Sample records for quantity nuclear material

  1. 10 CFR 76.113 - Formula quantities of strategic special nuclear material-Category I.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Formula quantities of strategic special nuclear material-Category I. 76.113 Section 76.113 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.113 Formula quantities of strategic special nuclear material...

  2. 10 CFR 76.113 - Formula quantities of strategic special nuclear material-Category I.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Formula quantities of strategic special nuclear material-Category I. 76.113 Section 76.113 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.113 Formula quantities of strategic special nuclear material...

  3. 10 CFR 76.113 - Formula quantities of strategic special nuclear material-Category I.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Formula quantities of strategic special nuclear material-Category I. 76.113 Section 76.113 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.113 Formula quantities of strategic special nuclear material...

  4. 10 CFR 76.113 - Formula quantities of strategic special nuclear material-Category I.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Formula quantities of strategic special nuclear material-Category I. 76.113 Section 76.113 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.113 Formula quantities of strategic special nuclear material...

  5. 10 CFR 76.113 - Formula quantities of strategic special nuclear material-Category I.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Formula quantities of strategic special nuclear material-Category I. 76.113 Section 76.113 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.113 Formula quantities of strategic special nuclear material...

  6. 10 CFR 40.13 - Unimportant quantities of source material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Unimportant quantities of source material. 40.13 Section 40.13 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL Exemptions § 40.13 Unimportant quantities of source material. (a) Any person is exempt from the regulations in this part and from...

  7. 10 CFR 40.22 - Small quantities of source material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Small quantities of source material. 40.22 Section 40.22 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL General Licenses § 40.22 Small quantities of source material. (a) A general license is hereby issued authorizing commercial and industrial...

  8. 10 CFR 73.72 - Requirement for advance notice of shipment of formula quantities of strategic special nuclear...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... quantities of strategic special nuclear material, special nuclear material of moderate strategic significance, or irradiated reactor fuel. 73.72 Section 73.72 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED... shipment of formula quantities of strategic special nuclear material, special nuclear material of moderate...

  9. 10 CFR 74.51 - Nuclear material control and accounting for strategic special nuclear material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Nuclear material control and accounting for strategic special nuclear material. 74.51 Section 74.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Formula Quantities of Strategic Special Nuclear...

  10. 10 CFR 74.51 - Nuclear material control and accounting for strategic special nuclear material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Nuclear material control and accounting for strategic special nuclear material. 74.51 Section 74.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Formula Quantities of Strategic Special Nuclear...

  11. 10 CFR 74.51 - Nuclear material control and accounting for strategic special nuclear material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Nuclear material control and accounting for strategic special nuclear material. 74.51 Section 74.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Formula Quantities of Strategic Special Nuclear...

  12. 10 CFR 74.51 - Nuclear material control and accounting for strategic special nuclear material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Nuclear material control and accounting for strategic special nuclear material. 74.51 Section 74.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Formula Quantities of Strategic Special Nuclear...

  13. 10 CFR 74.51 - Nuclear material control and accounting for strategic special nuclear material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Nuclear material control and accounting for strategic special nuclear material. 74.51 Section 74.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Formula Quantities of Strategic Special Nuclear...

  14. 10 CFR 40.22 - Small quantities of source material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Small quantities of source material. 40.22 Section 40.22 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL General Licenses § 40.22 Small... (15.4 lb) of uranium, removed during the treatment of drinking water, at any one time. A person may...

  15. 10 CFR Appendix C to Part 20 - Quantities 1 of Licensed Material Requiring Labeling

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Quantities 1 of Licensed Material Requiring Labeling C Appendix C to Part 20 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. C Appendix C to Part 20—Quantities 1 of Licensed Material Requiring Labeling Radionuclide...

  16. 10 CFR Appendix C to Part 20 - Quantities 1 of Licensed Material Requiring Labeling

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Quantities 1 of Licensed Material Requiring Labeling C Appendix C to Part 20 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. C Appendix C to Part 20—Quantities 1 of Licensed Material Requiring Labeling Radionuclide...

  17. 10 CFR Appendix C to Part 20 - Quantities 1 of Licensed Material Requiring Labeling

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Quantities 1 of Licensed Material Requiring Labeling C Appendix C to Part 20 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. C Appendix C to Part 20—Quantities 1 of Licensed Material Requiring Labeling Radionuclide...

  18. 10 CFR Appendix C to Part 20 - Quantities 1 of Licensed Material Requiring Labeling

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Quantities 1 of Licensed Material Requiring Labeling C Appendix C to Part 20 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. C Appendix C to Part 20—Quantities 1 of Licensed Material Requiring Labeling Radionuclide...

  19. Special nuclear material simulation device

    DOEpatents

    Leckey, John H.; DeMint, Amy; Gooch, Jack; Hawk, Todd; Pickett, Chris A.; Blessinger, Chris; York, Robbie L.

    2014-08-12

    An apparatus for simulating special nuclear material is provided. The apparatus typically contains a small quantity of special nuclear material (SNM) in a configuration that simulates a much larger quantity of SNM. Generally the apparatus includes a spherical shell that is formed from an alloy containing a small quantity of highly enriched uranium. Also typically provided is a core of depleted uranium. A spacer, typically aluminum, may be used to separate the depleted uranium from the shell of uranium alloy. A cladding, typically made of titanium, is provided to seal the source. Methods are provided to simulate SNM for testing radiation monitoring portals. Typically the methods use at least one primary SNM spectral line and exclude at least one secondary SNM spectral line.

  20. 10 CFR 37.77 - Advance notification of shipment of category 1 quantities of radioactive material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Policy, Office of Nuclear Security and Incident Response, U.S. Nuclear Regulatory Commission, Washington... 10 Energy 1 2014-01-01 2014-01-01 false Advance notification of shipment of category 1 quantities of radioactive material. 37.77 Section 37.77 Energy NUCLEAR REGULATORY COMMISSION PHYSICAL PROTECTION...

  1. 10 CFR 73.6 - Exemptions for certain quantities and kinds of special nuclear material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... nuclear material. 73.6 Section 73.6 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... special nuclear material. A licensee is exempt from the requirements of 10 CFR part 26 and §§ 73.20, 73.25, 73.26, 73.27, 73.45, 73.46, 73.70 and 73.72 with respect to the following special nuclear material...

  2. 10 CFR 73.6 - Exemptions for certain quantities and kinds of special nuclear material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... nuclear material. 73.6 Section 73.6 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... special nuclear material. A licensee is exempt from the requirements of 10 CFR part 26 and §§ 73.20, 73.25, 73.26, 73.27, 73.45, 73.46, 73.70 and 73.72 with respect to the following special nuclear material...

  3. 10 CFR 73.6 - Exemptions for certain quantities and kinds of special nuclear material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... nuclear material. 73.6 Section 73.6 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... special nuclear material. A licensee is exempt from the requirements of 10 CFR part 26 and §§ 73.20, 73.25, 73.26, 73.27, 73.45, 73.46, 73.70 and 73.72 with respect to the following special nuclear material...

  4. 10 CFR 73.6 - Exemptions for certain quantities and kinds of special nuclear material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... nuclear material. 73.6 Section 73.6 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... special nuclear material. A licensee is exempt from the requirements of 10 CFR part 26 and §§ 73.20, 73.25, 73.26, 73.27, 73.45, 73.46, 73.70 and 73.72 with respect to the following special nuclear material...

  5. 10 CFR 73.6 - Exemptions for certain quantities and kinds of special nuclear material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... nuclear material. 73.6 Section 73.6 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... special nuclear material. A licensee is exempt from the requirements of 10 CFR part 26 and §§ 73.20, 73.25, 73.26, 73.27, 73.45, 73.46, 73.70 and 73.72 with respect to the following special nuclear material...

  6. 10 CFR 74.31 - Nuclear material control and accounting for special nuclear material of low strategic significance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and maintain a measurement system which assures that all quantities in the material accounting records...) In each inventory period, control total material control and accounting measurement uncertainty so... 10 Energy 2 2010-01-01 2010-01-01 false Nuclear material control and accounting for special...

  7. 10 CFR 32.18 - Manufacture, distribution and transfer of exempt quantities of byproduct material: Requirements...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Manufacture, distribution and transfer of exempt quantities of byproduct material: Requirements for license. 32.18 Section 32.18 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS CONTAINING BYPRODUCT MATERIAL...

  8. Anomalies in Proposed Regulations for the Release of Redundant Material from Nuclear and Non-nuclear Industries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menon, S.

    Now that increasing numbers of nuclear power stations are reaching the end of their commercially useful lives, the management of the large quantities of very low level radioactive material that arises during their decommissioning has become a major subject of discussion, with very significant economic implications. Much of this material can, in an environmentally advantageous manner, be recycled for reuse without radiological restrictions. Much larger quantities--2-3 orders of magnitude larger--of material, radiologically similar to the candidate material for recycling from the nuclear industry, arise in non-nuclear industries like coal, fertilizer, oil and gas, mining, etc. In such industries, naturally occurringmore » radioactivity is artificially concentrated in products, by-products or waste to form TENORM (Technologically Enhanced Naturally Occurring Radioactive Material). It is only in the last decade that the international community has become aware of the prevalence of T ENORM, specially the activity levels and quantities arising in so many nonnuclear industries. The first reaction of international organizations seems to have been to propose ''double'' standards for the nuclear and non-nuclear industries, with very stringent release criteria for radioactive material from the regulated nuclear industry and up to a hundred times more liberal criteria for the release/exemption of TENORM from the as yet unregulated non-nuclear industries. There are, however, many significant strategic issues that need to be discussed and resolved. An interesting development, for both the nuclear and non-nuclear industries, is the increased scientific scrutiny that the populations of naturally high background dose level areas of the world are being subject to. Preliminary biological studies have indicated that the inhabitants of such areas, exposed to many times the permitted occupational doses for nuclear workers, have not shown any differences in cancer mortality, life

  9. The Application of materials attractiveness in a graded approach to nuclear materials security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebbinghaus, B.; Bathke, C.; Dalton, D.

    2013-07-01

    The threat from terrorist groups has recently received greater attention. In this paper, material quantity and material attractiveness are addressed through the lens of a minimum security strategy needed to prevent the construction of a nuclear explosive device (NED) by an adversary. Nuclear materials are placed into specific security categories (3 or 4 categories) , which define a number of security requirements to protect the material. Materials attractiveness can be divided into four attractiveness levels, High, Medium, Low, and Very Low that correspond to the utility of the material to the adversary and to a minimum security strategy that ismore » necessary to adequately protect the nuclear material. We propose a graded approach to materials attractiveness that recognizes for instance substantial differences in attractiveness between pure reactor-grade Pu oxide (High attractiveness) and fresh MOX fuel (Low attractiveness). In either case, an adversary's acquisition of a Category I quantity of plutonium would be a major incident, but the acquisition of Pu oxide by the adversary would be substantially worse than the acquisition of fresh MOX fuel because of the substantial differences in the time and complexity required of the adversary to process the material and fashion it into a NED.« less

  10. Integrating the stabilization of nuclear materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalton, H.F.

    1996-05-01

    In response to Recommendation 94-1 of the Defense Nuclear Facilities Safety Board, the Department of Energy committed to stabilizing specific nuclear materials within 3 and 8 years. These efforts are underway. The Department has already repackaged the plutonium at Rocky Flats and metal turnings at Savannah River that had been in contact with plastic. As this effort proceeds, we begin to look at activities beyond stabilization and prepare for the final disposition of these materials. To describe the plutonium materials being stabilize, Figure 1 illustrates the quantities of plutonium in various forms that will be stabilized. Plutonium as metal comprisesmore » 8.5 metric tons. Plutonium oxide contains 5.5 metric tons of plutonium. Plutonium residues and solutions, together, contain 7 metric tons of plutonium. Figure 2 shows the quantity of plutonium-bearing material in these four categories. In this depiction, 200 metric tons of plutonium residues and 400 metric tons of solutions containing plutonium constitute most of the material in the stabilization program. So, it is not surprising that much of the work in stabilization is directed toward the residues and solutions, even though they contain less of the plutonium.« less

  11. Detection of shielded nuclear material in a cargo container

    NASA Astrophysics Data System (ADS)

    Jones, James L.; Norman, Daren R.; Haskell, Kevin J.; Sterbentz, James W.; Yoon, Woo Y.; Watson, Scott M.; Johnson, James T.; Zabriskie, John M.; Bennett, Brion D.; Watson, Richard W.; Moss, Cavin E.; Frank Harmon, J.

    2006-06-01

    The Idaho National Laboratory, along with Los Alamos National Laboratory and the Idaho State University's Idaho Accelerator Center, are developing electron accelerator-based, photonuclear inspection technologies for the detection of shielded nuclear material within air-, rail-, and especially, maritime-cargo transportation containers. This paper describes a developing prototypical cargo container inspection system utilizing the Pulsed Photonuclear Assessment (PPA) technology, incorporates interchangeable, well-defined, contraband shielding structures (i.e., "calibration" pallets) providing realistic detection data for induced radiation signatures from smuggled nuclear material, and provides various shielded nuclear material detection results. Using a 4.8-kg quantity of depleted uranium, neutron and gamma-ray detection responses are presented for well-defined shielded and unshielded configurations evaluated in a selected cargo container inspection configuration.

  12. Detection of Shielded Nuclear Material in a Cargo Container

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. L. Jones; D. R. Norman; K. J. Haskell

    The Idaho National Laboratory, along with Los Alamos National Laboratory and the Idaho State University’s Idaho Accelerator Center, are developing electron accelerator-based, photonuclear inspection technologies for the detection of shielded nuclear material within air-, rail-, and especially, maritime-cargo transportation containers. This paper describes a developing prototypical cargo container inspection system utilizing the Pulsed Photonuclear Assessment (PPA) technology, incorporates interchangeable, well-defined, contraband shielding structures (i.e., "calibration" pallets) providing realistic detection data for induced radiation signatures from smuggled nuclear material, and provides various shielded nuclear material detection results. Using a 4.8-kg quantity of depleted uranium, neutron and gamma-ray detection responses are presentedmore » for well-defined shielded and unshielded configurations evaluated in a selected cargo container inspection configuration. © 2001 Elsevier Science. All rights reserved« less

  13. Explosion Hazards Associated with Spills of Large Quantities of Hazardous Materials. Phase I

    DTIC Science & Technology

    1974-10-01

    quantities of hazardous material such as liquified natural gas ( LNG ), liquified petroleum gils (LPG), or ethylene. The principal results are (1) a...associated with spills of large quantities of hazardous material such as liquified natural gas ( LNG ), liquified petroleum gas (LPG), or ethylene. The...liquified natural gas ( LNG ). Unfortunately, as the quantity of material shipped at one time increases, so does the potential hazard associated with

  14. 10 CFR Appendix E to Part 73 - Levels of Physical Protection To Be Applied in International Transport of Nuclear Material 1

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... material are synonymous: Category I is a formula quantity of strategic special nuclear material; Category II is special nuclear material of moderate strategic significance or irradiated fuel; and Category III is special nuclear material of low strategic significance. (Verbatim from Annex I to the...

  15. 40 CFR 227.9 - Limitations on quantities of waste materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... materials. 227.9 Section 227.9 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING CRITERIA FOR THE EVALUATION OF PERMIT APPLICATIONS FOR OCEAN DUMPING OF MATERIALS Environmental Impact § 227.9 Limitations on quantities of waste materials. Substances which may damage the ocean...

  16. 40 CFR 227.9 - Limitations on quantities of waste materials.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... materials. 227.9 Section 227.9 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING CRITERIA FOR THE EVALUATION OF PERMIT APPLICATIONS FOR OCEAN DUMPING OF MATERIALS Environmental Impact § 227.9 Limitations on quantities of waste materials. Substances which may damage the ocean...

  17. 40 CFR 227.9 - Limitations on quantities of waste materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... materials. 227.9 Section 227.9 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING CRITERIA FOR THE EVALUATION OF PERMIT APPLICATIONS FOR OCEAN DUMPING OF MATERIALS Environmental Impact § 227.9 Limitations on quantities of waste materials. Substances which may damage the ocean...

  18. 40 CFR 227.9 - Limitations on quantities of waste materials.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... materials. 227.9 Section 227.9 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING CRITERIA FOR THE EVALUATION OF PERMIT APPLICATIONS FOR OCEAN DUMPING OF MATERIALS Environmental Impact § 227.9 Limitations on quantities of waste materials. Substances which may damage the ocean...

  19. 40 CFR 227.9 - Limitations on quantities of waste materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... materials. 227.9 Section 227.9 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING CRITERIA FOR THE EVALUATION OF PERMIT APPLICATIONS FOR OCEAN DUMPING OF MATERIALS Environmental Impact § 227.9 Limitations on quantities of waste materials. Substances which may damage the ocean...

  20. Calculation of the nuclear material inventory in a sealed vault by 3D radiation mapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adsley, Ian; Klepikov, Alexander; Tur, Yevgeniy

    2013-07-01

    The paper relates to the determination of the amount of nuclear material contained in a closed, concrete lined vault at the Aktau fast breeder reactor in Kazakhstan. This material had been disposed into the vault after examination in an experimental hot cell directly above the vault. In order to comply with IAEA Safeguards requirements it was necessary to determine the total quantities of nuclear materials - enriched uranium and plutonium - that were held with Kazakhstan. Although it was possible to determine the inventory of all of the accessible nuclear material - the quantity remaining in the vault was unknown.more » As part of the Global Threat Reduction Programme the UK Government funded a project to determine the inventory of these nuclear materials in this vault. This involved drilling three penetrations through the concrete lined roof of the vault; this enabled the placement of lights and a camera into the vault through two penetrations; while the third penetration enabled a lightweight manipulator arm to be introduced into the vault. This was used to provide a detailed 3D mapping of the dose rate within the vault and it also enabled the collection of samples for radionuclide analysis. The deconvolution of the 3D dose rate profile within the vault enabled the determination of the gamma emitting source distribution on the floor and walls of the vault. The samples were analysed to determine the fingerprint of those radionuclides producing the gamma dose - namely {sup 137}Cs and {sup 60}Co - to the nuclear materials. The combination of the dose rate source terms on the surfaces of the vault and the fingerprint then enabled the quantities of nuclear materials to be determined. The project was a major success and enabled the Kazakhstan Government to comply with IAEA Safeguards requirements. It also enabled the UK DECC Ministry to develop a technology of national (and international) use. Finally the technology was well received by IAEA Safeguards as an

  1. Semi-annual report on strategic special nuclear material inventory differences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-01-01

    This periodic report of Inventory Differences covers the period October 1, 1976, through March 31, 1977 for Department of Energy (DOE) and DOE contractor facilities possessing significant quantities of Strategic Special Nuclear Material (SSNM). Included in this report are the low enriched uranium inventory differences for DOE's gaseous diffusion plant cascades. (LK)

  2. Nuclear Materials Science

    NASA Astrophysics Data System (ADS)

    Whittle, Karl

    2016-06-01

    Concerns around global warming have led to a nuclear renaissance in many countries, meanwhile the nuclear industry is warning already of a need to train more nuclear engineers and scientists, who are needed in a range of areas from healthcare and radiation detection to space exploration and advanced materials as well as for the nuclear power industry. Here Karl Whittle provides a solid overview of the intersection of nuclear engineering and materials science at a level approachable by advanced students from materials, engineering and physics. The text explains the unique aspects needed in the design and implementation of materials for use in demanding nuclear settings. In addition to material properties and their interaction with radiation the book covers a range of topics including reactor design, fuels, fusion, future technologies and lessons learned from past incidents. Accompanied by problems, videos and teaching aids the book is suitable for a course text in nuclear materials and a reference for those already working in the field.

  3. 10 CFR 74.41 - Nuclear material control and accounting for special nuclear material of moderate strategic...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Nuclear material control and accounting for special nuclear material of moderate strategic significance. 74.41 Section 74.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material...

  4. 10 CFR 74.41 - Nuclear material control and accounting for special nuclear material of moderate strategic...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Nuclear material control and accounting for special nuclear material of moderate strategic significance. 74.41 Section 74.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material...

  5. 10 CFR 74.41 - Nuclear material control and accounting for special nuclear material of moderate strategic...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Nuclear material control and accounting for special nuclear material of moderate strategic significance. 74.41 Section 74.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material...

  6. 10 CFR 74.41 - Nuclear material control and accounting for special nuclear material of moderate strategic...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Nuclear material control and accounting for special nuclear material of moderate strategic significance. 74.41 Section 74.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material...

  7. 10 CFR 74.41 - Nuclear material control and accounting for special nuclear material of moderate strategic...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Nuclear material control and accounting for special nuclear material of moderate strategic significance. 74.41 Section 74.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material...

  8. 27 CFR 24.242 - Authority to use greater quantities of decolorizing material in juice or wine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... quantities of decolorizing material in juice or wine. 24.242 Section 24.242 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Storage, Treatment and Finishing of Wine § 24.242 Authority to use greater quantities of decolorizing material in...

  9. RBS as a new primary direct reference method for measuring quantity of material

    NASA Astrophysics Data System (ADS)

    Jeynes, C.

    2017-09-01

    The quantity of material in thin films can be measured reliably, non-destructively, and at an absolute traceable accuracy with a combined standard uncertainty of 1% by Rutherford backscattering spectrometry (RBS). We have demonstrated a measurement protocol for the determination of quantity of material by RBS that has been accredited at this accuracy to the ISO 17025 standard by the United Kingdom Accreditation Service (UKAS). The method is entirely traceable to SI units relying on no artefacts, and thus qualifies as a primary direct reference method as defined by the ISO Guide 35:1985 (paragraph 9.4.1).

  10. 10 CFR 74.31 - Nuclear material control and accounting for special nuclear material of low strategic significance.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Nuclear material control and accounting for special nuclear material of low strategic significance. 74.31 Section 74.31 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material of Low...

  11. 10 CFR 74.31 - Nuclear material control and accounting for special nuclear material of low strategic significance.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Nuclear material control and accounting for special nuclear material of low strategic significance. 74.31 Section 74.31 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material of Low...

  12. 10 CFR 74.31 - Nuclear material control and accounting for special nuclear material of low strategic significance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Nuclear material control and accounting for special nuclear material of low strategic significance. 74.31 Section 74.31 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material of Low...

  13. 10 CFR 74.31 - Nuclear material control and accounting for special nuclear material of low strategic significance.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Nuclear material control and accounting for special nuclear material of low strategic significance. 74.31 Section 74.31 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material of Low...

  14. In field application of differential Die-Away time technique for detecting gram quantities of fissile materials

    NASA Astrophysics Data System (ADS)

    Remetti, Romolo; Gandolfo, Giada; Lepore, Luigi; Cherubini, Nadia

    2017-10-01

    In the frame of Chemical, Biological, Radiological, and Nuclear defense European activities, the ENEA, the Italian National Agency for New Technologies, Energy and Sustainable Economic Development, is proposing the Neutron Active Interrogation system (NAI), a device designed to find transuranic-based Radioactive Dispersal Devices hidden inside suspected packages. It is based on Differential Die-Away time Analysis, an active neutron technique targeted in revealing the presence of fissile material through detection of induced fission neutrons. Several Monte Carlo simulations, carried out by MCNPX code, and the development of ad-hoc design methods, have led to the realization of a first prototype based on a 14 MeV d-t neutron generator coupled with a tailored moderating structure, and an array of helium-3 neutron detectors. The complete system is characterized by easy transportability, light weight, and real-time response. First results have shown device's capability to detect gram quantities of fissile materials.

  15. 10 CFR 70.20b - General license for carriers of transient shipments of formula quantities of strategic special...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... significance, special nuclear material of low strategic significance, and irradiated reactor fuel. 70.20b..., special nuclear material of low strategic significance, and irradiated reactor fuel. (a) A general license... requirements of § 73.67 of this chapter. (3) Irradiated reactor fuel of the type and quantity subject to the...

  16. 10 CFR 70.20b - General license for carriers of transient shipments of formula quantities of strategic special...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... significance, special nuclear material of low strategic significance, and irradiated reactor fuel. 70.20b..., special nuclear material of low strategic significance, and irradiated reactor fuel. (a) A general license... requirements of § 73.67 of this chapter. (3) Irradiated reactor fuel of the type and quantity subject to the...

  17. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  18. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  19. Certified reference materials and reference methods for nuclear safeguards and security.

    PubMed

    Jakopič, R; Sturm, M; Kraiem, M; Richter, S; Aregbe, Y

    2013-11-01

    Confidence in comparability and reliability of measurement results in nuclear material and environmental sample analysis are established via certified reference materials (CRMs), reference measurements, and inter-laboratory comparisons (ILCs). Increased needs for quality control tools in proliferation resistance, environmental sample analysis, development of measurement capabilities over the years and progress in modern analytical techniques are the main reasons for the development of new reference materials and reference methods for nuclear safeguards and security. The Institute for Reference Materials and Measurements (IRMM) prepares and certifices large quantities of the so-called "large-sized dried" (LSD) spikes for accurate measurement of the uranium and plutonium content in dissolved nuclear fuel solutions by isotope dilution mass spectrometry (IDMS) and also develops particle reference materials applied for the detection of nuclear signatures in environmental samples. IRMM is currently replacing some of its exhausted stocks of CRMs with new ones whose specifications are up-to-date and tailored for the demands of modern analytical techniques. Some of the existing materials will be re-measured to improve the uncertainties associated with their certified values, and to enable laboratories to reduce their combined measurement uncertainty. Safeguards involve the quantitative verification by independent measurements so that no nuclear material is diverted from its intended peaceful use. Safeguards authorities pay particular attention to plutonium and the uranium isotope (235)U, indicating the so-called 'enrichment', in nuclear material and in environmental samples. In addition to the verification of the major ratios, n((235)U)/n((238)U) and n((240)Pu)/n((239)Pu), the minor ratios of the less abundant uranium and plutonium isotopes contain valuable information about the origin and the 'history' of material used for commercial or possibly clandestine purposes, and

  20. Utilization of nuclear methods for materials analysis and the determination of concentration gradients

    NASA Technical Reports Server (NTRS)

    Darras, R.

    1979-01-01

    The various types of nuclear chemical analysis methods are discussed. The possibilities of analysis through activation and direct observation of nuclear reactions are described. Such methods make it possible to analyze trace elements and impurities with selectivity, accuracy, and a high degree of sensitivity. Such methods are used in measuring major elements present in materials which are available for analysis only in small quantities. These methods are well suited to superficial analyses and to determination of concentration gradients; provided the nature and energy of the incident particles are chosen judiciously. Typical examples of steels, pure iron and refractory metals are illustrated.

  1. Detecting nuclear materials smuggling: performance evaluation of container inspection policies.

    PubMed

    Gaukler, Gary M; Li, Chenhua; Ding, Yu; Chirayath, Sunil S

    2012-03-01

    In recent years, the United States, along with many other countries, has significantly increased its detection and defense mechanisms against terrorist attacks. A potential attack with a nuclear weapon, using nuclear materials smuggled into the country, has been identified as a particularly grave threat. The system for detecting illicit nuclear materials that is currently in place at U.S. ports of entry relies heavily on passive radiation detectors and a risk-scoring approach using the automated targeting system (ATS). In this article we analyze this existing inspection system and demonstrate its performance for several smuggling scenarios. We provide evidence that the current inspection system is inherently incapable of reliably detecting sophisticated smuggling attempts that use small quantities of well-shielded nuclear material. To counter the weaknesses of the current ATS-based inspection system, we propose two new inspection systems: the hardness control system (HCS) and the hybrid inspection system (HYB). The HCS uses radiography information to classify incoming containers based on their cargo content into "hard" or "soft" containers, which then go through different inspection treatment. The HYB combines the radiography information with the intelligence information from the ATS. We compare and contrast the relative performance of these two new inspection systems with the existing ATS-based system. Our studies indicate that the HCS and HYB policies outperform the ATS-based policy for a wide range of realistic smuggling scenarios. We also examine the impact of changes in adversary behavior on the new inspection systems and find that they effectively preclude strategic gaming behavior of the adversary. © 2011 Society for Risk Analysis.

  2. Potential radiological impact of tornadoes on the safety of Nuclear Fuel Services' West Valley Fuel Reprocessing Plant. 2. Reentrainment and discharge of radioactive materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, W Jr

    1981-07-01

    This report describes results of a parametric study of quantities of radioactive materials that might be discharged by a tornado-generated depressurization on contaminated process cells within the presently inoperative Nuclear Fuel Services' (NFS) fuel reprocessing facility near West Valley, New York. The study involved the following tasks: determining approximate quantities of radioactive materials in the cells and characterizing particle-size distribution; estimating the degree of mass reentrainment from particle-size distribution and from air speed data presented in Part 1; and estimating the quantities of radioactive material (source term) released from the cells to the atmosphere. The study has shown that improperlymore » sealed manipulator ports in the Process Mechanical Cell (PMC) present the most likely pathway for release of substantial quantities of radioactive material in the atmosphere under tornado accident conditions at the facility.« less

  3. Advanced research workshop: nuclear materials safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jardine, L J; Moshkov, M M

    The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on themore » storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds

  4. Flexible robotic entry device for a nuclear materials production reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heckendorn, F.M. II

    1988-01-01

    The Savannah River Laboratory has developed and is implementing a flexible robotic entry device (FRED) for the nuclear materials production reactors now operating at the Savannah River Plant (SRP). FRED is designed for rapid deployment into confinement areas of operating reactors to assess unknown conditions. A unique smart tether method has been incorporated into FRED for simultaneous bidirectional transmission of multiple video/audio/control/power signals over a single coaxial cable. This system makes it possible to use FRED under all operating and standby conditions, including those where radio/microwave transmissions are not possible or permitted, and increases the quantity of data available.

  5. Statistical methods for nuclear material management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowen W.M.; Bennett, C.A.

    1988-12-01

    This book is intended as a reference manual of statistical methodology for nuclear material management practitioners. It describes statistical methods currently or potentially important in nuclear material management, explains the choice of methods for specific applications, and provides examples of practical applications to nuclear material management problems. Together with the accompanying training manual, which contains fully worked out problems keyed to each chapter, this book can also be used as a textbook for courses in statistical methods for nuclear material management. It should provide increased understanding and guidance to help improve the application of statistical methods to nuclear material managementmore » problems.« less

  6. The New Field Quantities and the Poynting Theorem in Material Medium with Magnetic Monopoles

    NASA Astrophysics Data System (ADS)

    Zor, Ömer

    2016-12-01

    The duality transformation was used to define the polarization mechanisms that arise from magnetic monopoles. Then, a dimensional analysis was conducted to describe the displacement and magnetic intensity vectors (constitutive equations) in SI units. Finally, symmetric Maxwell equations in a material medium with new field quantities were introduced. Hence, the Lorentz force and the Poynting theorem were defined with these new field quantities, and many possible definitions of them were constructed.

  7. Detection of special nuclear materials with the associate particle technique

    NASA Astrophysics Data System (ADS)

    Carasco, Cédric; Deyglun, Clément; Pérot, Bertrand; Eléon, Cyrille; Normand, Stéphane; Sannié, Guillaume; Boudergui, Karim; Corre, Gwenolé; Konzdrasovs, Vladimir; Pras, Philippe

    2013-04-01

    In the frame of the French trans-governmental R&D program against chemical, biological, radiological, nuclear and explosives (CBRN-E) threats, CEA is studying the detection of Special Nuclear Materials (SNM) by neutron interrogation with fast neutrons produced by an associated particle sealed tube neutron generator. The deuterium-tritium fusion reaction produces an alpha particle and a 14 MeV neutron almost back to back, allowing tagging neutron emission both in time and direction with an alpha particle position-sensitive sensor embedded in the generator. Fission prompt neutrons and gamma rays induced by tagged neutrons which are tagged by an alpha particle are detected in coincidence with plastic scintillators. This paper presents numerical simulations performed with the MCNP-PoliMi Monte Carlo computer code and with post processing software developed with the ROOT data analysis package. False coincidences due to neutron and photon scattering between adjacent detectors (cross talk) are filtered out to increase the selectivity between nuclear and benign materials. Accidental coincidences, which are not correlated to an alpha particle, are also taken into account in the numerical model, as well as counting statistics, and the time-energy resolution of the data acquisition system. Such realistic calculations show that relevant quantities of SNM (few kg) can be distinguished from cargo and shielding materials in 10 min acquisitions. First laboratory tests of the system under development in CEA laboratories are also presented.

  8. Audit Report on "The Department's Management of Nuclear Materials Provided to Domestic Licensees"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The objective if to determine whether the Department of Energy (Department) was adequately managing its nuclear materials provided to domestic licensees. The audit was performed from February 2007 to September 2008 at Department Headquarters in Washington, DC, and Germantown, MD; the Oak Ridge Office and the Oak Ridge National Laboratory in Oak Ridge, TN. In addition, we visited or obtained data from 40 different non-Departmental facilities in various states. To accomplish the audit objective, we: (1) Reviewed Departmental and Nuclear Regulatory Commission (NRC) requirements for the control and accountability of nuclear materials; (2) Analyzed a Nuclear Materials Management and Safeguardsmore » System (NMMSS) report with ending inventory balances for Department-owned nuclear materials dated September 30, 2007, to determine the amount and types of nuclear materials located at non-Department domestic facilities; (3) Held discussions with Department and NRC personnel that used NMMSS information to determine their roles and responsibilities related to the control and accountability over nuclear materials; (4) Selected a judgmental sample of 40 non-Department domestic facilities; (5) Met with licensee officials and sent confirmations to determine whether their actual inventories of Department-owned nuclear materials were consistent with inventories reported in the NMMSS; and, (6) Analyzed historical information related to the 2004 NMMSS inventory rebaselining initiative to determine the quantity of Department-owned nuclear materials that were written off from the domestic licensees inventory balances. This performance audit was conducted in accordance with generally accepted Government auditing standards. Those standards require that we plan and perform the audit to obtain sufficient, appropriate evidence to provide a reasonable basis for our findings and conclusions based on our audit objective. We believe that the evidence obtained provides a reasonable basis for

  9. Nuclear materials stewardship: Our enduring mission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaacs, T.H.

    1998-12-31

    The US Department of Energy (DOE) and its predecessors have handled a remarkably wide variety of nuclear materials over the past 50 yr. Two fundamental changes have occurred that shape the current landscape regarding nuclear materials. If one recognizes the implications and opportunities, one sees that the stewardship of nuclear materials will be a fundamental and important job of the DOE for the foreseeable future. The first change--the breakup of the Soviet Union and the resulting end to the nuclear arms race--altered US objectives. Previously, the focus was on materials production, weapon design, nuclear testing, and stockpile enhancements. Now themore » attention is on dismantlement of weapons, excess special nuclear material inventories, accompanying increased concern over the protection afforded to such materials; new arms control measures; and importantly, maintenance of the safety and reliability of the remaining arsenal without testing. The second change was the raised consciousness and sense of responsibility for dealing with the environmental legacies of past nuclear arms programs. Recognition of the need to clean up radioactive contamination, manage the wastes, conduct current operations responsibly, and restore the environment have led to the establishment of what is now the largest program in the DOE. Two additional features add to the challenge and drive the need for recognition of nuclear materials stewardship as a fundamental, enduring, and compelling mission of the DOE. The first is the extraordinary time frames. No matter what the future of nuclear weapons and no matter what the future of nuclear power, the DOE will be responsible for most of the country`s nuclear materials and wastes for generations. Even if the Yucca Mountain program is successful and on schedule, it will last more than 100 yr. Second, the use, management, and disposition of nuclear materials and wastes affect a variety of nationally important and diverse objectives, from

  10. Radiation quantities and units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-04-15

    This report supersedes ICRU Report 19. Since ICRU Report 19 was published, a number of discussions have taken place between members of the Report Committee on Fundamental Quantities and Units and other workers in the field. Some of these discussions have resulted in the acceptance of certain modifications in the material set out in Report 19 and these modifications are incorporated in the current report. In addition, there has been some expansion and rearrangement of the material in the earlier report. In line, with providing more didactic material and useful source material for other ICRU reports, the general considerations inmore » subsection 1.A of Report 19 have been expanded and placed in a separate subsection. The additional material includes discussions of four terms that are used in this document - quantity, unit, stochastic, and non-stochastic - along with a brief discussion of the mathematical formalism used in ICRU reports. As in ICRU Report 19, the definitions of quantities and units specifically designed for radiation protection (Part B) are separated from those of the general quantities (Part A). The inclusion of the index concept outlined in ICRU Report 25(4) required an extension of Part B.« less

  11. 10 CFR 1017.9 - Nuclear material determinations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Nuclear material determinations. 1017.9 Section 1017.9... NUCLEAR INFORMATION Initially Determining What Information Is Unclassified Controlled Nuclear Information § 1017.9 Nuclear material determinations. (a) The Secretary may determine that a material other than...

  12. 10 CFR 1017.9 - Nuclear material determinations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Nuclear material determinations. 1017.9 Section 1017.9... NUCLEAR INFORMATION Initially Determining What Information Is Unclassified Controlled Nuclear Information § 1017.9 Nuclear material determinations. (a) The Secretary may determine that a material other than...

  13. 10 CFR 1017.9 - Nuclear material determinations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Nuclear material determinations. 1017.9 Section 1017.9... NUCLEAR INFORMATION Initially Determining What Information Is Unclassified Controlled Nuclear Information § 1017.9 Nuclear material determinations. (a) The Secretary may determine that a material other than...

  14. 10 CFR 1017.9 - Nuclear material determinations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Nuclear material determinations. 1017.9 Section 1017.9... NUCLEAR INFORMATION Initially Determining What Information Is Unclassified Controlled Nuclear Information § 1017.9 Nuclear material determinations. (a) The Secretary may determine that a material other than...

  15. 10 CFR 1017.9 - Nuclear material determinations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Nuclear material determinations. 1017.9 Section 1017.9... NUCLEAR INFORMATION Initially Determining What Information Is Unclassified Controlled Nuclear Information § 1017.9 Nuclear material determinations. (a) The Secretary may determine that a material other than...

  16. Keeping Nuclear Materials Secure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    For 50 years, Los Alamos National Laboratory has been helping to keep nuclear materials secure. We do this by developing instruments and training inspectors that are deployed to other countries to make sure materials such as uranium are being used for peaceful purposes and not diverted for use in weapons. These measures are called “nuclear safeguards,” and they help make the world a safer place.

