability at a lower frequency range. This work provides a better understanding on the EM wave-fields generated by seismoelectric conversion, which probably will help improve the interpretation of the seismoelectric coupling phenomena associated with natural earthquakes or possibly will inspire some new ideas on the application of the seismoelectric coupling effect.

  7. Two-fluid description of wave-particle interactions in strong Buneman turbulence

    NASA Astrophysics Data System (ADS)

    Che, H.

    2014-06-01

    To understand the nature of anomalous resistivity in magnetic reconnection, we investigate turbulence-induced momentum transport and energy dissipation while a plasma is unstable to the Buneman instability in force-free current sheets. Using 3D particle-in-cell simulations, we find that the macroscopic effects generated by wave-particle interactions in Buneman instability can be approximately described by a set of electron fluid equations. We show that both energy dissipation and momentum transport along electric current in the current layer are locally quasi-static, but globally dynamic and irreversible. Turbulent drag dissipates both the streaming energy of the current sheet and the associated magnetic energy. The net loss of streaming energy is converted into the electron component heat conduction parallel to the magnetic field and increases the electron Boltzmann entropy. The growth of self-sustained Buneman waves satisfies a Bernoulli-like equation that relates the turbulence-induced convective momentum transport and thermal momentum transport. Electron trapping and de-trapping drive local momentum transports, while phase mixing converts convective momentum into thermal momentum. The drag acts like a micro-macro link in the anomalous heating processes. The decrease of magnetic field maintains an inductive electric field that re-accelerates electrons, but most of the magnetic energy is dissipated and converted into the component heat of electrons perpendicular to the magnetic field. This heating process is decoupled from the heating of Buneman instability in the current sheets. Ion heating is weak but ions play an important role in assisting energy exchanges between waves and electrons. Cold ion fluid equations together with our electron fluid equations form a complete set of equations that describes the occurrence, growth, saturation and decay of the Buneman instability.

  8. PARTICLE DISPLACEMENTS ON THE WALL OF A BOREHOLE FROM INCIDENT PLANE WAVES.

    USGS Publications Warehouse

    Lee, M.W.

    1987-01-01

    Particle displacements from incident plane waves at the wall of a fluid-filled borehole are formulated by applying the seismic reciprocity theorem to far-field displacement fields. Such displacement fields are due to point forces acting on a fluid-filled borehole under the assumption of long wavelengths. The displacement fields are analyzed to examine the effect of the borehole on seismic wave propagation, particularly for vertical seismic profiling (VSP) measurements. When the shortest wavelength of interest is approximately 25 times longer than the borehole's diameter, the scattered displacements are proportional to the first power of incident frequency and borehole diameter. When the shortest wavelength of interest is about 40 times longer than the borehole's diameter, borehole effects on VSP measurements using a wall-locking geophone are negligible.

  9. A double-taper optical fiber-based radiation wave other than evanescent wave in all-fiber immunofluorescence biosensor for quantitative detection of Escherichia coli O157:H7.

    PubMed

    Zhang, Zhonghuan; Hua, Fei; Liu, Ting; Zhao, Yong; Li, Jun; Yang, Ruifu; Yang, Changxi; Zhou, Lei

    2014-01-01

    Cylindrical or taper-and-cylinder combination optical fiber probe based on evanescent wave has been widely used for immunofluorescence biosensor to detect various analytes. In this study, in contrast to the contradiction between penetration depth and analyte diameter of optical fiber probe-based evanescent wave, we demonstrate that double-taper optical fiber used in a radiation wave-based all-fiber immunofluorescence biosensor (RWAIB) can detect micron-scale analytes using Escherichia coli O157:H7 as representative target. Finite-difference time-domain method was used to compare the properties of evanescent wave and radiation wave (RW). Ray-tracing model was formulated to optimize the taper geometry of the probe. Based on a commercial multi-mode fiber, a double-taper probe was fabricated and connected with biosensor through a "ferrule connector" optical fiber connector. The RWAIB configuration was accomplished using commercial multi-mode fibers and fiber-based devices according to the "all-fiber" method. The standard sample tests revealed that the sensitivity of the proposed technique for E. coli O157:H7 detection was 10(3) cfu · mL(-1). Quantitation could be achieved within the concentration range of 10(3) cfu · mL(-1) to 107 cfu · mL(-1). No non-specific recognition to ten kinds of food-borne pathogens was observed. The results demonstrated that based on the double-taper optical fiber RWAIB can be used for the quantitative detection of micron-scale targets, and RW sensing is an alternative for traditional evanescent wave sensing during the fabrication of fiber-optic biosensors.

  10. N-person differential games. Part 1: Duality-finite element methods

    NASA Technical Reports Server (NTRS)

    Chen, G.; Zheng, Q.

    1983-01-01

    The duality approach, which is motivated by computational needs and is done by introducing N + 1 Language multipliers is addressed. For N-person linear quadratic games, the primal min-max problem is shown to be equivalent to the dual min-max problem.

  11. New dualities and misleading anomaly matchings from outer-automorphism twists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, Sridip; Song, Jaewon

    We study four-dimensional N=1, 2 superconformal theories in class S obtained by compactifying the 6d N=(2, 0) theory on a Riemann surface C with outer-automorphism twist lines. From the pair-of-pants decompositions of C, we find various dual descriptions for the same theory having distinct gauge groups. We show that the various configurations of the twist line give rise to dual descriptions for the identical theory. We compute the ’t Hooft anomaly coefficients and the superconformal indices to test dualities. Surprisingly, we find that the class S theories with twist lines wrapping 1-cycles of C have the identical ’t Hooft anomaliesmore » as the ones without the twist line, whereas the superconformal indices differ. As a result, this provides a large set of examples where the anomaly matching is insufficient to test dualities.« less

  12. New dualities and misleading anomaly matchings from outer-automorphism twists

    DOE PAGES

    Pal, Sridip; Song, Jaewon

    2017-03-29

    We study four-dimensional N=1, 2 superconformal theories in class S obtained by compactifying the 6d N=(2, 0) theory on a Riemann surface C with outer-automorphism twist lines. From the pair-of-pants decompositions of C, we find various dual descriptions for the same theory having distinct gauge groups. We show that the various configurations of the twist line give rise to dual descriptions for the identical theory. We compute the ’t Hooft anomaly coefficients and the superconformal indices to test dualities. Surprisingly, we find that the class S theories with twist lines wrapping 1-cycles of C have the identical ’t Hooft anomaliesmore » as the ones without the twist line, whereas the superconformal indices differ. As a result, this provides a large set of examples where the anomaly matching is insufficient to test dualities.« less

  13. Acoustically mediated long-range interaction among multiple spherical particles exposed to a plane standing wave

    NASA Astrophysics Data System (ADS)

    Zhang, Shenwei; Qiu, Chunyin; Wang, Mudi; Ke, Manzhu; Liu, Zhengyou

    2016-11-01

    In this work, we study the acoustically mediated interaction forces among multiple well-separated spherical particles trapped in the same node or antinode plane of a standing wave. An analytical expression of the acoustic interaction force is derived, which is accurate even for the particles beyond the Rayleigh limit. Interestingly, the multi-particle system can be decomposed into a series of independent two-particle systems described by pairwise interactions. Each pairwise interaction is a long-range interaction, as characterized by a soft oscillatory attenuation (at the power exponent of n = -1 or -2). The vector additivity of the acoustic interaction force, which is not well expected considering the nonlinear nature of the acoustic radiation force, is greatly useful for exploring a system consisting of a large number of particles. The capability of self-organizing a big particle cluster can be anticipated through such acoustically controllable long-range interaction.

  14. Quantitative ultrasonic coda wave (diffuse field) NDE of carbon-fiber reinforced polymer plates

    NASA Astrophysics Data System (ADS)

    Livings, Richard A.

    The increasing presence and applications of composite materials in aerospace structures precipitates the need for improved Nondestructive Evaluation (NDE) techniques to move from simple damage detection to damage diagnosis and structural prognosis. Structural Health Monitoring (SHM) with advanced ultrasonic (UT) inspection methods can potentially address these issues. Ultrasonic coda wave NDE is one of the advanced methods currently under investigation. Coda wave NDE has been applied to concrete and metallic specimens to assess damage with some success, but currently the method is not fully mature or ready to be applied for SHM. Additionally, the damage diagnosis capabilities and limitations of coda wave NDE applied to fibrous composite materials have not been widely addressed in literature. The central objective of this work, therefore, is to develop a quantitative foundation for the use of coda wave NDE for the inspection and evaluation of fibrous composite materials. Coda waves are defined as the superposition of late arriving wave modes that have been scattered or reflected multiple times. This results in long, complex signals where individual wave modes cannot be discriminated. One method of interpreting the changes in such signals caused by the introduction or growth of damage is to isolate and quantify the difference between baseline and damage signals. Several differential signal features are used in this work to quantify changes in the coda waves which can then be correlated to damage size and growth. Experimental results show that coda wave differential features are effective in detecting drilled through-holes as small as 0.4 mm in a 50x100x6 mm plate and discriminating between increasing hole diameter and increasing number of holes. The differential features are also shown to have an underlying basis function that is dependent on the hole volume and can be scaled by a material dependent coefficient to estimate the feature amplitude and size holes. The

  15. Quark-hadron duality and parity violating asymmetry of electroweak reactions in the {delta} region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, K.; Sato, T.; Lee, T.-S.H.

    2005-08-01

    A dynamical model [T. Sato and T.-S. H. Lee, Phys. Rev. C 54, 2660 (1996); 63, 055201 (2001); T. Sato, D. Uno, and T.-S. H. Lee, ibid. 67, 065201 (2003)] of electroweak pion production reactions in the {delta}(1232) region has been extended to include the neutral current contributions for examining the local quark-hadron duality in neutrino-induced reactions and for investigating how the axial N-{delta} form factor can be determined by the parity violating asymmetry of N(e{sup {yields}},e{sup '}) reactions. We first show that the recent data of (e,e{sup '}) structure functions F{sub 1} and F{sub 2}, which exhibit the quark-hadronmore » duality, are in good agreement with our predictions. For possible future experimental tests, we then predict that the structure functions F{sub 1},F{sub 2}, and F{sub 3} for ({nu},e) and ({nu},{nu}{sup '}) processes also show the similar quark-hadron duality. The spin-dependent structure functions g{sub 1} and g{sub 2} of (e,e{sup '}) have also been calculated from our model. It is found that the local quark-hadron duality is not seen in the calculated g{sub 1} and g{sub 2}, while our results for g{sub 1} and some polarization observables associated with the exclusive p(e{sup {yields}},e{sup '}{pi}) and p{sup {yields}}(e{sup {yields}},e{sup '}{pi}) reactions are in reasonably good agreement with the recent data. In the study of parity violating asymmetry A of N(e{sup {yields}},e{sup '}) reactions, the relative importance between the nonresonant mechanisms and the {delta} excitation is investigated by taking into account the unitarity condition. Predictions are made for using the data of A to test the axial N-{delta} form factors determined previously in the studies of N({nu}{sub {mu}},{mu}{sup -}{pi}) reactions. The predicted asymmetry A are also compared with the parton model predictions for future experimental investigations of quark-hadron duality.« less

  16. Gaussian and Airy wave packets of massive particles with orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Karlovets, Dmitry V.

