Sample records for quantization compression standard

  1. Wavelet/scalar quantization compression standard for fingerprint images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brislawn, C.M.

    1996-06-12

    US Federal Bureau of Investigation (FBI) has recently formulated a national standard for digitization and compression of gray-scale fingerprint images. Fingerprints are scanned at a spatial resolution of 500 dots per inch, with 8 bits of gray-scale resolution. The compression algorithm for the resulting digital images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition (wavelet/scalar quantization method). The FBI standard produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. The compression standard specifies a class ofmore » potential encoders and a universal decoder with sufficient generality to reconstruct compressed images produced by any compliant encoder, allowing flexibility for future improvements in encoder technology. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations.« less

  2. The wavelet/scalar quantization compression standard for digital fingerprint images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, J.N.; Brislawn, C.M.

    1994-04-01

    A new digital image compression standard has been adopted by the US Federal Bureau of Investigation for use on digitized gray-scale fingerprint images. The algorithm is based on adaptive uniform scalar quantization of a discrete wavelet transform image decomposition and is referred to as the wavelet/scalar quantization standard. The standard produces archival quality images at compression ratios of around 20:1 and will allow the FBI to replace their current database of paper fingerprint cards with digital imagery.

  3. Quantization Distortion in Block Transform-Compressed Data

    NASA Technical Reports Server (NTRS)

    Boden, A. F.

    1995-01-01

    The popular JPEG image compression standard is an example of a block transform-based compression scheme; the image is systematically subdivided into block that are individually transformed, quantized, and encoded. The compression is achieved by quantizing the transformed data, reducing the data entropy and thus facilitating efficient encoding. A generic block transform model is introduced.

  4. The FBI wavelet/scalar quantization standard for gray-scale fingerprint image compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, J.N.; Brislawn, C.M.; Hopper, T.

    1993-05-01

    The FBI has recently adopted a standard for the compression of digitized 8-bit gray-scale fingerprint images. The standard is based on scalar quantization of a 64-subband discrete wavelet transform decomposition of the images, followed by Huffman coding. Novel features of the algorithm include the use of symmetric boundary conditions for transforming finite-length signals and a subband decomposition tailored for fingerprint images scanned at 500 dpi. The standard is intended for use in conjunction with ANSI/NBS-CLS 1-1993, American National Standard Data Format for the Interchange of Fingerprint Information, and the FBI`s Integrated Automated Fingerprint Identification System.

  5. The FBI wavelet/scalar quantization standard for gray-scale fingerprint image compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, J.N.; Brislawn, C.M.; Hopper, T.

    1993-01-01

    The FBI has recently adopted a standard for the compression of digitized 8-bit gray-scale fingerprint images. The standard is based on scalar quantization of a 64-subband discrete wavelet transform decomposition of the images, followed by Huffman coding. Novel features of the algorithm include the use of symmetric boundary conditions for transforming finite-length signals and a subband decomposition tailored for fingerprint images scanned at 500 dpi. The standard is intended for use in conjunction with ANSI/NBS-CLS 1-1993, American National Standard Data Format for the Interchange of Fingerprint Information, and the FBI's Integrated Automated Fingerprint Identification System.

  6. Vector quantizer designs for joint compression and terrain categorization of multispectral imagery

    NASA Technical Reports Server (NTRS)

    Gorman, John D.; Lyons, Daniel F.

    1994-01-01

    Two vector quantizer designs for compression of multispectral imagery and their impact on terrain categorization performance are evaluated. The mean-squared error (MSE) and classification performance of the two quantizers are compared, and it is shown that a simple two-stage design minimizing MSE subject to a constraint on classification performance has a significantly better classification performance than a standard MSE-based tree-structured vector quantizer followed by maximum likelihood classification. This improvement in classification performance is obtained with minimal loss in MSE performance. The results show that it is advantageous to tailor compression algorithm designs to the required data exploitation tasks. Applications of joint compression/classification include compression for the archival or transmission of Landsat imagery that is later used for land utility surveys and/or radiometric analysis.

  7. Image-adapted visually weighted quantization matrices for digital image compression

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor)

    1994-01-01

    A method for performing image compression that eliminates redundant and invisible image components is presented. The image compression uses a Discrete Cosine Transform (DCT) and each DCT coefficient yielded by the transform is quantized by an entry in a quantization matrix which determines the perceived image quality and the bit rate of the image being compressed. The present invention adapts or customizes the quantization matrix to the image being compressed. The quantization matrix comprises visual masking by luminance and contrast techniques and by an error pooling technique all resulting in a minimum perceptual error for any given bit rate, or minimum bit rate for a given perceptual error.

  8. Image compression system and method having optimized quantization tables

    NASA Technical Reports Server (NTRS)

    Ratnakar, Viresh (Inventor); Livny, Miron (Inventor)

    1998-01-01

    A digital image compression preprocessor for use in a discrete cosine transform-based digital image compression device is provided. The preprocessor includes a gathering mechanism for determining discrete cosine transform statistics from input digital image data. A computing mechanism is operatively coupled to the gathering mechanism to calculate a image distortion array and a rate of image compression array based upon the discrete cosine transform statistics for each possible quantization value. A dynamic programming mechanism is operatively coupled to the computing mechanism to optimize the rate of image compression array against the image distortion array such that a rate-distortion-optimal quantization table is derived. In addition, a discrete cosine transform-based digital image compression device and a discrete cosine transform-based digital image compression and decompression system are provided. Also, a method for generating a rate-distortion-optimal quantization table, using discrete cosine transform-based digital image compression, and operating a discrete cosine transform-based digital image compression and decompression system are provided.

  9. Locally adaptive vector quantization: Data compression with feature preservation

    NASA Technical Reports Server (NTRS)

    Cheung, K. M.; Sayano, M.

    1992-01-01

    A study of a locally adaptive vector quantization (LAVQ) algorithm for data compression is presented. This algorithm provides high-speed one-pass compression and is fully adaptable to any data source and does not require a priori knowledge of the source statistics. Therefore, LAVQ is a universal data compression algorithm. The basic algorithm and several modifications to improve performance are discussed. These modifications are nonlinear quantization, coarse quantization of the codebook, and lossless compression of the output. Performance of LAVQ on various images using irreversible (lossy) coding is comparable to that of the Linde-Buzo-Gray algorithm, but LAVQ has a much higher speed; thus this algorithm has potential for real-time video compression. Unlike most other image compression algorithms, LAVQ preserves fine detail in images. LAVQ's performance as a lossless data compression algorithm is comparable to that of Lempel-Ziv-based algorithms, but LAVQ uses far less memory during the coding process.

  10. FBI compression standard for digitized fingerprint images

    NASA Astrophysics Data System (ADS)

    Brislawn, Christopher M.; Bradley, Jonathan N.; Onyshczak, Remigius J.; Hopper, Thomas

    1996-11-01

    The FBI has formulated national standards for digitization and compression of gray-scale fingerprint images. The compression algorithm for the digitized images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition, a technique referred to as the wavelet/scalar quantization method. The algorithm produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations. We will review the current status of the FBI standard, including the compliance testing process and the details of the first-generation encoder.

  11. The FBI compression standard for digitized fingerprint images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brislawn, C.M.; Bradley, J.N.; Onyshczak, R.J.

    1996-10-01

    The FBI has formulated national standards for digitization and compression of gray-scale fingerprint images. The compression algorithm for the digitized images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition, a technique referred to as the wavelet/scalar quantization method. The algorithm produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations. We will review the currentmore » status of the FBI standard, including the compliance testing process and the details of the first-generation encoder.« less

  12. Magnetic resonance image compression using scalar-vector quantization

    NASA Astrophysics Data System (ADS)

    Mohsenian, Nader; Shahri, Homayoun

    1995-12-01

    A new coding scheme based on the scalar-vector quantizer (SVQ) is developed for compression of medical images. SVQ is a fixed-rate encoder and its rate-distortion performance is close to that of optimal entropy-constrained scalar quantizers (ECSQs) for memoryless sources. The use of a fixed-rate quantizer is expected to eliminate some of the complexity issues of using variable-length scalar quantizers. When transmission of images over noisy channels is considered, our coding scheme does not suffer from error propagation which is typical of coding schemes which use variable-length codes. For a set of magnetic resonance (MR) images, coding results obtained from SVQ and ECSQ at low bit-rates are indistinguishable. Furthermore, our encoded images are perceptually indistinguishable from the original, when displayed on a monitor. This makes our SVQ based coder an attractive compression scheme for picture archiving and communication systems (PACS), currently under consideration for an all digital radiology environment in hospitals, where reliable transmission, storage, and high fidelity reconstruction of images are desired.

  13. Video data compression using artificial neural network differential vector quantization

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, Ashok K.; Bibyk, Steven B.; Ahalt, Stanley C.

    1991-01-01

    An artificial neural network vector quantizer is developed for use in data compression applications such as Digital Video. Differential Vector Quantization is used to preserve edge features, and a new adaptive algorithm, known as Frequency-Sensitive Competitive Learning, is used to develop the vector quantizer codebook. To develop real time performance, a custom Very Large Scale Integration Application Specific Integrated Circuit (VLSI ASIC) is being developed to realize the associative memory functions needed in the vector quantization algorithm. By using vector quantization, the need for Huffman coding can be eliminated, resulting in superior performance against channel bit errors than methods that use variable length codes.

  14. A visual detection model for DCT coefficient quantization

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.; Peterson, Heidi A.

    1993-01-01

    The discrete cosine transform (DCT) is widely used in image compression, and is part of the JPEG and MPEG compression standards. The degree of compression, and the amount of distortion in the decompressed image are determined by the quantization of the transform coefficients. The standards do not specify how the DCT coefficients should be quantized. Our approach is to set the quantization level for each coefficient so that the quantization error is at the threshold of visibility. Here we combine results from our previous work to form our current best detection model for DCT coefficient quantization noise. This model predicts sensitivity as a function of display parameters, enabling quantization matrices to be designed for display situations varying in luminance, veiling light, and spatial frequency related conditions (pixel size, viewing distance, and aspect ratio). It also allows arbitrary color space directions for the representation of color.

  15. Medical image compression based on vector quantization with variable block sizes in wavelet domain.

    PubMed

    Jiang, Huiyan; Ma, Zhiyuan; Hu, Yang; Yang, Benqiang; Zhang, Libo

    2012-01-01

    An optimized medical image compression algorithm based on wavelet transform and improved vector quantization is introduced. The goal of the proposed method is to maintain the diagnostic-related information of the medical image at a high compression ratio. Wavelet transformation was first applied to the image. For the lowest-frequency subband of wavelet coefficients, a lossless compression method was exploited; for each of the high-frequency subbands, an optimized vector quantization with variable block size was implemented. In the novel vector quantization method, local fractal dimension (LFD) was used to analyze the local complexity of each wavelet coefficients, subband. Then an optimal quadtree method was employed to partition each wavelet coefficients, subband into several sizes of subblocks. After that, a modified K-means approach which is based on energy function was used in the codebook training phase. At last, vector quantization coding was implemented in different types of sub-blocks. In order to verify the effectiveness of the proposed algorithm, JPEG, JPEG2000, and fractal coding approach were chosen as contrast algorithms. Experimental results show that the proposed method can improve the compression performance and can achieve a balance between the compression ratio and the image visual quality.

  16. Medical Image Compression Based on Vector Quantization with Variable Block Sizes in Wavelet Domain

    PubMed Central

    Jiang, Huiyan; Ma, Zhiyuan; Hu, Yang; Yang, Benqiang; Zhang, Libo

    2012-01-01

    An optimized medical image compression algorithm based on wavelet transform and improved vector quantization is introduced. The goal of the proposed method is to maintain the diagnostic-related information of the medical image at a high compression ratio. Wavelet transformation was first applied to the image. For the lowest-frequency subband of wavelet coefficients, a lossless compression method was exploited; for each of the high-frequency subbands, an optimized vector quantization with variable block size was implemented. In the novel vector quantization method, local fractal dimension (LFD) was used to analyze the local complexity of each wavelet coefficients, subband. Then an optimal quadtree method was employed to partition each wavelet coefficients, subband into several sizes of subblocks. After that, a modified K-means approach which is based on energy function was used in the codebook training phase. At last, vector quantization coding was implemented in different types of sub-blocks. In order to verify the effectiveness of the proposed algorithm, JPEG, JPEG2000, and fractal coding approach were chosen as contrast algorithms. Experimental results show that the proposed method can improve the compression performance and can achieve a balance between the compression ratio and the image visual quality. PMID:23049544

  17. A visual detection model for DCT coefficient quantization

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.; Watson, Andrew B.

    1994-01-01

    The discrete cosine transform (DCT) is widely used in image compression and is part of the JPEG and MPEG compression standards. The degree of compression and the amount of distortion in the decompressed image are controlled by the quantization of the transform coefficients. The standards do not specify how the DCT coefficients should be quantized. One approach is to set the quantization level for each coefficient so that the quantization error is near the threshold of visibility. Results from previous work are combined to form the current best detection model for DCT coefficient quantization noise. This model predicts sensitivity as a function of display parameters, enabling quantization matrices to be designed for display situations varying in luminance, veiling light, and spatial frequency related conditions (pixel size, viewing distance, and aspect ratio). It also allows arbitrary color space directions for the representation of color. A model-based method of optimizing the quantization matrix for an individual image was developed. The model described above provides visual thresholds for each DCT frequency. These thresholds are adjusted within each block for visual light adaptation and contrast masking. For given quantization matrix, the DCT quantization errors are scaled by the adjusted thresholds to yield perceptual errors. These errors are pooled nonlinearly over the image to yield total perceptual error. With this model one may estimate the quantization matrix for a particular image that yields minimum bit rate for a given total perceptual error, or minimum perceptual error for a given bit rate. Custom matrices for a number of images show clear improvement over image-independent matrices. Custom matrices are compatible with the JPEG standard, which requires transmission of the quantization matrix.

  18. Subband directional vector quantization in radiological image compression

    NASA Astrophysics Data System (ADS)

    Akrout, Nabil M.; Diab, Chaouki; Prost, Remy; Goutte, Robert; Amiel, Michel

    1992-05-01

    The aim of this paper is to propose a new scheme for image compression. The method is very efficient for images which have directional edges such as the tree-like structure of the coronary vessels in digital angiograms. This method involves two steps. First, the original image is decomposed at different resolution levels using a pyramidal subband decomposition scheme. For decomposition/reconstruction of the image, free of aliasing and boundary errors, we use an ideal band-pass filter bank implemented in the Discrete Cosine Transform domain (DCT). Second, the high-frequency subbands are vector quantized using a multiresolution codebook with vertical and horizontal codewords which take into account the edge orientation of each subband. The proposed method reduces the blocking effect encountered at low bit rates in conventional vector quantization.

  19. Synthetic aperture radar signal data compression using block adaptive quantization

    NASA Technical Reports Server (NTRS)

    Kuduvalli, Gopinath; Dutkiewicz, Melanie; Cumming, Ian

    1994-01-01

    This paper describes the design and testing of an on-board SAR signal data compression algorithm for ESA's ENVISAT satellite. The Block Adaptive Quantization (BAQ) algorithm was selected, and optimized for the various operational modes of the ASAR instrument. A flexible BAQ scheme was developed which allows a selection of compression ratio/image quality trade-offs. Test results show the high quality of the SAR images processed from the reconstructed signal data, and the feasibility of on-board implementation using a single ASIC.

  20. Bit Grooming: Statistically accurate precision-preserving quantization with compression, evaluated in the netCDF operators (NCO, v4.4.8+)

    DOE PAGES

    Zender, Charles S.

    2016-09-19

    Geoscientific models and measurements generate false precision (scientifically meaningless data bits) that wastes storage space. False precision can mislead (by implying noise is signal) and be scientifically pointless, especially for measurements. By contrast, lossy compression can be both economical (save space) and heuristic (clarify data limitations) without compromising the scientific integrity of data. Data quantization can thus be appropriate regardless of whether space limitations are a concern. We introduce, implement, and characterize a new lossy compression scheme suitable for IEEE floating-point data. Our new Bit Grooming algorithm alternately shaves (to zero) and sets (to one) the least significant bits ofmore » consecutive values to preserve a desired precision. This is a symmetric, two-sided variant of an algorithm sometimes called Bit Shaving that quantizes values solely by zeroing bits. Our variation eliminates the artificial low bias produced by always zeroing bits, and makes Bit Grooming more suitable for arrays and multi-dimensional fields whose mean statistics are important. Bit Grooming relies on standard lossless compression to achieve the actual reduction in storage space, so we tested Bit Grooming by applying the DEFLATE compression algorithm to bit-groomed and full-precision climate data stored in netCDF3, netCDF4, HDF4, and HDF5 formats. Bit Grooming reduces the storage space required by initially uncompressed and compressed climate data by 25–80 and 5–65 %, respectively, for single-precision values (the most common case for climate data) quantized to retain 1–5 decimal digits of precision. The potential reduction is greater for double-precision datasets. When used aggressively (i.e., preserving only 1–2 digits), Bit Grooming produces storage reductions comparable to other quantization techniques such as Linear Packing. Unlike Linear Packing, whose guaranteed precision rapidly degrades within the relatively narrow dynamic

  1. Bit Grooming: statistically accurate precision-preserving quantization with compression, evaluated in the netCDF Operators (NCO, v4.4.8+)

    NASA Astrophysics Data System (ADS)

    Zender, Charles S.

    2016-09-01

    Geoscientific models and measurements generate false precision (scientifically meaningless data bits) that wastes storage space. False precision can mislead (by implying noise is signal) and be scientifically pointless, especially for measurements. By contrast, lossy compression can be both economical (save space) and heuristic (clarify data limitations) without compromising the scientific integrity of data. Data quantization can thus be appropriate regardless of whether space limitations are a concern. We introduce, implement, and characterize a new lossy compression scheme suitable for IEEE floating-point data. Our new Bit Grooming algorithm alternately shaves (to zero) and sets (to one) the least significant bits of consecutive values to preserve a desired precision. This is a symmetric, two-sided variant of an algorithm sometimes called Bit Shaving that quantizes values solely by zeroing bits. Our variation eliminates the artificial low bias produced by always zeroing bits, and makes Bit Grooming more suitable for arrays and multi-dimensional fields whose mean statistics are important. Bit Grooming relies on standard lossless compression to achieve the actual reduction in storage space, so we tested Bit Grooming by applying the DEFLATE compression algorithm to bit-groomed and full-precision climate data stored in netCDF3, netCDF4, HDF4, and HDF5 formats. Bit Grooming reduces the storage space required by initially uncompressed and compressed climate data by 25-80 and 5-65 %, respectively, for single-precision values (the most common case for climate data) quantized to retain 1-5 decimal digits of precision. The potential reduction is greater for double-precision datasets. When used aggressively (i.e., preserving only 1-2 digits), Bit Grooming produces storage reductions comparable to other quantization techniques such as Linear Packing. Unlike Linear Packing, whose guaranteed precision rapidly degrades within the relatively narrow dynamic range of values that

  2. Performance of customized DCT quantization tables on scientific data

    NASA Technical Reports Server (NTRS)

    Ratnakar, Viresh; Livny, Miron

    1994-01-01

    We show that it is desirable to use data-specific or customized quantization tables for scaling the spatial frequency coefficients obtained using the Discrete Cosine Transform (DCT). DCT is widely used for image and video compression (MP89, PM93) but applications typically use default quantization matrices. Using actual scientific data gathered from divers sources such as spacecrafts and electron-microscopes, we show that the default compression/quality tradeoffs can be significantly improved upon by using customized tables. We also show that significant improvements are possible for the standard test images Lena and Baboon. This work is part of an effort to develop a practical scheme for optimizing quantization matrices for any given image or video stream, under any given quality or compression constraints.

  3. Entropy-aware projected Landweber reconstruction for quantized block compressive sensing of aerial imagery

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Li, Kangda; Wang, Bing; Tang, Hainie; Gong, Xiaohui

    2017-01-01

    A quantized block compressive sensing (QBCS) framework, which incorporates the universal measurement, quantization/inverse quantization, entropy coder/decoder, and iterative projected Landweber reconstruction, is summarized. Under the QBCS framework, this paper presents an improved reconstruction algorithm for aerial imagery, QBCS, with entropy-aware projected Landweber (QBCS-EPL), which leverages the full-image sparse transform without Wiener filter and an entropy-aware thresholding model for wavelet-domain image denoising. Through analyzing the functional relation between the soft-thresholding factors and entropy-based bitrates for different quantization methods, the proposed model can effectively remove wavelet-domain noise of bivariate shrinkage and achieve better image reconstruction quality. For the overall performance of QBCS reconstruction, experimental results demonstrate that the proposed QBCS-EPL algorithm significantly outperforms several existing algorithms. With the experiment-driven methodology, the QBCS-EPL algorithm can obtain better reconstruction quality at a relatively moderate computational cost, which makes it more desirable for aerial imagery applications.

  4. Vector quantizer based on brightness maps for image compression with the polynomial transform

    NASA Astrophysics Data System (ADS)

    Escalante-Ramirez, Boris; Moreno-Gutierrez, Mauricio; Silvan-Cardenas, Jose L.

    2002-11-01

    We present a vector quantization scheme acting on brightness fields based on distance/distortion criteria correspondent with psycho-visual aspects. These criteria quantify sensorial distortion between vectors that represent either portions of a digital image or alternatively, coefficients of a transform-based coding system. In the latter case, we use an image representation model, namely the Hermite transform, that is based on some of the main perceptual characteristics of the human vision system (HVS) and in their response to light stimulus. Energy coding in the brightness domain, determination of local structure, code-book training and local orientation analysis are all obtained by means of the Hermite transform. This paper, for thematic reasons, is divided in four sections. The first one will shortly highlight the importance of having newer and better compression algorithms. This section will also serve to explain briefly the most relevant characteristics of the HVS, advantages and disadvantages related with the behavior of our vision in front of ocular stimulus. The second section shall go through a quick review of vector quantization techniques, focusing their performance on image treatment, as a preview for the image vector quantizer compressor actually constructed in section 5. Third chapter was chosen to concentrate the most important data gathered on brightness models. The building of this so-called brightness maps (quantification of the human perception on the visible objects reflectance), in a bi-dimensional model, will be addressed here. The Hermite transform, a special case of polynomial transforms, and its usefulness, will be treated, in an applicable discrete form, in the fourth chapter. As we have learned from previous works 1, Hermite transform has showed to be a useful and practical solution to efficiently code the energy within an image block, deciding which kind of quantization is to be used upon them (whether scalar or vector). It will also be

  5. Detecting double compressed MPEG videos with the same quantization matrix and synchronized group of pictures structure

    NASA Astrophysics Data System (ADS)

    Aghamaleki, Javad Abbasi; Behrad, Alireza

    2018-01-01

    Double compression detection is a crucial stage in digital image and video forensics. However, the detection of double compressed videos is challenging when the video forger uses the same quantization matrix and synchronized group of pictures (GOP) structure during the recompression history to conceal tampering effects. A passive approach is proposed for detecting double compressed MPEG videos with the same quantization matrix and synchronized GOP structure. To devise the proposed algorithm, the effects of recompression on P frames are mathematically studied. Then, based on the obtained guidelines, a feature vector is proposed to detect double compressed frames on the GOP level. Subsequently, sparse representations of the feature vectors are used for dimensionality reduction and enrich the traces of recompression. Finally, a support vector machine classifier is employed to detect and localize double compression in temporal domain. The experimental results show that the proposed algorithm achieves the accuracy of more than 95%. In addition, the comparisons of the results of the proposed method with those of other methods reveal the efficiency of the proposed algorithm.

  6. High-resolution quantization based on soliton self-frequency shift and spectral compression in a bi-directional comb-fiber architecture

    NASA Astrophysics Data System (ADS)

    Zhang, Xuyan; Zhang, Zhiyao; Wang, Shubing; Liang, Dong; Li, Heping; Liu, Yong

    2018-03-01

    We propose and demonstrate an approach that can achieve high-resolution quantization by employing soliton self-frequency shift and spectral compression. Our approach is based on a bi-directional comb-fiber architecture which is composed of a Sagnac-loop-based mirror and a comb-like combination of N sections of interleaved single-mode fibers and high nonlinear fibers. The Sagnac-loop-based mirror placed at the terminal of a bus line reflects the optical pulses back to the bus line to achieve additional N-stage spectral compression, thus single-stage soliton self-frequency shift (SSFS) and (2 N - 1)-stage spectral compression are realized in the bi-directional scheme. The fiber length in the architecture is numerically optimized, and the proposed quantization scheme is evaluated by both simulation and experiment in the case of N = 2. In the experiment, a quantization resolution of 6.2 bits is obtained, which is 1.2-bit higher than that of its uni-directional counterpart.

  7. Quantized Spectral Compressed Sensing: Cramer–Rao Bounds and Recovery Algorithms

    NASA Astrophysics Data System (ADS)

    Fu, Haoyu; Chi, Yuejie

    2018-06-01

    Efficient estimation of wideband spectrum is of great importance for applications such as cognitive radio. Recently, sub-Nyquist sampling schemes based on compressed sensing have been proposed to greatly reduce the sampling rate. However, the important issue of quantization has not been fully addressed, particularly for high-resolution spectrum and parameter estimation. In this paper, we aim to recover spectrally-sparse signals and the corresponding parameters, such as frequency and amplitudes, from heavy quantizations of their noisy complex-valued random linear measurements, e.g. only the quadrant information. We first characterize the Cramer-Rao bound under Gaussian noise, which highlights the trade-off between sample complexity and bit depth under different signal-to-noise ratios for a fixed budget of bits. Next, we propose a new algorithm based on atomic norm soft thresholding for signal recovery, which is equivalent to proximal mapping of properly designed surrogate signals with respect to the atomic norm that motivates spectral sparsity. The proposed algorithm can be applied to both the single measurement vector case, as well as the multiple measurement vector case. It is shown that under the Gaussian measurement model, the spectral signals can be reconstructed accurately with high probability, as soon as the number of quantized measurements exceeds the order of K log n, where K is the level of spectral sparsity and $n$ is the signal dimension. Finally, numerical simulations are provided to validate the proposed approaches.

  8. Vector quantization

    NASA Technical Reports Server (NTRS)

    Gray, Robert M.

    1989-01-01

    During the past ten years Vector Quantization (VQ) has developed from a theoretical possibility promised by Shannon's source coding theorems into a powerful and competitive technique for speech and image coding and compression at medium to low bit rates. In this survey, the basic ideas behind the design of vector quantizers are sketched and some comments made on the state-of-the-art and current research efforts.

  9. Visibility of wavelet quantization noise

    NASA Technical Reports Server (NTRS)

    Watson, A. B.; Yang, G. Y.; Solomon, J. A.; Villasenor, J.

    1997-01-01

    The discrete wavelet transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that we call DWT uniform quantization noise; it is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2-lambda, where r is display visual resolution in pixels/degree, and lambda is the wavelet level. Thresholds increase rapidly with wavelet spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from lowpass to horizontal/vertical to diagonal. We construct a mathematical model for DWT noise detection thresholds that is a function of level, orientation, and display visual resolution. This allows calculation of a "perceptually lossless" quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.

  10. A recursive technique for adaptive vector quantization

    NASA Technical Reports Server (NTRS)

    Lindsay, Robert A.

    1989-01-01

    Vector Quantization (VQ) is fast becoming an accepted, if not preferred method for image compression. The VQ performs well when compressing all types of imagery including Video, Electro-Optical (EO), Infrared (IR), Synthetic Aperture Radar (SAR), Multi-Spectral (MS), and digital map data. The only requirement is to change the codebook to switch the compressor from one image sensor to another. There are several approaches for designing codebooks for a vector quantizer. Adaptive Vector Quantization is a procedure that simultaneously designs codebooks as the data is being encoded or quantized. This is done by computing the centroid as a recursive moving average where the centroids move after every vector is encoded. When computing the centroid of a fixed set of vectors the resultant centroid is identical to the previous centroid calculation. This method of centroid calculation can be easily combined with VQ encoding techniques. The defined quantizer changes after every encoded vector by recursively updating the centroid of minimum distance which is the selected by the encoder. Since the quantizer is changing definition or states after every encoded vector, the decoder must now receive updates to the codebook. This is done as side information by multiplexing bits into the compressed source data.

  11. An investigative study of multispectral data compression for remotely-sensed images using vector quantization and difference-mapped shift-coding

    NASA Technical Reports Server (NTRS)

    Jaggi, S.

    1993-01-01

    A study is conducted to investigate the effects and advantages of data compression techniques on multispectral imagery data acquired by NASA's airborne scanners at the Stennis Space Center. The first technique used was vector quantization. The vector is defined in the multispectral imagery context as an array of pixels from the same location from each channel. The error obtained in substituting the reconstructed images for the original set is compared for different compression ratios. Also, the eigenvalues of the covariance matrix obtained from the reconstructed data set are compared with the eigenvalues of the original set. The effects of varying the size of the vector codebook on the quality of the compression and on subsequent classification are also presented. The output data from the Vector Quantization algorithm was further compressed by a lossless technique called Difference-mapped Shift-extended Huffman coding. The overall compression for 7 channels of data acquired by the Calibrated Airborne Multispectral Scanner (CAMS), with an RMS error of 15.8 pixels was 195:1 (0.41 bpp) and with an RMS error of 3.6 pixels was 18:1 (.447 bpp). The algorithms were implemented in software and interfaced with the help of dedicated image processing boards to an 80386 PC compatible computer. Modules were developed for the task of image compression and image analysis. Also, supporting software to perform image processing for visual display and interpretation of the compressed/classified images was developed.

  12. Low-rate image coding using vector quantization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makur, A.

    1990-01-01

    This thesis deals with the development and analysis of a computationally simple vector quantization image compression system for coding monochrome images at low bit rate. Vector quantization has been known to be an effective compression scheme when a low bit rate is desirable, but the intensive computation required in a vector quantization encoder has been a handicap in using it for low rate image coding. The present work shows that, without substantially increasing the coder complexity, it is indeed possible to achieve acceptable picture quality while attaining a high compression ratio. Several modifications to the conventional vector quantization coder aremore » proposed in the thesis. These modifications are shown to offer better subjective quality when compared to the basic coder. Distributed blocks are used instead of spatial blocks to construct the input vectors. A class of input-dependent weighted distortion functions is used to incorporate psychovisual characteristics in the distortion measure. Computationally simple filtering techniques are applied to further improve the decoded image quality. Finally, unique designs of the vector quantization coder using electronic neural networks are described, so that the coding delay is reduced considerably.« less

  13. Prediction-guided quantization for video tone mapping

    NASA Astrophysics Data System (ADS)

    Le Dauphin, Agnès.; Boitard, Ronan; Thoreau, Dominique; Olivier, Yannick; Francois, Edouard; LeLéannec, Fabrice

    2014-09-01

    Tone Mapping Operators (TMOs) compress High Dynamic Range (HDR) content to address Low Dynamic Range (LDR) displays. However, before reaching the end-user, this tone mapped content is usually compressed for broadcasting or storage purposes. Any TMO includes a quantization step to convert floating point values to integer ones. In this work, we propose to adapt this quantization, in the loop of an encoder, to reduce the entropy of the tone mapped video content. Our technique provides an appropriate quantization for each mode of both the Intra and Inter-prediction that is performed in the loop of a block-based encoder. The mode that minimizes a rate-distortion criterion uses its associated quantization to provide integer values for the rest of the encoding process. The method has been implemented in HEVC and was tested over two different scenarios: the compression of tone mapped LDR video content (using the HM10.0) and the compression of perceptually encoded HDR content (HM14.0). Results show an average bit-rate reduction under the same PSNR for all the sequences and TMO considered of 20.3% and 27.3% for tone mapped content and 2.4% and 2.7% for HDR content.

  14. An adaptive vector quantization scheme

    NASA Technical Reports Server (NTRS)

    Cheung, K.-M.

    1990-01-01

    Vector quantization is known to be an effective compression scheme to achieve a low bit rate so as to minimize communication channel bandwidth and also to reduce digital memory storage while maintaining the necessary fidelity of the data. However, the large number of computations required in vector quantizers has been a handicap in using vector quantization for low-rate source coding. An adaptive vector quantization algorithm is introduced that is inherently suitable for simple hardware implementation because it has a simple architecture. It allows fast encoding and decoding because it requires only addition and subtraction operations.

  15. Perceptual Optimization of DCT Color Quantization Matrices

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Statler, Irving C. (Technical Monitor)

    1994-01-01

    Many image compression schemes employ a block Discrete Cosine Transform (DCT) and uniform quantization. Acceptable rate/distortion performance depends upon proper design of the quantization matrix. In previous work, we showed how to use a model of the visibility of DCT basis functions to design quantization matrices for arbitrary display resolutions and color spaces. Subsequently, we showed how to optimize greyscale quantization matrices for individual images, for optimal rate/perceptual distortion performance. Here we describe extensions of this optimization algorithm to color images.

  16. Image data compression having minimum perceptual error

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor)

    1995-01-01

    A method for performing image compression that eliminates redundant and invisible image components is described. The image compression uses a Discrete Cosine Transform (DCT) and each DCT coefficient yielded by the transform is quantized by an entry in a quantization matrix which determines the perceived image quality and the bit rate of the image being compressed. The present invention adapts or customizes the quantization matrix to the image being compressed. The quantization matrix comprises visual masking by luminance and contrast techniques and by an error pooling technique all resulting in a minimum perceptual error for any given bit rate, or minimum bit rate for a given perceptual error.

  17. Optimal Compression Methods for Floating-point Format Images

    NASA Technical Reports Server (NTRS)

    Pence, W. D.; White, R. L.; Seaman, R.

    2009-01-01

    We report on the results of a comparison study of different techniques for compressing FITS images that have floating-point (real*4) pixel values. Standard file compression methods like GZIP are generally ineffective in this case (with compression ratios only in the range 1.2 - 1.6), so instead we use a technique of converting the floating-point values into quantized scaled integers which are compressed using the Rice algorithm. The compressed data stream is stored in FITS format using the tiled-image compression convention. This is technically a lossy compression method, since the pixel values are not exactly reproduced, however all the significant photometric and astrometric information content of the image can be preserved while still achieving file compression ratios in the range of 4 to 8. We also show that introducing dithering, or randomization, when assigning the quantized pixel-values can significantly improve the photometric and astrometric precision in the stellar images in the compressed file without adding additional noise. We quantify our results by comparing the stellar magnitudes and positions as measured in the original uncompressed image to those derived from the same image after applying successively greater amounts of compression.

  18. Perceptual Image Compression in Telemedicine

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Ahumada, Albert J., Jr.; Eckstein, Miguel; Null, Cynthia H. (Technical Monitor)

    1996-01-01

    The next era of space exploration, especially the "Mission to Planet Earth" will generate immense quantities of image data. For example, the Earth Observing System (EOS) is expected to generate in excess of one terabyte/day. NASA confronts a major technical challenge in managing this great flow of imagery: in collection, pre-processing, transmission to earth, archiving, and distribution to scientists at remote locations. Expected requirements in most of these areas clearly exceed current technology. Part of the solution to this problem lies in efficient image compression techniques. For much of this imagery, the ultimate consumer is the human eye. In this case image compression should be designed to match the visual capacities of the human observer. We have developed three techniques for optimizing image compression for the human viewer. The first consists of a formula, developed jointly with IBM and based on psychophysical measurements, that computes a DCT quantization matrix for any specified combination of viewing distance, display resolution, and display brightness. This DCT quantization matrix is used in most recent standards for digital image compression (JPEG, MPEG, CCITT H.261). The second technique optimizes the DCT quantization matrix for each individual image, based on the contents of the image. This is accomplished by means of a model of visual sensitivity to compression artifacts. The third technique extends the first two techniques to the realm of wavelet compression. Together these two techniques will allow systematic perceptual optimization of image compression in NASA imaging systems. Many of the image management challenges faced by NASA are mirrored in the field of telemedicine. Here too there are severe demands for transmission and archiving of large image databases, and the imagery is ultimately used primarily by human observers, such as radiologists. In this presentation I will describe some of our preliminary explorations of the applications

  19. Quantization selection in the high-throughput H.264/AVC encoder based on the RD

    NASA Astrophysics Data System (ADS)

    Pastuszak, Grzegorz

    2013-10-01

    In the hardware video encoder, the quantization is responsible for quality losses. On the other hand, it allows the reduction of bit rates to the target one. If the mode selection is based on the rate-distortion criterion, the quantization can also be adjusted to obtain better compression efficiency. Particularly, the use of Lagrangian function with a given multiplier enables the encoder to select the most suitable quantization step determined by the quantization parameter QP. Moreover, the quantization offset added before discarding the fraction value after quantization can be adjusted. In order to select the best quantization parameter and offset in real time, the HD/SD encoder should be implemented in the hardware. In particular, the hardware architecture should embed the transformation and quantization modules able to process the same residuals many times. In this work, such an architecture is used. Experimental results show what improvements in terms of compression efficiency are achievable for Intra coding.