  17. An Overview of the Regulation of Low Dose Radiation in the Nuclear and Non-nuclear Industries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menon, Shankar; Valencia, Luis; Teunckens, Lucien

    Now that increasing numbers of nuclear power stations are reaching the end of their commercially useful lives, the management of the large quantities of very low level radioactive material that arises during their decommissioning has become a major subject of discussion, with very significant economic implications. Much of this material can, in an environmentally advantageous manner, be recycled for reuse without radiological restrictions. Much larger quantities--2-3 orders of magnitude larger--of material, radiologically similar to the candidate material for recycling from the nuclear industry, arise in non-nuclear industries like coal, fertilizer, oil and gas, mining, etc. In such industries, naturally occurringmore » radioactivity is artificially concentrated in products, by-products or waste to form TENORM (Technologically Enhanced Naturally Occurring Radioactive Material). It is only in the last decade that the international community has become aware of the prevalence of TENORM, specially the activity levels and quantities arising in so many non-nuclear industries. The first reaction of international organizations seems to have been to propose different standards for the nuclear and non-nuclear industries, with very stringent release criteria for radioactive material from the regulated nuclear industry and up to thirty to a hundred times more liberal criteria for the release/exemption of TENORM from the as yet unregulated non-nuclear industries. There are significant strategic issues that need to be discussed and resolved. Some examples of these are: - Disposal aspects of long-lived nuclides, - The use of radioactive residues in building materials, - Commercial aspects of differing and discriminating criteria in competing power industries in a world of deregulated electric power production. Of even greater importance is the need for the discussion of certain basic issues, such as - The quantitative risk levels of exposure to ionizing radiation, - The need

  18. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b) Nuclear...

  19. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b) Nuclear...

  20. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b) Nuclear...

  1. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b) Nuclear...

  2. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b) Nuclear...

  3. 10 CFR 74.15 - Nuclear material transaction reports.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Nuclear material transaction reports. 74.15 Section 74.15 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.15 Nuclear material transaction reports. (a...

  4. 10 CFR 74.15 - Nuclear material transaction reports.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Nuclear material transaction reports. 74.15 Section 74.15 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.15 Nuclear material transaction reports. (a...

  5. 10 CFR 74.15 - Nuclear material transaction reports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Nuclear material transaction reports. 74.15 Section 74.15 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.15 Nuclear material transaction reports. (a...

  6. 10 CFR 74.15 - Nuclear material transaction reports.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Nuclear material transaction reports. 74.15 Section 74.15 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.15 Nuclear material transaction reports. (a...

  7. Nuclear reference materials to meet the changing needs of the global nuclear community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, H.R.; Gradle, C.G.; Narayanan, U.I.

    New Brunswick Laboratory (NBL) serves as the US Government`s Certifying Authority for nuclear reference materials and measurement calibration standards. In this role, NBL provides nuclear reference materials certified for chemical and/or isotopic compositions traceable to a nationally accepted, internationally compatible reference base. Emphasis is now changing as to the types of traceable nuclear reference materials needed as operations change within the Department of Energy (DOE) complex and at nuclear facilities around the world. Environmental and waste minimization issues, facilities and materials transitioning from processing to storage modes with corresponding changes in the types of measurements being performed, emphasis on requirementsmore » for characterization of waste materials, difficulties in transporting nuclear materials, and International factors, including International Atomic Energy Agency (IAEA) inspection of excess US nuclear materials, are all contributing influences. During these changing times, ft is critical that traceable reference materials be provided for calibration or validation of the performance of measurement systems. This paper will describe actions taken and planned to meet the changing reference material needs of the global nuclear community.« less

  8. Nuclear materials safeguards for the future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tape, J.W.

    Basic concepts of domestic and international safeguards are described, with an emphasis on safeguards systems for the fuel cycles of commercial power reactors. Future trends in institutional and technical measures for nuclear materials safeguards are outlined. The conclusion is that continued developments in safeguards approaches and technology, coupled with institutional measures that facilitate the global management and protection of nuclear materials, are up to the challenge of safeguarding the growing inventories of nuclear materials in commercial fuel cycles in technologically advanced States with stable governments that have signed the nonproliferation treaty. These same approaches also show promise for facilitating internationalmore » inspection of excess weapons materials and verifying a fissile materials cutoff convention.« less

  9. Inventory simulation tools: Separating nuclide contributions to radiological quantities

    NASA Astrophysics Data System (ADS)

    Gilbert, Mark R.; Fleming, Michael; Sublet, Jean-Christophe

    2017-09-01

    The activation response of a material is a primary factor considered when evaluating its suitability for a nuclear application. Various radiological quantities, such as total (becquerel) activity, decay heat, and γ dose, can be readily predicted via inventory simulations, which numerically evolve in time the composition of a material under exposure to neutron irradiation. However, the resulting data sets can be very complex, often necessarily resulting in an over-simplification of the results - most commonly by just considering total response metrics. A number of different techniques for disseminating more completely the vast amount of data output from, in particular, the FISPACT-II inventory code system, including importance diagrams, nuclide maps, and primary knock-on atom (PKA) spectra, have been developed and used in scoping studies to produce database reports for the periodic table of elements. This paper introduces the latest addition to this arsenal - standardised and automated plotting of the time evolution in a radiological quantity for a given material separated by contributions from dominant radionuclides. Examples for relevant materials under predicted fusion reactor conditions, and for bench-marking studies against decay-heat measurements, demonstrate the usefulness and power of these radionuclide-separated activation plots. Note to the reader: the pdf file has been changed on September 22, 2017.

  10. Nuclear Forensic Science: Analysis of Nuclear Material Out of Regulatory Control

    NASA Astrophysics Data System (ADS)

    Kristo, Michael J.; Gaffney, Amy M.; Marks, Naomi; Knight, Kim; Cassata, William S.; Hutcheon, Ian D.

    2016-06-01

    Nuclear forensic science seeks to identify the origin of nuclear materials found outside regulatory control. It is increasingly recognized as an integral part of a robust nuclear security program. This review highlights areas of active, evolving research in nuclear forensics, with a focus on analytical techniques commonly employed in Earth and planetary sciences. Applications of nuclear forensics to uranium ore concentrates (UOCs) are discussed first. UOCs have become an attractive target for nuclear forensic researchers because of the richness in impurities compared to materials produced later in the fuel cycle. The development of chronometric methods for age dating nuclear materials is then discussed, with an emphasis on improvements in accuracy that have been gained from measurements of multiple radioisotopic systems. Finally, papers that report on casework are reviewed, to provide a window into current scientific practice.

  11. 78 FR 38739 - Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0109] Special Nuclear Material Control and Accounting... Guide (RG) 5.29, ``Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants... material control and accounting. This guide applies to all nuclear power plants. ADDRESSES: Please refer to...

  12. Fission Signatures for Nuclear Material Detection

    NASA Astrophysics Data System (ADS)

    Gozani, Tsahi

    2009-06-01

    Detection and interdiction of nuclear materials in all forms of transport is one of the most critical security issues facing the United States and the rest of the civilized world. Naturally emitted gamma rays by these materials, while abundant and detectable when unshielded, are low in energy and readily shielded. X-ray radiography is useful in detecting the possible presence of shielding material. Positive detection of concealed nuclear materials requires methods which unequivocally detect specific attributes of the materials. These methods typically involve active interrogation by penetrating radiation of neutrons, photons or other particles. Fortunately, nuclear materials, probed by various types of radiation, yield very unique and often strong signatures. Paramount among them are the detectable fission signatures, namely prompt neutrons and gamma rays, and delayed neutrons gamma rays. Other useful signatures are the nuclear states excited by neutrons, via inelastic scattering, or photons, via nuclear resonance fluorescence and absorption. The signatures are very different in magnitude, level of specificity, ease of excitation and detection, signal to background ratios, etc. For example, delayed neutrons are very unique to the fission process, but are scarce, have low energy, and hence are easily absorbed. Delayed gamma rays are more abundant but "featureless", and have a higher background from natural sources and more importantly, from activation due to the interrogation sources. The prompt fission signatures need to be measured in the presence of the much higher levels of probing radiation. This requires taking special measures to look for the signatures, sometimes leading to a significant sensitivity loss or a complete inability to detect them. Characteristic gamma rays induced in nuclear materials reflecting their nuclear structure, while rather unique, require very high intensity of interrogation radiation and very high resolution in energy and/or time. The

  13. The century of nuclear materials

    NASA Astrophysics Data System (ADS)

    Mansur, Lou; Was, Gary S.; Zinkle, Steve; Petti, David; Ukai, Shigeharu

    2018-03-01

    In the spring of 1959 the well-read metallurgist would have noticed the first issue of an infant Journal, one dedicated to a unique and fast growing field of materials issues associated with nuclear energy systems. The periodical, Journal of Nuclear Materials (JNM), is now the leading publication in the field from which it takes its name, thriving beyond the rosiest expectations of its founders. The discipline is well into the second half-century. During that time much has been achieved in nuclear materials; the Journal provides the authoritative record of virtually all those accomplishments. These pages introduce the 500th volume, a significant measure in the world of publishing. The Editors reflect on the progress in the field and the role of this journal.

  14. Illicit Trafficking in Radiological and Nuclear Materials. Lack of Regulations and Attainable Disposal for Radioactive Materials Make Them More Vulnerable than Nuclear Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balatsky, G.I.; Severe, W.R.; Leonard, L.

    2007-07-01

    Illicit trafficking in nuclear and radioactive materials is far from a new issue. Reports of nuclear materials offered for sale as well as mythical materials such as red mercury date back to the 1960's. While such reports were primarily scams, it illustrates the fact that from an early date there were criminal elements willing to sell nuclear materials, albeit mythical ones, to turn a quick profit. In that same time frame, information related to lost and abandoned radioactive sources began to be reported. Unlike reports on nuclear material of that era, these reports on abandoned sources were based in factmore » - occasionally associated with resulting injury and death. With the collapse of the Former Soviet Union, illicit trafficking turned from a relatively unnoticed issue to one of global concern. Reports of unsecured nuclear and radiological material in the states of the Former Soviet Union, along with actual seizures of such material in transit, gave the clear message that illicit trafficking was now a real and urgent problem. In 1995, the IAEA established an Illicit Trafficking Data Base to keep track of confirmed instances. Illicit Trafficking is deemed to include not only radioactive materials that have been offered for sale or crossed international boarders, but also such materials that are no longer under appropriate regulatory control. As an outcome of 9/11, the United States took a closer look at illicit nuclear trafficking as well as a reassessment of the safety and security of nuclear and other radioactive materials both in the United States and Globally. This reassessment launched heightened controls and security domestically and increased our efforts internationally to prevent illicit nuclear trafficking. This reassessment also brought about the Global Threat Reduction Initiative which aims to further reduce the threats of weapons usable nuclear materials as well those of radioactive sealed sources. This paper will focus on the issues related to a

  15. Nuclear Forensic Science: Analysis of Nuclear Material Out of Regulatory Control

    DOE PAGES

    Kristo, Michael J.; Gaffney, Amy M.; Marks, Naomi; ...

    2016-05-11

    Nuclear forensic science seeks to identify the origin of nuclear materials found outside regulatory control. It is increasingly recognized as an integral part of a robust nuclear security program. Our review highlights areas of active, evolving research in nuclear forensics, with a focus on analytical techniques commonly employed in Earth and planetary sciences. Applications of nuclear forensics to uranium ore concentrates (UOCs) are discussed first. UOCs have become an attractive target for nuclear forensic researchers because of the richness in impurities compared to materials produced later in the fuel cycle. Furthermore, the development of chronometric methods for age dating nuclearmore » materials is then discussed, with an emphasis on improvements in accuracy that have been gained from measurements of multiple radioisotopic systems. Finally, papers that report on casework are reviewed, to provide a window into current scientific practice.« less

  16. Nuclear reference materials to meet the changing needs of the global nuclear community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, H.R.; Gradle, C.G.; Narayanan, U.I.

    New Brunswick Laboratory (NBL) serves as the U.S. Government`s certifying authority for nuclear reference materials and measurement calibration standards. In this role, NBL provides nuclear reference materials certified for chemical and/or isotopic compositions traceable to a nationally accepted, internationally compatible reference base. Emphasis is now changing as to the types of traceable nuclear reference materials needed as operations change within the Department of Energy complex and at nuclear facilities around the world. New challenges include: environmental and waste minimization issues, facilities and materials transitioning from processing to storage modes with corresponding changes in the types of measurements being performed, emphasismore » on requirements for characterization of waste materials, and difficulties in transporting nuclear materials and international factors, including IAEA influences. During these changing times, it is critical that traceable reference materials be provided for calibration or validation of the performance of measurement systems. This paper will describe actions taken and planned to meet the changing reference material needs of the global nuclear community.« less

  17. A Delayed Neutron Counting System for the Analysis of Special Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Sellers, Madison Theresa

    Nuclear forensic analysis is a modem science that uses numerous analytical techniques to identify and attribute nuclear materials in the event of a nuclear explosion, radiological terrorist attack or the interception of illicit nuclear material smuggling. The Canadian Department of National Defence has participated in recent international exercises that have highlighted the Nation's requirement to develop nuclear forensics expertise, protocol and capabilities, specifically pertaining to the analysis of special nuclear materials (SNM). A delayed neutron counting (DNC) system has been designed and established at the Royal Military College of Canada (RMC) to enhance the Government's SNM analysis capabilities. This analytical technique complements those already at RMC by providing a rapid and non-destructive method for the analysis of the fissile isotopes of both uranium (U) and plutonium (Pu). The SLOWPOKE-2 reactor at RMC produces a predominately thermal neutron flux. These neutrons induce fission in the SNM isotopes 233U, 235U and 239Pu releasing prompt fast neutrons, energy and radioactive fission fragments. Some of these fission fragments undergo beta - decay and subsequently emit neutrons, which can be recorded by an array of sensitive 3He detectors. The significant time period between the fission process and the release of these neutrons results in their identification as 'delayed neutrons'. The recorded neutron spectrum varies with time and the count rate curve is unique to each fissile isotope. In-house software, developed by this project, can analyze this delayed neutron curve and provides the fissile mass in the sample. Extensive characterization of the DNC system has been performed with natural U samples with 235 U content ranging from 2--7 microg. The system efficiency and dead time behaviour determined by the natural uranium sample analyses were validated by depleted uranium samples with similar quantities of 235 U resulting in a typical relative error of

  18. 48 CFR 970.4402-4 - Nuclear material transfers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Nuclear material transfers... 970.4402-4 Nuclear material transfers. (a) Management and operating contractors, in preparing... nuclear material, shall be required to assure that each such subcontract or agreement contains a— (1...

  19. 48 CFR 970.4402-4 - Nuclear material transfers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Nuclear material transfers... 970.4402-4 Nuclear material transfers. (a) Management and operating contractors, in preparing... nuclear material, shall be required to assure that each such subcontract or agreement contains a— (1...

  20. 48 CFR 970.4402-4 - Nuclear material transfers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Nuclear material transfers... 970.4402-4 Nuclear material transfers. (a) Management and operating contractors, in preparing... nuclear material, shall be required to assure that each such subcontract or agreement contains a— (1...

  1. 48 CFR 970.4402-4 - Nuclear material transfers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Nuclear material transfers... 970.4402-4 Nuclear material transfers. (a) Management and operating contractors, in preparing... nuclear material, shall be required to assure that each such subcontract or agreement contains a— (1...

  2. 48 CFR 970.4402-4 - Nuclear material transfers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Nuclear material transfers... 970.4402-4 Nuclear material transfers. (a) Management and operating contractors, in preparing... nuclear material, shall be required to assure that each such subcontract or agreement contains a— (1...

  3. NUCLEAR FUEL MATERIAL

    DOEpatents

    Goeddel, W.V.

    1962-06-26

    An improved method is given for making the carbides of nuclear fuel material. The metal of the fuel material, which may be a fissile and/or fertile material, is transformed into a silicide, after which the silicide is comminuted to the desired particle size. This silicide is then carburized at an elevated temperature, either above or below the melting point of the silicide, to produce an intimate mixture of the carbide of the fuel material and the carbide of silicon. This mixture of the fuel material carbide and the silicon carbide is relatively stable in the presence of moisture and does not exhibit the highly reactive surface condition which is observed with fuel material carbides made by most other known methods. (AEC)

  4. Conventional and Non-Conventional Nuclear Material Signatures

    NASA Astrophysics Data System (ADS)

    Gozani, Tsahi

    2009-03-01

    The detection and interdiction of concealed special nuclear material (SNM) in all modes of transport is one of the most critical security issues facing the United States and the rest of the world. In principle, detection of nuclear materials is relatively easy because of their unique properties: all of them are radioactive and all emit some characteristic gamma rays. A few emit neutrons as well. These signatures are the basis for passive non-intrusive detection of nuclear materials. The low energy of the radiations necessitates additional means of detection and validation. These are provided by high-energy x-ray radiography and by active inspection based on inducing nuclear reactions in the nuclear materials. Positive confirmation that a nuclear material is present or absent can be provided by interrogation of the inspected object with penetrating probing radiation, such as neutrons and photons. The radiation induces specific reactions in the nuclear material yielding, in turn, penetrating signatures which can be detected outside the inspected object. The "conventional" signatures are first and foremost fission signatures: prompt and delayed neutrons and gamma rays. Their intensity (number per fission) and the fact that they have broad energy (non-discrete, though unique) distributions and certain temporal behaviors are key to their use. The "non- conventional" signatures are not related to the fission process but to the unique nuclear structure of each element or isotope in nature. This can be accessed through the excitation of isotopic nuclear levels (discrete and continuum) by neutron inelastic scattering or gamma resonance fluorescence. Finally there is an atomic signature, namely the high atomic number (Z>74), which obviously includes all the nuclear materials and their possible shielding. The presence of such high-Z elements can be inferred by techniques using high-energy x rays. The conventional signatures have been addressed in another article. Non

  5. 10 CFR 26.109 - Urine specimen quantity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Urine specimen quantity. 26.109 Section 26.109 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.109 Urine specimen quantity. (a) Licensees and other entities who are subject to this subpart shall establish a...

  6. 10 CFR 26.109 - Urine specimen quantity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Urine specimen quantity. 26.109 Section 26.109 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.109 Urine specimen quantity. (a) Licensees and other entities who are subject to this subpart shall establish a...

  7. Detection of special nuclear materials using prompt gamma-rays from fast and slow neutron-induced fission

    NASA Astrophysics Data System (ADS)

    Kane, Steven Ze

    A complete system has been simulated using experimentally obtained input parameters for the detection of special nuclear materials (SNM). A variation of the associated particle imaging (API) technique, referred to as reverse associated particle imaging detection (RAPID), has been developed in the context of detecting 5-kg spherical samples of U-235 in cargo containers uniformly filled with wood (low-Z) or iron (high-Z) at densities ranging from 0.1 g/cm3 to 0.4 g/cm3, the maximal density for a uniformly fully loaded 40-ft standard cargo container. In addition, samples were located at the center of a given container to study worst-case scenarios. The RAPID technique allows for the interrogation of containers at neutron production rates between 1x108 neutrons/s and 4x108 neutrons/s, depending on cargo material and density. These rates are low enough to prevent transmutation of materials in cargo and radiation safety hazards are limited. The merit of performance for the system is the time to detect the threat material with 95% probability of detection and 10-4 false positive rate per interrogated voxel of cargo. The detection of 5-kg of U-235 was chosen because this quantity of material is near the lower limit of the amount of special nuclear material that might be used in a nuclear weapon. This is in contrast to the 25-kg suggested sensitivity proposed by the International Atomic Energy Agency (IAEA).

  8. 10 CFR 32.18 - Manufacture, distribution and transfer of exempt quantities of byproduct material: Requirements...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Manufacture, distribution and transfer of exempt... COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS CONTAINING BYPRODUCT MATERIAL Exempt Concentrations and Items § 32.18 Manufacture, distribution and transfer of exempt quantities of...

  9. 10 CFR 70.42 - Transfer of special nuclear material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Transfer of special nuclear material. 70.42 Section 70.42 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Acquisition, Use and Transfer of Special Nuclear Material, Creditors' Rights § 70.42 Transfer of special...

  10. 10 CFR 70.42 - Transfer of special nuclear material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Transfer of special nuclear material. 70.42 Section 70.42 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Acquisition, Use and Transfer of Special Nuclear Material, Creditors' Rights § 70.42 Transfer of special...

  11. 10 CFR 70.42 - Transfer of special nuclear material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Transfer of special nuclear material. 70.42 Section 70.42 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Acquisition, Use and Transfer of Special Nuclear Material, Creditors' Rights § 70.42 Transfer of special...

  12. 10 CFR 70.42 - Transfer of special nuclear material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Transfer of special nuclear material. 70.42 Section 70.42 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Acquisition, Use and Transfer of Special Nuclear Material, Creditors' Rights § 70.42 Transfer of special...

  13. 10 CFR 70.42 - Transfer of special nuclear material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Transfer of special nuclear material. 70.42 Section 70.42 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Acquisition, Use and Transfer of Special Nuclear Material, Creditors' Rights § 70.42 Transfer of special...

  14. Retrospective Imaging and Characterization of Nuclear Material.

    PubMed

    Hayes, Robert B; Sholom, Sergey

    2017-08-01

    Modern techniques for detection of covert nuclear material requires some combination of real time measurement and/or sampling of the material. More common is real time measurement of the ionizing emission caused by radioactive decay or through the materials measured in response to external interrogation radiation. One can expose the suspect material with various radiation types, including high energy photons such as x rays or with larger particles such as neutrons and muons, to obtain images or measure nuclear reactions induced in the material. Stand-off detection using imaging modalities similar to those in the medical field can be accomplished, or simple collimated detectors can be used to localize radioactive materials. In all such cases, the common feature is that some or all of the nuclear materials have to be present for the measurement, which makes sense; as one might ask, "How you can measure something that is not there?" The current work and results show how to do exactly that: characterize nuclear materials after they have been removed from an area leaving no chemical trace. This new approach is demonstrated to be fully capable of providing both previous source spatial distribution and emission energy grouping. The technique uses magnetic resonance for organic insulators and/or luminescence techniques on ubiquitous refractory materials similar in theory to the way the nuclear industry carries out worker personnel dosimetry. Spatial information is obtained by acquiring gridded samples for dosimetric measurements, while energy information comes through dose depth profile results that are functions of the incident radiation energies.

  15. The U.S. national nuclear forensics library, nuclear materials information program, and data dictionary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamont, Stephen Philip; Brisson, Marcia; Curry, Michael

    2011-02-17

    Nuclear forensics assessments to determine material process history requires careful comparison of sample data to both measured and modeled nuclear material characteristics. Developing centralized databases, or nuclear forensics libraries, to house this information is an important step to ensure all relevant data will be available for comparison during a nuclear forensics analysis and help expedite the assessment of material history. The approach most widely accepted by the international community at this time is the implementation of National Nuclear Forensics libraries, which would be developed and maintained by individual nations. This is an attractive alternative toan international database since it providesmore » an understanding that each country has data on materials produced and stored within their borders, but eliminates the need to reveal any proprietary or sensitive information to other nations. To support the concept of National Nuclear Forensics libraries, the United States Department of Energy has developed a model library, based on a data dictionary, or set of parameters designed to capture all nuclear forensic relevant information about a nuclear material. Specifically, information includes material identification, collection background and current location, analytical laboratories where measurements were made, material packaging and container descriptions, physical characteristics including mass and dimensions, chemical and isotopic characteristics, particle morphology or metallurgical properties, process history including facilities, and measurement quality assurance information. While not necessarily required, it may also be valuable to store modeled data sets including reactor burn-up or enrichment cascade data for comparison. It is fully expected that only a subset of this information is available or relevant to many materials, and much of the data populating a National Nuclear Forensics library would be process analytical or material

  16. Tungsten - Yttrium Based Nuclear Structural Materials

    NASA Astrophysics Data System (ADS)

    Ramana, Chintalapalle; Chessa, Jack; Martinenz, Gustavo

    2013-04-01

    The challenging problem currently facing the nuclear science community in this 21st century is design and development of novel structural materials, which will have an impact on the next-generation nuclear reactors. The materials available at present include reduced activation ferritic/martensitic steels, dispersion strengthened reduced activation ferritic steels, and vanadium- or tungsten-based alloys. These materials exhibit one or more specific problems, which are either intrinsic or caused by reactors. This work is focussed towards tungsten-yttrium (W-Y) based alloys and oxide ceramics, which can be utilized in nuclear applications. The goal is to derive a fundamental scientific understanding of W-Y-based materials. In collaboration with University of Califonia -- Davis, the project is designated to demonstrate the W-Y based alloys, ceramics and composites with enhanced physical, mechanical, thermo-chemical properties and higher radiation resistance. Efforts are focussed on understanding the microstructure, manipulating materials behavior under charged-particle and neutron irradiation, and create a knowledge database of defects, elemental diffusion/segregation, and defect trapping along grain boundaries and interfaces. Preliminary results will be discussed.

  17. Materials challenges for nuclear systems

    DOE PAGES

    Allen, Todd; Busby, Jeremy; Meyer, Mitch; ...

    2010-11-26

    The safe and economical operation of any nuclear power system relies to a great extent, on the success of the fuel and the materials of construction. During the lifetime of a nuclear power system which currently can be as long as 60 years, the materials are subject to high temperature, a corrosive environment, and damage from high-energy particles released during fission. The fuel which provides the power for the reactor has a much shorter life but is subject to the same types of harsh environments. This article reviews the environments in which fuels and materials from current and proposed nuclearmore » systems operate and then describes how the creation of the Advanced Test Reactor National Scientific User Facility is allowing researchers from across the U.S. to test their ideas for improved fuels and materials.« less

  18. Retrospective Imaging and Characterization of Nuclear Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, Robert B.; Sholom, Sergey

    Modern techniques for detection of covert nuclear ma-terial requires some combination of real time measurement and/or sampling of the material. More common is real time measure-ment of the ionizing emission caused by radioactive decay or through the materials measured in response to external interroga-tion radiation. One can expose the suspect material with various radiation types, including high energy photons such as x rays or with larger particles such as neutrons and muons, to obtain images or measure nuclear reactions induced in the material. Stand-off detection using imaging modalities similar to those in the medical field can be accomplished, or simplemore » collimated detec-tors can be used to localize radioactive materials. In all such cases, the common feature is that some or all of the nuclear materials have to be present for the measurement, which makes sense; as one might ask, “How you can measure something that is not there?” The current work and results show how to do exactly that: characterize nuclear materials after they have been removed from an area leaving no chemical trace. This new approach is demon-strated to be fully capable of providing both previous source spa-tial distribution and emission energy grouping. The technique uses magnetic resonance for organic insulators and/or lumines-cence techniques on ubiquitous refractory materials similar in theory to the way the nuclear industry carries out worker person-nel dosimetry. Spatial information is obtained by acquiring gridded samples for dosimetric measurements, while energy infor-mation comes through dose depth profile results that are func-tions of the incident radiation energies.« less

  19. Retrospective Imaging and Characterization of Nuclear Material

    DOE PAGES

    Hayes, Robert B.; Sholom, Sergey

    2017-08-01

    Modern techniques for detection of covert nuclear ma-terial requires some combination of real time measurement and/or sampling of the material. More common is real time measure-ment of the ionizing emission caused by radioactive decay or through the materials measured in response to external interroga-tion radiation. One can expose the suspect material with various radiation types, including high energy photons such as x rays or with larger particles such as neutrons and muons, to obtain images or measure nuclear reactions induced in the material. Stand-off detection using imaging modalities similar to those in the medical field can be accomplished, or simplemore » collimated detec-tors can be used to localize radioactive materials. In all such cases, the common feature is that some or all of the nuclear materials have to be present for the measurement, which makes sense; as one might ask, “How you can measure something that is not there?” The current work and results show how to do exactly that: characterize nuclear materials after they have been removed from an area leaving no chemical trace. This new approach is demon-strated to be fully capable of providing both previous source spa-tial distribution and emission energy grouping. The technique uses magnetic resonance for organic insulators and/or lumines-cence techniques on ubiquitous refractory materials similar in theory to the way the nuclear industry carries out worker person-nel dosimetry. Spatial information is obtained by acquiring gridded samples for dosimetric measurements, while energy infor-mation comes through dose depth profile results that are func-tions of the incident radiation energies.« less

  20. Summary of a joint US-Japan study of potential approaches to reduce the attractiveness of various nuclear materials for use in a nuclear explosive device by a terrorist group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bathke, C.G.; Inoue, N.; Kuno, Y.

    2013-07-01

    This paper summarizes the results of a joint US-Japan study to establish a mutual understanding, through scientific-based study, of potential approaches to reduce the attractiveness of various nuclear materials for use in a terrorist nuclear explosive device (NED). 4 approaches that can reduce materials attractiveness with a very high degree of effectiveness are: -) diluting HEU with natural or depleted U to an enrichment of less than 10% U-235; -) storing Pu in nuclear fuel that is not man portable and with a dose rate greater or equal to 10 Gy/h at 1 m; -) storing Pu or HEU inmore » heavy items, i.e. not transportable, provided the removal of the Pu or HEU from the item requires a purification/processing capability; and -) converting Pu and HEU to very dilute forms (such as wastes) that, without any security barriers, would require very long acquisition times to acquire a Category I quantity of Pu or of HEU. 2 approaches that can reduce materials attractiveness with a high degree of effectiveness are: -) converting HEU-fueled research reactors into LEU-fueled research reactors or dilute HEU with natural or depleted U to an enrichment of less than 20% U-235; -) converting U/Al reactor fuel into U/Si reactor fuel. Other approaches have been assessed as moderately or totally inefficient to reduce the attractiveness of nuclear materials.« less

  1. Nuclear forensics of a non-traditional sample: Neptunium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doyle, Jamie L.; Schwartz, Daniel; Tandon, Lav

    Recent nuclear forensics cases have focused primarily on plutonium (Pu) and uranium (U) materials. By definition however, nuclear forensics can apply to any diverted nuclear material. This includes neptunium (Np), an internationally safeguarded material like Pu and U, that could offer a nuclear security concern if significant quantities were found outside of regulatory control. This case study couples scanning electron microscopy (SEM) with quantitative analysis using newly developed specialized software, to evaluate a non-traditional nuclear forensic sample of Np. Here, the results of the morphological analyses were compared with another Np sample of known pedigree, as well as other traditionalmore » actinide materials in order to determine potential processing and point-of-origin.« less

  2. Nuclear forensics of a non-traditional sample: Neptunium

    DOE PAGES

    Doyle, Jamie L.; Schwartz, Daniel; Tandon, Lav

    2016-05-16

    Recent nuclear forensics cases have focused primarily on plutonium (Pu) and uranium (U) materials. By definition however, nuclear forensics can apply to any diverted nuclear material. This includes neptunium (Np), an internationally safeguarded material like Pu and U, that could offer a nuclear security concern if significant quantities were found outside of regulatory control. This case study couples scanning electron microscopy (SEM) with quantitative analysis using newly developed specialized software, to evaluate a non-traditional nuclear forensic sample of Np. Here, the results of the morphological analyses were compared with another Np sample of known pedigree, as well as other traditionalmore » actinide materials in order to determine potential processing and point-of-origin.« less

  3. 49 CFR 173.4a - Excepted quantities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ice), and lithium batteries and cells. (c) Inner packaging limits. The maximum quantity of hazardous materials in each inner packaging is limited to: (1) For toxic material with a Division 6.1 primary or... excepted quantities must meet the following: (1) Each inner receptacle must be constructed of plastic, or...

  4. Density functional calculations on structural materials for nuclear energy applications and functional materials for photovoltaic energy applications (abstract only).

    PubMed

    Domain, C; Olsson, P; Becquart, C S; Legris, A; Guillemoles, J F

    2008-02-13

    Ab initio density functional theory calculations are carried out in order to predict the evolution of structural materials under aggressive working conditions such as cases with exposure to corrosion and irradiation, as well as to predict and investigate the properties of functional materials for photovoltaic energy applications. Structural metallic materials used in nuclear facilities are subjected to irradiation which induces the creation of large amounts of point defects. These defects interact with each other as well as with the different elements constituting the alloys, which leads to modifications of the microstructure and the mechanical properties. VASP (Vienna Ab initio Simulation Package) has been used to determine the properties of point defect clusters and also those of extended defects such as dislocations. The resulting quantities, such as interaction energies and migration energies, are used in larger scale simulation methods in order to build predictive tools. For photovoltaic energy applications, ab initio calculations are used in order to search for new semiconductors and possible element substitutions for existing ones in order to improve their efficiency.

  5. Characterization of ion-induced radiation effects in nuclear materials using synchrotron x-ray techniques

    DOE PAGES

    Lang, Maik; Tracy, Cameron L.; Palomares, Raul I.; ...

    2015-05-01

    Recent efforts to characterize the nanoscale structural and chemical modifications induced by energetic ion irradiation in nuclear materials have greatly benefited from the application of synchrotron-based x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) techniques. Key to the study of actinide-bearing materials has been the use of small sample volumes, which are particularly advantageous, as the small quantities minimize the level of radiation exposure at the ion-beam and synchrotron user facility. This approach utilizes energetic heavy ions (energy range: 100 MeV–3 GeV) that pass completely through the sample thickness and deposit an almost constant energy per unit length along theirmore » trajectory. High energy x-rays (25–65 keV) from intense synchrotron light sources are then used in transmission geometry to analyze ion-induced structural and chemical modifications throughout the ion tracks. We describe in detail the experimental approach for utilizing synchrotron radiation (SR) to study the radiation response of a range of nuclear materials (e.g., ThO 2 and Gd 2Ti xZr 2–xO 7). Also addressed is the use of high-pressure techniques, such as the heatable diamond anvil cell, as a new means to expose irradiated materials to well-controlled high-temperature (up to 1000 °C) and/or high-pressure (up to 50 GPa) conditions. Furthermore, this is particularly useful for characterizing the annealing kinetics of irradiation-induced material modifications.« less

  6. 10 CFR 70.41 - Authorized use of special nuclear material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Authorized use of special nuclear material. 70.41 Section 70.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Acquisition, Use and Transfer of Special Nuclear Material, Creditors' Rights § 70.41 Authorized use of special...

  7. 10 CFR 70.41 - Authorized use of special nuclear material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Authorized use of special nuclear material. 70.41 Section 70.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Acquisition, Use and Transfer of Special Nuclear Material, Creditors' Rights § 70.41 Authorized use of special...

  8. 10 CFR 70.41 - Authorized use of special nuclear material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Authorized use of special nuclear material. 70.41 Section 70.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Acquisition, Use and Transfer of Special Nuclear Material, Creditors' Rights § 70.41 Authorized use of special...

  9. 10 CFR 70.41 - Authorized use of special nuclear material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Authorized use of special nuclear material. 70.41 Section 70.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Acquisition, Use and Transfer of Special Nuclear Material, Creditors' Rights § 70.41 Authorized use of special...

  10. 10 CFR 70.41 - Authorized use of special nuclear material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Authorized use of special nuclear material. 70.41 Section 70.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Acquisition, Use and Transfer of Special Nuclear Material, Creditors' Rights § 70.41 Authorized use of special...

  11. Large area nuclear particle detectors using ET materials

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The purpose of this SBIR Phase 1 feasibility effort was to demonstrate the usefulness of Quantex electron-trapping (ET) materials for spatial detection of nuclear particles over large areas. This demonstration entailed evaluating the prompt visible scintillation as nuclear particles impinged on films of ET materials, and subsequently detecting the nuclear particle impingement information pattern stored in the ET material, by means of the visible-wavelength luminescence produced by near-infrared interrogation. Readily useful levels of scintillation and luminescence outputs are demonstrated.

  12. Uncovering Special Nuclear Materials by Low-energy Nuclear Reaction Imaging.

    PubMed

    Rose, P B; Erickson, A S; Mayer, M; Nattress, J; Jovanovic, I

    2016-04-18

    Weapons-grade uranium and plutonium could be used as nuclear explosives with extreme destructive potential. The problem of their detection, especially in standard cargo containers during transit, has been described as "searching for a needle in a haystack" because of the inherently low rate of spontaneous emission of characteristic penetrating radiation and the ease of its shielding. Currently, the only practical approach for uncovering well-shielded special nuclear materials is by use of active interrogation using an external radiation source. However, the similarity of these materials to shielding and the required radiation doses that may exceed regulatory limits prevent this method from being widely used in practice. We introduce a low-dose active detection technique, referred to as low-energy nuclear reaction imaging, which exploits the physics of interactions of multi-MeV monoenergetic photons and neutrons to simultaneously measure the material's areal density and effective atomic number, while confirming the presence of fissionable materials by observing the beta-delayed neutron emission. For the first time, we demonstrate identification and imaging of uranium with this novel technique using a simple yet robust source, setting the stage for its wide adoption in security applications.

  13. Cladding and duct materials for advanced nuclear recycle reactors

    NASA Astrophysics Data System (ADS)

    Allen, T. R.; Busby, J. T.; Klueh, R. L.; Maloy, S. A.; Toloczko, M. B.

    2008-01-01

    The expanded use of nuclear energy without risk of nuclear weapons proliferation and with safe nuclear waste disposal is a primary goal of the Global Nuclear Energy Partnership (GNEP). To achieve that goal the GNEP is exploring advanced technologies for recycling spent nuclear fuel that do not separate pure plutonium, and advanced reactors that consume transuranic elements from recycled spent fuel. The GNEP’s objectives will place high demands on reactor clad and structural materials. This article discusses the materials requirements of the GNEP’s advanced nuclear recycle reactors program.

  14. 10 CFR 74.17 - Special nuclear material physical inventory summary report.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Special nuclear material physical inventory summary report. 74.17 Section 74.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.17 Special nuclear...

  15. 10 CFR 74.17 - Special nuclear material physical inventory summary report.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Special nuclear material physical inventory summary report. 74.17 Section 74.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.17 Special nuclear...

  16. 10 CFR 74.17 - Special nuclear material physical inventory summary report.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Special nuclear material physical inventory summary report. 74.17 Section 74.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.17 Special nuclear...

  17. 10 CFR 74.17 - Special nuclear material physical inventory summary report.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Special nuclear material physical inventory summary report. 74.17 Section 74.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.17 Special nuclear...

  18. 10 CFR 74.17 - Special nuclear material physical inventory summary report.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Special nuclear material physical inventory summary report. 74.17 Section 74.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.17 Special nuclear...