    2015-01-01

    While wave-packet solutions for relativistic wave equations are oftentimes thought to be approximate (paraxial), we demonstrate, by employing a null-plane- (light-cone-) variable formalism, that there is a family of such solutions that are exact. A scalar Gaussian wave packet in the transverse plane is generalized so that it acquires a well-defined z component of the orbital angular momentum (OAM), while it may not acquire a typical "doughnut" spatial profile. Such quantum states and beams, in contrast to the Bessel states, may have an azimuthal-angle-dependent probability density and finite uncertainty of the OAM, which is determined by the packet's width. We construct a well-normalized Airy wave packet, which can be interpreted as a one-particle state for a relativistic massive boson, show that its center moves along the same quasiclassical straight path, and, which is more important, spreads with time and distance exactly as a Gaussian wave packet does, in accordance with the uncertainty principle. It is explained that this fact does not contradict the well-known "nonspreading" feature of the Airy beams. While the effective OAM for such states is zero, its uncertainty (or the beam's OAM bandwidth) is found to be finite, and it depends on the packet's parameters. A link between exact solutions for the Klein-Gordon equation in the null-plane-variable formalism and the approximate ones in the usual approach is indicated; generalizations of these states for a boson in the external field of a plane electromagnetic wave are also presented.

  17. Quantitative shear wave optical coherence elastography (SW-OCE) with acoustic radiation force impulses (ARFI) induced by phase array transducer

    NASA Astrophysics Data System (ADS)

    Song, Shaozhen; Le, Nhan Minh; Wang, Ruikang K.; Huang, Zhihong

    2015-03-01

    Shear Wave Optical Coherence Elastography (SW-OCE) uses the speed of propagating shear waves to provide a quantitative measurement of localized shear modulus, making it a valuable technique for the elasticity characterization of tissues such as skin and ocular tissue. One of the main challenges in shear wave elastography is to induce a reliable source of shear wave; most of nowadays techniques use external vibrators which have several drawbacks such as limited wave propagation range and/or difficulties in non-invasive scans requiring precisions, accuracy. Thus, we propose linear phase array ultrasound transducer as a remote wave source, combined with the high-speed, 47,000-frame-per-second Shear-wave visualization provided by phase-sensitive OCT. In this study, we observed for the first time shear waves induced by a 128 element linear array ultrasound imaging transducer, while the ultrasound and OCT images (within the OCE detection range) were triggered simultaneously. Acoustic radiation force impulses are induced by emitting 10 MHz tone-bursts of sub-millisecond durations (between 50 μm - 100 μm). Ultrasound beam steering is achieved by programming appropriate phase delay, covering a lateral range of 10 mm and full OCT axial (depth) range in the imaging sample. Tissue-mimicking phantoms with agarose concentration of 0.5% and 1% was used in the SW-OCE measurements as the only imaging samples. The results show extensive improvements over the range of SW-OCE elasticity map; such improvements can also be seen over shear wave velocities in softer and stiffer phantoms, as well as determining the boundary of multiple inclusions with different stiffness. This approach opens up the feasibility to combine medical ultrasound imaging and SW-OCE for high-resolution localized quantitative measurement of tissue biomechanical property.

  18. Serre duality, Abel's theorem, and Jacobi inversion for supercurves over a thick superpoint

    NASA Astrophysics Data System (ADS)

    Rothstein, Mitchell J.; Rabin, Jeffrey M.

    2015-04-01

    The principal aim of this paper is to extend Abel's theorem to the setting of complex supermanifolds of dimension 1 | q over a finite-dimensional local supercommutative C-algebra. The theorem is proved by establishing a compatibility of Serre duality for the supercurve with Poincaré duality on the reduced curve. We include an elementary algebraic proof of the requisite form of Serre duality, closely based on the account of the reduced case given by Serre in Algebraic groups and class fields, combined with an invariance result for the topology on the dual of the space of répartitions. Our Abel map, taking Cartier divisors of degree zero to the dual of the space of sections of the Berezinian sheaf, modulo periods, is defined via Penkov's characterization of the Berezinian sheaf as the cohomology of the de Rham complex of the sheaf D of differential operators. We discuss the Jacobi inversion problem for the Abel map and give an example demonstrating that if n is an integer sufficiently large that the generic divisor of degree n is linearly equivalent to an effective divisor, this need not be the case for all divisors of degree n.

  19. The effect of plasma inhomogeneities on (i) radio emission generation by non-gyrotropic electron beams and (ii) particle acceleration by Langmuir waves

    NASA Astrophysics Data System (ADS)

    Tsiklauri, D.

    2014-12-01

    Extensive particle-in-cell simulations of fast electron beams injected in a background magnetised plasma with a decreasing density profile were carried out. These simulations were intended to further shed light on a newly proposed mechanism for the generation of electromagnetic waves in type III solar radio bursts [1]. Here recent progress in an alternative to the plasma emission model using Particle-In-Cell, self-consistent electromagnetic wave emission simulations of solar type III radio bursts will be presented. In particular, (i) Fourier space drift (refraction) of non-gyrotropic electron beam-generated wave packets, caused by the density gradient [1,2], (ii) parameter space investigation of numerical runs [3], (iii) concurrent generation of whistler waves [4] and a separate problem of (iv) electron acceleration by Langmuir waves in a background magnetised plasma with an increasing density profile [5] will be discussed. In all considered cases the density inhomogeneity-induced wave refraction plays a crucial role. In the case of non-gyrotropic electron beam, the wave refaction transforms the generated wave packets from standing into freely escaping EM radiation. In the case of electron acceleration by Langmuir waves, a positive density gradient in the direction of wave propagation causes a decrease in the wavenumber, and hence a higher phase velocity vph=ω/k. The k-shifted wave is then subject to absorption by a faster electron by wave-particle interaction. The overall effect is an increased number of high energy electrons in the energy spectrum. [1] D. Tsiklauri, Phys. Plasmas 18, 052903 (2011) [2] H. Schmitz, D. Tsiklauri, Phys. Plasmas 20, 062903 (2013) [3] R. Pechhacker, D. Tsiklauri, Phys. Plasmas 19, 112903 (2012) [4] M. Skender, D. Tsiklauri, Phys. Plasmas 21, 042904 (2014) [5] R. Pechhacker, D. Tsiklauri, Phys. Plasmas 21, 012903 (2014)

  20. Test on the Effectiveness of the Sum over Paths Approach in Favoring the Construction of an Integrated Knowledge of Quantum Physics in High School

    ERIC Educational Resources Information Center

    Malgieri, Massimiliano; Onorato, Pasquale; De Ambrosis, Anna

    2017-01-01

    In this paper we present the results of a research-based teaching-learning sequence on introductory quantum physics based on Feynman's sum over paths approach in the Italian high school. Our study focuses on students' understanding of two founding ideas of quantum physics, wave particle duality and the uncertainty principle. In view of recent…

  1. A Search for Wave Induced Particle Precipitation from Lightning and Transmitter Sources

    DTIC Science & Technology

    1988-01-01

    Observed and Modeled Event 50 Transmitter Whistler Sources 58 Summary 60 Chapter 4 The Wave Induced Particle Precipitation Campaign Instrumentation 63...101 ’ iii - k~rUM-rIF%9www Chapter 7 Summary and Conclusions Summary 102 Conclusions 105 Bibliography 107 iv LIST OF TABLES Number Page 1. Model ...Precipitation Bursts 56 2. X-Ray Detector Differential Channels 75 vB -- - -- - LIST OF FIGURES Number Page 1. Global Electrical circuit 2 2. Vertical

  2. Particle propagation, wave growth and energy dissipation in a flaring flux tube

    NASA Technical Reports Server (NTRS)

    White, S. M.; Melrose, D. B.; Dulk, G. A.

    1986-01-01

    Wave amplification by downgoing particles in a common flare model is investigated. The flare is assumed to occur at the top of a coronal magnetic flux loop, and results in the heating of plasma in the flaring region. The hot electrons propagate down the legs of the flux tube towards increasing magnetic field. It is simple to demonstrate that the velocity distributions which result in this model are unstable to both beam instabilities and cyclotron maser action. An explanation is presented for the propagation effects on the distribution, and the properties of the resulting amplified waves are explored, concentrating on cyclotron maser action, which has properties (emission in the z mode below the local gyrofrequency) quite different from maser action by other distributions considered in the context of solar flares. The z mode waves will be damped in the coronal plasma surrounding the flaring flux tube and lead to heating there. This process may be important in the overall energy budget of the flare. The downgoing maser is compared with the loss cone maser, which is more likely to produce observable bursts.