  20. Luminance-model-based DCT quantization for color image compression

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.; Peterson, Heidi A.

    1992-01-01

    A model is developed to approximate visibility thresholds for discrete cosine transform (DCT) coefficient quantization error based on the peak-to-peak luminance of the error image. Experimentally measured visibility thresholds for R, G, and B DCT basis functions can be predicted by a simple luminance-based detection model. This model allows DCT coefficient quantization matrices to be designed for display conditions other than those of the experimental measurements: other display luminances, other veiling luminances, and other spatial frequencies (different pixel spacings, viewing distances, and aspect ratios).

  1. Image Data Compression Having Minimum Perceptual Error

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor)

    1997-01-01

    A method is presented for performing color or grayscale image compression that eliminates redundant and invisible image components. The image compression uses a Discrete Cosine Transform (DCT) and each DCT coefficient yielded by the transform is quantized by an entry in a quantization matrix which determines the perceived image quality and the bit rate of the image being compressed. The quantization matrix comprises visual masking by luminance and contrast technique all resulting in a minimum perceptual error for any given bit rate, or minimum bit rate for a given perceptual error.

  2. Pipeline synthetic aperture radar data compression utilizing systolic binary tree-searched architecture for vector quantization

    NASA Technical Reports Server (NTRS)

    Chang, Chi-Yung (Inventor); Fang, Wai-Chi (Inventor); Curlander, John C. (Inventor)

    1995-01-01

    A system for data compression utilizing systolic array architecture for Vector Quantization (VQ) is disclosed for both full-searched and tree-searched. For a tree-searched VQ, the special case of a Binary Tree-Search VQ (BTSVQ) is disclosed with identical Processing Elements (PE) in the array for both a Raw-Codebook VQ (RCVQ) and a Difference-Codebook VQ (DCVQ) algorithm. A fault tolerant system is disclosed which allows a PE that has developed a fault to be bypassed in the array and replaced by a spare at the end of the array, with codebook memory assignment shifted one PE past the faulty PE of the array.

  3. Optimal Compression of Floating-Point Astronomical Images Without Significant Loss of Information

    NASA Technical Reports Server (NTRS)

    Pence, William D.; White, R. L.; Seaman, R.

    2010-01-01

    We describe a compression method for floating-point astronomical images that gives compression ratios of 6 - 10 while still preserving the scientifically important information in the image. The pixel values are first preprocessed by quantizing them into scaled integer intensity levels, which removes some of the uncompressible noise in the image. The integers are then losslessly compressed using the fast and efficient Rice algorithm and stored in a portable FITS format file. Quantizing an image more coarsely gives greater image compression, but it also increases the noise and degrades the precision of the photometric and astrometric measurements in the quantized image. Dithering the pixel values during the quantization process greatly improves the precision of measurements in the more coarsely quantized images. We perform a series of experiments on both synthetic and real astronomical CCD images to quantitatively demonstrate that the magnitudes and positions of stars in the quantized images can be measured with the predicted amount of precision. In order to encourage wider use of these image compression methods, we have made available a pair of general-purpose image compression programs, called fpack and funpack, which can be used to compress any FITS format image.

  4. Quantized kernel least mean square algorithm.

    PubMed

    Chen, Badong; Zhao, Songlin; Zhu, Pingping; Príncipe, José C

    2012-01-01

    In this paper, we propose a quantization approach, as an alternative of sparsification, to curb the growth of the radial basis function structure in kernel adaptive filtering. The basic idea behind this method is to quantize and hence compress the input (or feature) space. Different from sparsification, the new approach uses the "redundant" data to update the coefficient of the closest center. In particular, a quantized kernel least mean square (QKLMS) algorithm is developed, which is based on a simple online vector quantization method. The analytical study of the mean square convergence has been carried out. The energy conservation relation for QKLMS is established, and on this basis we arrive at a sufficient condition for mean square convergence, and a lower and upper bound on the theoretical value of the steady-state excess mean square error. Static function estimation and short-term chaotic time-series prediction examples are presented to demonstrate the excellent performance.

  5. Efficient compression of molecular dynamics trajectory files.

    PubMed

    Marais, Patrick; Kenwood, Julian; Smith, Keegan Carruthers; Kuttel, Michelle M; Gain, James

    2012-10-15

    We investigate whether specific properties of molecular dynamics trajectory files can be exploited to achieve effective file compression. We explore two classes of lossy, quantized compression scheme: "interframe" predictors, which exploit temporal coherence between successive frames in a simulation, and more complex "intraframe" schemes, which compress each frame independently. Our interframe predictors are fast, memory-efficient and well suited to on-the-fly compression of massive simulation data sets, and significantly outperform the benchmark BZip2 application. Our schemes are configurable: atomic positional accuracy can be sacrificed to achieve greater compression. For high fidelity compression, our linear interframe predictor gives the best results at very little computational cost: at moderate levels of approximation (12-bit quantization, maximum error ≈ 10(-2) Å), we can compress a 1-2 fs trajectory file to 5-8% of its original size. For 200 fs time steps-typically used in fine grained water diffusion experiments-we can compress files to ~25% of their input size, still substantially better than BZip2. While compression performance degrades with high levels of quantization, the simulation error is typically much greater than the associated approximation error in such cases. Copyright © 2012 Wiley Periodicals, Inc.

  6. Image Coding Based on Address Vector Quantization.

    NASA Astrophysics Data System (ADS)

    Feng, Yushu

    Image coding is finding increased application in teleconferencing, archiving, and remote sensing. This thesis investigates the potential of Vector Quantization (VQ), a relatively new source coding technique, for compression of monochromatic and color images. Extensions of the Vector Quantization technique to the Address Vector Quantization method have been investigated. In Vector Quantization, the image data to be encoded are first processed to yield a set of vectors. A codeword from the codebook which best matches the input image vector is then selected. Compression is achieved by replacing the image vector with the index of the code-word which produced the best match, the index is sent to the channel. Reconstruction of the image is done by using a table lookup technique, where the label is simply used as an address for a table containing the representative vectors. A code-book of representative vectors (codewords) is generated using an iterative clustering algorithm such as K-means, or the generalized Lloyd algorithm. A review of different Vector Quantization techniques are given in chapter 1. Chapter 2 gives an overview of codebook design methods including the Kohonen neural network to design codebook. During the encoding process, the correlation of the address is considered and Address Vector Quantization is developed for color image and monochrome image coding. Address VQ which includes static and dynamic processes is introduced in chapter 3. In order to overcome the problems in Hierarchical VQ, Multi-layer Address Vector Quantization is proposed in chapter 4. This approach gives the same performance as that of the normal VQ scheme but the bit rate is about 1/2 to 1/3 as that of the normal VQ method. In chapter 5, a Dynamic Finite State VQ based on a probability transition matrix to select the best subcodebook to encode the image is developed. In chapter 6, a new adaptive vector quantization scheme, suitable for color video coding, called "A Self -Organizing

  7. Fingerprint recognition of wavelet-based compressed images by neuro-fuzzy clustering

    NASA Astrophysics Data System (ADS)

    Liu, Ti C.; Mitra, Sunanda

    1996-06-01

    Image compression plays a crucial role in many important and diverse applications requiring efficient storage and transmission. This work mainly focuses on a wavelet transform (WT) based compression of fingerprint images and the subsequent classification of the reconstructed images. The algorithm developed involves multiresolution wavelet decomposition, uniform scalar quantization, entropy and run- length encoder/decoder and K-means clustering of the invariant moments as fingerprint features. The performance of the WT-based compression algorithm has been compared with JPEG current image compression standard. Simulation results show that WT outperforms JPEG in high compression ratio region and the reconstructed fingerprint image yields proper classification.

  8. Combining Vector Quantization and Histogram Equalization.

    ERIC Educational Resources Information Center

    Cosman, Pamela C.; And Others

    1992-01-01

    Discussion of contrast enhancement techniques focuses on the use of histogram equalization with a data compression technique, i.e., tree-structured vector quantization. The enhancement technique of intensity windowing is described, and the use of enhancement techniques for medical images is explained, including adaptive histogram equalization.…

  9. DCTune Perceptual Optimization of Compressed Dental X-Rays

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Null, Cynthia H. (Technical Monitor)

    1996-01-01

    In current dental practice, x-rays of completed dental work are often sent to the insurer for verification. It is faster and cheaper to transmit instead digital scans of the x-rays. Further economies result if the images are sent in compressed form. DCTune is a technology for optimizing DCT (digital communication technology) quantization matrices to yield maximum perceptual quality for a given bit-rate, or minimum bit-rate for a given perceptual quality. Perceptual optimization of DCT color quantization matrices. In addition, the technology provides a means of setting the perceptual quality of compressed imagery in a systematic way. The purpose of this research was, with respect to dental x-rays, 1) to verify the advantage of DCTune over standard JPEG (Joint Photographic Experts Group), 2) to verify the quality control feature of DCTune, and 3) to discover regularities in the optimized matrices of a set of images. We optimized matrices for a total of 20 images at two resolutions (150 and 300 dpi) and four bit-rates (0.25, 0.5, 0.75, 1.0 bits/pixel), and examined structural regularities in the resulting matrices. We also conducted psychophysical studies (1) to discover the DCTune quality level at which the images became 'visually lossless,' and (2) to rate the relative quality of DCTune and standard JPEG images at various bitrates. Results include: (1) At both resolutions, DCTune quality is a linear function of bit-rate. (2) DCTune quantization matrices for all images at all bitrates and resolutions are modeled well by an inverse Gaussian, with parameters of amplitude and width. (3) As bit-rate is varied, optimal values of both amplitude and width covary in an approximately linear fashion. (4) Both amplitude and width vary in systematic and orderly fashion with either bit-rate or DCTune quality; simple mathematical functions serve to describe these relationships. (5) In going from 150 to 300 dpi, amplitude parameters are substantially lower and widths larger at

  10. Embedded wavelet packet transform technique for texture compression

    NASA Astrophysics Data System (ADS)

    Li, Jin; Cheng, Po-Yuen; Kuo, C.-C. Jay

    1995-09-01

    A highly efficient texture compression scheme is proposed in this research. With this scheme, energy compaction of texture images is first achieved by the wavelet packet transform, and an embedding approach is then adopted for the coding of the wavelet packet transform coefficients. By comparing the proposed algorithm with the JPEG standard, FBI wavelet/scalar quantization standard and the EZW scheme with extensive experimental results, we observe a significant improvement in the rate-distortion performance and visual quality.

  11. Bit-wise arithmetic coding for data compression

    NASA Technical Reports Server (NTRS)

    Kiely, A. B.

    1994-01-01

    This article examines the problem of compressing a uniformly quantized independent and identically distributed (IID) source. We present a new compression technique, bit-wise arithmetic coding, that assigns fixed-length codewords to the quantizer output and uses arithmetic coding to compress the codewords, treating the codeword bits as independent. We examine the performance of this method and evaluate the overhead required when used block-adaptively. Simulation results are presented for Gaussian and Laplacian sources. This new technique could be used as the entropy coder in a transform or subband coding system.

  12. Vector Quantization Algorithm Based on Associative Memories

    NASA Astrophysics Data System (ADS)

    Guzmán, Enrique; Pogrebnyak, Oleksiy; Yáñez, Cornelio; Manrique, Pablo

    This paper presents a vector quantization algorithm for image compression based on extended associative memories. The proposed algorithm is divided in two stages. First, an associative network is generated applying the learning phase of the extended associative memories between a codebook generated by the LBG algorithm and a training set. This associative network is named EAM-codebook and represents a new codebook which is used in the next stage. The EAM-codebook establishes a relation between training set and the LBG codebook. Second, the vector quantization process is performed by means of the recalling stage of EAM using as associative memory the EAM-codebook. This process generates a set of the class indices to which each input vector belongs. With respect to the LBG algorithm, the main advantages offered by the proposed algorithm is high processing speed and low demand of resources (system memory); results of image compression and quality are presented.

  13. Quantization of Non-Lagrangian Systems

    NASA Astrophysics Data System (ADS)

    Kochan, Denis

    A novel method for quantization of non-Lagrangian (open) systems is proposed. It is argued that the essential object, which provides both classical and quantum evolution, is a certain canonical two-form defined in extended velocity space. In this setting classical dynamics is recovered from the stringy-type variational principle, which employs umbilical surfaces instead of histories of the system. Quantization is then accomplished in accordance with the introduced variational principle. The path integral for the transition probability amplitude (propagator) is rearranged to a surface functional integral. In the standard case of closed (Lagrangian) systems the presented method reduces to the standard Feynman's approach. The inverse problem of the calculus of variation, the problem of quantization ambiguity and the quantum mechanics in the presence of friction are analyzed in detail.

  14. Perceptual compression of magnitude-detected synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    Gorman, John D.; Werness, Susan A.

    1994-01-01

    A perceptually-based approach for compressing synthetic aperture radar (SAR) imagery is presented. Key components of the approach are a multiresolution wavelet transform, a bit allocation mask based on an empirical human visual system (HVS) model, and hybrid scalar/vector quantization. Specifically, wavelet shrinkage techniques are used to segregate wavelet transform coefficients into three components: local means, edges, and texture. Each of these three components is then quantized separately according to a perceptually-based bit allocation scheme. Wavelet coefficients associated with local means and edges are quantized using high-rate scalar quantization while texture information is quantized using low-rate vector quantization. The impact of the perceptually-based multiresolution compression algorithm on visual image quality, impulse response, and texture properties is assessed for fine-resolution magnitude-detected SAR imagery; excellent image quality is found at bit rates at or above 1 bpp along with graceful performance degradation at rates below 1 bpp.

  15. Quantization noise in digital speech. M.S. Thesis- Houston Univ.

    NASA Technical Reports Server (NTRS)

    Schmidt, O. L.

    1972-01-01

    The amount of quantization noise generated in a digital-to-analog converter is dependent on the number of bits or quantization levels used to digitize the analog signal in the analog-to-digital converter. The minimum number of quantization levels and the minimum sample rate were derived for a digital voice channel. A sample rate of 6000 samples per second and lowpass filters with a 3 db cutoff of 2400 Hz are required for 100 percent sentence intelligibility. Consonant sounds are the first speech components to be degraded by quantization noise. A compression amplifier can be used to increase the weighting of the consonant sound amplitudes in the analog-to-digital converter. An expansion network must be installed at the output of the digital-to-analog converter to restore the original weighting of the consonant sounds. This technique results in 100 percent sentence intelligibility for a sample rate of 5000 samples per second, eight quantization levels, and lowpass filters with a 3 db cutoff of 2000 Hz.

  16. Wavelet compression of noisy tomographic images

    NASA Astrophysics Data System (ADS)

    Kappeler, Christian; Mueller, Stefan P.

    1995-09-01

    3D data acquisition is increasingly used in positron emission tomography (PET) to collect a larger fraction of the emitted radiation. A major practical difficulty with data storage and transmission in 3D-PET is the large size of the data sets. A typical dynamic study contains about 200 Mbyte of data. PET images inherently have a high level of photon noise and therefore usually are evaluated after being processed by a smoothing filter. In this work we examined lossy compression schemes under the postulate not induce image modifications exceeding those resulting from low pass filtering. The standard we will refer to is the Hanning filter. Resolution and inhomogeneity serve as figures of merit for quantification of image quality. The images to be compressed are transformed to a wavelet representation using Daubechies12 wavelets and compressed after filtering by thresholding. We do not include further compression by quantization and coding here. Achievable compression factors at this level of processing are thirty to fifty.

  17. A constrained joint source/channel coder design and vector quantization of nonstationary sources

    NASA Technical Reports Server (NTRS)

    Sayood, Khalid; Chen, Y. C.; Nori, S.; Araj, A.

    1993-01-01

    The emergence of broadband ISDN as the network for the future brings with it the promise of integration of all proposed services in a flexible environment. In order to achieve this flexibility, asynchronous transfer mode (ATM) has been proposed as the transfer technique. During this period a study was conducted on the bridging of network transmission performance and video coding. The successful transmission of variable bit rate video over ATM networks relies on the interaction between the video coding algorithm and the ATM networks. Two aspects of networks that determine the efficiency of video transmission are the resource allocation algorithm and the congestion control algorithm. These are explained in this report. Vector quantization (VQ) is one of the more popular compression techniques to appear in the last twenty years. Numerous compression techniques, which incorporate VQ, have been proposed. While the LBG VQ provides excellent compression, there are also several drawbacks to the use of the LBG quantizers including search complexity and memory requirements, and a mismatch between the codebook and the inputs. The latter mainly stems from the fact that the VQ is generally designed for a specific rate and a specific class of inputs. In this work, an adaptive technique is proposed for vector quantization of images and video sequences. This technique is an extension of the recursively indexed scalar quantization (RISQ) algorithm.

  18. Visual data mining for quantized spatial data

    NASA Technical Reports Server (NTRS)

    Braverman, Amy; Kahn, Brian

    2004-01-01

    In previous papers we've shown how a well known data compression algorithm called Entropy-constrained Vector Quantization ( can be modified to reduce the size and complexity of very large, satellite data sets. In this paper, we descuss how to visualize and understand the content of such reduced data sets.

  19. High Performance Compression of Science Data

    NASA Technical Reports Server (NTRS)

    Storer, James A.; Carpentieri, Bruno; Cohn, Martin

    1994-01-01

    Two papers make up the body of this report. One presents a single-pass adaptive vector quantization algorithm that learns a codebook of variable size and shape entries; the authors present experiments on a set of test images showing that with no training or prior knowledge of the data, for a given fidelity, the compression achieved typically equals or exceeds that of the JPEG standard. The second paper addresses motion compensation, one of the most effective techniques used in interframe data compression. A parallel block-matching algorithm for estimating interframe displacement of blocks with minimum error is presented. The algorithm is designed for a simple parallel architecture to process video in real time.

  20. High performance compression of science data

    NASA Technical Reports Server (NTRS)

    Storer, James A.; Cohn, Martin

    1994-01-01

    Two papers make up the body of this report. One presents a single-pass adaptive vector quantization algorithm that learns a codebook of variable size and shape entries; the authors present experiments on a set of test images showing that with no training or prior knowledge of the data, for a given fidelity, the compression achieved typically equals or exceeds that of the JPEG standard. The second paper addresses motion compensation, one of the most effective techniques used in the interframe data compression. A parallel block-matching algorithm for estimating interframe displacement of blocks with minimum error is presented. The algorithm is designed for a simple parallel architecture to process video in real time.

  1. Distributed Coding of Compressively Sensed Sources

    NASA Astrophysics Data System (ADS)

    Goukhshtein, Maxim

    In this work we propose a new method for compressing multiple correlated sources with a very low-complexity encoder in the presence of side information. Our approach uses ideas from compressed sensing and distributed source coding. At the encoder, syndromes of the quantized compressively sensed sources are generated and transmitted. The decoder uses side information to predict the compressed sources. The predictions are then used to recover the quantized measurements via a two-stage decoding process consisting of bitplane prediction and syndrome decoding. Finally, guided by the structure of the sources and the side information, the sources are reconstructed from the recovered measurements. As a motivating example, we consider the compression of multispectral images acquired on board satellites, where resources, such as computational power and memory, are scarce. Our experimental results exhibit a significant improvement in the rate-distortion trade-off when compared against approaches with similar encoder complexity.

  2. Polymer-Fourier quantization of the scalar field revisited

    NASA Astrophysics Data System (ADS)

    Garcia-Chung, Angel; Vergara, J. David

    2016-10-01

    The polymer quantization of the Fourier modes of the real scalar field is studied within algebraic scheme. We replace the positive linear functional of the standard Poincaré invariant quantization by a singular one. This singular positive linear functional is constructed as mimicking the singular limit of the complex structure of the Poincaré invariant Fock quantization. The resulting symmetry group of such polymer quantization is the subgroup SDiff(ℝ4) which is a subgroup of Diff(ℝ4) formed by spatial volume preserving diffeomorphisms. In consequence, this yields an entirely different irreducible representation of the canonical commutation relations, nonunitary equivalent to the standard Fock representation. We also compared the Poincaré invariant Fock vacuum with the polymer Fourier vacuum.

  3. Multispectral data compression through transform coding and block quantization

    NASA Technical Reports Server (NTRS)

    Ready, P. J.; Wintz, P. A.

    1972-01-01

    Transform coding and block quantization techniques are applied to multispectral aircraft scanner data, and digitized satellite imagery. The multispectral source is defined and an appropriate mathematical model proposed. The Karhunen-Loeve, Fourier, and Hadamard encoders are considered and are compared to the rate distortion function for the equivalent Gaussian source and to the performance of the single sample PCM encoder.

  4. Parallel image compression

    NASA Technical Reports Server (NTRS)

    Reif, John H.

    1987-01-01

    A parallel compression algorithm for the 16,384 processor MPP machine was developed. The serial version of the algorithm can be viewed as a combination of on-line dynamic lossless test compression techniques (which employ simple learning strategies) and vector quantization. These concepts are described. How these concepts are combined to form a new strategy for performing dynamic on-line lossy compression is discussed. Finally, the implementation of this algorithm in a massively parallel fashion on the MPP is discussed.

  5. A joint source-channel distortion model for JPEG compressed images.

    PubMed

    Sabir, Muhammad F; Sheikh, Hamid Rahim; Heath, Robert W; Bovik, Alan C

    2006-06-01

    The need for efficient joint source-channel coding (JSCC) is growing as new multimedia services are introduced in commercial wireless communication systems. An important component of practical JSCC schemes is a distortion model that can predict the quality of compressed digital multimedia such as images and videos. The usual approach in the JSCC literature for quantifying the distortion due to quantization and channel errors is to estimate it for each image using the statistics of the image for a given signal-to-noise ratio (SNR). This is not an efficient approach in the design of real-time systems because of the computational complexity. A more useful and practical approach would be to design JSCC techniques that minimize average distortion for a large set of images based on some distortion model rather than carrying out per-image optimizations. However, models for estimating average distortion due to quantization and channel bit errors in a combined fashion for a large set of images are not available for practical image or video coding standards employing entropy coding and differential coding. This paper presents a statistical model for estimating the distortion introduced in progressive JPEG compressed images due to quantization and channel bit errors in a joint manner. Statistical modeling of important compression techniques such as Huffman coding, differential pulse-coding modulation, and run-length coding are included in the model. Examples show that the distortion in terms of peak signal-to-noise ratio (PSNR) can be predicted within a 2-dB maximum error over a variety of compression ratios and bit-error rates. To illustrate the utility of the proposed model, we present an unequal power allocation scheme as a simple application of our model. Results show that it gives a PSNR gain of around 6.5 dB at low SNRs, as compared to equal power allocation.

  6. Electroencephalographic compression based on modulated filter banks and wavelet transform.

    PubMed

    Bazán-Prieto, Carlos; Cárdenas-Barrera, Julián; Blanco-Velasco, Manuel; Cruz-Roldán, Fernando

    2011-01-01

    Due to the large volume of information generated in an electroencephalographic (EEG) study, compression is needed for storage, processing or transmission for analysis. In this paper we evaluate and compare two lossy compression techniques applied to EEG signals. It compares the performance of compression schemes with decomposition by filter banks or wavelet Packets transformation, seeking the best value for compression, best quality and more efficient real time implementation. Due to specific properties of EEG signals, we propose a quantization stage adapted to the dynamic range of each band, looking for higher quality. The results show that the compressor with filter bank performs better than transform methods. Quantization adapted to the dynamic range significantly enhances the quality.

  7. Tampered Region Localization of Digital Color Images Based on JPEG Compression Noise

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Dong, Jing; Tan, Tieniu

    With the availability of various digital image edit tools, seeing is no longer believing. In this paper, we focus on tampered region localization for image forensics. We propose an algorithm which can locate tampered region(s) in a lossless compressed tampered image when its unchanged region is output of JPEG decompressor. We find the tampered region and the unchanged region have different responses for JPEG compression. The tampered region has stronger high frequency quantization noise than the unchanged region. We employ PCA to separate different spatial frequencies quantization noises, i.e. low, medium and high frequency quantization noise, and extract high frequency quantization noise for tampered region localization. Post-processing is involved to get final localization result. The experimental results prove the effectiveness of our proposed method.

  8. Toward a perceptual image quality assessment of color quantized images

    NASA Astrophysics Data System (ADS)

    Frackiewicz, Mariusz; Palus, Henryk

    2018-04-01

    Color image quantization is an important operation in the field of color image processing. In this paper, we consider new perceptual image quality metrics for assessment of quantized images. These types of metrics, e.g. DSCSI, MDSIs, MDSIm and HPSI achieve the highest correlation coefficients with MOS during tests on the six publicly available image databases. Research was limited to images distorted by two types of compression: JPG and JPG2K. Statistical analysis of correlation coefficients based on the Friedman test and post-hoc procedures showed that the differences between the four new perceptual metrics are not statistically significant.

  9. Output MSE and PSNR prediction in DCT-based lossy compression of remote sensing images

    NASA Astrophysics Data System (ADS)

    Kozhemiakin, Ruslan A.; Abramov, Sergey K.; Lukin, Vladimir V.; Vozel, Benoit; Chehdi, Kacem

    2017-10-01

    Amount and size of remote sensing (RS) images acquired by modern systems are so large that data have to be compressed in order to transfer, save and disseminate them. Lossy compression becomes more popular for aforementioned situations. But lossy compression has to be applied carefully with providing acceptable level of introduced distortions not to lose valuable information contained in data. Then introduced losses have to be controlled and predicted and this is problematic for many coders. In this paper, we analyze possibilities of predicting mean square error or, equivalently, PSNR for coders based on discrete cosine transform (DCT) applied either for compressing singlechannel RS images or multichannel data in component-wise manner. The proposed approach is based on direct dependence between distortions introduced due to DCT coefficient quantization and losses in compressed data. One more innovation deals with possibility to employ a limited number (percentage) of blocks for which DCT-coefficients have to be calculated. This accelerates prediction and makes it considerably faster than compression itself. There are two other advantages of the proposed approach. First, it is applicable for both uniform and non-uniform quantization of DCT coefficients. Second, the approach is quite general since it works for several analyzed DCT-based coders. The simulation results are obtained for standard test images and then verified for real-life RS data.

  10. Compression embedding

    DOEpatents

    Sandford, II, Maxwell T.; Handel, Theodore G.; Bradley, Jonathan N.

    1998-01-01

    A method of embedding auxiliary information into the digital representation of host data created by a lossy compression technique. The method applies to data compressed with lossy algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as integer indices having redundancy and uncertainty in value by one unit. Indices which are adjacent in value are manipulated to encode auxiliary data. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user. Lossy compression methods use loss-less compressions known also as entropy coding, to reduce to the final size the intermediate representation as indices. The efficiency of the compression entropy coding, known also as entropy coding is increased by manipulating the indices at the intermediate stage in the manner taught by the method.

  11. Compression embedding

    DOEpatents

    Sandford, M.T. II; Handel, T.G.; Bradley, J.N.

    1998-03-10

    A method of embedding auxiliary information into the digital representation of host data created by a lossy compression technique is disclosed. The method applies to data compressed with lossy algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as integer indices having redundancy and uncertainty in value by one unit. Indices which are adjacent in value are manipulated to encode auxiliary data. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user. Lossy compression methods use loss-less compressions known also as entropy coding, to reduce to the final size the intermediate representation as indices. The efficiency of the compression entropy coding, known also as entropy coding is increased by manipulating the indices at the intermediate stage in the manner taught by the method. 11 figs.

  12. Gauge fixing and BFV quantization

    NASA Astrophysics Data System (ADS)

    Rogers, Alice

    2000-01-01

    Non-singularity conditions are established for the Batalin-Fradkin-Vilkovisky (BFV) gauge-fixing fermion which are sufficient for it to lead to the correct path integral for a theory with constraints canonically quantized in the BFV approach. The conditions ensure that the anticommutator of this fermion with the BRST charge regularizes the path integral by regularizing the trace over non-physical states in each ghost sector. The results are applied to the quantization of a system which has a Gribov problem, using a non-standard form of the gauge-fixing fermion.

  13. Applications of wavelet-based compression to multidimensional Earth science data

    NASA Technical Reports Server (NTRS)

    Bradley, Jonathan N.; Brislawn, Christopher M.

    1993-01-01

    A data compression algorithm involving vector quantization (VQ) and the discrete wavelet transform (DWT) is applied to two different types of multidimensional digital earth-science data. The algorithms (WVQ) is optimized for each particular application through an optimization procedure that assigns VQ parameters to the wavelet transform subbands subject to constraints on compression ratio and encoding complexity. Preliminary results of compressing global ocean model data generated on a Thinking Machines CM-200 supercomputer are presented. The WVQ scheme is used in both a predictive and nonpredictive mode. Parameters generated by the optimization algorithm are reported, as are signal-to-noise (SNR) measurements of actual quantized data. The problem of extrapolating hydrodynamic variables across the continental landmasses in order to compute the DWT on a rectangular grid is discussed. Results are also presented for compressing Landsat TM 7-band data using the WVQ scheme. The formulation of the optimization problem is presented along with SNR measurements of actual quantized data. Postprocessing applications are considered in which the seven spectral bands are clustered into 256 clusters using a k-means algorithm and analyzed using the Los Alamos multispectral data analysis program, SPECTRUM, both before and after being compressed using the WVQ program.

  14. Study of communications data compression methods

    NASA Technical Reports Server (NTRS)

    Jones, H. W.

    1978-01-01

    A simple monochrome conditional replenishment system was extended to higher compression and to higher motion levels, by incorporating spatially adaptive quantizers and field repeating. Conditional replenishment combines intraframe and interframe compression, and both areas are investigated. The gain of conditional replenishment depends on the fraction of the image changing, since only changed parts of the image need to be transmitted. If the transmission rate is set so that only one fourth of the image can be transmitted in each field, greater change fractions will overload the system. A computer simulation was prepared which incorporated (1) field repeat of changes, (2) a variable change threshold, (3) frame repeat for high change, and (4) two mode, variable rate Hadamard intraframe quantizers. The field repeat gives 2:1 compression in moving areas without noticeable degradation. Variable change threshold allows some flexibility in dealing with varying change rates, but the threshold variation must be limited for acceptable performance.

  15. Compression embedding

    DOEpatents

    Sandford, M.T. II; Handel, T.G.; Bradley, J.N.

    1998-07-07

    A method and apparatus for embedding auxiliary information into the digital representation of host data created by a lossy compression technique and a method and apparatus for constructing auxiliary data from the correspondence between values in a digital key-pair table with integer index values existing in a representation of host data created by a lossy compression technique are disclosed. The methods apply to data compressed with algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as ordered sequences of blocks containing integer indices having redundancy and uncertainty of value by one unit, allowing indices which are adjacent in value to be manipulated to encode auxiliary data. Also included is a method to improve the efficiency of lossy compression algorithms by embedding white noise into the integer indices. Lossy compression methods use loss-less compression to reduce to the final size the intermediate representation as indices. The efficiency of the loss-less compression, known also as entropy coding compression, is increased by manipulating the indices at the intermediate stage. Manipulation of the intermediate representation improves lossy compression performance by 1 to 10%. 21 figs.

  16. Compression embedding

    DOEpatents

    Sandford, II, Maxwell T.; Handel, Theodore G.; Bradley, Jonathan N.

    1998-01-01

    A method and apparatus for embedding auxiliary information into the digital representation of host data created by a lossy compression technique and a method and apparatus for constructing auxiliary data from the correspondence between values in a digital key-pair table with integer index values existing in a representation of host data created by a lossy compression technique. The methods apply to data compressed with algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as ordered sequences of blocks containing integer indices having redundancy and uncertainty of value by one unit, allowing indices which are adjacent in value to be manipulated to encode auxiliary data. Also included is a method to improve the efficiency of lossy compression algorithms by embedding white noise into the integer indices. Lossy compression methods use loss-less compression to reduce to the final size the intermediate representation as indices. The efficiency of the loss-less compression, known also as entropy coding compression, is increased by manipulating the indices at the intermediate stage. Manipulation of the intermediate representation improves lossy compression performance by 1 to 10%.

  17. Necessary conditions for the optimality of variable rate residual vector quantizers

    NASA Technical Reports Server (NTRS)

    Kossentini, Faouzi; Smith, Mark J. T.; Barnes, Christopher F.

    1993-01-01

    Residual vector quantization (RVQ), or multistage VQ, as it is also called, has recently been shown to be a competitive technique for data compression. The competitive performance of RVQ reported in results from the joint optimization of variable rate encoding and RVQ direct-sum code books. In this paper, necessary conditions for the optimality of variable rate RVQ's are derived, and an iterative descent algorithm based on a Lagrangian formulation is introduced for designing RVQ's having minimum average distortion subject to an entropy constraint. Simulation results for these entropy-constrained RVQ's (EC-RVQ's) are presented for memory less Gaussian, Laplacian, and uniform sources. A Gauss-Markov source is also considered. The performance is superior to that of entropy-constrained scalar quantizers (EC-SQ's) and practical entropy-constrained vector quantizers (EC-VQ's), and is competitive with that of some of the best source coding techniques that have appeared in the literature.

  18. A novel color image compression algorithm using the human visual contrast sensitivity characteristics

    NASA Astrophysics Data System (ADS)

    Yao, Juncai; Liu, Guizhong

    2017-03-01

    In order to achieve higher image compression ratio and improve visual perception of the decompressed image, a novel color image compression scheme based on the contrast sensitivity characteristics of the human visual system (HVS) is proposed. In the proposed scheme, firstly the image is converted into the YCrCb color space and divided into sub-blocks. Afterwards, the discrete cosine transform is carried out for each sub-block, and three quantization matrices are built to quantize the frequency spectrum coefficients of the images by combining the contrast sensitivity characteristics of HVS. The Huffman algorithm is used to encode the quantized data. The inverse process involves decompression and matching to reconstruct the decompressed color image. And simulations are carried out for two color images. The results show that the average structural similarity index measurement (SSIM) and peak signal to noise ratio (PSNR) under the approximate compression ratio could be increased by 2.78% and 5.48%, respectively, compared with the joint photographic experts group (JPEG) compression. The results indicate that the proposed compression algorithm in the text is feasible and effective to achieve higher compression ratio under ensuring the encoding and image quality, which can fully meet the needs of storage and transmission of color images in daily life.

  19. Bit-Wise Arithmetic Coding For Compression Of Data

    NASA Technical Reports Server (NTRS)

    Kiely, Aaron

    1996-01-01

    Bit-wise arithmetic coding is data-compression scheme intended especially for use with uniformly quantized data from source with Gaussian, Laplacian, or similar probability distribution function. Code words of fixed length, and bits treated as being independent. Scheme serves as means of progressive transmission or of overcoming buffer-overflow or rate constraint limitations sometimes arising when data compression used.

