Sample records for quantitive dna fiber

  1. Digital PCR Quantitation of Muscle Mitochondrial DNA: Age, Fiber Type, and Mutation-Induced Changes.

    PubMed

    Herbst, Allen; Widjaja, Kevin; Nguy, Beatrice; Lushaj, Entela B; Moore, Timothy M; Hevener, Andrea L; McKenzie, Debbie; Aiken, Judd M; Wanagat, Jonathan

    2017-10-01

    Definitive quantitation of mitochondrial DNA (mtDNA) and mtDNA deletion mutation abundances would help clarify the role of mtDNA instability in aging. To more accurately quantify mtDNA, we applied the emerging technique of digital polymerase chain reaction to individual muscle fibers and muscle homogenates from aged rodents. Individual fiber mtDNA content correlated with fiber type and decreased with age. We adapted a digital polymerase chain reaction deletion assay that was accurate in mixing experiments to a mutation frequency of 0.03% and quantitated an age-induced increase in deletion frequency from rat muscle homogenates. Importantly, the deletion frequency measured in muscle homogenates strongly correlated with electron transport chain-deficient fiber abundance determined by histochemical analyses. These data clarify the temporal accumulation of mtDNA deletions that lead to electron chain-deficient fibers, a process culminating in muscle fiber loss. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Technique for quantitative RT-PCR analysis directly from single muscle fibers.

    PubMed

    Wacker, Michael J; Tehel, Michelle M; Gallagher, Philip M

    2008-07-01

    The use of single-cell quantitative RT-PCR has greatly aided the study of gene expression in fields such as muscle physiology. For this study, we hypothesized that single muscle fibers from a biopsy can be placed directly into the reverse transcription buffer and that gene expression data can be obtained without having to first extract the RNA. To test this hypothesis, biopsies were taken from the vastus lateralis of five male subjects. Single muscle fibers were isolated and underwent RNA isolation (technique 1) or placed directly into reverse transcription buffer (technique 2). After cDNA conversion, individual fiber cDNA was pooled and quantitative PCR was performed using primer-probes for beta(2)-microglobulin, glyceraldehyde-3-phosphate dehydrogenase, insulin-like growth factor I receptor, and glucose transporter subtype 4. The no RNA extraction method provided similar quantitative PCR data as that of the RNA extraction method. A third technique was also tested in which we used one-quarter of an individual fiber's cDNA for PCR (not pooled) and the average coefficient of variation between fibers was <8% (cycle threshold value) for all genes studied. The no RNA extraction technique was tested on isolated muscle fibers using a gene known to increase after exercise (pyruvate dehydrogenase kinase 4). We observed a 13.9-fold change in expression after resistance exercise, which is consistent with what has been previously observed. These results demonstrate a successful method for gene expression analysis directly from single muscle fibers.

  3. Quantitative DNA fiber mapping

    DOEpatents

    Gray, Joe W.; Weier, Heinz-Ulrich G.

    1998-01-01

    The present invention relates generally to the DNA mapping and sequencing technologies. In particular, the present invention provides enhanced methods and compositions for the physical mapping and positional cloning of genomic DNA. The present invention also provides a useful analytical technique to directly map cloned DNA sequences onto individual stretched DNA molecules.

  4. Quantitative analysis of single-molecule force spectroscopy on folded chromatin fibers

    PubMed Central

    Meng, He; Andresen, Kurt; van Noort, John

    2015-01-01

    Single-molecule techniques allow for picoNewton manipulation and nanometer accuracy measurements of single chromatin fibers. However, the complexity of the data, the heterogeneity of the composition of individual fibers and the relatively large fluctuations in extension of the fibers complicate a structural interpretation of such force-extension curves. Here we introduce a statistical mechanics model that quantitatively describes the extension of individual fibers in response to force on a per nucleosome basis. Four nucleosome conformations can be distinguished when pulling a chromatin fiber apart. A novel, transient conformation is introduced that coexists with single wrapped nucleosomes between 3 and 7 pN. Comparison of force-extension curves between single nucleosomes and chromatin fibers shows that embedding nucleosomes in a fiber stabilizes the nucleosome by 10 kBT. Chromatin fibers with 20- and 50-bp linker DNA follow a different unfolding pathway. These results have implications for accessibility of DNA in fully folded and partially unwrapped chromatin fibers and are vital for understanding force unfolding experiments on nucleosome arrays. PMID:25779043

  5. Visualization of DNA Replication in the Vertebrate Model System DT40 using the DNA Fiber Technique

    PubMed Central

    Schwab, Rebekka A.V.; Niedzwiedz, Wojciech

    2011-01-01

    Maintenance of replication fork stability is of utmost importance for dividing cells to preserve viability and prevent disease. The processes involved not only ensure faithful genome duplication in the face of endogenous and exogenous DNA damage but also prevent genomic instability, a recognized causative factor in tumor development. Here, we describe a simple and cost-effective fluorescence microscopy-based method to visualize DNA replication in the avian B-cell line DT40. This cell line provides a powerful tool to investigate protein function in vivo by reverse genetics in vertebrate cells1. DNA fiber fluorography in DT40 cells lacking a specific gene allows one to elucidate the function of this gene product in DNA replication and genome stability. Traditional methods to analyze replication fork dynamics in vertebrate cells rely on measuring the overall rate of DNA synthesis in a population of pulse-labeled cells. This is a quantitative approach and does not allow for qualitative analysis of parameters that influence DNA synthesis. In contrast, the rate of movement of active forks can be followed directly when using the DNA fiber technique2-4. In this approach, nascent DNA is labeled in vivo by incorporation of halogenated nucleotides (Fig 1A). Subsequently, individual fibers are stretched onto a microscope slide, and the labeled DNA replication tracts are stained with specific antibodies and visualized by fluorescence microscopy (Fig 1B). Initiation of replication as well as fork directionality is determined by the consecutive use of two differently modified analogues. Furthermore, the dual-labeling approach allows for quantitative analysis of parameters that influence DNA synthesis during the S-phase, i.e. replication structures such as ongoing and stalled forks, replication origin density as well as fork terminations. Finally, the experimental procedure can be accomplished within a day, and requires only general laboratory equipment and a fluorescence

  6. A-DNA and B-DNA: Comparing Their Historical X-Ray Fiber Diffraction Images

    ERIC Educational Resources Information Center

    Lucas, Amand A.

    2008-01-01

    A-DNA and B-DNA are two secondary molecular conformations (among other allomorphs) that double-stranded DNA drawn into a fiber can assume, depending on the relative water content and other chemical parameters of the fiber. They were the first two forms to be observed by X-ray fiber diffraction in the early 1950s, respectively by Wilkins and…

  7. Fiber optic chemical sensors: The evolution of high- density fiber-optic DNA microarrays

    NASA Astrophysics Data System (ADS)

    Ferguson, Jane A.

    2001-06-01

    Sensors were developed for multianalyte monitoring, fermentation monitoring, lactate analysis, remote oxygen detection for use in bioremediation monitoring and in a fuel spill clean-up project, heavy metal analysis, and high density DNA microarrays. The major focus of this thesis involved creating and improving high-density DNA gene arrays. Fiber optic sensors are created using fluorescent indicators, polymeric supports, and optical fiber substrates. The fluorescent indicator is entrapped in a polymer layer and attached to the tip of the optical fiber. The tip of the fiber bearing the sensing layer (the distal end) is placed in the sample of interest while the other end of the fiber (the proximal end) is connected to an analysis system. Any length of fiber can be used without compromising the integrity or sensitivity of the system. A fiber optic oxygen sensor was designed incorporating an oxygen sensitive fluorescent dye and a gas permeable polymer attached to an optical fiber. The construction simplicity and ruggedness of the sensor enabled its deployment for in situ chemical oxidation and bioremediation studies. Optical fibers were also used as the substrate to detect biomolecules in solution. To monitor bioprocesses, the production of the analyte of interest must be coupled with a species that is optically measurable. For example, oxygen is consumed in many metabolic functions. The fiber optic oxygen sensor is equipped with an additional sensing layer. Upon contact with a specific biochemical in the sample, a reaction occurs in the additional sensing layer that either consumes or produces oxygen. This dual layer system was used to monitor the presence of lactate, an important metabolite for clinical and bioprocess analysis. In many biological and environmental systems, the generation of one species occurs coincidentally with the generation or consumption of another species. A multianalyte sensor was prepared that can monitor the simultaneous activity of pH, CO2

  8. DNA origami nanorobot fiber optic genosensor to TMV.

    PubMed

    Torelli, Emanuela; Manzano, Marisa; Srivastava, Sachin K; Marks, Robert S

    2018-01-15

    In the quest of greater sensitivity and specificity of diagnostic systems, one continually searches for alternative DNA hybridization methods, enabling greater versatility and where possible field-enabled detection of target analytes. We present, herein, a hybrid molecular self-assembled scaffolded DNA origami entity, intimately immobilized via capture probes linked to aminopropyltriethoxysilane, onto a glass optical fiber end-face transducer, thus producing a novel biosensor. Immobilized DNA nanorobots with a switchable flap can then be actuated by a specific target DNA present in a sample, by exposing a hemin/G-quadruplex DNAzyme, which then catalyzes the generation of chemiluminescence, once the specific fiber probes are immersed in a luminol-based solution. Integrating organic nanorobots to inorganic fiber optics creates a hybrid system that we demonstrate as a proof-of-principle can be utilized in specific DNA sequence detection. This system has potential applications in a wide range of fields, including point-of-care diagnostics or cellular in vivo biosensing when using ultrathin fiber optic probes for research purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Cooperative DNA binding and protein/DNA fiber formation increases the activity of the Dnmt3a DNA methyltransferase.

    PubMed

    Emperle, Max; Rajavelu, Arumugam; Reinhardt, Richard; Jurkowska, Renata Z; Jeltsch, Albert

    2014-10-24

    The Dnmt3a DNA methyltransferase has been shown to bind cooperatively to DNA and to form large multimeric protein/DNA fibers. However, it has also been reported to methylate DNA in a processive manner, a property that is incompatible with protein/DNA fiber formation. We show here that the DNA methylation rate of Dnmt3a increases more than linearly with increasing enzyme concentration on a long DNA substrate, but not on a short 30-mer oligonucleotide substrate. We also show that addition of a catalytically inactive Dnmt3a mutant, which carries an amino acid exchange in the catalytic center, increases the DNA methylation rate by wild type Dnmt3a on the long substrate but not on the short one. In agreement with this finding, preincubation experiments indicate that stable protein/DNA fibers are formed on the long, but not on the short substrate. In addition, methylation experiments with substrates containing one or two CpG sites did not provide evidence for a processive mechanism over a wide range of enzyme concentrations. These data clearly indicate that Dnmt3a binds to DNA in a cooperative reaction and that the formation of stable protein/DNA fibers increases the DNA methylation rate. Fiber formation occurs at low μm concentrations of Dnmt3a, which are in the range of Dnmt3a concentrations in the nucleus of embryonic stem cells. Understanding the mechanism of Dnmt3a is of vital importance because Dnmt3a is a hotspot of somatic cancer mutations one of which has been implicated in changing Dnmt3a processivity. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Image Analysis of DNA Fiber and Nucleus in Plants.

    PubMed

    Ohmido, Nobuko; Wako, Toshiyuki; Kato, Seiji; Fukui, Kiichi

    2016-01-01

    Advances in cytology have led to the application of a wide range of visualization methods in plant genome studies. Image analysis methods are indispensable tools where morphology, density, and color play important roles in the biological systems. Visualization and image analysis methods are useful techniques in the analyses of the detailed structure and function of extended DNA fibers (EDFs) and interphase nuclei. The EDF is the highest in the spatial resolving power to reveal genome structure and it can be used for physical mapping, especially for closely located genes and tandemly repeated sequences. One the other hand, analyzing nuclear DNA and proteins would reveal nuclear structure and functions. In this chapter, we describe the image analysis protocol for quantitatively analyzing different types of plant genome, EDFs and interphase nuclei.

  11. High-density fiber-optic DNA random microsphere array.

    PubMed

    Ferguson, J A; Steemers, F J; Walt, D R

    2000-11-15

    A high-density fiber-optic DNA microarray sensor was developed to monitor multiple DNA sequences in parallel. Microarrays were prepared by randomly distributing DNA probe-functionalized 3.1-microm-diameter microspheres in an array of wells etched in a 500-microm-diameter optical imaging fiber. Registration of the microspheres was performed using an optical encoding scheme and a custom-built imaging system. Hybridization was visualized using fluorescent-labeled DNA targets with a detection limit of 10 fM. Hybridization times of seconds are required for nanomolar target concentrations, and analysis is performed in minutes.

  12. High-density, microsphere-based fiber optic DNA microarrays.

    PubMed

    Epstein, Jason R; Leung, Amy P K; Lee, Kyong Hoon; Walt, David R

    2003-05-01

    A high-density fiber optic DNA microarray has been developed consisting of oligonucleotide-functionalized, 3.1-microm-diameter microspheres randomly distributed on the etched face of an imaging fiber bundle. The fiber bundles are comprised of 6000-50000 fused optical fibers and each fiber terminates with an etched well. The microwell array is capable of housing complementary-sized microspheres, each containing thousands of copies of a unique oligonucleotide probe sequence. The array fabrication process results in random microsphere placement. Determining the position of microspheres in the random array requires an optical encoding scheme. This array platform provides many advantages over other array formats. The microsphere-stock suspension concentration added to the etched fiber can be controlled to provide inherent sensor redundancy. Examining identical microspheres has a beneficial effect on the signal-to-noise ratio. As other sequences of interest are discovered, new microsphere sensing elements can be added to existing microsphere pools and new arrays can be fabricated incorporating the new sequences without altering the existing detection capabilities. These microarrays contain the smallest feature sizes (3 microm) of any DNA array, allowing interrogation of extremely small sample volumes. Reducing the feature size results in higher local target molecule concentrations, creating rapid and highly sensitive assays. The microsphere array platform is also flexible in its applications; research has included DNA-protein interaction profiles, microbial strain differentiation, and non-labeled target interrogation with molecular beacons. Fiber optic microsphere-based DNA microarrays have a simple fabrication protocol enabling their expansion into other applications, such as single cell-based assays.

  13. Sensitive Leptospira DNA detection using tapered optical fiber sensor.

    PubMed

    Zainuddin, Nurul H; Chee, Hui Y; Ahmad, Muhammad Z; Mahdi, Mohd A; Abu Bakar, Muhammad H; Yaacob, Mohd H

    2018-03-23

    This paper presents the development of tapered optical fiber sensor to detect a specific Leptospira bacteria DNA. The bacteria causes Leptospirosis, a deadly disease but with common early flu-like symptoms. Optical single mode fiber (SMF) of 125 μm diameter is tapered to produce 12 μm waist diameter and 15 cm length. The novel DNA-based optical fiber sensor is functionalized by incubating the tapered region with sodium hydroxide (NaOH), (3-Aminopropyl) triethoxysilane and glutaraldehyde. Probe DNA is immobilized onto the tapered region and subsequently hybridized by its complementary DNA (cDNA). The transmission spectra of the DNA-based optical fiber sensor are measured in the 1500 to 1600 nm wavelength range. It is discovered that the shift of the wavelength in the SMF sensor is linearly proportional with the increase in the cDNA concentrations from 0.1 to 1.0 nM. The sensitivity of the sensor toward DNA is measured to be 1.2862 nm/nM and able to detect as low as 0.1 fM. The sensor indicates high specificity when only minimal shift is detected for non-cDNA testing. The developed sensor is able to distinguish between actual DNA of Leptospira serovars (Canicola and Copenhageni) against Clostridium difficile (control sample) at very low (femtomolar) target concentrations. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Isoelectric Bovine Serum Albumin: Robust Blocking Agent for Enhanced Performance in Optical-Fiber Based DNA Sensing.

    PubMed

    Wang, Ruoyu; Zhou, Xiaohong; Zhu, Xiyu; Yang, Chao; Liu, Lanhua; Shi, Hanchang

    2017-02-24

    Surface blocking is a well-known process for reducing unwanted nonspecific adsorption in sensor fabrication, especially important in the emerging field where DNA/RNA applied. Bovine serum albumin (BSA) is one of the most popular blocking agents with an isoelectric point at pH 4.6. Although it is widely recognized that the adsorption of a blocking agent is strongly affected by its net charge and the maximum adsorption is often observed under its isoelectric form, BSA has long been perfunctorily used for blocking merely in neutral solution, showing poor blocking performances in the optical-fiber evanescent wave (OFEW) based sensing toward DNA target. To meet this challenge, we first put forward the view that isoelectric BSA (iep-BSA) has the best blocking performance and use an OFEW sensor platform to demonstrate this concept. An optical-fiber was covalently modified with amino-DNA, and further coupled with the optical system to detect fluorophore labeled complementary DNA within the evanescent field. A dramatic improvement in the reusability of this DNA modified sensing surface was achieved with 120 stable detection cycles, which ensured accurate quantitative bioassay. As expected, the iep-BSA blocked OFEW system showed enhanced sensing performance toward target DNA with a detection limit of 125 pM. To the best of our knowledge, this is the highest number of regeneration cycles ever reported for a DNA immobilized optical-fiber surface. This study can also serve as a good reference and provide important implications for developing similar DNA-directed surface biosensors.

  15. Supercontinuum generation through DNA-filled hollow core fiber for broadband absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Cho, Youngho; Park, Byeongho; Oh, Juyeong; Seo, Min Ah; Lee, Kwanil; Kim, Chulki; Lee, Taikjin; Woo, Deok Ha; Lee, Seok; Kim, Hyung Min; Lee, Hyuk Jae; Oh, Kyunghwan; Yeom, Dong-Il; Park, Sung Ha; Kim, Jae Hun

    2015-07-01

    In this study, we successfully generated the large bandwidth of supercontinuum spectra through hollow fibers filled with DNA. Also, by observing that spectra bandwidth was the widest in the order of the hollow core fiber filled with DNA modified by copper ion, the hollow core fiber with only DNA, and the bulk hollow core fiber, we demonstrated that DNA material modified with copper ions can further enhance the spectral bandwidth of supercontinuum. As a result, we anticipate that the SCG as a broadband light source can be used in analytical methods to demonstrate a wide range of biological and environmental questions.

  16. Microstructured optical fiber Bragg grating sensor for DNA detection

    NASA Astrophysics Data System (ADS)

    Candiani, A.; Giannetti, S.; Sozzi, M.; Coscelli, E.; Poli, F.; Cucinotta, A.; Bertucci, A.; Corradini, R.; Konstantaki, M.; Margulis, W.; Pissadakis, S.; Selleri, S.

    2013-03-01

    In this work the inner surface of a microstructured optical fiber, where a Bragg grating was previously inscribed, has been functionalized using peptide nucleic acid probe targeting a DNA sequence of the cystic fibrosis disease. The solution of DNA molecules, matched with the PNA probes, has been infiltrated inside the fiber capillaries and hybridization has been realized according to the Watson - Crick Model. In order to achieve signal amplification, oligonucleotide-functionalized gold nanoparticles were then infiltrated and used to form a sandwich-like system. Experimental measurements show a clear wavelength shift of the reflected high order mode for a 100 nM DNA solution. Several experiments have been carried out on the same fiber using the identical concentration, showing the same modulation and proving a good reproducibility of the results, suggesting the possibility of the reuse of the sensor. Measurements have been also made using a 100 nM mis-matched DNA solution, containing a single nucleotide polymorphism, demonstrating the high selectivity of the sensor.

  17. DNA methylation assessment from human slow- and fast-twitch skeletal muscle fibers

    PubMed Central

    Begue, Gwénaëlle; Raue, Ulrika; Jemiolo, Bozena

    2017-01-01

    A new application of the reduced representation bisulfite sequencing method was developed using low-DNA input to investigate the epigenetic profile of human slow- and fast-twitch skeletal muscle fibers. Successful library construction was completed with as little as 15 ng of DNA, and high-quality sequencing data were obtained with 32 ng of DNA. Analysis identified 143,160 differentially methylated CpG sites across 14,046 genes. In both fiber types, selected genes predominantly expressed in slow or fast fibers were hypomethylated, which was supported by the RNA-sequencing analysis. These are the first fiber type-specific methylation data from human skeletal muscle and provide a unique platform for future research. NEW & NOTEWORTHY This study validates a low-DNA input reduced representation bisulfite sequencing method for human muscle biopsy samples to investigate the methylation patterns at a fiber type-specific level. These are the first fiber type-specific methylation data reported from human skeletal muscle and thus provide initial insight into basal state differences in myosin heavy chain I and IIa muscle fibers among young, healthy men. PMID:28057818

  18. Quantitation of HBV DNA in human serum using a branched DNA (bDNA) signal amplification assay.

    PubMed

    Hendricks, D A; Stowe, B J; Hoo, B S; Kolberg, J; Irvine, B D; Neuwald, P D; Urdea, M S; Perrillo, R P

    1995-11-01

    The aim of this study was to establish the performance characteristics of a nonradioisotopic branched DNA (bDNA) signal amplification assay for quantitation of hepatitis B virus (HBV) DNA in human serum. Quantitation was determined from a standard curve and expressed as HBV DNA equivalents/mL (Eq/mL; 285,000 Eq = 1 pg of double stranded HBV DNA). The bDNA assay exhibited a nearly four log dynamic range of quantitation and an analytical detection limit of approximately 100,000 Eq/mL. To ensure a specificity of 99.7%, the quantitation limit was set at 700,000 Eq/mL. The interassay percent coefficient of variance for quantification values ranged from 10% to 15% when performed by novice users with different sets of reagents. Using the bDNA assay, HBV DNA was detected in 94% to 100% of hepatitis B e antigen-positive specimens and 27% to 31% of hepatitis B e antigen-negative specimens from chronic HBV-infected patients. The bDNA assay may be useful as a prognostic and therapy monitoring tool for the management of HBV-infected patients undergoing antiviral treatment.

  19. FIBER OPTIC BIOSENSOR FOR DNA DAMAGE

    EPA Science Inventory

    This paper describes a fiber optic biosensor for the rapid and sensitive detection of radiation-induced or chemically-induced oxidative DNA damage. The assay is based on the hybridization and temperature-induced dissociation (melting curves) of synthetic oligonucleotides. The...

  20. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNAmore » populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.« less

  1. Cytology of DNA Replication Reveals Dynamic Plasticity of Large-Scale Chromatin Fibers.

    PubMed

    Deng, Xiang; Zhironkina, Oxana A; Cherepanynets, Varvara D; Strelkova, Olga S; Kireev, Igor I; Belmont, Andrew S

    2016-09-26

    In higher eukaryotic interphase nuclei, the 100- to >1,000-fold linear compaction of chromatin is difficult to reconcile with its function as a template for transcription, replication, and repair. It is challenging to imagine how DNA and RNA polymerases with their associated molecular machinery would move along the DNA template without transient decondensation of observed large-scale chromatin "chromonema" fibers [1]. Transcription or "replication factory" models [2], in which polymerases remain fixed while DNA is reeled through, are similarly difficult to conceptualize without transient decondensation of these chromonema fibers. Here, we show how a dynamic plasticity of chromatin folding within large-scale chromatin fibers allows DNA replication to take place without significant changes in the global large-scale chromatin compaction or shape of these large-scale chromatin fibers. Time-lapse imaging of lac-operator-tagged chromosome regions shows no major change in the overall compaction of these chromosome regions during their DNA replication. Improved pulse-chase labeling of endogenous interphase chromosomes yields a model in which the global compaction and shape of large-Mbp chromatin domains remains largely invariant during DNA replication, with DNA within these domains undergoing significant movements and redistribution as they move into and then out of adjacent replication foci. In contrast to hierarchical folding models, this dynamic plasticity of large-scale chromatin organization explains how localized changes in DNA topology allow DNA replication to take place without an accompanying global unfolding of large-scale chromatin fibers while suggesting a possible mechanism for maintaining epigenetic programming of large-scale chromatin domains throughout DNA replication. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. DNA biosensors implemented on PNA-functionalized microstructured optical fibers Bragg gratings

    NASA Astrophysics Data System (ADS)

    Candiani, A.; Giannetti, S.; Cucinotta, A.; Bertucci, A.; Manicardi, A.; Konstantaki, M.; Margulis, W.; Pissadakis, S.; Corradini, R.; Selleri, S.

    2013-05-01

    A novel DNA sensing platform based on a Peptide Nucleic Acid - functionalized Microstructured Optical Fibers gratings has been demonstrated. The inner surface of different MOFs has been functionalized using PNA probes, OligoNucleotides mimic that are well suited for specific DNA target sequences detection. The hybrid sensing systems were tested for optical DNA detection of targets of relevance in biomedical application, using the cystic fibrosis gene mutation, and food-analysis, using the genomic DNA from genetic modified organism soy flour. After the solutions of DNA molecules has been infiltrated inside the fibers capillaries and hybridization has occurred, oligonucleotidefunctionalized gold nanoparticles were infiltrated and used to form a sandwich-like system to achieve signal amplification. Spectral measurements of the reflected signal reveal a clear wavelength shift of the reflected modes when the infiltrated complementary DNA matches with the PNA probes placed on the inner fiber surface. Measurements have also been made using the mismatched DNA solution for the c, containing a single nucleotide polymorphism, showing no significant changes in the reflected spectrum. Several experiments have been carried out demonstrating the reproducibility of the results and the high selectivity of the sensors, showing the simplicity and the potential of this approach.

  3. Quantitative DNA Methylation Profiling in Cancer.

    PubMed

    Ammerpohl, Ole; Haake, Andrea; Kolarova, Julia; Siebert, Reiner

    2016-01-01

    Epigenetic mechanisms including DNA methylation are fundamental for the regulation of gene expression. Epigenetic alterations can lead to the development and the evolution of malignant tumors as well as the emergence of phenotypically different cancer cells or metastasis from one single tumor cell. Here we describe bisulfite pyrosequencing, a technology to perform quantitative DNA methylation analyses, to detect aberrant DNA methylation in malignant tumors.

  4. Application of Optical Fibers to DNA’s Testing Program.

    DTIC Science & Technology

    1980-10-15

    economic impact. In addition to benefitting UGT , advances in fiber optic technology can greatly impact other DNA activities such as hardening of military...components and simulation and testing in high radiation environments. Using the UGT environment as a test bed, optical fibers can be characterized in...OPTIC SYSTEMS 33 3-3.1 Active System Design 37 4 USE OF FIBERS IN UGT 47 4-1 ADVANTAGES OF FIBERS FOR UGT 47 4-2 DIAGNOSTIC APPLICATIONS 4-3 EFFECTS

  5. Enzyme-enhanced fluorescence detection of DNA on etched optical fibers.

    PubMed

    Niu, Shu-yan; Li, Quan-yi; Ren, Rui; Zhang, Shu-sheng

    2009-05-15

    A novel DNA biosensor based on enzyme-enhanced fluorescence detection on etched optical fibers was developed. The hybridization complex of DNA probe and biotinylated target was formed on the etched optical fiber, and was then bound with streptavidin labeled horseradish peroxidase (streptavidin-HRP). The target DNA was quantified through the fluorescent detection of bi-p,p'-4-hydroxyphenylacetic acid (DBDA) generated from the substrate 4-hydroxyphenylacetic acid (p-HPA) under the catalysis of HRP, with a detection limit of 1 pM and a linear range from 1.69 pM to 169 pM. It is facile to regenerate this sensor through surface treatment with concentrated urea solution. It was discovered that the sensor can retain 70% of its original activity after three detection-regeneration cycles.

  6. Quantitative risk assessment of durable glass fibers.

    PubMed

    Fayerweather, William E; Eastes, Walter; Cereghini, Francesco; Hadley, John G

    2002-06-01

    This article presents a quantitative risk assessment for the theoretical lifetime cancer risk from the manufacture and use of relatively durable synthetic glass fibers. More specifically, we estimate levels of exposure to respirable fibers or fiberlike structures of E-glass and C-glass that, assuming a working lifetime exposure, pose a theoretical lifetime cancer risk of not more than 1 per 100,000. For comparability with other risk assessments we define these levels as nonsignificant exposures. Nonsignificant exposure levels are estimated from (a) the Institute of Occupational Medicine (IOM) chronic rat inhalation bioassay of durable E-glass microfibers, and (b) the Research Consulting Company (RCC) chronic inhalation bioassay of durable refractory ceramic fibers (RCF). Best estimates of nonsignificant E-glass exposure exceed 0.05-0.13 fibers (or shards) per cubic centimeter (cm3) when calculated from the multistage nonthreshold model. Best estimates of nonsignificant C-glass exposure exceed 0.27-0.6 fibers/cm3. Estimates of nonsignificant exposure increase markedly for E- and C-glass when non-linear models are applied and rapidly exceed 1 fiber/cm3. Controlling durable fiber exposures to an 8-h time-weighted average of 0.05 fibers/cm3 will assure that the additional theoretical lifetime risk from working lifetime exposures to these durable fibers or shards is kept below the 1 per 100,000 level. Measured airborne exposures to respirable, durable glass fibers (or shards) in glass fiber manufacturing and fabrication operations were compared with the nonsignificant exposure estimates described. Sampling results for B-sized respirable E-glass fibers at facilities that manufacture or fabricate small-diameter continuous-filament products, from those that manufacture respirable E-glass shards from PERG (process to efficiently recycle glass), from milled fiber operations, and from respirable C-glass shards from Flakeglass operations indicate very low median exposures of 0

  7. Programmable Quantitative DNA Nanothermometers.

    PubMed

    Gareau, David; Desrosiers, Arnaud; Vallée-Bélisle, Alexis

    2016-07-13

    Developing molecules, switches, probes or nanomaterials that are able to respond to specific temperature changes should prove of utility for several applications in nanotechnology. Here, we describe bioinspired strategies to design DNA thermoswitches with programmable linear response ranges that can provide either a precise ultrasensitive response over a desired, small temperature interval (±0.05 °C) or an extended linear response over a wide temperature range (e.g., from 25 to 90 °C). Using structural modifications or inexpensive DNA stabilizers, we show that we can tune the transition midpoints of DNA thermometers from 30 to 85 °C. Using multimeric switch architectures, we are able to create ultrasensitive thermometers that display large quantitative fluorescence gains within small temperature variation (e.g., > 700% over 10 °C). Using a combination of thermoswitches of different stabilities or a mix of stabilizers of various strengths, we can create extended thermometers that respond linearly up to 50 °C in temperature range. Here, we demonstrate the reversibility, robustness, and efficiency of these programmable DNA thermometers by monitoring temperature change inside individual wells during polymerase chain reactions. We discuss the potential applications of these programmable DNA thermoswitches in various nanotechnology fields including cell imaging, nanofluidics, nanomedecine, nanoelectronics, nanomaterial, and synthetic biology.

  8. A Potential Role for CHH DNA Methylation in Cotton Fiber Growth Patterns

    PubMed Central

    Jin, Xiang; Pang, Yu; Jia, Fangxing; Xiao, Guanghui; Li, Qin; Zhu, Yuxian

    2013-01-01

    DNA methylation controls many aspects of plant growth and development. Here, we report a novel annual growth potential change that may correlate with changes in levels of the major DNA demethylases and methyltransferases in cotton ovules harvested at different times of the year. The abundances of DNA demethylases, at both the mRNA and protein levels, increased significantly from February to August and decreased during the remainder of the 12-month period, with the opposite pattern observed for DNA methyltransferases. Over the course of one year, substantial changes in methylcytosine content was observed at certain CHH sites (H = A, C, or T) in the promoter regions of the ETHYLENE RESPONSIVE FACTOR 6 (ERF6), SUPPRESSION OF RVS 161 DELTA 4 (SUR4) and 3-KETOACYL-COA SYNTHASE 13 (KCS13), which regulate cotton fiber growth. Three independent techniques were used to confirm the annual fluctuations in DNA methylation. Furthermore, in homozygous RNAi lines specifically targeting REPRESSOR OF SILENCING 1 (ROS1, a conserved DNA demethylase domain), promotion of DNA methylation significantly reduced fiber growth during August. PMID:23593241

  9. QUANTITATIVE DETECTION OF ENVIRONMENTALLY IMPORTANT DYES USING DIODE LASER/FIBER-OPTIC RAMAN

    EPA Science Inventory

    A compact diode laser/fiber-optic Raman spectrometer is used for quantitative detection of environmentally important dyes. This system is based on diode laser excitation at 782 mm, fiber optic probe technology, an imaging spectrometer, and state-of-the-art scientific CCD camera. ...

  10. Interaction of DNA with Simple and Mixed Ligand Copper(II) Complexes of 1,10-Phenanthrolines as Studied by DNA-Fiber EPR Spectroscopy

    PubMed Central

    Chikira, Makoto; Ng, Chew Hee; Palaniandavar, Mallayan

    2015-01-01

    The interaction of simple and ternary Cu(II) complexes of 1,10-phenanthrolines with DNA has been studied extensively because of their various interesting and important functions such as DNA cleavage activity, cytotoxicity towards cancer cells, and DNA based asymmetric catalysis. Such functions are closely related to the DNA binding modes of the complexes such as intercalation, groove binding, and electrostatic surface binding. A variety of spectroscopic methods have been used to study the DNA binding mode of the Cu(II) complexes. Of all these methods, DNA-fiber electron paramagnetic resonance (EPR) spectroscopy affords unique information on the DNA binding structures of the complexes. In this review we summarize the results of our DNA-fiber EPR studies on the DNA binding structure of the complexes and discuss them together with the data accumulated by using other measurements. PMID:26402668

  11. Competitor internal standards for quantitative detection of mycoplasma DNA.

    PubMed

    Sidhu, M K; Rashidbaigi, A; Testa, D; Liao, M J

    1995-05-01

    Homologous internal controls were used as competitor DNA in the polymerase chain reaction for the quantitative detection of mycoplasma DNA. PCR primer sets were designed on the basis of the most conserved nucleotide sequences of the 16S rRNA gene of mycoplasma species. Amplification of this gene was examined in five different mycoplasma species: Mycoplasma orale, M. hyorhinus, M. synoviae, M. gallisepticum and M. pneumoniae. To evaluate the primers, a number of different cell lines were assayed for the detection of mycoplasma infections. All positive cell lines showed a distinct product on agarose gels while uninfected cells showed no DNA amplification. Neither bacterial nor eukaryotic DNA produced any cross-reaction with the primers used, thus confirming their specificity. Internal control DNA to be used for quantitation was constructed by modifying the sizes of the wild-type amplified products and cloning them in plasmid vectors. These controls used the same primer binding sites as the wild-type and the amplified products were differentiated by a size difference. The detection limits for all the mycoplasma species by competitive quantitative PCR were estimated to range from 4 to 60 genome copies per assay as determined by ethidium bromide-stained agarose gels. These internal standards also serve as positive controls in PCR-based detection of mycoplasma DNA, and therefore accidental contamination of test samples with wild-type positive controls can be eliminated. The quantitative PCR method developed will be useful in monitoring the progression and significance of mycoplasma in the disease process.

  12. Topological diversity of chromatin fibers: Interplay between nucleosome repeat length, DNA linking number and the level of transcription

    PubMed Central

    Norouzi, Davood; Katebi, Ataur; Cui, Feng; Zhurkin, Victor B.

    2016-01-01

    The spatial organization of nucleosomes in 30-nm fibers remains unknown in detail. To tackle this problem, we analyzed all stereochemically possible configurations of two-start chromatin fibers with DNA linkers L = 10–70 bp (nucleosome repeat length NRL = 157–217 bp). In our model, the energy of a fiber is a sum of the elastic energy of the linker DNA, steric repulsion, electrostatics, and the H4 tail-acidic patch interaction between two stacked nucleosomes. We found two families of energetically feasible conformations of the fibers—one observed earlier, and the other novel. The fibers from the two families are characterized by different DNA linking numbers—that is, they are topologically different. Remarkably, the optimal geometry of a fiber and its topology depend on the linker length: the fibers with linkers L = 10n and 10n + 5 bp have DNA linking numbers per nucleosome ΔLk ≈ −1.5 and −1.0, respectively. In other words, the level of DNA supercoiling is directly related to the length of the inter-nucleosome linker in the chromatin fiber (and therefore, to NRL). We hypothesize that this topological polymorphism of chromatin fibers may play a role in the process of transcription, which is known to generate different levels of DNA supercoiling upstream and downstream from RNA polymerase. A genome-wide analysis of the NRL distribution in active and silent yeast genes yielded results consistent with this assumption. PMID:28133628

  13. Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays.

    PubMed

    Steemers, F J; Ferguson, J A; Walt, D R

    2000-01-01

    We have developed a randomly ordered fiber-optic gene array for rapid, parallel detection of unlabeled DNA targets with surface immobilized molecular beacons (MB) that undergo a conformational change accompanied by a fluorescence change in the presence of a complementary DNA target. Microarrays are prepared by randomly distributing MB-functionalized 3-microm diameter microspheres in an array of wells etched in a 500-microm diameter optical imaging fiber. Using several MBs, each designed to recognize a different target, we demonstrate the selective detection of genomic cystic fibrosis related targets. Positional registration and fluorescence response monitoring of the microspheres was performed using an optical encoding scheme and an imaging fluorescence microscope system.

  14. Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating

    NASA Astrophysics Data System (ADS)

    Candiani, Alessandro; Bertucci, Alessandro; Giannetti, Sara; Konstantaki, Maria; Manicardi, Alex; Pissadakis, Stavros; Cucinotta, Annamaria; Corradini, Roberto; Selleri, Stefano

    2013-05-01

    We describe a novel sensing approach based on a functionalized microstructured optical fiber-Bragg grating for specific DNA target sequences detection. The inner surface of a microstructured fiber, where a Bragg grating was previously inscribed, has been functionalized by covalent linking of a peptide nucleic acid probe targeting a DNA sequence bearing a single point mutation implicated in cystic fibrosis (CF) disease. A solution of an oligonucleotide (ON) corresponding to a tract of the CF gene containing the mutated DNA has been infiltrated inside the fiber capillaries and allowed to hybridize to the fiber surface according to the Watson-Crick pairing. In order to achieve signal amplification, ON-functionalized gold nanoparticles were then infiltrated and used in a sandwich-like assay. Experimental measurements show a clear shift of the reflected high order mode of a Bragg grating for a 100 nM DNA solution, and fluorescence measurements have confirmed the successful hybridization. Several experiments have been carried out on the same fiber using the identical concentration, showing the same modulation trend, suggesting the possibility of the reuse of the sensor. Measurements have also been made using a 100 nM mismatched DNA solution, containing a single nucleotide mutation and corresponding to the wild-type gene, and the results demonstrate the high selectivity of the sensor.

  15. Hydrophobic ionic liquids for quantitative bacterial cell lysis with subsequent DNA quantification.

    PubMed

    Fuchs-Telka, Sabine; Fister, Susanne; Mester, Patrick-Julian; Wagner, Martin; Rossmanith, Peter

    2017-02-01

    DNA is one of the most frequently analyzed molecules in the life sciences. In this article we describe a simple and fast protocol for quantitative DNA isolation from bacteria based on hydrophobic ionic liquid supported cell lysis at elevated temperatures (120-150 °C) for subsequent PCR-based analysis. From a set of five hydrophobic ionic liquids, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide was identified as the most suitable for quantitative cell lysis and DNA extraction because of limited quantitative PCR inhibition by the aqueous eluate as well as no detectable DNA uptake. The newly developed method was able to efficiently lyse Gram-negative bacterial cells, whereas Gram-positive cells were protected by their thick cell wall. The performance of the final protocol resulted in quantitative DNA extraction efficiencies for Gram-negative bacteria similar to those obtained with a commercial kit, whereas the number of handling steps, and especially the time required, was dramatically reduced. Graphical Abstract After careful evaluation of five hydrophobic ionic liquids, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([BMPyr + ][Ntf 2 - ]) was identified as the most suitable ionic liquid for quantitative cell lysis and DNA extraction. When used for Gram-negative bacteria, the protocol presented is simple and very fast and achieves DNA extraction efficiencies similar to those obtained with a commercial kit. ddH 2 O double-distilled water, qPCR quantitative PCR.

  16. Thermo-optic characteristic of DNA thin solid film and its application as a biocompatible optical fiber temperature sensor.

    PubMed

    Hong, Seongjin; Jung, Woohyun; Nazari, Tavakol; Song, Sanggwon; Kim, Taeoh; Quan, Chai; Oh, Kyunghwan

    2017-05-15

    We report unique thermo-optical characteristics of DNA-Cetyl tri-methyl ammonium (DNA-CTMA) thin solid film with a large negative thermo-optical coefficient of -3.4×10-4/°C in the temperature range from 20°C to 70°C without any observable thermal hysteresis. By combining this thermo-optic DNA film and fiber optic multimode interference (MMI) device, we experimentally demonstrated a highly sensitive compact temperature sensor with a large spectral shift of 0.15 nm/°C. The fiber optic MMI device was a concatenated structure with single-mode fiber (SMF)-coreless silica fiber (CSF)-single mode fiber (SMF) and the DNA-CTMA film was deposited on the CSF. The spectral shifts of the device in experiments were compared with the beam propagation method, which showed a good agreement.

  17. Quantitative competitive (QC) PCR for quantification of porcine DNA.

    PubMed

    Wolf, C; Lüthy, J

    2001-02-01

    Many meat products nowadays may contain several species in different proportions. To protect consumers from fraud and misdeclarations, not only a qualitative but also a quantitative monitoring of ingredients of complex food products is necessary. DNA based techniques like the polymerase chain reaction (PCR) are widely used for identification of species but no answer to the proportional amount of a certain species could be given using current techniques. In this study we report the development and evaluation of a quantitative competitive polymerase chain reaction (QC-PCR) for detection and quantification of porcine DNA using a new porcine specific PCR system based on the growth hormone gene of sus scrofa. A DNA competitor differing by 30 bp in length from the porcine target sequence was constructed and used for PCR together with the target DNA. Specificity of the new primers was evaluated with DNA from cattle, sheep, chicken and turkey. The competitor concentration was adjusted to porcine DNA contents of 2 or 20% by coamplification of mixtures containing porcine and corresponding amounts of bovine DNA in defined ratios.

  18. DNA based thin solid films and its application to optical fiber temperature sensor

    NASA Astrophysics Data System (ADS)

    Hong, Seongjin; Jung, Woohyun; Kim, Taeoh; Oh, Kyunghwan

    2017-04-01

    Temperature dependent refractive index of DNA-cetyltrimethylammonium chloride (CTMA) thin-solid-film was measured 20 to 90° to obtain its thermo-optic coefficient of -3.6×10-4 (dn/dT). DNA- CTMA film has high thermosoptic coefficient than other polymers. The film was deposited on coreless silica fiber (CSF) to serve as a multimode interferometer optical fiber temperature sensor. It is immersed in a water that changed temperature from 40 to 90°. It has sensitivity of 0.25nm/℃.

  19. Method of quantitating dsDNA

    DOEpatents

    Stark, Peter C.; Kuske, Cheryl R.; Mullen, Kenneth I.

    2002-01-01

    A method for quantitating dsDNA in an aqueous sample solution containing an unknown amount of dsDNA. A first aqueous test solution containing a known amount of a fluorescent dye-dsDNA complex and at least one fluorescence-attenutating contaminant is prepared. The fluorescence intensity of the test solution is measured. The first test solution is diluted by a known amount to provide a second test solution having a known concentration of dsDNA. The fluorescence intensity of the second test solution is measured. Additional diluted test solutions are similarly prepared until a sufficiently dilute test solution having a known amount of dsDNA is prepared that has a fluorescence intensity that is not attenuated upon further dilution. The value of the maximum absorbance of this solution between 200-900 nanometers (nm), referred to herein as the threshold absorbance, is measured. A sample solution having an unknown amount of dsDNA and an absorbance identical to that of the sufficiently dilute test solution at the same chosen wavelength is prepared. Dye is then added to the sample solution to form the fluorescent dye-dsDNA-complex, after which the fluorescence intensity of the sample solution is measured and the quantity of dsDNA in the sample solution is determined. Once the threshold absorbance of a sample solution obtained from a particular environment has been determined, any similarly prepared sample solution taken from a similar environment and having the same value for the threshold absorbance can be quantified for dsDNA by adding a large excess of dye to the sample solution and measuring its fluorescence intensity.

  20. Multi-colored fibers by self-assembly of DNA, histone proteins, and cationic conjugated polymers.

    PubMed

    Wang, Fengyan; Liu, Zhang; Wang, Bing; Feng, Liheng; Liu, Libing; Lv, Fengting; Wang, Yilin; Wang, Shu

    2014-01-07

    The development of biomolecular fiber materials with imaging ability has become more and more useful for biological applications. In this work, cationic conjugated polymers (CCPs) were used to construct inherent fluorescent microfibers with natural biological macromolecules (DNA and histone proteins) through the interfacial polyelectrolyte complexation (IPC) procedure. Isothermal titration microcalorimetry results show that the driving forces for fiber formation are electrostatic and hydrophobic interactions, as well as the release of counterions and bound water molecules. Color-encoded IPC fibers were also obtained based on the co-assembly of DNA, histone proteins, and blue-, green-, or red- (RGB-) emissive CCPs by tuning the fluorescence resonance energy-transfer among the CCPs at a single excitation wavelength. The fibers could encapsulate GFP-coded Escherichia coli BL21, and the expression of GFP proteins was successfully regulated by the external environment of the fibers. These multi-colored fibers show a great potential in biomedical applications, such as biosensor, delivery, and release of biological molecules and tissue engineering. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Production and certification of NIST Standard Reference Material 2372 Human DNA Quantitation Standard.

    PubMed

    Kline, Margaret C; Duewer, David L; Travis, John C; Smith, Melody V; Redman, Janette W; Vallone, Peter M; Decker, Amy E; Butler, John M

    2009-06-01

    Modern highly multiplexed short tandem repeat (STR) assays used by the forensic human-identity community require tight control of the initial amount of sample DNA amplified in the polymerase chain reaction (PCR) process. This, in turn, requires the ability to reproducibly measure the concentration of human DNA, [DNA], in a sample extract. Quantitative PCR (qPCR) techniques can determine the number of intact stretches of DNA of specified nucleotide sequence in an extremely small sample; however, these assays must be calibrated with DNA extracts of well-characterized and stable composition. By 2004, studies coordinated by or reported to the National Institute of Standards and Technology (NIST) indicated that a well-characterized, stable human DNA quantitation certified reference material (CRM) could help the forensic community reduce within- and among-laboratory quantitation variability. To ensure that the stability of such a quantitation standard can be monitored and that, if and when required, equivalent replacement materials can be prepared, a measurement of some stable quantity directly related to [DNA] is required. Using a long-established conventional relationship linking optical density (properly designated as decadic attenuance) at 260 nm with [DNA] in aqueous solution, NIST Standard Reference Material (SRM) 2372 Human DNA Quantitation Standard was issued in October 2007. This SRM consists of three quite different DNA extracts: a single-source male, a multiple-source female, and a mixture of male and female sources. All three SRM components have very similar optical densities, and thus very similar conventional [DNA]. The materials perform very similarly in several widely used gender-neutral assays, demonstrating that the combination of appropriate preparation methods and metrologically sound spectrophotometric measurements enables the preparation and certification of quantitation [DNA] standards that are both maintainable and of practical utility.

  2. Multivariate reference technique for quantitative analysis of fiber-optic tissue Raman spectroscopy.

    PubMed

    Bergholt, Mads Sylvest; Duraipandian, Shiyamala; Zheng, Wei; Huang, Zhiwei

    2013-12-03

    We report a novel method making use of multivariate reference signals of fused silica and sapphire Raman signals generated from a ball-lens fiber-optic Raman probe for quantitative analysis of in vivo tissue Raman measurements in real time. Partial least-squares (PLS) regression modeling is applied to extract the characteristic internal reference Raman signals (e.g., shoulder of the prominent fused silica boson peak (~130 cm(-1)); distinct sapphire ball-lens peaks (380, 417, 646, and 751 cm(-1))) from the ball-lens fiber-optic Raman probe for quantitative analysis of fiber-optic Raman spectroscopy. To evaluate the analytical value of this novel multivariate reference technique, a rapid Raman spectroscopy system coupled with a ball-lens fiber-optic Raman probe is used for in vivo oral tissue Raman measurements (n = 25 subjects) under 785 nm laser excitation powers ranging from 5 to 65 mW. An accurate linear relationship (R(2) = 0.981) with a root-mean-square error of cross validation (RMSECV) of 2.5 mW can be obtained for predicting the laser excitation power changes based on a leave-one-subject-out cross-validation, which is superior to the normal univariate reference method (RMSE = 6.2 mW). A root-mean-square error of prediction (RMSEP) of 2.4 mW (R(2) = 0.985) can also be achieved for laser power prediction in real time when we applied the multivariate method independently on the five new subjects (n = 166 spectra). We further apply the multivariate reference technique for quantitative analysis of gelatin tissue phantoms that gives rise to an RMSEP of ~2.0% (R(2) = 0.998) independent of laser excitation power variations. This work demonstrates that multivariate reference technique can be advantageously used to monitor and correct the variations of laser excitation power and fiber coupling efficiency in situ for standardizing the tissue Raman intensity to realize quantitative analysis of tissue Raman measurements in vivo, which is particularly appealing in

  3. Cellular chromosome DNA interferes with fluorescence quantitative real-time PCR detection of HBV DNA in culture medium.

    PubMed

    Pan, Xiao-Ben; Wei, Lai; Han, Jin-Chao; Gao, Yan

    2008-01-01

    Fluorescence quantitative real-time PCR (FQ-PCR) is a recently developed technique increasingly used for clinical diagnosis by detection of hepatitis B virus (HBV) DNA in serum. FQ-PCR is also used in scientific research for detection of HBV DNA in cell culture. Understanding potential FQ-PCR interference factors can improve the accuracy of HBV DNA quantification in cell culture medium. HBV positive serum was diluted with culture medium to produce three test groups with HBV DNA levels of 5 x 10(7) copies/ml (high), 5 x 10(5) copies/ml (medium), and 5 x 10(3) copies/ml (low). Chromosome DNA was extracted from HepG2 cells and then added to high, medium, and low group samples at final concentrations of 0, 12.5, 25, 50, and 100 microg/ml. The samples were quantified by FQ-PCR and data were evaluated using statistical software. No marked changes were seen in the quantitative curves for high level HBV DNA samples when the samples were supplemented with 0-100 microg/ml of chromosome DNA. Interference was observed in medium level samples when 50 and 100 microg/ml of chromosome DNA was added. Interference was also observed in low level HBV DNA samples when the concentration of added chromosome DNA was greater than 25 microg/ml. The interference was eliminated when samples were digested by DNase I prior to PCR detection. In Conclusions, the presence of cellular chromosome DNA can interfere with the detection of HBV DNA by FQ-PCR. Removal of cellular chromosome DNA from culture media prior to FQ-PCR is necessary for reliable HBV DNA quantitative detection. (c) 2007 Wiley-Liss, Inc.

  4. A fiber optic biosensor for fluorimetric detection of triple-helical DNA.

    PubMed

    Uddin, A H; Piunno, P A; Hudson, R H; Damha, M J; Krull, U J

    1997-10-15

    A fiber optic biosensor was used for the fluorimetric detection of T/AT triple-helical DNA formation. The surfaces of two sets of fused silica optical fibers were functionalized with hexaethylene oxide linkers from which decaadenylic acid oligonucleotides were grown in the 3'to 5'and 5'to 3'direction, respectively, using a DNA synthesizer. Fluorescence studies of hybridization showed unequivocal hybridization between oligomers immobilized on the fibers and complementary oligonucleotides from the solution phase, as detected by fluorescence from intercalated ethidium bromide. The complementary oligonucleotide, dT10, which was expected to Watson-Crick hybridize upon cooling the system below the duplex melting temperature ( T m), provided a fluorescence intensity with a negative temperature coefficient. Upon further cooling, to the point where the pyrimidine motif T*AT triple-helix formation occurred, a fluorescence intensity change with a positive temperature coefficient was observed. The reverse-Hoogsteen T.AT triplex, which is known to form with branched nucleic acids, provided a corresponding decrease in fluorescence intensity with decreasing temperature. Full analytical signal evolution was attainable in minutes.

  5. Analysis of re-replication from deregulated origin licensing by DNA fiber spreading

    PubMed Central

    Dorn, Elizabeth S.; Chastain, Paul D.; Hall, Jonathan R.; Cook, Jeanette Gowen

    2009-01-01

    A major challenge each human cell-division cycle is to ensure that DNA replication origins do not initiate more than once, a phenomenon known as re-replication. Acute deregulation of replication control ultimately causes extensive DNA damage, cell-cycle checkpoint activation and cell death whereas moderate deregulation promotes genome instability and tumorigenesis. In the absence of detectable increases in cellular DNA content however, it has been difficult to directly demonstrate re-replication or to determine if the ability to re-replicate is restricted to a particular cell-cycle phase. Using an adaptation of DNA fiber spreading we report the direct detection of re-replication on single DNA molecules from human chromosomes. Using this method we demonstrate substantial re-replication within 1 h of S phase entry in cells overproducing the replication factor, Cdt1. Moreover, a comparison of the HeLa cancer cell line to untransformed fibroblasts suggests that HeLa cells produce replication signals consistent with low-level re-replication in otherwise unperturbed cell cycles. Re-replication after depletion of the Cdt1 inhibitor, geminin, in an untransformed fibroblast cell line is undetectable by standard assays but readily quantifiable by DNA fiber spreading analysis. Direct evaluation of re-replicated DNA molecules will promote increased understanding of events that promote or perturb genome stability. PMID:19010964

  6. Nonadiabatic tapered optical fiber sensor for measuring interaction nicotine with DNA

    NASA Astrophysics Data System (ADS)

    Zibaii, M. I.; Latifi, H.; Pourbeyram, H.; Gholami, M.; Taghipour, Z.; Saeedian, Z.; Hosseini, S. M.

    2011-05-01

    A nonadiabatic tapered optical fiber sensor was utilized for studying of bimolecular interactions including DNA-DNA and DNA-Drug interaction. This work presents a simple evanescent wave sensing system based on an interferometric approach, suitable to meet the requirements of lable-free sensor systems for detecting biomolecular interactions. We have demonstrated the measuring refractive index and the real time detection of interactions between biomolecules. Furthermore basic experiments were carried out, for detecting the hybridization of 25-mer DNA with an immobilized counterpart on the surface. The overall shift after the successful DNA hybridization was 9.5 nm. In this work, a new approach for studying DNA-drug interactions was successfully tested. Nicotine as a carcinogenic compound in cigarette smoke plays an important role in interaction with DNA. Different concentrations of nicotine were applied to observe the Longmuir interaction with DNA.

  7. Preparations of Meiotic Pachytene Chromosomes and Extended DNA Fibers from Cotton Suitable for Fluorescence In Situ Hybridization

    PubMed Central

    Liu, Fang; Ling, Jian; Wang, Chunying; Li, Shaohui; Zhang, Xiangdi; Wang, Yuhong; Wang, Kunbo

    2012-01-01

    Fluorescence in situ hybridization (FISH) has become one of the most important techniques applied in plant molecular cytogenetics. However, the application of this technique in cotton has lagged behind because of difficulties in chromosome preparation. The focus of this article was FISH performed not only on cotton pachytene chromosomes, but also on cotton extended DNA fibers. The cotton pollen mother cells (PMCs) instead of buds or anthers were directly digested in enzyme to completely breakdown the cell wall. Before the routine acetic acid treatment, PMCs were incubated in acetic acid and enzyme mixture to remove the cytoplasm and clear the background. The method of ice-cold Carnoy's solution spreading chromosome was adopted instead of nitrogen removed method to avoid chromosomes losing and fully stretch chromosome. With the above-improved steps, the high-quality well-differentiated pachytene chromosomes with clear background were obtained. FISH results demonstrated that a mature protocol of cotton pachytene chromosomes preparation was presented. Intact and no debris cotton nuclei were obtained by chopping from etiolation cotyledons instead of the conventional liquid nitrogen grinding method. After incubating the nuclei with nucleus lysis buffer on slide, the parallel and clear background DNA fibers were acquired along the slide. This method overcomes the twist, accumulation and fracture of DNA fibers compared with other methods. The entire process of DNA fibers preparation requires only 30 min, in contrast, it takes 3 h with routine nitrogen grinding method. The poisonous mercaptoethanol in nucleus lysis buffer is replaced by nonpoisonous dithiothreitol. PVP40 in nucleus isolation buffer is used to prevent oxidation. The probability of success in isolating nuclei for DNA fiber preparation is almost 100% tested with this method in cotton. So a rapid, safe, and efficient method for the preparation of cotton extended DNA fibers suitable for FISH was established

  8. DNA profiles from clothing fibers using direct PCR.

    PubMed

    Blackie, Renée; Taylor, Duncan; Linacre, Adrian

    2016-09-01

    We report on the successful use of direct PCR amplification of single fibers from items of worn clothing. Items of clothing were worn throughout the course of a day, with the individual commencing regular activities. Single fibers were taken from the cuff of the clothing at regular intervals and amplified directly. The same areas were subjected to tape-lifting, and also amplified directly for comparison. The NGM™ kit that amplifies 15 STR loci plus amelogenin was used. A total of 35 single fiber samples were processed and analyzed from five items of clothing, with 81 % of samples returning a profile of 14 alleles or more. All tape-lift samples amplified directly produced DNA profiles of 15 alleles or more. The aim was to develop a simple, operational method that could be used routinely in forensic science casework and that has the potential to generate more complete profiles, which would not be detected using standard extraction methods on this type of sample. For ease of implementation, the process also adheres to standard methods with no increase in the cycle number.

  9. Quantitative fluorescence correlation spectroscopy on DNA in living cells

    NASA Astrophysics Data System (ADS)

    Hodges, Cameron; Kafle, Rudra P.; Meiners, Jens-Christian

    2017-02-01

    FCS is a fluorescence technique conventionally used to study the kinetics of fluorescent molecules in a dilute solution. Being a non-invasive technique, it is now drawing increasing interest for the study of more complex systems like the dynamics of DNA or proteins in living cells. Unlike an ordinary dye solution, the dynamics of macromolecules like proteins or entangled DNA in crowded environments is often slow and subdiffusive in nature. This in turn leads to longer residence times of the attached fluorophores in the excitation volume of the microscope and artifacts from photobleaching abound that can easily obscure the signature of the molecular dynamics of interest and make quantitative analysis challenging.We discuss methods and procedures to make FCS applicable to quantitative studies of the dynamics of DNA in live prokaryotic and eukaryotic cells. The intensity autocorrelation is computed function from weighted arrival times of the photons on the detector that maximizes the information content while simultaneously correcting for the effect of photobleaching to yield an autocorrelation function that reflects only the underlying dynamics of the sample. This autocorrelation function in turn is used to calculate the mean square displacement of the fluorophores attached to DNA. The displacement data is more amenable to further quantitative analysis than the raw correlation functions. By using a suitable integral transform of the mean square displacement, we can then determine the viscoelastic moduli of the DNA in its cellular environment. The entire analysis procedure is extensively calibrated and validated using model systems and computational simulations.

  10. Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system.

    PubMed

    Bertucci, Alessandro; Manicardi, Alex; Candiani, Alessandro; Giannetti, Sara; Cucinotta, Annamaria; Spoto, Giuseppe; Konstantaki, Maria; Pissadakis, Stavros; Selleri, Stefano; Corradini, Roberto

    2015-01-15

    Microstructured optical fibers containing microchannels and Bragg grating inscribed were internally functionalized with a peptide nucleic acid (PNA) probe specific for a gene tract of the genetically modified Roundup Ready soy. These fibers were used as an optofluidic device for the detection of DNA by measuring the shift in the wavelength of the reflected IR light. Enhancement of optical read-out was obtained using streptavidin coated gold-nanoparticles interacting with the genomic DNA captured in the fiber channels (0%, 0.1%, 1% and 10% RR-Soy), enabling to achieve statistically significant, label-free, and amplification-free detection of target DNA in low concentrations, low percentages, and very low sample volumes. Computer simulations of the fiber optics based on the finite element method (FEM) were consistent with the formation of a layer of organic material with an average thickness of 39 nm for the highest percentage (10% RR soy) analysed. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Measuring DNA Replication in Hypoxic Conditions.

    PubMed

    Foskolou, Iosifina P; Biasoli, Deborah; Olcina, Monica M; Hammond, Ester M

    2016-01-01

    It is imperative that dividing cells maintain replication fork integrity in order to prevent DNA damage and cell death. The investigation of DNA replication is of high importance as alterations in this process can lead to genomic instability, a known causative factor of tumor development. A simple, sensitive, and informative technique which enables the study of DNA replication, is the DNA fiber assay, an adaptation of which is described in this chapter. The DNA fiber method is a powerful tool, which allows the quantitative and qualitative analysis of DNA replication at the single molecule level. The sequential pulse labeling of live cells with two thymidine analogues and the subsequent detection with specific antibodies and fluorescence imaging allows direct examination of sites of DNA synthesis. In this chapter, we describe how this assay can be performed in conditions of low oxygen levels (hypoxia)-a physiologically relevant stress that occurs in most solid tumors. Moreover, we suggest ways on how to overcome the technical problems that arise while using the hypoxic chambers.

  12. Elastic fibers in human skin: quantitation of elastic fibers by computerized digital image analyses and determination of elastin by radioimmunoassay of desmosine.

    PubMed

    Uitto, J; Paul, J L; Brockley, K; Pearce, R H; Clark, J G

    1983-10-01

    The elastic fibers in the skin and other organs can be affected in several disease processes. In this study, we have developed morphometric techniques that allow accurate quantitation of the elastic fibers in punch biopsy specimens of skin. In this procedure, the elastic fibers, visualized by elastin-specific stains, are examined through a camera unit attached to the microscope. The black and white images sensing various gray levels are then converted to binary images after selecting a threshold with an analog threshold selection device. The binary images are digitized and the data analyzed by a computer program designed to express the properties of the image, thus allowing determination of the volume fraction occupied by the elastic fibers. As an independent measure of the elastic fibers, alternate tissue sections were used for assay of desmosine, an elastin-specific cross-link compound, by a radioimmunoassay. The clinical applicability of the computerized morphometric analyses was tested by examining the elastic fibers in the skin of five patients with pseudoxanthoma elasticum or Buschke-Ollendorff syndrome. In the skin of 10 healthy control subjects, the elastic fibers occupied 2.1 +/- 1.1% (mean +/- SD) of the dermis. The volume fractions occupied by the elastic fibers in the lesions of pseudoxanthoma elasticum or Buschke-Ollendorff syndrome were increased as much as 6-fold, whereas the values in the unaffected areas of the skin in the same patients were within normal limits. A significant correlation between the volume fraction of elastic fibers, determined by computerized morphometric analyses, and the concentration of desmosine, quantitated by radioimmunoassay, was noted in the total material. These results demonstrate that computerized morphometric techniques are helpful in characterizing disease processes affecting skin. This methodology should also be applicable to other tissues that contain elastic fibers and that are affected in various heritable and

  13. Failed upregulation of TFAM protein and mitochondrial DNA in oxidatively deficient fibers of chronic obstructive pulmonary disease locomotor muscle.

    PubMed

    Konokhova, Yana; Spendiff, Sally; Jagoe, R Thomas; Aare, Sudhakar; Kapchinsky, Sophia; MacMillan, Norah J; Rozakis, Paul; Picard, Martin; Aubertin-Leheudre, Mylène; Pion, Charlotte H; Bourbeau, Jean; Hepple, Russell T; Taivassalo, Tanja

    2016-01-01

    Low mitochondrial content and oxidative capacity are well-established features of locomotor muscle dysfunction, a prevalent and debilitating systemic occurrence in patients with chronic obstructive pulmonary disease (COPD). Although the exact cause is not firmly established, physical inactivity and oxidative stress are among the proposed underlying mechanisms. Here, we assess the impact of COPD pathophysiology on mitochondrial DNA (mtDNA) integrity, biogenesis, and cellular oxidative capacity in locomotor muscle of COPD patients and healthy controls. We hypothesized that the high oxidative stress environment of COPD muscle would yield a higher presence of deletion-containing mtDNA and oxidative-deficient fibers and impaired capacity for mitochondrial biogenesis. Vastus lateralis biopsies were analyzed from 29 COPD patients and 19 healthy age-matched controls for the presence of mtDNA deletions, levels of oxidatively damaged DNA, mtDNA copy number, and regulators of mitochondrial biogenesis as well the proportion of oxidative-deficient fibers (detected histologically as cytochrome c oxidase-deficient, succinate dehydrogenase positive (COX(-)/SDH(+) )). Additionally, mtDNA copy number and mitochondrial transcription factor A (TFAM) content were measured in laser captured COX(-)SDH(+) and normal single fibers of both COPD and controls. Compared to controls, COPD muscle exhibited significantly higher levels of oxidatively damaged DNA (8-hydroxy-2-deoxyguanosine (8-OHdG) levels = 387 ± 41 vs. 258 ± 21 pg/mL) and higher prevalence of mtDNA deletions (74 vs. 15 % of subjects in each group), which was accompanied by a higher abundance of oxidative-deficient fibers (8.0 ± 2.1 vs. 1.5 ± 0.4 %). Interestingly, COPD patients with mtDNA deletions had higher levels of 8-OHdG (457 ± 46 pg/mL) and longer smoking history (66.3 ± 7.5 years) than patients without deletions (197 ± 29 pg/mL; 38.0 ± 7.3 years). Transcript levels of

  14. Label-Free Quantitative Immunoassay of Fibrinogen in Alzheimer Disease Patient Plasma Using Fiber Optical Surface Plasmon Resonance

    NASA Astrophysics Data System (ADS)

    Kim, Jisoo; Kim, SeJin; Nguyen, Tan Tai; Lee, Renee; Li, Tiehua; Yun, Changhyun; Ham, Youngeun; An, Seong Soo A.; Ju, Heongkyu

    2016-05-01

    We present a real-time quantitative immunoassay to detect fibrinogen in the blood plasma of Alzheimer's disease patients using multimode fiber optical sensors in which surface plasmon resonance (SPR) was employed. Nanometer-thick bimetals including silver and aluminum were coated onto the core surface of the clad-free part (5 cm long) of the fiber for SPR excitation at the He-Ne laser wavelength of 632.8 nm. The histidine-tagged peptide was then coated on the metal surface to immobilize the fibrinogen antibody for the selective capture of fibrinogen among the proteins in the patient blood plasma. The SPR fiber optical sensor enabled quantitative detection of concentrations of fibrinogen from the different human patient blood at a detection limit of ˜20 ng/ml. We also observed a correlation in the fibrinogen concentration measurement between enzyme-linked immunosorbent assay and our SPR fiber-based sensors. This suggests that the presented SPR fiber-based sensors that do not rely on the use of labels such as fluorophores can be used for a real-time quantitative assay of a specific protein such as fibrinogen in a human blood that is known to contain many other kinds of proteins together.

  15. A novel quantitative electrochemical method to monitor DNA double-strand breaks caused by a DNA cleavage agent at a DNA sensor.

    PubMed

    Banasiak, Anna; Cassidy, John; Colleran, John

    2018-06-01

    To date, DNA cleavage, caused by cleavage agents, has been monitored mainly by gel and capillary electrophoresis. However, these techniques are time-consuming, non-quantitative and require gel stains. In this work, a novel, simple and, importantly, a quantitative method for monitoring the DNA nuclease activity of potential anti-cancer drugs, at a DNA electrochemical sensor, is presented. The DNA sensors were prepared using thiol-modified oligonucleotides that self-assembled to create a DNA monolayer at gold electrode surfaces. The quantification of DNA double-strand breaks is based on calculating the DNA surface coverage, before and after exposure to a DNA cleavage agent. The nuclease properties of a model DNA cleavage agent, copper bis-phenanthroline ([Cu II (phen) 2 ] 2+ ), that can cleave DNA in a Fenton-type reaction, were quantified electrochemically. The DNA surface coverage decreased on average by 21% after subjecting the DNA sensor to a nuclease assay containing [Cu II (phen) 2 ] 2+ , a reductant and an oxidant. This percentage indicates that 6 base pairs were cleaved in the nuclease assay from the immobilised 30 base pair strands. The DNA cleavage can be also induced electrochemically in the absence of a chemical reductant. [Cu II (phen) 2 ] 2+ intercalates between DNA base pairs and, on application of a suitable potential, can be reduced to [Cu I (phen) 2 ] + , with dissolved oxygen acting as the required oxidant. This reduction process is facilitated through DNA strands via long-range electron transfer, resulting in DNA cleavage of 23%. The control measurements for both chemically and electrochemically induced cleavage revealed that DNA strand breaks did not occur under experimental conditions in the absence of [Cu II (phen) 2 ] 2+ . Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Quantitative analysis of animal model lens anatomy: accommodative range is related to fiber structure and organization.

    PubMed

    Kuszak, J R; Mazurkiewicz, M; Jison, L; Madurski, A; Ngando, A; Zoltoski, R K

    2006-01-01

    The results of a recent study on accommodation in humans and baboons has revealed that lens fiber structure and organization are key components of the mechanism of accommodation. Dynamic focusing involves the controlled displacement and replacement, or realignment, of cortical fiber-ends at sutures as the mechanism of accommodation at the fiber level. This emended explanation of the mechanism of accommodation raises the following question: as the structure of crystalline lenses are only similar, not identical between species, is accommodative amplitude related to differences in the structure and organization of fibers between species? To address this question, we have quantitatively examined the structure and organization of fibers in a number of the more commonly used animal models (mice, cattle, frogs, rabbits and chickens) for lens research. Lenses (a minimum of 12-18 lenses/species) from mice, cattle, frogs and rabbits were used for this study. Prior to fixation for structural analysis, measurements of the gross shape of the lenses (equatorial diameter, anterior and posterior minor radii [anterior + posterior minor radius = polar axis]) were taken directly through a stereo surgical dissecting microscope equipped with an ocular reticle. Lenses were then prepared for and examined by light (LM), transmission (TEM) and scanning electron microscopy (SEM). Scale computer-assisted drawings (CADs) of lenses and lens fibers were then constructed from quantitative data as described above and from quantitative data contained in micrographs. The differences in fiber structure and organization that effect accommodative range arise early in development and are continued throughout lifelong lens growth. In umbilical suture lenses (avian) secondary fibers develop with almost completely tapered anterior ends (85-90% reduction of their measures of width and thickness at the equator). By comparison, in lenses with line sutures (e.g. frogs and rabbits) secondary fibers develop

  17. A quantitative and high-throughput assay of human papillomavirus DNA replication.

    PubMed

    Gagnon, David; Fradet-Turcotte, Amélie; Archambault, Jacques

    2015-01-01

    Replication of the human papillomavirus (HPV) double-stranded DNA genome is accomplished by the two viral proteins E1 and E2 in concert with host DNA replication factors. HPV DNA replication is an established model of eukaryotic DNA replication and a potential target for antiviral therapy. Assays to measure the transient replication of HPV DNA in transfected cells have been developed, which rely on a plasmid carrying the viral origin of DNA replication (ori) together with expression vectors for E1 and E2. Replication of the ori-plasmid is typically measured by Southern blotting or PCR analysis of newly replicated DNA (i.e., DpnI digested DNA) several days post-transfection. Although extremely valuable, these assays have been difficult to perform in a high-throughput and quantitative manner. Here, we describe a modified version of the transient DNA replication assay that circumvents these limitations by incorporating a firefly luciferase expression cassette in cis of the ori. Replication of this ori-plasmid by E1 and E2 results in increased levels of firefly luciferase activity that can be accurately quantified and normalized to those of Renilla luciferase expressed from a control plasmid, thus obviating the need for DNA extraction, digestion, and analysis. We provide a detailed protocol for performing the HPV type 31 DNA replication assay in a 96-well plate format suitable for small-molecule screening and EC50 determinations. The quantitative and high-throughput nature of the assay should greatly facilitate the study of HPV DNA replication and the identification of inhibitors thereof.

  18. Fiber optofluidic biosensor for the label-free detection of DNA hybridization and methylation based on an in-line tunable mode coupler.

    PubMed

    Gao, Ran; Lu, Dan-Feng; Cheng, Jin; Jiang, Yi; Jiang, Lan; Xu, Jian-Dong; Qi, Zhi-Mei

    2016-12-15

    An optical fiber optofluidic biosensor for the detection of DNA hybridization and methylation has been proposed and experimentally demonstrated. An in-line fiber Michelson interferometer was formed in the photonic crystal fiber. A micrhole in the collapsed region, which combined the tunable mode coupler and optofluidic channel, was fabricated by using femtosecond laser micromachining. The mode field diameter of the guided light is changed with the refractive index in the optofluidic channel, which results in the tunable coupling ratio. Label-free detections of the DNA hybridization and methylation have been experimentally demonstrated. The probe single stranded DNA (ssDNA) was bound with the surface of the optofluidic channel through the Poly-l-lysine layer, and the hybridization between a short 22-mer probe ssDNA and a complementary target ssDNA was carried out and detected by interrogating the fringe visibility of the reflection spectrum. Then, the DNA methylation was also detected through the binding between the methylated DNA and the 5-methylcytosine (5-mC) monoclonal antibody. The experiments results demonstrate that the limit of detection of 5nM is achieved, establishing the tunable mode coupler as a sensitive and versatile biosensor. The sensitive optical fiber optofluidic biosensor possesses high specificity and low temperature cross-sensitivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Comparative study of quantitative phase imaging techniques for refractometry of optical fibers

    NASA Astrophysics Data System (ADS)

    de Dorlodot, Bertrand; Bélanger, Erik; Bérubé, Jean-Philippe; Vallée, Réal; Marquet, Pierre

    2018-02-01

    The refractive index difference profile of optical fibers is the key design parameter because it determines, among other properties, the insertion losses and propagating modes. Therefore, an accurate refractive index profiling method is of paramount importance to their development and optimization. Quantitative phase imaging (QPI) is one of the available tools to retrieve structural characteristics of optical fibers, including the refractive index difference profile. Having the advantage of being non-destructive, several different QPI methods have been developed over the last decades. Here, we present a comparative study of three different available QPI techniques, namely the transport-of-intensity equation, quadriwave lateral shearing interferometry and digital holographic microscopy. To assess the accuracy and precision of those QPI techniques, quantitative phase images of the core of a well-characterized optical fiber have been retrieved for each of them and a robust image processing procedure has been applied in order to retrieve their refractive index difference profiles. As a result, even if the raw images for all the three QPI methods were suffering from different shortcomings, our robust automated image-processing pipeline successfully corrected these. After this treatment, all three QPI techniques yielded accurate, reliable and mutually consistent refractive index difference profiles in agreement with the accuracy and precision of the refracted near-field benchmark measurement.

  20. Quantitative risk assessment for a glass fiber insulation product.

    PubMed

    Fayerweather, W E; Bender, J R; Hadley, J G; Eastes, W

    1997-04-01

    California Proposition 65 (Prop65) provides a mechanism by which the manufacturer may perform a quantitative risk assessment to be used in determining the need for cancer warning labels. This paper presents a risk assessment under this regulation for professional and do-it-yourself insulation installers. It determines the level of insulation glass fiber exposure (specifically Owens Corning's R-25 PinkPlus with Miraflex) that, assuming a working lifetime exposure, poses no significant cancer risk under Prop65's regulations. "No significant risk" is defined under Prop65 as a lifetime risk of no more than one additional cancer case per 100,000 exposed persons, and nonsignificant exposure is defined as a working lifetime exposure associated with "no significant risk." This determination can be carried out despite the fact that the relevant underlying studies (i.e., chronic inhalation bioassays) of comparable glass wool fibers do not show tumorigenic activity. Nonsignificant exposures are estimated from (1) the most recent RCC chronic inhalation bioassay of nondurable fiberglass in rats; (2) intraperitoneal fiberglass injection studies in rats; (3) a distributional, decision analysis approach applied to four chronic inhalation rat bioassays of conventional fiberglass; (4) an extrapolation from the RCC chronic rat inhalation bioassay of durable refractory ceramic fibers; and (5) an extrapolation from the IOM chronic rat inhalation bioassay of durable E glass microfibers. When the EPA linear nonthreshold model is used, central estimates of nonsignificant exposure range from 0.36 fibers/cc (for the RCC chronic inhalation bioassay of fiberglass) through 21 fibers/cc (for the i.p. fiberglass injection studies). Lower 95% confidence bounds on these estimates vary from 0.17 fibers/cc through 13 fibers/cc. Estimates derived from the distributional approach or from applying the EPA linear nonthreshold model to chronic bioassays of durable fibers such as refractory ceramic fiber

  1. Linker DNA accessibility in chromatin fibers of different conformations: a reevaluation.

    PubMed Central

    Zlatanova, J; Leuba, S H; Yang, G; Bustamante, C; van Holde, K

    1994-01-01

    New studies on chromatin fiber morphology, using the technique of scanning force microscopy (SFM), have caused us to reexamine recent analysis of nuclease digestion of chromatin. Chicken erythrocyte chromatin fibers, glutaraldehyde-fixed at 0, 10, and 80 mM NaCl, were imaged with the help of SFM. The chromatin fibers possessed a loose three-dimensional 30-nm structure even in the absence of added salt. This structure slightly condensed upon addition of 10 mM NaCl, and highly compacted, irregularly segmented fibers were observed at 80 mM NaCl. This sheds new light upon our previously reported analysis of the kinetics of digestion by soluble and membrane-immobilized micrococcal nuclease [Leuba, S. H., Zlatanova, J. & van Holde, K. (1994) J. Mol. Biol. 235, 871-880]. While the low-ionic-strength fibers were readily digested, the highly compacted structure formed at 80 mM NaCl was refractory to nuclease attack, implying that the linkers were fully accessible in the low-ionic-strength conformation but not in the condensed fibers. We now find that cleavage of the linker DNA by a small molecule, methidiumpropyl-EDTA-Fe(II), proceeds for all types of conformations at similar rates. Thus, steric hindrance is responsible for the lack of accessibility to micrococcal nuclease in the condensed fiber. Taken in total the data suggest that reexamination of existing models of chromatin conformation is warranted. Images PMID:8202481

  2. Quantification Bias Caused by Plasmid DNA Conformation in Quantitative Real-Time PCR Assay

    PubMed Central

    Lin, Chih-Hui; Chen, Yu-Chieh; Pan, Tzu-Ming

    2011-01-01

    Quantitative real-time PCR (qPCR) is the gold standard for the quantification of specific nucleic acid sequences. However, a serious concern has been revealed in a recent report: supercoiled plasmid standards cause significant over-estimation in qPCR quantification. In this study, we investigated the effect of plasmid DNA conformation on the quantification of DNA and the efficiency of qPCR. Our results suggest that plasmid DNA conformation has significant impact on the accuracy of absolute quantification by qPCR. DNA standard curves shifted significantly among plasmid standards with different DNA conformations. Moreover, the choice of DNA measurement method and plasmid DNA conformation may also contribute to the measurement error of DNA standard curves. Due to the multiple effects of plasmid DNA conformation on the accuracy of qPCR, efforts should be made to assure the highest consistency of plasmid standards for qPCR. Thus, we suggest that the conformation, preparation, quantification, purification, handling, and storage of standard plasmid DNA should be described and defined in the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) to assure the reproducibility and accuracy of qPCR absolute quantification. PMID:22194997

  3. Protocol for quantitative tracing of surface water with synthetic DNA

    NASA Astrophysics Data System (ADS)

    Foppen, J. W.; Bogaard, T. A.

    2012-04-01

    , the field tests were performed with salt and deuterium as tracer. To study possible decay by sunlight and/or microbial activity for synthetic DNA, immediately in the field and for the duration of the entire experiment, we carried out batch experiments. All samples were stored in a 1.5 ml Eppendorf vial in a cool-box in dry ice (-80°C). Quantitative PCR on a Mini Opticon (Bio Rad, Hercules, CA, USA) was carried out to determine DNA concentrations in the samples. Results showed the importance of a strict protocol for working with ssDNA as a tracer for quantitative tracing, since ssDNA interacts with surface areas of glass and plastic, depending on water quality and ionic strength. Interaction with the sediment and decay due to sunlight and/or microbial activity was negligible in most cases. The ssDNA protocol was then tested in natural streams. Promising results were obtained using ssDNA as quantitative tracer. The breakthrough curves using ssDNA were similar to the ones of salt or deuterium. We will present the revised protocol to use ssDNA for multi-tracing experiments in natural streams and discuss the opportunities and limitations.

  4. Quantitative characterization of conformational-specific protein-DNA binding using a dual-spectral interferometric imaging biosensor

    NASA Astrophysics Data System (ADS)

    Zhang, Xirui; Daaboul, George G.; Spuhler, Philipp S.; Dröge, Peter; Ünlü, M. Selim

    2016-03-01

    DNA-binding proteins play crucial roles in the maintenance and functions of the genome and yet, their specific binding mechanisms are not fully understood. Recently, it was discovered that DNA-binding proteins recognize specific binding sites to carry out their functions through an indirect readout mechanism by recognizing and capturing DNA conformational flexibility and deformation. High-throughput DNA microarray-based methods that provide large-scale protein-DNA binding information have shown effective and comprehensive analysis of protein-DNA binding affinities, but do not provide information of DNA conformational changes in specific protein-DNA complexes. Building on the high-throughput capability of DNA microarrays, we demonstrate a quantitative approach that simultaneously measures the amount of protein binding to DNA and nanometer-scale DNA conformational change induced by protein binding in a microarray format. Both measurements rely on spectral interferometry on a layered substrate using a single optical instrument in two distinct modalities. In the first modality, we quantitate the amount of binding of protein to surface-immobilized DNA in each DNA spot using a label-free spectral reflectivity technique that accurately measures the surface densities of protein and DNA accumulated on the substrate. In the second modality, for each DNA spot, we simultaneously measure DNA conformational change using a fluorescence vertical sectioning technique that determines average axial height of fluorophores tagged to specific nucleotides of the surface-immobilized DNA. The approach presented in this paper, when combined with current high-throughput DNA microarray-based technologies, has the potential to serve as a rapid and simple method for quantitative and large-scale characterization of conformational specific protein-DNA interactions.DNA-binding proteins play crucial roles in the maintenance and functions of the genome and yet, their specific binding mechanisms are

  5. A double-taper optical fiber-based radiation wave other than evanescent wave in all-fiber immunofluorescence biosensor for quantitative detection of Escherichia coli O157:H7.