  3. Direct counterfactual communication via quantum Zeno effect

    PubMed Central

    Cao, Yuan; Li, Yu-Huai; Cao, Zhu; Yin, Juan; Chen, Yu-Ao; Yin, Hua-Lei; Chen, Teng-Yun; Ma, Xiongfeng; Peng, Cheng-Zhi; Pan, Jian-Wei

    2017-01-01

    Intuition from our everyday lives gives rise to the belief that information exchanged between remote parties is carried by physical particles. Surprisingly, in a recent theoretical study [Salih H, Li ZH, Al-Amri M, Zubairy MS (2013) Phys Rev Lett 110:170502], quantum mechanics was found to allow for communication, even without the actual transmission of physical particles. From the viewpoint of communication, this mystery stems from a (nonintuitive) fundamental concept in quantum mechanics—wave-particle duality. All particles can be described fully by wave functions. To determine whether light appears in a channel, one refers to the amplitude of its wave function. However, in counterfactual communication, information is carried by the phase part of the wave function. Using a single-photon source, we experimentally demonstrate the counterfactual communication and successfully transfer a monochrome bitmap from one location to another by using a nested version of the quantum Zeno effect. PMID:28442568

  4. Complexity-action duality of the shock wave geometry in a massive gravity theory

    NASA Astrophysics Data System (ADS)

    Miao, Yan-Gang; Zhao, Long

    2018-01-01

    On the holographic complexity dual to the bulk action, we investigate the action growth for a shock wave geometry in a massive gravity theory within the Wheeler-DeWitt (WDW) patch at the late time limit. For a global shock wave, the graviton mass does not affect the action growth in the bulk, i.e., the complexity on the boundary, showing that the action growth (complexity) is the same for both the Einstein gravity and the massive gravity. Nevertheless, for a local shock wave that depends on transverse coordinates, the action growth (complexity) caused by the boundary disturbance (perturbation) is proportional to the butterfly velocity for the two gravity theories, but the butterfly velocity of the massive gravity theory is smaller than that of the Einstein gravity theory, indicating that the action growth (complexity) of the massive gravity is depressed by the graviton mass. In addition, we extend the black hole thermodynamics of the massive gravity and obtain the right Smarr formula.

  5. Method for fluidizing and coating ultrafine particles, device for fluidizing and coating ultrafine particles

    DOEpatents

    Li, Jie; Liu, Yung Y

    2015-01-20

    The invention provides a method for dispersing particles within a reaction field, the method comprising confining the particles to the reaction field using a standing wave. The invention also provides a system for coating particles, the system comprising a reaction zone; a means for producing fluidized particles within the reaction zone; a fluid to produce a standing wave within the reaction zone; and a means for introducing coating moieties to the reaction zone. The invention also provides a method for coating particles, the method comprising fluidizing the particles, subjecting the particles to a standing wave; and contacting the subjected particles with a coating moiety.

  6. Absorption, scattering, and radiation force efficiencies in the longitudinal wave scattering by a small viscoelastic particle in an isotropic solid.

    PubMed

    Lopes, J H; Leão-Neto, J P; Silva, G T

    2017-11-01

    Analytical expressions of the absorption, scattering, and elastic radiation force efficiency factors are derived for the longitudinal plane wave scattering by a small viscoelastic particle in a lossless solid matrix. The particle is assumed to be much smaller than the incident wavelength, i.e., the so-called long-wavelength (Rayleigh) approximation. The efficiencies are dimensionless quantities that represent the absorbed and scattering powers and the elastic radiation force on the particle. In the quadrupole approximation, they are expressed in terms of contrast functions (bulk and shear moduli, and density) between the particle and solid matrix. The results for a high-density polyethylene particle embedded in an aluminum matrix agree with those obtained with the partial wave expansion method. Additionally, the connection between the elastic radiation force and forward scattering function is established through the optical theorem. The present results should be useful for ultrasound characterization of particulate composites, and the development of implanted devices activated by radiation force.

  7. Space-Time Characteristic Functions in Multivariate Logic and Possible Interpretation of Entanglement

    NASA Astrophysics Data System (ADS)

    Gaudeau de Gerlicz, Claude; Sechpine, Pierre; Bobola, Philippe; Antoine, Mathias

    The knowledge about hidden variables in physics, (Bohr's-Schrödinger theories) and their developments, boundaries seem more and more fuzzy at physical scales. Also some other new theories give to both time and space as much fuzziness. The classical theory, (school of Copenhagen's) and also Heisenberg and Louis de Broglie give us the idea of a dual wave and particle parts such the way we observe. Thus, the Pondichery interpretation recently developed by Cramer and al. gives to the time part this duality. According Cramer, there could be a little more to this duality, some late or advanced waves of time that have been confirmed and admitted as possible solutions with the Maxwell's equations. We developed here a possible pattern that could matched in the sequence between Space and both retarded and advanced time wave in the "Cramer handshake" in locality of the present when the observation is made everything become local.

  8. Landauer-Büttiker Approach to Strongly Coupled Quantum Thermodynamics: Inside-Outside Duality of Entropy Evolution

    NASA Astrophysics Data System (ADS)

    Bruch, Anton; Lewenkopf, Caio; von Oppen, Felix

    2018-03-01

    We develop a Landauer-Büttiker theory of entropy evolution in time-dependent, strongly coupled electron systems. The formalism naturally avoids the problem of the system-bath distinction by defining the entropy current in the attached leads. This current can then be used to infer changes of the entropy of the system which we refer to as the inside-outside duality. We carry out this program in an adiabatic expansion up to first order beyond the quasistatic limit. When combined with particle and energy currents, as well as the work required to change an external potential, our formalism provides a full thermodynamic description, applicable to arbitrary noninteracting electron systems in contact with reservoirs. This provides a clear understanding of the relation between heat and entropy currents generated by time-dependent potentials and their connection to the occurring dissipation.

  9. Diffractive Scattering and Gauge/String Duality

    ScienceCinema

    Tan, Chung-I

    2018-05-11

    High-energy diffractive scattering will be discussed based on Gauge/String duality. As shown by Brower, Polchinski, Strassler and Tan, the ubiquitous Pomeron emerges naturally in gauge theories with string-theoretical descriptions. Its existence is intimately tied to gluons, and also to the energy-momentum tensor. With a confining dual background metric, the Pomeron can be interpreted as a 'massive graviton'. In a single unified step, both its infrared and ultraviolet properties are dealt with, reflecting confinement and conformal symmetry respectively. An effective field theory for high-energy scattering can be constructed. Applications based on this approach will also be described.

  10. Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves.

    PubMed

    Wang, Zhuochen; Zhe, Jiang

    2011-04-07

    Manipulation of microscale particles and fluid liquid droplets is an important task for lab-on-a-chip devices for numerous biological researches and applications, such as cell detection and tissue engineering. Particle manipulation techniques based on surface acoustic waves (SAWs) appear effective for lab-on-a-chip devices because they are non-invasive, compatible with soft lithography micromachining, have high energy density, and work for nearly any type of microscale particles. Here we review the most recent research and development of the past two years in SAW based particle and liquid droplet manipulation for lab-on-a-chip devices including particle focusing and separation, particle alignment and patterning, particle directing, and liquid droplet delivery.

  11. Quantitative determination of low-Z elements in single atmospheric particles on boron substrates by automated scanning electron microscopy-energy-dispersive X-ray spectrometry.

    PubMed

    Choël, Marie; Deboudt, Karine; Osán, János; Flament, Pascal; Van Grieken, René

    2005-09-01

    Atmospheric aerosols consist of a complex heterogeneous mixture of particles. Single-particle analysis techniques are known to provide unique information on the size-resolved chemical composition of aerosols. A scanning electron microscope (SEM) combined with a thin-window energy-dispersive X-ray (EDX) detector enables the morphological and elemental analysis of single particles down to 0.1 microm with a detection limit of 1-10 wt %, low-Z elements included. To obtain data statistically representative of the air masses sampled, a computer-controlled procedure can be implemented in order to run hundreds of single-particle analyses (typically 1000-2000) automatically in a relatively short period of time (generally 4-8 h, depending on the setup and on the particle loading). However, automated particle analysis by SEM-EDX raises two practical challenges: the accuracy of the particle recognition and the reliability of the quantitative analysis, especially for micrometer-sized particles with low atomic number contents. Since low-Z analysis is hampered by the use of traditional polycarbonate membranes, an alternate choice of substrate is a prerequisite. In this work, boron is being studied as a promising material for particle microanalysis. As EDX is generally said to probe a volume of approximately 1 microm3, geometry effects arise from the finite size of microparticles. These particle geometry effects must be corrected by means of a robust concentration calculation procedure. Conventional quantitative methods developed for bulk samples generate elemental concentrations considerably in error when applied to microparticles. A new methodology for particle microanalysis, combining the use of boron as the substrate material and a reverse Monte Carlo quantitative program, was tested on standard particles ranging from 0.25 to 10 microm. We demonstrate that the quantitative determination of low-Z elements in microparticles is achievable and that highly accurate results can be

  12. Quantitative Measures of Chaotic Charged Particle Dynamics in the Magnetotail

    NASA Astrophysics Data System (ADS)

    Holland, D. L.; Martin, R. F., Jr.; Burris, C.

    2017-12-01

    It has long been noted that the motion of charged particles in magnetotail-like magnetic fields is chaotic, however, efforts to quantify the degree of chaos have had conflicting conclusions. In this paper we re-examine the question by focusing on quantitative measures of chaos. We first examine the percentage of orbits that enter the chaotic region of phase space and the average trapping time of those particles. We then examine the average exponential divergence rate (AEDR) of the chaotic particles between their first and last crossing of the mid-plane. We show that at resonant energies where the underlying phase space has a high degree of symmetry, only a small number of particle enter the chaotic region, but they are trapped for long periods of time and the time asymptotic value of the AEDR is very close to the average value of the AEDR. At the off-resonant energies where the phase space is highly asymmetric, the majority of the particle enter the chaotic region for fairly short periods of time and the time asymptotic value of the AEDR is much smaller than the average value. The root cause is that in the resonant case, the longest-lived orbits tend interact with the current many times and sample the entire chaotic region, whereas in the non-resonant case the longest-lived orbits only interact with the current sheet a small number of times but have very long mirrorings where the motion is nearly regular. Additionally we use an ad-hoc model where we model the current sheet as a Lorentz scattering system with each interaction with the current sheet being considered as a "collision". We find that the average kick per collision is greatest at off-resonant energies. Finally, we propose a chaos parameter as the product of the AEDR times the average chaotic particle trapping time times the percentage of orbits that are chaotic. We find that this takes on peak values at the resonant energies.

  13. T-Duality in an H-Flux: Exchange of Momentum and Winding

    NASA Astrophysics Data System (ADS)

    Han, Fei; Mathai, Varghese

    2018-02-01

    Using our earlier proposal for Ramond-Ramond fields in an H-flux on loop space (Han et al. in Commun Math Phys 337(1):127-150, 2015. arXiv:1405.1320), we extend the Hori isomorphism in Bouwknegt et al. (Commun Math Phys 249:383-415, 2004. arXiv:hep-th/0306062; Phys Rev Lett 92:181601, 2004. arXiv:hep-th/0312052) from invariant differential forms, to invariant exotic differential forms such that the momentum and winding numbers are exchanged, filling in a gap in the literature. We also extend the compatibility of the action of invariant exact Courant algebroids on the T-duality isomorphism in Cavalcanti and Gualtieri (in: CRM proceedings of lecture notes, vol 50, pp 341-365, American Mathematical Society, Providence, 2010 ), to the T-duality isomorphism on exotic invariant differential forms.