  20. A New Approach for Fingerprint Image Compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazieres, Bertrand

    1997-12-01

    The FBI has been collecting fingerprint cards since 1924 and now has over 200 million of them. Digitized with 8 bits of grayscale resolution at 500 dots per inch, it means 2000 terabytes of information. Also, without any compression, transmitting a 10 Mb card over a 9600 baud connection will need 3 hours. Hence we need a compression and a compression as close to lossless as possible: all fingerprint details must be kept. A lossless compression usually do not give a better compression ratio than 2:1, which is not sufficient. Compressing these images with the JPEG standard leads to artefactsmore » which appear even at low compression rates. Therefore the FBI has chosen in 1993 a scheme of compression based on a wavelet transform, followed by a scalar quantization and an entropy coding : the so-called WSQ. This scheme allows to achieve compression ratios of 20:1 without any perceptible loss of quality. The publication of the FBI specifies a decoder, which means that many parameters can be changed in the encoding process: the type of analysis/reconstruction filters, the way the bit allocation is made, the number of Huffman tables used for the entropy coding. The first encoder used 9/7 filters for the wavelet transform and did the bit allocation using a high-rate bit assumption. Since the transform is made into 64 subbands, quite a lot of bands receive only a few bits even at an archival quality compression rate of 0.75 bit/pixel. Thus, after a brief overview of the standard, we will discuss a new approach for the bit-allocation that seems to make more sense where theory is concerned. Then we will talk about some implementation aspects, particularly for the new entropy coder and the features that allow other applications than fingerprint image compression. Finally, we will compare the performances of the new encoder to those of the first encoder.« less

  1. Quality of reconstruction of compressed off-axis digital holograms by frequency filtering and wavelets.

    PubMed

    Cheremkhin, Pavel A; Kurbatova, Ekaterina A

    2018-01-01

    Compression of digital holograms can significantly help with the storage of objects and data in 2D and 3D form, its transmission, and its reconstruction. Compression of standard images by methods based on wavelets allows high compression ratios (up to 20-50 times) with minimum losses of quality. In the case of digital holograms, application of wavelets directly does not allow high values of compression to be obtained. However, additional preprocessing and postprocessing can afford significant compression of holograms and the acceptable quality of reconstructed images. In this paper application of wavelet transforms for compression of off-axis digital holograms are considered. The combined technique based on zero- and twin-order elimination, wavelet compression of the amplitude and phase components of the obtained Fourier spectrum, and further additional compression of wavelet coefficients by thresholding and quantization is considered. Numerical experiments on reconstruction of images from the compressed holograms are performed. The comparative analysis of applicability of various wavelets and methods of additional compression of wavelet coefficients is performed. Optimum parameters of compression of holograms by the methods can be estimated. Sizes of holographic information were decreased up to 190 times.

  2. A CMOS Imager with Focal Plane Compression using Predictive Coding

    NASA Technical Reports Server (NTRS)

    Leon-Salas, Walter D.; Balkir, Sina; Sayood, Khalid; Schemm, Nathan; Hoffman, Michael W.

    2007-01-01

    This paper presents a CMOS image sensor with focal-plane compression. The design has a column-level architecture and it is based on predictive coding techniques for image decorrelation. The prediction operations are performed in the analog domain to avoid quantization noise and to decrease the area complexity of the circuit, The prediction residuals are quantized and encoded by a joint quantizer/coder circuit. To save area resources, the joint quantizerlcoder circuit exploits common circuitry between a single-slope analog-to-digital converter (ADC) and a Golomb-Rice entropy coder. This combination of ADC and encoder allows the integration of the entropy coder at the column level. A prototype chip was fabricated in a 0.35 pm CMOS process. The output of the chip is a compressed bit stream. The test chip occupies a silicon area of 2.60 mm x 5.96 mm which includes an 80 X 44 APS array. Tests of the fabricated chip demonstrate the validity of the design.

  3. Accelerating Families of Fuzzy K-Means Algorithms for Vector Quantization Codebook Design

    PubMed Central

    Mata, Edson; Bandeira, Silvio; de Mattos Neto, Paulo; Lopes, Waslon; Madeiro, Francisco

    2016-01-01

    The performance of signal processing systems based on vector quantization depends on codebook design. In the image compression scenario, the quality of the reconstructed images depends on the codebooks used. In this paper, alternatives are proposed for accelerating families of fuzzy K-means algorithms for codebook design. The acceleration is obtained by reducing the number of iterations of the algorithms and applying efficient nearest neighbor search techniques. Simulation results concerning image vector quantization have shown that the acceleration obtained so far does not decrease the quality of the reconstructed images. Codebook design time savings up to about 40% are obtained by the accelerated versions with respect to the original versions of the algorithms. PMID:27886061

  4. Accelerating Families of Fuzzy K-Means Algorithms for Vector Quantization Codebook Design.

    PubMed

    Mata, Edson; Bandeira, Silvio; de Mattos Neto, Paulo; Lopes, Waslon; Madeiro, Francisco

    2016-11-23

    The performance of signal processing systems based on vector quantization depends on codebook design. In the image compression scenario, the quality of the reconstructed images depends on the codebooks used. In this paper, alternatives are proposed for accelerating families of fuzzy K-means algorithms for codebook design. The acceleration is obtained by reducing the number of iterations of the algorithms and applying efficient nearest neighbor search techniques. Simulation results concerning image vector quantization have shown that the acceleration obtained so far does not decrease the quality of the reconstructed images. Codebook design time savings up to about 40% are obtained by the accelerated versions with respect to the original versions of the algorithms.

  5. A new display stream compression standard under development in VESA

    NASA Astrophysics Data System (ADS)

    Jacobson, Natan; Thirumalai, Vijayaraghavan; Joshi, Rajan; Goel, James

    2017-09-01

    The Advanced Display Stream Compression (ADSC) codec project is in development in response to a call for technologies from the Video Electronics Standards Association (VESA). This codec targets visually lossless compression of display streams at a high compression rate (typically 6 bits/pixel) for mobile/VR/HDR applications. Functionality of the ADSC codec is described in this paper, and subjective trials results are provided using the ISO 29170-2 testing protocol.

  6. DCTune Perceptual Optimization of Compressed Dental X-Rays

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Null, Cynthia H. (Technical Monitor)

    1997-01-01

    In current dental practice, x-rays of completed dental work are often sent to the insurer for verification. It is faster and cheaper to transmit instead digital scans of the x-rays. Further economies result if the images are sent in compressed form. DCtune is a technology for optimizing DCT quantization matrices to yield maximum perceptual quality for a given bit-rate, or minimum bit-rate for a given perceptual quality. In addition, the technology provides a means of setting the perceptual quality of compressed imagery in a systematic way. The purpose of this research was, with respect to dental x-rays: (1) to verify the advantage of DCTune over standard JPEG; (2) to verify the quality control feature of DCTune; and (3) to discover regularities in the optimized matrices of a set of images. Additional information is contained in the original extended abstract.

  7. Rate and power efficient image compressed sensing and transmission

    NASA Astrophysics Data System (ADS)

    Olanigan, Saheed; Cao, Lei; Viswanathan, Ramanarayanan

    2016-01-01

    This paper presents a suboptimal quantization and transmission scheme for multiscale block-based compressed sensing images over wireless channels. The proposed method includes two stages: dealing with quantization distortion and transmission errors. First, given the total transmission bit rate, the optimal number of quantization bits is assigned to the sensed measurements in different wavelet sub-bands so that the total quantization distortion is minimized. Second, given the total transmission power, the energy is allocated to different quantization bit layers based on their different error sensitivities. The method of Lagrange multipliers with Karush-Kuhn-Tucker conditions is used to solve both optimization problems, for which the first problem can be solved with relaxation and the second problem can be solved completely. The effectiveness of the scheme is illustrated through simulation results, which have shown up to 10 dB improvement over the method without the rate and power optimization in medium and low signal-to-noise ratio cases.

  8. 49 CFR 571.304 - Standard No. 304; Compressed natural gas fuel container integrity.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Standard No. 304; Compressed natural gas fuel... natural gas fuel container integrity. S1. Scope. This standard specifies requirements for the integrity of compressed natural gas (CNG), motor vehicle fuel containers. S2. Purpose. The purpose of this standard is to...

  9. 49 CFR 571.304 - Standard No. 304; Compressed natural gas fuel container integrity.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Standard No. 304; Compressed natural gas fuel... natural gas fuel container integrity. S1. Scope. This standard specifies requirements for the integrity of compressed natural gas (CNG), motor vehicle fuel containers. S2. Purpose. The purpose of this standard is to...

  10. Efficient storage and management of radiographic images using a novel wavelet-based multiscale vector quantizer

    NASA Astrophysics Data System (ADS)

    Yang, Shuyu; Mitra, Sunanda

    2002-05-01

    Due to the huge volumes of radiographic images to be managed in hospitals, efficient compression techniques yielding no perceptual loss in the reconstructed images are becoming a requirement in the storage and management of such datasets. A wavelet-based multi-scale vector quantization scheme that generates a global codebook for efficient storage and transmission of medical images is presented in this paper. The results obtained show that even at low bit rates one is able to obtain reconstructed images with perceptual quality higher than that of the state-of-the-art scalar quantization method, the set partitioning in hierarchical trees.

  11. Can one ADM quantize relativistic bosonicstrings and membranes?

    NASA Astrophysics Data System (ADS)

    Moncrief, Vincent

    2006-04-01

    The standard methods for quantizing relativistic strings diverge significantly from the Dirac-Wheeler-DeWitt program for quantization of generally covariant systems and one wonders whether the latter could be successfully implemented as an alternative to the former. As a first step in this direction, we consider the possibility of quantizing strings (and also relativistic membranes) via a partially gauge-fixed ADM (Arnowitt, Deser and Misner) formulation of the reduced field equations for these systems. By exploiting some (Euclidean signature) Hamilton-Jacobi techniques that Mike Ryan and I had developed previously for the quantization of Bianchi IX cosmological models, I show how to construct Diff( S 1)-invariant (or Diff(Σ)-invariant in the case of membranes) ground state wave functionals for the cases of co-dimension one strings and membranes embedded in Minkowski spacetime. I also show that the reduced Hamiltonian density operators for these systems weakly commute when applied to physical (i.e. Diff( S 1) or Diff(Σ)-invariant) states. While many open questions remain, these preliminary results seem to encourage further research along the same lines.

  12. The uniform quantized electron gas revisited

    NASA Astrophysics Data System (ADS)

    Lomba, Enrique; Høye, Johan S.

    2017-11-01

    In this article we continue and extend our recent work on the correlation energy of the quantized electron gas of uniform density at temperature T=0 . As before, we utilize the methods, properties, and results obtained by means of classical statistical mechanics. These were extended to quantized systems via the Feynman path integral formalism. The latter translates the quantum problem into a classical polymer problem in four dimensions. Again, the well known RPA (random phase approximation) is recovered as a basic result which we then modify and improve upon. Here we analyze the condition of thermodynamic self-consistency. Our numerical calculations exhibit a remarkable agreement with well known results of a standard parameterization of Monte Carlo correlation energies.

  13. Layered compression for high-precision depth data.

    PubMed

    Miao, Dan; Fu, Jingjing; Lu, Yan; Li, Shipeng; Chen, Chang Wen

    2015-12-01

    With the development of depth data acquisition technologies, access to high-precision depth with more than 8-b depths has become much easier and determining how to efficiently represent and compress high-precision depth is essential for practical depth storage and transmission systems. In this paper, we propose a layered high-precision depth compression framework based on an 8-b image/video encoder to achieve efficient compression with low complexity. Within this framework, considering the characteristics of the high-precision depth, a depth map is partitioned into two layers: 1) the most significant bits (MSBs) layer and 2) the least significant bits (LSBs) layer. The MSBs layer provides rough depth value distribution, while the LSBs layer records the details of the depth value variation. For the MSBs layer, an error-controllable pixel domain encoding scheme is proposed to exploit the data correlation of the general depth information with sharp edges and to guarantee the data format of LSBs layer is 8 b after taking the quantization error from MSBs layer. For the LSBs layer, standard 8-b image/video codec is leveraged to perform the compression. The experimental results demonstrate that the proposed coding scheme can achieve real-time depth compression with satisfactory reconstruction quality. Moreover, the compressed depth data generated from this scheme can achieve better performance in view synthesis and gesture recognition applications compared with the conventional coding schemes because of the error control algorithm.

  14. Obliquely propagating ion acoustic solitary structures in the presence of quantized magnetic field

    NASA Astrophysics Data System (ADS)

    Iqbal Shaukat, Muzzamal

    2017-10-01

    The effect of linear and nonlinear propagation of electrostatic waves have been studied in degenerate magnetoplasma taking into account the effect of electron trapping and finite temperature with quantizing magnetic field. The formation of solitary structures has been investigated by employing the small amplitude approximation both for fully and partially degenerate quantum plasma. It is observed that the inclusion of quantizing magnetic field significantly affects the propagation characteristics of the solitary wave. Importantly, the Zakharov-Kuznetsov equation under consideration has been found to allow the formation of compressive solitary structures only. The present investigation may be beneficial to understand the propagation of nonlinear electrostatic structures in dense astrophysical environments such as those found in white dwarfs.

  15. Displaying radiologic images on personal computers: image storage and compression--Part 2.

    PubMed

    Gillespy, T; Rowberg, A H

    1994-02-01

    This is part 2 of our article on image storage and compression, the third article of our series for radiologists and imaging scientists on displaying, manipulating, and analyzing radiologic images on personal computers. Image compression is classified as lossless (nondestructive) or lossy (destructive). Common lossless compression algorithms include variable-length bit codes (Huffman codes and variants), dictionary-based compression (Lempel-Ziv variants), and arithmetic coding. Huffman codes and the Lempel-Ziv-Welch (LZW) algorithm are commonly used for image compression. All of these compression methods are enhanced if the image has been transformed into a differential image based on a differential pulse-code modulation (DPCM) algorithm. The LZW compression after the DPCM image transformation performed the best on our example images, and performed almost as well as the best of the three commercial compression programs tested. Lossy compression techniques are capable of much higher data compression, but reduced image quality and compression artifacts may be noticeable. Lossy compression is comprised of three steps: transformation, quantization, and coding. Two commonly used transformation methods are the discrete cosine transformation and discrete wavelet transformation. In both methods, most of the image information is contained in a relatively few of the transformation coefficients. The quantization step reduces many of the lower order coefficients to 0, which greatly improves the efficiency of the coding (compression) step. In fractal-based image compression, image patterns are stored as equations that can be reconstructed at different levels of resolution.

  16. Optimal Quantization Scheme for Data-Efficient Target Tracking via UWSNs Using Quantized Measurements.

    PubMed

    Zhang, Senlin; Chen, Huayan; Liu, Meiqin; Zhang, Qunfei

    2017-11-07

    Target tracking is one of the broad applications of underwater wireless sensor networks (UWSNs). However, as a result of the temporal and spatial variability of acoustic channels, underwater acoustic communications suffer from an extremely limited bandwidth. In order to reduce network congestion, it is important to shorten the length of the data transmitted from local sensors to the fusion center by quantization. Although quantization can reduce bandwidth cost, it also brings about bad tracking performance as a result of information loss after quantization. To solve this problem, this paper proposes an optimal quantization-based target tracking scheme. It improves the tracking performance of low-bit quantized measurements by minimizing the additional covariance caused by quantization. The simulation demonstrates that our scheme performs much better than the conventional uniform quantization-based target tracking scheme and the increment of the data length affects our scheme only a little. Its tracking performance improves by only 4.4% from 2- to 3-bit, which means our scheme weakly depends on the number of data bits. Moreover, our scheme also weakly depends on the number of participate sensors, and it can work well in sparse sensor networks. In a 6 × 6 × 6 sensor network, compared with 4 × 4 × 4 sensor networks, the number of participant sensors increases by 334.92%, while the tracking accuracy using 1-bit quantized measurements improves by only 50.77%. Overall, our optimal quantization-based target tracking scheme can achieve the pursuit of data-efficiency, which fits the requirements of low-bandwidth UWSNs.

  17. Data compression for satellite images

    NASA Technical Reports Server (NTRS)

    Chen, P. H.; Wintz, P. A.

    1976-01-01

    An efficient data compression system is presented for satellite pictures and two grey level pictures derived from satellite pictures. The compression techniques take advantages of the correlation between adjacent picture elements. Several source coding methods are investigated. Double delta coding is presented and shown to be the most efficient. Both predictive differential quantizing technique and double delta coding can be significantly improved by applying a background skipping technique. An extension code is constructed. This code requires very little storage space and operates efficiently. Simulation results are presented for various coding schemes and source codes.

  18. High Order Entropy-Constrained Residual VQ for Lossless Compression of Images

    NASA Technical Reports Server (NTRS)

    Kossentini, Faouzi; Smith, Mark J. T.; Scales, Allen

    1995-01-01

    High order entropy coding is a powerful technique for exploiting high order statistical dependencies. However, the exponentially high complexity associated with such a method often discourages its use. In this paper, an entropy-constrained residual vector quantization method is proposed for lossless compression of images. The method consists of first quantizing the input image using a high order entropy-constrained residual vector quantizer and then coding the residual image using a first order entropy coder. The distortion measure used in the entropy-constrained optimization is essentially the first order entropy of the residual image. Experimental results show very competitive performance.

  19. Application of a Noise Adaptive Contrast Sensitivity Function to Image Data Compression

    NASA Astrophysics Data System (ADS)

    Daly, Scott J.

    1989-08-01

    The visual contrast sensitivity function (CSF) has found increasing use in image compression as new algorithms optimize the display-observer interface in order to reduce the bit rate and increase the perceived image quality. In most compression algorithms, increasing the quantization intervals reduces the bit rate at the expense of introducing more quantization error, a potential image quality degradation. The CSF can be used to distribute this error as a function of spatial frequency such that it is undetectable by the human observer. Thus, instead of being mathematically lossless, the compression algorithm can be designed to be visually lossless, with the advantage of a significantly reduced bit rate. However, the CSF is strongly affected by image noise, changing in both shape and peak sensitivity. This work describes a model of the CSF that includes these changes as a function of image noise level by using the concepts of internal visual noise, and tests this model in the context of image compression with an observer study.

  20. BRST quantization of cosmological perturbations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armendariz-Picon, Cristian; Şengör, Gizem

    2016-11-08

    BRST quantization is an elegant and powerful method to quantize theories with local symmetries. In this article we study the Hamiltonian BRST quantization of cosmological perturbations in a universe dominated by a scalar field, along with the closely related quantization method of Dirac. We describe how both formalisms apply to perturbations in a time-dependent background, and how expectation values of gauge-invariant operators can be calculated in the in-in formalism. Our analysis focuses mostly on the free theory. By appropriate canonical transformations we simplify and diagonalize the free Hamiltonian. BRST quantization in derivative gauges allows us to dramatically simplify the structuremore » of the propagators, whereas Dirac quantization, which amounts to quantization in synchronous gauge, dispenses with the need to introduce ghosts and preserves the locality of the gauge-fixed action.« less

  1. Uniform quantized electron gas

    NASA Astrophysics Data System (ADS)

    Høye, Johan S.; Lomba, Enrique

    2016-10-01

    In this work we study the correlation energy of the quantized electron gas of uniform density at temperature T  =  0. To do so we utilize methods from classical statistical mechanics. The basis for this is the Feynman path integral for the partition function of quantized systems. With this representation the quantum mechanical problem can be interpreted as, and is equivalent to, a classical polymer problem in four dimensions where the fourth dimension is imaginary time. Thus methods, results, and properties obtained in the statistical mechanics of classical fluids can be utilized. From this viewpoint we recover the well known RPA (random phase approximation). Then to improve it we modify the RPA by requiring the corresponding correlation function to be such that electrons with equal spins can not be on the same position. Numerical evaluations are compared with well known results of a standard parameterization of Monte Carlo correlation energies.

  2. Time-Symmetric Quantization in Spacetimes with Event Horizons

    NASA Astrophysics Data System (ADS)

    Kobakhidze, Archil; Rodd, Nicholas

    2013-08-01

    The standard quantization formalism in spacetimes with event horizons implies a non-unitary evolution of quantum states, as initial pure states may evolve into thermal states. This phenomenon is behind the famous black hole information loss paradox which provoked long-standing debates on the compatibility of quantum mechanics and gravity. In this paper we demonstrate that within an alternative time-symmetric quantization formalism thermal radiation is absent and states evolve unitarily in spacetimes with event horizons. We also discuss the theoretical consistency of the proposed formalism. We explicitly demonstrate that the theory preserves the microcausality condition and suggest a "reinterpretation postulate" to resolve other apparent pathologies associated with negative energy states. Accordingly as there is a consistent alternative, we argue that choosing to use time-asymmetric quantization is a necessary condition for the black hole information loss paradox.

  3. Progressive Vector Quantization on a massively parallel SIMD machine with application to multispectral image data

    NASA Technical Reports Server (NTRS)

    Manohar, Mareboyana; Tilton, James C.

    1994-01-01

    A progressive vector quantization (VQ) compression approach is discussed which decomposes image data into a number of levels using full search VQ. The final level is losslessly compressed, enabling lossless reconstruction. The computational difficulties are addressed by implementation on a massively parallel SIMD machine. We demonstrate progressive VQ on multispectral imagery obtained from the Advanced Very High Resolution Radiometer instrument and other Earth observation image data, and investigate the trade-offs in selecting the number of decomposition levels and codebook training method.

  4. A zero-error operational video data compression system

    NASA Technical Reports Server (NTRS)

    Kutz, R. L.

    1973-01-01

    A data compression system has been operating since February 1972, using ATS spin-scan cloud cover data. With the launch of ITOS 3 in October 1972, this data compression system has become the only source of near-realtime very high resolution radiometer image data at the data processing facility. The VHRR image data are compressed and transmitted over a 50 kilobit per second wideband ground link. The goal of the data compression experiment was to send data quantized to six bits at twice the rate possible when no compression is used, while maintaining zero error between the transmitted and reconstructed data. All objectives of the data compression experiment were met, and thus a capability of doubling the data throughput of the system has been achieved.

  5. Nearly associative deformation quantization

    NASA Astrophysics Data System (ADS)

    Vassilevich, Dmitri; Oliveira, Fernando Martins Costa

    2018-04-01

    We study several classes of non-associative algebras as possible candidates for deformation quantization in the direction of a Poisson bracket that does not satisfy Jacobi identities. We show that in fact alternative deformation quantization algebras require the Jacobi identities on the Poisson bracket and, under very general assumptions, are associative. At the same time, flexible deformation quantization algebras exist for any Poisson bracket.

  6. Electrical and thermal conductance quantization in nanostructures

    NASA Astrophysics Data System (ADS)

    Nawrocki, Waldemar

    2008-10-01

    In the paper problems of electron transport in mesoscopic structures and nanostructures are considered. The electrical conductance of nanowires was measured in a simple experimental system. Investigations have been performed in air at room temperature measuring the conductance between two vibrating metal wires with standard oscilloscope. Conductance quantization in units of G0 = 2e2/h = (12.9 kΩ)-1 up to five quanta of conductance has been observed for nanowires formed in many metals. The explanation of this universal phenomena is the formation of a nanometer-sized wire (nanowire) between macroscopic metallic contacts which induced, due to theory proposed by Landauer, the quantization of conductance. Thermal problems in nanowires are also discussed in the paper.

  7. Quantized Majorana conductance

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Liu, Chun-Xiao; Gazibegovic, Sasa; Xu, Di; Logan, John A.; Wang, Guanzhong; van Loo, Nick; Bommer, Jouri D. S.; de Moor, Michiel W. A.; Car, Diana; Op Het Veld, Roy L. M.; van Veldhoven, Petrus J.; Koelling, Sebastian; Verheijen, Marcel A.; Pendharkar, Mihir; Pennachio, Daniel J.; Shojaei, Borzoyeh; Lee, Joon Sue; Palmstrøm, Chris J.; Bakkers, Erik P. A. M.; Sarma, S. Das; Kouwenhoven, Leo P.

    2018-04-01

    Majorana zero-modes—a type of localized quasiparticle—hold great promise for topological quantum computing. Tunnelling spectroscopy in electrical transport is the primary tool for identifying the presence of Majorana zero-modes, for instance as a zero-bias peak in differential conductance. The height of the Majorana zero-bias peak is predicted to be quantized at the universal conductance value of 2e2/h at zero temperature (where e is the charge of an electron and h is the Planck constant), as a direct consequence of the famous Majorana symmetry in which a particle is its own antiparticle. The Majorana symmetry protects the quantization against disorder, interactions and variations in the tunnel coupling. Previous experiments, however, have mostly shown zero-bias peaks much smaller than 2e2/h, with a recent observation of a peak height close to 2e2/h. Here we report a quantized conductance plateau at 2e2/h in the zero-bias conductance measured in indium antimonide semiconductor nanowires covered with an aluminium superconducting shell. The height of our zero-bias peak remains constant despite changing parameters such as the magnetic field and tunnel coupling, indicating that it is a quantized conductance plateau. We distinguish this quantized Majorana peak from possible non-Majorana origins by investigating its robustness to electric and magnetic fields as well as its temperature dependence. The observation of a quantized conductance plateau strongly supports the existence of Majorana zero-modes in the system, consequently paving the way for future braiding experiments that could lead to topological quantum computing.

  8. Quantized Majorana conductance.

    PubMed

    Zhang, Hao; Liu, Chun-Xiao; Gazibegovic, Sasa; Xu, Di; Logan, John A; Wang, Guanzhong; van Loo, Nick; Bommer, Jouri D S; de Moor, Michiel W A; Car, Diana; Op Het Veld, Roy L M; van Veldhoven, Petrus J; Koelling, Sebastian; Verheijen, Marcel A; Pendharkar, Mihir; Pennachio, Daniel J; Shojaei, Borzoyeh; Lee, Joon Sue; Palmstrøm, Chris J; Bakkers, Erik P A M; Sarma, S Das; Kouwenhoven, Leo P

    2018-04-05

    Majorana zero-modes-a type of localized quasiparticle-hold great promise for topological quantum computing. Tunnelling spectroscopy in electrical transport is the primary tool for identifying the presence of Majorana zero-modes, for instance as a zero-bias peak in differential conductance. The height of the Majorana zero-bias peak is predicted to be quantized at the universal conductance value of 2e 2 /h at zero temperature (where e is the charge of an electron and h is the Planck constant), as a direct consequence of the famous Majorana symmetry in which a particle is its own antiparticle. The Majorana symmetry protects the quantization against disorder, interactions and variations in the tunnel coupling. Previous experiments, however, have mostly shown zero-bias peaks much smaller than 2e 2 /h, with a recent observation of a peak height close to 2e 2 /h. Here we report a quantized conductance plateau at 2e 2 /h in the zero-bias conductance measured in indium antimonide semiconductor nanowires covered with an aluminium superconducting shell. The height of our zero-bias peak remains constant despite changing parameters such as the magnetic field and tunnel coupling, indicating that it is a quantized conductance plateau. We distinguish this quantized Majorana peak from possible non-Majorana origins by investigating its robustness to electric and magnetic fields as well as its temperature dependence. The observation of a quantized conductance plateau strongly supports the existence of Majorana zero-modes in the system, consequently paving the way for future braiding experiments that could lead to topological quantum computing.

  9. Quantization of Space-like States in Lorentz-Violating Theories

    NASA Astrophysics Data System (ADS)

    Colladay, Don

    2018-01-01

    Lorentz violation frequently induces modified dispersion relations that can yield space-like states that impede the standard quantization procedures. In certain cases, an extended Hamiltonian formalism can be used to define observer-covariant normalization factors for field expansions and phase space integrals. These factors extend the theory to include non-concordant frames in which there are negative-energy states. This formalism provides a rigorous way to quantize certain theories containing space-like states and allows for the consistent computation of Cherenkov radiation rates in arbitrary frames and avoids singular expressions.

  10. Comparison of chest compression quality between the modified chest compression method with the use of smartphone application and the standardized traditional chest compression method during CPR.

    PubMed

    Park, Sang-Sub

    2014-01-01

    The purpose of this study is to grasp difference in quality of chest compression accuracy between the modified chest compression method with the use of smartphone application and the standardized traditional chest compression method. Participants were progressed 64 people except 6 absentees among 70 people who agreed to participation with completing the CPR curriculum. In the classification of group in participants, the modified chest compression method was called as smartphone group (33 people). The standardized chest compression method was called as traditional group (31 people). The common equipments in both groups were used Manikin for practice and Manikin for evaluation. In the meantime, the smartphone group for application was utilized Android and iOS Operating System (OS) of 2 smartphone products (G, i). The measurement period was conducted from September 25th to 26th, 2012. Data analysis was used SPSS WIN 12.0 program. As a result of research, the proper compression depth (mm) was shown the proper compression depth (p< 0.01) in traditional group (53.77 mm) compared to smartphone group (48.35 mm). Even the proper chest compression (%) was formed suitably (p< 0.05) in traditional group (73.96%) more than smartphone group (60.51%). As for the awareness of chest compression accuracy, the traditional group (3.83 points) had the higher awareness of chest compression accuracy (p< 0.001) than the smartphone group (2.32 points). In the questionnaire that was additionally carried out 1 question only in smartphone group, the modified chest compression method with the use of smartphone had the high negative reason in rescuer for occurrence of hand back pain (48.5%) and unstable posture (21.2%).

  11. Application of heterogeneous pulse coupled neural network in image quantization

    NASA Astrophysics Data System (ADS)

    Huang, Yi; Ma, Yide; Li, Shouliang; Zhan, Kun

    2016-11-01

    On the basis of the different strengths of synaptic connections between actual neurons, this paper proposes a heterogeneous pulse coupled neural network (HPCNN) algorithm to perform quantization on images. HPCNNs are developed from traditional pulse coupled neural network (PCNN) models, which have different parameters corresponding to different image regions. This allows pixels of different gray levels to be classified broadly into two categories: background regional and object regional. Moreover, an HPCNN also satisfies human visual characteristics. The parameters of the HPCNN model are calculated automatically according to these categories, and quantized results will be optimal and more suitable for humans to observe. At the same time, the experimental results of natural images from the standard image library show the validity and efficiency of our proposed quantization method.

  12. Low-Complexity Lossless and Near-Lossless Data Compression Technique for Multispectral Imagery

    NASA Technical Reports Server (NTRS)

    Xie, Hua; Klimesh, Matthew A.

    2009-01-01

    This work extends the lossless data compression technique described in Fast Lossless Compression of Multispectral- Image Data, (NPO-42517) NASA Tech Briefs, Vol. 30, No. 8 (August 2006), page 26. The original technique was extended to include a near-lossless compression option, allowing substantially smaller compressed file sizes when a small amount of distortion can be tolerated. Near-lossless compression is obtained by including a quantization step prior to encoding of prediction residuals. The original technique uses lossless predictive compression and is designed for use on multispectral imagery. A lossless predictive data compression algorithm compresses a digitized signal one sample at a time as follows: First, a sample value is predicted from previously encoded samples. The difference between the actual sample value and the prediction is called the prediction residual. The prediction residual is encoded into the compressed file. The decompressor can form the same predicted sample and can decode the prediction residual from the compressed file, and so can reconstruct the original sample. A lossless predictive compression algorithm can generally be converted to a near-lossless compression algorithm by quantizing the prediction residuals prior to encoding them. In this case, since the reconstructed sample values will not be identical to the original sample values, the encoder must determine the values that will be reconstructed and use these values for predicting later sample values. The technique described here uses this method, starting with the original technique, to allow near-lossless compression. The extension to allow near-lossless compression adds the ability to achieve much more compression when small amounts of distortion are tolerable, while retaining the low complexity and good overall compression effectiveness of the original algorithm.

  13. Observer performance assessment of JPEG-compressed high-resolution chest images

    NASA Astrophysics Data System (ADS)

    Good, Walter F.; Maitz, Glenn S.; King, Jill L.; Gennari, Rose C.; Gur, David

    1999-05-01

    The JPEG compression algorithm was tested on a set of 529 chest radiographs that had been digitized at a spatial resolution of 100 micrometer and contrast sensitivity of 12 bits. Images were compressed using five fixed 'psychovisual' quantization tables which produced average compression ratios in the range 15:1 to 61:1, and were then printed onto film. Six experienced radiologists read all cases from the laser printed film, in each of the five compressed modes as well as in the non-compressed mode. For comparison purposes, observers also read the same cases with reduced pixel resolutions of 200 micrometer and 400 micrometer. The specific task involved detecting masses, pneumothoraces, interstitial disease, alveolar infiltrates and rib fractures. Over the range of compression ratios tested, for images digitized at 100 micrometer, we were unable to demonstrate any statistically significant decrease (p greater than 0.05) in observer performance as measured by ROC techniques. However, the observers' subjective assessments of image quality did decrease significantly as image resolution was reduced and suggested a decreasing, but nonsignificant, trend as the compression ratio was increased. The seeming discrepancy between our failure to detect a reduction in observer performance, and other published studies, is likely due to: (1) the higher resolution at which we digitized our images; (2) the higher signal-to-noise ratio of our digitized films versus typical CR images; and (3) our particular choice of an optimized quantization scheme.

  14. A review of lossless audio compression standards and algorithms

    NASA Astrophysics Data System (ADS)

    Muin, Fathiah Abdul; Gunawan, Teddy Surya; Kartiwi, Mira; Elsheikh, Elsheikh M. A.

    2017-09-01

    Over the years, lossless audio compression has gained popularity as researchers and businesses has become more aware of the need for better quality and higher storage demand. This paper will analyse various lossless audio coding algorithm and standards that are used and available in the market focusing on Linear Predictive Coding (LPC) specifically due to its popularity and robustness in audio compression, nevertheless other prediction methods are compared to verify this. Advanced representation of LPC such as LSP decomposition techniques are also discussed within this paper.

  15. Deformation of second and third quantization

    NASA Astrophysics Data System (ADS)

    Faizal, Mir

    2015-03-01

    In this paper, we will deform the second and third quantized theories by deforming the canonical commutation relations in such a way that they become consistent with the generalized uncertainty principle. Thus, we will first deform the second quantized commutator and obtain a deformed version of the Wheeler-DeWitt equation. Then we will further deform the third quantized theory by deforming the third quantized canonical commutation relation. This way we will obtain a deformed version of the third quantized theory for the multiverse.

  16. Reformulation of the covering and quantizer problems as ground states of interacting particles.

    PubMed

    Torquato, S

    2010-11-01

    It is known that the sphere-packing problem and the number-variance problem (closely related to an optimization problem in number theory) can be posed as energy minimizations associated with an infinite number of point particles in d-dimensional Euclidean space R(d) interacting via certain repulsive pair potentials. We reformulate the covering and quantizer problems as the determination of the ground states of interacting particles in R(d) that generally involve single-body, two-body, three-body, and higher-body interactions. This is done by linking the covering and quantizer problems to certain optimization problems involving the "void" nearest-neighbor functions that arise in the theory of random media and statistical mechanics. These reformulations, which again exemplify the deep interplay between geometry and physics, allow one now to employ theoretical and numerical optimization techniques to analyze and solve these energy minimization problems. The covering and quantizer problems have relevance in numerous applications, including wireless communication network layouts, the search of high-dimensional data parameter spaces, stereotactic radiation therapy, data compression, digital communications, meshing of space for numerical analysis, and coding and cryptography, among other examples. In the first three space dimensions, the best known solutions of the sphere-packing and number-variance problems (or their "dual" solutions) are directly related to those of the covering and quantizer problems, but such relationships may or may not exist for d≥4 , depending on the peculiarities of the dimensions involved. Our reformulation sheds light on the reasons for these similarities and differences. We also show that disordered saturated sphere packings provide relatively thin (economical) coverings and may yield thinner coverings than the best known lattice coverings in sufficiently large dimensions. In the case of the quantizer problem, we derive improved upper bounds

  17. Reformulation of the covering and quantizer problems as ground states of interacting particles

    NASA Astrophysics Data System (ADS)

    Torquato, S.