    PubMed

    Zhang, Zhonghuan; Hua, Fei; Liu, Ting; Zhao, Yong; Li, Jun; Yang, Ruifu; Yang, Changxi; Zhou, Lei

    2014-01-01

    Cylindrical or taper-and-cylinder combination optical fiber probe based on evanescent wave has been widely used for immunofluorescence biosensor to detect various analytes. In this study, in contrast to the contradiction between penetration depth and analyte diameter of optical fiber probe-based evanescent wave, we demonstrate that double-taper optical fiber used in a radiation wave-based all-fiber immunofluorescence biosensor (RWAIB) can detect micron-scale analytes using Escherichia coli O157:H7 as representative target. Finite-difference time-domain method was used to compare the properties of evanescent wave and radiation wave (RW). Ray-tracing model was formulated to optimize the taper geometry of the probe. Based on a commercial multi-mode fiber, a double-taper probe was fabricated and connected with biosensor through a "ferrule connector" optical fiber connector. The RWAIB configuration was accomplished using commercial multi-mode fibers and fiber-based devices according to the "all-fiber" method. The standard sample tests revealed that the sensitivity of the proposed technique for E. coli O157:H7 detection was 10(3) cfu · mL(-1). Quantitation could be achieved within the concentration range of 10(3) cfu · mL(-1) to 107 cfu · mL(-1). No non-specific recognition to ten kinds of food-borne pathogens was observed. The results demonstrated that based on the double-taper optical fiber RWAIB can be used for the quantitative detection of micron-scale targets, and RW sensing is an alternative for traditional evanescent wave sensing during the fabrication of fiber-optic biosensors.

  6. Quantitative analysis of the flexibility effect of cisplatin on circular DNA

    NASA Astrophysics Data System (ADS)

    Ji, Chao; Zhang, Lingyun; Wang, Peng-Ye

    2013-10-01

    We study the effects of cisplatin on the circular configuration of DNA using atomic force microscopy (AFM) and observe that the DNA gradually transforms to a complex configuration with an intersection and interwound structures from a circlelike structure. An algorithm is developed to extract the configuration profiles of circular DNA from AFM images and the radius of gyration is used to describe the flexibility of circular DNA. The quantitative analysis of the circular DNA demonstrates that the radius of gyration gradually decreases and two processes on the change of flexibility of circular DNA are found as the cisplatin concentration increases. Furthermore, a model is proposed and discussed to explain the mechanism for understanding the complicated interaction between DNA and cisplatin.

  7. Quantitative characterization of conformational-specific protein-DNA binding using a dual-spectral interferometric imaging biosensor.

    PubMed

    Zhang, Xirui; Daaboul, George G; Spuhler, Philipp S; Dröge, Peter; Ünlü, M Selim

    2016-03-14

    DNA-binding proteins play crucial roles in the maintenance and functions of the genome and yet, their specific binding mechanisms are not fully understood. Recently, it was discovered that DNA-binding proteins recognize specific binding sites to carry out their functions through an indirect readout mechanism by recognizing and capturing DNA conformational flexibility and deformation. High-throughput DNA microarray-based methods that provide large-scale protein-DNA binding information have shown effective and comprehensive analysis of protein-DNA binding affinities, but do not provide information of DNA conformational changes in specific protein-DNA complexes. Building on the high-throughput capability of DNA microarrays, we demonstrate a quantitative approach that simultaneously measures the amount of protein binding to DNA and nanometer-scale DNA conformational change induced by protein binding in a microarray format. Both measurements rely on spectral interferometry on a layered substrate using a single optical instrument in two distinct modalities. In the first modality, we quantitate the amount of binding of protein to surface-immobilized DNA in each DNA spot using a label-free spectral reflectivity technique that accurately measures the surface densities of protein and DNA accumulated on the substrate. In the second modality, for each DNA spot, we simultaneously measure DNA conformational change using a fluorescence vertical sectioning technique that determines average axial height of fluorophores tagged to specific nucleotides of the surface-immobilized DNA. The approach presented in this paper, when combined with current high-throughput DNA microarray-based technologies, has the potential to serve as a rapid and simple method for quantitative and large-scale characterization of conformational specific protein-DNA interactions.

  8. An integrated enhancement and reconstruction strategy for the quantitative extraction of actin stress fibers from fluorescence micrographs.

    PubMed

    Zhang, Zhen; Xia, Shumin; Kanchanawong, Pakorn

    2017-05-22

    The stress fibers are prominent organization of actin filaments that perform important functions in cellular processes such as migration, polarization, and traction force generation, and whose collective organization reflects the physiological and mechanical activities of the cells. Easily visualized by fluorescence microscopy, the stress fibers are widely used as qualitative descriptors of cell phenotypes. However, due to the complexity of the stress fibers and the presence of other actin-containing cellular features, images of stress fibers are relatively challenging to quantitatively analyze using previously developed approaches, requiring significant user intervention. This poses a challenge for the automation of their detection, segmentation, and quantitative analysis. Here we describe an open-source software package, SFEX (Stress Fiber Extractor), which is geared for efficient enhancement, segmentation, and analysis of actin stress fibers in adherent tissue culture cells. Our method made use of a carefully chosen image filtering technique to enhance filamentous structures, effectively facilitating the detection and segmentation of stress fibers by binary thresholding. We subdivided the skeletons of stress fiber traces into piecewise-linear fragments, and used a set of geometric criteria to reconstruct the stress fiber networks by pairing appropriate fiber fragments. Our strategy enables the trajectory of a majority of stress fibers within the cells to be comprehensively extracted. We also present a method for quantifying the dimensions of the stress fibers using an image gradient-based approach. We determine the optimal parameter space using sensitivity analysis, and demonstrate the utility of our approach by analyzing actin stress fibers in cells cultured on various micropattern substrates. We present an open-source graphically-interfaced computational tool for the extraction and quantification of stress fibers in adherent cells with minimal user input. This

  9. Context influences on TALE–DNA binding revealed by quantitative profiling

    PubMed Central

    Rogers, Julia M.; Barrera, Luis A.; Reyon, Deepak; Sander, Jeffry D.; Kellis, Manolis; Joung, J Keith; Bulyk, Martha L.

    2015-01-01

    Transcription activator-like effector (TALE) proteins recognize DNA using a seemingly simple DNA-binding code, which makes them attractive for use in genome engineering technologies that require precise targeting. Although this code is used successfully to design TALEs to target specific sequences, off-target binding has been observed and is difficult to predict. Here we explore TALE–DNA interactions comprehensively by quantitatively assaying the DNA-binding specificities of 21 representative TALEs to ∼5,000–20,000 unique DNA sequences per protein using custom-designed protein-binding microarrays (PBMs). We find that protein context features exert significant influences on binding. Thus, the canonical recognition code does not fully capture the complexity of TALE–DNA binding. We used the PBM data to develop a computational model, Specificity Inference For TAL-Effector Design (SIFTED), to predict the DNA-binding specificity of any TALE. We provide SIFTED as a publicly available web tool that predicts potential genomic off-target sites for improved TALE design. PMID:26067805

  10. Context influences on TALE-DNA binding revealed by quantitative profiling.

    PubMed

    Rogers, Julia M; Barrera, Luis A; Reyon, Deepak; Sander, Jeffry D; Kellis, Manolis; Joung, J Keith; Bulyk, Martha L

    2015-06-11

    Transcription activator-like effector (TALE) proteins recognize DNA using a seemingly simple DNA-binding code, which makes them attractive for use in genome engineering technologies that require precise targeting. Although this code is used successfully to design TALEs to target specific sequences, off-target binding has been observed and is difficult to predict. Here we explore TALE-DNA interactions comprehensively by quantitatively assaying the DNA-binding specificities of 21 representative TALEs to ∼5,000-20,000 unique DNA sequences per protein using custom-designed protein-binding microarrays (PBMs). We find that protein context features exert significant influences on binding. Thus, the canonical recognition code does not fully capture the complexity of TALE-DNA binding. We used the PBM data to develop a computational model, Specificity Inference For TAL-Effector Design (SIFTED), to predict the DNA-binding specificity of any TALE. We provide SIFTED as a publicly available web tool that predicts potential genomic off-target sites for improved TALE design.

  11. Comparison of DNA fragmentation and color thresholding for objective quantitation of apoptotic cells

    NASA Technical Reports Server (NTRS)

    Plymale, D. R.; Ng Tang, D. S.; Fermin, C. D.; Lewis, D. E.; Martin, D. S.; Garry, R. F.

    1995-01-01

    Apoptosis is a process of cell death characterized by distinctive morphological changes and fragmentation of cellular DNA. Using video imaging and color thresholding techniques, we objectively quantitated the number of cultured CD4+ T-lymphoblastoid cells (HUT78 cells, RH9 subclone) displaying morphological signs of apoptosis before and after exposure to gamma-irradiation. The numbers of apoptotic cells measured by objective video imaging techniques were compared to numbers of apoptotic cells measured in the same samples by sensitive apoptotic assays that quantitate DNA fragmentation. DNA fragmentation assays gave consistently higher values compared with the video imaging assays that measured morphological changes associated with apoptosis. These results suggest that substantial DNA fragmentation can precede or occur in the absence of the morphological changes which are associated with apoptosis in gamma-irradiated RH9 cells.

  12. Human genomic DNA quantitation system, H-Quant: development and validation for use in forensic casework.

    PubMed

    Shewale, Jaiprakash G; Schneida, Elaine; Wilson, Jonathan; Walker, Jerilyn A; Batzer, Mark A; Sinha, Sudhir K

    2007-03-01

    The human DNA quantification (H-Quant) system, developed for use in human identification, enables quantitation of human genomic DNA in biological samples. The assay is based on real-time amplification of AluYb8 insertions in hominoid primates. The relatively high copy number of subfamily-specific Alu repeats in the human genome enables quantification of very small amounts of human DNA. The oligonucleotide primers present in H-Quant are specific for human DNA and closely related great apes. During the real-time PCR, the SYBR Green I dye binds to the DNA that is synthesized by the human-specific AluYb8 oligonucleotide primers. The fluorescence of the bound SYBR Green I dye is measured at the end of each PCR cycle. The cycle at which the fluorescence crosses the chosen threshold correlates to the quantity of amplifiable DNA in that sample. The minimal sensitivity of the H-Quant system is 7.6 pg/microL of human DNA. The amplicon generated in the H-Quant assay is 216 bp, which is within the same range of the common amplifiable short tandem repeat (STR) amplicons. This size amplicon enables quantitation of amplifiable DNA as opposed to a quantitation of degraded or nonamplifiable DNA of smaller sizes. Development and validation studies were performed on the 7500 real-time PCR system following the Quality Assurance Standards for Forensic DNA Testing Laboratories.

  13. Quantitation of Human Papillomavirus DNA in Plasma of Oropharyngeal Carcinoma Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao Hongbin; Banh, Alice; Kwok, Shirley

    Purpose: To determine whether human papillomavirus (HPV) DNA can be detected in the plasma of patients with HPV-positive oropharyngeal carcinoma (OPC) and to monitor its temporal change during radiotherapy. Methods and Materials: We used polymerase chain reaction to detect HPV DNA in the culture media of HPV-positive SCC90 and VU147T cells and the plasma of SCC90 and HeLa tumor-bearing mice, non-tumor-bearing controls, and those with HPV-negative tumors. We used real-time quantitative polymerase chain reaction to quantify the plasma HPV DNA in 40 HPV-positive OPC, 24 HPV-negative head-and-neck cancer patients and 10 non-cancer volunteers. The tumor HPV status was confirmed bymore » p16{sup INK4a} staining and HPV16/18 polymerase chain reaction or HPV in situ hybridization. A total of 14 patients had serial plasma samples for HPV DNA quantification during radiotherapy. Results: HPV DNA was detectable in the plasma samples of SCC90- and HeLa-bearing mice but not in the controls. It was detected in 65% of the pretreatment plasma samples from HPV-positive OPC patients using E6/7 quantitative polymerase chain reaction. None of the HPV-negative head-and-neck cancer patients or non-cancer controls had detectable HPV DNA. The pretreatment plasma HPV DNA copy number correlated significantly with the nodal metabolic tumor volume (assessed using {sup 18}F-deoxyglucose positron emission tomography). The serial measurements in 14 patients showed a rapid decline in HPV DNA that had become undetectable at radiotherapy completion. In 3 patients, the HPV DNA level had increased to a discernable level at metastasis. Conclusions: Xenograft studies indicated that plasma HPV DNA is released from HPV-positive tumors. Circulating HPV DNA was detectable in most HPV-positive OPC patients. Thus, plasma HPV DNA might be a valuable tool for identifying relapse.« less

  14. [Study of Cervical Exfoliated Cell's DNA Quantitative Analysis Based on Multi-Spectral Imaging Technology].

    PubMed

    Wu, Zheng; Zeng, Li-bo; Wu, Qiong-shui

    2016-02-01

    The conventional cervical cancer screening methods mainly include TBS (the bethesda system) classification method and cellular DNA quantitative analysis, however, by using multiple staining method in one cell slide, which is staining the cytoplasm with Papanicolaou reagent and the nucleus with Feulgen reagent, the study of achieving both two methods in the cervical cancer screening at the same time is still blank. Because the difficulty of this multiple staining method is that the absorbance of the non-DNA material may interfere with the absorbance of DNA, so that this paper has set up a multi-spectral imaging system, and established an absorbance unmixing model by using multiple linear regression method based on absorbance's linear superposition character, and successfully stripped out the absorbance of DNA to run the DNA quantitative analysis, and achieved the perfect combination of those two kinds of conventional screening method. Through a series of experiment we have proved that between the absorbance of DNA which is calculated by the absorbance unmixxing model and the absorbance of DNA which is measured there is no significant difference in statistics when the test level is 1%, also the result of actual application has shown that there is no intersection between the confidence interval of the DNA index of the tetraploid cells which are screened by using this paper's analysis method when the confidence level is 99% and the DNA index's judging interval of cancer cells, so that the accuracy and feasibility of the quantitative DNA analysis with multiple staining method expounded by this paper have been verified, therefore this analytical method has a broad application prospect and considerable market potential in early diagnosis of cervical cancer and other cancers.

  15. Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser

    PubMed Central

    Khazaeinezhad, Reza; Hosseinzadeh Kassani, Sahar; Paulson, Bjorn; Jeong, Hwanseong; Gwak, Jiyoon; Rotermund, Fabian; Yeom, Dong-Il; Oh, Kyunghwan

    2017-01-01

    A new extraordinary application of deoxyribonucleic acid (DNA) thin-solid-film was experimentally explored in the field of ultrafast nonlinear photonics. Optical transmission was investigated in both linear and nonlinear regimes for two types of DNA thin-solid-films made from DNA in aqueous solution and DNA-cetyltrimethylammonium chloride (CTMA) in an organic solvent. Z-scan measurements revealed a high third-order nonlinearity with n2 exceeding 10−9 at a wavelength of 1570 nm, for a nonlinarity about five orders of magnitude larger than that of silica. We also demonstrated ultrafast saturable absorption (SA) with a modulation depth of 0.43%. DNA thin solid films were successfully deposited on a side-polished optical fiber, providing an efficient evanescent wave interaction. We built an organic-inorganic hybrid all-fiber ring laser using DNA film as an ultrafast SA and using Erbium-doped fiber as an efficient optical gain medium. Stable transform-limited femtosecond soliton pulses were generated with full width half maxima of 417 fs for DNA and 323 fs for DNA-CTMA thin-solid-film SAs. The average output power was 4.20 mW for DNA and 5.46 mW for DNA-CTMA. Detailed conditions for DNA solid film preparation, dispersion control in the laser cavity and subsequent characteristics of soliton pulses are discussed, to confirm unique nonlinear optical applications of DNA thin-solid-film. PMID:28128340

  16. Analyzing the dynamics of DNA replication in Mammalian cells using DNA combing.

    PubMed

    Bialic, Marta; Coulon, Vincent; Drac, Marjorie; Gostan, Thierry; Schwob, Etienne

    2015-01-01

    How cells duplicate their chromosomes is a key determinant of cell identity and genome stability. DNA replication can initiate from more than 100,000 sites distributed along mammalian chromosomes, yet a given cell uses only a subset of these origins due to inefficient origin activation and regulation by developmental or environmental cues. An impractical consequence of cell-to-cell variations in origin firing is that population-based techniques do not accurately describe how chromosomes are replicated in single cells. DNA combing is a biophysical DNA fiber stretching method which permits visualization of ongoing DNA synthesis along Mb-sized single-DNA molecules purified from cells that were previously pulse-labeled with thymidine analogues. This allows quantitative measurements of several salient features of chromosome replication dynamics, such as fork velocity, fork asymmetry, inter-origin distances, and global instant fork density. In this chapter we describe how to obtain this information from asynchronous cultures of mammalian cells.

  17. Fluorescence correlation spectroscopy analysis for accurate determination of proportion of doubly labeled DNA in fluorescent DNA pool for quantitative biochemical assays.

    PubMed

    Hou, Sen; Sun, Lili; Wieczorek, Stefan A; Kalwarczyk, Tomasz; Kaminski, Tomasz S; Holyst, Robert

    2014-01-15

    Fluorescent double-stranded DNA (dsDNA) molecules labeled at both ends are commonly produced by annealing of complementary single-stranded DNA (ssDNA) molecules, labeled with fluorescent dyes at the same (3' or 5') end. Because the labeling efficiency of ssDNA is smaller than 100%, the resulting dsDNA have two, one or are without a dye. Existing methods are insufficient to measure the percentage of the doubly-labeled dsDNA component in the fluorescent DNA sample and it is even difficult to distinguish the doubly-labeled DNA component from the singly-labeled component. Accurate measurement of the percentage of such doubly labeled dsDNA component is a critical prerequisite for quantitative biochemical measurements, which has puzzled scientists for decades. We established a fluorescence correlation spectroscopy (FCS) system to measure the percentage of doubly labeled dsDNA (PDL) in the total fluorescent dsDNA pool. The method is based on comparative analysis of the given sample and a reference dsDNA sample prepared by adding certain amount of unlabeled ssDNA into the original ssDNA solution. From FCS autocorrelation functions, we obtain the number of fluorescent dsDNA molecules in the focal volume of the confocal microscope and PDL. We also calculate the labeling efficiency of ssDNA. The method requires minimal amount of material. The samples have the concentration of DNA in the nano-molar/L range and the volume of tens of microliters. We verify our method by using restriction enzyme Hind III to cleave the fluorescent dsDNA. The kinetics of the reaction depends strongly on PDL, a critical parameter for quantitative biochemical measurements. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Quantitative analysis of cell-free DNA in ovarian cancer.

    PubMed

    Shao, Xuefeng; He, Yan; Ji, Min; Chen, Xiaofang; Qi, Jing; Shi, Wei; Hao, Tianbo; Ju, Shaoqing

    2015-12-01

    The aim of the present study was to investigate the association between cell-free DNA (cf-DNA) levels and clinicopathological characteristics of patients with ovarian cancer using a branched DNA (bDNA) technique, and to determine the value of quantitative cf-DNA detection in assisting with the diagnosis of ovarian cancer. Serum specimens were collected from 36 patients with ovarian cancer on days 1, 3 and 7 following surgery, and additional serum samples were also collected from 22 benign ovarian tumor cases, and 19 healthy, non-cancerous ovaries. bDNA techniques were used to detect serum cf-DNA concentrations. All data were analyzed using SPSS version 18.0. The cf-DNA levels were significantly increased in the ovarian cancer group compared with those of the benign ovarian tumor group and healthy ovarian group (P<0.01). Furthermore, cf-DNA levels were significantly increased in stage III and IV ovarian cancer compared with those of stages I and II (P<0.01). In addition, cf-DNA levels were significantly increased on the first day post-surgery (P<0.01), and subsequently demonstrated a gradual decrease. In the ovarian cancer group, the area under the receiver operating characteristic curve of cf-DNA and the sensitivity were 0.917 and 88.9%, respectively, which was higher than those of cancer antigen 125 (0.724, 75%) and human epididymis protein 4 (0.743, 80.6%). There was a correlation between the levels of serum cf-DNA and the occurrence and development of ovarian cancer in the patients evaluated. bDNA techniques possessed higher sensitivity and specificity than other methods for the detection of serum cf-DNA in patients exhibiting ovarian cancer, and bDNA techniques are more useful for detecting cf-DNA than other factors. Thus, the present study demonstrated the potential value for the use of bDNA as an adjuvant diagnostic method for ovarian cancer.

  19. A BAYESIAN METHOD FOR CALCULATING REAL-TIME QUANTITATIVE PCR CALIBRATION CURVES USING ABSOLUTE PLASMID DNA STANDARDS

    EPA Science Inventory

    In real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA concentration. However, potential differences in the amplification performance of plasmid DNA compared to genomic DNA standards are often ignore...

  20. Effects of DNA extraction and purification methods on real-time quantitative PCR analysis of Roundup Ready soybean.

    PubMed

    Demeke, Tigst; Ratnayaka, Indira; Phan, Anh

    2009-01-01

    The quality of DNA affects the accuracy and repeatability of quantitative PCR results. Different DNA extraction and purification methods were compared for quantification of Roundup Ready (RR) soybean (event 40-3-2) by real-time PCR. DNA was extracted using cetylmethylammonium bromide (CTAB), DNeasy Plant Mini Kit, and Wizard Magnetic DNA purification system for food. CTAB-extracted DNA was also purified using the Zymo (DNA Clean & Concentrator 25 kit), Qtip 100 (Qiagen Genomic-Tip 100/G), and QIAEX II Gel Extraction Kit. The CTAB extraction method provided the largest amount of DNA, and the Zymo purification kit resulted in the highest percentage of DNA recovery. The Abs260/280 and Abs260/230 ratios were less than the expected values for some of the DNA extraction and purification methods used, indicating the presence of substances that could inhibit PCR reactions. Real-time quantitative PCR results were affected by the DNA extraction and purification methods used. Further purification or dilution of the CTAB DNA was required for successful quantification of RR soybean. Less variability of quantitative PCR results was observed among experiments and replications for DNA extracted and/or purified by CTAB, CTAB+Zymo, CTAB+Qtip 100, and DNeasy methods. Correct and repeatable results for real-time PCR quantification of RR soybean were achieved using CTAB DNA purified with Zymo and Qtip 100 methods.

  1. Quantitative Viral Community DNA Analysis Reveals the Dominance of Single-Stranded DNA Viruses in Offshore Upper Bathyal Sediment from Tohoku, Japan

    PubMed Central

    Yoshida, Mitsuhiro; Mochizuki, Tomohiro; Urayama, Syun-Ichi; Yoshida-Takashima, Yukari; Nishi, Shinro; Hirai, Miho; Nomaki, Hidetaka; Takaki, Yoshihiro; Nunoura, Takuro; Takai, Ken

    2018-01-01

    Previous studies on marine environmental virology have primarily focused on double-stranded DNA (dsDNA) viruses; however, it has recently been suggested that single-stranded DNA (ssDNA) viruses are more abundant in marine ecosystems. In this study, we performed a quantitative viral community DNA analysis to estimate the relative abundance and composition of both ssDNA and dsDNA viruses in offshore upper bathyal sediment from Tohoku, Japan (water depth = 500 m). The estimated dsDNA viral abundance ranged from 3 × 106 to 5 × 106 genome copies per cm3 sediment, showing values similar to the range of fluorescence-based direct virus counts. In contrast, the estimated ssDNA viral abundance ranged from 1 × 108 to 3 × 109 genome copies per cm3 sediment, thus providing an estimation that the ssDNA viral populations represent 96.3–99.8% of the benthic total DNA viral assemblages. In the ssDNA viral metagenome, most of the identified viral sequences were associated with ssDNA viral families such as Circoviridae and Microviridae. The principle components analysis of the ssDNA viral sequence components from the sedimentary ssDNA viral metagenomic libraries found that the different depth viral communities at the study site all exhibited similar profiles compared with deep-sea sediment ones at other reference sites. Our results suggested that deep-sea benthic ssDNA viruses have been significantly underestimated by conventional direct virus counts and that their contributions to deep-sea benthic microbial mortality and geochemical cycles should be further addressed by such a new quantitative approach. PMID:29467725

  2. Quantitative thermal sensory testing -- value of testing for both cold and warm sensation detection in evaluation of small fiber neuropathy.

    PubMed

    Shukla, Garima; Bhatia, Manvir; Behari, Madhuri

    2005-10-01

    Small fiber neuropathy is a common neurological disorder, often missed or ignored by physicians, since examination and routine nerve conduction studies are usually normal in this condition. Many methods including quantitative thermal sensory testing are currently being used for early detection of this condition, so as to enable timely investigation and treatment. This study was conducted to assess the yield of quantitative thermal sensory testing in diagnosis of small fiber neuropathy. We included patients presenting with history suggestive of positive and/or negative sensory symptoms, with normal examination findings, clinically suggestive of small fiber neuropathy, with normal or minimally abnormal routine nerve conduction studies. These patients were subjected to quantitative thermal sensory testing using a Medoc TSA-II Neurosensory analyser at two sites and for two modalities. QST data were compared with those in 120 normal healthy controls. Twenty-five patients (16 males, 9 females) with mean age 46.8+/-16.6 years (range: 21-75 years) were included in the study. The mean duration of symptoms was 1.6+/-1.6 years (range: 3 months-6 years). Eighteen patients (72%) had abnormal thresholds in at least one modality. Thermal thresholds were normal in 7 out of the 25 patients. This study demonstrates that quantitative thermal sensory testing is a fairly sensitive method for detection of small fiber neuropathy especially in patients with normal routine nerve conduction studies.

  3. Quantitative analysis of the role of fiber length on phagocytosis and inflammatory response by alveolar macrophages

    PubMed Central

    Padmore, Trudy; Stark, Carahline; Turkevich, Leonid A.; Champion, Julie A.

    2017-01-01

    Background In the lung, macrophages attempt to engulf inhaled high aspect ratio pathogenic materials, secreting inflammatory molecules in the process. The inability of macrophages to remove these materials leads to chronic inflammation and disease. How the biophysical and biochemical mechanisms of these effects are influenced by fiber length remains undetermined. This study evaluates the role of fiber length on phagocytosis and molecular inflammatory responses to non-cytotoxic fibers, enabling development of quantitative length-based models. Methods Murine alveolar macrophages were exposed to long and short populations of JM-100 glass fibers, produced by successive sedimentation and repeated crushing, respectively. Interactions between fibers and macrophages were observed using time-lapse video microscopy, and quantified by flow cytometry. Inflammatory biomolecules (TNF-α, IL-1 α, COX-2, PGE2) were measured. Results Uptake of short fibers occurred more readily than for long, but long fibers were more potent stimulators of inflammatory molecules. Stimulation resulted in dose-dependent secretion of inflammatory biomolecules but no cytotoxicity or strong ROS production. Linear cytokine dose-response curves evaluated with length-dependent potency models, using measured fiber length distributions, resulted in identification of critical fiber lengths that cause frustrated phagocytosis and increased inflammatory biomolecule production. Conclusion Short fibers played a minor role in the inflammatory response compared to long fibers. The critical lengths at which frustrated phagocytosis occurs can be quantified by fitting dose-response curves to fiber distribution data. PMID:27784615

  4. Quantitative Detection of Small Molecule/DNA Complexes Employing a Force-Based and Label-Free DNA-Microarray

    PubMed Central

    Ho, Dominik; Dose, Christian; Albrecht, Christian H.; Severin, Philip; Falter, Katja; Dervan, Peter B.; Gaub, Hermann E.

    2009-01-01

    Force-based ligand detection is a promising method to characterize molecular complexes label-free at physiological conditions. Because conventional implementations of this technique, e.g., based on atomic force microscopy or optical traps, are low-throughput and require extremely sensitive and sophisticated equipment, this approach has to date found only limited application. We present a low-cost, chip-based assay, which combines high-throughput force-based detection of dsDNA·ligand interactions with the ease of fluorescence detection. Within the comparative unbinding force assay, many duplicates of a target DNA duplex are probed against a defined reference DNA duplex each. The fractions of broken target and reference DNA duplexes are determined via fluorescence. With this assay, we investigated the DNA binding behavior of artificial pyrrole-imidazole polyamides. These small compounds can be programmed to target specific dsDNA sequences and distinguish between D- and L-DNA. We found that titration with polyamides specific for a binding motif, which is present in the target DNA duplex and not in the reference DNA duplex, reliably resulted in a shift toward larger fractions of broken reference bonds. From the concentration dependence nanomolar to picomolar dissociation constants of dsDNA·ligand complexes were determined, agreeing well with prior quantitative DNAase footprinting experiments. This finding corroborates that the forced unbinding of dsDNA in presence of a ligand is a nonequilibrium process that produces a snapshot of the equilibrium distribution between dsDNA and dsDNA·ligand complexes. PMID:19486688

  5. Identification and quantitative evaluation of the fiber structure in the pathological tissue using Mueller matrix microscope

    NASA Astrophysics Data System (ADS)

    Zhou, Jialing; He, Honghui; Wang, Ye; Ma, Hui

    2017-02-01

    Fiber structure changes in the various pathological processes, such as the increase of fibrosis in liver diseases, the derangement of fiber in cervical cancer and so on. Currently, clinical pathologic diagnosis is regarded as the golden criterion, but different doctors with discrepancy in knowledge and experience may obtain different conclusions. Up to a point, quantitative evaluation of the fiber structure in the pathological tissue can be of great service to quantitative diagnosis. Mueller matrix measurement is capable of probing comprehensive microstructural information of samples and different wavelength of lights can provide more information. In this paper, we use a Mueller matrix microscope with light sources in six different wavelength. We use unstained, dewaxing liver tissue slices in four stages and the pathological biopsy of the filtration channels from rabbit eyes as samples. We apply the Mueller matrix polar decomposition (MMPD) parameter δ which corresponds to retardance to liver slices. The mean value of abnormal region get bigger when the level of fibrosis get higher and light in short wavelength is more sensitive to the microstructure of fiber. On the other hand, we use the Mueller matrix transformation (MMT) parameter Φ which is associated to the angel of fast axis in the analysis of the slices of the filtration channels from rabbit eyes. The value of kurtosis and the value of skewness shows big difference between new born region and normal region and can reveal the arrangement of fiber. These results indicate that the Mueller matrix microscope has great potential in auxiliary diagnosis.

  6. Extension of nanoconfined DNA: Quantitative comparison between experiment and theory

    NASA Astrophysics Data System (ADS)

    Iarko, V.; Werner, E.; Nyberg, L. K.; Müller, V.; Fritzsche, J.; Ambjörnsson, T.; Beech, J. P.; Tegenfeldt, J. O.; Mehlig, K.; Westerlund, F.; Mehlig, B.

    2015-12-01

    The extension of DNA confined to nanochannels has been studied intensively and in detail. However, quantitative comparisons between experiments and model calculations are difficult because most theoretical predictions involve undetermined prefactors, and because the model parameters (contour length, Kuhn length, effective width) are difficult to compute reliably, leading to substantial uncertainties. Here we use a recent asymptotically exact theory for the DNA extension in the "extended de Gennes regime" that allows us to compare experimental results with theory. For this purpose, we performed experiments measuring the mean DNA extension and its standard deviation while varying the channel geometry, dye intercalation ratio, and ionic strength of the buffer. The experimental results agree very well with theory at high ionic strengths, indicating that the model parameters are reliable. At low ionic strengths, the agreement is less good. We discuss possible reasons. In principle, our approach allows us to measure the Kuhn length and the effective width of a single DNA molecule and more generally of semiflexible polymers in solution.

  7. Quantitation of DNA adducts by stable isotope dilution mass spectrometry

    PubMed Central

    Tretyakova, Natalia; Goggin, Melissa; Janis, Gregory

    2012-01-01

    Exposure to endogenous and exogenous chemicals can lead to the formation of structurally modified DNA bases (DNA adducts). If not repaired, these nucleobase lesions can cause polymerase errors during DNA replication, leading to heritable mutations potentially contributing to the development of cancer. Due to their critical role in cancer initiation, DNA adducts represent mechanism-based biomarkers of carcinogen exposure, and their quantitation is particularly useful for cancer risk assessment. DNA adducts are also valuable in mechanistic studies linking tumorigenic effects of environmental and industrial carcinogens to specific electrophilic species generated from their metabolism. While multiple experimental methodologies have been developed for DNA adduct analysis in biological samples – including immunoassay, HPLC, and 32P-postlabeling – isotope dilution high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) generally has superior selectivity, sensitivity, accuracy, and reproducibility. As typical DNA adducts concentrations in biological samples are between 0.01 – 10 adducts per 108 normal nucleotides, ultrasensitive HPLC-ESI-MS/MS methodologies are required for their analysis. Recent developments in analytical separations and biological mass spectrometry – especially nanoflow HPLC, nanospray ionization MS, chip-MS, and high resolution MS – have pushed the limits of analytical HPLC-ESI-MS/MS methodologies for DNA adducts, allowing researchers to accurately measure their concentrations in biological samples from patients treated with DNA alkylating drugs and in populations exposed to carcinogens from urban air, drinking water, cooked food, alcohol, and cigarette smoke. PMID:22827593

  8. Improved Methods for Capture, Extraction, and Quantitative Assay of Environmental DNA from Asian Bigheaded Carp (Hypophthalmichthys spp.)

    PubMed Central

    Turner, Cameron R.; Miller, Derryl J.; Coyne, Kathryn J.; Corush, Joel

    2014-01-01

    Indirect, non-invasive detection of rare aquatic macrofauna using aqueous environmental DNA (eDNA) is a relatively new approach to population and biodiversity monitoring. As such, the sensitivity of monitoring results to different methods of eDNA capture, extraction, and detection is being investigated in many ecosystems and species. One of the first and largest conservation programs with eDNA-based monitoring as a central instrument focuses on Asian bigheaded carp (Hypophthalmichthys spp.), an invasive fish spreading toward the Laurentian Great Lakes. However, the standard eDNA methods of this program have not advanced since their development in 2010. We developed new, quantitative, and more cost-effective methods and tested them against the standard protocols. In laboratory testing, our new quantitative PCR (qPCR) assay for bigheaded carp eDNA was one to two orders of magnitude more sensitive than the existing endpoint PCR assays. When applied to eDNA samples from an experimental pond containing bigheaded carp, the qPCR assay produced a detection probability of 94.8% compared to 4.2% for the endpoint PCR assays. Also, the eDNA capture and extraction method we adapted from aquatic microbiology yielded five times more bigheaded carp eDNA from the experimental pond than the standard method, at a per sample cost over forty times lower. Our new, more sensitive assay provides a quantitative tool for eDNA-based monitoring of bigheaded carp, and the higher-yielding eDNA capture and extraction method we describe can be used for eDNA-based monitoring of any aquatic species. PMID:25474207

  9. Improved methods for capture, extraction, and quantitative assay of environmental DNA from Asian bigheaded carp (Hypophthalmichthys spp.).

    PubMed

    Turner, Cameron R; Miller, Derryl J; Coyne, Kathryn J; Corush, Joel

    2014-01-01

    Indirect, non-invasive detection of rare aquatic macrofauna using aqueous environmental DNA (eDNA) is a relatively new approach to population and biodiversity monitoring. As such, the sensitivity of monitoring results to different methods of eDNA capture, extraction, and detection is being investigated in many ecosystems and species. One of the first and largest conservation programs with eDNA-based monitoring as a central instrument focuses on Asian bigheaded carp (Hypophthalmichthys spp.), an invasive fish spreading toward the Laurentian Great Lakes. However, the standard eDNA methods of this program have not advanced since their development in 2010. We developed new, quantitative, and more cost-effective methods and tested them against the standard protocols. In laboratory testing, our new quantitative PCR (qPCR) assay for bigheaded carp eDNA was one to two orders of magnitude more sensitive than the existing endpoint PCR assays. When applied to eDNA samples from an experimental pond containing bigheaded carp, the qPCR assay produced a detection probability of 94.8% compared to 4.2% for the endpoint PCR assays. Also, the eDNA capture and extraction method we adapted from aquatic microbiology yielded five times more bigheaded carp eDNA from the experimental pond than the standard method, at a per sample cost over forty times lower. Our new, more sensitive assay provides a quantitative tool for eDNA-based monitoring of bigheaded carp, and the higher-yielding eDNA capture and extraction method we describe can be used for eDNA-based monitoring of any aquatic species.

  10. Quantitative detection of 4-hydroxyequilenin-DNA adducts in mammalian cells using an immunoassay with a novel monoclonal antibody.

    PubMed

    Okahashi, Yumiko; Iwamoto, Takaaki; Suzuki, Naomi; Shibutani, Shinya; Sugiura, Shigeki; Itoh, Shinji; Nishiwaki, Tomohisa; Ueno, Satoshi; Mori, Toshio

    2010-07-01

    Estrogen-DNA adducts are potential biomarkers for assessing the risk and development of estrogen-associated cancers. 4-Hydroxyequilenin (4-OHEN) and 4-hydroxyequilin (4-OHEQ), the metabolites of equine estrogens present in common hormone replacement therapy (HRT) formulations, are capable of producing bulky 4-OHEN-DNA adducts. Although the formation of 4-OHEN-DNA adducts has been reported, their quantitative detection in mammalian cells has not been done. To quantify such DNA adducts, we generated a novel monoclonal antibody (4OHEN-1) specific for 4-OHEN-DNA adducts. The primary epitope recognized is one type of stereoisomers of 4-OHEN-dA adducts and of 4-OHEN-dC adducts in DNA. An immunoassay with 4OHEN-1 revealed a linear dose-response between known amounts of 4-OHEN-DNA adducts and the antibody binding to those adducts, with a detection limit of approximately five adducts/10(8) bases in 1 microg DNA sample. In human breast cancer cells, the quantitative immunoassay revealed that 4-OHEN produces five times more 4-OHEN-DNA adducts than does 4-OHEQ. Moreover, in a mouse model for HRT, oral administration of Premarin increased the levels of 4-OHEN-DNA adducts in various tissues, including the uterus and ovaries, in a time-dependent manner. Thus, we succeeded in establishing a novel immunoassay for quantitative detection of 4-OHEN-DNA adducts in mammalian cells.

  11. A probe-based quantitative PCR assay for detecting Tetracapsuloides bryosalmonae in fish tissue and environmental DNA water samples

    USGS Publications Warehouse

    Hutchins, Patrick; Sepulveda, Adam; Martin, Renee; Hopper, Lacey

    2017-01-01

    A probe-based quantitative real-time PCR assay was developed to detect Tetracapsuloides bryosalmonae, which causes proliferative kidney disease in salmonid fish, in kidney tissue and environmental DNA (eDNA) water samples. The limits of detection and quantification were 7 and 100 DNA copies for calibration standards and T. bryosalmonae was reliably detected down to 100 copies in tissue and eDNA samples. The assay presented here is a highly sensitive and quantitative tool for detecting T. bryosalmonae with potential applications for tissue diagnostics and environmental detection.

  12. Mitochondrial DNA copy number threshold in mtDNA depletion myopathy.

    PubMed

    Durham, S E; Bonilla, E; Samuels, D C; DiMauro, S; Chinnery, P F

    2005-08-09

    The authors measured the absolute amount of mitochondrial DNA (mtDNA) within single muscle fibers from two patients with thymidine kinase 2 (TK2) deficiency and two healthy controls. TK2 deficient fibers containing more than 0.01 mtDNA/microm3 had residual cytochrome c oxidase (COX) activity. This defines the minimum amount of wild-type mtDNA molecules required to maintain COX activity in skeletal muscle and provides an explanation for the mosaic histochemical pattern seen in patients with mtDNA depletion syndrome.

  13. Relationship between DNA damage response, initiated by camptothecin or oxidative stress, and DNA replication, analyzed by quantitative 3D image analysis.

    PubMed

    Berniak, K; Rybak, P; Bernas, T; Zarębski, M; Biela, E; Zhao, H; Darzynkiewicz, Z; Dobrucki, J W

    2013-10-01

    A method of quantitative analysis of spatial (3D) relationship between discrete nuclear events detected by confocal microscopy is described and applied in analysis of a dependence between sites of DNA damage signaling (γH2AX foci) and DNA replication (EdU incorporation) in cells subjected to treatments with camptothecin (Cpt) or hydrogen peroxide (H2O2). Cpt induces γH2AX foci, likely reporting formation of DNA double-strand breaks (DSBs), almost exclusively at sites of DNA replication. This finding is consistent with the known mechanism of induction of DSBs by DNA topoisomerase I (topo1) inhibitors at the sites of collisions of the moving replication forks with topo1-DNA "cleavable complexes" stabilized by Cpt. Whereas an increased level of H2AX histone phosphorylation is seen in S-phase of cells subjected to H2O2, only a minor proportion of γH2AX foci coincide with DNA replication sites. Thus, the increased level of H2AX phosphorylation induced by H2O2 is not a direct consequence of formation of DNA lesions at the sites of moving DNA replication forks. These data suggest that oxidative stress induced by H2O2 and formation of the primary H2O2-induced lesions (8-oxo-7,8-dihydroguanosine) inhibits replication globally and triggers formation of γH2AX at various distances from replication forks. Quantitative analysis of a frequency of DNA replication sites and γH2AX foci suggests also that stalling of replicating forks by Cpt leads to activation of new DNA replication origins. © 2013 International Society for Advancement of Cytometry. Copyright © 2013 International Society for Advancement of Cytometry.

  14. Novel Technique for Quantitative Fast Scanning Calorimetry on Electrospun Fibers

    NASA Astrophysics Data System (ADS)

    Thomas, David; Govinna, Nelaka; Schick, Christoph; Cebe, Peggy

    Fast scanning chip calorimetry allows for the study of polymers which have rapid nucleation and/or crystallization kinetics, or degrade within their melting range. Heating rates used, up to 4000 K/s, allow studies of hetero and homogeneous nucleation at time scales inaccessible with conventional calorimeters, whose rates are typically <0.5 K/s. Polyethylene terephthalate (PET) and polyvinyl alcohol (PVA) were chosen in the development of a new methodology to obtain quantitative fast scanning thermal data from electrospun nanofibers using a Flash DSC1. The structure of nanofibers requires special methods to load nanogram-sized samples onto a UFSC1 sensor. Fibers were directly spun onto TEM grids which provide a durable substrate to support bundles of nanofibers and possess excellent thermal conductivity allowing for a strong, repeatable signal and ensure good sample to sensor contact. As spun samples were held isothermally at temperatures ranging from Tg to Tm then heated at 2,000 K/s to assess as-spun crystallinity and cold crystallization behaviors. Above Tm the fibers break up into micro- and nano-droplets. On these samples, melt crystallization experiments were performed to study nucleation and crystallization of polymer confined to nanodroplet morphology. NSF DMR-1608125.

  15. Residual eDNA detection sensitivity assessed by quantitative real-time PCR in a river ecosystem.

    PubMed

    Balasingham, Katherine D; Walter, Ryan P; Heath, Daniel D

    2017-05-01

    Several studies have demonstrated that environmental DNA (eDNA) can be used to detect the presence of aquatic species, days to weeks after the target species has been removed. However, most studies used eDNA analysis in lentic systems (ponds or lakes), or in controlled laboratory experiments. While eDNA degrades rapidly in all aquatic systems, it also undergoes dilution effects and physical destruction in flowing systems, complicating detection in rivers. However, some eDNA (i.e. residual eDNA) can be retained in aquatic systems, even those subject to high flow regimes. Our goal was to determine residual eDNA detection sensitivity using quantitative real-time polymerase chain reaction (qRT-PCR), in a flowing, uncontrolled river after the eDNA source was removed from the system; we repeated the experiment over 2 years. Residual eDNA had the strongest signal strength at the original source site and was detectable there up to 11.5 h after eDNA source removal. Residual eDNA signal strength decreased as sampling distance downstream from the eDNA source site increased, and was no longer detectable at the source site 48 h after the eDNA source water was exhausted in both experiments. This experiment shows that residual eDNA sampled in surface water can be mapped quantitatively using qRT-PCR, which allows a more accurate spatial identification of the target species location in lotic systems, and relative residual eDNA signal strength may allow the determination of the timing of the presence of target species. © 2016 John Wiley & Sons Ltd.

  16. Quantitative comparison between in vivo DNA adduct formation from exposure to selected DNA-reactive carcinogens, natural background levels of DNA adduct formation and tumour incidence in rodent bioassays.

    PubMed

    Paini, Alicia; Scholz, Gabriele; Marin-Kuan, Maricel; Schilter, Benoît; O'Brien, John; van Bladeren, Peter J; Rietjens, Ivonne M C M

    2011-09-01

    This study aimed at quantitatively comparing the occurrence/formation of DNA adducts with the carcinogenicity induced by a selection of DNA-reactive genotoxic carcinogens. Contrary to previous efforts, we used a very uniform set of data, limited to in vivo rat liver studies in order to investigate whether a correlation can be obtained, using a benchmark dose (BMD) approach. Dose-response data on both carcinogenicity and in vivo DNA adduct formation were available for six compounds, i.e. 2-acetylaminofluorene, aflatoxin B1, methyleugenol, safrole, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline and tamoxifen. BMD(10) values for liver carcinogenicity were calculated using the US Environmental Protection Agency BMD software. DNA adduct levels at this dose were extrapolated assuming linearity of the DNA adduct dose response. In addition, the levels of DNA adducts at the BMD(10) were compared to available data on endogenous background DNA damage in the target organ. Although for an individual carcinogen the tumour response increases when adduct levels increase, our results demonstrate that when comparing different carcinogens, no quantitative correlation exists between the level of DNA adduct formation and carcinogenicity. These data confirm that the quantity of DNA adducts formed by a DNA-reactive compound is not a carcinogenicity predictor but that other factors such as type of adduct and mutagenic potential may be equally relevant. Moreover, comparison to background DNA damage supports the notion that the mere occurrence of DNA adducts above or below the level of endogenous DNA damage is neither correlated to development of cancer. These data strongly emphasise the need to apply the mode of action framework to understand the contribution of other biological effect markers playing a role in carcinogenicity.

  17. Quantitative Field Testing Rotylenchulus reniformis DNA from Metagenomic Samples Isolated Directly from Soil

    PubMed Central

    Showmaker, Kurt; Lawrence, Gary W.; Lu, Shien; Balbalian, Clarissa; Klink, Vincent P.

    2011-01-01

    A quantitative PCR procedure targeting the β-tubulin gene determined the number of Rotylenchulus reniformis Linford & Oliveira 1940 in metagenomic DNA samples isolated from soil. Of note, this outcome was in the presence of other soil-dwelling plant parasitic nematodes including its sister genus Helicotylenchus Steiner, 1945. The methodology provides a framework for molecular diagnostics of nematodes from metagenomic DNA isolated directly from soil. PMID:22194958

  18. Pathological mechanisms underlying single large‐scale mitochondrial DNA deletions

    PubMed Central

    Rocha, Mariana C.; Rosa, Hannah S.; Grady, John P.; Blakely, Emma L.; He, Langping; Romain, Nadine; Haller, Ronald G.; Newman, Jane; McFarland, Robert; Ng, Yi Shiau; Gorman, Grainne S.; Schaefer, Andrew M.; Tuppen, Helen A.; Taylor, Robert W.

    2018-01-01

    Objective Single, large‐scale deletions in mitochondrial DNA (mtDNA) are a common cause of mitochondrial disease. This study aimed to investigate the relationship between the genetic defect and molecular phenotype to improve understanding of pathogenic mechanisms associated with single, large‐scale mtDNA deletions in skeletal muscle. Methods We investigated 23 muscle biopsies taken from adult patients (6 males/17 females with a mean age of 43 years) with characterized single, large‐scale mtDNA deletions. Mitochondrial respiratory chain deficiency in skeletal muscle biopsies was quantified by immunoreactivity levels for complex I and complex IV proteins. Single muscle fibers with varying degrees of deficiency were selected from 6 patient biopsies for determination of mtDNA deletion level and copy number by quantitative polymerase chain reaction. Results We have defined 3 “classes” of single, large‐scale deletion with distinct patterns of mitochondrial deficiency, determined by the size and location of the deletion. Single fiber analyses showed that fibers with greater respiratory chain deficiency harbored higher levels of mtDNA deletion with an increase in total mtDNA copy number. For the first time, we have demonstrated that threshold levels for complex I and complex IV deficiency differ based on deletion class. Interpretation Combining genetic and immunofluorescent assays, we conclude that thresholds for complex I and complex IV deficiency are modulated by the deletion of complex‐specific protein‐encoding genes. Furthermore, removal of mt‐tRNA genes impacts specific complexes only at high deletion levels, when complex‐specific protein‐encoding genes remain. These novel findings provide valuable insight into the pathogenic mechanisms associated with these mutations. Ann Neurol 2018;83:115–130 PMID:29283441

  19. Combination of methylated-DNA precipitation and methylation-sensitive restriction enzymes (COMPARE-MS) for the rapid, sensitive and quantitative detection of DNA methylation.

    PubMed

    Yegnasubramanian, Srinivasan; Lin, Xiaohui; Haffner, Michael C; DeMarzo, Angelo M; Nelson, William G

    2006-02-09

    Hypermethylation of CpG island (CGI) sequences is a nearly universal somatic genome alteration in cancer. Rapid and sensitive detection of DNA hypermethylation would aid in cancer diagnosis and risk stratification. We present a novel technique, called COMPARE-MS, that can rapidly and quantitatively detect CGI hypermethylation with high sensitivity and specificity in hundreds of samples simultaneously. To quantitate CGI hypermethylation, COMPARE-MS uses real-time PCR of DNA that was first digested by methylation-sensitive restriction enzymes and then precipitated by methyl-binding domain polypeptides immobilized on a magnetic solid matrix. We show that COMPARE-MS could detect five genome equivalents of methylated CGIs in a 1000- to 10,000-fold excess of unmethylated DNA. COMPARE-MS was used to rapidly quantitate hypermethylation at multiple CGIs in >155 prostate tissues, including benign and malignant prostate specimens, and prostate cell lines. This analysis showed that GSTP1, MDR1 and PTGS2 CGI hypermethylation as determined by COMPARE-MS could differentiate between malignant and benign prostate with sensitivities >95% and specificities approaching 100%. This novel technology could significantly improve our ability to detect CGI hypermethylation.

  20. [Effect of dietary fiber in the quantitative expression of butyrate receptor GPR43 in rats colon].

    PubMed

    Corte Osorio, L Y; Martínez Flores, H E; Ortiz Alvarado, R

    2011-01-01

    Short chain fatty acids (SCFA) acetate, propionate and butyrate are the major anions produced by the bacterial fermentation of dietary fiber (DF) in colon. Recently, butyrate has been recently studied because is important to maintain colonic functions and because it has been related with a protective effect in colorectal cancer, which is mainly, explained by its potential to regulate gene expression by inhibiting enzyme histonedeacetylase (HDAC). Several investigationsshown that SCFAreceptor GPR43 is involved insignal transduction mechanisms once they bind to ligands such as butyrate to generate different physiological effects in colonocytes. Determine if dietary fiber consumption from nopal (Opuntia ficus I.) containing a ratio of soluble-insoluble fiber 40/60, has a direct influence on the quantitative expression of butyrate-specific receptor GPR43. Wistar rats were fed with four different diets formulated at different concentrations of dietary fiber of 0, 5, 15 and 25% of dietary fiber from opuntia, respectively. The results shown an increase in the expression of GPR43 (93.1%) when rats was fed with a 5% fiber diet, using β-actin as a reference gene. The results of this investigation will contribute to determinate the relation of diet with intestinal health for the purpose of expanding the knowledge of butyric acid on colonic functions.

  1. Quantitative analysis of CMV DNA in children the first year after liver transplantation.

    PubMed

    Kullberg-Lindh, Carola; Ascher, Henry; Krantz, Marie; Lindh, Magnus

    2003-08-01

    CMV infection is a major problem after solid organ transplantation especially in children where primary infection is more common than in adults. Early diagnosis is critical and might be facilitated by quantitative analysis of CMV DNA in blood. In this retrospective study of 18 children who had a liver transplantation 1995-2000, serum samples were analysed by Cobas Amplicor Monitor (Roche). Four patients developed symptomatic CMV infection at a mean time of 4 wk after transplantation. They showed maximum CMV DNA levels in serum of 26 400, 1900, 1300 and 970 copies/mL, respectively. In comparison, CA Monitor was positive, at a low level (415 copies/mL), in one of 11 patients with asymptomatic (4) or latent (7) infection. CMV IgM was detected at significant levels (> or =1/80) in all four patients with symptomatic, and in one with asymptomatic CMV infection. Eight patients were given one or several courses of ganciclovir. Five of these lacked symptoms of CMV disease, and had low (415 copies/mL) or undetectable CMV DNA in serum. The data suggest that quantitative analysis of CMV DNA may be of value in early identification of CMV disease and for avoiding unnecessary antiviral treatment.

  2. Quantitation of DNA Adducts Induced by 1,3-Butadiene

    NASA Astrophysics Data System (ADS)

    Sangaraju, Dewakar; Villalta, Peter W.; Wickramaratne, Susith; Swenberg, James; Tretyakova, Natalia

    2014-07-01

    Human exposure to 1,3-butadiene (BD) present in automobile exhaust, cigarette smoke, and forest fires is of great concern because of its potent carcinogenicity. The adverse health effects of BD are mediated by its epoxide metabolites such as 3,4-epoxy-1-butene (EB), which covalently modify genomic DNA to form promutagenic nucleobase adducts. Because of their direct role in cancer, BD-DNA adducts can be used as mechanism-based biomarkers of BD exposure. In the present work, a mass spectrometry-based methodology was developed for accurate, sensitive, and precise quantification of EB-induced N-7-(1-hydroxy-3-buten-2-yl) guanine (EB-GII) DNA adducts in vivo. In our approach, EB-GII adducts are selectively released from DNA backbone by neutral thermal hydrolysis, followed by ultrafiltration, offline HPLC purification, and isotope dilution nanoLC/ESI+-HRMS3 analysis on an Orbitrap Velos mass spectrometer. Following method validation, EB-GII lesions were quantified in human fibrosarcoma (HT1080) cells treated with micromolar concentrations of EB and in liver tissues of rats exposed to sub-ppm concentrations of BD (0.5-1.5 ppm). EB-GII concentrations increased linearly from 1.15 ± 0.23 to 10.11 ± 0.45 adducts per 106 nucleotides in HT1080 cells treated with 0.5-10 μM DEB. EB-GII concentrations in DNA of laboratory rats exposed to 0.5, 1.0, and 1.5 ppm BD were 0.17 ± 0.05, 0.33 ± 0.08, and 0.50 ± 0.04 adducts per 106 nucleotides, respectively. We also used the new method to determine the in vivo half-life of EB-GII adducts in rat liver DNA (2.20 ± 0.12 d) and to detect EB-GII in human blood DNA. To our knowledge, this is the first application of nanoLC/ESI+-HRMS3 Orbitrap methodology to quantitative analysis of DNA adducts in vivo.

  3. Quantitative PCR detection of Batrachochytrium dendrobatidis DNA from sediments and water

    USGS Publications Warehouse

    Kirshtein, Julie D.; Anderson, Chauncey W.; Wood, J.S.; Longcore, Joyce E.; Voytek, Mary A.

    2007-01-01

    The fungal pathogen Batrachochytrium dendrobatidis (Bd) causes chytridiomycosis, a disease implicated in amphibian declines on 5 continents. Polymerase chain reaction (PCR) primer sets exist with which amphibians can be tested for this disease, and advances in sampling techniques allow non-invasive testing of animals. We developed filtering and PCR based quantitative methods by modifying existing PCR assays to detect Bd DNA in water and sediments, without the need for testing amphibians; we tested the methods at 4 field sites. The SYBR based assay using Boyle primers (SYBR/Boyle assay) and the Taqman based assay using Wood primers performed similarly with samples generated in the laboratory (Bd spiked filters), but the SYBR/Boyle assay detected Bd DNA in more field samples. We detected Bd DNA in water from 3 of 4 sites tested, including one pond historically negative for chytridiomycosis. Zoospore equivalents in sampled water ranged from 19 to 454 l-1 (nominal detection limit is 10 DNA copies, or about 0.06 zoospore). We did not detect DNA of Bd from sediments collected at any sites. Our filtering and amplification methods provide a new tool to investigate critical aspects of Bd in the environment. ?? Inter-Research 2007.

  4. A multiplex branched DNA assay for parallel quantitative gene expression profiling.

    PubMed

    Flagella, Michael; Bui, Son; Zheng, Zhi; Nguyen, Cung Tuong; Zhang, Aiguo; Pastor, Larry; Ma, Yunqing; Yang, Wen; Crawford, Kimberly L; McMaster, Gary K; Witney, Frank; Luo, Yuling

    2006-05-01

    We describe a novel method to quantitatively measure messenger RNA (mRNA) expression of multiple genes directly from crude cell lysates and tissue homogenates without the need for RNA purification or target amplification. The multiplex branched DNA (bDNA) assay adapts the bDNA technology to the Luminex fluorescent bead-based platform through the use of cooperative hybridization, which ensures an exceptionally high degree of assay specificity. Using in vitro transcribed RNA as reference standards, we demonstrated that the assay is highly specific, with cross-reactivity less than 0.2%. We also determined that the assay detection sensitivity is 25,000 RNA transcripts with intra- and interplate coefficients of variance of less than 10% and less than 15%, respectively. Using three 10-gene panels designed to measure proinflammatory and apoptosis responses, we demonstrated sensitive and specific multiplex gene expression profiling directly from cell lysates. The gene expression change data demonstrate a high correlation coefficient (R(2)=0.94) compared with measurements obtained using the single-plex bDNA assay. Thus, the multiplex bDNA assay provides a powerful means to quantify the gene expression profile of a defined set of target genes in large sample populations.

  5. Visualization and quantitative analysis of extrachromosomal telomere-repeat DNA in individual human cells by Halo-FISH

    PubMed Central

    Komosa, Martin; Root, Heather; Meyn, M. Stephen

    2015-01-01

    Current methods for characterizing extrachromosomal nuclear DNA in mammalian cells do not permit single-cell analysis, are often semi-quantitative and frequently biased toward the detection of circular species. To overcome these limitations, we developed Halo-FISH to visualize and quantitatively analyze extrachromosomal DNA in single cells. We demonstrate Halo-FISH by using it to analyze extrachromosomal telomere-repeat (ECTR) in human cells that use the Alternative Lengthening of Telomeres (ALT) pathway(s) to maintain telomere lengths. We find that GM847 and VA13 ALT cells average ∼80 detectable G/C-strand ECTR DNA molecules/nucleus, while U2OS ALT cells average ∼18 molecules/nucleus. In comparison, human primary and telomerase-positive cells contain <5 ECTR DNA molecules/nucleus. ECTR DNA in ALT cells exhibit striking cell-to-cell variations in number (<20 to >300), range widely in length (<1 to >200 kb) and are composed of primarily G- or C-strand telomere-repeat DNA. Halo-FISH enables, for the first time, the simultaneous analysis of ECTR DNA and chromosomal telomeres in a single cell. We find that ECTR DNA comprises ∼15% of telomere-repeat DNA in GM847 and VA13 cells, but <4% in U2OS cells. In addition to its use in ALT cell analysis, Halo-FISH can facilitate the study of a wide variety of extrachromosomal DNA in mammalian cells. PMID:25662602

  6. Quantitative evaluation of DNA damage and mutation rate by atmospheric and room-temperature plasma (ARTP) and conventional mutagenesis.

    PubMed

    Zhang, Xue; Zhang, Chong; Zhou, Qian-Qian; Zhang, Xiao-Fei; Wang, Li-Yan; Chang, Hai-Bo; Li, He-Ping; Oda, Yoshimitsu; Xing, Xin-Hui

    2015-07-01

    DNA damage is the dominant source of mutation, which is the driving force of evolution. Therefore, it is important to quantitatively analyze the DNA damage caused by different mutagenesis methods, the subsequent mutation rates, and their relationship. Atmospheric and room temperature plasma (ARTP) mutagenesis has been used for the mutation breeding of more than 40 microorganisms. However, ARTP mutagenesis has not been quantitatively compared with conventional mutation methods. In this study, the umu test using a flow-cytometric analysis was developed to quantify the DNA damage in individual viable cells using Salmonella typhimurium NM2009 as the model strain and to determine the mutation rate. The newly developed method was used to evaluate four different mutagenesis systems: a new ARTP tool, ultraviolet radiation, 4-nitroquinoline-1-oxide (4-NQO), and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) mutagenesis. The mutation rate was proportional to the corresponding SOS response induced by DNA damage. ARTP caused greater DNA damage to individual living cells than the other conventional mutagenesis methods, and the mutation rate was also higher. By quantitatively comparing the DNA damage and consequent mutation rate after different types of mutagenesis, we have shown that ARTP is a potentially powerful mutagenesis tool with which to improve the characteristics of microbial cell factories.

  7. A Multiplexed, Probe-Based Quantitative PCR Assay for DNA of Phytophthora sojae

    USDA-ARS?s Scientific Manuscript database

    Phytophthora sojae (Kaufm. & Gerd.) causes seed rot, pre- and post-emergence damping off, and sometimes foliar blight in soybean (Glycine max). Crop loss may approach 100% with susceptible cultivars. We report here the development of a unique quantitative PCR assay specific to DNA of P. sojae, and a...

  8. Potential effects of ionizing radiation on the evidentiary value of DNA, latent fingerprints, hair, and fibers: A comprehensive review and new results.

    PubMed

    Monson, Keith L; Ali, Sherine; Brandhagen, Michael D; Duff, Martine C; Fisher, Constance L; Lowe, Karen K; Meyer, Carna E; Roberts, Maria A; Tom, Kyle R; Washington, Aaron L

    2018-03-01

    An extensive literature review and new post-irradiation experimental results are presented of genotyping blood stains and hair, and physical examinations of latent fingerprints, hairs, and fibers. Results indicate that successful development of nuclear short tandem repeat (STR) and mitochondrial DNA sequence profiles from human blood and hair evidence is possible-up to a point-following exposure to gamma, neutron, beta, and alpha radiation at several levels that would most likely be present at this type of crime scene (i.e., a "dirty bomb," etc.). Commencing at gamma radiation levels between 90 and 900kGy, DNA analysis using conventional DNA techniques was unsuccessful. In general, irradiation negatively affected the quality of latent fingerprints. All four radiation types degraded most fingerprint samples at all doses; nevertheless, many fingerprints remained of value for potential use in comparison. Although variable from one hair to another, microscopic changes observed for all types and levels of irradiation could potentially result in false exclusions. Negligible microscopic changes were observed in papers and fibers (used as substrates for fingerprints and bloodstains) up to 90kGy gamma, but fluorescence of fibers began to change above that dose. Paper and fibers, as well as plastic evidence enclosures, became extremely brittle leading to breakage after a gamma dose of 900kGy. Published by Elsevier B.V.

  9. Microbial communities in liquid and fiber fractions of food waste digestates are differentially resistant to inhibition by ammonia.

    PubMed

    Peng, Wei; Lü, Fan; Shao, Liming; He, Pinjing

    2015-04-01

    The effect of different concentrations of ammonia (1.0-7.0 g/L) during mesophilic anaerobic digestion with fiber or liquid digestate as inoculum was examined. Evolution of microbial community within fiber and liquid digestates was quantitatively assessed by the intact lipid analysis methods and qualitatively by DNA fingerprint methods in order to determine their resistance to ammonia inhibition. The results showed that an increased level of total ammonia nitrogen prolonged the lag phase of fiber digestates while reduced the metabolic rate of liquid digestates. Fiber digestates had 19.6-50.9-fold higher concentrations of phospholipid fatty acids (PLFA) compared to liquid digestates, whereas concentrations of phospholipid ether lipids (PLEL) in the fiber digestates were only 2.91-17.6-fold higher compared to liquid digestates. Although the cell concentration in liquid fraction was far lower than that in the fiber one, the ammonia-resistant ability and the methanization efficiency of the liquid digestate was superior to the fiber digestate. The bacterial profiles were affected more by the type of digestate inoculum compared to the concentration of ammonia. Principal component analysis indicated that the lipids technique was superior to the DNA technique for bacterial quantification but detected less archaeal diversity.

  10. DNA Meter: Energy Tunable, Quantitative Hybridization Assay

    PubMed Central

    Braunlin, William; Völker, Jens; Plum, G. Eric; Breslauer, Kenneth J.

    2015-01-01

    We describe a novel hybridization assay that employs a unique class of energy tunable, bulge loop-containing competitor strands (C*) that hybridize to a probe strand (P). Such initial “pre-binding” of a probe strand modulates its effective “availability” for hybridizing to a target site (T). More generally, the assay described here is based on competitive binding equilibria for a common probe strand (P) between such tunable competitor strands (C*) and a target strand (T). We demonstrate that loop variable, energy tunable families of C*P complexes exhibit enhanced discrimination between targets and mismatched targets, thereby reducing false positives/negatives. We refer to a C*P complex between a C* competitor single strand and the probe strand as a “tuning fork,” since the C* strand exhibits branch points (forks) at the duplex-bulge interfaces within the complex. By varying the loop to create families of such “tuning forks,” one can construct C*P “energy ladders” capable of resolving small differences within the target that may be of biological/functional consequence. The methodology further allows quantification of target strand concentrations, a determination heretofore not readily available by conventional hybridization assays. The dual ability of this tunable assay to discriminate and quantitate targets provides the basis for developing a technology we refer to as a “DNA Meter.” Here we present data that establish proof-of-principle for an in solution version of such a DNA Meter. We envision future applications of this tunable assay that incorporate surface bound/spatially resolved DNA arrays to yield enhanced discrimination and sensitivity. PMID:23529692

  11. Correlation of Clinical Outcomes with Quantitative Polymerase Chain Reaction DNA Copy Number in Patients with Acute Retinal Necrosis.

    PubMed

    Calvo, Charles M; Khan, Mohammed Ali; Mehta, Sonia; Garg, Sunir J; Dunn, James P

    2017-04-01

    To correlate visual acuity outcomes and clinical features with quantitative PCR DNA copy number in patients with acute retinal necrosis (ARN). Retrospective, consecutive case series. In total, 14 eyes of 13 patients were diagnosed with ARN, based on the American Uveitis Society criteria, and were followed for a mean of 324.5 days (median 250.5 days, SD ± 214 days). Anterior chamber fluid analyzed by quantitative PCR identified viral DNA in 11 of 14 eyes (78.5%). Varicella zoster virus (VZV) was identified in seven eyes (50%) and herpes simplex virus (HSV) in four eyes (28.5%). Mean DNA copy number was 7.9 × 10 6 /mL (median 2.10 × 10 6 /mL, range: 0-5.60 × 10 7 /mL). Eyes with quantitative PCR DNA copy number of ≥5.0 × 10 6 /mL (n = 6 eyes) had worse baseline visual acuity (logMAR 1.48 ± 0.71 vs 0.94 ± 0.76, p = 0.196) and final visual acuity (logMAR 2.10 ± 0.60 vs 0.82 ± 0.81, p = 0.007) compared with patients with a DNA copy number <5.0 × 10 6 /mL (n = 8 eyes). Patients with a DNA copy number of ≥5.0 × 10 6 /mL were more likely to have at least 5 clock hours of retinitis on funduscopic exam (p = 0.03) and developed retinal detachment more frequently (p = 0.08). Quantitative DNA copy number of ≥5.0 × 10 6 /mL is associated with more extensive retinitis, worse visual acuity, and development of retinal detachment in patients with acute retinal necrosis.

  12. Quantitative fiber-optic Raman spectroscopy for tissue Raman measurements

    NASA Astrophysics Data System (ADS)

    Duraipandian, Shiyamala; Bergholt, Mads; Zheng, Wei; Huang, Zhiwei

    2014-03-01

    Molecular profiling of tissue using near-infrared (NIR) Raman spectroscopy has shown great promise for in vivo detection and prognostication of cancer. The Raman spectra measured from the tissue generally contain fundamental information about the absolute biomolecular concentrations in tissue and its changes associated with disease transformation. However, producing analogues tissue Raman spectra present a great technical challenge. In this preliminary study, we propose a method to ensure the reproducible tissue Raman measurements and validated with the in vivo Raman spectra (n=150) of inner lip acquired using different laser powers (i.e., 30 and 60 mW). A rapid Raman spectroscopy system coupled with a ball-lens fiber-optic Raman probe was utilized for tissue Raman measurements. The investigational results showed that the variations between the spectra measured with different laser powers are almost negligible, facilitating the quantitative analysis of tissue Raman measurements in vivo.

  13. High-density fiber optic biosensor arrays

    NASA Astrophysics Data System (ADS)

    Epstein, Jason R.; Walt, David R.

    2002-02-01

    Novel approaches are required to coordinate the immense amounts of information derived from diverse genomes. This concept has influenced the expanded role of high-throughput DNA detection and analysis in the biological sciences. A high-density fiber optic DNA biosensor was developed consisting of oligonucleotide-functionalized, 3.1 mm diameter microspheres deposited into the etched wells on the distal face of a 500 micrometers imaging fiber bundle. Imaging fiber bundles containing thousands of optical fibers, each associated with a unique oligonucleotide probe sequence, were the foundation for an optically connected, individually addressable DNA detection platform. Different oligonucleotide-functionalized microspheres were combined in a stock solution, and randomly dispersed into the etched wells. Microsphere positions were registered from optical dyes incorporated onto the microspheres. The distribution process provided an inherent redundancy that increases the signal-to-noise ratio as the square root of the number of sensors examined. The representative amount of each probe-type in the array was dependent on their initial stock solution concentration, and as other sequences of interest arise, new microsphere elements can be added to arrays without altering the existing detection capabilities. The oligonucleotide probe sequences hybridize to fluorescently-labeled, complementary DNA target solutions. Fiber optic DNA microarray research has included DNA-protein interaction profiles, microbial strain differentiation, non-labeled target interrogation with molecular beacons, and single cell-based assays. This biosensor array is proficient in DNA detection linked to specific disease states, single nucleotide polymorphism (SNP's) discrimination, and gene expression analysis. This array platform permits multiple detection formats, provides smaller feature sizes, and enables sensor design flexibility. High-density fiber optic microarray biosensors provide a fast

  14. Comparative evaluation of hepatitis C virus RNA quantitation by branched DNA, NASBA, and monitor assays.

    PubMed

    Lunel, F; Cresta, P; Vitour, D; Payan, C; Dumont, B; Frangeul, L; Reboul, D; Brault, C; Piette, J C; Huraux, J M

    1999-02-01

    Several studies have shown a relationship between pretreatment hepatitis C virus (HCV) viral load and the response to interferon (IFN) therapy, creating a need for quantitative HCV-RNA assays. Here, we compared three commercial methods: nucleic acid sequence-based amplification NASBA (Organon), branched DNA 2.0 (bDNA) (Chiron), and Monitor (Roche), with reverse-transcription polymerase chain reaction (RT-PCR) as the reference. We assessed sensitivity and reproducibility on a well-characterized panel of sera (EUROHEP), a Chimp Rodney plasma pool, and samples from IFN-treated and -untreated patients with chronic hepatitis C caused by different HCV genotypes. The reproducibility of the NASBA and bDNA methods was slightly better than that of Monitor, especially for genotypes 2 and 4. NASBA had the highest sensitivity (99% vs. 94% and 88% with Monitor and bDNA, respectively), especially for the follow-up of patients on IFN. NASBA gave the highest HCV-RNA concentrations, which were approximately 10-fold more than with the bDNA assay and 100-fold more than with the Monitor kit. The linearity, tested on the chimp Rodney plasma pool, was better with bDNA for high viral load than with NASBA and Monitor, although for low concentration of HCV RNA, bDNA was negative. Pretreatment viral load was lower in patients who had a sustained virological response to IFN, although the bDNA method was not sensitive enough to quantify all pretreatment samples. This study indicates that gene amplification methods (NASBA or Monitor) have better sensitivity than bDNA assays for quantification of HCV RNA in patients with chronic HCV infection, although the bDNA and NASBA methods are more likely to quantify all genotypes. Prospective studies are needed to demonstrate the usefulness of quantitative assays for the follow-up of patients with chronic hepatitis C.

  15. Dual color fluorescence quantitative detection of specific single-stranded DNA with molecular beacons and nucleic acid dye SYBR Green I.

    PubMed

    Xiang, Dong-Shan; Zhou, Guo-Hua; Luo, Ming; Ji, Xing-Hu; He, Zhi-Ke

    2012-08-21

    We have developed a dual color fluorescence quantitative detection method for specific single-stranded DNA with molecular beacons (MBs) and nucleic acid dye SYBR Green I by synchronous scanning fluorescence spectrometry. It is demonstrated by a reverse-transcription oligonucleotide sequence (target DNA, 33 bases) of RNA fragment of human immunodeficiency virus (HIV) as a model system. In the absence of target DNA, the MBs are in the stem-closed state, the fluorescence of 5-carboxy-X-rhodamine (ROX) is quenched by black hole quencher-2 (BHQ-2), and the interaction between SYBR Green I and the MBs is very weak. At this time the fluorescence signals of ROX and SYBR Green I are all very weak. In the presence of target DNA, MBs hybridize with target DNA and form a double-strand structure, the fluorophore ROX is separated from the quencher BHQ-2, and the fluorescence of ROX recovers. At the same time, SYBR Green I binds to hybridized dsDNA, whose fluorescence intensity is significantly enhanced. Thus, dual color fluorescence quantitative detection for the target DNA can be realized by synchronous scanning fluorescence spectrometry. In this strategy, the fluorescence signal of SYBR Green I is far larger than that of ROX, so the quantitative analysis of target DNA with the fluorescence intensity of SYBR Green I can significantly improve the detection sensitivity. In addition, the false-positive signals of MBs do not affect the fluorescence signals of nucleic acid dye SYBR Green I. Thereby, in the analysis of complex samples, quantitative analysis of target DNA with SYBR Green I can avoid the false-positive signals of MBs and improve the detection accuracy.

  16. Quantitative radiographic analysis of fiber reinforced polymer composites.

    PubMed

    Baidya, K P; Ramakrishna, S; Rahman, M; Ritchie, A

    2001-01-01

    X-ray radiographic examination of the bone fracture healing process is a widely used method in the treatment and management of patients. Medical devices made of metallic alloys reportedly produce considerable artifacts that make the interpretation of radiographs difficult. Fiber reinforced polymer composite materials have been proposed to replace metallic alloys in certain medical devices because of their radiolucency, light weight, and tailorable mechanical properties. The primary objective of this paper is to provide a comparable radiographic analysis of different fiber reinforced polymer composites that are considered suitable for biomedical applications. Composite materials investigated consist of glass, aramid (Kevlar-29), and carbon reinforcement fibers, and epoxy and polyether-ether-ketone (PEEK) matrices. The total mass attenuation coefficient of each material was measured using clinical X-rays (50 kev). The carbon fiber reinforced composites were found to be more radiolucent than the glass and kevlar fiber reinforced composites.

  17. Quantitative analysis of TALE-DNA interactions suggests polarity effects.

    PubMed

    Meckler, Joshua F; Bhakta, Mital S; Kim, Moon-Soo; Ovadia, Robert; Habrian, Chris H; Zykovich, Artem; Yu, Abigail; Lockwood, Sarah H; Morbitzer, Robert; Elsäesser, Janett; Lahaye, Thomas; Segal, David J; Baldwin, Enoch P

    2013-04-01

    Transcription activator-like effectors (TALEs) have revolutionized the field of genome engineering. We present here a systematic assessment of TALE DNA recognition, using quantitative electrophoretic mobility shift assays and reporter gene activation assays. Within TALE proteins, tandem 34-amino acid repeats recognize one base pair each and direct sequence-specific DNA binding through repeat variable di-residues (RVDs). We found that RVD choice can affect affinity by four orders of magnitude, with the relative RVD contribution in the order NG > HD ≈ NN > NI > NK. The NN repeat preferred the base G over A, whereas the NK repeat bound G with 10(3)-fold lower affinity. We compared AvrBs3, a naturally occurring TALE that recognizes its target using some atypical RVD-base combinations, with a designed TALE that precisely matches 'standard' RVDs with the target bases. This comparison revealed unexpected differences in sensitivity to substitutions of the invariant 5'-T. Another surprising observation was that base mismatches at the 5' end of the target site had more disruptive effects on affinity than those at the 3' end, particularly in designed TALEs. These results provide evidence that TALE-DNA recognition exhibits a hitherto un-described polarity effect, in which the N-terminal repeats contribute more to affinity than C-terminal ones.

  18. A glass fiber/diethylaminoethyl double filter binding assay that measures apoptotic internucleosomal DNA fragmentation.

    PubMed

    Erusalimsky, J D; John, J; Hong, Y; Moore, M

    1996-11-15

    A filter binding assay that measures internucleosomal DNA fragmentation associated with apoptosis is described. The assay is based on a novel principle that consists of using simultaneously two kinds of glass fiber filters to harvest [3H]thymidine-prelabeled cells following their incubation with inducers of apoptosis. One filter, which is neutral, traps intact chromatin and high-molecular-weight DNA. The other filter, which is positively charged with DEAE active groups, traps low-molecular-weight DNA fragments. DNA fragmentation is quantified by measuring the radioactivity retained by each of the filters. The assay was evaluated with the histiocytic lymphoma cell line U937 and the topoisomerase inhibitors camptothecin, etoposide, and doxorubicin. These agents caused a dose-dependent decrease of radioactivity in the neutral filter and a parallel increase of radioactivity in the DEAE filter. Irradiation-induced single strand breaks and topoisomerase-mediated primary DNA damage were not detected by this method. Consistent with the detection of internucleosomal DNA fragmentation, the effects measured by this assay were prevented by the endonuclease inhibitor zinc acetate and by the metabolic inhibitor sodium azide. Results obtained using this assay were validated by observation of DNA ladders on agarose gels and by morphologic examination of apoptotic features. Evaluation of the assay in a mock screen demonstrated that the introduction of the DEAE filter increases the assay sensitivity and eliminates false positives. Thus, this assay may be used in high-throughput screening approaches to discover novel modulators of apoptosis.

  19. A multiplex calibrated real-time PCR assay for quantitation of DNA of EBV-1 and 2.

    PubMed

    Gatto, Francesca; Cassina, Giulia; Broccolo, Francesco; Morreale, Giuseppe; Lanino, Edoardo; Di Marco, Eddi; Vardas, Efthiya; Bernasconi, Daniela; Buttò, Stefano; Principi, Nicola; Esposito, Susanna; Scarlatti, Gabriella; Lusso, Paolo; Malnati, Mauro S

    2011-12-01

    Accurate and highly sensitive tests for the diagnosis of active Epstein-Barr virus (EBV) infection are essential for the clinical management of individuals infected with EBV. A calibrated quantitative real-time PCR assay for the measurement of EBV DNA of both EBV-1 and 2 subtypes was developed, combining the detection of the EBV DNA and a synthetic DNA calibrator in a multiplex PCR format. The assay displays a wide dynamic range and a high degree of accuracy even in the presence of 1μg of human genomic DNA. This assay measures with the same efficiency EBV DNA from strains prevalent in different geographic areas. The clinical sensitivity and specificity of the system were evaluated by testing 181 peripheral blood mononuclear cell (PBMCs) and plasma specimens obtained from 21 patients subjected to bone marrow transplantation, 70 HIV-seropositive subjects and 23 healthy controls. Patients affected by EBV-associated post-transplant lymphoprolipherative disorders had the highest frequency of EBV detection and the highest viral load. Persons infected with HIV had higher levels of EBV DNA load in PBMCs and a higher frequency of EBV plasma viremia compared to healthy controls. In conclusion, this new assay provides a reliable high-throughput method for the quantitation of EBV DNA in clinical samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. High Throughput Measurement of Extracellular DNA Release and Quantitative NET Formation in Human Neutrophils In Vitro.

    PubMed

    Sil, Payel; Yoo, Dae-Goon; Floyd, Madison; Gingerich, Aaron; Rada, Balazs

    2016-06-18

    Neutrophil granulocytes are the most abundant leukocytes in the human blood. Neutrophils are the first to arrive at the site of infection. Neutrophils developed several antimicrobial mechanisms including phagocytosis, degranulation and formation of neutrophil extracellular traps (NETs). NETs consist of a DNA scaffold decorated with histones and several granule markers including myeloperoxidase (MPO) and human neutrophil elastase (HNE). NET release is an active process involving characteristic morphological changes of neutrophils leading to expulsion of their DNA into the extracellular space. NETs are essential to fight microbes, but uncontrolled release of NETs has been associated with several disorders. To learn more about the clinical relevance and the mechanism of NET formation, there is a need to have reliable tools capable of NET quantitation. Here three methods are presented that can assess NET release from human neutrophils in vitro. The first one is a high throughput assay to measure extracellular DNA release from human neutrophils using a membrane impermeable DNA-binding dye. In addition, two other methods are described capable of quantitating NET formation by measuring levels of NET-specific MPO-DNA and HNE-DNA complexes. These microplate-based methods in combination provide great tools to efficiently study the mechanism and regulation of NET formation of human neutrophils.

  1. Fiber optic-based biosensor

    NASA Technical Reports Server (NTRS)

    Ligler, Frances S.

    1991-01-01

    The NRL fiber optic biosensor is a device which measures the formation of a fluorescent complex at the surface of an optical fiber. Antibodies and DNA binding proteins provide the mechanism for recognizing an analyze and immobilizing a fluorescent complex on the fiber surface. The fiber optic biosensor is fast, sensitive, and permits analysis of hazardous materials remote from the instrumentation. The fiber optic biosensor is described in terms of the device configuration, chemistry for protein immobilization, and assay development. A lab version is being used for assay development and performance characterization while a portable device is under development. Antibodies coated on the fiber are stable for up to two years of storage prior to use. The fiber optic biosensor was used to measure concentration of toxins in the parts per billion (ng/ml) range in under a minute. Immunoassays for small molecules and whole bacteria are under development. Assays using DNA probes as the detection element can also be used with the fiber optic sensor, which is currently being developed to detect biological warfare agents, explosives, pathogens, and toxic materials which pollute the environment.

  2. Analysis of JC virus DNA replication using a quantitative and high-throughput assay

    PubMed Central

    Shin, Jong; Phelan, Paul J.; Chhum, Panharith; Bashkenova, Nazym; Yim, Sung; Parker, Robert; Gagnon, David; Gjoerup, Ole; Archambault, Jacques; Bullock, Peter A.