  19. 10 CFR 11.15 - Application for special nuclear material access authorization.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Application for special nuclear material access authorization. 11.15 Section 11.15 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING ELIGIBILITY FOR ACCESS TO OR CONTROL OVER SPECIAL NUCLEAR MATERIAL Requirements for Special Nuclear Material...

  20. 10 CFR 11.15 - Application for special nuclear material access authorization.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Application for special nuclear material access authorization. 11.15 Section 11.15 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING ELIGIBILITY FOR ACCESS TO OR CONTROL OVER SPECIAL NUCLEAR MATERIAL Requirements for Special Nuclear Material...

  1. 10 CFR 11.15 - Application for special nuclear material access authorization.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Application for special nuclear material access authorization. 11.15 Section 11.15 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING ELIGIBILITY FOR ACCESS TO OR CONTROL OVER SPECIAL NUCLEAR MATERIAL Requirements for Special Nuclear Material...

  2. 10 CFR 11.15 - Application for special nuclear material access authorization.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Application for special nuclear material access authorization. 11.15 Section 11.15 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING ELIGIBILITY FOR ACCESS TO OR CONTROL OVER SPECIAL NUCLEAR MATERIAL Requirements for Special Nuclear Material...

  3. 10 CFR 11.15 - Application for special nuclear material access authorization.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Application for special nuclear material access authorization. 11.15 Section 11.15 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING ELIGIBILITY FOR ACCESS TO OR CONTROL OVER SPECIAL NUCLEAR MATERIAL Requirements for Special Nuclear Material...

  4. Nuclear Fuels & Materials Spotlight Volume 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petti, David Andrew

    2016-10-01

    As the nation's nuclear energy laboratory, Idaho National Laboratory brings together talented people and specialized nuclear research capability to accomplish our mission. This edition of the Nuclear Fuels and Materials Division Spotlight provides an overview of some of our recent accomplishments in research and capability development. These accomplishments include: • Evaluation and modeling of light water reactor accident tolerant fuel concepts • Status and results of recent TRISO-coated particle fuel irradiations, post-irradiation examinations, high-temperature safety testing to demonstrate the accident performance of this fuel system, and advanced microscopy to improve the understanding of fission product transport in this fuel system.more » • Improvements in and applications of meso and engineering scale modeling of light water reactor fuel behavior under a range of operating conditions and postulated accidents (e.g., power ramping, loss of coolant accident, and reactivity initiated accidents) using the MARMOT and BISON codes. • Novel measurements of the properties of nuclear (actinide) materials under extreme conditions, (e.g. high pressure, low/high temperatures, high magnetic field) to improve the scientific understanding of these materials. • Modeling reactor pressure vessel behavior using the GRIZZLY code. • New methods using sound to sense temperature inside a reactor core. • Improved experimental capabilities to study the response of fusion reactor materials to a tritium plasma. Throughout Spotlight, you'll find examples of productive partnerships with academia, industry, and government agencies that deliver high-impact outcomes. The work conducted at Idaho National Laboratory helps spur innovation in nuclear energy applications that drive economic growth and energy security. We appreciate your interest in our work here at Idaho National Laboratory, and hope that you find this issue informative.« less

  5. 10 CFR 70.20 - General license to own special nuclear material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false General license to own special nuclear material. 70.20 Section 70.20 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL General Licenses § 70.20 General license to own special nuclear material. A general license is...

  6. 10 CFR 70.20 - General license to own special nuclear material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false General license to own special nuclear material. 70.20 Section 70.20 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL General Licenses § 70.20 General license to own special nuclear material. A general license is...

  7. 10 CFR 70.20 - General license to own special nuclear material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false General license to own special nuclear material. 70.20 Section 70.20 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL General Licenses § 70.20 General license to own special nuclear material. A general license is...

  8. 10 CFR 70.20 - General license to own special nuclear material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false General license to own special nuclear material. 70.20 Section 70.20 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL General Licenses § 70.20 General license to own special nuclear material. A general license is...

  9. 10 CFR 70.20 - General license to own special nuclear material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false General license to own special nuclear material. 70.20 Section 70.20 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL General Licenses § 70.20 General license to own special nuclear material. A general license is...

  10. 10 CFR 70.11 - Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission contracts. 70.11 Section 70.11 Energy NUCLEAR... using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission...

  11. 10 CFR 70.11 - Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission contracts. 70.11 Section 70.11 Energy NUCLEAR... using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission...

  12. 10 CFR 70.11 - Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission contracts. 70.11 Section 70.11 Energy NUCLEAR... using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission...

  13. 10 CFR 70.11 - Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission contracts. 70.11 Section 70.11 Energy NUCLEAR... using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission...

  14. 10 CFR 70.11 - Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission contracts. 70.11 Section 70.11 Energy NUCLEAR... using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission...

  15. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, Mano K.; Snyderman, Neal J.; Rowland, Mark S.

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  16. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-06-05

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  17. Nuclear physics for materials technology

    NASA Astrophysics Data System (ADS)

    Conlon, T. W.

    1987-04-01

    Although particle accelerators have traditionally been used to further our knowledge of nuclear physics, the last decade or so has seen a rapid growth of their involvement in materials technology — both to modify materials and to provide analytical information at the atomic level that cannot be obtained in other ways. The deployment of ion beams in these areas has occurred in three phases: first the exploitation of keV ion beams (in ion implantation and SIMS) then MeV light ion beams (using RBS, NRA, PIXE analysis and TLA) and currently MeV heavy ion beams, together with the associated fast recoil atoms and nuclei that they produce in interactions with materials. This trend has been accompanied by the gradual assimilation of methods such as energy analysis, microbeam focussing, particle identification, time of flight and coincidence techniques, etc., which were first developed for experimental nuclear physics use. Current examples of developments in the MeV range relevant to phases 2 and 3 are given.

  18. Dose rate constants for the quantity Hp(3) for frequently used radionuclides in nuclear medicine.

    PubMed

    Szermerski, Bastian; Bruchmann, Iris; Behrens, Rolf; Geworski, Lilli

    2016-12-01

    According to recent studies, the human eye lens is more sensitive to ionising radiation than previously assumed. Therefore, the dose limit for personnel occupationally exposed to ionising radiation will be lowered from currently 150 mSv to 20 mSv per year. Currently, no data base for a reliable estimation of the dose to the lens of the eye is available for nuclear medicine. Furthermore, the dose is usually not monitored. The aim of this work was to determine dose rate constants for the quantity H p (3), which is supposed to estimate the dose to the lens of the eye. For this, H p (3)-dosemeters were fixed to an Alderson Phantom at different positions. The dosemeters were exposed to radiation from nuclides typically used in nuclear medicine in their geometries analog to their application in nuclear medicine, e.g. syringe or vial. The results show that the handling of high-energy beta (i.e. electron or positron) emitters may lead to a relevant dose to the lens of the eye. For low-energy beta emitters and gamma emitters, an exceeding of the lowered dose limit seems to be unlikely. Copyright © 2015. Published by Elsevier GmbH.

  19. A Uniform Framework of Global Nuclear Materials Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dupree, S.A.; Mangan, D.L.; Sanders, T.L

    1999-04-20

    Global Nuclear Materials Management (GNMM) anticipates and supports a growing international recognition of the importance of uniform, effective management of civilian, excess defense, and nuclear weapons materials. We expect thereto be a continuing increase in both the number of international agreements and conventions on safety, security, and transparency of nuclear materials, and the number of U.S.-Russian agreements for the safety, protection, and transparency of weapons and excess defense materials. This inventory of agreements and conventions may soon expand into broad, mandatory, international programs that will include provisions for inspection, verification, and transparency, To meet such demand the community must buildmore » on the resources we have, including State agencies, the IAEA and regional organizations. By these measures we will meet the future expectations for monitoring and inspection of materials, maintenance of safety and security, and implementation of transparency measures.« less

  20. Nuclear fuel elements made from nanophase materials

    DOEpatents

    Heubeck, Norman B.

    1998-01-01

    A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000.degree. F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics.

  1. Nuclear fuel elements made from nanophase materials

    DOEpatents

    Heubeck, N.B.

    1998-09-08

    A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000 F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics. 5 figs.

  2. Uncovering Special Nuclear Materials by Low-energy Nuclear Reaction Imaging

    NASA Astrophysics Data System (ADS)

    Rose, P. B.; Erickson, A. S.; Mayer, M.; Nattress, J.; Jovanovic, I.

    2016-04-01

    Weapons-grade uranium and plutonium could be used as nuclear explosives with extreme destructive potential. The problem of their detection, especially in standard cargo containers during transit, has been described as “searching for a needle in a haystack” because of the inherently low rate of spontaneous emission of characteristic penetrating radiation and the ease of its shielding. Currently, the only practical approach for uncovering well-shielded special nuclear materials is by use of active interrogation using an external radiation source. However, the similarity of these materials to shielding and the required radiation doses that may exceed regulatory limits prevent this method from being widely used in practice. We introduce a low-dose active detection technique, referred to as low-energy nuclear reaction imaging, which exploits the physics of interactions of multi-MeV monoenergetic photons and neutrons to simultaneously measure the material’s areal density and effective atomic number, while confirming the presence of fissionable materials by observing the beta-delayed neutron emission. For the first time, we demonstrate identification and imaging of uranium with this novel technique using a simple yet robust source, setting the stage for its wide adoption in security applications.

  3. Uncovering Special Nuclear Materials by Low-energy Nuclear Reaction Imaging

    PubMed Central

    Rose, P. B.; Erickson, A. S.; Mayer, M.; Nattress, J.; Jovanovic, I.

    2016-01-01

    Weapons-grade uranium and plutonium could be used as nuclear explosives with extreme destructive potential. The problem of their detection, especially in standard cargo containers during transit, has been described as “searching for a needle in a haystack” because of the inherently low rate of spontaneous emission of characteristic penetrating radiation and the ease of its shielding. Currently, the only practical approach for uncovering well-shielded special nuclear materials is by use of active interrogation using an external radiation source. However, the similarity of these materials to shielding and the required radiation doses that may exceed regulatory limits prevent this method from being widely used in practice. We introduce a low-dose active detection technique, referred to as low-energy nuclear reaction imaging, which exploits the physics of interactions of multi-MeV monoenergetic photons and neutrons to simultaneously measure the material’s areal density and effective atomic number, while confirming the presence of fissionable materials by observing the beta-delayed neutron emission. For the first time, we demonstrate identification and imaging of uranium with this novel technique using a simple yet robust source, setting the stage for its wide adoption in security applications. PMID:27087555

  4. Photonuclear-based, nuclear material detection system for cargo containers

    NASA Astrophysics Data System (ADS)

    Jones, J. L.; Yoon, W. Y.; Norman, D. R.; Haskell, K. J.; Zabriskie, J. M.; Watson, S. M.; Sterbentz, J. W.

    2005-12-01

    The Idaho National Laboratory (INL) has been developing electron accelerator-based, photonuclear inspection technologies for over a decade. A current need, having important national implications, has been with the detection of smuggled nuclear material within air- and, especially, sea-cargo transportation containers. This paper describes the latest pulsed, photonuclear inspection system for nuclear material detection and identification in cargo configurations, the numerical responses of 5 kg of a nuclear material placed within selected cargo configurations, and the technology's potential role in addressing future inspection needs.

  5. Evaluating MC&A effectiveness to verify the presence of nuclear materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, P. G.; Morzinski, J. A.; Ostenak, Carl A.

    Traditional materials accounting is focused exclusively on the material balance area (MBA), and involves periodically closing a material balance based on accountability measurements conducted during a physical inventory. In contrast, the physical inventory for Los Alamos National Laboratory's near-real-time accounting system is established around processes and looks more like an item inventory. That is, the intent is not to measure material for accounting purposes, since materials have already been measured in the normal course of daily operations. A given unit process operates many times over the course of a material balance period. The product of a given unit process maymore » move for processing within another unit process in the same MBA or may be transferred out of the MBA. Since few materials are unmeasured the physical inventory for a near-real-time process area looks more like an item inventory. Thus, the intent of the physical inventory is to locate the materials on the books and verify information about the materials contained in the books. Closing a materials balance for such an area is a matter of summing all the individual mass balances for the batches processed by all unit processes in the MBA. Additionally, performance parameters are established to measure the program's effectiveness. Program effectiveness for verifying the presence of nuclear material is required to be equal to or greater than a prescribed performance level, process measurements must be within established precision and accuracy values, physical inventory results meet or exceed performance requirements, and inventory differences are less than a target/goal quantity. This approach exceeds DOE established accounting and physical inventory program requirements. Hence, LANL is committed to this approach and to seeking opportunities for further improvement through integrated technologies. This paper will provide a detailed description of this evaluation process.« less

  6. The myth of the ``proliferation-resistant'' closed nuclear fuel cycle

    NASA Astrophysics Data System (ADS)

    Lyman, Edwin S.

    2000-07-01

    National nuclear energy programs that engage in reprocessing of spent nuclear fuel (SNF) and the development of "closed" nuclear fuel cycles based on the utilization of plutonium process and store large quantities of weapons-usable nuclear materials in forms vulnerable to diversion or theft by national or subnational groups. Proliferation resistance, an idea dating back at least as far as the International Fuel Cycle Evaluation (INFCE) of the late 1970s, is a loosely defined term referring to processes for chemical separation of SNF that do not extract weapons-usable materials in a purified form.

  7. Hybrid statistical testing for nuclear material accounting data and/or process monitoring data in nuclear safeguards

    DOE PAGES

    Burr, Tom; Hamada, Michael S.; Ticknor, Larry; ...

    2015-01-01

    The aim of nuclear safeguards is to ensure that special nuclear material is used for peaceful purposes. Historically, nuclear material accounting (NMA) has provided the quantitative basis for monitoring for nuclear material loss or diversion, and process monitoring (PM) data is collected by the operator to monitor the process. PM data typically support NMA in various ways, often by providing a basis to estimate some of the in-process nuclear material inventory. We develop options for combining PM residuals and NMA residuals (residual = measurement - prediction), using a hybrid of period-driven and data-driven hypothesis testing. The modified statistical tests canmore » be used on time series of NMA residuals (the NMA residual is the familiar material balance), or on a combination of PM and NMA residuals. The PM residuals can be generated on a fixed time schedule or as events occur.« less

  8. Risk ranking of LANL nuclear material storage containers for repackaging prioritization.

    PubMed

    Smith, Paul H; Jordan, Hans; Hoffman, Jenifer A; Eller, P Gary; Balkey, Simon

    2007-05-01

    Safe handling and storage of nuclear material at U.S. Department of Energy facilities relies on the use of robust containers to prevent container breaches and subsequent worker contamination and uptake. The U.S. Department of Energy has no uniform requirements for packaging and storage of nuclear materials other than those declared excess and packaged to DOE-STD-3013-2000. This report describes a methodology for prioritizing a large inventory of nuclear material containers so that the highest risk containers are repackaged first. The methodology utilizes expert judgment to assign respirable fractions and reactivity factors to accountable levels of nuclear material at Los Alamos National Laboratory. A relative risk factor is assigned to each nuclear material container based on a calculated dose to a worker due to a failed container barrier and a calculated probability of container failure based on material reactivity and container age. This risk-based methodology is being applied at LANL to repackage the highest risk materials first and, thus, accelerate the reduction of risk to nuclear material handlers.

  9. Definition of Small Gram Quantity Contents for Type B Radioactive Material Transportation Packages: Activity-Based Content Limitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitaraman, S; Kim, S; Biswas, D

    2010-10-27

    Since the 1960's, the Department of Transportation Specification (DOT Spec) 6M packages have been used extensively for transportation of Type B quantities of radioactive materials between Department of Energy (DOE) facilities, laboratories, and productions sites. However, due to the advancement of packaging technology, the aging of the 6M packages, and variability in the quality of the packages, the DOT implemented a phased elimination of the 6M specification packages (and other DOT Spec packages) in favor of packages certified to meet federal performance requirements. DOT issued the final rule in the Federal Register on October 1, 2004 requiring that use ofmore » the DOT Specification 6M be discontinued as of October 1, 2008. A main driver for the change was the fact that the 6M specification packagings were not supported by a Safety Analysis Report for Packaging (SARP) that was compliant with Title 10 of the Code of Federal Regulations part 71 (10 CFR 71). Therefore, materials that would have historically been shipped in 6M packages are being identified as contents in Type B (and sometimes Type A fissile) package applications and addenda that are to be certified under the requirements of 10 CFR 71. The requirements in 10 CFR 71 include that the Safety Analysis Report for Packaging (SARP) must identify the maximum radioactivity of radioactive constituents and maximum quantities of fissile constituents (10 CFR 71.33(b)(1) and 10 CFR 71.33(b)(2)), and that the application (i.e., SARP submittal or SARP addendum) demonstrates that the external dose rate (due to the maximum radioactivity of radioactive constituents and maximum quantities of fissile constituents) on the surface of the packaging (i.e., package and contents) not exceed 200 mrem/hr (10 CFR 71.35(a), 10 CFR 71.47(a)). It has been proposed that a 'Small Gram Quantity' of radioactive material be defined, such that, when loaded in a transportation package, the dose rates at external points of an unshielded

  10. Designed porosity materials in nuclear reactor components

    DOEpatents

    Yacout, A. M.; Pellin, Michael J.; Stan, Marius

    2016-09-06

    A nuclear fuel pellet with a porous substrate, such as a carbon or tungsten aerogel, on which at least one layer of a fuel containing material is deposited via atomic layer deposition, and wherein the layer deposition is controlled to prevent agglomeration of defects. Further, a method of fabricating a nuclear fuel pellet, wherein the method features the steps of selecting a porous substrate, depositing at least one layer of a fuel containing material, and terminating the deposition when the desired porosity is achieved. Also provided is a nuclear reactor fuel cladding made of a porous substrate, such as silicon carbide aerogel or silicon carbide cloth, upon which layers of silicon carbide are deposited.

  11. Special nuclear materials cutoff exercise: Issues and lessons learned. Volume 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Libby, R.A.; Segal, J.E.; Stanbro, W.D.

    1995-08-01

    This document is appendices D-J for the Special Nuclear Materials Cutoff Exercise: Issues and Lessons Learned. Included are discussions of the US IAEA Treaty, safeguard regulations for nuclear materials, issue sheets for the PUREX process, and the LANL follow up activity for reprocessing nuclear materials.

  12. Fourth Collaborative Materials Exercise of the Nuclear Forensics International Technical Working Group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwantes, J. M.; Marsden, O.; Reilly, D.

    Abstract The Nuclear Forensics International Technical Working Group is a community of nuclear forensic practitioners who respond to incidents involving nuclear and other radioactive material out of regulatory control. The Group is dedicated to advancing nuclear forensic science in part through periodic participation in materials exercises. The Group completed its fourth Collaborative Materials Exercise in 2015 in which laboratories from 15 countries and one multinational organization analyzed three samples of special nuclear material in support of a mock nuclear forensic investigation. This special section of the Journal for Radioanalytical and Nuclear Chemistry is devoted to summarizing highlights from this exercise.

  13. 10 CFR 50.101 - Retaking possession of special nuclear material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Retaking possession of special nuclear material. 50.101 Section 50.101 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION... Operations by the Commission § 50.101 Retaking possession of special nuclear material. Upon revocation of a...

  14. 10 CFR 50.101 - Retaking possession of special nuclear material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Retaking possession of special nuclear material. 50.101 Section 50.101 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION... Operations by the Commission § 50.101 Retaking possession of special nuclear material. Upon revocation of a...

  15. 10 CFR 50.101 - Retaking possession of special nuclear material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Retaking possession of special nuclear material. 50.101 Section 50.101 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION... Operations by the Commission § 50.101 Retaking possession of special nuclear material. Upon revocation of a...

  16. 10 CFR 50.101 - Retaking possession of special nuclear material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Retaking possession of special nuclear material. 50.101 Section 50.101 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION... Operations by the Commission § 50.101 Retaking possession of special nuclear material. Upon revocation of a...

  17. 10 CFR 50.101 - Retaking possession of special nuclear material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Retaking possession of special nuclear material. 50.101 Section 50.101 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION... Operations by the Commission § 50.101 Retaking possession of special nuclear material. Upon revocation of a...

  18. Nuclear Energy Enabling Technologies (NEET) Reactor Materials: News for the Reactor Materials Crosscut, May 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maloy, Stuart Andrew

    In this newsletter for Nuclear Energy Enabling Technologies (NEET) Reactor Materials, pages 1-3 cover highlights from the DOE-NE (Nuclear Energy) programs, pages 4-6 cover determining the stress-strain response of ion-irradiated metallic materials via spherical nanoindentation, and pages 7-8 cover theoretical approaches to understanding long-term materials behavior in light water reactors.

  19. Uncovering Special Nuclear Materials by Low-energy Nuclear Reaction Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, Jr., P. B.; Erickson, A. S.; Mayer, Michael F.

    Weapons-grade uranium and plutonium could be used as nuclear explosives with extreme destructive potential. The problem of their detection, especially in standard cargo containers during transit, has been described as “searching for a needle in a haystack” because of the inherently low rate of spontaneous emission of characteristic penetrating radiation and the ease of its shielding. Currently, the only practical approach for uncovering well-shielded special nuclear materials is by use of active interrogation using an external radiation source. However, the similarity of these materials to shielding and the required radiation doses that may exceed regulatory limits prevent this method frommore » being widely used in practice. We introduce a low-dose active detection technique, referred to as low-energy nuclear reaction imaging, which exploits the physics of interactions of multi-MeV monoenergetic photons and neutrons to simultaneously measure the material’s areal density and effective atomic number, while confirming the presence of fissionable materials by observing the beta-delayed neutron emission. For the first time, we demonstrate identification and imaging of uranium with this novel technique using a simple yet robust source, setting the stage for its wide adoption in security applications.« less

  20. Uncovering Special Nuclear Materials by Low-energy Nuclear Reaction Imaging

    DOE PAGES

    Rose, P. B.; Erickson, A. S.; Mayer, M.; ...

    2016-04-18

    Weapons-grade uranium and plutonium could be used as nuclear explosives with extreme destructive potential. The problem of their detection, especially in standard cargo containers during transit, has been described as “searching for a needle in a haystack” because of the inherently low rate of spontaneous emission of characteristic penetrating radiation and the ease of its shielding. Currently, the only practical approach for uncovering well-shielded special nuclear materials is by use of active interrogation using an external radiation source. However, the similarity of these materials to shielding and the required radiation doses that may exceed regulatory limits prevent this method frommore » being widely used in practice. We introduce a low-dose active detection technique, referred to as low-energy nuclear reaction imaging, which exploits the physics of interactions of multi-MeV monoenergetic photons and neutrons to simultaneously measure the material’s areal density and effective atomic number, while confirming the presence of fissionable materials by observing the beta-delayed neutron emission. For the first time, we demonstrate identification and imaging of uranium with this novel technique using a simple yet robust source, setting the stage for its wide adoption in security applications.« less

  1. 10 CFR 72.78 - Nuclear material transaction reports.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Nuclear material transaction reports. 72.78 Section 72.78 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Records...

  2. 10 CFR 72.78 - Nuclear material transaction reports.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Nuclear material transaction reports. 72.78 Section 72.78 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Records...

  3. 10 CFR 72.78 - Nuclear material transaction reports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Nuclear material transaction reports. 72.78 Section 72.78 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Records...

  4. 10 CFR 72.78 - Nuclear material transaction reports.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Nuclear material transaction reports. 72.78 Section 72.78 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Records...

  5. Termination of Safeguards for Accountable Nuclear Materials at the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Holzemer; Alan Carvo

    2012-04-01

    Termination of safeguards ends requirements of Nuclear Material Control and Accountability (MC&A) and thereby removes the safeguards basis for applying physical protection requirements for theft and diversion of nuclear material, providing termination requirements are met as described. Department of Energy (DOE) M 470.4 6 (Nuclear Material Control and Accountability [8/26/05]) stipulates: 1. Section A, Chapter I (1)( q) (1): Safeguards can be terminated on nuclear materials provided the following conditions are met: (a) 'If the material is special nuclear material (SNM) or protected as SNM, it must be attractiveness level E and have a measured value.' (b) 'The material hasmore » been determined by DOE line management to be of no programmatic value to DOE.' (c) 'The material is transferred to the control of a waste management organization where the material is accounted for and protected in accordance with waste management regulations. The material must not be collocated with other accountable nuclear materials.' Requirements for safeguards termination depend on the safeguards attractiveness levels of the material. For attractiveness level E, approval has been granted from the DOE Idaho Operations Office (DOE ID) to Battelle Energy Alliance, LLC (BEA) Safeguards and Security (S&S). In some cases, it may be necessary to dispose of nuclear materials of attractiveness level D or higher. Termination of safeguards for such materials must be approved by the Departmental Element (this is the DOE Headquarters Office of Nuclear Energy) after consultation with the Office of Security.« less

  6. 10 CFR Appendix M to Part 110 - Categorization of Nuclear Material d

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Categorization of Nuclear Material d M Appendix M to Part 110 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Pt. 110, App. M Appendix M to Part 110—Categorization of Nuclear Material d [From IAEA INFCIRC/225...

  7. 10 CFR Appendix M to Part 110 - Categorization of Nuclear Material d

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Categorization of Nuclear Material d M Appendix M to Part 110 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Pt. 110, App. M Appendix M to Part 110—Categorization of Nuclear Material d [From IAEA INFCIRC/225...

  8. 10 CFR Appendix M to Part 110 - Categorization of Nuclear Material d

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Categorization of Nuclear Material d M Appendix M to Part 110 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Pt. 110, App. M Appendix M to Part 110—Categorization of Nuclear Material d [From IAEA INFCIRC/225...

  9. 10 CFR Appendix M to Part 110 - Categorization of Nuclear Material d

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Categorization of Nuclear Material d M Appendix M to Part 110 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Pt. 110, App. M Appendix M to Part 110—Categorization of Nuclear Material d [From IAEA INFCIRC/225...

  10. 10 CFR Appendix M to Part 110 - Categorization of Nuclear Material d

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Categorization of Nuclear Material d M Appendix M to Part 110 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Pt. 110, App. M Appendix M to Part 110—Categorization of Nuclear Material d [From IAEA INFCIRC/225...

  11. Leo Szilard Lectureship Award Talk: Controlling and eliminating nuclear-weapon materials

    NASA Astrophysics Data System (ADS)

    von Hippel, Frank

    2010-02-01

    Fissile material -- in practice plutonium and highly enriched uranium (HEU) -- is the essential ingredient in nuclear weapons. Controlling and eliminating fissile material and the means of its production is therefore the common denominator for nuclear disarmament, nuclear non-proliferation and the prevention of nuclear terrorism. From a fundamentalist anti-nuclear-weapon perspective, the less fissile material there is and the fewer locations where it can be found, the safer a world we will have. A comprehensive fissile-material policy therefore would have the following elements: *Consolidation of all nuclear-weapon-usable materials at a minimum number of high-security sites; *A verified ban on the production of HEU and plutonium for weapons; *Minimization of non-weapon uses of HEU and plutonium; and *Elimination of all excess stocks of plutonium and HEU. There is activity on all these fronts but it is not comprehensive and not all aspects are being pursued vigorously or competently. It is therefore worthwhile to review the situation. )

  12. Nuclear Technology Series. Course 25: Radioactive Material Handling Techniques.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  13. 49 CFR 224.105 - Sheeting dimensions and quantity.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Sheeting dimensions and quantity. 224.105 Section 224.105 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD..., Inspection, and Maintenance of Retroreflective Material § 224.105 Sheeting dimensions and quantity...

  14. 49 CFR 224.105 - Sheeting dimensions and quantity.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Sheeting dimensions and quantity. 224.105 Section 224.105 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD..., Inspection, and Maintenance of Retroreflective Material § 224.105 Sheeting dimensions and quantity...

  15. 49 CFR 224.105 - Sheeting dimensions and quantity.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Sheeting dimensions and quantity. 224.105 Section 224.105 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD..., Inspection, and Maintenance of Retroreflective Material § 224.105 Sheeting dimensions and quantity...

  16. 49 CFR 224.105 - Sheeting dimensions and quantity.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Sheeting dimensions and quantity. 224.105 Section 224.105 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD..., Inspection, and Maintenance of Retroreflective Material § 224.105 Sheeting dimensions and quantity...

  17. 49 CFR 224.105 - Sheeting dimensions and quantity.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Sheeting dimensions and quantity. 224.105 Section 224.105 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD..., Inspection, and Maintenance of Retroreflective Material § 224.105 Sheeting dimensions and quantity...

  18. EVALUATING MC AND A EFFECTIVENESS TO VERIFY THE PRESENCE OF NUCLEAR MATERIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. G. DAWSON; J. A MORZINSKI; ET AL

    Traditional materials accounting is focused exclusively on the material balance area (MBA), and involves periodically closing a material balance based on accountability measurements conducted during a physical inventory. In contrast, the physical inventory for Los Alamos National Laboratory's near-real-time accounting system is established around processes and looks more like an item inventory. That is, the intent is not to measure material for accounting purposes, since materials have already been measured in the normal course of daily operations. A given unit process operates many times over the course of a material balance period. The product of a given unit process maymore » move for processing within another unit process in the same MBA or may be transferred out of the MBA. Since few materials are unmeasured the physical inventory for a near-real-time process area looks more like an item inventory. Thus, the intent of the physical inventory is to locate the materials on the books and verify information about the materials contained in the books. Closing a materials balance for such an area is a matter of summing all the individual mass balances for the batches processed by all unit processes in the MBA. Additionally, performance parameters are established to measure the program's effectiveness. Program effectiveness for verifying the presence of nuclear material is required to be equal to or greater than a prescribed performance level, process measurements must be within established precision and accuracy values, physical inventory results meet or exceed performance requirements, and inventory differences are less than a target/goal quantity. This approach exceeds DOE established accounting and physical inventory program requirements. Hence, LANL is committed to this approach and to seeking opportunities for further improvement through integrated technologies. This paper will provide a detailed description of this evaluation process.« less

  19. Feynman variance for neutrons emitted from photo-fission initiated fission chains - a systematic simulation for selected speacal nuclear materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soltz, R. A.; Danagoulian, A.; Sheets, S.

    Theoretical calculations indicate that the value of the Feynman variance, Y2F for the emitted distribution of neutrons from ssionable exhibits a strong monotonic de- pendence on a the multiplication, M, of a quantity of special nuclear material. In 2012 we performed a series of measurements at the Passport Inc. facility using a 9- MeV bremsstrahlung CW beam of photons incident on small quantities of uranium with liquid scintillator detectors. For the set of objects studies we observed deviations in the expected monotonic dependence, and these deviations were later con rmed by MCNP simulations. In this report, we modify the theorymore » to account for the contri- bution from the initial photo- ssion and benchmark the new theory with a series of MCNP simulations on DU, LEU, and HEU objects spanning a wide range of masses and multiplication values.« less

  20. 5 CFR 842.208 - Firefighters, law enforcement officers, and nuclear materials couriers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., and nuclear materials couriers. 842.208 Section 842.208 Administrative Personnel OFFICE OF PERSONNEL... ANNUITY Eligibility § 842.208 Firefighters, law enforcement officers, and nuclear materials couriers. (a... enforcement officer or nuclear materials courier totaling 25 years; or (2) After becoming age 50 and...

  1. 10 CFR 150.21 - Transportation of special nuclear material by aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Transportation of special nuclear material by aircraft. 150.21 Section 150.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Transportation of special nuclear material by aircraft. Except as specifically approved by the Commission no...

  2. 10 CFR 150.21 - Transportation of special nuclear material by aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Transportation of special nuclear material by aircraft. 150.21 Section 150.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Transportation of special nuclear material by aircraft. Except as specifically approved by the Commission no...

  3. 10 CFR 150.21 - Transportation of special nuclear material by aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Transportation of special nuclear material by aircraft. 150.21 Section 150.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Transportation of special nuclear material by aircraft. Except as specifically approved by the Commission no...

  4. 10 CFR 150.21 - Transportation of special nuclear material by aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Transportation of special nuclear material by aircraft. 150.21 Section 150.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Transportation of special nuclear material by aircraft. Except as specifically approved by the Commission no...

  5. 10 CFR 150.21 - Transportation of special nuclear material by aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Transportation of special nuclear material by aircraft. 150.21 Section 150.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Transportation of special nuclear material by aircraft. Except as specifically approved by the Commission no...

  6. 41 CFR 101-42.1102-4 - Nuclear Regulatory Commission-controlled materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 2 2014-07-01 2012-07-01 true Nuclear Regulatory...-Special Types of Hazardous Materials and Certain Categories of Property § 101-42.1102-4 Nuclear Regulatory Commission-controlled materials. (a) General. The Nuclear Regulatory Commission (NRC) has exclusive control...

  7. 41 CFR 101-42.1102-4 - Nuclear Regulatory Commission-controlled materials.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 2 2011-07-01 2007-07-01 true Nuclear Regulatory...-Special Types of Hazardous Materials and Certain Categories of Property § 101-42.1102-4 Nuclear Regulatory Commission-controlled materials. (a) General. The Nuclear Regulatory Commission (NRC) has exclusive control...

  8. 41 CFR 101-42.1102-4 - Nuclear Regulatory Commission-controlled materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 2 2012-07-01 2012-07-01 false Nuclear Regulatory...-Special Types of Hazardous Materials and Certain Categories of Property § 101-42.1102-4 Nuclear Regulatory Commission-controlled materials. (a) General. The Nuclear Regulatory Commission (NRC) has exclusive control...

  9. 41 CFR 101-42.1102-4 - Nuclear Regulatory Commission-controlled materials.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 2 2013-07-01 2012-07-01 true Nuclear Regulatory...-Special Types of Hazardous Materials and Certain Categories of Property § 101-42.1102-4 Nuclear Regulatory Commission-controlled materials. (a) General. The Nuclear Regulatory Commission (NRC) has exclusive control...

  10. 41 CFR 101-42.1102-4 - Nuclear Regulatory Commission-controlled materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Nuclear Regulatory...-Special Types of Hazardous Materials and Certain Categories of Property § 101-42.1102-4 Nuclear Regulatory Commission-controlled materials. (a) General. The Nuclear Regulatory Commission (NRC) has exclusive control...

  11. Policy and Technical Issues Facing a Fissile Material (Cutoff) Treaty

    DOE PAGES

    von Hippel, Frank; Mian, Zia

    2015-05-18

    We report the largest obstacle to creating nuclear weapons, starting with the ones that destroyed Hiroshima and Nagasaki, has been to make sufficient quantities of fissile materials – highly enriched uranium (HEU) and plutonium – to sustain an explosive fission chain reaction.1 Recognition of this fact has, for more than fifty years, underpinned both the support for and the opposition to adoption of an international treaty banning at a minimum the production of more fissile materials for nuclear weapons, commonly referred to as a fissile material cutoff treaty (FMCT).

  12. 27 CFR 555.213 - Quantity and storage restrictions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2014-04-01 2014-04-01 false Quantity and storage..., FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Storage § 555.213 Quantity and storage restrictions. (a) Explosive materials in excess of 300,000 pounds or detonators in...

  13. 27 CFR 555.213 - Quantity and storage restrictions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2013-04-01 2013-04-01 false Quantity and storage..., FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Storage § 555.213 Quantity and storage restrictions. (a) Explosive materials in excess of 300,000 pounds or detonators in...

  14. 27 CFR 555.213 - Quantity and storage restrictions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2011-04-01 2010-04-01 true Quantity and storage..., FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Storage § 555.213 Quantity and storage restrictions. (a) Explosive materials in excess of 300,000 pounds or detonators in...

  15. Confinement of Radioactive Materials at Defense Nuclear Facilities

    DTIC Science & Technology

    2004-10-01

    The design of defense nuclear facilities includes systems whose reliable operation is vital to the protection of the public, workers, and the...final safety-class barrier to the release of hazardous materials with potentially serious public consequences. The Defense Nuclear Facilities Safety...the public at certain defense nuclear facilities . This change has resulted in downgrading of the functional safety classification of confinement

  16. Feasibility of a nuclear gauge for fuel quantity measurement aboard aircraft

    NASA Technical Reports Server (NTRS)

    Signh, J. J.; Mall, G. H.; Sprinkle, D. R.; Chegini, H.

    1986-01-01

    Capacitance fuel gauges have served as the basis for fuel quantity indicating systems in aircraft for several decades. However, there have been persistent reports by the airlines that these gauges often give faulty indications due to microbial growth and other contaminants in the fuel tanks. This report describes the results of a feasibility study of using gamma ray attenuation as the basis for measuring fuel quantity in the tanks. Studies with a weak Am-241 59.5-keV radiation source indicate that it is possible to continuously monitor the fuel quantity in the tanks to an accuracy of better than 1 percent. These measurements also indicate that there are easily measurable differences in the physical properties and resultant attenuation characteristics of JP-4, JP-5, and Jet A fuels. The experimental results, along with a suggested source-detector geometrical configuration are described.

  17. Robotics for Nuclear Material Handling at LANL:Capabilities and Needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harden, Troy A; Lloyd, Jane A; Turner, Cameron J

    Nuclear material processing operations present numerous challenges for effective automation. Confined spaces, hazardous materials and processes, particulate contamination, radiation sources, and corrosive chemical operations are but a few of the significant hazards. However, automated systems represent a significant safety advance when deployed in place of manual tasks performed by human workers. The replacement of manual operations with automated systems has been desirable for nearly 40 years, yet only recently are automated systems becoming increasingly common for nuclear materials handling applications. This paper reviews several automation systems which are deployed or about to be deployed at Los Alamos National Laboratory formore » nuclear material handling operations. Highlighted are the current social and technological challenges faced in deploying automated systems into hazardous material handling environments and the opportunities for future innovations.« less

  18. 10 CFR 110.9 - List of Nuclear Material under NRC export licensing authority.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false List of Nuclear Material under NRC export licensing authority. 110.9 Section 110.9 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL General Provisions § 110.9 List of Nuclear Material under NRC export licensing...

  19. 10 CFR 110.21 - General license for the export of special nuclear material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false General license for the export of special nuclear material. 110.21 Section 110.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Licenses § 110.21 General license for the export of special nuclear material. (a...

  20. 10 CFR 110.21 - General license for the export of special nuclear material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false General license for the export of special nuclear material. 110.21 Section 110.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Licenses § 110.21 General license for the export of special nuclear material. (a...