  14. M2-brane surface operators and gauge theory dualities in Toda

    NASA Astrophysics Data System (ADS)

    Gomis, Jaume; Le Floch, Bruno

    2016-04-01

    We give a microscopic two dimensional {N} = (2, 2) gauge theory description of arbitrary M2-branes ending on N f M5-branes wrapping a punctured Riemann surface. These realize surface operators in four dimensional {N} = 2 field theories. We show that the expectation value of these surface operators on the sphere is captured by a Toda CFT correlation function in the presence of an additional degenerate vertex operator labelled by a representation {R} of SU( N f ), which also labels M2-branes ending on M5-branes. We prove that symmetries of Toda CFT correlators provide a geometric realization of dualities between two dimensional gauge theories, including {N} = (2, 2) analogues of Seiberg and Kutasov-Schwimmer dualities. As a bonus, we find new explicit conformal blocks, braiding matrices, and fusion rules in Toda CFT.

  15. Quasi-local holographic dualities in non-perturbative 3D quantum gravity

    NASA Astrophysics Data System (ADS)

    Dittrich, Bianca; Goeller, Christophe; Livine, Etera R.; Riello, Aldo

    2018-07-01

    We present a line of research aimed at investigating holographic dualities in the context of three dimensional quantum gravity within finite bounded regions. The bulk quantum geometrodynamics is provided by the Ponzano–Regge state-sum model, which defines 3D quantum gravity as a discrete topological quantum field theory (TQFT). This formulation provides an explicit and detailed definition of the quantum boundary states, which allows a rich correspondence between quantum boundary conditions and boundary theories, thereby leading to holographic dualities between 3D quantum gravity and 2D statistical models as used in condensed matter. After presenting the general framework, we focus on the concrete example of the coherent twisted torus boundary, which allows for a direct comparison with other approaches to 3D/2D holography at asymptotic infinity. We conclude with the most interesting questions to pursue in this framework.

  16. Trigger, an active release experiment that stimulated auroral particle precipitation and wave emissions

    NASA Technical Reports Server (NTRS)

    Holmgren, G.; Bostroem, R.; Kelley, M. C.; Kintner, P. M.; Lundin, R.; Fahleson, U. V.; Bering, E. A.; Sheldon, W. R.

    1979-01-01

    The experiment design, including a description of the diagnostic and chemical release payload, and the general results are given for an auroral process simulation experiment. A drastic increase of the field aligned charged particle flux was observed over the approximate energy range 10 eV to more than 300 keV, starting about 150 ms after the release and lasting about one second. The is evidence of a second particle burst, starting one second after the release and lasting for tens of seconds, and evidence for a periodic train of particle bursts occurring with a 7.7 second period from 40 to 130 seconds after the release. A transient electric field pulse of 200 mv/m appeared just before the particle flux increase started. Electrostatic wave emissions around 2 kHz, as well as a delayed perturbation of the E-region below the plasma cloud were also observed. Some of the particle observations are interpreted in terms of field aligned electrostatic acceleration a few hundred kilometers above the injected plasma cloud. It is suggested that the acceleration electric field was created by an instability driven by field aligned currents originating in the plasma cloud.

  17. Heating up the Baryonic Branch with U-duality: a unified picture of conifold black holes

    NASA Astrophysics Data System (ADS)

    Cáceres, Elena; Núñez, Carlos; Pando Zayas, Leopoldo A.

    2011-03-01

    We study different aspects of a U-duality recently presented by Maldacena and Martelli and apply it to non-extremal backgrounds. In particular, starting from new non-extremal wrapped D5 branes we generate new non-extremal generalizations of the Baryonic Branch of the Klebanov-Strassler solution. We also elaborate on different conceptual aspects of these U-dualities, like its action on (extremal and non-extremal) Dp branes, dual models for Yang-Mills-like theories, generic asymptotics and decoupling limit of the generated solutions.

  18. Are snakes particles or waves? Scattering of a limbless locomotor through a single slit

    NASA Astrophysics Data System (ADS)

    Qian, Feifei; Dai, Jin; Gong, Chaohui; Choset, Howie; Goldman, Daniel

    Droplets on vertically vibrated fluid surfaces can walk and diffract through a single slit by a pilot wave hydrodynamic interaction [Couder, 2006; Bush, 2015]. Inspired by the correspondence between emergent macroscale dynamics and phenomena in quantum systems, we tested if robotic snakes, which resemble wave packets, behave emergently like particles or waves when interacting with an obstacle. In lab experiments and numerical simulations we measured how a multi-module snake-like robot swam through a single slit. We controlled the snake undulation gait as a fixed serpenoid traveling wave pattern with varying amplitude and initial phase, and we examined the snake trajectory as it swam through a slit with width d. Robot trajectories were straight before interaction with the slit, then exited at different scattering angle θ after the interaction due to a complex interaction of the body wave with the slit. For fixed amplitude and large d, the snake passed through the slit with minimal interaction and theta was ~ 0 . For sufficiently small d, θ was finite and bimodally distributed, depending on the initial phase. For intermediate d, θ was sensitive to initial phase, and the width of the distribution of θ increased with decreasing d.

  19. Introducing Quantum Mechanics in the Upper Secondary School: A Study in Norway.

    ERIC Educational Resources Information Center

    Olsen, Rolf V.

    2002-01-01

    Reports on a study examining how upper secondary students (18-19-years-old) in Norway come to terms with wave-particle duality as presented as part of a short introduction to quantum physics. Concludes that school physics should give a more explicit focus to the challenge that quantum physics presents to the classical worldview. (Contains 30…

  20. Improving particle beam acceleration in plasmas

    NASA Astrophysics Data System (ADS)

    C. de Sousa, M.; L. Caldas, I.

    2018-04-01

    The dynamics of wave-particle interactions in magnetized plasmas restricts the wave amplitude to moderate values for particle beam acceleration from rest energy. We analyze how a perturbing invariant robust barrier modifies the phase space of the system and enlarges the wave amplitude interval for particle acceleration. For low values of the wave amplitude, the acceleration becomes effective for particles with initial energy close to the rest energy. For higher values of the wave amplitude, the robust barrier controls chaos in the system and restores the acceleration process. We also determine the best position for the perturbing barrier in phase space in order to increase the final energy of the particles.

  1. Self-duality and phase structure of the 4D random-plaquette Z2 gauge model

    NASA Astrophysics Data System (ADS)

    Arakawa, Gaku; Ichinose, Ikuo; Matsui, Tetsuo; Takeda, Koujin

    2005-03-01

    In the present paper, we shall study the 4-dimensional Z lattice gauge model with a random gauge coupling; the random-plaquette gauge model (RPGM). The random gauge coupling at each plaquette takes the value J with the probability 1-p and - J with p. This model exhibits a confinement-Higgs phase transition. We numerically obtain a phase boundary curve in the (p-T)-plane where T is the "temperature" measured in unit of J/k. This model plays an important role in estimating the accuracy threshold of a quantum memory of a toric code. In this paper, we are mainly interested in its "self-duality" aspect, and the relationship with the random-bond Ising model (RBIM) in 2-dimensions. The "self-duality" argument can be applied both for RPGM and RBIM, giving the same duality equations, hence predicting the same phase boundary. The phase boundary curve obtained by our numerical simulation almost coincides with this predicted phase boundary at the high-temperature region. The phase transition is of first order for relatively small values of p<0.08, but becomes of second order for larger p. The value of p at the intersection of the phase boundary curve and the Nishimori line is regarded as the accuracy threshold of errors in a toric quantum memory. It is estimated as p=0.110±0.002, which is very close to the value conjectured by Takeda and Nishimori through the "self-duality" argument.

  2. Evidence for charge-vortex duality at the LaAlO3/SrTiO3 interface.

    PubMed

    Mehta, M M; Dikin, D A; Bark, C W; Ryu, S; Folkman, C M; Eom, C B; Chandrasekhar, V

    2012-07-17

    The concept of duality has proved extremely powerful in extending our understanding in many areas of physics. Charge-vortex duality has been proposed as a model to understand the superconductor to insulator transition in disordered thin films and Josephson junction arrays. In this model, on the superconducting side, one has delocalized Cooper pairs but localized vortices; while on the insulating side, one has localized Cooper pairs but mobile vortices. Here we show a new experimental manifestation of this duality in the electron gas that forms at the interface between LaAlO(3) and SrTiO(3). The effect is due to the motion of vortices generated by the magnetization dynamics of the ferromagnet that also forms at the same interface, which results in an increase in resistance on the superconducting side of the transition, but an increase in conductance on the insulating side.

  3. Results of an ISEE-1 experiment to study the interactions between energetic particles and discrete VLF waves in the magnetosphere

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Despite the malfunctioning of the digital portion of the experiment which is encoding the absolute amplitude of the wave spectrum with a fixed bias of approximately 20 dB, the analog portion of the instrument is acquiring excellent data concerning the wave function and relative amplitude. Results obtained over a 2-year period which have important implications for magnetospheric wave-particle interactions are examined in the areas of emission generation by nonconducted coherent waves, and cold plasma distribution in the inner magnetosphere.

  4. Self-duality in superconductor-insulator quantum phase transitions

    PubMed

    Schakel

    2000-10-30

    It is argued that close to a Coulomb interacting quantum critical point the interaction between two vortices in a disordered superconducting thin film separated by a distance r changes from logarithmic in the mean-field region to 1/r in the region dominated by quantum critical fluctuations. This gives support to the charge-vortex duality picture of the observed reflection symmetry in the current-voltage characteristics on both sides of the transition.

  5. Scattering on plane waves and the double copy

    NASA Astrophysics Data System (ADS)

    Adamo, Tim; Casali, Eduardo; Mason, Lionel; Nekovar, Stefan

    2018-01-01

    Perturbatively around flat space, the scattering amplitudes of gravity are related to those of Yang–Mills by colour-kinematic duality, under which gravitational amplitudes are obtained as the ‘double copy’ of the corresponding gauge theory amplitudes. We consider the question of how to extend this relationship to curved scattering backgrounds, focusing on certain ‘sandwich’ plane waves. We calculate the 3-point amplitudes on these backgrounds and find that a notion of double copy remains in the presence of background curvature: graviton amplitudes on a gravitational plane wave are the double copy of gluon amplitudes on a gauge field plane wave. This is non-trivial in that it requires a non-local replacement rule for the background fields and the momenta and polarization vectors of the fields scattering on the backgrounds. It must also account for new ‘tail’ terms arising from scattering off the background. These encode a memory effect in the scattering amplitudes, which naturally double copies as well.