    2010-11-01

    It is known that the sphere-packing problem and the number-variance problem (closely related to an optimization problem in number theory) can be posed as energy minimizations associated with an infinite number of point particles in d -dimensional Euclidean space Rd interacting via certain repulsive pair potentials. We reformulate the covering and quantizer problems as the determination of the ground states of interacting particles in Rd that generally involve single-body, two-body, three-body, and higher-body interactions. This is done by linking the covering and quantizer problems to certain optimization problems involving the “void” nearest-neighbor functions that arise in the theory of random media and statistical mechanics. These reformulations, which again exemplify the deep interplay between geometry and physics, allow one now to employ theoretical and numerical optimization techniques to analyze and solve these energy minimization problems. The covering and quantizer problems have relevance in numerous applications, including wireless communication network layouts, the search of high-dimensional data parameter spaces, stereotactic radiation therapy, data compression, digital communications, meshing of space for numerical analysis, and coding and cryptography, among other examples. In the first three space dimensions, the best known solutions of the sphere-packing and number-variance problems (or their “dual” solutions) are directly related to those of the covering and quantizer problems, but such relationships may or may not exist for d≥4 , depending on the peculiarities of the dimensions involved. Our reformulation sheds light on the reasons for these similarities and differences. We also show that disordered saturated sphere packings provide relatively thin (economical) coverings and may yield thinner coverings than the best known lattice coverings in sufficiently large dimensions. In the case of the quantizer problem, we derive improved upper

  18. Compressed/reconstructed test images for CRAF/Cassini

    NASA Technical Reports Server (NTRS)

    Dolinar, S.; Cheung, K.-M.; Onyszchuk, I.; Pollara, F.; Arnold, S.

    1991-01-01

    A set of compressed, then reconstructed, test images submitted to the Comet Rendezvous Asteroid Flyby (CRAF)/Cassini project is presented as part of its evaluation of near lossless high compression algorithms for representing image data. A total of seven test image files were provided by the project. The seven test images were compressed, then reconstructed with high quality (root mean square error of approximately one or two gray levels on an 8 bit gray scale), using discrete cosine transforms or Hadamard transforms and efficient entropy coders. The resulting compression ratios varied from about 2:1 to about 10:1, depending on the activity or randomness in the source image. This was accomplished without any special effort to optimize the quantizer or to introduce special postprocessing to filter the reconstruction errors. A more complete set of measurements, showing the relative performance of the compression algorithms over a wide range of compression ratios and reconstruction errors, shows that additional compression is possible at a small sacrifice in fidelity.

  19. Image and Video Compression with VLSI Neural Networks

    NASA Technical Reports Server (NTRS)

    Fang, W.; Sheu, B.

    1993-01-01

    An advanced motion-compensated predictive video compression system based on artificial neural networks has been developed to effectively eliminate the temporal and spatial redundancy of video image sequences and thus reduce the bandwidth and storage required for the transmission and recording of the video signal. The VLSI neuroprocessor for high-speed high-ratio image compression based upon a self-organization network and the conventional algorithm for vector quantization are compared. The proposed method is quite efficient and can achieve near-optimal results.

  20. Quantization and fractional quantization of currents in periodically driven stochastic systems. I. Average currents

    NASA Astrophysics Data System (ADS)

    Chernyak, Vladimir Y.; Klein, John R.; Sinitsyn, Nikolai A.

    2012-04-01

    This article studies Markovian stochastic motion of a particle on a graph with finite number of nodes and periodically time-dependent transition rates that satisfy the detailed balance condition at any time. We show that under general conditions, the currents in the system on average become quantized or fractionally quantized for adiabatic driving at sufficiently low temperature. We develop the quantitative theory of this quantization and interpret it in terms of topological invariants. By implementing the celebrated Kirchhoff theorem we derive a general and explicit formula for the average generated current that plays a role of an efficient tool for treating the current quantization effects.

  1. Studies on image compression and image reconstruction

    NASA Technical Reports Server (NTRS)

    Sayood, Khalid; Nori, Sekhar; Araj, A.

    1994-01-01

    During this six month period our works concentrated on three, somewhat different areas. We looked at and developed a number of error concealment schemes for use in a variety of video coding environments. This work is described in an accompanying (draft) Masters thesis. In the thesis we describe application of this techniques to the MPEG video coding scheme. We felt that the unique frame ordering approach used in the MPEG scheme would be a challenge to any error concealment/error recovery technique. We continued with our work in the vector quantization area. We have also developed a new type of vector quantizer, which we call a scan predictive vector quantization. The scan predictive VQ was tested on data processed at Goddard to approximate Landsat 7 HRMSI resolution and compared favorably with existing VQ techniques. A paper describing this work is included. The third area is concerned more with reconstruction than compression. While there is a variety of efficient lossless image compression schemes, they all have a common property that they use past data to encode future data. This is done either via taking differences, context modeling, or by building dictionaries. When encoding large images, this common property becomes a common flaw. When the user wishes to decode just a portion of the image, the requirement that the past history be available forces the decoding of a significantly larger portion of the image than desired by the user. Even with intelligent partitioning of the image dataset, the number of pixels decoded may be four times the number of pixels requested. We have developed an adaptive scanning strategy which can be used with any lossless compression scheme and which lowers the additional number of pixels to be decoded to about 7 percent of the number of pixels requested! A paper describing these results is included.

  2. Canonical quantization of classical mechanics in curvilinear coordinates. Invariant quantization procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Błaszak, Maciej, E-mail: blaszakm@amu.edu.pl; Domański, Ziemowit, E-mail: ziemowit@amu.edu.pl

    In the paper is presented an invariant quantization procedure of classical mechanics on the phase space over flat configuration space. Then, the passage to an operator representation of quantum mechanics in a Hilbert space over configuration space is derived. An explicit form of position and momentum operators as well as their appropriate ordering in arbitrary curvilinear coordinates is demonstrated. Finally, the extension of presented formalism onto non-flat case and related ambiguities of the process of quantization are discussed. -- Highlights: •An invariant quantization procedure of classical mechanics on the phase space over flat configuration space is presented. •The passage tomore » an operator representation of quantum mechanics in a Hilbert space over configuration space is derived. •Explicit form of position and momentum operators and their appropriate ordering in curvilinear coordinates is shown. •The invariant form of Hamiltonian operators quadratic and cubic in momenta is derived. •The extension of presented formalism onto non-flat case and related ambiguities of the quantization process are discussed.« less

  3. SAR data compression: Application, requirements, and designs

    NASA Technical Reports Server (NTRS)

    Curlander, John C.; Chang, C. Y.

    1991-01-01

    The feasibility of reducing data volume and data rate is evaluated for the Earth Observing System (EOS) Synthetic Aperture Radar (SAR). All elements of data stream from the sensor downlink data stream to electronic delivery of browse data products are explored. The factors influencing design of a data compression system are analyzed, including the signal data characteristics, the image quality requirements, and the throughput requirements. The conclusion is that little or no reduction can be achieved in the raw signal data using traditional data compression techniques (e.g., vector quantization, adaptive discrete cosine transform) due to the induced phase errors in the output image. However, after image formation, a number of techniques are effective for data compression.

  4. Justification of Fuzzy Declustering Vector Quantization Modeling in Classification of Genotype-Image Phenotypes

    NASA Astrophysics Data System (ADS)

    Ng, Theam Foo; Pham, Tuan D.; Zhou, Xiaobo

    2010-01-01

    With the fast development of multi-dimensional data compression and pattern classification techniques, vector quantization (VQ) has become a system that allows large reduction of data storage and computational effort. One of the most recent VQ techniques that handle the poor estimation of vector centroids due to biased data from undersampling is to use fuzzy declustering-based vector quantization (FDVQ) technique. Therefore, in this paper, we are motivated to propose a justification of FDVQ based hidden Markov model (HMM) for investigating its effectiveness and efficiency in classification of genotype-image phenotypes. The performance evaluation and comparison of the recognition accuracy between a proposed FDVQ based HMM (FDVQ-HMM) and a well-known LBG (Linde, Buzo, Gray) vector quantization based HMM (LBG-HMM) will be carried out. The experimental results show that the performances of both FDVQ-HMM and LBG-HMM are almost similar. Finally, we have justified the competitiveness of FDVQ-HMM in classification of cellular phenotype image database by using hypotheses t-test. As a result, we have validated that the FDVQ algorithm is a robust and an efficient classification technique in the application of RNAi genome-wide screening image data.

  5. Compress compound images in H.264/MPGE-4 AVC by exploiting spatial correlation.

    PubMed

    Lan, Cuiling; Shi, Guangming; Wu, Feng

    2010-04-01

    Compound images are a combination of text, graphics and natural image. They present strong anisotropic features, especially on the text and graphics parts. These anisotropic features often render conventional compression inefficient. Thus, this paper proposes a novel coding scheme from the H.264 intraframe coding. In the scheme, two new intramodes are developed to better exploit spatial correlation in compound images. The first is the residual scalar quantization (RSQ) mode, where intrapredicted residues are directly quantized and coded without transform. The second is the base colors and index map (BCIM) mode that can be viewed as an adaptive color quantization. In this mode, an image block is represented by several representative colors, referred to as base colors, and an index map to compress. Every block selects its coding mode from two new modes and the previous intramodes in H.264 by rate-distortion optimization (RDO). Experimental results show that the proposed scheme improves the coding efficiency even more than 10 dB at most bit rates for compound images and keeps a comparable efficient performance to H.264 for natural images.

  6. Real-time demonstration hardware for enhanced DPCM video compression algorithm

    NASA Technical Reports Server (NTRS)

    Bizon, Thomas P.; Whyte, Wayne A., Jr.; Marcopoli, Vincent R.

    1992-01-01

    The lack of available wideband digital links as well as the complexity of implementation of bandwidth efficient digital video CODECs (encoder/decoder) has worked to keep the cost of digital television transmission too high to compete with analog methods. Terrestrial and satellite video service providers, however, are now recognizing the potential gains that digital video compression offers and are proposing to incorporate compression systems to increase the number of available program channels. NASA is similarly recognizing the benefits of and trend toward digital video compression techniques for transmission of high quality video from space and therefore, has developed a digital television bandwidth compression algorithm to process standard National Television Systems Committee (NTSC) composite color television signals. The algorithm is based on differential pulse code modulation (DPCM), but additionally utilizes a non-adaptive predictor, non-uniform quantizer and multilevel Huffman coder to reduce the data rate substantially below that achievable with straight DPCM. The non-adaptive predictor and multilevel Huffman coder combine to set this technique apart from other DPCM encoding algorithms. All processing is done on a intra-field basis to prevent motion degradation and minimize hardware complexity. Computer simulations have shown the algorithm will produce broadcast quality reconstructed video at an average transmission rate of 1.8 bits/pixel. Hardware implementation of the DPCM circuit, non-adaptive predictor and non-uniform quantizer has been completed, providing realtime demonstration of the image quality at full video rates. Video sampling/reconstruction circuits have also been constructed to accomplish the analog video processing necessary for the real-time demonstration. Performance results for the completed hardware compare favorably with simulation results. Hardware implementation of the multilevel Huffman encoder/decoder is currently under development

  7. Quantized discrete space oscillators

    NASA Technical Reports Server (NTRS)

    Uzes, C. A.; Kapuscik, Edward

    1993-01-01

    A quasi-canonical sequence of finite dimensional quantizations was found which has canonical quantization as its limit. In order to demonstrate its practical utility and its numerical convergence, this formalism is applied to the eigenvalue and 'eigenfunction' problem of several harmonic and anharmonic oscillators.

  8. Immirzi parameter without Immirzi ambiguity: Conformal loop quantization of scalar-tensor gravity

    NASA Astrophysics Data System (ADS)

    Veraguth, Olivier J.; Wang, Charles H.-T.

    2017-10-01

    Conformal loop quantum gravity provides an approach to loop quantization through an underlying conformal structure i.e. conformally equivalent class of metrics. The property that general relativity itself has no conformal invariance is reinstated with a constrained scalar field setting the physical scale. Conformally equivalent metrics have recently been shown to be amenable to loop quantization including matter coupling. It has been suggested that conformal geometry may provide an extended symmetry to allow a reformulated Immirzi parameter necessary for loop quantization to behave like an arbitrary group parameter that requires no further fixing as its present standard form does. Here, we find that this can be naturally realized via conformal frame transformations in scalar-tensor gravity. Such a theory generally incorporates a dynamical scalar gravitational field and reduces to general relativity when the scalar field becomes a pure gauge. In particular, we introduce a conformal Einstein frame in which loop quantization is implemented. We then discuss how different Immirzi parameters under this description may be related by conformal frame transformations and yet share the same quantization having, for example, the same area gaps, modulated by the scalar gravitational field.

  9. [The compression and storage of enhanced external counterpulsation waveform based on DICOM standard].

    PubMed

    Hu, Ding; Xie, Shuqun; Yu, Donglan; Zheng, Zhensheng; Wang, Kuijian

    2010-04-01

    The development of external counterpulsation (ECP) local area network system and extensible markup language (XML)-based remote ECP medical information system conformable to digital imaging and communications in medicine (DICOM) standard has been improving the digital interchangeablity and sharability of ECP data. However, the therapy process of ECP is a continuous and longtime supervision which builds a mass of waveform data. In order to reduce the storage space and improve the transmission efficiency, the waveform data with the normative format of ECP data files have to be compressed. In this article, we introduced the compression arithmetic of template matching and improved quick fitting of linear approximation distance thresholding (LADT) in combimation with the characters of enhanced external counterpulsation (EECP) waveform signal. The DICOM standard is used as the storage and transmission standard to make our system compatible with hospital information system. According to the rules of transfer syntaxes, we defined private transfer syntax for one-dimensional compressed waveform data and stored EECP data into a DICOM file. Testing result indicates that the compressed and normative data can be correctly transmitted and displayed between EECP workstations in our EECP laboratory.

  10. HVS-based quantization steps for validation of digital cinema extended bitrates

    NASA Astrophysics Data System (ADS)

    Larabi, M.-C.; Pellegrin, P.; Anciaux, G.; Devaux, F.-O.; Tulet, O.; Macq, B.; Fernandez, C.

    2009-02-01

    In Digital Cinema, the video compression must be as transparent as possible to provide the best image quality to the audience. The goal of compression is to simplify transport, storing, distribution and projection of films. For all those tasks, equipments need to be developed. It is thus mandatory to reduce the complexity of the equipments by imposing limitations in the specifications. In this sense, the DCI has fixed the maximum bitrate for a compressed stream to 250 Mbps independently from the input format (4K/24fps, 2K/48fps or 2K/24fps). The work described in this paper This parameter is discussed in this paper because it is not consistent to double/quadruple the input rate without increasing the output rate. The work presented in this paper is intended to define quantization steps ensuring the visually lossless compression. Two steps are followed first to evaluate the effect of each subband separately and then to fin the scaling ratio. The obtained results show that it is necessary to increase the bitrate limit for cinema material in order to achieve the visually lossless.

  11. Quantum Computing and Second Quantization

    DOE PAGES

    Makaruk, Hanna Ewa

    2017-02-10

    Quantum computers are by their nature many particle quantum systems. Both the many-particle arrangement and being quantum are necessary for the existence of the entangled states, which are responsible for the parallelism of the quantum computers. Second quantization is a very important approximate method of describing such systems. This lecture will present the general idea of the second quantization, and discuss shortly some of the most important formulations of second quantization.

  12. Quantum Computing and Second Quantization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makaruk, Hanna Ewa

    Quantum computers are by their nature many particle quantum systems. Both the many-particle arrangement and being quantum are necessary for the existence of the entangled states, which are responsible for the parallelism of the quantum computers. Second quantization is a very important approximate method of describing such systems. This lecture will present the general idea of the second quantization, and discuss shortly some of the most important formulations of second quantization.

  13. 49 CFR 571.303 - Standard No. 303; Fuel system integrity of compressed natural gas vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... compressed natural gas vehicles. 571.303 Section 571.303 Transportation Other Regulations Relating to... system integrity of compressed natural gas vehicles. S1. Scope. This standard specifies requirements for the integrity of motor vehicle fuel systems using compressed natural gas (CNG), including the CNG fuel...

  14. BFV approach to geometric quantization

    NASA Astrophysics Data System (ADS)

    Fradkin, E. S.; Linetsky, V. Ya.

    1994-12-01

    A gauge-invariant approach to geometric quantization is developed. It yields a complete quantum description for dynamical systems with non-trivial geometry and topology of the phase space. The method is a global version of the gauge-invariant approach to quantization of second-class constraints developed by Batalin, Fradkin and Fradkina (BFF). Physical quantum states and quantum observables are respectively described by covariantly constant sections of the Fock bundle and the bundle of hermitian operators over the phase space with a flat connection defined by the nilpotent BVF-BRST operator. Perturbative calculation of the first non-trivial quantum correction to the Poisson brackets leads to the Chevalley cocycle known in deformation quantization. Consistency conditions lead to a topological quantization condition with metaplectic anomaly.

  15. Enhancement of Satellite Image Compression Using a Hybrid (DWT-DCT) Algorithm

    NASA Astrophysics Data System (ADS)

    Shihab, Halah Saadoon; Shafie, Suhaidi; Ramli, Abdul Rahman; Ahmad, Fauzan

    2017-12-01

    Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) image compression techniques have been utilized in most of the earth observation satellites launched during the last few decades. However, these techniques have some issues that should be addressed. The DWT method has proven to be more efficient than DCT for several reasons. Nevertheless, the DCT can be exploited to improve the high-resolution satellite image compression when combined with the DWT technique. Hence, a proposed hybrid (DWT-DCT) method was developed and implemented in the current work, simulating an image compression system on-board on a small remote sensing satellite, with the aim of achieving a higher compression ratio to decrease the onboard data storage and the downlink bandwidth, while avoiding further complex levels of DWT. This method also succeeded in maintaining the reconstructed satellite image quality through replacing the standard forward DWT thresholding and quantization processes with an alternative process that employed the zero-padding technique, which also helped to reduce the processing time of DWT compression. The DCT, DWT and the proposed hybrid methods were implemented individually, for comparison, on three LANDSAT 8 images, using the MATLAB software package. A comparison was also made between the proposed method and three other previously published hybrid methods. The evaluation of all the objective and subjective results indicated the feasibility of using the proposed hybrid (DWT-DCT) method to enhance the image compression process on-board satellites.

  16. Performance evaluation of the intra compression in the video coding standards

    NASA Astrophysics Data System (ADS)

    Abramowski, Andrzej

    2015-09-01

    The article presents a comparison of the Intra prediction algorithms in the current state-of-the-art video coding standards, including MJPEG 2000, VP8, VP9, H.264/AVC and H.265/HEVC. The effectiveness of techniques employed by each standard is evaluated in terms of compression efficiency and average encoding time. The compression efficiency is measured using BD-PSNR and BD-RATE metrics with H.265/HEVC results as an anchor. Tests are performed on a set of video sequences, composed of sequences gathered by Joint Collaborative Team on Video Coding during the development of the H.265/HEVC standard and 4K sequences provided by Ultra Video Group. According to results, H.265/HEVC provides significant bit-rate savings at the expense of computational complexity, while VP9 may be regarded as a compromise between the efficiency and required encoding time.

  17. On-chip frame memory reduction using a high-compression-ratio codec in the overdrives of liquid-crystal displays

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Min, Kyeong-Yuk; Chong, Jong-Wha

    2010-11-01

    Overdrive is commonly used to reduce the liquid-crystal response time and motion blur in liquid-crystal displays (LCDs). However, overdrive requires a large frame memory in order to store the previous frame for reference. In this paper, a high-compression-ratio codec is presented to compress the image data stored in the on-chip frame memory so that only 1 Mbit of on-chip memory is required in the LCD overdrives of mobile devices. The proposed algorithm further compresses the color bitmaps and representative values (RVs) resulting from the block truncation coding (BTC). The color bitmaps are represented by a luminance bitmap, which is further reduced and reconstructed using median filter interpolation in the decoder, while the RVs are compressed using adaptive quantization coding (AQC). Interpolation and AQC can provide three-level compression, which leads to 16 combinations. Using a rate-distortion analysis, we select the three optimal schemes to compress the image data for video graphics array (VGA), wide-VGA LCD, and standard-definitionTV applications. Our simulation results demonstrate that the proposed schemes outperform interpolation BTC both in PSNR (by 1.479 to 2.205 dB) and in subjective visual quality.

  18. Deformation quantization of fermi fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galaviz, I.; Garcia-Compean, H.; Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del IPN, P.O. Box 14-740, 07000 Mexico, D.F.

    2008-04-15

    Deformation quantization for any Grassmann scalar free field is described via the Weyl-Wigner-Moyal formalism. The Stratonovich-Weyl quantizer, the Moyal *-product and the Wigner functional are obtained by extending the formalism proposed recently in [I. Galaviz, H. Garcia-Compean, M. Przanowski, F.J. Turrubiates, Weyl-Wigner-Moyal Formalism for Fermi Classical Systems, arXiv:hep-th/0612245] to the fermionic systems of infinite number of degrees of freedom. In particular, this formalism is applied to quantize the Dirac free field. It is observed that the use of suitable oscillator variables facilitates considerably the procedure. The Stratonovich-Weyl quantizer, the Moyal *-product, the Wigner functional, the normal ordering operator, and finally,more » the Dirac propagator have been found with the use of these variables.« less

  19. Non-US data compression and coding research. FASAC Technical Assessment Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, R.M.; Cohn, M.; Craver, L.W.

    1993-11-01

    This assessment of recent data compression and coding research outside the United States examines fundamental and applied work in the basic areas of signal decomposition, quantization, lossless compression, and error control, as well as application development efforts in image/video compression and speech/audio compression. Seven computer scientists and engineers who are active in development of these technologies in US academia, government, and industry carried out the assessment. Strong industrial and academic research groups in Western Europe, Israel, and the Pacific Rim are active in the worldwide search for compression algorithms that provide good tradeoffs among fidelity, bit rate, and computational complexity,more » though the theoretical roots and virtually all of the classical compression algorithms were developed in the United States. Certain areas, such as segmentation coding, model-based coding, and trellis-coded modulation, have developed earlier or in more depth outside the United States, though the United States has maintained its early lead in most areas of theory and algorithm development. Researchers abroad are active in other currently popular areas, such as quantizer design techniques based on neural networks and signal decompositions based on fractals and wavelets, but, in most cases, either similar research is or has been going on in the United States, or the work has not led to useful improvements in compression performance. Because there is a high degree of international cooperation and interaction in this field, good ideas spread rapidly across borders (both ways) through international conferences, journals, and technical exchanges. Though there have been no fundamental data compression breakthroughs in the past five years--outside or inside the United State--there have been an enormous number of significant improvements in both places in the tradeoffs among fidelity, bit rate, and computational complexity.« less

  20. Compressed sensing system considerations for ECG and EMG wireless biosensors.

    PubMed

    Dixon, Anna M R; Allstot, Emily G; Gangopadhyay, Daibashish; Allstot, David J

    2012-04-01

    Compressed sensing (CS) is an emerging signal processing paradigm that enables sub-Nyquist processing of sparse signals such as electrocardiogram (ECG) and electromyogram (EMG) biosignals. Consequently, it can be applied to biosignal acquisition systems to reduce the data rate to realize ultra-low-power performance. CS is compared to conventional and adaptive sampling techniques and several system-level design considerations are presented for CS acquisition systems including sparsity and compression limits, thresholding techniques, encoder bit-precision requirements, and signal recovery algorithms. Simulation studies show that compression factors greater than 16X are achievable for ECG and EMG signals with signal-to-quantization noise ratios greater than 60 dB.

  1. Standardized combined cryotherapy and compression using Cryo/Cuff after wrist arthroscopy.

    PubMed

    Meyer-Marcotty, M; Jungling, O; Vaske, B; Vogt, P M; Knobloch, Karsten

    2011-02-01

    cryotherapy and compression as integral part of the RICE regimen are thought to improve treatment outcome after sport injuries. Using standardized cryotherapy and compression perioperatively has been reported with conflicting clinical results. The impact of combined cryotherapy and compression is compared to standard care among patients undergoing wrist arthroscopy. fifty-six patients undergoing wrist arthroscopy were assessed, 54 patients were randomized to either Cryo/Cuff (3 × 10 min twice daily) or standard care over 3 weeks. Follow-up clinical visits were at postoperative days 1, 8, and 21. One patient in each group was lost during follow-up. Fifty-two patients were analyzed. Statistics were performed as Intention-to-treat analysis. Outcome parameters were pain, three-dimensional volume of the wrist, range of motion, and DASH score. the Cryo/Cuffgroup had a 49% reduction in pain level (VAS 3.5 ± 0.4 vs. VAS 1.8 ± 0.2 on the 21st postoperative day) when compared to a reduction of 41% in the control group (VAS 5.1 ± 0.6 preoperatively vs. VAS 3.0 ± 0.5 on the 21st postoperative day). Swelling and range of motion were not as significantly different between the two groups as were DASH scores (DASH-score Cryo/Cuff group preoperatively 37.3 ± 3.5 and postoperatively 36.9 ± 3.5; DASH-score control group preoperatively 42.8 ± 4.3 and postoperatively 41.9 ± 4.9). The CONSORT score reached 17 out of 22. there was no significant effect of additional home-based combined cryotherapy and compression using the Cryo/Cuff wrist bandage, following wrist arthroscopy regarding pain, swelling, range of motion, and subjective impairment assessed using the DASH score over 3 weeks in comparison with the control group.

  2. Noncommutative gerbes and deformation quantization

    NASA Astrophysics Data System (ADS)

    Aschieri, Paolo; Baković, Igor; Jurčo, Branislav; Schupp, Peter

    2010-11-01

    We define noncommutative gerbes using the language of star products. Quantized twisted Poisson structures are discussed as an explicit realization in the sense of deformation quantization. Our motivation is the noncommutative description of D-branes in the presence of topologically non-trivial background fields.

  3. Full Spectrum Conversion Using Traveling Pulse Wave Quantization

    DTIC Science & Technology

    2017-03-01

    Full Spectrum Conversion Using Traveling Pulse Wave Quantization Michael S. Kappes Mikko E. Waltari IQ-Analog Corporation San Diego, California...temporal-domain quantization technique called Traveling Pulse Wave Quantization (TPWQ). Full spectrum conversion is defined as the complete...pulse width measurements that are continuously generated hence the name “traveling” pulse wave quantization. Our TPWQ-based ADC is composed of a

  4. A simplified Integer Cosine Transform and its application in image compression

    NASA Technical Reports Server (NTRS)

    Costa, M.; Tong, K.

    1994-01-01

    A simplified version of the integer cosine transform (ICT) is described. For practical reasons, the transform is considered jointly with the quantization of its coefficients. It differs from conventional ICT algorithms in that the combined factors for normalization and quantization are approximated by powers of two. In conventional algorithms, the normalization/quantization stage typically requires as many integer divisions as the number of transform coefficients. By restricting the factors to powers of two, these divisions can be performed by variable shifts in the binary representation of the coefficients, with speed and cost advantages to the hardware implementation of the algorithm. The error introduced by the factor approximations is compensated for in the inverse ICT operation, executed with floating point precision. The simplified ICT algorithm has potential applications in image-compression systems with disparate cost and speed requirements in the encoder and decoder ends. For example, in deep space image telemetry, the image processors on board the spacecraft could take advantage of the simplified, faster encoding operation, which would be adjusted on the ground, with high-precision arithmetic. A dual application is found in compressed video broadcasting. Here, a fast, high-performance processor at the transmitter would precompensate for the factor approximations in the inverse ICT operation, to be performed in real time, at a large number of low-cost receivers.

  5. Multi-rate, real time image compression for images dominated by point sources

    NASA Technical Reports Server (NTRS)

    Huber, A. Kris; Budge, Scott E.; Harris, Richard W.

    1993-01-01

    An image compression system recently developed for compression of digital images dominated by point sources is presented. Encoding consists of minimum-mean removal, vector quantization, adaptive threshold truncation, and modified Huffman encoding. Simulations are presented showing that the peaks corresponding to point sources can be transmitted losslessly for low signal-to-noise ratios (SNR) and high point source densities while maintaining a reduced output bit rate. Encoding and decoding hardware has been built and tested which processes 552,960 12-bit pixels per second at compression rates of 10:1 and 4:1. Simulation results are presented for the 10:1 case only.

  6. Compressed air injection technique to standardize block injection pressures.

    PubMed

    Tsui, Ban C H; Li, Lisa X Y; Pillay, Jennifer J

    2006-11-01

    Presently, no standardized technique exists to monitor injection pressures during peripheral nerve blocks. Our objective was to determine if a compressed air injection technique, using an in vitro model based on Boyle's law and typical regional anesthesia equipment, could consistently maintain injection pressures below a 1293 mmHg level associated with clinically significant nerve injury. Injection pressures for 20 and 30 mL syringes with various needle sizes (18G, 20G, 21G, 22G, and 24G) were measured in a closed system. A set volume of air was aspirated into a saline-filled syringe and then compressed and maintained at various percentages while pressure was measured. The needle was inserted into the injection port of a pressure sensor, which had attached extension tubing with an injection plug clamped "off". Using linear regression with all data points, the pressure value and 99% confidence interval (CI) at 50% air compression was estimated. The linearity of Boyle's law was demonstrated with a high correlation, r = 0.99, and a slope of 0.984 (99% CI: 0.967-1.001). The net pressure generated at 50% compression was estimated as 744.8 mmHg, with the 99% CI between 729.6 and 760.0 mmHg. The various syringe/needle combinations had similar results. By creating and maintaining syringe air compression at 50% or less, injection pressures will be substantially below the 1293 mmHg threshold considered to be an associated risk factor for clinically significant nerve injury. This technique may allow simple, real-time and objective monitoring during local anesthetic injections while inherently reducing injection speed.

  7. Coherent state quantization of quaternions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muraleetharan, B., E-mail: bbmuraleetharan@jfn.ac.lk, E-mail: santhar@gmail.com; Thirulogasanthar, K., E-mail: bbmuraleetharan@jfn.ac.lk, E-mail: santhar@gmail.com

    Parallel to the quantization of the complex plane, using the canonical coherent states of a right quaternionic Hilbert space, quaternion field of quaternionic quantum mechanics is quantized. Associated upper symbols, lower symbols, and related quantities are analyzed. Quaternionic version of the harmonic oscillator and Weyl-Heisenberg algebra are also obtained.

  8. JND measurements of the speech formants parameters and its implication in the LPC pole quantization

    NASA Astrophysics Data System (ADS)

    Orgad, Yaakov

    1988-08-01

    The inherent sensitivity of auditory perception is explicitly used with the objective of designing an efficient speech encoder. Speech can be modelled by a filter representing the vocal tract shape that is driven by an excitation signal representing glottal air flow. This work concentrates on the filter encoding problem, assuming that excitation signal encoding is optimal. Linear predictive coding (LPC) techniques were used to model a short speech segment by an all-pole filter; each pole was directly related to the speech formants. Measurements were made of the auditory just noticeable difference (JND) corresponding to the natural speech formants, with the LPC filter poles as the best candidates to represent the speech spectral envelope. The JND is the maximum precision required in speech quantization; it was defined on the basis of the shift of one pole parameter of a single frame of a speech segment, necessary to induce subjective perception of the distortion, with .75 probability. The average JND in LPC filter poles in natural speech was found to increase with increasing pole bandwidth and, to a lesser extent, frequency. The JND measurements showed a large spread of the residuals around the average values, indicating that inter-formant coupling and, perhaps, other, not yet fully understood, factors were not taken into account at this stage of the research. A future treatment should consider these factors. The average JNDs obtained in this work were used to design pole quantization tables for speech coding and provided a better bit-rate than the standard quantizer of reflection coefficient; a 30-bits-per-frame pole quantizer yielded a speech quality similar to that obtained with a standard 41-bits-per-frame reflection coefficient quantizer. Owing to the complexity of the numerical root extraction system, the practical implementation of the pole quantization approach remains to be proved.

  9. Medical Image Compression Using a New Subband Coding Method

    NASA Technical Reports Server (NTRS)

    Kossentini, Faouzi; Smith, Mark J. T.; Scales, Allen; Tucker, Doug

    1995-01-01

    A recently introduced iterative complexity- and entropy-constrained subband quantization design algorithm is generalized and applied to medical image compression. In particular, the corresponding subband coder is used to encode Computed Tomography (CT) axial slice head images, where statistical dependencies between neighboring image subbands are exploited. Inter-slice conditioning is also employed for further improvements in compression performance. The subband coder features many advantages such as relatively low complexity and operation over a very wide range of bit rates. Experimental results demonstrate that the performance of the new subband coder is relatively good, both objectively and subjectively.

  10. A High Performance Image Data Compression Technique for Space Applications

    NASA Technical Reports Server (NTRS)

    Yeh, Pen-Shu; Venbrux, Jack

    2003-01-01

    A highly performing image data compression technique is currently being developed for space science applications under the requirement of high-speed and pushbroom scanning. The technique is also applicable to frame based imaging data. The algorithm combines a two-dimensional transform with a bitplane encoding; this results in an embedded bit string with exact desirable compression rate specified by the user. The compression scheme performs well on a suite of test images acquired from spacecraft instruments. It can also be applied to three-dimensional data cube resulting from hyper-spectral imaging instrument. Flight qualifiable hardware implementations are in development. The implementation is being designed to compress data in excess of 20 Msampledsec and support quantization from 2 to 16 bits. This paper presents the algorithm, its applications and status of development.

  11. BFV quantization on hermitian symmetric spaces

    NASA Astrophysics Data System (ADS)

    Fradkin, E. S.; Linetsky, V. Ya.

    1995-02-01

    Gauge-invariant BFV approach to geometric quantization is applied to the case of hermitian symmetric spaces G/ H. In particular, gauge invariant quantization on the Lobachevski plane and sphere is carried out. Due to the presence of symmetry, master equations for the first-class constraints, quantum observables and physical quantum states are exactly solvable. BFV-BRST operator defines a flat G-connection in the Fock bundle over G/ H. Physical quantum states are covariantly constant sections with respect to this connection and are shown to coincide with the generalized coherent states for the group G. Vacuum expectation values of the quantum observables commuting with the quantum first-class constraints reduce to the covariant symbols of Berezin. The gauge-invariant approach to quantization on symplectic manifolds synthesizes geometric, deformation and Berezin quantization approaches.

  12. Development and evaluation of a novel lossless image compression method (AIC: artificial intelligence compression method) using neural networks as artificial intelligence.

    PubMed

    Fukatsu, Hiroshi; Naganawa, Shinji; Yumura, Shinnichiro

    2008-04-01

    This study was aimed to validate the performance of a novel image compression method using a neural network to achieve a lossless compression. The encoding consists of the following blocks: a prediction block; a residual data calculation block; a transformation and quantization block; an organization and modification block; and an entropy encoding block. The predicted image is divided into four macro-blocks using the original image for teaching; and then redivided into sixteen sub-blocks. The predicted image is compared to the original image to create the residual image. The spatial and frequency data of the residual image are compared and transformed. Chest radiography, computed tomography (CT), magnetic resonance imaging, positron emission tomography, radioisotope mammography, ultrasonography, and digital subtraction angiography images were compressed using the AIC lossless compression method; and the compression rates were calculated. The compression rates were around 15:1 for chest radiography and mammography, 12:1 for CT, and around 6:1 for other images. This method thus enables greater lossless compression than the conventional methods. This novel method should improve the efficiency of handling of the increasing volume of medical imaging data.