    2015-01-01

    Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCV DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication. PMID:25155200

  3. Development and validation of open-source software for DNA mixture interpretation based on a quantitative continuous model

    PubMed Central

    Manabe, Sho; Morimoto, Chie; Hamano, Yuya; Fujimoto, Shuntaro

    2017-01-01

    In criminal investigations, forensic scientists need to evaluate DNA mixtures. The estimation of the number of contributors and evaluation of the contribution of a person of interest (POI) from these samples are challenging. In this study, we developed a new open-source software “Kongoh” for interpreting DNA mixture based on a quantitative continuous model. The model uses quantitative information of peak heights in the DNA profile and considers the effect of artifacts and allelic drop-out. By using this software, the likelihoods of 1–4 persons’ contributions are calculated, and the most optimal number of contributors is automatically determined; this differs from other open-source software. Therefore, we can eliminate the need to manually determine the number of contributors before the analysis. Kongoh also considers allele- or locus-specific effects of biological parameters based on the experimental data. We then validated Kongoh by calculating the likelihood ratio (LR) of a POI’s contribution in true contributors and non-contributors by using 2–4 person mixtures analyzed through a 15 short tandem repeat typing system. Most LR values obtained from Kongoh during true-contributor testing strongly supported the POI’s contribution even for small amounts or degraded DNA samples. Kongoh correctly rejected a false hypothesis in the non-contributor testing, generated reproducible LR values, and demonstrated higher accuracy of the estimated number of contributors than another software based on the quantitative continuous model. Therefore, Kongoh is useful in accurately interpreting DNA evidence like mixtures and small amounts or degraded DNA samples. PMID:29149210

  4. Development and validation of open-source software for DNA mixture interpretation based on a quantitative continuous model.

    PubMed

    Manabe, Sho; Morimoto, Chie; Hamano, Yuya; Fujimoto, Shuntaro; Tamaki, Keiji

    2017-01-01

    In criminal investigations, forensic scientists need to evaluate DNA mixtures. The estimation of the number of contributors and evaluation of the contribution of a person of interest (POI) from these samples are challenging. In this study, we developed a new open-source software "Kongoh" for interpreting DNA mixture based on a quantitative continuous model. The model uses quantitative information of peak heights in the DNA profile and considers the effect of artifacts and allelic drop-out. By using this software, the likelihoods of 1-4 persons' contributions are calculated, and the most optimal number of contributors is automatically determined; this differs from other open-source software. Therefore, we can eliminate the need to manually determine the number of contributors before the analysis. Kongoh also considers allele- or locus-specific effects of biological parameters based on the experimental data. We then validated Kongoh by calculating the likelihood ratio (LR) of a POI's contribution in true contributors and non-contributors by using 2-4 person mixtures analyzed through a 15 short tandem repeat typing system. Most LR values obtained from Kongoh during true-contributor testing strongly supported the POI's contribution even for small amounts or degraded DNA samples. Kongoh correctly rejected a false hypothesis in the non-contributor testing, generated reproducible LR values, and demonstrated higher accuracy of the estimated number of contributors than another software based on the quantitative continuous model. Therefore, Kongoh is useful in accurately interpreting DNA evidence like mixtures and small amounts or degraded DNA samples.

  5. An Alu-based, MGB Eclipse real-time PCR method for quantitation of human DNA in forensic samples.

    PubMed

    Nicklas, Janice A; Buel, Eric

    2005-09-01

    The forensic community needs quick, reliable methods to quantitate human DNA in crime scene samples to replace the laborious and imprecise slot blot method. A real-time PCR based method has the possibility of allowing development of a faster and more quantitative assay. Alu sequences are primate-specific and are found in many copies in the human genome, making these sequences an excellent target or marker for human DNA. This paper describes the development of a real-time Alu sequence-based assay using MGB Eclipse primers and probes. The advantages of this assay are simplicity, speed, less hands-on-time and automated quantitation, as well as a large dynamic range (128 ng/microL to 0.5 pg/microL).

  6. Solution identification and quantitative analysis of fiber-capacitive drop analyzer based on multivariate statistical methods

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Qiu, Zurong; Huo, Xinming; Fan, Yuming; Li, Xinghua

    2017-03-01

    A fiber-capacitive drop analyzer is an instrument which monitors a growing droplet to produce a capacitive opto-tensiotrace (COT). Each COT is an integration of fiber light intensity signals and capacitance signals and can reflect the unique physicochemical property of a liquid. In this study, we propose a solution analytical and concentration quantitative method based on multivariate statistical methods. Eight characteristic values are extracted from each COT. A series of COT characteristic values of training solutions at different concentrations compose a data library of this kind of solution. A two-stage linear discriminant analysis is applied to analyze different solution libraries and establish discriminant functions. Test solutions can be discriminated by these functions. After determining the variety of test solutions, Spearman correlation test and principal components analysis are used to filter and reduce dimensions of eight characteristic values, producing a new representative parameter. A cubic spline interpolation function is built between the parameters and concentrations, based on which we can calculate the concentration of the test solution. Methanol, ethanol, n-propanol, and saline solutions are taken as experimental subjects in this paper. For each solution, nine or ten different concentrations are chosen to be the standard library, and the other two concentrations compose the test group. By using the methods mentioned above, all eight test solutions are correctly identified and the average relative error of quantitative analysis is 1.11%. The method proposed is feasible which enlarges the applicable scope of recognizing liquids based on the COT and improves the concentration quantitative precision, as well.

  7. Comparison of DNA extraction kits and modification of DNA elution procedure for the quantitation of subdominant bacteria from piggery effluents with real-time PCR

    PubMed Central

    Desneux, Jérémy; Pourcher, Anne-Marie

    2014-01-01

    Four commercial DNA extraction kits and a minor modification in the DNA elution procedure were evaluated for the quantitation of bacteria in pig manure samples. The PowerSoil®, PowerFecal®, NucleoSpin® Soil kits and QIAamp® DNA Stool Mini kit were tested on raw manure samples and on lagoon effluents for their ability to quantify total bacteria and a subdominant bacteria specific of pig manure contamination: Lactobacillus amylovorus. The NucleoSpin® Soil kit (NS kit), and to a lesser extent the PowerFecal® kit were the most efficient methods. Regardless of the kit utilized, the modified elution procedure increased DNA yield in the lagoon effluent by a factor of 1.4 to 1.8. When tested on 10 piggery effluent samples, compared to the QIAamp kit, the NS kit combined with the modified elution step, increased by a factor up to 1.7 log10 the values of the concentration of L. amylovorus. Regardless of the type of manure, the best DNA quality and the highest concentrations of bacteria were obtained using the NS kit combined with the modification of the elution procedure. The method recommended here significantly improved quantitation of subdominant bacteria in manure. PMID:24838631

  8. Amplitudes of Pain-Related Evoked Potentials Are Useful to Detect Small Fiber Involvement in Painful Mixed Fiber Neuropathies in Addition to Quantitative Sensory Testing – An Electrophysiological Study

    PubMed Central

    Hansen, Niels; Kahn, Ann-Kathrin; Zeller, Daniel; Katsarava, Zaza; Sommer, Claudia; Üçeyler, Nurcan

    2015-01-01

    To investigate the usefulness of pain-related evoked potentials (PREP) elicited by electrical stimulation for the identification of small fiber involvement in patients with mixed fiber neuropathy (MFN). Eleven MFN patients with clinical signs of large fiber impairment and neuropathic pain and ten healthy controls underwent clinical and electrophysiological evaluation. Small fiber function, electrical conductivity and morphology were examined by quantitative sensory testing (QST), PREP, and skin punch biopsy. MFN was diagnosed following clinical and electrophysiological examination (chronic inflammatory demyelinating neuropathy: n = 6; vasculitic neuropathy: n = 3; chronic axonal ­neuropathy: n = 2). The majority of patients with MFN characterized their pain by descriptors that mainly represent C-fiber-mediated pain. In QST, patients displayed elevated cold, warm, mechanical, and vibration detection thresholds and cold pain thresholds indicative of MFN. PREP amplitudes in patients correlated with cold (p < 0.05) and warm detection thresholds (p < 0.05). Burning pain and the presence of par-/dysesthesias correlated negatively with PREP amplitudes (p < 0.05). PREP amplitudes correlating with cold and warm detection thresholds, burning pain, and par-/dysesthesias support employing PREP amplitudes as an additional tool in conjunction with QST for detecting small fiber impairment in patients with MFN. PMID:26696950

  9. Selective DNA Pooling for Determination of Linkage between a Molecular Marker and a Quantitative Trait Locus

    PubMed Central

    Darvasi, A.; Soller, M.

    1994-01-01

    Selective genotyping is a method to reduce costs in marker-quantitative trait locus (QTL) linkage determination by genotyping only those individuals with extreme, and hence most informative, quantitative trait values. The DNA pooling strategy (termed: ``selective DNA pooling'') takes this one step further by pooling DNA from the selected individuals at each of the two phenotypic extremes, and basing the test for linkage on marker allele frequencies as estimated from the pooled samples only. This can reduce genotyping costs of marker-QTL linkage determination by up to two orders of magnitude. Theoretical analysis of selective DNA pooling shows that for experiments involving backcross, F(2) and half-sib designs, the power of selective DNA pooling for detecting genes with large effect, can be the same as that obtained by individual selective genotyping. Power for detecting genes with small effect, however, was found to decrease strongly with increase in the technical error of estimating allele frequencies in the pooled samples. The effect of technical error, however, can be markedly reduced by replication of technical procedures. It is also shown that a proportion selected of 0.1 at each tail will be appropriate for a wide range of experimental conditions. PMID:7896115

  10. Analysis of JC virus DNA replication using a quantitative and high-throughput assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Jong; Phelan, Paul J.; Chhum, Panharith

    2014-11-15

    Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCVmore » DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication. - Highlights: • Development of a high-throughput screening assay for JCV DNA replication using C33A cells. • Evidence that T-ag fails to accumulate in the nuclei of established glioma cell lines. • Evidence that NF-1 directly promotes JCV DNA replication in C33A cells. • Proof-of-concept that the HTS assay can be used to identify pharmacological inhibitor of JCV DNA replication.« less

  11. Quantitative changes in endogenous DNA adducts correlate with conazole in vivo mutagenicity and tumorigenicity.

    PubMed

    Ross, Jeffrey A; Leavitt, Sharon A; Schmid, Judith E; Nelson, Garret B

    2012-09-01

    The mouse liver tumorigenic conazole fungicides triadimefon and propiconazole have previously been shown to be in vivo mouse liver mutagens in the Big Blue™ transgenic mutation assay when administered in feed at tumorigenic doses, whereas the nontumorigenic conazole myclobutanil was not mutagenic. DNA sequencing of the mutants recovered from each treatment group as well as from animals receiving control diet revealed that propiconazole- and triadimefon-induced mutations do not represent general clonal expansion of background mutations, and support the hypothesis that they arise from the accumulation of endogenous reactive metabolic intermediates within the liver in vivo. We therefore measured the spectra of endogenous DNA adducts in the livers of mice from these studies to determine if there were quantitative or qualitative differences between mice receiving tumorigenic or nontumorigenic conazoles compared to concurrent control animals. We resolved and quantitated 16 individual adduct spots by (32)P postlabelling and thin layer chromatography using three solvent systems. Qualitatively, we observed the same DNA adducts in control mice as in mice receiving conazoles. However, the 13 adducts with the highest chromatographic mobility were, as a group, present at significantly higher amounts in the livers of mice treated with propiconazole and triadimefon than in their concurrent controls, whereas this same group of DNA adducts in the myclobutanil-treated mice was not different from controls. This same group of endogenous adducts were significantly correlated with mutant frequency across all treatment groups (P = 0.002), as were total endogenous DNA adduct levels (P = 0.005). We hypothesise that this treatment-related increase in endogenous DNA adducts, together with concomitant increases in cell proliferation previously reported to be induced by conazoles, explain the observed increased in vivo mutation frequencies previously reported to be induced by treatment with

  12. Quantitative determination of testosterone levels with biolayer interferometry.

    PubMed

    Zhang, Hao; Li, Wei; Luo, Hong; Xiong, Guangming; Yu, Yuanhua

    2017-10-01

    Natural and synthetic steroid hormones are widely spread in the environment and are considered as pollutants due to their endocrine activities, even at low concentrations, which are harmful to human health. To detect steroid hormones in the environment, a novel biosensor system was developed based on the principle of biolayer interferometry. Detection is based on changes in the interference pattern of white light reflected from the surface of an optical fiber with bound biomolecules. Monitoring interactions between molecules does not require radioactive, enzymatic, or fluorescent labels. Here, 2 double-stranded DNA fragments of operator 1 (OP1) and OP2 containing 10-bp palindromic sequences in chromosomal Comamonas testosteroni DNA (ATCC11996) were surface-immobilized to streptavidin sensors. Interference changes were detected when repressor protein RepA bound the DNA sequences. DNA-protein interactions were characterized and kinetic parameters were obtained. The dissociation constants between the OP1 and OP2 DNA sequences and RepA were 9.865 × 10 -9  M and 2.750 × 10 -8  M, respectively. The reactions showed high specifically and affinity. Because binding of the 10-bp palindromic sequence and RepA was affected by RepA-testosterone binding, the steroid could be quantitatively determined rapidly using the biosensor system. The mechanism of the binding assay was as follows. RepA could bind both OP1 and testosterone. RepA binding to testosterone changed the protein conformation, which influenced the binding between RepA and OP1. The percentage of the signal detected negative correlation with the testosterone concentration. A standard curve was obtained, and the correlation coefficient value was approximately 0.97. We could quantitatively determine testosterone levels between 2.13 and 136.63 ng/ml. Each sample could be quantitatively detected in 17 min. These results suggested that the specific interaction between double-stranded OP1 DNA and the RepA protein

  13. Rapid Quantification of 3D Collagen Fiber Alignment and Fiber Intersection Correlations with High Sensitivity

    PubMed Central

    Sun, Meng; Bloom, Alexander B.; Zaman, Muhammad H.

    2015-01-01

    Metastatic cancers aggressively reorganize collagen in their microenvironment. For example, radially orientated collagen fibers have been observed surrounding tumor cell clusters in vivo. The degree of fiber alignment, as a consequence of this remodeling, has often been difficult to quantify. In this paper, we present an easy to implement algorithm for accurate detection of collagen fiber orientation in a rapid pixel-wise manner. This algorithm quantifies the alignment of both computer generated and actual collagen fiber networks of varying degrees of alignment within 5°°. We also present an alternative easy method to calculate the alignment index directly from the standard deviation of fiber orientation. Using this quantitative method for determining collagen alignment, we demonstrate that the number of collagen fiber intersections has a negative correlation with the degree of fiber alignment. This decrease in intersections of aligned fibers could explain why cells move more rapidly along aligned fibers than unaligned fibers, as previously reported. Overall, our paper provides an easier, more quantitative and quicker way to quantify fiber orientation and alignment, and presents a platform in studying effects of matrix and cellular properties on fiber alignment in complex 3D environments. PMID:26158674

  14. Molecular cloning and localization of a novel cotton annexin gene expressed preferentially during fiber development.

    PubMed

    Wang, Li Ke; Niu, Xiao Wei; Lv, Yan Hui; Zhang, Tian Zhen; Guo, Wang Zhen

    2010-10-01

    Annexins constitute a family of multifunction and structurally related proteins. These proteins are ubiquitous in the plant kingdom, and are important calcium-dependent membrane-binding proteins that participate in the polar development of different plant regions such as rhizoids, root caps, and pollen tube tips. In this study, a novel cotton annexin gene (designated as GhFAnnx) was isolated from a fiber cDNA library of cotton (Gossypium hirsutum). The full-length cDNA of GhFAnnx comprises an open reading frame of 945 bp that encodes a 314-amino acid protein with a calculated molecular mass of 35.7 kDa and an isoelectric point of 6.49. Genomic GhFAnnx sequences from different cotton species, TM-1, Hai7124 and two diploid progenitor cottons, G. herbaceum (A-genome) and G. raimondii (D-genome) showed that at least two copies of the GhFAnnx gene, each with six exons and five introns in the coding region, were identified in the allotetraploid cotton genome. The GhFAnnx gene cloned from the cDNA library in this study was mapped to the chromosome 10 of the A-subgenome of the tetraploid cotton. Sequence alignment revealed that GhFAnnx contained four repeats of 70 amino acids. Semi-quantitative reverse transcriptase-polymerase chain reaction revealed that GhFAnnx is preferentially expressed in different developmental fibers but its expression is low in roots, stems, and leaves. Subcellular localization of GhFAnnx in onion epidermal cells and cotton fibers suggests that this protein is ubiquitous in the epidermal cells of onion, but assembles at the edge and the inner side of the apex of the cotton fiber tips with brilliant spots. In summary, GhFAnnx influences fiber development and is associated with the polar expansion of the cotton fiber during elongation stages.

  15. Detection and quantitation of single nucleotide polymorphisms, DNA sequence variations, DNA mutations, DNA damage and DNA mismatches

    DOEpatents

    McCutchen-Maloney, Sandra L.

    2002-01-01

    DNA mutation binding proteins alone and as chimeric proteins with nucleases are used with solid supports to detect DNA sequence variations, DNA mutations and single nucleotide polymorphisms. The solid supports may be flow cytometry beads, DNA chips, glass slides or DNA dips sticks. DNA molecules are coupled to solid supports to form DNA-support complexes. Labeled DNA is used with unlabeled DNA mutation binding proteins such at TthMutS to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by binding which gives an increase in signal. Unlabeled DNA is utilized with labeled chimeras to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by nuclease activity of the chimera which gives a decrease in signal.

  16. Visualization of episomal and integrated Epstein-Barr virus DNA by fiber fluorescence in situ hybridization.

    PubMed

    Reisinger, Jürgen; Rumpler, Silvia; Lion, Thomas; Ambros, Peter F

    2006-04-01

    For many Epstein-Barr virus (EBV)-associated malignancies, it is still a matter of controversy whether infected cells harbor episomal or chromosomally integrated EBV genomes or both. It is well established that the expression of EBV genes per se carries oncogenic potential, but the discrimination between episomal and integrated forms is of great relevance because integration events can contribute to the oncogenic properties of EBV, whereas host cells that exclusively harbor viral episomes may not carry the risks mediated by chromosomal integration. This notion prompted us to establish a reliable technique that not only allows to unequivocally discriminate episomal from integrated EBV DNA, but also provides detailed insights into the genomic organization of the virus. Here, we show that dynamic molecular combing of host cell DNA combined with fluorescence in situ hybridization (FISH) using EBV-specific DNA probes facilitate unambiguous discrimination of episomal from integrated viral DNA. Furthermore, the detection of highly elongated internal repeat 1 (IR1) sequences provides evidence that this method permits detection of major genomic alterations within the EBV genome. Thus, fiber FISH may also provide valuable insights into the genomic organization of viral genomes other than EBV.

  17. Capturing Structural Heterogeneity in Chromatin Fibers.

    PubMed

    Ekundayo, Babatunde; Richmond, Timothy J; Schalch, Thomas

    2017-10-13

    Chromatin fiber organization is implicated in processes such as transcription, DNA repair and chromosome segregation, but how nucleosomes interact to form higher-order structure remains poorly understood. We solved two crystal structures of tetranucleosomes with approximately 11-bp DNA linker length at 5.8 and 6.7 Å resolution. Minimal intramolecular nucleosome-nucleosome interactions result in a fiber model resembling a flat ribbon that is compatible with a two-start helical architecture, and that exposes histone and DNA surfaces to the environment. The differences in the two structures combined with electron microscopy reveal heterogeneous structural states, and we used site-specific chemical crosslinking to assess the diversity of nucleosome-nucleosome interactions through identification of structure-sensitive crosslink sites that provide a means to characterize fibers in solution. The chromatin fiber architectures observed here provide a basis for understanding heterogeneous chromatin higher-order structures as they occur in a genomic context. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. [A quantitative real time polymerase chain reaction for detection of HBV covalently closed circular DNA in livers of the HBV infected patients].

    PubMed

    Wang, Mei-Rong; Qiu, Ning; Lu, Shi-Chun; Xiu, Dian-Rong; Yu, Jian-Guo; Li, Tong; Liu, Xue-En; Zhuang, Hui

    2011-05-01

    To establish and optimize a sensitive and specific quantitative real-time polymerase chain reaction (PCR) method for detection of hepatitis B virus covalently closed circular DNA (HBV cccDNA) in liver tissue. Specific primers and probes were designed to detect HBV DNA (tDNA) and cccDNA. A series of plasmids (3.44 × 10(0) - 3.44 × 10(9) copies/µl) containing a full double-stranded copies of HBV genome (genotype C) were used to establish the standard curve of real-time PCR. Liver samples of 33 patients with HBV related hepatocellular carcinoma (HCC), 13 Chronic hepatitis B patients (CHB) and 10 non-HBV patients were collected to verify the sensitivity and specificity of the assay. A fraction of extracted DNA was digested with a Plasmid-Safe ATP-dependent Dnase (PSAD) for HBV cccDNA detection and the remaining was used for tDNA and β-globin detection. The amount (copies/cell) of HBV cccDNA and tDNA were measured by a real-time PCR, using β-globin housekeeping gene as a quantitation standard. The standard curves of real-time PCR with a linear range of 3.44 × 10(0) to 3.44 × 10(9) copies/µl were established for detecting HBV cccDNA and tDNA, and both of the lowest detection limits of HBV cccDNA and tDNA were 3.44 × 10(0) copies/µl. The lowest quantitation levels of HBV cccDNA in liver tissues tested in 33 HBV related HCC patients and 13 CHB patients were 0.003 copies/cell and 0.031 copies/cell, respectively. HBV cccDNA and tDNA in liver tissue of 10 non-HBV patient appeared to be negative. The true positive rate was increasing through the digestion of HBV DNA by PSAD, and the analytic specificity of cccDNA detection improved by 7.24 × 10(2) times. Liver tissues of 2 patients were retested 5 times in the PCR for detecting cccDNA and the coefficient of variations on cycle threshold (Ct) were between 0.224% - 0.609%. A highly sensitive and specific quantitative real time PCR method for the detection of HBV cccDNA in liver tissue was established and could be used

  19. A differential mobility spectrometry/mass spectrometry platform for the rapid detection and quantitation of DNA adduct dG-ABP.

    PubMed

    Kafle, Amol; Klaene, Joshua; Hall, Adam B; Glick, James; Coy, Stephen L; Vouros, Paul

    2013-07-15

    There is continued interest in exploring new analytical technologies for the detection and quantitation of DNA adducts, biomarkers which provide direct evidence of exposure and genetic damage in cells. With the goal of reducing clean-up steps and improving sample throughput, a Differential Mobility Spectrometry/Mass Spectrometry (DMS/MS) platform has been introduced for adduct analysis. A DMS/MS platform has been utilized for the analysis of dG-ABP, the deoxyguanosine adduct of the bladder carcinogen 4-aminobiphenyl (4-ABP). After optimization of the DMS parameters, each sample was analyzed in just 30 s following a simple protein precipitation step of the digested DNA. A detection limit of one modification in 10^6 nucleosides has been achieved using only 2 µg of DNA. A brief comparison (quantitative and qualitative) with liquid chromatography/mass spectrometry is also presented highlighting the advantages of using the DMS/MS method as a high-throughput platform. The data presented demonstrate the successful application of a DMS/MS/MS platform for the rapid quantitation of DNA adducts using, as a model analyte, the deoxyguanosine adduct of the bladder carcinogen 4-aminobiphenyl. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Man-made mineral fiber hazardous properties assessment using transgenic rodents: example of glass fiber testing.

    PubMed

    Bottin, M C; Vigneron, J C; Rousseau, R; Micillino, J C; Eypert-Blaison, C; Kauffer, E; Martin, P; Binet, S; Rihn, B H

    2003-09-01

    Transgenic BigBlue rats were exposed to CM 44 glass fibers (6.3 mg/m3) by nose only, 6 h/day for 5 days. Two endpoints were examined 1, 3, 14, 28, and 90 days following exposure: fiber biopersistence and mutations in lung DNA. The half-time of the fibers >20 microm was 12.8 days, and mutant frequencies of control and exposed rats were similar across all time points. The mutation spectra of both series were similar after 28 days of fixation time. These results showed that a glass fiber with a high clearance in the lung seems to not present any significant effect on mutagenesis on lung DNA and are in marked contrast to results for asbestos, which caused a twofold mutant frequency increase as described in a previous study.

  1. Analysis and Design of a Fiber-optic Probe for DNA Sensors Final Report CRADA No. TSB-1147-95

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molau, Nicole; Vail, Curtis

    In 1995, a challenge in the field of genetics dealt with the acquisition of efficient DNA sequencing techniques for reading the 3 billion base-pairs that comprised the human genome. AccuPhotonics, Inc. proposed to develop and manufacture a state-of-the-art near-field scanning optical microscopy (NSOM) fiber-optic probe that was expected to increase probe efficiency by two orders of magnitude over the existing state-of-the-art and to improve resolution to 10Å. The detailed design calculation and optimization of electrical properties of the fiber-optic probe tip geometry would be performed at LLNL, using existing finite-difference time-domain (FDTD) electromagnetic (EM) codes.

  2. Ultrasensitive quantum dots-based DNA detection and hybridization kinetics analysis with evanescent wave biosensing platform.

    PubMed

    Long, Feng; Wu, Shuxu; He, Miao; Tong, Tiezheng; Shi, Hanchang

    2011-01-15

    Ultrasensitive DNA detection was achieved using a new biosensing platform based on quantum dots (QDs) and total internal reflection fluorescence, which featured an exceptional detection limit of 3.2 amol of bound target DNA. The reusable sensor surface was produced by covalently immobilizing streptavidin onto a self-assembled alkanethiol monolayer of fiber optic probe through a heterobifunctional reagent. Streptavidin served as a versatile binding element for biotinylated single-strand DNA (ssDNA). The ssDNA-coated fiber probe was evaluated as a nucleic acid biosensor through a DNA-DNA hybridization assay for a 30-mer ssDNA, which were the segments of the uidA gene of Escherichia coli and labeled by QDs using avidin-biotin interaction. Several negative control tests revealed the absence of significant non-specific binding. It also showed that bound target DNA could easily be eluted from the sensor surface using SDS solution (pH 1.9) without any significant loss of performance after more than 30 assay cycles. A quantitative measurement of DNA binding kinetics was achieved with high accuracy, indicating an association rate of 1.38×10(6) M(-1) s(-1) and a dissociation rate of 4.67×10(-3) s(-1). The proposed biosensing platform provides a simple, cheap, fast, and robust solution for many potential applications including clinical diagnosis, pathology, and genetics. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Internal-Modified Dithiol DNA-Directed Au Nanoassemblies: Geometrically Controlled Self-Assembly and Quantitative Surface-Enhanced Raman Scattering Properties

    NASA Astrophysics Data System (ADS)

    Yan, Yuan; Shan, Hangyong; Li, Min; Chen, Shu; Liu, Jianyu; Cheng, Yanfang; Ye, Cui; Yang, Zhilin; Lai, Xuandi; Hu, Jianqiang

    2015-11-01

    In this work, a hierarchical DNA-directed self-assembly strategy to construct structure-controlled Au nanoassemblies (NAs) has been demonstrated by conjugating Au nanoparticles (NPs) with internal-modified dithiol single-strand DNA (ssDNA) (Au-B-A or A-B-Au-B-A). It is found that the dithiol-ssDNA-modified Au NPs and molecule quantity of thiol-modified ssDNA grafted to Au NPs play critical roles in the assembly of geometrically controlled Au NAs. Through matching Au-DNA self-assembly units, geometrical structures of the Au NAs can be tailored from one-dimensional (1D) to quasi-2D and 2D. Au-B-A conjugates readily give 1D and quasi-2D Au NAs while 2D Au NAs can be formed by A-B-Au-B-A building blocks. Surface-enhanced Raman scattering (SERS) measurements and 3D finite-difference time domain (3D-FDTD) calculation results indicate that the geometrically controllable Au NAs have regular and linearly “hot spots”-number-depended SERS properties. For a certain number of NPs, the number of “hot spots” and accordingly enhancement factor of Au NAs can be quantitatively evaluated, which open a new avenue for quantitative analysis based on SERS technique.

  4. Highly sensitive fluorescence quantitative detection of specific DNA sequences with molecular beacons and nucleic acid dye SYBR Green I.

    PubMed

    Xiang, Dongshan; Zhai, Kun; Xiang, Wenjun; Wang, Lianzhi

    2014-11-01

    A highly sensitive fluorescence method of quantitative detection for specific DNA sequence is developed based on molecular beacon (MB) and nucleic acid dye SYBR Green I by synchronous fluorescence analysis. It is demonstrated by an oligonucleotide sequence of wild-type HBV (target DNA) as a model system. In this strategy, the fluorophore of MB is designed to be 6-carboxyfluorescein group (FAM), and the maximum excitation wavelength and maximum emission wavelength are both very close to that of SYBR Green I. In the presence of targets DNA, the MBs hybridize with the targets DNA and form double-strand DNA (dsDNA), the fluorophore FAM is separated from the quencher BHQ-1, thus the fluorophore emit fluorescence. At the same time, SYBR Green I binds to dsDNA, the fluorescence intensity of SYBR Green I is significantly enhanced. When targets DNA are detected by synchronous fluorescence analysis, the fluorescence peaks of FAM and SYBR Green I overlap completely, so the fluorescence signal of system will be significantly enhanced. Thus, highly sensitive fluorescence quantitative detection for DNA can be realized. Under the optimum conditions, the total fluorescence intensity of FAM and SYBR Green I exhibits good linear dependence on concentration of targets DNA in the range from 2×10(-11) to 2.5×10(-9)M. The detection limit of target DNA is estimated to be 9×10(-12)M (3σ). Compared with previously reported methods of detection DNA with MB, the proposed method can significantly enhance the detection sensitivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Chimeric proteins for detection and quantitation of DNA mutations, DNA sequence variations, DNA damage and DNA mismatches

    DOEpatents

    McCutchen-Maloney, Sandra L.

    2002-01-01

    Chimeric proteins having both DNA mutation binding activity and nuclease activity are synthesized by recombinant technology. The proteins are of the general formula A-L-B and B-L-A where A is a peptide having DNA mutation binding activity, L is a linker and B is a peptide having nuclease activity. The chimeric proteins are useful for detection and identification of DNA sequence variations including DNA mutations (including DNA damage and mismatches) by binding to the DNA mutation and cutting the DNA once the DNA mutation is detected.

  6. Detection limits of quantitative and digital PCR assays and their influence in presence-absence surveys of environmental DNA

    USGS Publications Warehouse

    Hunter, Margaret; Dorazio, Robert M.; Butterfield, John S.; Meigs-Friend, Gaia; Nico, Leo; Ferrante, Jason A.

    2017-01-01

    A set of universal guidelines is needed to determine the limit of detection (LOD) in PCR-based analyses of low concentration DNA. In particular, environmental DNA (eDNA) studies require sensitive and reliable methods to detect rare and cryptic species through shed genetic material in environmental samples. Current strategies for assessing detection limits of eDNA are either too stringent or subjective, possibly resulting in biased estimates of species’ presence. Here, a conservative LOD analysis grounded in analytical chemistry is proposed to correct for overestimated DNA concentrations predominantly caused by the concentration plateau, a nonlinear relationship between expected and measured DNA concentrations. We have used statistical criteria to establish formal mathematical models for both quantitative and droplet digital PCR. To assess the method, a new Grass Carp (Ctenopharyngodon idella) TaqMan assay was developed and tested on both PCR platforms using eDNA in water samples. The LOD adjustment reduced Grass Carp occupancy and detection estimates while increasing uncertainty – indicating that caution needs to be applied to eDNA data without LOD correction. Compared to quantitative PCR, digital PCR had higher occurrence estimates due to increased sensitivity and dilution of inhibitors at low concentrations. Without accurate LOD correction, species occurrence and detection probabilities based on eDNA estimates are prone to a source of bias that cannot be reduced by an increase in sample size or PCR replicates. Other applications also could benefit from a standardized LOD such as GMO food analysis, and forensic and clinical diagnostics.

  7. Comparison of Versant HBV DNA 3.0 and COBAS AmpliPrep-COBAS TaqMan assays for hepatitis B DNA quantitation: Possible clinical implications.

    PubMed

    Garbuglia, A R; Angeletti, C; Lauria, F N; Zaccaro, P; Cocca, A M; Pisciotta, M; Solmone, M; Capobianchi, M R

    2007-12-01

    We compared two commercial assays for HBV DNA quantitation, Versant HBV 3.0, System 340 (bDNA; Bayer Diagnostics) and COBAS AmpliPrep-COBAS TaqMan HBV Test (TaqMan; Roche Diagnostics). Analytical sensitivity, calculated on WHO International Standard, predicted 95% detection rate at 11.4 and 520.2IU/ml for TaqMan and bDNA, respectively. Specificity, established on 50 blood donor samples, was 100% and 84% for TaqMan and bDNA, respectively. When using clinical samples, HBV DNA was detected by TaqMan in 21/55 samples negative to bDNA. Mean values of HBV DNA obtained with bDNA were higher than those obtained with TaqMan (4.09log(10)+/-1.90 versus 3.39log(10)+/-2.41, p<0.001), and 24.4% of samples showed differences in viral load values >0.5log(10), without association with HBV genotype. There was a good correlation for HBV DNA concentrations measured by the two assays (r=0.94; p<0.001) within the overlapping range, and the distribution of results with respect to relevant clinical threshold recently confirmed (20,000 and 2000IU/ml) was similar. Approximately 50% of samples with low HBV DNA, appreciated by TaqMan but not by bDNA, were successfully sequenced in pol region, where drug resistance mutations are located.

  8. QUANTITATION OF INTRACELLULAR NAD(P)H IN LIVING CELLS CAN MONITOR AN IMBALANCE OF DNA SINGLE STRAND BREAK REPAIR IN REAL TIME

    EPA Science Inventory

    Quantitation of intracellular NAD(P)H in living cells can monitor an imbalance of DNA single strand break repair in real time.

    ABSTRACT

    DNA single strand breaks (SSBs) are one of the most frequent DNA lesions in genomic DNA generated either by oxidative stress or du...

  9. Identifying source populations for the reintroduction of the Eurasian beaver, Castor fiber L. 1758, into Britain: evidence from ancient DNA.

    PubMed

    Marr, Melissa M; Brace, Selina; Schreve, Danielle C; Barnes, Ian

    2018-02-09

    Establishing true phylogenetic relationships between populations is a critical consideration when sourcing individuals for translocation. This presents huge difficulties with threatened and endangered species that have become extirpated from large areas of their former range. We utilise ancient DNA (aDNA) to reconstruct the phylogenetic relationships of a keystone species which has become extinct in Britain, the Eurasian beaver Castor fiber. We sequenced seventeen 492 bp partial tRNAPro and control region sequences from Late Pleistocene and Holocene age beavers and included these in network, demographic and genealogy analyses. The mode of postglacial population expansion from refugia was investigated by employing tests of neutrality and a pairwise mismatch distribution analysis. We found evidence of a pre-Late Glacial Maximum ancestor for the Western C. fiber clade which experienced a rapid demographic expansion during the terminal Pleistocene to early Holocene period. Ancient British beavers were found to originate from the Western phylogroup but showed no phylogenetic affinity to any one modern relict population over another. Instead, we find that they formed part of a large, continuous, pan-Western European clade that harbored little internal substructure. Our study highlights the utility of aDNA in reconstructing population histories of extirpated species which has real-world implications for conservation planning.

  10. Use of a capillary electrophoresis instrument with laser-induced fluorescence detection for DNA quantitation. Comparison of YO-PRO-1 and PicoGreen assays.

    PubMed

    Guillo, Christelle; Ferrance, Jerome P; Landers, James P

    2006-04-28

    Highly selective and sensitive assays are required for detection and quantitation of the small masses of DNA typically encountered in clinical and forensic settings. High detection sensitivity is achieved using fluorescent labeling dyes and detection techniques such as spectrofluorometers, microplate readers and cytometers. This work describes the use of a laser-induced fluorescence (LIF) detector in conjunction with a commercial capillary electrophoresis instrument for DNA quantitation. PicoGreen and YO-PRO-1, two fluorescent DNA labeling dyes, were used to assess the potential of the system for routine DNA analysis. Linearity, reproducibility, sensitivity, limits of detection and quantitation, and sample stability were examined for the two assays. The LIF detector response was found to be linear (R2 > 0.999) and reproducible (RSD < 9%) in both cases. The PicoGreen assay displayed lower limits of detection and quantitation (20 pg and 60 pg, respectively) than the YO-PRO-1 assay (60 pg and 260 pg, respectively). Although a small variation in fluorescence was observed for the DNA/dye complexes over time, quantitation was not significantly affected and the solutions were found to be relatively stable for 80 min. The advantages of the technique include a 4- to 40-fold reduction in the volume of sample required compared to traditional assays, a 2- to 20-fold reduction in the volume of reagents consumed, fast and automated analysis, and low cost (no specific instrumentation required).

  11. Accurate quantitation of circulating cell-free mitochondrial DNA in plasma by droplet digital PCR.

    PubMed

    Ye, Wei; Tang, Xiaojun; Liu, Chu; Wen, Chaowei; Li, Wei; Lyu, Jianxin

    2017-04-01

    To establish a method for accurate quantitation of circulating cell-free mitochondrial DNA (ccf-mtDNA) in plasma by droplet digital PCR (ddPCR), we designed a ddPCR method to determine the copy number of ccf-mtDNA by amplifying mitochondrial ND1 (MT-ND1). To evaluate the sensitivity and specificity of the method, a recombinant pMD18-T plasmid containing MT-ND1 sequences and mtDNA-deleted (ρ 0 ) HeLa cells were used, respectively. Subsequently, different plasma samples were prepared for ddPCR to evaluate the feasibility of detecting plasma ccf-mtDNA. In the results, the ddPCR method showed high sensitivity and specificity. When the DNA was extracted from plasma prior to ddPCR, the ccf-mtDNA copy number was higher than that measured without extraction. This difference was not due to a PCR inhibitor, such as EDTA-Na 2 , an anti-coagulant in plasma, because standard EDTA-Na 2 concentration (5 mM) did not significantly inhibit ddPCR reactions. The difference might be attributable to plasma exosomal mtDNA, which was 4.21 ± 0.38 copies/μL of plasma, accounting for ∼19% of plasma ccf-mtDNA. Therefore, ddPCR can quickly and reliably detect ccf-mtDNA from plasma with a prior DNA extraction step, providing for a more accurate detection of ccf-mtDNA. The direct use of plasma as a template in ddPCR is suitable for the detection of exogenous cell-free nucleic acids within plasma, but not of nucleic acids that have a vesicle-associated form, such as exosomal mtDNA. Graphical Abstract Designs of the present work. *: Module 1, #: Module 2, &: Module 3.

  12. Detection limits of quantitative and digital PCR assays and their influence in presence-absence surveys of environmental DNA.

    PubMed

    Hunter, Margaret E; Dorazio, Robert M; Butterfield, John S S; Meigs-Friend, Gaia; Nico, Leo G; Ferrante, Jason A

    2017-03-01

    A set of universal guidelines is needed to determine the limit of detection (LOD) in PCR-based analyses of low-concentration DNA. In particular, environmental DNA (eDNA) studies require sensitive and reliable methods to detect rare and cryptic species through shed genetic material in environmental samples. Current strategies for assessing detection limits of eDNA are either too stringent or subjective, possibly resulting in biased estimates of species' presence. Here, a conservative LOD analysis grounded in analytical chemistry is proposed to correct for overestimated DNA concentrations predominantly caused by the concentration plateau, a nonlinear relationship between expected and measured DNA concentrations. We have used statistical criteria to establish formal mathematical models for both quantitative and droplet digital PCR. To assess the method, a new Grass Carp (Ctenopharyngodon idella) TaqMan assay was developed and tested on both PCR platforms using eDNA in water samples. The LOD adjustment reduced Grass Carp occupancy and detection estimates while increasing uncertainty-indicating that caution needs to be applied to eDNA data without LOD correction. Compared to quantitative PCR, digital PCR had higher occurrence estimates due to increased sensitivity and dilution of inhibitors at low concentrations. Without accurate LOD correction, species occurrence and detection probabilities based on eDNA estimates are prone to a source of bias that cannot be reduced by an increase in sample size or PCR replicates. Other applications also could benefit from a standardized LOD such as GMO food analysis and forensic and clinical diagnostics. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  13. Cytoplasm-to-myonucleus ratios and succinate dehydrogenase activities in adult rat slow and fast muscle fibers

    NASA Technical Reports Server (NTRS)

    Tseng, B. S.; Kasper, C. E.; Edgerton, V. R.

    1994-01-01

    The relationship between myonuclear number, cellular size, succinate dehydrogenase activity, and myosin type was examined in single fiber segments (n = 54; 9 +/- 3 mm long) mechanically dissected from soleus and plantaris muscles of adult rats. One end of each fiber segment was stained for DNA before quantitative photometric analysis of succinate dehydrogenase activity; the other end was double immunolabeled with fast and slow myosin heavy chain monoclonal antibodies. Mean +/- S.D. cytoplasmic volume/myonucleus ratio was higher in fast and slow plantaris fibers (112 +/- 69 vs. 34 +/- 21 x 10(3) microns3) than fast and slow soleus fibers (40 +/- 20 vs. 30 +/- 14 x 10(3) microns3), respectively. Slow fibers always had small volumes/myonucleus, regardless of fiber diameter, succinate dehydrogenase activity, or muscle of origin. In contrast, smaller diameter (< 70 microns) fast soleus and plantaris fibers with high succinate dehydrogenase activity appeared to have low volumes/myonucleus while larger diameter (> 70 microns) fast fibers with low succinate dehydrogenase activity always had large volume/myonucleus. Slow soleus fibers had significantly greater numbers of myonuclei/mm than did either fast soleus or fast plantaris fibers (116 +/- 51 vs. 55 +/- 22 and 44 +/- 23), respectively. These data suggest that the myonuclear domain is more limited in slow than fast fibers and in the fibers with a high, compared to a low, oxidative metabolic capability.

  14. Prevalence and Quantitation of Species C Adenovirus DNA in Human Mucosal Lymphocytes

    PubMed Central

    Garnett, C. T.; Erdman, D.; Xu, W.; Gooding, Linda R.

    2002-01-01

    The common species C adenoviruses (serotypes Ad1, Ad2, Ad5, and Ad6) infect more than 80% of the human population early in life. Following primary infection, the virus can establish an asymptomatic persistent infection in which infectious virions are shed in feces for several years. The probable source of persistent virus is mucosa-associated lymphoid tissue, although the molecular details of persistence or latency of adenovirus are currently unknown. In this study, a sensitive real-time PCR assay was developed to quantitate species C adenovirus DNA in human tissues removed for routine tonsillectomy or adenoidectomy. Using this assay, species C DNA was detected in Ficoll-purified lymphocytes from 33 of 42 tissue specimens tested (79%). The levels varied from fewer than 10 to greater than 2 × 106 copies of the adenovirus genome/107 cells, depending on the donor. DNA from serotypes Ad1, Ad2, and Ad5 was detected, while the rarer serotype Ad6 was not. When analyzed as a function of donor age, the highest levels of adenovirus genomes were found among the youngest donors. Antibody-coated magnetic beads were used to purify lymphocytes into subpopulations and determine whether viral DNA could be enriched within any purified subpopulations. Separation of T cells (CD4/8- expressing and/or CD3-expressing cells) enriched viral DNA in each of nine donors tested. In contrast, B-cell purification (CD19-expressing cells) invariably depleted or eliminated viral DNA. Despite the frequent finding of significant quantities of adenovirus DNA in tonsil and adenoid tissues, infectious virus was rarely present, as measured by coculture with permissive cells. These findings suggest that human mucosal T lymphocytes may harbor species C adenoviruses in a quiescent, perhaps latent form. PMID:12368303

  15. Fluorescent quenching-based quantitative detection of specific DNA/RNA using a BODIPY® FL-labeled probe or primer

    PubMed Central

    Kurata, Shinya; Kanagawa, Takahiro; Yamada, Kazutaka; Torimura, Masaki; Yokomaku, Toyokazu; Kamagata, Yoichi; Kurane, Ryuichiro

    2001-01-01

    We have developed a simple method for the quantitative detection of specific DNA or RNA molecules based on the finding that BODIPY® FL fluorescence was quenched by its interaction with a uniquely positioned guanine. This approach makes use of an oligonucleotide probe or primer containing a BODIPY® FL-modified cytosine at its 5′-end. When such a probe was hybridized with a target DNA, its fluorescence was quenched by the guanine in the target, complementary to the modified cytosine, and the quench rate was proportional to the amount of target DNA. This widely applicable technique will be used directly with larger samples or in conjunction with the polymerase chain reaction to quantify small DNA samples. PMID:11239011

  16. Qualitative and quantitative assessment of DNA quality of frozen beef based on DNA yield, gel electrophoresis and PCR amplification and their correlations to beef quality.

    PubMed

    Zhao, Jing; Zhang, Ting; Liu, Yongfeng; Wang, Xingyu; Zhang, Lan; Ku, Ting; Quek, Siew Young

    2018-09-15

    Freezing is a practical method for meat preservation but the quality of frozen meat can deteriorate with storage time. This research investigated the effect of frozen storage time (up to 66 months) on changes in DNA yield, purity and integrity in beef, and further analyzed the correlation between beef quality (moisture content, protein content, TVB-N value and pH value) and DNA quality in an attempt to establish a reliable, high-throughput method for meat quality control. Results showed that frozen storage time influenced the yield and integrity of DNA significantly (p < 0.05). The DNA yield decreased as frozen storage time increased due to DNA degradation. The half-life (t 1/2  = ln2/0.015) was calculated as 46 months. The DNA quality degraded dramatically with the increased storage time based on gel electrophoresis results. Polymerase chain reaction (PCR) products from both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) were observed in all frozen beef samples. Using real-time PCR for quantitative assessment of DNA and meat quality revealed that correlations could be established successfully with mathematical models to evaluate frozen beef quality. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Quantitative comparison between radial and cylindrically diffusing fibers for photothermal treatment of varicose vein disease (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Truong Van, Gia; Kang, Hyun Wook

    2017-02-01

    For last two decades, endovenous laser therapy (EVLT) is one of the most widely accepted surgical options for treating incompetent great and small saphenous veins. However, due to excessive heating during EVLT, the major complications include pain and burning that often increase the risk of dermatitis disease. The aim of the current study was to quantitatively compare commercially-available radial fibers with newly-developed diffusing applicators for 1470 nm-EVLA in terms of temperature elevation and vein deformation. Rabbit veins were used as an ex vivo model for EVLA. A 5-W 1470 nm laser system in conjunction with the radial and diffusing fibers was employed to thermally coagulate the venous tissue. A goniometric measurement validated uniform and isotropic distribution of laser light in polar and longitudinal directions (i.e., normalized intensity = 0.84±0.08). The diffusing applicator induced a 20 % lower maximum temperature than the radial fiber did (maximum temperature = 79.2 °C for radial vs. 63.3 °C for diffusing). Due to higher irradiance, the radial fiber was associated with a transient temperature change of 5.9 °C/s, which was 1.5-fold faster than the diffusing applicator (i.e., 2.4 °C/s). However, the degree of cross-sectional area reduction in the veins was almost comparable for both the fibers (i.e., 53% for radial vs. 48% for diffusing). Due to longer irradiation length, the diffusing applicator demonstrated wider treatment coverage and less fiber speed-dependent. On account of easy pullback technique and uniform thermal effect, the proposed cylindrically diffusing applicator can be a feasible optical device to effectively treat varicose veins. Further in vivo studies will be performed to identify the complete removal of the vein disease and healing response of the venous tissue.

  18. Real-time PCR assays using internal controls for quantitation of HPV-16 and beta-globin DNA in cervicovaginal lavages.

    PubMed

    Lefevre, Jonas; Hankins, Catherine; Pourreaux, Karina; Voyer, Hélène; Coutlée, François

    2003-12-01

    High-risk human papillomavirus 16 (HPV-16) DNA viral load has been measured with real-time PCR assays by amplifying HPV-16 and a human gene. However, these assays have not used internal controls (ICs) to screen for the presence of inhibitors contained in samples. To quantitate HPV-16 DNA and cell content with real-time PCR, ICs for HPV-16 DNA and beta-globin were synthesised and used to control for inhibition. The assays were sensitive and linear over 5 logs. Good reproducibility was achieved with inter-run coefficients of variation of 23% (10(2) HPV-16 copies), 12% (10(4) HPV-16 copies), 17% (274 beta-globin DNA copies) and 7% (27,400 beta-globin DNA copies). Samples containing 56,800,000, 306,000, 18,000, and 4,070 HPV-16 copies/microg of cellular DNA were tested blindly and estimated to contain 48,800,000, 479,000, 20,300, and 6,620 HPV-16 copies/microg of DNA (mean ratio of measured to expected viral load of 1.27+/-0.32). Inhibition of amplification of HPV-16 and beta-globin ICs by six samples known to contain PCR inhibitors was variable: four inhibited both ICs while two inhibited only the HPV-16 IC. The use of internal controls with real-time PCR for HPV-16 quantitation allows to screen for the presence of inhibitors that do not affect equally primer-driven genomic amplification.

  19. Quantitative real-time monitoring of dryer effluent using fiber optic near-infrared spectroscopy.

    PubMed

    Harris, S C; Walker, D S

    2000-09-01

    This paper describes a method for real-time quantitation of the solvents evaporating from a dryer. The vapor stream in the vacuum line of a dryer was monitored in real time using a fiber optic-coupled acousto-optic tunable filter near-infrared (AOTF-NIR) spectrometer. A balance was placed in the dryer, and mass readings were recorded for every scan of the AOTF-NIR. A partial least-squares (PLS) calibration was subsequently built based on change in mass over change in time for solvents typically used in a chemical manufacturing plant. Controlling software for the AOTF-NIR was developed. The software collects spectra, builds the PLS calibration model, and continuously fits subsequently collected spectra to the calibration, allowing the operator to follow the mass loss of solvent from the dryer. The results indicate that solvent loss can be monitored and quantitated in real time using NIR for the optimization of drying times. These time-based mass loss values have also been used to calculate "dynamic" vapor density values for the solvents. The values calculated are in agreement with values determined from the ideal gas law and could prove valuable as tools to measure temperature or pressure indirectly.

  20. Quantitative detection of RASSF1A DNA promoter methylation in tumors and serum of patients with serous epithelial ovarian cancer.

    PubMed

    Bondurant, Amy E; Huang, Zhiqing; Whitaker, Regina S; Simel, Lauren R; Berchuck, Andrew; Murphy, Susan K

    2011-12-01

    Detection of cell free tumor-specific DNA methylation has been proposed as a potentially useful noninvasive mechanism to detect malignancies, including ovarian cancer, and to monitor response to treatment. However, there are few easily implemented quantitative approaches available for DNA methylation analysis. Our objectives were to develop an absolute quantitative method for detection of DNA methylation using RASSF1A, a known target of promoter methylation in ovarian cancer, and test the ability to detect RASSF1A methylation in tumors and serum specimens of women with ovarian cancer. Bisulfite modified DNAs were subjected to real time PCR using nondiscriminatory PCR primers and a probe with sequence containing a single CpG site, theoretically able to capture the methylation status of that CpG for every allele within a given specimen. Input DNA was normalized to ACTB levels detected simultaneously by assay multiplexing. Methylation levels were established by comparison to results obtained from universally methylated DNA. The assay was able to detect one methylated RASSF1A allele in 100,000 unmethylated alleles. RASSF1A was methylated in 54 of 106 (51%) invasive serous ovarian cancers analyzed and methylation status was concordant in 20/20 matched preoperative serum-tumor pairs. Serial serum specimens taken over the course of treatment for 8 of 9 patients showed fluctuations in RASSF1A methylation concomitant with disease status. This novel assay provides a real-time PCR-based method for absolute quantitation of DNA methylation. Our results support feasibility of monitoring RASSF1A methylation from serum samples taken over the course of treatment from women with ovarian cancer. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Clusters of DNA damage induced by ionizing radiation: formation of short DNA fragments. II. Experimental detection

    NASA Technical Reports Server (NTRS)

    Rydberg, B.; Chatterjee, A. (Principal Investigator)

    1996-01-01

    The basic 30-nm chromatin fiber in the mammalian cell consists of an unknown (possibly helical) arrangement of nucleosomes, with about 1.2 kb of DNA per 10-nm length of fiber. Track-structure considerations suggest that interactions of single delta rays or high-LET particles with the chromatin fiber might result in the formation of multiple lesions spread over a few kilobases of DNA (see the accompanying paper: W.R. Holley and A. Chatterjee, Radiat. Res. 145, 188-199, 1996). In particular, multiple DNA double-strand breaks and single-strand breaks may form. To test this experimentally, primary human fibroblasts were labeled with [3H]thymidine and exposed at 0 degrees C to X rays or accelerated nitrogen or iron ions in the LET range of 97-440 keV/microns. DNA was isolated inside agarose plugs and subjected to agarose gel electrophoresis under conditions that allowed good separation of 0.1-2 kb size DNA. The bulk of DNA remained in the well or migrated only a small distance into the gel. It was found that DNA fragments in the expected size range were formed linearly with dose with an efficiency that increased with LET. A comparison of the yield of such fragments with the yield of total DNA double-strand breaks suggests that for the high-LET ions a substantial proportion (20-90%) of DNA double-strand breaks are accompanied within 0.1-2 kb by at least one additional DNA double-strand break. It is shown that these results are in good agreement with theoretical calculations based on treating the 30-nm chromatin fiber as the target for ionizing particles. Theoretical considerations also predict that the clusters will contain numerous single-strand breaks and base damages. It is proposed that such clusters be designated "regionally multiply damaged sites." Postirradiation incubation at 37 degrees C resulted in a decline in the number of short DNA fragments, suggesting a repair activity. The biological significance of regionally multiply damaged sites is presently unknown.

  2. Quantitative analysis and prediction of G-quadruplex forming sequences in double-stranded DNA

    PubMed Central

    Kim, Minji; Kreig, Alex; Lee, Chun-Ying; Rube, H. Tomas; Calvert, Jacob; Song, Jun S.; Myong, Sua

    2016-01-01

    Abstract G-quadruplex (GQ) is a four-stranded DNA structure that can be formed in guanine-rich sequences. GQ structures have been proposed to regulate diverse biological processes including transcription, replication, translation and telomere maintenance. Recent studies have demonstrated the existence of GQ DNA in live mammalian cells and a significant number of potential GQ forming sequences in the human genome. We present a systematic and quantitative analysis of GQ folding propensity on a large set of 438 GQ forming sequences in double-stranded DNA by integrating fluorescence measurement, single-molecule imaging and computational modeling. We find that short minimum loop length and the thymine base are two main factors that lead to high GQ folding propensity. Linear and Gaussian process regression models further validate that the GQ folding potential can be predicted with high accuracy based on the loop length distribution and the nucleotide content of the loop sequences. Our study provides important new parameters that can inform the evaluation and classification of putative GQ sequences in the human genome. PMID:27095201

  3. Sequence and Structure Dependent DNA-DNA Interactions

    NASA Astrophysics Data System (ADS)

    Kopchick, Benjamin; Qiu, Xiangyun

    Molecular forces between dsDNA strands are largely dominated by electrostatics and have been extensively studied. Quantitative knowledge has been accumulated on how DNA-DNA interactions are modulated by varied biological constituents such as ions, cationic ligands, and proteins. Despite its central role in biology, the sequence of DNA has not received substantial attention and ``random'' DNA sequences are typically used in biophysical studies. However, ~50% of human genome is composed of non-random-sequence DNAs, particularly repetitive sequences. Furthermore, covalent modifications of DNA such as methylation play key roles in gene functions. Such DNAs with specific sequences or modifications often take on structures other than the canonical B-form. Here we present series of quantitative measurements of the DNA-DNA forces with the osmotic stress method on different DNA sequences, from short repeats to the most frequent sequences in genome, and to modifications such as bromination and methylation. We observe peculiar behaviors that appear to be strongly correlated with the incurred structural changes. We speculate the causalities in terms of the differences in hydration shell and DNA surface structures.

  4. The polymorphisms of the chromatin fiber

    NASA Astrophysics Data System (ADS)

    Boulé, Jean-Baptiste; Mozziconacci, Julien; Lavelle, Christophe

    2015-01-01

    In eukaryotes, the genome is packed into chromosomes, each consisting of large polymeric fibers made of DNA bound with proteins (mainly histones) and RNA molecules. The nature and precise 3D organization of this fiber has been a matter of intense speculations and debates. In the emerging picture, the local chromatin state plays a critical role in all fundamental DNA transactions, such as transcriptional control, DNA replication or repair. However, the molecular and structural mechanisms involved remain elusive. The purpose of this review is to give an overview of the tremendous efforts that have been made for almost 40 years to build physiologically relevant models of chromatin structure. The motivation behind building such models was to shift our representation and understanding of DNA transactions from a too simplistic ‘naked DNA’ view to a more realistic ‘coated DNA’ view, as a step towards a better framework in which to interpret mechanistically the control of genetic expression and other DNA metabolic processes. The field has evolved from a speculative point of view towards in vitro biochemistry and in silico modeling, but is still longing for experimental in vivo validations of the proposed structures or even proof of concept experiments demonstrating a clear role of a given structure in a metabolic transaction. The mere existence of a chromatin fiber as a relevant biological entity in vivo has been put into serious questioning. Current research is suggesting a possible reconciliation between theoretical studies and experiments, pointing towards a view where the polymorphic and dynamic nature of the chromatin fiber is essential to support its function in genome metabolism.

  5. A simple quantitative diagnostic alternative for MGMT DNA-methylation testing on RCL2 fixed paraffin embedded tumors using restriction coupled qPCR.

    PubMed

    Pulverer, Walter; Hofner, Manuela; Preusser, Matthias; Dirnberger, Elisabeth; Hainfellner, Johannes A; Weinhaeusel, Andreas

    2014-01-01

    MGMT promoter methylation is associated with favorable prognosis and chemosensitivity in glioblastoma multiforme (GBM), especially in elderly patients. We aimed to develop a simple methylation-sensitive restriction enzyme (MSRE)-based quantitative PCR (qPCR) assay, allowing the quantification of MGMT promoter methylation. DNA was extracted from non-neoplastic brain (n = 24) and GBM samples (n = 20) upon 3 different sample conservation conditions (-80 °C, formalin-fixed and paraffin-embedded (FFPE); RCL2-fixed). We evaluated the suitability of each fixation method with respect to the MSRE-coupled qPCR methylation analyses. Methylation data were validated by MALDITOF. qPCR was used for evaluation of alternative tissue conservation procedures. DNA from FFPE tissue failed reliable testing; DNA from both RCL2-fixed and fresh frozen tissues performed equally well and was further used for validation of the quantitative MGMT methylation assay (limit of detection (LOD): 19.58 pg), using individual's undigested sample DNA for calibration. MGMT methylation analysis in non-neoplastic brain identified a background methylation of 0.10 ± 11% which we used for defining a cut-off of 0.32% for patient stratification. Of GBM patients 9 were MGMT methylationpositive (range: 0.56 - 91.95%), and 11 tested negative. MALDI-TOF measurements resulted in a concordant classification of 94% of GBM samples in comparison to qPCR. The presented methodology allows quantitative MGMT promoter methylation analyses. An amount of 200 ng DNA is sufficient for triplicate analyses including control reactions and individual calibration curves, thus excluding any DNA qualityderived bias. The combination of RCL2-fixation and quantitative methylation analyses improves pathological routine examination when histological and molecular analyses on limited amounts of tumor samples are necessary for patient stratification.

  6. Abstracts of papers presented at the LVIII Cold Spring Harbor Symposium on quantitative Biology: DNA and chromosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This volume contains the abstracts of oral and poster presentations made at the LVIII Cold Spring Harbor Symposium on Quantitative Biology entitles DNA & Chromosomes. The meeting was held June 2--June 9, 1993 at Cold Spring Harbor, New York.

  7. Portable and sensitive quantitative detection of DNA based on personal glucose meters and isothermal circular strand-displacement polymerization reaction.

    PubMed

    Xu, Xue-tao; Liang, Kai-yi; Zeng, Jia-ying

    2015-02-15

    A portable and sensitive quantitative DNA detection method based on personal glucose meters and isothermal circular strand-displacement polymerization reaction was developed. The target DNA triggered target recycling process, which opened capture DNA. The released target then found another capture DNA to trigger another polymerization cycle, which was repeated for many rounds, resulting in the multiplication of the DNA-invertase conjugation on the surface of Streptavidin-MNBs. The DNA-invertase was used to catalyze the hydrolysis of sucrose into glucose for PGM readout. There was a liner relationship between the signal of PGM and the concentration of target DNA in the range of 5.0 to 1000 fM, which is lower than some DNA detection method. In addition, the method exhibited excellent sequence selectivity and there was almost no effect of biological complex to the detection performance, which suggested our method can be successfully applied to DNA detection in real biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Susceptibility Testing by Polymerase Chain Reaction DNA Quantitation: A Method to Measure Drug Resistance of Human Immunodeficiency Virus Type 1 Isolates

    NASA Astrophysics Data System (ADS)

    Eron, Joseph J.; Gorczyca, Paul; Kaplan, Joan C.; D'Aquila, Richard T.

    1992-04-01

    Polymerase chain reaction (PCR) DNA quantitation (PDQ) susceptibility testing rapidly and directly measures nucleoside sensitivity of human immunodeficiency virus type 1 (HIV-1) isolates. PCR is used to quantitate the amount of HIV-1 DNA synthesized after in vitro infection of peripheral blood mononuclear cells. The relative amounts of HIV-1 DNA in cell lysates from cultures maintained at different drug concentrations reflect drug inhibition of virus replication. The results of PDQ susceptibility testing of 2- or 3-day cultures are supported by assays measuring HIV-1 p24 antigen production in supernatants of 7- or 10-day cultures. DNA sequence analyses to identify mutations in the reverse transcriptase gene that cause resistance to 3'-azido-3'-deoxythymidine also support the PDQ results. With the PDQ method, both infectivity titration and susceptibility testing can be performed on supernatants from primary cultures of peripheral blood mononuclear cells. PDQ susceptibility testing should facilitate epidemiologic studies of the clinical significance of drug-resistant HIV-1 isolates.

  9. DNA-fiber EPR investigation of the influence of amino-terminal residue stereochemistry on the DNA binding orientation of Cu(II)•Gly-Gly-His-derived metallopeptides

    PubMed Central

    Hamada, Hirokazu; Abe, Yuko; Nagane, Ryoichi; Fang, Ya-Yin; Lewis, Mark A.; Long, Eric C.; Chikira, Makoto

    2007-01-01

    DNA fiber EPR was used to investigate the DNA binding stabilities and orientations of Cu(II)•Gly-Gly-His-derived metallopeptides containing d- vs. l-amino acid substitutions in the first peptide position. This examination included studies of Cu(II)•d-Arg-Gly-His and Cu(II)•d-Lys-Gly-His for comparison to metallopeptides containing l-Arg/Lys substitutions, and also the diastereoisomeric pairs Cu(II)•d/l-Pro-Gly-His and Cu(II)•d/l-Pro-Lys-His. Results indicated that l-Arg/Lys to d-Arg/Lys substitutions considerably randomized the orientation of the metallopeptides on DNA whereas the replacement of l-Pro by d-Pro in Cu(II)•l-Pro-Gly-His caused a decrease in randomness. The difference in the extent of randomness of d- vs. l-Pro-Gly-His complexes was diminished through the substitution of Gly for Lys in the middle peptide position, supporting the notion that the ε-amino group of Lys triggered further randomization, likely through hydrogen bonding or electrostatic interactions that disrupt binding of the metallopeptide equatorial plane and the DNA. The relationship between the stereochemistry of amino acid residues and the binding and reaction of M(II)•Xaa-Xaa’-His metallopeptides with DNA are also discussed. PMID:17706784

  10. Validation and Estimation of Additive Genetic Variation Associated with DNA Tests for Quantitative Beef Cattle Traits

    USDA-ARS?s Scientific Manuscript database

    The U.S. National Beef Cattle Evaluation Consortium (NBCEC) has been involved in the validation of commercial DNA tests for quantitative beef quality traits since their first appearance on the U.S. market in the early 2000s. The NBCEC Advisory Council initially requested that the NBCEC set up a syst...

  11. KEY COMPARISON: CCQM-K61: Quantitation of a linearised plasmid DNA, based on a matched standard in a matrix of non-target DNA

    NASA Astrophysics Data System (ADS)

    Woolford, Alison; Holden, Marcia; Salit, Marc; Burns, Malcolm; Ellison, Stephen L. R.

    2009-01-01

    Key comparison CCQM-K61 was performed to demonstrate and document the capability of interested national metrology institutes in the determination of the quantity of specific DNA target in an aqueous solution. The study provides support for the following measurement claim: "Quantitation of a linearised plasmid DNA, based on a matched standard in a matrix of non-target DNA". The comparison was an activity of the Bioanalysis Working Group (BAWG) of the Comité Consultatif pour la Quantité de Matière and was coordinated by NIST (Gaithersburg, USA) and LGC (Teddington, UK). The following laboratories (in alphabetical order) participated in this key comparison. DMSC (Thailand); IRMM (European Union); KRISS (Republic of Korea); LGC (UK); NIM (China); NIST (USA); NMIA (Australia); NMIJ (Japan); VNIIM (Russian Federation) Good agreement was observed between the reported results of all nine of the participants. Uncertainty estimates did not account fully for the dispersion of results even after allowance for possible inhomogeneity in calibration materials. Preliminary studies suggest that the effects of fluorescence threshold setting might contribute to the excess dispersion, and further study of this topic is suggested Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  12. Quantitative super-resolution localization microscopy of DNA in situ using Vybrant® DyeCycle™ Violet fluorescent probe.

    PubMed

    Żurek-Biesiada, Dominika; Szczurek, Aleksander T; Prakash, Kirti; Best, Gerrit; Mohana, Giriram K; Lee, Hyun-Keun; Roignant, Jean-Yves; Dobrucki, Jurek W; Cremer, Christoph; Birk, Udo

    2016-06-01

    Single Molecule Localization Microscopy (SMLM) is a recently emerged optical imaging method that was shown to achieve a resolution in the order of tens of nanometers in intact cells. Novel high resolution imaging methods might be crucial for understanding of how the chromatin, a complex of DNA and proteins, is arranged in the eukaryotic cell nucleus. Such an approach utilizing switching of a fluorescent, DNA-binding dye Vybrant® DyeCycle™ Violet has been previously demonstrated by us (Żurek-Biesiada et al., 2015) [1]. Here we provide quantitative information on the influence of the chemical environment on the behavior of the dye, discuss the variability in the DNA-associated signal density, and demonstrate direct proof of enhanced structural resolution. Furthermore, we compare different visualization approaches. Finally, we describe various opportunities of multicolor DNA/SMLM imaging in eukaryotic cell nuclei.

  13. Quantitative super-resolution localization microscopy of DNA in situ using Vybrant® DyeCycle™ Violet fluorescent probe

    PubMed Central

    Żurek-Biesiada, Dominika; Szczurek, Aleksander T.; Prakash, Kirti; Best, Gerrit; Mohana, Giriram K.; Lee, Hyun-Keun; Roignant, Jean-Yves; Dobrucki, Jurek W.; Cremer, Christoph; Birk, Udo

    2016-01-01

    Single Molecule Localization Microscopy (SMLM) is a recently emerged optical imaging method that was shown to achieve a resolution in the order of tens of nanometers in intact cells. Novel high resolution imaging methods might be crucial for understanding of how the chromatin, a complex of DNA and proteins, is arranged in the eukaryotic cell nucleus. Such an approach utilizing switching of a fluorescent, DNA-binding dye Vybrant® DyeCycle™ Violet has been previously demonstrated by us (Żurek-Biesiada et al., 2015) [1]. Here we provide quantitative information on the influence of the chemical environment on the behavior of the dye, discuss the variability in the DNA-associated signal density, and demonstrate direct proof of enhanced structural resolution. Furthermore, we compare different visualization approaches. Finally, we describe various opportunities of multicolor DNA/SMLM imaging in eukaryotic cell nuclei. PMID:27054149

  14. Preferential access to genetic information from endogenous hominin ancient DNA and accurate quantitative SNP-typing via SPEX

    PubMed Central

    Brotherton, Paul; Sanchez, Juan J.; Cooper, Alan; Endicott, Phillip

    2010-01-01

    The analysis of targeted genetic loci from ancient, forensic and clinical samples is usually built upon polymerase chain reaction (PCR)-generated sequence data. However, many studies have shown that PCR amplification from poor-quality DNA templates can create sequence artefacts at significant levels. With hominin (human and other hominid) samples, the pervasive presence of highly PCR-amplifiable human DNA contaminants in the vast majority of samples can lead to the creation of recombinant hybrids and other non-authentic artefacts. The resulting PCR-generated sequences can then be difficult, if not impossible, to authenticate. In contrast, single primer extension (SPEX)-based approaches can genotype single nucleotide polymorphisms from ancient fragments of DNA as accurately as modern DNA. A single SPEX-type assay can amplify just one of the duplex DNA strands at target loci and generate a multi-fold depth-of-coverage, with non-authentic recombinant hybrids reduced to undetectable levels. Crucially, SPEX-type approaches can preferentially access genetic information from damaged and degraded endogenous ancient DNA templates over modern human DNA contaminants. The development of SPEX-type assays offers the potential for highly accurate, quantitative genotyping from ancient hominin samples. PMID:19864251

  15. Quantitative DNA Analyses for Airborne Birch Pollen

    PubMed Central

    Müller-Germann, Isabell; Vogel, Bernhard; Vogel, Heike; Pauling, Andreas; Fröhlich-Nowoisky, Janine; Pöschl, Ulrich; Després, Viviane R.

    2015-01-01

    Birch trees produce large amounts of highly allergenic pollen grains that are distributed by wind and impact human health by causing seasonal hay fever, pollen-related asthma, and other allergic diseases. Traditionally, pollen forecasts are based on conventional microscopic counting techniques that are labor-intensive and limited in the reliable identification of species. Molecular biological techniques provide an alternative approach that is less labor-intensive and enables identification of any species by its genetic fingerprint. A particularly promising method is quantitative Real-Time polymerase chain reaction (qPCR), which can be used to determine the number of DNA copies and thus pollen grains in air filter samples. During the birch pollination season in 2010 in Mainz, Germany, we collected air filter samples of fine (<3 μm) and coarse air particulate matter. These were analyzed by qPCR using two different primer pairs: one for a single-copy gene (BP8) and the other for a multi-copy gene (ITS). The BP8 gene was better suitable for reliable qPCR results, and the qPCR results obtained for coarse particulate matter were well correlated with the birch pollen forecasting results of the regional air quality model COSMO-ART. As expected due to the size of birch pollen grains (~23 μm), the concentration of DNA in fine particulate matter was lower than in the coarse particle fraction. For the ITS region the factor was 64, while for the single-copy gene BP8 only 51. The possible presence of so-called sub-pollen particles in the fine particle fraction is, however, interesting even in low concentrations. These particles are known to be highly allergenic, reach deep into airways and cause often severe health problems. In conclusion, the results of this exploratory study open up the possibility of predicting and quantifying the pollen concentration in the atmosphere more precisely in the future. PMID:26492534

  16. Numerical simulation of fiber interaction in short-fiber injection-molded composite using different cavity geometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thi, Thanh Binh Nguyen, E-mail: nttbinh@kit.ac.jp; Yokoyama, Atsushi, E-mail: yokoyama@kit.ac.jp; Hamanaka, Senji

    The theoretical fiber-interaction model for calculating the fiber orientation in the injection molded short fiber/thermoplastic composite parts was proposed. The proposed model included the fiber dynamics simulation in order to obtain an equation of the global interaction coefficient and accurate estimate of the fiber interacts at all orientation states. The steps to derive the equation for this coefficient in short fiber suspension as a function of the fiber aspect ratio, volume fraction and general shear rate are delineated. Simultaneously, the high-resolution 3D X-ray computed tomography system XVA-160α was used to observe fiber distribution of short-glass-fiber-reinforced polyamide specimens using different cavitymore » geometries. The fiber orientation tensor components are then calculated. Experimental orientation measurements of short-glass-fiber-reinforced polyamide is used to check the ability of present theory for predicting orientation. The experiments and predictions show a quantitative agreement and confirm the basic understanding of fiber orientation in injection-molded composites.« less

  17. Numerical simulation of fiber interaction in short-fiber injection-molded composite using different cavity geometries

    NASA Astrophysics Data System (ADS)

    Thi, Thanh Binh Nguyen; Yokoyama, Atsushi; Hamanaka, Senji; Yamashita, Katsuhisa; Nonomura, Chisato

    2016-03-01

    The theoretical fiber-interaction model for calculating the fiber orientation in the injection molded short fiber/thermoplastic composite parts was proposed. The proposed model included the fiber dynamics simulation in order to obtain an equation of the global interaction coefficient and accurate estimate of the fiber interacts at all orientation states. The steps to derive the equation for this coefficient in short fiber suspension as a function of the fiber aspect ratio, volume fraction and general shear rate are delineated. Simultaneously, the high-resolution 3D X-ray computed tomography system XVA-160α was used to observe fiber distribution of short-glass-fiber-reinforced polyamide specimens using different cavity geometries. The fiber orientation tensor components are then calculated. Experimental orientation measurements of short-glass-fiber-reinforced polyamide is used to check the ability of present theory for predicting orientation. The experiments and predictions show a quantitative agreement and confirm the basic understanding of fiber orientation in injection-molded composites.

  18. Historic and current hepatitis B viral DNA and quantitative HBsAg level are not associated with cirrhosis in non-Asian women with chronic hepatitis B.

    PubMed

    Harkisoen, S; Arends, J E; van den Hoek, J A R; Whelan, J; van Erpecum, K J; Boland, G J; Hoepelman, A I M

    2014-12-01

    Some studies done in Asian patients have shown that serum levels of hepatitis B virus (HBV) DNA predict the development of cirrhosis. However, it is unclear whether this also applies for non-Asian patients. This study investigated historic and current HBV DNA and quantitative hepatitis B surface antigen (HBsAg) levels as predictors of cirrhosis in non-Asian women with chronic HBV. A retrospective cohort study of non-Asian women with chronic HBV was performed. Among other variables, HBV DNA and quantitative HBsAg levels were measured in stored historic serum samples obtained during pregnancy (period 1990-2004) and current serum samples (period 2011-2012) to determine any association with liver cirrhosis by liver stiffness measurement (LSM). One hundred and nineteen asymptomatic, treatment-naïve non-Asian women were included; the median number of years between the historic sample and the current sample was 17 (interquartile range (IQR) 13-20). The median historic log HBV DNA and quantitative log HBsAg levels were 2.5 (IQR 1.9-3.4) IU/ml and 4.2 (IQR 3.6-4.5) IU/ml, respectively. LSM diagnosed 14 patients (12%) with F3-F4 fibrosis, i.e. stiffness >8.1kPa. No association of cirrhosis was found with historic HBV DNA (relative risk (RR) 0.34, 95% confidence interval (CI) 0.05-2.44) or with the quantitative HBsAg level (HBsAg level >1000 IU/ml, RR 0.35, 95% CI 0.11-1.11). Multivariable analysis identified alcohol consumption (odds ratio (OR) 6.4, 95% CI 1.3-30.1), aspartate aminotransferase >0.5 times the upper limit of normal (OR 15.4, 95% CI 1.9-122.6), and prothrombin time (OR 12.0, 95% CI 1.2-120.4), but not HBV DNA or quantitative HBsAg level, to be independent predictors of the presence of cirrhosis. Neither historic nor current HBV DNA or the quantitative HBsAg level is associated with the development of HBV-related cirrhosis in non-Asian women. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Comparison of Hybrid Capture 2 Assay with Real-time-PCR for Detection and Quantitation of Hepatitis B Virus DNA

    PubMed Central

    Jahan, Munira; Lutful Moben, Ahmed; Tabassum, Shahina

    2014-01-01

    ABSTRACT Background Both real-time-polymerase chain reaction (PCR) and hybrid capture 2 (HC2) assay can detect and quantify hepatitis B virus (HBV) DNA. However, real-time-PCR can detect a wide range of HBV DNA, while HC2 assay could not detect lower levels of viremia. The present study was designed to detect and quantify HBV DNA by real-time-PCR and HC2 assay and compare the quantitative data of these two assays. Materials and methods A cross-sectional study was conducted in between July 2010 and June 2011. A total of 66 serologically diagnosed chronic hepatitis B (CHB) patients were selected for the study. Real-time-PCR and HC2 assay was done to detect HBV DNA. Data were analyzed by statistical Package for the social sciences (SPSS). Results Among 66 serologically diagnosed chronic hepatitis B patients 40 (60.61%) patients had detectable and 26 (39.39%) had undetectable HBV DNA by HC2 assay. Concordant results were obtained for 40 (60.61%) out of these 66 patients by real-time-PCR and HC2 assay with mean viral load of 7.06 ± 1.13 log10 copies/ml and 6.95 ± 1.08 log10 copies/ml, respectively. In the remaining 26 patients, HBV DNA was detectable by real-time-PCR in 20 patients (mean HBV DNA level was 3.67 ± 0.72 log10 copies/ml. However, HBV DNA could not be detectable in six cases by the both assays. The study showed strong correlation (r = 0.915) between real-time-PCR and HC2 assay for the detection and quantification of HBV DNA. Conclusion HC2 assay may be used as an alternative to real-time-PCR for CHB patients. How to cite this article: Majid F, Jahan M, Moben AL, Tabassum S. Comparison of Hybrid Capture 2 Assay with Real-time-PCR for Detection and Quantitation of Hepatitis B Virus DNA. Euroasian J Hepato-Gastroenterol 2014;4(1):31-35. PMID:29264316

  20. Comparison of Hybrid Capture 2 Assay with Real-time-PCR for Detection and Quantitation of Hepatitis B Virus DNA.

    PubMed

    Majid, Farjana; Jahan, Munira; Lutful Moben, Ahmed; Tabassum, Shahina

    2014-01-01

    Both real-time-polymerase chain reaction (PCR) and hybrid capture 2 (HC2) assay can detect and quantify hepatitis B virus (HBV) DNA. However, real-time-PCR can detect a wide range of HBV DNA, while HC2 assay could not detect lower levels of viremia. The present study was designed to detect and quantify HBV DNA by real-time-PCR and HC2 assay and compare the quantitative data of these two assays. A cross-sectional study was conducted in between July 2010 and June 2011. A total of 66 serologically diagnosed chronic hepatitis B (CHB) patients were selected for the study. Real-time-PCR and HC2 assay was done to detect HBV DNA. Data were analyzed by statistical Package for the social sciences (SPSS). Among 66 serologically diagnosed chronic hepatitis B patients 40 (60.61%) patients had detectable and 26 (39.39%) had undetectable HBV DNA by HC2 assay. Concordant results were obtained for 40 (60.61%) out of these 66 patients by real-time-PCR and HC2 assay with mean viral load of 7.06 ± 1.13 log 10 copies/ml and 6.95 ± 1.08 log 10 copies/ml, respectively. In the remaining 26 patients, HBV DNA was detectable by real-time-PCR in 20 patients (mean HBV DNA level was 3.67 ± 0.72 log 10 copies/ml. However, HBV DNA could not be detectable in six cases by the both assays. The study showed strong correlation (r = 0.915) between real-time-PCR and HC2 assay for the detection and quantification of HBV DNA. HC2 assay may be used as an alternative to real-time-PCR for CHB patients. How to cite this article: Majid F, Jahan M, Moben AL, Tabassum S. Comparison of Hybrid Capture 2 Assay with Real-time-PCR for Detection and Quantitation of Hepatitis B Virus DNA. Euroasian J Hepato-Gastroenterol 2014;4(1):31-35.

  1. Magnetically-induced solid-phase microextraction fiber actuation system for quantitative headspace and liquid sampling

    DOEpatents

    Harvey, Chris; Carter, Jerry; Chambers, David M.

    2017-05-23

    A magnetically-induced SPME fiber actuation system includes a SPME fiber holder and a SPME fiber holder actuator, for holding and magnetically actuating a SPME fiber assembly. The SPME fiber holder has a plunger with a magnetic material to which the SPME fiber assembly is connected, and the magnetic SPME fiber holder actuator has an elongated barrel with a loading chamber for receiving the SPME fiber assembly-connected SPME fiber holder, and an external magnet which induces axial motion of the magnetic material of the plunger to extend/retract the SPME fiber from/into the protective needle of the SPME fiber assembly.

  2. A Model for Fiber Length Attrition in Injection-Molded Long-Fiber Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TuckerIII, Charles L.; Phelps, Jay H; El-Rahman, Ahmed Abd

    2013-01-01

    Long-fiber thermoplastic (LFT) composites consist of an engineering thermoplastic matrix with glass or carbon reinforcing fibers that are initially 10 to 13 mm long. When an LFT is injection molded, flow during mold filling orients the fibers and degrades the fiber length. Fiber orientation models for injection molding are well developed, and special orientation models for LFTs have been developed. Here we present a detailed quantitative model for fiber length attrition in a flowing fiber suspension. The model tracks a discrete fiber length distribution (FLD) at each spatial node. Key equations are a conservation equation for total fiber length, andmore » a breakage rate equation. The breakage rate is based on buckling of fibers due to hydrodynamic forces, when the fibers are in unfavorable orientations. The FLD model is combined with a mold filling simulation to predict spatial and temporal variations in fiber length distribution in a mold cavity during filling. The predictions compare well to experiments on a glassfiber/ PP LFT molding. Fiber length distributions predicted by the model are easily incorporated into micromechanics models to predict the stress-strain behavior of molded LFT materials. Author to whom correspondence should be addressed; electronic mail: ctucker@illinois.edu 1« less

  3. Detection and semi-quantification of Strongylus vulgaris DNA in equine faeces by real-time quantitative PCR.

    PubMed

    Nielsen, Martin K; Peterson, David S; Monrad, Jesper; Thamsborg, Stig M; Olsen, Susanne N; Kaplan, Ray M

    2008-03-01

    Strongylus vulgaris is an important strongyle nematode with high pathogenic potential infecting horses world-wide. Several decades of intensive anthelmintic use has virtually eliminated clinical disease caused by S. vulgaris, but has also caused high levels of anthelmintic resistance in equine small strongyle (cyathostomin) nematodes. Recommendations aimed at limiting the development of anthelmintic resistance by reducing treatment intensity raises a simultaneous demand for reliable and accurate diagnostic tools for detecting important parasitic pathogens. Presently, the only means available to differentiate among strongyle species in a faecal sample is by identifying individual L3 larvae following a two week coproculture procedure. The aim of the present study is to overcome this diagnostic obstacle by developing a fluorescence-based quantitative PCR assay capable of identifying S. vulgaris eggs in faecal samples from horses. Species-specific primers and a TaqMan probe were designed by alignment of published ribosomal DNA sequences of the second internal transcribed spacer of cyathostomin and Strongylus spp. nematodes. The assay was tested for specificity and optimized using genomic DNA extracted from identified male worms of Strongylus and cyathostomin species. In addition, eggs were collected from adult female worms and used to evaluate the quantitative potential of the assay. Statistically significant linear relationships were found between egg numbers and cycle of threshold (Ct) values. PCR results were unaffected by the presence of cyathostomin DNA in the sample and there was no indication of PCR inhibition by faecal sources. A field evaluation on faecal samples obtained from four Danish horse farms revealed a good agreement with the traditional larval culture (kappa-value=0.78), but with a significantly higher performance of the PCR assay. An association between Ct values and S. vulgaris larval counts was statistically significant. The present assay can

  4. EVALUATION OF RAPID DNA EXTRACTION PROCEDURES FOR THE QUANTITATIVE DETECTION OF FUNGAL CELLS USING REAL TIME PCR ANALYSIS

    EPA Science Inventory

    The ease and rapidity of quantitative DNA sequence detection by real-time PCR instruments promises to make their use increasingly common for the microbial analysis many different types of environmental samples. To fully exploit the capabilities of these instruments, correspondin...