  6. Space-Based Gravitational-Wave Observations as Tools for Testing General Relativity

    NASA Technical Reports Server (NTRS)

    Will, Clifford M.

    2004-01-01

    We continued a project, to analyse the ways in which detection and study of gravitational waves could provide quantitative tests of general relativity, with particular emphasis on waves that would be detectable by space-based observatories, such as LISA. This work had three foci: 1) Tests of scalar-tensor theories of gravity that, could be done by analyzing gravitational waves from neutron stars inspiralling into massive black holes, as detectable by LISA; 2) Study of alternative theories of gravity in which the graviton could be massive, and of how gravitational-wave observations by space-based detectors, solar-system tests, and cosmological observations could constrain such theories; and 3) Study of gravitational-radiation back reaction of particles orbiting black holes in general relativity, with emphasis on the effects of spin.

  7. 2d affine XY-spin model/4d gauge theory duality and deconfinement

    NASA Astrophysics Data System (ADS)

    Anber, Mohamed M.; Poppitz, Erich; Ünsal, Mithat

    2012-04-01

    We introduce a duality between two-dimensional XY-spin models with symmetry-breaking perturbations and certain four-dimensional SU(2) and SU(2)/ {{Z}_2} gauge theories, compactified on a small spatial circle {{R}^{{^{{{1},{2}}}}}} × {{S}^{{^{{1}}}}} , and considered at temperatures near the deconfinement transition. In a Euclidean set up, the theory is defined on {{R}^{{^{{2}}}}} × {{T}^{{^{{2}}}}} . Similarly, thermal gauge theories of higher rank are dual to new families of "affine" XY-spin models with perturbations. For rank two, these are related to models used to describe the melting of a 2d crystal with a triangular lattice. The connection is made through a multi-component electric-magnetic Coulomb gas representation for both systems. Perturbations in the spin system map to topological defects in the gauge theory, such as monopole-instantons or magnetic bions, and the vortices in the spin system map to the electrically charged W-bosons in field theory (or vice versa, depending on the duality frame). The duality permits one to use the two-dimensional technology of spin systems to study the thermal deconfinement and discrete chiral transitions in four-dimensional SU( N c ) gauge theories with n f ≥1 adjoint Weyl fermions.

  8. Comparison of strain and shear wave elastography for qualitative and quantitative assessment of breast masses in the same population.

    PubMed

    Kim, Hyo Jin; Kim, Sun Mi; Kim, Bohyoung; La Yun, Bo; Jang, Mijung; Ko, Yousun; Lee, Soo Hyun; Jeong, Heeyeong; Chang, Jung Min; Cho, Nariya

    2018-04-18

    We investigated addition of strain and shear wave elastography to conventional ultrasonography for the qualitative and quantitative assessment of breast masses; cut-off points were determined for strain ratio, elasticity ratio, and visual score for differentiating between benign and malignant masses. In all, 108 masses from 94 patients were evaluated with strain and shear wave elastography and scored for suspicion of malignancy, visual score, strain ratio, and elasticity ratio. The diagnostic performance between ultrasonography alone and ultrasonography combined with either type of elastography was compared; cut-off points were determined for strain ratio, elasticity ratio, and visual score. Of the 108 masses, 44 were malignant and 64 were benign. The areas under the curves were significantly higher for strain and shear wave elastography-supplemented ultrasonography (0.839 and 0.826, respectively; P = 0.656) than for ultrasonography alone (0.764; P = 0.018 and 0.035, respectively). The diagnostic performances of strain and elasticity ratios were similar when differentiating benign from malignant masses. Cut-off values for strain ratio, elasticity ratio, and visual scores for strain and shear wave elastography were 2.93, 4, 3, and 2, respectively. Both forms of elastography similarly improved the diagnostic performance of conventional ultrasonography in the qualitative and quantitative assessment of breast masses.

  9. Effect of a relative phase of waves constituting the initial perturbation and the wave interference on the dynamics of strong-shock-driven Richtmyer-Meshkov flows

    NASA Astrophysics Data System (ADS)

    Pandian, Arun; Stellingwerf, Robert F.; Abarzhi, Snezhana I.

    2017-07-01

    While it is a common wisdom that initial conditions influence the evolution of the Richtmyer-Meshkov instability (RMI), the research in this area is focused primarily on the effects of the wavelength and amplitude of the interface perturbation. The information has hitherto largely ignored the influences on RMI dynamics of the relative phase of waves constituting a multiwave initial perturbation and the interference of the perturbation waves. In this work we systematically study the influence of the relative phase and the interference of waves constituting a multiwave initial perturbation on a strong-shock-driven Richtmyer-Meshkov unstable interface separating ideal fluids with contrast densities. We apply group theory analysis and smoothed particle hydrodynamics numerical simulations. For verification and validation of the simulations, qualitative and quantitative comparisons are performed with rigorous zeroth-order, linear, and nonlinear theories as well as with gas dynamics experiments achieving good agreement. For a sample case of a two-wave (two-mode) initial perturbation we select the first-wave amplitude enabling the maximum initial growth rate of the RMI and we vary the second-wave amplitude from 1% to 100% of the first-wave amplitude. We also vary the relative phase of the first and second waves and consider the in-phase, the antiphase and the random-phase cases. We find that the relative phase and the interference of waves are important factors of RMI dynamics influencing qualitatively and quantitatively the symmetry, morphology, and growth rate of the Richtmyer-Meshkov unstable interface, as well as the order and disorder in strong-shock-driven RMI.

  10. Association of Impulsive Solar Energetic Particle Events With Large-Scale Coronal Waves

    NASA Astrophysics Data System (ADS)

    Bucik, R.; Innes, D.; Mason, G. M.; Wiedenbeck, M. E.

    2016-12-01

    Impulsive or 3He-rich solar energetic particle (SEP) events have been commonly associated with EUV jets and narrow CMEs which are believed to be the signatures of magnetic reconnection involving field lines open to interplanetary space. The elemental and isotopic fractionation in these events are thought to be caused by processes confined to the flare sites. In addition to their anomalous abundances, 3He-rich SEPs show puzzling energy spectral shapes varying from rounded forms to power laws where the later are characteristics of shock acceleration. In this study we identify 32 impulsive SEP events observed by the ACE near the Earth during the solar minimum period 2007-2010 and examine their solar sources with the high resolution STEREO EUV images. Leading the Earth, STEREO-A provided for the first time a direct view on impulsive SEP event sources, which are generally located on the Sun's western hemisphere. Surprisingly, we find that about half of the impulsive SEP events in this survey are associated with large-scale EUV coronal waves. An examination of the wave front propagation and the coronal magnetic field connections suggests that the EUV waves may affect the injection of 3He-rich SEPs into interplanetary space. We found the events with jets tend to be associated with rounded spectra and the events with coronal waves with power laws. This suggests that coronal waves may be related to the unknown second stage mechanism commonly used to interpret spectral forms of 3He-rich SEPs. R. Bucik is supported by the Deutsche Forschungsgemeinschaft under grant BU 3115/2-1.

  11. Probing the Wave Nature of Light-Matter Interaction

    DOE PAGES

    Boone, D. E.; Jackson, C. H.; Swecker, A. T.; ...

    2018-05-30

    Here, the wave-particle duality of light is a controversial topic in modern physics. In this context, this work highlights the ability of the wave-nature of light on its own to account for the conservation of energy in light-matter interaction. Two simple fundamental properties of light as wave are involved: its period and its power P. The power P depends only on the amplitude of the wave’s electric and magnetic fields (Poynting’s vector), and can easily be measured with a power sensor for visible and infrared lasers. The advantage of such a wave-based approach is that it unveils unexpected effects ofmore » light’s power P capable of explaining numerous results published in current scientific literature, of correlating phenomena otherwise considered as disjointed, and of making predictions on ways to employ the electromagnetic (EM) waves which so far are unexplored. In this framework, this work focuses on determining the magnitude of the time interval that, coupled with light’s power P, establishes the energy conserved in the exchange of energy between light and matter. To reach this goal, capacitors were excited with visible and IR lasers at variable average power P. As the result of combining experimental measurements and simulations based on the law of conservation of energy, it was found that the product of the period of the light by its power P fixes the magnitude of the energy conserved in light’s interaction with the capacitors. This finding highlights that the energy exchanged is defined in the time interval equal to the period of the light’s wave. The validity of the finding is shown to hold in light’s interaction with matter in general, e.g. in the photoelectric effect with x-rays, in the transfer of electrons between energy levels in semiconductingfield effect transistors, in the activation of photosynthetic reactions, and in the generation of action potentials in retinal ganglion cells to enable vision in vertebrates. Finally, the

  12. Probing the Wave Nature of Light-Matter Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boone, D. E.; Jackson, C. H.; Swecker, A. T.

    Here, the wave-particle duality of light is a controversial topic in modern physics. In this context, this work highlights the ability of the wave-nature of light on its own to account for the conservation of energy in light-matter interaction. Two simple fundamental properties of light as wave are involved: its period and its power P. The power P depends only on the amplitude of the wave’s electric and magnetic fields (Poynting’s vector), and can easily be measured with a power sensor for visible and infrared lasers. The advantage of such a wave-based approach is that it unveils unexpected effects ofmore » light’s power P capable of explaining numerous results published in current scientific literature, of correlating phenomena otherwise considered as disjointed, and of making predictions on ways to employ the electromagnetic (EM) waves which so far are unexplored. In this framework, this work focuses on determining the magnitude of the time interval that, coupled with light’s power P, establishes the energy conserved in the exchange of energy between light and matter. To reach this goal, capacitors were excited with visible and IR lasers at variable average power P. As the result of combining experimental measurements and simulations based on the law of conservation of energy, it was found that the product of the period of the light by its power P fixes the magnitude of the energy conserved in light’s interaction with the capacitors. This finding highlights that the energy exchanged is defined in the time interval equal to the period of the light’s wave. The validity of the finding is shown to hold in light’s interaction with matter in general, e.g. in the photoelectric effect with x-rays, in the transfer of electrons between energy levels in semiconductingfield effect transistors, in the activation of photosynthetic reactions, and in the generation of action potentials in retinal ganglion cells to enable vision in vertebrates. Finally, the

  13. Synthesis of u-channelled spherical Fex(CoyNi1-y)100-x Janus colloidal particles with excellent electromagnetic wave absorption performance.