  13. Controlling charge quantization with quantum fluctuations.

    PubMed

    Jezouin, S; Iftikhar, Z; Anthore, A; Parmentier, F D; Gennser, U; Cavanna, A; Ouerghi, A; Levkivskyi, I P; Idrisov, E; Sukhorukov, E V; Glazman, L I; Pierre, F

    2016-08-04

    In 1909, Millikan showed that the charge of electrically isolated systems is quantized in units of the elementary electron charge e. Today, the persistence of charge quantization in small, weakly connected conductors allows for circuits in which single electrons are manipulated, with applications in, for example, metrology, detectors and thermometry. However, as the connection strength is increased, the discreteness of charge is progressively reduced by quantum fluctuations. Here we report the full quantum control and characterization of charge quantization. By using semiconductor-based tunable elemental conduction channels to connect a micrometre-scale metallic island to a circuit, we explore the complete evolution of charge quantization while scanning the entire range of connection strengths, from a very weak (tunnel) to a perfect (ballistic) contact. We observe, when approaching the ballistic limit, that charge quantization is destroyed by quantum fluctuations, and scales as the square root of the residual probability for an electron to be reflected across the quantum channel; this scaling also applies beyond the different regimes of connection strength currently accessible to theory. At increased temperatures, the thermal fluctuations result in an exponential suppression of charge quantization and in a universal square-root scaling, valid for all connection strengths, in agreement with expectations. Besides being pertinent for the improvement of single-electron circuits and their applications, and for the metal-semiconductor hybrids relevant to topological quantum computing, knowledge of the quantum laws of electricity will be essential for the quantum engineering of future nanoelectronic devices.

  14. Channel estimation based on quantized MMP for FDD massive MIMO downlink

    NASA Astrophysics Data System (ADS)

    Guo, Yao-ting; Wang, Bing-he; Qu, Yi; Cai, Hua-jie

    2016-10-01

    In this paper, we consider channel estimation for Massive MIMO systems operating in frequency division duplexing mode. By exploiting the sparsity of propagation paths in Massive MIMO channel, we develop a compressed sensing(CS) based channel estimator which can reduce the pilot overhead. As compared with the conventional least squares (LS) and linear minimum mean square error(LMMSE) estimation, the proposed algorithm is based on the quantized multipath matching pursuit - MMP - reduced the pilot overhead and performs better than other CS algorithms. The simulation results demonstrate the advantage of the proposed algorithm over various existing methods including the LS, LMMSE, CoSaMP and conventional MMP estimators.

  15. Dynamic compression of copper to over 450 GPa: A high-pressure standard

    DOE PAGES

    Kraus, R. G.; Davis, J. -P.; Seagle, C. T.; ...

    2016-04-12

    We obtained an absolute stress-density path for shocklessly compressed copper to over 450 GPa. A magnetic pressure drive is temporally tailored to generate shockless compression waves through over 2.5-mm-thick copper samples. Furthermore, the free-surface velocity data is analyzed for Lagrangian sound velocity using the iterative Lagrangian analysis (ILA) technique, which relies upon the method of characteristics. We correct for the effects of strength and plastic work heating to determine an isentropic compression path. By assuming a Debye model for the heat capacity, we can further correct the isentrope to an isotherm. Finally, our determination of the isentrope and isotherm ofmore » copper represents a highly accurate pressure standard for copper to over 450 GPa.« less

  16. 75 FR 32611 - Standards of Performance for Stationary Compression Ignition and Spark Ignition Internal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... implement more stringent standards for stationary compression ignition engines with displacement greater... engines with displacement at or above 30 liters per cylinder to align more closely with recent standards.... Standards for New Engines With Displacement Greater Than or Equal to 10 l/cyl and Less Than 30 l/cyl B...

  17. Image splitting and remapping method for radiological image compression

    NASA Astrophysics Data System (ADS)

    Lo, Shih-Chung B.; Shen, Ellen L.; Mun, Seong K.

    1990-07-01

    A new decomposition method using image splitting and gray-level remapping has been proposed for image compression, particularly for images with high contrast resolution. The effects of this method are especially evident in our radiological image compression study. In our experiments, we tested the impact of this decomposition method on image compression by employing it with two coding techniques on a set of clinically used CT images and several laser film digitized chest radiographs. One of the compression techniques used was full-frame bit-allocation in the discrete cosine transform domain, which has been proven to be an effective technique for radiological image compression. The other compression technique used was vector quantization with pruned tree-structured encoding, which through recent research has also been found to produce a low mean-square-error and a high compression ratio. The parameters we used in this study were mean-square-error and the bit rate required for the compressed file. In addition to these parameters, the difference between the original and reconstructed images will be presented so that the specific artifacts generated by both techniques can be discerned by visual perception.

  18. Modeling of video compression effects on target acquisition performance

    NASA Astrophysics Data System (ADS)

    Cha, Jae H.; Preece, Bradley; Espinola, Richard L.

    2009-05-01

    The effect of video compression on image quality was investigated from the perspective of target acquisition performance modeling. Human perception tests were conducted recently at the U.S. Army RDECOM CERDEC NVESD, measuring identification (ID) performance on simulated military vehicle targets at various ranges. These videos were compressed with different quality and/or quantization levels utilizing motion JPEG, motion JPEG2000, and MPEG-4 encoding. To model the degradation on task performance, the loss in image quality is fit to an equivalent Gaussian MTF scaled by the Structural Similarity Image Metric (SSIM). Residual compression artifacts are treated as 3-D spatio-temporal noise. This 3-D noise is found by taking the difference of the uncompressed frame, with the estimated equivalent blur applied, and the corresponding compressed frame. Results show good agreement between the experimental data and the model prediction. This method has led to a predictive performance model for video compression by correlating various compression levels to particular blur and noise input parameters for NVESD target acquisition performance model suite.

  19. On the Dequantization of Fedosov's Deformation Quantization

    NASA Astrophysics Data System (ADS)

    Karabegov, Alexander V.

    2003-08-01

    To each natural deformation quantization on a Poisson manifold M we associate a Poisson morphism from the formal neighborhood of the zero section of the cotangent bundle to M to the formal neighborhood of the diagonal of the product M x M~, where M~ is a copy of M with the opposite Poisson structure. We call it dequantization of the natural deformation quantization. Then we "dequantize" Fedosov's quantization.

  20. Quantizing and sampling considerations in digital phased-locked loops

    NASA Technical Reports Server (NTRS)

    Hurst, G. T.; Gupta, S. C.

    1974-01-01

    The quantizer problem is first considered. The conditions under which the uniform white sequence model for the quantizer error is valid are established independent of the sampling rate. An equivalent spectral density is defined for the quantizer error resulting in an effective SNR value. This effective SNR may be used to determine quantized performance from infinitely fine quantized results. Attention is given to sampling rate considerations. Sampling rate characteristics of the digital phase-locked loop (DPLL) structure are investigated for the infinitely fine quantized system. The predicted phase error variance equation is examined as a function of the sampling rate. Simulation results are presented and a method is described which enables the minimum required sampling rate to be determined from the predicted phase error variance equations.

  1. Quantization of Poisson Manifolds from the Integrability of the Modular Function

    NASA Astrophysics Data System (ADS)

    Bonechi, F.; Ciccoli, N.; Qiu, J.; Tarlini, M.

    2014-10-01

    We discuss a framework for quantizing a Poisson manifold via the quantization of its symplectic groupoid, combining the tools of geometric quantization with the results of Renault's theory of groupoid C*-algebras. This setting allows very singular polarizations. In particular, we consider the case when the modular function is multiplicatively integrable, i.e., when the space of leaves of the polarization inherits a groupoid structure. If suitable regularity conditions are satisfied, then one can define the quantum algebra as the convolution algebra of the subgroupoid of leaves satisfying the Bohr-Sommerfeld conditions. We apply this procedure to the case of a family of Poisson structures on , seen as Poisson homogeneous spaces of the standard Poisson-Lie group SU( n + 1). We show that a bihamiltonian system on defines a multiplicative integrable model on the symplectic groupoid; we compute the Bohr-Sommerfeld groupoid and show that it satisfies the needed properties for applying Renault theory. We recover and extend Sheu's description of quantum homogeneous spaces as groupoid C*-algebras.

  2. JP3D compressed-domain watermarking of volumetric medical data sets

    NASA Astrophysics Data System (ADS)

    Ouled Zaid, Azza; Makhloufi, Achraf; Olivier, Christian

    2010-01-01

    Increasing transmission of medical data across multiple user systems raises concerns for medical image watermarking. Additionaly, the use of volumetric images triggers the need for efficient compression techniques in picture archiving and communication systems (PACS), or telemedicine applications. This paper describes an hybrid data hiding/compression system, adapted to volumetric medical imaging. The central contribution is to integrate blind watermarking, based on turbo trellis-coded quantization (TCQ), to JP3D encoder. Results of our method applied to Magnetic Resonance (MR) and Computed Tomography (CT) medical images have shown that our watermarking scheme is robust to JP3D compression attacks and can provide relative high data embedding rate whereas keep a relative lower distortion.

  3. Robust vector quantization for noisy channels

    NASA Technical Reports Server (NTRS)

    Demarca, J. R. B.; Farvardin, N.; Jayant, N. S.; Shoham, Y.

    1988-01-01

    The paper briefly discusses techniques for making vector quantizers more tolerant to tranmsission errors. Two algorithms are presented for obtaining an efficient binary word assignment to the vector quantizer codewords without increasing the transmission rate. It is shown that about 4.5 dB gain over random assignment can be achieved with these algorithms. It is also proposed to reduce the effects of error propagation in vector-predictive quantizers by appropriately constraining the response of the predictive loop. The constrained system is shown to have about 4 dB of SNR gain over an unconstrained system in a noisy channel, with a small loss of clean-channel performance.

  4. Wavelet-based image compression using shuffling and bit plane correlation

    NASA Astrophysics Data System (ADS)

    Kim, Seungjong; Jeong, Jechang

    2000-12-01

    In this paper, we propose a wavelet-based image compression method using shuffling and bit plane correlation. The proposed method improves coding performance in two steps: (1) removing the sign bit plane by shuffling process on quantized coefficients, (2) choosing the arithmetic coding context according to maximum correlation direction. The experimental results are comparable or superior for some images with low correlation, to existing coders.

  5. Correlation estimation and performance optimization for distributed image compression

    NASA Astrophysics Data System (ADS)

    He, Zhihai; Cao, Lei; Cheng, Hui

    2006-01-01

    Correlation estimation plays a critical role in resource allocation and rate control for distributed data compression. A Wyner-Ziv encoder for distributed image compression is often considered as a lossy source encoder followed by a lossless Slepian-Wolf encoder. The source encoder consists of spatial transform, quantization, and bit plane extraction. In this work, we find that Gray code, which has been extensively used in digital modulation, is able to significantly improve the correlation between the source data and its side information. Theoretically, we analyze the behavior of Gray code within the context of distributed image compression. Using this theoretical model, we are able to efficiently allocate the bit budget and determine the code rate of the Slepian-Wolf encoder. Our experimental results demonstrate that the Gray code, coupled with accurate correlation estimation and rate control, significantly improves the picture quality, by up to 4 dB, over the existing methods for distributed image compression.

  6. Natural inflation from polymer quantization

    NASA Astrophysics Data System (ADS)

    Ali, Masooma; Seahra, Sanjeev S.

    2017-11-01

    We study the polymer quantization of a homogeneous massive scalar field in the early Universe using a prescription inequivalent to those previously appearing in the literature. Specifically, we assume a Hilbert space for which the scalar field momentum is well defined but its amplitude is not. This is closer in spirit to the quantization scheme of loop quantum gravity, in which no unique configuration operator exists. We show that in the semiclassical approximation, the main effect of this polymer quantization scheme is to compactify the phase space of chaotic inflation in the field amplitude direction. This gives rise to an effective scalar potential closely resembling that of hybrid natural inflation. Unlike polymer schemes in which the scalar field amplitude is well defined, the semiclassical dynamics involves a past cosmological singularity; i.e., this approach does not mitigate the big bang.

  7. Pseudo-Kähler Quantization on Flag Manifolds

    NASA Astrophysics Data System (ADS)

    Karabegov, Alexander V.

    A unified approach to geometric, symbol and deformation quantizations on a generalized flag manifold endowed with an invariant pseudo-Kähler structure is proposed. In particular cases we arrive at Berezin's quantization via covariant and contravariant symbols.

  8. Quantization of Electromagnetic Fields in Cavities

    NASA Technical Reports Server (NTRS)

    Kakazu, Kiyotaka; Oshiro, Kazunori

    1996-01-01

    A quantization procedure for the electromagnetic field in a rectangular cavity with perfect conductor walls is presented, where a decomposition formula of the field plays an essential role. All vector mode functions are obtained by using the decomposition. After expanding the field in terms of the vector mode functions, we get the quantized electromagnetic Hamiltonian.

  9. Tribology of the lubricant quantized sliding state.

    PubMed

    Castelli, Ivano Eligio; Capozza, Rosario; Vanossi, Andrea; Santoro, Giuseppe E; Manini, Nicola; Tosatti, Erio

    2009-11-07

    In the framework of Langevin dynamics, we demonstrate clear evidence of the peculiar quantized sliding state, previously found in a simple one-dimensional boundary lubricated model [A. Vanossi et al., Phys. Rev. Lett. 97, 056101 (2006)], for a substantially less idealized two-dimensional description of a confined multilayer solid lubricant under shear. This dynamical state, marked by a nontrivial "quantized" ratio of the averaged lubricant center-of-mass velocity to the externally imposed sliding speed, is recovered, and shown to be robust against the effects of thermal fluctuations, quenched disorder in the confining substrates, and over a wide range of loading forces. The lubricant softness, setting the width of the propagating solitonic structures, is found to play a major role in promoting in-registry commensurate regions beneficial to this quantized sliding. By evaluating the force instantaneously exerted on the top plate, we find that this quantized sliding represents a dynamical "pinned" state, characterized by significantly low values of the kinetic friction. While the quantized sliding occurs due to solitons being driven gently, the transition to ordinary unpinned sliding regimes can involve lubricant melting due to large shear-induced Joule heating, for example at large speed.

  10. Quantizing higher-spin gravity in free-field variables

    NASA Astrophysics Data System (ADS)

    Campoleoni, Andrea; Fredenhagen, Stefan; Raeymaekers, Joris

    2018-02-01

    We study the formulation of massless higher-spin gravity on AdS3 in a gauge in which the fundamental variables satisfy free field Poisson brackets. This gauge choice leaves a small portion of the gauge freedom unfixed, which should be further quotiented out. We show that doing so leads to a bulk version of the Coulomb gas formalism for W N CFT's: the generators of the residual gauge symmetries are the classical limits of screening charges, while the gauge-invariant observables are classical W N charges. Quantization in these variables can be carried out using standard techniques and makes manifest a remnant of the triality symmetry of W ∞[λ]. This symmetry can be used to argue that the theory should be supplemented with additional matter content which is precisely that of the Prokushkin-Vasiliev theory. As a further application, we use our formulation to quantize a class of conical surplus solutions and confirm the conjecture that these are dual to specific degenerate W N primaries, to all orders in the large central charge expansion.

  11. Quantization of simple parametrized systems

    NASA Astrophysics Data System (ADS)

    Ruffini, G.

    2005-11-01

    I study the canonical formulation and quantization of some simple parametrized systems, including the non-relativistic parametrized particle and the relativistic parametrized particle. Using Dirac's formalism I construct for each case the classical reduced phase space and study the dependence on the gauge fixing used. Two separate features of these systems can make this construction difficult: the actions are not invariant at the boundaries, and the constraints may have disconnected solution spaces. The relativistic particle is affected by both, while the non-relativistic particle displays only by the first. Analyzing the role of canonical transformations in the reduced phase space, I show that a change of gauge fixing is equivalent to a canonical transformation. In the relativistic case, quantization of one branch of the constraint at the time is applied and I analyze the electromagenetic backgrounds in which it is possible to quantize simultaneously both branches and still obtain a covariant unitary quantum theory. To preserve unitarity and space-time covariance, second quantization is needed unless there is no electric field. I motivate a definition of the inner product in all these cases and derive the Klein-Gordon inner product for the relativistic case. I construct phase space path integral representations for amplitudes for the BFV and the Faddeev path integrals, from which the path integrals in coordinate space (Faddeev-Popov and geometric path integrals) are derived.

  12. Gravitational surface Hamiltonian and entropy quantization

    NASA Astrophysics Data System (ADS)

    Bakshi, Ashish; Majhi, Bibhas Ranjan; Samanta, Saurav

    2017-02-01

    The surface Hamiltonian corresponding to the surface part of a gravitational action has xp structure where p is conjugate momentum of x. Moreover, it leads to TS on the horizon of a black hole. Here T and S are temperature and entropy of the horizon. Imposing the hermiticity condition we quantize this Hamiltonian. This leads to an equidistant spectrum of its eigenvalues. Using this we show that the entropy of the horizon is quantized. This analysis holds for any order of Lanczos-Lovelock gravity. For general relativity, the area spectrum is consistent with Bekenstein's observation. This provides a more robust confirmation of this earlier result as the calculation is based on the direct quantization of the Hamiltonian in the sense of usual quantum mechanics.

  13. Validation of a quantized-current source with 0.2 ppm uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stein, Friederike; Fricke, Lukas, E-mail: lukas.fricke@ptb.de; Scherer, Hansjörg

    2015-09-07

    We report on high-accuracy measurements of quantized current, sourced by a tunable-barrier single-electron pump at frequencies f up to 1 GHz. The measurements were performed with an ultrastable picoammeter instrument, traceable to the Josephson and quantum Hall effects. Current quantization according to I = ef with e being the elementary charge was confirmed at f = 545 MHz with a total relative uncertainty of 0.2 ppm, improving the state of the art by about a factor of 5. The accuracy of a possible future quantum current standard based on single-electron transport was experimentally validated to be better than the best (indirect) realization of the ampere within themore » present SI.« less

  14. Instabilities caused by floating-point arithmetic quantization.

    NASA Technical Reports Server (NTRS)

    Phillips, C. L.

    1972-01-01

    It is shown that an otherwise stable digital control system can be made unstable by signal quantization when the controller operates on floating-point arithmetic. Sufficient conditions of instability are determined, and an example of loss of stability is treated when only one quantizer is operated.

  15. Digital Imagery Compression Best Practices Guide - A Motion Imagery Standards Profile (MISP) Compliant Architecture

    DTIC Science & Technology

    2012-06-01

    MISP) COMPLIANT ARCHITECTURE WHITE SANDS MISSILE RANGE REAGAN TEST SITE YUMA PROVING GROUND DUGWAY PROVING GROUND ABERDEEN TEST CENTER...DIGITAL MOTION IMAGERY COMPRESSION BEST PRACTICES GUIDE – A MOTION IMAGERY STANDARDS PROFILE (MISP) COMPLIANT ARCHITECTURE ...delivery, and archival purposes. These practices are based on a Motion Imagery Standards Profile (MISP) compliant architecture , which has been defined

  16. Topologies on quantum topoi induced by quantization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakayama, Kunji

    2013-07-15

    In the present paper, we consider effects of quantization in a topos approach of quantum theory. A quantum system is assumed to be coded in a quantum topos, by which we mean the topos of presheaves on the context category of commutative subalgebras of a von Neumann algebra of bounded operators on a Hilbert space. A classical system is modeled by a Lie algebra of classical observables. It is shown that a quantization map from the classical observables to self-adjoint operators on the Hilbert space naturally induces geometric morphisms from presheaf topoi related to the classical system to the quantummore » topos. By means of the geometric morphisms, we give Lawvere-Tierney topologies on the quantum topos (and their equivalent Grothendieck topologies on the context category). We show that, among them, there exists a canonical one which we call a quantization topology. We furthermore give an explicit expression of a sheafification functor associated with the quantization topology.« less

  17. Topological quantization in units of the fine structure constant.

    PubMed

    Maciejko, Joseph; Qi, Xiao-Liang; Drew, H Dennis; Zhang, Shou-Cheng

    2010-10-15

    Fundamental topological phenomena in condensed matter physics are associated with a quantized electromagnetic response in units of fundamental constants. Recently, it has been predicted theoretically that the time-reversal invariant topological insulator in three dimensions exhibits a topological magnetoelectric effect quantized in units of the fine structure constant α=e²/ℏc. In this Letter, we propose an optical experiment to directly measure this topological quantization phenomenon, independent of material details. Our proposal also provides a way to measure the half-quantized Hall conductances on the two surfaces of the topological insulator independently of each other.

  18. 49 CFR 571.303 - Standard No. 303; Fuel system integrity of compressed natural gas vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 6 2013-10-01 2013-10-01 false Standard No. 303; Fuel system integrity of compressed natural gas vehicles. 571.303 Section 571.303 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR VEHICLE SAFETY STANDARDS Federal...

  19. Quantization improves stabilization of dynamical systems with delayed feedback

    NASA Astrophysics Data System (ADS)

    Stepan, Gabor; Milton, John G.; Insperger, Tamas

    2017-11-01

    We show that an unstable scalar dynamical system with time-delayed feedback can be stabilized by quantizing the feedback. The discrete time model corresponds to a previously unrecognized case of the microchaotic map in which the fixed point is both locally and globally repelling. In the continuous-time model, stabilization by quantization is possible when the fixed point in the absence of feedback is an unstable node, and in the presence of feedback, it is an unstable focus (spiral). The results are illustrated with numerical simulation of the unstable Hayes equation. The solutions of the quantized Hayes equation take the form of oscillations in which the amplitude is a function of the size of the quantization step. If the quantization step is sufficiently small, the amplitude of the oscillations can be small enough to practically approximate the dynamics around a stable fixed point.

  20. FIVQ algorithm for interference hyper-spectral image compression

    NASA Astrophysics Data System (ADS)

    Wen, Jia; Ma, Caiwen; Zhao, Junsuo

    2014-07-01

    Based on the improved vector quantization (IVQ) algorithm [1] which was proposed in 2012, this paper proposes a further improved vector quantization (FIVQ) algorithm for LASIS (Large Aperture Static Imaging Spectrometer) interference hyper-spectral image compression. To get better image quality, IVQ algorithm takes both the mean values and the VQ indices as the encoding rules. Although IVQ algorithm can improve both the bit rate and the image quality, it still can be further improved in order to get much lower bit rate for the LASIS interference pattern with the special optical characteristics based on the pushing and sweeping in LASIS imaging principle. In the proposed algorithm FIVQ, the neighborhood of the encoding blocks of the interference pattern image, which are using the mean value rules, will be checked whether they have the same mean value as the current processing block. Experiments show the proposed algorithm FIVQ can get lower bit rate compared to that of the IVQ algorithm for the LASIS interference hyper-spectral sequences.

  1. On system behaviour using complex networks of a compression algorithm

    NASA Astrophysics Data System (ADS)

    Walker, David M.; Correa, Debora C.; Small, Michael

    2018-01-01

    We construct complex networks of scalar time series using a data compression algorithm. The structure and statistics of the resulting networks can be used to help characterize complex systems, and one property, in particular, appears to be a useful discriminating statistic in surrogate data hypothesis tests. We demonstrate these ideas on systems with known dynamical behaviour and also show that our approach is capable of identifying behavioural transitions within electroencephalogram recordings as well as changes due to a bifurcation parameter of a chaotic system. The technique we propose is dependent on a coarse grained quantization of the original time series and therefore provides potential for a spatial scale-dependent characterization of the data. Finally the method is as computationally efficient as the underlying compression algorithm and provides a compression of the salient features of long time series.

  2. Dimensional quantization effects in the thermodynamics of conductive filaments

    NASA Astrophysics Data System (ADS)

    Niraula, D.; Grice, C. R.; Karpov, V. G.

    2018-06-01

    We consider the physical effects of dimensional quantization in conductive filaments that underlie operations of some modern electronic devices. We show that, as a result of quantization, a sufficiently thin filament acquires a positive charge. Several applications of this finding include the host material polarization, the stability of filament constrictions, the equilibrium filament radius, polarity in device switching, and quantization of conductance.

  3. Dimensional quantization effects in the thermodynamics of conductive filaments.

    PubMed

    Niraula, D; Grice, C R; Karpov, V G

    2018-06-29

    We consider the physical effects of dimensional quantization in conductive filaments that underlie operations of some modern electronic devices. We show that, as a result of quantization, a sufficiently thin filament acquires a positive charge. Several applications of this finding include the host material polarization, the stability of filament constrictions, the equilibrium filament radius, polarity in device switching, and quantization of conductance.

  4. Accelerating simulation for the multiple-point statistics algorithm using vector quantization

    NASA Astrophysics Data System (ADS)

    Zuo, Chen; Pan, Zhibin; Liang, Hao

    2018-03-01

    Multiple-point statistics (MPS) is a prominent algorithm to simulate categorical variables based on a sequential simulation procedure. Assuming training images (TIs) as prior conceptual models, MPS extracts patterns from TIs using a template and records their occurrences in a database. However, complex patterns increase the size of the database and require considerable time to retrieve the desired elements. In order to speed up simulation and improve simulation quality over state-of-the-art MPS methods, we propose an accelerating simulation for MPS using vector quantization (VQ), called VQ-MPS. First, a variable representation is presented to make categorical variables applicable for vector quantization. Second, we adopt a tree-structured VQ to compress the database so that stationary simulations are realized. Finally, a transformed template and classified VQ are used to address nonstationarity. A two-dimensional (2D) stationary channelized reservoir image is used to validate the proposed VQ-MPS. In comparison with several existing MPS programs, our method exhibits significantly better performance in terms of computational time, pattern reproductions, and spatial uncertainty. Further demonstrations consist of a 2D four facies simulation, two 2D nonstationary channel simulations, and a three-dimensional (3D) rock simulation. The results reveal that our proposed method is also capable of solving multifacies, nonstationarity, and 3D simulations based on 2D TIs.

  5. Thermal field theory and generalized light front quantization

    NASA Astrophysics Data System (ADS)

    Weldon, H. Arthur

    2003-04-01

    The dependence of thermal field theory on the surface of quantization and on the velocity of the heat bath is investigated by working in general coordinates that are arbitrary linear combinations of the Minkowski coordinates. In the general coordinates the metric tensor gμν¯ is nondiagonal. The Kubo-Martin-Schwinger condition requires periodicity in thermal correlation functions when the temporal variable changes by an amount -i/(T(g00¯)). Light-front quantization fails since g00¯=0; however, various related quantizations are possible.

  6. Probabilistic distance-based quantizer design for distributed estimation

    NASA Astrophysics Data System (ADS)

    Kim, Yoon Hak

    2016-12-01

    We consider an iterative design of independently operating local quantizers at nodes that should cooperate without interaction to achieve application objectives for distributed estimation systems. We suggest as a new cost function a probabilistic distance between the posterior distribution and its quantized one expressed as the Kullback Leibler (KL) divergence. We first present the analysis that minimizing the KL divergence in the cyclic generalized Lloyd design framework is equivalent to maximizing the logarithmic quantized posterior distribution on the average which can be further computationally reduced in our iterative design. We propose an iterative design algorithm that seeks to maximize the simplified version of the posterior quantized distribution and discuss that our algorithm converges to a global optimum due to the convexity of the cost function and generates the most informative quantized measurements. We also provide an independent encoding technique that enables minimization of the cost function and can be efficiently simplified for a practical use of power-constrained nodes. We finally demonstrate through extensive experiments an obvious advantage of improved estimation performance as compared with the typical designs and the novel design techniques previously published.

  7. Simultaneous compression and encryption for secure real-time secure transmission of sensitive video transmission

    NASA Astrophysics Data System (ADS)

    Al-Hayani, Nazar; Al-Jawad, Naseer; Jassim, Sabah A.

    2014-05-01

    Video compression and encryption became very essential in a secured real time video transmission. Applying both techniques simultaneously is one of the challenges where the size and the quality are important in multimedia transmission. In this paper we proposed a new technique for video compression and encryption. Both encryption and compression are based on edges extracted from the high frequency sub-bands of wavelet decomposition. The compression algorithm based on hybrid of: discrete wavelet transforms, discrete cosine transform, vector quantization, wavelet based edge detection, and phase sensing. The compression encoding algorithm treats the video reference and non-reference frames in two different ways. The encryption algorithm utilized A5 cipher combined with chaotic logistic map to encrypt the significant parameters and wavelet coefficients. Both algorithms can be applied simultaneously after applying the discrete wavelet transform on each individual frame. Experimental results show that the proposed algorithms have the following features: high compression, acceptable quality, and resistance to the statistical and bruteforce attack with low computational processing.

  8. Relational symplectic groupoid quantization for constant poisson structures

    NASA Astrophysics Data System (ADS)

    Cattaneo, Alberto S.; Moshayedi, Nima; Wernli, Konstantin

    2017-09-01

    As a detailed application of the BV-BFV formalism for the quantization of field theories on manifolds with boundary, this note describes a quantization of the relational symplectic groupoid for a constant Poisson structure. The presence of mixed boundary conditions and the globalization of results are also addressed. In particular, the paper includes an extension to space-times with boundary of some formal geometry considerations in the BV-BFV formalism, and specifically introduces into the BV-BFV framework a "differential" version of the classical and quantum master equations. The quantization constructed in this paper induces Kontsevich's deformation quantization on the underlying Poisson manifold, i.e., the Moyal product, which is known in full details. This allows focussing on the BV-BFV technology and testing it. For the inexperienced reader, this is also a practical and reasonably simple way to learn it.

  9. Instant-Form and Light-Front Quantization of Field Theories

    NASA Astrophysics Data System (ADS)

    Kulshreshtha, Usha; Kulshreshtha, Daya Shankar; Vary, James

    2018-05-01

    In this work we consider the instant-form and light-front quantization of some field theories. As an example, we consider a class of gauged non-linear sigma models with different regularizations. In particular, we present the path integral quantization of the gauged non-linear sigma model in the Faddeevian regularization. We also make a comparision of the possible differences in the instant-form and light-front quantization at appropriate places.

  10. Advanced and standardized evaluation of neurovascular compression syndromes

    NASA Astrophysics Data System (ADS)

    Hastreiter, Peter; Vega Higuera, Fernando; Tomandl, Bernd; Fahlbusch, Rudolf; Naraghi, Ramin

    2004-05-01

    Caused by a contact between vascular structures and the root entry or exit zone of cranial nerves neurovascular compression syndromes are combined with different neurological diseases (trigeminal neurolagia, hemifacial spasm, vertigo, glossopharyngeal neuralgia) and show a relation with essential arterial hypertension. As presented previously, the semi-automatic segmentation and 3D visualization of strongly T2 weighted MR volumes has proven to be an effective strategy for a better spatial understanding prior to operative microvascular decompression. After explicit segmentation of coarse structures, the tiny target nerves and vessels contained in the area of cerebrospinal fluid are segmented implicitly using direct volume rendering. However, based on this strategy the delineation of vessels in the vicinity of the brainstem and those at the border of the segmented CSF subvolume are critical. Therefore, we suggest registration with MR angiography and introduce consecutive fusion after semi-automatic labeling of the vascular information. Additionally, we present an approach of automatic 3D visualization and video generation based on predefined flight paths. Thereby, a standardized evaluation of the fused image data is supported and the visualization results are optimally prepared for intraoperative application. Overall, our new strategy contributes to a significantly improved 3D representation and evaluation of vascular compression syndromes. Its value for diagnosis and surgery is demonstrated with various clinical examples.

  11. Universe creation from the third-quantized vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuigan, M.

    1989-04-15

    Third quantization leads to a Hilbert space containing a third-quantized vacuum in which no universes are present as well as multiuniverse states. We consider the possibility of universe creation for the special case where the universe emerges in a no-particle state. The probability of such a creation is computed from both the path-integral and operator formalisms.

  12. Universe creation from the third-quantized vacuum

    NASA Astrophysics Data System (ADS)

    McGuigan, Michael

    1989-04-01

    Third quantization leads to a Hilbert space containing a third-quantized vacuum in which no universes are present as well as multiuniverse states. We consider the possibility of universe creation for the special case where the universe emerges in a no-particle state. The probability of such a creation is computed from both the path-integral and operator formalisms.

  13. Detecting double compression of audio signal

    NASA Astrophysics Data System (ADS)

    Yang, Rui; Shi, Yun Q.; Huang, Jiwu

    2010-01-01

    MP3 is the most popular audio format nowadays in our daily life, for example music downloaded from the Internet and file saved in the digital recorder are often in MP3 format. However, low bitrate MP3s are often transcoded to high bitrate since high bitrate ones are of high commercial value. Also audio recording in digital recorder can be doctored easily by pervasive audio editing software. This paper presents two methods for the detection of double MP3 compression. The methods are essential for finding out fake-quality MP3 and audio forensics. The proposed methods use support vector machine classifiers with feature vectors formed by the distributions of the first digits of the quantized MDCT (modified discrete cosine transform) coefficients. Extensive experiments demonstrate the effectiveness of the proposed methods. To the best of our knowledge, this piece of work is the first one to detect double compression of audio signal.

  14. Choice of word length in the design of a specialized hardware for lossless wavelet compression of medical images

    NASA Astrophysics Data System (ADS)

    Urriza, Isidro; Barragan, Luis A.; Artigas, Jose I.; Garcia, Jose I.; Navarro, Denis

    1997-11-01

    Image compression plays an important role in the archiving and transmission of medical images. Discrete cosine transform (DCT)-based compression methods are not suitable for medical images because of block-like image artifacts that could mask or be mistaken for pathology. Wavelet transforms (WTs) are used to overcome this problem. When implementing WTs in hardware, finite precision arithmetic introduces quantization errors. However, lossless compression is usually required in the medical image field. Thus, the hardware designer must look for the optimum register length that, while ensuring the lossless accuracy criteria, will also lead to a high-speed implementation with small chip area. In addition, wavelet choice is a critical issue that affects image quality as well as system design. We analyze the filters best suited to image compression that appear in the literature. For them, we obtain the maximum quantization errors produced in the calculation of the WT components. Thus, we deduce the minimum word length required for the reconstructed image to be numerically identical to the original image. The theoretical results are compared with experimental results obtained from algorithm simulations on random test images. These results enable us to compare the hardware implementation cost of the different filter banks. Moreover, to reduce the word length, we have analyzed the case of increasing the integer part of the numbers while maintaining constant the word length when the scale increases.

  15. Modeling and analysis of energy quantization effects on single electron inverter performance

    NASA Astrophysics Data System (ADS)

    Dan, Surya Shankar; Mahapatra, Santanu

    2009-08-01

    In this paper, for the first time, the effects of energy quantization on single electron transistor (SET) inverter performance are analyzed through analytical modeling and Monte Carlo simulations. It is shown that energy quantization mainly changes the Coulomb blockade region and drain current of SET devices and thus affects the noise margin, power dissipation, and the propagation delay of SET inverter. A new analytical model for the noise margin of SET inverter is proposed which includes the energy quantization effects. Using the noise margin as a metric, the robustness of SET inverter is studied against the effects of energy quantization. A compact expression is developed for a novel parameter quantization threshold which is introduced for the first time in this paper. Quantization threshold explicitly defines the maximum energy quantization that an SET inverter logic circuit can withstand before its noise margin falls below a specified tolerance level. It is found that SET inverter designed with CT:CG=1/3 (where CT and CG are tunnel junction and gate capacitances, respectively) offers maximum robustness against energy quantization.

  16. Lossless Astronomical Image Compression and the Effects of Random Noise

    NASA Technical Reports Server (NTRS)

    Pence, William

    2009-01-01

    In this paper we compare a variety of modern image compression methods on a large sample of astronomical images. We begin by demonstrating from first principles how the amount of noise in the image pixel values sets a theoretical upper limit on the lossless compression ratio of the image. We derive simple procedures for measuring the amount of noise in an image and for quantitatively predicting how much compression will be possible. We then compare the traditional technique of using the GZIP utility to externally compress the image, with a newer technique of dividing the image into tiles, and then compressing and storing each tile in a FITS binary table structure. This tiled-image compression technique offers a choice of other compression algorithms besides GZIP, some of which are much better suited to compressing astronomical images. Our tests on a large sample of images show that the Rice algorithm provides the best combination of speed and compression efficiency. In particular, Rice typically produces 1.5 times greater compression and provides much faster compression speed than GZIP. Floating point images generally contain too much noise to be effectively compressed with any lossless algorithm. We have developed a compression technique which discards some of the useless noise bits by quantizing the pixel values as scaled integers. The integer images can then be compressed by a factor of 4 or more. Our image compression and uncompression utilities (called fpack and funpack) that were used in this study are publicly available from the HEASARC web site.Users may run these stand-alone programs to compress and uncompress their own images.