  5. Two-dimensional auto-correlation analysis and Fourier-transform analysis of second-harmonic-generation image for quantitative analysis of collagen fiber in human facial skin

    NASA Astrophysics Data System (ADS)

    Ogura, Yuki; Tanaka, Yuji; Hase, Eiji; Yamashita, Toyonobu; Yasui, Takeshi

    2018-02-01

    We compare two-dimensional auto-correlation (2D-AC) analysis and two-dimensional Fourier transform (2D-FT) for evaluation of age-dependent structural change of facial dermal collagen fibers caused by intrinsic aging and extrinsic photo-aging. The age-dependent structural change of collagen fibers for female subjects' cheek skin in their 20s, 40s, and 60s were more noticeably reflected in 2D-AC analysis than in 2D-FT analysis. Furthermore, 2D-AC analysis indicated significantly higher correlation with the skin elasticity measured by Cutometer® than 2D-AC analysis. 2D-AC analysis of SHG image has a high potential for quantitative evaluation of not only age-dependent structural change of collagen fibers but also skin elasticity.

  6. Optical Fiber Sensors for Advanced Civil Structures

    NASA Astrophysics Data System (ADS)

    de Vries, Marten Johannes Cornelius

    1995-01-01

    The objective of this dissertation is to develop, analyze, and implement optical fiber-based sensors for the nondestructive quantitative evaluation of advanced civil structures. Based on a comparative evaluation of optical fiber sensors that may be used to obtain quantitative information related to physical perturbations in the civil structure, the extrinsic Fabry-Perot interferometric (EFPI) optical fiber sensor is selected as the most attractive sensor. The operation of the EFPI sensor is explained using the Kirchhoff diffraction approach. As is shown in this dissertation, this approach better predicts the signal-to-noise ratio as a function of gap length than methods employed previously. The performance of the optical fiber sensor is demonstrated in three different implementations. In the first implementation, performed with researchers in the Civil Engineering Department at the University of Southern California in Los Angeles, optical fiber sensors were used to obtain quantitative strain information from reinforced concrete interior and exterior column-to-beam connections. The second implementation, performed in cooperation with researchers at the United States Bureau of Mines in Spokane, Washington, used optical fiber sensors to monitor the performance of roof bolts used in mines. The last implementation, performed in cooperation with researchers at the Turner-Fairbanks Federal Highway Administration Research Center in McLean, Virginia, used optical fiber sensors, attached to composite prestressing strands used for reinforcing concrete, to obtain absolute strain information. Multiplexing techniques including time, frequency and wavelength division multiplexing are briefly discussed, whereas the principles of operation of spread spectrum and optical time domain reflectometery (OTDR) are discussed in greater detail. Results demonstrating that spread spectrum and OTDR techniques can be used to multiplex optical fiber sensors are presented. Finally, practical

  7. Quantitative Profiling of DNA Damage and Apoptotic Pathways in UV Damaged Cells Using PTMScan Direct

    PubMed Central

    Stokes, Matthew P.; Silva, Jeffrey C.; Jia, Xiaoying; Lee, Kimberly A.; Polakiewicz, Roberto D.; Comb, Michael J.

    2013-01-01

    Traditional methods for analysis of peptides using liquid chromatography and tandem mass spectrometry (LC-MS/MS) lack the specificity to comprehensively monitor specific biological processes due to the inherent duty cycle limitations of the MS instrument and the stochastic nature of the analytical platform. PTMScan Direct is a novel, antibody-based method that allows quantitative LC-MS/MS profiling of specific peptides from proteins that reside in the same signaling pathway. New PTMScan Direct reagents have been produced that target peptides from proteins involved in DNA Damage/Cell Cycle and Apoptosis/Autophagy pathways. Together, the reagents provide access to 438 sites on 237 proteins in these signaling cascades. These reagents have been used to profile the response to UV damage of DNA in human cell lines. UV damage was shown to activate canonical DNA damage response pathways through ATM/ATR-dependent signaling, stress response pathways and induce the initiation of apoptosis, as assessed by an increase in the abundance of peptides corresponding to cleaved, activated caspases. These data demonstrate the utility of PTMScan Direct as a multiplexed assay for profiling specific cellular responses to various stimuli, such as UV damage of DNA. PMID:23344034

  8. Investigation of Carbon Fiber Architecture in Braided Composites Using X-Ray CT Inspection

    NASA Technical Reports Server (NTRS)

    Rhoads, Daniel J.; Miller, Sandi G.; Roberts, Gary D.; Rauser, Richard W.; Golovaty, Dmitry; Wilber, J. Patrick; Espanol, Malena I.

    2017-01-01

    During the fabrication of braided carbon fiber composite materials, process variations occur which affect the fiber architecture. Quantitative measurements of local and global fiber architecture variations are needed to determine the potential effect of process variations on mechanical properties of the cured composite. Although non-destructive inspection via X-ray CT imaging is a promising approach, difficulties in quantitative analysis of the data arise due to the similar densities of the material constituents. In an effort to gain more quantitative information about features related to fiber architecture, methods have been explored to improve the details that can be captured by X-ray CT imaging. Metal-coated fibers and thin veils are used as inserts to extract detailed information about fiber orientations and inter-ply behavior from X-ray CT images.

  9. Cytomegalovirus (CMV) DNA Quantitation in Bronchoalveolar Lavage Fluid From Hematopoietic Stem Cell Transplant Recipients With CMV Pneumonia.

    PubMed

    Boeckh, Michael; Stevens-Ayers, Terry; Travi, Giovanna; Huang, Meei-Li; Cheng, Guang-Shing; Xie, Hu; Leisenring, Wendy; Erard, Veronique; Seo, Sachiko; Kimball, Louise; Corey, Lawrence; Pergam, Steven A; Jerome, Keith R

    2017-05-15

    Quantitative cytomegalovirus (CMV) DNA-specific polymerase chain reaction (PCR) analysis is widely used as a surveillance method for hematopoietic stem cell transplant (HCT) recipients. However, no CMV DNA threshold exists in bronchoalveolar lavage (BAL) to differentiate pneumonia from pulmonary shedding. We tested archived BAL fluid samples from 132 HCT recipients with CMV pneumonia and 139 controls (100 patients with non-CMV pneumonia, 18 with idiopathic pneumonia syndrome [IPS], and 21 who were asymptomatic) by quantitative CMV and β-globin DNA-specific PCR. Patients with CMV pneumonia had higher median viral loads (3.9 log10 IU/mL; interquartile range [IQR], 2.6-6.0 log10 IU/mL) than controls (0 log10 IU/mL [IQR, 0-1.6 log10 IU/mL] for patients with non-CMV pneumonia, 0 log10 IU/mL [IQR, 0-1.6 log10 IU/mL] for patients with IPS, and 1.63 log10 IU/mL [IQR, 0-2.5 log10 IU/mL] for patients who were asymptomatic; P < .001 for all comparisons to patients with CMV pneumonia). Receiver operating characteristic curve analyses and predictive models identified a cutoff CMV DNA level of 500 IU/mL to differentiate between CMV pneumonia and pulmonary shedding, using current CMV pneumonia prevalence figures. However, different levels may be appropriate in settings of very high or low CMV pneumonia prevalence. The presence of pulmonary copathogens, radiographic presentation, or pulmonary hemorrhage did not alter predictive values. CMV DNA load in BAL can be used to differentiate CMV pneumonia from pulmonary shedding. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  10. Enhanced sensitivity of DNA- and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients.

    PubMed

    Lueders, Tillmann; Manefield, Mike; Friedrich, Michael W

    2004-01-01

    Stable isotope probing (SIP) of nucleic acids allows the detection and identification of active members of natural microbial populations that are involved in the assimilation of an isotopically labelled compound into nucleic acids. SIP is based on the separation of isotopically labelled DNA or rRNA by isopycnic density gradient centrifugation. We have developed a highly sensitive protocol for the detection of 'light' and 'heavy' nucleic acids in fractions of centrifugation gradients. It involves the fluorometric quantification of total DNA or rRNA, and the quantification of either 16S rRNA genes or 16S rRNA in gradient fractions by real-time PCR with domain-specific primers. Using this approach, we found that fully 13C-labelled DNA or rRNA of Methylobacterium extorquens was quantitatively resolved from unlabelled DNA or rRNA of Methanosarcina barkeri by cesium chloride or cesium trifluoroacetate density gradient centrifugation respectively. However, a constant low background of unspecific nucleic acids was detected in all DNA or rRNA gradient fractions, which is important for the interpretation of environmental SIP results. Consequently, quantitative analysis of gradient fractions provides a higher precision and finer resolution for retrieval of isotopically enriched nucleic acids than possible using ethidium bromide or gradient fractionation combined with fingerprinting analyses. This is a prerequisite for the fine-scale tracing of microbial populations metabolizing 13C-labelled compounds in natural ecosystems.

  11. MethylMeter(®): bisulfite-free quantitative and sensitive DNA methylation profiling and mutation detection in FFPE samples.

    PubMed

    McCarthy, David; Pulverer, Walter; Weinhaeusel, Andreas; Diago, Oscar R; Hogan, Daniel J; Ostertag, Derek; Hanna, Michelle M

    2016-06-01

    Development of a sensitive method for DNA methylation profiling and associated mutation detection in clinical samples. Formalin-fixed and paraffin-embedded tumors received by clinical laboratories often contain insufficient DNA for analysis with bisulfite or methylation sensitive restriction enzymes-based methods. To increase sensitivity, methyl-CpG DNA capture and Coupled Abscription PCR Signaling detection were combined in a new assay, MethylMeter(®). Gliomas were analyzed for MGMT methylation, glioma CpG island methylator phenotype and IDH1 R132H. MethylMeter had 100% assay success rate measuring all five biomarkers in formalin-fixed and paraffin-embedded tissue. MGMT methylation results were supported by survival and mRNA expression data. MethylMeter is a sensitive and quantitative method for multitarget DNA methylation profiling and associated mutation detection. The MethylMeter-based GliomaSTRAT assay measures methylation of four targets and one mutation to simultaneously grade gliomas and predict their response to temozolomide. This information is clinically valuable in management of gliomas.

  12. Toward quantitative fluorescence microscopy with DNA origami nanorulers.

    PubMed

    Beater, Susanne; Raab, Mario; Tinnefeld, Philip

    2014-01-01

    The dynamic development of fluorescence microscopy has created a large number of new techniques, many of which are able to overcome the diffraction limit. This chapter describes the use of DNA origami nanostructures as scaffold for quantifying microscope properties such as sensitivity and resolution. The DNA origami technique enables placing of a defined number of fluorescent dyes in programmed geometries. We present a variety of DNA origami nanorulers that include nanorulers with defined labeling density and defined distances between marks. The chapter summarizes the advantages such as practically free choice of dyes and labeling density and presents examples of nanorulers in use. New triangular DNA origami nanorulers that do not require photoinduced switching by imaging transient binding to DNA nanostructures are also reported. Finally, we simulate fluorescence images of DNA origami nanorulers and reveal that the optimal DNA nanoruler for a specific application has an intermark distance that is roughly 1.3-fold the expected optical resolution. © 2014 Elsevier Inc. All rights reserved.

  13. 3D DNA origami as programmable anchoring points for bioreceptors in fiber optic surface plasmon resonance biosensing.

    PubMed

    Daems, Devin; Pfeifer, Wolfgang; Rutten, Iene; Sacca, Barbara; Spasic, Dragana; Lammertyn, Jeroen

    2018-06-27

    Many challenges in biosensing originate from the fact that the all-important nano-architecture of the biosensor's surface, including precise density and orientation of bioreceptors, is not entirely comprehended. Here we introduced a 3D DNA origami as bioreceptor carrier to functionalize the fiber optic surface plasmon resonance (FO-SPR) sensor with nanoscale precision. Starting from a 24-helix bundle, two distinct DNA origami structures were designed to position thrombin-specific aptamers with different density and distance (27 and 113 nm) from the FO-SPR surface. The origami-based biosensors proved to be not only capable of reproducible, label-free thrombin detection, but revealed also valuable innovative features: (1) a significantly better performance in the absence of backfilling, known as essential in biosensing field, suggesting improved bioreceptor orientation and accessibility and (2) a wider linear range compared to previously reported thrombin biosensors. We envisage that our method will be beneficial both for scientists and clinicians looking for new surface (bio)chemistry and improved diagnostics.

  14. Clinical evaluation of the COBAS Ampliprep/COBAS TaqMan for HCV RNA quantitation in comparison with the branched-DNA assay.

    PubMed

    Pittaluga, Fabrizia; Allice, Tiziano; Abate, Maria Lorena; Ciancio, Alessia; Cerutti, Francesco; Varetto, Silvia; Colucci, Giuseppe; Smedile, Antonina; Ghisetti, Valeria

    2008-02-01

    Diagnosis and monitoring of HCV infection relies on sensitive and accurate HCV RNA detection and quantitation. The performance of the COBAS AmpliPrep/COBAS TaqMan 48 (CAP/CTM) (Roche, Branchburg, NJ), a fully automated, real-time PCR HCV RNA quantitative test was assessed and compared with the branched-DNA (bDNA) assay. Clinical evaluation on 576 specimens obtained from patients with chronic hepatitis C showed a good correlation (r = 0.893) between the two test, but the CAP/CTM scored higher HCV RNA titers than the bDNA across all viral genotypes. The mean bDNA versus CAP/CTM log10 IU/ml differences were -0.49, -0.4, -0.54, -0.26 for genotype 1a, 1b, 2a/2c, 3a, and 4, respectively. These differences reached statistical significance for genotypes 1b, 2a/c, and 3a. The ability of the CAP/CTM to monitor patients undergoing antiviral therapy and correctly identify the weeks 4 and 12 rapid and early virological responses was confirmed. The broader dynamic range of the CAP/CTM compared with the bDNA allowed for a better definition of viral kinetics. In conclusion, the CAP/CTM appears as a reliable and user-friendly assay to monitor HCV viremia during treatment of patients with chronic hepatitis. Its high sensitivity and wide dynamic range may help a better definition of viral load changes during antiviral therapy. (Copyright) 2007 Wiley-Liss, Inc.

  15. Semi-quantitative visual detection of loop mediated isothermal amplification (LAMP)-generated DNA by distance-based measurement on a paper device.

    PubMed

    Hongwarittorrn, Irin; Chaichanawongsaroj, Nuntaree; Laiwattanapaisal, Wanida

    2017-12-01

    A distance-based paper analytical device (dPAD) for loop mediated isothermal amplification (LAMP) detection based on distance measurement was proposed. This approach relied on visual detection by the length of colour developed on the dPAD with reference to semi-quantitative determination of the initial amount of genomic DNA. In this communication, E. coli DNA was chosen as a template DNA for LAMP reaction. In accordance with the principle, the dPAD was immobilized by polyethylenimine (PEI), which is a strong cationic polymer, in the hydrophilic channel of the paper device. Hydroxynaphthol blue (HNB), a colourimetric indicator for monitoring the change of magnesium ion concentration in the LAMP reaction, was used to react with the immobilized PEI. The positive charges of PEI react with the negative charges of free HNB in the LAMP reaction, producing a blue colour deposit on the paper device. Consequently, the apparently visual distance appeared within 5min and length of distance correlated to the amount of DNA in the sample. The distance-based PAD for the visual detection of the LAMP reaction could quantify the initial concentration of genomic DNA as low as 4.14 × 10 3 copiesµL -1 . This distance-based visual semi-quantitative platform is suitable for choice of LAMP detection method, particular in resource-limited settings because of the advantages of low cost, simple fabrication and operation, disposability and portable detection of the dPAD device. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Civil infrastructure monitoring for IVHS using optical fiber sensors

    NASA Astrophysics Data System (ADS)

    de Vries, Marten J.; Arya, Vivek; Grinder, C. R.; Murphy, Kent A.; Claus, Richard O.

    1995-01-01

    8Early deployment of Intelligent Vehicle Highway Systems would necessitate the internal instrumentation of infrastructure for emergency preparedness. Existing quantitative analysis and visual analysis techniques are time consuming, cost prohibitive, and are often unreliable. Fiber optic sensors are rapidly replacing conventional instrumentation because of their small size, light weight, immunity to electromagnetic interference, and extremely high information carrying capability. In this paper research on novel optical fiber sensing techniques for health monitoring of civil infrastructure such as highways and bridges is reported. Design, fabrication, and implementation of fiber optic sensor configurations used for measurements of strain are discussed. Results from field tests conducted to demonstrate the effectiveness of fiber sensors at determining quantitative strain vector components near crack locations in bridges are presented. Emerging applications of fiber sensors for vehicle flow, vehicle speed, and weigh-in-motion measurements are also discussed.

  17. Military Applications of Fiber Optics Technology

    DTIC Science & Technology

    1989-05-01

    Research Projects Agency DNA Defense Nuclear Agency EMI Electromagnetic interference EMP Electromagnetic pulse FET Field effect transistor FOFA Follow...Organization SEED Self electro-optic effect device TBM Tactical ballistic missile TOW Tube launched, optically tracked, wire-guided UAV Unmanned aerial vehicle...systems, coupled with novel but effective transducing technology, have set the stage for a powerful class of fiber optic sensors. 8 Optical fibers have

  18. Variability in PAH-DNA adduct measurements in peripheral mononuclear cells: implications for quantitative cancer risk assessment.

    PubMed

    Dickey, C; Santella, R M; Hattis, D; Tang, D; Hsu, Y; Cooper, T; Young, T L; Perera, F P

    1997-10-01

    Biomarkers such as DNA adducts have significant potential to improve quantitative risk assessment by characterizing individual differences in metabolism of genotoxins and DNA repair and accounting for some of the factors that could affect interindividual variation in cancer risk. Inherent uncertainty in laboratory measurements and within-person variability of DNA adduct levels over time are putatively unrelated to cancer risk and should be subtracted from observed variation to better estimate interindividual variability of response to carcinogen exposure. A total of 41 volunteers, both smokers and nonsmokers, were asked to provide a peripheral blood sample every 3 weeks for several months in order to specifically assess intraindividual variability of polycyclic aromatic hydrocarbon (PAH)-DNA adduct levels. The intraindividual variance in PAH-DNA adduct levels, together with measurement uncertainty (laboratory variability and unaccounted for differences in exposure), constituted roughly 30% of the overall variance. An estimated 70% of the total variance was contributed by interindividual variability and is probably representative of the true biologic variability of response to carcinogenic exposure in lymphocytes. The estimated interindividual variability in DNA damage after subtracting intraindividual variability and measurement uncertainty was 24-fold. Inter-individual variance was higher (52-fold) in persons who constitutively lack the Glutathione S-Transferase M1 (GSTM1) gene which is important in the detoxification pathway of PAH. Risk assessment models that do not consider the variability of susceptibility to DNA damage following carcinogen exposure may underestimate risks to the general population, especially for those people who are most vulnerable.

  19. A wavelength-modulated localized surface plasmon resonance (LSPR) optical fiber sensor for sensitive detection of mercury(II) ion by gold nanoparticles-DNA conjugates.

    PubMed

    Jia, Shuo; Bian, Chao; Sun, Jizhou; Tong, Jianhua; Xia, Shanhong

    2018-05-08

    The study presented herein investigated an easy preparation, high performance, wavelength-modulated LSPR optical fiber chemosensor coated by gold nanospheres(AuNS) for Hg 2+ detection based on thymine-Hg 2+ -thymine base pair mismatches and the coupled plasmonic resonance effect.Utilizing electrostatic self-assembly method, the high density and dispersivity monolayer AuNS coated LSPR fiber sensor had the near field refractive index sensitivity up to 2016 nm/RIU. The single-strand probe DNA served as a binding element for free AuNS labelled-target DNA conjugates was attached to the monolayer AuNS by Au-S bond. In the present of Hg 2+ , the coupled plasmonic resonance band between monolayer AuNS and free AuNS was produced by thymine-Hg 2+ -thymine structure and leaded to red-shift of LSPR peak. Under the optimal conditions, the enlarged red-shift in peak of LSPR spectroscopy was linearly with the concentration of Hg 2+ in the range from 1.0 × 10 -9 to 5.0 × 10 -8 M with the coefficient of 0.976. The limit of detection was 0.7 nM(S/N = 3). The specificity of the sensor was proved high by evaluating the response to other heavy metal ions. The proposed fiber sensor provided a label-free, miniature, low-cost approach for the Hg 2+ detection and had potential in real environmental evaluations. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Quantitative methylation-sensitive arbitrarily primed PCR method to determine differential genomic DNA methylation in Down Syndrome.

    PubMed

    Chango, Abalo; Abdennebi-Najar, Latifa; Tessier, Frederic; Ferré, Séverine; Do, Sergio; Guéant, Jean-Louis; Nicolas, Jean Pierre; Willequet, Francis

    2006-10-20

    Relative levels of DNA hypermethylation were quantified in DS individuals using a new method based on a combination of methylation-sensitive arbitrarily primed polymerase chain reaction (MS-AP-PCR) and quantification of DNA fragments with the Agilent 2100 bioanalyzer. Four of the DS individuals had low plasma total homocysteine (tHcy) level (4.3 +/- 0.3 micromol/l) and 4 other had high-tHcy level (14.1 +/- 0.9 micromol/l). Eight healthy control individuals were matched to the DS cases for age, sex, and tHcy levels. We have identified and quantified six hypermethylated fragments. Their sizes ranged from 230-bp to 700-bp. In cases and controls, low-tHcy did not affect methylation level of identified fragments, mean methylation values were 68.0 +/- 39.7% and 52.1 +/- 40.3%, respectively. DNA methylation in DS individuals did not change significantly (59.7+/-34.5%) in response to high-tHcy level in contrast to controls (23.4 +/- 17.7%, P = 0.02). Further, the quantitative MS-AP-PCR using this microfludic system is a useful method for determining differential genomic DNA methylation.

  1. Real-time quantitative PCR detection of circulating tumor cells using tag DNA mediated signal amplification strategy.

    PubMed

    Mei, Ting; Lu, Xuewen; Sun, Ning; Li, Xiaomei; Chen, Jitao; Liang, Min; Zhou, Xinke; Fang, Zhiyuan

    2018-06-05

    The level of circulating tumor cell (CTCs) is a reliable marker for tumor burden and malignant progression. Quantification of CTCs remains technically challenging due to the rarity of these cells in peripheral blood. In the present study, we established a real-time quantitative PCR (Q-PCR) based method for sensitive detection of CTCs without DNA extraction. Blood sample was first turned to erythrocyte lyses and then incubated with two antibodies, tag-DNA modified CK-19 antibody and magnetic beads conjugated EpCAM antibody. Tumor cells were further enriched by magnetic separation. Tag-DNA that immobilized on tumor cells through CK-19 antibodies were also retrieved, which was further quantified by Q-PCR. This assay was able to detect single tumor cell in a 5 mL blood sample. The detection rate of clinical tumor blood sample was 92.3%. Furthermore, CTC count in patient was correlated with tumor stage and tumor status. The signal amplification was based on tag DNA rather than tumor gene, which was independent of nucleic acid extraction. With high sensitivity and convenience, this method can be a good alternative for the determination of cancer progress. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Partially reduced graphene oxide based FRET on fiber optic interferometer for biochemical detection

    NASA Astrophysics Data System (ADS)

    Yao, B. C.; Wu, Y.; Yu, C. B.; He, J. R.; Rao, Y. J.; Gong, Y.; Chen, Y. F.; Li, Y. R.

    2017-04-01

    An all-fiber graphene oxide (GO) based 'FRET on Fiber' concept is proposed and applied in biochemical detections. This method is of both good selectivity and high sensitivity, with detection limits of 1.2 nM, 1.3 μM and 1 pM, for metal ion, dopamine and single-stranded DNA (ssDNA), respectively.

  3. PCR Inhibition of a Quantitative PCR for Detection of Mycobacterium avium Subspecies Paratuberculosis DNA in Feces: Diagnostic Implications and Potential Solutions

    PubMed Central

    Acharya, Kamal R.; Dhand, Navneet K.; Whittington, Richard J.; Plain, Karren M.

    2017-01-01

    Molecular tests such as polymerase chain reaction (PCR) are increasingly being applied for the diagnosis of Johne’s disease, a chronic intestinal infection of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP). Feces, as the primary test sample, presents challenges in terms of effective DNA isolation, with potential for PCR inhibition and ultimately for reduced analytical and diagnostic sensitivity. However, limited evidence is available regarding the magnitude and diagnostic implications of PCR inhibition for the detection of MAP in feces. This study aimed to investigate the presence and diagnostic implications of PCR inhibition in a quantitative PCR assay for MAP (High-throughput Johne’s test) to investigate the characteristics of samples prone to inhibition and to identify measures that can be taken to overcome this. In a study of fecal samples derived from a high prevalence, endemically infected cattle herd, 19.94% of fecal DNA extracts showed some evidence of inhibition. Relief of inhibition by a five-fold dilution of the DNA extract led to an average increase in quantification of DNA by 3.3-fold that consequently increased test sensitivity of the qPCR from 55 to 80% compared to fecal culture. DNA extracts with higher DNA and protein content had 19.33 and 10.94 times higher odds of showing inhibition, respectively. The results suggest that the current test protocol is sensitive for herd level diagnosis of Johne’s disease but that test sensitivity and individual level diagnosis could be enhanced by relief of PCR inhibition, achieved by five-fold dilution of the DNA extract. Furthermore, qualitative and quantitative parameters derived from absorbance measures of DNA extracts could be useful for prediction of inhibitory fecal samples. PMID:28210245

  4. MethylMeter®: bisulfite-free quantitative and sensitive DNA methylation profiling and mutation detection in FFPE samples

    PubMed Central

    McCarthy, David; Pulverer, Walter; Weinhaeusel, Andreas; Diago, Oscar R; Hogan, Daniel J; Ostertag, Derek; Hanna, Michelle M

    2016-01-01

    Aim: Development of a sensitive method for DNA methylation profiling and associated mutation detection in clinical samples. Materials & methods: Formalin-fixed and paraffin-embedded tumors received by clinical laboratories often contain insufficient DNA for analysis with bisulfite or methylation sensitive restriction enzymes-based methods. To increase sensitivity, methyl-CpG DNA capture and Coupled Abscription PCR Signaling detection were combined in a new assay, MethylMeter®. Gliomas were analyzed for MGMT methylation, glioma CpG island methylator phenotype and IDH1 R132H. Results: MethylMeter had 100% assay success rate measuring all five biomarkers in formalin-fixed and paraffin-embedded tissue. MGMT methylation results were supported by survival and mRNA expression data. Conclusion: MethylMeter is a sensitive and quantitative method for multitarget DNA methylation profiling and associated mutation detection. The MethylMeter-based GliomaSTRAT assay measures methylation of four targets and one mutation to simultaneously grade gliomas and predict their response to temozolomide. This information is clinically valuable in management of gliomas. PMID:27337298

  5. Optical fiber-based sensors: application to chemical biology.

    PubMed

    Brogan, Kathryn L; Walt, David R

    2005-10-01

    Optical fibers have been used to develop sensors based on nucleic acids and cells. Sensors employing DNA probes have been developed for various genomics applications and microbial pathogen detection. Live cell-based sensors have enabled the monitoring of environmental toxins, and have been used for fundamental studies on populations of individual cells. Both single-core optical fiber sensors and optical fiber sensor arrays have been used for sensing based on nucleic acids and live cells.

  6. High sensitivity detection and quantitation of DNA copy number and single nucleotide variants with single color droplet digital PCR.

    PubMed

    Miotke, Laura; Lau, Billy T; Rumma, Rowza T; Ji, Hanlee P

    2014-03-04

    In this study, we present a highly customizable method for quantifying copy number and point mutations utilizing a single-color, droplet digital PCR platform. Droplet digital polymerase chain reaction (ddPCR) is rapidly replacing real-time quantitative PCR (qRT-PCR) as an efficient method of independent DNA quantification. Compared to quantative PCR, ddPCR eliminates the needs for traditional standards; instead, it measures target and reference DNA within the same well. The applications for ddPCR are widespread including targeted quantitation of genetic aberrations, which is commonly achieved with a two-color fluorescent oligonucleotide probe (TaqMan) design. However, the overall cost and need for optimization can be greatly reduced with an alternative method of distinguishing between target and reference products using the nonspecific DNA binding properties of EvaGreen (EG) dye. By manipulating the length of the target and reference amplicons, we can distinguish between their fluorescent signals and quantify each independently. We demonstrate the effectiveness of this method by examining copy number in the proto-oncogene FLT3 and the common V600E point mutation in BRAF. Using a series of well-characterized control samples and cancer cell lines, we confirmed the accuracy of our method in quantifying mutation percentage and integer value copy number changes. As another novel feature, our assay was able to detect a mutation comprising less than 1% of an otherwise wild-type sample, as well as copy number changes from cancers even in the context of significant dilution with normal DNA. This flexible and cost-effective method of independent DNA quantification proves to be a robust alternative to the commercialized TaqMan assay.

  7. Portable evanescent wave fiber biosensor for highly sensitive detection of Shigella

    NASA Astrophysics Data System (ADS)

    Xiao, Rui; Rong, Zhen; Long, Feng; Liu, Qiqi

    2014-11-01

    A portable evanescent wave fiber biosensor was developed to achieve the rapid and highly sensitive detection of Shigella. In this study, a DNA probe was covalently immobilized onto fiber-optic biosensors that can hybridize with a fluorescently labeled complementary DNA. The sensitivity of detection for synthesized oligonucleotides can reach 10-10 M. The surface of the sensor can be regenerated with 0.5% sodium dodecyl sulfate solution (pH 1.9) for over 30 times without significant deterioration of performance. The total analysis time for a single sample, including the time for measurement and surface regeneration, was less than 6 min. We employed real-time polymerase chain reaction (PCR) and compared the results of both methods to investigate the actual Shigella DNA detection capability of the fiber-optic biosensor. The fiber-optic biosensor could detect as low as 102 colony-forming unit/mL Shigella. This finding was comparable with that by real-time PCR, which suggests that this method is a potential alternative to existing detection methods.

  8. Method for assaying clustered DNA damages

    DOEpatents

    Sutherland, Betsy M.

    2004-09-07

    Disclosed is a method for detecting and quantifying clustered damages in DNA. In this method, a first aliquot of the DNA to be tested for clustered damages with one or more lesion-specific cleaving reagents under conditions appropriate for cleavage of the DNA to produce single-strand nicks in the DNA at sites of damage lesions. The number average molecular length (Ln) of double stranded DNA is then quantitatively determined for the treated DNA. The number average molecular length (Ln) of double stranded DNA is also quantitatively determined for a second, untreated aliquot of the DNA. The frequency of clustered damages (.PHI..sub.c) in the DNA is then calculated.

  9. Clusters of DNA induced by ionizing radiation: formation of short DNA fragments. I. Theoretical modeling

    NASA Technical Reports Server (NTRS)

    Holley, W. R.; Chatterjee, A.

    1996-01-01

    We have developed a general theoretical model for the interaction of ionizing radiation with chromatin. Chromatin is modeled as a 30-nm-diameter solenoidal fiber comprised of 20 turns of nucleosomes, 6 nucleosomes per turn. Charged-particle tracks are modeled by partitioning the energy deposition between primary track core, resulting from glancing collisions with 100 eV or less per event, and delta rays due to knock-on collisions involving energy transfers >100 eV. A Monte Carlo simulation incorporates damages due to the following molecular mechanisms: (1) ionization of water molecules leading to the formation of OH, H, eaq, etc.; (2) OH attack on sugar molecules leading to strand breaks: (3) OH attack on bases; (4) direct ionization of the sugar molecules leading to strand breaks; (5) direct ionization of the bases. Our calculations predict significant clustering of damage both locally, over regions up to 40 bp and over regions extending to several kilobase pairs. A characteristic feature of the regional damage predicted by our model is the production of short fragments of DNA associated with multiple nearby strand breaks. The shapes of the spectra of DNA fragment lengths depend on the symmetries or approximate symmetries of the chromatin structure. Such fragments have subsequently been detected experimentally and are reported in an accompanying paper (B. Rydberg, Radiat, Res. 145, 200-209, 1996) after exposure to both high- and low-LET radiation. The overall measured yields agree well quantitatively with the theoretical predictions. Our theoretical results predict the existence of a strong peak at about 85 bp, which represents the revolution period about the nucleosome. Other peaks at multiples of about 1,000 bp correspond to the periodicity of the particular solenoid model of chromatin used in these calculations. Theoretical results in combination with experimental data on fragmentation spectra may help determine the consensus or average structure of the

  10. Strategy for Extracting DNA from Clay Soil and Detecting a Specific Target Sequence via Selective Enrichment and Real-Time (Quantitative) PCR Amplification ▿

    PubMed Central

    Yankson, Kweku K.; Steck, Todd R.

    2009-01-01

    We present a simple strategy for isolating and accurately enumerating target DNA from high-clay-content soils: desorption with buffers, an optional magnetic capture hybridization step, and quantitation via real-time PCR. With the developed technique, μg quantities of DNA were extracted from mg samples of pure kaolinite and a field clay soil. PMID:19633108

  11. DNA origami-based standards for quantitative fluorescence microscopy.

    PubMed

    Schmied, Jürgen J; Raab, Mario; Forthmann, Carsten; Pibiri, Enrico; Wünsch, Bettina; Dammeyer, Thorben; Tinnefeld, Philip

    2014-01-01

    Validating and testing a fluorescence microscope or a microscopy method requires defined samples that can be used as standards. DNA origami is a new tool that provides a framework to place defined numbers of small molecules such as fluorescent dyes or proteins in a programmed geometry with nanometer precision. The flexibility and versatility in the design of DNA origami microscopy standards makes them ideally suited for the broad variety of emerging super-resolution microscopy methods. As DNA origami structures are durable and portable, they can become a universally available specimen to check the everyday functionality of a microscope. The standards are immobilized on a glass slide, and they can be imaged without further preparation and can be stored for up to 6 months. We describe a detailed protocol for the design, production and use of DNA origami microscopy standards, and we introduce a DNA origami rectangle, bundles and a nanopillar as fluorescent nanoscopic rulers. The protocol provides procedures for the design and realization of fluorescent marks on DNA origami structures, their production and purification, quality control, handling, immobilization, measurement and data analysis. The procedure can be completed in 1-2 d.

  12. CpG island methylator phenotype (CIMP) of colorectal cancer is best characterised by quantitative DNA methylation analysis and prospective cohort studies.

    PubMed

    Ogino, S; Cantor, M; Kawasaki, T; Brahmandam, M; Kirkner, G J; Weisenberger, D J; Campan, M; Laird, P W; Loda, M; Fuchs, C S

    2006-07-01

    The concept of CpG island methylator phenotype (CIMP) is not universally accepted. Even if specific clinicopathological features have been associated with CIMP, investigators often failed to demonstrate a bimodal distribution of the number of methylated markers, which would suggest CIMP as a distinct subtype of colorectal cancer. Previous studies primarily used methylation specific polymerase chain reaction which might detect biologically insignificant low levels of methylation. To demonstrate a distinct genetic profile of CIMP colorectal cancer using quantitative DNA methylation analysis that can distinguish high from low levels of DNA methylation. We developed quantitative real time polymerase chain reaction (MethyLight) assays and measured DNA methylation (percentage of methylated reference) of five carefully selected loci (promoters of CACNA1G, CDKN2A (p16), CRABP1, MLH1, and NEUROG1) in 460 colorectal cancers from large prospective cohorts. There was a clear bimodal distribution of 80 microsatellite instability-high (MSI-H) tumours according to the number of methylated promoters, with no tumours showing 3/5 methylated loci. Thus we defined CIMP as having >or=4/5 methylated loci, and 17% (78) of the 460 tumours were classified as CIMP. CIMP was significantly associated with female sex, MSI, BRAF mutations, and wild-type KRAS. Both CIMP MSI-H tumours and CIMP microsatellite stable (MSS) tumours showed much higher frequencies of BRAF mutations (63% and 54%) than non-CIMP counterparts (non-CIMP MSI-H (0%, p<10(-5)) and non-CIMP MSS tumours (6.6%, p<10(-4)), respectively). CIMP is best characterised by quantitative DNA methylation analysis. CIMP is a distinct epigenotype of colorectal cancer and may be less frequent than previously reported.

  13. Concentrations of environmental DNA (eDNA) reflect spawning salmon abundance at fine spatial and temporal scales

    USGS Publications Warehouse

    Tillotson, Michael D.; Kelly, Ryan P.; Duda, Jeff; Hoy, Marshal S.; Kralj, James; Quinn, Thomas P.

    2018-01-01

    Developing fast, cost-effective assessments of wild animal abundance is an important goal for many researchers, and environmental DNA (eDNA) holds much promise for this purpose. However, the quantitative relationship between species abundance and the amount of DNA present in the environment is likely to vary substantially among taxa and with ecological context. Here, we report a strong quantitative relationship between eDNA concentration and the abundance of spawning sockeye salmon in a small stream in Alaska, USA, where we took temporally- and spatially-replicated samples during the spawning period. This high-resolution dataset suggests that (1) eDNA concentrations vary significantly day-to-day, and likely within hours, in the context of the dynamic biological event of a salmon spawning season; (2) eDNA, as detected by species-specific quantitative PCR probes, seems to be conserved over short distances (tens of meters) in running water, but degrade quickly over larger scales (ca. 1.5 km); and (3) factors other than the mere presence of live, individual fish — such as location within the stream, live/dead ratio, and water temperature — can affect the eDNA-biomass correlation in space or time. A multivariate model incorporating both biotic and abiotic variables accounted for over 75% of the eDNA variance observed, suggesting that where a system is well-characterized, it may be possible to predict species' abundance from eDNA surveys, although we underscore that species- and system-specific variables are likely to limit the generality of any given quantitative model. Nevertheless, these findings provide an important step toward quantitative applications of eDNA in conservation and management.

  14. Real-time PCR assays for the quantitation of rDNA from apricot and other plant species in marzipan.

    PubMed

    Haase, Ilka; Brüning, Philipp; Matissek, Reinhard; Fischer, Markus

    2013-04-10

    Marzipan or marzipan raw paste is a typical German sweet which is consumed directly or is used as an ingredient in the bakery industry/confectionery (e.g., in stollen) and as filling for chocolate candies. Almonds (blanched and pealed) and sugar are the only ingredients for marzipan production according to German food guidelines. Especially for the confectionery industry, the use of persipan, which contains apricot or peach kernels instead of almonds, is preferred due to its stronger aroma. In most of the companies, both raw pastes are produced, in most cases on the same production line, running the risk of an unintended cross contamination. Additionally, due to high almond market values, dilutions of marzipan with cheaper seeds may occur. Especially in the case of apricot and almond, the close relationship of both species is a challenge for the analysis. DNA based methods for the qualitative detection of apricot, peach, pea, bean, lupine, soy, cashew, pistachio, and chickpea in marzipan have recently been published. In this study, different quantitation strategies on the basis of real-time PCR have been evaluated and a relative quantitation method with a reference amplification product was shown to give the best results. As the real-time PCR is based on the high copy rDNA-cluster, even contaminations <1% can be reliably quantitated.

  15. Enhanced post wash retention of combed DNA molecules by varying multiple combing parameters.

    PubMed

    Yadav, Hemendra; Sharma, Pulkit

    2017-11-01

    Recent advances in genomics have created a need for efficient techniques for deciphering information hidden in various genomes. Single molecule analysis is one such technique to understand molecular processes at single molecule level. Fiber- FISH performed with the help of DNA combing can help us in understanding genetic rearrangements and changes in genome at single DNA molecule level. For performing Fiber-FISH we need high retention of combed DNA molecules post wash as Fiber-FISH requires profuse washing. We optimized combing process involving combing solution, method of DNA mounting on glass slides and coating of glass slides to enhance post-wash retention of DNA molecules. It was found that average number of DNA molecules observed post-wash per field of view was maximum with our optimized combing solution. APTES coated glass slides showed lesser retention than PEI surface but fluorescent intensity was higher in case of APTES coated surface. Capillary method used to mount DNA on glass slides also showed lesser retention but straight DNA molecules were observed as compared to force flow method. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Characterization and application of a quantitative DNA marker that discriminates sex in chinook salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Clifton, D.R.; Rodriguez, R.J.

    1997-01-01

    A qualitative male-specific DNA marker (OT-24) was amplified by spPCR (single-primer polymerase chain reaction) from chinook salmon (Oncorhynchus tshawytscha) DNA along with several non-sex-linked products. The termini of the male-specific product were sequenced, and a pair of PeR primers were constructed for marker-specific PCR amplification. Dual primer PCR (dpPCR), with the marker-specific primers, amplified a product from both nudes and females. The amount of dpPCR product amplified from males was at least 100-fold greater than that from females. The quantitative difference between males and females was consistent among geographically distinct populations from western U.S. rivers. In addition, DNA sequence analysis indicated that OT-24 was highly conserved among geographically distinct salmon populations. The qualitative spPCR product segregated through several genetic crosses indicating equal sex ratios among progeny. Identification of the male and female juveniles by dpPCR was consistent with the spPCR analysis. There was no tissue specificity observed by spPCR or dpPCR analysis of this marker. A rapid DNA extraction method and dpPCR analysis were used to nonlethally determine sex ratios in wild spring chinook salmon adults, withheld for genetic and behavioral studies, prior to their development of gross sexual differences in their external morphology.

  17. Characterization and application of a quantitative DNA marker that discriminates sex in Chinook salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Clifton, D.R.; Rodriguez, R.J.

    1997-01-01

    A qualitative male-specific DNA marker (OT-24) was amplified by spPCR (single-primer polymerase chain reaction) from chinook salmon (Oncorhynchus tshawytscha) DNA along with several non-sex-linked products. The termini of the male-specific product were sequenced, and a pair of PeR primers were constructed for marker-specific PCR amplification. Dual primer PCR (dpPCR), with the marker-specific primers, amplified a product from both nudes and females. The amount of dpPCR product amplified from males was at least 100-fold greater than that from females. The quantitative difference between males and females was consistent among geographically distinct populations from western U.S. rivers. In addition, DNA sequence analysis indicated that OT-24 was highly conserved among geographically distinct salmon populations. The qualitative spPCR product segregated through several genetic crosses indicating equal sex ratios among progeny. Identification of the male and female juveniles by dpPCR was consistent with the spPCR analysis. There was no tissue specificity observed by spPCR or dpPCR analysis of this marker. A rapid DNA extraction method and dpPCR analysis were used to nonlethally determine sex ratios in wild spring chinook salmon adults, withheld for genetic and behavioral studies, prior to their development of gross sexual differences in their external morphology.

  18. Comparative Diagnosis of Human Bocavirus 1 Respiratory Infection With Messenger RNA Reverse-Transcription Polymerase Chain Reaction (PCR), DNA Quantitative PCR, and Serology.

    PubMed

    Xu, Man; Arku, Benedict; Jartti, Tuomas; Koskinen, Janne; Peltola, Ville; Hedman, Klaus; Söderlund-Venermo, Maria

    2017-05-15

    Human bocavirus (HBoV) 1 can cause life-threatening respiratory tract infection in children. Diagnosing acute HBoV1 infection is challenging owing to long-term airway persistence. We assessed whether messenger RNA (mRNA) detection would correlate better than DNA detection with acute HBoV1 infection. Paired serum samples from 121 children with acute wheezing were analyzed by means of serology. Quantitative polymerase chain reaction (PCR) and reverse-transcription (RT) PCR were applied to nasopharyngeal swab (NPS) samples from all acutely HBoV1-infected children and from controls with nonacute infection. By serology, 16 of 121 children (13.2%) had acute HBoV1 infection, all of whom had HBoV1 DNA in NPS samples, and 12 of 16 (75%) had HBoV1 mRNA. Among 25 children with nondiagnostic results, 6 had HBoV1 DNA in NPS samples, and 1 had mRNA. All 13 mRNA-positive samples exhibited high DNA loads (≥106 copies/mL). No mRNA persisted for 2 weeks, whereas HBoV1 DNA persisted for 2 months in 4 children; 1 year later all 15 samples were DNA negative. Compared with serology, DNA PCR had high clinical sensitivity (100%) but, because of viral persistence, low specificity (76%). In contrast, mRNA RT-PCR had low clinical sensitivity (75%) but high specificity (96%). A combination of HBoV1 serology and nasopharyngeal DNA quantitative PCR and mRNA RT-PCR should be used for accurate diagnosis of HBoV1 infection. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  19. Seroprevalence, molecular epidemiology and quantitation of parvovirus B19 DNA levels in Iranian blood donors.

    PubMed

    Zadsar, Maryam; Aghakhani, Arezoo; Banifazl, Mohammad; Kazemimanesh, Monireh; Tabatabaei Yazdi, Seyed Morteza; Mamishi, Setareh; Bavand, Anahita; Sadat Larijani, Mona; Ramezani, Amitis

    2018-04-16

    Human parvovirus B19 (B19) infection is common among blood donors, and healthy blood donors can transmit virus via transfusion. Due to resistance of B19 to viral inactivation methods, there is a potential concern regarding transfusion safety in blood products. We aimed to determine the seroprevalence, molecular epidemiology, and quantitation of B19 DNA levels in blood donors in Tehran, Iran. A total of 500 blood donors from Blood Transfusion Research Center were studied. ELISA was used for detection of B19 IgG and IgM and nested PCR was carried out for detection of B19 DNA. PCR products were subjected to direct sequencing. B19 viral load was determined by real time PCR. B19 IgG, IgM, and DNA were detected in 27.6, 2.6, and 1.2% of donors respectively. Ten samples (2%) were positive for both antibodies while in four cases (0.8%), B19 IgG and DNA detected simultaneously. One case had B19 IgM, IgG, and viremia concurrently. The titers of B19 DNA in four of six donors were more than 10 6  IU/mL (high level viremia) and all four cases had IgG simultaneously. All B19 isolates categorized in genotype 1A. Our findings indicated that prevalence of B19 DNA in Iranian blood donors was comparable with previous studies throughout the world. High level B19 viremia found in 0.8% of our donors and all viremic donors revealed neutralizing B19 antibody. Therefore implementation of a B19 screening test for each volunteer blood donor does not appear to be necessary but B19 testing for plasma-derived products seems important in Iranian donors. © 2018 Wiley Periodicals, Inc.

  20. Apricot DNA as an indicator for persipan: detection and quantitation in marzipan using ligation-dependent probe amplification.

    PubMed

    Luber, Florian; Demmel, Anja; Hosken, Anne; Busch, Ulrich; Engel, Karl-Heinz

    2012-06-13

    The confectionery ingredient marzipan is exclusively prepared from almond kernels and sugar. The potential use of apricot kernels, so-called persipan, is an important issue for the quality assessment of marzipan. Therefore, a ligation-dependent probe amplification (LPA) assay was developed that enables a specific and sensitive detection of apricot DNA, as an indicator for the presence of persipan. The limit of detection was determined to be 0.1% persipan in marzipan. The suitability of the method was confirmed by the analysis of 20 commercially available food samples. The integration of a Prunus -specific probe in the LPA assay as a reference allowed for the relative quantitation of persipan in marzipan. The limit of quantitation was determined to be 0.5% persipan in marzipan. The analysis of two self-prepared mixtures of marzipan and persipan demonstrated the applicability of the quantitation method at concentration levels of practical relevance for quality control.

  1. U-bent plastic optical fiber based plasmonic biosensor for nucleic acid detection

    NASA Astrophysics Data System (ADS)

    Gowri, A.; Sai, V. V. R.

    2017-05-01

    This study presents the development of low cost, rapid and highly sensitive plasmonic sandwich DNA biosensor using U-bent plastic optical fiber (POF) probes with high evanescent wave absorbance sensitivity and gold nanoparticles (AuNP) as labels. Plastic optical fiber (PMMA core and fluorinated polymer as cladding) offer ease in machinability and handling due to which optimum U-bent geometry (with fiber and bend diameter of 0.5 and 1.5 mm respectively) for high sensitivity could be achieved. A sensitive fiber optic DNA biosensor is realized by (i) modifying the PMMA surface using ethylenediamine (EDA) in order to maximize the immobilization of capture oligonucleotides (ONs) and (ii) conjugating probe ONs to AuNP labels of optimum size ( 35 nm) with high extinction coefficient and optimal ON surface density. The sandwich hybridization assay on U-bent POF probes results in increase in optical absorbance through the probe with increase in target ON concentration due to the presence of increased number of AuNPs. The absorbance of light passing through the U-bent probe due to the presence of AuNP labels on its surface as result of sandwich DNA hybridization is measured using a halogen lamp and a fiber optic spectrometer. A picomolar limit of detection of target ON (0.2 pM or 1 pg/ml or 5 attomol in 25 μL) is achieved with this biosensing scheme, indicating its potential for the development of a highly sensitive DNA biosensor.

  2. Analysis and Derivation of Allocations for Fiber Contaminants in Liquid Bipropellant Systems

    NASA Technical Reports Server (NTRS)

    Lowrey, N. M; ibrahim, K. Y.

    2012-01-01

    An analysis was performed to identify the engineering rationale for the existing particulate limits in MSFC-SPEC-164, Cleanliness of Components for Use in Oxygen, Fuel, and Pneumatic Systems, determine the applicability of this rationale to fibers, identify potential risks that may result from fiber contamination in liquid oxygen/fuel bipropellant systems, and bound each of these risks. The objective of this analysis was to determine whether fiber contamination exceeding the established quantitative limits for particulate can be tolerated in these systems and, if so, to derive and recommend quantitative allocations for fibers beyond the limits established for other particulate. Knowledge gaps were identified that limit a complete understanding of the risk of promoted ignition from an accumulation of fibers in a gaseous oxygen system.

  3. Quantitation of Radiation Induced Deletion and Recombination Events Associated with Repeated DNA Sequences

    NASA Technical Reports Server (NTRS)

    Sinden, Richard R.

    1999-01-01

    significantly influence the nature of DNA damage and the ability of cellular systems to repair such damage. It has been suspected that these differences also affect the spatial distribution of damage within the DNA of the interphase cell nucleus and produce corresponding differences in endpoints related to health effects. The interaction of a single high-LET particle with chromatin has been suggested to cause multiple double strand breaks within a relatively short distance. In part this is due to the organization of DNA into chromatin fibers in which distant regions of the DNA helix can be physically juxtaposed by the various levels of coiling of the DNA. This prediction was confirmed by the detection of the generation of double strand DNA fragments of 100-2000 bp following exposure to high-LET ions (including iron).

  4. Quantitative evaluation of compactness of concrete-filled fiber-reinforced polymer tubes using piezoceramic transducers and time difference of arrival

    NASA Astrophysics Data System (ADS)

    Xu, Yang; Luo, Mingzhang; Hei, Chuang; Song, Gangbing

    2018-03-01

    Owing to its light weight and corrosion resistance, the concrete-filled fiber-reinforced polymer tube (CFFT) structure has a broad application prospect; the concrete compactness is key to the strength of CFFTs. To meet the urgent requirement of compactness monitoring of CFFTs, a quantitative method, which uses an array of four equally spaced piezoceramic patches and an ultrasonic time difference of arrival (TDOA) algorithm, is developed. Since the velocity of the ultrasonic wave propagation in fiber-reinforced polymer (FRP) material is about half of that in concrete material, the compactness condition of CFFT impacts the piezoceramic-induced wave propagation in the CFFT, and differentiates the TDOA for different receivers. An important condition is the half compactness, which can be judged by the Half Compactness Indicator (HCI) based on the TDOAs. To characterize the difference of stress wave propagation durations from the emitter to different receivers, which can be utilized to calculate the concrete infill compactness, the TDOA ratio (TDOAR) is introduced. An innovative algorithm is developed in this paper to estimate the compactness of the CFFT using HCI and TDOAR values. Analytical, numerical, and experimental studies based on a CFFT with seven different states of compactness (empty, 1/10, 1/3, 1/2, 2/3, 9/10, and full) are carried out in this research. Analyses demonstrate that there is a good agreement among the analytical, numerical, and experimental results of the proposed method, which employs a piezoceramic transducer array and the TDOAR for quantitative estimating the compactness of concrete infill in a CFFT.

  5. A simple and rapid DNA extraction method from whole blood for highly sensitive detection and quantitation of HIV-1 proviral DNA by real-time PCR.

    PubMed

    McFall, Sally M; Wagner, Robin L; Jangam, Sujit R; Yamada, Douglas H; Hardie, Diana; Kelso, David M

    2015-03-01

    Early diagnosis and access to treatment for infants with human immunodeficiency virus-1 (HIV-1) is critical to reduce infant mortality. The lack of simple point-of-care tests impedes the timely initiation of antiretroviral therapy. The development of FINA, filtration isolation of nucleic acids, a novel DNA extraction method that can be performed by clinic personnel in less than 2 min has been reported previously. In this report, significant improvements in the DNA extraction and amplification methods are detailed that allow sensitive quantitation of as little as 10 copies of HIV-1 proviral DNA and detection of 3 copies extracted from 100 μl of whole blood. An internal control to detect PCR inhibition was also incorporated. In a preliminary field evaluation of 61 South African infants, the FINA test demonstrated 100% sensitivity and specificity. The proviral copy number of the infant specimens was quantified, and it was established that 100 microliters of whole blood is required for sensitive diagnosis of infants. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  6. DETECTION OF DNA DAMAGE USING A FIBEROPTIC BIOSENSOR

    EPA Science Inventory

    A rapid and sensitive fiber optic biosensor assay for radiation-induced DNA damage is reported. For this assay, a biotin-labeled capture oligonucleotide (38 mer) was immobilized to an avidin-coated quartz fiber. Hybridization of a dye-labeled complementary sequence was observed...

  7. Comparison of the COBAS TAQMAN HIV-1 HPS with VERSANT HIV-1 RNA 3.0 assay (bDNA) for plasma RNA quantitation in different HIV-1 subtypes.

    PubMed

    Gomes, Perpétua; Palma, Ana Carolina; Cabanas, Joaquim; Abecasis, Ana; Carvalho, Ana Patrícia; Ziermann, Rainer; Diogo, Isabel; Gonçalves, Fátima; Lobo, Céu Sousa; Camacho, Ricardo

    2006-08-01

    Quantitation of HIV-1 RNA levels in plasma has an undisputed prognostic value and is extremely important for evaluating response to antiretroviral therapy. The purpose of this study was to evaluate the performance of the real-time PCR COBAS TaqMan 48 analyser, comparing it to the existing VERSANT 3.0 (bDNA) for HIV-1 RNA quantitation in plasma of individuals infected with different HIV-1 subtypes (104 blood samples). A positive linear correlation between the two tests (r2 = 0.88) was found. Quantitation by the COBAS TaqMan assay was approximately 0.32log10 higher than by bDNA. The relationship between the two assays was similar within all subtypes with a Deming regression of <1 and <0 for the Bland-Altman plots. Overall, no significant differences were found in plasma viral load quantitation in different HIV-1 subtypes between both assays; therefore these assays are suitable for viral load quantitation of highly genetically diverse HIV-1 plasma samples.

  8. Benchmarking of the Oxford Nanopore MinION sequencing for quantitative and qualitative assessment of cDNA populations.

    PubMed

    Oikonomopoulos, Spyros; Wang, Yu Chang; Djambazian, Haig; Badescu, Dunarel; Ragoussis, Jiannis

    2016-08-24

    To assess the performance of the Oxford Nanopore Technologies MinION sequencing platform, cDNAs from the External RNA Controls Consortium (ERCC) RNA Spike-In mix were sequenced. This mix mimics mammalian mRNA species and consists of 92 polyadenylated transcripts with known concentration. cDNA libraries were generated using a template switching protocol to facilitate the direct comparison between different sequencing platforms. The MinION performance was assessed for its ability to sequence the cDNAs directly with good accuracy in terms of abundance and full length. The abundance of the ERCC cDNA molecules sequenced by MinION agreed with their expected concentration. No length or GC content bias was observed. The majority of cDNAs were sequenced as full length. Additionally, a complex cDNA population derived from a human HEK-293 cell line was sequenced on an Illumina HiSeq 2500, PacBio RS II and ONT MinION platforms. We observed that there was a good agreement in the measured cDNA abundance between PacBio RS II and ONT MinION (rpearson = 0.82, isoforms with length more than 700bp) and between Illumina HiSeq 2500 and ONT MinION (rpearson = 0.75). This indicates that the ONT MinION can sequence quantitatively both long and short full length cDNA molecules.

  9. High-fidelity target sequencing of individual molecules identified using barcode sequences: de novo detection and absolute quantitation of mutations in plasma cell-free DNA from cancer patients.

    PubMed

    Kukita, Yoji; Matoba, Ryo; Uchida, Junji; Hamakawa, Takuya; Doki, Yuichiro; Imamura, Fumio; Kato, Kikuya

    2015-08-01

    Circulating tumour DNA (ctDNA) is an emerging field of cancer research. However, current ctDNA analysis is usually restricted to one or a few mutation sites due to technical limitations. In the case of massively parallel DNA sequencers, the number of false positives caused by a high read error rate is a major problem. In addition, the final sequence reads do not represent the original DNA population due to the global amplification step during the template preparation. We established a high-fidelity target sequencing system of individual molecules identified in plasma cell-free DNA using barcode sequences; this system consists of the following two steps. (i) A novel target sequencing method that adds barcode sequences by adaptor ligation. This method uses linear amplification to eliminate the errors introduced during the early cycles of polymerase chain reaction. (ii) The monitoring and removal of erroneous barcode tags. This process involves the identification of individual molecules that have been sequenced and for which the number of mutations have been absolute quantitated. Using plasma cell-free DNA from patients with gastric or lung cancer, we demonstrated that the system achieved near complete elimination of false positives and enabled de novo detection and absolute quantitation of mutations in plasma cell-free DNA. © The Author 2015. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  10. Quantitative DNA methylation analyses reveal stage dependent DNA methylation and association to clinico-pathological factors in breast tumors.

    PubMed

    Klajic, Jovana; Fleischer, Thomas; Dejeux, Emelyne; Edvardsen, Hege; Warnberg, Fredrik; Bukholm, Ida; Lønning, Per Eystein; Solvang, Hiroko; Børresen-Dale, Anne-Lise; Tost, Jörg; Kristensen, Vessela N

    2013-10-05

    Aberrant DNA methylation of regulatory genes has frequently been found in human breast cancers and correlated to clinical outcome. In the present study we investigate stage specific changes in the DNA methylation patterns in order to identify valuable markers to understand how these changes affect breast cancer progression. Quantitative DNA methylation analyses of 12 candidate genes ABCB1, BRCCA1, CDKN2A, ESR1, GSTP1, IGF2, MGMT, HMLH1, PPP2R2B, PTEN, RASSF1A and FOXC1 was performed by pyrosequencing a series of 238 breast cancer tissue samples from DCIS to invasive tumors stage I to IV. Significant differences in methylation levels between the DCIS and invasive stage II tumors were observed for six genes RASSF1A, CDKN2A, MGMT, ABCB1, GSTP1 and FOXC1. RASSF1A, ABCB1 and GSTP1 showed significantly higher methylation levels in late stage compared to the early stage breast carcinoma. Z-score analysis revealed significantly lower methylation levels in DCIS and stage I tumors compared with stage II, III and IV tumors. Methylation levels of PTEN, PPP2R2B, FOXC1, ABCB1 and BRCA1 were lower in tumors harboring TP53 mutations then in tumors with wild type TP53. Z-score analysis showed that TP53 mutated tumors had significantly lower overall methylation levels compared to tumors with wild type TP53. Methylation levels of RASSF1A, PPP2R2B, GSTP1 and FOXC1 were higher in ER positive vs. ER negative tumors and methylation levels of PTEN and CDKN2A were higher in HER2 positive vs. HER2 negative tumors. Z-score analysis also showed that HER2 positive tumors had significantly higher z-scores of methylation compared to the HER2 negative tumors. Univariate survival analysis identifies methylation status of PPP2R2B as significant predictor of overall survival and breast cancer specific survival. In the present study we report that the level of aberrant DNA methylation is higher in late stage compared with early stage of invasive breast cancers and DCIS for genes mentioned above.

  11. Chemical Sensing Using Fiber Cavity Ring-Down Spectroscopy

    PubMed Central

    Waechter, Helen; Litman, Jessica; Cheung, Adrienne H.; Barnes, Jack A.; Loock, Hans-Peter

    2010-01-01

    Waveguide-based cavity ring-down spectroscopy (CRD) can be used for quantitative measurements of chemical concentrations in small amounts of liquid, in gases or in films. The change in ring-down time can be correlated to analyte concentration when using fiber optic sensing elements that change their attenuation in dependence of either sample absorption or refractive index. Two types of fiber cavities, i.e., fiber loops and fiber strands containing reflective elements, are distinguished. Both types of cavities were coupled to a variety of chemical sensor elements, which are discussed and compared. PMID:22294895

  12. A multicore compound glass optical fiber for neutron imaging

    NASA Astrophysics Data System (ADS)

    Moore, Michael; Zhang, Xiaodong; Feng, Xian; Brambilla, Gilberto; Hayward, Jason

    2017-04-01

    Optical fibers have been successfully utilized for point sensors targeting physical quantities (stress, strain, rotation, acceleration), chemical compounds (humidity, oil, nitrates, alcohols, DNA) or radiation fields (X-rays, β particles, γ-rays). Similarly, bundles of fibers have been extremely successful in imaging visible wavelengths for medical endoscopy and industrial boroscopy. This work presents the progress in the fabrication and experimental evaluation of multicore fiber as neutron scattering instrumentation designed to detect and image neutrons with micron level spatial resolution.

  13. Clinical Comparison of an Enhanced-Sensitivity Branched-DNA Assay and Reverse Transcription-PCR for Quantitation of Human Immunodeficiency Virus Type 1 RNA in Plasma

    PubMed Central

    Nolte, Frederick S.; Boysza, Jodi; Thurmond, Cathy; Clark, W. Scott; Lennox, Jeffrey L.

    1998-01-01

    The performance characteristics of an enhanced-sensitivity branched-DNA assay (bDNA) (Quantiplex HIV-1 version 2.0; Chiron Corp., Emeryville, Calif.) and a reverse transcription (RT)-PCR assay (AMPLICOR HIV-1 Monitor; Roche Diagnostic Systems, Inc., Branchburg, N.J.) were compared in a molecular diagnostic laboratory. Samples used in this evaluation included linearity and reproducibility panels made by dilution of a human immunodeficiency virus type 1 (HIV-1) stock culture of known virus particle count in HIV-1-negative plasma, a subtype panel consisting of HIV-1 subtypes A through F at a standardized level, and 64 baseline plasma specimens from HIV-1-infected individuals. Plots of log10 HIV RNA copies per milliliter versus log10 nominal virus particles per milliliter demonstrated that both assays were linear over the stated dynamic ranges (bDNA, r = 0.98; RT-PCR, r = 0.99), but comparison of the slopes of the regression lines (bDNA, m = 0.96; RT-PCR, m = 0.83) suggested that RT-PCR had greater proportional systematic error. The between-run coefficients of variation for bDNA and RT-PCR were 24.3 and 34.3%, respectively, for a sample containing 1,650 nominal virus particles/ml and 44.0 and 42.7%, respectively, for a sample containing 165 nominal virus particles/ml. Subtypes B, C, and D were quantitated with similar efficiencies by bDNA and RT-PCR; however, RT-PCR was less efficient in quantitating subtypes A, E, and F. One non-B subtype was recognized in our clinical specimens based on the ratio of values obtained with the two methods. HIV-1 RNA was quantitated in 53 (83%) baseline plasma specimens by bDNA and in 55 (86%) specimens by RT-PCR. RT-PCR values were consistently greater than bDNA values, with population means of 142,419 and 67,580 copies/ml, respectively (P < 0.01). The results were highly correlated (r = 0.91), but the agreement was poor (mean difference in log10 copies per milliliter ± 2 standard deviations, 0.45 ± 0.61) for the 50 clinical specimens

  14. EMBRYONIC DEVELOPMENT AND A QUANTITATIVE MODEL OF PROGRAMMED DNA ELIMINATION IN MESOCYCLOPS EDAX (S. A. FORBES, 1891) (COPEPODA: CYCLOPOIDA)

    PubMed Central

    Clower, Michelle K.; Holub, Ashton S.; Smith, Rebecca T.; Wyngaard, Grace A.

    2016-01-01

    The highly programmed fragmentation of chromosomes and elimination of large amounts of nuclear DNA from the presomatic cell lineages (i.e., chromatin diminution), occurs in the embryos of the freshwater zooplankton Mesocyclops edax (S. A. Forbes, 1891) (Crustacea: Copepoda). The somatic genome is reorganized and reduced to a size five times smaller even though the germline genome remains intact. We present the first comprehensive, quantitative model of DNA content throughout embryogenesis in a copepod that possesses embryonic DNA elimination. We used densitometric image analysis to measure the DNA content of polar bodies, germline and somatic nuclei, and excised DNA “droplets.” We report: 1) variable DNA contents of polar bodies, some of which do not contain the amount corresponding to the haploid germline genome size; 2) presence of pronuclei in newly laid embryo sacs; 3) gonomeric chromosomes in the second to fourth cleavage divisions and in the primordial germ cell and primordial endoderm cell during the fifth cleavage division; 4) timing of early embryonic cell stages, elimination of DNA, and divisions of the primordial germ cell and primordial endoderm cell at 22°C; and 5) persistence of a portion of the excised DNA “droplets” throughout embryogenesis. DNA elimination is a trait that spans multiple embryonic stages and a knowledge of the timing and variability of the associated cytological events with DNA elimination will promote the study of the molecular mechanisms involved in this trait. We propose the “genome yolk hypothesis” as a functional explanation for the persistence of the eliminated DNA that might serve as a resource during postdiminution cleavage divisions. PMID:27857452

  15. Selective muscle fiber loss and molecular compensation in mitochondrial myopathy due to TK2 deficiency.

    PubMed

    Vilà, Maya R; Villarroya, Joan; García-Arumí, Elena; Castellote, Amparo; Meseguer, Anna; Hirano, Michio; Roig, Manuel

    2008-04-15

    A 12-year-old patient with mitochondrial DNA (mtDNA) depletion syndrome due to TK2 gene mutations has been evaluated serially over the last 10 years. We observed progressive muscle atrophy with selective loss of type 2 muscle fibers and, despite severe depletion of mtDNA, normal activities of respiratory chain (RC) complexes and levels of COX II mitochondrial protein in the remaining muscle fibers. These results indicate that compensatory mechanisms account for the slow progression of the disease. Identification of factors that ameliorate mtDNA depletion may reveal new therapeutic targets for these devastating disorders.

  16. Evaluation of urine for Leishmania infantum DNA detection by real-time quantitative PCR.

    PubMed

    Pessoa-E-Silva, Rômulo; Mendonça Trajano-Silva, Lays Adrianne; Lopes da Silva, Maria Almerice; da Cunha Gonçalves-de-Albuquerque, Suênia; de Goes, Tayná Correia; Silva de Morais, Rayana Carla; Lopes de Melo, Fábio; de Paiva-Cavalcanti, Milena

    2016-12-01

    The availability of some sorts of biological samples which require noninvasive collection methods has led to an even greater interest in applying molecular biology on visceral leishmaniasis (VL) diagnosis, since these samples increase the safety and comfort of both patients and health professionals. In this context, this work aimed to evaluate the suitability of the urine as a specimen for Leishmania infantum kinetoplast DNA detection by real-time quantitative PCR (qPCR). Subsequent to the reproducibility analysis, the detection limit of the qPCR assay was set at 5fg (~0.025 parasites) per μL of urine. From the comparative analysis performed with a set of diagnostic criteria (serological and molecular reference tests), concordance value of 96.08% was obtained (VL-suspected and HIV/AIDS patients, n=51) (P>0.05). Kappa coefficient (95% CI) indicated a good agreement between the test and the set of diagnostic criteria (k=0.778±0.151). The detection of Leishmania DNA in urine by qPCR was possible in untreated individuals, and in those with or without suggestive renal impairment. Fast depletion of the parasite's DNA in urine after treatment (from one dose of meglumine antimoniate) was suggested by negative qPCR results, thus indicating it as a potential alternative specimen to follow up the efficacy of therapeutic approaches. Even when evaluated in a clinically heterogeneous set of patients, the urine showed good prospect as sample for VL diagnosis by qPCR, also indicating a good negative predictive value for untreated suspected patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Simple & Safe Genomic DNA Isolation.

    ERIC Educational Resources Information Center

    Moss, Robert; Solomon, Sondra

    1991-01-01

    A procedure for purifying DNA using either bacteria or rat liver is presented. Directions for doing a qualitative DNA assay using diphenylamine and a quantitative DNA assay using spectroscopy are included. (KR)

  18. Fluorescence-labeled methylation-sensitive amplified fragment length polymorphism (FL-MS-AFLP) analysis for quantitative determination of DNA methylation and demethylation status.

    PubMed

    Kageyama, Shinji; Shinmura, Kazuya; Yamamoto, Hiroko; Goto, Masanori; Suzuki, Koichi; Tanioka, Fumihiko; Tsuneyoshi, Toshihiro; Sugimura, Haruhiko

    2008-04-01

    The PCR-based DNA fingerprinting method called the methylation-sensitive amplified fragment length polymorphism (MS-AFLP) analysis is used for genome-wide scanning of methylation status. In this study, we developed a method of fluorescence-labeled MS-AFLP (FL-MS-AFLP) analysis by applying a fluorescence-labeled primer and fluorescence-detecting electrophoresis apparatus to the existing method of MS-AFLP analysis. The FL-MS-AFLP analysis enables quantitative evaluation of more than 350 random CpG loci per run. It was shown to allow evaluation of the differences in methylation level of blood DNA of gastric cancer patients and evaluation of hypermethylation and hypomethylation in DNA from gastric cancer tissue in comparison with adjacent non-cancerous tissue.

  19. Cytomegalovirus (CMV) DNA Quantitation in Bronchoalveolar Lavage Fluid From Hematopoietic Stem Cell Transplant Recipients With CMV Pneumonia

    PubMed Central

    Stevens-Ayers, Terry; Travi, Giovanna; Huang, Meei-Li; Cheng, Guang-Shing; Xie, Hu; Leisenring, Wendy; Erard, Veronique; Seo, Sachiko; Kimball, Louise; Corey, Lawrence; Pergam, Steven A; Jerome, Keith R.

    2017-01-01

    Abstract Background. Quantitative cytomegalovirus (CMV) DNA–specific polymerase chain reaction (PCR) analysis is widely used as a surveillance method for hematopoietic stem cell transplant (HCT) recipients. However, no CMV DNA threshold exists in bronchoalveolar lavage (BAL) to differentiate pneumonia from pulmonary shedding. Methods. We tested archived BAL fluid samples from 132 HCT recipients with CMV pneumonia and 139 controls (100 patients with non-CMV pneumonia, 18 with idiopathic pneumonia syndrome [IPS], and 21 who were asymptomatic) by quantitative CMV and β-globin DNA–specific PCR. Results. Patients with CMV pneumonia had higher median viral loads (3.9 log10 IU/mL; interquartile range [IQR], 2.6–6.0 log10 IU/mL) than controls (0 log10 IU/mL [IQR, 0–1.6 log10 IU/mL] for patients with non-CMV pneumonia, 0 log10 IU/mL [IQR, 0–1.6 log10 IU/mL] for patients with IPS, and 1.63 log10 IU/mL [IQR, 0–2.5 log10 IU/mL] for patients who were asymptomatic; P < .001 for all comparisons to patients with CMV pneumonia). Receiver operating characteristic curve analyses and predictive models identified a cutoff CMV DNA level of 500 IU/mL to differentiate between CMV pneumonia and pulmonary shedding, using current CMV pneumonia prevalence figures. However, different levels may be appropriate in settings of very high or low CMV pneumonia prevalence. The presence of pulmonary copathogens, radiographic presentation, or pulmonary hemorrhage did not alter predictive values. Conclusion. CMV DNA load in BAL can be used to differentiate CMV pneumonia from pulmonary shedding. PMID:28181657

  20. The impact of white matter fiber orientation in single-acquisition quantitative susceptibility mapping.

    PubMed

    Lancione, Marta; Tosetti, Michela; Donatelli, Graziella; Cosottini, Mirco; Costagli, Mauro

    2017-11-01

    The aim of this work was to assess the impact of tissue structural orientation on quantitative susceptibility mapping (QSM) reliability, and to provide a criterion to identify voxels in which measures of magnetic susceptibility (χ) are most affected by spatial orientation effects. Four healthy volunteers underwent 7-T magnetic resonance imaging (MRI). Multi-echo, gradient-echo sequences were used to obtain quantitative maps of frequency shift (FS) and χ. Information from diffusion tensor imaging (DTI) was used to investigate the relationship between tissue orientation and FS measures and QSM. After sorting voxels on the basis of their fractional anisotropy (FA), the variations in FS and χ values over tissue orientation were measured. Using a K-means clustering algorithm, voxels were separated into two groups depending on the variability of measures within each FA interval. The consistency of FS and QSM values, observed at low FA, was disrupted for FA > 0.6. The standard deviation of χ measured at high FA (0.0103 ppm) was nearly five times that at low FA (0.0022 ppm). This result was consistent through data across different head positions and for different brain regions considered separately, which confirmed that such behavior does not depend on structures with different bulk susceptibility oriented along particular angles. The reliability of single-orientation QSM anticorrelates with local FA. QSM provides replicable values with little variability in brain regions with FA < 0.6, but QSM should be interpreted cautiously in major and coherent fiber bundles, which are strongly affected by structural anisotropy and magnetic susceptibility anisotropy. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Quantitative analysis of the radiation error for aerial coiled-fiber-optic distributed temperature sensing deployments using reinforcing fabric as support structure

    NASA Astrophysics Data System (ADS)

    Sigmund, Armin; Pfister, Lena; Sayde, Chadi; Thomas, Christoph K.

    2017-06-01

    In recent years, the spatial resolution of fiber-optic distributed temperature sensing (DTS) has been enhanced in various studies by helically coiling the fiber around a support structure. While solid polyvinyl chloride tubes are an appropriate support structure under water, they can produce considerable errors in aerial deployments due to the radiative heating or cooling. We used meshed reinforcing fabric as a novel support structure to measure high-resolution vertical temperature profiles with a height of several meters above a meadow and within and above a small lake. This study aimed at quantifying the radiation error for the coiled DTS system and the contribution caused by the novel support structure via heat conduction. A quantitative and comprehensive energy balance model is proposed and tested, which includes the shortwave radiative, longwave radiative, convective, and conductive heat transfers and allows for modeling fiber temperatures as well as quantifying the radiation error. The sensitivity of the energy balance model to the conduction error caused by the reinforcing fabric is discussed in terms of its albedo, emissivity, and thermal conductivity. Modeled radiation errors amounted to -1.0 and 1.3 K at 2 m height but ranged up to 2.8 K for very high incoming shortwave radiation (1000 J s-1 m-2) and very weak winds (0.1 m s-1). After correcting for the radiation error by means of the presented energy balance, the root mean square error between DTS and reference air temperatures from an aspirated resistance thermometer or an ultrasonic anemometer was 0.42 and 0.26 K above the meadow and the lake, respectively. Conduction between reinforcing fabric and fiber cable had a small effect on fiber temperatures (< 0.18 K). Only for locations where the plastic rings that supported the reinforcing fabric touched the fiber-optic cable were significant temperature artifacts of up to 2.5 K observed. Overall, the reinforcing fabric offers several advantages over

  2. DNA recognition by peptide nucleic acid-modified PCFs: from models to real samples

    NASA Astrophysics Data System (ADS)

    Selleri, S.; Coscelli, E.; Poli, F.; Passaro, D.; Cucinotta, A.; Lantano, C.; Corradini, R.; Marchelli, R.

    2010-04-01

    The increased concern, emerged in the last few years, on food products safety has stimulated the research on new techniques for traceability of raw food materials. DNA analysis is one of the most powerful tools for the certification of food quality, and it is presently performed through the polymerase chain reaction technique. Photonic crystal fibers, due to the presence of an array of air holes running along their length, can be exploited for performing DNA recognition by derivatizing hole surfaces and checking hybridization of complementary nucledotide chains in the sample. In this paper the application of a suspended core photonic crystal fiber in the recognition of DNA sequences is discussed. The fiber is characterized in terms of electromagnetic properties by means of a full-vector modal solver based on the finite element method. Then, the performances of the fiber in the recognition of mall synthetic oligonucleotides are discussed, together with a test of the possibility to extend this recognition to samples of DNA of applicative interest, such as olive leaves.

  3. Quantitative Proteomics Reveals Dynamic Interactions of the Minichromosome Maintenance Complex (MCM) in the Cellular Response to Etoposide Induced DNA Damage.

    PubMed

    Drissi, Romain; Dubois, Marie-Line; Douziech, Mélanie; Boisvert, François-Michel

    2015-07-01

    The minichromosome maintenance complex (MCM) proteins are required for processive DNA replication and are a target of S-phase checkpoints. The eukaryotic MCM complex consists of six proteins (MCM2-7) that form a heterohexameric ring with DNA helicase activity, which is loaded on chromatin to form the pre-replication complex. Upon entry in S phase, the helicase is activated and opens the DNA duplex to recruit DNA polymerases at the replication fork. The MCM complex thus plays a crucial role during DNA replication, but recent work suggests that MCM proteins could also be involved in DNA repair. Here, we employed a combination of stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative proteomics with immunoprecipitation of green fluorescent protein-tagged fusion proteins to identify proteins interacting with the MCM complex, and quantify changes in interactions in response to DNA damage. Interestingly, the MCM complex showed very dynamic changes in interaction with proteins such as Importin7, the histone chaperone ASF1, and the Chromodomain helicase DNA binding protein 3 (CHD3) following DNA damage. These changes in interactions were accompanied by an increase in phosphorylation and ubiquitination on specific sites on the MCM proteins and an increase in the co-localization of the MCM complex with γ-H2AX, confirming the recruitment of these proteins to sites of DNA damage. In summary, our data indicate that the MCM proteins is involved in chromatin remodeling in response to DNA damage. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Long-Term Follow-up of HPV Infection Using Urine and Cervical Quantitative HPV DNA Testing.

    PubMed

    Vorsters, Alex; Van Keer, Severien; Biesmans, Samantha; Hens, Annick; De Coster, Ilse; Goossens, Herman; Ieven, Margareta; Van Damme, Pierre

    2016-05-17

    The link between infection with high-risk human papillomavirus (hrHPV) and cervical cancer has been clearly demonstrated. Virological end-points showing the absence of persistent HPV infection are now accepted as a way of monitoring the impact of prophylactic vaccination programs and therapeutic vaccine trials. This study investigated the use of urine samples, which can be collected by self-sampling at home, instead of cervical samples for follow-up of an HPV intervention trial. Eighteen initially HPV DNA-positive women participating in an HPV therapeutic vaccine trial were monitored during a three-year follow-up period. A total of 172 urine samples and 85 cervical samples were collected. We obtained a paired urine sample for each of the 85 cervical samples by recovering urine samples from six monthly gynaecological examinations. We performed a small pilot study in which the participating women used a urine collection device at home and returned their urine sample to the laboratory by mail. All samples were analyzed using quantitative real-time HPV DNA PCR. A good association (κ value of 0.65) was found between the presence of HPV DNA in urine and a subsequent cervical sample. Comparisons of the number of HPV DNA copies in urine and paired cervical samples revealed a significant Spearman rho of 0.676. This correlation was superior in women with severe lesions. The HPV DNA results of the small pilot study based on self-collected urine samples at home are consistent with previous and subsequent urine and/or cervical results. We demonstrated that urine sampling may be a valid alternative to cervical samples for the follow-up of HPV intervention trials or programs. The potential clinical value of urine viral load monitoring should be further investigated.