    PubMed

    Li, Hao; Cao, Zhenming; Lin, Jiayao; Zhao, Hui; Jiang, Qiaorong; Jiang, Zhiyuan; Liao, Honggang; Kuang, Qin; Xie, Zhaoxiong

    2018-01-25

    Due to their distinctive structure, inherently anisotropic properties and broad applications, Janus colloidal particles have attracted tremendous attention and it is significant to synthesize high yield Janus colloidal particles in a cost-effective and reliable way. On the other hand, due to the expanded electromagnetic interference problems, it is highly desired to develop excellent electromagnetic wave absorbing materials with an ultra-wide absorption bandwidth for practical application. Herein, a confined liquid-solid redox reaction strategy has been developed to fabricate a series of Fe x (Co y Ni 1-y ) 100-x ternary alloy particles. The as-prepared particles are in the form of u-channelled noncentrosymmetric spheres, one kind of Janus colloidal particles which have been rarely observed. Due to the combination and synergy effects of multi-magnetic metals, the polycrystalline structure and their specific morphology, the as-prepared particles possess multiple magnetic resonance and multiple dielectric relaxation processes, and therefore show excellent electromagnetic wave absorption performances. In particular, the strongest reflection loss (RL) of the Fe 15 (Co 0.2 Ni 0.8 ) 85 Janus colloidal particles is up to -36.9 dB with a thickness of 2.5 mm, and the effective absorption (RL < -10 dB) bandwidth can reach 9.2 GHz (8-17.2 GHz) with a thickness of 2 mm. Such a wide bandwidth has barely been reported for magnetic metal alloys under a single thickness. These results suggest that the Fe x (Co y Ni 1-y ) 100-x Janus particles could be a promising candidate for highly efficient electromagnetic wave absorbing materials for practical application.

  14. Duality and symmetry lost in solid mechanics

    NASA Astrophysics Data System (ADS)

    Bui, Huy Duong

    2008-01-01

    Some conservation laws in Solids and Fracture Mechanics present a lack of symmetry between kinematic and dynamic variables. It is shown that Duality is the right tool to re-establish the symmetry between equations and variables and to provide conservation laws of the pure divergence type which provide true path independent integrals. The loss of symmetry of some energetic expressions is exploited to derive a new method for solving some inverse problems. In particular, the earthquake inverse problem is solved analytically. To cite this article: H.D. Bui, C. R. Mecanique 336 (2008).

  15. Reprint of: A numerical investigation of fine sediment resuspension in the wave boundary layer-Uncertainties in particle inertia and hindered settling

    NASA Astrophysics Data System (ADS)

    Cheng, Zhen; Yu, Xiao; Hsu, Tian-Jian; Balachandar, S.

    2016-05-01

    The wave bottom boundary layer is a major conduit delivering fine terrestrial sediments to continental margins. Hence, studying fine sediment resuspensions in the wave boundary layer is crucial to the understanding of various components of the earth system, such as carbon cycles. By assuming the settling velocity to be a constant in each simulation, previous turbulence-resolving numerical simulations reveal the existence of three transport modes in the wave boundary layer associated with sediment availabilities. As the sediment availability and hence the sediment-induced stable stratification increases, a sequence of transport modes, namely, (I) well-mixed transport, (II) formulation of lutocline resembling a two-layer system, and (III) completely laminarized transport are observed. In general, the settling velocity is a flow variable due to hindered settling and particle inertia effects. Present numerical simulations including the particle inertia suggest that for a typical wave condition in continental shelves, the effect of particle inertia is negligible. Through additional numerical experiments, we also confirm that the particle inertia tends (up to the Stokes number St = 0.2) to attenuate flow turbulence. On the other hand, for flocs with lower gelling concentrations, the hindered settling can play a key role in sustaining a large amount of suspended sediments and results in the laminarized transport (III). For the simulation with a very significant hindered settling effect due to a low gelling concentration, results also indicate the occurrence of gelling ignition, a state in which the erosion rate is always higher than the deposition rate. A sufficient condition for the occurrence of gelling ignition is hypothesized for a range of wave intensities as a function of sediment/floc properties and erodibility parameters.

  16. Ion gyroradius effects on particle trapping in kinetic Alfven waves along auroral field lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damiano, P. A.; Johnson, J. R.; Chaston, C. C.

    In this study, a 2-D self-consistent hybrid gyrofluid-kinetic electron model is used to investigate Alfven wave propagation along dipolar magnetic field lines for a range of ion to electron temperature ratios. The focus of the investigation is on understanding the role of these effects on electron trapping in kinetic Alfven waves sourced in the plasma sheet and the role of this trapping in contributing to the overall electron energization at the ionosphere. This work also builds on our previous effort by considering a similar system in the limit of fixed initial parallel current, rather than fixed initial perpendicular electric field.more » It is found that the effects of particle trapping are strongest in the cold ion limit and the kinetic Alfven wave is able to carry trapped electrons a large distance along the field line yielding a relatively large net energization of the trapped electron population as the phase speed of the wave is increased. However, as the ion temperature is increased, the ability of the kinetic Alfven wave to carry and energize trapped electrons is reduced by more significant wave energy dispersion perpendicular to the ambient magnetic field which reduces the amplitude of the wave. This reduction of wave amplitude in turn reduces both the parallel current and the extent of the high-energy tails evident in the energized electron populations at the ionospheric boundary (which may serve to explain the limited extent of the broadband electron energization seen in observations). Here, even in the cold ion limit, trapping effects in kinetic Alfven waves lead to only modest electron energization for the parameters considered (on the order of tens of eV) and the primary energization of electrons to keV levels coincides with the arrival of the wave at the ionospheric boundary.« less

  17. Ion gyroradius effects on particle trapping in kinetic Alfven waves along auroral field lines

    DOE PAGES

    Damiano, P. A.; Johnson, J. R.; Chaston, C. C.

    2016-11-10

    In this study, a 2-D self-consistent hybrid gyrofluid-kinetic electron model is used to investigate Alfven wave propagation along dipolar magnetic field lines for a range of ion to electron temperature ratios. The focus of the investigation is on understanding the role of these effects on electron trapping in kinetic Alfven waves sourced in the plasma sheet and the role of this trapping in contributing to the overall electron energization at the ionosphere. This work also builds on our previous effort by considering a similar system in the limit of fixed initial parallel current, rather than fixed initial perpendicular electric field.more » It is found that the effects of particle trapping are strongest in the cold ion limit and the kinetic Alfven wave is able to carry trapped electrons a large distance along the field line yielding a relatively large net energization of the trapped electron population as the phase speed of the wave is increased. However, as the ion temperature is increased, the ability of the kinetic Alfven wave to carry and energize trapped electrons is reduced by more significant wave energy dispersion perpendicular to the ambient magnetic field which reduces the amplitude of the wave. This reduction of wave amplitude in turn reduces both the parallel current and the extent of the high-energy tails evident in the energized electron populations at the ionospheric boundary (which may serve to explain the limited extent of the broadband electron energization seen in observations). Here, even in the cold ion limit, trapping effects in kinetic Alfven waves lead to only modest electron energization for the parameters considered (on the order of tens of eV) and the primary energization of electrons to keV levels coincides with the arrival of the wave at the ionospheric boundary.« less

  18. Chorus Waves Modulation of Langmuir Waves in the Radiation Belts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jinxing; Bortnik, Jacob; An, Xin

    Using high-resolution waveforms measured by the Van Allen Probes, we report a novel observation in the radiation belts. Namely, we show that multiband, discrete, rising-tone whistler-mode chorus emissions exhibit a one-to-one correlation with Langmuir wave bursts. Moreover, the periodic Langmuir wave bursts are generally observed at the phase location where the chorus wave E || component is oriented opposite to its propagation direction. The electron measurements show a beam in phase space density at the particle velocity that matches the parallel phase velocity of the chorus waves. Based on this evidence, we conclude that the chorus waves accelerate the suprathermalmore » electrons via Landau resonance, and generate a localized electron beam in phase space density. Consequently, the Langmuir waves are excited locally and are modulated by the chorus wave phase. As a result, this microscale interaction between chorus waves and high frequency electrostatic waves provides a new insight into the nonlinear wave-particle interaction process.« less

  19. Chorus Waves Modulation of Langmuir Waves in the Radiation Belts

    DOE PAGES

    Li, Jinxing; Bortnik, Jacob; An, Xin; ...

    2017-11-20

    Using high-resolution waveforms measured by the Van Allen Probes, we report a novel observation in the radiation belts. Namely, we show that multiband, discrete, rising-tone whistler-mode chorus emissions exhibit a one-to-one correlation with Langmuir wave bursts. Moreover, the periodic Langmuir wave bursts are generally observed at the phase location where the chorus wave E || component is oriented opposite to its propagation direction. The electron measurements show a beam in phase space density at the particle velocity that matches the parallel phase velocity of the chorus waves. Based on this evidence, we conclude that the chorus waves accelerate the suprathermalmore » electrons via Landau resonance, and generate a localized electron beam in phase space density. Consequently, the Langmuir waves are excited locally and are modulated by the chorus wave phase. As a result, this microscale interaction between chorus waves and high frequency electrostatic waves provides a new insight into the nonlinear wave-particle interaction process.« less

  20. Comparison of the Effects of Wave-Particle Interactions and the Kinetic Suprathermal Electron Population on the Acceleration of the Solar Wind

    NASA Technical Reports Server (NTRS)

    Tam, S. W. Y.; Chang, T.

    2002-01-01

    Kinetic effects due to wave-particle interactions and suprathermal electrons have been suggested in the literature as possible solar wind acceleration mechanisms. Ion cyclotron resonant heating, in particular, has been associated with some qualitative features observed in the solar wind. In terms of solar wind acceleration, however, it is interesting to compare the kinetic effects of suprathermal electrons with those due to the wave-particle interactions. The combined effects of the two acceleration mechanisms on the fast solar wind have been studied by Tam and Chang (1999a,b). In this study. we investigate the role of the suprathermal electron population in the acceleration of the solar wind. Our model follows the global kinetic evolution of the fast solar wind under the influence of ion cyclotron resonant heating, while taking into account Coulomb collisions, and the ambipolar electric field that is consistent with the particle distributions themselves. The kinetic effects due to the suprathermal electrons, which we define to be the tail of the electron distributions, can be included in the model as an option. By comparing the results with and without the inclusion of the suprathermal electron effects, we determine the relative importance of suprathermal electrons and wave-particle interactions in driving the solar wind. We find that although suprathermal electrons enhance the ambipolar electric potential in the solar wind considerably, their overall influence as an acceleration mechanism is relatively insignificant in a wave-driven solar wind.