  1. 10 CFR 110.9 - List of Nuclear Material under NRC export licensing authority.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false List of Nuclear Material under NRC export licensing authority. 110.9 Section 110.9 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL General Provisions § 110.9 List of Nuclear Material under NRC export licensing...

  2. 10 CFR 110.9 - List of Nuclear Material under NRC export licensing authority.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false List of Nuclear Material under NRC export licensing authority. 110.9 Section 110.9 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL General Provisions § 110.9 List of Nuclear Material under NRC export licensing...

  3. 10 CFR 110.21 - General license for the export of special nuclear material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false General license for the export of special nuclear material. 110.21 Section 110.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Licenses § 110.21 General license for the export of special nuclear material. (a...

  4. 10 CFR 110.21 - General license for the export of special nuclear material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false General license for the export of special nuclear material. 110.21 Section 110.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Licenses § 110.21 General license for the export of special nuclear material. (a...

  5. 10 CFR 110.9 - List of Nuclear Material under NRC export licensing authority.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false List of Nuclear Material under NRC export licensing authority. 110.9 Section 110.9 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL General Provisions § 110.9 List of Nuclear Material under NRC export licensing...

  6. 10 CFR 110.9 - List of Nuclear Material under NRC export licensing authority.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false List of Nuclear Material under NRC export licensing authority. 110.9 Section 110.9 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL General Provisions § 110.9 List of Nuclear Material under NRC export licensing...

  7. 10 CFR 110.21 - General license for the export of special nuclear material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false General license for the export of special nuclear material. 110.21 Section 110.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Licenses § 110.21 General license for the export of special nuclear material. (a...

  8. 10 CFR 26.109 - Urine specimen quantity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Urine specimen quantity. 26.109 Section 26.109 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.109 Urine... shall encourage the donor to drink a reasonable amount of liquid (normally, 8 ounces of water every 30...

  9. 10 CFR 26.109 - Urine specimen quantity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Urine specimen quantity. 26.109 Section 26.109 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.109 Urine... shall encourage the donor to drink a reasonable amount of liquid (normally, 8 ounces of water every 30...

  10. 10 CFR 26.109 - Urine specimen quantity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Urine specimen quantity. 26.109 Section 26.109 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.109 Urine... shall encourage the donor to drink a reasonable amount of liquid (normally, 8 ounces of water every 30...

  11. Source Book of Educational Materials for Nuclear Medicine.

    ERIC Educational Resources Information Center

    Pijar, Mary Lou, Comp.; Lewis, Jeannine T., Comp.

    The contents of this sourcebook of educational materials are divided into the following sections: Anatomy and Physiology; Medical Terminology; Medical Ethics and Department Management; Patient Care and Medical Decision-Making; Basic Nuclear Medicine; Diagnostic in Vivo; Diagnostic in Vitro; Pediatric Nuclear Medicine; Radiation Detection and…

  12. Structural integrity of materials in nuclear service: a bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heddleson, F.A.

    This report contains 679 abstracts from the Nuclear Safety Information Center (NSIC) computer file dated 1973 through 1976 covering material properties with respect to structural integrity. All materials important to the nuclear industry (except concrete) are covered for mechanical properties, chemical properties, corrosion, fracture or failure, radiation damage, creep, cracking, and swelling. Keyword, author, and permuted-title indexes are included for the convenience of the user.

  13. Anomaly detection applied to a materials control and accounting database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiteson, R.; Spanks, L.; Yarbro, T.

    An important component of the national mission of reducing the nuclear danger includes accurate recording of the processing and transportation of nuclear materials. Nuclear material storage facilities, nuclear chemical processing plants, and nuclear fuel fabrication facilities collect and store large amounts of data describing transactions that involve nuclear materials. To maintain confidence in the integrity of these data, it is essential to identify anomalies in the databases. Anomalous data could indicate error, theft, or diversion of material. Yet, because of the complex and diverse nature of the data, analysis and evaluation are extremely tedious. This paper describes the authors workmore » in the development of analysis tools to automate the anomaly detection process for the Material Accountability and Safeguards System (MASS) that tracks and records the activities associated with accountable quantities of nuclear material at Los Alamos National Laboratory. Using existing guidelines that describe valid transactions, the authors have created an expert system that identifies transactions that do not conform to the guidelines. Thus, this expert system can be used to focus the attention of the expert or inspector directly on significant phenomena.« less

  14. Nuclear Technology Series. Course 21: Radioactive Materials Disposal and Management.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  15. ALD coating of nuclear fuel actinides materials

    DOEpatents

    Yacout, A. M.; Pellin, Michael J.; Yun, Di; Billone, Mike

    2017-09-05

    The invention provides a method of forming a nuclear fuel pellet of a uranium containing fuel alternative to UO.sub.2, with the steps of obtaining a fuel form in a powdered state; coating the fuel form in a powdered state with at least one layer of a material; and sintering the powdered fuel form into a fuel pellet. Also provided is a sintered nuclear fuel pellet of a uranium containing fuel alternative to UO.sub.2, wherein the pellet is made from particles of fuel, wherein the particles of fuel are particles of a uranium containing moiety, and wherein the fuel particles are coated with at least one layer between about 1 nm to about 4 nm thick of a material using atomic layer deposition, and wherein the at least one layer of the material substantially surrounds each interfacial grain barrier after the powdered fuel form has been sintered.

  16. 10 CFR 73.28 - Security background checks for secure transfer of nuclear materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Security background checks for secure transfer of nuclear materials. 73.28 Section 73.28 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Physical Protection of Special Nuclear Material in Transit § 73.28 Security...

  17. 10 CFR 73.28 - Security background checks for secure transfer of nuclear materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Security background checks for secure transfer of nuclear materials. 73.28 Section 73.28 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Physical Protection of Special Nuclear Material in Transit § 73.28 Security...

  18. 10 CFR 73.28 - Security background checks for secure transfer of nuclear materials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Security background checks for secure transfer of nuclear materials. 73.28 Section 73.28 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Physical Protection of Special Nuclear Material in Transit § 73.28 Security...

  19. 10 CFR 73.28 - Security background checks for secure transfer of nuclear materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Security background checks for secure transfer of nuclear materials. 73.28 Section 73.28 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Physical Protection of Special Nuclear Material in Transit § 73.28 Security...

  20. 10 CFR 73.28 - Security background checks for secure transfer of nuclear materials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Security background checks for secure transfer of nuclear materials. 73.28 Section 73.28 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Physical Protection of Special Nuclear Material in Transit § 73.28 Security...

  1. Nuclear Resonance Fluorescence for Materials Assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quiter, Brian; Ludewigt, Bernhard; Mozin, Vladimir

    This paper discusses the use of nuclear resonance fluorescence (NRF) techniques for the isotopic and quantitative assaying of radioactive material. Potential applications include age-dating of an unknown radioactive source, pre- and post-detonation nuclear forensics, and safeguards for nuclear fuel cycles Examples of age-dating a strong radioactive source and assaying a spent fuel pin are discussed. The modeling work has ben performed with the Monte Carlo radiation transport computer code MCNPX, and the capability to simulate NRF has bee added to the code. Discussed are the limitations in MCNPX's photon transport physics for accurately describing photon scattering processes that are importantmore » contributions to the background and impact the applicability of the NRF assay technique.« less

  2. Nuclear Resonance Fluorescence for Materials Assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quiter, Brian J.; Ludewigt, Bernhard; Mozin, Vladimir

    This paper discusses the use of nuclear resonance fluorescence (NRF) techniques for the isotopic and quantitative assaying of radioactive material. Potential applications include age-dating of an unknown radioactive source, pre- and post-detonation nuclear forensics, and safeguards for nuclear fuel cycles Examples of age-dating a strong radioactive source and assaying a spent fuel pin are discussed. The modeling work has ben performed with the Monte Carlo radiation transport computer code MCNPX, and the capability to simulate NRF has bee added to the code. Discussed are the limitations in MCNPX?s photon transport physics for accurately describing photon scattering processes that are importantmore » contributions to the background and impact the applicability of the NRF assay technique.« less

  3. 49 CFR 173.4a - Excepted quantities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of withstanding without leakage the pressure differential specified in § 173.27(c) of this part. (b... ice), and lithium batteries and cells. (c) Inner packaging limits. The maximum quantity of hazardous..., rigid outer packaging. (5) Placement of the material in the package or packing different materials in...

  4. 10 CFR 150.16 - Submission to Commission of nuclear material transaction reports.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Submission to Commission of nuclear material transaction reports. 150.16 Section 150.16 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Authority in Agreement States § 150.16 Submission to Commission of nuclear material transaction reports. (a...

  5. 10 CFR 150.16 - Submission to Commission of nuclear material transaction reports.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Submission to Commission of nuclear material transaction reports. 150.16 Section 150.16 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Authority in Agreement States § 150.16 Submission to Commission of nuclear material transaction reports. (a...

  6. 10 CFR 150.16 - Submission to Commission of nuclear material transaction reports.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Submission to Commission of nuclear material transaction reports. 150.16 Section 150.16 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Authority in Agreement States § 150.16 Submission to Commission of nuclear material transaction reports. (a...

  7. 10 CFR 150.16 - Submission to Commission of nuclear material transaction reports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Submission to Commission of nuclear material transaction reports. 150.16 Section 150.16 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Authority in Agreement States § 150.16 Submission to Commission of nuclear material transaction reports. (a...

  8. 10 CFR 150.17 - Submission to Commission of nuclear material status reports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Submission to Commission of nuclear material status reports. 150.17 Section 150.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Authority in Agreement States § 150.17 Submission to Commission of nuclear material status reports. (a...

  9. 10 CFR 150.17 - Submission to Commission of nuclear material status reports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Submission to Commission of nuclear material status reports. 150.17 Section 150.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Authority in Agreement States § 150.17 Submission to Commission of nuclear material status reports. (a...

  10. 10 CFR 150.17 - Submission to Commission of nuclear material status reports.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Submission to Commission of nuclear material status reports. 150.17 Section 150.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Authority in Agreement States § 150.17 Submission to Commission of nuclear material status reports. (a...

  11. 10 CFR 150.17 - Submission to Commission of nuclear material status reports.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Submission to Commission of nuclear material status reports. 150.17 Section 150.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Authority in Agreement States § 150.17 Submission to Commission of nuclear material status reports. (a...

  12. 10 CFR 150.17 - Submission to Commission of nuclear material status reports.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Submission to Commission of nuclear material status reports. 150.17 Section 150.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Authority in Agreement States § 150.17 Submission to Commission of nuclear material status reports. (a...

  13. NUCLEAR MATERIAL ATTRACTIVENESS: AN ASSESSMENT OF MATERIAL ASSOCIATED WITH A CLOSED FUEL CYCLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bathke, C. G.; Ebbinghaus, B.; Sleaford, Brad W.

    2010-06-11

    This paper examines the attractiveness of materials mixtures containing special nuclear materials (SNM) associated with the various processing steps required for a closed fuel cycle. This paper combines the results from earlier studies that examined the attractiveness of SNM associated with the processing of spent light water reactor (LWR) fuel by various reprocessing schemes and the recycle of plutonium as a mixed oxide (MOX) fuel in LWR with new results for the final, repeated burning of SNM in fast-spectrum reactors: fast reactors and accelerator driven systems (ADS). The results of this paper suggest that all reprocessing products evaluated so farmore » need to be rigorously safeguarded and provided moderate to high levels of physical protection. These studies were performed at the request of the United States Department of Energy (DOE), and are based on the calculation of "attractiveness levels" that has been couched in terms chosen for consistency with those normally used for nuclear materials in DOE nuclear facilities. The methodology and key findings will be presented. Additionally, how these attractiveness levels relate to proliferation resistance (e.g. by increasing impediments to the diversion, theft, or undeclared production of SNM for the purpose of acquiring a nuclear weapon), and how they could be used to help inform policy makers, will be discussed.« less

  14. 10 CFR 70.20a - General license to possess special nuclear material for transport.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false General license to possess special nuclear material for transport. 70.20a Section 70.20a Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL General Licenses § 70.20a General license to possess special nuclear material for...

  15. 10 CFR 70.20a - General license to possess special nuclear material for transport.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false General license to possess special nuclear material for transport. 70.20a Section 70.20a Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL General Licenses § 70.20a General license to possess special nuclear material for...

  16. 10 CFR 70.20a - General license to possess special nuclear material for transport.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false General license to possess special nuclear material for transport. 70.20a Section 70.20a Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL General Licenses § 70.20a General license to possess special nuclear material for...

  17. 10 CFR 70.20a - General license to possess special nuclear material for transport.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false General license to possess special nuclear material for transport. 70.20a Section 70.20a Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL General Licenses § 70.20a General license to possess special nuclear material for...

  18. 10 CFR 70.20a - General license to possess special nuclear material for transport.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false General license to possess special nuclear material for transport. 70.20a Section 70.20a Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL General Licenses § 70.20a General license to possess special nuclear material for...

  19. Los Alamos Using Neutrons to Stop Nuclear Smugglers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Favalli, Andrea; Swinhoe, Martyn; Roark, Kevin

    Los Alamos National Laboratory researchers have successfully demonstrated for the first time that laser-generated neutrons can be enlisted as a useful tool in the War on Terror. The international research team used the short-pulse laser at Los Alamos's TRIDENT facility to generate a neutron beam with novel characteristics that interrogated a closed container to confirm the presence and quantity of nuclear material inside. The successful experiment paves the way for creation of a table-top-sized or truck-mounted neutron generator that could be installed at strategic locations worldwide to thwart smugglers trafficking in nuclear materials.

  20. Los Alamos Using Neutrons to Stop Nuclear Smugglers

    ScienceCinema

    Favalli, Andrea; Swinhoe, Martyn; Roark, Kevin

    2018-02-14

    Los Alamos National Laboratory researchers have successfully demonstrated for the first time that laser-generated neutrons can be enlisted as a useful tool in the War on Terror. The international research team used the short-pulse laser at Los Alamos's TRIDENT facility to generate a neutron beam with novel characteristics that interrogated a closed container to confirm the presence and quantity of nuclear material inside. The successful experiment paves the way for creation of a table-top-sized or truck-mounted neutron generator that could be installed at strategic locations worldwide to thwart smugglers trafficking in nuclear materials.

  1. Savannah River Site nuclear materials management plan FY 2017-2031

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magoulas, V.

    The purpose of the Nuclear Materials Management Plan (herein referred to as “this Plan”) is to integrate and document the activities required to disposition the legacy and/or surplus Enriched Uranium (EU) and Plutonium (Pu) and other nuclear materials already stored or anticipated to be received by facilities at the Department of Energy (DOE) Savannah River Site (SRS) as well as the activities to support the DOE Tritium mission. It establishes a planning basis for EU and Pu processing operations in Environmental Management Operations (EMO) facilities through the end of their program missions and for the tritium through the National Nuclearmore » Security Administration (NNSA) Defense Programs (DP) facilities. Its development is a joint effort among the Department of Energy - Savannah River (DOE-SR), DOE – Environmental Management (EM), NNSA Office of Material Management and Minimization (M3), NNSA Savannah River Field Office (SRFO), and the Management and Operations (M&O) contractor, Savannah River Nuclear Solutions, LLC (SRNS). Life-cycle program planning for Nuclear Materials Stabilization and Disposition and the Tritium Enterprise may use this Plan as a basis for the development of the nuclear materials disposition scope and schedule. This Plan assumes full funding to accomplish the required project and operations activities. It is recognized that some aspects of this Plan are pre decisional with regard to National Environmental Policy Act (NEPA); in such cases new NEPA actions will be required.« less

  2. Delayed Gamma-Ray Spectroscopy for Non-Destructive Assay of Nuclear Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludewigt, Bernhard; Mozin, Vladimir; Campbell, Luke

    2015-06-01

    High-­energy, beta-delayed gamma-­ray spectroscopy is a potential, non-­destructive assay techniques for the independent verification of declared quantities of special nuclear materials at key stages of the fuel cycle and for directly assaying nuclear material inventories for spent fuel handling, interim storage, reprocessing facilities, repository sites, and final disposal. Other potential applications include determination of MOX fuel composition, characterization of nuclear waste packages, and challenges in homeland security and arms control verification. Experimental measurements were performed to evaluate fission fragment yields, to test methods for determining isotopic fractions, and to benchmark the modeling code package. Experimental measurement campaigns were carried outmore » at the IAC using a photo-­neutron source and at OSU using a thermal neutron beam from the TRIGA reactor to characterize the emission of high-­energy delayed gamma rays from 235U, 239Pu, and 241Pu targets following neutron induced fission. Data were collected for pure and combined targets for several irradiation/spectroscopy cycle times ranging from 10/10 seconds to 15/30 minutes.The delayed gamma-ray signature of 241Pu, a significant fissile constituent in spent fuel, was measured and compared to 239Pu. The 241Pu/ 239Pu ratios varied between 0.5 and 1.2 for ten prominent lines in the 2700-­3600 keV energy range. Such significant differences in relative peak intensities make it possible to determine relative fractions of these isotopes in a mixed sample. A method for determining fission product yields by fitting the energy and time dependence of the delayed gamma-­ray emission was developed and demonstrated on a limited 235U data set. De-­convolution methods for determining fissile fractions were developed and tested on the experimental data. The use of high count-­rate LaBr 3 detectors was investigated as a potential alternative to HPGe detectors. Modeling capabilities

  3. IMPROVED TECHNNOLOGY TO PREVENT ILLICIT TRAFFICKING IN NUCLEAR MATERIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, J H

    2005-07-20

    The proliferation of nuclear, chemical, and biological weapons (collectively known as weapons of mass destruction, or WMD) and the potential acquisition and use of WMD against the world by terrorists are extremely serious threats to international security. These threats are complex and interrelated. There are myriad routes to weapons of mass destruction--many different starting materials, material sources, and production processes. There are many possible proliferators--threshold countries, rogue states, state-sponsored or transnational terrorists groups, domestic terrorists, and even international crime organizations. Motives for acquiring and using WMD are similarly wide ranging--from a desire to change the regional power balance, deny accessmore » to a strategic area, or alter international policy to extortion, revenge, or hate. Because of the complexity of this threat landscape, no single program, technology, or capability--no silver bullet--can solve the WMD proliferation and terrorism problem. An integrated program is needed that addresses the WMD proliferation and terrorism problem from end to end, from prevention to detection, reversal, and response, while avoiding surprise at all stages, with different activities directed specifically at different types of WMD and proliferators. Radiation detection technologies are an important tool in the prevention of proliferation. A variety of new developments have enabled enhanced performance in terms of energy resolution, spatial resolution, predictive modeling and simulation, active interrogation, and ease of operation and deployment in the field. The radiation properties of nuclear materials, particularly highly enriched uranium (HEU), make the detection of smuggled nuclear materials technically difficult. A number of efforts are under way to devise improved detector materials and instruments and to identify novel signatures that could be detected. Key applications of this work include monitoring for radioactive

  4. Technical approaches to reducing the threat of nuclear terrorism

    NASA Astrophysics Data System (ADS)

    Priedhorsky, William C.

    2005-04-01

    The threat of a nuclear attack on the United States by terrorists using a smuggled weapon is now considered more likely than an attack by a nuclear-armed ballistic missle. Consequently it is important to understand what can be done to detect and intercept a nuclear weapon being smuggled into the United States. A significant quantity of smuggled nuclear material has been intercepted already, but science and technology have so far contributed little to its interception. The critical special nuclear materials, plutonium and highly enriched uranium, are only weakly radioactive and detection of their radioactivity is limited both by atmospheric attenuation and by competition with natural backgrounds. Although many schemes for long-range detection of radioactivity have been proposed, none so far appears feasible. Detection of nuclear radiation can be improved using new technologies and sensing systems, but it will still be possible only at relatively small distances. Consequently the best approach to containing dangerous nuclear materials is at their sources; containment within lengthy borders and large areas is extremely difficult.

  5. Real-Time Characterization of Special Nuclear Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walston, Sean; Candy, Jim; Chambers, Dave

    2015-09-04

    When confronting an item that may contain nuclear material, it is urgently necessary to determine its characteristics. Our goal is to provide accurate information with high-con dence as rapidly as possible.

  6. SHIELDING AND DETECTOR RESPONSE CALCULATIONS PERTAINING TO CATEGORY 1 QUANTITIES OF PLUTONIUM AND HAND-HELD PLASTIC SCINTILLATORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couture, A.

    2013-06-07

    Nuclear facilities sometimes use hand-held plastic scintillator detectors to detect attempts to divert special nuclear material in situations where portal monitors are impractical. MCNP calculations have been performed to determine the neutron and gamma radiation field arising from a Category I quantity of weapons-grade plutonium in various shielding configurations. The shields considered were composed of combinations of lead and high-density polyethylene such that the mass of the plutonium plus shield was 22.7 kilograms. Monte-Carlo techniques were also used to determine the detector response to each of the shielding configurations. The detector response calculations were verified using field measurements of high-,more » medium-, and low- energy gamma-ray sources as well as a Cf-252 neutron source.« less

  7. Nuclear materials 1993 annual report. Volume 8, No. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-05-01

    This annual report of the US Nuclear Regulatory Commission`s Office for Analysis and Evaluation of Operational Data (AEOD) describes activities conducted during 1993. The report is published in two parts. NUREG-1272, Vol. 8, No. 1, covers power reactors and presents an overview of the operating experience of the nuclear power industry from the NRC perspective, including comments about the trends of some key performance measures. The report also includes the principal findings and issues identified in AEOD studies over the past year and summarizes information from such sources as licensee event reports, diagnostic evaluations, and reports to the NRC`s Operationsmore » Center. NUREG-1272, Vol. 8, No. 2, covers nuclear materials and presents a review of the events and concerns during 1993 associated with the use of licensed material in nonreactor applications, such as personnel overexposures and medical misadministrations. Note that the subtitle of No. 2 has been changed from ``Nonreactors`` to ``Nuclear Materials.`` Both reports also contain a discussion of the Incident Investigation Team program and summarize both the Incident Investigation Team and Augmented Inspection Team reports. Each volume contains a list of the AEOD reports issued from 1980 through 1993.« less

  8. Inverse Analysis of Irradiated NuclearMaterial Gamma Spectra via Nonlinear Optimization

    NASA Astrophysics Data System (ADS)

    Dean, Garrett James

    Nuclear forensics is the collection of technical methods used to identify the provenance of nuclear material interdicted outside of regulatory control. Techniques employed in nuclear forensics include optical microscopy, gas chromatography, mass spectrometry, and alpha, beta, and gamma spectrometry. This dissertation focuses on the application of inverse analysis to gamma spectroscopy to estimate the history of pulse irradiated nuclear material. Previous work in this area has (1) utilized destructive analysis techniques to supplement the nondestructive gamma measurements, and (2) been applied to samples composed of spent nuclear fuel with long irradiation and cooling times. Previous analyses have employed local nonlinear solvers, simple empirical models of gamma spectral features, and simple detector models of gamma spectral features. The algorithm described in this dissertation uses a forward model of the irradiation and measurement process within a global nonlinear optimizer to estimate the unknown irradiation history of pulse irradiated nuclear material. The forward model includes a detector response function for photopeaks only. The algorithm uses a novel hybrid global and local search algorithm to quickly estimate the irradiation parameters, including neutron fluence, cooling time and original composition. Sequential, time correlated series of measurements are used to reduce the uncertainty in the estimated irradiation parameters. This algorithm allows for in situ measurements of interdicted irradiated material. The increase in analysis speed comes with a decrease in information that can be determined, but the sample fluence, cooling time, and composition can be determined within minutes of a measurement. Furthermore, pulse irradiated nuclear material has a characteristic feature that irradiation time and flux cannot be independently estimated. The algorithm has been tested against pulse irradiated samples of pure special nuclear material with cooling times of

  9. The Task of Detecting Illicit Nuclear Material: Status and Challenges

    NASA Astrophysics Data System (ADS)

    Kouzes, Richard

    2006-04-01

    In August 1994, police at the Munich airport intercepted a suitcase from Moscow with half a kilogram of nuclear-reactor fuel, of which 363 grams was weapons- grade plutonium. A few months later police seized 2.7 kilograms of highly enriched uranium from a former worker at a Russian nuclear institute and his accomplices in Prague. These are just two of 18 incidents involving the smuggling of weapons grade nuclear materials between 1993 and 2004 reported by the International Atomic Energy Agency. The consequences of a stolen or improvised nuclear device being exploded in a U.S. city would be world changing. The concern over the possibility of a nuclear weapon, or the material for a weapon or a radiological dispersion device, being smuggled across U.S. borders has led to the deployment of radiation detection equipment at the borders. Related efforts are occurring around the world. Radiation portal monitors are used as the main screening tool, supplemented by handheld detectors, personal radiation detectors, and x-ray imaging systems. Passive detection techniques combined with imaging, and possibly active techniques, are the current available tools for screening cargo for items of concern. There are a number of physics limitations to what is possible with each technology given the presence of naturally occurring radioactive materials, commercial sources, and medical radionuclides in the stream of commerce. There have been a number of lessons learned to date from the various efforts in the U.S. and internationally about the capability for interdicting illicit nuclear material.

  10. Methodology to Estimate the Quantity, Composition, and ...

    EPA Pesticide Factsheets

    This report, Methodology to Estimate the Quantity, Composition and Management of Construction and Demolition Debris in the US, was developed to expand access to data on CDD in the US and to support research on CDD and sustainable materials management. Since past US EPA CDD estimates have been limited to building-related CDD, a goal in the development of this methodology was to use data originating from CDD facilities and contractors to better capture the current picture of total CDD management, including materials from roads, bridges and infrastructure. This report, Methodology to Estimate the Quantity, Composition and Management of Construction and Demolition Debris in the US, was developed to expand access to data on CDD in the US and to support research on CDD and sustainable materials management. Since past US EPA CDD estimates have been limited to building-related CDD, a goal in the development of this methodology was to use data originating from CDD facilities and contractors to better capture the current picture of total CDD management, including materials from roads, bridges and infrastructure.

  11. The ``Nuclear Renaissance'' and the Spread of Nuclear Weapons

    NASA Astrophysics Data System (ADS)

    Lyman, Edwin S.

    2007-05-01

    As interest grows around the world in nuclear power as an energy source that could help control greenhouse gas emissions, some have proclaimed the arrival of a ``nuclear renaissance.'' But can the increased risks of more nuclear power be managed? The political crisis surrounding Iran's pursuit of uranium enrichment has exposed weaknesses in the nuclear nonproliferation regime. Also, al Qaeda's declared interest in weapons of mass destruction raises the concern that terrorists could acquire nuclear weapons by stealing materials from poorly secured facilities. Growth of nuclear energy would require the construction of many additional uranium enrichment plants. And the generation of more spent nuclear fuel without a credible waste disposal strategy would increase political support for reprocessing, which separates large quantities of weapon-usable plutonium from spent fuel. There is little evidence that the various institutional arrangements and technical schemes proposed to mitigate the security risks of a major nuclear expansion would be effective. This talk will focus on the measures necessary to allow large-scale global growth of nuclear power without resulting in an unacceptably high risk of nuclear proliferation and nuclear terrorism, and will discuss the feasibility of such measures. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.OSS07.E1.2

  12. Isotopic Ratios of Samarium by TIMS for Nuclear Forensic Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louis Jean, James; Inglis, Jeremy David

    The isotopic ratio of Nd, Sm, and Gd can provide important information regarding fissile material (nuclear devices, reactors), neutron environment, and device yield. These studies require precise measurement of Sm isotope ratios, by either TIMS or MC-ICP-MS. There has been an increasing trend to measure smaller and smaller quantities of Sm bearing samples. In nuclear forensics 10-100 ng of Sm are needed for precise measurement. To measure sub-ng Sm samples using TIMS for nuclear forensic analysis.

  13. 10 CFR 74.33 - Nuclear material control and accounting for uranium enrichment facilities authorized to produce...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... enrichment facilities authorized to produce special nuclear material of low strategic significance. 74.33... NUCLEAR MATERIAL Special Nuclear Material of Low Strategic Significance § 74.33 Nuclear material control... strategic significance. (a) General performance objectives. Each licensee who is authorized by this chapter...

  14. 10 CFR 76.115 - Special nuclear material of moderate strategic significance-Category II.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Special nuclear material of moderate strategic significance-Category II. 76.115 Section 76.115 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.115 Special nuclear material of moderate...

  15. 10 CFR 11.16 - Cancellation of request for special nuclear material access authorization.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Cancellation of request for special nuclear material access authorization. 11.16 Section 11.16 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING ELIGIBILITY FOR ACCESS TO OR CONTROL OVER SPECIAL NUCLEAR MATERIAL Requirements for...

  16. 10 CFR 76.115 - Special nuclear material of moderate strategic significance-Category II.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Special nuclear material of moderate strategic significance-Category II. 76.115 Section 76.115 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.115 Special nuclear material of moderate...

  17. 10 CFR 11.16 - Cancellation of request for special nuclear material access authorization.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Cancellation of request for special nuclear material access authorization. 11.16 Section 11.16 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING ELIGIBILITY FOR ACCESS TO OR CONTROL OVER SPECIAL NUCLEAR MATERIAL Requirements for...

  18. 10 CFR 76.115 - Special nuclear material of moderate strategic significance-Category II.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Special nuclear material of moderate strategic significance-Category II. 76.115 Section 76.115 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.115 Special nuclear material of moderate...

  19. 10 CFR 76.115 - Special nuclear material of moderate strategic significance-Category II.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Special nuclear material of moderate strategic significance-Category II. 76.115 Section 76.115 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.115 Special nuclear material of moderate...

  20. 10 CFR 11.16 - Cancellation of request for special nuclear material access authorization.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Cancellation of request for special nuclear material access authorization. 11.16 Section 11.16 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING ELIGIBILITY FOR ACCESS TO OR CONTROL OVER SPECIAL NUCLEAR MATERIAL Requirements for...

  1. 10 CFR 76.115 - Special nuclear material of moderate strategic significance-Category II.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Special nuclear material of moderate strategic significance-Category II. 76.115 Section 76.115 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.115 Special nuclear material of moderate...

  2. 10 CFR 72.74 - Reports of accidental criticality or loss of special nuclear material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... nuclear material. 72.74 Section 72.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR... accidental criticality or loss of special nuclear material. (a) Each licensee shall notify the NRC Operations...

  3. 10 CFR 72.74 - Reports of accidental criticality or loss of special nuclear material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... nuclear material. 72.74 Section 72.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR... accidental criticality or loss of special nuclear material. (a) Each licensee shall notify the NRC Operations...

  4. 10 CFR 72.74 - Reports of accidental criticality or loss of special nuclear material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... nuclear material. 72.74 Section 72.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR... accidental criticality or loss of special nuclear material. (a) Each licensee shall notify the NRC Operations...

  5. 10 CFR 72.74 - Reports of accidental criticality or loss of special nuclear material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... nuclear material. 72.74 Section 72.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR... accidental criticality or loss of special nuclear material. (a) Each licensee shall notify the NRC Operations...

  6. 10 CFR 72.74 - Reports of accidental criticality or loss of special nuclear material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... nuclear material. 72.74 Section 72.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR... accidental criticality or loss of special nuclear material. (a) Each licensee shall notify the NRC Operations...

  7. 75 FR 44072 - Export and Import of Nuclear Equipment and Material; Updates and Clarifications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-28

    ... Energy Act. Retransfers of special nuclear material produced through the use of U.S.-obligated material... the Atomic Energy Act that apply to imports of special nuclear, source or byproduct material are... NUCLEAR REGULATORY COMMISSION 10 CFR Part 110 [NRC-2008-0567] RIN 3150-AI16 Export and Import of...

  8. 10 CFR 76.117 - Special nuclear material of low strategic significance-Category III.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Special nuclear material of low strategic significance-Category III. 76.117 Section 76.117 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.117 Special nuclear material of low strategic...

  9. 10 CFR 76.117 - Special nuclear material of low strategic significance-Category III.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Special nuclear material of low strategic significance-Category III. 76.117 Section 76.117 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.117 Special nuclear material of low strategic...

  10. 10 CFR 76.117 - Special nuclear material of low strategic significance-Category III.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Special nuclear material of low strategic significance-Category III. 76.117 Section 76.117 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.117 Special nuclear material of low strategic...

  11. 10 CFR 76.117 - Special nuclear material of low strategic significance-Category III.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Special nuclear material of low strategic significance-Category III. 76.117 Section 76.117 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.117 Special nuclear material of low strategic...

  12. 10 CFR 76.117 - Special nuclear material of low strategic significance-Category III.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Special nuclear material of low strategic significance-Category III. 76.117 Section 76.117 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.117 Special nuclear material of low strategic...

  13. Advanced ceramic materials for next-generation nuclear applications

    NASA Astrophysics Data System (ADS)

    Marra, John

    2011-10-01

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high

  14. Fundamental considerations in dynamic fracture in nuclear materials

    NASA Astrophysics Data System (ADS)

    Cady, Carl; Eastwood, David; Bourne, Neil; Pei, Ruizhi; Mummery, Paul; Rau, Christoph

    2017-06-01

    The structural integrity of components used in nuclear power plants is the biggest concern of operators. A diverse range of materials, loading, prior histories and environmental conditions, leads to a complex operating environment. An experimental technique has been developed to characterize brittle materials and using linear elastic fracture mechanics, has given accurate measurements of the fracture toughness of materials. X-ray measurements were used to track the crack front as a function of loading parameters as well as determine the crack surface area as loads increased. This X-ray tomographic study of dynamic fracture in beryllium indicates the onset of damage within the target as load is increased. Similarly, measurements on nuclear graphite were conducted to evaluate the technique. This new, quantitative information obtained using the X-ray techniques has shown application in other materials. These materials exhibited a range of brittle and ductile responses that will test our modelling schemes for fracture. Further visualization of crack front advance and the correlated strain fields that are generated during the experiment for the two distinct deformation processes provide a vital step in validating new multiscale predicative modelling.

  15. The Science of Nuclear Materials: A Modular, Laboratory-based Curriculum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cahill, C.L., E-mail: cahill@gwu.edu; Feldman, G.; Briscoe, W.J.

    The development of a curriculum for nuclear materials courses targeting students pursuing Master of Arts degrees at The George Washington University is described. The courses include basic concepts such as radiation and radioactivity as well as more complex topics such the nuclear fuel cycle, nuclear weapons, radiation detection and technological aspects of non-proliferation.

  16. Predictive aging results for cable materials in nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillen, K.T.; Clough, R.L.

    1990-11-01

    In this report, we provide a detailed discussion of methodology of predicting cable degradation versus dose rate, temperature, and exposure time and its application to data obtained on a number of additional nuclear power plant cable insulation (a hypalon, a silicon rubber and two ethylenetetrafluoroethylenes) and jacket (a hypalon) materials. We then show that the predicted, low-dose-rate results for our materials are in excellent agreement with long-term (7 to 9 years), low dose-rate results recently obtained for the same material types actually aged under nuclear power plant conditions. Based on a combination of the modelling and long-term results, we findmore » indications of reasonably similar degradation responses among several different commercial formulations for each of the following generic'' materials: hypalon, ethylenetetrafluoroethylene, silicone rubber and PVC. If such generic'' behavior can be further substantiated through modelling and long-term results on additional formulations, predictions of cable life for other commercial materials of the same generic types would be greatly facilitated. Finally, to aid utilities in their cable life extension decisions, we utilize our modelling results to generate lifetime prediction curves for the materials modelled to data. These curves plot expected material lifetime versus dose rate and temperature down to the levels of interest to nuclear power plant aging. 18 refs., 30 figs., 3 tabs.« less

  17. The Future of Nuclear Archaeology: Reducing Legacy Risks of Weapons Fissile Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Thomas W.; Reid, Bruce D.; Toomey, Christopher M.

    2014-01-01

    This report describes the value proposition for a "nuclear archeological" technical capability and applications program, targeted at resolving uncertainties regarding fissile materials production and use. At its heart, this proposition is that we can never be sure that all fissile material is adequately secure without a clear idea of what "all" means, and that uncertainty in this matter carries risk. We argue that this proposition is as valid today, under emerging state and possible non-state nuclear threats, as it was in an immediate post-Cold-War context, and describe how nuclear archeological methods can be used to verify fissile materials declarations, ormore » estimate and characterize historical fissile materials production independently of declarations.« less

  18. Rattling Nucleons: New Developments in Active Interrogation of Special Nuclear Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert C. Runkle; David L. Chichester; Scott J. Thompson

    2012-01-01

    Active interrogation is a vigorous area of research and development due to its promise of offering detection and characterization capabilities of special nuclear material in environments where passive detection fails. The primary value added by active methods is the capability to penetrate shielding - special nuclear material itself, incidental materials, or intentional shielding - and advocates hope that active interrogation will provide a solution to the problem of detecting shielded uranium, which is at present the greatest obstacle to interdiction efforts. The technique also provides a unique benefit for quantifying nuclear material in high background-radiation environments, an area important formore » nuclear material safeguards and material accountancy. Progress has been made in the field of active interrogation on several fronts, most notably in the arenas of source development, systems integration, and the integration and exploitation of multiple fission and non-fission signatures. But penetration of interrogating radiation often comes at a cost, not only in terms of finance and dose but also in terms of induced backgrounds, system complexity, and extended measurement times (including set up and acquisition). These costs make the calculus for deciding to implement active interrogation more subtle than may be apparent. The purpose of this review is thus to examine existing interrogation methods, compare and contrast their attributes and limitations, and identify missions where active interrogation may hold the most promise.« less

  19. Rattling nucleons: New developments in active interrogation of special nuclear material

    NASA Astrophysics Data System (ADS)

    Runkle, Robert C.; Chichester, David L.; Thompson, Scott J.

    2012-01-01

    Active interrogation is a vigorous area of research and development due to its promise of offering detection and characterization capabilities of special nuclear material in environments where passive detection fails. The primary value added by active methods is the capability to penetrate shielding—special nuclear material itself, incidental materials, or intentional shielding—and advocates hope that active interrogation will provide a solution to the problem of detecting shielded uranium, which is at present the greatest obstacle to interdiction efforts. The technique also provides a unique benefit for quantifying nuclear material in high background-radiation environments, an area important for nuclear material safeguards and material accountancy. Progress has been made in the field of active interrogation on several fronts, most notably in the arenas of source development, systems integration, and the integration and exploitation of multiple fission and non-fission signatures. But penetration of interrogating radiation often comes at a cost, not only in terms of finance and dose but also in terms of induced backgrounds, system complexity, and extended measurement times (including set up and acquisition). These costs make the calculus for deciding to implement active interrogation more subtle than may be apparent. The purpose of this review is thus to examine existing interrogation methods, compare and contrast their attributes and limitations, and identify missions where active interrogation may hold the most promise.