  17. Direct comparison of fractional and integer quantized Hall resistance

    NASA Astrophysics Data System (ADS)

    Ahlers, Franz J.; Götz, Martin; Pierz, Klaus

    2017-08-01

    We present precision measurements of the fractional quantized Hall effect, where the quantized resistance {{R}≤ft[ 1/3 \\right]} in the fractional quantum Hall state at filling factor 1/3 was compared with a quantized resistance {{R}[2]} , represented by an integer quantum Hall state at filling factor 2. A cryogenic current comparator bridge capable of currents down to the nanoampere range was used to directly compare two resistance values of two GaAs-based devices located in two cryostats. A value of 1-(5.3  ±  6.3) 10-8 (95% confidence level) was obtained for the ratio ({{R}≤ft[ 1/3 \\right]}/6{{R}[2]} ). This constitutes the most precise comparison of integer resistance quantization (in terms of h/e 2) in single-particle systems and of fractional quantization in fractionally charged quasi-particle systems. While not relevant for practical metrology, such a test of the validity of the underlying physics is of significance in the context of the upcoming revision of the SI.

  18. Randomized controlled trial comparing treatment outcome of two compression bandaging systems and standard care without compression in patients with venous leg ulcers.

    PubMed

    Wong, I K Y; Andriessen, A; Charles, H E; Thompson, D; Lee, D T F; So, W K W; Abel, M

    2012-01-01

    In Hong Kong, at the time of the study, compression treatment was not considered usual care for venous leg ulcer patients. This randomized controlled trial compared quality of life (QOL) aspects in venous leg ulcer patients of over 55-years of age, of short-stretch compression (SSB), four-layer compression bandaging (4LB) and usual care (UC) (moist wound healing dressing, no compression). Study period was 24-weeks, the primary outcome was the patient functional status, disease-specific and generic health-related QOL measures and ulcer healing rates, comparing week 1 vs. week 24 (end) results. Assessments included photogrammetry, Brief Pain Inventory, SF-12 Health Survey, Charing Cross Venous Ulcer Questionnaire and Frenchay Activity Index. Data analysis was performed using, where appropriate; Kaplan Meier and log rank chi-square and the repeated measures analysis of variance test. A total of 321 patients participated in the study, 45 (14%) withdrew for various reasons. Compression bandaging in both groups significantly reduced pain (P < 0.0001) and improved functional status and QOL. Healing rate at 24 weeks for both compression groups was significant (P < 0.001); for SSB this was 72.0% (77/107) vs. 67.3% in the 4LB group (72/107) and 29.0% (31/107) with usual care. The reduction in ulcer area from weeks 12 to 24 was significant only for SSB (P < 0.047). Compression was shown to be feasible for elderly community care patients in Hong Kong and is currently implemented as part of standard venous leg ulcer treatment. © 2011 The Authors. Journal of the European Academy of Dermatology and Venereology © 2011 European Academy of Dermatology and Venereology.

  19. Coronary angiogram video compression for remote browsing and archiving applications.

    PubMed

    Ouled Zaid, Azza; Fradj, Bilel Ben

    2010-12-01

    In this paper, we propose a H.264/AVC based compression technique adapted to coronary angiograms. H.264/AVC coder has proven to use the most advanced and accurate motion compensation process, but, at the cost of high computational complexity. On the other hand, analysis of coronary X-ray images reveals large areas containing no diagnostically important information. Our contribution is to exploit the energy characteristics in slice equal size regions to determine the regions with relevant information content, to be encoded using the H.264 coding paradigm. The others regions, are compressed using fixed block motion compensation and conventional hard-decision quantization. Experiments have shown that at the same bitrate, this procedure reduces the H.264 coder computing time of about 25% while attaining the same visual quality. A subjective assessment, based on the consensus approach leads to a compression ratio of 30:1 which insures both a diagnostic adequacy and a sufficient compression in regards to storage and transmission requirements. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Fast large-scale object retrieval with binary quantization

    NASA Astrophysics Data System (ADS)

    Zhou, Shifu; Zeng, Dan; Shen, Wei; Zhang, Zhijiang; Tian, Qi

    2015-11-01

    The objective of large-scale object retrieval systems is to search for images that contain the target object in an image database. Where state-of-the-art approaches rely on global image representations to conduct searches, we consider many boxes per image as candidates to search locally in a picture. In this paper, a feature quantization algorithm called binary quantization is proposed. In binary quantization, a scale-invariant feature transform (SIFT) feature is quantized into a descriptive and discriminative bit-vector, which allows itself to adapt to the classic inverted file structure for box indexing. The inverted file, which stores the bit-vector and box ID where the SIFT feature is located inside, is compact and can be loaded into the main memory for efficient box indexing. We evaluate our approach on available object retrieval datasets. Experimental results demonstrate that the proposed approach is fast and achieves excellent search quality. Therefore, the proposed approach is an improvement over state-of-the-art approaches for object retrieval.

  1. Quantization of Simple Parametrized Systems

    NASA Astrophysics Data System (ADS)

    Ruffini, Giulio

    1995-01-01

    I study the canonical formulation and quantization of some simple parametrized systems using Dirac's formalism and the Becchi-Rouet-Stora-Tyutin (BRST) extended phase space method. These systems include the parametrized particle and minisuperspace. Using Dirac's formalism I first analyze for each case the construction of the classical reduced phase space. There are two separate features of these systems that may make this construction difficult: (a) Because of the boundary conditions used, the actions are not gauge invariant at the boundaries. (b) The constraints may have a disconnected solution space. The relativistic particle and minisuperspace have such complicated constraints, while the non-relativistic particle displays only the first feature. I first show that a change of gauge fixing is equivalent to a canonical transformation in the reduced phase space, thus resolving the problems associated with the first feature above. Then I consider the quantization of these systems using several approaches: Dirac's method, Dirac-Fock quantization, and the BRST formalism. In the cases of the relativistic particle and minisuperspace I consider first the quantization of one branch of the constraint at the time and then discuss the backgrounds in which it is possible to quantize simultaneously both branches. I motivate and define the inner product, and obtain, for example, the Klein-Gordon inner product for the relativistic case. Then I show how to construct phase space path integral representations for amplitudes in these approaches--the Batalin-Fradkin-Vilkovisky (BFV) and the Faddeev path integrals --from which one can then derive the path integrals in coordinate space--the Faddeev-Popov path integral and the geometric path integral. In particular I establish the connection between the Hilbert space representation and the range of the lapse in the path integrals. I also examine the class of paths that contribute in the path integrals and how they affect space

  2. Berezin-Toeplitz quantization and naturally defined star products for Kähler manifolds

    NASA Astrophysics Data System (ADS)

    Schlichenmaier, Martin

    2018-04-01

    For compact quantizable Kähler manifolds the Berezin-Toeplitz quantization schemes, both operator and deformation quantization (star product) are reviewed. The treatment includes Berezin's covariant symbols and the Berezin transform. The general compact quantizable case was done by Bordemann-Meinrenken-Schlichenmaier, Schlichenmaier, and Karabegov-Schlichenmaier. For star products on Kähler manifolds, separation of variables, or equivalently star product of (anti-) Wick type, is a crucial property. As canonically defined star products the Berezin-Toeplitz, Berezin, and the geometric quantization are treated. It turns out that all three are equivalent, but different.

  3. Visually Lossless Data Compression for Real-Time Frame/Pushbroom Space Science Imagers

    NASA Technical Reports Server (NTRS)

    Yeh, Pen-Shu; Venbrux, Jack; Bhatia, Prakash; Miller, Warner H.

    2000-01-01

    A visually lossless data compression technique is currently being developed for space science applications under the requirement of high-speed push-broom scanning. The technique is also applicable to frame based imaging and is error-resilient in that error propagation is contained within a few scan lines. The algorithm is based on a block transform of a hybrid of modulated lapped transform (MLT) and discrete cosine transform (DCT), or a 2-dimensional lapped transform, followed by bit-plane encoding; this combination results in an embedded bit string with exactly the desirable compression rate as desired by the user. The approach requires no unique table to maximize its performance. The compression scheme performs well on a suite of test images typical of images from spacecraft instruments. Flight qualified hardware implementations are in development; a functional chip set is expected by the end of 2001. The chip set is being designed to compress data in excess of 20 Msamples/sec and support quantizations from 2 to 16 bits.

  4. Novel Near-Lossless Compression Algorithm for Medical Sequence Images with Adaptive Block-Based Spatial Prediction.

    PubMed

    Song, Xiaoying; Huang, Qijun; Chang, Sheng; He, Jin; Wang, Hao

    2016-12-01

    To address the low compression efficiency of lossless compression and the low image quality of general near-lossless compression, a novel near-lossless compression algorithm based on adaptive spatial prediction is proposed for medical sequence images for possible diagnostic use in this paper. The proposed method employs adaptive block size-based spatial prediction to predict blocks directly in the spatial domain and Lossless Hadamard Transform before quantization to improve the quality of reconstructed images. The block-based prediction breaks the pixel neighborhood constraint and takes full advantage of the local spatial correlations found in medical images. The adaptive block size guarantees a more rational division of images and the improved use of the local structure. The results indicate that the proposed algorithm can efficiently compress medical images and produces a better peak signal-to-noise ratio (PSNR) under the same pre-defined distortion than other near-lossless methods.

  5. A seismic data compression system using subband coding

    NASA Technical Reports Server (NTRS)

    Kiely, A. B.; Pollara, F.

    1995-01-01

    This article presents a study of seismic data compression techniques and a compression algorithm based on subband coding. The algorithm includes three stages: a decorrelation stage, a quantization stage that introduces a controlled amount of distortion to allow for high compression ratios, and a lossless entropy coding stage based on a simple but efficient arithmetic coding method. Subband coding methods are particularly suited to the decorrelation of nonstationary processes such as seismic events. Adaptivity to the nonstationary behavior of the waveform is achieved by dividing the data into separate blocks that are encoded separately with an adaptive arithmetic encoder. This is done with high efficiency due to the low overhead introduced by the arithmetic encoder in specifying its parameters. The technique could be used as a progressive transmission system, where successive refinements of the data can be requested by the user. This allows seismologists to first examine a coarse version of waveforms with minimal usage of the channel and then decide where refinements are required. Rate-distortion performance results are presented and comparisons are made with two block transform methods.

  6. Wavelet compression techniques for hyperspectral data

    NASA Technical Reports Server (NTRS)

    Evans, Bruce; Ringer, Brian; Yeates, Mathew

    1994-01-01

    Hyperspectral sensors are electro-optic sensors which typically operate in visible and near infrared bands. Their characteristic property is the ability to resolve a relatively large number (i.e., tens to hundreds) of contiguous spectral bands to produce a detailed profile of the electromagnetic spectrum. In contrast, multispectral sensors measure relatively few non-contiguous spectral bands. Like multispectral sensors, hyperspectral sensors are often also imaging sensors, measuring spectra over an array of spatial resolution cells. The data produced may thus be viewed as a three dimensional array of samples in which two dimensions correspond to spatial position and the third to wavelength. Because they multiply the already large storage/transmission bandwidth requirements of conventional digital images, hyperspectral sensors generate formidable torrents of data. Their fine spectral resolution typically results in high redundancy in the spectral dimension, so that hyperspectral data sets are excellent candidates for compression. Although there have been a number of studies of compression algorithms for multispectral data, we are not aware of any published results for hyperspectral data. Three algorithms for hyperspectral data compression are compared. They were selected as representatives of three major approaches for extending conventional lossy image compression techniques to hyperspectral data. The simplest approach treats the data as an ensemble of images and compresses each image independently, ignoring the correlation between spectral bands. The second approach transforms the data to decorrelate the spectral bands, and then compresses the transformed data as a set of independent images. The third approach directly generalizes two-dimensional transform coding by applying a three-dimensional transform as part of the usual transform-quantize-entropy code procedure. The algorithms studied all use the discrete wavelet transform. In the first two cases, a wavelet

  7. Hierarchically clustered adaptive quantization CMAC and its learning convergence.

    PubMed

    Teddy, S D; Lai, E M K; Quek, C

    2007-11-01

    The cerebellar model articulation controller (CMAC) neural network (NN) is a well-established computational model of the human cerebellum. Nevertheless, there are two major drawbacks associated with the uniform quantization scheme of the CMAC network. They are the following: (1) a constant output resolution associated with the entire input space and (2) the generalization-accuracy dilemma. Moreover, the size of the CMAC network is an exponential function of the number of inputs. Depending on the characteristics of the training data, only a small percentage of the entire set of CMAC memory cells is utilized. Therefore, the efficient utilization of the CMAC memory is a crucial issue. One approach is to quantize the input space nonuniformly. For existing nonuniformly quantized CMAC systems, there is a tradeoff between memory efficiency and computational complexity. Inspired by the underlying organizational mechanism of the human brain, this paper presents a novel CMAC architecture named hierarchically clustered adaptive quantization CMAC (HCAQ-CMAC). HCAQ-CMAC employs hierarchical clustering for the nonuniform quantization of the input space to identify significant input segments and subsequently allocating more memory cells to these regions. The stability of the HCAQ-CMAC network is theoretically guaranteed by the proof of its learning convergence. The performance of the proposed network is subsequently benchmarked against the original CMAC network, as well as two other existing CMAC variants on two real-life applications, namely, automated control of car maneuver and modeling of the human blood glucose dynamics. The experimental results have demonstrated that the HCAQ-CMAC network offers an efficient memory allocation scheme and improves the generalization and accuracy of the network output to achieve better or comparable performances with smaller memory usages. Index Terms-Cerebellar model articulation controller (CMAC), hierarchical clustering, hierarchically

  8. Quantization and Superselection Sectors I:. Transformation Group C*-ALGEBRAS

    NASA Astrophysics Data System (ADS)

    Landsman, N. P.

    Quantization is defined as the act of assigning an appropriate C*-algebra { A} to a given configuration space Q, along with a prescription mapping self-adjoint elements of { A} into physically interpretable observables. This procedure is adopted to solve the problem of quantizing a particle moving on a homogeneous locally compact configuration space Q=G/H. Here { A} is chosen to be the transformation group C*-algebra corresponding to the canonical action of G on Q. The structure of these algebras and their representations are examined in some detail. Inequivalent quantizations are identified with inequivalent irreducible representations of the C*-algebra corresponding to the system, hence with its superselection sectors. Introducing the concept of a pre-Hamiltonian, we construct a large class of G-invariant time-evolutions on these algebras, and find the Hamiltonians implementing these time-evolutions in each irreducible representation of { A}. “Topological” terms in the Hamiltonian (or the corresponding action) turn out to be representation-dependent, and are automatically induced by the quantization procedure. Known “topological” charge quantization or periodicity conditions are then identically satisfied as a consequence of the representation theory of { A}.

  9. A new compression format for fiber tracking datasets.

    PubMed

    Presseau, Caroline; Jodoin, Pierre-Marc; Houde, Jean-Christophe; Descoteaux, Maxime

    2015-04-01

    A single diffusion MRI streamline fiber tracking dataset may contain hundreds of thousands, and often millions of streamlines and can take up to several gigabytes of memory. This amount of data is not only heavy to compute, but also difficult to visualize and hard to store on disk (especially when dealing with a collection of brains). These problems call for a fiber-specific compression format that simplifies its manipulation. As of today, no fiber compression format has yet been adopted and the need for it is now becoming an issue for future connectomics research. In this work, we propose a new compression format, .zfib, for streamline tractography datasets reconstructed from diffusion magnetic resonance imaging (dMRI). Tracts contain a large amount of redundant information and are relatively smooth. Hence, they are highly compressible. The proposed method is a processing pipeline containing a linearization, a quantization and an encoding step. Our pipeline is tested and validated under a wide range of DTI and HARDI tractography configurations (step size, streamline number, deterministic and probabilistic tracking) and compression options. Similar to JPEG, the user has one parameter to select: a worst-case maximum tolerance error in millimeter (mm). Overall, we find a compression factor of more than 96% for a maximum error of 0.1mm without any perceptual change or change of diffusion statistics (mean fractional anisotropy and mean diffusivity) along bundles. This opens new opportunities for connectomics and tractometry applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Fast and efficient compression of floating-point data.

    PubMed

    Lindstrom, Peter; Isenburg, Martin

    2006-01-01

    Large scale scientific simulation codes typically run on a cluster of CPUs that write/read time steps to/from a single file system. As data sets are constantly growing in size, this increasingly leads to I/O bottlenecks. When the rate at which data is produced exceeds the available I/O bandwidth, the simulation stalls and the CPUs are idle. Data compression can alleviate this problem by using some CPU cycles to reduce the amount of data needed to be transfered. Most compression schemes, however, are designed to operate offline and seek to maximize compression, not throughput. Furthermore, they often require quantizing floating-point values onto a uniform integer grid, which disqualifies their use in applications where exact values must be retained. We propose a simple scheme for lossless, online compression of floating-point data that transparently integrates into the I/O of many applications. A plug-in scheme for data-dependent prediction makes our scheme applicable to a wide variety of data used in visualization, such as unstructured meshes, point sets, images, and voxel grids. We achieve state-of-the-art compression rates and speeds, the latter in part due to an improved entropy coder. We demonstrate that this significantly accelerates I/O throughput in real simulation runs. Unlike previous schemes, our method also adapts well to variable-precision floating-point and integer data.

  11. Quantized Rabi oscillations and circular dichroism in quantum Hall systems

    NASA Astrophysics Data System (ADS)

    Tran, D. T.; Cooper, N. R.; Goldman, N.

    2018-06-01

    The dissipative response of a quantum system upon periodic driving can be exploited as a probe of its topological properties. Here we explore the implications of such phenomena in two-dimensional gases subjected to a uniform magnetic field. It is shown that a filled Landau level exhibits a quantized circular dichroism, which can be traced back to its underlying nontrivial topology. Based on selection rules, we find that this quantized effect can be suitably described in terms of Rabi oscillations, whose frequencies satisfy simple quantization laws. We discuss how quantized dissipative responses can be probed locally, both in the bulk and at the boundaries of the system. This work suggests alternative forms of topological probes based on circular dichroism.

  12. Quantized Algebras of Functions on Homogeneous Spaces with Poisson Stabilizers

    NASA Astrophysics Data System (ADS)

    Neshveyev, Sergey; Tuset, Lars

    2012-05-01

    Let G be a simply connected semisimple compact Lie group with standard Poisson structure, K a closed Poisson-Lie subgroup, 0 < q < 1. We study a quantization C( G q / K q ) of the algebra of continuous functions on G/ K. Using results of Soibelman and Dijkhuizen-Stokman we classify the irreducible representations of C( G q / K q ) and obtain a composition series for C( G q / K q ). We describe closures of the symplectic leaves of G/ K refining the well-known description in the case of flag manifolds in terms of the Bruhat order. We then show that the same rules describe the topology on the spectrum of C( G q / K q ). Next we show that the family of C*-algebras C( G q / K q ), 0 < q ≤ 1, has a canonical structure of a continuous field of C*-algebras and provides a strict deformation quantization of the Poisson algebra {{C}[G/K]} . Finally, extending a result of Nagy, we show that C( G q / K q ) is canonically KK-equivalent to C( G/ K).

  13. Edge-preserving image compression for magnetic-resonance images using dynamic associative neural networks (DANN)-based neural networks

    NASA Astrophysics Data System (ADS)

    Wan, Tat C.; Kabuka, Mansur R.

    1994-05-01

    With the tremendous growth in imaging applications and the development of filmless radiology, the need for compression techniques that can achieve high compression ratios with user specified distortion rates becomes necessary. Boundaries and edges in the tissue structures are vital for detection of lesions and tumors, which in turn requires the preservation of edges in the image. The proposed edge preserving image compressor (EPIC) combines lossless compression of edges with neural network compression techniques based on dynamic associative neural networks (DANN), to provide high compression ratios with user specified distortion rates in an adaptive compression system well-suited to parallel implementations. Improvements to DANN-based training through the use of a variance classifier for controlling a bank of neural networks speed convergence and allow the use of higher compression ratios for `simple' patterns. The adaptation and generalization capabilities inherent in EPIC also facilitate progressive transmission of images through varying the number of quantization levels used to represent compressed patterns. Average compression ratios of 7.51:1 with an averaged average mean squared error of 0.0147 were achieved.

  14. On lossy transform compression of ECG signals with reference to deformation of their parameter values.

    PubMed

    Koski, Antti; Tossavainen, Timo; Juhola, Martti

    2004-01-01

    Electrocardiogram (ECG) signals are the most prominent biomedical signal type used in clinical medicine. Their compression is important and widely researched in the medical informatics community. In the previous literature compression efficacy has been investigated only in the context of how much known or developed methods reduced the storage required by compressed forms of original ECG signals. Sometimes statistical signal evaluations based on, for example, root mean square error were studied. In previous research we developed a refined method for signal compression and tested it jointly with several known techniques for other biomedical signals. Our method of so-called successive approximation quantization used with wavelets was one of the most successful in those tests. In this paper, we studied to what extent these lossy compression methods altered values of medical parameters (medical information) computed from signals. Since the methods are lossy, some information is lost due to the compression when a high enough compression ratio is reached. We found that ECG signals sampled at 400 Hz could be compressed to one fourth of their original storage space, but the values of their medical parameters changed less than 5% due to compression, which indicates reliable results.

  15. An RBF-based compression method for image-based relighting.

    PubMed

    Leung, Chi-Sing; Wong, Tien-Tsin; Lam, Ping-Man; Choy, Kwok-Hung

    2006-04-01

    In image-based relighting, a pixel is associated with a number of sampled radiance values. This paper presents a two-level compression method. In the first level, the plenoptic property of a pixel is approximated by a spherical radial basis function (SRBF) network. That means that the spherical plenoptic function of each pixel is represented by a number of SRBF weights. In the second level, we apply a wavelet-based method to compress these SRBF weights. To reduce the visual artifact due to quantization noise, we develop a constrained method for estimating the SRBF weights. Our proposed approach is superior to JPEG, JPEG2000, and MPEG. Compared with the spherical harmonics approach, our approach has a lower complexity, while the visual quality is comparable. The real-time rendering method for our SRBF representation is also discussed.

  16. Optimized satellite image compression and reconstruction via evolution strategies

    NASA Astrophysics Data System (ADS)

    Babb, Brendan; Moore, Frank; Peterson, Michael

    2009-05-01

    This paper describes the automatic discovery, via an Evolution Strategy with Covariance Matrix Adaptation (CMA-ES), of vectors of real-valued coefficients representing matched forward and inverse transforms that outperform the 9/7 Cohen-Daubechies-Feauveau (CDF) discrete wavelet transform (DWT) for satellite image compression and reconstruction under conditions subject to quantization error. The best transform evolved during this study reduces the mean squared error (MSE) present in reconstructed satellite images by an average of 33.78% (1.79 dB), while maintaining the average information entropy (IE) of compressed images at 99.57% in comparison to the wavelet. In addition, this evolved transform achieves 49.88% (3.00 dB) average MSE reduction when tested on 80 images from the FBI fingerprint test set, and 42.35% (2.39 dB) average MSE reduction when tested on a set of 18 digital photographs, while achieving average IE of 104.36% and 100.08%, respectively. These results indicate that our evolved transform greatly improves the quality of reconstructed images without substantial loss of compression capability over a broad range of image classes.

  17. Differential calculus on quantized simple lie groups

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav

    1991-07-01

    Differential calculi, generalizations of Woronowicz's four-dimensional calculus on SU q (2), are introduced for quantized classical simple Lie groups in a constructive way. For this purpose, the approach of Faddeev and his collaborators to quantum groups was used. An equivalence of Woronowicz's enveloping algebra generated by the dual space to the left-invariant differential forms and the corresponding quantized universal enveloping algebra, is obtained for our differential calculi. Real forms for q ∈ ℝ are also discussed.

  18. Data compression experiments with LANDSAT thematic mapper and Nimbus-7 coastal zone color scanner data

    NASA Technical Reports Server (NTRS)

    Tilton, James C.; Ramapriyan, H. K.

    1989-01-01

    A case study is presented where an image segmentation based compression technique is applied to LANDSAT Thematic Mapper (TM) and Nimbus-7 Coastal Zone Color Scanner (CZCS) data. The compression technique, called Spatially Constrained Clustering (SCC), can be regarded as an adaptive vector quantization approach. The SCC can be applied to either single or multiple spectral bands of image data. The segmented image resulting from SCC is encoded in small rectangular blocks, with the codebook varying from block to block. Lossless compression potential (LDP) of sample TM and CZCS images are evaluated. For the TM test image, the LCP is 2.79. For the CZCS test image the LCP is 1.89, even though when only a cloud-free section of the image is considered the LCP increases to 3.48. Examples of compressed images are shown at several compression ratios ranging from 4 to 15. In the case of TM data, the compressed data are classified using the Bayes' classifier. The results show an improvement in the similarity between the classification results and ground truth when compressed data are used, thus showing that compression is, in fact, a useful first step in the analysis.

  19. 2-Step scalar deadzone quantization for bitplane image coding.

    PubMed

    Auli-Llinas, Francesc

    2013-12-01

    Modern lossy image coding systems generate a quality progressive codestream that, truncated at increasing rates, produces an image with decreasing distortion. Quality progressivity is commonly provided by an embedded quantizer that employs uniform scalar deadzone quantization (USDQ) together with a bitplane coding strategy. This paper introduces a 2-step scalar deadzone quantization (2SDQ) scheme that achieves same coding performance as that of USDQ while reducing the coding passes and the emitted symbols of the bitplane coding engine. This serves to reduce the computational costs of the codec and/or to code high dynamic range images. The main insights behind 2SDQ are the use of two quantization step sizes that approximate wavelet coefficients with more or less precision depending on their density, and a rate-distortion optimization technique that adjusts the distortion decreases produced when coding 2SDQ indexes. The integration of 2SDQ in current codecs is straightforward. The applicability and efficiency of 2SDQ are demonstrated within the framework of JPEG2000.

  20. Subjective evaluations of integer cosine transform compressed Galileo solid state imagery

    NASA Technical Reports Server (NTRS)

    Haines, Richard F.; Gold, Yaron; Grant, Terry; Chuang, Sherry

    1994-01-01

    This paper describes a study conducted for the Jet Propulsion Laboratory, Pasadena, California, using 15 evaluators from 12 institutions involved in the Galileo Solid State Imaging (SSI) experiment. The objective of the study was to determine the impact of integer cosine transform (ICT) compression using specially formulated quantization (q) tables and compression ratios on acceptability of the 800 x 800 x 8 monochromatic astronomical images as evaluated visually by Galileo SSI mission scientists. Fourteen different images in seven image groups were evaluated. Each evaluator viewed two versions of the same image side by side on a high-resolution monitor; each was compressed using a different q level. First the evaluators selected the image with the highest overall quality to support them in their visual evaluations of image content. Next they rated each image using a scale from one to five indicating its judged degree of usefulness. Up to four preselected types of images with and without noise were presented to each evaluator.

  1. Third Quantization and Quantum Universes

    NASA Astrophysics Data System (ADS)

    Kim, Sang Pyo

    2014-01-01

    We study the third quantization of the Friedmann-Robertson-Walker cosmology with N-minimal massless fields. The third quantized Hamiltonian for the Wheeler-DeWitt equation in the minisuperspace consists of infinite number of intrinsic time-dependent, decoupled oscillators. The Hamiltonian has a pair of invariant operators for each universe with conserved momenta of the fields that play a role of the annihilation and the creation operators and that construct various quantum states for the universe. The closed universe exhibits an interesting feature of transitions from stable states to tachyonic states depending on the conserved momenta of the fields. In the classical forbidden unstable regime, the quantum states have googolplex growing position and conjugate momentum dispersions, which defy any measurements of the position of the universe.

  2. Group theoretical quantization of isotropic loop cosmology

    NASA Astrophysics Data System (ADS)

    Livine, Etera R.; Martín-Benito, Mercedes

    2012-06-01

    We achieve a group theoretical quantization of the flat Friedmann-Robertson-Walker model coupled to a massless scalar field adopting the improved dynamics of loop quantum cosmology. Deparemetrizing the system using the scalar field as internal time, we first identify a complete set of phase space observables whose Poisson algebra is isomorphic to the su(1,1) Lie algebra. It is generated by the volume observable and the Hamiltonian. These observables describe faithfully the regularized phase space underlying the loop quantization: they account for the polymerization of the variable conjugate to the volume and for the existence of a kinematical nonvanishing minimum volume. Since the Hamiltonian is an element in the su(1,1) Lie algebra, the dynamics is now implemented as SU(1, 1) transformations. At the quantum level, the system is quantized as a timelike irreducible representation of the group SU(1, 1). These representations are labeled by a half-integer spin, which gives the minimal volume. They provide superselection sectors without quantization anomalies and no factor ordering ambiguity arises when representing the Hamiltonian. We then explicitly construct SU(1, 1) coherent states to study the quantum evolution. They not only provide semiclassical states but truly dynamical coherent states. Their use further clarifies the nature of the bounce that resolves the big bang singularity.

  3. Generalized noise terms for the quantized fluctuational electrodynamics

    NASA Astrophysics Data System (ADS)

    Partanen, Mikko; Häyrynen, Teppo; Tulkki, Jukka; Oksanen, Jani

    2017-03-01

    The quantization of optical fields in vacuum has been known for decades, but extending the field quantization to lossy and dispersive media in nonequilibrium conditions has proven to be complicated due to the position-dependent electric and magnetic responses of the media. In fact, consistent position-dependent quantum models for the photon number in resonant structures have only been formulated very recently and only for dielectric media. Here we present a general position-dependent quantized fluctuational electrodynamics (QFED) formalism that extends the consistent field quantization to describe the photon number also in the presence of magnetic field-matter interactions. It is shown that the magnetic fluctuations provide an additional degree of freedom in media where the magnetic coupling to the field is prominent. Therefore, the field quantization requires an additional independent noise operator that is commuting with the conventional bosonic noise operator describing the polarization current fluctuations in dielectric media. In addition to allowing the detailed description of field fluctuations, our methods provide practical tools for modeling optical energy transfer and the formation of thermal balance in general dielectric and magnetic nanodevices. We use QFED to investigate the magnetic properties of microcavity systems to demonstrate an example geometry in which it is possible to probe fields arising from the electric and magnetic source terms. We show that, as a consequence of the magnetic Purcell effect, the tuning of the position of an emitter layer placed inside a vacuum cavity can make the emissivity of a magnetic emitter to exceed the emissivity of a corresponding electric emitter.

  4. Quality Aware Compression of Electrocardiogram Using Principal Component Analysis.

    PubMed

    Gupta, Rajarshi

    2016-05-01

    Electrocardiogram (ECG) compression finds wide application in various patient monitoring purposes. Quality control in ECG compression ensures reconstruction quality and its clinical acceptance for diagnostic decision making. In this paper, a quality aware compression method of single lead ECG is described using principal component analysis (PCA). After pre-processing, beat extraction and PCA decomposition, two independent quality criteria, namely, bit rate control (BRC) or error control (EC) criteria were set to select optimal principal components, eigenvectors and their quantization level to achieve desired bit rate or error measure. The selected principal components and eigenvectors were finally compressed using a modified delta and Huffman encoder. The algorithms were validated with 32 sets of MIT Arrhythmia data and 60 normal and 30 sets of diagnostic ECG data from PTB Diagnostic ECG data ptbdb, all at 1 kHz sampling. For BRC with a CR threshold of 40, an average Compression Ratio (CR), percentage root mean squared difference normalized (PRDN) and maximum absolute error (MAE) of 50.74, 16.22 and 0.243 mV respectively were obtained. For EC with an upper limit of 5 % PRDN and 0.1 mV MAE, the average CR, PRDN and MAE of 9.48, 4.13 and 0.049 mV respectively were obtained. For mitdb data 117, the reconstruction quality could be preserved up to CR of 68.96 by extending the BRC threshold. The proposed method yields better results than recently published works on quality controlled ECG compression.

  5. Quantization of an electromagnetic field in two-dimensional photonic structures based on the scattering matrix formalism ( S-quantization)

    NASA Astrophysics Data System (ADS)

    Ivanov, K. A.; Nikolaev, V. V.; Gubaydullin, A. R.; Kaliteevski, M. A.

    2017-10-01

    Based on the scattering matrix formalism, we have developed a method of quantization of an electromagnetic field in two-dimensional photonic nanostructures ( S-quantization in the two-dimensional case). In this method, the fields at the boundaries of the quantization box are expanded into a Fourier series and are related with each other by the scattering matrix of the system, which is the product of matrices describing the propagation of plane waves in empty regions of the quantization box and the scattering matrix of the photonic structure (or an arbitrary inhomogeneity). The quantization condition (similarly to the onedimensional case) is formulated as follows: the eigenvalues of the scattering matrix are equal to unity, which corresponds to the fact that the set of waves that are incident on the structure (components of the expansion into the Fourier series) is equal to the set of waves that travel away from the structure (outgoing waves). The coefficients of the matrix of scattering through the inhomogeneous structure have been calculated using the following procedure: the structure is divided into parallel layers such that the permittivity in each layer varies only along the axis that is perpendicular to the layers. Using the Fourier transform, the Maxwell equations have been written in the form of a matrix that relates the Fourier components of the electric field at the boundaries of neighboring layers. The product of these matrices is the transfer matrix in the basis of the Fourier components of the electric field. Represented in a block form, it is composed by matrices that contain the reflection and transmission coefficients for the Fourier components of the field, which, in turn, constitute the scattering matrix. The developed method considerably simplifies the calculation scheme for the analysis of the behavior of the electromagnetic field in structures with a two-dimensional inhomogeneity. In addition, this method makes it possible to obviate

  6. Density-Dependent Quantized Least Squares Support Vector Machine for Large Data Sets.

    PubMed

    Nan, Shengyu; Sun, Lei; Chen, Badong; Lin, Zhiping; Toh, Kar-Ann

    2017-01-01

    Based on the knowledge that input data distribution is important for learning, a data density-dependent quantization scheme (DQS) is proposed for sparse input data representation. The usefulness of the representation scheme is demonstrated by using it as a data preprocessing unit attached to the well-known least squares support vector machine (LS-SVM) for application on big data sets. Essentially, the proposed DQS adopts a single shrinkage threshold to obtain a simple quantization scheme, which adapts its outputs to input data density. With this quantization scheme, a large data set is quantized to a small subset where considerable sample size reduction is generally obtained. In particular, the sample size reduction can save significant computational cost when using the quantized subset for feature approximation via the Nyström method. Based on the quantized subset, the approximated features are incorporated into LS-SVM to develop a data density-dependent quantized LS-SVM (DQLS-SVM), where an analytic solution is obtained in the primal solution space. The developed DQLS-SVM is evaluated on synthetic and benchmark data with particular emphasis on large data sets. Extensive experimental results show that the learning machine incorporating DQS attains not only high computational efficiency but also good generalization performance.

  7. Superfield quantization

    NASA Astrophysics Data System (ADS)

    Batalin, I. A.; Bering, K.; Damgaard, P. H.

    1998-03-01

    We present a superfield formulation of the quantization program for theories with first-class constraints. An exact operator formulation is given, and we show how to set up a phase-space path integral entirely in terms of superfields. BRST transformations and canonical transformations enter on equal footing, and they allow us to establish a superspace analog of the BFV theorem. We also present a formal derivation of the Lagrangian superfield analogue of the field-antifield formalism by an integration over half of the phase-space variables.

  8. q-bosons and the q-analogue quantized field

    NASA Technical Reports Server (NTRS)

    Nelson, Charles A.