  5. Long-Term Follow-up of HPV Infection Using Urine and Cervical Quantitative HPV DNA Testing

    PubMed Central

    Vorsters, Alex; Van Keer, Severien; Biesmans, Samantha; Hens, Annick; De Coster, Ilse; Goossens, Herman; Ieven, Margareta; Van Damme, Pierre

    2016-01-01

    The link between infection with high-risk human papillomavirus (hrHPV) and cervical cancer has been clearly demonstrated. Virological end-points showing the absence of persistent HPV infection are now accepted as a way of monitoring the impact of prophylactic vaccination programs and therapeutic vaccine trials. This study investigated the use of urine samples, which can be collected by self-sampling at home, instead of cervical samples for follow-up of an HPV intervention trial. Eighteen initially HPV DNA-positive women participating in an HPV therapeutic vaccine trial were monitored during a three-year follow-up period. A total of 172 urine samples and 85 cervical samples were collected. We obtained a paired urine sample for each of the 85 cervical samples by recovering urine samples from six monthly gynaecological examinations. We performed a small pilot study in which the participating women used a urine collection device at home and returned their urine sample to the laboratory by mail. All samples were analyzed using quantitative real-time HPV DNA PCR. A good association (κ value of 0.65) was found between the presence of HPV DNA in urine and a subsequent cervical sample. Comparisons of the number of HPV DNA copies in urine and paired cervical samples revealed a significant Spearman rho of 0.676. This correlation was superior in women with severe lesions. The HPV DNA results of the small pilot study based on self-collected urine samples at home are consistent with previous and subsequent urine and/or cervical results. We demonstrated that urine sampling may be a valid alternative to cervical samples for the follow-up of HPV intervention trials or programs. The potential clinical value of urine viral load monitoring should be further investigated. PMID:27196899

  6. A Hybrid DNA Extraction Method for the Qualitative and Quantitative Assessment of Bacterial Communities from Poultry Production Samples

    PubMed Central

    Rothrock, Michael J.; Hiett, Kelli L.; Gamble, John; Caudill, Andrew C.; Cicconi-Hogan, Kellie M.; Caporaso, J. Gregory

    2014-01-01

    The efficacy of DNA extraction protocols can be highly dependent upon both the type of sample being investigated and the types of downstream analyses performed. Considering that the use of new bacterial community analysis techniques (e.g., microbiomics, metagenomics) is becoming more prevalent in the agricultural and environmental sciences and many environmental samples within these disciplines can be physiochemically and microbiologically unique (e.g., fecal and litter/bedding samples from the poultry production spectrum), appropriate and effective DNA extraction methods need to be carefully chosen. Therefore, a novel semi-automated hybrid DNA extraction method was developed specifically for use with environmental poultry production samples. This method is a combination of the two major types of DNA extraction: mechanical and enzymatic. A two-step intense mechanical homogenization step (using bead-beating specifically formulated for environmental samples) was added to the beginning of the “gold standard” enzymatic DNA extraction method for fecal samples to enhance the removal of bacteria and DNA from the sample matrix and improve the recovery of Gram-positive bacterial community members. Once the enzymatic extraction portion of the hybrid method was initiated, the remaining purification process was automated using a robotic workstation to increase sample throughput and decrease sample processing error. In comparison to the strict mechanical and enzymatic DNA extraction methods, this novel hybrid method provided the best overall combined performance when considering quantitative (using 16S rRNA qPCR) and qualitative (using microbiomics) estimates of the total bacterial communities when processing poultry feces and litter samples. PMID:25548939

  7. Fiber estimation and tractography in diffusion MRI: Development of simulated brain images and comparison of multi-fiber analysis methods at clinical b-values

    PubMed Central

    Wilkins, Bryce; Lee, Namgyun; Gajawelli, Niharika; Law, Meng; Leporé, Natasha

    2015-01-01

    Advances in diffusion-weighted magnetic resonance imaging (DW-MRI) have led to many alternative diffusion sampling strategies and analysis methodologies. A common objective among methods is estimation of white matter fiber orientations within each voxel, as doing so permits in-vivo fiber-tracking and the ability to study brain connectivity and networks. Knowledge of how DW-MRI sampling schemes affect fiber estimation accuracy, and consequently tractography and the ability to recover complex white-matter pathways, as well as differences between results due to choice of analysis method and which method(s) perform optimally for specific data sets, all remain important problems, especially as tractography-based studies become common. In this work we begin to address these concerns by developing sets of simulated diffusion-weighted brain images which we then use to quantitatively evaluate the performance of six DW-MRI analysis methods in terms of estimated fiber orientation accuracy, false-positive (spurious) and false-negative (missing) fiber rates, and fiber-tracking. The analysis methods studied are: 1) a two-compartment “ball and stick” model (BSM) (Behrens et al., 2003); 2) a non-negativity constrained spherical deconvolution (CSD) approach (Tournier et al., 2007); 3) analytical q-ball imaging (QBI) (Descoteaux et al., 2007); 4) q-ball imaging with Funk-Radon and Cosine Transform (FRACT) (Haldar and Leahy, 2013); 5) q-ball imaging within constant solid angle (CSA) (Aganj et al., 2010); and 6) a generalized Fourier transform approach known as generalized q-sampling imaging (GQI) (Yeh et al., 2010). We investigate these methods using 20, 30, 40, 60, 90 and 120 evenly distributed q-space samples of a single shell, and focus on a signal-to-noise ratio (SNR = 18) and diffusion-weighting (b = 1000 s/mm2) common to clinical studies. We found the BSM and CSD methods consistently yielded the least fiber orientation error and simultaneously greatest detection rate of

  8. Fiber estimation and tractography in diffusion MRI: development of simulated brain images and comparison of multi-fiber analysis methods at clinical b-values.

    PubMed

    Wilkins, Bryce; Lee, Namgyun; Gajawelli, Niharika; Law, Meng; Leporé, Natasha

    2015-04-01

    Advances in diffusion-weighted magnetic resonance imaging (DW-MRI) have led to many alternative diffusion sampling strategies and analysis methodologies. A common objective among methods is estimation of white matter fiber orientations within each voxel, as doing so permits in-vivo fiber-tracking and the ability to study brain connectivity and networks. Knowledge of how DW-MRI sampling schemes affect fiber estimation accuracy, tractography and the ability to recover complex white-matter pathways, differences between results due to choice of analysis method, and which method(s) perform optimally for specific data sets, all remain important problems, especially as tractography-based studies become common. In this work, we begin to address these concerns by developing sets of simulated diffusion-weighted brain images which we then use to quantitatively evaluate the performance of six DW-MRI analysis methods in terms of estimated fiber orientation accuracy, false-positive (spurious) and false-negative (missing) fiber rates, and fiber-tracking. The analysis methods studied are: 1) a two-compartment "ball and stick" model (BSM) (Behrens et al., 2003); 2) a non-negativity constrained spherical deconvolution (CSD) approach (Tournier et al., 2007); 3) analytical q-ball imaging (QBI) (Descoteaux et al., 2007); 4) q-ball imaging with Funk-Radon and Cosine Transform (FRACT) (Haldar and Leahy, 2013); 5) q-ball imaging within constant solid angle (CSA) (Aganj et al., 2010); and 6) a generalized Fourier transform approach known as generalized q-sampling imaging (GQI) (Yeh et al., 2010). We investigate these methods using 20, 30, 40, 60, 90 and 120 evenly distributed q-space samples of a single shell, and focus on a signal-to-noise ratio (SNR = 18) and diffusion-weighting (b = 1000 s/mm(2)) common to clinical studies. We found that the BSM and CSD methods consistently yielded the least fiber orientation error and simultaneously greatest detection rate of fibers. Fiber detection

  9. Widely tunable mid-infrared fiber laser source based on soliton self-frequency shift in microstructured tellurite fiber.

    PubMed

    Koptev, M Yu; Anashkina, E A; Andrianov, A V; Dorofeev, V V; Kosolapov, A F; Muravyev, S V; Kim, A V

    2015-09-01

    A turnkey fiber laser source generating high-quality pulses with a spectral sech shape and Fourier transform-limited duration of order 100 fs widely tunable in the 1.6-2.65 μm range is presented. It is based on Raman soliton self-frequency shifting in the suspended-core microstructured TeO2-WO3-La2O3 glass fiber pumped by a hybrid Er/Tm fiber system. Detailed experimental and theoretical studies, which are in a very good agreement, of nonlinear pulse dynamics in the tellurite fiber with carefully measured and calculated parameters are reported. A quantitatively verified numerical model is used to show Raman soliton shift in the range well beyond 3 μm for increased pump energy.

  10. Low-residue and low-fiber diets in gastrointestinal disease management.

    PubMed

    Vanhauwaert, Erika; Matthys, Christophe; Verdonck, Lies; De Preter, Vicky

    2015-11-01

    Recently, low-residue diets were removed from the American Academy of Nutrition and Dietetics' Nutrition Care Manual due to the lack of a scientifically accepted quantitative definition and the unavailability of a method to estimate the amount of food residue produced. This narrative review focuses on defining the similarities and/or discrepancies between low-residue and low-fiber diets and on the diagnostic and therapeutic values of these diets in gastrointestinal disease management. Diagnostically, a low-fiber/low-residue diet is used in bowel preparation. A bowel preparation is a cleansing of the intestines of fecal matter and secretions conducted before a diagnostic procedure. Therapeutically, a low-fiber/low-residue diet is part of the treatment of acute relapses in different bowel diseases. The available evidence on low-residue and low-fiber diets is summarized. The main findings showed that within human disease research, the terms "low residue" and "low fiber" are used interchangeably, and information related to the quantity of residue in the diet usually refers to the amount of fiber. Low-fiber/low-residue diets are further explored in both diagnostic and therapeutic situations. On the basis of this literature review, the authors suggest redefining a low-residue diet as a low-fiber diet and to quantitatively define a low-fiber diet as a diet with a maximum of 10 g fiber/d. A low-fiber diet instead of a low-residue diet is recommended as a diagnostic value or as specific therapy for gastrointestinal conditions. © 2015 American Society for Nutrition.

  11. Guilty by his fibers: suspect confession versus textile fibers reconstructed simulation.

    PubMed

    Suzuki, Shinichi; Higashikawa, Yoshiyasu; Sugita, Ritsuko; Suzuki, Yasuhiro

    2009-08-10

    contact with the victim was demonstrated by our simulations. During the control trial, traditional forensic traces like DNA or fingerprints were mute regarding the suspect's says. At the opposite, the fiber intelligence was highly significant to explain the suspect's behavior at the crime scene. The fiber results and simulations were presented at the court and the man was subsequently found guilty not only of theft and trespassing but also murder.

  12. Mapping quantitative trait loci for lint yield and fiber quality across environments in a Gossypium hirsutum × Gossypium barbadense backcross inbred line population.

    PubMed

    Yu, Jiwen; Zhang, Ke; Li, Shuaiyang; Yu, Shuxun; Zhai, Honghong; Wu, Man; Li, Xingli; Fan, Shuli; Song, Meizhen; Yang, Daigang; Li, Yunhai; Zhang, Jinfa

    2013-01-01

    Identification of stable quantitative trait loci (QTLs) across different environments and mapping populations is a prerequisite for marker-assisted selection (MAS) for cotton yield and fiber quality. To construct a genetic linkage map and to identify QTLs for fiber quality and yield traits, a backcross inbred line (BIL) population of 146 lines was developed from a cross between Upland cotton (Gossypium hirsutum) and Egyptian cotton (Gossypium barbadense) through two generations of backcrossing using Upland cotton as the recurrent parent followed by four generations of self pollination. The BIL population together with its two parents was tested in five environments representing three major cotton production regions in China. The genetic map spanned a total genetic distance of 2,895 cM and contained 392 polymorphic SSR loci with an average genetic distance of 7.4 cM per marker. A total of 67 QTLs including 28 for fiber quality and 39 for yield and its components were detected on 23 chromosomes, each of which explained 6.65-25.27% of the phenotypic variation. Twenty-nine QTLs were located on the At subgenome originated from a cultivated diploid cotton, while 38 were on the Dt subgenome from an ancestor that does not produce spinnable fibers. Of the eight common QTLs (12%) detected in more than two environments, two were for fiber quality traits including one for fiber strength and one for uniformity, and six for yield and its components including three for lint yield, one for seedcotton yield, one for lint percentage and one for boll weight. QTL clusters for the same traits or different traits were also identified. This research represents one of the first reports using a permanent advanced backcross inbred population of an interspecific hybrid population to identify QTLs for fiber quality and yield traits in cotton across diverse environments. It provides useful information for transferring desirable genes from G. barbadense to G. hirsutum using MAS.

  13. Analytical Validation of Quantitative Real-Time PCR Methods for Quantification of Trypanosoma cruzi DNA in Blood Samples from Chagas Disease Patients

    PubMed Central

    Ramírez, Juan Carlos; Cura, Carolina Inés; Moreira, Otacilio da Cruz; Lages-Silva, Eliane; Juiz, Natalia; Velázquez, Elsa; Ramírez, Juan David; Alberti, Anahí; Pavia, Paula; Flores-Chávez, María Delmans; Muñoz-Calderón, Arturo; Pérez-Morales, Deyanira; Santalla, José; Guedes, Paulo Marcos da Matta; Peneau, Julie; Marcet, Paula; Padilla, Carlos; Cruz-Robles, David; Valencia, Edward; Crisante, Gladys Elena; Greif, Gonzalo; Zulantay, Inés; Costales, Jaime Alfredo; Alvarez-Martínez, Miriam; Martínez, Norma Edith; Villarroel, Rodrigo; Villarroel, Sandro; Sánchez, Zunilda; Bisio, Margarita; Parrado, Rudy; Galvão, Lúcia Maria da Cunha; da Câmara, Antonia Cláudia Jácome; Espinoza, Bertha; de Noya, Belkisyole Alarcón; Puerta, Concepción; Riarte, Adelina; Diosque, Patricio; Sosa-Estani, Sergio; Guhl, Felipe; Ribeiro, Isabela; Aznar, Christine; Britto, Constança; Yadón, Zaida Estela; Schijman, Alejandro G.

    2015-01-01

    An international study was performed by 26 experienced PCR laboratories from 14 countries to assess the performance of duplex quantitative real-time PCR (qPCR) strategies on the basis of TaqMan probes for detection and quantification of parasitic loads in peripheral blood samples from Chagas disease patients. Two methods were studied: Satellite DNA (SatDNA) qPCR and kinetoplastid DNA (kDNA) qPCR. Both methods included an internal amplification control. Reportable range, analytical sensitivity, limits of detection and quantification, and precision were estimated according to international guidelines. In addition, inclusivity and exclusivity were estimated with DNA from stocks representing the different Trypanosoma cruzi discrete typing units and Trypanosoma rangeli and Leishmania spp. Both methods were challenged against 156 blood samples provided by the participant laboratories, including samples from acute and chronic patients with varied clinical findings, infected by oral route or vectorial transmission. kDNA qPCR showed better analytical sensitivity than SatDNA qPCR with limits of detection of 0.23 and 0.70 parasite equivalents/mL, respectively. Analyses of clinical samples revealed a high concordance in terms of sensitivity and parasitic loads determined by both SatDNA and kDNA qPCRs. This effort is a major step toward international validation of qPCR methods for the quantification of T. cruzi DNA in human blood samples, aiming to provide an accurate surrogate biomarker for diagnosis and treatment monitoring for patients with Chagas disease. PMID:26320872

  14. Fiber architecture in remodeled myocardium revealed with a quantitative diffusion CMR tractography framework and histological validation.

    PubMed

    Mekkaoui, Choukri; Huang, Shuning; Chen, Howard H; Dai, Guangping; Reese, Timothy G; Kostis, William J; Thiagalingam, Aravinda; Maurovich-Horvat, Pal; Ruskin, Jeremy N; Hoffmann, Udo; Jackowski, Marcel P; Sosnovik, David E

    2012-10-12

    The study of myofiber reorganization in the remote zone after myocardial infarction has been performed in 2D. Microstructural reorganization in remodeled hearts, however, can only be fully appreciated by considering myofibers as continuous 3D entities. The aim of this study was therefore to develop a technique for quantitative 3D diffusion CMR tractography of the heart, and to apply this method to quantify fiber architecture in the remote zone of remodeled hearts. Diffusion Tensor CMR of normal human, sheep, and rat hearts, as well as infarcted sheep hearts was performed ex vivo. Fiber tracts were generated with a fourth-order Runge-Kutta integration technique and classified statistically by the median, mean, maximum, or minimum helix angle (HA) along the tract. An index of tract coherence was derived from the relationship between these HA statistics. Histological validation was performed using phase-contrast microscopy. In normal hearts, the subendocardial and subepicardial myofibers had a positive and negative HA, respectively, forming a symmetric distribution around the midmyocardium. However, in the remote zone of the infarcted hearts, a significant positive shift in HA was observed. The ratio between negative and positive HA variance was reduced from 0.96 ± 0.16 in normal hearts to 0.22 ± 0.08 in the remote zone of the remodeled hearts (p < 0.05). This was confirmed histologically by the reduction of HA in the subepicardium from -52.03° ± 2.94° in normal hearts to -37.48° ± 4.05° in the remote zone of the remodeled hearts (p < 0.05). A significant reorganization of the 3D fiber continuum is observed in the remote zone of remodeled hearts. The positive (rightward) shift in HA in the remote zone is greatest in the subepicardium, but involves all layers of the myocardium. Tractography-based quantification, performed here for the first time in remodeled hearts, may provide a framework for assessing regional changes in the left ventricle following

  15. Characterization of copy numbers of 16S rDNA and 16S rRNA of Candidatus Liberibacter asiaticus and the implication in detection in planta using quantitative PCR.

    PubMed

    Kim, Jeong-Soon; Wang, Nian

    2009-03-06

    Citrus Huanglongbing (HLB) is one of the most devastating diseases on citrus and is associated with Candidatus Liberibacter spp.. The pathogens are phloem limited and have not been cultured in vitro. The current management strategy of HLB is to remove infected citrus trees and reduce psyllid populations with insecticides to prevent the spreading. This strategy requires sensitive and reliable diagnostic methods for early detection. We investigated the copy numbers of the 16S rDNA and 16S rRNA of the HLB pathogen and the implication of improving the diagnosis of HLB for early detection using Quantitative PCR. We compared the detection of HLB with different Quantitative PCR based methods with primers/probe targeting either 16S rDNA, beta-operon DNA, 16S rRNA, or beta-operon RNA. The 16S rDNA copy number of Ca. Liberibacter asiaticus was estimated to be three times of that of the beta-operon region, thus allowing detection of lower titer of Ca. L. asiaticus. Quantitative reverse transcriptional PCR (QRT-PCR) indicated that the 16S rRNA averaged 7.83 times more than that of 16S rDNA for the same samples. Dilution analysis also indicates that QRT-PCR targeting 16S rRNA is 10 time more sensitive than QPCR targeting 16S rDNA. Thus QRT-PCR was able to increase the sensitivity of detection by targeting 16S rRNA. Our result indicates that Candidatus Liberibacter asiaticus contains three copies of 16S rDNA. The copy number of 16S rRNA of Ca. L. asiaticus in planta averaged about 7.8 times of 16S rDNA for the same set of samples tested in this study. Detection sensitivity of HLB could be improved through the following approaches: using 16S rDNA based primers/probe in the QPCR assays; and using QRT-PCR assays targeting 16S rRNA.

  16. Determination of total dietary fiber (CODEX definition) by enzymatic-gravimetric method and liquid chromatography: collaborative study.

    PubMed

    McCleary, Barry V; DeVries, Jonathan W; Rader, Jeanne I; Cohen, Gerald; Prosky, Leon; Mugford, David C; Champ, Martine; Okuma, Kazuhiro

    2010-01-01

    A method for the determination of total dietary fiber (TDF), as defined by the CODEX Alimentarius, was validated in foods. Based upon the principles of AOAC Official Methods 985.29, 991.43, 2001.03, and 2002.02, the method quantitates high- and low-molecular-weight dietary fiber (HMWDF and LMWDF, respectively). In 2007, McCleary described a method of extended enzymatic digestion at 37 degrees C to simulate human intestinal digestion followed by gravimetric isolation and quantitation of HMWDF and the use of LC to quantitate low-molecular-weight soluble dietary fiber (LMWSDF). The method thus quantitates the complete range of dietary fiber components from resistant starch (by utilizing the digestion conditions of AOAC Method 2002.02) to digestion resistant oligosaccharides (by incorporating the deionization and LC procedures of AOAC Method 2001.03). The method was evaluated through an AOAC collaborative study. Eighteen laboratories participated with 16 laboratories returning valid assay data for 16 test portions (eight blind duplicates) consisting of samples with a range of traditional dietary fiber, resistant starch, and nondigestible oligosaccharides. The dietary fiber content of the eight test pairs ranged from 11.57 to 47.83%. Digestion of samples under the conditions of AOAC Method 2002.02 followed by the isolation and gravimetric procedures of AOAC Methods 985.29 and 991.43 results in quantitation of HMWDF. The filtrate from the quantitation of HMWDF is concentrated, deionized, concentrated again, and analyzed by LC to determine the LMWSDF, i.e., all nondigestible oligosaccharides of degree of polymerization > or =3. TDF is calculated as the sum of HMWDF and LMWSDF. Repeatability standard deviations (Sr) ranged from 0.41 to 1.43, and reproducibility standard deviations (S(R)) ranged from 1.18 to 5.44. These results are comparable to other official dietary fiber methods, and the method is recommended for adoption as Official First Action.

  17. Target-Specific Assay for Rapid and Quantitative Detection of Mycobacterium chimaera DNA

    PubMed Central

    Zozaya-Valdés, Enrique; Porter, Jessica L.; Coventry, John; Fyfe, Janet A. M.; Carter, Glen P.; Gonçalves da Silva, Anders; Schultz, Mark B.; Seemann, Torsten; Johnson, Paul D. R.; Stewardson, Andrew J.; Bastian, Ivan; Roberts, Sally A.; Howden, Benjamin P.; Williamson, Deborah A.

    2017-01-01

    ABSTRACT Mycobacterium chimaera is an opportunistic environmental mycobacterium belonging to the Mycobacterium avium-M. intracellulare complex. Although most commonly associated with pulmonary disease, there has been growing awareness of invasive M. chimaera infections following cardiac surgery. Investigations suggest worldwide spread of a specific M. chimaera clone, associated with contaminated hospital heater-cooler units used during the surgery. Given the global dissemination of this clone, its potential to cause invasive disease, and the laboriousness of current culture-based diagnostic methods, there is a pressing need to develop rapid and accurate diagnostic assays specific for M. chimaera. Here, we assessed 354 mycobacterial genome sequences and confirmed that M. chimaera is a phylogenetically coherent group. In silico comparisons indicated six DNA regions present only in M. chimaera. We targeted one of these regions and developed a TaqMan quantitative PCR (qPCR) assay for M. chimaera with a detection limit of 100 CFU/ml in whole blood spiked with bacteria. In vitro screening against DNA extracted from 40 other mycobacterial species and 22 bacterial species from 21 diverse genera confirmed the in silico-predicted specificity for M. chimaera. Screening 33 water samples from heater-cooler units with this assay highlighted the increased sensitivity of PCR compared to culture, with 15 of 23 culture-negative samples positive by M. chimaera qPCR. We have thus developed a robust molecular assay that can be readily and rapidly deployed to screen clinical and environmental specimens for M. chimaera. PMID:28381604

  18. An atomistic geometrical model of the B-DNA configuration for DNA-radiation interaction simulations

    NASA Astrophysics Data System (ADS)

    Bernal, M. A.; Sikansi, D.; Cavalcante, F.; Incerti, S.; Champion, C.; Ivanchenko, V.; Francis, Z.

    2013-12-01

    In this paper, an atomistic geometrical model for the B-DNA configuration is explained. This model accounts for five organization levels of the DNA, up to the 30 nm chromatin fiber. However, fragments of this fiber can be used to construct the whole genome. The algorithm developed in this work is capable to determine which is the closest atom with respect to an arbitrary point in space. It can be used in any application in which a DNA geometrical model is needed, for instance, in investigations related to the effects of ionizing radiations on the human genetic material. Successful consistency checks were carried out to test the proposed model. Catalogue identifier: AEPZ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEPZ_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1245 No. of bytes in distributed program, including test data, etc.: 6574 Distribution format: tar.gz Programming language: FORTRAN. Computer: Any. Operating system: Multi-platform. RAM: 2 Gb Classification: 3. Nature of problem: The Monte Carlo method is used to simulate the interaction of ionizing radiation with the human genetic material in order to determine DNA damage yields per unit absorbed dose. To accomplish this task, an algorithm to determine if a given energy deposition lies within a given target is needed. This target can be an atom or any other structure of the genetic material. Solution method: This is a stand-alone subroutine describing an atomic-resolution geometrical model of the B-DNA configuration. It is able to determine the closest atom to an arbitrary point in space. This model accounts for five organization levels of the human genetic material, from the nucleotide pair up to the 30 nm chromatin fiber. This subroutine carries out a series of coordinate transformations

  19. Fiber tractography using machine learning.

    PubMed

    Neher, Peter F; Côté, Marc-Alexandre; Houde, Jean-Christophe; Descoteaux, Maxime; Maier-Hein, Klaus H

    2017-09-01

    We present a fiber tractography approach based on a random forest classification and voting process, guiding each step of the streamline progression by directly processing raw diffusion-weighted signal intensities. For comparison to the state-of-the-art, i.e. tractography pipelines that rely on mathematical modeling, we performed a quantitative and qualitative evaluation with multiple phantom and in vivo experiments, including a comparison to the 96 submissions of the ISMRM tractography challenge 2015. The results demonstrate the vast potential of machine learning for fiber tractography. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Glucose-Sensitive Hydrogel Optical Fibers Functionalized with Phenylboronic Acid.

    PubMed

    Yetisen, Ali K; Jiang, Nan; Fallahi, Afsoon; Montelongo, Yunuen; Ruiz-Esparza, Guillermo U; Tamayol, Ali; Zhang, Yu Shrike; Mahmood, Iram; Yang, Su-A; Kim, Ki Su; Butt, Haider; Khademhosseini, Ali; Yun, Seok-Hyun

    2017-04-01

    Hydrogel optical fibers are utilized for continuous glucose sensing in real time. The hydrogel fibers consist of poly(acrylamide-co-poly(ethylene glycol) diacrylate) cores functionalized with phenylboronic acid. The complexation of the phenylboronic acid and cis-diol groups of glucose enables reversible changes of the hydrogel fiber diameter. The analyses of light propagation loss allow for quantitative glucose measurements within the physiological range. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Direct and quantitative detection of HIV-1 RNA in human plasma with a branched DNA signal amplification assay.

    PubMed

    Urdea, M S; Wilber, J C; Yeghiazarian, T; Todd, J A; Kern, D G; Fong, S J; Besemer, D; Hoo, B; Sheridan, P J; Kokka, R

    1993-11-01

    To determine the relative effect of sample matrix on the quantitation of HIV RNA in plasma. Two HIV-positive specimens were diluted into five and 10 different HIV-negative plasma samples, respectively. Branched DNA signal amplification technology and reverse-transcriptase polymerase chain reaction were used to measure the viral load. In one sample the viral load by polymerase chain reaction ranged from undetectable to 1.9 x 10(5) copies/ml, and the branched DNA results ranged from 2.6 x 10(4) to 4.2 x 10(4) HIV RNA equivalent/ml. In the other sample the corresponding figures were 6.3 x 10(4) to 5.5 x 10(5) copies/ml and 5.7 x 10(4) to 7.5 x 10(4) HIV RNA equivalents/ml. In contrast to reverse-transcriptase polymerase chain reaction the branched DNA signal amplification assay does not require a separate extraction step or enzymatic amplification of the target. Therefore this measurement is less affected by the sample matrix and the signal generated is directly proportional to the viral load.

  2. Dynamic evolution of the spectrum of long-period fiber Bragg gratings fabricated from hydrogen-loaded optical fiber by ultraviolet laser irradiation.

    PubMed

    Fujita, Keio; Masuda, Yuji; Nakayama, Keisuke; Ando, Maki; Sakamoto, Kenji; Mohri, Jun-pei; Yamauchi, Makoto; Kimura, Masanori; Mizutani, Yasuo; Kimura, Susumu; Yokouchi, Takashi; Suzaki, Yoshifumi; Ejima, Seiki

    2005-11-20

    Long-period fiber Bragg gratings fabricated by exposure of hydrogen-loaded fiber to UV laser light exhibit large-scale dynamic evolution for approximately two weeks at room temperature. During this time two distinct features show up in their spectrum: a large upswing in wavelength and a substantial deepening of the transmission minimum. The dynamic evolution of the transmission spectrum is explained quantitatively by use of Malo's theory of UV-induced quenching [Electron. Lett. 30, 442 (1994)] followed by refilling of hydrogen in the fiber core and the theory of hydrogen diffusion in the fiber material. The amount of hydrogen quenched by the UV irradiation is 6% of the loaded hydrogen.

  3. Quantitation by flow microfluorometry of total cellular DNA in Acanthamoeba

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coulson, P.B.; Tyndall, R.

    1978-01-01

    The DNA content of five speciea of Acanthamoeba was determined by flow microfluorometry. Acanthamoeba castellanii (AC-30), acanthamoeba polyphaga (APG and P-23), acanthamoeba rhysodes, acanthamoeba culbertsoni (A-1), and acanthamoeba royreba were grown in a casitone based medium 24 to 48 hr. The trophozoites were harvested, fixed in 70% ethanol (acidified), pretreated with RNase, stained with propidium diiodide, and evaluated for DNA-bound fluorescence. All species tested had DNA values between 2.0 to 5.0 pg/cell. These results placed DNA/cell values of Acanthamoeba slightly lower than DNA/cell values of other eucaryotic cells and much lower than Amoeba proteus values. These results indicate that FMFmore » may be a useful adjunct in distinguishing Acanthamoeba cells from either eucaryotic cells or some other amoeba. However, differences in DNA/cell between species of Acanthamoeba are small and would not be useful in identification of species.« less

  4. Pulmonary and pleural responses in Fischer 344 rats following short-term inhalation of a synthetic vitreous fiber. I. Quantitation of lung and pleural fiber burdens.

    PubMed

    Gelzleichter, T R; Bermudez, E; Mangum, J B; Wong, B A; Everitt, J I; Moss, O R

    1996-03-01

    The pleura is an important target tissue of fiber-induced disease, although it is not known whether fibers must be in direct contact with pleural cells to exert pathologic effects. In the present study, we determined the kinetics of fiber movement into pleural tissues of rats following inhalation of RCF-1, a ceramic fiber previously shown to induce neoplasms in the lung and pleura of rats. Male Fischer 344 rats were exposed by nose-only inhalation to RCF-1 at 89 mg/m3 (2645 WHO fibers/cc), 6 hr/day for 5 consecutive days. On Days 5 and 32, thoracic tissues were analyzed to determine pulmonary and pleural fiber burdens. Mean fiber counts were 22 x 10(6)/lung (25 x 10(3)/pleura) at Day 5 and 18 x 10(6)/lung (16 x 10(3)/pleura) at Day 32. Similar geometric mean lengths (GML) and diameters (GMD) of pulmonary fiber burdens were observed at both time points. Values were 5 microns for GML (geometric standard deviation GSD approximately 2.3) and 0.3 micron for GMD (GSD approximately 1.9), with correlations between length and diameter (tau) of 0.2-0.3. Size distributions of pleural fiber burdens at both time points were approximately 1.5 microns GML (GSD approximately 2.0) and 0.09 micron GMD (GSD approximately 1.5; tau approximately 0.2-0.5). Few fibers longer than 5 microns were observed at either time point. These findings demonstrate that fibers can rapidly translocate to pleural tissues. However, only short, thin (< 5 microns in length) fibers could be detected over the 32-day time course of the experiment.

  5. Online quantitative monitoring of live cell engineered cartilage growth using diffuse fiber-optic Raman spectroscopy.

    PubMed

    Bergholt, Mads S; Albro, Michael B; Stevens, Molly M

    2017-09-01

    Tissue engineering (TE) has the potential to improve the outcome for patients with osteoarthritis (OA). The successful clinical translation of this technique as part of a therapy requires the ability to measure extracellular matrix (ECM) production of engineered tissues in vitro, in order to ensure quality control and improve the likelihood of tissue survival upon implantation. Conventional techniques for assessing the ECM content of engineered cartilage, such as biochemical assays and histological staining are inherently destructive. Raman spectroscopy, on the other hand, represents a non-invasive technique for in situ biochemical characterization. Here, we outline current roadblocks in translational Raman spectroscopy in TE and introduce a comprehensive workflow designed to non-destructively monitor and quantify ECM biomolecules in large (>3 mm), live cell TE constructs online. Diffuse near-infrared fiber-optic Raman spectra were measured from live cell cartilaginous TE constructs over a 56-day culturing period. We developed a multivariate curve resolution model that enabled quantitative biochemical analysis of the TE constructs. Raman spectroscopy was able to non-invasively quantify the ECM components and showed an excellent correlation with biochemical assays for measurement of collagen (R 2  = 0.84) and glycosaminoglycans (GAGs) (R 2  = 0.86). We further demonstrated the robustness of this technique for online prospective analysis of live cell TE constructs. The fiber-optic Raman spectroscopy strategy developed in this work offers the ability to non-destructively monitor construct growth online and can be adapted to a broad range of TE applications in regenerative medicine toward controlled clinical translation. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. [The validation of kit of reagents for quantitative detection of DNA of human cytomegalovirus in biological material using polymerase chain reaction technique in real time operation mode].

    PubMed

    Sil'veĭstrova, O Iu; Domonova, É A; Shipulina, O Iu

    2014-04-01

    The validation of kit of reagents destined to detection and quantitative evaluation of DNA of human cytomegalovirus in biological material using polymerase chain reaction technique in real time operation mode was implemented. The comparison was made against international WHO standard--The first WHO international standard for human cytomegalovirus to implement measures the kit of reagents "AmpliSens CMV-screen/monitor-FL" and standard sample of enterprise DNA HCMV (The central research institute of epidemiology of Rospotrebnadzor) was applied. The fivefold dilution of international WHO standard and standard sample of enterprise were carried out in concentrations of DNA HCMV from 106 to 102. The arrangement of polymerase chain reaction and analysis of results were implemented using programed amplifier with system of detection of fluorescent signal in real-time mode "Rotor-Gene Q" ("Qiagen", Germany). In the total of three series of experiments, all stages of polymerase chain reaction study included, the coefficient of translation of quantitative evaluation of DNA HCMV from copy/ml to ME/ml equal to 0.6 was introduced for this kit of reagents.

  7. Polarization variations in installed fibers and their influence on quantum key distribution systems.

    PubMed

    Ding, Yu-Yang; Chen, Hua; Wang, Shuang; He, De-Yong; Yin, Zhen-Qiang; Chen, Wei; Zhou, Zheng; Guo, Guang-Can; Han, Zheng-Fu

    2017-10-30

    Polarization variations in the installed fibers are complex and volatile, and would severely affect the performances of polarization-sensitive quantum key distribution (QKD) systems. Based on the recorded data about polarization variations of different installed fibers, we establish an analytical methodology to quantitatively evaluate the influence of polarization variations on polarization-sensitive QKD systems. Using the increased quantum bit error rate induced by polarization variations as a key criteria, we propose two parameters - polarization drift time and required tracking speed - to characterize polarization variations. For field buried and aerial fibers with different length, we quantitatively evaluate the influence of polarization variations, and also provide requirements and suggestions for polarization basis alignment modules of QKD systems deployed in different kind of fibers.

  8. Quantitative analysis of biological tissues using Fourier transform-second-harmonic generation imaging

    NASA Astrophysics Data System (ADS)

    Ambekar Ramachandra Rao, Raghu; Mehta, Monal R.; Toussaint, Kimani C., Jr.

    2010-02-01

    We demonstrate the use of Fourier transform-second-harmonic generation (FT-SHG) imaging of collagen fibers as a means of performing quantitative analysis of obtained images of selected spatial regions in porcine trachea, ear, and cornea. Two quantitative markers, preferred orientation and maximum spatial frequency are proposed for differentiating structural information between various spatial regions of interest in the specimens. The ear shows consistent maximum spatial frequency and orientation as also observed in its real-space image. However, there are observable changes in the orientation and minimum feature size of fibers in the trachea indicating a more random organization. Finally, the analysis is applied to a 3D image stack of the cornea. It is shown that the standard deviation of the orientation is sensitive to the randomness in fiber orientation. Regions with variations in the maximum spatial frequency, but with relatively constant orientation, suggest that maximum spatial frequency is useful as an independent quantitative marker. We emphasize that FT-SHG is a simple, yet powerful, tool for extracting information from images that is not obvious in real space. This technique can be used as a quantitative biomarker to assess the structure of collagen fibers that may change due to damage from disease or physical injury.

  9. A new mtDNA mutation in the tRNA[sup Lys] gene associated with myoclonic epilepsy and ragged-red fibers (MERRF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silvestri, G.; Moraes, C.T.; Shanske, S.

    1992-12-01

    Myoclonic epilepsy with ragged-red fibers (MERRF) has been associated with an A[r arrow]G transition at mtDNA nt 8344, within a conserved region of the tRNA[sup Lys] gene. Although the 8344 mutation is highly prevalent in patients with MERRF, it is not observed in 10%-20% of the cases, suggesting genetic heterogeneity. The authors have sequenced the tRNA[sup Lys] gene of five MERRF patients lacking the common 8344 mutation. One of these showed a novel T[r arrow]C transition at nucleotide position 8356, disrupting a highly conserved base pair in the T[Psi]C stem. The mutant mtDNA population was essentially homoplasmic in muscle butmore » was heteroplasmic in blood (47%). Neither 20 patients with other mitochondrial diseases nor 25 controls carried this mutation. These findings suggest that tRNA[sup Lys] alterations may play a specific role in the pathogenesis of MERRF syndrome. 21 refs., 4 figs.« less

  10. Cloned plasmid DNA fragments as calibrators for controlling GMOs: different real-time duplex quantitative PCR methods.

    PubMed

    Taverniers, Isabel; Van Bockstaele, Erik; De Loose, Marc

    2004-03-01

    Analytical real-time PCR technology is a powerful tool for implementation of the GMO labeling regulations enforced in the EU. The quality of analytical measurement data obtained by quantitative real-time PCR depends on the correct use of calibrator and reference materials (RMs). For GMO methods of analysis, the choice of appropriate RMs is currently under debate. So far, genomic DNA solutions from certified reference materials (CRMs) are most often used as calibrators for GMO quantification by means of real-time PCR. However, due to some intrinsic features of these CRMs, errors may be expected in the estimations of DNA sequence quantities. In this paper, two new real-time PCR methods are presented for Roundup Ready soybean, in which two types of plasmid DNA fragments are used as calibrators. Single-target plasmids (STPs) diluted in a background of genomic DNA were used in the first method. Multiple-target plasmids (MTPs) containing both sequences in one molecule were used as calibrators for the second method. Both methods simultaneously detect a promoter 35S sequence as GMO-specific target and a lectin gene sequence as endogenous reference target in a duplex PCR. For the estimation of relative GMO percentages both "delta C(T)" and "standard curve" approaches are tested. Delta C(T) methods are based on direct comparison of measured C(T) values of both the GMO-specific target and the endogenous target. Standard curve methods measure absolute amounts of target copies or haploid genome equivalents. A duplex delta C(T) method with STP calibrators performed at least as well as a similar method with genomic DNA calibrators from commercial CRMs. Besides this, high quality results were obtained with a standard curve method using MTP calibrators. This paper demonstrates that plasmid DNA molecules containing either one or multiple target sequences form perfect alternative calibrators for GMO quantification and are especially suitable for duplex PCR reactions.

  11. Quantitative nanoscale imaging of orientational order in biological filaments by polarized superresolution microscopy

    PubMed Central

    Valades Cruz, Cesar Augusto; Shaban, Haitham Ahmed; Kress, Alla; Bertaux, Nicolas; Monneret, Serge; Mavrakis, Manos; Savatier, Julien; Brasselet, Sophie

    2016-01-01

    Essential cellular functions as diverse as genome maintenance and tissue morphogenesis rely on the dynamic organization of filamentous assemblies. For example, the precise structural organization of DNA filaments has profound consequences on all DNA-mediated processes including gene expression, whereas control over the precise spatial arrangement of cytoskeletal protein filaments is key for mechanical force generation driving animal tissue morphogenesis. Polarized fluorescence is currently used to extract structural organization of fluorescently labeled biological filaments by determining the orientation of fluorescent labels, however with a strong drawback: polarized fluorescence imaging is indeed spatially limited by optical diffraction, and is thus unable to discriminate between the intrinsic orientational mobility of the fluorophore labels and the real structural disorder of the labeled biomolecules. Here, we demonstrate that quantitative single-molecule polarized detection in biological filament assemblies allows not only to correct for the rotational flexibility of the label but also to image orientational order of filaments at the nanoscale using superresolution capabilities. The method is based on polarized direct stochastic optical reconstruction microscopy, using dedicated optical scheme and image analysis to determine both molecular localization and orientation with high precision. We apply this method to double-stranded DNA in vitro and microtubules and actin stress fibers in whole cells. PMID:26831082

  12. Evaluation of micron size carbon fibers released from burning graphite composites

    NASA Technical Reports Server (NTRS)

    Sussholz, B.

    1980-01-01

    Quantitative estimates were developed of micron carbon fibers released during the burning of graphite composites. Evidence was found of fibrillated particles which were the predominant source of the micron fiber data obtained from large pool fire tests. The fibrillation phenomena were attributed to fiber oxidation effects caused by the fire environment. Analysis of propane burn test records indicated that wind sources can cause considerable carbon fiber oxidation. Criteria estimates were determined for the number of micron carbon fibers released during an aircraft accident. An extreme case analysis indicated that the upper limit of the micron carbon fiber concentration level was only about half the permissible asbestos ceiling concentration level.

  13. Polarization anisotropy in fiber-optic second harmonic generation microscopy.

    PubMed

    Fu, Ling; Gu, Min

    2008-03-31

    We report the investigation and implementation of a compact second harmonic generation microscope that uses a single-mode fiber coupler and a double-clad photonic crystal fiber. Second harmonic polarization anisotropy through the fiber-optic microscope systems is quantitatively measured with KTP microcrystals, fish scale and rat tail tendon. It is demonstrated that the polarized second harmonic signals can be excited and collected through the single-mode fiber coupler to analyze the molecular orientations of structural proteins. It has been discovered that a double-clad photonic crystal fiber can preserve the linear polarization in the core, although a depolarization effect is observed in the inner cladding region. The feasibility of polarization anisotropy measurements in fiber-optic second harmonic generation microscopy will benefit the in vivo study of collagen-related diseases with a compact imaging probe.

  14. Low-Residue and Low-Fiber Diets in Gastrointestinal Disease Management12

    PubMed Central

    Vanhauwaert, Erika; Matthys, Christophe; Verdonck, Lies; De Preter, Vicky

    2015-01-01

    Recently, low-residue diets were removed from the American Academy of Nutrition and Dietetics’ Nutrition Care Manual due to the lack of a scientifically accepted quantitative definition and the unavailability of a method to estimate the amount of food residue produced. This narrative review focuses on defining the similarities and/or discrepancies between low-residue and low-fiber diets and on the diagnostic and therapeutic values of these diets in gastrointestinal disease management. Diagnostically, a low-fiber/low-residue diet is used in bowel preparation. A bowel preparation is a cleansing of the intestines of fecal matter and secretions conducted before a diagnostic procedure. Therapeutically, a low-fiber/low-residue diet is part of the treatment of acute relapses in different bowel diseases. The available evidence on low-residue and low-fiber diets is summarized. The main findings showed that within human disease research, the terms “low residue” and “low fiber” are used interchangeably, and information related to the quantity of residue in the diet usually refers to the amount of fiber. Low-fiber/low-residue diets are further explored in both diagnostic and therapeutic situations. On the basis of this literature review, the authors suggest redefining a low-residue diet as a low-fiber diet and to quantitatively define a low-fiber diet as a diet with a maximum of 10 g fiber/d. A low-fiber diet instead of a low-residue diet is recommended as a diagnostic value or as specific therapy for gastrointestinal conditions. PMID:26567203

  15. Growth Inhibition and DNA Damage Induced by X-Phenols in Yeast: A Quantitative Structure–Activity Relationship Study

    PubMed Central

    2017-01-01

    Phenolic compounds and their derivatives are ubiquitous constituents of numerous synthetic and natural chemicals that exist in the environment. Their toxicity is mostly attributed to their hydrophobicity and/or the formation of free radicals. In a continuation of the study of phenolic toxicity in a systematic manner, we have examined the biological responses of Saccharomyces cerevisiae to a series of mostly monosubstituted phenols utilizing a quantitative structure–activity relationship (QSAR) approach. The biological end points included a growth assay that determines the levels of growth inhibition induced by the phenols as well as a yeast deletion (DEL) assay that assesses the ability of X-phenols to induce DNA damage or DNA breaks. The QSAR analysis of cell growth patterns determined by IC50 and IC80 values indicates that toxicity is delineated by a hydrophobic, parabolic model. The DEL assay was then utilized to detect genomic deletions in yeast. The increase in the genotoxicity was enhanced by the electrophilicity of the phenolic substituents that were strong electron donors as well as by minimal hydrophobicity. The electrophilicities are represented by Brown’s sigma plus values that are a variant of the Hammett sigma constants. A few mutant strains of genes involved in DNA repair were separately exposed to 2,6-di-tert-butyl-4-methyl-phenol (BHT) and butylated hydroxy anisole (BHA). They were subsequently screened for growth phenotypes. BHA-induced growth defects in most of the DNA repair null mutant strains, whereas BHT was unresponsive. PMID:29302629

  16. Target-Specific Assay for Rapid and Quantitative Detection of Mycobacterium chimaera DNA.

    PubMed

    Zozaya-Valdés, Enrique; Porter, Jessica L; Coventry, John; Fyfe, Janet A M; Carter, Glen P; Gonçalves da Silva, Anders; Schultz, Mark B; Seemann, Torsten; Johnson, Paul D R; Stewardson, Andrew J; Bastian, Ivan; Roberts, Sally A; Howden, Benjamin P; Williamson, Deborah A; Stinear, Timothy P

    2017-06-01

    Mycobacterium chimaera is an opportunistic environmental mycobacterium belonging to the Mycobacterium avium - M. intracellulare complex. Although most commonly associated with pulmonary disease, there has been growing awareness of invasive M. chimaera infections following cardiac surgery. Investigations suggest worldwide spread of a specific M. chimaera clone, associated with contaminated hospital heater-cooler units used during the surgery. Given the global dissemination of this clone, its potential to cause invasive disease, and the laboriousness of current culture-based diagnostic methods, there is a pressing need to develop rapid and accurate diagnostic assays specific for M. chimaera Here, we assessed 354 mycobacterial genome sequences and confirmed that M. chimaera is a phylogenetically coherent group. In silico comparisons indicated six DNA regions present only in M. chimaera We targeted one of these regions and developed a TaqMan quantitative PCR (qPCR) assay for M. chimaera with a detection limit of 100 CFU/ml in whole blood spiked with bacteria. In vitro screening against DNA extracted from 40 other mycobacterial species and 22 bacterial species from 21 diverse genera confirmed the in silico -predicted specificity for M. chimaera Screening 33 water samples from heater-cooler units with this assay highlighted the increased sensitivity of PCR compared to culture, with 15 of 23 culture-negative samples positive by M. chimaera qPCR. We have thus developed a robust molecular assay that can be readily and rapidly deployed to screen clinical and environmental specimens for M. chimaera . Copyright © 2017 American Society for Microbiology.

  17. DNA Replication Profiling Using Deep Sequencing.

    PubMed

    Saayman, Xanita; Ramos-Pérez, Cristina; Brown, Grant W

    2018-01-01

    Profiling of DNA replication during progression through S phase allows a quantitative snap-shot of replication origin usage and DNA replication fork progression. We present a method for using deep sequencing data to profile DNA replication in S. cerevisiae.

  18. Multiprotein DNA Looping

    NASA Astrophysics Data System (ADS)

    Vilar, Jose M. G.; Saiz, Leonor

    2006-06-01

    DNA looping plays a fundamental role in a wide variety of biological processes, providing the backbone for long range interactions on DNA. Here we develop the first model for DNA looping by an arbitrarily large number of proteins and solve it analytically in the case of identical binding. We uncover a switchlike transition between looped and unlooped phases and identify the key parameters that control this transition. Our results establish the basis for the quantitative understanding of fundamental cellular processes like DNA recombination, gene silencing, and telomere maintenance.

  19. Microwave-field-driven acoustic modes in DNA.

    PubMed Central

    Edwards, G S; Davis, C C; Saffer, J D; Swicord, M L

    1985-01-01

    The direct coupling of a microwave field to selected DNA molecules is demonstrated using standard dielectrometry. The absorption is resonant with a typical lifetime of 300 ps. Such a long lifetime is unexpected for DNA in aqueous solution at room temperature. Resonant absorption at fundamental and harmonic frequencies for both supercoiled circular and linear DNA agrees with an acoustic mode model. Our associated acoustic velocities for linear DNA are very close to the acoustic velocity of the longitudinal acoustic mode independently observed on DNA fibers using Brillouin spectroscopy. The difference in acoustic velocities for supercoiled circular and linear DNA is discussed in terms of solvent shielding of the nonbonded potentials in DNA. Images FIGURE 5 FIGURE 6 FIGURE 7 PMID:3893557

  20. Design of fiber optic probes for laser light scattering

    NASA Technical Reports Server (NTRS)

    Dhadwal, Harbans S.; Chu, Benjamin

    1989-01-01

    A quantitative analysis is presented of the role of optical fibers in laser light scattering. Design of a general fiber optic/microlens probe by means of ray tracing is described. Several different geometries employing an optical fiber of the type used in lightwave communications and a graded index microlens are considered. Experimental results using a nonimaging fiber optic detector probe show that due to geometrical limitations of single mode fibers, a probe using a multimode optical fiber has better performance, for both static and dynamic measurements of the scattered light intensity, compared with a probe using a single mode fiber. Fiber optic detector probes are shown to be more efficient at data collection when compared with conventional approaches to measurements of the scattered laser light. Integration of fiber optic detector probes into a fiber optic spectrometer offers considerable miniaturization of conventional light scattering spectrometers, which can be made arbitrarily small. In addition static and dynamic measurements of scattered light can be made within the scattering cell and consequently very close to the scattering center.

  1. Quantitative validation of carbon-fiber laminate low velocity impact simulations

    DOE PAGES

    English, Shawn A.; Briggs, Timothy M.; Nelson, Stacy M.

    2015-09-26

    Simulations of low velocity impact with a flat cylindrical indenter upon a carbon fiber fabric reinforced polymer laminate are rigorously validated. Comparison of the impact energy absorption between the model and experiment is used as the validation metric. Additionally, non-destructive evaluation, including ultrasonic scans and three-dimensional computed tomography, provide qualitative validation of the models. The simulations include delamination, matrix cracks and fiber breaks. An orthotropic damage and failure constitutive model, capable of predicting progressive damage and failure, is developed in conjunction and described. An ensemble of simulations incorporating model parameter uncertainties is used to predict a response distribution which ismore » then compared to experimental output using appropriate statistical methods. Lastly, the model form errors are exposed and corrected for use in an additional blind validation analysis. The result is a quantifiable confidence in material characterization and model physics when simulating low velocity impact in structures of interest.« less

  2. Quantitative real-time PCR technique for the identification of E. coli residual DNA in streptokinase recombinant product.

    PubMed

    Fazelahi, Mansoureh; Kia, Vahid; Kaghazian, Hooman; Paryan, Mahdi

    2017-11-26

    Recombinant streptokinase is a biopharmaceutical which is usually produced in E. coli. Residual DNA as a contamination and risk factor may remain in the product. It is necessary to control the production procedure to exclude any possible contamination. The aim of the present study was to develop a highly specific and sensitive quantitative real-time PCR-based method to determine the amount of E. coli DNA in recombinant streptokinase. A specific primers and a probe was designed to detect all strains of E. coli. To determine the specificity, in addition to using NCBI BLASTn, 28 samples including human, bacterial, and viral genomes were used. The results confirmed that the assay detects no genomic DNA but E. coli's and the specificity was determined to be 100%. To determine the sensitivity and limit of detection of the assay, a 10-fold serial dilution (10 1 to 10 7 copies/µL) was tested in triplicate. The sensitivity of the test was determined to be 101 copies/µL or 35 fg/µL. Inter-assay and intra-assay were determined to be 0.86 and 1.69%, respectively. Based on the results, this assay can be used as an accurate method to evaluate the contamination of recombinant streptokinase in E. coli.

  3. The Cotton Kinesin-Like Calmodulin-Binding Protein Associates with Cortical Microtubles in Cotton Fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preuss, Mary L.; Delmar, Deborah P.; Liu, Bo

    Microtubules in interphase plant cells form a cortical array, which is critical for plant cell morphogenesis. Genetic studies imply that the minus end-directed microtubule motor kinesin-like calmodulin-binding protein (KCBP) plays a role in trichome morphogenesis in Arabidopsis. However, it was not clear whether this motor interacted with interphase microtubules. In cotton (Gossypium hirsutum) fibers, cortical microtubules undergo dramatic reorganization during fiber development. In this study, cDNA clones of the cotton KCBP homolog GhKCBP were isolated from a cotton fiber-specific cDNA library. During cotton fiber development from 10 to 21 DPA, the GhKCBP protein level gradually decreases. By immunofluorescence, GhKCBP wasmore » detected as puncta along cortical microtubules in fiber cells of different developmental stages. Thus the results provide evidence that GhKCBP plays a role in interphase cell growth likely by interacting with cortical microtubules. In contrast to fibers, in dividing cells of cotton, GhKCBP localized to the nucleus, the microtubule preprophase band, mitotic spindle, and the phragmoplast. Therefore KCBP likely exerts multiple roles in cell division and cell growth in flowering plants.« less

  4. Mitochondrial DNA as a non-invasive biomarker: Accurate quantification using real time quantitative PCR without co-amplification of pseudogenes and dilution bias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malik, Afshan N., E-mail: afshan.malik@kcl.ac.uk; Shahni, Rojeen; Rodriguez-de-Ledesma, Ana

    2011-08-19

    Highlights: {yields} Mitochondrial dysfunction is central to many diseases of oxidative stress. {yields} 95% of the mitochondrial genome is duplicated in the nuclear genome. {yields} Dilution of untreated genomic DNA leads to dilution bias. {yields} Unique primers and template pretreatment are needed to accurately measure mitochondrial DNA content. -- Abstract: Circulating mitochondrial DNA (MtDNA) is a potential non-invasive biomarker of cellular mitochondrial dysfunction, the latter known to be central to a wide range of human diseases. Changes in MtDNA are usually determined by quantification of MtDNA relative to nuclear DNA (Mt/N) using real time quantitative PCR. We propose that themore » methodology for measuring Mt/N needs to be improved and we have identified that current methods have at least one of the following three problems: (1) As much of the mitochondrial genome is duplicated in the nuclear genome, many commonly used MtDNA primers co-amplify homologous pseudogenes found in the nuclear genome; (2) use of regions from genes such as {beta}-actin and 18S rRNA which are repetitive and/or highly variable for qPCR of the nuclear genome leads to errors; and (3) the size difference of mitochondrial and nuclear genomes cause a 'dilution bias' when template DNA is diluted. We describe a PCR-based method using unique regions in the human mitochondrial genome not duplicated in the nuclear genome; unique single copy region in the nuclear genome and template treatment to remove dilution bias, to accurately quantify MtDNA from human samples.« less

  5. Nanostructure of DNA repair foci revealed by superresolution microscopy.

    PubMed

    Sisario, Dmitri; Memmel, Simon; Doose, Sören; Neubauer, Julia; Zimmermann, Heiko; Flentje, Michael; Djuzenova, Cholpon S; Sauer, Markus; Sukhorukov, Vladimir L

    2018-06-12

    Induction of DNA double-strand breaks (DSBs) by ionizing radiation leads to formation of micrometer-sized DNA-repair foci, whose organization on the nanometer-scale remains unknown because of the diffraction limit (∼200 nm) of conventional microscopy. Here, we applied diffraction-unlimited, direct stochastic optical-reconstruction microscopy ( dSTORM) with a lateral resolution of ∼20 nm to analyze the focal nanostructure of the DSB marker histone γH2AX and the DNA-repair protein kinase (DNA-PK) in irradiated glioblastoma multiforme cells. Although standard confocal microscopy revealed substantial colocalization of immunostained γH2AX and DNA-PK, in our dSTORM images, the 2 proteins showed very little (if any) colocalization despite their close spatial proximity. We also found that γH2AX foci consisted of distinct circular subunits ("nanofoci") with a diameter of ∼45 nm, whereas DNA-PK displayed a diffuse, intrafocal distribution. We conclude that γH2AX nanofoci represent the elementary, structural units of DSB repair foci, that is, individual γH2AX-containing nucleosomes. dSTORM-based γH2AX nanofoci counting and distance measurements between nanofoci provided quantitative information on the total amount of chromatin involved in DSB repair as well as on the number and longitudinal distribution of γH2AX-containing nucleosomes in a chromatin fiber. We thus estimate that a single focus involves between ∼0.6 and ∼1.1 Mbp of chromatin, depending on radiation treatment. Because of their ability to unravel the nanostructure of DSB-repair foci, dSTORM and related single-molecule localization nanoscopy methods will likely emerge as powerful tools in biology and medicine to elucidate the effects of DNA damaging agents in cells.-Sisario, D., Memmel, S., Doose, S., Neubauer, J., Zimmermann, H., Flentje, M., Djuzenova, C. S., Sauer, M., Sukhorukov, V. L. Nanostructure of DNA repair foci revealed by superresolution microscopy.

  6. Does Perception of Dietary Fiber Mediate the Impact of Nutrition Knowledge on Eating Fiber-Rich Bread?

    PubMed Central

    Królak, Maria; Jeżewska-Zychowicz, Marzena; Sajdakowska, Marta; Gębski, Jerzy

    2017-01-01

    The average daily intake of fiber is still too low in relation to nutritional recommendations, as was found in several studies. Therefore, it is necessary to recommend ways to increase fiber intake in the diet. Increasing the consumption of bread rich in fiber as a substitute of white bread is one of the ways to increase fiber intake. The aim of this study was to find out whether nutrition knowledge and perception of dietary fiber affected the frequency of eating wholemeal bread and white bread fortified with fiber. The data were collected in 2014 through a cross-sectional quantitative survey that was performed under the Bioproduct project among a group of 1013 Polish adults. The associations between variables were investigated using multiple regression analysis. The respondents’ general knowledge on nutrition influenced their knowledge on fiber intake (correlation coefficient r = 0.30). Respondents with a greater knowledge perceived higher benefits of consuming cereal products that were fortified with fiber (r = 0.78), and attached greater importance to the information on the label (r = 0.39) as well. The nutrition knowledge determined the familiarity with fiber-enriched bread and the consumption of this product (r = 0.40) to a greater degree than the frequency of wholemeal bread consumption (r = −0.10). The respondents’ perception of dietary fiber was observed to play a partial mediation role between the knowledge on nutrition and the consumption of both kinds of breads, suggesting that it can be an important predictor of bread consumption. To increase the consumption of bread that is rich in fiber, emphasis should be laid on specific information on fiber, referring to food products as well as on individual’s perception of those products. The said information should be reinforced along with overall communication regarding nutrition to influence the bread-related decisions. PMID:29144429

  7. Does Perception of Dietary Fiber Mediate the Impact of Nutrition Knowledge on Eating Fiber-Rich Bread?

    PubMed

    Królak, Maria; Jeżewska-Zychowicz, Marzena; Sajdakowska, Marta; Gębski, Jerzy

    2017-11-16

    The average daily intake of fiber is still too low in relation to nutritional recommendations, as was found in several studies. Therefore, it is necessary to recommend ways to increase fiber intake in the diet. Increasing the consumption of bread rich in fiber as a substitute of white bread is one of the ways to increase fiber intake. The aim of this study was to find out whether nutrition knowledge and perception of dietary fiber affected the frequency of eating wholemeal bread and white bread fortified with fiber. The data were collected in 2014 through a cross-sectional quantitative survey that was performed under the Bioproduct project among a group of 1013 Polish adults. The associations between variables were investigated using multiple regression analysis. The respondents' general knowledge on nutrition influenced their knowledge on fiber intake (correlation coefficient r = 0.30). Respondents with a greater knowledge perceived higher benefits of consuming cereal products that were fortified with fiber ( r = 0.78), and attached greater importance to the information on the label ( r = 0.39) as well. The nutrition knowledge determined the familiarity with fiber-enriched bread and the consumption of this product ( r = 0.40) to a greater degree than the frequency of wholemeal bread consumption ( r = -0.10). The respondents' perception of dietary fiber was observed to play a partial mediation role between the knowledge on nutrition and the consumption of both kinds of breads, suggesting that it can be an important predictor of bread consumption. To increase the consumption of bread that is rich in fiber, emphasis should be laid on specific information on fiber, referring to food products as well as on individual's perception of those products. The said information should be reinforced along with overall communication regarding nutrition to influence the bread-related decisions.

  8. Quantitative DNA Methylation Analysis Identifies a Single CpG Dinucleotide Important for ZAP-70 Expression and Predictive of Prognosis in Chronic Lymphocytic Leukemia

    PubMed Central

    Claus, Rainer; Lucas, David M.; Stilgenbauer, Stephan; Ruppert, Amy S.; Yu, Lianbo; Zucknick, Manuela; Mertens, Daniel; Bühler, Andreas; Oakes, Christopher C.; Larson, Richard A.; Kay, Neil E.; Jelinek, Diane F.; Kipps, Thomas J.; Rassenti, Laura Z.; Gribben, John G.; Döhner, Hartmut; Heerema, Nyla A.; Marcucci, Guido; Plass, Christoph; Byrd, John C.

    2012-01-01

    Purpose Increased ZAP-70 expression predicts poor prognosis in chronic lymphocytic leukemia (CLL). Current methods for accurately measuring ZAP-70 expression are problematic, preventing widespread application of these tests in clinical decision making. We therefore used comprehensive DNA methylation profiling of the ZAP-70 regulatory region to identify sites important for transcriptional control. Patients and Methods High-resolution quantitative DNA methylation analysis of the entire ZAP-70 gene regulatory regions was conducted on 247 samples from patients with CLL from four independent clinical studies. Results Through this comprehensive analysis, we identified a small area in the 5′ regulatory region of ZAP-70 that showed large variability in methylation in CLL samples but was universally methylated in normal B cells. High correlation with mRNA and protein expression, as well as activity in promoter reporter assays, revealed that within this differentially methylated region, a single CpG dinucleotide and neighboring nucleotides are particularly important in ZAP-70 transcriptional regulation. Furthermore, by using clustering approaches, we identified a prognostic role for this site in four independent data sets of patients with CLL using time to treatment, progression-free survival, and overall survival as clinical end points. Conclusion Comprehensive quantitative DNA methylation analysis of the ZAP-70 gene in CLL identified important regions responsible for transcriptional regulation. In addition, loss of methylation at a specific single CpG dinucleotide in the ZAP-70 5′ regulatory sequence is a highly predictive and reproducible biomarker of poor prognosis in this disease. This work demonstrates the feasibility of using quantitative specific ZAP-70 methylation analysis as a relevant clinically applicable prognostic test in CLL. PMID:22564988

  9. Risk assessment of false-positive quantitative real-time PCR results in food, due to detection of DNA originating from dead cells.

    PubMed

    Wolffs, Petra; Norling, Börje; Rådström, Peter

    2005-03-01

    Real-time PCR technology is increasingly used for detection and quantification of pathogens in food samples. A main disadvantage of nucleic acid detection is the inability to distinguish between signals originating from viable cells and DNA released from dead cells. In order to gain knowledge concerning risks of false-positive results due to detection of DNA originating from dead cells, quantitative PCR (qPCR) was used to investigate the degradation kinetics of free DNA in four types of meat samples. Results showed that the fastest degradation rate was observed (1 log unit per 0.5 h) in chicken homogenate, whereas the slowest rate was observed in pork rinse (1 log unit per 120.5 h). Overall results indicated that degradation occurred faster in chicken samples than in pork samples and faster at higher temperatures. Based on these results, it was concluded that, especially in pork samples, there is a risk of false-positive PCR results. This was confirmed in a quantitative study on cell death and signal persistence over a period of 28 days, employing three different methods, i.e. viable counts, direct qPCR, and finally floatation, a recently developed discontinuous density centrifugation method, followed by qPCR. Results showed that direct qPCR resulted in an overestimation of up to 10 times of the amount of cells in the samples compared to viable counts, due to detection of DNA from dead cells. However, after using floatation prior to qPCR, results resembled the viable count data. This indicates that by using of floatation as a sample treatment step prior to qPCR, the risk of false-positive PCR results due to detection of dead cells, can be minimized.

  10. Chemical determination of free radical-induced damage to DNA.

    PubMed

    Dizdaroglu, M

    1991-01-01

    Free radical-induced damage to DNA in vivo can result in deleterious biological consequences such as the initiation and promotion of cancer. Chemical characterization and quantitation of such DNA damage is essential for an understanding of its biological consequences and cellular repair. Methodologies incorporating the technique of gas chromatography/mass spectrometry (GC/MS) have been developed in recent years for measurement of free radical-induced DNA damage. The use of GC/MS with selected-ion monitoring (SIM) facilitates unequivocal identification and quantitation of a large number of products of all four DNA bases produced in DNA by reactions with hydroxyl radical, hydrated electron, and H atom. Hydroxyl radical-induced DNA-protein cross-links in mammalian chromatin, and products of the sugar moiety in DNA are also unequivocally identified and quantitated. The sensitivity and selectivity of the GC/MS-SIM technique enables the measurement of DNA base products even in isolated mammalian chromatin without the necessity of first isolating DNA, and despite the presence of histones. Recent results reviewed in this article demonstrate the usefulness of the GC/MS technique for chemical determination of free radical-induced DNA damage in DNA as well as in mammalian chromatin under a vast variety of conditions of free radical production.

  11. Rigid Amorphous Fraction in PLA Electrospun Fibers

    NASA Astrophysics Data System (ADS)

    Cebe, Peggy; Ma, Qian; Simona Cozza, Erika; Pyda, Marek; Mao, Bin; Zhu, Yazhe; Monticelli, Orietta

    2013-03-01

    Electrospun fibers of poly(lactic acid) (PLA) were formed by adopting a high-speed rotating wheel as the counter-electrode. The molecular orientation, crystallization mechanism, and phase structure and transitions of the aligned ES fibers were investigated. Using thermal analysis and wide angle X-ray scattering (WAXS), we evaluated the confinement that exists in as-spun amorphous, and heat-treated semicrystalline, fibers. Differential scanning calorimetry confirmed the existence of a constrained amorphous phase in as-spun aligned fibers, without the presence of crystals or fillers to serve as fixed physical constraints. Using WAXS, for the first time the mesophase fraction, consisting of oriented amorphous PLA chains, was quantitatively characterized in nanofibers. The authors acknowledge support from the National Science Foundation, Polymers Program under grant DMR-0602473. ESC acknowledges a Ph.D. grant supported by Italian Ministry of Education and Scientific Research.

  12. Role of DNA Repair Factor Xeroderma Pigmentosum Protein Group C in Response to Replication Stress As Revealed by DNA Fragile Site Affinity Chromatography and Quantitative Proteomics.

    PubMed

    Beresova, Lucie; Vesela, Eva; Chamrad, Ivo; Voller, Jiri; Yamada, Masayuki; Furst, Tomas; Lenobel, Rene; Chroma, Katarina; Gursky, Jan; Krizova, Katerina; Mistrik, Martin; Bartek, Jiri

    2016-12-02

    Replication stress (RS) fuels genomic instability and cancer development and may contribute to aging, raising the need to identify factors involved in cellular responses to such stress. Here, we present a strategy for identification of factors affecting the maintenance of common fragile sites (CFSs), which are genomic loci that are particularly sensitive to RS and suffer from increased breakage and rearrangements in tumors. A DNA probe designed to match the high flexibility island sequence typical for the commonly expressed CFS (FRA16D) was used as specific DNA affinity bait. Proteins significantly enriched at the FRA16D fragment under normal and replication stress conditions were identified using stable isotope labeling of amino acids in cell culture-based quantitative mass spectrometry. The identified proteins interacting with the FRA16D fragment included some known CFS stabilizers, thereby validating this screening approach. Among the hits from our screen so far not implicated in CFS maintenance, we chose Xeroderma pigmentosum protein group C (XPC) for further characterization. XPC is a key factor in the DNA repair pathway known as global genomic nucleotide excision repair (GG-NER), a mechanism whose several components were enriched at the FRA16D fragment in our screen. Functional experiments revealed defective checkpoint signaling and escape of DNA replication intermediates into mitosis and the next generation of XPC-depleted cells exposed to RS. Overall, our results provide insights into an unexpected biological role of XPC in response to replication stress and document the power of proteomics-based screening strategies to elucidate mechanisms of pathophysiological significance.

  13. [Identification of genes that are specifically/preferentially expressed in developing cotton fibers by mRNA fluorescence differential display (FDD)].

    PubMed

    Sun, Jie; Li, Yuan-Li; Wang, Ruo-Hai; Xia, Gui-Xian

    2004-01-01

    Fluorescence differential display (FDD) technique was used to identify genes that are specifically or preferentially expressed in different developmental stages of cotton fiber cells. One hundred and nine differentially displayed cDNA fragments were isolated using 9, 21 and 27 DPA (days postanthesis) fibers as experimental materials. By a combination of two rounds of reverse Northern hybridization and Northern blot analyses, a number of such cDNA fragments were proved to represent fiber-specific/preferential genes. Sequencing determination and database searching indicated that most of these genes are novel. This work is an important step towards cloning the full-length cDNAs and characterizing the cellular functions of aforementioned genes in fiber development.

  14. Nondestructive evaluation of composite materials by pulsed time domain methods in imbedded optical fibers

    NASA Technical Reports Server (NTRS)

    Claus, R. O.; Bennett, K. D.; Jackson, B. S.

    1986-01-01

    The application of fiber-optical time domain reflectometry (OTDR) to nondestructive quantitative measurements of distributed internal strain in graphite-epoxy composites, using optical fiber waveguides imbedded between plies, is discussed. The basic OTDR measurement system is described, together with the methods used to imbed optical fibers within composites. Measurement results, system limitations, and the effect of the imbedded fiber on the integrity of the host composite material are considered.

  15. Hydration forces between aligned DNA helices undergoing B to A conformational change: In-situ X-ray fiber diffraction studies in a humidity and temperature controlled environment.

    PubMed

    Case, Ryan; Schollmeyer, Hauke; Kohl, Phillip; Sirota, Eric B; Pynn, Roger; Ewert, Kai E; Safinya, Cyrus R; Li, Youli

    2017-12-01

    Hydration forces between DNA molecules in the A- and B-Form were studied using a newly developed technique enabling simultaneous in situ control of temperature and relative humidity. X-ray diffraction data were collected from oriented calf-thymus DNA fibers in the relative humidity range of 98%-70%, during which DNA undergoes the B- to A-form transition. Coexistence of both forms was observed over a finite humidity range at the transition. The change in DNA separation in response to variation in humidity, i.e. change of chemical potential, led to the derivation of a force-distance curve with a characteristic exponential decay constant of∼2Å for both A- and B-DNA. While previous osmotic stress measurements had yielded similar force-decay constants, they were limited to B-DNA with a surface separation (wall-to-wall distance) typically>5Å. The current investigation confirms that the hydration force remains dominant even in the dry A-DNA state and at surface separation down to∼1.5Å, within the first hydration shell. It is shown that the observed chemical potential difference between the A and B states could be attributed to the water layer inside the major and minor grooves of the A-DNA double helices, which can partially interpenetrate each other in the tightly packed A phase. The humidity-controlled X-ray diffraction method described here can be employed to perform direct force measurements on a broad range of biological structures such as membranes and filamentous protein networks. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Controlling Fiber Morphology in Simultaneous Centrifugal Spinning and Photopolymerization

    NASA Astrophysics Data System (ADS)

    Fang, Yichen; Dulaney, Austin; Ellison, Christopher

    2015-03-01

    Current synthetic fiber manufacturing technologies use either solvent or heat to transform a solid preformed polymer into a liquid before applying a force to draw the liquid into fiber. While the use of solvent poses concerns regarding process safety and environmental impact, the use of heat may also lead to polymer degradation and excessive energy consumption. To address these critical challenges, here we present an alternative fiber manufacturing method that encompasses extruding a monomer solution through an orifice, drawing it using centrifugal Forcespinning and polymerizing the monomer jet into solid fiber in flight using UV initiated thiol-ene chemistry. This method not only negates the use of both heat and solvent, but also produces fibers that are highly crosslinked, mechanically robust, and thermally stable. In this process, the balance between curing kinetics, fiber flight time, and solution viscoelasticity is essential. Studies were conducted to quantitatively investigate the effect of these factors on fiber formation and morphology. An operating diagram was developed to show how the intricate interplay of these factors led to the formation of smooth fibers and other undesirable fiber defects, such as beads-on-string, fused fibers, and droplets.

  17. The structure and intermolecular forces of DNA condensates.

    PubMed

    Yoo, Jejoong; Aksimentiev, Aleksei

    2016-03-18

    Spontaneous assembly of DNA molecules into compact structures is ubiquitous in biological systems. Experiment has shown that polycations can turn electrostatic self-repulsion of DNA into attraction, yet the physical mechanism of DNA condensation has remained elusive. Here, we report the results of atomistic molecular dynamics simulations that elucidated the microscopic structure of dense DNA assemblies and the physics of interactions that makes such assemblies possible. Reproducing the setup of the DNA condensation experiments, we measured the internal pressure of DNA arrays as a function of the DNA-DNA distance, showing a quantitative agreement between the results of our simulations and the experimental data. Analysis of the MD trajectories determined the DNA-DNA force in a DNA condensate to be pairwise, the DNA condensation to be driven by electrostatics of polycations and not hydration, and the concentration of bridging cations, not adsorbed cations, to determine the magnitude and the sign of the DNA-DNA force. Finally, our simulations quantitatively characterized the orientational correlations of DNA in DNA arrays as well as diffusive motion of DNA and cations. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Novel quantitative real-time LCR for the sensitive detection of SNP frequencies in pooled DNA: method development, evaluation and application.

    PubMed

    Psifidi, Androniki; Dovas, Chrysostomos; Banos, Georgios

    2011-01-19

    Single nucleotide polymorphisms (SNP) have proven to be powerful genetic markers for genetic applications in medicine, life science and agriculture. A variety of methods exist for SNP detection but few can quantify SNP frequencies when the mutated DNA molecules correspond to a small fraction of the wild-type DNA. Furthermore, there is no generally accepted gold standard for SNP quantification, and, in general, currently applied methods give inconsistent results in selected cohorts. In the present study we sought to develop a novel method for accurate detection and quantification of SNP in DNA pooled samples. The development and evaluation of a novel Ligase Chain Reaction (LCR) protocol that uses a DNA-specific fluorescent dye to allow quantitative real-time analysis is described. Different reaction components and thermocycling parameters affecting the efficiency and specificity of LCR were examined. Several protocols, including gap-LCR modifications, were evaluated using plasmid standard and genomic DNA pools. A protocol of choice was identified and applied for the quantification of a polymorphism at codon 136 of the ovine PRNP gene that is associated with susceptibility to a transmissible spongiform encephalopathy in sheep. The real-time LCR protocol developed in the present study showed high sensitivity, accuracy, reproducibility and a wide dynamic range of SNP quantification in different DNA pools. The limits of detection and quantification of SNP frequencies were 0.085% and 0.35%, respectively. The proposed real-time LCR protocol is applicable when sensitive detection and accurate quantification of low copy number mutations in DNA pools is needed. Examples include oncogenes and tumour suppressor genes, infectious diseases, pathogenic bacteria, fungal species, viral mutants, drug resistance resulting from point mutations, and genetically modified organisms in food.

  19. Ectopic Activation of Wnt/β-Catenin Signaling in Lens Fiber Cells Results in Cataract Formation and Aberrant Fiber Cell Differentiation

    PubMed Central

    Antosova, Barbora; Smolikova, Jana; Borkovcova, Romana; Strnad, Hynek; Lachova, Jitka; Machon, Ondrej; Kozmik, Zbynek

    2013-01-01

    The Wnt/β-catenin signaling pathway controls many processes during development, including cell proliferation, cell differentiation and tissue homeostasis, and its aberrant regulation has been linked to various pathologies. In this study we investigated the effect of ectopic activation of Wnt/β-catenin signaling during lens fiber cell differentiation. To activate Wnt/β-catenin signaling in lens fiber cells, the transgenic mouse referred to as αA-CLEF was generated, in which the transactivation domain of β-catenin was fused to the DNA-binding protein LEF1, and expression of the transgene was controlled by αA-crystallin promoter. Constitutive activation of Wnt/β-catenin signaling in lens fiber cells of αA-CLEF mice resulted in abnormal and delayed fiber cell differentiation. Moreover, adult αA-CLEF mice developed cataract, microphthalmia and manifested downregulated levels of γ-crystallins in lenses. We provide evidence of aberrant expression of cell cycle regulators in embryonic lenses of αA-CLEF transgenic mice resulting in the delay in cell cycle exit and in the shift of fiber cell differentiation to the central fiber cell compartment. Our results indicate that precise regulation of the Wnt/β-catenin signaling activity during later stages of lens development is essential for proper lens fiber cell differentiation and lens transparency. PMID:24205179

  20. Quantitative Method of Measuring Metastatic Activity

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor)

    1999-01-01

    The metastatic potential of tumors can be evaluated by the quantitative detection of urokinase and DNA. The cell sample selected for examination is analyzed for the presence of high levels of urokinase and abnormal DNA using analytical flow cytometry and digital image analysis. Other factors such as membrane associated uroldnase, increased DNA synthesis rates and certain receptors can be used in the method for detection of potentially invasive tumors.

  1. Myoclonic epilepsy with ragged-red fibers without increased lactate levels.

    PubMed

    Kimura, Shigemi; Ozasa, Shiro; Nakamura, Kyoko; Nomura, Keiko; Kosuge, Hirofumi

    2009-07-01

    Myoclonic epilepsy associated with ragged-red fibers is one of the mitochondrial encephalomyopathies. Pathogenic mitochondrial DNA mutations have been identified in the mitochondrial transfer RNA (tRNA)(Lys) at positions 8344 and 8356. Characteristics of myoclonic epilepsy associated with ragged-red fibers include myoclonic epilepsy, generalized epilepsy, hearing loss, exercise intolerance, lactic acidosis, and ragged-red fibers. The elevated lactate level is one of the most important symptoms needed to make a diagnosis of mitochondrial encephalomyopathy. In the present case, however, myoclonic epilepsy was associated with ragged-red fibers but without increased lactate levels. Therefore, myoclonic epilepsy associated with ragged-red fibers should be suspected in a patient who has myoclonic epilepsy that is difficult to control with antiepileptic medications and who has other symptoms of mitochondrial disease, such as mental retardation, even if the patient's lactate level is normal.

  2. Extracellular DNA facilitates the formation of functional amyloids in Staphylococcus aureus biofilms.

    PubMed

    Schwartz, Kelly; Ganesan, Mahesh; Payne, David E; Solomon, Michael J; Boles, Blaise R

    2016-01-01

    Persistent staphylococcal infections often involve surface-associated communities called biofilms. Staphylococcus aureus biofilm development is mediated by the co-ordinated production of the biofilm matrix, which can be composed of polysaccharides, extracellular DNA (eDNA) and proteins including amyloid fibers. The nature of the interactions between matrix components, and how these interactions contribute to the formation of matrix, remain unclear. Here we show that the presence of eDNA in S. aureus biofilms promotes the formation of amyloid fibers. Conditions or mutants that do not generate eDNA result in lack of amyloids during biofilm growth despite the amyloidogeneic subunits, phenol soluble modulin peptides, being produced. In vitro studies revealed that the presence of DNA promotes amyloid formation by PSM peptides. Thus, this work exposes a previously unacknowledged interaction between biofilm matrix components that furthers our understanding of functional amyloid formation and S. aureus biofilm biology. © 2015 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  3. The impact of methylation quantitative trait loci (mQTLs) on active smoking-related DNA methylation changes.

    PubMed

    Gao, Xu; Thomsen, Hauke; Zhang, Yan; Breitling, Lutz Philipp; Brenner, Hermann

    2017-01-01

    Methylation quantitative trait loci (mQTLs) are the genetic variants that may affect the DNA methylation patterns of CpG sites. However, their roles in influencing the disturbances of smoking-related epigenetic changes have not been well established. This study was conducted to address whether mQTLs exist in the vicinity of smoking-related CpG sites (± 50 kb) and to examine their associations with smoking exposure and all-cause mortality in older adults. We obtained DNA methylation profiles in whole blood samples by Illumina Infinium Human Methylation 450 BeadChip array of two independent subsamples of the ESTHER study (discovery set, n  = 581; validation set, n  = 368) and their corresponding genotyping data using the Illumina Infinium OncoArray BeadChip. After correction for multiple testing (FDR), we successfully identified that 70 out of 151 previously reported smoking-related CpG sites were significantly associated with 192 SNPs within the 50 kb search window of each locus. The 192 mQTLs significantly influenced the active smoking-related DNA methylation changes, with percentage changes ranging from 0.01 to 18.96%, especially for the weakly/moderately smoking-related CpG sites. However, these identified mQTLs were not directly associated with active smoking exposure or all-cause mortality. Our findings clearly demonstrated that if not dealt with properly, the mQTLs might impair the power of epigenetic-based models of smoking exposure to a certain extent. In addition, such genetic variants could be the key factor to distinguish between the heritable and smoking-induced impact on epigenome disparities. These mQTLs are of special importance when DNA methylation markers measured by Illumina Infinium assay are used for any comparative population studies related to smoking-related cancers and chronic diseases.

  4. Quantitation of exposure to benzo[a]pyrene with monoclonal antibodies.

    PubMed Central

    Santella, R M; Hsieh, L L; Lin, C D; Viet, S; Weinstein, I B

    1985-01-01

    It is now possible to quantitate carcinogen adducts on DNA by highly sensitive immunoassays. These techniques are particularly useful for screening human populations for exposure to potential environmental carcinogens. We have developed a panel of monoclonal antibodies that react with benzo(a)pyrene (BP) modified DNA to be used in an enzyme linked immunoassay (ELISA) to quantitate adduct levels of both human and animal samples. BALBc/Cr mice were immunized with either DNA modified by 7 beta, 8 alpha-dihydroxy-9 alpha, 10 alpha-epoxy-7,8,9, 10-tetrahydrobenzo(a)pyrene (BPDE-I-DNA) complexed electrostatically to methylated bovine serum albumin or with BPDE-I-modified guanosine conjugated with bovine serum albumin (BPDE-I-G-BSA). Four stable clones were produced from the spleen cells of animals immunized with BPDE-I-DNA and one from BPDE-I-G-BSA immunized animals. All antibodies were shown to be highly specific for BPDE-I-DNA and did not crossreact with nonmodified DNA or with N-2-acetylaminofluorene or 1-aminopyrene modified DNA. The antibodies differed in their sensitivity to BPDE-II-DNA, BPDE-I-poly G, BPDE-I-tetraols and BPDE-I-dG. In general, all the antibodies showed the greatest affinity for their original antigen. Those generated against modified DNA showed highest reactivity against modified DNA while the one antibody generated against the monoadduct showed highest reactivity with the monoadduct. These antibodies are currently being used in a highly sensitive competitive ELISA to quantitate levels of BP-DNA adducts in various animal and human tissue samples. PMID:4085452

  5. Fiber networks amplify active stress

    PubMed Central

    Ronceray, Pierre; Broedersz, Chase P.

    2016-01-01

    Large-scale force generation is essential for biological functions such as cell motility, embryonic development, and muscle contraction. In these processes, forces generated at the molecular level by motor proteins are transmitted by disordered fiber networks, resulting in large-scale active stresses. Although these fiber networks are well characterized macroscopically, this stress generation by microscopic active units is not well understood. Here we theoretically study force transmission in these networks. We find that collective fiber buckling in the vicinity of a local active unit results in a rectification of stress towards strongly amplified isotropic contraction. This stress amplification is reinforced by the networks’ disordered nature, but saturates for high densities of active units. Our predictions are quantitatively consistent with experiments on reconstituted tissues and actomyosin networks and shed light on the role of the network microstructure in shaping active stresses in cells and tissue. PMID:26921325

  6. Genetic variation for agronomic and fiber quality traits in a population derived from high-quality cotton germplasm

    USDA-ARS?s Scientific Manuscript database

    Genetic improvement of fiber quality is necessary to meet the requirements of processors and users of cotton fiber. To foster genetic improvement of cotton fiber quality, adequate genetic variation for the quantitatively inherited physical properties of cotton is required. Additionally, knowledge of...