  20. Parallel algorithms for islanded microgrid with photovoltaic and energy storage systems planning optimization problem: Material selection and quantity demand optimization

    NASA Astrophysics Data System (ADS)

    Cao, Yang; Liu, Chun; Huang, Yuehui; Wang, Tieqiang; Sun, Chenjun; Yuan, Yue; Zhang, Xinsong; Wu, Shuyun

    2017-02-01

    With the development of roof photovoltaic power (PV) generation technology and the increasingly urgent need to improve supply reliability levels in remote areas, islanded microgrid with photovoltaic and energy storage systems (IMPE) is developing rapidly. The high costs of photovoltaic panel material and energy storage battery material have become the primary factors that hinder the development of IMPE. The advantages and disadvantages of different types of photovoltaic panel materials and energy storage battery materials are analyzed in this paper, and guidance is provided on material selection for IMPE planners. The time sequential simulation method is applied to optimize material demands of the IMPE. The model is solved by parallel algorithms that are provided by a commercial solver named CPLEX. Finally, to verify the model, an actual IMPE is selected as a case system. Simulation results on the case system indicate that the optimization model and corresponding algorithm is feasible. Guidance for material selection and quantity demand for IMPEs in remote areas is provided by this method.

  1. NUCLEAR REACTOR COMPENENT CLADDING MATERIAL

    DOEpatents

    Draley, J.E.; Ruther, W.E.

    1959-01-27

    Fuel elements and coolant tubes used in nuclear reactors of the heterogeneous, water-cooled type are described, wherein the coolant tubes extend through the moderator and are adapted to contain the fuel elements. The invention comprises forming the coolant tubes and the fuel element cladding material from an alloy of aluminum and nickel, or an alloy of aluminum, nickel, alloys are selected to prevent intergranular corrosion of these components by water at temperatures up to 35O deg C.

  2. Scanning of vehicles for nuclear materials

    NASA Astrophysics Data System (ADS)

    Katz, J. I.

    2014-05-01

    Might a nuclear-armed terrorist group or state use ordinary commerce to deliver a nuclear weapon by smuggling it in a cargo container or vehicle? This delivery method would be the only one available to a sub-state actor, and it might enable a state to make an unattributed attack. Detection of a weapon or fissile material smuggled in this manner is difficult because of the large volume and mass available for shielding. Here I review methods for screening cargo containers to detect the possible presence of nuclear threats. Because of the large volume of innocent international commerce, and the cost and disruption of secondary screening by opening and inspection, it is essential that the method be rapid and have a low false-positive rate. Shielding can prevent the detection of neutrons emitted spontaneously or by induced fission. The two promising methods are muon tomography and high energy X-radiography. If they do not detect a shielded threat object they can detect the shield itself.

  3. Effect of Nuclear Radiation on Materials at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Schwanbeck, C. A.

    1965-01-01

    The tensile properties for 33 polycrystalline structural materials including aluminum, titanium, nickel and iron alloys were obtained at -256.5 C (30 deg R) after irradiation exposure at this temperature to 10(exp 17) nvt (E greater than 0.5 Mev), at -256.5 C without previous irradiation, and at approximately 27 C (540 deg R) without previous irradiation. The data were evaluated statistically to permit identification of cryogenic effects and nuclear-cryogenic effects. A number of conclusions were drawn regarding suitability of certain of the materials for use in nuclear-cryogenic applications and regarding the need for further investigation.

  4. Long Duration Hot Hydrogen Exposure of Nuclear Thermal Rocket Materials

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Hickman, Robert; Dobson, Chris; Clifton, Scooter

    2007-01-01

    An arc-heater driven hyper-thermal convective environments simulator was recently developed and commissioned for long duration hot hydrogen exposure of nuclear thermal rocket materials. This newly established non-nuclear testing capability uses a high-power, multi-gas, wall-stabilized constricted arc-heater to .produce high-temperature pressurized hydrogen flows representative of nuclear reactor core environments, excepting radiation effects, and is intended to serve as a low cost test facility for the purpose of investigating and characterizing candidate fuel/structural materials and improving associated processing/fabrication techniques. Design and engineering development efforts are fully summarized, and facility operating characteristics are reported as determined from a series of baseline performance mapping runs and long duration capability demonstration tests.

  5. NUCLEAR MATERIAL ATTRACTIVENESS: AN ASSESSMENT OF MATERIAL FROM PHWR'S IN A CLOSED THORIUM FUEL CYCLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sleaford, B W; Collins, B A; Ebbinghaus, B B

    2010-04-26

    This paper examines the attractiveness of material mixtures containing special nuclear materials (SNM) associated with reprocessing and the thorium-based LWR fuel cycle. This paper expands upon the results from earlier studies that examined the attractiveness of SNM associated with the reprocessing of spent light water reactor (LWR) fuel by various reprocessing schemes and the recycle of plutonium as a mixed oxide (MOX) fuel in LWR. This study shows that {sup 233}U that is produced in thorium-based fuel cycles is very attractive for weapons use. Consistent with other studies, these results also show that all fuel cycles examined to date needmore » to be rigorously safeguarded and provided moderate to high levels of physical protection. These studies were performed at the request of the United States Department of Energy (DOE), and are based on the calculation of 'attractiveness levels' that has been couched in terms chosen for consistency with those normally used for nuclear materials in DOE nuclear facilities. The methodology and key findings will be presented.« less

  6. Nuclear Material Attractiveness: An Assessment of Material from PHWR's in a Closed Thorium Fuel Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sleaford, Brad W.; Ebbinghaus, B. B.; Bradley, Keith S.

    2010-06-11

    This paper examines the attractiveness of material mixtures containing special nuclear materials (SNM) associated with reprocessing and the thorium-based LWR fuel cycle. This paper expands upon the results from earlier studies [ , ] that examined the attractiveness of SNM associated with the reprocessing of spent light water reactor (LWR) fuel by various reprocessing schemes and the recycle of plutonium as a mixed oxide (MOX) fuel in LWR. This study shows that 233U that is produced in thorium-based fuel cycles is very attractive for weapons use. Consistent with other studies, these results also show that all fuel cycles examined tomore » date need to be rigorously safeguarded and provided moderate to high levels of physical protection. These studies were performed at the request of the United States Department of Energy (DOE), and are based on the calculation of "attractiveness levels" that has been couched in terms chosen for consistency with those normally used for nuclear materials in DOE nuclear facilities [ ]. The methodology and key findings will be presented.« less

  7. PROCESS OF FORMING POWDERED MATERIAL

    DOEpatents

    Glatter, J.; Schaner, B.E.

    1961-07-14

    A process of forming high-density compacts of a powdered ceramic material is described by agglomerating the powdered ceramic material with a heat- decompossble binder, adding a heat-decompossble lubricant to the agglomerated material, placing a quantity of the material into a die cavity, pressing the material to form a compact, pretreating the compacts in a nonoxidizing atmosphere to remove the binder and lubricant, and sintering the compacts. When this process is used for making nuclear reactor fuel elements, the ceramic material is an oxide powder of a fissionsble material and after forming, the compacts are placed in a cladding tube which is closed at its ends by vapor tight end caps, so that the sintered compacts are held in close contact with each other and with the interior wall of the cladding tube.

  8. International training course on nuclear materials accountability for safeguards purposes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-12-01

    The two volumes of this report incorporate all lectures and presentations at the International Training Course on Nuclear Materials Accountability and Control for Safeguards Purposes, held May 27-June 6, 1980, at the Bishop's Lodge near Santa Fe, New Mexico. The course, authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, was developed to provide practical training in the design, implementation, and operation of a National system of nuclear materials accountability and control that satisfies both National and IAEA International safeguards objectives. Volume I, covering the firstmore » week of the course, presents the background, requirements, and general features of material accounting and control in modern safeguard systems. Volume II, covering the second week of the course, provides more detailed information on measurement methods and instruments, practical experience at power reactor and research reactor facilities, and examples of operating state systems of accountability and control.« less

  9. 10 CFR 72.78 - Nuclear material transaction reports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... writing to the U.S. Nuclear Regulatory Commission, Division of Fuel Cycle Safety and Safeguards... instructions no later than the close of business the next working day. Each licensee who receives the material...

  10. Efforts of Uzbekistan to prevent nuclear terrorism and smuggling of radioactive and nuclear materials.

    PubMed

    Petrenko, V D; Karimov, Yu N; Podkovirin, A I; Shipilov, N N; Yuldashev, B S; Fazylov, M I

    2005-01-01

    Uzbekistan is located on the cross-roads from the north--Russia, Western Europe--to the south--Afghanistan, Iran, Iraq and others. The appearance of terrorist organizations urged some Asian countries to make the nuclear weapons, the making the task of stopping the transportation of nuclear materials and technologies from the north (from countries possessing nuclear weapon) to the south (to countries desiring to have weapons and its components) a reality. To resolve this problem, on the main transportation routes, "Yantar" stationary radiation monitors of Russian production were installed, and development and production of monitors of our own make was started. This paper covers these works as well as those on preventing possible terrorist attacks on nuclear objects of Uzbekistan.

  11. Detection of explosives, shielded nuclear materials and other hazardous substances in cargo containers

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Andrey; Evsenin, Alexey; Vakhtin, Dmitry; Gorshkov, Igor; Osetrov, Oleg; Kalinin, Valery

    2006-05-01

    Nanosecond Neutron Analysis / Associated Particles Technique (NNA/APT) has been used to create devices for detection of explosives, radioactive and heavily shielded nuclear materials in cargo containers. Explosives and other hazardous materials are detected by analyzing secondary high-energy gamma-rays form reactions of fast neutrons with the materials inside the container. Depending on the dimensions of the inspected containers, the detecting system consists of one or several detection modules, each of which contains a small neutron generator with built-in position sensitive detector of associated alpha-particles and several scintillator-based gamma-ray detectors. The same gamma-ray detectors are used to detect unshielded radioactive and nuclear materials. Array of several detectors of fast neutrons is used to detect neutrons from spontaneous and induced fission of nuclear materials. These neutrons can penetrate thick layers of lead shielding, which can be used to conceal gamma-radioactivity from nuclear materials. Coincidence and timing analysis allows one to discriminate between fission neutrons and scattered probing neutrons. Mathematical modeling by MCNP5 code was used to estimate the sensitivity of the device and its optimal configuration. Capability of the device to detect 1 kg of explosive imitator inside container filled with suitcases and other baggage items has been confirmed experimentally. First experiments with heavily shielded nuclear materials have been carried out.

  12. 10 CFR 8.4 - Interpretation by the General Counsel: AEC jurisdiction over nuclear facilities and materials...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... over nuclear facilities and materials under the Atomic Energy Act. 8.4 Section 8.4 Energy NUCLEAR... nuclear facilities and materials under the Atomic Energy Act. (a) By virtue of the Atomic Energy Act of... Atomic Energy Act of 1954 sets out a pattern for licensing and regulation of certain nuclear materials...

  13. 10 CFR 8.4 - Interpretation by the General Counsel: AEC jurisdiction over nuclear facilities and materials...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... over nuclear facilities and materials under the Atomic Energy Act. 8.4 Section 8.4 Energy NUCLEAR... nuclear facilities and materials under the Atomic Energy Act. (a) By virtue of the Atomic Energy Act of... Atomic Energy Act of 1954 sets out a pattern for licensing and regulation of certain nuclear materials...

  14. 10 CFR 8.4 - Interpretation by the General Counsel: AEC jurisdiction over nuclear facilities and materials...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... over nuclear facilities and materials under the Atomic Energy Act. 8.4 Section 8.4 Energy NUCLEAR... nuclear facilities and materials under the Atomic Energy Act. (a) By virtue of the Atomic Energy Act of... Atomic Energy Act of 1954 sets out a pattern for licensing and regulation of certain nuclear materials...

  15. Scanning of vehicles for nuclear materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, J. I.

    2014-05-09

    Might a nuclear-armed terrorist group or state use ordinary commerce to deliver a nuclear weapon by smuggling it in a cargo container or vehicle? This delivery method would be the only one available to a sub-state actor, and it might enable a state to make an unattributed attack. Detection of a weapon or fissile material smuggled in this manner is difficult because of the large volume and mass available for shielding. Here I review methods for screening cargo containers to detect the possible presence of nuclear threats. Because of the large volume of innocent international commerce, and the cost andmore » disruption of secondary screening by opening and inspection, it is essential that the method be rapid and have a low false-positive rate. Shielding can prevent the detection of neutrons emitted spontaneously or by induced fission. The two promising methods are muon tomography and high energy X-radiography. If they do not detect a shielded threat object they can detect the shield itself.« less

  16. Advance assessment for movement of Haz Cat 3 radioactive materials.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vosburg, Susan K.

    2010-04-01

    The current packaging of most HC-3 radioactive materials at SNL/NM do not meet DOT requirements for offsite shipment. SNL/NM is transporting HC-3 quantities of radioactive materials from their storage locations in the Manzano Nuclear Facilities bunkers to facilities in TA-5 to be repackaged for offsite shipment. All transportation of HC-3 rad material by SNL/NM is onsite (performed within the confines of KAFB). Transport is performed only by the Regulated Waste/Nuclear Material Disposition Department. Part of the HC3T process is to provide the CAT with the following information at least three days prior to the move: (1) RFt-Request for transfer; (2)more » HC3T movement report; (3) Radiological survey; and (4) Transportation Route Map.« less

  17. ASNC upgrade for nuclear material accountancy of ACPF

    NASA Astrophysics Data System (ADS)

    Seo, Hee; Ahn, Seong-Kyu; Lee, Chaehun; Oh, Jong-Myeong; Yoon, Seonkwang

    2018-02-01

    A safeguards neutron coincidence counter for nuclear material accountancy of the Advanced spent-fuel Conditioning Process Facility (ACPF), known as the ACP Safeguards Neutron Counter (ASNC), was upgraded to improve its remote-handling and maintenance capabilities. Based on the results of the previous design study, the neutron counter was completely rebuilt, and various detector parameters for neutron coincidence counting (i.e., high-voltage plateau, efficiency profile, dead time, die-away time, gate length, doubles gate fraction, and stability) were experimentally determined. The measurement data showed good agreement with the MCNP simulation results. To the best of the authors' knowledge, the ASNC is the only safeguards neutron coincidence counter in the world that is installed and operated in a hot-cell. The final goals to be achieved were (1) to evaluate the uncertainty level of the ASNC in nuclear material accountancy of the process materials of the oxide-reduction process for spent fuels and (2) to evaluate the applicability of the neutron coincidence counting technique within a strong radiation field (e.g., in a hot-cell environment).

  18. Space Exploration Initiative Fuels, Materials and Related Nuclear Propulsion Technologies Panel

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S. K.; Olsen, C.; Cooper, R.; Matthews, R. B.; Walter, C.; Titran, R. J.

    1993-01-01

    This report was prepared by members of the Fuels, Materials and Related Technologies Panel, with assistance from a number of industry observers as well as laboratory colleagues of the panel members. It represents a consensus view of the panel members. This report was not subjected to a thorough review by DOE, NASA or DoD, and the opinions expressed should not be construed to represent the official position of these organizations, individually or jointly. Topics addressed include: requirement for fuels and materials development for nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP); overview of proposed concepts; fuels technology development plan; materials technology development plan; other reactor technology development; and fuels and materials requirements for advanced propulsion concepts.

  19. Illicit trafficking of radiological & nuclear materials : modeling and analysis of trafficking trends and risks.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    York, David L.; Love, Tracia L.; Rochau, Gary Eugene

    2005-01-01

    Concerns over the illicit trafficking of radiological and nuclear materials were focused originally on the lack of security and accountability of such material throughout the former Soviet states. This is primarily attributed to the frequency of events that have occurred involving the theft and trafficking of critical material components that could be used to construct a Radiological Dispersal Device (RDD) or even a rudimentary nuclear device. However, with the continued expansion of nuclear technology and the deployment of a global nuclear fuel cycle these materials have become increasingly prevalent, affording a more diverse inventory of dangerous materials and dual-use items.more » To further complicate the matter, the list of nuclear consumers has grown to include: (1) Nation-states that have gone beyond the IAEA agreed framework and additional protocols concerning multiple nuclear fuel cycles and processes that reuse the fuel through reprocessing to exploit technologies previously confined to the more industrialized world; (2) Terrorist organizations seeking to acquire nuclear and radiological material due to the potential devastation and psychological effect of their use; (3) Organized crime, which has discovered a lucrative market in trafficking of illicit material to international actors and/or countries; and (4) Amateur smugglers trying to feed their families in a post-Soviet era. An initial look at trafficking trends of this type seems scattered and erratic, localized primarily to a select group of countries. This is not necessarily the case. The success with which other contraband has been smuggled throughout the world suggests that nuclear trafficking may be carried out with relative ease along the same routes by the same criminals or criminal organizations. Because of the inordinately high threat posed by terrorist or extremist groups acquiring the ingredients for unconventional weapons, it is necessary that illicit trafficking of these materials be

  20. An analysis of international nuclear fuel supply options

    NASA Astrophysics Data System (ADS)

    Taylor, J'tia Patrice

    As the global demand for energy grows, many nations are considering developing or increasing nuclear capacity as a viable, long-term power source. To assess the possible expansion of nuclear power and the intricate relationships---which cover the range of economics, security, and material supply and demand---between established and aspirant nuclear generating entities requires models and system analysis tools that integrate all aspects of the nuclear enterprise. Computational tools and methods now exist across diverse research areas, such as operations research and nuclear engineering, to develop such a tool. This dissertation aims to develop methodologies and employ and expand on existing sources to develop a multipurpose tool to analyze international nuclear fuel supply options. The dissertation is comprised of two distinct components: the development of the Material, Economics, and Proliferation Assessment Tool (MEPAT), and analysis of fuel cycle scenarios using the tool. Development of MEPAT is aimed for unrestricted distribution and therefore uses publicly available and open-source codes in its development when possible. MEPAT is built using the Powersim Studio platform that is widely used in systems analysis. MEPAT development is divided into three modules focusing on: material movement; nonproliferation; and economics. The material movement module tracks material quantity in each process of the fuel cycle and in each nuclear program with respect to ownership, location and composition. The material movement module builds on techniques employed by fuel cycle models such as the Verifiable Fuel Cycle Simulation (VISION) code developed at the Idaho National Laboratory under the Advanced Fuel Cycle Initiative (AFCI) for the analysis of domestic fuel cycle. Material movement parameters such as lending and reactor preference, as well as fuel cycle parameters such as process times and material factors are user-specified through a Microsoft Excel(c) data spreadsheet

  1. Quantity and quality in nuclear engineering professional skills needed by the nuclear power industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slember, R.J.

    1990-01-01

    This paper examines the challenge of work force requirements in the context of the full range of issues facing the nuclear power industry. The supply of skilled managers and workers may be a more serious problem if nuclear power fades away than if it is reborn in a new generation. An even greater concern, however, is the quality of education that the industry needs in all its future professionals. Both government and industry should be helping universities adapt their curricula to the needs of the future. This means building a closer relationship with schools that educate nuclear professionals, that is,more » providing adequate scholarships and funding for research and development programs, offering in-kind services, and encouraging internships and other opportunities for hands-on experience. The goal should not be just state-of-the-art engineering practices, but the broad range of knowledge, issues, and skills that will be required of the nuclear leadership of the twenty-first century.« less

  2. A Perspective on Coupled Multiscale Simulation and Validation in Nuclear Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. P. Short; D. Gaston; C. R. Stanek

    2014-01-01

    The field of nuclear materials encompasses numerous opportunities to address and ultimately solve longstanding industrial problems by improving the fundamental understanding of materials through the integration of experiments with multiscale modeling and high-performance simulation. A particularly noteworthy example is an ongoing study of axial power distortions in a nuclear reactor induced by corrosion deposits, known as CRUD (Chalk River unidentified deposits). We describe how progress is being made toward achieving scientific advances and technological solutions on two fronts. Specifically, the study of thermal conductivity of CRUD phases has augmented missing data as well as revealed new mechanisms. Additionally, the developmentmore » of a multiscale simulation framework shows potential for the validation of a new capability to predict the power distribution of a reactor, in effect direct evidence of technological impact. The material- and system-level challenges identified in the study of CRUD are similar to other well-known vexing problems in nuclear materials, such as irradiation accelerated corrosion, stress corrosion cracking, and void swelling; they all involve connecting materials science fundamentals at the atomistic- and mesoscales to technology challenges at the macroscale.« less

  3. X-ray backscatter imaging of nuclear materials

    DOEpatents

    Chapman, Jeffrey Allen; Gunning, John E; Hollenbach, Daniel F; Ott, Larry J; Shedlock, Daniel

    2014-09-30

    The energy of an X-ray beam and critical depth are selected to detect structural discontinuities in a material having an atomic number Z of 57 or greater. The critical depth is selected by adjusting the geometry of a collimator that blocks backscattered radiation so that backscattered X-ray originating from a depth less than the critical depth is not detected. Structures of Lanthanides and Actinides, including nuclear fuel rod materials, can be inspected for structural discontinuities such as gaps, cracks, and chipping employing the backscattered X-ray.

  4. 76 FR 63672 - Notice of Acceptance of Application for Special Nuclear Materials License From Passport Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... Application for Special Nuclear Materials License From Passport Systems, Inc., Opportunity To Request a... special nuclear material (SNM), submitted by Passport Systems, Inc. (Passport or the Applicant). The..., if approved, would authorize Passport to possess and use special nuclear materials under 10 CFR Part...

  5. 10 CFR 74.33 - Nuclear material control and accounting for uranium enrichment facilities authorized to produce...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Nuclear material control and accounting for uranium enrichment facilities authorized to produce special nuclear material of low strategic significance. 74.33 Section 74.33 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL...

  6. Neutron interrogation system using high gamma ray signature to detect contraband special nuclear materials in cargo

    DOEpatents

    Slaughter, Dennis R.; Pohl, Bertram A.; Dougan, Arden D.; Bernstein, Adam; Prussin, Stanley G.; Norman, Eric B.

    2008-04-15

    A system for inspecting cargo for the presence of special nuclear material. The cargo is irradiated with neutrons. The neutrons produce fission products in the special nuclear material which generate gamma rays. The gamma rays are detecting indicating the presence of the special nuclear material.

  7. 10 CFR 74.33 - Nuclear material control and accounting for uranium enrichment facilities authorized to produce...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Nuclear material control and accounting for uranium enrichment facilities authorized to produce special nuclear material of low strategic significance. 74.33 Section 74.33 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL...

  8. 10 CFR 74.33 - Nuclear material control and accounting for uranium enrichment facilities authorized to produce...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Nuclear material control and accounting for uranium enrichment facilities authorized to produce special nuclear material of low strategic significance. 74.33 Section 74.33 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL...

  9. Advanced Laser-Compton Gamma-Ray Sources for Nuclear Materials Detection, Assay and Imaging

    NASA Astrophysics Data System (ADS)

    Barty, C. P. J.

    2015-10-01

    Highly-collimated, polarized, mono-energetic beams of tunable gamma-rays may be created via the optimized Compton scattering of pulsed lasers off of ultra-bright, relativistic electron beams. Above 2 MeV, the peak brilliance of such sources can exceed that of the world's largest synchrotrons by more than 15 orders of magnitude and can enable for the first time the efficient pursuit of nuclear science and applications with photon beams, i.e. Nuclear Photonics. Potential applications are numerous and include isotope-specific nuclear materials management, element-specific medical radiography and radiology, non-destructive, isotope-specific, material assay and imaging, precision spectroscopy of nuclear resonances and photon-induced fission. This review covers activities at the Lawrence Livermore National Laboratory related to the design and optimization of mono-energetic, laser-Compton gamma-ray systems and introduces isotope-specific nuclear materials detection and assay applications enabled by them.

  10. 10 CFR 74.33 - Nuclear material control and accounting for uranium enrichment facilities authorized to produce...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and special nuclear material in the accounting records are based on measured values; (3) A measurement... 10 Energy 2 2010-01-01 2010-01-01 false Nuclear material control and accounting for uranium... Section 74.33 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL...

  11. Recovery of fissile materials from nuclear wastes

    DOEpatents

    Forsberg, Charles W.

    1999-01-01

    A process for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.

  12. A conserved quantity in thin body dynamics

    NASA Astrophysics Data System (ADS)

    Hanna, James; Pendar, Hodjat

    We use an example from textile processing to illustrate the utility of a conserved quantity associated with metric symmetry in a thin body. This quantity, when combined with the usual linear and angular momentum currents, allows us to construct a four-parameter family of curves representing the equilibria of a rotating, flowing string. To achieve this, we introduce a non-material action of mixed Lagrangian-Eulerian type, applicable to fixed windows of axially-moving systems. We will point out intriguing similarities with Bernoulli's equation, discuss the effects of axial flow on rotating conservative systems, and make connections with 19th- and 20th-century results on the dynamics of cables.

  13. 10 CFR 1017.16 - Unclassified Controlled Nuclear Information markings on documents or material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Unclassified Controlled Nuclear Information markings on...) IDENTIFICATION AND PROTECTION OF UNCLASSIFIED CONTROLLED NUCLEAR INFORMATION Review of a Document or Material for Unclassified Controlled Nuclear Information § 1017.16 Unclassified Controlled Nuclear Information markings on...

  14. 10 CFR 1017.16 - Unclassified Controlled Nuclear Information markings on documents or material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Unclassified Controlled Nuclear Information markings on...) IDENTIFICATION AND PROTECTION OF UNCLASSIFIED CONTROLLED NUCLEAR INFORMATION Review of a Document or Material for Unclassified Controlled Nuclear Information § 1017.16 Unclassified Controlled Nuclear Information markings on...

  15. 10 CFR 1017.16 - Unclassified Controlled Nuclear Information markings on documents or material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Unclassified Controlled Nuclear Information markings on...) IDENTIFICATION AND PROTECTION OF UNCLASSIFIED CONTROLLED NUCLEAR INFORMATION Review of a Document or Material for Unclassified Controlled Nuclear Information § 1017.16 Unclassified Controlled Nuclear Information markings on...

  16. 10 CFR 1017.16 - Unclassified Controlled Nuclear Information markings on documents or material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Unclassified Controlled Nuclear Information markings on...) IDENTIFICATION AND PROTECTION OF UNCLASSIFIED CONTROLLED NUCLEAR INFORMATION Review of a Document or Material for Unclassified Controlled Nuclear Information § 1017.16 Unclassified Controlled Nuclear Information markings on...

  17. 10 CFR 1017.16 - Unclassified Controlled Nuclear Information markings on documents or material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Unclassified Controlled Nuclear Information markings on...) IDENTIFICATION AND PROTECTION OF UNCLASSIFIED CONTROLLED NUCLEAR INFORMATION Review of a Document or Material for Unclassified Controlled Nuclear Information § 1017.16 Unclassified Controlled Nuclear Information markings on...

  18. Conserved quantities in non-Abelian monopole fields

    NASA Astrophysics Data System (ADS)

    Horváthy, P. A.; Ngome, J.-P.

    2009-06-01

    Van Holten’s covariant Hamiltonian framework is used to find conserved quantities for an isospin-carrying particle in a non-Abelian monopolelike field. For a Wu-Yang monopole we find the most general scalar potential such that the combined system admits a conserved Runge-Lenz vector. In the effective non-Abelian field for nuclear motion in a diatomic molecule due to Moody, Shapere, and Wilczek, a conserved angular momentum is constructed, despite the nonconservation of the electric charge. No Runge-Lenz vector has been found.

  19. 10 CFR 2.103 - Action on applications for byproduct, source, special nuclear material, facility and operator...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... nuclear material, facility and operator licenses. (a) If the Director, Office of Nuclear Reactor... repository operations area under parts 60 or 63 of this chapter, the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Nuclear Material Safety and Safeguards, or...

  20. 10 CFR 2.103 - Action on applications for byproduct, source, special nuclear material, facility and operator...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... nuclear material, facility and operator licenses. (a) If the Director, Office of Nuclear Reactor... repository operations area under parts 60 or 63 of this chapter, the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Nuclear Material Safety and Safeguards, or...

  1. IBA studies of helium mobility in nuclear materials revisited

    NASA Astrophysics Data System (ADS)

    Trocellier, P.; Agarwal, S.; Miro, S.; Vaubaillon, S.; Leprêtre, F.; Serruys, Y.

    2015-12-01

    The aim of this paper is to point out and to discuss some features extracted from the study of helium migration in nuclear materials performed during the last fifteen years using ion beam analysis (IBA) measurements. The first part of this paper is devoted to a brief description of the two main IBA methods used, i.e. deuteron induced nuclear reaction for 3He depth profiling and high-energy heavy-ion induced elastic recoil detection analysis for 4He measurement. In the second part, we provide an overview of the different studies carried out on model nuclear waste matrices and model nuclear reactor structure materials in order to illustrate and discuss specific results in terms of key influence parameters in relation with thermal or radiation activated migration of helium. Finally, we show that among the key parameters we have investigated as able to influence the height of the helium migration barrier, the following can be considered as pertinent: the experimental conditions used to introduce helium (implanted ion energy and implantation fluence), the grain size of the matrix, the lattice cell volume, the Young's modulus, the ionicity degree of the chemical bond between the transition metal atom M and the non-metal atom X, and the width of the band gap.

  2. From electronic consumer products to e-wastes: Global outlook, waste quantities, recycling challenges.

    PubMed

    Tansel, Berrin

    2017-01-01

    Advancements in technology, materials development, and manufacturing processes have changed the consumer products and composition of municipal solid waste (MSW) since 1960s. Increasing quantities of discarded consumer products remain a major challenge for recycling efforts, especially for discarded electronic products (also referred as e-waste). The growing demand for high tech products has increased the e-waste quantities and its cross boundary transport globally. This paper reviews the challenges associated with increasing e-waste quantities. The increasing need for raw materials (especially for rare earth and minor elements) and unregulated e-waste recycling operations in developing and underdeveloped counties contribute to the growing concerns for e-waste management. Although the markets for recycled materials are increasing; there are major challenges for development of the necessary infrastructure for e-waste management and accountability as well as development of effective materials recovery technologies and product design. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Insider Threat - Material Control and Accountability Mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Danny H; Elwood Jr, Robert H; Roche, Charles T

    2011-01-01

    The technical objectives of nuclear safeguards are (1) the timely detection of diversion of significant quantities of nuclear material from peaceful uses to the manufacture of nuclear weapons or other nuclear explosive devices or for purposes unknown and (2) the deterrence of such diversion by the risk of early detection. The safeguards and security program must address both outsider threats and insider threats. Outsider threats are primarily addressed by the physical protection system. Insider threats can be any level of personnel at the site including passive or active insiders that could attempt protracted or abrupt diversion. This could occur bymore » an individual acting alone or by collusion between an individual with material control and accountability (MC&A) responsibilities and another individual who has responsibility or control within both the physical protection and the MC&A systems. The insider threat is one that must be understood and incorporated into the safeguards posture. There have been more than 18 documented cases of theft or loss of plutonium or highly enriched uranium. The insider has access, authority, and knowledge, as well as a set of attributes, that make him/her difficult to detect. An integrated safeguards program is designed as a defense-in-depth system that seeks to prevent the unauthorized removal of nuclear material, to provide early detection of any unauthorized attempt to remove nuclear material, and to rapidly respond to any attempted removal of nuclear material. The program is also designed to support protection against sabotage, espionage, unauthorized access, compromise, and other hostile acts that may cause unacceptable adverse impacts on national security, program continuity, the health and safety of employees, the public, or the environment. Nuclear MC&A play an essential role in the capabilities of an integrated safeguards system to deter and detect theft or diversion of nuclear material. An integrated safeguards system

  4. Nuclear proliferomics: A new field of study to identify signatures of nuclear materials as demonstrated on alpha-UO3.

    PubMed

    Schwerdt, Ian J; Brenkmann, Alexandria; Martinson, Sean; Albrecht, Brent D; Heffernan, Sean; Klosterman, Michael R; Kirkham, Trenton; Tasdizen, Tolga; McDonald Iv, Luther W

    2018-08-15

    The use of a limited set of signatures in nuclear forensics and nuclear safeguards may reduce the discriminating power for identifying unknown nuclear materials, or for verifying processing at existing facilities. Nuclear proliferomics is a proposed new field of study that advocates for the acquisition of large databases of nuclear material properties from a variety of analytical techniques. As demonstrated on a common uranium trioxide polymorph, α-UO 3 , in this paper, nuclear proliferomics increases the ability to improve confidence in identifying the processing history of nuclear materials. Specifically, α-UO 3 was investigated from the calcination of unwashed uranyl peroxide at 350, 400, 450, 500, and 550 °C in air. Scanning electron microscopy (SEM) images were acquired of the surface morphology, and distinct qualitative differences are presented between unwashed and washed uranyl peroxide, as well as the calcination products from the unwashed uranyl peroxide at the investigated temperatures. Differential scanning calorimetry (DSC), UV-Vis spectrophotometry, powder X-ray diffraction (p-XRD), and thermogravimetric analysis-mass spectrometry (TGA-MS) were used to understand the source of these morphological differences as a function of calcination temperature. Additionally, the SEM images were manually segmented using Morphological Analysis for MAterials (MAMA) software to identify quantifiable differences in morphology for three different surface features present on the unwashed uranyl peroxide calcination products. No single quantifiable signature was sufficient to discern all calcination temperatures with a high degree of confidence; therefore, advanced statistical analysis was performed to allow the combination of a number of quantitative signatures, with their associated uncertainties, to allow for complete discernment by calcination history. Furthermore, machine learning was applied to the acquired SEM images to demonstrate automated discernment with

  5. Adhesion layer for etching of tracks in nuclear trackable materials

    DOEpatents

    Morse, Jeffrey D.; Contolini, Robert J.

    2001-01-01

    A method for forming nuclear tracks having a width on the order of 100-200 nm in nuclear trackable materials, such as polycarbonate (LEXAN) without causing delamination of the LEXAN. The method utilizes an adhesion film having a inert oxide which allows the track to be sufficiently widened to >200 nm without delamination of the nuclear trackable materials. The adhesion film may be composed of a metal such as Cr, Ni, Au, Pt, or Ti, or composed of a dielectric having a stable surface, such as silicon dioxide (SiO.sub.2), silicon nitride (SiN.sub.x), and aluminum oxide (AlO). The adhesion film can either be deposited on top of the gate metal layer, or if the properties of the adhesion film are adequate, it can be used as the gate layer. Deposition of the adhesion film is achieved by standard techniques, such as sputtering or evaporation.

  6. Storage of nuclear materials by encapsulation in fullerenes

    DOEpatents

    Coppa, Nicholas V.

    1994-01-01

    A method of encapsulating radioactive materials inside fullerenes for stable long-term storage. Fullerenes provide a safe and efficient means of disposing of nuclear waste which is extremely stable with respect to the environment. After encapsulation, a radioactive ion is essentially chemically isolated from its external environment.

  7. The world's nuclear future - built on material success

    NASA Astrophysics Data System (ADS)

    Ion, Sue

    2010-07-01

    In our energy hungry world of the twenty-first century, the future of electricity generation must meet the twin challenges of security of supply and reduced carbon emissions. The expectations for nuclear power programmes to play a part in delivering success on both counts, grows ever higher. The nuclear industry is poised on a renaissance likely to dwarf the heady days of the 1960s and early 1970s. Global supply chain and project management challenges abound, now just as then. The science and engineering of materials will be key to the successful deployment and operation of a new generation of reactor systems and their associated fuel cycles. Understanding and predicting materials performance will be key to achieving life extension of existing assets and underpinning waste disposal options, as well as giving confidence to the designers, their financial backers and governments across the globe, that the next generation of reactors will deliver their full potential.

  8. To discuss illicit nuclear trafficking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balatsky, Galya I; Severe, William R; Wallace, Richard K

    2010-01-01

    smuggling. In most cases, sellers do not find legitimate buyers; however, there have been specific cases where sellers did find actual terrorist group representatives. There appears to be a connection between terrorist groups engaged in trafficking conventional arms and explosives components that are also looking for both nuclear materials and radioisotopes. Sale opportunities may create additional demand for such materials. As we can observe from Figure 1, many cases in the mid-90s involved kilogram quantities of material. There were smaller amounts of material moved in 2001, 2003 and 2006. While we have seen less trafficking cases involving PujHEU in recent years, the fact that it continues at all is troubling. The trafficking cases can be presented through their life cycle: Diversion of materials leads to Trafficker and then to Terrorist/Proliferator. Most of the information we have in trafficking cases is on the Trafficker. In 16 cases reported by the IAEA, there are 10 prosecutions of the involved trafficker. However, there are no confirmed diversions of material recorded in any of the 18 seizures. Most seizures were sting operations performed by law enforcement or security agents with no actual illicit end-user involved.« less

  9. Preparation of a PM2.5-like reference material in sufficient quantities for accurate monitoring of anions and cations in fine atmospheric dust.

    PubMed

    Charoud-Got, Jean; Emma, Giovanni; Seghers, John; Tumba-Tshilumba, Marie-France; Santoro, Anna; Held, Andrea; Snell, James; Emteborg, Håkan

    2017-12-01

    A reference material of a PM 2.5 -like atmospheric dust material has been prepared using a newly developed method. It is intended to certify values for the mass fraction of SO 4 2- , NO 3 - , Cl - (anions) and Na + , K + , NH 4 + , Ca 2+ , Mg 2+ (cations) in this material. A successful route for the preparation of the candidate reference material is described alongside with two alternative approaches that were abandoned. First, a PM 10 -like suspension was allowed to stand for 72 h. Next, 90% of the volume was siphoned off. The suspension was spiked with appropriate levels of the desired ions just prior to drop-wise shock-freezing in liquid nitrogen. Finally, freeze drying of the resulting ice kernels took place. In using this approach, it was possible to produce about 500 g of PM 2.5 -like material with appropriate characteristics. Fine dust in 150-mg portions was filled into vials under an inert atmosphere. The final candidate material approaches the EN12341 standard of a PM 2.5 -material containing the ions mentioned in Directive 2008/50/EC of the European Union. The material should be analysed using the CEN/TR 16269:2011 method for anions and cations in PM 2.5 collected on filters. The method described here is a relatively rapid means to obtain large quantities of PM 2.5 . With access to smaller freeze dryers, still 5 to 10 g per freeze-drying cycle can be obtained. Access to such quantities of PM 2.5 -like material could potentially be used for different kinds of experiments when performing research in this field. Graphical abstract The novelty of the method lies in transformation of a suspension with fine particulate matter to a homogeneous and stable powder with characteristics similar to air-sampled PM 2,5 . The high material yield in a relatively short time is a distinct advantage in comparison with collection of air-sampled PM 2,5 .