    1995-01-01

    The q-analogue coherent states are used to identify physical signatures for the presence of a 1-analogue quantized radiation field in the q-CS classical limits where the absolute value of z is large. In this quantum-optics-like limit, the fractional uncertainties of most physical quantities (momentum, position, amplitude, phase) which characterize the quantum field are O(1). They only vanish as O(1/absolute value of z) when q = 1. However, for the number operator, N, and the N-Hamiltonian for a free q-boson gas, H(sub N) = h(omega)(N + 1/2), the fractional uncertainties do still approach zero. A signature for q-boson counting statistics is that (Delta N)(exp 2)/ (N) approaches 0 as the absolute value of z approaches infinity. Except for its O(1) fractional uncertainty, the q-generalization of the Hermitian phase operator of Pegg and Barnett, phi(sub q), still exhibits normal classical behavior. The standard number-phase uncertainty-relation, Delta(N) Delta phi(sub q) = 1/2, and the approximate commutation relation, (N, phi(sub q)) = i, still hold for the single-mode q-analogue quantized field. So, N and phi(sub q) are almost canonically conjugate operators in the q-CS classical limit. The q-analogue CS's minimize this uncertainty relation for moderate (absolute value of z)(exp 2).

  9. 4D Sommerfeld quantization of the complex extended charge

    NASA Astrophysics Data System (ADS)

    Bulyzhenkov, Igor E.

    2017-12-01

    Gravitational fields and accelerations cannot change quantized magnetic flux in closed line contours due to flat 3D section of curved 4D space-time-matter. The relativistic Bohr-Sommerfeld quantization of the imaginary charge reveals an electric analog of the Compton length, which can introduce quantitatively the fine structure constant and the Plank length.

  10. High-resolution frequency measurement method with a wide-frequency range based on a quantized phase step law.

    PubMed

    Du, Baoqiang; Dong, Shaofeng; Wang, Yanfeng; Guo, Shuting; Cao, Lingzhi; Zhou, Wei; Zuo, Yandi; Liu, Dan

    2013-11-01

    A wide-frequency and high-resolution frequency measurement method based on the quantized phase step law is presented in this paper. Utilizing a variation law of the phase differences, the direct different frequency phase processing, and the phase group synchronization phenomenon, combining an A/D converter and the adaptive phase shifting principle, a counter gate is established in the phase coincidences at one-group intervals, which eliminates the ±1 counter error in the traditional frequency measurement method. More importantly, the direct phase comparison, the measurement, and the control between any periodic signals have been realized without frequency normalization in this method. Experimental results show that sub-picosecond resolution can be easily obtained in the frequency measurement, the frequency standard comparison, and the phase-locked control based on the phase quantization processing technique. The method may be widely used in navigation positioning, space techniques, communication, radar, astronomy, atomic frequency standards, and other high-tech fields.

  11. Generalized radiation-field quantization method and the Petermann excess-noise factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Y.-J.; Siegman, A.E.; E.L. Ginzton Laboratory, Stanford University, Stanford, California 94305

    2003-10-01

    We propose a generalized radiation-field quantization formalism, where quantization does not have to be referenced to a set of power-orthogonal eigenmodes as conventionally required. This formalism can be used to directly quantize the true system eigenmodes, which can be non-power-orthogonal due to the open nature of the system or the gain/loss medium involved in the system. We apply this generalized field quantization to the laser linewidth problem, in particular, lasers with non-power-orthogonal oscillation modes, and derive the excess-noise factor in a fully quantum-mechanical framework. We also show that, despite the excess-noise factor for oscillating modes, the total spatially averaged decaymore » rate for the laser atoms remains unchanged.« less

  12. Quantized Algebra I Texts

    ERIC Educational Resources Information Center

    DeBuvitz, William

    2014-01-01

    I am a volunteer reader at the Princeton unit of "Learning Ally" (formerly "Recording for the Blind & Dyslexic") and I recently discovered that high school students are introduced to the concept of quantization well before they take chemistry and physics. For the past few months I have been reading onto computer files a…

  13. Introduction to quantized LIE groups and algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tjin, T.

    1992-10-10

    In this paper, the authors give a self-contained introduction to the theory of quantum groups according to Drinfeld, highlighting the formal aspects as well as the applications to the Yang-Baxter equation and representation theory. Introductions to Hopf algebras, Poisson structures and deformation quantization are also provided. After defining Poisson Lie groups the authors study their relation to Lie bialgebras and the classical Yang-Baxter equation. Then the authors explain in detail the concept of quantization for them. As an example the quantization of sl[sub 2] is explicitly carried out. Next, the authors show how quantum groups are related to the Yang-Baxtermore » equation and how they can be used to solve it. Using the quantum double construction, the authors explicitly construct the universal R matrix for the quantum sl[sub 2] algebra. In the last section, the authors deduce all finite-dimensional irreducible representations for q a root of unity. The authors also give their tensor product decomposition (fusion rules), which is relevant to conformal field theory.« less

  14. Conductance Quantization in Resistive Random Access Memory

    NASA Astrophysics Data System (ADS)

    Li, Yang; Long, Shibing; Liu, Yang; Hu, Chen; Teng, Jiao; Liu, Qi; Lv, Hangbing; Suñé, Jordi; Liu, Ming

    2015-10-01

    The intrinsic scaling-down ability, simple metal-insulator-metal (MIM) sandwich structure, excellent performances, and complementary metal-oxide-semiconductor (CMOS) technology-compatible fabrication processes make resistive random access memory (RRAM) one of the most promising candidates for the next-generation memory. The RRAM device also exhibits rich electrical, thermal, magnetic, and optical effects, in close correlation with the abundant resistive switching (RS) materials, metal-oxide interface, and multiple RS mechanisms including the formation/rupture of nanoscale to atomic-sized conductive filament (CF) incorporated in RS layer. Conductance quantization effect has been observed in the atomic-sized CF in RRAM, which provides a good opportunity to deeply investigate the RS mechanism in mesoscopic dimension. In this review paper, the operating principles of RRAM are introduced first, followed by the summarization of the basic conductance quantization phenomenon in RRAM and the related RS mechanisms, device structures, and material system. Then, we discuss the theory and modeling of quantum transport in RRAM. Finally, we present the opportunities and challenges in quantized RRAM devices and our views on the future prospects.

  15. Conductance Quantization in Resistive Random Access Memory.

    PubMed

    Li, Yang; Long, Shibing; Liu, Yang; Hu, Chen; Teng, Jiao; Liu, Qi; Lv, Hangbing; Suñé, Jordi; Liu, Ming

    2015-12-01

    The intrinsic scaling-down ability, simple metal-insulator-metal (MIM) sandwich structure, excellent performances, and complementary metal-oxide-semiconductor (CMOS) technology-compatible fabrication processes make resistive random access memory (RRAM) one of the most promising candidates for the next-generation memory. The RRAM device also exhibits rich electrical, thermal, magnetic, and optical effects, in close correlation with the abundant resistive switching (RS) materials, metal-oxide interface, and multiple RS mechanisms including the formation/rupture of nanoscale to atomic-sized conductive filament (CF) incorporated in RS layer. Conductance quantization effect has been observed in the atomic-sized CF in RRAM, which provides a good opportunity to deeply investigate the RS mechanism in mesoscopic dimension. In this review paper, the operating principles of RRAM are introduced first, followed by the summarization of the basic conductance quantization phenomenon in RRAM and the related RS mechanisms, device structures, and material system. Then, we discuss the theory and modeling of quantum transport in RRAM. Finally, we present the opportunities and challenges in quantized RRAM devices and our views on the future prospects.

  16. Quantization Of Temperature

    NASA Astrophysics Data System (ADS)

    O'Brien, Paul

    2017-01-01

    Max Plank did not quantize temperature. I will show that the Plank temperature violates the Plank scale. Plank stated that the Plank scale was Natures scale and independent of human construct. Also stating that even aliens would derive the same values. He made a huge mistake, because temperature is based on the Kelvin scale, which is man-made just like the meter and kilogram. He did not discover natures scale for the quantization of temperature. His formula is flawed, and his value is incorrect. Plank's calculation is Tp = c2Mp/Kb. The general form of this equation is T = E/Kb Why is this wrong? The temperature for a fixed amount of energy is dependent upon the volume it occupies. Using the correct formula involves specifying the radius of the volume in the form of (RE). This leads to an inequality and a limit that is equivalent to the Bekenstein Bound, but using temperature instead of entropy. Rewriting this equation as a limit defines both the maximum temperature and Boltzmann's constant. This will saturate any space-time boundary with maximum temperature and information density, also the minimum radius and entropy. The general form of the equation then becomes a limit in BH thermodynamics T <= (RE)/(λKb) .

  17. A hybrid LBG/lattice vector quantizer for high quality image coding

    NASA Technical Reports Server (NTRS)

    Ramamoorthy, V.; Sayood, K.; Arikan, E. (Editor)

    1991-01-01

    It is well known that a vector quantizer is an efficient coder offering a good trade-off between quantization distortion and bit rate. The performance of a vector quantizer asymptotically approaches the optimum bound with increasing dimensionality. A vector quantized image suffers from the following types of degradations: (1) edge regions in the coded image contain staircase effects, (2) quasi-constant or slowly varying regions suffer from contouring effects, and (3) textured regions lose details and suffer from granular noise. All three of these degradations are due to the finite size of the code book, the distortion measures used in the design, and due to the finite training procedure involved in the construction of the code book. In this paper, we present an adaptive technique which attempts to ameliorate the edge distortion and contouring effects.

  18. Simultaneous Conduction and Valence Band Quantization in Ultrashallow High-Density Doping Profiles in Semiconductors

    NASA Astrophysics Data System (ADS)

    Mazzola, F.; Wells, J. W.; Pakpour-Tabrizi, A. C.; Jackman, R. B.; Thiagarajan, B.; Hofmann, Ph.; Miwa, J. A.

    2018-01-01

    We demonstrate simultaneous quantization of conduction band (CB) and valence band (VB) states in silicon using ultrashallow, high-density, phosphorus doping profiles (so-called Si:P δ layers). We show that, in addition to the well-known quantization of CB states within the dopant plane, the confinement of VB-derived states between the subsurface P dopant layer and the Si surface gives rise to a simultaneous quantization of VB states in this narrow region. We also show that the VB quantization can be explained using a simple particle-in-a-box model, and that the number and energy separation of the quantized VB states depend on the depth of the P dopant layer beneath the Si surface. Since the quantized CB states do not show a strong dependence on the dopant depth (but rather on the dopant density), it is straightforward to exhibit control over the properties of the quantized CB and VB states independently of each other by choosing the dopant density and depth accordingly, thus offering new possibilities for engineering quantum matter.

  19. Constraints on operator ordering from third quantization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohkuwa, Yoshiaki; Faizal, Mir, E-mail: f2mir@uwaterloo.ca; Ezawa, Yasuo

    2016-02-15

    In this paper, we analyse the Wheeler–DeWitt equation in the third quantized formalism. We will demonstrate that for certain operator ordering, the early stages of the universe are dominated by quantum fluctuations, and the universe becomes classical at later stages during the cosmic expansion. This is physically expected, if the universe is formed from quantum fluctuations in the third quantized formalism. So, we will argue that this physical requirement can be used to constrain the form of the operator ordering chosen. We will explicitly demonstrate this to be the case for two different cosmological models.

  20. Quantization and Quantum-Like Phenomena: A Number Amplitude Approach

    NASA Astrophysics Data System (ADS)

    Robinson, T. R.; Haven, E.

    2015-12-01

    Historically, quantization has meant turning the dynamical variables of classical mechanics that are represented by numbers into their corresponding operators. Thus the relationships between classical variables determine the relationships between the corresponding quantum mechanical operators. Here, we take a radically different approach to this conventional quantization procedure. Our approach does not rely on any relations based on classical Hamiltonian or Lagrangian mechanics nor on any canonical quantization relations, nor even on any preconceptions of particle trajectories in space and time. Instead we examine the symmetry properties of certain Hermitian operators with respect to phase changes. This introduces harmonic operators that can be identified with a variety of cyclic systems, from clocks to quantum fields. These operators are shown to have the characteristics of creation and annihilation operators that constitute the primitive fields of quantum field theory. Such an approach not only allows us to recover the Hamiltonian equations of classical mechanics and the Schrödinger wave equation from the fundamental quantization relations, but also, by freeing the quantum formalism from any physical connotation, makes it more directly applicable to non-physical, so-called quantum-like systems. Over the past decade or so, there has been a rapid growth of interest in such applications. These include, the use of the Schrödinger equation in finance, second quantization and the number operator in social interactions, population dynamics and financial trading, and quantum probability models in cognitive processes and decision-making. In this paper we try to look beyond physical analogies to provide a foundational underpinning of such applications.

  1. Quantized magnetoresistance in atomic-size contacts.

    PubMed

    Sokolov, Andrei; Zhang, Chunjuan; Tsymbal, Evgeny Y; Redepenning, Jody; Doudin, Bernard

    2007-03-01

    When the dimensions of a metallic conductor are reduced so that they become comparable to the de Broglie wavelengths of the conduction electrons, the absence of scattering results in ballistic electron transport and the conductance becomes quantized. In ferromagnetic metals, the spin angular momentum of the electrons results in spin-dependent conductance quantization and various unusual magnetoresistive phenomena. Theorists have predicted a related phenomenon known as ballistic anisotropic magnetoresistance (BAMR). Here we report the first experimental evidence for BAMR by observing a stepwise variation in the ballistic conductance of cobalt nanocontacts as the direction of an applied magnetic field is varied. Our results show that BAMR can be positive and negative, and exhibits symmetric and asymmetric angular dependences, consistent with theoretical predictions.

  2. Response of two-band systems to a single-mode quantized field

    NASA Astrophysics Data System (ADS)

    Shi, Z. C.; Shen, H. Z.; Wang, W.; Yi, X. X.

    2016-03-01

    The response of topological insulators (TIs) to an external weakly classical field can be expressed in terms of Kubo formula, which predicts quantized Hall conductivity of the quantum Hall family. The response of TIs to a single-mode quantized field, however, remains unexplored. In this work, we take the quantum nature of the external field into account and define a Hall conductance to characterize the linear response of a two-band system to the quantized field. The theory is then applied to topological insulators. Comparisons with the traditional Hall conductance are presented and discussed.

  3. Thermal distributions of first, second and third quantization

    NASA Astrophysics Data System (ADS)

    McGuigan, Michael

    1989-05-01

    We treat first quantized string theory as two-dimensional gravity plus matter. This allows us to compute the two-dimensional density of one string states by the method of Darwin and Fowler. One can then use second quantized methods to form a grand microcanonical ensemble in which one can compute the density of multistring states of arbitrary momentum and mass. It is argued that modelling an elementary particle as a d-1-dimensional object whose internal degrees of freedom are described by a massless d-dimensional gas yields a density of internal states given by σ d(m)∼m -aexp((bm) {2(d-1)}/{d}) . This indicates that these objects cannot be in thermal equilibrium at any temperature unless d⩽2; that is for a string or a particle. Finally, we discuss the application of the above ideas to four-dimensional gravity and introduce an ensemble of multiuniverse states parameterized by second quantized canonical momenta and particle number.

  4. Quantized correlation coefficient for measuring reproducibility of ChIP-chip data.

    PubMed

    Peng, Shouyong; Kuroda, Mitzi I; Park, Peter J

    2010-07-27

    Chromatin immunoprecipitation followed by microarray hybridization (ChIP-chip) is used to study protein-DNA interactions and histone modifications on a genome-scale. To ensure data quality, these experiments are usually performed in replicates, and a correlation coefficient between replicates is used often to assess reproducibility. However, the correlation coefficient can be misleading because it is affected not only by the reproducibility of the signal but also by the amount of binding signal present in the data. We develop the Quantized correlation coefficient (QCC) that is much less dependent on the amount of signal. This involves discretization of data into set of quantiles (quantization), a merging procedure to group the background probes, and recalculation of the Pearson correlation coefficient. This procedure reduces the influence of the background noise on the statistic, which then properly focuses more on the reproducibility of the signal. The performance of this procedure is tested in both simulated and real ChIP-chip data. For replicates with different levels of enrichment over background and coverage, we find that QCC reflects reproducibility more accurately and is more robust than the standard Pearson or Spearman correlation coefficients. The quantization and the merging procedure can also suggest a proper quantile threshold for separating signal from background for further analysis. To measure reproducibility of ChIP-chip data correctly, a correlation coefficient that is robust to the amount of signal present should be used. QCC is one such measure. The QCC statistic can also be applied in a variety of other contexts for measuring reproducibility, including analysis of array CGH data for DNA copy number and gene expression data.

  5. Unique Fock quantization of scalar cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Fernández-Méndez, Mikel; Mena Marugán, Guillermo A.; Olmedo, Javier; Velhinho, José M.

    2012-05-01

    We investigate the ambiguities in the Fock quantization of the scalar perturbations of a Friedmann-Lemaître-Robertson-Walker model with a massive scalar field as matter content. We consider the case of compact spatial sections (thus avoiding infrared divergences), with the topology of a three-sphere. After expanding the perturbations in series of eigenfunctions of the Laplace-Beltrami operator, the Hamiltonian of the system is written up to quadratic order in them. We fix the gauge of the local degrees of freedom in two different ways, reaching in both cases the same qualitative results. A canonical transformation, which includes the scaling of the matter-field perturbations by the scale factor of the geometry, is performed in order to arrive at a convenient formulation of the system. We then study the quantization of these perturbations in the classical background determined by the homogeneous variables. Based on previous work, we introduce a Fock representation for the perturbations in which: (a) the complex structure is invariant under the isometries of the spatial sections and (b) the field dynamics is implemented as a unitary operator. These two properties select not only a unique unitary equivalence class of representations, but also a preferred field description, picking up a canonical pair of field variables among all those that can be obtained by means of a time-dependent scaling of the matter field (completed into a linear canonical transformation). Finally, we present an equivalent quantization constructed in terms of gauge-invariant quantities. We prove that this quantization can be attained by a mode-by-mode time-dependent linear canonical transformation which admits a unitary implementation, so that it is also uniquely determined.

  6. A Algebraic Approach to the Quantization of Constrained Systems: Finite Dimensional Examples.

    NASA Astrophysics Data System (ADS)

    Tate, Ranjeet Shekhar

    1992-01-01

    General relativity has two features in particular, which make it difficult to apply to it existing schemes for the quantization of constrained systems. First, there is no background structure in the theory, which could be used, e.g., to regularize constraint operators, to identify a "time" or to define an inner product on physical states. Second, in the Ashtekar formulation of general relativity, which is a promising avenue to quantum gravity, the natural variables for quantization are not canonical; and, classically, there are algebraic identities between them. Existing schemes are usually not concerned with such identities. Thus, from the point of view of canonical quantum gravity, it has become imperative to find a framework for quantization which provides a general prescription to find the physical inner product, and is flexible enough to accommodate non -canonical variables. In this dissertation I present an algebraic formulation of the Dirac approach to the quantization of constrained systems. The Dirac quantization program is augmented by a general principle to find the inner product on physical states. Essentially, the Hermiticity conditions on physical operators determine this inner product. I also clarify the role in quantum theory of possible algebraic identities between the elementary variables. I use this approach to quantize various finite dimensional systems. Some of these models test the new aspects of the algebraic framework. Others bear qualitative similarities to general relativity, and may give some insight into the pitfalls lurking in quantum gravity. The previous quantizations of one such model had many surprising features. When this model is quantized using the algebraic program, there is no longer any unexpected behaviour. I also construct the complete quantum theory for a previously unsolved relativistic cosmology. All these models indicate that the algebraic formulation provides powerful new tools for quantization. In (spatially compact

  7. Subband Image Coding with Jointly Optimized Quantizers

    NASA Technical Reports Server (NTRS)

    Kossentini, Faouzi; Chung, Wilson C.; Smith Mark J. T.

    1995-01-01

    An iterative design algorithm for the joint design of complexity- and entropy-constrained subband quantizers and associated entropy coders is proposed. Unlike conventional subband design algorithms, the proposed algorithm does not require the use of various bit allocation algorithms. Multistage residual quantizers are employed here because they provide greater control of the complexity-performance tradeoffs, and also because they allow efficient and effective high-order statistical modeling. The resulting subband coder exploits statistical dependencies within subbands, across subbands, and across stages, mainly through complexity-constrained high-order entropy coding. Experimental results demonstrate that the complexity-rate-distortion performance of the new subband coder is exceptional.

  8. Quantized impedance dealing with the damping behavior of the one-dimensional oscillator

    NASA Astrophysics Data System (ADS)

    Zhu, Jinghao; Zhang, Jing; Li, Yuan; Zhang, Yong; Fang, Zhengji; Zhao, Peide; Li, Erping

    2015-11-01

    A quantized impedance is proposed to theoretically establish the relationship between the atomic eigenfrequency and the intrinsic frequency of the one-dimensional oscillator in this paper. The classical oscillator is modified by the idea that the electron transition is treated as a charge-discharge process of a suggested capacitor with the capacitive energy equal to the energy level difference of the jumping electron. The quantized capacitance of the impedance interacting with the jumping electron can lead the resonant frequency of the oscillator to the same as the atomic eigenfrequency. The quantized resistance reflects that the damping coefficient of the oscillator is the mean collision frequency of the transition electron. In addition, the first and third order electric susceptibilities based on the oscillator are accordingly quantized. Our simulation of the hydrogen atom emission spectrum based on the proposed method agrees well with the experimental one. Our results exhibits that the one-dimensional oscillator with the quantized impedance may become useful in the estimations of the refractive index and one- or multi-photon absorption coefficients of some nonmagnetic media composed of hydrogen-like atoms.

  9. Magnetic quantization in monolayer bismuthene

    NASA Astrophysics Data System (ADS)

    Chen, Szu-Chao; Chiu, Chih-Wei; Lin, Hui-Chi; Lin, Ming-Fa

    The magnetic quantization in monolayer bismuthene is investigated by the generalized tight-binding model. The quite large Hamiltonian matrix is built from the tight-binding functions of the various sublattices, atomic orbitals and spin states. Due to the strong spin orbital coupling and sp3 bonding, monolayer bismuthene has the diverse low-lying energy bands such as the parabolic, linear and oscillating energy bands. The main features of band structures are further reflected in the rich magnetic quantization. Under a uniform perpendicular magnetic field (Bz) , three groups of Landau levels (LLs) with distinct features are revealed near the Fermi level. Their Bz-dependent energy spectra display the linear, square-root and non-monotonous dependences, respectively. These LLs are dominated by the combinations of the 6pz orbital and (6px,6py) orbitals as a result of strong sp3 bonding. Specifically, the LL anti-crossings only occur between LLs originating from the oscillating energy band.

  10. Weighted Bergman Kernels and Quantization}

    NASA Astrophysics Data System (ADS)

    Engliš, Miroslav

    Let Ω be a bounded pseudoconvex domain in CN, φ, ψ two positive functions on Ω such that - log ψ, - log φ are plurisubharmonic, and z∈Ω a point at which - log φ is smooth and strictly plurisubharmonic. We show that as k-->∞, the Bergman kernels with respect to the weights φkψ have an asymptotic expansion for x,y near z, where φ(x,y) is an almost-analytic extension of &\\phi(x)=φ(x,x) and similarly for ψ. Further, . If in addition Ω is of finite type, φ,ψ behave reasonably at the boundary, and - log φ, - log ψ are strictly plurisubharmonic on Ω, we obtain also an analogous asymptotic expansion for the Berezin transform and give applications to the Berezin quantization. Finally, for Ω smoothly bounded and strictly pseudoconvex and φ a smooth strictly plurisubharmonic defining function for Ω, we also obtain results on the Berezin-Toeplitz quantization.

  11. The Holographic Electron Density Theorem, de-quantization, re-quantization, and nuclear charge space extrapolations of the Universal Molecule Model

    NASA Astrophysics Data System (ADS)

    Mezey, Paul G.

    2017-11-01

    Two strongly related theorems on non-degenerate ground state electron densities serve as the basis of "Molecular Informatics". The Hohenberg-Kohn theorem is a statement on global molecular information, ensuring that the complete electron density contains the complete molecular information. However, the Holographic Electron Density Theorem states more: the local information present in each and every positive volume density fragment is already complete: the information in the fragment is equivalent to the complete molecular information. In other words, the complete molecular information provided by the Hohenberg-Kohn Theorem is already provided, in full, by any positive volume, otherwise arbitrarily small electron density fragment. In this contribution some of the consequences of the Holographic Electron Density Theorem are discussed within the framework of the "Nuclear Charge Space" and the Universal Molecule Model. In the Nuclear Charge Space" the nuclear charges are regarded as continuous variables, and in the more general Universal Molecule Model some other quantized parameteres are also allowed to become "de-quantized and then re-quantized, leading to interrelations among real molecules through abstract molecules. Here the specific role of the Holographic Electron Density Theorem is discussed within the above context.

  12. Optimal sampling and quantization of synthetic aperture radar signals

    NASA Technical Reports Server (NTRS)

    Wu, C.

    1978-01-01

    Some theoretical and experimental results on optimal sampling and quantization of synthetic aperture radar (SAR) signals are presented. It includes a description of a derived theoretical relationship between the pixel signal to noise ratio of processed SAR images and the number of quantization bits per sampled signal, assuming homogeneous extended targets. With this relationship known, a solution may be realized for the problem of optimal allocation of a fixed data bit-volume (for specified surface area and resolution criterion) between the number of samples and the number of bits per sample. The results indicate that to achieve the best possible image quality for a fixed bit rate and a given resolution criterion, one should quantize individual samples coarsely and thereby maximize the number of multiple looks. The theoretical results are then compared with simulation results obtained by processing aircraft SAR data.

  13. Splitting Times of Doubly Quantized Vortices in Dilute Bose-Einstein Condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huhtamaeki, J. A. M.; Pietilae, V.; Virtanen, S. M. M.

    2006-09-15

    Recently, the splitting of a topologically created doubly quantized vortex into two singly quantized vortices was experimentally investigated in dilute atomic cigar-shaped Bose-Einstein condensates [Y. Shin et al., Phys. Rev. Lett. 93, 160406 (2004)]. In particular, the dependency of the splitting time on the peak particle density was studied. We present results of theoretical simulations which closely mimic the experimental setup. We show that the combination of gravitational sag and time dependency of the trapping potential alone suffices to split the doubly quantized vortex in time scales which are in good agreement with the experiments.

  14. An Unequal Secure Encryption Scheme for H.264/AVC Video Compression Standard

    NASA Astrophysics Data System (ADS)

    Fan, Yibo; Wang, Jidong; Ikenaga, Takeshi; Tsunoo, Yukiyasu; Goto, Satoshi

    H.264/AVC is the newest video coding standard. There are many new features in it which can be easily used for video encryption. In this paper, we propose a new scheme to do video encryption for H.264/AVC video compression standard. We define Unequal Secure Encryption (USE) as an approach that applies different encryption schemes (with different security strength) to different parts of compressed video data. This USE scheme includes two parts: video data classification and unequal secure video data encryption. Firstly, we classify the video data into two partitions: Important data partition and unimportant data partition. Important data partition has small size with high secure protection, while unimportant data partition has large size with low secure protection. Secondly, we use AES as a block cipher to encrypt the important data partition and use LEX as a stream cipher to encrypt the unimportant data partition. AES is the most widely used symmetric cryptography which can ensure high security. LEX is a new stream cipher which is based on AES and its computational cost is much lower than AES. In this way, our scheme can achieve both high security and low computational cost. Besides the USE scheme, we propose a low cost design of hybrid AES/LEX encryption module. Our experimental results show that the computational cost of the USE scheme is low (about 25% of naive encryption at Level 0 with VEA used). The hardware cost for hybrid AES/LEX module is 4678 Gates and the AES encryption throughput is about 50Mbps.

  15. Wavelet subband coding of computer simulation output using the A++ array class library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, J.N.; Brislawn, C.M.; Quinlan, D.J.

    1995-07-01

    The goal of the project is to produce utility software for off-line compression of existing data and library code that can be called from a simulation program for on-line compression of data dumps as the simulation proceeds. Naturally, we would like the amount of CPU time required by the compression algorithm to be small in comparison to the requirements of typical simulation codes. We also want the algorithm to accomodate a wide variety of smooth, multidimensional data types. For these reasons, the subband vector quantization (VQ) approach employed in has been replaced by a scalar quantization (SQ) strategy using amore » bank of almost-uniform scalar subband quantizers in a scheme similar to that used in the FBI fingerprint image compression standard. This eliminates the considerable computational burdens of training VQ codebooks for each new type of data and performing nearest-vector searches to encode the data. The comparison of subband VQ and SQ algorithms in indicated that, in practice, there is relatively little additional gain from using vector as opposed to scalar quantization on DWT subbands, even when the source imagery is from a very homogeneous population, and our subjective experience with synthetic computer-generated data supports this stance. It appears that a careful study is needed of the tradeoffs involved in selecting scalar vs. vector subband quantization, but such an analysis is beyond the scope of this paper. Our present work is focused on the problem of generating wavelet transform/scalar quantization (WSQ) implementations that can be ported easily between different hardware environments. This is an extremely important consideration given the great profusion of different high-performance computing architectures available, the high cost associated with learning how to map algorithms effectively onto a new architecture, and the rapid rate of evolution in the world of high-performance computing.« less

  16. Educational Information Quantization for Improving Content Quality in Learning Management Systems

    ERIC Educational Resources Information Center

    Rybanov, Alexander Aleksandrovich

    2014-01-01

    The article offers the educational information quantization method for improving content quality in Learning Management Systems. The paper considers questions concerning analysis of quality of quantized presentation of educational information, based on quantitative text parameters: average frequencies of parts of speech, used in the text; formal…

  17. Dynamic State Estimation of Power Systems With Quantization Effects: A Recursive Filter Approach.

    PubMed

    Hu, Liang; Wang, Zidong; Liu, Xiaohui

    2016-08-01

    In this paper, a recursive filter algorithm is developed to deal with the state estimation problem for power systems with quantized nonlinear measurements. The measurements from both the remote terminal units and the phasor measurement unit are subject to quantizations described by a logarithmic quantizer. Attention is focused on the design of a recursive filter such that, in the simultaneous presence of nonlinear measurements and quantization effects, an upper bound for the estimation error covariance is guaranteed and subsequently minimized. Instead of using the traditional approximation methods in nonlinear estimation that simply ignore the linearization errors, we treat both the linearization and quantization errors as norm-bounded uncertainties in the algorithm development so as to improve the performance of the estimator. For the power system with such kind of introduced uncertainties, a filter is designed in the framework of robust recursive estimation, and the developed filter algorithm is tested on the IEEE benchmark power system to demonstrate its effectiveness.

  18. On Correspondence of BRST-BFV, Dirac, and Refined Algebraic Quantizations of Constrained Systems

    NASA Astrophysics Data System (ADS)

    Shvedov, O. Yu.

    2002-11-01

    The correspondence between BRST-BFV, Dirac, and refined algebraic (group averaging, projection operator) approaches to quantizing constrained systems is analyzed. For the closed-algebra case, it is shown that the component of the BFV wave function corresponding to maximal (minimal) value of number of ghosts and antighosts in the Schrodinger representation may be viewed as a wave function in the refined algebraic (Dirac) quantization approach. The Giulini-Marolf group averaging formula for the inner product in the refined algebraic quantization approach is obtained from the Batalin-Marnelius prescription for the BRST-BFV inner product, which should be generally modified due to topological problems. The considered prescription for the correspondence of states is observed to be applicable to the open-algebra case. The refined algebraic quantization approach is generalized then to the case of nontrivial structure functions. A simple example is discussed. The correspondence of observables for different quantization methods is also investigated.

  19. Quantization of gauge fields, graph polynomials and graph homology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreimer, Dirk, E-mail: kreimer@physik.hu-berlin.de; Sars, Matthias; Suijlekom, Walter D. van

    2013-09-15

    We review quantization of gauge fields using algebraic properties of 3-regular graphs. We derive the Feynman integrand at n loops for a non-abelian gauge theory quantized in a covariant gauge from scalar integrands for connected 3-regular graphs, obtained from the two Symanzik polynomials. The transition to the full gauge theory amplitude is obtained by the use of a third, new, graph polynomial, the corolla polynomial. This implies effectively a covariant quantization without ghosts, where all the relevant signs of the ghost sector are incorporated in a double complex furnished by the corolla polynomial–we call it cycle homology–and by graph homology.more » -- Highlights: •We derive gauge theory Feynman from scalar field theory with 3-valent vertices. •We clarify the role of graph homology and cycle homology. •We use parametric renormalization and the new corolla polynomial.« less

  20. Augmenting Phase Space Quantization to Introduce Additional Physical Effects

    NASA Astrophysics Data System (ADS)

    Robbins, Matthew P. G.

    Quantum mechanics can be done using classical phase space functions and a star product. The state of the system is described by a quasi-probability distribution. A classical system can be quantized in phase space in different ways with different quasi-probability distributions and star products. A transition differential operator relates different phase space quantizations. The objective of this thesis is to introduce additional physical effects into the process of quantization by using the transition operator. As prototypical examples, we first look at the coarse-graining of the Wigner function and the damped simple harmonic oscillator. By generalizing the transition operator and star product to also be functions of the position and momentum, we show that additional physical features beyond damping and coarse-graining can be introduced into a quantum system, including the generalized uncertainty principle of quantum gravity phenomenology, driving forces, and decoherence.

  1. Mammographic compression in Asian women.

    PubMed

    Lau, Susie; Abdul Aziz, Yang Faridah; Ng, Kwan Hoong

    2017-01-01

    To investigate: (1) the variability of mammographic compression parameters amongst Asian women; and (2) the effects of reducing compression force on image quality and mean glandular dose (MGD) in Asian women based on phantom study. We retrospectively collected 15818 raw digital mammograms from 3772 Asian women aged 35-80 years who underwent screening or diagnostic mammography between Jan 2012 and Dec 2014 at our center. The mammograms were processed using a volumetric breast density (VBD) measurement software (Volpara) to assess compression force, compression pressure, compressed breast thickness (CBT), breast volume, VBD and MGD against breast contact area. The effects of reducing compression force on image quality and MGD were also evaluated based on measurement obtained from 105 Asian women, as well as using the RMI156 Mammographic Accreditation Phantom and polymethyl methacrylate (PMMA) slabs. Compression force, compression pressure, CBT, breast volume, VBD and MGD correlated significantly with breast contact area (p<0.0001). Compression parameters including compression force, compression pressure, CBT and breast contact area were widely variable between [relative standard deviation (RSD)≥21.0%] and within (p<0.0001) Asian women. The median compression force should be about 8.1 daN compared to the current 12.0 daN. Decreasing compression force from 12.0 daN to 9.0 daN increased CBT by 3.3±1.4 mm, MGD by 6.2-11.0%, and caused no significant effects on image quality (p>0.05). Force-standardized protocol led to widely variable compression parameters in Asian women. Based on phantom study, it is feasible to reduce compression force up to 32.5% with minimal effects on image quality and MGD.

  2. Landau quantization effects on hole-acoustic instability in semiconductor plasmas

    NASA Astrophysics Data System (ADS)

    Sumera, P.; Rasheed, A.; Jamil, M.; Siddique, M.; Areeb, F.

    2017-12-01

    The growth rate of the hole acoustic waves (HAWs) exciting in magnetized semiconductor quantum plasma pumped by the electron beam has been investigated. The instability of the waves contains quantum effects including the exchange and correlation potential, Bohm potential, Fermi-degenerate pressure, and the magnetic quantization of semiconductor plasma species. The effects of various plasma parameters, which include relative concentration of plasma particles, beam electron temperature, beam speed, plasma temperature (temperature of electrons/holes), and Landau electron orbital magnetic quantization parameter η, on the growth rate of HAWs, have been discussed. The numerical study of our model of acoustic waves has been applied, as an example, to the GaAs semiconductor exposed to electron beam in the magnetic field environment. An increment in either the concentration of the semiconductor electrons or the speed of beam electrons, in the presence of magnetic quantization of fermion orbital motion, enhances remarkably the growth rate of the HAWs. Although the growth rate of the waves reduces with a rise in the thermal temperature of plasma species, at a particular temperature, we receive a higher instability due to the contribution of magnetic quantization of fermions to it.