  7. Coupled-mode propagation in multicore fibers characterized by optical low-coherence reflectometry.

    PubMed

    Salathé, R P; Gilgen, H; Bodmer, G

    1996-07-01

    A fiber-optical low-coherence ref lectometer has been used to probe a multicore fiber locally at a wavelength of 1.3 microm. This technique allows one to determine the group index of refraction of the modes in the multicore fiber with high accuracy. Light propagation that is due to noncoherent coupling of energy from one fiber core to adjacent cores through cladding modes can be distinguished quantitatively from light propagating in coherently coupled modes. Intercore coupling constants in the range of 0.6-2 mm(-1) have been evaluated for the coupled modes.

  8. Experiment K-308: Automatic analysis of muscle fibers from rats subjected to spaceflight

    NASA Technical Reports Server (NTRS)

    Castleman, K. R.; Chui, L. A.; Vandermeullen, J. P.

    1981-01-01

    The morphology of histochemically prepared muscle sections from the gastrocnemius and plantaris muscles of flight and vivarium control rats was studied quantitatively. Both fast-twitch and slow-twitch fibers were significantly smaller in flight groups than in control groups. Fibers in group 4F were somewhat larger than in 1F, presumably due to growth after recovery. Fibers in 4V were slightly larger than in 1V, presumably due to age. The slow fibers showed more spaceflight induced size loss than fast fibers, suggesting they suffered more from hypogravity. The proportion of slow fibers was also lower in the flight groups, suggesting spaceflight induced fiber type conversion from slow to fast.

  9. Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber: toward a practical coherent fiber supercontinuum laser

    PubMed Central

    Tu, Haohua; Liu, Yuan; Liu, Xiaomin; Turchinovich, Dmitry; Lægsgaard, Jesper; Boppart, Stephen A.

    2012-01-01

    Dispersion-flattened dispersion-decreased all-normal dispersion (DFDD-ANDi) photonic crystal fibers have been identified as promising candidates for high-spectral-power coherent supercontinuum (SC) generation. However, the effects of the unintentional birefringence of the fibers on the SC generation have been ignored. This birefringence is widely present in nonlinear non-polarization maintaining fibers with a typical core size of 2 µm, presumably due to the structural symmetry breaks introduced in the fiber drawing process. We find that an intrinsic form-birefringence on the order of 10−5 profoundly affects the SC generation in a DFDD-ANDi photonic crystal fiber. Conventional simulations based on the scalar generalized nonlinear Schrödinger equation (GNLSE) fail to reproduce the prominent observed features of the SC generation in a short piece (9-cm) of this fiber. However, these features can be qualitatively or semi-quantitatively understood by the coupled GNLSE that takes into account the form-birefringence. The nonlinear polarization effects induced by the birefringence significantly distort the otherwise simple spectrotemporal field of the SC pulses. We therefore propose the fabrication of polarization-maintaining DFDD-ANDi fibers to avoid these adverse effects in pursuing a practical coherent fiber SC laser. PMID:22274457

  10. Incorporation of Deoxyribonucleic Acid Precursors by T4 Deoxyribonucleic Acid-Protein Complexes Retained on Glass Fiber Filters

    PubMed Central

    Miller, Robert C.; Kozinski, Andrzej W.

    1970-01-01

    Bacteriophage T4 deoxyribonucleic acid (DNA)-protein complexes were retained preferentially on glass fiber filters. DNA polymerase activity in the complex was detected through the incorporation of 3H-labeled DNA precursors. The primer-product DNA hybridized with both phage and Escherichia coli DNA. Density labeling experiments showed that about 30% of incorporated 3H-deoxyadenosine triphosphate was found in DNA which hybridized with phage DNA; this DNA was found to be covalently attached to the primer DNA. PMID:5497903

  11. Quantitative analysis of pork and chicken products by droplet digital PCR.

    PubMed

    Cai, Yicun; Li, Xiang; Lv, Rong; Yang, Jielin; Li, Jian; He, Yuping; Pan, Liangwen

    2014-01-01

    In this project, a highly precise quantitative method based on the digital polymerase chain reaction (dPCR) technique was developed to determine the weight of pork and chicken in meat products. Real-time quantitative polymerase chain reaction (qPCR) is currently used for quantitative molecular analysis of the presence of species-specific DNAs in meat products. However, it is limited in amplification efficiency and relies on standard curves based Ct values, detecting and quantifying low copy number target DNA, as in some complex mixture meat products. By using the dPCR method, we find the relationships between the raw meat weight and DNA weight and between the DNA weight and DNA copy number were both close to linear. This enabled us to establish formulae to calculate the raw meat weight based on the DNA copy number. The accuracy and applicability of this method were tested and verified using samples of pork and chicken powder mixed in known proportions. Quantitative analysis indicated that dPCR is highly precise in quantifying pork and chicken in meat products and therefore has the potential to be used in routine analysis by government regulators and quality control departments of commercial food and feed enterprises.

  12. Surface roughness analysis of fiber post conditioning processes.

    PubMed

    Mazzitelli, C; Ferrari, M; Toledano, M; Osorio, E; Monticelli, F; Osorio, R

    2008-02-01

    The chemo-mechanical surface treatment of fiber posts increases their bonding properties. The combined use of atomic force and confocal microscopy allows for the assessment and quantification of the changes on surface roughness that justify this behavior. Quartz fiber posts were conditioned with different chemicals, as well as by sandblasting, and by an industrial silicate/silane coating. We analyzed post surfaces by atomic force microscopy, recording average roughness (R(a)) measurements of fibers and resin matrix. A confocal image profiler allowed for the quantitative assessment of the average superficial roughness (R(a)). Hydrofluoric acid, potassium permanganate, sodium ethoxide, and sandblasting increased post surface roughness. Modifications of the epoxy resin matrix occurred after the surface pre-treatments. Hydrofluoric acid affected the superficial texture of quartz fibers. Surface-conditioning procedures that selectively react with the epoxy-resin matrix of the fiber post enhance roughness and improve the surface area available for adhesion by creating micro-retentive spaces without affecting the post's inner structure.

  13. Mathematics of quantitative kinetic PCR and the application of standard curves.

    PubMed

    Rutledge, R G; Côté, C

    2003-08-15

    Fluorescent monitoring of DNA amplification is the basis of real-time PCR, from which target DNA concentration can be determined from the fractional cycle at which a threshold amount of amplicon DNA is produced. Absolute quantification can be achieved using a standard curve constructed by amplifying known amounts of target DNA. In this study, the mathematics of quantitative PCR are examined in detail, from which several fundamental aspects of the threshold method and the application of standard curves are illustrated. The construction of five replicate standard curves for two pairs of nested primers was used to examine the reproducibility and degree of quantitative variation using SYBER Green I fluorescence. Based upon this analysis the application of a single, well- constructed standard curve could provide an estimated precision of +/-6-21%, depending on the number of cycles required to reach threshold. A simplified method for absolute quantification is also proposed, in which quantitative scale is determined by DNA mass at threshold.

  14. Development and characterization of a synthetic DNA, NUversa, to be used as a standard in quantitative polymerase chain reactions for molecular pneumococcal serotyping.

    PubMed

    Sakai, Fuminori; Sonaty, Griffin; Watson, David; Klugman, Keith P; Vidal, Jorge E

    2017-09-15

    Identification of Streptococcus pneumoniae and its more than 90 serotypes is routinely conducted by culture and Quellung reactions. Quantitative polymerase chain reactions (qPCRs) have been developed for molecular detection, including a pan-pneumococcus lytA assay, and assays targeting 79 serotypes. Reactions require genomic DNA from every target to prepare standards, which can be time consuming. In this study, we have developed a synthetic DNA molecule as a surrogate for genomic DNA and present new single-plex qPCR reactions to increase molecular detection to 94 pneumococcal serotypes. Specificity of these new reactions was confirmed with a limit of detection between 2 and 20 genome equivalents/reaction. A synthetic DNA (NUversa, ∼8.2 kb) was then engineered to contain all available qPCR targets for serotyping and lytA. NUversa was cloned into pUC57-Amp-modified to generate pNUversa (∼10.2 kb). Standards prepared from pNUversa and NUversa were compared against standards made out of genomic DNA. Linearity [NUversa (R2 > 0.982); pNUversa (R2 > 0.991)] and efficiency of qPCR reactions were similar to those utilizing chromosomal DNA (R2 > 0.981). Quantification with plasmid pNUversa was affected, however, whereas quantification with synthetic NUversa was comparable to that of genomic DNA. Therefore, NUversa may be utilized as DNA standard in single-plex assays of the currently known 94 pneumococcal serotypes. © FEMS 2017.

  15. Novel Quantitative Real-Time LCR for the Sensitive Detection of SNP Frequencies in Pooled DNA: Method Development, Evaluation and Application

    PubMed Central

    Psifidi, Androniki; Dovas, Chrysostomos; Banos, Georgios

    2011-01-01

    Background Single nucleotide polymorphisms (SNP) have proven to be powerful genetic markers for genetic applications in medicine, life science and agriculture. A variety of methods exist for SNP detection but few can quantify SNP frequencies when the mutated DNA molecules correspond to a small fraction of the wild-type DNA. Furthermore, there is no generally accepted gold standard for SNP quantification, and, in general, currently applied methods give inconsistent results in selected cohorts. In the present study we sought to develop a novel method for accurate detection and quantification of SNP in DNA pooled samples. Methods The development and evaluation of a novel Ligase Chain Reaction (LCR) protocol that uses a DNA-specific fluorescent dye to allow quantitative real-time analysis is described. Different reaction components and thermocycling parameters affecting the efficiency and specificity of LCR were examined. Several protocols, including gap-LCR modifications, were evaluated using plasmid standard and genomic DNA pools. A protocol of choice was identified and applied for the quantification of a polymorphism at codon 136 of the ovine PRNP gene that is associated with susceptibility to a transmissible spongiform encephalopathy in sheep. Conclusions The real-time LCR protocol developed in the present study showed high sensitivity, accuracy, reproducibility and a wide dynamic range of SNP quantification in different DNA pools. The limits of detection and quantification of SNP frequencies were 0.085% and 0.35%, respectively. Significance The proposed real-time LCR protocol is applicable when sensitive detection and accurate quantification of low copy number mutations in DNA pools is needed. Examples include oncogenes and tumour suppressor genes, infectious diseases, pathogenic bacteria, fungal species, viral mutants, drug resistance resulting from point mutations, and genetically modified organisms in food. PMID:21283808

  16. FibroChip, a Functional DNA Microarray to Monitor Cellulolytic and Hemicellulolytic Activities of Rumen Microbiota

    PubMed Central

    Comtet-Marre, Sophie; Chaucheyras-Durand, Frédérique; Bouzid, Ourdia; Mosoni, Pascale; Bayat, Ali R.; Peyret, Pierre; Forano, Evelyne

    2018-01-01

    Ruminants fulfill their energy needs for growth primarily through microbial breakdown of plant biomass in the rumen. Several biotic and abiotic factors influence the efficiency of fiber degradation, which can ultimately impact animal productivity and health. To provide more insight into mechanisms involved in the modulation of fibrolytic activity, a functional DNA microarray targeting genes encoding key enzymes involved in cellulose and hemicellulose degradation by rumen microbiota was designed. Eight carbohydrate-active enzyme (CAZyme) families (GH5, GH9, GH10, GH11, GH43, GH48, CE1, and CE6) were selected which represented 392 genes from bacteria, protozoa, and fungi. The DNA microarray, designated as FibroChip, was validated using targets of increasing complexity and demonstrated sensitivity and specificity. In addition, FibroChip was evaluated for its explorative and semi-quantitative potential. Differential expression of CAZyme genes was evidenced in the rumen bacterium Fibrobacter succinogenes S85 grown on wheat straw or cellobiose. FibroChip was used to identify the expressed CAZyme genes from the targeted families in the rumen of a cow fed a mixed diet based on grass silage. Among expressed genes, those encoding GH43, GH5, and GH10 families were the most represented. Most of the F. succinogenes genes detected by the FibroChip were also detected following RNA-seq analysis of RNA transcripts obtained from the rumen fluid sample. Use of the FibroChip also indicated that transcripts of fiber degrading enzymes derived from eukaryotes (protozoa and anaerobic fungi) represented a significant proportion of the total microbial mRNA pool. FibroChip represents a reliable and high-throughput tool that enables researchers to monitor active members of fiber degradation in the rumen. PMID:29487591

  17. FibroChip, a Functional DNA Microarray to Monitor Cellulolytic and Hemicellulolytic Activities of Rumen Microbiota.

    PubMed

    Comtet-Marre, Sophie; Chaucheyras-Durand, Frédérique; Bouzid, Ourdia; Mosoni, Pascale; Bayat, Ali R; Peyret, Pierre; Forano, Evelyne

    2018-01-01

    Ruminants fulfill their energy needs for growth primarily through microbial breakdown of plant biomass in the rumen. Several biotic and abiotic factors influence the efficiency of fiber degradation, which can ultimately impact animal productivity and health. To provide more insight into mechanisms involved in the modulation of fibrolytic activity, a functional DNA microarray targeting genes encoding key enzymes involved in cellulose and hemicellulose degradation by rumen microbiota was designed. Eight carbohydrate-active enzyme (CAZyme) families (GH5, GH9, GH10, GH11, GH43, GH48, CE1, and CE6) were selected which represented 392 genes from bacteria, protozoa, and fungi. The DNA microarray, designated as FibroChip, was validated using targets of increasing complexity and demonstrated sensitivity and specificity. In addition, FibroChip was evaluated for its explorative and semi-quantitative potential. Differential expression of CAZyme genes was evidenced in the rumen bacterium Fibrobacter succinogenes S85 grown on wheat straw or cellobiose. FibroChip was used to identify the expressed CAZyme genes from the targeted families in the rumen of a cow fed a mixed diet based on grass silage. Among expressed genes, those encoding GH43, GH5, and GH10 families were the most represented. Most of the F. succinogenes genes detected by the FibroChip were also detected following RNA-seq analysis of RNA transcripts obtained from the rumen fluid sample. Use of the FibroChip also indicated that transcripts of fiber degrading enzymes derived from eukaryotes (protozoa and anaerobic fungi) represented a significant proportion of the total microbial mRNA pool. FibroChip represents a reliable and high-throughput tool that enables researchers to monitor active members of fiber degradation in the rumen.

  18. Trace-fiber color discrimination by electrospray ionization mass spectrometry: a tool for the analysis of dyes extracted from submillimeter nylon fibers.

    PubMed

    Tuinman, Albert A; Lewis, Linda A; Lewis, Samuel A

    2003-06-01

    The application of electrospray ionization mass spectrometry (ESI-MS) to trace-fiber color analysis is explored using acidic dyes commonly employed to color nylon-based fibers, as well as extracts from dyed nylon fibers. Qualitative information about constituent dyes and quantitative information about the relative amounts of those dyes present on a single fiber become readily available using this technique. Sample requirements for establishing the color identity of different samples (i.e., comparative trace-fiber analysis) are shown to be submillimeter. Absolute verification of dye mixture identity (beyond the comparison of molecular weights derived from ESI-MS) can be obtained by expanding the technique to include tandem mass spectrometry (ESI-MS/MS). For dyes of unknown origin, the ESI-MS/MS analyses may offer insights into the chemical structure of the compound-information not available from chromatographic techniques alone. This research demonstrates that ESI-MS is viable as a sensitive technique for distinguishing dye constituents extracted from a minute amount of trace-fiber evidence. A protocol is suggested to establish/refute the proposition that two fibers--one of which is available in minute quantity only--are of the same origin.

  19. Quantitative polymerase chain reaction detection of circulating DNA in serum for early diagnosis of mucormycosis in immunocompromised patients.

    PubMed

    Millon, Laurence; Larosa, Fabrice; Lepiller, Quentin; Legrand, Faezeh; Rocchi, Steffi; Daguindau, Etienne; Scherer, Emeline; Bellanger, Anne-Pauline; Leroy, Joel; Grenouillet, Frederic

    2013-05-01

    The aim of our study was to assess the detection of circulating DNA from the most common species of Mucorales for early diagnosis of mucormycosis in at-risk patients. We retrospectively evaluated a combination of 3 quantitative polymerase chain reaction (qPCR) assays using hydrolysis probes targeting Mucor/Rhizopus, Lichtheimia (formerly Absidia), and Rhizomucor for circulating Mucorales detection. Serial serum samples from 10 patients diagnosed with proven mucormycosis (2-9 samples per patient) were analyzed. No cross-reactivity was detected in the 3 qPCR assays using 19 reference strains of opportunistic fungi, and the limit of detection ranged from 3.7 to 15 femtograms/10 µL, depending on the species. DNA from Mucorales was detected in the serum of 9 of 10 patients between 68 and 3 days before mucormycosis diagnosis was confirmed by histopathological examination and/or positive culture. All the qPCR results were concordant with culture and/or PCR-based identification of the causing agents in tissue (Lichtheimia species, Rhizomucor species, and Mucor/Rhizopus species in 4, 3, and 2 patients, respectively). Quantitative PCR was negative in only 1 patient with proven disseminated mucormycosis caused by Lichtheimia species. Our study suggests that using specific qPCR targeting several species of Mucorales according to local ecology to screen at-risk patients could be useful in a clinical setting. The cost and efficacy of this strategy should be evaluated. However, given the human and economic cost of mucormycosis and the need for rapid diagnosis to initiate prompt directed antifungal therapy, this strategy could be highly attractive.

  20. Impact of HIV type 1 subtype variation on viral RNA quantitation.

    PubMed

    Parekh, B; Phillips, S; Granade, T C; Baggs, J; Hu, D J; Respess, R

    1999-01-20

    We evaluated the performance of three HIV-1 RNA quantitation methods (Amplicor HIV-1 MONITOR-1.0, NASBA, and Quantiplex HIV RNA 2.0 [branched DNA (bDNA)]) using plasma specimens (N = 60) from individuals from Asia and Africa infected with one of three HIV-1 subtypes (A, Thai B [B'] or E; N = 20 each). Our results demonstrate that of the 20 subtype A specimens, 19 were quantifiable by the bDNA assay compared with 15 by the MONITOR-1.0 and 13 by NASBA. Of those quantifiable, the mean log10 difference was 0.93 between bDNA and MONITOR-1.0 and 0.46 between bDNA and NASBA. For subtype B' specimens, the correlation among methods was better with only 2 specimens missed by NASBA and 3 by the bDNA assay. However the missed specimens had viral burden near the lower limit (1000 copies/ml) for these assays. For the 20 subtype E specimens, MONITOR-1.0 and NASBA quantified RNA in 17 and 14 specimens, respectively, as compared with 19 specimens quantified by the bDNA assay. The correlation among different assays, especially between bDNA/NASBA and MONITOR-1.0/NASBA, was poor, although the mean log10 difference for subtype E specimens was 0.4 between bDNA and MONITOR-1.0 and only 0.08 between bDNA and NASBA. The addition of a new primer set, designed for non-B HIV-1 subtypes, to the existing MONITOR assay (MONITOR-1.0+) resulted in RNA detection in all 60 specimens and significantly improved the efficiency of quantitation for subtypes A and E. Our data indicate that HIV-1 subtype variation can have a major influence on viral load quantitation by different methods. Periodic evaluation and modification of these quantitative methods may be necessary to ensure reliable quantification of divergent viruses.

  1. [Method validation according to ISO 15189 and SH GTA 04: application for the extraction of DNA and its quantitative evaluation by a spectrophotometric assay].

    PubMed

    Harlé, Alexandre; Lion, Maëva; Husson, Marie; Dubois, Cindy; Merlin, Jean-Louis

    2013-01-01

    According to the French legislation on medical biology (January 16th, 2010), all biological laboratories must be accredited according to ISO 15189 for at least 50% of their activities before the end of 2016. The extraction of DNA from a sample of interest, whether solid or liquid is one of the critical steps in molecular biology and specifically in somatic or constitutional genetic. The extracted DNA must meet a number of criteria such quality and also be in sufficient concentration to allow molecular biology assays such as the detection of somatic mutations. This paper describes the validation of the extraction and purification of DNA using chromatographic column extraction and quantitative determination by spectrophotometric assay, according to ISO 15189 and the accreditation technical guide in Human Health SH-GTA-04.

  2. Active DNA gels

    NASA Astrophysics Data System (ADS)

    Saleh, Omar A.; Fygenson, Deborah K.; Bertrand, Olivier J. N.; Park, Chang Young

    2013-02-01

    Research into the mechanics and fluctuations of living cells has revealed the key role played by the cytoskeleton, a gel of stiff filaments driven out of equilibrium by force-generating motor proteins. Inspired by the extraordinary mechanical functions that the cytoskeleton imparts to the cell, we sought to create an artificial gel with similar characteristics. We identified DNA, and DNA-based motor proteins, as functional counterparts to the constituents of the cytoskeleton. We used DNA selfassembly to create a gel, and characterized its fluctuations and mechanics both before and after activation by the motor. We found that certain aspects of the DNA gel quantitatively match those of cytoskeletal networks, indicating the universal features of motor-driven, non-equilibrium networks.

  3. Direct Observation of Azimuthal Correlations between DNA in Hydrated Aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kornyshev, Alexei A.; Lee, Dominic J.; Wynveen, Aaron

    2005-09-30

    This study revisits the classical x-ray diffraction patterns from hydrated, noncrystalline fibers originally used to establish the helical structure of DNA. We argue that changes in these diffraction patterns with DNA packing density reveal strong azimuthally dependent interactions between adjacent molecules up to {approx}40 A interaxial or {approx}20 A surface-to-surface separations. These interactions appear to force significant torsional 'straightening' of DNA and strong azimuthal alignment of nearest neighbor molecules. The results are in good agreement with the predictions of recent theoretical models relating DNA-DNA interactions to the helical symmetry of their surface charge patterns.

  4. Detection and quantitation of benzo(a)pyrene-DNA adducts in brain and liver tissues of Beluga whales (Delphinapterus leucas) from the St. Lawrence and Mackenzie Estuaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shugart, L.R.

    1988-01-01

    It should be noted that there are few analytical techniques available for the detection and quantitation of chemical adducts in the DNA of living organisms. The reasons for this are: the analytical technique often has to accommodate the unique chemical and/or physical properties of the individual chemical or its metabolite; the percentage of total chemical that becomes most of the parent compound is usually detoxified and excreted; not all adducts that form between the genotoxic agent and DNA are stable or are involved in the development of subsequent deleterious events in the organism; and the amount of DNA available formore » analysis is often quite limited. 16 refs., 1 tab.« less

  5. Rapid Real-Time PCR Assay for Detection and Quantitation of Mycobacterium avium subsp. paratuberculosis DNA in Artificially Contaminated Milk

    PubMed Central

    O'Mahony, Jim; Hill, Colin

    2004-01-01

    Using fluorescence resonance energy transfer technology and Lightcycler analysis, we developed a real-time PCR assay with primers and probes designed by using IS900 which allowed rapid detection of Mycobacterium avium subsp. paratuberculosis DNA in artificially contaminated milk. Initially, the PCR parameters (including primer and probe levels, assay volume, Mg2+ concentration, and annealing temperature) were optimized. Subsequently, the quantitative ability of the assay was tested and was found to be accurate over a broad linear range (3 × 106 to 3 × 101 copies). The assay sensitivity when purified DNA was used was determined to be as low as five copies, with excellent reproducibility. A range of DNA isolation strategies was developed for isolating M. avium subsp. paratuberculosis DNA from spiked milk, the most effective of which involved the use of 50 mM Tris HCl, 10 mM EDTA, 2% Triton X-100, 4 M guanidinium isothiocyante, and 0.3 M sodium acetate combined with boiling, physical grinding, and nucleic acid spin columns. When this technique was used in conjunction with the real-time PCR assay, it was possible to consistently detect <100 organisms per ml of milk (equivalent to 2,000 organisms per 25 ml). Furthermore, the entire procedure (extraction and PCR) was performed in less than 3 h and was successfully adapted to quantify M. avium subsp. paratuberculosis in spiked milk from heavily and mildly contaminated samples. PMID:15294786

  6. Mutant POLG2 Disrupts DNA Polymerase γ Subunits and Causes Progressive External Ophthalmoplegia

    PubMed Central

    Longley, Matthew J.; Clark, Susanna; Yu Wai Man, Cynthia; Hudson, Gavin; Durham, Steve E.; Taylor, Robert W.; Nightingale, Simon; Turnbull, Douglass M.; Copeland, William C.; Chinnery, Patrick F.

    2006-01-01

    DNA polymerase γ (pol γ) is required to maintain the genetic integrity of the 16,569-bp human mitochondrial genome (mtDNA). Mutation of the nuclear gene for the catalytic subunit of pol γ (POLG) has been linked to a wide range of mitochondrial diseases involving mutation, deletion, and depletion of mtDNA. We describe a heterozygous dominant mutation (c.1352G→A/p.G451E) in POLG2, the gene encoding the p55 accessory subunit of pol γ, that causes progressive external ophthalmoplegia with multiple mtDNA deletions and cytochrome c oxidase (COX)–deficient muscle fibers. Biochemical characterization of purified, recombinant G451E-substituted p55 protein in vitro revealed incomplete stimulation of the catalytic subunit due to compromised subunit interaction. Although G451E p55 retains a wild-type ability to bind DNA, it fails to enhance the DNA-binding strength of the p140-p55 complex. In vivo, the disease most likely arises through haplotype insufficiency or heterodimerization of the mutated and wild-type proteins, which promote mtDNA deletions by stalling the DNA replication fork. The progressive accumulation of mtDNA deletions causes COX deficiency in muscle fibers and results in the clinical phenotype. PMID:16685652

  7. Detection of Human Cytomegalovirus DNA by Real-Time Quantitative PCR

    PubMed Central

    Nitsche, Andreas; Steuer, Nina; Schmidt, Christian Andreas; Landt, Olfert; Ellerbrok, Heinz; Pauli, Georg; Siegert, Wolfgang

    2000-01-01

    A real-time PCR assay was developed to quantify human cytomegalovirus (CMV) DNA. This assay was used to demonstrate a higher CMV DNA load in plasma of bone marrow transplant patients than in that of blood donors. The CMV load was higher in CMV antigen-positive patients than in antigen-negative patients. PMID:10878073

  8. Segregation and manifestations of the mtDNA tRNA[sup Lys] A[r arrow]G[sup (8344)] mutation of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsson, N.G.; Tulinius, M.H.; Holme, E.

    1992-12-01

    The authors have studied the segregation and manifestations of the tRNA[sup Lys] A[r arrow]G[sup (8344)] mutation of mtDNA. Three unrelated patients with myoclonus epilepsy and ragged-red fibers (MERRF) syndrome were investigated, along with 30 of their maternal relatives. Mutated mtDNA was not always found in the offspring of women carrying the tRNA[sup Lys] mutation. Four women had 10%-33% of mutated mtDNA in lymphocytes, and no mutated mtDNA was found in 7 of their 14 investigated children. The presence of mutated mtDNA was excluded at a level of 3:1,000. Five women had a proportion of 43%-73% mutated mtDNA in lymphocytes, andmore » mutated mtDNA was found in all their 12 investigated children. This suggests that the risk for transmission of mutated mtDNA to the offspring increases if high levels are present in the mother and that, above a threshold level of 35%-40%, it is very likely that transmission will occur to all children. The three patients with MERRF syndrone had, in muscle, both 94%-96% mutated mtDNA and biochemical and histochemical evidence of a respiratory-chain dysfunction. Four relatives had a proportion of 61%-92% mutated mtDNA in muscle, and biochemical measurements showed a normal respiratory-chain function in muscle in all cases. These findings suggest that >92% of mtDNA with the tRNA[sup Lys] mutation in muscle is required to cause a respiratory-chain dysfunction that can be detected by biochemical methods. There was a positive correlation between the levels of mtDNA with the tRNA[sup Lys] mutation in lymphocytes and the levels in muscle, in all nine investigated cases. The levels of mutated mtDNA were higher in muscle than in lymphocytes in all cases. 30 refs., 3 figs., 5 tabs.« less

  9. Pathogenic role of mtDNA duplications in mitochondrial diseases associated with mtDNA deletions.

    PubMed

    Odoardi, Francesca; Rana, Michele; Broccolini, Aldobrando; Mirabella, Massimiliano; Modoni, Anna; D'Amico, Adele; Papacci, Manuela; Tonali, Pietro; Servidei, Serenella; Silvestri, Gabriella

    2003-04-30

    We estimated the frequency of multiple mtDNA rearrangements by Southern blot in 32 patients affected by mitochondrial disorders associated with single deletions in order to assess genotype-phenotype correlations and elucidate the pathogenic significance of mtDNA duplications. Muscle in situ hybridization studies were performed in patients showing mtDNA duplications at Southern blot. We found multiple rearrangements in 12/32 (37.5%) patients; in particular, mtDNA duplications were detected in 4/4 Kearns-Sayre syndrome (KSS), in 1 Pearson's syndrome, in 1/3 encephalomyopathies with progressive external ophthalmoplegia (PEO), and in 2/23 PEO. In situ studies documented an exclusive accumulation of deleted mtDNAs in cytochrome c oxidase negative fibers of patients with mtDNA duplications. The presence of mtDNA duplications significantly correlated with onset of symptoms before age 15 and occurrence of clinical multisystem involvement. Analysis of biochemical data documented a predominant reduction of complex III in patients without duplications compared to patients with mtDNA duplications. Our data indicate that multiple mtDNA rearrangements are detectable in a considerable proportion of patients with single deletions and that mtDNA duplications do not cause any oxidative impairment. They more likely play a pathogenic role in the determination of clinical expression of mitochondrial diseases associated with single mtDNA deletions, possibly generating deleted mtDNAs in embryonic tissues by homologous recombination. Copyright 2003 Wiley-Liss, Inc.

  10. Modified HS-SPME for determination of quantitative relations between low-molecular oxygen compounds in various matrices.

    PubMed

    Dawidowicz, Andrzej L; Szewczyk, Joanna; Dybowski, Michal P

    2016-09-07

    Similar quantitative relations between individual constituents of the liquid sample established by its direct injection can be obtained applying Polydimethylsiloxane (PDMS) fiber in the headspace solid phase microextraction (HS-SPME) system containing the examined sample suspended in methyl silica oil. This paper proves that the analogous system composed of sample suspension/emulsion in polyethylene glycol (PEG) and Carbowax fiber allows to get similar quantitative relations between components of the mixture as those established by its direct analysis, but only for polar constituents. It is demonstrated for essential oil (EO) components of savory, sage, mint and thyme, and of artificial liquid mixture of polar constituents. The observed differences in quantitative relations between polar constituents estimated by both applied procedures are insignificant (Fexp < Fcrit). The presented results indicates that wider applicability of the system composed of a sample suspended in the oil of the same physicochemical character as that of used SPME fiber coating strongly depends on the character of interactions between analytes-suspending liquid and analytes-fiber coating. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Quantitative Analysis of the Mutagenic Potential of 1-Aminopyrene-DNA Adduct Bypass Catalyzed by Y-Family DNA Polymerases

    PubMed Central

    Sherrer, Shanen M.; Taggart, David J.; Pack, Lindsey R.; Malik, Chanchal K.; Basu, Ashis K.; Suo, Zucai

    2012-01-01

    N- (deoxyguanosin-8-yl)-1-aminopyrene (dGAP) is the predominant nitro polyaromatic hydrocarbon product generated from the air pollutant 1-nitropyrene reacting with DNA. Previous studies have shown that dGAP induces genetic mutations in bacterial and mammalian cells. One potential source of these mutations is the error-prone bypass of dGAP lesions catalyzed by the low-fidelity Y-family DNA polymerases. To provide a comparative analysis of the mutagenic potential of the translesion DNA synthesis (TLS) of dGAP, we employed short oligonucleotide sequencing assays (SOSAs) with the model Y-family DNA polymerase from Sulfolobus solfataricus, DNA Polymerase IV (Dpo4), and the human Y-family DNA polymerases eta (hPolη), kappa (hPolκ), and iota (hPolι). Relative to undamaged DNA, all four enzymes generated far more mutations (base deletions, insertions, and substitutions) with a DNA template containing a site-specifically placed dGAP. Opposite dGAP and at an immediate downstream template position, the most frequent mutations made by the three human enzymes were base deletions and the most frequent base substitutions were dAs for all enzymes. Based on the SOSA data, Dpo4 was the least error-prone Y-family DNA polymerase among the four enzymes during the TLS of dGAP. Among the three human Y-family enzymes, hPolκ made the fewest mutations at all template positions except opposite the lesion site. hPolκ was significantly less error-prone than hPolι and hPolη during the extension of dGAP bypass products. Interestingly, the most frequent mutations created by hPolι at all template positions were base deletions. Although hRev1, the fourth human Y-family enzyme, could not extend dGAP bypass products in our standing start assays, it preferentially incorporated dCTP opposite the bulky lesion. Collectively, these mutagenic profiles suggest that hPolkk and hRev1 are the most suitable human Y-family DNA polymerases to perform TLS of dGAP in humans. PMID:22917544

  12. Comparison of nested PCR and qPCR for the detection and quantitation of BoHV6 DNA.

    PubMed

    Kubiś, Piotr; Materniak, Magdalena; Kuźmak, Jacek

    2013-12-01

    Nested PCR and qPCR (quantitative PCR) tests based on glycoprotein B (gB) gene were designed for detecting Bovine herpesvirus 6 (BoHV6) in bovine whole blood samples and wild ruminant blood clots (deer and roe-deer). This virus, commonly known as BLHV (bovine lymphotropic herpesvirus) belongs to the Herpesviridae family, subfamily Gammaherpesvirinae and Macavirus genus. DNA isolated from 92 dairy cow blood samples and 69 wild ruminant clots were examined for the presence of BoHV6 using nested PCR and qPCR tests. Viral DNA was detected by using nested PCR in 59 out of 92 bovine blood samples (64.1%), and by qPCR in 68 out of 92 bovine blood samples (73.9%), but none out of 69 DNA samples isolated from wild ruminant blood clots, was positive in both assays. The specificity of nested PCR and qPCR was confirmed by using BoHV1, BoHV4, BoHV6, BFV, BIV, and BLV DNA. The sensitivity of nested PCR and qPCR was determined using a serially 10-fold diluted vector pCR2.1HgB (2 × 10(0)-2 × 10(6)copies/reaction). In this testing, qPCR was more sensitive than the nested PCR, detecting two copies of BoHV6 whilst the limit of detection for nested PCR was 20 copies. In all qPCR assays, the coefficients of determination (R(2)) ranged between 0.990 and 0.999, and the calculated amplification efficiencies (Eff%) within the range of 89.7-106.9. The intra- and inter-assay CV (coefficient of variation) values did not exceed 4%. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. A facile, branched DNA assay to quantitatively measure glucocorticoid receptor auto-regulation in T-cell acute lymphoblastic leukemia

    PubMed Central

    Schwartz, Jason R.; Sarvaiya, Purvaba J.; Leiva, Lily E.; Velez, Maria C.; Singleton, Tammuella C.; Yu, Lolie C.; Vedeckis, Wayne V.

    2012-01-01

    Glucocorticoid (GC) steroid hormones are used to treat acute lymphoblastic leukemia (ALL) because of their pro-apoptotic effects in hematopoietic cells. However, not all leukemia cells are sensitive to GC, and no assay to stratify patients is available. In the GC-sensitive T-cell ALL cell line CEM-C7, auto-up-regulation of RNA transcripts for the glucocorticoid receptor (GR) correlates with increased apoptotic response. This study aimed to determine if a facile assay of GR transcript levels might be promising for stratifying ALL patients into hormone-sensitive and hormone-resistant populations. The GR transcript profiles of various lymphoid cell lines and 4 bone marrow samples from patients with T-cell ALL were analyzed using both an optimized branched DNA (bDNA) assay and a real-time quantitative reverse transcription-polymerase chain reaction assay. There were significant correlations between both assay platforms when measuring total GR (exon 5/6) transcripts in various cell lines and patient samples, but not for a probe set that detects a specific, low abundance GR transcript (exon 1A3). Our results suggest that the bDNA platform is reproducible and precise when measuring total GR transcripts and, with further development, may ultimately offer a simple clinical assay to aid in the prediction of GC-sensitivity in ALL patients. PMID:22739263

  14. Apparent polyploidization after gamma irradiation: pitfalls in the use of quantitative polymerase chain reaction (qPCR) for the estimation of mitochondrial and nuclear DNA gene copy numbers.

    PubMed

    Kam, Winnie W Y; Lake, Vanessa; Banos, Connie; Davies, Justin; Banati, Richard

    2013-05-30

    Quantitative polymerase chain reaction (qPCR) has been widely used to quantify changes in gene copy numbers after radiation exposure. Here, we show that gamma irradiation ranging from 10 to 100 Gy of cells and cell-free DNA samples significantly affects the measured qPCR yield, due to radiation-induced fragmentation of the DNA template and, therefore, introduces errors into the estimation of gene copy numbers. The radiation-induced DNA fragmentation and, thus, measured qPCR yield varies with temperature not only in living cells, but also in isolated DNA irradiated under cell-free conditions. In summary, the variability in measured qPCR yield from irradiated samples introduces a significant error into the estimation of both mitochondrial and nuclear gene copy numbers and may give spurious evidence for polyploidization.

  15. Multiplex picoliter-droplet digital PCR for quantitative assessment of EGFR mutations in circulating cell-free DNA derived from advanced non-small cell lung cancer patients.

    PubMed

    Yu, Qian; Huang, Fei; Zhang, Meilin; Ji, Haiying; Wu, Shenchao; Zhao, Ying; Zhang, Chunyan; Wu, Jiong; Wang, Beili; Pan, Baisheng; Zhang, Xin; Guo, Wei

    2017-08-01

    To explore the possible diagnostic value of liquid biopsy, two multiplex panels using picoliter-droplet digital polymerase chain reaction (ddPCR) were established to quantitatively assess the epidermal growth factor receptor (EGFR) mutations in cell‑free DNA (cfDNA) extracted from the plasma of advanced non‑small cell lung cancer (NSCLC) patients. Plasma samples derived from 22 patients with stage IIIB/IV NSCLC harboring EGFR mutations in matched tumor tissues confirmed by amplification refractory mutation system (ARMS) analysis were subjected to two multiplex ddPCR panels to assess the abundance of tyrosine kinase inhibitor (TKI) ‑sensitive (19DEL, L858R) and TKI‑resistant (T790 M) mutations. Fluctuations in EGFR mutant abundance were monitored by either of the multiplex ddPCR panels for three patients undergoing EGFR‑TKI treatment, with serial plasma sample collections over 2 months. The multiplex ddPCR panels applied to plasma cfDNA from advanced NSCLC patients achieved a total concordance rate of 80% with the EGFR mutation profiles obtained by ARMS from matched biopsy tumor specimens (90% for 19DEL, 95% for L858R, 95% for T790M, respectively) and revealed additional mutant alleles in two subjects. The respective sensitivity and specificity were 90.9 and 88.9% for 19DEL, 87.5 and 100% for L858R, 100 and 93.8% for T790M. The fluctuations of EGFR mutant abundance in serial plasma cfDNA were in accordance with the changes in tumor size as assessed by imaging scans. The authors demonstrated the utility of multiplex ddPCR panels with ultra‑sensitivity for quantitative analysis of EGFR mutations in plasma cfDNA and obtained promising usefulness in EGFR‑TKI decision‑making for advanced NSCLC patients.

  16. Multiplex picoliter-droplet digital PCR for quantitative assessment of EGFR mutations in circulating cell-free DNA derived from advanced non-small cell lung cancer patients

    PubMed Central

    Yu, Qian; Huang, Fei; Zhang, Meilin; Ji, Haiying; Wu, Shenchao; Zhao, Ying; Zhang, Chunyan; Wu, Jiong; Wang, Beili; Pan, Baisheng; Zhang, Xin; Guo, Wei

    2017-01-01

    To explore the possible diagnostic value of liquid biopsy, two multiplex panels using picoliter-droplet digital polymerase chain reaction (ddPCR) were established to quantitatively assess the epidermal growth factor receptor (EGFR) mutations in cell-free DNA (cfDNA) extracted from the plasma of advanced non-small cell lung cancer (NSCLC) patients. Plasma samples derived from 22 patients with stage IIIB/IV NSCLC harboring EGFR mutations in matched tumor tissues confirmed by amplification refractory mutation system (ARMS) analysis were subjected to two multiplex ddPCR panels to assess the abundance of tyrosine kinase inhibitor (TKI) -sensitive (19DEL, L858R) and TKI-resistant (T790 M) mutations. Fluctuations in EGFR mutant abundance were monitored by either of the multiplex ddPCR panels for three patients undergoing EGFR-TKI treatment, with serial plasma sample collections over 2 months. The multiplex ddPCR panels applied to plasma cfDNA from advanced NSCLC patients achieved a total concordance rate of 80% with the EGFR mutation profiles obtained by ARMS from matched biopsy tumor specimens (90% for 19DEL, 95% for L858R, 95% for T790M, respectively) and revealed additional mutant alleles in two subjects. The respective sensitivity and specificity were 90.9 and 88.9% for 19DEL, 87.5 and 100% for L858R, 100 and 93.8% for T790M. The fluctuations of EGFR mutant abundance in serial plasma cfDNA were in accordance with the changes in tumor size as assessed by imaging scans. The authors demonstrated the utility of multiplex ddPCR panels with ultra-sensitivity for quantitative analysis of EGFR mutations in plasma cfDNA and obtained promising usefulness in EGFR-TKI decision-making for advanced NSCLC patients. PMID:29067441

  17. LTR real-time PCR for HIV-1 DNA quantitation in blood cells for early diagnosis in infants born to seropositive mothers treated in HAART area (ANRS CO 01).

    PubMed

    Avettand-Fènoël, Véronique; Chaix, Marie-Laure; Blanche, Stéphane; Burgard, Marianne; Floch, Corinne; Toure, Kadidia; Allemon, Marie-Christine; Warszawski, Josiane; Rouzioux, Christine

    2009-02-01

    HIV-1 diagnosis in babies born to seropositive mothers is one of the challenges of HIV epidemics in children. A simple, rapid protocol was developed for quantifying HIV-1 DNA in whole blood samples and was used in the ANRS French pediatric cohort in conditions of prevention of mother-to-child transmission. A quantitative HIV-1 DNA protocol (LTR real-time PCR) requiring small blood volumes was developed. First, analytical reproducibility was evaluated on 172 samples. Results obtained on blood cell pellets and Ficoll-Hypaque separated mononuclear cells were compared in 48 adult HIV-1 samples. Second, the protocol was applied to HIV-1 diagnosis in infants in parallel with plasma HIV-RNA quantitation. This prospective study was performed in children born between May 2005 and April 2007 included in the ANRS cohort. The assay showed good reproducibility. The 95% detection cut-off value was 6 copies/PCR, that is, 40 copies/10(6) leukocytes. HIV-DNA levels in whole blood were highly correlated with those obtained after Ficoll-Hypaque separation (r = 0.900, P < 0.0001). A total of 3,002 specimens from 1,135 infants were tested. The specificity of HIV-DNA and HIV-RNA assays was 100%. HIV-1 infection was diagnosed in nine infants before age 60 days. HIV-DNA levels were low, underlining the need for sensitive assays when highly active antiretroviral therapy (HAART) has been given. The performances of this HIV-DNA assay showed that it is adapted to early diagnosis in children. The results were equivalent to those of HIV-RNA assay. HIV-DNA may be used even in masked primary infection in newborns whose mothers have received HAART. (c) 2008 Wiley-Liss, Inc.

  18. Polymerase chain reaction amplification of DNA from aged blood stains: quantitative evaluation of the "suitability for purpose" of four filter papers as archival media.

    PubMed

    Kline, Margaret C; Duewer, David L; Redman, Janette W; Butler, John M; Boyer, David A

    2002-04-15

    In collaboration with the Armed Forces Institute of Pathology's Department of Defense DNA Registry, the National Institute of Standards and Technology recently evaluated the performance of a short tandem repeat multiplex with dried whole blood stains on four different commercially available identification card matrixes. DNA from 70 stains that had been stored for 19 months at ambient temperature was extracted or directly amplified and then processed using routine methods. All four storage media provided fully typeable (qualitatively identical) samples. After standardization, the average among-locus fluorescence intensity (electropherographic peak height or area) provided a suitable metric for quantitative analysis of the relative amounts of amplifiable DNA in an archived sample. The amounts of DNA in Chelex extracts from stains on two untreated high-purity cotton linter pulp papers and a paper treated with a DNA-binding coating were essentially identical. Average intensities for the aqueous extracts from a paper treated with a DNA-releasing coating were somewhat lower but also somewhat less variable than for the Chelex extracts. Average intensities of directly amplified punches of the DNA-binding paper were much larger but somewhat more variable than the Chelex extracts. Approximately 25% of the observed variation among the intensity measurements is shared among the four media and thus can be attributed to intrinsic variation in white blood count among the donors. All of the evaluated media adequately "bank" forensically useful DNA in well-dried whole blood stains for at least 19 months at ambient temperature.

  19. Comparative evaluation of three automated systems for DNA extraction in conjunction with three commercially available real-time PCR assays for quantitation of plasma Cytomegalovirus DNAemia in allogeneic stem cell transplant recipients.

    PubMed

    Bravo, Dayana; Clari, María Ángeles; Costa, Elisa; Muñoz-Cobo, Beatriz; Solano, Carlos; José Remigia, María; Navarro, David

    2011-08-01

    Limited data are available on the performance of different automated extraction platforms and commercially available quantitative real-time PCR (QRT-PCR) methods for the quantitation of cytomegalovirus (CMV) DNA in plasma. We compared the performance characteristics of the Abbott mSample preparation system DNA kit on the m24 SP instrument (Abbott), the High Pure viral nucleic acid kit on the COBAS AmpliPrep system (Roche), and the EZ1 Virus 2.0 kit on the BioRobot EZ1 extraction platform (Qiagen) coupled with the Abbott CMV PCR kit, the LightCycler CMV Quant kit (Roche), and the Q-CMV complete kit (Nanogen), for both plasma specimens from allogeneic stem cell transplant (Allo-SCT) recipients (n = 42) and the OptiQuant CMV DNA panel (AcroMetrix). The EZ1 system displayed the highest extraction efficiency over a wide range of CMV plasma DNA loads, followed by the m24 and the AmpliPrep methods. The Nanogen PCR assay yielded higher mean CMV plasma DNA values than the Abbott and the Roche PCR assays, regardless of the platform used for DNA extraction. Overall, the effects of the extraction method and the QRT-PCR used on CMV plasma DNA load measurements were less pronounced for specimens with high CMV DNA content (>10,000 copies/ml). The performance characteristics of the extraction methods and QRT-PCR assays evaluated herein for clinical samples were extensible at cell-based standards from AcroMetrix. In conclusion, different automated systems are not equally efficient for CMV DNA extraction from plasma specimens, and the plasma CMV DNA loads measured by commercially available QRT-PCRs can differ significantly. The above findings should be taken into consideration for the establishment of cutoff values for the initiation or cessation of preemptive antiviral therapies and for the interpretation of data from clinical studies in the Allo-SCT setting.

  20. Slowing down DNA translocation by a nanofiber meshed layer

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Xie, Wanyi; Tian, Enling; Ren, Yiwei; Zhu, Jifeng; Deng, Yunsheng; He, Shixuan; Liang, Liyuan; Wang, Yunjiao; Zhou, Daming; Wang, Deqiang

    2018-01-01

    Due to the weak interaction between DNA molecules and the inner surface of nanopores, DNA translocation is very fast, just leaving a short current drop without sufficient information to recognise the nucleotide sequence in the strand. In this paper, we propose a nanopore-nanofiber mesh hybridized structure to decelerate DNA translocation speed. Experimental results reveal that due to hydrophobic interaction between the DNA fragments and the nanofibers, the DNA moving speed can be retarded to two orders of magnitude slower. Furthermore, according to theory simulations, the additional fiber layer will reduce the electric field in the channel but elongate the capture region at the pore orifice, which will be helpful for increasing the capture rate and extending the DNA dwelling time in the meanwhile.

  1. Advanced risk assessment of the effects of graphite fibers on electronic and electric equipment, phase 1. [simulating vulnerability to airports and communities from fibers released during aircraft fires

    NASA Technical Reports Server (NTRS)

    Pocinki, L. S.; Kaplan, L. D.; Cornell, M. E.; Greenstone, R.

    1979-01-01

    A model was developed to generate quantitative estimates of the risk associated with the release of graphite fibers during fires involving commercial aircraft constructed with graphite fiber composite materials. The model was used to estimate the risk associated with accidents at several U.S. airports. These results were then combined to provide an estimate of the total risk to the nation.

  2. Optical fiber humidity sensor based on evanescent-wave scattering.

    PubMed

    Xu, Lina; Fanguy, Joseph C; Soni, Krunal; Tao, Shiquan

    2004-06-01

    The phenomenon of evanescent-wave scattering (EWS) is used to design an optical-fiber humidity sensor. Porous solgel silica (PSGS) coated on the surface of a silica optical-fiber core scatters evanescent waves that penetrate the coating layer. Water molecules in the gas phase surrounding the optical fiber can be absorbed into the inner surface of the pores of the porous silica. The absorbed water molecules form a thin layer of liquid water on the inner surface of the porous silica and enhance the EWS. The amount of water absorbed into the PSGS coating is in dynamic equilibrium with the water-vapor pressure in the gas phase. Therefore the humidity in the air can be quantitatively determined with fiber-optic EWS caused by the PSGS coating. The humidity sensor reported here is fast in response, reversible, and has a wide dynamic range. The possible interference caused by EWS to an optical-fiber gas sensor with a reagent-doped PSGS coating as a transducer is also discussed.

  3. An ultrastructural analysis of the epithelial-fiber interface (EFI) in primate lenses.

    PubMed

    Kuszak, J R; Novak, L A; Brown, H G

    1995-11-01

    The purpose of this study was to conduct a comprehensive ultrastructural analysis of the epithelial-fiber interface (EFI) in normal adult primate (Macaque nemestrina and fascicularis; 6-9 years old, n = 10) lenses. Scanning electron microscopy (SEM) was used to initially characterize the gross size, shape and three-dimensional organization of central zone (cz) epithelial cells and the anterior ends of elongating fibers beneath these cells. This fiducial information was essential to properly orient lens pieces in freeze fracture specimen carriers for the production of replicas with unambiguously identifiable EFI. Transmission electron microscopy (TEM) of replicas and thin-sectioned material were used to ultrastructurally analyse the cz EFI. TEM thin-sectioned material was also used to ultrastructurally analyse the pregerminative (pgz), germinative (gz) and transitional zone (tz) EFI. Correlative SEM and TEM of cz EFI components revealed that the apical membrane of both epithelial and elongating fiber cells were irregularly polygonal in shape, and aligned in parallel as smooth, concave-convex surfaces. However, whereas epithelial cell apical surfaces had minimal size variation, elongating fibers were larger and considerably variable in size. Quantitative analysis of > 10000 micron2 cz elongating fiber apical surfaces failed to detect any gap junctions defined in freeze fracture replicas as complementary aggregates of transmembrane proteins (connexons) conjoined across a narrowed extracellular space. However, a comparable frequency of vesicular events was noted in this region as quantified previously in adult and embryonic chick lens. Correlative TEM analysis > 1500 linear micrometers of thin-sectioned EFI from this region confirmed the presence of epithelial-epithelial gap junctions, elongating fiber-elongating fiber gap junctions, and an extreme paucity of epithelial-elongating fiber gap junctions. In contrast, TEM analysis of > 1000 linear micrometers of thin

  4. DNA methylation and soy phytoestrogens: quantitative study in DU-145 and PC-3 human prostate cancer cell lines.

    PubMed

    Adjakly, Mawussi; Bosviel, Rémy; Rabiau, Nadège; Boiteux, Jean-Paul; Bignon, Yves-Jean; Guy, Laurent; Bernard-Gallon, Dominique

    2011-12-01

    DNA hypermethylation is an epigenetic mechanism which induces silencing of tumor-suppressor genes in prostate cancer. Many studies have reported that specific components of food plants like soy phytoestrogens may have protective effects against prostate carcinogenesis or progression. Genistein and daidzein, the major phytoestrogens, have been reported to have the ability to reverse DNA hypermethylation in cancer cell lines. The aim of this study was to investigate the potential demethylating effects of these two soy compounds on BRCA1, GSTP1, EPHB2 and BRCA2 promoter genes. Prostate cell lines DU-145 and PC-3 were treated with genistein 40 µM, daidzein 110 µM, budesonide (methylating agent) 2 µM and 5-azacytidine (demethylating agent) 2 µM. In these two human prostate cancer cell lines we performed methylation quantification by using Methyl Profiler DNA methylation analysis. This technique is based on a methylation-specific digestion followed by quantitative PCR. We analyzed the corresponding protein expression by western blotting. Soy phytoestrogens induced a demethylation of all promoter regions studied except for BRCA2, which is not methylated in control cell lines. An increase in their protein expression was also demonstrated by western blot analysis and corroborated the potential demethylating effect of soy phytoestrogens. This study showed that the soy phytoestrogens, genistein and daidzein, induce a decrease of methylation of BRCA1, GSTP1 and EPHB2 promoters. Therefore, soy phytoestrogens may have a protective effect on prostate cancer. However, more studies are needed in order to understand the mechanism by which genistein and daidzein have an inhibiting action on DNA methylation.

  5. Characterization of human translesion DNA synthesis across a UV-induced DNA lesion

    PubMed Central

    Hedglin, Mark; Pandey, Binod; Benkovic, Stephen J

    2016-01-01

    Translesion DNA synthesis (TLS) during S-phase uses specialized TLS DNA polymerases to replicate a DNA lesion, allowing stringent DNA synthesis to resume beyond the offending damage. Human TLS involves the conjugation of ubiquitin to PCNA clamps encircling damaged DNA and the role of this post-translational modification is under scrutiny. A widely-accepted model purports that ubiquitinated PCNA recruits TLS polymerases such as pol η to sites of DNA damage where they may also displace a blocked replicative polymerase. We provide extensive quantitative evidence that the binding of pol η to PCNA and the ensuing TLS are both independent of PCNA ubiquitination. Rather, the unique properties of pols η and δ are attuned to promote an efficient and passive exchange of polymerases during TLS on the lagging strand. DOI: http://dx.doi.org/10.7554/eLife.19788.001 PMID:27770570

  6. Spectral Domain Optical Coherence Tomography in Glaucoma: Qualitative and Quantitative Analysis of the Optic Nerve Head and Retinal Nerve Fiber Layer (An AOS Thesis)

    PubMed Central

    Chen, Teresa C.

    2009-01-01

    Purpose: To demonstrate that video-rate spectral domain optical coherence tomography (SDOCT) can qualitatively and quantitatively evaluate optic nerve head (ONH) and retinal nerve fiber layer (RNFL) glaucomatous structural changes. To correlate quantitative SDOCT parameters with disc photography and visual fields. Methods: SDOCT images from 4 glaucoma eyes (4 patients) with varying stages of open-angle glaucoma (ie, early, moderate, late) were qualitatively contrasted with 2 age-matched normal eyes (2 patients). Of 61 other consecutive patients recruited in an institutional setting, 53 eyes (33 patients) met inclusion/exclusion criteria for quantitative studies. Images were obtained using two experimental SDOCT systems, one utilizing a superluminescent diode and the other a titanium:sapphire laser source, with axial resolutions of about 6 μm and 3 μm, respectively. Results: Classic glaucomatous ONH and RNFL structural changes were seen in SDOCT images. An SDOCT reference plane 139 μm above the retinal pigment epithelium yielded cup-disc ratios that best correlated with masked physician disc photography cup-disc ratio assessments. The minimum distance band, a novel SDOCT neuroretinal rim parameter, showed good correlation with physician cup-disc ratio assessments, visual field mean deviation, and pattern standard deviation (P values range, .0003–.024). RNFL and retinal thickness maps correlated well with disc photography and visual field testing. Conclusions: To our knowledge, this thesis presents the first comprehensive qualitative and quantitative evaluation of SDOCT images of the ONH and RNFL in glaucoma. This pilot study provides basis for developing more automated quantitative SDOCT-specific glaucoma algorithms needed for future prospective multicenter national trials. PMID:20126502

  7. Applications of fiber-optics-based nanosensors to drug discovery.

    PubMed

    Vo-Dinh, Tuan; Scaffidi, Jonathan; Gregas, Molly; Zhang, Yan; Seewaldt, Victoria

    2009-08-01

    Fiber-optic nanosensors are fabricated by heating and pulling optical fibers to yield sub-micron diameter tips and have been used for in vitro analysis of individual living mammalian cells. Immobilization of bioreceptors (e.g., antibodies, peptides, DNA) selective to targeting analyte molecules of interest provides molecular specificity. Excitation light can be launched into the fiber, and the resulting evanescent field at the tip of the nanofiber can be used to excite target molecules bound to the bioreceptor molecules. The fluorescence or surface-enhanced Raman scattering produced by the analyte molecules is detected using an ultra-sensitive photodetector. This article provides an overview of the development and application of fiber-optic nanosensors for drug discovery. The nanosensors provide minimally invasive tools to probe subcellular compartments inside single living cells for health effect studies (e.g., detection of benzopyrene adducts) and medical applications (e.g., monitoring of apoptosis in cells treated with anticancer drugs).

  8. Detection and quantitation of Kaposi's sarcoma-associated herpesvirus (KSHV) by a single competitive-quantitative polymerase chain reaction.

    PubMed

    Curreli, Francesca; Robles, Monica A; Friedman-Kien, Alvin E; Flore, Ornella

    2003-02-01

    Kaposi's sarcoma-associated herpesvirus is a novel herpesvirus linked to AIDS-related neoplasms. Currently it is difficult to evaluate the number of virions in viral preparation or in samples obtained from patients with Kaposi's sarcoma (KS), since no protocol for determining the plaque forming units of KSHV exists. We constructed a fragment of a different size than the target viral DNA to carry out a competitive-quantitative PCR. Both fragment and viral DNA were added to a single PCR reaction to compete for the same set of primers. By knowing the amount of the competitor added to the reaction, we could determine the number of viral DNA molecules. We used this assay successfully to detect and quantify KSHV genomes from KS skin biopsies and pleural effusion lymphoma, and from different viral preparations. To date, this is the most convenient and economic method that allows an accurate and fast viral detection/quantitation with a single PCR.

  9. Conserved DNA methylation patterns in healthy blood cells and extensive changes in leukemia measured by a new quantitative technique

    PubMed Central

    Jelinek, Jaroslav; Liang, Shoudan; Lu, Yue; He, Rong; Ramagli, Louis S.; Shpall, Elizabeth J.; Estecio, Marcos R.H.; Issa, Jean-Pierre J.

    2012-01-01

    Genome wide analysis of DNA methylation provides important information in a variety of diseases, including cancer. Here, we describe a simple method, Digital Restriction Enzyme Analysis of Methylation (DREAM), based on next generation sequencing analysis of methylation-specific signatures created by sequential digestion of genomic DNA with SmaI and XmaI enzymes. DREAM provides information on 150,000 unique CpG sites, of which 39,000 are in CpG islands and 30,000 are at transcription start sites of 13,000 RefSeq genes. We analyzed DNA methylation in healthy white blood cells and found methylation patterns to be remarkably uniform. Inter individual differences > 30% were observed only at 227 of 28,331 (0.8%) of autosomal CpG sites. Similarly, > 30% differences were observed at only 59 sites when we comparing the cord and adult blood. These conserved methylation patterns contrasted with extensive changes affecting 18–40% of CpG sites in a patient with acute myeloid leukemia and in two leukemia cell lines. The method is cost effective, quantitative (r2 = 0.93 when compared with bisulfite pyrosequencing) and reproducible (r2 = 0.997). Using 100-fold coverage, DREAM can detect differences in methylation greater than 10% or 30% with a false positive rate below 0.05 or 0.001, respectively. DREAM can be useful in quantifying epigenetic effects of environment and nutrition, correlating developmental epigenetic variation with phenotypes, understanding epigenetics of cancer and chronic diseases, measuring the effects of drugs on DNA methylation or deriving new biological insights into mammalian genomes. PMID:23075513

  10. Skeleton-based tracing of curved fibers from 3D X-ray microtomographic imaging

    NASA Astrophysics Data System (ADS)

    Huang, Xiang; Wen, Donghui; Zhao, Yanwei; Wang, Qinghui; Zhou, Wei; Deng, Daxiang

    A skeleton-based fiber tracing algorithm is described and applied on a specific fibrous material, porous metal fiber sintered sheet (PMFSS), featuring high porosity and curved fibers. The skeleton segments are firstly categorized according to the connectivity of the skeleton paths. Spurious segments like fiber bonds are detected making extensive use of the distance transform (DT) values. Single fibers are then traced and reconstructed by consecutively choosing the connecting skeleton segment pairs that show the most similar orientations and radius. Moreover, to reduce the misconnection due to the tracing orders, a multilevel tracing strategy is proposed. The fibrous network is finally reconstructed by dilating single fibers according to the DT values. Based on the traced single fibers, various morphology information regarding fiber length, radius, orientation, and tortuosity are quantitatively analyzed and compared with our previous results (Wang et al., 2013). Moreover, the number of bonds per fibers are firstly accessed. The methodology described in this paper can be expanded to other fibrous materials with adapted parameters.

  11. Selection of Suitable DNA Extraction Methods for Genetically Modified Maize 3272, and Development and Evaluation of an Event-Specific Quantitative PCR Method for 3272.

    PubMed

    Takabatake, Reona; Masubuchi, Tomoko; Futo, Satoshi; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko; Kurashima, Takeyo; Mano, Junichi; Kitta, Kazumi

    2016-01-01

    A novel real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) maize, 3272. We first attempted to obtain genome DNA from this maize using a DNeasy Plant Maxi kit and a DNeasy Plant Mini kit, which have been widely utilized in our previous studies, but DNA extraction yields from 3272 were markedly lower than those from non-GM maize seeds. However, lowering of DNA extraction yields was not observed with GM quicker or Genomic-tip 20/G. We chose GM quicker for evaluation of the quantitative method. We prepared a standard plasmid for 3272 quantification. The conversion factor (Cf), which is required to calculate the amount of a genetically modified organism (GMO), was experimentally determined for two real-time PCR instruments, the Applied Biosystems 7900HT (the ABI 7900) and the Applied Biosystems 7500 (the ABI7500). The determined Cf values were 0.60 and 0.59 for the ABI 7900 and the ABI 7500, respectively. To evaluate the developed method, a blind test was conducted as part of an interlaboratory study. The trueness and precision were evaluated as the bias and reproducibility of the relative standard deviation (RSDr). The determined values were similar to those in our previous validation studies. The limit of quantitation for the method was estimated to be 0.5% or less, and we concluded that the developed method would be suitable and practical for detection and quantification of 3272.

  12. Physical constraints in the condensation of eukaryotic chromosomes. Local concentration of DNA versus linear packing ratio in higher order chromatin structures.

    PubMed

    Daban, J R

    2000-04-11

    The local concentration of DNA in metaphase chromosomes of different organisms has been determined in several laboratories. The average of these measurements is 0.17 g/mL. In the first level of chromosome condensation, DNA is wrapped around histones forming nucleosomes. This organization limits the DNA concentration in nucleosomes to 0. 3-0.4 g/mL. Furthermore, in the structural models suggested in different laboratories for the 30-40 nm chromatin fiber, the estimated DNA concentration is significantly reduced; it ranges from 0.04 to 0.27 g/mL. The DNA concentration is further reduced when the fiber is folded into the successive higher order structures suggested in different models for metaphase chromosomes; the estimated minimum decrease of DNA concentration represents an additional 40%. These observations suggest that most of the models proposed for the 30-40 nm chromatin fiber are not dense enough for the construction of metaphase chromosomes. In contrast, it is well-known that the linear packing ratio increases dramatically in each level of DNA folding in chromosomes. Thus, the consideration of the linear packing ratio is not enough for the study of chromatin condensation; the constraint resulting from the actual DNA concentration in metaphase chromosomes must be considered for the construction of models for condensed chromatin.

  13. Conformational changes leading to T7 DNA delivery upon interaction with the bacterial receptor.

    PubMed

    González-García, Verónica A; Pulido-Cid, Mar; Garcia-Doval, Carmela; Bocanegra, Rebeca; van Raaij, Mark J; Martín-Benito, Jaime; Cuervo, Ana; Carrascosa, José L

    2015-04-17

    The majority of bacteriophages protect their genetic material by packaging the nucleic acid in concentric layers to an almost crystalline concentration inside protein shells (capsid). This highly condensed genome also has to be efficiently injected into the host bacterium in a process named ejection. Most phages use a specialized complex (often a tail) to deliver the genome without disrupting cell integrity. Bacteriophage T7 belongs to the Podoviridae family and has a short, non-contractile tail formed by a tubular structure surrounded by fibers. Here we characterize the kinetics and structure of bacteriophage T7 DNA delivery process. We show that T7 recognizes lipopolysaccharides (LPS) from Escherichia coli rough strains through the fibers. Rough LPS acts as the main phage receptor and drives DNA ejection in vitro. The structural characterization of the phage tail after ejection using cryo-electron microscopy (cryo-EM) and single particle reconstruction methods revealed the major conformational changes needed for DNA delivery at low resolution. Interaction with the receptor causes fiber tilting and opening of the internal tail channel by untwisting the nozzle domain, allowing release of DNA and probably of the internal head proteins. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Input-output characterization of fiber reinforced composites by P waves

    NASA Technical Reports Server (NTRS)

    Renneisen, John D.; Williams, James H., Jr.

    1990-01-01

    Input-output characterization of fiber composites is studied theoretically by tracing P waves in the media. A new path motion to aid in the tracing of P and the reflection generated SV wave paths in the continuum plate is developed. A theoretical output voltage from the receiving transducer is calculated for a tone burst. The study enhances the quantitative and qualitative understanding of the nondestructive evaluation of fiber composites which can be modeled as transversely isotropic media.

  15. Development and validation of InnoQuant™, a sensitive human DNA quantitation and degradation assessment method for forensic samples using high copy number mobile elements Alu and SVA.

    PubMed

    Pineda, Gina M; Montgomery, Anne H; Thompson, Robyn; Indest, Brooke; Carroll, Marion; Sinha, Sudhir K

    2014-11-01

    There is a constant need in forensic casework laboratories for an improved way to increase the first-pass success rate of forensic samples. The recent advances in mini STR analysis, SNP, and Alu marker systems have now made it possible to analyze highly compromised samples, yet few tools are available that can simultaneously provide an assessment of quantity, inhibition, and degradation in a sample prior to genotyping. Currently there are several different approaches used for fluorescence-based quantification assays which provide a measure of quantity and inhibition. However, a system which can also assess the extent of degradation in a forensic sample will be a useful tool for DNA analysts. Possessing this information prior to genotyping will allow an analyst to more informatively make downstream decisions for the successful typing of a forensic sample without unnecessarily consuming DNA extract. Real-time PCR provides a reliable method for determining the amount and quality of amplifiable DNA in a biological sample. Alu are Short Interspersed Elements (SINE), approximately 300bp insertions which are distributed throughout the human genome in large copy number. The use of an internal primer to amplify a segment of an Alu element allows for human specificity as well as high sensitivity when compared to a single copy target. The advantage of an Alu system is the presence of a large number (>1000) of fixed insertions in every human genome, which minimizes the individual specific variation possible when using a multi-copy target quantification system. This study utilizes two independent retrotransposon genomic targets to obtain quantification of an 80bp "short" DNA fragment and a 207bp "long" DNA fragment in a degraded DNA sample in the multiplex system InnoQuant™. The ratio of the two quantitation values provides a "Degradation Index", or a qualitative measure of a sample's extent of degradation. The Degradation Index was found to be predictive of the observed loss

  16. DNA hybridization activity of single-stranded DNA-conjugated gold nanoparticles used as probes for DNA detection

    NASA Astrophysics Data System (ADS)

    Kira, Atsushi; Matsuo, Kosuke; Nakajima, Shin-ichiro

    2016-02-01

    Colloidal nanoparticles (NPs) have potential applications in bio-sensing technologies as labels or signal enhancers. In order to meet demands for a development of biomolecular assays by a quantitative understanding of single-molecule, it is necessary to regulate accuracy of the NPs probes modified with biomolecules to optimize the characteristics of NPs. However, to our knowledge, there is little information about the structural effect of conjugated biomolecules to the NPs. In this study, we investigated the contribution of a density of single-stranded DNA (ssDNA) conjugating gold NP to hybridization activity. Hybridization activity decreased in accordance with increases in the density of attached ssDNAs, likely due to electrostatic repulsion generated by negatively charged phosphate groups in the ssDNA backbone. These results highlight the importance of controlling the density of ssDNAs attached to the surface of NPs used as DNA detection probes.

  17. Fracture modes in off-axis fiber composites

    NASA Technical Reports Server (NTRS)

    Sinclair, J. H.; Chamis, C. C.

    1978-01-01

    Criteria were developed for identifying, characterizing, and quantifying fracture modes in high-modulus graphite-fiber/resin unidirectional composites subjected to off-axis tensile loading. Procedures are described which use sensitivity analyses and off-axis data to determine the uniaxial strength of fiber composites. It was found that off-axis composites fail by three fracture modes which produce unique fracture surface characteristics. The stress that dominates each fracture mode and the load angle range of its dominance can be identified. Linear composite mechanics is adequate to describe quantitatively the mechanical behavior of off-axis composites. The uniaxial strengths predicted from off-axis data are comparable to these measured in uniaxial tests.

  18. Fiber Optic Surface Plasmon Resonance-Based Biosensor Technique: Fabrication, Advancement, and Application.

    PubMed

    Liang, Gaoling; Luo, Zewei; Liu, Kunping; Wang, Yimin; Dai, Jianxiong; Duan, Yixiang

    2016-05-03

    Fiber optic-based biosensors with surface plasmon resonance (SPR) technology are advanced label-free optical biosensing methods. They have brought tremendous progress in the sensing of various chemical and biological species. This review summarizes four sensing configurations (prism, grating, waveguide, and fiber optic) with two ways, attenuated total reflection (ATR) and diffraction, to excite the surface plasmons. Meanwhile, the designs of different probes (U-bent, tapered, and other probes) are also described. Finally, four major types of biosensors, immunosensor, DNA biosensor, enzyme biosensor, and living cell biosensor, are discussed in detail for their sensing principles and applications. Future prospects of fiber optic-based SPR sensor technology are discussed.

  19. Structure of chromatin and the linking number of DNA.

    PubMed Central

    Worcel, A; Strogatz, S; Riley, D

    1981-01-01

    Recent observations suggest that the basic supranucleosomal structure of chromatin is a zigzag helical ribbon with a repeat unit made of two nucleosomes connected by a relaxed spacer DNA. A remarkable feature of one particular ribbon is that it solves the apparent paradox between the number of DNA turns per nucleosome and the total linking number of a nucleosome-containing closed circular DNA molecule. We show here that the repeat unit of the proposed structure, which contains two nucleosomes with -1 3/4 DNA turns per nucleosome and one spacer crossover per repeat, contributes -2 to the linking number of closed circular DNA. Space-filling models show that the cylindrical 250-A chromatin fiber can be generated by twisting the ribbon. Images PMID:6940168

  20. Quantitative trait loci analysis for net ginning energy requirements in upland cotton (Gossypium hirsutum L.)

    USDA-ARS?s Scientific Manuscript database

    Cotton cultivars with reduced fiber-seed attachment force have the potential to be ginned faster with less energy. The objective of this study was to identify quantitative trait loci (QTL) for net ginning energy (NGE) requirement, and its relationship with other fiber quality traits in upland cotton...

  1. Quantitation of heteroplasmy of mtDNA sequence variants identified in a population of AD patients and controls by array-based resequencing.

    PubMed

    Coon, Keith D; Valla, Jon; Szelinger, Szabolics; Schneider, Lonnie E; Niedzielko, Tracy L; Brown, Kevin M; Pearson, John V; Halperin, Rebecca; Dunckley, Travis; Papassotiropoulos, Andreas; Caselli, Richard J; Reiman, Eric M; Stephan, Dietrich A

    2006-08-01

    our proposed analysis paradigm, which utilizes the availability of raw signal intensity values for each of the four potential alleles to facilitate quantitative estimates of mtDNA heteroplasmy. This information provides a potential new target for burgeoning diagnostics and therapeutics that could truly assist those suffering from this devastating disorder.

  2. Uptake of atmospheric carbon dioxide into silk fiber by silkworms.

    PubMed

    Magoshi, Jun; Tanaka, Toshihisa; Sasaki, Haruto; Kobayashi, Masatoshi; Magoshi, Yoshiko; Tsuda, Hidetoshi; Becker, Mary A; Inoue, Shun-ichi; Ishimaru, Ken

    2003-01-01

    The relation between the uptake of atmospheric CO(2) and insect's production of silk fiber has not yet been reported. Here, we provide the first quantitative demonstrations that four species of silkworms (Bombyx mori, Samia cynthia ricini, Antheraea pernyi, and Antheraea yamamai) and a silk-producing spider (Nephila clavata) incorporate atmospheric CO(2) into their silk fibers. The abundance of (13)C incorporated from the environment was determined by mass spectrometry and (13)C NMR measurements. Atmospheric CO(2) was incorporated into the silk fibers in the carbonyl groups of alanine, aspartic acid, serine, and glycine and the C(gamma) of aspartic acid. We show a simple model for the uptake of atmospheric CO(2) by silkworms. These results will demonstrate that silkworm has incorporated atmospheric CO(2) into silk fiber via the TCA cycle; however, the magnitude of uptake into the silk fibers is smaller than that consumed by the photosynthesis in trees and coral reefs.

  3. Effects of cereal fiber on bowel function: A systematic review of intervention trials

    PubMed Central

    de Vries, Jan; Miller, Paige E; Verbeke, Kristin

    2015-01-01

    AIM: To comprehensively review and quantitatively summarize results from intervention studies that examined the effects of intact cereal dietary fiber on parameters of bowel function. METHODS: A systematic literature search was conducted using PubMed and EMBASE. Supplementary literature searches included screening reference lists from relevant studies and reviews. Eligible outcomes were stool wet and dry weight, percentage water in stools, stool frequency and consistency, and total transit time. Weighted regression analyses generated mean change (± SD) in these measures per g/d of dietary fiber. RESULTS: Sixty-five intervention studies among generally healthy populations were identified. A quantitative examination of the effects of non-wheat sources of intact cereal dietary fibers was not possible due to an insufficient number of studies. Weighted regression analyses demonstrated that each extra g/d of wheat fiber increased total stool weight by 3.7 ± 0.09 g/d (P < 0.0001; 95%CI: 3.50-3.84), dry stool weight by 0.75 ± 0.03 g/d (P < 0.0001; 95%CI: 0.69-0.82), and stool frequency by 0.004 ± 0.002 times/d (P = 0.0346; 95%CI: 0.0003-0.0078). Transit time decreased by 0.78 ± 0.13 h per additional g/d (P < 0.0001; 95%CI: 0.53-1.04) of wheat fiber among those with an initial transit time greater than 48 h. CONCLUSION: Wheat dietary fiber, and predominately wheat bran dietary fiber, improves measures of bowel function. PMID:26269686

  4. Molecular Characterization of a Lizard Adenovirus Reveals the First Atadenovirus with Two Fiber Genes and the First Adenovirus with Either One Short or Three Long Fibers per Penton

    PubMed Central

    Pénzes, Judit J.; Menéndez-Conejero, Rosa; Condezo, Gabriela N.; Ball, Inna; Papp, Tibor; Doszpoly, Andor; Paradela, Alberto; Pérez-Berná, Ana J.; López-Sanz, María; Nguyen, Thanh H.; van Raaij, Mark J.; Marschang, Rachel E.; Harrach, Balázs; Benkő, Mária

    2014-01-01

    ABSTRACT Although adenoviruses (AdVs) have been found in a wide variety of reptiles, including numerous squamate species, turtles, and crocodiles, the number of reptilian adenovirus isolates is still scarce. The only fully sequenced reptilian adenovirus, snake adenovirus 1 (SnAdV-1), belongs to the Atadenovirus genus. Recently, two new atadenoviruses were isolated from a captive Gila monster (Heloderma suspectum) and Mexican beaded lizards (Heloderma horridum). Here we report the full genomic and proteomic characterization of the latter, designated lizard adenovirus 2 (LAdV-2). The double-stranded DNA (dsDNA) genome of LAdV-2 is 32,965 bp long, with an average G+C content of 44.16%. The overall arrangement and gene content of the LAdV-2 genome were largely concordant with those in other atadenoviruses, except for four novel open reading frames (ORFs) at the right end of the genome. Phylogeny reconstructions and plesiomorphic traits shared with SnAdV-1 further supported the assignment of LAdV-2 to the Atadenovirus genus. Surprisingly, two fiber genes were found for the first time in an atadenovirus. After optimizing the production of LAdV-2 in cell culture, we determined the protein compositions of the virions. The two fiber genes produce two fiber proteins of different sizes that are incorporated into the viral particles. Interestingly, the two different fiber proteins assemble as either one short or three long fiber projections per vertex. Stoichiometry estimations indicate that the long fiber triplet is present at only one or two vertices per virion. Neither triple fibers nor a mixed number of fibers per vertex had previously been reported for adenoviruses or any other virus. IMPORTANCE Here we show that a lizard adenovirus, LAdV-2, has a penton architecture never observed before. LAdV-2 expresses two fiber proteins—one short and one long. In the virion, most vertices have one short fiber, but a few of them have three long fibers attached to the same penton

  5. Analysis of DNA interactions using single-molecule force spectroscopy.

    PubMed

    Ritzefeld, Markus; Walhorn, Volker; Anselmetti, Dario; Sewald, Norbert

    2013-06-01

    Protein-DNA interactions are involved in many biochemical pathways and determine the fate of the corresponding cell. Qualitative and quantitative investigations on these recognition and binding processes are of key importance for an improved understanding of biochemical processes and also for systems biology. This review article focusses on atomic force microscopy (AFM)-based single-molecule force spectroscopy and its application to the quantification of forces and binding mechanisms that lead to the formation of protein-DNA complexes. AFM and dynamic force spectroscopy are exciting tools that allow for quantitative analysis of biomolecular interactions. Besides an overview on the method and the most important immobilization approaches, the physical basics of the data evaluation is described. Recent applications of AFM-based force spectroscopy to investigate DNA intercalation, complexes involving DNA aptamers and peptide- and protein-DNA interactions are given.

  6. Analysis of trace fibers by IR-MALDESI imaging coupled with high resolving power MS

    PubMed Central

    Cochran, Kristin H.; Barry, Jeremy A.; Robichaud, Guillaume

    2016-01-01

    Trace evidence is a significant portion of forensic cases. Textile fibers are a common form of trace evidence that are gaining importance in criminal cases. Currently, qualitative techniques that do not yield structural information are primarily used for fiber analysis, but mass spectrometry is gaining an increasing role in this field. Mass spectrometry yields more quantitative structural information about the dye and polymer that can be used for more conclusive comparisons. Matrix-assisted laser desorption electrospray ionization (MALDESI) is a hybrid ambient ionization source being investigated for use in mass spectrometric fiber analysis. In this manuscript, IR-MALDESI was used as a source for mass spectrometry imaging (MSI) of a dyed nylon fiber cluster and single fiber. Information about the fiber polymer as well as the dye were obtained from a single fiber which was on the order of 10 μm in diameter. These experiments were performed directly from the surface of a tape lift of the fiber with a background of extraneous fibers. PMID:25081013

  7. Analysis of trace fibers by IR-MALDESI imaging coupled with high resolving power MS.

    PubMed

    Cochran, Kristin H; Barry, Jeremy A; Robichaud, Guillaume; Muddiman, David C

    2015-01-01

    Trace evidence is a significant portion of forensic cases. Textile fibers are a common form of trace evidence that are gaining importance in criminal cases. Currently, qualitative techniques that do not yield structural information are primarily used for fiber analysis, but mass spectrometry is gaining an increasing role in this field. Mass spectrometry yields more quantitative structural information about the dye and polymer that can be used for more conclusive comparisons. Matrix-assisted laser desorption electrospray ionization (MALDESI) is a hybrid ambient ionization source being investigated for use in mass spectrometric fiber analysis. In this manuscript, IR-MALDESI was used as a source for mass spectrometry imaging (MSI) of a dyed nylon fiber cluster and single fiber. Information about the fiber polymer as well as the dye were obtained from a single fiber which was on the order of 10 μm in diameter. These experiments were performed directly from the surface of a tape lift of the fiber with a background of extraneous fibers.

  8. Integrated optical-fiber capillary electrophoresis microchips with novel spin-on-glass surface modification.

    PubMed

    Lin, Che-Hsin; Lee, Gwo-Bin; Fu, Lung-Ming; Chen, Shu-Hui

    2004-07-30

    This paper presents a novel micro-capillary electrophoresis (CE) chip with embedded optical fibers for the on-line detection of DNA samples. The optical fibers are pre-etched and then inserted directly into fiber channels incorporated within low-cost soda-lime glass substrates. The embedded optical fibers are precisely aligned with the microfluidic channels such that the induced fluorescence signals from labeled bio-samples can be detected. This arrangement avoids the requirement for delicate optical alignment procedures and equipment. Surface modification of the CE channels is accomplished by means of a simple and reliable organic-based spin-on-glass (SOG) method. The zeta potential distribution and the corresponding electroosmotic mobility of the fluid are simulated numerically for the modified and non-modified channel surfaces, and then both sets of results are verified experimentally. The present results indicate that the value of the zeta potential for a surface with an SOG coating is 19.3 times smaller than that of an untreated surface. A phiX-174 DNA marker fluid is used to evaluate the injection and separation performance of the developed micro-CE device. Furthermore, the long-term stability of the SOG-coated surface is also investigated. The experimental data reveal that the microchip device is capable of providing highly efficient separations of bio-molecules, and that the SOG layer retains its low zeta potential characteristics for at least 45 days. The present results confirm the effectiveness of the proposed micro-CE chip in performing the on-line detection of DNA samples, and indicate that the SOG process represents a simple and reliable solution for the surface modification of glass-based microchannels.