  10. Radiation Protection Quantities for Near Earth Environments

    NASA Technical Reports Server (NTRS)

    Clowdsley, Martha S.; Wilson, John W.; Kim, Myung-Hee; Anderson, Brooke M.; Nealy, John E.

    2004-01-01

    As humans travel beyond the protection of the Earth's magnetic field and mission durations grow, risk due to radiation exposure will increase and may become the limiting factor for such missions. Here, the dosimetric quantities recommended by the National Council on Radiation Protection and Measurements (NCRP) for the evaluation of health risk due to radiation exposure, effective dose and gray-equivalent to eyes, skin, and blood forming organs (BFO), are calculated for several near Earth environments. These radiation protection quantities are evaluated behind two different shielding materials, aluminum and polyethylene. Since exposure limits for missions beyond low Earth orbit (LEO) have not yet been defined, results are compared to limits recommended by the NCRP for LEO operations.

  11. Linear actuation using milligram quantities of CL-20 and TAGDNAT.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snedigar, Shane; Salton, Jonathan Robert; Tappan, Alexander Smith

    2009-07-01

    There are numerous applications for small-scale actuation utilizing pyrotechnics and explosives. In certain applications, especially when multiple actuation strokes are needed, or actuator reuse is required, it is desirable to have all gaseous combustion products with no condensed residue in the actuator cylinder. Toward this goal, we have performed experiments on utilizing milligram quantities of high explosives to drive a millimeter-diameter actuator with a stroke of 30 mm. Calculations were performed to select proper material quantities to provide 0.5 J of actuation energy. This was performed utilizing the thermochemical code Cheetah to calculate the impetus for numerous propellants and tomore » select quantities based on estimated efficiencies of these propellants at small scales. Milligram quantities of propellants were loaded into a small-scale actuator and ignited with an ignition increment and hot wire ignition. Actuator combustion chamber pressure was monitored with a pressure transducer and actuator stroke was monitored using a laser displacement meter. Total actuation energy was determined by calculating the kinetic energy of reaction mass motion against gravity. Of the materials utilized, the best performance was obtained with a mixture of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and bis-triaminoguanidinium(3,3{prime}dinitroazotriazolate) (TAGDNAT).« less

  12. Technology readiness levels for advanced nuclear fuels and materials development

    DOE PAGES

    Carmack, W. J.; Braase, L. A.; Wigeland, R. A.; ...

    2016-12-23

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. It was pioneered by the National Aeronautics and Space Administration (NASA) in the 1980s to develop and deploy new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications as well as the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is a critical technology needed for improving the performance and safety of currentmore » and advanced reactors, and ultimately closing the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management, communication and tracking tool. Furthermore, this article provides examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).« less

  13. Technology readiness levels for advanced nuclear fuels and materials development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmack, W. J.; Braase, L. A.; Wigeland, R. A.

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. It was pioneered by the National Aeronautics and Space Administration (NASA) in the 1980s to develop and deploy new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications as well as the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is a critical technology needed for improving the performance and safety of currentmore » and advanced reactors, and ultimately closing the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management, communication and tracking tool. Furthermore, this article provides examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).« less

  14. Active Interrogation using Photofission Technique for Nuclear Materials Control and Accountability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Haori

    2016-03-31

    Innovative systems with increased sensitivity and resolution are in great demand to detect diversion and to prevent misuse in support of nuclear materials management for the U.S. fuel cycle. Nuclear fission is the most important multiplicative process involved in non-destructive active interrogation. This process produces the most easily recognizable signature for nuclear materials. In addition to thermal or high-energy neutrons, high-energy gamma rays can also excite a nucleus and cause fission through a process known as photofission. Electron linear accelerators (linacs) are widely used as the interrogating photon sources for inspection methods involving photofission technique. After photofission reactions, prompt signalsmore » are much stronger than the delayed signals, but it is difficult to quantify them in practical measurements. Delayed signals are easily distinguishable from the interrogating radiation. Linac-based, advanced inspection techniques utilizing the delayed signals after photofission have been extensively studied for homeland security applications. Previous research also showed that a unique delayed gamma ray energy spectrum exists for each fissionable isotope. In this work, high-energy delayed γ-rays were demonstrated to be signatures for detection, identification, and quantification of special nuclear materials. Such γ-rays were measured in between linac pulses using independent data acquisition systems. A list-mode system was developed to measure low-energy delayed γ-rays after irradiation. Photofission product yields of 238U and 239Pu were determined based on the measured delayed γ-ray spectra. The differential yields of delayed γ-rays were also proven to be able to discriminate nuclear from non-nuclear materials. The measurement outcomes were compared with Monte Carlo simulation results. It was demonstrated that the current available codes have capabilities and limitations in the simulation of photofission process. A two-fold approach

  15. Specifics of MS training in the area of nuclear materials safe management for new-comers in nuclear power

    NASA Astrophysics Data System (ADS)

    Geraskin, N. I.; Glebov, V. B.

    2017-01-01

    The issues of specialists training in the field of nuclear materials safe management for the countries, who have taken a way of nuclear power development are analyzed. Arguments in justification of a need of these specialists training for the new-comers are adduced. The general characteristic of the reference MS program “Nuclear materials safe management” is considered. The peculiar features of the program, which is important for graduates from the new-comers have been analyzed. The best practices got as a result of implementation of the program in recent years for the students from Kazakhstan, Belarus, Azerbaijan, Tajikistan, Iran, Turkey and other countries are presented. Finally, the directions of international cooperation in further improvement and development of the program are considered.

  16. 10 CFR 30.12 - Persons using byproduct material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Persons using byproduct material under certain Department of Energy and Nuclear Regulatory Commission contracts. 30.12 Section 30.12 Energy NUCLEAR REGULATORY... Persons using byproduct material under certain Department of Energy and Nuclear Regulatory Commission...

  17. 10 CFR 30.12 - Persons using byproduct material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Persons using byproduct material under certain Department of Energy and Nuclear Regulatory Commission contracts. 30.12 Section 30.12 Energy NUCLEAR REGULATORY... Persons using byproduct material under certain Department of Energy and Nuclear Regulatory Commission...

  18. 10 CFR 30.12 - Persons using byproduct material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Persons using byproduct material under certain Department of Energy and Nuclear Regulatory Commission contracts. 30.12 Section 30.12 Energy NUCLEAR REGULATORY... Persons using byproduct material under certain Department of Energy and Nuclear Regulatory Commission...

  19. 10 CFR 30.12 - Persons using byproduct material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Persons using byproduct material under certain Department of Energy and Nuclear Regulatory Commission contracts. 30.12 Section 30.12 Energy NUCLEAR REGULATORY... Persons using byproduct material under certain Department of Energy and Nuclear Regulatory Commission...

  20. 10 CFR 30.12 - Persons using byproduct material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Persons using byproduct material under certain Department of Energy and Nuclear Regulatory Commission contracts. 30.12 Section 30.12 Energy NUCLEAR REGULATORY... Persons using byproduct material under certain Department of Energy and Nuclear Regulatory Commission...

  1. Radiation Resistant Electrical Insulation Materials for Nuclear Reactors: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duckworth, Robert C.; Aytug, Tolga; Paranthaman, M. Parans

    The instrument and control cables in future nuclear reactors will be exposed to temperatures, dose rates, and accumulated doses exceeding those originally anticipated for the 40-year operational life of the nuclear power plant fleet. The use of nanocomposite dielectrics as insulating material for such cables has been considered a route to performance improvement. In this project, nanoparticles were developed and successfully included in three separate material systems [cross-linked polyvinyl alcohol (PVA/XLPVA), cross-linked polyethylene (PE/XLPE), and polyimide (PI)], and the chemical, electrical, and mechanical performance of each was analyzed as a function of environmental exposure and composition. Improvements were found inmore » each material system; however, refinement of each processing pathway is needed, and the consequences of these refinements in the context of thermal, radiation, and moisture exposures should be evaluated before transferring knowledge to industry.« less

  2. Conceptual design report: Nuclear materials storage facility renovation. Part 6, Alternatives study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-07-14

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based onmore » current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for material and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This report is organized according to the sections and subsections outlined by Attachment 111-2 of DOE Document AL 4700.1, Project Management System. It is organized into seven parts. This document, Part VI - Alternatives Study, presents a study of the different storage/containment options considered for NMSF.« less

  3. Detecting special nuclear materials in containers using high-energy gamma rays emitted by fission products

    DOEpatents

    Norman, Eric B.; Prussin, Stanley G.

    2007-10-02

    A method and a system for detecting the presence of special nuclear materials in a container. The system and its method include irradiating the container with an energetic beam, so as to induce a fission in the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  4. THE ATTRACTIVENESS OF MATERIALS IN ADVANCED NUCLEAR FUEL CYCLES FOR VARIOUS PROLIFERATION AND THEFT SCENARIOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bathke, C. G.; Ebbinghaus, Bartley B.; Collins, Brian A.

    2012-08-29

    We must anticipate that the day is approaching when details of nuclear weapons design and fabrication will become common knowledge. On that day we must be particularly certain that all special nuclear materials (SNM) are adequately accounted for and protected and that we have a clear understanding of the utility of nuclear materials to potential adversaries. To this end, this paper examines the attractiveness of materials mixtures containing SNM and alternate nuclear materials associated with the plutonium-uranium reduction extraction (Purex), uranium extraction (UREX), coextraction (COEX), thorium extraction (THOREX), and PYROX (an electrochemical refining method) reprocessing schemes. This paper provides amore » set of figures of merit for evaluating material attractiveness that covers a broad range of proliferant state and subnational group capabilities. The primary conclusion of this paper is that all fissile material must be rigorously safeguarded to detect diversion by a state and must be provided the highest levels of physical protection to prevent theft by subnational groups; no 'silver bullet' fuel cycle has been found that will permit the relaxation of current international safeguards or national physical security protection levels. The work reported herein has been performed at the request of the U.S. Department of Energy (DOE) and is based on the calculation of 'attractiveness levels' that are expressed in terms consistent with, but normally reserved for, the nuclear materials in DOE nuclear facilities. The methodology and findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security is discussed.« less

  5. HOW OLD IS IT? - 241PU/241AM NUCLEAR FORENSIC CHRONOLOGY REFERENCE MATERIALS

    PubMed Central

    Fitzgerald, Ryan; Inn, Kenneth G.W.; Horgan, Christopher

    2018-01-01

    One material attribute for nuclear forensics is material age. 241Pu is almost always present in uranium- and plutonium-based nuclear weapons, which pose the greatest threat to our security. The in-growth of 241Am due to the decay of 241Pu provides an excellent chronometer of the material. A well-characterized 241Pu/241Am standard is needed to validate measurement capability, as a basis for between-laboratory comparability, and as material for verifying laboratory performance. This effort verifies the certification of a 38 year old 241Pu Standard Reference Material (SRM4340) through alpha-gamma anticoincidence counting, and also establishes the separation date to two weeks of the documented date. PMID:29720779

  6. Nuclear Forensics: Report of the AAAS/APS Working Group

    NASA Astrophysics Data System (ADS)

    Tannenbaum, Benn

    2008-04-01

    This report was produced by a Working Group of the American Physical Society's Program on Public Affairs in conjunction with the American Association for the Advancement of Science Center for Science, Technology and Security Policy. The primary purpose of this report is to provide the Congress, U.S. government agencies and other institutions involved in nuclear forensics with a clear unclassified statement of the state of the art of nuclear forensics; an assessment of its potential for preventing and identifying unattributed nuclear attacks; and identification of the policies, resources and human talent to fulfill that potential. In the course of its work, the Working Group observed that nuclear forensics was an essential part of the overall nuclear attribution process, which aims at identifying the origin of unidentified nuclear weapon material and, in the event, an unidentified nuclear explosion. A credible nuclear attribution capability and in particular nuclear forensics capability could deter essential participants in the chain of actors needed to smuggle nuclear weapon material or carry out a nuclear terrorist act and could also encourage states to better secure such materials and weapons. The Working Group also noted that nuclear forensics result would take some time to obtain and that neither internal coordination, nor international arrangements, nor the state of qualified personnel and needed equipment were currently enough to minimize the time needed to reach reliable results in an emergency such as would be caused by a nuclear detonation or the intercept of a weapon-size quantity of material. The Working Group assesses international cooperation to be crucial for forensics to work, since the material would likely come from inadequately documented foreign sources. In addition, international participation, if properly managed, could enhance the credibility of the deterrent effect of attribution. Finally the Working Group notes that the U.S. forensics

  7. Radioactive materials released from nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Norden, K.; Congemi, J.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1987 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1987 release data are summarized in tabular form. Data covering specific radionuclides are summarized. 16 tabs.

  8. Radioactive materials released from nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Norden, K.; Congemi, J.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1988 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1988 release data are summarized in tabular form. Data covering specific radionuclides are summarized. 16 tabs.

  9. Optical detection of special nuclear materials: an alternative approach for standoff and remote sensing

    NASA Astrophysics Data System (ADS)

    Johnson, J. Bruce; Reeve, S. W.; Burns, W. A.; Allen, Susan D.

    2010-04-01

    Termed Special Nuclear Material (SNM) by the Atomic Energy Act of 1954, fissile materials, such as 235U and 239Pu, are the primary components used to construct modern nuclear weapons. Detecting the clandestine presence of SNM represents an important capability for Homeland Security. An ideal SNM sensor must be able to detect fissile materials present at ppb levels, be able to distinguish between the source of the detected fissile material, i.e., 235U, 239Pu, 233U or other fission source, and be able to perform the discrimination in near real time. A sensor with such capabilities would provide not only rapid identification of a threat but, ultimately, information on the potential source of the threat. For example, current detection schemes for monitoring clandestine nuclear testing and nuclear fuel reprocessing to provide weapons grade fissile material rely largely on passive air sampling combined with a subsequent instrumental analysis or some type of wet chemical analysis of the collected material. It would be highly useful to have a noncontact method of measuring isotopes capable of providing forensic information rapidly at ppb levels of detection. Here we compare the use of Kr, Xe and I as "canary" species for distinguishing between 235U and 239Pu fission sources by spectroscopic methods.

  10. Active and Passive Diagnostic Signatures of Special Nuclear Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, William L.; Karpius, Peter Joseph; Myers, Steven Charles

    2017-05-26

    An overview will be given discussing signatures associated with special nuclear materials acquired using both active and passive diagnostic techniques. Examples of how technology advancements have helped improve diagnostic capabilities to meet the challenges of today’s applications will be discussed.

  11. Non-Proliferation, the IAEA Safeguards System, and the importance of nuclear material measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, Rebecca S.

    2017-09-18

    The objective of this project is to explain the contribution of nuclear material measurements to the system of international verification of State declarations and the non-proliferation of nuclear weapons.

  12. Materials for Active Engagement in Nuclear and Particle Physics Courses

    NASA Astrophysics Data System (ADS)

    Loats, Jeff; Schwarz, Cindy; Krane, Ken

    2013-04-01

    Physics education researchers have developed a rich variety of research-based instructional strategies that now permeate many introductory courses. Carrying these active-engagement techniques to upper-division courses requires effort and is bolstered by experience. Instructors interested in these methods thus face a large investment of time to start from scratch. This NSF-TUES grant, aims to develop, test and disseminate active-engagement materials for nuclear and particle physics topics. We will present examples of these materials, including: a) Conceptual discussion questions for use with Peer Instruction; b) warm-up questions for use with Just in Time Teaching, c) ``Back of the Envelope'' estimation questions and small-group case studies that will incorporate use of nuclear and particle databases, as well as d) conceptual exam questions.

  13. Nuclear Materials Focus Area Fiscal Year 2002 Mid Year Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thiel, Elizabeth Chilcote

    2002-05-01

    The Nuclear Materials Focus Area (NMFA) held its annual mid-year review on February 12 and 14, 2002, in Santa Fe, New Mexico. The purpose of this review was to examine both the technical aspects and the programmatic aspects of its technology development program. The focus area activities were reviewed by a panel consisting of personnel representing the end users of the technologies, and technical experts in nuclear materials. This year's review was somewhat different than in the past, as the stress was on how well the various projects being managed through the NMFA aligned with the two thrust areas andmore » nine key goals and priorities recently issued by the Deputy Assistant Secretary for DOE's Office of Environmental Management (EM).« less

  14. Nuclear Materials Focus Area Fiscal Year 2002 Mid Year Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thiel, E.C.; Fuhrman, P.W.

    2002-05-30

    The Nuclear Materials Focus Area (NMFA) held its annual mid-year review on February 12 and 14, 2002, in Santa Fe, New Mexico. The purpose of this review was to examine both the technical aspects and the programmatic aspects of its technology development program. The focus area activities were reviewed by a panel consisting of personnel representing the end users of the technologies, and technical experts in nuclear materials. This year's review was somewhat different than in the past, as the stress was on how well the various projects being managed through the NMFA aligned with the two thrust areas andmore » nine key goals and priorities recently issued by the Deputy Assistant Secretary for DOE's Office of Environmental Management (EM).« less

  15. Electron Correlation and Tranport Properties in Nuclear Fuel Materials

    NASA Astrophysics Data System (ADS)

    Yin, Quan; Haule, Kristjan; Kotliar, Gabriel; Savrasov, Sergey; Pickett, Warren

    2011-03-01

    Using first principle LDA+DMFT method, we conduct a systematic study on the correlated electronic structures and transport properties of select actinide carbides, nitrides, and oxides, many of which are nuclear fuel materials. Our results capture the metal--insulator Mott transition within the studied systems, and the appearance of the Zhang-Rice state in uranium dioxide. More importantly, by understanding the physics underlying their transport properties, we suggest ways to improve the efficiency of currently used fuels. This work is supported by the DOE Nuclear Energy University Program, contract No. 00088708.

  16. Computer programs of information processing of nuclear physical methods as a demonstration material in studying nuclear physics and numerical methods

    NASA Astrophysics Data System (ADS)

    Bateev, A. B.; Filippov, V. P.

    2017-01-01

    The principle possibility of using computer program Univem MS for Mössbauer spectra fitting as a demonstration material at studying such disciplines as atomic and nuclear physics and numerical methods by students is shown in the article. This program is associated with nuclear-physical parameters such as isomer (or chemical) shift of nuclear energy level, interaction of nuclear quadrupole moment with electric field and of magnetic moment with surrounded magnetic field. The basic processing algorithm in such programs is the Least Square Method. The deviation of values of experimental points on spectra from the value of theoretical dependence is defined on concrete examples. This value is characterized in numerical methods as mean square deviation. The shape of theoretical lines in the program is defined by Gaussian and Lorentzian distributions. The visualization of the studied material on atomic and nuclear physics can be improved by similar programs of the Mössbauer spectroscopy, X-ray Fluorescence Analyzer or X-ray diffraction analysis.

  17. Microchannel plate special nuclear materials sensor

    NASA Astrophysics Data System (ADS)

    Feller, W. B.; White, P. L.; White, P. B.; Siegmund, O. H. W.; Martin, A. P.; Vallerga, J. V.

    2011-10-01

    Nova Scientific Inc., is developing for the Domestic Nuclear Detection Office (DNDO SBIR #HSHQDC-08-C-00190), a solid-state, high-efficiency neutron detection alternative to 3He gas tubes, using neutron-sensitive microchannel plates (MCPs) containing 10B and/or Gd. This work directly supports DNDO development of technologies designed to detect and interdict nuclear weapons or illicit nuclear materials. Neutron-sensitized MCPs have been shown theoretically and more recently experimentally, to be capable of thermal neutron detection efficiencies equivalent to 3He gas tubes. Although typical solid-state neutron detectors typically have an intrinsic gamma sensitivity orders of magnitude higher than that of 3He gas detectors, we dramatically reduce gamma sensitivity by combining a novel electronic coincidence rejection scheme, employing a separate but enveloping gamma scintillator. This has already resulted in a measured gamma rejection ratio equal to a small 3He tube, without in principle sacrificing neutron detection efficiency. Ongoing improvements to the MCP performance as well as the coincidence counting geometry will be described. Repeated testing and validation with a 252Cf source has been underway throughout the Phase II SBIR program, with ongoing comparisons to a small commercial 3He gas tube. Finally, further component improvements and efforts toward integration maturity are underway, with the goal of establishing functional prototypes for SNM field testing.

  18. Radioactive materials released from nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Benkovitz, C.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1979 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1979 release data are compared with previous year's releases in tabular form. Data covering specific radionuclides are summarized.

  19. Chemical digestion of low level nuclear solid waste material

    DOEpatents

    Cooley, Carl R.; Lerch, Ronald E.

    1976-01-01

    A chemical digestion for treatment of low level combustible nuclear solid waste material is provided and comprises reacting the solid waste material with concentrated sulfuric acid at a temperature within the range of 230.degree.-300.degree.C and simultaneously and/or thereafter contacting the reacting mixture with concentrated nitric acid or nitrogen dioxide. In a special embodiment spent ion exchange resins are converted by this chemical digestion to noncombustible gases and a low volume noncombustible residue.

  20. Active Neutron-Based Interrogation System with D-D Neutron Source for Detection of Special Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Misawa, T.; Yagi, T.; Pyeon, C. H.; Kimura, M.; Masuda, K.; Ohgaki, H.

    2015-10-01

    The detection of special nuclear materials (SNM) is an important issue for nuclear security. The interrogation systems used in a sea port and an airport are developed in the world. The active neutron-based interrogation system is the one of the candidates. We are developing the active neutron-based interrogation system with a D-D fusion neutron source for the nuclear security application. The D-D neutron source is a compact discharge-type fusion neutron source called IEC (Inertial-Electrostatic Confinement fusion) device which provides 2.45 MeV neutrons. The nuclear materials emit the highenergy neutrons by fission reaction. High-energy neutrons with energies over 2.45 MeV amount to 30% of all the fission neutrons. By using the D-D neutron source, the detection of SNMs is considered to be possible with the attention of fast neutrons if there is over 2.45 MeV. Ideally, neutrons at En>2.45 MeV do not exist if there is no nuclear materials. The detection of fission neutrons over 2.45 MeV are hopeful prospect for the detection of SNM with a high S/N ratio. In the future, the experiments combined with nuclear materials and a D-D neutron source will be conducted. Furthermore, the interrogation system will be numerically investigated by using nuclear materials, a D-D neutron source, and a steel container.

  1. Structural materials for Gen-IV nuclear reactors: Challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Murty, K. L.; Charit, I.

    2008-12-01

    Generation-IV reactor design concepts envisioned thus far cater toward a common goal of providing safer, longer lasting, proliferation-resistant and economically viable nuclear power plants. The foremost consideration in the successful development and deployment of Gen-IV reactor systems is the performance and reliability issues involving structural materials for both in-core and out-of-core applications. The structural materials need to endure much higher temperatures, higher neutron doses and extremely corrosive environment, which are beyond the experience of the current nuclear power plants. Materials under active consideration for use in different reactor components include various ferritic/martensitic steels, austenitic stainless steels, nickel-base superalloys, ceramics, composites, etc. This paper presents a summary of various Gen-IV reactor concepts, with emphasis on the structural materials issues depending on the specific application areas. This paper also discusses the challenges involved in using the existing materials under both service and off-normal conditions. Tasks become increasingly complex due to the operation of various fundamental phenomena like radiation-induced segregation, radiation-enhanced diffusion, precipitation, interactions between impurity elements and radiation-produced defects, swelling, helium generation and so forth. Further, high temperature capability (e.g. creep properties) of these materials is a critical, performance-limiting factor. It is demonstrated that novel alloy and microstructural design approaches coupled with new materials processing and fabrication techniques may mitigate the challenges, and the optimum system performance may be achieved under much demanding conditions.

  2. ADVANCED CERAMIC MATERIALS FOR NEXT-GENERATION NUCLEAR APPLICATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marra, J.

    2010-09-29

    proliferation), the worldwide community is working to develop and deploy new nuclear energy systems and advanced fuel cycles. These new nuclear systems address the key challenges and include: (1) extracting the full energy value of the nuclear fuel; (2) creating waste solutions with improved long term safety; (3) minimizing the potential for the misuse of the technology and materials for weapons; (4) continually improving the safety of nuclear energy systems; and (5) keeping the cost of energy affordable.« less

  3. Laser-heating and Radiance Spectrometry for the Study of Nuclear Materials in Conditions Simulating a Nuclear Power Plant Accident.

    PubMed

    Manara, Dario; Soldi, Luca; Mastromarino, Sara; Boboridis, Kostantinos; Robba, Davide; Vlahovic, Luka; Konings, Rudy

    2017-12-14

    Major and severe accidents have occurred three times in nuclear power plants (NPPs), at Three Mile Island (USA, 1979), Chernobyl (former USSR, 1986) and Fukushima (Japan, 2011). Research on the causes, dynamics, and consequences of these mishaps has been performed in a few laboratories worldwide in the last three decades. Common goals of such research activities are: the prevention of these kinds of accidents, both in existing and potential new nuclear power plants; the minimization of their eventual consequences; and ultimately, a full understanding of the real risks connected with NPPs. At the European Commission Joint Research Centre's Institute for Transuranium Elements, a laser-heating and fast radiance spectro-pyrometry facility is used for the laboratory simulation, on a small scale, of NPP core meltdown, the most common type of severe accident (SA) that can occur in a nuclear reactor as a consequence of a failure of the cooling system. This simulation tool permits fast and effective high-temperature measurements on real nuclear materials, such as plutonium and minor actinide-containing fission fuel samples. In this respect, and in its capability to produce large amount of data concerning materials under extreme conditions, the current experimental approach is certainly unique. For current and future concepts of NPP, example results are presented on the melting behavior of some different types of nuclear fuels: uranium-plutonium oxides, carbides, and nitrides. Results on the high-temperature interaction of oxide fuels with containment materials are also briefly shown.

  4. Laser-heating and Radiance Spectrometry for the Study of Nuclear Materials in Conditions Simulating a Nuclear Power Plant Accident

    PubMed Central

    Manara, Dario; Soldi, Luca; Mastromarino, Sara; Boboridis, Kostantinos; Robba, Davide; Vlahovic, Luka; Konings, Rudy

    2017-01-01

    Major and severe accidents have occurred three times in nuclear power plants (NPPs), at Three Mile Island (USA, 1979), Chernobyl (former USSR, 1986) and Fukushima (Japan, 2011). Research on the causes, dynamics, and consequences of these mishaps has been performed in a few laboratories worldwide in the last three decades. Common goals of such research activities are: the prevention of these kinds of accidents, both in existing and potential new nuclear power plants; the minimization of their eventual consequences; and ultimately, a full understanding of the real risks connected with NPPs. At the European Commission Joint Research Centre's Institute for Transuranium Elements, a laser-heating and fast radiance spectro-pyrometry facility is used for the laboratory simulation, on a small scale, of NPP core meltdown, the most common type of severe accident (SA) that can occur in a nuclear reactor as a consequence of a failure of the cooling system. This simulation tool permits fast and effective high-temperature measurements on real nuclear materials, such as plutonium and minor actinide-containing fission fuel samples. In this respect, and in its capability to produce large amount of data concerning materials under extreme conditions, the current experimental approach is certainly unique. For current and future concepts of NPP, example results are presented on the melting behavior of some different types of nuclear fuels: uranium-plutonium oxides, carbides, and nitrides. Results on the high-temperature interaction of oxide fuels with containment materials are also briefly shown. PMID:29286382

  5. The Sagnac-configured fiber optic calorimeter: An investigation of an improved non-destructive methodology for determining the thermal power output of heat-producing nuclear materials

    NASA Astrophysics Data System (ADS)

    Bayliss, Stephen Carlton

    An essential component in an ever-expanding global nuclear economy is the nondestructive assay (NDA) of nuclear materials. Accurate accounting of these materials helps to insure the safe handling and disposal of them and the accurate monitoring of these materials can help prevent their diversion. A particularly useful and important NDA technique has proven to be isothermal calorimetry. With state-of-the-art calorimeters, heat rates as low as a few milliwatts can be measured, which correspond to approximately one gram of plutonium or one milligram of tritium; two materials of particular interest. In addition, calorimetry is relatively insensitive to the matrix of the sample. This work reports on the development of a calorimeter technique based on fiber optics, which can greatly increase the sensitivity of the calorimeter compared with present day devices. Specifically, this device uses an optical fiber configuration based on the Sagnac interferometer. Fundamentally, the optical fiber is replacing the resistive wire used in conventional calorimeters. The optical fiber is wrapped around two "thermels;" a reference and a sample thermel; the thermal sample to be measured is placed in the sample thermel. The light within the optical fiber of the sample arm experiences a change in phase due to the change in the index of refraction caused by the thermal load. When this light mixes with the light from the reference arm, a change in the light intensity results. An electro-optic receiver converts the time-varying light intensity to a time-varying voltage output. It is this voltage output that is stored and analyzed. A prototype fiber calorimeter has been built and proved capable of measuring heat loads in the microwatt regime. This sensitivity represents a factor of a one thousand-fold improvement over conventional calorimeters. This would allow plutonium samples as small as one milligram to be measured and microgram quantities of tritium. In addition, gram quantities of 93

  6. US-Russian Cooperation in Upgrading MC&A System at Rosatom Facilities: Measurement of Nuclear Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Danny H; Jensen, Bruce A

    2011-01-01

    Improve protection of weapons-usable nuclear material from theft or diversion through the development and support of a nationwide sustainable and effective Material Control and Accountability (MC&A) program based on material measurement. The material protection, control, and accountability (MPC&A) cooperation has yielded significant results in implementing MC&A measurements at Russian nuclear facilities: (1) Establishment of MEM WG and MEMS SP; (2) Infrastructure for development, certification, and distribution of RMs; and (3) Coordination on development and implementation of MMs.

  7. Multi-Detector Analysis System for Spent Nuclear Fuel Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reber, Edward Lawrence; Aryaeinejad, Rahmat; Cole, Jerald Donald

    1999-09-01

    The Spent Nuclear Fuel (SNF) Non-Destructive Analysis (NDA) program at INEEL is developing a system to characterize SNF for fissile mass, radiation source term, and fissile isotopic content. The system is based on the integration of the Fission Assay Tomography System (FATS) and the Gamma-Neutron Analysis Technique (GNAT) developed under programs supported by the DOE Office of Non-proliferation and National Security. Both FATS and GNAT were developed as separate systems to provide information on the location of special nuclear material in weapons configuration (FATS role), and to measure isotopic ratios of fissile material to determine if the material was frommore » a weapon (GNAT role). FATS is capable of not only determining the presence and location of fissile material but also the quantity of fissile material present to within 50%. GNAT determines the ratios of the fissile and fissionable material by coincidence methods that allow the two prompt (immediately) produced fission fragments to be identified. Therefore, from the combination of FATS and GNAT, MDAS is able to measure the fissile material, radiation source term, and fissile isotopics content.« less

  8. Feasibility study of a gamma camera for monitoring nuclear materials in the PRIDE facility

    NASA Astrophysics Data System (ADS)

    Jo, Woo Jin; Kim, Hyun-Il; An, Su Jung; Lee, Chae Young; Song, Han-Kyeol; Chung, Yong Hyun; Shin, Hee-Sung; Ahn, Seong-Kyu; Park, Se-Hwan

    2014-05-01

    The Korea Atomic Energy Research Institute (KAERI) has been developing pyroprocessing technology, in which actinides are recovered together with plutonium. There is no pure plutonium stream in the process, so it has an advantage of proliferation resistance. Tracking and monitoring of nuclear materials through the pyroprocess can significantly improve the transparency of the operation and safeguards. An inactive engineering-scale integrated pyroprocess facility, which is the PyRoprocess Integrated inactive DEmonstration (PRIDE) facility, was constructed to demonstrate engineering-scale processes and the integration of each unit process. the PRIDE facility may be a good test bed to investigate the feasibility of a nuclear material monitoring system. In this study, we designed a gamma camera system for nuclear material monitoring in the PRIDE facility by using a Monte Carlo simulation, and we validated the feasibility of this system. Two scenarios, according to locations of the gamma camera, were simulated using GATE (GEANT4 Application for Tomographic Emission) version 6. A prototype gamma camera with a diverging-slat collimator was developed, and the simulated and experimented results agreed well with each other. These results indicate that a gamma camera to monitor the nuclear material in the PRIDE facility can be developed.

  9. Detecting special nuclear materials in suspect containers using high-energy gamma rays emitted by fission products

    DOEpatents

    Norman, Eric B [Oakland, CA; Prussin, Stanley G [Kensington, CA

    2009-05-05

    A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  10. Detecting special nuclear materials in suspect containers using high-energy gamma rays emitted by fission products

    DOEpatents

    Norman, Eric B [Oakland, CA; Prussin, Stanley G [Kensington, CA

    2009-01-27

    A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  11. Detecting special nuclear materials in suspect containers using high-energy gamma rays emitted by fission products

    DOEpatents

    Norman, Eric B [Oakland, CA; Prussin, Stanley G [Kensington, CA

    2009-01-06

    A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  12. MCNP Parametric Studies of Plutonium Metal and Various Interstitial Moderating Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glazener, Natasha; Kamm, Ryan James

    2017-03-31

    Nuclear Criticality Safety (NCS) has performed calculations evaluating the effect of different interstitial materials on 5.0-kg of plutonium metal. As with all non-fissionable interstitials, the results here illustrate that it requires significant quantities of oil to be intimately mixed with plutonium, reflected by a thick layer of full-density water, to achieve the same reactivity as that of solid plutonium metal.

  13. Electrorefiner system for recovering purified metal from impure nuclear feed material

    DOEpatents

    Berger, John F.; Williamson, Mark A.; Wiedmeyer, Stanley G.; Willit, James L.; Barnes, Laurel A.; Blaskovitz, Robert J.

    2015-10-06

    An electrorefiner system according to a non-limiting embodiment of the present invention may include a vessel configured to maintain a molten salt electrolyte and configured to receive a plurality of alternately arranged cathode and anode assemblies. The anode assemblies are configured to hold an impure nuclear feed material. Upon application of the power system, the impure nuclear feed material is anodically dissolved and a purified metal is deposited on the cathode rods of the cathode assemblies. A scraper is configured to dislodge the purified metal deposited on the cathode rods. A conveyor system is disposed at a bottom of the vessel and configured to remove the dislodged purified metal from the vessel.

  14. The Attractiveness of Materials in Advanced Nuclear Fuel Cycles for Various Proliferation and Theft Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bathke, C. G.; Wallace, R. K.; Ireland, J. R.

    2010-09-01

    This paper is an extension to earlier studies1,2 that examined the attractiveness of materials mixtures containing special nuclear materials (SNM) and alternate nuclear materials (ANM) associated with the PUREX, UREX, COEX, THOREX, and PYROX reprocessing schemes. This study extends the figure of merit (FOM) for evaluating attractiveness to cover a broad range of proliferant state and sub-national group capabilities. The primary conclusion of this study is that all fissile material needs to be rigorously safeguarded to detect diversion by a state and provided the highest levels of physical protection to prevent theft by sub-national groups; no “silver bullet” has beenmore » found that will permit the relaxation of current international safeguards or national physical security protection levels. This series of studies has been performed at the request of the United States Department of Energy (DOE) and is based on the calculation of "attractiveness levels" that are expressed in terms consistent with, but normally reserved for nuclear materials in DOE nuclear facilities.3 The expanded methodology and updated findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security are discussed.« less

  15. The attractiveness of materials in advanced nuclear fuel cycles for various proliferation and theft scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bathke, Charles G; Wallace, Richard K; Ireland, John R

    2009-01-01

    This paper is an extension to earlier studies that examined the attractiveness of materials mixtures containing special nuclear materials (SNM) and alternate nuclear materials (ANM) associated with the PUREX, UREX, COEX, THOREX, and PYROX reprocessing schemes. This study extends the figure of merit (FOM) for evaluating attractiveness to cover a broad range of proliferant state and sub-national group capabilities. The primary conclusion of this study is that all fissile material needs to be rigorously safeguarded to detect diversion by a state and provided the highest levels of physical protection to prevent theft by sub-national groups; no 'silver bullet' has beenmore » found that will permit the relaxation of current international safeguards or national physical security protection levels. This series of studies has been performed at the request of the United States Department of Energy (DOE) and is based on the calculation of 'attractiveness levels' that are expressed in terms consistent with, but normally reserved for nuclear materials in DOE nuclear facilities. The expanded methodology and updated findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security are discussed.« less

  16. Detection Of Special Nuclear Materials Tagged Neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deyglun, Clement; Perot, Bertrand; Carasco, Cedric

    In order to detect Special Nuclear Materials (SNM) in unattended luggage or cargo containers in the field of homeland security, fissions are induced by 14 MeV neutrons produced by an associated particle DT neutron generator, and prompt fission particles correlated with tagged neutron are detected by plastic scintillators. SMN produce high multiplicity events due to induced fissions, whereas nonnuclear materials produce low multiplicity events due to cross-talk, (n,2n) or (n,n'γ) reactions. The data acquisition electronics is made of compact FPGA boards. The coincidence window is triggered by the alpha particle detection, allowing to tag the emission date and direction ofmore » the 14 MeV interrogating neutron. The first part of the paper presents experiment vs. calculation comparisons to validate MCNP-PoliMi simulations and the post-processing tools developed with the data analysis framework ROOT. Measurements have been performed using different targets (iron, lead, graphite), first with small plastic scintillators (10 x 10 x 10 cm{sup 3}) and then with large detectors (10 x 10 x 100 cm{sup 3}) to demonstrate that nuclear materials can be differentiated from nonnuclear dense materials (iron, lead) in iron and wood matrixes. A special attention is paid on SNM detection in abandoned luggage. In the second part of the paper, the performances of a cargo container inspection system are studied by numerical simulation, following previous work reported in. Detectors dimensions and shielding against the neutron generator background are optimized for container inspection. Events not correlated to an alpha particle (uncorrelated background), counting statistics, time and energy resolutions of the data acquisition system are all taken into account in a realistic numerical model. The impact of the container matrix (iron, ceramic, wood) has been investigated by studying the system capability to detect a few kilograms of SNM in different positions in the cargo container

  17. Large-scale purification of 90Sr from nuclear waste materials for production of 90Y, a therapeutic medical radioisotope.