  1. Modeling Water Waves with Smoothed Particle Hydrodynamics

    DTIC Science & Technology

    2013-09-30

    SPH Model for Water Waves and Other Free Surface Flows ...Lagrangian nature of SPH allows the modeling of wave breaking, surf zones, ship waves, and wave-structure interaction, where the free surface becomes...proving to be a competent modeling scheme for free surface flows in three dimensions including the complex flows of the surf zone. As the GPU

  2. Optical proposals for controlled delayed-choice experiment based on weak cross-Kerr nonlinearities

    NASA Astrophysics Data System (ADS)

    Dong, Li; Lin, Yan-Fang; Li, Qing-Yang; Xiu, Xiao-Ming; Dong, Hai-Kuan; Gao, Ya-Jun

    2017-05-01

    Employing polarization modes of a photon, we propose two theoretical proposals to exhibit the wave-particle duality of the photon with the assistance of weak cross-Kerr nonlinearities. The first proposal is a classical controlled delayed-choice experiment (that is, Wheeler's delayed-choice experiment), where we can observe selectively wave property or particle property of the photon relying on the experimenter's selection, whereas the second proposal is a quantum controlled delayed-choice experiment, by which the mixture phenomenon of a wave and a particle will be exhibited. Both of them can be realized with near-unity probability and embody the charming characteristics of quantum mechanics. The employment of the mature techniques and simple operations (e.g., Homodyne measurement, classical feed forward, and single-photon transformations) provides the feasibility of the delayed-choice experiment proposals presented here.

  3. Rowlands' Duality Principle: A Generalization of Noether's Theorem?

    NASA Astrophysics Data System (ADS)

    Karam, Sabah E.

    This paper will examine a physical principle that has been used in making valid predictions and generalizes established conservation laws. In a previous paper it was shown how Rowlands' zero-totality condition could be viewed as a generalization of Newton's third law of motion. In this paper it will be argued that Rowlands' Duality Principle is a generalization of Noether's Theorem and that the two principles taken together are truly foundational principles that have tamed Metaphysics.

  4. Duality in an asset exchange model for wealth distribution

    NASA Astrophysics Data System (ADS)

    Li, Jie; Boghosian, Bruce M.

    2018-05-01

    Asset exchange models are agent-based economic models with binary transactions. Previous investigations have augmented these models with mechanisms for wealth redistribution, quantified by a parameter χ, and for trading bias favoring wealthier agents, quantified by a parameter ζ. By deriving and analyzing a Fokker-Planck equation for a particular asset exchange model thus augmented, it has been shown that it exhibits a second-order phase transition at ζ / χ = 1, between regimes with and without partial wealth condensation. In the "subcritical" regime with ζ / χ < 1, all of the wealth is classically distributed; in the "supercritical" regime with ζ / χ > 1, a fraction 1 - χ / ζ of the wealth is condensed. Intuitively, one may associate the supercritical, wealth-condensed regime as reflecting the presence of "oligarchy," by which we mean that an infinitesimal fraction of the total agents hold a finite fraction of the total wealth in the continuum limit. In this paper, we further elucidate the phase behavior of this model - and hence of the generalized solutions of the Fokker-Planck equation that describes it - by demonstrating the existence of a remarkable symmetry between its supercritical and subcritical regimes in the steady-state. Noting that the replacement { ζ → χ , χ → ζ } , which clearly has the effect of inverting the order parameter ζ / χ, provides a one-to-one correspondence between the subcritical and supercritical states, we demonstrate that the wealth distribution of the subcritical state is identical to that of the corresponding supercritical state when the oligarchy is removed from the latter. We demonstrate this result analytically, both from the microscopic agent-level model and from its macroscopic Fokker-Planck description, as well as numerically. We argue that this symmetry is a kind of duality, analogous to the famous Kramers-Wannier duality between the subcritical and supercritical states of the Ising model, and to the

  5. Phase function of a spherical particle when scattering an inhomogeneous electromagnetic plane wave.

    PubMed

    Frisvad, Jeppe Revall

    2018-04-01

    In absorbing media, electromagnetic plane waves are most often inhomogeneous. Existing solutions for the scattering of an inhomogeneous plane wave by a spherical particle provide no explicit expressions for the scattering components. In addition, current analytical solutions require evaluation of the complex hypergeometric function F 1 2 for every term of a series expansion. In this work, I develop a simpler solution based on associated Legendre functions with argument zero. It is similar to the solution for homogeneous plane waves but with new explicit expressions for the angular dependency of the far-field scattering components, that is, the phase function. I include recurrence formulas for practical evaluation and provide numerical examples to evaluate how well the new expressions match previous work in some limiting cases. The predicted difference in the scattering phase function due to inhomogeneity is not negligible for light entering an absorbing medium at an oblique angle. The presented theory could thus be useful for predicting scattering behavior in dye-based random lasing and in solar cell absorption enhancement.

  6. Real-time quantitative PCR for retrovirus-like particle quantification in CHO cell culture.

    PubMed

    de Wit, C; Fautz, C; Xu, Y

    2000-09-01

    Chinese hamster ovary (CHO) cells have been widely used to manufacture recombinant proteins intended for human therapeutic uses. Retrovirus-like particles, which are apparently defective and non-infectious, have been detected in all CHO cells by electron microscopy (EM). To assure viral safety of CHO cell-derived biologicals, quantification of retrovirus-like particles in production cell culture and demonstration of sufficient elimination of such retrovirus-like particles by the down-stream purification process are required for product market registration worldwide. EM, with a detection limit of 1x10(6) particles/ml, is the standard retrovirus-like particle quantification method. The whole process, which requires a large amount of sample (3-6 litres), is labour intensive, time consuming, expensive, and subject to significant assay variability. In this paper, a novel real-time quantitative PCR assay (TaqMan assay) has been developed for the quantification of retrovirus-like particles. Each retrovirus particle contains two copies of the viral genomic particle RNA (pRNA) molecule. Therefore, quantification of retrovirus particles can be achieved by quantifying the pRNA copy number, i.e. every two copies of retroviral pRNA is equivalent to one retrovirus-like particle. The TaqMan assay takes advantage of the 5'-->3' exonuclease activity of Taq DNA polymerase and utilizes the PRISM 7700 Sequence Detection System of PE Applied Biosystems (Foster City, CA, U.S.A.) for automated pRNA quantification through a dual-labelled fluorogenic probe. The TaqMan quantification technique is highly comparable to the EM analysis. In addition, it offers significant advantages over the EM analysis, such as a higher sensitivity of less than 600 particles/ml, greater accuracy and reliability, higher sample throughput, more flexibility and lower cost. Therefore, the TaqMan assay should be used as a substitute for EM analysis for retrovirus-like particle quantification in CHO cell

  7. Acceleration of low-energy protons and alpha particles at interplanetary shock waves

    NASA Technical Reports Server (NTRS)

    Scholer, M.; Hovestadt, D.; Ipavich, F. M.; Gloeckler, G.

    1983-01-01

    The low-energy protons and alpha particles in the energy range 30 keV/charge to 150 keV/charge associated with three different interplanetary shock waves in the immediate preshock and postshock region are studied using data obtained by the ISEE 3. The spatial distributions in the preshock and postshock medium are presented, and the dependence of the phase space density at different energies on the distance from the shock and on the form of the distribution function of both species immediately at the shock is examined. It is found that in the preshock region the particles are flowing in the solar wind frame of reference away from the shock and in the postshock medium the distribution is more or less isotropic in this frame of reference. The distribution function in the postshock region can be represented by a power law in energy which has the same spectral exponent for both protons and alpha particles. It is concluded that the first-order Fermi acceleration process can consistently explain the data, although the spectra of diffuse bow shock associated particles are different from the spectra of the interplanetary shock-associated particles in the immediate vicinity of the shock. In addition, the mean free path of the low energy ions in the preshock medium is found to be considerably smaller than the mean free path determined by the turbulence of the background interplanetary medium.

  8. Hydrodynamics of strongly coupled non-conformal fluids from gauge/gravity duality

    NASA Astrophysics Data System (ADS)

    Springer, Todd

    2009-08-01

    The subject of relativistic hydrodynamics is explored using the tools of gauge/gravity duality. A brief literature review of AdS/CFT and gauge/gravity duality is presented first. This is followed by a pedagogical introduction to the use of these methods in determining hydrodynamic dispersion relations, w(q), of perturbations in a strongly coupled fluid. Shear and sound mode perturbations are examined in a special class of gravity duals: those where the matter supporting the metric is scalar in nature. Analytical solutions (to order q^4 and q^3 respectively) for the shear and sound mode dispersion relations are presented for a subset of these backgrounds. The work presented here is based on previous publications by the same author, though some previously unpublished results are also included. In particular, the subleading term in the shear mode dispersion relation is analyzed using the AdS/CFT correspondence without any reference to the black hole membrane paradigm.

  9. dc Resistivity of Quantum Critical, Charge Density Wave States from Gauge-Gravity Duality

    NASA Astrophysics Data System (ADS)

    Amoretti, Andrea; Areán, Daniel; Goutéraux, Blaise; Musso, Daniele

    2018-04-01

    In contrast to metals with weak disorder, the resistivity of weakly pinned charge density waves (CDWs) is not controlled by irrelevant processes relaxing momentum. Instead, the leading contribution is governed by incoherent, diffusive processes which do not drag momentum and can be evaluated in the clean limit. We compute analytically the dc resistivity for a family of holographic charge density wave quantum critical phases and discuss its temperature scaling. Depending on the critical exponents, the ground state can be conducting or insulating. We connect our results to dc electrical transport in underdoped cuprate high Tc superconductors. We conclude by speculating on the possible relevance of unstable, semilocally critical CDW states to the strange metallic region.

  10. dc Resistivity of Quantum Critical, Charge Density Wave States from Gauge-Gravity Duality.