  9. Multiplex picoliter-droplet digital PCR for quantitative assessment of DNA integrity in clinical samples.

    PubMed

    Didelot, Audrey; Kotsopoulos, Steve K; Lupo, Audrey; Pekin, Deniz; Li, Xinyu; Atochin, Ivan; Srinivasan, Preethi; Zhong, Qun; Olson, Jeff; Link, Darren R; Laurent-Puig, Pierre; Blons, Hélène; Hutchison, J Brian; Taly, Valerie

    2013-05-01

    Assessment of DNA integrity and quantity remains a bottleneck for high-throughput molecular genotyping technologies, including next-generation sequencing. In particular, DNA extracted from paraffin-embedded tissues, a major potential source of tumor DNA, varies widely in quality, leading to unpredictable sequencing data. We describe a picoliter droplet-based digital PCR method that enables simultaneous detection of DNA integrity and the quantity of amplifiable DNA. Using a multiplex assay, we detected 4 different target lengths (78, 159, 197, and 550 bp). Assays were validated with human genomic DNA fragmented to sizes of 170 bp to 3000 bp. The technique was validated with DNA quantities as low as 1 ng. We evaluated 12 DNA samples extracted from paraffin-embedded lung adenocarcinoma tissues. One sample contained no amplifiable DNA. The fractions of amplifiable DNA for the 11 other samples were between 0.05% and 10.1% for 78-bp fragments and ≤1% for longer fragments. Four samples were chosen for enrichment and next-generation sequencing. The quality of the sequencing data was in agreement with the results of the DNA-integrity test. Specifically, DNA with low integrity yielded sequencing results with lower levels of coverage and uniformity and had higher levels of false-positive variants. The development of DNA-quality assays will enable researchers to downselect samples or process more DNA to achieve reliable genome sequencing with the highest possible efficiency of cost and effort, as well as minimize the waste of precious samples. © 2013 American Association for Clinical Chemistry.

  10. Controlled dehydration of a ruthenium complex-DNA crystal induces reversible DNA kinking.

    PubMed

    Hall, James P; Sanchez-Weatherby, Juan; Alberti, Cora; Quimper, Caroline Hurtado; O'Sullivan, Kyra; Brazier, John A; Winter, Graeme; Sorensen, Thomas; Kelly, John M; Cardin, David J; Cardin, Christine J

    2014-12-17

    Hydration-dependent DNA deformation has been known since Rosalind Franklin recognized that the relative humidity of the sample had to be maintained to observe a single conformation in DNA fiber diffraction. We now report for the first time the crystal structure, at the atomic level, of a dehydrated form of a DNA duplex and demonstrate the reversible interconversion to the hydrated form at room temperature. This system, containing d(TCGGCGCCGA) in the presence of Λ-[Ru(TAP)2(dppz)](2+) (TAP = 1,4,5,8-tetraazaphenanthrene, dppz = dipyrido[3,2-a:2',3'-c]phenazine), undergoes a partial transition from an A/B hybrid to the A-DNA conformation, at 84-79% relative humidity. This is accompanied by an increase in kink at the central step from 22° to 51°, with a large movement of the terminal bases forming the intercalation site. This transition is reversible on rehydration. Seven data sets, collected from one crystal at room temperature, show the consequences of dehydration at near-atomic resolution. This result highlights that crystals, traditionally thought of as static systems, are still dynamic and therefore can be the subject of further experimentation.

  11. Suppression of thermal frequency noise in erbium-doped fiber random lasers.

    PubMed

    Saxena, Bhavaye; Bao, Xiaoyi; Chen, Liang

    2014-02-15

    Frequency and intensity noise are characterized for erbium-doped fiber (EDF) random lasers based on Rayleigh distributed feedback mechanism. We propose a theoretical model for the frequency noise of such random lasers using the property of random phase modulations from multiple scattering points in ultralong fibers. We find that the Rayleigh feedback suppresses the noise at higher frequencies by introducing a Lorentzian envelope over the thermal frequency noise of a long fiber cavity. The theoretical model and measured frequency noise agree quantitatively with two fitting parameters. The random laser exhibits a noise level of 6  Hz²/Hz at 2 kHz, which is lower than what is found in conventional narrow-linewidth EDF fiber lasers and nonplanar ring laser oscillators (NPROs) by a factor of 166 and 2, respectively. The frequency noise has a minimum value for an optimum length of the Rayleigh scattering fiber.

  12. Fiber-optic microsphere-based arrays for multiplexed biological warfare agent detection.

    PubMed

    Song, Linan; Ahn, Soohyoun; Walt, David R

    2006-02-15

    We report a multiplexed high-density DNA array capable of rapid, sensitive, and reliable identification of potential biological warfare agents. An optical fiber bundle containing 6000 individual 3.1-mum-diameter fibers was chemically etched to yield microwells and used as the substrate for the array. Eighteen different 50-mer single-stranded DNA probes were covalently attached to 3.1-mum microspheres. Probe sequences were designed for Bacillus anthracis, Yersinia pestis, Francisella tularensis, Brucella melitensis, Clostridium botulinum, Vaccinia virus, and one biological warfare agent (BWA) simulant, Bacillus thuringiensis kurstaki. The microspheres were distributed into the microwells to form a randomized multiplexed high-density DNA array. A detection limit of 10 fM in a 50-microL sample volume was achieved within 30 min of hybridization for B. anthracis, Y. pestis, Vaccinia virus, and B. thuringiensis kurstaki. We used both specific responses of probes upon hybridization to complementary targets as well as response patterns of the multiplexed array to identify BWAs with high accuracy. We demonstrated the application of this multiplexed high-density DNA array for parallel identification of target BWAs in spiked sewage samples after PCR amplification. The array's miniaturized feature size, fabrication flexibility, reusability, and high reproducibility may enable this array platform to be integrated into a highly sensitive, specific, and reliable portable instrument for in situ BWA detection.

  13. Determination of the average orientation of DNA in the octopus sperm [ital Eledone] [ital cirrhossa] through polarized light scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapiro, D.B.; Maestre, M.F.; McClain, W.M.

    1994-08-20

    The coupled-dipole approximation has been used to model polarized light-scattering data obtained from the sperm of the octopus [ital Eledone] [ital cirrhosa]. Mueller scattering-matrix elements (which describe how a sample alters the intensity and degree of polarization of scattered light) were measured as a function of angle. The sample was modeled as a helical fiber believed to correspond to a DNA protein complex. It was necessary to propose an inherent anisotropy in the polarizability of the fiber in order to fit the data. The direction of the principle axes of the polarizability were determined by comparing the model with experimentalmore » data. The results suggest that the 2-nm DNA fibers are perpendicular to the thick fiber that defines the helical geometry of the octopus sperm head.« less

  14. Limited fiber type grouping in self-reinnervation cat tibialis anterior muscles.

    PubMed

    Unguez, G A; Roy, R R; Bodine-Fowler, S; Edgerton, V R

    1996-10-01

    The percent and distribution patterns of three immunohistochemically identified fiber types within the anterior compartment of the cat tibialis anterior were determined 6 months after denervation and self-reinnervation. After self-reinnervation, mean frequencies of slow (9%) and fast (91%) fibers were similar to those in control (12% and 88%, respectively) muscles. However, a lower proportion of fast-1 (26%) and a higher proportion of fast-2 (65%) fibers were observed in self-reinnervated than control (32% and 56%) muscles. Quantitation of adjacencies between fibers of similar myosin heavy chain (MHC) phenotype, a measure of type grouping, revealed that the frequencies of two slow or two fast-1 fibers being adjacent in self-reinnervated muscles were similar to control. In contrast, the frequency of fast-2/fast-2 fiber adjacencies found in self-reinnervated muscles (45%) was significantly higher than in control muscles (37%). In both groups, the frequency of adjacencies between slow, fast-1, or fast-2 fibers was largely attributable to the number of each fiber type present. These data show that the incidence of grouping within each fiber type present was not altered after 6 months of self-reinnervation. Minimal changes in the spatial distribution of fiber types following self-reinnervation in adults suggests a limited degree of conversion of muscle fibers to a MHC phenotype matching the motoneuron characteristics.

  15. DNA detection on ultrahigh-density optical fiber-based nanoarrays.

    PubMed

    Tam, Jenny M; Song, Linan; Walt, David R

    2009-04-15

    Nanoarrays for DNA detection were fabricated on etched nanofiber bundles based on recently developed techniques for microscale arrays. Two different-sized nanoarrays were created: one with 700 nm feature sizes and a 1 microm center-to-center pitch (approximately 1x10(6) array elements/mm(2)) and one with 300 nm feature sizes and a 500 nm center-to-center pitch (4.6x10(6) array elements/mm(2)). A random, multiplexed array composed of oligonucleotide-functionalized nanospheres was constructed and used for parallel detection and analysis of fluorescently labeled DNA targets. We have used these arrays to detect a variety of target sequences including Bacillus thuringiensis kurstaki and vaccina virus sequences, two potential biowarfare agents, as well as interleukin-2 sequences, an immune system modulator that has been used for the diagnosis of HIV.

  16. Tri-linear interpolation-based cerebral white matter fiber imaging

    PubMed Central

    Jiang, Shan; Zhang, Pengfei; Han, Tong; Liu, Weihua; Liu, Meixia

    2013-01-01

    Diffusion tensor imaging is a unique method to visualize white matter fibers three-dimensionally, non-invasively and in vivo, and therefore it is an important tool for observing and researching neural regeneration. Different diffusion tensor imaging-based fiber tracking methods have been already investigated, but making the computing faster, fiber tracking longer and smoother and the details shown clearer are needed to be improved for clinical applications. This study proposed a new fiber tracking strategy based on tri-linear interpolation. We selected a patient with acute infarction of the right basal ganglia and designed experiments based on either the tri-linear interpolation algorithm or tensorline algorithm. Fiber tracking in the same regions of interest (genu of the corpus callosum) was performed separately. The validity of the tri-linear interpolation algorithm was verified by quantitative analysis, and its feasibility in clinical diagnosis was confirmed by the contrast between tracking results and the disease condition of the patient as well as the actual brain anatomy. Statistical results showed that the maximum length and average length of the white matter fibers tracked by the tri-linear interpolation algorithm were significantly longer. The tracking images of the fibers indicated that this method can obtain smoother tracked fibers, more obvious orientation and clearer details. Tracking fiber abnormalities are in good agreement with the actual condition of patients, and tracking displayed fibers that passed though the corpus callosum, which was consistent with the anatomical structures of the brain. Therefore, the tri-linear interpolation algorithm can achieve a clear, anatomically correct and reliable tracking result. PMID:25206524

  17. Development of a testing method for asbestos fibers in treated materials of asbestos containing wastes by transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Takashi, E-mail: tyama@nies.go.jp; Kida, Akiko; Noma, Yukio

    Highlights: • A high sensitive and selective testing method for asbestos in treated materials of asbestos containing wastes was developed. • Asbestos can be determined at a limits are a few million fibers per gram and a few μg g{sup −1}. • High temperature melting treatment samples were determined by this method. Asbestos fiber concentration were below the quantitation limit in all samples, and total fiber concentrations were determined as 47–170 × 10{sup 6} g{sup −1}. - Abstract: Appropriate treatment of asbestos-containing wastes is a significant problem. In Japan, the inertization of asbestos-containing wastes based on new treatment processes approvedmore » by the Minister of the Environment is promoted. A highly sensitive method for testing asbestos fibers in inertized materials is required so that these processes can be approved. We developed a method in which fibers from milled treated materials are extracted in water by shaking, and are counted and identified by transmission electron microscopy. Evaluation of this method by using asbestos standards and simulated slag samples confirmed that the quantitation limits are a few million fibers per gram and a few μg/g in a sample of 50 mg per filter. We used this method to assay asbestos fibers in slag samples produced by high-temperature melting of asbestos-containing wastes. Fiber concentrations were below the quantitation limit in all samples, and total fiber concentrations were determined as 47–170 × 10{sup −6} f/g. Because the evaluation of treated materials by TEM is difficult owing to the limited amount of sample observable, this testing method should be used in conjunction with bulk analytical methods for sure evaluation of treated materials.« less

  18. Near-isogenic cotton germplasm lines that differ in fiber-bundle strength have temporal differences in fiber gene expression patterns as revealed by comparative high-throughput profiling.

    PubMed

    Hinchliffe, Doug J; Meredith, William R; Yeater, Kathleen M; Kim, Hee Jin; Woodward, Andrew W; Chen, Z Jeffrey; Triplett, Barbara A

    2010-05-01

    Gene expression profiles of developing cotton (Gossypium hirsutum L.) fibers from two near-isogenic lines (NILs) that differ in fiber-bundle strength, short-fiber content, and in fewer than two genetic loci were compared using an oligonucleotide microarray. Fiber gene expression was compared at five time points spanning fiber elongation and secondary cell wall (SCW) biosynthesis. Fiber samples were collected from field plots in a randomized, complete block design, with three spatially distinct biological replications for each NIL at each time point. Microarray hybridizations were performed in a loop experimental design that allowed comparisons of fiber gene expression profiles as a function of time between the two NILs. Overall, developmental expression patterns revealed by the microarray experiment agreed with previously reported cotton fiber gene expression patterns for specific genes. Additionally, genes expressed coordinately with the onset of SCW biosynthesis in cotton fiber correlated with gene expression patterns of other SCW-producing plant tissues. Functional classification and enrichment analysis of differentially expressed genes between the two NILs revealed that genes associated with SCW biosynthesis were significantly up-regulated in fibers of the high-fiber quality line at the transition stage of cotton fiber development. For independent corroboration of the microarray results, 15 genes were selected for quantitative reverse transcription PCR analysis of fiber gene expression. These analyses, conducted over multiple field years, confirmed the temporal difference in fiber gene expression between the two NILs. We hypothesize that the loci conferring temporal differences in fiber gene expression between the NILs are important regulatory sequences that offer the potential for more targeted manipulation of cotton fiber quality.

  19. General description and understanding of the nonlinear dynamics of mode-locked fiber lasers.

    PubMed

    Wei, Huai; Li, Bin; Shi, Wei; Zhu, Xiushan; Norwood, Robert A; Peyghambarian, Nasser; Jian, Shuisheng

    2017-05-02

    As a type of nonlinear system with complexity, mode-locked fiber lasers are known for their complex behaviour. It is a challenging task to understand the fundamental physics behind such complex behaviour, and a unified description for the nonlinear behaviour and the systematic and quantitative analysis of the underlying mechanisms of these lasers have not been developed. Here, we present a complexity science-based theoretical framework for understanding the behaviour of mode-locked fiber lasers by going beyond reductionism. This hierarchically structured framework provides a model with variable dimensionality, resulting in a simple view that can be used to systematically describe complex states. Moreover, research into the attractors' basins reveals the origin of stochasticity, hysteresis and multistability in these systems and presents a new method for quantitative analysis of these nonlinear phenomena. These findings pave the way for dynamics analysis and system designs of mode-locked fiber lasers. We expect that this paradigm will also enable potential applications in diverse research fields related to complex nonlinear phenomena.

  20. A novel Alu-based real-time PCR method for the quantitative detection of plasma circulating cell-free DNA: Sensitivity and specificity for the diagnosis of myocardial infarction

    PubMed Central

    LOU, XIAOLI; HOU, YANQIANG; LIANG, DONGYU; PENG, LIANG; CHEN, HONGWEI; MA, SHANYUAN; ZHANG, LURONG

    2015-01-01

    In the present study, we aimed to develop and validate a rapid and sensitive, Alu-based real-time PCR method for the detection of circulating cell-free DNA (cfDNA). This method targeted repetitive elements of the Alu reduplicative elements in the human genome, followed by signal amplification using fluorescence quantification. Standard Alu-puc57 vectors were constructed and 5 pairs of specific primers were designed. Valuation was conducted concerning linearity, variation and recovery. We found 5 linear responses (R1–5=0.998–0.999). The average intra- and inter-assay coefficients of variance were 12.98 and 10.75%, respectively. The recovery was 82.33–114.01%, with a mean recovery index of 101.26%. This Alu-based assay was reliable, accurate and sensitive for the quantitative detection of cfDNA. Plasma from normal controls and patients with myocardial infarction (MI) were analyzed, and the baseline levels of cfDNA were higher in the MI group. The area under the receiver operating characteristic (ROC) curve for Alu1, Alu2, Alu3, Alu4, Alu5 and Alu (Alu1 + Alu2 + Alu3 + Alu4 + Alu5) was 0.887, 0.758, 0.857, 0.940, 0.968 and 0.933, respectively. The optimal cut-off value for Alu1, Alu2, Alu3, Alu4, Alu5 and Alu to predict MI was 3.71, 1.93, 0.22, 3.73, 6.13 and 6.40 log copies/ml. We demonstrate that this new method is a reliable, accurate and sensitive method for the quantitative detection of cfDNA and that it is useful for studying the regulation of cfDNA in certain pathological conditions. Alu4, Alu5 and Alu showed better sensitivity and specificity for the diagnosis of MI compared with cardiac troponin I (cTnI), creatine kinase MB (CK-MB) isoenzyme and lactate dehydrogenase (LDH). Alu5 had the best prognostic ability. PMID:25374065

  1. Dietary Fiber Intake Regulates Intestinal Microflora and Inhibits Ovalbumin-Induced Allergic Airway Inflammation in a Mouse Model

    PubMed Central

    Zhang, Zhiyu; Shi, Lei; Pang, Wenhui; Liu, Wenwen; Li, Jianfeng; Wang, Haibo; Shi, Guanggang

    2016-01-01

    Background Recently, academic studies suggest that global growth of airway allergic disease has a close association with dietary changes including reduced consumption of fiber. Therefore, appropriate dietary fiber supplementation might be potential to prevent airway allergic disease (AAD). Objective We investigated whether dietary fiber intake suppressed the induction of AAD and tried to elucidate the possible underlying mechanisms. Methods The control mice and AAD model mice fed with 4% standard-fiber chow, while low-fiber group of mice fed with a 1.75% low-fiber chow. The two fiber-intervened groups including mice, apart from a standard-fiber diet, were also intragastric (i.g.) administrated daily with poorly fermentable cellulose or readily fermentable pectin (0.4% of daily body weight), respectively. All animals except normal mice were sensitized and challenged with ovalbumin (OVA) to induce airway allergic inflammation. Hallmarks of AAD were examined by histological analysis and ELISA. The variation in intestinal bacterial composition was assessed by qualitative analysis of 16S ribosomal DNA (rDNA) content in fecal samples using real-time PCR. Results Low-fiber diet aggravated inflammatory response in ovalbumin-induced allergic mice, whereas dietary fiber intake significantly suppressed the allergic responses, attenuated allergic symptoms of nasal rubbing and sneezing, decreased the pathology of eosinophil infiltration and goblet cell metaplasia in the nasal mucosa and lung, inhibited serum OVA-specific IgE levels, and lowered the levels of Th2 cytokines in NALF and BALF, but, increased Th1 (IFN-γ) cytokines. Additionally, dietary fiber intake also increased the proportion of Bacteroidetes and Actinobacteria, and decreased Firmicutes and Proteobacteria. Levels of probiotic bacteria, such as Lactobacillus and Bifidobacterium, were upgraded significantly. Conclusion Long-term deficiency of dietary fiber intake increases the susceptibility to AAD, whereas proper

  2. Dietary Fiber Intake Regulates Intestinal Microflora and Inhibits Ovalbumin-Induced Allergic Airway Inflammation in a Mouse Model.

    PubMed

    Zhang, Zhiyu; Shi, Lei; Pang, Wenhui; Liu, Wenwen; Li, Jianfeng; Wang, Haibo; Shi, Guanggang

    2016-01-01

    Recently, academic studies suggest that global growth of airway allergic disease has a close association with dietary changes including reduced consumption of fiber. Therefore, appropriate dietary fiber supplementation might be potential to prevent airway allergic disease (AAD). We investigated whether dietary fiber intake suppressed the induction of AAD and tried to elucidate the possible underlying mechanisms. The control mice and AAD model mice fed with 4% standard-fiber chow, while low-fiber group of mice fed with a 1.75% low-fiber chow. The two fiber-intervened groups including mice, apart from a standard-fiber diet, were also intragastric (i.g.) administrated daily with poorly fermentable cellulose or readily fermentable pectin (0.4% of daily body weight), respectively. All animals except normal mice were sensitized and challenged with ovalbumin (OVA) to induce airway allergic inflammation. Hallmarks of AAD were examined by histological analysis and ELISA. The variation in intestinal bacterial composition was assessed by qualitative analysis of 16S ribosomal DNA (rDNA) content in fecal samples using real-time PCR. Low-fiber diet aggravated inflammatory response in ovalbumin-induced allergic mice, whereas dietary fiber intake significantly suppressed the allergic responses, attenuated allergic symptoms of nasal rubbing and sneezing, decreased the pathology of eosinophil infiltration and goblet cell metaplasia in the nasal mucosa and lung, inhibited serum OVA-specific IgE levels, and lowered the levels of Th2 cytokines in NALF and BALF, but, increased Th1 (IFN-γ) cytokines. Additionally, dietary fiber intake also increased the proportion of Bacteroidetes and Actinobacteria, and decreased Firmicutes and Proteobacteria. Levels of probiotic bacteria, such as Lactobacillus and Bifidobacterium, were upgraded significantly. Long-term deficiency of dietary fiber intake increases the susceptibility to AAD, whereas proper fiber supplementation promotes effectively the

  3. Fiber-type differences in muscle mitochondrial profiles.

    PubMed

    Leary, S C; Lyons, C N; Rosenberger, A G; Ballantyne, J S; Stillman, J; Moyes, C D

    2003-10-01

    Although striated muscles differ in mitochondrial content, the extent of fiber-type specific mitochondrial specializations is not well known. To address this issue, we compared mitochondrial structural and functional properties in red muscle (RM), white muscle (WM), and cardiac muscle of rainbow trout. Overall preservation of the basic relationships between oxidative phosphorylation complexes among fiber types was confirmed by kinetic analyses, immunoblotting of native holoproteins, and spectroscopic measurements of cytochrome content. Fiber-type differences in mitochondrial properties were apparent when parameters were expressed per milligram mitochondrial protein. However, the differences diminished when expressed relative to cytochrome oxidase (COX), possibly a more meaningful denominator than mitochondrial protein. Expressed relative to COX, there were no differences in oxidative phosphorylation enzyme activities, pyruvate-based respiratory rates, H2O2 production, or state 4 proton leak respiration. These data suggest most mitochondrial qualitative properties are conserved across fiber types. However, there remained modest differences ( approximately 50%) in stoichiometries of selected enzymes of the Krebs cycle, beta-oxidation, and antioxidant enzymes. There were clear differences in membrane fluidity (RM > cardiac, WM) and proton conductance (H+/min/mV/U COX: WM > RM > cardiac). The pronounced differences in mitochondrial content between fiber types could be attributed to a combination of differences in myonuclear domain and modest effects on the expression of nuclear- and mitochondrially encoded respiratory genes. Collectively, these studies suggest constitutive pathways that transcend fiber types are primarily responsible for determining most quantitative and qualitative properties of mitochondria.

  4. Silkworm cocoons inspire models for random fiber and particulate composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Fujia; Porter, David; Vollrath, Fritz

    The bioengineering design principles evolved in silkworm cocoons make them ideal natural prototypes and models for structural composites. Cocoons depend for their stiffness and strength on the connectivity of bonding between their constituent materials of silk fibers and sericin binder. Strain-activated mechanisms for loss of bonding connectivity in cocoons can be translated directly into a surprisingly simple yet universal set of physically realistic as well as predictive quantitative structure-property relations for a wide range of technologically important fiber and particulate composite materials.

  5. Silkworm cocoons inspire models for random fiber and particulate composites

    NASA Astrophysics Data System (ADS)

    Chen, Fujia; Porter, David; Vollrath, Fritz

    2010-10-01

    The bioengineering design principles evolved in silkworm cocoons make them ideal natural prototypes and models for structural composites. Cocoons depend for their stiffness and strength on the connectivity of bonding between their constituent materials of silk fibers and sericin binder. Strain-activated mechanisms for loss of bonding connectivity in cocoons can be translated directly into a surprisingly simple yet universal set of physically realistic as well as predictive quantitative structure-property relations for a wide range of technologically important fiber and particulate composite materials.

  6. Human Lymphatic Mesenteric Vessels: Morphology and Possible Function of Aminergic and NPY-ergic Nerve Fibers.

    PubMed

    D'Andrea, Vito; Panarese, Alessandra; Taurone, Samanta; Coppola, Luigi; Cavallotti, Carlo; Artico, Marco

    2015-09-01

    The lymphatic vessels have been studied in different organs from a morphological to a clinical point of view. Nevertheless, the knowledge of the catecholaminergic control of the lymphatic circulation is still incomplete. The aim of this work is to study the presence and distribution of the catecholaminergic and NPY-ergic nerve fibers in the whole wall of the human mesenteric lymphatic vessels in order to obtain knowledge about their morphology and functional significance. The following experimental procedures were performed: 1) drawing of tissue containing lymphatic vessels; 2) cutting of tissue; 3) staining of tissue; 4) staining of nerve fibers; 5) histofluorescence microscopy for the staining of catecholaminergic nerve fibers; 6) staining of neuropeptide Y like-immune reactivity; 7) biochemical assay of proteins; 8) measurement of noradrenaline; 9) quantitative analysis of images; 10) statistical analysis of data. Numerous nerve fibers run in the wall of lymphatic vessels. Many of them are catecholaminergic in nature. Some nerve fibers are NPY-positive. The biochemical results on noradrenaline amounts are in agreement with morphological results on catecholaminergic nerve fibers. Moreover, the morphometric results, obtained by the quantitative analysis of images and the subsequent statistical analysis of data, confirm all our morphological and biochemical data. The knowledge of the physiological or pathological mechanism regulating the functions of the lymphatic system is incomplete. Nevertheless the catecholaminergic nerve fibers of the human mesenteric lymphatic vessels come from the adrenergic periarterial plexuses of the mesenterial arterial bed. NPY-ergic nerve fibers may modulate the microcirculatory mesenterial bed in different pathological conditions.

  7. Quantitative analysis and temperature-induced variations of moiré pattern in fiber-coupled imaging sensors.

    PubMed

    Karbasi, Salman; Arianpour, Ashkan; Motamedi, Nojan; Mellette, William M; Ford, Joseph E

    2015-06-10

    Imaging fiber bundles can map the curved image surface formed by some high-performance lenses onto flat focal plane detectors. The relative alignment between the focal plane array pixels and the quasi-periodic fiber-bundle cores can impose an undesirable space variant moiré pattern, but this effect may be greatly reduced by flat-field calibration, provided that the local responsivity is known. Here we demonstrate a stable metric for spatial analysis of the moiré pattern strength, and use it to quantify the effect of relative sensor and fiber-bundle pitch, and that of the Bayer color filter. We measure the thermal dependence of the moiré pattern, and the achievable improvement by flat-field calibration at different operating temperatures. We show that a flat-field calibration image at a desired operating temperature can be generated using linear interpolation between white images at several fixed temperatures, comparing the final image quality with an experimentally acquired image at the same temperature.

  8. Corneal confocal microscopy detects small fiber neuropathy in CMT1A patients

    PubMed Central

    Tavakoli, Mitra; Marshall, Andy; Banka, Siddharth; Petropoulos, Ioannis N; Fadavi, Hassan; Kingston, Helen; Malik, Rayaz A

    2012-01-01

    Although unmyelinated nerve fibers are affected in CMT1A, they have not been studied in detail due to the invasive nature of the techniques needed to study them. We established alterations in C-fiber bundles of the cornea in patients with CMT1A using non-invasive corneal confocal microscopy (CCM). Twelve patients with CMT1A and twelve healthy control subjects underwent assessment of neuropathic symptoms and deficits, electrophysiology, quantitative sensory testing, corneal sensitivity and corneal confocal microscopy. Corneal sensitivity, corneal nerve fiber density, corneal nerve branch density, corneal nerve fiber length and corneal nerve fiber tortuosity were significantly reduced in CMT1A patients compared to controls. There was a significant correlation between corneal sensation and CCM parameters with the severity of painful neuropathic symptoms, cold and warm thresholds and median nerve CMAP amplitude. CCM demonstrates significant damage to C-fiber bundles, which relates to some measures of neuropathy in CMT1A patients. PMID:22996176

  9. Application of the microfluidic-assisted replication track analysis to measure DNA repair in human and mouse cells.

    PubMed

    Welcsh, Piri; Kehrli, Keffy; Lazarchuk, Pavlo; Ladiges, Warren; Sidorova, Julia

    2016-10-01

    Functional studies of the roles that DNA helicases play in human cells have benefited immensely from DNA fiber (or single molecule) technologies, which enable us to discern minute differences in behaviors of individual replication forks in genomic DNA in vivo. DNA fiber technologies are a group of methods that use different approaches to unravel and stretch genomic DNA to its contour length, and display it on a glass surface in order to immuno-stain nucleoside analog incorporation into DNA to reveal tracks (or tracts) of replication. We have previously adopted a microfluidic approach to DNA stretching and used it to analyze DNA replication. This method was introduced under the moniker maRTA or microfluidic-assisted Replication Track Analysis, and we have since used it to analyze roles of the RECQ helicases WRN and BLM, and other proteins in normal and perturbed replication. Here we describe a novel application of maRTA to detect and measure repair of DNA damage produced by three different agents relevant to etiology or therapy of cancer: methyl-methanesulfonate, UV irradiation, and mitomycin C. Moreover, we demonstrate the utility of this method by analyzing DNA repair in cells with reduced levels of WRN or of the base excision repair protein XRCC1. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Regulation of DNA repair in serum-stimulated xeroderma pigmentosum cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, P.K.; Sirover, M.A.

    1984-10-01

    The regulation of DNA repair during serum stimulation of quiescent cells was examined in normal human cells, in fibroblasts from three xeroderma pigmentosum complementation groups (A, C, and D), in xeroderma pigmentosum variant cells, and in ataxia telangiectasia cells. The regulation of nucleotide excision repair was examined by exposing cells to ultraviolet irradiation at discrete intervals after cell stimulation. Similarly, base excision repair was quantitated after exposure to methylmethane sulfonate. WI-38 normal human diploid fibroblasts, xeroderma pigmentosum variant cells, as well as ataxia telangiectasia cells enhanced their capacity for both nucleotide excision repair and for base excision repair prior tomore » their enhancement of DNA synthesis. Further, in each cell strain, the base excision repair enzyme uracil DNA glycosylase was increased prior to the induction of DNA polymerase using the identical cells to quantitate each activity. In contrast, each of the three xeroderma complementation groups that were examined failed to increase their capacity for nucleotide excision repair above basal levels at any interval examined. This result was observed using either unscheduled DNA synthesis in the presence of 10 mM hydroxyurea or using repair replication in the absence of hydroxyurea to quantitate DNA repair. However, each of the three complementation groups normally regulated the enhancement of base excision repair after methylmethane sulfonate exposure and each induced the uracil DNA glycosylase prior to DNA synthesis. 62 references, 3 figures, 2 tables.« less

  11. Development and Validation of Environmental DNA (eDNA) Markers for Detection of Freshwater Turtles.

    PubMed

    Davy, Christina M; Kidd, Anne G; Wilson, Chris C

    2015-01-01

    Environmental DNA (eDNA) is a potentially powerful tool for detection and monitoring of rare species, including threatened native species and recently arrived invasive species. Here, we develop DNA primers for a suite of nine sympatric freshwater turtles, and use it to test whether turtle eDNA can be successfully detected in samples from aquaria and an outdoor pond. We also conduct a cost comparison between eDNA detection and detection through traditional survey methods, using data from field surveys at two sites in our target area. We find that eDNA from turtles can be detected using both conventional polymerase chain reaction (PCR) and quantitative PCR (qPCR), and that the cost of detection through traditional survey methods is 2-10X higher than eDNA detection for the species in our study range. We summarize necessary future steps for application of eDNA surveys to turtle monitoring and conservation and propose specific cases in which the application of eDNA could further the conservation of threatened turtle species.

  12. Development and Validation of Environmental DNA (eDNA) Markers for Detection of Freshwater Turtles

    PubMed Central

    Davy, Christina M.; Kidd, Anne G.; Wilson, Chris C.

    2015-01-01

    Environmental DNA (eDNA) is a potentially powerful tool for detection and monitoring of rare species, including threatened native species and recently arrived invasive species. Here, we develop DNA primers for a suite of nine sympatric freshwater turtles, and use it to test whether turtle eDNA can be successfully detected in samples from aquaria and an outdoor pond. We also conduct a cost comparison between eDNA detection and detection through traditional survey methods, using data from field surveys at two sites in our target area. We find that eDNA from turtles can be detected using both conventional polymerase chain reaction (PCR) and quantitative PCR (qPCR), and that the cost of detection through traditional survey methods is 2–10X higher than eDNA detection for the species in our study range. We summarize necessary future steps for application of eDNA surveys to turtle monitoring and conservation and propose specific cases in which the application of eDNA could further the conservation of threatened turtle species. PMID:26200348

  13. Specific features of implosion of metallized fiber arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitrofanov, K. N., E-mail: mitrofan@triniti.ru; Aleksandrov, V. V.; Gritsuk, A. N.

    2017-02-15

    Implosion of metallized fiber arrays was studied experimentally at the Angara-5-1 facility. The use of such arrays makes it possible to investigate the production and implosion dynamics of plasmas of various metals (such as tin, indium, and bismuth) that were previously unavailable for such studies. The plasma production rates m-dot (in μg/(cm{sup 2} ns)) for different metals were determined and quantitatively compared. Varying the thickness of the metal layer deposited on kapron fibers (the total linear mass of the metal coating being maintained at the level of 220 μg/cm), the current and velocity of the plasma precursor were studied asmore » functions of the thickness of the metal coating. The strong difference in the rates of plasma production from the metal coating and kapron fibers results in the redistribution of the discharge current between the Z-pinch and the trailing fiber plasma. The outer boundary of the plasma produced from the metal coating is found to be stable against instabilities typical of the final stage of implosion of conventional wire arrays.« less

  14. Approaches to quantitating the results of differentially dyed cottons

    USDA-ARS?s Scientific Manuscript database

    The differential dyeing (DD) method has served as a subjective method for visually determining immature cotton fibers. In an attempt to quantitate the results of the differential dyeing method, and thus offer an efficient means of elucidating cotton maturity without visual discretion, image analysi...

  15. Clearing muddied waters: Capture of environmental DNA from turbid waters.

    PubMed

    Williams, Kelly E; Huyvaert, Kathryn P; Piaggio, Antoinette J

    2017-01-01

    Understanding the differences in efficiencies of various methods to concentrate, extract, and amplify environmental DNA (eDNA) is vital for best performance of eDNA detection. Aquatic systems vary in characteristics such as turbidity, eDNA concentration, and inhibitor load, thus affecting eDNA capture efficiency. Application of eDNA techniques to the detection of terrestrial invasive or endangered species may require sampling at intermittent water sources that are used for drinking and cooling; these water bodies may often be stagnant and turbid. We present our best practices technique for the detection of wild pig eDNA in water samples, a protocol that will have wide applicability to the detection of elusive vertebrate species. We determined the best practice for eDNA capture in a turbid water system was to concentrate DNA from a 15 mL water sample via centrifugation, purify DNA with the DNeasy mericon Food kit, and remove inhibitors with Zymo Inhibitor Removal Technology columns. Further, we compared the sensitivity of conventional PCR to quantitative PCR and found that quantitative PCR was more sensitive in detecting lower concentrations of eDNA. We show significant differences in efficiencies among methods in each step of eDNA capture, emphasizing the importance of optimizing best practices for the system of interest.

  16. Clearing muddied waters: Capture of environmental DNA from turbid waters

    PubMed Central

    Huyvaert, Kathryn P.; Piaggio, Antoinette J.

    2017-01-01

    Understanding the differences in efficiencies of various methods to concentrate, extract, and amplify environmental DNA (eDNA) is vital for best performance of eDNA detection. Aquatic systems vary in characteristics such as turbidity, eDNA concentration, and inhibitor load, thus affecting eDNA capture efficiency. Application of eDNA techniques to the detection of terrestrial invasive or endangered species may require sampling at intermittent water sources that are used for drinking and cooling; these water bodies may often be stagnant and turbid. We present our best practices technique for the detection of wild pig eDNA in water samples, a protocol that will have wide applicability to the detection of elusive vertebrate species. We determined the best practice for eDNA capture in a turbid water system was to concentrate DNA from a 15 mL water sample via centrifugation, purify DNA with the DNeasy mericon Food kit, and remove inhibitors with Zymo Inhibitor Removal Technology columns. Further, we compared the sensitivity of conventional PCR to quantitative PCR and found that quantitative PCR was more sensitive in detecting lower concentrations of eDNA. We show significant differences in efficiencies among methods in each step of eDNA capture, emphasizing the importance of optimizing best practices for the system of interest. PMID:28686659

  17. Phylogenetic analysis of the kenaf fiber microbial retting community by semiconductor sequencing of 16S rDNA amplicons

    USDA-ARS?s Scientific Manuscript database

    Kenaf, hemp, and jute have been used for cordage and fiber production since prehistory. To obtain the fibers, harvested plants are soaked in ponds where indigenous microflora digests pectins and other heteropolysaccharides, releasing fibers in a process called retting. Renewed interest in “green” ...

  18. Local alignment vectors reveal cancer cell-induced ECM fiber remodeling dynamics

    PubMed Central

    Lee, Byoungkoo; Konen, Jessica; Wilkinson, Scott; Marcus, Adam I.; Jiang, Yi

    2017-01-01

    Invasive cancer cells interact with the surrounding extracellular matrix (ECM), remodeling ECM fiber network structure by condensing, degrading, and aligning these fibers. We developed a novel local alignment vector analysis method to quantitatively measure collagen fiber alignment as a vector field using Circular Statistics. This method was applied to human non-small cell lung carcinoma (NSCLC) cell lines, embedded as spheroids in a collagen gel. Collagen remodeling was monitored using second harmonic generation imaging under normal conditions and when the LKB1-MARK1 pathway was disrupted through RNAi-based approaches. The results showed that inhibiting LKB1 or MARK1 in NSCLC increases the collagen fiber alignment and captures outward alignment vectors from the tumor spheroid, corresponding to high invasiveness of LKB1 mutant cancer cells. With time-lapse imaging of ECM micro-fiber morphology, the local alignment vector can measure the dynamic signature of invasive cancer cell activity and cell-migration-induced ECM and collagen remodeling and realigning dynamics. PMID:28045069

  19. Disentangling DNA molecules

    NASA Astrophysics Data System (ADS)

    Vologodskii, Alexander

    2016-09-01

    The widespread circular form of DNA molecules inside cells creates very serious topological problems during replication. Due to the helical structure of the double helix the parental strands of circular DNA form a link of very high order, and yet they have to be unlinked before the cell division. DNA topoisomerases, the enzymes that catalyze passing of one DNA segment through another, solve this problem in principle. However, it is very difficult to remove all entanglements between the replicated DNA molecules due to huge length of DNA comparing to the cell size. One strategy that nature uses to overcome this problem is to create the topoisomerases that can dramatically reduce the fraction of linked circular DNA molecules relative to the corresponding fraction at thermodynamic equilibrium. This striking property of the enzymes means that the enzymes that interact with DNA only locally can access their topology, a global property of circular DNA molecules. This review considers the experimental studies of the phenomenon and analyzes the theoretical models that have been suggested in attempts to explain it. We describe here how various models of enzyme action can be investigated computationally. There is no doubt at the moment that we understand basic principles governing enzyme action. Still, there are essential quantitative discrepancies between the experimental data and the theoretical predictions. We consider how these discrepancies can be overcome.

  20. Fiber optic based multiparametric spectroscopy in vivo: Toward a new quantitative tissue vitality index

    NASA Astrophysics Data System (ADS)

    Kutai-Asis, Hofit; Barbiro-Michaely, Efrat; Deutsch, Assaf; Mayevsky, Avraham

    2006-02-01

    In our previous publication (Mayevsky et al SPIE 5326: 98-105, 2004) we described a multiparametric fiber optic system enabling the evaluation of 4 physiological parameters as indicators of tissue vitality. Since the correlation between the various parameters may differ in various pathophysiological conditions there is a need for an objective quantitative index that will integrate the relative changes measured in real time by the multiparametric monitoring system into a single number-vitality index. Such an approach to calculate tissue vitality index is critical for the possibility to use such an instrument in clinical environments. In the current presentation we are reporting our preliminary results indicating that calculation of an objective tissue vitality index is feasible. We used an intuitive empirical approach based on the comparison between the calculated index by the computer and the subjective evaluation made by an expert in the field of physiological monitoring. We used the in vivo brain of rats as an animal model in our current studies. The rats were exposed to anoxia, ischemia and cortical spreading depression and the responses were recorded in real time. At the end of the monitoring session the results were analyzed and the tissue vitality index was calculated offline. Mitochondrial NADH, tissue blood flow and oxy-hemoglobin were used to calculate the vitality index of the brain in vivo, where each parameter received a different weight, in each experiment type based on their significance. It was found that the mitochondrial NADH response was the main factor affected the calculated vitality index.

  1. Direct Visualization of DNA Replication Dynamics in Zebrafish Cells.

    PubMed

    Kuriya, Kenji; Higashiyama, Eriko; Avşar-Ban, Eriko; Tamaru, Yutaka; Ogata, Shin; Takebayashi, Shin-ichiro; Ogata, Masato; Okumura, Katsuzumi

    2015-12-01

    Spatiotemporal regulation of DNA replication in the S-phase nucleus has been extensively studied in mammalian cells because it is tightly coupled with the regulation of other nuclear processes such as transcription. However, little is known about the replication dynamics in nonmammalian cells. Here, we analyzed the DNA replication processes of zebrafish (Danio rerio) cells through the direct visualization of replicating DNA in the nucleus and on DNA fiber molecules isolated from the nucleus. We found that zebrafish chromosomal DNA at the nuclear interior was replicated first, followed by replication of DNA at the nuclear periphery, which is reminiscent of the spatiotemporal regulation of mammalian DNA replication. However, the relative duration of interior DNA replication in zebrafish cells was longer compared to mammalian cells, possibly reflecting zebrafish-specific genomic organization. The rate of replication fork progression and ori-to-ori distance measured by the DNA combing technique were ∼ 1.4 kb/min and 100 kb, respectively, which are comparable to those in mammalian cells. To our knowledge, this is a first report that measures replication dynamics in zebrafish cells.

  2. Molecular modeling of the microstructure evolution during carbon fiber processing

    NASA Astrophysics Data System (ADS)

    Desai, Saaketh; Li, Chunyu; Shen, Tongtong; Strachan, Alejandro

    2017-12-01

    The rational design of carbon fibers with desired properties requires quantitative relationships between the processing conditions, microstructure, and resulting properties. We developed a molecular model that combines kinetic Monte Carlo and molecular dynamics techniques to predict the microstructure evolution during the processes of carbonization and graphitization of polyacrylonitrile (PAN)-based carbon fibers. The model accurately predicts the cross-sectional microstructure of the fibers with the molecular structure of the stabilized PAN fibers and physics-based chemical reaction rates as the only inputs. The resulting structures exhibit key features observed in electron microcopy studies such as curved graphitic sheets and hairpin structures. In addition, computed X-ray diffraction patterns are in good agreement with experiments. We predict the transverse moduli of the resulting fibers between 1 GPa and 5 GPa, in good agreement with experimental results for high modulus fibers and slightly lower than those of high-strength fibers. The transverse modulus is governed by sliding between graphitic sheets, and the relatively low value for the predicted microstructures can be attributed to their perfect longitudinal texture. Finally, the simulations provide insight into the relationships between chemical kinetics and the final microstructure; we observe that high reaction rates result in porous structures with lower moduli.

  3. Testing of a Fiber Optic Wear, Erosion and Regression Sensor

    NASA Technical Reports Server (NTRS)

    Korman, Valentin; Polzin, Kurt A.

    2011-01-01

    The nature of the physical processes and harsh environments associated with erosion and wear in propulsion environments makes their measurement and real-time rate quantification difficult. A fiber optic sensor capable of determining the wear (regression, erosion, ablation) associated with these environments has been developed and tested in a number of different applications to validate the technique. The sensor consists of two fiber optics that have differing attenuation coefficients and transmit light to detectors. The ratio of the two measured intensities can be correlated to the lengths of the fiber optic lines, and if the fibers and the host parent material in which they are embedded wear at the same rate the remaining length of fiber provides a real-time measure of the wear process. Testing in several disparate situations has been performed, with the data exhibiting excellent qualitative agreement with the theoretical description of the process and when a separate calibrated regression measurement is available good quantitative agreement is obtained as well. The light collected by the fibers can also be used to optically obtain the spectra and measure the internal temperature of the wear layer.

  4. Mapping by sequencing in cotton (Gossypium hirsutum) line MD52ne identified candidate genes for fiber strength and its related quality attributes

    USDA-ARS?s Scientific Manuscript database

    Fiber strength, length, maturity and fineness determine the market value of cotton fibers and the quality of spun yarn. Cotton fiber strength has been recognized as a critical quality attribute in the modern textile industry. Fine mapping along with quantitative trait loci (QTL) validation and candi...

  5. Depletion of polycistronic transcripts using short interfering RNAs: cDNA synthesis method affects levels of non-targeted genes determined by quantitative PCR.

    PubMed

    Hanning, Jennifer E; Groves, Ian J; Pett, Mark R; Coleman, Nicholas

    2013-05-21

    Short interfering RNAs (siRNAs) are often used to deplete viral polycistronic transcripts, such as those encoded by human papillomavirus (HPV). There are conflicting data in the literature concerning how siRNAs targeting one HPV gene can affect levels of other genes in the polycistronic transcripts. We hypothesised that the conflict might be partly explained by the method of cDNA synthesis used prior to transcript quantification. We treated HPV16-positive cervical keratinocytes with siRNAs targeting the HPV16 E7 gene and used quantitative PCR to compare transcript levels of E7 with those of E6 and E2, viral genes located upstream and downstream of the target site respectively. We compared our findings from cDNA generated using oligo-dT primers alone with those from cDNA generated using a combination of random hexamer and oligo-dT primers. Our data show that when polycistronic transcripts are targeted by siRNAs, there is a period when untranslatable cleaved mRNA upstream of the siRNA binding site remains detectable by PCR, if cDNA is generated using random hexamer primers. Such false indications of mRNA abundance are avoided using oligo-dT primers. The period corresponds to the time taken for siRNA activity and degradation of the cleaved transcripts. Genes downstream of the siRNA binding site are detectable during this interval, regardless of how the cDNA is generated. These data emphasise the importance of the cDNA synthesis method used when measuring transcript abundance following siRNA depletion of polycistronic transcripts. They provide a partial explanation for erroneous reports suggesting that siRNAs targeting HPV E7 can have gene-specific effects.

  6. Depletion of polycistronic transcripts using short interfering RNAs: cDNA synthesis method affects levels of non-targeted genes determined by quantitative PCR

    PubMed Central

    2013-01-01

    Background Short interfering RNAs (siRNAs) are often used to deplete viral polycistronic transcripts, such as those encoded by human papillomavirus (HPV). There are conflicting data in the literature concerning how siRNAs targeting one HPV gene can affect levels of other genes in the polycistronic transcripts. We hypothesised that the conflict might be partly explained by the method of cDNA synthesis used prior to transcript quantification. Findings We treated HPV16-positive cervical keratinocytes with siRNAs targeting the HPV16 E7 gene and used quantitative PCR to compare transcript levels of E7 with those of E6 and E2, viral genes located upstream and downstream of the target site respectively. We compared our findings from cDNA generated using oligo-dT primers alone with those from cDNA generated using a combination of random hexamer and oligo-dT primers. Our data show that when polycistronic transcripts are targeted by siRNAs, there is a period when untranslatable cleaved mRNA upstream of the siRNA binding site remains detectable by PCR, if cDNA is generated using random hexamer primers. Such false indications of mRNA abundance are avoided using oligo-dT primers. The period corresponds to the time taken for siRNA activity and degradation of the cleaved transcripts. Genes downstream of the siRNA binding site are detectable during this interval, regardless of how the cDNA is generated. Conclusions These data emphasise the importance of the cDNA synthesis method used when measuring transcript abundance following siRNA depletion of polycistronic transcripts. They provide a partial explanation for erroneous reports suggesting that siRNAs targeting HPV E7 can have gene-specific effects. PMID:23693071

  7. Tapered optical fiber sensor based on localized surface plasmon resonance.

    PubMed

    Lin, Hsing-Ying; Huang, Chen-Han; Cheng, Gia-Ling; Chen, Nan-Kuang; Chui, Hsiang-Chen

    2012-09-10

    A tapered fiber localized surface plasmon resonance (LSPR) sensor is demonstrated for refractive index sensing and label-free biochemical detection. The sensing strategy relies on the interrogation of the transmission intensity change due to the evanescent field absorption of immobilized gold nanoparticles on the tapered fiber surface. The refractive index resolution based on the interrogation of transmission intensity change is calculated to be 3.2×10⁻⁵ RIU. The feasibility of DNP-functionalized tapered fiber LSPR sensor in monitoring anti-DNP antibody with different concentrations spiked in buffer is examined. Results suggest that the compact sensor can perform qualitative and quantitative biochemical detection in real-time and thus has potential to be used in biomolecular sensing applications.

  8. Indication of Horizontal DNA Gene Transfer by Extracellular Vesicles

    PubMed Central

    Speiseder, Thomas; Badbaran, Anita; Reimer, Rudolph; Indenbirken, Daniela; Grundhoff, Adam; Brunswig-Spickenheier, Bärbel; Alawi, Malik; Lange, Claudia

    2016-01-01

    The biological relevance of extracellular vesicles (EV) in intercellular communication has been well established. Thus far, proteins and RNA were described as main cargo. Here, we show that EV released from human bone marrow derived mesenchymal stromal cells (BM-hMSC) also carry high-molecular DNA in addition. Extensive EV characterization revealed this DNA mainly associated with the outer EV membrane and to a smaller degree also inside the EV. Our EV purification protocol secured that DNA is not derived from apoptotic or necrotic cells. To analyze the relevance of EV-associated DNA we lentivirally transduced Arabidopsis thaliana-DNA (A.t.-DNA) as indicator into BM-hMSC and generated EV. Using quantitative polymerase chain reaction (qPCR) techniques we detected high copy numbers of A.t.-DNA in EV. In recipient hMSC incubated with tagged EV for two weeks we identified A.t.-DNA transferred to recipient cells. Investigation of recipient cell DNA using quantitative PCR and verification of PCR-products by sequencing suggested stable integration of A.t.-DNA. In conclusion, for the first time our proof-of-principle experiments point to horizontal DNA transfer into recipient cells via EV. Based on our results we assume that eukaryotic cells are able to exchange genetic information in form of DNA extending the known cargo of EV by genomic DNA. This mechanism might be of relevance in cancer but also during cell evolution and development. PMID:27684368

  9. Indication of Horizontal DNA Gene Transfer by Extracellular Vesicles.

    PubMed

    Fischer, Stefanie; Cornils, Kerstin; Speiseder, Thomas; Badbaran, Anita; Reimer, Rudolph; Indenbirken, Daniela; Grundhoff, Adam; Brunswig-Spickenheier, Bärbel; Alawi, Malik; Lange, Claudia

    The biological relevance of extracellular vesicles (EV) in intercellular communication has been well established. Thus far, proteins and RNA were described as main cargo. Here, we show that EV released from human bone marrow derived mesenchymal stromal cells (BM-hMSC) also carry high-molecular DNA in addition. Extensive EV characterization revealed this DNA mainly associated with the outer EV membrane and to a smaller degree also inside the EV. Our EV purification protocol secured that DNA is not derived from apoptotic or necrotic cells. To analyze the relevance of EV-associated DNA we lentivirally transduced Arabidopsis thaliana-DNA (A.t.-DNA) as indicator into BM-hMSC and generated EV. Using quantitative polymerase chain reaction (qPCR) techniques we detected high copy numbers of A.t.-DNA in EV. In recipient hMSC incubated with tagged EV for two weeks we identified A.t.-DNA transferred to recipient cells. Investigation of recipient cell DNA using quantitative PCR and verification of PCR-products by sequencing suggested stable integration of A.t.-DNA. In conclusion, for the first time our proof-of-principle experiments point to horizontal DNA transfer into recipient cells via EV. Based on our results we assume that eukaryotic cells are able to exchange genetic information in form of DNA extending the known cargo of EV by genomic DNA. This mechanism might be of relevance in cancer but also during cell evolution and development.

  10. Three-dimensional smoothed particle hydrodynamics simulation for injection molding flow of short fiber-reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    He, Liping; Lu, Gang; Chen, Dachuan; Li, Wenjun; Lu, Chunsheng

    2017-07-01

    This paper investigates the three-dimensional (3D) injection molding flow of short fiber-reinforced polymer composites using a smoothed particle hydrodynamics (SPH) simulation method. The polymer melt was modeled as a power law fluid and the fibers were considered as rigid cylindrical bodies. The filling details and fiber orientation in the injection-molding process were studied. The results indicated that the SPH method could effectively predict the order of filling, fiber accumulation, and heterogeneous distribution of fibers. The SPH simulation also showed that fibers were mainly aligned to the flow direction in the skin layer and inclined to the flow direction in the core layer. Additionally, the fiber-orientation state in the simulation was quantitatively analyzed and found to be consistent with the results calculated by conventional tensor methods.

  11. Correction of the lack of commutability between plasmid DNA and genomic DNA for quantification of genetically modified organisms using pBSTopas as a model.

    PubMed

    Zhang, Li; Wu, Yuhua; Wu, Gang; Cao, Yinglong; Lu, Changming

    2014-10-01

    Plasmid calibrators are increasingly applied for polymerase chain reaction (PCR) analysis of genetically modified organisms (GMOs). To evaluate the commutability between plasmid DNA (pDNA) and genomic DNA (gDNA) as calibrators, a plasmid molecule, pBSTopas, was constructed, harboring a Topas 19/2 event-specific sequence and a partial sequence of the rapeseed reference gene CruA. Assays of the pDNA showed similar limits of detection (five copies for Topas 19/2 and CruA) and quantification (40 copies for Topas 19/2 and 20 for CruA) as those for the gDNA. Comparisons of plasmid and genomic standard curves indicated that the slopes, intercepts, and PCR efficiency for pBSTopas were significantly different from CRM Topas 19/2 gDNA for quantitative analysis of GMOs. Three correction methods were used to calibrate the quantitative analysis of control samples using pDNA as calibrators: model a, or coefficient value a (Cva); model b, or coefficient value b (Cvb); and the novel model c or coefficient formula (Cf). Cva and Cvb gave similar estimated values for the control samples, and the quantitative bias of the low concentration sample exceeded the acceptable range within ±25% in two of the four repeats. Using Cfs to normalize the Ct values of test samples, the estimated values were very close to the reference values (bias -13.27 to 13.05%). In the validation of control samples, model c was more appropriate than Cva or Cvb. The application of Cf allowed pBSTopas to substitute for Topas 19/2 gDNA as a calibrator to accurately quantify the GMO.

  12. Thulium fiber laser lithotripsy using tapered fibers.

    PubMed

    Blackmon, Richard L; Irby, Pierce B; Fried, Nathaniel M

    2010-01-01

    The Thulium fiber laser has recently been tested as a potential alternative to the Holmium:YAG laser for lithotripsy. This study explores use of a short taper for expanding the Thulium fiber laser beam at the distal tip of a small-core fiber. Thulium fiber laser radiation with a wavelength of 1,908 nm, 10 Hz pulse rate, 70 mJ pulse energy, and 1-millisecond pulse duration was delivered through a 2-m-length fiber with 150-microm-core-input-end, 300-microm-core-output-end, and 5-mm-length taper, in contact with human uric acid (UA) and calcium oxalate monohydrate (COM) stones, ex vivo (n = 10 each). Stone mass loss, stone crater depths, fiber transmission losses, fiber burn-back, irrigation rates, and deflection through a flexible ureteroscope were measured for the tapered fiber and compared with conventional fibers. After delivery of 1,800 pulses through the tapered fiber, mass loss measured 12.7+/-2.6 mg for UA and 7.2+/-0.8 mg COM stones, comparable to conventional 100-microm-core fibers (12.6+/-2.5 mg for UA and 6.8+/-1.7 mg for COM stones). No transmission losses or burn-back occurred for the tapered fiber after 36,000 pulses, while a conventional 150-microm fiber experienced significant tip degradation after only 1,800 pulses. High irrigation rates were measured with the tapered fiber inserted through the working port of a flexible ureteroscope without hindering its deflection, mimicking that of a conventional 150 microm fiber. The short tapered distal fiber tip allows expansion of the laser beam, resulting in decreased fiber tip damage compared to conventional small-core fibers, without compromising fiber bending, stone vaporization efficiency, or irrigation rates.

  13. Quantitative, non-invasive imaging of radiation-induced DNA double strand breaks in vivo

    PubMed Central

    Li, Wenrong; Li, Fang; Huang, Qian; Shen, Jingping; Wolf, Frank; He, Yujun; Liu, Xinjian; Hu, Y. Angela; Bedford, Joel. S.; Li, Chuan-Yuan

    2011-01-01

    DNA double strand breaks is a major form of DNA damage and a key mechanism through which radiotherapy and some chemotherapeutic agents kill cancer cells. Despite its importance, measuring DNA double strand breaks is still a tedious task that is normally carried out by gel electrophoresis or immunofluorescence staining. Here we report a novel approach to image and quantify DNA double strand breaks in live mammalian cells through bi-fragment luciferase reconstitution. N- and C- terminal fragments of firefly luciferase gene were fused with H2AX and MDC1 genes, respectively. Our strategy was based on the established fact that at the sites of DNA double strand breaks, H2AX protein is phosphoryated and physically associates with the MDC1 protein, thus bringing together N- and C- luciferase fragments and reconstituting luciferase activity. Our strategy allowed serial, non-invasive quantification of DNA double strand breaks in cells irradiated with x-rays and 56Fe ions. Furthermore, it allowed for the evaluation of DNA double strand breaks (DSBs) non-invasively in vivo in irradiated tumors over two weeks. Surprisingly, we detected a second wave of DSB induction in irradiated tumor cells days after radiation exposure in addition to the initial rapid induction of DSBs. We conclude that our new split-luciferase based method for imaging γ-H2AX-MDC1 interaction is a powerful new tool to study DNA double strand break repair kinetics in vivo with considerable advantage for experiments requiring observations over an extended period of time. PMID:21527553

  14. Performance Evaluation of Single Sideband Radio over Fiber System through Modulation Index Enhancement

    NASA Astrophysics Data System (ADS)

    Chen, Xiaogang; Hu, Xizhen; Huang, Dexiu

    2014-09-01

    The transmission performance of single sideband (SSB) radio over fiber (RoF) system is evaluated through tuning the modulation index of Mach-Zehnder modulator, two different data modulation schemes and the influence of fiber dispersion are considered. The quantitative simulation results validate that there exist an optimum modulation index, and the system performance could be improved if the data signal is modulated on only optical carrier or sidebands.

  15. Anti-dsDNA antibodies in systemic lupus erythematosus: A combination of two quantitative methods and the ANA pattern is the most efficient strategy of detection.

    PubMed

    Almeida González, Delia; Roces Varela, Alfredo; Marcelino Rodríguez, Itahisa; González Vera, Alexander; Delgado Sánchez, Mónica; Aznar Esquivel, Antonio; Casañas Rodríguez, Carlos; Cabrera de León, Antonio

    2015-12-01

    Several methods have been used to measure anti-double-stranded DNA auto-antibody (anti-dsDNA). Our aim was to determine the most efficient strategy to test anti-dsDNA in systemic lupus erythematosus (SLE). In this study, anti-dsDNA and anti-nuclear antibody (ANA) tests were requested for 644 patients. Anti-dsDNA was tested by RIA, ELISA and CLIA in all patients. The results indicated that 78 patients had a positive anti-dsDNA test according to at least one of the methods. After a 3-year follow-up period only 26 patients were diagnosed with SLE. We evaluated each method and combination of methods. Specificity and positive predictive value (PPV) increased with the number of assay methods used (p=0.002 for trend), and PPV was 100% in patients whose results were positive by all three anti-dsDNA assay methods. The proportion of anti-dsDNA-positive patients who had SLE was highest (82%; p b 0.001) among those with a homogeneous pattern of ANA staining, followed by those with a speckled pattern. In ANA positive patients, when only RIA was considered, 59% of anti-dsDNA-positive patients had SLE, but when RIA and CLIA were both considered, all patients with positive results on both tests had SLE. The combination of RIA+CLIA in patients with homogeneous and speckled ANA staining showed a similar cost and higher sensitivity than RIA alone in ANA positive patients (p b 0.001). We conclude that the most efficient strategy was to combine simultaneously two quantitative and sensitive methods but only in patients with a homogeneous or speckled pattern of ANA staining. This approach maximized specificity and PPV, and reduced costs. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Mathematical modeling and fluorescence imaging to study the Ca2+ turnover in skinned muscle fibers.

    PubMed Central

    Uttenweiler, D; Weber, C; Fink, R H

    1998-01-01

    A mathematical model was developed for the simulation of the spatial and temporal time course of Ca2+ ion movement in caffeine-induced calcium transients of chemically skinned muscle fiber preparations. Our model assumes cylindrical symmetry and quantifies the radial profile of Ca2+ ion concentration by solving the diffusion equations for Ca2+ ions and various mobile buffers, and the rate equations for Ca2+ buffering (mobile and immobile buffers) and for the release and reuptake of Ca2+ ions by the sarcoplasmic reticulum (SR), with a finite-difference algorithm. The results of the model are compared with caffeine-induced spatial Ca2+ transients obtained from saponin skinned murine fast-twitch fibers by fluorescence photometry and imaging measurements using the ratiometric dye Fura-2. The combination of mathematical modeling and digital image analysis provides a tool for the quantitative description of the total Ca2+ turnover and the different contributions of all interacting processes to the overall Ca2+ transient in skinned muscle fibers. It should thereby strongly improve the usage of skinned fibers as quantitative assay systems for many parameters of the SR and the contractile apparatus helping also to bridge the gap to the intact muscle fiber. PMID:9545029

  17. Qualitative and quantitative assessment of single fingerprints in forensic DNA analysis.

    PubMed

    Ostojic, Lana; Klempner, Stacey A; Patel, Rosni A; Mitchell, Adele A; Axler-DiPerte, Grace L; Wurmbach, Elisa

    2014-11-01

    Fingerprints and touched items are important sources of DNA for STR profiling, since this evidence can be recovered in a wide variety of criminal offenses. However, there are some fundamental difficulties in working with these samples, including variability in quantity and quality of extracted DNA. In this study, we collected and analyzed over 700 fingerprints. We compared a commercially available extraction protocol (Zygem) to two methods developed in our laboratory, a simple one-tube protocol and a high sensitivity protocol (HighSens) that includes additional steps to concentrate and purify the DNA. The amplification protocols tested were AmpFLSTR® Identifiler® using either 28 or 31 amplification cycles, and Identifiler® Plus using 32 amplification cycles. We found that the HighSens and Zygem extraction methods were significantly better in their DNA yields than the one-tube method. Identifiler® Plus increased the quality of the STR profiles for the one-tube extraction significantly. However, this effect could not be verified for the other extraction methods. Furthermore, microscopic analysis of single fingerprints revealed that some individuals tended to shed more material than others onto glass slides. However, a dense deposition of skin flakes did not strongly correlate with a high quality STR profile. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Methodological Variables in the Analysis of Cell-Free DNA.

    PubMed

    Bronkhorst, Abel Jacobus; Aucamp, Janine; Pretorius, Piet J

    2016-01-01

    In recent years, cell-free DNA (cfDNA) analysis has received increasing amounts of attention as a potential non-invasive screening tool for the early detection of genetic aberrations and a wide variety of diseases, especially cancer. However, except for some prenatal tests and BEAMing, a technique used to detect mutations in various genes of cancer patients, cfDNA analysis is not yet routinely applied in clinical practice. Although some confusing biological factors inherent to the in vivo setting play a key part, it is becoming increasingly clear that this struggle is mainly due to the lack of an analytical consensus, especially as regards quantitative analyses of cfDNA. In order to use quantitative analysis of cfDNA with confidence, process optimization and standardization are crucial. In this work we aim to elucidate the most confounding variables of each preanalytical step that must be considered for process optimization and equivalence of procedures.

  19. Quantitative DNA methylation analysis of paired box gene 1 and LIM homeobox transcription factor 1 α genes in cervical cancer

    PubMed Central

    Xu, Ling; Xu, Jun; Hu, Zheng; Yang, Baohua; Wang, Lifeng; Lin, Xiao; Xia, Ziyin; Zhang, Zhiling; Zhu, Yunheng

    2018-01-01

    DNA methylation is associated with tumorigenesis and may act as a potential biomarker for detecting cervical cancer. The aim of the present study was to explore the methylation status of the paired box gene 1 (PAX1) and the LIM homeobox transcription factor 1 α (LMX1A) gene in a spectrum of cervical lesions in an Eastern Chinese population. This single-center study involved 121 patients who were divided into normal cervix (NC; n=28), low-grade squamous intraepithelial lesion (LSIL; n=32), high-grade squamous intraepithelial lesion (HSIL; n=34) and cervical squamous cell carcinoma (CSCC; n=27) groups, according to biopsy results. Following extraction and modification of the DNA, quantitative assessment of the PAX1 and LMX1A genes in exfoliated cells was performed using pyrosequencing analysis. Receiver operating characteristic (ROC) curves were generated to calculate the sensitivity and specificity of each parameter and cut-off values of the percentage of methylation reference (PMR) for differentiation diagnosis. Analysis of variance was used to identify differences among groups. The PMR of the two genes was significantly higher in the HSIL and CSCC groups compared with that in the NC and LSIL groups (P<0.001). ROC curve analysis demonstrated that the sensitivity, specificity and accuracy for detection of CSCC were 0.790, 0.837 and 0.809, respectively, using PAX1; and 0.633, 0.357 and 0.893, respectively, using LMX1A. These results indicated that quantitative PAX1 methylation demonstrates potential for cervical cancer screening, while further investigation is required to determine the potential of LMX1A methylation. PMID:29541217

  20. Modeling of non-uniform spatial arrangement of fibers in a ceramic matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, S.; Tewari, A.; Gokhale, A.M.

    In the unidirectional fiber reinforced composites, the spatial agreement of fibers is often non-uniform. These non-uniformities are linked to the processing conditions, and they affect the properties of the composite. In this contribution, a recently developed digital image analysis technique is used to quantify the non-uniform spatial arrangement of Nicalon fibers in a ceramic matrix composite (CMC). These quantitative data are utilized to develop a six parameter computer simulated microstructure model that is statistically equivalent to the non-uniform microstructure of the CMC. The simulated microstructure can be utilized as a RVE for the micro-mechanical modeling studies.

  1. Assessment of DNA Contamination in RNA Samples Based on Ribosomal DNA

    PubMed Central

    Hashemipetroudi, Seyyed Hamidreza; Nematzadeh, Ghorbanali; Ahmadian, Gholamreza; Yamchi, Ahad; Kuhlmann, Markus

    2018-01-01

    One method extensively used for the quantification of gene expression changes and transcript abundances is reverse-transcription quantitative real-time PCR (RT-qPCR). It provides accurate, sensitive, reliable, and reproducible results. Several factors can affect the sensitivity and specificity of RT-qPCR. Residual genomic DNA (gDNA) contaminating RNA samples is one of them. In gene expression analysis, non-specific amplification due to gDNA contamination will overestimate the abundance of transcript levels and can affect the RT-qPCR results. Generally, gDNA is detected by qRT-PCR using primer pairs annealing to intergenic regions or an intron of the gene of interest. Unfortunately, intron/exon annotations are not yet known for all genes from vertebrate, bacteria, protist, fungi, plant, and invertebrate metazoan species. Here we present a protocol for detection of gDNA contamination in RNA samples by using ribosomal DNA (rDNA)-based primers. The method is based on the unique features of rDNA: their multigene nature, highly conserved sequences, and high frequency in the genome. Also as a case study, a unique set of primers were designed based on the conserved region of ribosomal DNA (rDNA) in the Poaceae family. The universality of these primer pairs was tested by melt curve analysis and agarose gel electrophoresis. Although our method explains how rDNA-based primers can be applied for the gDNA contamination assay in the Poaceae family, it could be easily used to other prokaryote and eukaryote species PMID:29443017

  2. Mechanisms of nascent fiber formation during avian skeletal muscle hypertrophy

    NASA Technical Reports Server (NTRS)

    McCormick, K. M.; Schultz, E.

    1992-01-01

    This study examined two putative mechanisms of new fiber formation in postnatal skeletal muscle, namely longitudinal fragmentation of existing fibers and de novo formation. The relative contributions of these two mechanisms to fiber formation in hypertrophying anterior latissimus dorsi (ALD) muscle were assessed by quantitative analysis of their nuclear populations. Muscle hypertrophy was induced by wing-weighting for 1 week. All nuclei formed during the weighting period were labeled by continuous infusion of 5-bromo-2'-deoxyuridine (BrdU), a thymidine analog, and embryonic-like fibers were identified using an antibody to ventricular-like embryonic (V-EMB) myosin. The number of BrdU-labeled and unlabeled nuclei in V-EMB-positive fibers were counted. Wing-weighting resulted in significant muscle enlargement and the appearance of many V-EMB+ fibers. The majority of V-EMB+ fibers were completely independent of mature fibers and had a nuclear density characteristics of developing fibers. Furthermore, nearly 100% of the nuclei in independent V-EMB+ fibers were labeled. These findings strongly suggest that most V-EMB+ fibers were nascent fibers formed de novo during the weighting period by satellite cell activation and fusion. Nascent fibers were found primarily in the space between fascicles where they formed a complex anastomosing network of fibers running at angles to one another. Although wing-weighting induced an increase in the number of branched fibers, there was no evidence that V-EMB+ fibers were formed by longitudinal fragmentation. The location of newly formed fibers in wing-weighted and regenerating ALD muscle was compared to determine whether satellite cells in the ALD muscle were unusual in that, if stimulated to divide, they would form fibers in the inter- and intrafascicular space. In contrast to wing-weighted muscle, nascent fibers were always found closely associated with necrotic fibers. These results suggest that wing-weighting is not simply another

  3. Multi-scale Modeling of Chromosomal DNA in Living Cells

    NASA Astrophysics Data System (ADS)

    Spakowitz, Andrew

    The organization and dynamics of chromosomal DNA play a pivotal role in a range of biological processes, including gene regulation, homologous recombination, replication, and segregation. Establishing a quantitative theoretical model of DNA organization and dynamics would be valuable in bridging the gap between the molecular-level packaging of DNA and genome-scale chromosomal processes. Our research group utilizes analytical theory and computational modeling to establish a predictive theoretical model of chromosomal organization and dynamics. In this talk, I will discuss our efforts to develop multi-scale polymer models of chromosomal DNA that are both sufficiently detailed to address specific protein-DNA interactions while capturing experimentally relevant time and length scales. I will demonstrate how these modeling efforts are capable of quantitatively capturing aspects of behavior of chromosomal DNA in both prokaryotic and eukaryotic cells. This talk will illustrate that capturing dynamical behavior of chromosomal DNA at various length scales necessitates a range of theoretical treatments that accommodate the critical physical contributions that are relevant to in vivo behavior at these disparate length and time scales. National Science Foundation, Physics of Living Systems Program (PHY-1305516).

  4. Oxidative DNA damage background estimated by a system model of base excision repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokhansanj, B A; Wilson, III, D M

    Human DNA can be damaged by natural metabolism through free radical production. It has been suggested that the equilibrium between innate damage and cellular DNA repair results in an oxidative DNA damage background that potentially contributes to disease and aging. Efforts to quantitatively characterize the human oxidative DNA damage background level based on measuring 8-oxoguanine lesions as a biomarker have led to estimates varying over 3-4 orders of magnitude, depending on the method of measurement. We applied a previously developed and validated quantitative pathway model of human DNA base excision repair, integrating experimentally determined endogenous damage rates and model parametersmore » from multiple sources. Our estimates of at most 100 8-oxoguanine lesions per cell are consistent with the low end of data from biochemical and cell biology experiments, a result robust to model limitations and parameter variation. Our results show the power of quantitative system modeling to interpret composite experimental data and make biologically and physiologically relevant predictions for complex human DNA repair pathway mechanisms and capacity.« less

  5. Noise Induced DNA Damage Within the Auditory Nerve.

    PubMed

    Guthrie, O'neil W

    2017-03-01

    An understanding of the molecular pathology that underlies noise induced neurotoxicity is a prerequisite to the design of targeted therapies. The objective of the current experiment was to determine whether or not DNA damage is part of the pathophysiologic sequela of noise induced neurotoxicity. The experiment consisted of 41 hooded Long-Evans rats (2 month old males) that were randomized into control and noise exposed groups. Both the control and the noise group followed the same time schedule and therefore started and ended the experiment together. The noise dose consisted of a 6000 Hz noise band at 105 dB SPL. Temporal bones from both groups were harvested, and immunohistochemistry was used to identify neurons with DNA damage. Quantitative morphometric analyses was then employed to determine the level of DNA damage. Neural action potentials were recorded to assess the functional impact of noise induced DNA damage. Immunohistochemical reactions revealed that the noise exposure precipitated DNA damage within the nucleus of auditory neurons. Quantitative morphometry confirmed the noise induced increase in DNA damage levels and the precipitation of DNA damage was associated with a significant loss of nerve sensitivity. Therefore, DNA damage is part of the molecular pathology that drives noise induced neurotoxicity. Anat Rec, 300:520-526, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. NAIMA: target amplification strategy allowing quantitative on-chip detection of GMOs.

    PubMed

    Morisset, Dany; Dobnik, David; Hamels, Sandrine; Zel, Jana; Gruden, Kristina

    2008-10-01

    We have developed a novel multiplex quantitative DNA-based target amplification method suitable for sensitive, specific and quantitative detection on microarray. This new method named NASBA Implemented Microarray Analysis (NAIMA) was applied to GMO detection in food and feed, but its application can be extended to all fields of biology requiring simultaneous detection of low copy number DNA targets. In a first step, the use of tailed primers allows the multiplex synthesis of template DNAs in a primer extension reaction. A second step of the procedure consists of transcription-based amplification using universal primers. The cRNA product is further on directly ligated to fluorescent dyes labelled 3DNA dendrimers allowing signal amplification and hybridized without further purification on an oligonucleotide probe-based microarray for multiplex detection. Two triplex systems have been applied to test maize samples containing several transgenic lines, and NAIMA has shown to be sensitive down to two target copies and to provide quantitative data on the transgenic contents in a range of 0.1-25%. Performances of NAIMA are comparable to singleplex quantitative real-time PCR. In addition, NAIMA amplification is faster since 20 min are sufficient to achieve full amplification.

  7. NAIMA: target amplification strategy allowing quantitative on-chip detection of GMOs

    PubMed Central

    Morisset, Dany; Dobnik, David; Hamels, Sandrine; Žel, Jana; Gruden, Kristina

    2008-01-01

    We have developed a novel multiplex quantitative DNA-based target amplification method suitable for sensitive, specific and quantitative detection on microarray. This new method named NASBA Implemented Microarray Analysis (NAIMA) was applied to GMO detection in food and feed, but its application can be extended to all fields of biology requiring simultaneous detection of low copy number DNA targets. In a first step, the use of tailed primers allows the multiplex synthesis of template DNAs in a primer extension reaction. A second step of the procedure consists of transcription-based amplification using universal primers. The cRNA product is further on directly ligated to fluorescent dyes labelled 3DNA dendrimers allowing signal amplification and hybridized without further purification on an oligonucleotide probe-based microarray for multiplex detection. Two triplex systems have been applied to test maize samples containing several transgenic lines, and NAIMA has shown to be sensitive down to two target copies and to provide quantitative data on the transgenic contents in a range of 0.1–25%. Performances of NAIMA are comparable to singleplex quantitative real-time PCR. In addition, NAIMA amplification is faster since 20 min are sufficient to achieve full amplification. PMID:18710880

  8. Two Fiber Optical Fiber Thermometry

    NASA Technical Reports Server (NTRS)

    Jones, Mathew R.; Farmer, Jeffery T.; Breeding, Shawn P.

    2000-01-01

    An optical fiber thermometer consists of an optical fiber whose sensing tip is given a metallic coating. The sensing tip of the fiber is essentially an isothermal cavity, so the emission from this cavity will be approximately equal to the emission from a blackbody. Temperature readings are obtained by measuring the spectral radiative heat flux at the end of the fiber at two wavelengths. The ratio of these measurements and Planck's Law are used to infer the temperature at the sensing tip. Optical fiber thermometers have high accuracy, excellent long-term stability and are immune to electromagnetic interference. In addition, they can be operated for extended periods without requiring re-calibration. For these reasons. it is desirable to use optical fiber thermometers in environments such as the International Space Station. However, it has recently been shown that temperature readings are corrupted by emission from the fiber when extended portions of the probe are exposed to elevated temperatures. This paper will describe several ways in which the reading from a second fiber can be used to correct the corrupted temperature measurements. The accuracy and sensitivity to measurement uncertainty will be presented for each method.

  9. Atomic Force Microscopy Analysis of the Role of Major DNA-Binding Proteins in Organization of the Nucleoid in Escherichia coli

    PubMed Central

    Ohniwa, Ryosuke L.; Muchaku, Hiroki; Saito, Shinji; Wada, Chieko; Morikawa, Kazuya

    2013-01-01

    Bacterial genomic DNA is packed within the nucleoid of the cell along with various proteins and RNAs. We previously showed that the nucleoid in log phase cells consist of fibrous structures with diameters ranging from 30 to 80 nm, and that these structures, upon RNase A treatment, are converted into homogeneous thinner fibers with diameter of 10 nm. In this study, we investigated the role of major DNA-binding proteins in nucleoid organization by analyzing the nucleoid of mutant Escherichia coli strains lacking HU, IHF, H–NS, StpA, Fis, or Hfq using atomic force microscopy. Deletion of particular DNA-binding protein genes altered the nucleoid structure in different ways, but did not release the naked DNA even after the treatment with RNase A. This suggests that major DNA-binding proteins are involved in the formation of higher order structure once 10-nm fiber structure is built up from naked DNA. PMID:23951337

  10. Rapid internal contraction boosts DNA friction.

    PubMed

    Otto, Oliver; Sturm, Sebastian; Laohakunakorn, Nadanai; Keyser, Ulrich F; Kroy, Klaus

    2013-01-01

    Macroscopic objects are usually manipulated by force and observed with light. On the nanoscale, however, this is often done oppositely: individual macromolecules are manipulated by light and monitored with force. This procedure, which is the basis of single-molecule force spectroscopy, has led to much of our quantitative understanding of how DNA works, and is now routinely applied to explore molecular structure and interactions, DNA-protein reactions and protein folding. Here we develop the technique further by introducing a dynamic force spectroscopy set-up for a non-invasive inspection of the tension dynamics in a taut strand of DNA. The internal contraction after a sudden release of the molecule is shown to give rise to a drastically enhanced viscous friction, as revealed by the slow relaxation of an attached colloidal tracer. Our systematic theory explains the data quantitatively and provides a powerful tool for the rational design of new dynamic force spectroscopy assays.

  11. Long-Term Prognostic Effects of Plasma Epstein-Barr Virus DNA by Minor Groove Binder-Probe Real-Time Quantitative PCR on Nasopharyngeal Carcinoma Patients Receiving Concurrent Chemoradiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, J.-C.; Wang, W.-Y.; Liang, W.-M.

    Purpose: To evaluate the long-term prognostic impact of plasma Epstein-Barr virus (EBV) DNA concentration measured by real-time quantitative polymerase chain reaction (RTQ-PCR) in nasopharyngeal carcinoma (NPC) patients receiving concurrent chemoradiotherapy (CCRT). Methods and Materials: Epstein-Barr virus DNA was retrospectively measured from stock plasma of 152 biopsy-proven NPC patients with Stage II-IV (M0) disease with a RTQ-PCR using the minor groove binder-probe. All patients received CCRT with a median follow-up of 78 months. We divided patients into three subgroups: (1) low pretreatment EBV DNA (<1,500 copies/mL) and undetectable posttreatment EBV DNA (pre-L/post-U) (2) high pretreatment EBV DNA ({>=}1,500 copies/mL) and undetectablemore » posttreatment EBV DNA (pre-H/post-U), and (3) low or high pretreatment EBV DNA and detectable posttreatment EBV DNA (pre-L or H/post-D) for prognostic analyses. Results: Epstein-Barr virus DNA (median concentration, 573 copies/mL; interquartile range, 197-3,074) was detected in the pretreatment plasma of 94.1% (143/152) of patients. After treatment, plasma EBV DNA decreased or remained 0 for all patients and was detectable in 31 patients (20.4%) with a median concentration 0 copy/mL (interquartile range, 0-0). The 5-year overall survival rates of the pre-L/post-U, pre-H/post-U, and pre-L or H/post-D subgroups were 87.2%, 71.0%, and 38.7%, respectively (p < 0.0001). The relapse-free survival showed similar results with corresponding rates of 85.6%, 75.9%, and 26.9%, respectively (p < 0.0001). Multivariate Cox analysis confirmed the superior effects of plasma EBV DNA compared to other clinical parameters in prognosis prediction. Conclusion: Plasma EBV DNA is the most valuable prognostic factor for NPC. More chemotherapy should be considered for patients with persistently detectable EBV DNA after CCRT.« less

  12. Viral hemorrhagic fevers of animals caused by DNA viruses

    USDA-ARS?s Scientific Manuscript database

    Here we outline serious diseases of food and fiber animals that cause damaging economic effects on producers all over the world. The only vector-borne DNA virus is included here (i.e., African swine fever virus), and the herpesviruses discussed have a complex epidemiology characterized by outbreaks ...

  13. The optimal fiber volume fraction and fiber-matrix property compatibility in fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Pan, Ning

    1992-01-01

    Although the question of minimum or critical fiber volume fraction beyond which a composite can then be strengthened due to addition of fibers has been dealt with by several investigators for both continuous and short fiber composites, a study of maximum or optimal fiber volume fraction at which the composite reaches its highest strength has not been reported yet. The present analysis has investigated this issue for short fiber case based on the well-known shear lag (the elastic stress transfer) theory as the first step. Using the relationships obtained, the minimum spacing between fibers is determined upon which the maximum fiber volume fraction can be calculated, depending on the fiber packing forms within the composites. The effects on the value of this maximum fiber volume fraction due to such factors as fiber and matrix properties, fiber aspect ratio and fiber packing forms are discussed. Furthermore, combined with the previous analysis on the minimum fiber volume fraction, this maximum fiber volume fraction can be used to examine the property compatibility of fiber and matrix in forming a composite. This is deemed to be useful for composite design. Finally some examples are provided to illustrate the results.