    PubMed

    Wester, Dennis W; Steele, Richard T; Rinehart, Donald E; DesChane, Jaquetta R; Carson, Katharine J; Rapko, Brian M; Tenforde, Thomas S

    2003-07-01

    A major limitation on the supply of the short-lived medical isotope 90Y (t1/2 = 64 h) is the available quantity of highly purified 90Sr generator material. A radiochemical production campaign was therefore undertaken to purify 1,500 Ci of 90Sr that had been isolated from fission waste materials. A series of alkaline precipitation steps removed all detectable traces of 137Cs, alpha emitters, and uranium and transuranic elements. Technical obstacles such as the buildup of gas pressure generated upon mixing large quantities of acid with solid 90Sr carbonate were overcome through safety features incorporated into the custom-built equipment used for 90Sr purification. Methods are described for analyzing the chemical and radiochemical purity of the final product and for accurately determining by gravimetry the quantities of 90Sr immobilized on stainless steel filters for future use.

  18. The Feed Materials Program of the Manhattan Project: A Foundational Component of the Nuclear Weapons Complex

    NASA Astrophysics Data System (ADS)

    Reed, B. Cameron

    2014-12-01

    The feed materials program of the Manhattan Project was responsible for procuring uranium-bearing ores and materials and processing them into forms suitable for use as source materials for the Project's uranium-enrichment factories and plutonium-producing reactors. This aspect of the Manhattan Project has tended to be overlooked in comparison with the Project's more dramatic accomplishments, but was absolutely vital to the success of those endeavors: without appropriate raw materials and the means to process them, nuclear weapons and much of the subsequent cold war would never have come to pass. Drawing from information available in Manhattan Engineer District Documents, this paper examines the sources and processing of uranium-bearing materials used in making the first nuclear weapons and how the feed materials program became a central foundational component of the postwar nuclear weapons complex.

  19. Vapor etching of nuclear tracks in dielectric materials

    DOEpatents

    Musket, Ronald G.; Porter, John D.; Yoshiyama, James M.; Contolini, Robert J.

    2000-01-01

    A process involving vapor etching of nuclear tracks in dielectric materials for creating high aspect ratio (i.e., length much greater than diameter), isolated cylindrical holes in dielectric materials that have been exposed to high-energy atomic particles. The process includes cleaning the surface of the tracked material and exposing the cleaned surface to a vapor of a suitable etchant. Independent control of the temperatures of the vapor and the tracked materials provide the means to vary separately the etch rates for the latent track region and the non-tracked material. As a rule, the tracked regions etch at a greater rate than the non-tracked regions. In addition, the vapor-etched holes can be enlarged and smoothed by subsequent dipping in a liquid etchant. The 20-1000 nm diameter holes resulting from the vapor etching process can be useful as molds for electroplating nanometer-sized filaments, etching gate cavities for deposition of nano-cones, developing high-aspect ratio holes in trackable resists, and as filters for a variety of molecular-sized particles in virtually any liquid or gas by selecting the dielectric material that is compatible with the liquid or gas of interest.

  20. Detecting special nuclear material using muon-induced neutron emission

    NASA Astrophysics Data System (ADS)

    Guardincerri, Elena; Bacon, Jeffrey; Borozdin, Konstantin; Matthew Durham, J.; Fabritius, Joseph, II; Hecht, Adam; Milner, Edward C.; Miyadera, Haruo; Morris, Christopher L.; Perry, John; Poulson, Daniel

    2015-07-01

    The penetrating ability of cosmic ray muons makes them an attractive probe for imaging dense materials. Here, we describe experimental results from a new technique that uses neutrons generated by cosmic-ray muons to identify the presence of special nuclear material (SNM). Neutrons emitted from SNM are used to tag muon-induced fission events in actinides and laminography is used to form images of the stopping material. This technique allows the imaging of SNM-bearing objects tagged using muon tracking detectors located above or to the side of the objects, and may have potential applications in warhead verification scenarios. During the experiment described here we did not attempt to distinguish the type or grade of the SNM.

  1. 10 CFR 73.74 - Requirement for advance notice and protection of import shipments of nuclear material from...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... shipments of nuclear material from countries that are not party to the Convention on the Physical Protection... PROTECTION OF PLANTS AND MATERIALS Records and Reports § 73.74 Requirement for advance notice and protection of import shipments of nuclear material from countries that are not party to the Convention on the...

  2. 10 CFR 73.74 - Requirement for advance notice and protection of import shipments of nuclear material from...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... shipments of nuclear material from countries that are not party to the Convention on the Physical Protection... PROTECTION OF PLANTS AND MATERIALS Records and Reports § 73.74 Requirement for advance notice and protection of import shipments of nuclear material from countries that are not party to the Convention on the...

  3. Electrophysiological evidence for differential processing of numerical quantity and order in humans.

    PubMed

    Turconi, Eva; Jemel, Boutheina; Rossion, Bruno; Seron, Xavier

    2004-09-01

    It is yet unclear whether the processing of number magnitude and order rely on common or different functional processes and neural substrates. On the one hand, recent neuroimaging studies show that quantity and order coding activate the same areas in the parietal and prefrontal cortices. On the other hand, evidence from developmental and neuropsychological studies suggest dissociated mechanisms for processing quantity and order information. To clarify this issue, the present study investigated the spatio-temporal course of quantity and order coding operations using event-related potentials (ERPs). Twenty-four subjects performed a quantity task (classifying numbers as smaller or larger than 15) and an order task on the same material (classifying numbers as coming before or after 15), as well as a control order task on letters (classifying letters as coming before or after M). Behavioral results showed a classical distance effect (decreasing reaction times [RTs] with increasing distance from the standard) for all tasks. In agreement with previous electrophysiological evidence, this effect was significant on a P2 parietal component for numerical material. However, the difference between processing numbers close or far from the target appeared earlier and was larger on the left hemisphere for quantity processing, while it was delayed and bilateral for order processing. There was also a significant distance effect in all tasks on parietal sites for the following P3 component elicited by numbers, but this effect was larger on prefrontal areas for the order judgment. In conclusion, both quantity and order show similar behavioral effects, but they are associated with different spatio-temporal courses in parietal and prefrontal cortices.

  4. Nuclear power plant cable materials :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celina, Mathias C.; Gillen, Kenneth T; Lindgren, Eric Richard

    2013-05-01

    A selective literature review was conducted to assess whether currently available accelerated aging and original qualification data could be used to establish operational margins for the continued use of cable insulation and jacketing materials in nuclear power plant environments. The materials are subject to chemical and physical degradation under extended radiationthermal- oxidative conditions. Of particular interest were the circumstances under which existing aging data could be used to predict whether aged materials should pass loss of coolant accident (LOCA) performance requirements. Original LOCA qualification testing usually involved accelerated aging simulations of the 40-year expected ambient aging conditions followed by amore » LOCA simulation. The accelerated aging simulations were conducted under rapid accelerated aging conditions that did not account for many of the known limitations in accelerated polymer aging and therefore did not correctly simulate actual aging conditions. These highly accelerated aging conditions resulted in insulation materials with mostly inert aging processes as well as jacket materials where oxidative damage dropped quickly away from the air-exposed outside jacket surface. Therefore, for most LOCA performance predictions, testing appears to have relied upon heterogeneous aging behavior with oxidation often limited to the exterior of the cable cross-section a situation which is not comparable with the nearly homogenous oxidative aging that will occur over decades under low dose rate and low temperature plant conditions. The historical aging conditions are therefore insufficient to determine with reasonable confidence the remaining operational margins for these materials. This does not necessarily imply that the existing 40-year-old materials would fail if LOCA conditions occurred, but rather that unambiguous statements about the current aging state and anticipated LOCA performance cannot be provided based on original

  5. Hypothesis-driven classification of materials using nuclear magnetic resonance relaxometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espy, Michelle A.; Matlashov, Andrei N.; Schultz, Larry J.

    Technologies related to identification of a substance in an optimized manner are provided. A reference group of known materials is identified. Each known material has known values for several classification parameters. The classification parameters comprise at least one of T.sub.1, T.sub.2, T.sub.1.rho., a relative nuclear susceptibility (RNS) of the substance, and an x-ray linear attenuation coefficient (LAC) of the substance. A measurement sequence is optimized based on at least one of a measurement cost of each of the classification parameters and an initial probability of each of the known materials in the reference group.

  6. Experimental model of the device for detection of nuclear cycle materials by photoneutron technology

    NASA Astrophysics Data System (ADS)

    Bakalyarov, A. M.; Karetnikov, M. D.; Kozlov, K. N.; Lebedev, V. I.; Meleshko, E. A.; Obinyakov, B. A.; Ostashev, I. E.; Tupikin, N. A.; Yakovlev, G. V.

    2007-08-01

    The inherent complexity of sea container control makes them potentially dangerous for smuggling nuclear materials. The experts believe that only active technologies based on recording the products of induced radiation from sensitive materials might solve the problem. The paper reports on the experimental model of the device on the basis of the electron LINAC U-28 for detection of nuclear materials by photonuclear technology. The preliminary numerical optimization of output units (converter, filter, collimator) for shaping the bremsstrahlung was carried out. The setup of experimental device and initial results of recording the prompt and delayed fission products are discussed.

  7. Mechanistic materials modeling for nuclear fuel performance

    DOE PAGES

    Tonks, Michael R.; Andersson, David; Phillpot, Simon R.; ...

    2017-03-15

    Fuel performance codes are critical tools for the design, certification, and safety analysis of nuclear reactors. However, their ability to predict fuel behavior under abnormal conditions is severely limited by their considerable reliance on empirical materials models correlated to burn-up (a measure of the number of fission events that have occurred, but not a unique measure of the history of the material). In this paper, we propose a different paradigm for fuel performance codes to employ mechanistic materials models that are based on the current state of the evolving microstructure rather than burn-up. In this approach, a series of statemore » variables are stored at material points and define the current state of the microstructure. The evolution of these state variables is defined by mechanistic models that are functions of fuel conditions and other state variables. The material properties of the fuel and cladding are determined from microstructure/property relationships that are functions of the state variables and the current fuel conditions. Multiscale modeling and simulation is being used in conjunction with experimental data to inform the development of these models. Finally, this mechanistic, microstructure-based approach has the potential to provide a more predictive fuel performance capability, but will require a team of researchers to complete the required development and to validate the approach.« less

  8. Study on effect of geometrical configuration of radioactive source material to the radiation intensity of betavoltaic nuclear battery

    NASA Astrophysics Data System (ADS)

    Badrianto, Muldani Dwi; Riupassa, Robi D.; Basar, Khairul

    2015-09-01

    Nuclear batteries have strategic applications and very high economic potential. One Important problem in application of nuclear betavoltaic battery is its low efficiency. Current efficiency of betavoltaic nuclear battery reaches only arround 2%. One aspect that can influence the efficiency of betavoltaic nuclear battery is the geometrical configuration of radioactive source. In this study we discuss the effect of geometrical configuration of radioactive source material to the radiation intensity in betavoltaic nuclear battery system. received by the detector. By obtaining the optimum configurations, the optimum usage of radioactive materials can be determined. Various geometrical configurations of radioactive source material are simulated. It is obtained that usage of radioactive source will be optimum for circular configuration.

  9. Rapid response sensor for analyzing Special Nuclear Material

    DOE PAGES

    Mitra, S. S.; Doron, O.; Chen, A. X.; ...

    2015-06-18

    Rapid in-situ analytical techniques are attractive for characterizing Special Nuclear Material (SNM). Present techniques are time consuming, and require sample dissolution. Proof-of-principal studies are performed to demonstrate the utility of employing low energy neutrons from a portable pulsed neutron generator for non-destructive isotopic analysis of nuclear material. In particular, time-sequenced data acquisition, operating synchronously with the pulsing of a neutron generator, partitions the characteristic elemental prompt gamma-rays according to the type of the reaction; inelastic neutron scattering reactions during the ON state and thermal neutron capture reactions during the OFF state of the generator. Thus, the key challenge is isolatingmore » these signature gamma- rays from the prompt fission and β-delayed gamma-rays that are also produced during the neutron interrogation. A commercial digital multi-channel analyzer has been specially customized to enable time-resolved gamma-ray spectral data to be acquired in multiple user-defined time bins within each of the ON/OFF gate periods of the neutron generator. Preliminary results on new signatures from depleted uranium as well as modeling and benchmarking of the concept are presented, however this approach should should be applicable for virtually all forms of SNM.« less

  10. Nuclear Fuel Assay through analysis of Uranium L-shell by Hybrid L-edge/XRF Densitometer using a Surrogate Material

    NASA Astrophysics Data System (ADS)

    Park, Seunghoon; Joung, Sungyeop; Park, Jerry AB(; ), AC(; )

    2018-01-01

    Assay of L-series of nuclear material solution is useful for determination of amount of nuclear materials and ratio of minor actinide in the materials. The hybrid system of energy dispersive X-ray absorption edge spectrometry, i.e. L-edge densitometry, and X-ray fluorescence spectrometry is one of the analysis methods. The hybrid L-edge/XRF densitometer can be a promising candidate for a portable and compact equipment due to advantage of using low energy X-ray beams without heavy shielding systems and liquid nitrogen cooling compared to hybrid K-edge/XRF densitometer. A prototype of the equipment was evaluated for feasibility of the nuclear material assay using a surrogate material (lead) to avoid radiation effects from nuclear materials. The uncertainty of L-edge and XRF characteristics of the sample material and volume effects was discussed in the article.

  11. Grain boundary engineering for structure materials of nuclear reactors

    NASA Astrophysics Data System (ADS)

    Tan, L.; Allen, T. R.; Busby, J. T.

    2013-10-01

    Grain boundary engineering (GBE), primarily implemented by thermomechanical processing, is an effective and economical method of enhancing the properties of polycrystalline materials. Among the factors affecting grain boundary character distribution, literature data showed definitive effect of grain size and texture. GBE is more effective for austenitic stainless steels and Ni-base alloys compared to other structural materials of nuclear reactors, such as refractory metals, ferritic and ferritic-martensitic steels, and Zr alloys. GBE has shown beneficial effects on improving the strength, creep strength, and resistance to stress corrosion cracking and oxidation of austenitic stainless steels and Ni-base alloys.

  12. 10 CFR 40.13 - Unimportant quantities of source material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... receives, possesses, uses, transfers or delivers source material in any chemical mixture, compound... source material; but not including commercially manufactured glass brick, pane glass, ceramic tile, or... in this subparagraph shall not be deemed to authorize the chemical, physical or metallurgical...

  13. Study on effect of geometrical configuration of radioactive source material to the radiation intensity of betavoltaic nuclear battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badrianto, Muldani Dwi; Riupassa, Robi D.; Basar, Khairul, E-mail: khbasar@fi.itb.ac.id

    2015-09-30

    Nuclear batteries have strategic applications and very high economic potential. One Important problem in application of nuclear betavoltaic battery is its low efficiency. Current efficiency of betavoltaic nuclear battery reaches only arround 2%. One aspect that can influence the efficiency of betavoltaic nuclear battery is the geometrical configuration of radioactive source. In this study we discuss the effect of geometrical configuration of radioactive source material to the radiation intensity in betavoltaic nuclear battery system. received by the detector. By obtaining the optimum configurations, the optimum usage of radioactive materials can be determined. Various geometrical configurations of radioactive source material aremore » simulated. It is obtained that usage of radioactive source will be optimum for circular configuration.« less

  14. Porous Chromatographic Materials as Substrates for Preparing Synthetic Nuclear Explosion Debris Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Scott D.; Liezers, Martin; Antolick, Kathryn C.

    2013-06-13

    In this study, we investigated several porous chromatographic materials as synthetic substrates for preparing surrogate nuclear explosion debris particles. The resulting synthetic debris materials are of interest for use in developing analytical methods. Eighteen metals, including some of forensic interest, were loaded onto materials by immersing them in metal solutions (556 mg/L of each metal) to fill the pores, applying gentle heat (110°C) to drive off water, and then treating them at high temperatures (up to 800°C) in air to form less soluble metal species. High-boiling-point metals were uniformly loaded on spherical controlled-pore glass to emulate early fallout, whereas low-boiling-pointmore » metals were loaded on core-shell silica to represent coated particles formed later in the nuclear fallout-formation process. Analytical studies were applied to characterize solubility, material balance, and formation of recalcitrant species. Dissolution experiments indicated loading was 1.5 to 3 times higher than expected from the pore volume alone, a result attributed to surface coating. Analysis of load solutions before and after filling the material pores revealed that most metals were passively loaded; that is, solutions filled the pores without active metal discrimination. However, niobium and tin concentrations were lower in solutions after pore filling, and were found in elevated concentrations in the final products, indicating some metals were selectively loaded. High-temperature treatments caused reduced solubility of several metal species, and loss of some metals (rhenium and tellurium) because volatile species were formed. Sample preparation reproducibility was high (the inter-batch relative standard deviation was 7.8%, and the intra-batch relative standard deviation was 0.84%) indicating that this material is suitable for use as a working standard for analytical methods development. We anticipate future standardized radionuclide-loaded materials will find

  15. 10 CFR 40.13 - Unimportant quantities of source material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... receives, possesses, uses, transfers or delivers source material in any chemical mixture, compound... percent by weight source material; but not including commercially manufactured glass brick, pane glass... contained in this subparagraph shall not be deemed to authorize the chemical, physical or metallurgical...

  16. 10 CFR 40.13 - Unimportant quantities of source material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... receives, possesses, uses, transfers or delivers source material in any chemical mixture, compound... percent by weight source material; but not including commercially manufactured glass brick, pane glass... contained in this subparagraph shall not be deemed to authorize the chemical, physical or metallurgical...

  17. The orientation distribution of tunneling-related quantities

    NASA Astrophysics Data System (ADS)

    Seif, W. M.; Refaie, A. I.; Botros, M. M.

    2018-03-01

    In the nuclear tunneling processes involving deformed nuclei, most of the tunneling-related quantities depend on the relative orientations of the participating nuclei. In the presence of different multipole deformations, we study the variation of a few relevant quantities for the α-decay and the sub-barrier fusion processes, in an orientation degree of freedom. The knocking frequency and the penetration probability are evaluated within the Wentzel-Kramers-Brillouin approximation. The interaction potential is calculated with Skyrme-type nucleon-nucleon interaction. We found that the width of the potential pocket, the Coulomb barrier radius, the penetration probability, the α-decay width, and the fusion cross-section follow consistently the orientation-angle variation of the radius of the deformed nucleus. The orientation distribution patterns of the pocket width, the barrier radius, the logarithms of the penetrability, the decay width, and the fusion cross-section are found to be highly analogous to pattern of the deformed-nucleus radius. The curve patterns of the orientation angle distributions of the internal pocket depth, the Coulomb barrier height and width, as well as the knocking frequency simulate inversely the variation of the deformed nucleus radius. The predicted orientation behaviors will be of a special interest in predicting the optimum orientations for the tunneling processes.

  18. Filter Measurement System for Nuclear Material Storage Canisters. End of Year Report FY 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Murray E.; Reeves, Kirk P.

    2014-02-03

    A test system has been developed at Los Alamos National Laboratory to measure the aerosol collection efficiency of filters in the lids of storage canisters for special nuclear materials. Two FTS (filter test system) devices have been constructed; one will be used in the LANL TA-55 facility with lids from canisters that have stored nuclear material. The other FTS device will be used in TA-3 at the Radiation Protection Division’s Aerosol Engineering Facility. The TA-3 system will have an expanded analytical capability, compared to the TA-55 system that will be used for operational performance testing. The LANL FTS is intendedmore » to be automatic in operation, with independent instrument checks for each system component. The FTS has been described in a complete P&ID (piping and instrumentation diagram) sketch, included in this report. The TA-3 FTS system is currently in a proof-of-concept status, and TA-55 FTS is a production-quality prototype. The LANL specification for (Hagan and SAVY) storage canisters requires the filter shall “capture greater than 99.97% of 0.45-micron mean diameter dioctyl phthalate (DOP) aerosol at the rated flow with a DOP concentration of 65±15 micrograms per liter”. The percent penetration (PEN%) and pressure drop (DP) of fifteen (15) Hagan canister lids were measured by NFT Inc. (Golden, CO) over a period of time, starting in the year 2002. The Los Alamos FTS measured these quantities on June 21, 2013 and on Oct. 30, 2013. The LANL(6-21-2013) results did not statistically match the NFT Inc. data, and the LANL FTS system was re-evaluated, and the aerosol generator was replaced and the air flow measurement method was corrected. The subsequent LANL(10-30-2013) tests indicate that the PEN% results are statistically identical to the NFT Inc. results. The LANL(10-30-2013) pressure drop measurements are closer to the NFT Inc. data, but future work will be investigated. An operating procedure for the FTS (filter test system) was written

  19. Advanced Ceramics for Use as Fuel Element Materials in Nuclear Thermal Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Valentine, Peter G.; Allen, Lee R.; Shapiro, Alan P.

    2012-01-01

    With the recent start (October 2011) of the joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) Advanced Exploration Systems (AES) Nuclear Cryogenic Propulsion Stage (NCPS) Program, there is renewed interest in developing advanced ceramics for use as fuel element materials in nuclear thermal propulsion (NTP) systems. Three classes of fuel element materials are being considered under the NCPS Program: (a) graphite composites - consisting of coated graphite elements containing uranium carbide (or mixed carbide), (b) cermets (ceramic/metallic composites) - consisting of refractory metal elements containing uranium oxide, and (c) advanced carbides consisting of ceramic elements fabricated from uranium carbide and one or more refractory metal carbides [1]. The current development effort aims to advance the technology originally developed and demonstrated under Project Rover (1955-1973) for the NERVA (Nuclear Engine for Rocket Vehicle Application) [2].

  20. Quantity and unit extraction for scientific and technical intelligence analysis

    NASA Astrophysics Data System (ADS)

    David, Peter; Hawes, Timothy

    2017-05-01

    Scientific and Technical (S and T) intelligence analysts consume huge amounts of data to understand how scientific progress and engineering efforts affect current and future military capabilities. One of the most important types of information S and T analysts exploit is the quantities discussed in their source material. Frequencies, ranges, size, weight, power, and numerous other properties and measurements describing the performance characteristics of systems and the engineering constraints that define them must be culled from source documents before quantified analysis can begin. Automating the process of finding and extracting the relevant quantities from a wide range of S and T documents is difficult because information about quantities and their units is often contained in unstructured text with ad hoc conventions used to convey their meaning. Currently, even simple tasks, such as searching for documents discussing RF frequencies in a band of interest, is a labor intensive and error prone process. This research addresses the challenges facing development of a document processing capability that extracts quantities and units from S and T data, and how Natural Language Processing algorithms can be used to overcome these challenges.

  1. 75 FR 2163 - Constellation Energy; Notice of Docketing of Special Nuclear Material License SNM-2505 Amendment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-14

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 72-8; NRC-2010-0011] Constellation Energy; Notice of... Independent Spent Fuel Storage Installation AGENCY: Nuclear Regulatory Commission. ACTION: Notice of license..., Division of Spent Fuel Storage and Transportation, Office of Nuclear Material Safety and Safeguards, U.S...

  2. Astrophysical Nuclear Reaction Rates in the Dense Metallic Environments

    NASA Astrophysics Data System (ADS)

    Kilic, Ali Ihsan

    2017-09-01

    Nuclear reaction rates can be enhanced by many orders of magnitude in dense and relatively cold astrophysical plasmas such as in white dwarfs, brown dwarfs, and giant planets. Similar conditions are also present in supernova explosions where the ignition conditions are vital for cosmological models. White dwarfs are compact objects that have both extremely high interior densities and very strong local magnetic fields. For the first time, a new formula has been developed to explain cross section and reaction rate quantities for light elements that includes not only the nuclear component but also the material dependence, magnetic field, and crystal structure dependency in dense metallic environments. I will present the impact of the developed formula on the cross section and reaction rates for light elements. This could have possible technological applications in energy production using nuclear fusion reactions.

  3. Report on {open_quotes}audit of internal controls over special nuclear materials{close_quotes}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-04-01

    The Department of Energy (Department) is responsible for safeguarding a significant amount of plutonium, uranium-233 and enriched uranium - collectively referred to as special nuclear materials - stored in the United States. The Department`s office of Nonproliferation and National Security has overall management cognizance for developing policies for safeguarding these materials, while other Headquarters program offices have {open_quotes}landlord{close_quotes} responsibilities for the sites where the materials are stored, and the Department`s operations and field offices provide onsite management of contractor operations. The Department`s management and operating contractors, under the direction of the Department, safeguard and account for the special nuclear materialmore » stored at Department sites.« less

  4. 46 CFR 108.469 - Quantity of foam producing materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... at least 5 minutes at each outlet; and (2) In a space must have enough foam producing material to... or space, the system need have only enough foam producing material to cover the largest space that the system covers or, if the liquid surface of a tank covered by the system is larger, the tank with...

  5. 46 CFR 108.469 - Quantity of foam producing materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... at least 5 minutes at each outlet; and (2) In a space must have enough foam producing material to... or space, the system need have only enough foam producing material to cover the largest space that the system covers or, if the liquid surface of a tank covered by the system is larger, the tank with...

  6. 46 CFR 108.469 - Quantity of foam producing materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... at least 5 minutes at each outlet; and (2) In a space must have enough foam producing material to... or space, the system need have only enough foam producing material to cover the largest space that the system covers or, if the liquid surface of a tank covered by the system is larger, the tank with...

  7. 46 CFR 108.469 - Quantity of foam producing materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... at least 5 minutes at each outlet; and (2) In a space must have enough foam producing material to... or space, the system need have only enough foam producing material to cover the largest space that the system covers or, if the liquid surface of a tank covered by the system is larger, the tank with...

  8. 46 CFR 108.469 - Quantity of foam producing materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... at least 5 minutes at each outlet; and (2) In a space must have enough foam producing material to... or space, the system need have only enough foam producing material to cover the largest space that the system covers or, if the liquid surface of a tank covered by the system is larger, the tank with...

  9. AN EVALUATION OF POTENTIAL LINER MATERIALS FOR ELIMINATING FCCI IN IRRADIATED METALLIC NUCLEAR FUEL ELEMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. D. Keiser; J. I. Cole

    2007-09-01

    Metallic nuclear fuels are being looked at as part of the Global Nuclear Energy Program for transmuting longlive transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products. In order to optimize the performance of these fuels, the concept of using liners to eliminate the fuel/cladding chemical interactions that can occur during irradiation of a fuel element has been investigated. The potential liner materials Zr and V have been tested using solid-solid diffusion couples, consisting of liner materials butted against fuel alloys and against cladding materials. The couples were annealed at the relatively high temperature of 700°C. Thismore » temperature would be the absolute maximum temperature present at the fuel/cladding interface for a fuel element in-reactor. Analysis was performed using a scanning electron microscope equipped with energy-dispersive and wavelengthdispersive spectrometers (SEM/EDS/WDS) to evaluate any developed diffusion structures. At 700°C, minimal interaction was observed between the metallic fuels and either Zr or V. Similarly, limited interaction was observed between the Zr and V and the cladding materials. The best performing liner material appeared to be the V, based on amounts of interaction.« less

  10. 27 CFR 19.93 - Quantity determination of spirits in bond.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Miscellaneous Provisions Gauging of Spirits, Wines Or Alcoholic Flavoring Materials § 19.93 Quantity determination of spirits in bond. Where bulk spirits in bond are gauged for determination of tax, or are gauged.... In all other instances where spirits are gauged in bond, gauged for denaturation, or are gauged for...

  11. Experimental Observations of Nuclear Activity in Deuterated Materials Subjected to a Low-Energy Photon Beam

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Benyo, Theresa L.; Pines, Vladimir; Pines, Marianna; Forsley, Lawrence P.; Westmeyer, Paul A.; Chait, Arnon; Becks, Michael D.; Martin, Richard E.; Hendricks, Robert C.; hide

    2017-01-01

    Exposure of highly deuterated materials to a low-energy (nom. 2 MeV) photon beam resulted in nuclear activity of both the parent metals of hafnium and erbium and a witness material (molybdenum) mixed with the reactants. Gamma spectral analysis of all deuterated materials, ErD2.8+C36D74+Mo and HfD2+C36D74+Mo, showed that nuclear processes had occurred as shown by unique gamma signatures. For the deuterated erbium specimens, posttest gamma spectra showed evidence of radioisotopes of erbium ((163)Er and (171)Er) and of molybdenum ((99)Mo and (101)Mo) and by beta decay, technetium (99mTc and 101Tc). For the deuterated hafnium specimens, posttest gamma spectra showed evidence of radioisotopes of hafnium (180mHf and 181Hf) and molybdenum ((99)Mo and (101)Mo), and by beta decay, technetium ((99m)Tc and (101)Tc). In contrast, when either the hydrogenated or non-gas-loaded erbium or hafnium materials were exposed to the gamma flux, the gamma spectra revealed no new isotopes. Neutron activation materials showed evidence of thermal and epithermal neutrons. CR-39 solid-state nuclear track detectors showed evidence of fast neutrons with energies between 1.4 and 2.5 MeV and several instances of triple tracks, indicating (is) greater than 10 MeV neutrons. Further study is required to determine the mechanism causing the nuclear activity.

  12. 10 CFR 40.11 - Persons using source material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Persons using source material under certain Department of Energy and Nuclear Regulatory Commission contracts. 40.11 Section 40.11 Energy NUCLEAR REGULATORY... certain Department of Energy and Nuclear Regulatory Commission contracts. Except to the extent that...

  13. 10 CFR 40.11 - Persons using source material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Persons using source material under certain Department of Energy and Nuclear Regulatory Commission contracts. 40.11 Section 40.11 Energy NUCLEAR REGULATORY... certain Department of Energy and Nuclear Regulatory Commission contracts. Except to the extent that...

  14. 10 CFR 40.11 - Persons using source material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Persons using source material under certain Department of Energy and Nuclear Regulatory Commission contracts. 40.11 Section 40.11 Energy NUCLEAR REGULATORY... certain Department of Energy and Nuclear Regulatory Commission contracts. Except to the extent that...

  15. 10 CFR 40.11 - Persons using source material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Persons using source material under certain Department of Energy and Nuclear Regulatory Commission contracts. 40.11 Section 40.11 Energy NUCLEAR REGULATORY... certain Department of Energy and Nuclear Regulatory Commission contracts. Except to the extent that...

  16. 10 CFR 40.11 - Persons using source material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Persons using source material under certain Department of Energy and Nuclear Regulatory Commission contracts. 40.11 Section 40.11 Energy NUCLEAR REGULATORY... certain Department of Energy and Nuclear Regulatory Commission contracts. Except to the extent that...

  17. Device for Detection of Explosives, Nuclear and Other Hazardous Materials in Luggage and Cargo Containers

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Andrey; Evsenin, Alexey; Gorshkov, Igor; Osetrov, Oleg; Vakhtin, Dmitry

    2009-12-01

    Device for detection of explosives, radioactive and heavily shielded nuclear materials in luggage and cargo containers based on Nanosecond Neutron Analysis/Associated Particles Technique (NNA/APT) is under construction. Detection module consists of a small neutron generator with built-in position-sensitive detector of associated alpha-particles, and several scintillator-based gamma-ray detectors. Explosives and other hazardous chemicals are detected by analyzing secondary high-energy gamma-rays from reactions of fast neutrons with materials inside a container. The same gamma-ray detectors are used to detect unshielded radioactive and nuclear materials. An array of several neutron detectors is used to detect fast neutrons from induced fission of nuclear materials. Coincidence and timing analysis allows one to discriminate between fission neutrons and scattered probing neutrons. Mathematical modeling by MCNP5 and MCNP-PoliMi codes was used to estimate the sensitivity of the device and its optimal configuration. Comparison of the features of three gamma detector types—based on BGO, NaI and LaBr3 crystals is presented.

  18. Quantity and quality benefits of in-service invasive cleaning of trunk mains

    NASA Astrophysics Data System (ADS)

    Sunny, Iftekhar; Husband, Stewart; Drake, Nick; Mckenzie, Kevan; Boxall, Joby

    2017-07-01

    Trunk mains are high risk critical infrastructure where poor performance can impact on large numbers of customers. Both quantity (e.g. hydraulic capacity) and quality (e.g. discolouration) of trunk main performance are affected by asset deterioration in the form of particle accumulation at the pipe wall. Trunk main cleaning techniques are therefore desirable to remove such material. However, little is quantified regarding the efficacy of different maintenance interventions or longer-term changes following such cleaning. This paper presents an assessment of quantity and quality performance of a trunk main system pre, post and for 12 months following cleaning using pigging with ice slurry. Hydraulic calibration showed a 7 times roughness height reduction after ice slurry pigging, evidencing substantially improved hydraulic capacity and reduced headloss. Turbidity response due to carefully imposed shear stress increase remained significant after the cleaning intervention, showing that relatively loose material had not been fully removed from the pipe wall. Overall the results demonstrate that cleaning by pigging with ice slurry can be beneficial for quantity performance, but care and further assessment may be necessary to realise the full quality benefits.

  19. Semi-annual report on strategic special nuclear material inventory differences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-07-01

    The generally small differences between the amounts of nuclear materials charged to Department of Energy facilities and the amounts that could be physically inventoried are tabulated and explained. Inventory Differences data cover the period from April 1, 1977, through September 30, 1977. Certain identified accounting corrections for data from earlier periods are included. (LK)

  20. Development of a simple-material discrimination method with three plastic scintillator strips for visualizing nuclear reactors

    NASA Astrophysics Data System (ADS)

    Takamatsu, k.; Tanaka, h.; Shoji, d.

    2012-04-01

    The Fukushima Daiichi nuclear disaster is a series of equipment failures and nuclear meltdowns, following the T¯o hoku earthquake and tsunami on 11 March 2011. We present a new method for visualizing nuclear reactors. Muon radiography based on the multiple Coulomb scattering of cosmic-ray muons has been performed. In this work, we discuss experimental results obtained with a cost-effective simple detection system assembled with three plastic scintillator strips. Actually, we counted the number of muons that were not largely deflected by restricting the zenith angle in one direction to 0.8o. The system could discriminate Fe, Pb and C. Materials lighter than Pb can be also discriminated with this system. This method only resolves the average material distribution along the muon path. Therefore the user must make assumptions or interpretations about the structure, or must use more than one detector to resolve the three dimensional material distribution. By applying this method to time-dependent muon radiography, we can detect changes with time, rendering the method suitable for real-time monitoring applications, possibly providing useful information about the reaction process in a nuclear reactor such as burnup of fuels. In nuclear power technology, burnup (also known as fuel utilization) is a measure of how much energy is extracted from a primary nuclear fuel source. Monitoring the burnup of fuels as a nondestructive inspection technique can contribute to safer operation. In nuclear reactor, the total mass is conserved so that the system cannot be monitored by conventional muon radiography. A plastic scintillator is relatively small and easy to setup compared to a gas or layered scintillation system. Thus, we think this simple radiographic method has the potential to visualize a core directly in cases of normal operations or meltdown accidents. Finally, we considered only three materials as a first step in this work. Further research is required to improve the

  1. Materials technology for an advanced space power nuclear reactor concept: Program summary

    NASA Technical Reports Server (NTRS)

    Gluyas, R. E.; Watson, G. K.

    1975-01-01

    The results of a materials technology program for a long-life (50,000 hr), high-temperature (950 C coolant outlet), lithium-cooled, nuclear space power reactor concept are reviewed and discussed. Fabrication methods and compatibility and property data were developed for candidate materials for fuel pins and, to a lesser extent, for potential control systems, reflectors, reactor vessel and piping, and other reactor structural materials. The effects of selected materials variables on fuel pin irradiation performance were determined. The most promising materials for fuel pins were found to be 85 percent dense uranium mononitride (UN) fuel clad with tungsten-lined T-111 (Ta-8W-2Hf).

  2. Evaluation of insulation materials and composites for use in a nuclear radiation environment, phase 1

    NASA Technical Reports Server (NTRS)

    Greenhow, W. A.; Lewis, J. H.

    1972-01-01

    This study has been carried out to evaluate flight-qualified Saturn 5 materials, components, and systems for use, with or without modification, in the radiation environment of the nuclear flight system. The results reported herein are primarily intended to aid designers in their evaluation and selection of off-the-shelf equipments which may meet the stringent requirements and specifications associated with application on a reusable nuclear powered space system, i.e., the reusable nuclear shuttle. One of the factors which must be evaluated in the design of the RNS is the effects of radiation on materials; and it is toward this aspect of the overall effort that this analysis has been directed.

  3. Quantity Stickiness versus Stackelberg Leadership

    NASA Astrophysics Data System (ADS)

    Ferreira, F. A.

    2008-10-01

    We study the endogenous Stackelberg relations in a dynamic market. We analyze a twice-repeated duopoly where, in the beginning, each firm chooses either a quantity-sticky production mode or a quantity-flexible production mode. The size of the market becomes observable after the first period. In the second period, a firm can adjust its quantity if, and only if, it has adopted the flexible mode. Hence, if one firm chooses the sticky mode whilst the other chooses the flexible mode, then they respectively play the roles of a Stackelberg leader and a Stackelberg follower in the second marketing period. We compute the supply quantities at equilibrium and the corresponding expected profits of the firms. We also analyze the effect of the slope parameter of the demand curve on the expected supply quantities and on the profits.