    PubMed

    Amoretti, Andrea; Areán, Daniel; Goutéraux, Blaise; Musso, Daniele

    2018-04-27

    In contrast to metals with weak disorder, the resistivity of weakly pinned charge density waves (CDWs) is not controlled by irrelevant processes relaxing momentum. Instead, the leading contribution is governed by incoherent, diffusive processes which do not drag momentum and can be evaluated in the clean limit. We compute analytically the dc resistivity for a family of holographic charge density wave quantum critical phases and discuss its temperature scaling. Depending on the critical exponents, the ground state can be conducting or insulating. We connect our results to dc electrical transport in underdoped cuprate high T_{c} superconductors. We conclude by speculating on the possible relevance of unstable, semilocally critical CDW states to the strange metallic region.

  11. Viscous and Turbulent Stress Measurements over Wind-driven Surface Waves

    NASA Astrophysics Data System (ADS)

    Yousefi, K.; Veron, F.; Buckley, M. P.; Hara, T.; Husain, N.

    2017-12-01

    In recent years, the exchange of momentum and scalars between the atmosphere and the ocean has been the subject of several investigations. Although the role of surface waves on the air-sea momentum flux is now well established, detailed quantitative measurements of the turbulence in the airflow over surface waves remain scarce. The current incomplete physical understanding of the airflow dynamics impedes further progress in developing physically based parameterizations for improved weather and sea state predictions, particularly in high winds and extreme conditions. Using combined Particle Image Velocimetry (PIV) and Laser Induced Fluorescence (LIF) in the laboratory, we have acquired detailed quantitative measurements of the airflow over wind-driven waves and down to within the viscous sub-layer. Various wind-wave conditions are examined with mean wind speeds ranging from 0.86 to 16.63 m s-1. The mean, turbulent, and wave-induced velocity fields are then extracted from instantaneous two-dimensional velocity measurements. Individual airflow separation events precipitate abrupt and dramatic along-wave variations in the surface viscous stress. In the bulk flow above the waves, these separation events are a source of intense vorticity. Phase averages of the viscous stress present a pattern of along-wave asymmetry near the surface; it is highest on the upwind of wave crest with its peak value about the crest and its minimum occurs at the middle of the leeward side of waves. The contribution of the viscous stress to the total momentum flux is not negligible particularly for low to moderate wind speeds and this contribution decreases with increasing wind speed. Away from the surface, the distribution of turbulent Reynolds stress forms a negative-positive pattern along the wave crest with a separation-induced maximum above the downwind side of the wave. Our measurements will be discussed in the context of available previous results.

  12. Olber's Paradox Revisited in a Static and Finite Universe

    ERIC Educational Resources Information Center

    Couture, Gilles

    2012-01-01

    Building a Universe populated by stars identical to our Sun and taking into consideration the wave-particle duality of light, the biological limits of the human eye, the finite size of stars and the finiteness of our Universe, we conclude that the sky could very well be dark at night. Besides the human eye, the dominant parameter is the finite…

  13. A statistical study of EMIC waves observed by Cluster. 1. Wave properties. EMIC Wave Properties

    DOE PAGES

    Allen, R. C.; Zhang, J. -C.; Kistler, L. M.; ...

    2015-07-23

    Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the magnetic local time versus L-shell (MLT-L) frame within a limited magnetic latitude (MLAT) range. In our study, we present a statistical analysis of EMIC wave properties using 10 years (2001–2010) of datamore » from Cluster, totaling 25,431 min of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. Thus, the statistical analysis is presented in two papers. OUr paper focuses on the wave occurrence distribution as well as the distribution of wave properties. The companion paper focuses on local plasma parameters during wave observations as well as wave generation proxies.« less

  14. Nonlinear dynamics of resonant electrons interacting with coherent Langmuir waves

    NASA Astrophysics Data System (ADS)

    Tobita, Miwa; Omura, Yoshiharu

    2018-03-01

    We study the nonlinear dynamics of resonant particles interacting with coherent waves in space plasmas. Magnetospheric plasma waves such as whistler-mode chorus, electromagnetic ion cyclotron waves, and hiss emissions contain coherent wave structures with various discrete frequencies. Although these waves are electromagnetic, their interaction with resonant particles can be approximated by equations of motion for a charged particle in a one-dimensional electrostatic wave. The equations are expressed in the form of nonlinear pendulum equations. We perform test particle simulations of electrons in an electrostatic model with Langmuir waves and a non-oscillatory electric field. We solve equations of motion and study the dynamics of particles with different values of inhomogeneity factor S defined as a ratio of the non-oscillatory electric field intensity to the wave amplitude. The simulation results demonstrate deceleration/acceleration, thermalization, and trapping of particles through resonance with a single wave, two waves, and multiple waves. For two-wave and multiple-wave cases, we describe the wave-particle interaction as either coherent or incoherent based on the probability of nonlinear trapping.

  15. Diffusion by one wave and by many waves

    NASA Astrophysics Data System (ADS)

    Albert, J. M.

    2010-03-01

    Radiation belt electrons and chorus waves are an outstanding instance of the important role cyclotron resonant wave-particle interactions play in the magnetosphere. Chorus waves are particularly complex, often occurring with large amplitude, narrowband but drifting frequency and fine structure. Nevertheless, modeling their effect on radiation belt electrons with bounce-averaged broadband quasi-linear theory seems to yield reasonable results. It is known that coherent interactions with monochromatic waves can cause particle diffusion, as well as radically different phase bunching and phase trapping behavior. Here the two formulations of diffusion, while conceptually different, are shown to give identical diffusion coefficients, in the narrowband limit of quasi-linear theory. It is further shown that suitably averaging the monochromatic diffusion coefficients over frequency and wave normal angle parameters reproduces the full broadband quasi-linear results. This may account for the rather surprising success of quasi-linear theory in modeling radiation belt electrons undergoing diffusion by chorus waves.

  16. Wave induced supersonic rotation in mirrors

    NASA Astrophysics Data System (ADS)

    Fetterman, Abraham

    2010-11-01

    Wave-particle interactions in ExB supersonically rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy [1]. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field [2]. In the rotating frame, this perturbation is seen as a wave near the alpha particle cyclotron harmonic, and can break the azimuthal symmetry and magnetic moment conservation without changing the particle's total energy. The particle may exit if it reduces its kinetic energy and becomes more trapped if it gains kinetic energy, leading to a steady state current that maintains the field. Simulations of single particles in rotating mirrors show that a stationary wave can extract enough energy from alpha particles for a reactor to be self-sustaining. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation [3]. [4pt] [1] A. J. Fetterman and N. J. Fisch, Phys Rev Lett 101, 205003 (2008). [0pt] [2] A. J. Fetterman and N. J. Fisch, Phys. Plasmas 17, 042112 (2010). [0pt] [3] A. J. Fetterman and N. J. Fisch, Plasma Sources Sci. Tech. 18, 045003 (2009).

  17. How to Teach Hicksian Compensation and Duality Using a Spreadsheet Optimizer

    ERIC Educational Resources Information Center

    Ghosh, Satyajit; Ghosh, Sarah

    2007-01-01

    Principle of duality and numerical calculation of income and substitution effects under Hicksian Compensation are often left out of intermediate microeconomics courses because they require a rigorous calculus based analysis. But these topics are critically important for understanding consumer behavior. In this paper we use excel solver--a…

  18. Integral group actions on symmetric spaces and discrete duality symmetries of supergravity theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbone, Lisa; Murray, Scott H.; Sati, Hisham

    For G = G(ℝ), a split, simply connected, semisimple Lie group of rank n and K the maximal compact subgroup of G, we give a method for computing Iwasawa coordinates of K∖G using the Chevalley generators and the Steinberg presentation. When K∖G is a scalar coset for a supergravity theory in dimensions ≥3, we determine the action of the integral form G(ℤ) on K∖G. We give explicit results for the action of the discrete U-duality groups SL{sub 2}(ℤ) and E{sub 7}(ℤ) on the scalar cosets SO(2)∖SL{sub 2}(ℝ) and [SU(8)/( ± Id)]∖E{sub 7(+7)}(ℝ) for type IIB supergravity in ten dimensions andmore » 11-dimensional supergravity reduced to D = 4 dimensions, respectively. For the former, we use this to determine the discrete U-duality transformations on the scalar sector in the Borel gauge and we describe the discrete symmetries of the dyonic charge lattice. We determine the spectrum-generating symmetry group for fundamental BPS solitons of type IIB supergravity in D = 10 dimensions at the classical level and we propose an analog of this symmetry at the quantum level. We indicate how our methods can be used to study the orbits of discrete U-duality groups in general.« less

  19. Size of photons and the idea of coherence

    NASA Astrophysics Data System (ADS)

    Pandey, Rakesh Kumar

    2018-05-01

    Ever since behavior of photons were explained in terms of the matter-wave duality, mystery about the size of such a photon as it behaves like a particle has never slipped out from the scientific discussions. It is normally believed that the size of the photons is of the order of the wavelength of the electromagnetic wave. This paper addresses this scientific concern and attempts at opening the issue up for discussion after making a completely theoretical but consistent proposition. The argument presented here borrows the idea from the way particles have been conceptualized in quantum mechanics. In quantum mechanics it is argued that a particle gets represented not by a single wave but a group of waves in a way that the group velocity of such a group of waves exactly gives the velocity of the particle. Based on the same argument it is explained how the coherence length instead of the wavelength of the electromagnetic wave, must estimate the linear dimension of a photon. In the end, the discussion on the size of a photon in view of the special theory of relativity is also initiated in this paper.

  20. Method for non-contact particle manipulation and control of particle spacing along an axis

    DOEpatents

    Goddard, Gregory Russ; Kaduchak, Gregory; Jett, James Hubert; Graves, Steven Wayde

    2013-09-10

    One or more of the embodiments of the present invention provide for a method of non-contact particle manipulation and control of particle spacing along an axis which includes axial and radial acoustic standing wave fields. Particles are suspended in an aqueous solution, and this solution then flows into the cylindrical flow channel. While the solution flows through the flow channel, the outer structure of the flow channel is vibrated at a resonant frequency, causing a radial acoustic standing wave field to form inside the flow channel in the solution. These radial acoustic standing waves focus the particles suspended in the solution to the center axis of the cylindrical flow channel. At the same time, a transducer is used to create an axial acoustic standing wave field in the flow channel parallel to the axis of the flow channel. This drives the particles, which are already being focused to the center axis of the flow channel, to nodes or anti-nodes of the axial standing wave at half-wavelength intervals, depending on whether the particles are more or less dense and more or less compressible than the surrounding fluid.