  14. Immunofluorescence-based methods to monitor DNA end resection

    PubMed Central

    Mukherjee, Bipasha; Tomimatsu, Nozomi; Burma, Sandeep

    2017-01-01

    Summary Double-strand breaks (DSBs) are the most deleterious amongst all types of DNA damage that can occur in the cell. These breaks arise from both endogenous (for example, DNA replication stress) as well as exogenous insults (for example, ionizing radiation). DSBs are principally repaired by one of two major pathways: non-homologous end joining (NHEJ) or homologous recombination (HR). NHEJ is an error-prone process that can occur in all phases of the cell cycle, while HR is limited to the S and G2 phases of the cell cycle when a sister chromatid is available as a template for error-free repair. The first step in HR is “DNA end resection”, a process during which the broken DNA end is converted into a long stretch of 3′-ended single-stranded DNA (ssDNA). In recent years, DNA end resection has been identified as a pivotal step that controls “repair pathway choice” i.e., the appropriate choice between NHEJ and HR for DSB repair. Therefore, methods to quantitatively or semi-quantitatively assess DNA end resection have gained importance in laboratories working on DNA repair. In this chapter, we describe two simple immunofluorescence-based techniques to monitor DNA end resection in mammalian cells. The first technique involves immuno-detection of Replication Protein A (RPA), a ssDNA-binding protein that binds to resected DNA. The second technique involves labeling of genomic DNA with 5-bromo-2′-deoxyuridine (BrdU) that can be detected by anti-BrdU antibody only after the DNA becomes single stranded due to resection. These methods are not complicated, do not involve sophisticated instrumentation or reporter constructs, and can be applied to most mammalian cell lines, and therefore, should be of broad utility as simple ways of monitoring DNA end resection in vivo. PMID:25804748

  15. Aligned fibers direct collective cell migration to engineer closing and nonclosing wound gaps

    PubMed Central

    Sharma, Puja; Ng, Colin; Jana, Aniket; Padhi, Abinash; Szymanski, Paige; Lee, Jerry S. H.; Behkam, Bahareh; Nain, Amrinder S.

    2017-01-01

    Cell emergence onto damaged or organized fibrous extracellular matrix (ECM) is a crucial precursor to collective cell migration in wound closure and cancer metastasis, respectively. However, there is a fundamental gap in our quantitative understanding of the role of local ECM size and arrangement in cell emergence–based migration and local gap closure. Here, using ECM-mimicking nanofibers bridging cell monolayers, we describe a method to recapitulate and quantitatively describe these in vivo behaviors over multispatial (single cell to cell sheets) and temporal (minutes to weeks) scales. On fiber arrays with large interfiber spacing, cells emerge (invade) either singularly by breaking cell–cell junctions analogous to release of a stretched rubber band (recoil), or in groups of few cells (chains), whereas on closely spaced fibers, multiple chains emerge collectively. Advancing cells on fibers form cell streams, which support suspended cell sheets (SCS) of various sizes and curvatures. SCS converge to form local gaps that close based on both the gap size and shape. We document that cell stream spacing of 375 µm and larger hinders SCS advancement, thus providing abilities to engineer closing and nonclosing gaps. Altogether we highlight the importance of studying cell-fiber interactions and matrix structural remodeling in fundamental and translational cell biology. PMID:28747440

  16. Cohesin organizes chromatin loops at DNA replication factories

    PubMed Central

    Guillou, Emmanuelle; Ibarra, Arkaitz; Coulon, Vincent; Casado-Vela, Juan; Rico, Daniel; Casal, Ignacio; Schwob, Etienne; Losada, Ana; Méndez, Juan

    2010-01-01

    Genomic DNA is packed in chromatin fibers organized in higher-order structures within the interphase nucleus. One level of organization involves the formation of chromatin loops that may provide a favorable environment to processes such as DNA replication, transcription, and repair. However, little is known about the mechanistic basis of this structuration. Here we demonstrate that cohesin participates in the spatial organization of DNA replication factories in human cells. Cohesin is enriched at replication origins and interacts with prereplication complex proteins. Down-regulation of cohesin slows down S-phase progression by limiting the number of active origins and increasing the length of chromatin loops that correspond with replicon units. These results give a new dimension to the role of cohesin in the architectural organization of interphase chromatin, by showing its participation in DNA replication. PMID:21159821

  17. Kinetic study of hydrolysis of coconut fiber into glucose

    NASA Astrophysics Data System (ADS)

    Muhaimin, Sudiono, Sri

    2017-03-01

    Kinetic study of hydrolysis of coconut fiber into glucose has been done. The aim of this research was to study of the effect of time and temperature to the glucose as the result of the conversion of coconut fiber. The various temperature of the hydrolysis process were 30 °C, 48 °C, 72 °C and 95 °C and the various time of the hydrolysis process were 0, 15, 30, 60, 120, 180, 240, 300 minutes. A quantitative analysis was done by measured the concentration of the glucose as the result of the conversion of coconut fiber. The result showed that the rate constant from the various temperature were 3.10-4 minute-1; 8.10-4 minutees-1; 84.10-4 minute-1, and 205.10-4 minute-1, and the energy activation was 7,69. 103 kJ/mol.

  18. Experimental comparison of forces resisting viral DNA packaging and driving DNA ejection

    NASA Astrophysics Data System (ADS)

    Keller, Nicholas; Berndsen, Zachary T.; Jardine, Paul J.; Smith, Douglas E.

    2017-05-01

    We compare forces resisting DNA packaging and forces driving DNA ejection in bacteriophage phi29 with theoretical predictions. Ejection of DNA from prohead-motor complexes is triggered by heating complexes after in vitro packaging and force is inferred from the suppression of ejection by applied osmotic pressure. Ejection force from 0 % to 80 % filling is found to be in quantitative agreement with predictions of a continuum mechanics model that assumes a repulsive DNA-DNA interaction potential based on DNA condensation studies and predicts an inverse-spool conformation. Force resisting DNA packaging from ˜80 % to 100 % filling inferred from optical tweezers studies is also consistent with the predictions of this model. The striking agreement with these two different measurements suggests that the overall energetics of DNA packaging is well described by the model. However, since electron microscopy studies of phi29 do not reveal a spool conformation, our findings suggest that the spool model overestimates the role of bending rigidity and underestimates the role of intrastrand repulsion. Below ˜80 % filling the inferred forces resisting packaging are unexpectedly lower than the inferred ejection forces, suggesting that in this filling range the forces are less accurately determined or strongly temperature dependent.

  19. Experimental comparison of forces resisting viral DNA packaging and driving DNA ejection.

    PubMed

    Keller, Nicholas; Berndsen, Zachary T; Jardine, Paul J; Smith, Douglas E

    2017-05-01

    We compare forces resisting DNA packaging and forces driving DNA ejection in bacteriophage phi29 with theoretical predictions. Ejection of DNA from prohead-motor complexes is triggered by heating complexes after in vitro packaging and force is inferred from the suppression of ejection by applied osmotic pressure. Ejection force from 0% to 80% filling is found to be in quantitative agreement with predictions of a continuum mechanics model that assumes a repulsive DNA-DNA interaction potential based on DNA condensation studies and predicts an inverse-spool conformation. Force resisting DNA packaging from ∼80% to 100% filling inferred from optical tweezers studies is also consistent with the predictions of this model. The striking agreement with these two different measurements suggests that the overall energetics of DNA packaging is well described by the model. However, since electron microscopy studies of phi29 do not reveal a spool conformation, our findings suggest that the spool model overestimates the role of bending rigidity and underestimates the role of intrastrand repulsion. Below ∼80% filling the inferred forces resisting packaging are unexpectedly lower than the inferred ejection forces, suggesting that in this filling range the forces are less accurately determined or strongly temperature dependent.

  20. A synthetic auxin (NAA) suppresses secondary wall cellulose synthesis and enhances elongation in cultured cotton fiber.

    PubMed

    Singh, Bir; Cheek, Hannah D; Haigler, Candace H

    2009-07-01

    Use of a synthetic auxin (naphthalene-1-acetic acid, NAA) to start (Gossypium hirsutum) ovule/fiber cultures hindered fiber secondary wall cellulose synthesis compared with natural auxin (indole-3-acetic acid, IAA). In contrast, NAA promoted fiber elongation and ovule weight gain, which resulted in larger ovule/fiber units. To reach these conclusions, fiber and ovule growth parameters were measured and cell wall characteristics were examined microscopically. The differences in fiber from NAA and IAA culture were underpinned by changes in the expression patterns of marker genes for three fiber developmental stages (elongation, the transition stage, and secondary wall deposition), and these gene expression patterns were also analyzed quantitatively in plant-grown fiber. The results demonstrate that secondary wall cellulose synthesis: (1) is under strong transcriptional control that is influenced by auxin; and (2) must be specifically characterized in the cotton ovule/fiber culture system given the many protocol variables employed in different laboratories.

  1. Polarized light microscopy for 3-dimensional mapping of collagen fiber architecture in ocular tissues.

    PubMed

    Yang, Bin; Jan, Ning-Jiun; Brazile, Bryn; Voorhees, Andrew; Lathrop, Kira L; Sigal, Ian A

    2018-04-06

    Collagen fibers play a central role in normal eye mechanics and pathology. In ocular tissues, collagen fibers exhibit a complex 3-dimensional (3D) fiber orientation, with both in-plane (IP) and out-of-plane (OP) orientations. Imaging techniques traditionally applied to the study of ocular tissues only quantify IP fiber orientation, providing little information on OP fiber orientation. Accurate description of the complex 3D fiber microstructures of the eye requires quantifying full 3D fiber orientation. Herein, we present 3dPLM, a technique based on polarized light microscopy developed to quantify both IP and OP collagen fiber orientations of ocular tissues. The performance of 3dPLM was examined by simulation and experimental verification and validation. The experiments demonstrated an excellent agreement between extracted and true 3D fiber orientation. Both IP and OP fiber orientations can be extracted from the sclera and the cornea, providing previously unavailable quantitative 3D measures and insight into the tissue microarchitecture. Together, the results demonstrate that 3dPLM is a powerful imaging technique for the analysis of ocular tissues. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Detection of in-plane displacements of acoustic wave fields using extrinsic Fizeau fiber interferometric sensors

    NASA Technical Reports Server (NTRS)

    Dhawan, R.; Gunther, M. F.; Claus, R. O.

    1991-01-01

    Quantitative measurements of the in-plane particle displacement components of ultrasonic surface acoustic wave fields using extrinsic Fizeau fiber interferometric (EFFI) sensors are reported. Wave propagation in materials and the fiber sensor elements are briefly discussed. Calibrated experimental results obtained for simulated acoustic emission events on homogeneous metal test specimens are reported and compared to previous results obtained using piezoelectric transducers.

  3. Binding of DNA-bending non-histone proteins destabilizes regular 30-nm chromatin structure

    PubMed Central

    Bajpai, Gaurav; Jain, Ishutesh; Inamdar, Mandar M.; Das, Dibyendu; Padinhateeri, Ranjith

    2017-01-01

    Why most of the in vivo experiments do not find the 30-nm chromatin fiber, well studied in vitro, is a puzzle. Two basic physical inputs that are crucial for understanding the structure of the 30-nm fiber are the stiffness of the linker DNA and the relative orientations of the DNA entering/exiting nucleosomes. Based on these inputs we simulate chromatin structure and show that the presence of non-histone proteins, which bind and locally bend linker DNA, destroys any regular higher order structures (e.g., zig-zag). Accounting for the bending geometry of proteins like nhp6 and HMG-B, our theory predicts phase-diagram for the chromatin structure as a function of DNA-bending non-histone protein density and mean linker DNA length. For a wide range of linker lengths, we show that as we vary one parameter, that is, the fraction of bent linker region due to non-histone proteins, the steady-state structure will show a transition from zig-zag to an irregular structure—a structure that is reminiscent of what is observed in experiments recently. Our theory can explain the recent in vivo observation of irregular chromatin having co-existence of finite fraction of the next-neighbor (i + 2) and neighbor (i + 1) nucleosome interactions. PMID:28135276

  4. Influence of quasi-specific sites on kinetics of target DNA search by a sequence-specific DNA-binding protein.

    PubMed

    Kemme, Catherine A; Esadze, Alexandre; Iwahara, Junji

    2015-11-10

    Functions of transcription factors require formation of specific complexes at particular sites in cis-regulatory elements of genes. However, chromosomal DNA contains numerous sites that are similar to the target sequences recognized by transcription factors. The influence of such "quasi-specific" sites on functions of the transcription factors is not well understood at present by experimental means. In this work, using fluorescence methods, we have investigated the influence of quasi-specific DNA sites on the efficiency of target location by the zinc finger DNA-binding domain of the inducible transcription factor Egr-1, which recognizes a 9 bp sequence. By stopped-flow assays, we measured the kinetics of Egr-1's association with a target site on 143 bp DNA in the presence of various competitor DNAs, including nonspecific and quasi-specific sites. The presence of quasi-specific sites on competitor DNA significantly decelerated the target association by the Egr-1 protein. The impact of the quasi-specific sites depended strongly on their affinity, their concentration, and the degree of their binding to the protein. To quantitatively describe the kinetic impact of the quasi-specific sites, we derived an analytical form of the apparent kinetic rate constant for the target association and used it for fitting to the experimental data. Our kinetic data with calf thymus DNA as a competitor suggested that there are millions of high-affinity quasi-specific sites for Egr-1 among the 3 billion bp of genomic DNA. This study quantitatively demonstrates that naturally abundant quasi-specific sites on DNA can considerably impede the target search processes of sequence-specific DNA-binding proteins.

  5. Influence of Quasi-Specific Sites on Kinetics of Target DNA Search by a Sequence-Specific DNA-Binding Protein

    PubMed Central

    2015-01-01

    Functions of transcription factors require formation of specific complexes at particular sites in cis-regulatory elements of genes. However, chromosomal DNA contains numerous sites that are similar to the target sequences recognized by transcription factors. The influence of such “quasi-specific” sites on functions of the transcription factors is not well understood at present by experimental means. In this work, using fluorescence methods, we have investigated the influence of quasi-specific DNA sites on the efficiency of target location by the zinc finger DNA-binding domain of the inducible transcription factor Egr-1, which recognizes a 9 bp sequence. By stopped-flow assays, we measured the kinetics of Egr-1’s association with a target site on 143 bp DNA in the presence of various competitor DNAs, including nonspecific and quasi-specific sites. The presence of quasi-specific sites on competitor DNA significantly decelerated the target association by the Egr-1 protein. The impact of the quasi-specific sites depended strongly on their affinity, their concentration, and the degree of their binding to the protein. To quantitatively describe the kinetic impact of the quasi-specific sites, we derived an analytical form of the apparent kinetic rate constant for the target association and used it for fitting to the experimental data. Our kinetic data with calf thymus DNA as a competitor suggested that there are millions of high-affinity quasi-specific sites for Egr-1 among the 3 billion bp of genomic DNA. This study quantitatively demonstrates that naturally abundant quasi-specific sites on DNA can considerably impede the target search processes of sequence-specific DNA-binding proteins. PMID:26502071

  6. Effect of dietary fiber on constipation: A meta analysis

    PubMed Central

    Yang, Jing; Wang, Hai-Peng; Zhou, Li; Xu, Chun-Fang

    2012-01-01

    AIM: To investigate the effect of dietary fiber intake on constipation by a meta-analysis of randomized controlled trials (RCTs). METHODS: We searched Ovid MEDLINE (from 1946 to October 2011), Cochrane Library (2011), PubMed for articles on dietary fiber intake and constipation using the terms: constipation, fiber, cellulose, plant extracts, cereals, bran, psyllium, or plantago. References of important articles were searched manually for relevant studies. Articles were eligible for the meta-analysis if they were high-quality RCTs and reported data on stool frequency, stool consistency, treatment success, laxative use and gastrointestinal symptoms. The data were extracted independently by two researchers (Yang J and Wang HP) according to the described selection criteria. Review manager version 5 software was used for analysis and test. Weighted mean difference with 95%CI was used for quantitative data, odds ratio (OR) with 95%CI was used for dichotomous data. Both I2 statistic with a cut-off of ≥ 50% and the χ2 test with a P value < 0.10 were used to define a significant degree of heterogeneity. RESULTS: We searched 1322 potential relevant articles, 19 of which were retrieved for further assessment, 14 studies were excluded for various reasons, five studies were included in the analysis. Dietary fiber showed significant advantage over placebo in stool frequency (OR = 1.19; 95%CI: 0.58-1.80, P < 0.05). There was no significant difference in stool consistency, treatment success, laxative use and painful defecation between the two groups. Stool frequency were reported by five RCTs, all results showed either a trend or a significant difference in favor of the treatment group, number of stools per week increased in treatment group than in placebo group (OR = 1.19; 95%CI: 0.58-1.80, P < 0.05), with no significant heterogeneity among studies (I2= 0, P = 0.77). Four studies evaluated stool consistency, one of them presented outcome in terms of percentage of hard stool

  7. Studying the fundamental limit of optical fiber links to the 10-21 level.

    PubMed

    Xu, Dan; Lee, Won-Kyu; Stefani, Fabio; Lopez, Olivier; Amy-Klein, Anne; Pottie, Paul-Eric

    2018-04-16

    We present a hybrid fiber link combining effective optical frequency transfer and evaluation of performances with a self-synchronized two-way comparison. It enables us to detect the round-trip fiber noise and each of the forward and backward one-way fiber noises simultaneously. The various signals acquired with this setup allow us to study quantitatively several properties of optical fiber links. We check the reciprocity of the accumulated noise forth and back over a bi-directional fiber to the level of 3.1(±3.9) × 10 -20 based on a 160000s continuous data. We also analyze the noise correlation between two adjacent fibers and show the first experimental evidence of interferometric noise at very low Fourier frequency. We estimate redundantly and consistently the stability and accuracy of the transferred optical frequency over 43 km at 4 × 10 -21 level after 16 days of integration and demonstrate that a frequency comparison with instability as low as 8 × 10 -18 would be achievable with uni-directional fibers in urban area.

  8. Quantitative method of measuring cancer cell urokinase and metastatic potential

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor)

    1993-01-01

    The metastatic potential of tumors can be evaluated by the quantitative detection of urokinase and DNA. The cell sample selected for examination is analyzed for the presence of high levels of urokinase and abnormal DNA using analytical flow cytometry and digital image analysis. Other factors such as membrane associated urokinase, increased DNA synthesis rates and certain receptors can be used in the method for detection of potentially invasive tumors.

  9. Dynamics of Mechanical Signal Transmission through Prestressed Stress Fibers

    PubMed Central

    Hwang, Yongyun; Barakat, Abdul I.

    2012-01-01

    Transmission of mechanical stimuli through the actin cytoskeleton has been proposed as a mechanism for rapid long-distance mechanotransduction in cells; however, a quantitative understanding of the dynamics of this transmission and the physical factors governing it remains lacking. Two key features of the actin cytoskeleton are its viscoelastic nature and the presence of prestress due to actomyosin motor activity. We develop a model of mechanical signal transmission through prestressed viscoelastic actin stress fibers that directly connect the cell surface to the nucleus. The analysis considers both temporally stationary and oscillatory mechanical signals and accounts for cytosolic drag on the stress fibers. To elucidate the physical parameters that govern mechanical signal transmission, we initially focus on the highly simplified case of a single stress fiber. The results demonstrate that the dynamics of mechanical signal transmission depend on whether the applied force leads to transverse or axial motion of the stress fiber. For transverse motion, mechanical signal transmission is dominated by prestress while fiber elasticity has a negligible effect. Conversely, signal transmission for axial motion is mediated uniquely by elasticity due to the absence of a prestress restoring force. Mechanical signal transmission is significantly delayed by stress fiber material viscosity, while cytosolic damping becomes important only for longer stress fibers. Only transverse motion yields the rapid and long-distance mechanical signal transmission dynamics observed experimentally. For simple networks of stress fibers, mechanical signals are transmitted rapidly to the nucleus when the fibers are oriented largely orthogonal to the applied force, whereas the presence of fibers parallel to the applied force slows down mechanical signal transmission significantly. The present results suggest that cytoskeletal prestress mediates rapid mechanical signal transmission and allows

  10. Extending the Host Range of Bacteriophage Particles for DNA Transduction.

    PubMed

    Yosef, Ido; Goren, Moran G; Globus, Rea; Molshanski-Mor, Shahar; Qimron, Udi

    2017-06-01

    A major limitation in using bacteriophage-based applications is their narrow host range. Approaches for extending the host range have focused primarily on lytic phages in hosts supporting their propagation rather than approaches for extending the ability of DNA transduction into phage-restrictive hosts. To extend the host range of T7 phage for DNA transduction, we have designed hybrid particles displaying various phage tail/tail fiber proteins. These modular particles were programmed to package and transduce DNA into hosts that restrict T7 phage propagation. We have also developed an innovative generalizable platform that considerably enhances DNA transfer into new hosts by artificially selecting tails that efficiently transduce DNA. In addition, we have demonstrated that the hybrid particles transduce desired DNA into desired hosts. This study thus critically extends and improves the ability of the particles to transduce DNA into novel phage-restrictive hosts, providing a platform for myriad applications that require this ability. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Phylogenetic Characterization of Fecal Microbial Communities of Dogs Fed Diets with or without Supplemental Dietary Fiber Using 454 Pyrosequencing

    PubMed Central

    Middelbos, Ingmar S.; Vester Boler, Brittany M.; Qu, Ani; White, Bryan A.; Swanson, Kelly S.; Fahey, George C.

    2010-01-01

    Background Dogs suffer from many of the same maladies as humans that may be affected by the gut microbiome, but knowledge of the canine microbiome is incomplete. This work aimed to use 16S rDNA tag pyrosequencing to phylogenetically characterize hindgut microbiome in dogs and determine how consumption of dietary fiber affects community structure. Principal Findings Six healthy adult dogs were used in a crossover design. A control diet without supplemental fiber and a beet pulp-supplemented (7.5%) diet were fed. Fecal DNA was extracted and the V3 hypervariable region of the microbial 16S rDNA gene amplified using primers suitable for 454-pyrosequencing. Microbial diversity was assessed on random 2000-sequence subsamples of individual and pooled DNA samples by diet. Our dataset comprised 77,771 reads with an average length of 141 nt. Individual samples contained approximately 129 OTU, with Fusobacteria (23 – 40% of reads), Firmicutes (14 – 28% of reads) and Bacteroidetes (31 – 34% of reads) being co-dominant phyla. Feeding dietary fiber generally decreased Fusobacteria and increased Firmicutes, but these changes were not equally apparent in all dogs. UniFrac analysis revealed that structure of the gut microbiome was affected by diet and Firmicutes appeared to play a strong role in by-diet clustering. Conclusions Our data suggest three co-dominant bacterial phyla in the canine hindgut. Furthermore, a relatively small amount of dietary fiber changed the structure of the gut microbiome detectably. Our data are among the first to characterize the healthy canine gut microbiome using pyrosequencing and provide a basis for studies focused on devising dietary interventions for microbiome-associated diseases. PMID:20339542

  12. Fabrication of novel bundled fiber and performance assessment for clinical applications.

    PubMed

    Kim, Changhwan; Jeon, Myung Jin; Jung, Jin Hyang; Yang, Jung Dug; Park, Hoyong; Kang, Hyun Wook; Lee, Ho

    2014-11-01

    During laser vaporization of benign prostate hyperplasia (BPH), high precision of optical fiber handling is pivotal to minimize any post-operative complications. The aim of the study was to evaluate the feasible applications of a bundled fiber to treat BPH by directionally and selectively manipulating laser light onto the targeted tissue. A bundled optical fiber, consisting of four side-firing fibers, was fabricated to selectively emit laser beams in from one to four directions. Both transmission efficiency and light distribution were qualitatively and quantitatively characterized on the bundled fiber. In terms of interstitial application of the proposed fiber with 1064 nm on porcine liver tissue, the extent of thermal denaturation was estimated and compared at various laser parameterizations and for different directions of light. From the laser source to the fiber tip, the fabricated fiber device demonstrated a total light transmission of 52%. Due to internal light reflection, a secondary beam was emitted backward from the fiber tip and was responsible for 25% of the transmission loss. According to tissue testing, the extent of tissue denaturation generally increased with laser power, irradiation time, and number of light directions. The geometrical shape of thermal coagulation correlated well with the direction of light emission. Thermal damage to the glass tube occurred during excessive heat accumulation generated by continuous irradiation. The proposed fiber can be beneficial for laser vaporization of BPH by providing a selective light direction irradiation along with minimal thermal damage. Further studies will extend the applicability of the bundled fiber to treat tubular tissue structure. © 2014 Wiley Periodicals, Inc.

  13. Viral hemorrhagic fevers of animals caused by DNA viruses

    USDA-ARS?s Scientific Manuscript database

    Here we outline serious diseases of food and fiber animals that cause damaging economic effect on products all over the world. The only vector-borne DNA virus is included here, such as African swine fever virus, and the herpes viruses discussed have a complex epidemiology characterized by outbreak...

  14. Adenovirus 36 DNA in human adipose tissue.

    PubMed

    Ponterio, E; Cangemi, R; Mariani, S; Casella, G; De Cesare, A; Trovato, F M; Garozzo, A; Gnessi, L

    2015-12-01

    Recent studies have suggested a possible correlation between obesity and adenovirus 36 (Adv36) infection in humans. As information on adenoviral DNA presence in human adipose tissue are limited, we evaluated the presence of Adv36 DNA in adipose tissue of 21 adult overweight or obese patients. Total DNA was extracted from adipose tissue biopsies. Virus detection was performed using PCR protocols with primers against specific Adv36 fiber protein and the viral oncogenic E4orf1 protein nucleotide sequences. Sequences were aligned with the NCBI database and phylogenetic analyses were carried out with MEGA6 software. Adv36 DNA was found in four samples (19%). This study indicates that some individuals carry Adv36 in the visceral adipose tissue. Further studies are needed to determine the specific effect of Adv36 infection on adipocytes, the prevalence of Adv36 infection and its relationship with obesity in the perspective of developing a vaccine that could potentially prevent or mitigate infection.

  15. Computational segmentation of collagen fibers from second-harmonic generation images of breast cancer

    NASA Astrophysics Data System (ADS)

    Bredfeldt, Jeremy S.; Liu, Yuming; Pehlke, Carolyn A.; Conklin, Matthew W.; Szulczewski, Joseph M.; Inman, David R.; Keely, Patricia J.; Nowak, Robert D.; Mackie, Thomas R.; Eliceiri, Kevin W.

    2014-01-01

    Second-harmonic generation (SHG) imaging can help reveal interactions between collagen fibers and cancer cells. Quantitative analysis of SHG images of collagen fibers is challenged by the heterogeneity of collagen structures and low signal-to-noise ratio often found while imaging collagen in tissue. The role of collagen in breast cancer progression can be assessed post acquisition via enhanced computation. To facilitate this, we have implemented and evaluated four algorithms for extracting fiber information, such as number, length, and curvature, from a variety of SHG images of collagen in breast tissue. The image-processing algorithms included a Gaussian filter, SPIRAL-TV filter, Tubeness filter, and curvelet-denoising filter. Fibers are then extracted using an automated tracking algorithm called fiber extraction (FIRE). We evaluated the algorithm performance by comparing length, angle and position of the automatically extracted fibers with those of manually extracted fibers in twenty-five SHG images of breast cancer. We found that the curvelet-denoising filter followed by FIRE, a process we call CT-FIRE, outperforms the other algorithms under investigation. CT-FIRE was then successfully applied to track collagen fiber shape changes over time in an in vivo mouse model for breast cancer.

  16. DNA-Aptamer optical biosensors based on a LPG-SPR optical fiber platform for point-of-care diagnostic

    NASA Astrophysics Data System (ADS)

    Coelho, L.; Queirós, R. B.; Santos, J. L.; Martins, M. Cristina L.; Viegas, D.; Jorge, P. A. S.

    2014-03-01

    Surface Plasmon Resonance (SPR) is the base for some of the most sensitive label free optical fiber biosensors. However, most solutions presented to date require the use of fragile fiber optic structure such as adiabatic tapers or side polished fibers. On the other hand, long-period fiber gratings (LPG) present themselves as an interesting solution to attain an evanescent wave refractive index sensor platform while preserving the optical fiber integrity. The combination of these two approaches constitute a powerful platform that can potentially reach the highest sensitivities as it was recently demonstrated by detailed theoretical study [1, 2]. In this work, a LPG-SPR platform is explored in different configurations (metal coating between two LPG - symmetric and asymmetric) operating in the telecom band (around 1550 nm). For this purpose LPGs with period of 396 μm are combined with tailor made metallic thin films. In particular, the sensing regions were coated with 2 nm of chromium to improve the adhesion to the fiber and 16 nm of gold followed by a 100 nm thick layer of TiO2 dielectric material strategically chosen to attain plasmon resonance in the desired wavelength range. The obtained refractometric platforms were then validated as a biosensor. For this purpose the detection of thrombin using an aptamer based probe was used as a model system for protein detection. The surface of the sensing fibers were cleaned with isopropanol and dried with N2 and then the aminated thrombin aptamer (5'-[NH2]- GGTTGGTGTGGTTGG-3') was immobilized by physisorption using Poly-L-Lysine (PLL) as cationic polymer. Preliminary results indicate the viability of the LPFG-SPR-APTAMER as a flexible platforms point of care diagnostic biosensors.

  17. Temperature-independent refractometer based on fiber-optic Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Li, Jiacheng; Qiao, Xueguang; Wang, Ruohui; Rong, Qiangzhou; Bao, Weijia; Shao, Zhihua; Yang, Tingting

    2016-04-01

    A miniature fiber-optic refractometer based on Fabry-Perot interferometer (FPI) has been proposed and experimentally demonstrated. The sensing head consists of a short section of photonics crystal fiber (PCF) spliced to a single mode fiber (SMF), in which the end-face of the PCF is etched to remove holey structure with hydrofluoric (HF) acid. A Fabry-Perot interference spectrum is achieved based on the reflections from the fusion splicing interface and the end-face of the core of PCF. The interference fringe is sensitive to the external refractive index (RI) with an intensity-referenced sensitivity of 358.27 dB/RIU ranging from 1.33 to 1.38. The sensor has also been implemented for the concentration measurement of λ-phage DNA solution. In addition, the dip intensity is insensitive to the ambient temperature variation, making it a good candidate for temperature-independent bio-sensing area.

  18. A ranking index for quality assessment of forensic DNA profiles forensic DNA profiles

    PubMed Central

    2010-01-01

    Background Assessment of DNA profile quality is vital in forensic DNA analysis, both in order to determine the evidentiary value of DNA results and to compare the performance of different DNA analysis protocols. Generally the quality assessment is performed through manual examination of the DNA profiles based on empirical knowledge, or by comparing the intensities (allelic peak heights) of the capillary electrophoresis electropherograms. Results We recently developed a ranking index for unbiased and quantitative quality assessment of forensic DNA profiles, the forensic DNA profile index (FI) (Hedman et al. Improved forensic DNA analysis through the use of alternative DNA polymerases and statistical modeling of DNA profiles, Biotechniques 47 (2009) 951-958). FI uses electropherogram data to combine the intensities of the allelic peaks with the balances within and between loci, using Principal Components Analysis. Here we present the construction of FI. We explain the mathematical and statistical methodologies used and present details about the applied data reduction method. Thereby we show how to adapt the ranking index for any Short Tandem Repeat-based forensic DNA typing system through validation against a manual grading scale and calibration against a specific set of DNA profiles. Conclusions The developed tool provides unbiased quality assessment of forensic DNA profiles. It can be applied for any DNA profiling system based on Short Tandem Repeat markers. Apart from crime related DNA analysis, FI can therefore be used as a quality tool in paternal or familial testing as well as in disaster victim identification. PMID:21062433

  19. Comparative transcriptome analysis of cotton fiber development of Upland cotton (Gossypium hirsutum) and Chromosome Segment Substitution Lines from G. hirsutum × G. barbadense.

    PubMed

    Li, Peng-Tao; Wang, Mi; Lu, Quan-Wei; Ge, Qun; Rashid, Md Harun Or; Liu, Ai-Ying; Gong, Ju-Wu; Shang, Hai-Hong; Gong, Wan-Kui; Li, Jun-Wen; Song, Wei-Wu; Guo, Li-Xue; Su, Wei; Li, Shao-Qi; Guo, Xiao-Ping; Shi, Yu-Zhen; Yuan, You-Lu

    2017-09-08

    How to develop new cotton varieties possessing high yield traits of Upland cotton and superior fiber quality traits of Sea Island cotton remains a key task for cotton breeders and researchers. While multiple attempts bring in little significant progresses, the development of Chromosome Segment Substitution Lines (CSSLs) from Gossypium barbadense in G. hirsutum background provided ideal materials for aforementioned breeding purposes in upland cotton improvement. Based on the excellent fiber performance and relatively clear chromosome substitution segments information identified by Simple Sequence Repeat (SSR) markers, two CSSLs, MBI9915 and MBI9749, together with the recurrent parent CCRI36 were chosen to conduct transcriptome sequencing during the development stages of fiber elongation and Secondary Cell Wall (SCW) synthesis (from 10DPA and 28DPA), aiming at revealing the mechanism of fiber development and the potential contribution of chromosome substitution segments from Sea Island cotton to fiber development of Upland cotton. In total, 15 RNA-seq libraries were constructed and sequenced separately, generating 705.433 million clean reads with mean GC content of 45.13% and average Q30 of 90.26%. Through multiple comparisons between libraries, 1801 differentially expressed genes (DEGs) were identified, of which the 902 up-regulated DEGs were mainly involved in cell wall organization and response to oxidative stress and auxin, while the 898 down-regulated ones participated in translation, regulation of transcription, DNA-templated and cytoplasmic translation based on GO annotation and KEGG enrichment analysis. Subsequently, STEM software was performed to explicate the temporal expression pattern of DEGs. Two peroxidases and four flavonoid pathway-related genes were identified in the "oxidation-reduction process", which could play a role in fiber development and quality formation. Finally, the reliability of RNA-seq data was validated by quantitative real-time PCR

  20. Contractile properties of rat, rhesus monkey, and human type I muscle fibers

    NASA Technical Reports Server (NTRS)

    Widrick, J. J.; Romatowski, J. G.; Karhanek, M.; Fitts, R. H.

    1997-01-01

    It is well known that skeletal muscle intrinsic maximal shortening velocity is inversely related to species body mass. However, there is uncertainty regarding the relationship between the contractile properties of muscle fibers obtained from commonly studied laboratory animals and those obtained from humans. In this study we determined the contractile properties of single chemically skinned fibers prepared from rat, rhesus monkey, and human soleus and gastrocnemius muscle samples under identical experimental conditions. All fibers used for analysis expressed type I myosin heavy chain as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Allometric coefficients for type I fibers from each muscle indicated that there was little change in peak tension (force/fiber cross-sectional area) across species. In contrast, both soleus and gastrocnemius type I fiber maximal unloaded shortening velocity (Vo), the y-intercept of the force-velocity relationship (Vmax), peak power per unit fiber length, and peak power normalized for fiber length and cross-sectional area were all inversely related to species body mass. The present allometric coefficients for soleus fiber Vo (-0.18) and Vmax (-0.11) are in good agreement with published values for soleus fibers obtained from common laboratory and domesticated mammals. Taken together, these observations suggest that the Vo of slow fibers from quadrupeds and humans scale similarly and can be described by the same quantitative relationships. These findings have implications in the design and interpretation of experiments, especially those that use small laboratory mammals as a model of human muscle function.

  1. Quantitative expression profiling of immune response genes in rainbow trout following infectious haematopoietic necrosis virus (IHNV) infection or DNA vaccination

    USGS Publications Warehouse

    Purcell, Maureen K.; Kurath, Gael; Garver, Kyle A.; Herwig, Russell P.; Winton, James R.

    2004-01-01

    Infectious haematopoietic necrosis virus (IHNV) is a well-studied virus of salmonid fishes. A highly efficacious DNA vaccine has been developed against this virus and studies have demonstrated that this vaccine induces both an early and transient non-specific anti-viral phase as well as long-term specific protection. The mechanisms of the early anti-viral phase are not known, but previous studies noted changes in Mx gene expression, suggesting a role for type I interferon. This study used quantitative real-time reverse transcriptase PCR methodology to compare expression changes over time of a number of cytokine or cytokine-related genes in the spleen of rainbow trout following injection with poly I:C, live IHNV, the IHNV DNA vaccine or a control plasmid encoding the non-antigenic luciferase gene. The target genes included Mx-1, viral haemorrhagic septicaemia virus induced gene 8 (Vig-8), TNF-α1, TNF-α2, IL-1β1, IL-8, TGF-β1 and Hsp70. Poly I:C stimulation induced several genes but the strongest and significant response was observed in the Mx-1 and Vig-8 genes. The live IHN virus induced a significant response in all genes examined except TGF-β1. The control plasmid construct and the IHNV DNA vaccine marginally induced a number of genes, but the main difference between these two groups was a statistically significant induction of the Mx-1 and Vig-8 genes by the IHNV vaccine only. The gene expression profiles elicited by the live virus and the IHNV DNA vaccine differed in a number of aspects but this study confirms the clear role for a type I interferon-like response in early anti-viral defence.

  2. Porosity characterization of fiber-reinforced ceramic matrix composite using synchrotron X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Zou, C.; Marrow, T. J.; Reinhard, C.; Li, B.; Zhang, C.; Wang, S.

    2016-03-01

    The pore structure and porosity of a continuous fiber reinforced ceramic matrix composite has been characterized using high-resolution synchrotron X-ray computed tomography (XCT). Segmentation of the reconstructed tomograph images reveals different types of pores within the composite, the inter-fiber bundle open pores displaying a "node-bond" geometry, and the intra-fiber bundle isolated micropores showing a piping shape. The 3D morphology of the pores is resolved and each pore is labeled. The quantitative filtering of the pores measures a total porosity 8.9% for the composite, amid which there is about 7.1~ 9.3% closed micropores.

  3. Standardisation of DNA quantitation by image analysis: quality control of instrumentation.

    PubMed

    Puech, M; Giroud, F

    1999-05-01

    DNA image analysis is frequently performed in clinical practice as a prognostic tool and to improve diagnosis. The precision of prognosis and diagnosis depends on the accuracy of analysis and particularly on the quality of image analysis systems. It has been reported that image analysis systems used for DNA quantification differ widely in their characteristics (Thunissen et al.: Cytometry 27: 21-25, 1997). This induces inter-laboratory variations when the same sample is analysed in different laboratories. In microscopic image analysis, the principal instrumentation errors arise from the optical and electronic parts of systems. They bring about problems of instability, non-linearity, and shading and glare phenomena. The aim of this study is to establish tools and standardised quality control procedures for microscopic image analysis systems. Specific reference standard slides have been developed to control instability, non-linearity, shading and glare phenomena and segmentation efficiency. Some systems have been controlled with these tools and these quality control procedures. Interpretation criteria and accuracy limits of these quality control procedures are proposed according to the conclusions of a European project called PRESS project (Prototype Reference Standard Slide). Beyond these limits, tested image analysis systems are not qualified to realise precise DNA analysis. The different procedures presented in this work determine if an image analysis system is qualified to deliver sufficiently precise DNA measurements for cancer case analysis. If the controlled systems are beyond the defined limits, some recommendations are given to find a solution to the problem.

  4. Effects of periodic weight support on medial gastrocnemius fibers of suspended rats

    NASA Technical Reports Server (NTRS)

    Graham, Scot C.; Roy, Roland R.; Hauschka, Edward O.; Edgerton, V. Reggie

    1989-01-01

    The effects of seven-day-long hindlimb suspension (HS) and HS plus daily periodic weight support activity on the size and metabolic properties of individual fibers in the medial gastrocnemius (MG) of rats were examined. Sections of muscle tissue removed after seven day suspension were stained quantitatively for succinate dehydrogenase and alpha-glycerophosphate dehydrogenase, and qualitatively for myosin ATPase. It was found that short intermittent periods of weight support had a beneficial effect in maintaining the size and metabolic properties of both dark and light ATPase fibers in the deep regions (i.e., close to the bone) and of dark ATPase fibers in the superficial regions of the MG. The effect was greater in the deep regions.

  5. High Levels of mecA DNA Detected by a Quantitative Real-Time PCR Assay Are Associated with Mortality in Patients with Methicillin-Resistant Staphylococcus aureus Bacteremia ▿

    PubMed Central

    Ho, Ya-Chi; Chang, Shan-Chwen; Lin, Su-Ru; Wang, Wei-Kung

    2009-01-01

    Persistent methicillin-resistant Staphylococcus aureus (MRSA) bacteremia is known to be a poor prognostic factor. While several PCR assays for the detection of MRSA in various clinical samples were recently reported, the possibility that a quantitative PCR assay could be used to quantify and monitor MRSA bacteremia has not been explored. In this study, we established a quantitative real-time PCR assay for the mecA gene using known copy numbers of a plasmid containing mecA DNA as a standard and the previously described mecA-specific primers and probe (P. Francois et al., J. Clin. Microbiol. 41:254-260, 2003). We employed this assay to examine 250 sequential whole-blood samples from 20 adult patients, including 13 survivors and 7 nonsurvivors, with culture-proven MRSA bacteremia at the intensive care units of National Taiwan University Hospital between 1 July 2006 and 31 January 2007. The levels of mecA DNA in the nonsurvivors were significantly higher than those in the survivors during the three periods of bacteremia examined (days 0 to 2, 3 to 5, and 6 to 8) (P = 0.003 by two-tailed Mann-Whitney U test). Moreover, the nonsurvivors had higher mecA DNA levels than the survivors after 3 days and 7 days of anti-MRSA therapy (medians for nonsurvivors and survivors at 3 days, 5.86 and 4.30 log copies/ml, respectively; medians for nonsurvivors and survivors at 7 days, 5.21 and 4.36 log copies/ml, respectively; P = 0.02 and P = 0.04, respectively, by two-tailed Mann-Whitney U test). Together, these findings suggest that the level of mecA DNA in blood could potentially be used to monitor MRSA bacteremia and evaluate responses to therapy. PMID:19279177

  6. Mosaic organization of DNA nucleotides

    NASA Technical Reports Server (NTRS)

    Peng, C. K.; Buldyrev, S. V.; Havlin, S.; Simons, M.; Stanley, H. E.; Goldberger, A. L.

    1994-01-01

    Long-range power-law correlations have been reported recently for DNA sequences containing noncoding regions. We address the question of whether such correlations may be a trivial consequence of the known mosaic structure ("patchiness") of DNA. We analyze two classes of controls consisting of patchy nucleotide sequences generated by different algorithms--one without and one with long-range power-law correlations. Although both types of sequences are highly heterogenous, they are quantitatively distinguishable by an alternative fluctuation analysis method that differentiates local patchiness from long-range correlations. Application of this analysis to selected DNA sequences demonstrates that patchiness is not sufficient to account for long-range correlation properties.

  7. Quantitative Analysis of HIV-1 Preintegration Complexes

    PubMed Central

    Engelman, Alan; Oztop, Ilker; Vandegraaff, Nick; Raghavendra, Nidhanapati K.

    2009-01-01

    Retroviral replication proceeds through the formation of a provirus, an integrated DNA copy of the viral RNA genome. The linear cDNA product of reverse transcription is the integration substrate and two different integrase activities, 3′ processing and DNA strand transfer, are required for provirus formation. Integrase nicks the cDNA ends adjacent to phylogenetically-conserved CA dinucleotides during 3′ processing. After nuclear entry and locating a suitable chromatin acceptor site, integrase joins the recessed 3′-OHs to the 5′-phosphates of a double-stranded staggered cut in the DNA target. Integrase functions in the context of a large nucleoprotein complex, called the preintegration complex (PIC), and PICs are analyzed to determine levels of integrase 3′ processing and DNA strand transfer activities that occur during acute virus infection. Denatured cDNA end regions are monitored by indirect end-labeling to measure the extent of 3′ processing. Native PICs can efficiently integrate their viral cDNA into exogenously added target DNA in vitro, and Southern blotting or nested PCR assays are used to quantify the resultant DNA strand transfer activity. This study details HIV-1 infection, PIC extraction, partial purification, and quantitative analyses of integrase 3′ processing and DNA strand transfer activities. PMID:19233280

  8. [Study on once sampling quantitation based on information entropy of ISSR amplified bands of Houttuynia cordata].

    PubMed

    Wang, Haiqin; Liu, Wenlong; He, Fuyuan; Chen, Zuohong; Zhang, Xili; Xie, Xianggui; Zeng, Jiaoli; Duan, Xiaopeng

    2012-02-01

    To explore the once sampling quantitation of Houttuynia cordata through its DNA polymorphic bands that carried information entropy, from other form that the expression of traditional Chinese medicine polymorphism, genetic polymorphism, of traditional Chinese medicine. The technique of inter simple sequence repeat (ISSR) was applied to analyze genetic polymorphism of H. cordata samples from the same GAP producing area, the DNA genetic bands were transformed its into the information entropy, and the minimum once sampling quantitation with the mathematical mode was measured. One hundred and thirty-four DNA bands were obtained by using 9 screened ISSR primers to amplify from 46 strains DNA samples of H. cordata from the same GAP, the information entropy was H=0.365 6-0.978 6, and RSD was 14.75%. The once sampling quantitation was W=11.22 kg (863 strains). The "once minimum sampling quantitation" were calculated from the angle of the genetic polymorphism of H. cordata, and a great differences between this volume and the amount from the angle of fingerprint were found.

  9. Size and metabolic properties of single muscle fibers in rat soleus after hindlimb suspension

    NASA Technical Reports Server (NTRS)

    Hauschka, Edward O.; Roy, Roland R.; Edgerton, V. Reggie

    1987-01-01

    The effect of 28-day-long hind-limb suspension (HS) combined with 10 daily forceful lengthening contractions of the limb on the morphological and metabolic properties of individual fibers of the soleus was studied in rats, using quantitative histochemical techniques. Compared with nonsuspended controls (CON), soleus wet weights of HS rats were decreased by 49 percent; the fibers staining lightly for myosin ATPase ('light-ATPase' fibers) atrophied more than the 'dark-ATPase' fibers. Single-fiber alpha-glycerophosphate dehydrogenase (GPD) and succinate dehydrogenase (SDH) activities were higher in HS than in CON rats. Daily forceful lengthening contractions did not prevent the HS-induced changes. The results support the view that the soleus fibers can change from a slow-twitch oxidative to a fast-twitch oxidative-glycolytic profile, but rarely to a fast-twitch glycolytic one, and that the SDH and GPD activities per volume of tissue can be increased even when there are severe losses of contractile proteins.

  10. Ancient and modern environmental DNA

    PubMed Central

    Pedersen, Mikkel Winther; Overballe-Petersen, Søren; Ermini, Luca; Sarkissian, Clio Der; Haile, James; Hellstrom, Micaela; Spens, Johan; Thomsen, Philip Francis; Bohmann, Kristine; Cappellini, Enrico; Schnell, Ida Bærholm; Wales, Nathan A.; Carøe, Christian; Campos, Paula F.; Schmidt, Astrid M. Z.; Gilbert, M. Thomas P.; Hansen, Anders J.; Orlando, Ludovic; Willerslev, Eske

    2015-01-01

    DNA obtained from environmental samples such as sediments, ice or water (environmental DNA, eDNA), represents an important source of information on past and present biodiversity. It has revealed an ancient forest in Greenland, extended by several thousand years the survival dates for mainland woolly mammoth in Alaska, and pushed back the dates for spruce survival in Scandinavian ice-free refugia during the last glaciation. More recently, eDNA was used to uncover the past 50 000 years of vegetation history in the Arctic, revealing massive vegetation turnover at the Pleistocene/Holocene transition, with implications for the extinction of megafauna. Furthermore, eDNA can reflect the biodiversity of extant flora and fauna, both qualitatively and quantitatively, allowing detection of rare species. As such, trace studies of plant and vertebrate DNA in the environment have revolutionized our knowledge of biogeography. However, the approach remains marred by biases related to DNA behaviour in environmental settings, incomplete reference databases and false positive results due to contamination. We provide a review of the field. PMID:25487334

  11. Evaluation of reference genes for reverse transcription quantitative real-time PCR (RT-qPCR) studies in Silene vulgaris considering the method of cDNA preparation

    PubMed Central

    Koloušková, Pavla; Stone, James D.

    2017-01-01

    Accurate gene expression measurements are essential in studies of both crop and wild plants. Reverse transcription quantitative real-time PCR (RT-qPCR) has become a preferred tool for gene expression estimation. A selection of suitable reference genes for the normalization of transcript levels is an essential prerequisite of accurate RT-qPCR results. We evaluated the expression stability of eight candidate reference genes across roots, leaves, flower buds and pollen of Silene vulgaris (bladder campion), a model plant for the study of gynodioecy. As random priming of cDNA is recommended for the study of organellar transcripts and poly(A) selection is indicated for nuclear transcripts, we estimated gene expression with both random-primed and oligo(dT)-primed cDNA. Accordingly, we determined reference genes that perform well with oligo(dT)- and random-primed cDNA, making it possible to estimate levels of nucleus-derived transcripts in the same cDNA samples as used for organellar transcripts, a key benefit in studies of cyto-nuclear interactions. Gene expression variance was estimated by RefFinder, which integrates four different analytical tools. The SvACT and SvGAPDH genes were the most stable candidates across various organs of S. vulgaris, regardless of whether pollen was included or not. PMID:28817728

  12. Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Ben Arous, Juliette; Binding, Jonas; Léger, Jean-François; Casado, Mariano; Topilko, Piotr; Gigan, Sylvain; Claude Boccara, A.; Bourdieu, Laurent

    2011-11-01

    Myelin sheath disruption is responsible for multiple neuropathies in the central and peripheral nervous system. Myelin imaging has thus become an important diagnosis tool. However, in vivo imaging has been limited to either low-resolution techniques unable to resolve individual fibers or to low-penetration imaging of single fibers, which cannot provide quantitative information about large volumes of tissue, as required for diagnostic purposes. Here, we perform myelin imaging without labeling and at micron-scale resolution with >300-μm penetration depth on living rodents. This was achieved with a prototype [termed deep optical coherence microscopy (deep-OCM)] of a high-numerical aperture infrared full-field optical coherence microscope, which includes aberration correction for the compensation of refractive index mismatch and high-frame-rate interferometric measurements. We were able to measure the density of individual myelinated fibers in the rat cortex over a large volume of gray matter. In the peripheral nervous system, deep-OCM allows, after minor surgery, in situ imaging of single myelinated fibers over a large fraction of the sciatic nerve. This allows quantitative comparison of normal and Krox20 mutant mice, in which myelination in the peripheral nervous system is impaired. This opens promising perspectives for myelin chronic imaging in demyelinating diseases and for minimally invasive medical diagnosis.

  13. Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy.

    PubMed

    Ben Arous, Juliette; Binding, Jonas; Léger, Jean-François; Casado, Mariano; Topilko, Piotr; Gigan, Sylvain; Boccara, A Claude; Bourdieu, Laurent

    2011-11-01

    Myelin sheath disruption is responsible for multiple neuropathies in the central and peripheral nervous system. Myelin imaging has thus become an important diagnosis tool. However, in vivo imaging has been limited to either low-resolution techniques unable to resolve individual fibers or to low-penetration imaging of single fibers, which cannot provide quantitative information about large volumes of tissue, as required for diagnostic purposes. Here, we perform myelin imaging without labeling and at micron-scale resolution with >300-μm penetration depth on living rodents. This was achieved with a prototype [termed deep optical coherence microscopy (deep-OCM)] of a high-numerical aperture infrared full-field optical coherence microscope, which includes aberration correction for the compensation of refractive index mismatch and high-frame-rate interferometric measurements. We were able to measure the density of individual myelinated fibers in the rat cortex over a large volume of gray matter. In the peripheral nervous system, deep-OCM allows, after minor surgery, in situ imaging of single myelinated fibers over a large fraction of the sciatic nerve. This allows quantitative comparison of normal and Krox20 mutant mice, in which myelination in the peripheral nervous system is impaired. This opens promising perspectives for myelin chronic imaging in demyelinating diseases and for minimally invasive medical diagnosis.

  14. A high-throughput and quantitative method to assess the mutagenic potential of translesion DNA synthesis

    PubMed Central

    Taggart, David J.; Camerlengo, Terry L.; Harrison, Jason K.; Sherrer, Shanen M.; Kshetry, Ajay K.; Taylor, John-Stephen; Huang, Kun; Suo, Zucai

    2013-01-01

    Cellular genomes are constantly damaged by endogenous and exogenous agents that covalently and structurally modify DNA to produce DNA lesions. Although most lesions are mended by various DNA repair pathways in vivo, a significant number of damage sites persist during genomic replication. Our understanding of the mutagenic outcomes derived from these unrepaired DNA lesions has been hindered by the low throughput of existing sequencing methods. Therefore, we have developed a cost-effective high-throughput short oligonucleotide sequencing assay that uses next-generation DNA sequencing technology for the assessment of the mutagenic profiles of translesion DNA synthesis catalyzed by any error-prone DNA polymerase. The vast amount of sequencing data produced were aligned and quantified by using our novel software. As an example, the high-throughput short oligonucleotide sequencing assay was used to analyze the types and frequencies of mutations upstream, downstream and at a site-specifically placed cis–syn thymidine–thymidine dimer generated individually by three lesion-bypass human Y-family DNA polymerases. PMID:23470999

  15. Optical frequency-domain chromatic dispersion measurement method for higher-order modes in an optical fiber.

    PubMed

    Ahn, Tae-Jung; Jung, Yongmin; Oh, Kyunghwan; Kim, Dug Young

    2005-12-12

    We propose a new chromatic dispersion measurement method for the higher-order modes of an optical fiber using optical frequency modulated continuous-wave (FMCW) interferometry. An optical fiber which supports few excited modes was prepared for our experiments. Three different guiding modes of the fiber were identified by using far-field spatial beam profile measurements and confirmed with numerical mode analysis. By using the principle of a conventional FMWC interferometry with a tunable external cavity laser, we have demonstrated that the chromatic dispersion of a few-mode optical fiber can be obtained directly and quantitatively as well as qualitatively. We have also compared our measurement results with those of conventional modulation phase-shift method.

  16. Validation of PCR methods for quantitation of genetically modified plants in food.

    PubMed

    Hübner, P; Waiblinger, H U; Pietsch, K; Brodmann, P

    2001-01-01

    For enforcement of the recently introduced labeling threshold for genetically modified organisms (GMOs) in food ingredients, quantitative detection methods such as quantitative competitive (QC-PCR) and real-time PCR are applied by official food control laboratories. The experiences of 3 European food control laboratories in validating such methods were compared to describe realistic performance characteristics of quantitative PCR detection methods. The limit of quantitation (LOQ) of GMO-specific, real-time PCR was experimentally determined to reach 30-50 target molecules, which is close to theoretical prediction. Starting PCR with 200 ng genomic plant DNA, the LOQ depends primarily on the genome size of the target plant and ranges from 0.02% for rice to 0.7% for wheat. The precision of quantitative PCR detection methods, expressed as relative standard deviation (RSD), varied from 10 to 30%. Using Bt176 corn containing test samples and applying Bt176 specific QC-PCR, mean values deviated from true values by -7to 18%, with an average of 2+/-10%. Ruggedness of real-time PCR detection methods was assessed in an interlaboratory study analyzing commercial, homogeneous food samples. Roundup Ready soybean DNA contents were determined in the range of 0.3 to 36%, relative to soybean DNA, with RSDs of about 25%. Taking the precision of quantitative PCR detection methods into account, suitable sample plans and sample sizes for GMO analysis are suggested. Because quantitative GMO detection methods measure GMO contents of samples in relation to reference material (calibrants), high priority must be given to international agreements and standardization on certified reference materials.

  17. Pre-Steady-State Kinetic Analysis of Single-Nucleotide Incorporation by DNA Polymerases

    PubMed Central

    Su, Yan; Guengerich, F. Peter

    2016-01-01

    Pre-steady-state kinetic analysis is a powerful and widely used method to obtain multiple kinetic parameters. This protocol provides a step-by-step procedure for pre-steady-state kinetic analysis of single-nucleotide incorporation by a DNA polymerase. It describes the experimental details of DNA substrate annealing, reaction mixture preparation, handling of the RQF-3 rapid quench-flow instrument, denaturing polyacrylamide DNA gel preparation, electrophoresis, quantitation, and data analysis. The core and unique part of this protocol is the rationale for preparation of the reaction mixture (the ratio of the polymerase to the DNA substrate) and methods for conducting pre-steady-state assays on an RQF-3 rapid quench-flow instrument, as well as data interpretation after analysis. In addition, the methods for the DNA substrate annealing and DNA polyacrylamide gel preparation, electrophoresis, quantitation and analysis are suitable for use in other studies. PMID:27248785

  18. Specialty fibers for fiber optic sensor application

    NASA Astrophysics Data System (ADS)

    Bennett, K.; Koh, J.; Coon, J.; Chien, C. K.; Artuso, A.; Chen, X.; Nolan, D.; Li, M.-J.

    2007-09-01

    Over the last several years, Fiber Optic Sensor (FOS) applications have seen an increased acceptance in many areas including oil & gas production monitoring, gyroscopes, current sensors, structural sensing and monitoring, and aerospace applications. High level optical and mechanical reliability of optical fiber is necessary to guarantee reliable performance of FOS. In this paper, we review recent research and development activities on new specialty fibers. We discuss fiber design concepts and present both modeling and experimental results. The main approaches to enhancing fiber attributes include new index profile design and fiber coating modification.

  19. Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection

    NASA Astrophysics Data System (ADS)

    Yao, B. C.; Wu, Y.; Yu, C. B.; He, J. R.; Rao, Y. J.; Gong, Y.; Fu, F.; Chen, Y. F.; Li, Y. R.

    2016-03-01

    Fluorescent resonance energy transfer (FRET) with naturally exceptional selectivity is a powerful technique and widely used in chemical and biomedical analysis. However, it is still challenging for conventional FRET to perform as a high sensitivity compact sensor. Here we propose a novel ‘FRET on Fiber’ concept, in which a partially reduced graphene oxide (prGO) film is deposited on a fiber-optic modal interferometer, acting as both the fluorescent quencher for the FRET and the sensitive cladding for optical phase measurement due to refractive index changes in biochemical detection. The target analytes induced fluorescence recovery with good selectivity and optical phase shift with high sensitivity are measured simultaneously. The functionalized prGO film coated on the fiber-optic interferometer shows high sensitivities for the detections of metal ion, dopamine and single-stranded DNA (ssDNA), with detection limits of 1.2 nM, 1.3 μM and 1 pM, respectively. Such a prGO based ‘FRET on fiber’ configuration, bridging the FRET and the fiber-optic sensing technology, may serve as a platform for the realization of series of integrated ‘FRET on Fiber’ sensors for on-line environmental, chemical, and biomedical detection, with excellent compactness, high sensitivity, good selectivity and fast response

  20. Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection

    PubMed Central

    Yao, B. C.; Wu, Y.; Yu, C. B.; He, J. R.; Rao, Y. J.; Gong, Y.; Fu, F.; Chen, Y. F.; Li, Y. R.

    2016-01-01

    Fluorescent resonance energy transfer (FRET) with naturally exceptional selectivity is a powerful technique and widely used in chemical and biomedical analysis. However, it is still challenging for conventional FRET to perform as a high sensitivity compact sensor. Here we propose a novel ‘FRET on Fiber’ concept, in which a partially reduced graphene oxide (prGO) film is deposited on a fiber-optic modal interferometer, acting as both the fluorescent quencher for the FRET and the sensitive cladding for optical phase measurement due to refractive index changes in biochemical detection. The target analytes induced fluorescence recovery with good selectivity and optical phase shift with high sensitivity are measured simultaneously. The functionalized prGO film coated on the fiber-optic interferometer shows high sensitivities for the detections of metal ion, dopamine and single-stranded DNA (ssDNA), with detection limits of 1.2 nM, 1.3 μM and 1 pM, respectively. Such a prGO based ‘FRET on fiber’ configuration, bridging the FRET and the fiber-optic sensing technology, may serve as a platform for the realization of series of integrated ‘FRET on Fiber’ sensors for on-line environmental, chemical, and biomedical detection, with excellent compactness, high sensitivity, good selectivity and fast response PMID:27010752

  1. Intraoral fiber-optic-based diagnostic for periodontal disease

    NASA Astrophysics Data System (ADS)

    Colston, Bill W., Jr.; Gutierrez, Dora M.; Everett, Matthew J.; Brown, Steve B.; Langry, Kevin C.; Cox, Weldon R.; Johnson, Paul W.; Roe, Jeffrey N.

    2000-05-01

    The purpose of this initial study was to begin development of a new, objective diagnostic instrument that will allow simultaneous quantitation of multiple proteases within a single periodontal pocket using a chemical fiber optic senor. This approach could potentially be adapted to use specific antibodies and chemiluminescence to detect and quantitate virtually any compound and compare concentrations of different compounds within the same periodontal pocket. The device could also be used to assay secretions in salivary ducts or from a variety of wounds. The applicability is, therefore, not solely limited to dentistry and the device would be important both for clinical diagnostics and as a research too.

  2. All-fiber Faraday Devices Based on Terbium-doped Fiber

    NASA Astrophysics Data System (ADS)

    Sun, Lei

    Surface damage is one of the most problematic power limits in high-power fiber laser systems. All-fiber Faraday components are demonstrated as a solution to this problem, since they can be completely fusion-spliced into existing systems, eliminating all glass-air interfaces. Beam filamentation due to self-focusing places another limit on the peak power attainable from fiber laser systems. The limits imposed by this phenomenon are analyzed for the first time. The concept of an effective Verdet constant is proposed and experimentally validated. The effective Verdet constant of light propagation in a fiber includes contributions from the materials in both the core and the cladding. It is measured in a 25-wt% terbium-doped-core phosphate fiber to be --6.2 rad/(Tm) at 1053 nm, which is six times larger than silica fiber. The result agrees well with Faraday rotation theory in optical fiber. A compact all-fiber Faraday isolator and a Faraday mirror are demonstrated. At the core of each of these components is an all-fiber Faraday rotator made of a 4cm-long, 65-wt%-terbium-doped silicate fiber. The effective Verdet constant of the terbium-doped fiber is measured to be -32 rad/(Tm), which is 27x larger than that of silica fiber. This effective Verdet constant is the largest value measured to date in any fiber and is 83% of the Verdet constant of commercially available crystals used in bulk-optics-based isolators. Combining the all-fiber Faraday rotator with fiber polarizers results in a fully fusion-spliced all-fiber isolator whose isolation is measured to be 19 dB. Combining the all-fiber Faraday rotator with a fiber Bragg grating results in an all-fiber Faraday mirror that rotates the polarization state of the reflected light by 88 +/- 4°. An all-fiber optical magnetic field sensor is also demonstrated. It consists of a fiber Faraday rotator and a fiber polarizer. The fiber Faraday rotator uses a 2-cm-long section of 56-wt%-terbium-doped silicate fiber with a Verdet

  3. DNA preservation in silk.

    PubMed

    Liu, Yawen; Zheng, Zhaozhu; Gong, He; Liu, Meng; Guo, Shaozhe; Li, Gang; Wang, Xiaoqin; Kaplan, David L

    2017-06-27

    The structure of DNA is susceptible to alterations at high temperature and on changing pH, irradiation and exposure to DNase. Options to protect and preserve DNA during storage are important for applications in genetic diagnosis, identity authentication, drug development and bioresearch. In the present study, the stability of total DNA purified from human dermal fibroblast cells, as well as that of plasmid DNA, was studied in silk protein materials. The DNA/silk mixtures were stabilized on filter paper (silk/DNA + filter) or filter paper pre-coated with silk and treated with methanol (silk/DNA + PT-filter) as a route to practical utility. After air-drying and water extraction, 50-70% of the DNA and silk could be retrieved and showed a single band on electrophoretic gels. 6% silk/DNA + PT-filter samples provided improved stability in comparison with 3% silk/DNA + filter samples and DNA + filter samples for DNA preservation, with ∼40% of the band intensity remaining at 37 °C after 40 days and ∼10% after exposure to UV light for 10 hours. Quantitative analysis using the PicoGreen assay confirmed the results. The use of Tris/borate/EDTA (TBE) buffer enhanced the preservation and/or extraction of the DNA. The DNA extracted after storage maintained integrity and function based on serving as a functional template for PCR amplification of the gene for zinc finger protein 750 (ZNF750) and for transgene expression of red fluorescence protein (dsRed) in HEK293 cells. The high molecular weight and high content of a crystalline beta-sheet structure formed on the coated surfaces likely accounted for the preservation effects observed for the silk/DNA + PT-filter samples. Although similar preservation effects were also obtained for lyophilized silk/DNA samples, the rapid and simple processing available with the silk-DNA-filter membrane system makes it appealing for future applications.

  4. Direct PCR Improves the Recovery of DNA from Various Substrates.

    PubMed

    Templeton, Jennifer E L; Taylor, Duncan; Handt, Oliva; Skuza, Pawel; Linacre, Adrian

    2015-11-01

    This study reports on the comparison of a standard extraction process with the direct PCR approach of processing low-level DNA swabs typical in forensic investigations. Varying concentrations of control DNA were deposited onto three commonly encountered substrates, brass, plastic, and glass, left to dry, and swabbed using premoistened DNA-free nylon FLOQswabs(™) . Swabs (n = 90) were either processed using the DNA IQ(™) kit or, for direct PCR, swab fibers (~2 mm(2) ) were added directly to the PCR with no prior extraction. A significant increase in the height of the alleles (p < 0.005) was observed when using the direct PCR approach over the extraction methodology when controlling for surface type and mass of DNA deposited. The findings indicate the potential use of direct PCR for increasing the PCR product obtained from low-template DNA samples in addition to minimizing contamination and saving resources. © 2015 American Academy of Forensic Sciences.

  5. Nucleosome-free DNA regions differentially affect distant communication in chromatin

    PubMed Central

    Nizovtseva, Ekaterina V.; Clauvelin, Nicolas; Todolli, Stefjord; Kulaeva, Olga I.; Wengrzynek, Scott

    2017-01-01

    Abstract Communication between distantly spaced genomic regions is one of the key features of gene regulation in eukaryotes. Chromatin per se can stimulate efficient enhancer-promoter communication (EPC); however, the role of chromatin structure and dynamics in this process remains poorly understood. Here we show that nucleosome spacing and the presence of nucleosome-free DNA regions can modulate chromatin structure/dynamics and, in turn, affect the rate of EPC in vitro and in silico. Increasing the length of internucleosomal linker DNA from 25 to 60 bp results in more efficient EPC. The presence of longer nucleosome-free DNA regions can positively or negatively affect the rate of EPC, depending upon the length and location of the DNA region within the chromatin fiber. Thus the presence of histone-free DNA regions can differentially affect the efficiency of EPC, suggesting that gene regulation over a distance could be modulated by changes in the length of internucleosomal DNA spacers. PMID:27940560

  6. Quantification of HCV RNA in Clinical Specimens by Branched DNA (bDNA) Technology.

    PubMed

    Wilber, J C; Urdea, M S

    1999-01-01

    The diagnosis and monitoring of hepatitis C virus (HCV) infection have been aided by the development of HCV RNA quantification assays A direct measure of viral load, HCV RNA quantification has the advantage of providing information on viral kinetics and provides unique insight into the disease process. Branched DNA (bDNA) signal amplification technology provides a novel approach for the direct quantification of HCV RNA in patient specimens. The bDNA assay measures HCV RNA at physiological levels by boosting the reporter signal, rather than by replicating target sequences as the means of detection, and thus avoids the errors inherent in the extraction and amplification of target sequences. Inherently quantitative and nonradioactive, the bDNA assay is amenable to routine use in a clinical research setting, and has been used by several groups to explore the natural history, pathogenesis, and treatment of HCV infection.

  7. Holding the Nucleosome Together: A Quantitative Description of the DNA-Histone Interface in Solution.

    PubMed

    Elbahnsi, Ahmad; Retureau, Romain; Baaden, Marc; Hartmann, Brigitte; Oguey, Christophe

    2018-02-13

    The nucleosome is the fundamental unit of eukaryotic genome packaging in the chromatin. In this complex, the DNA wraps around eight histone proteins to form a superhelical double helix. The resulting bending, stronger than anything observed in free DNA, raises the question of how such a distortion is stabilized by the proteic and solvent environments. In this work, the DNA-histone interface in solution was exhaustively analyzed from nucleosome structures generated by molecular dynamics. An original Voronoi tessellation technique, measuring the topology of interacting elements without any empirical or subjective adjustment, was used to characterize the interface in terms of contact area and occurrence. Our results revealed an interface more robust than previously known, combining extensive, long-lived nonelectrostatic and electrostatic interactions between DNA and both structured and unstructured histone regions. Cation accumulation makes the proximity of juxtaposed DNA gyres in the superhelix possible by shielding the strong electrostatic repulsion of the charged phosphate groups. Overall, this study provides new insights on the nucleosome cohesion, explaining how DNA distortions can be maintained in a nucleoprotein complex.

  8. High-Efficiency Ligation and Recombination of DNA Fragments by Vertebrate Cells

    NASA Astrophysics Data System (ADS)

    Miller, Cynthia K.; Temin, Howard M.

    1983-05-01

    DNA-mediated gene transfer (transfection) is used to introduce specific genes into vertebrate cells. Events soon after transfection were quantitatively analyzed by determining the infectivity of the DNA from an avian retrovirus and of mixtures of subgenomic fragments of this DNA. The limiting step of transfection with two DNA molecules is the uptake by a single cell of both DNA's in a biologically active state. Transfected cells mediate ligation and recombination of physically unlinked DNA's at nearly 100 percent efficiency.

  9. A high-throughput assay for DNA topoisomerases and other enzymes, based on DNA triplex formation.

    PubMed

    Burrell, Matthew R; Burton, Nicolas P; Maxwell, Anthony

    2010-01-01

    We have developed a rapid, high-throughput assay for measuring the catalytic activity (DNA supercoiling or relaxation) of topoisomerase enzymes that is also capable of monitoring the activity of other enzymes that alter the topology of DNA. The assay utilises intermolecular triplex formation to resolve supercoiled and relaxed forms of DNA, the principle being the greater efficiency of a negatively supercoiled plasmid to form an intermolecular triplex with an immobilised oligonucleotide than the relaxed form. The assay provides a number of advantages over the standard gel-based methods, including greater speed of analysis, reduced sample handling, better quantitation and improved reliability and accuracy of output data. The assay is performed in microtitre plates and can be adapted to high-throughput screening of libraries of potential inhibitors of topoisomerases including bacterial DNA gyrase.

  10. Fiber Bragg grating inscription in optical multicore fibers

    NASA Astrophysics Data System (ADS)

    Becker, Martin; Elsmann, Tino; Lorenz, Adrian; Spittel, Ron; Kobelke, Jens; Schuster, Kay; Rothhardt, Manfred; Latka, Ines; Dochow, Sebastian; Bartelt, Hartmut

    2015-09-01

    Fiber Bragg gratings as key components in telecommunication, fiber lasers, and sensing systems usually rely on the Bragg condition for single mode fibers. In special applications, such as in biophotonics and astrophysics, high light coupling efficiency is of great importance and therefore, multimode fibers are often preferred. The wavelength filtering effect of Bragg gratings in multimode fibers, however is spectrally blurred over a wide modal spectrum of the fiber. With a well-designed all solid multicore microstructured fiber a good light guiding efficiency in combination with narrow spectral filtering effect by Bragg gratings becomes possible.

  11. Preparation of DNA-containing extract for PCR amplification

    DOEpatents

    Dunbar, John M.; Kuske, Cheryl R.

    2006-07-11

    Environmental samples typically include impurities that interfere with PCR amplification and DNA quantitation. Samples of soil, river water, and aerosol were taken from the environment and added to an aqueous buffer (with or without detergent). Cells from the sample are lysed, releasing their DNA into the buffer. After removing insoluble cell components, the remaining soluble DNA-containing extract is treated with N-phenacylthiazolium bromide, which causes rapid precipitation of impurities. Centrifugation provides a supernatant that can be used or diluted for PCR amplification of DNA, or further purified. The method may provide a DNA-containing extract sufficiently pure for PCR amplification within 5–10 minutes.

  12. An Improved Quantitative Real-Time PCR Assay for the Enumeration of Heterosigma akashiwo (Raphidophyceae) Cysts Using a DNA Debris Removal Method and a Cyst-Based Standard Curve.

    PubMed

    Kim, Joo-Hwan; Kim, Jin Ho; Wang, Pengbin; Park, Bum Soo; Han, Myung-Soo

    2016-01-01

    The identification and quantification of Heterosigma akashiwo cysts in sediments by light microscopy can be difficult due to the small size and morphology of the cysts, which are often indistinguishable from those of other types of algae. Quantitative real-time PCR (qPCR) based assays represent a potentially efficient method for quantifying the abundance of H. akashiwo cysts, although standard curves must be based on cyst DNA rather than on vegetative cell DNA due to differences in gene copy number and DNA extraction yield between these two cell types. Furthermore, qPCR on sediment samples can be complicated by the presence of extracellular DNA debris. To solve these problems, we constructed a cyst-based standard curve and developed a simple method for removing DNA debris from sediment samples. This cyst-based standard curve was compared with a standard curve based on vegetative cells, as vegetative cells may have twice the gene copy number of cysts. To remove DNA debris from the sediment, we developed a simple method involving dilution with distilled water and heating at 75°C. A total of 18 sediment samples were used to evaluate this method. Cyst abundance determined using the qPCR assay without DNA debris removal yielded results up to 51-fold greater than with direct counting. By contrast, a highly significant correlation was observed between cyst abundance determined by direct counting and the qPCR assay in conjunction with DNA debris removal (r2 = 0.72, slope = 1.07, p < 0.001). Therefore, this improved qPCR method should be a powerful tool for the accurate quantification of H. akashiwo cysts in sediment samples.

  13. Cornea nerve fiber quantification and construction of phenotypes in patients with fibromyalgia

    PubMed Central

    Oudejans, Linda; He, Xuan; Niesters, Marieke; Dahan, Albert; Brines, Michael; van Velzen, Monique

    2016-01-01

    Cornea confocal microscopy (CCM) is a novel non-invasive method to detect small nerve fiber pathology. CCM generally correlates with outcomes of skin biopsies in patients with small fiber pathology. The aim of this study was to quantify the morphology of small nerve fibers of the cornea of patients with fibromyalgia in terms of density, length and branching and further phenotype these patients using standardized quantitative sensory testing (QST). Small fiber pathology was detected in the cornea of 51% of patients: nerve fiber length was significantly decreased in 44% of patients compared to age- and sex-matched reference values; nerve fiber density and branching were significantly decreased in 10% and 28% of patients. The combination of the CCM parameters and sensory tests for central sensitization, (cold pain threshold, mechanical pain threshold, mechanical pain sensitivity, allodynia and/or windup), yielded four phenotypes of fibromyalgia patients in a subgroup analysis: one group with normal cornea morphology without and with signs of central sensitization, and a group with abnormal cornea morphology parameters without and with signs of central sensitization. In conclusion, half of the tested fibromyalgia population demonstrates signs of small fiber pathology as measured by CCM. The four distinct phenotypes suggest possible differences in disease mechanisms and may require different treatment approaches. PMID:27006259

  14. Quantitative Assessment of the Interplay Between DNA Elasticity and Cooperative Binding of Ligands

    NASA Astrophysics Data System (ADS)

    Siman, L.; Carrasco, I. S. S.; da Silva, J. K. L.; de Oliveira, M. C.; Rocha, M. S.; Mesquita, O. N.

    2012-12-01

    Binding of ligands to DNA can be studied by measuring the change of the persistence length of the complex formed, in single-molecule assays. We propose a methodology for persistence length data analysis based on a quenched disorder statistical model and describing the binding isotherm by a Hill-type equation. We obtain an expression for the effective persistence length as a function of the total ligand concentration, which we apply to our data of the DNA-cationic β-cyclodextrin and to the DNA-HU protein data available in the literature, determining the values of the local persistence lengths, the dissociation constant, and the degree of cooperativity for each set of data. In both cases the persistence length behaves nonmonotonically as a function of ligand concentration and based on the results obtained we discuss some physical aspects of the interplay between DNA elasticity and cooperative binding of ligands.

  15. Hybrid Fiber Layup and Fiber-Reinforced Polymeric Composites Produced Therefrom

    NASA Technical Reports Server (NTRS)

    Barnell, Thomas J. (Inventor); Garrigan, Sean P. (Inventor); Rauscher, Michael D. (Inventor); Dietsch, Benjamin A. (Inventor); Cupp, Gary N. (Inventor)

    2018-01-01

    Embodiments of a hybrid fiber layup used to form a fiber-reinforced polymeric composite, and a fiber-reinforced polymeric composite produced therefrom are disclosed. The hybrid fiber layup comprises one or more dry fiber strips and one or more prepreg fiber strips arranged side by side within each layer, wherein the prepreg fiber strips comprise fiber material impregnated with polymer resin and the dry fiber strips comprise fiber material without impregnated polymer resin.

  16. nrDNA:mtDNA copy number ratios as a comparative metric for evolutionary and conservation genetics.

    PubMed

    Goodall-Copestake, William Paul

    2018-05-12

    Identifying genetic cues of functional relevance is key to understanding the drivers of evolution and increasingly important for the conservation of biodiversity. This study introduces nuclear ribosomal DNA (nrDNA) to mitochondrial DNA (mtDNA) copy number ratios as a metric with which to screen for this functional genetic variation prior to more extensive omics analyses. To illustrate the metric, quantitative PCR was used to estimate nrDNA (18S) to mtDNA (16S) copy number ratios in muscle tissue from samples of two zooplankton species: Salpa thompsoni caught near Elephant Island (Southern Ocean) and S. fusiformis sampled off Gough Island (South Atlantic). Average 18S:16S ratios in these samples were 9:1 and 3:1, respectively. nrDNA 45S arrays and mitochondrial genomes were then deep sequenced to uncover the sources of intra-individual genetic variation underlying these 18S:16S copy number differences. The deep sequencing profiles obtained were consistent with genetic changes resulting from adaptive processes, including an expansion of nrDNA and damage to mtDNA in S. thompsoni, potentially in response to the polar environment. Beyond this example from zooplankton, nrDNA:mtDNA copy number ratios offer a promising metric to help identify genetic variation of functional relevance in animals more broadly.

  17. A chromatin insulator determines the nuclear localization of DNA.

    PubMed

    Gerasimova, T I; Byrd, K; Corces, V G

    2000-11-01

    Chromatin insulators might regulate gene expression by controlling the subnuclear organization of DNA. We found that a DNA sequence normally located inside of the nucleus moved to the periphery when the gypsy insulator was placed within the sequence. The presence of the gypsy insulator also caused two sequences, normally found in different regions of the nucleus, to come together at a single location. Alterations in this subnuclear organization imposed by the gypsy insulator correlated with changes in gene expression that took place during the heat-shock response. These global changes in transcription were accompanied by dramatic alterations in the distribution of insulator proteins and DNA. The results suggest that the nuclear organization imposed by the gypsy insulator on the chromatin fiber is important for gene expression.

  18. Precise Estimation of Allele Frequencies of Single-Nucleotide Polymorphisms by a Quantitative SSCP Analysis of Pooled DNA

    PubMed Central

    Sasaki, Tomonari; Tahira, Tomoko; Suzuki, Akari; Higasa, Koichiro; Kukita, Yoji; Baba, Shingo; Hayashi, Kenshi

    2001-01-01

    We show that single-nucleotide polymorphisms (SNPs) of moderate to high heterozygosity (minor allele frequencies >10%) can be efficiently detected, and their allele frequencies accurately estimated, by pooling the DNA samples and applying a capillary-based SSCP analysis. In this method, alleles are separated into peaks, and their frequencies can be reliably and accurately quantified from their peak heights (SD <1.8%). We found that as many as 40% of publicly available SNPs that were analyzed by this method have widely differing allele frequency distributions among groups of different ethnicity (parents of Centre d'Etude Polymorphisme Humaine families vs. Japanese individuals). These results demonstrate the effectiveness of the present pooling method in the reevaluation of candidate SNPs that have been collected by examination of limited numbers of individuals. The method should also serve as a robust quantitative technique for studies in which a precise estimate of SNP allele frequencies is essential—for example, in linkage disequilibrium analysis. PMID:11083945

  19. Development of combination tapered fiber-optic biosensor dip probe for quantitative estimation of interleukin-6 in serum samples

    NASA Astrophysics Data System (ADS)

    Wang, Chun Wei; Manne, Upender; Reddy, Vishnu B.; Oelschlager, Denise K.; Katkoori, Venkat R.; Grizzle, William E.; Kapoor, Rakesh

    2010-11-01

    A combination tapered fiber-optic biosensor (CTFOB) dip probe for rapid and cost-effective quantification of proteins in serum samples has been developed. This device relies on diode laser excitation and a charged-coupled device spectrometer and functions on a technique of sandwich immunoassay. As a proof of principle, this technique was applied in a quantitative estimation of interleukin IL-6. The probes detected IL-6 at picomolar levels in serum samples obtained from a patient with lupus, an autoimmune disease, and a patient with lymphoma. The estimated concentration of IL-6 in the lupus sample was 5.9 +/- 0.6 pM, and in the lymphoma sample, it was below the detection limit. These concentrations were verified by a procedure involving bead-based xMAP technology. A similar trend in the concentrations was observed. The specificity of the CTFOB dip probes was assessed by analysis with receiver operating characteristics. This analysis suggests that the dip probes can detect 5-pM or higher concentration of IL-6 in these samples with specificities of 100%. The results provide information for guiding further studies in the utilization of these probes to quantify other analytes in body fluids with high specificity and sensitivity.

  20. Close encounters with DNA

    PubMed Central

    Maffeo, C.; Yoo, J.; Comer, J.; Wells, D. B.; Luan, B.; Aksimentiev, A.

    2014-01-01

    Over the past ten years, the all-atom molecular dynamics method has grown in the scale of both systems and processes amenable to it and in its ability to make quantitative predictions about the behavior of experimental systems. The field of computational DNA research is no exception, witnessing a dramatic increase in the size of systems simulated with atomic resolution, the duration of individual simulations and the realism of the simulation outcomes. In this topical review, we describe the hallmark physical properties of DNA from the perspective of all-atom simulations. We demonstrate the amazing ability of such simulations to reveal the microscopic physical origins of experimentally observed phenomena and we review the frustrating limitations associated with imperfections of present atomic force fields and inadequate sampling. The review is focused on the following four physical properties of DNA: effective electric charge, response to an external mechanical force, interaction with other DNA molecules and behavior in an external electric field. PMID:25238560