  4. Special Nuclear Material Gamma-Ray Signatures for Reachback Analysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpius, Peter Joseph; Myers, Steven Charles

    2016-08-29

    These are slides on special nuclear material gamma-ray signatures for reachback analysts for an LSS Spectroscopy course. The closing thoughts for this presentation are the following: SNM materials have definite spectral signatures that should be readily recognizable to analysts in both bare and shielded configurations. One can estimate burnup of plutonium using certain pairs of peaks that are a few keV apart. In most cases, one cannot reliably estimate uranium enrichment in an analogous way to the estimation of plutonium burnup. The origin of the most intense peaks from some SNM items may be indirect and from ‘associated nuclides.' Indirectmore » SNM signatures sometimes have commonalities with the natural gamma-ray background.« less

  5. Fabrication and Testing of CERMET Fuel Materials for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Hickman, Robert; Broadway, Jeramie; Mireles, Omar

    2012-01-01

    A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on Nuclear Thermal Propulsion (NTP) is currently being developed for Advanced Space Exploration Systems. The overall goal of the project is to address critical NTP technology challenges and programmatic issues to establish confidence in the affordability and viability of NTP systems. The current technology roadmap for NTP identifies the development of a robust fuel form as a critical near term need. The lack of a qualified nuclear fuel is a significant technical risk that will require a considerable fraction of program resources to mitigate. Due to these risks and the cost for qualification, the development and selection of a primary fuel must begin prior to Authority to Proceed (ATP) for a specific mission. The fuel development is a progressive approach to incrementally reduce risk, converge the fuel materials, and mature the design and fabrication process of the fuel element. A key objective of the current project is to advance the maturity of CERMET fuels. The work includes fuel processing development and characterization, fuel specimen hot hydrogen screening, and prototypic fuel element testing. Early fuel materials development is critical to help validate requirements and fuel performance. The purpose of this paper is to provide an overview and status of the work at Marshall Space Flight Center (MSFC).

  6. Nuclear Forensics

    DOE PAGES

    Glaser, Alexander; Mayer, Klaus

    2016-06-01

    Whenever nuclear material is found out of regulatory control, questions on the origin of the material, on its intended use, and on hazards associated with the material need to be answered. Analytical and interpretational methodologies have been developed in order to exploit measurable material properties for gaining information on the history of the nuclear material. This area of research is referred to as nuclear forensic science or, in short, nuclear forensics.This chapter reviews the origins, types, and state-of-the-art of nuclear forensics; discusses the potential roles of nuclear forensics in supporting nuclear security; and examines what nuclear forensics can realistically achieve.more » It also charts a path forward, pointing at potential applications of nuclear forensic methodologies in other areas.« less

  7. Summary report on transportation of nuclear fuel materials in Japan : transportation infrastructure, threats identified in open literature, and physical protection regulations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, John Russell; Ouchi, Yuichiro; Furaus, James Phillip

    2008-03-01

    This report summarizes the results of three detailed studies of the physical protection systems for the protection of nuclear materials transport in Japan, with an emphasis on the transportation of mixed oxide fuel materials1. The Japanese infrastructure for transporting nuclear fuel materials is addressed in the first section. The second section of this report presents a summary of baseline data from the open literature on the threats of sabotage and theft during the transport of nuclear fuel materials in Japan. The third section summarizes a review of current International Atomic Energy Agency, Japanese and United States guidelines and regulations concerningmore » the physical protection for the transportation of nuclear fuel materials.« less

  8. LIFE Materials: Overview of Fuels and Structural Materials Issues Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, J

    2008-09-08

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spentmore » nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission blanket in a

  9. Nuclear and Physical Properties of Dielectrics under Neutron Irradiation in Fast (BN-600) and Fusion (DEMO-S) Reactors

    NASA Astrophysics Data System (ADS)

    Blokhin, D. A.; Chernov, V. M.; Blokhin, A. I.

    2017-12-01

    Nuclear and physical properties (activation and transmutation of elements) of BN and Al2O3 dielectric materials subjected to neutron irradiation for up to 5 years in Russian fast (BN-600) and fusion (DEMO-S) reactors were calculated using the ACDAM-2.0 software complex for different post-irradiation cooling times (up to 10 years). Analytical relations were derived for the calculated quantities. The results may be used in the analysis of properties of irradiated dielectric materials and may help establish the rules for safe handling of these materials.

  10. Flexible Robotic Entry Device for nuclear materials production reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heckendorn, F.M.

    1988-01-01

    The Savannah River Laboratory (SRL) has developed and is implementing a Flexible Robotic Entry Device (FRED) for the nuclear materials production reactors at the Savannah River Plant (SRP). FRED is designed for rapid deployment into confinement areas of operating reactors to assess unknown conditions. A unique ''smart tether'' method has been incorporated into FRED for simultaneous bidirectional transmission of multiple video/audio/control/power signals over a single coaxial cable. 3 figs.

  11. Varieties of quantity estimation in children.

    PubMed

    Sella, Francesco; Berteletti, Ilaria; Lucangeli, Daniela; Zorzi, Marco

    2015-06-01

    In the number-to-position task, with increasing age and numerical expertise, children's pattern of estimates shifts from a biased (nonlinear) to a formal (linear) mapping. This widely replicated finding concerns symbolic numbers, whereas less is known about other types of quantity estimation. In Experiment 1, Preschool, Grade 1, and Grade 3 children were asked to map continuous quantities, discrete nonsymbolic quantities (numerosities), and symbolic (Arabic) numbers onto a visual line. Numerical quantity was matched for the symbolic and discrete nonsymbolic conditions, whereas cumulative surface area was matched for the continuous and discrete quantity conditions. Crucially, in the discrete condition children's estimation could rely either on the cumulative area or numerosity. All children showed a linear mapping for continuous quantities, whereas a developmental shift from a logarithmic to a linear mapping was observed for both nonsymbolic and symbolic numerical quantities. Analyses on individual estimates suggested the presence of two distinct strategies in estimating discrete nonsymbolic quantities: one based on numerosity and the other based on spatial extent. In Experiment 2, a non-spatial continuous quantity (shades of gray) and new discrete nonsymbolic conditions were added to the set used in Experiment 1. Results confirmed the linear patterns for the continuous tasks, as well as the presence of a subset of children relying on numerosity for the discrete nonsymbolic numerosity conditions despite the availability of continuous visual cues. Overall, our findings demonstrate that estimation of numerical and non-numerical quantities is based on different processing strategies and follow different developmental trajectories. (c) 2015 APA, all rights reserved).

  12. FURTHER ASSESSMENTS OF THE ATTRACTIVENESS OF MATERIALS IN ADVANCED NUCLEAR FUEL CYCLES FROM A SAFEGUARDS PERSPECTIVE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bathke, C. G.; Jarvinen, G. D.; Wallace, R. K.

    2008-10-01

    This paper summarizes the results of an extension to an earlier study [ ] that examined the attractiveness of materials mixtures containing special nuclear materials (SNM) associated with the PUREX, UREX+, and COEX reprocessing schemes. This study focuses on the materials associated with the UREX, COEX, THOREX, and PYROX reprocessing schemes. This study also examines what is required to render plutonium as “unattractive.” Furthermore, combining the results of this study with those from the earlier study permits a comparison of the uranium and thorium based fuel cycles on the basis of the attractiveness of the SNM associated with each fuelmore » cycle. Both studies were performed at the request of the United States Department of Energy (DOE), and are based on the calculation of “attractiveness levels” that has been couched in terms chosen for consistency with those normally used for nuclear materials in DOE nuclear facilities [ ]. The methodology and key findings will be presented. Additionally, how these attractiveness levels relate to proliferation resistance (e.g. by increasing impediments to the diversion, theft, undeclared production of SNM for the purpose of acquiring a nuclear weapon), and how they could be used to help inform policy makers, will be discussed.« less

  13. 48 CFR 52.236-16 - Quantity Surveys.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 2 2013-10-01 2013-10-01 false Quantity Surveys. 52.236... Quantity Surveys. As prescribed in 36.516, the contracting officer may insert the following clause in... payment based on quantity surveys is contemplated: Quantity Surveys (APR 1984) (a) Quantity surveys shall...

  14. 48 CFR 52.236-16 - Quantity Surveys.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 2 2011-10-01 2011-10-01 false Quantity Surveys. 52.236... Quantity Surveys. As prescribed in 36.516, the contracting officer may insert the following clause in... payment based on quantity surveys is contemplated: Quantity Surveys (APR 1984) (a) Quantity surveys shall...

  15. 48 CFR 52.236-16 - Quantity Surveys.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 2 2012-10-01 2012-10-01 false Quantity Surveys. 52.236... Quantity Surveys. As prescribed in 36.516, the contracting officer may insert the following clause in... payment based on quantity surveys is contemplated: Quantity Surveys (APR 1984) (a) Quantity surveys shall...

  16. 48 CFR 52.236-16 - Quantity Surveys.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 2 2014-10-01 2014-10-01 false Quantity Surveys. 52.236... Quantity Surveys. As prescribed in 36.516, the contracting officer may insert the following clause in... payment based on quantity surveys is contemplated: Quantity Surveys (APR 1984) (a) Quantity surveys shall...

  17. 48 CFR 52.236-16 - Quantity Surveys.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Quantity Surveys. 52.236... Quantity Surveys. As prescribed in 36.516, the contracting officer may insert the following clause in... payment based on quantity surveys is contemplated: Quantity Surveys (APR 1984) (a) Quantity surveys shall...

  18. Advanced Ultrafast Spectroscopy for Chemical Detection of Nuclear Fuel Cycle Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villa-Aleman, E.; Houk, A.; Spencer, W.

    The development of new signatures and observables from processes related to proliferation activities are often related to the development of technologies. In our physical world, the intensity of observables is linearly related to the input drivers (light, current, voltage, etc.). Ultrafast lasers with high peak energies, opens the door to a new regime where the intensity of the observables is not necessarily linear with the laser energy. Potential nonlinear spectroscopic applications include chemical detection via remote sensing through filament generation, material characterization and processing, chemical reaction specificity, surface phenomena modifications, X-ray production, nuclear fusion, etc. The National Security Directorate lasermore » laboratory is currently working to develop new tools for nonproliferation research with femtosecond and picosecond lasers. Prior to this project, we could only achieve laser energies in the 5 nano-Joule range, preventing the study of nonlinear phenomena. To advance our nonproliferation research into the nonlinear regime we require laser pulses in the milli-Joule (mJ) energy range. We have procured and installed a 35 fs-7 mJ laser, operating at one-kilohertz repetition rate, to investigate elemental and molecular detection of materials in the laboratory with potential applications in remote sensing. Advanced, nonlinear Raman techniques will be used to study materials of interest that are in a matrix of many materials and currently with these nonlinear techniques we can achieve greater than three orders of magnitude signal enhancement. This work studying nuclear fuel cycle materials with nonlinear spectroscopies will advance SRNL research capabilities and grow a core capability within the DOE complex.« less

  19. Methodology for characterizing potential adversaries of Nuclear Material Safeguards Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkwood, C.W.; Pollock, S.M.

    1978-11-01

    The results are described of a study by Woodward--Clyde Consultants to assist the University of California Lawrence Livermore Laboratory in the development of methods to analyze and evaluate Nuclear Material Safeguards (NMS) Systems. The study concentrated on developing a methodology to assist experts in describing, in quantitative form, their judgments about the characteristics of potential adversaries of NMS Systems.

  20. Advanced Borobond™ Shields for Nuclear Materials Containment and Borobond™ Immobilization of Volatile Fission Products - Final CRADA Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagh, Arun S.

    2016-05-19

    Borobond is a company-proprietary material developed by the CRADA partner in collaboration with Argonne, and is based on Argonne's Ceramicrete technology. It is being used by DOE for nuclear materials safe storage, and Boron Products, LLC is the manufacturer and supplier of Borobond. The major objective of this project was to produce a more versatile composition of this material and find new applications. Major target applications were use for nuclear radiation shields, such as in dry storage casks; use in immobilization of most difficult waste streams, such as Hanford K-Basin waste; use for soluble and volatile fission products, such asmore » Cs, Tc, Sr, and I; and use for corrosion and fire protection applications in nuclear facilities.« less

  1. SOC-DS computer code provides tool for design evaluation of homogeneous two-material nuclear shield

    NASA Technical Reports Server (NTRS)

    Disney, R. K.; Ricks, L. O.

    1967-01-01

    SOC-DS Code /Shield Optimization Code-Direc Search/, selects a nuclear shield material of optimum volume, weight, or cost to meet the requirments of a given radiation dose rate or energy transmission constraint. It is applicable to evaluating neutron and gamma ray shields for all nuclear reactors.

  2. A review: applications of the phase field method in predicting microstructure and property evolution of irradiated nuclear materials

    DOE PAGES

    Li, Yulan; Hu, Shenyang; Sun, Xin; ...

    2017-04-14

    Here, complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the phase field method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiatedmore » nuclear materials are reviewed. The review shows that (1) Phase field models can correctly describe important phenomena such as spatial-dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; (2) The phase field method can qualitatively and quantitatively simulate two-dimensional and three-dimensional microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and (3) The Phase field method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the phase field method, as applied to irradiation effects in nuclear materials.« less

  3. A review: applications of the phase field method in predicting microstructure and property evolution of irradiated nuclear materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yulan; Hu, Shenyang; Sun, Xin

    Here, complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the phase field method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiatedmore » nuclear materials are reviewed. The review shows that (1) Phase field models can correctly describe important phenomena such as spatial-dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; (2) The phase field method can qualitatively and quantitatively simulate two-dimensional and three-dimensional microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and (3) The Phase field method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the phase field method, as applied to irradiation effects in nuclear materials.« less

  4. Automated Decisional Model for Optimum Economic Order Quantity Determination Using Price Regressive Rates

    NASA Astrophysics Data System (ADS)

    Roşu, M. M.; Tarbă, C. I.; Neagu, C.

    2016-11-01

    The current models for inventory management are complementary, but together they offer a large pallet of elements for solving complex problems of companies when wanting to establish the optimum economic order quantity for unfinished products, row of materials, goods etc. The main objective of this paper is to elaborate an automated decisional model for the calculus of the economic order quantity taking into account the price regressive rates for the total order quantity. This model has two main objectives: first, to determine the periodicity when to be done the order n or the quantity order q; second, to determine the levels of stock: lighting control, security stock etc. In this way we can provide the answer to two fundamental questions: How much must be ordered? When to Order? In the current practice, the business relationships with its suppliers are based on regressive rates for price. This means that suppliers may grant discounts, from a certain level of quantities ordered. Thus, the unit price of the products is a variable which depends on the order size. So, the most important element for choosing the optimum for the economic order quantity is the total cost for ordering and this cost depends on the following elements: the medium price per units, the stock cost, the ordering cost etc.

  5. A study of commercially-available polyethylene terephthalate (PET) and polycarbonate as nuclear track detector materials

    NASA Astrophysics Data System (ADS)

    Espinosa, G.; Golzarri, J. I.; Vazquez-Lopez, C.; Trejo, R.; Lopez, K.; Rickards, J.

    2014-07-01

    In the study of the sensitivity of materials to be used as nuclear track detectors, it was found that commercial polyethylene terephthalate (PET) from Ciel® water bottles, commercial roof cover polycarbonate, and recycled packaging strips (recycled PET), can be used as nuclear track detectors. These three commercial materials present nuclear tracks when bombarded by 2.27 MeV nitrogen ions produced in a Pelletron particle accelerator, and by fission fragments from a 252Cf source (79.4 and 103.8 MeV), after a chemical etching with a 6.25M KOH solution, or with a 6.25M KOH solution with 20% methanol, both solutions at 60±1°C. As an example, the nitrogen ions deposit approximately 1 keV/nm in the form of ionization and excitation at the surface of PET, as calculated using the SRIM code. The fission fragments deposit up to 9 keV/nm at the surface, in both cases generating sufficient free radicals to initiate the track formation process. However, 5 MeV alpha particles, typical of radon (222Rn) emissions, deposit only 0.12 keV/nm, do not present tracks after the chemical etching process. This valuable information could be very useful for further studies of new materials in nuclear track methodology.

  6. Nuclear Waste Disposal and Strategies for Predicting Long-Term Performance of Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wicks, G G

    2001-03-28

    Ceramics have been an important part of the nuclear community for many years. On December 2, 1942, an historic event occurred under the West Stands of Stagg Field, at the University of Chicago. Man initiated his first self-sustaining nuclear chain reaction and controlled it. The impact of this event on civilization is considered by many as monumental and compared by some to other significant events in history, such as the invention of the steam engine and the manufacturing of the first automobile. Making this event possible and the successful operation of this first man-made nuclear reactor, was the use ofmore » forty tons of UO2. The use of natural or enriched UO2 is still used today as a nuclear fuel in many nuclear power plants operating world-wide. Other ceramic materials, such as 238Pu, are used for other important purposes, such as ceramic fuels for space exploration to provide electrical power to operate instruments on board spacecrafts. Radioisotopic Thermoelectric Generators (RTGs) are used to supply electrical power and consist of a nuclear heat source and converter to transform heat energy from radioactive decay into electrical power, thus providing reliable and relatively uniform power over the very long lifetime of a mission. These sources have been used in the Galileo spacecraft orbiting Jupiter and for scientific investigations of Saturn with the Cassini spacecraft. Still another very important series of applications using the unique properties of ceramics in the nuclear field, are as immobilization matrices for management of some of the most hazardous wastes known to man. For example, in long-term management of radioactive and hazardous wastes, glass matrices are currently in production immobilizing high-level radioactive materials, and cementious forms have also been produced to incorporate low level wastes. Also, as part of nuclear disarmament activities, assemblages of crystalline phases are being developed for immobilizing weapons grade

  7. Zero-gravity quantity gaging system

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Zero-Gravity Quantity Gaging System program is a technology development effort funded by NASA-LeRC and contracted by NASA-JSC to develop and evaluate zero-gravity quantity gaging system concepts suitable for application to large, on-orbit cryogenic oxygen and hydrogen tankage. The contract effective date was 28 May 1985. During performance of the program, 18 potential quantity gaging approaches were investigated for their merit and suitability for gaging two-phase cryogenic oxygen and hydrogen in zero-gravity conditions. These approaches were subjected to a comprehensive trade study and selection process, which found that the RF modal quantity gaging approach was the most suitable for both liquid oxygen and liquid hydrogen applications. This selection was made with NASA-JSC concurrence.

  8. Material science as basis for nuclear medicine: Holmium irradiation for radioisotopes production

    NASA Astrophysics Data System (ADS)

    Usman, Ahmed Rufai; Khandaker, Mayeen Uddin; Haba, Hiromitsu; Otuka, Naohiko

    2018-05-01

    Material Science, being an interdisciplinary field, plays important roles in nuclear science. These applications are seen in weaponry, armoured vehicles, accelerator structure and development, semiconductor detectors, nuclear medicine and many more. Present study presents the applications of some metals in nuclear medicine (radioisotope production). The charged-particle-induced nuclear reactions by using cyclotrons or accelerators have become a very vital feature of the modern nuclear medicine. Realising the importance of excitation functions for the efficient production of medical radionuclides, some very high purity holmium metals are generally prepared or purchased for bombardment in nuclear accelerators. In the present work, various methods to obtain pure holmium for radioisotope production have been discussed while also presenting details of our present studies. From the experimental work of the present studies, some very high purity holmium foils have been used in the work for a comprehensive study of residual radionuclides production cross-sections. The study was performed using a stacked-foil activation technique combined with γ-ray spectrometry. The stack was bombarded with 50.4 MeV alpha particle beam from AVF cyclotron of RI Beam Factory, Nishina Centre for Accelerator-Based Science, RIKEN, Japan. The work produced thulium radionuclides useful in nuclear medicine.

  9. Nuclear Diagnostics at the National Ignition Facility, 2013-2015

    NASA Astrophysics Data System (ADS)

    Yeamans, C. B.; Cassata, W. S.; Church, J. A.; Fittinghoff, D. N.; Gatu Johnson, M.; Gharibyan, N.; Határik, R.; Sayre, D. B.; Sio, H. W.; Bionta, R. M.; Bleuel, D. L.; Caggiano, J. A.; Cerjan, C. J.; Cooper, G. W.; Eckart, M. J.; Edwards, E. R.; Faye, S. A.; Forrest, C. J.; Frenje, J. A.; Glebov, V. Yu; Grant, P. M.; Grim, G. P.; Hartouni, E. P.; Herrmann, H. W.; Kilkenny, J. D.; Knauer, J. P.; Mackinnon, A. J.; Merrill, F. E.; Moody, K. J.; Moran, M. J.; Petrasso, R. D.; Phillips, T. W.; Rinderknecht, H. G.; Schneider, D. H. G.; Sepke, S. M.; Shaughnessy, D. A.; Stoeffl, W.; Velsko, C. A.; Volegov, P.

    2016-05-01

    The National Ignition Facility (NIF) relies on a suite of nuclear diagnostics to measure the neutronic output of experiments. Neutron time-of-flight (NTOF) and neutron activation diagnostics (NAD) provide performance metrics of absolute neutron yield and neutron spectral content: spectral width and non-thermal content, from which implosion physical quantities of temperature and scattering mass are inferred. Spatially-distributed flange- mounted NADs (FNAD) measure, with nearly identical systematic uncertainties, primary DT neutron emission to infer a whole-sky neutron field. An automated FNAD system is being developed. A magnetic recoil spectrometer (MRS) shares few systematics with comparable NTOF and NAD devices, and as such is deployed for independent measurement of the primary neutronic quantities. The gas-Cherenkov Gamma Reaction History (GRH) instrument records four energy channels of time-resolved gamma emission to measure nuclear bang time and burn width, as well as to infer carbon areal density in experiments utilizing plastic or diamond capsules. A neutron imaging system (NIS) takes two images of the neutron source, typically gated to create coregistered 13-15 MeV primary and 6-12 MeV downscattered images. The radiochemical analysis of gaseous samples (RAGS) instrument pumps target chamber gas to a chemical reaction and fractionation system configured with gamma counters, allowing measurement of radionuclides with half-lives as short as 8 seconds. Solid radiochemistry collectors (SRC) with backing NAD foils collect target debris, where activated materials from the target assembly are used as indicators of neutron spectrum content, and also serve as the primary diagnostic for nuclear forensic science experiments. Particle time-of-flight (PTOF) measures compression-bang time using DT- or DD-neutrons, as well as shock bang-time using D3He-protons for implosions with lower x-ray background. In concert, these diagnostics serve to measure the basic and advanced

  10. A SPACESHIP WITH NUCLEAR PROPULSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polorny, J.

    1962-01-01

    ABS>A proposed space vehicle with nuclear propulsion for a round-trip Martian mission is described. It would be powered by a 270-Mw graphite- moderated, U-fueled nuclear reactor with a core 1 m high by 1 m in diameter, and use gas as propellant. The gas would be heated to the maximum temperature in the reactor and additionally accelerated by an electromagnetic field. To this end, small quantities of K would be injected into the gas stream to increase its electric conductivity. The required electrical energy would be produced by liquid-Na-cooled thermionic converters. The vehicle would weigh 115000 kg, including 43000 kgmore » of H propellant with tankage, and 7000 kg of sustenance material for one year. Chemical rockets would launch the vehicle with a crew of three men into an earth orbit where nuclear propulsion would take over. Upon reactor start-up, three heat exchangers (minimum dimensions 30 x 18 m) would be fanned out. A shielded well with a diameter of 2.5 m would protect the crew from radiation during reactor operation, passage through the earth radiation belts, and at periods of solar flares. (OTS)« less

  11. Implementation of Microcalorimeter Array Technology for Safeguards of Nuclear Material

    NASA Astrophysics Data System (ADS)

    Kossmann, Shannon; Mateju, Klara; Koehler, Katrina; Croce, Mark

    2018-03-01

    Safeguards of nuclear materials depend on both destructive and nondestructive assay (DA and NDA, respectively). Ultra-high-resolution microcalorimeter gamma spectroscopy has the potential to substantially reduce the performance gap between NDA and DA methods in determination of plutonium isotopic composition. This paper details the setup of a cryostat and microwave readout system for microcalorimeter gamma spectroscopy, the functionality of which has been successfully demonstrated.

  12. Locating Sensors for Detecting Source-to-Target Patterns of Special Nuclear Material Smuggling: A Spatial Information Theoretic Approach

    PubMed Central

    Przybyla, Jay; Taylor, Jeffrey; Zhou, Xuesong

    2010-01-01

    In this paper, a spatial information-theoretic model is proposed to locate sensors for detecting source-to-target patterns of special nuclear material (SNM) smuggling. In order to ship the nuclear materials from a source location with SNM production to a target city, the smugglers must employ global and domestic logistics systems. This paper focuses on locating a limited set of fixed and mobile radiation sensors in a transportation network, with the intent to maximize the expected information gain and minimize the estimation error for the subsequent nuclear material detection stage. A Kalman filtering-based framework is adapted to assist the decision-maker in quantifying the network-wide information gain and SNM flow estimation accuracy. PMID:22163641

  13. Locating sensors for detecting source-to-target patterns of special nuclear material smuggling: a spatial information theoretic approach.

    PubMed

    Przybyla, Jay; Taylor, Jeffrey; Zhou, Xuesong

    2010-01-01

    In this paper, a spatial information-theoretic model is proposed to locate sensors for detecting source-to-target patterns of special nuclear material (SNM) smuggling. In order to ship the nuclear materials from a source location with SNM production to a target city, the smugglers must employ global and domestic logistics systems. This paper focuses on locating a limited set of fixed and mobile radiation sensors in a transportation network, with the intent to maximize the expected information gain and minimize the estimation error for the subsequent nuclear material detection stage. A Kalman filtering-based framework is adapted to assist the decision-maker in quantifying the network-wide information gain and SNM flow estimation accuracy.

  14. Nuclear Forensics: Scientific Analysis Supporting Law Enforcement and Nuclear Security Investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keegan, Elizabeth; Kristo, Michael J.; Toole, Kaitlyn

    In Nuclear Forensic Science, analytical chemists join forces with nuclear physicists, material scientists, radiochemists, and traditional forensic scientists, as well as experts in nuclear security, nuclear safeguards, law enforcement, and policy development, in an effort to deter nuclear smuggling. Nuclear forensic science, or “nuclear forensics,” aims to answer questions about nuclear material found outside of regulatory control, questions such as ‘where did this material come from?’ and ‘what is the intended use of the material?’ In this Feature, we provide a general overview of nuclear forensics, selecting examples of key “nuclear forensic signatures” which have allowed investigators to determine themore » identity of unknown nuclear material in real investigations.« less

  15. Nuclear Forensics: Scientific Analysis Supporting Law Enforcement and Nuclear Security Investigations

    DOE PAGES

    Keegan, Elizabeth; Kristo, Michael J.; Toole, Kaitlyn; ...

    2015-12-24

    In Nuclear Forensic Science, analytical chemists join forces with nuclear physicists, material scientists, radiochemists, and traditional forensic scientists, as well as experts in nuclear security, nuclear safeguards, law enforcement, and policy development, in an effort to deter nuclear smuggling. Nuclear forensic science, or “nuclear forensics,” aims to answer questions about nuclear material found outside of regulatory control, questions such as ‘where did this material come from?’ and ‘what is the intended use of the material?’ In this Feature, we provide a general overview of nuclear forensics, selecting examples of key “nuclear forensic signatures” which have allowed investigators to determine themore » identity of unknown nuclear material in real investigations.« less

  16. 76 FR 77855 - Criteria for Identifying Material Licensees for the U. S. Nuclear Regulatory Commission's Agency...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-14

    ... Agencywide Documents Access and Management System (ADAMS) Accession Number: ML112280111) or in the... Management Programs, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001, telephone (301) 415-6272... ineffective in correcting their underlying issues. Discussion Criteria for Identifying Nuclear Material...

  17. 48 CFR 36.516 - Quantity surveys.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Quantity surveys. 36.516... CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Contract Clauses 36.516 Quantity surveys. The contracting officer may insert the clause at 52.236-16, Quantity Surveys, in solicitations and contracts when...

  18. 48 CFR 36.516 - Quantity surveys.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Quantity surveys. 36.516... CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Contract Clauses 36.516 Quantity surveys. The contracting officer may insert the clause at 52.236-16, Quantity Surveys, in solicitations and contracts when...

  19. 48 CFR 36.516 - Quantity surveys.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Quantity surveys. 36.516... CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Contract Clauses 36.516 Quantity surveys. The contracting officer may insert the clause at 52.236-16, Quantity Surveys, in solicitations and contracts when...

  20. 48 CFR 36.516 - Quantity surveys.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Quantity surveys. 36.516... CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Contract Clauses 36.516 Quantity surveys. The contracting officer may insert the clause at 52.236-16, Quantity Surveys, in solicitations and contracts when...

  1. 48 CFR 36.516 - Quantity surveys.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Quantity surveys. 36.516... CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Contract Clauses 36.516 Quantity surveys. The contracting officer may insert the clause at 52.236-16, Quantity Surveys, in solicitations and contracts when...

  2. Exploring laser-induced breakdown spectroscopy for nuclear materials analysis and in-situ applications

    NASA Astrophysics Data System (ADS)

    Martin, Madhavi Z.; Allman, Steve; Brice, Deanne J.; Martin, Rodger C.; Andre, Nicolas O.

    2012-08-01

    Laser-induced breakdown spectroscopy (LIBS) has been used to determine the limits of detection of strontium (Sr) and cesium (Cs), common nuclear fission products. Additionally, detection limits were determined for cerium (Ce), often used as a surrogate for radioactive plutonium in laboratory studies. Results were obtained using a laboratory instrument with a Nd:YAG laser at fundamental wavelength of 1064 nm, frequency doubled to 532 nm with energy of 50 mJ/pulse. The data was compared for different concentrations of Sr and Ce dispersed in a CaCO3 (white) and carbon (black) matrix. We have addressed the sampling errors, limits of detection, reproducibility, and accuracy of measurements as they relate to multivariate analysis in pellets that were doped with the different elements at various concentrations. These results demonstrate that LIBS technique is inherently well suited for in situ analysis of nuclear materials in hot cells. Three key advantages are evident: (1) small samples (mg) can be evaluated; (2) nuclear materials can be analyzed with minimal sample preparation; and (3) samples can be remotely analyzed very rapidly (ms-seconds). Our studies also show that the methods can be made quantitative. Very robust multivariate models have been used to provide quantitative measurement and statistical evaluation of complex materials derived from our previous research on wood and soil samples.

  3. Nuclear ``pasta'' structures in low-density nuclear matter and properties of the neutron-star crust

    NASA Astrophysics Data System (ADS)

    Okamoto, Minoru; Maruyama, Toshiki; Yabana, Kazuhiro; Tatsumi, Toshitaka

    2013-08-01

    In the neutron-star crust, nonuniform structure of nuclear matter—called the “pasta” structure—is expected. From recent studies of giant flares in magnetars, these structures might be related to some observables and physical quantities of the neutron-star crust. To investigate the above quantities, we numerically explore the pasta structure with a fully three-dimensional geometry and study the properties of low-density nuclear matter, based on the relativistic mean-field model and the Thomas-Fermi approximation. We observe typical pasta structures for fixed proton number fraction and two of them for cold catalyzed matter. We also discuss the crystalline configuration of “pasta.”

  4. 14 CFR 27.1551 - Oil quantity indicator.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Oil quantity indicator. 27.1551 Section 27... § 27.1551 Oil quantity indicator. Each oil quantity indicator must be marked with enough increments to indicate readily and accurately the quantity of oil. ...

  5. 14 CFR 29.1551 - Oil quantity indicator.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Oil quantity indicator. 29.1551 Section 29... Placards § 29.1551 Oil quantity indicator. Each oil quantity indicator must be marked with enough increments to indicate readily and accurately the quantity of oil. ...

  6. 14 CFR 27.1551 - Oil quantity indicator.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil quantity indicator. 27.1551 Section 27... § 27.1551 Oil quantity indicator. Each oil quantity indicator must be marked with enough increments to indicate readily and accurately the quantity of oil. ...

  7. 14 CFR 29.1551 - Oil quantity indicator.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil quantity indicator. 29.1551 Section 29... Placards § 29.1551 Oil quantity indicator. Each oil quantity indicator must be marked with enough increments to indicate readily and accurately the quantity of oil. ...

  8. 14 CFR 27.1551 - Oil quantity indicator.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Oil quantity indicator. 27.1551 Section 27... § 27.1551 Oil quantity indicator. Each oil quantity indicator must be marked with enough increments to indicate readily and accurately the quantity of oil. ...

  9. 14 CFR 29.1551 - Oil quantity indicator.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Oil quantity indicator. 29.1551 Section 29... Placards § 29.1551 Oil quantity indicator. Each oil quantity indicator must be marked with enough increments to indicate readily and accurately the quantity of oil. ...

  10. 14 CFR 27.1551 - Oil quantity indicator.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Oil quantity indicator. 27.1551 Section 27... § 27.1551 Oil quantity indicator. Each oil quantity indicator must be marked with enough increments to indicate readily and accurately the quantity of oil. ...

  11. Routine inspection effort required for verification of a nuclear material production cutoff convention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dougherty, D.; Fainberg, A.; Sanborn, J.

    On 27 September 1993, President Clinton proposed {open_quotes}... a multilateral convention prohibiting the production of highly enriched uranium or plutonium for nuclear explosives purposes or outside of international safeguards.{close_quotes} The UN General Assembly subsequently adopted a resolution recommending negotiation of a non-discriminatory, multilateral, and internationally and effectively verifiable treaty (hereinafter referred to as {open_quotes}the Cutoff Convention{close_quotes}) banning the production of fissile material for nuclear weapons. The matter is now on the agenda of the Conference on Disarmament, although not yet under negotiation. This accord would, in effect, place all fissile material (defined as highly enriched uranium and plutonium) produced aftermore » entry into force (EIF) of the accord under international safeguards. {open_quotes}Production{close_quotes} would mean separation of the material in question from radioactive fission products, as in spent fuel reprocessing, or enrichment of uranium above the 20% level, which defines highly enriched uranium (HEU). Facilities where such production could occur would be safeguarded to verify that either such production is not occurring or that all material produced at these facilities is maintained under safeguards.« less

  12. KAOS/LIB-V: A library of nuclear response functions generated by KAOS-V code from ENDF/B-V and other data files

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farawila, Y.; Gohar, Y.; Maynard, C.

    1989-04-01

    KAOS/LIB-V: A library of processed nuclear responses for neutronics analyses of nuclear systems has been generated. The library was prepared using the KAOS-V code and nuclear data from ENDF/B-V. The library includes kerma (kinetic energy released in materials) factors and other nuclear response functions for all materials presently of interest in fusion and fission applications for 43 nonfissionable and 15 fissionable isotopes and elements. The nuclear response functions include gas production and tritium-breeding functions, and all important reaction cross sections. KAOS/LIB-V employs the VITAMIN-E weighting function and energy group structure of 174 neutron groups. Auxiliary nuclear data bases, e.g., themore » Japanese evaluated nuclear data library JENDL-2 were used as a source of isotopic cross sections when these data are not provided in ENDF/B-V files for a natural element. These are needed mainly to estimate average quantities such as effective Q-values for the natural element. This analysis of local energy deposition was instrumental in detecting and understanding energy balance deficiencies and other problems in the ENDF/B-V data. Pertinent information about the library and a graphical display of the main nuclear response functions for all materials in the library are given. 35 refs.« less

  13. The accuracy of less: Natural bounds explain why quantity decreases are estimated more accurately than quantity increases.

    PubMed

    Chandon, Pierre; Ordabayeva, Nailya

    2017-02-01

    Five studies show that people, including experts such as professional chefs, estimate quantity decreases more accurately than quantity increases. We argue that this asymmetry occurs because physical quantities cannot be negative. Consequently, there is a natural lower bound (zero) when estimating decreasing quantities but no upper bound when estimating increasing quantities, which can theoretically grow to infinity. As a result, the "accuracy of less" disappears (a) when a numerical or a natural upper bound is present when estimating quantity increases, or (b) when people are asked to estimate the (unbounded) ratio of change from 1 size to another for both increasing and decreasing quantities. Ruling out explanations related to loss aversion, symbolic number mapping, and the visual arrangement of the stimuli, we show that the "accuracy of less" influences choice and demonstrate its robustness in a meta-analysis that includes previously published results. Finally, we discuss how the "accuracy of less" may explain asymmetric reactions to the supersizing and downsizing of food portions, some instances of the endowment effect, and asymmetries in the perception of increases and decreases in physical and psychological distance. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  14. MeV per Nucleon Ion Irradiation of Nuclear Materials with High Energy Synchrotron X-ray Characterization

    DOE PAGES

    Pellin, M. J.; Yacout, Abdellatif M.; Mo, Kun; ...

    2016-01-14

    The combination of MeV/Nucleon ion irradiation (e.g. 133 MeV Xe) and high energy synchrotron x-ray characterization (e.g. at the Argonne Advanced Photon Source, APS) provides a powerful characterization method to understand radiation effects and to rapidly screen materials for the nuclear reactor environment. Ions in this energy range penetrate ~10 μm into materials. Over this range, the physical interactions vary (electronic stopping, nuclear stopping and added interstitials). Spatially specific x-ray (and TEM and nanoindentation) analysis allow individual quantification of these various effects. Hard x-rays provide the penetration depth needed to analyze even nuclear fuels. Here, this combination of synchrotron x-raymore » and MeV/Nucleon ion irradiation is demonstrated on U-Mo fuels. A preliminary look at HT-9 steels is also presented. We suggest that a hard x-ray facility with in situ MeV/nucleon irradiation capability would substantially accelerate the rate of discovery for extreme materials.« less

  15. 14 CFR 23.1551 - Oil quantity indicator.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Oil quantity indicator. 23.1551 Section 23... Information Markings and Placards § 23.1551 Oil quantity indicator. Each oil quantity indicator must be marked in sufficient increments to indicate readily and accurately the quantity of oil. ...

  16. 14 CFR 23.1551 - Oil quantity indicator.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil quantity indicator. 23.1551 Section 23... Information Markings and Placards § 23.1551 Oil quantity indicator. Each oil quantity indicator must be marked in sufficient increments to indicate readily and accurately the quantity of oil. ...

  17. 14 CFR 23.1551 - Oil quantity indicator.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Oil quantity indicator. 23.1551 Section 23... Information Markings and Placards § 23.1551 Oil quantity indicator. Each oil quantity indicator must be marked in sufficient increments to indicate readily and accurately the quantity of oil. ...

  18. 14 CFR 23.1551 - Oil quantity indicator.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Oil quantity indicator. 23.1551 Section 23... Information Markings and Placards § 23.1551 Oil quantity indicator. Each oil quantity indicator must be marked in sufficient increments to indicate readily and accurately the quantity of oil. ...

  19. Radioactive materials released from nuclear power plants. Annual report, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Benkovitz, C.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1980 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1980 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  20. Radioactive materials released from nuclear power plants: Annual report, 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Norden, K.; Congemi, J.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1984 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1984 release data are summarized in tabular form. Data covering specific radionuclides are summarized.