  3. Quantized impedance dealing with the damping behavior of the one-dimensional oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jinghao; Zhang, Jing; Li, Yuan

    2015-11-15

    A quantized impedance is proposed to theoretically establish the relationship between the atomic eigenfrequency and the intrinsic frequency of the one-dimensional oscillator in this paper. The classical oscillator is modified by the idea that the electron transition is treated as a charge-discharge process of a suggested capacitor with the capacitive energy equal to the energy level difference of the jumping electron. The quantized capacitance of the impedance interacting with the jumping electron can lead the resonant frequency of the oscillator to the same as the atomic eigenfrequency. The quantized resistance reflects that the damping coefficient of the oscillator is themore » mean collision frequency of the transition electron. In addition, the first and third order electric susceptibilities based on the oscillator are accordingly quantized. Our simulation of the hydrogen atom emission spectrum based on the proposed method agrees well with the experimental one. Our results exhibits that the one-dimensional oscillator with the quantized impedance may become useful in the estimations of the refractive index and one- or multi-photon absorption coefficients of some nonmagnetic media composed of hydrogen-like atoms.« less

  4. Second quantization in bit-string physics

    NASA Technical Reports Server (NTRS)

    Noyes, H. Pierre

    1993-01-01

    Using a new fundamental theory based on bit-strings, a finite and discrete version of the solutions of the free one particle Dirac equation as segmented trajectories with steps of length h/mc along the forward and backward light cones executed at velocity +/- c are derived. Interpreting the statistical fluctuations which cause the bends in these segmented trajectories as emission and absorption of radiation, these solutions are analogous to a fermion propagator in a second quantized theory. This allows us to interpret the mass parameter in the step length as the physical mass of the free particle. The radiation in interaction with it has the usual harmonic oscillator structure of a second quantized theory. How these free particle masses can be generated gravitationally using the combinatorial hierarchy sequence (3,10,137,2(sup 127) + 136), and some of the predictive consequences are sketched.

  5. Perspectives of Light-Front Quantized Field Theory: Some New Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Prem P.

    1999-08-13

    A review of some basic topics in the light-front (LF) quantization of relativistic field theory is made. It is argued that the LF quantization is equally appropriate as the conventional one and that they lead, assuming the microcausality principle, to the same physical content. This is confirmed in the studies on the LF of the spontaneous symmetry breaking (SSB), of the degenerate vacua in Schwinger model (SM) and Chiral SM (CSM), of the chiral boson theory, and of the QCD in covariant gauges among others. The discussion on the LF is more economical and more transparent than that found inmore » the conventional equal-time quantized theory. The removal of the constraints on the LF phase space by following the Dirac method, in fact, results in a substantially reduced number of independent dynamical variables. Consequently, the descriptions of the physical Hilbert space and the vacuum structure, for example, become more tractable. In the context of the Dyson-Wick perturbation theory the relevant propagators in the front form theory are causal. The Wick rotation can then be performed to employ the Euclidean space integrals in momentum space. The lack of manifest covariance becomes tractable, and still more so if we employ, as discussed in the text, the Fourier transform of the fermionic field based on a special construction of the LF spinor. The fact that the hyperplanes x{sup {+-}} = 0 constitute characteristic surfaces of the hyperbolic partial differential equation is found irrelevant in the quantized theory; it seems sufficient to quantize the theory on one of the characteristic hyperplanes.« less

  6. Quantized Iterative Learning Consensus Tracking of Digital Networks With Limited Information Communication.

    PubMed

    Xiong, Wenjun; Yu, Xinghuo; Chen, Yao; Gao, Jie

    2017-06-01

    This brief investigates the quantized iterative learning problem for digital networks with time-varying topologies. The information is first encoded as symbolic data and then transmitted. After the data are received, a decoder is used by the receiver to get an estimate of the sender's state. Iterative learning quantized communication is considered in the process of encoding and decoding. A sufficient condition is then presented to achieve the consensus tracking problem in a finite interval using the quantized iterative learning controllers. Finally, simulation results are given to illustrate the usefulness of the developed criterion.

  7. Sequential neural text compression.

    PubMed

    Schmidhuber, J; Heil, S

    1996-01-01

    The purpose of this paper is to show that neural networks may be promising tools for data compression without loss of information. We combine predictive neural nets and statistical coding techniques to compress text files. We apply our methods to certain short newspaper articles and obtain compression ratios exceeding those of the widely used Lempel-Ziv algorithms (which build the basis of the UNIX functions "compress" and "gzip"). The main disadvantage of our methods is that they are about three orders of magnitude slower than standard methods.

  8. A user's guide for the signal processing software for image and speech compression developed in the Communications and Signal Processing Laboratory (CSPL), version 1

    NASA Technical Reports Server (NTRS)

    Kumar, P.; Lin, F. Y.; Vaishampayan, V.; Farvardin, N.

    1986-01-01

    A complete documentation of the software developed in the Communication and Signal Processing Laboratory (CSPL) during the period of July 1985 to March 1986 is provided. Utility programs and subroutines that were developed for a user-friendly image and speech processing environment are described. Additional programs for data compression of image and speech type signals are included. Also, programs for the zero-memory and block transform quantization in the presence of channel noise are described. Finally, several routines for simulating the perfromance of image compression algorithms are included.

  9. Simultaneous fault detection and control design for switched systems with two quantized signals.

    PubMed

    Li, Jian; Park, Ju H; Ye, Dan

    2017-01-01

    The problem of simultaneous fault detection and control design for switched systems with two quantized signals is presented in this paper. Dynamic quantizers are employed, respectively, before the output is passed to fault detector, and before the control input is transmitted to the switched system. Taking the quantized errors into account, the robust performance for this kind of system is given. Furthermore, sufficient conditions for the existence of fault detector/controller are presented in the framework of linear matrix inequalities, and fault detector/controller gains and the supremum of quantizer range are derived by a convex optimized method. Finally, two illustrative examples demonstrate the effectiveness of the proposed method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  10. A 1 GHz sample rate, 256-channel, 1-bit quantization, CMOS, digital correlator chip

    NASA Technical Reports Server (NTRS)

    Timoc, C.; Tran, T.; Wongso, J.

    1992-01-01

    This paper describes the development of a digital correlator chip with the following features: 1 Giga-sample/second; 256 channels; 1-bit quantization; 32-bit counters providing up to 4 seconds integration time at 1 GHz; and very low power dissipation per channel. The improvements in the performance-to-cost ratio of the digital correlator chip are achieved with a combination of systolic architecture, novel pipelined differential logic circuits, and standard 1.0 micron CMOS process.

  11. Third quantization

    NASA Astrophysics Data System (ADS)

    Seligman, Thomas H.; Prosen, Tomaž

    2010-12-01

    The basic ideas of second quantization and Fock space are extended to density operator states, used in treatments of open many-body systems. This can be done for fermions and bosons. While the former only requires the use of a non-orthogonal basis, the latter requires the introduction of a dual set of spaces. In both cases an operator algebra closely resembling the canonical one is developed and used to define the dual sets of bases. We here concentrated on the bosonic case where the unboundedness of the operators requires the definitions of dual spaces to support the pair of bases. Some applications, mainly to non-equilibrium steady states, will be mentioned.

  12. Third quantization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seligman, Thomas H.; Centro Internacional de Ciencias, Cuernavaca, Morelos; Prosen, Tomaz

    2010-12-23

    The basic ideas of second quantization and Fock space are extended to density operator states, used in treatments of open many-body systems. This can be done for fermions and bosons. While the former only requires the use of a non-orthogonal basis, the latter requires the introduction of a dual set of spaces. In both cases an operator algebra closely resembling the canonical one is developed and used to define the dual sets of bases. We here concentrated on the bosonic case where the unboundedness of the operators requires the definitions of dual spaces to support the pair of bases. Somemore » applications, mainly to non-equilibrium steady states, will be mentioned.« less

  13. Low bit rate coding of Earth science images

    NASA Technical Reports Server (NTRS)

    Kossentini, Faouzi; Chung, Wilson C.; Smith, Mark J. T.

    1993-01-01

    In this paper, the authors discuss compression based on some new ideas in vector quantization and their incorporation in a sub-band coding framework. Several variations are considered, which collectively address many of the individual compression needs within the earth science community. The approach taken in this work is based on some recent advances in the area of variable rate residual vector quantization (RVQ). This new RVQ method is considered separately and in conjunction with sub-band image decomposition. Very good results are achieved in coding a variety of earth science images. The last section of the paper provides some comparisons that illustrate the improvement in performance attributable to this approach relative the the JPEG coding standard.

  14. Colour image compression by grey to colour conversion

    NASA Astrophysics Data System (ADS)

    Drew, Mark S.; Finlayson, Graham D.; Jindal, Abhilash

    2011-03-01

    Instead of de-correlating image luminance from chrominance, some use has been made of using the correlation between the luminance component of an image and its chromatic components, or the correlation between colour components, for colour image compression. In one approach, the Green colour channel was taken as a base, and the other colour channels or their DCT subbands were approximated as polynomial functions of the base inside image windows. This paper points out that we can do better if we introduce an addressing scheme into the image description such that similar colours are grouped together spatially. With a Luminance component base, we test several colour spaces and rearrangement schemes, including segmentation. and settle on a log-geometric-mean colour space. Along with PSNR versus bits-per-pixel, we found that spatially-keyed s-CIELAB colour error better identifies problem regions. Instead of segmentation, we found that rearranging on sorted chromatic components has almost equal performance and better compression. Here, we sort on each of the chromatic components and separately encode windows of each. The result consists of the original greyscale plane plus the polynomial coefficients of windows of rearranged chromatic values, which are then quantized. The simplicity of the method produces a fast and simple scheme for colour image and video compression, with excellent results.

  15. Segmentation of magnetic resonance images using fuzzy algorithms for learning vector quantization.

    PubMed

    Karayiannis, N B; Pai, P I

    1999-02-01

    This paper evaluates a segmentation technique for magnetic resonance (MR) images of the brain based on fuzzy algorithms for learning vector quantization (FALVQ). These algorithms perform vector quantization by updating all prototypes of a competitive network through an unsupervised learning process. Segmentation of MR images is formulated as an unsupervised vector quantization process, where the local values of different relaxation parameters form the feature vectors which are represented by a relatively small set of prototypes. The experiments evaluate a variety of FALVQ algorithms in terms of their ability to identify different tissues and discriminate between normal tissues and abnormalities.

  16. Light-cone quantization of two dimensional field theory in the path integral approach

    NASA Astrophysics Data System (ADS)

    Cortés, J. L.; Gamboa, J.

    1999-05-01

    A quantization condition due to the boundary conditions and the compatification of the light cone space-time coordinate x- is identified at the level of the classical equations for the right-handed fermionic field in two dimensions. A detailed analysis of the implications of the implementation of this quantization condition at the quantum level is presented. In the case of the Thirring model one has selection rules on the excitations as a function of the coupling and in the case of the Schwinger model a double integer structure of the vacuum is derived in the light-cone frame. Two different quantized chiral Schwinger models are found, one of them without a θ-vacuum structure. A generalization of the quantization condition to theories with several fermionic fields and to higher dimensions is presented.

  17. Digital Data Registration and Differencing Compression System

    NASA Technical Reports Server (NTRS)

    Ransford, Gary A. (Inventor); Cambridge, Vivien J. (Inventor)

    1996-01-01

    A process for X-ray registration and differencing results in more efficient compression. Differencing of registered modeled subject image with a modeled reference image forms a differenced image for compression with conventional compression algorithms. Obtention of a modeled reference image includes modeling a relatively unrelated standard reference image upon a three-dimensional model, which three-dimensional model is also used to model the subject image for obtaining the modeled subject image. The registration process of the modeled subject image and modeled reference image translationally correlates such modeled images for resulting correlation thereof in spatial and spectral dimensions. Prior to compression, a portion of the image falling outside a designated area of interest may be eliminated, for subsequent replenishment with a standard reference image. The compressed differenced image may be subsequently transmitted and/or stored, for subsequent decompression and addition to a standard reference image so as to form a reconstituted or approximated subject image at either a remote location and/or at a later moment in time. Overall effective compression ratios of 100:1 are possible for thoracic X-ray digital images.

  18. Digital data registration and differencing compression system

    NASA Technical Reports Server (NTRS)

    Ransford, Gary A. (Inventor); Cambridge, Vivien J. (Inventor)

    1992-01-01

    A process for x ray registration and differencing results in more efficient compression is discussed. Differencing of registered modeled subject image with a modeled reference image forms a differential image for compression with conventional compression algorithms. Obtention of a modeled reference image includes modeling a relatively unrelated standard reference image upon a three dimensional model, which three dimensional model is also used to model the subject image for obtaining the modeled subject image. The registration process of the modeled subject image and modeled reference image translationally correlates such modeled images for resulting correlation thereof in spatial and spectral dimensions. Prior to compression, a portion of the image falling outside a designated area of interest may be eliminated, for subsequent replenishment with a standard reference image. The compressed differenced image may be subsequently transmitted and/or stored, for subsequent decompression and addition to a standard reference image so as to form a reconstituted or approximated subject image at either remote location and/or at a later moment in time. Overall effective compression ratios of 100:1 are possible for thoracic x ray digital images.

  19. Fedosov Deformation Quantization as a BRST Theory

    NASA Astrophysics Data System (ADS)

    Grigoriev, M. A.; Lyakhovich, S. L.

    The relationship is established between the Fedosov deformation quantization of a general symplectic manifold and the BFV-BRST quantization of constrained dynamical systems. The original symplectic manifold M is presented as a second class constrained surface in the fibre bundle ?*ρM which is a certain modification of a usual cotangent bundle equipped with a natural symplectic structure. The second class system is converted into the first class one by continuation of the constraints into the extended manifold, being a direct sum of ?*ρM and the tangent bundle TM. This extended manifold is equipped with a nontrivial Poisson bracket which naturally involves two basic ingredients of Fedosov geometry: the symplectic structure and the symplectic connection. The constructed first class constrained theory, being equivalent to the original symplectic manifold, is quantized through the BFV-BRST procedure. The existence theorem is proven for the quantum BRST charge and the quantum BRST invariant observables. The adjoint action of the quantum BRST charge is identified with the Abelian Fedosov connection while any observable, being proven to be a unique BRST invariant continuation for the values defined in the original symplectic manifold, is identified with the Fedosov flat section of the Weyl bundle. The Fedosov fibrewise star multiplication is thus recognized as a conventional product of the quantum BRST invariant observables.

  20. From Weyl to Born-Jordan quantization: The Schrödinger representation revisited

    NASA Astrophysics Data System (ADS)

    de Gosson, Maurice A.

    2016-03-01

    The ordering problem has been one of the long standing and much discussed questions in quantum mechanics from its very beginning. Nowadays, there is more or less a consensus among physicists that the right prescription is Weyl's rule, which is closely related to the Moyal-Wigner phase space formalism. We propose in this report an alternative approach by replacing Weyl quantization with the less well-known Born-Jordan quantization. This choice is actually natural if we want the Heisenberg and Schrödinger pictures of quantum mechanics to be mathematically equivalent. It turns out that, in addition, Born-Jordan quantization can be recovered from Feynman's path integral approach provided that one used short-time propagators arising from correct formulas for the short-time action, as observed by Makri and Miller. These observations lead to a slightly different quantum mechanics, exhibiting some unexpected features, and this without affecting the main existing theory; for instance quantizations of physical Hamiltonian functions are the same as in the Weyl correspondence. The differences are in fact of a more subtle nature; for instance, the quantum observables will not correspond in a one-to-one fashion to classical ones, and the dequantization of a Born-Jordan quantum operator is less straightforward than that of the corresponding Weyl operator. The use of Born-Jordan quantization moreover solves the "angular momentum dilemma", which already puzzled L. Pauling. Born-Jordan quantization has been known for some time (but not fully exploited) by mathematicians working in time-frequency analysis and signal analysis, but ignored by physicists. One of the aims of this report is to collect and synthesize these sporadic discussions, while analyzing the conceptual differences with Weyl quantization, which is also reviewed in detail. Another striking feature is that the Born-Jordan formalism leads to a redefinition of phase space quantum mechanics, where the usual Wigner

  1. Musical sound analysis/synthesis using vector-quantized time-varying spectra

    NASA Astrophysics Data System (ADS)

    Ehmann, Andreas F.; Beauchamp, James W.

    2002-11-01

    A fundamental goal of computer music sound synthesis is accurate, yet efficient resynthesis of musical sounds, with the possibility of extending the synthesis into new territories using control of perceptually intuitive parameters. A data clustering technique known as vector quantization (VQ) is used to extract a globally optimum set of representative spectra from phase vocoder analyses of instrument tones. This set of spectra, called a Codebook, is used for sinusoidal additive synthesis or, more efficiently, for wavetable synthesis. Instantaneous spectra are synthesized by first determining the Codebook indices corresponding to the best least-squares matches to the original time-varying spectrum. Spectral index versus time functions are then smoothed, and interpolation is employed to provide smooth transitions between Codebook spectra. Furthermore, spectral frames are pre-flattened and their slope, or tilt, extracted before clustering is applied. This allows spectral tilt, closely related to the perceptual parameter ''brightness,'' to be independently controlled during synthesis. The result is a highly compressed format consisting of the Codebook spectra and time-varying tilt, amplitude, and Codebook index parameters. This technique has been applied to a variety of harmonic musical instrument sounds with the resulting resynthesized tones providing good matches to the originals.

  2. New adaptive color quantization method based on self-organizing maps.

    PubMed

    Chang, Chip-Hong; Xu, Pengfei; Xiao, Rui; Srikanthan, Thambipillai

    2005-01-01

    Color quantization (CQ) is an image processing task popularly used to convert true color images to palletized images for limited color display devices. To minimize the contouring artifacts introduced by the reduction of colors, a new competitive learning (CL) based scheme called the frequency sensitive self-organizing maps (FS-SOMs) is proposed to optimize the color palette design for CQ. FS-SOM harmonically blends the neighborhood adaptation of the well-known self-organizing maps (SOMs) with the neuron dependent frequency sensitive learning model, the global butterfly permutation sequence for input randomization, and the reinitialization of dead neurons to harness effective utilization of neurons. The net effect is an improvement in adaptation, a well-ordered color palette, and the alleviation of underutilization problem, which is the main cause of visually perceivable artifacts of CQ. Extensive simulations have been performed to analyze and compare the learning behavior and performance of FS-SOM against other vector quantization (VQ) algorithms. The results show that the proposed FS-SOM outperforms classical CL, Linde, Buzo, and Gray (LBG), and SOM algorithms. More importantly, FS-SOM achieves its superiority in reconstruction quality and topological ordering with a much greater robustness against variations in network parameters than the current art SOM algorithm for CQ. A most significant bit (MSB) biased encoding scheme is also introduced to reduce the number of parallel processing units. By mapping the pixel values as sign-magnitude numbers and biasing the magnitudes according to their sign bits, eight lattice points in the color space are condensed into one common point density function. Consequently, the same processing element can be used to map several color clusters and the entire FS-SOM network can be substantially scaled down without severely scarifying the quality of the displayed image. The drawback of this encoding scheme is the additional storage

  3. Error diffusion concept for multi-level quantization

    NASA Astrophysics Data System (ADS)

    Broja, Manfred; Michalowski, Kristina; Bryngdahl, Olof

    1990-11-01

    The error diffusion binarization procedure is adapted to multi-level quantization. The threshold parameters then available have a noticeable influence on the process. Characteristic features of the technique are shown together with experimental results.

  4. Generalized scalar particle quantization in 1+1 dimensions and D(2,1;α)

    NASA Astrophysics Data System (ADS)

    Corney, S. P.; Jarvis, P. D.; Tsohantjis, I.; McAnally, D. S.

    2001-05-01

    The exceptional superalgebra D(2,1;α) has been classified as a candidate conformal supersymmetry algebra in two dimensions. We propose an alternative interpretation of it as an extended BFV-BRST quantization superalgebra in 2D (D(2,1;1)≃osp(2,2|2)). A superfield realization is presented wherein the standard extended phase space coordinates can be identified. The physical states are studied via the cohomology of the BRST operator. Finally we reverse engineer a classical action corresponding to the algebraic model we have constructed, and identify the Lagrangian equations of motion.

  5. Phase-Quantized Block Noncoherent Communication

    DTIC Science & Technology

    2013-07-01

    2828 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 7, JULY 2013 Phase-Quantized Block Noncoherent Communication Jaspreet Singh and Upamanyu...in a carrier asynchronous system. Specifically, we consider transmission over the block noncoherent additive white Gaussian noise channel, and...block noncoherent channel. Several results, based on the symmetry inherent in the channel model, are provided to characterize this transition density

  6. Fine structure constant and quantized optical transparency of plasmonic nanoarrays.

    PubMed

    Kravets, V G; Schedin, F; Grigorenko, A N

    2012-01-24

    Optics is renowned for displaying quantum phenomena. Indeed, studies of emission and absorption lines, the photoelectric effect and blackbody radiation helped to build the foundations of quantum mechanics. Nevertheless, it came as a surprise that the visible transparency of suspended graphene is determined solely by the fine structure constant, as this kind of universality had been previously reserved only for quantized resistance and flux quanta in superconductors. Here we describe a plasmonic system in which relative optical transparency is determined solely by the fine structure constant. The system consists of a regular array of gold nanoparticles fabricated on a thin metallic sublayer. We show that its relative transparency can be quantized in the near-infrared, which we attribute to the quantized contact resistance between the nanoparticles and the metallic sublayer. Our results open new possibilities in the exploration of universal dynamic conductance in plasmonic nanooptics.

  7. Robust fault tolerant control based on sliding mode method for uncertain linear systems with quantization.

    PubMed

    Hao, Li-Ying; Yang, Guang-Hong

    2013-09-01

    This paper is concerned with the problem of robust fault-tolerant compensation control problem for uncertain linear systems subject to both state and input signal quantization. By incorporating novel matrix full-rank factorization technique with sliding surface design successfully, the total failure of certain actuators can be coped with, under a special actuator redundancy assumption. In order to compensate for quantization errors, an adjustment range of quantization sensitivity for a dynamic uniform quantizer is given through the flexible choices of design parameters. Comparing with the existing results, the derived inequality condition leads to the fault tolerance ability stronger and much wider scope of applicability. With a static adjustment policy of quantization sensitivity, an adaptive sliding mode controller is then designed to maintain the sliding mode, where the gain of the nonlinear unit vector term is updated automatically to compensate for the effects of actuator faults, quantization errors, exogenous disturbances and parameter uncertainties without the need for a fault detection and isolation (FDI) mechanism. Finally, the effectiveness of the proposed design method is illustrated via a model of a rocket fairing structural-acoustic. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  8. On the quantization of the massless Bateman system

    NASA Astrophysics Data System (ADS)

    Takahashi, K.

    2018-03-01

    The so-called Bateman system for the damped harmonic oscillator is reduced to a genuine dual dissipation system (DDS) by setting the mass to zero. We explore herein the condition under which the canonical quantization of the DDS is consistently performed. The roles of the observable and auxiliary coordinates are discriminated. The results show that the complete and orthogonal Fock space of states can be constructed on the stable vacuum if an anti-Hermite representation of the canonical Hamiltonian is adopted. The amplitude of the one-particle wavefunction is consistent with the classical solution. The fields can be quantized as bosonic or fermionic. For bosonic systems, the quantum fluctuation of the field is directly associated with the dissipation rate.

  9. Fill-in binary loop pulse-torque quantizer

    NASA Technical Reports Server (NTRS)

    Lory, C. B.

    1975-01-01

    Fill-in binary (FIB) loop provides constant heating of torque generator, an advantage of binary current switching. At the same time, it avoids mode-related dead zone and data delay of binary, an advantage of ternary quantization.

  10. Supporting Dynamic Quantization for High-Dimensional Data Analytics.

    PubMed

    Guzun, Gheorghi; Canahuate, Guadalupe

    2017-05-01

    Similarity searches are at the heart of exploratory data analysis tasks. Distance metrics are typically used to characterize the similarity between data objects represented as feature vectors. However, when the dimensionality of the data increases and the number of features is large, traditional distance metrics fail to distinguish between the closest and furthest data points. Localized distance functions have been proposed as an alternative to traditional distance metrics. These functions only consider dimensions close to query to compute the distance/similarity. Furthermore, in order to enable interactive explorations of high-dimensional data, indexing support for ad-hoc queries is needed. In this work we set up to investigate whether bit-sliced indices can be used for exploratory analytics such as similarity searches and data clustering for high-dimensional big-data. We also propose a novel dynamic quantization called Query dependent Equi-Depth (QED) quantization and show its effectiveness on characterizing high-dimensional similarity. When applying QED we observe improvements in kNN classification accuracy over traditional distance functions. Gheorghi Guzun and Guadalupe Canahuate. 2017. Supporting Dynamic Quantization for High-Dimensional Data Analytics. In Proceedings of Ex-ploreDB'17, Chicago, IL, USA, May 14-19, 2017, 6 pages. https://doi.org/http://dx.doi.org/10.1145/3077331.3077336.

  11. Digital data registration and differencing compression system

    NASA Technical Reports Server (NTRS)

    Ransford, Gary A. (Inventor); Cambridge, Vivien J. (Inventor)

    1990-01-01

    A process is disclosed for x ray registration and differencing which results in more efficient compression. Differencing of registered modeled subject image with a modeled reference image forms a differenced image for compression with conventional compression algorithms. Obtention of a modeled reference image includes modeling a relatively unrelated standard reference image upon a three-dimensional model, which three-dimensional model is also used to model the subject image for obtaining the modeled subject image. The registration process of the modeled subject image and modeled reference image translationally correlates such modeled images for resulting correlation thereof in spatial and spectral dimensions. Prior to compression, a portion of the image falling outside a designated area of interest may be eliminated, for subsequent replenishment with a standard reference image. The compressed differenced image may be subsequently transmitted and/or stored, for subsequent decompression and addition to a standard reference image so as to form a reconstituted or approximated subject image at either a remote location and/or at a later moment in time. Overall effective compression ratios of 100:1 are possible for thoracic x ray digital images.

  12. Symplectic Quantization of a Reducible Theory

    NASA Astrophysics Data System (ADS)

    Barcelos-Neto, J.; Silva, M. B. D.

    We use the symplectic formalism to quantize the Abelian antisymmetric tensor gauge field. It is related to a reducible theory in the sense that all of its constraints are not independent. A procedure like ghost-of-ghost of the BFV method has to be used, but in terms of Lagrange multipliers.

  13. Landau quantization of Dirac fermions in graphene and its multilayers

    NASA Astrophysics Data System (ADS)

    Yin, Long-Jing; Bai, Ke-Ke; Wang, Wen-Xiao; Li, Si-Yu; Zhang, Yu; He, Lin

    2017-08-01

    When electrons are confined in a two-dimensional (2D) system, typical quantum-mechanical phenomena such as Landau quantization can be detected. Graphene systems, including the single atomic layer and few-layer stacked crystals, are ideal 2D materials for studying a variety of quantum-mechanical problems. In this article, we review the experimental progress in the unusual Landau quantized behaviors of Dirac fermions in monolayer and multilayer graphene by using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). Through STS measurement of the strong magnetic fields, distinct Landau-level spectra and rich level-splitting phenomena are observed in different graphene layers. These unique properties provide an effective method for identifying the number of layers, as well as the stacking orders, and investigating the fundamentally physical phenomena of graphene. Moreover, in the presence of a strain and charged defects, the Landau quantization of graphene can be significantly modified, leading to unusual spectroscopic and electronic properties.

  14. More on quantum groups from the quantization point of view

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav

    1994-12-01

    Star products on the classical double group of a simple Lie group and on corresponding symplectic groupoids are given so that the quantum double and the “quantized tangent bundle” are obtained in the deformation description. “Complex” quantum groups and bicovariant quantum Lie algebras are discussed from this point of view. Further we discuss the quantization of the Poisson structure on the symmetric algebra S(g) leading to the quantized enveloping algebra U h (g) as an example of biquantization in the sense of Turaev. Description of U h (g) in terms of the generators of the bicovariant differential calculus on F(G q ) is very convenient for this purpose. Finaly we interpret in the deformation framework some well known properties of compact quantum groups as simple consequences of corresponding properties of classical compact Lie groups. An analogue of the classical Kirillov's universal character formula is given for the unitary irreducble representation in the compact case.

  15. Mass quantization of the Schwarzschild black hole

    NASA Astrophysics Data System (ADS)

    Vaz, Cenalo; Witten, Louis

    1999-07-01

    We examine the Wheeler-DeWitt equation for a static, eternal Schwarzschild black hole in Kuchař-Brown variables and obtain its energy eigenstates. Consistent solutions vanish in the exterior of the Kruskal manifold and are nonvanishing only in the interior. The system is reminiscent of a particle in a box. States of definite parity avoid the singular geometry by vanishing at the origin. These definite parity states admit a discrete energy spectrum, depending on one quantum number which determines the Arnowitt-Deser-Misner mass of the black hole according to a relation conjectured long ago by Bekenstein M~nMp. If attention is restricted only to these quantized energy states, a black hole is described not only by its mass but also by its parity. States of indefinite parity do not admit a quantized mass spectrum.

  16. Quantization of the nonlinear sigma model revisited

    NASA Astrophysics Data System (ADS)

    Nguyen, Timothy

    2016-08-01

    We revisit the subject of perturbatively quantizing the nonlinear sigma model in two dimensions from a rigorous, mathematical point of view. Our main contribution is to make precise the cohomological problem of eliminating potential anomalies that may arise when trying to preserve symmetries under quantization. The symmetries we consider are twofold: (i) diffeomorphism covariance for a general target manifold; (ii) a transitive group of isometries when the target manifold is a homogeneous space. We show that there are no anomalies in case (i) and that (ii) is also anomaly-free under additional assumptions on the target homogeneous space, in agreement with the work of Friedan. We carry out some explicit computations for the O(N)-model. Finally, we show how a suitable notion of the renormalization group establishes the Ricci flow as the one loop renormalization group flow of the nonlinear sigma model.

  17. Lossy Wavefield Compression for Full-Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Boehm, C.; Fichtner, A.; de la Puente, J.; Hanzich, M.

    2015-12-01

    We present lossy compression techniques, tailored to the inexact computation of sensitivity kernels, that significantly reduce the memory requirements of adjoint-based minimization schemes. Adjoint methods are a powerful tool to solve tomography problems in full-waveform inversion (FWI). Yet they face the challenge of massive memory requirements caused by the opposite directions of forward and adjoint simulations and the necessity to access both wavefields simultaneously during the computation of the sensitivity kernel. Thus, storage, I/O operations, and memory bandwidth become key topics in FWI. In this talk, we present strategies for the temporal and spatial compression of the forward wavefield. This comprises re-interpolation with coarse time steps and an adaptive polynomial degree of the spectral element shape functions. In addition, we predict the projection errors on a hierarchy of grids and re-quantize the residuals with an adaptive floating-point accuracy to improve the approximation. Furthermore, we use the first arrivals of adjoint waves to identify "shadow zones" that do not contribute to the sensitivity kernel at all. Updating and storing the wavefield within these shadow zones is skipped, which reduces memory requirements and computational costs at the same time. Compared to check-pointing, our approach has only a negligible computational overhead, utilizing the fact that a sufficiently accurate sensitivity kernel does not require a fully resolved forward wavefield. Furthermore, we use adaptive compression thresholds during the FWI iterations to ensure convergence. Numerical experiments on the reservoir scale and for the Western Mediterranean prove the high potential of this approach with an effective compression factor of 500-1000. Furthermore, it is computationally cheap and easy to integrate in both, finite-differences and finite-element wave propagation codes.

  18. Audiovisual signal compression: the 64/P codecs

    NASA Astrophysics Data System (ADS)

    Jayant, Nikil S.

    1996-02-01

    Video codecs operating at integral multiples of 64 kbps are well-known in visual communications technology as p * 64 systems (p equals 1 to 24). Originally developed as a class of ITU standards, these codecs have served as core technology for videoconferencing, and they have also influenced the MPEG standards for addressable video. Video compression in the above systems is provided by motion compensation followed by discrete cosine transform -- quantization of the residual signal. Notwithstanding the promise of higher bit rates in emerging generations of networks and storage devices, there is a continuing need for facile audiovisual communications over voice band and wireless modems. Consequently, video compression at bit rates lower than 64 kbps is a widely-sought capability. In particular, video codecs operating at rates in the neighborhood of 64, 32, 16, and 8 kbps seem to have great practical value, being matched respectively to the transmission capacities of basic rate ISDN (64 kbps), and voiceband modems that represent high (32 kbps), medium (16 kbps) and low- end (8 kbps) grades in current modem technology. The purpose of this talk is to describe the state of video technology at these transmission rates, without getting too literal about the specific speeds mentioned above. In other words, we expect codecs designed for non- submultiples of 64 kbps, such as 56 kbps or 19.2 kbps, as well as for sub-multiples of 64 kbps, depending on varying constraints on modem rate and the transmission rate needed for the voice-coding part of the audiovisual communications link. The MPEG-4 video standards process is a natural platform on which to examine current capabilities in sub-ISDN rate video coding, and we shall draw appropriately from this process in describing video codec performance. Inherent in this summary is a reinforcement of motion compensation and DCT as viable building blocks of video compression systems, although there is a need for improving signal quality

  19. On a canonical quantization of 3D Anti de Sitter pure gravity

    NASA Astrophysics Data System (ADS)

    Kim, Jihun; Porrati, Massimo

    2015-10-01

    We perform a canonical quantization of pure gravity on AdS 3 using as a technical tool its equivalence at the classical level with a Chern-Simons theory with gauge group SL(2,{R})× SL(2,{R}) . We first quantize the theory canonically on an asymptotically AdS space -which is topologically the real line times a Riemann surface with one connected boundary. Using the "constrain first" approach we reduce canonical quantization to quantization of orbits of the Virasoro group and Kähler quantization of Teichmüller space. After explicitly computing the Kähler form for the torus with one boundary component and after extending that result to higher genus, we recover known results, such as that wave functions of SL(2,{R}) Chern-Simons theory are conformal blocks. We find new restrictions on the Hilbert space of pure gravity by imposing invariance under large diffeomorphisms and normalizability of the wave function. The Hilbert space of pure gravity is shown to be the target space of Conformal Field Theories with continuous spectrum and a lower bound on operator dimensions. A projection defined by topology changing amplitudes in Euclidean gravity is proposed. It defines an invariant subspace that allows for a dual interpretation in terms of a Liouville CFT. Problems and features of the CFT dual are assessed and a new definition of the Hilbert space, exempt from those problems, is proposed in the case of highly-curved AdS 3.

  20. Assessment of low-contrast detectability for compressed digital chest images

    NASA Astrophysics Data System (ADS)

    Cook, Larry T.; Insana, Michael F.; McFadden, Michael A.; Hall, Timothy J.; Cox, Glendon G.

    1994-04-01

    The ability of human observers to detect low-contrast targets in screen-film (SF) images, computed radiographic (CR) images, and compressed CR images was measured using contrast detail (CD) analysis. The results of these studies were used to design a two- alternative forced-choice (2AFC) experiment to investigate the detectability of nodules in adult chest radiographs. CD curves for a common screen-film system were compared with CR images compressed up to 125:1. Data from clinical chest exams were used to define a CD region of clinical interest that sufficiently challenged the observer. From that data, simulated lesions were introduced into 100 normal CR chest films, and forced-choice observer performance studies were performed. CR images were compressed using a full-frame discrete cosine transform (FDCT) technique, where the 2D Fourier space was divided into four areas of different quantization depending on the cumulative power spectrum (energy) of each image. The characteristic curve of the CR images was adjusted so that optical densities matched those of the SF system. The CD curves for SF and uncompressed CR systems were statistically equivalent. The slope of the CD curve for each was - 1.0 as predicted by the Rose model. There was a significant degradation in detection found for CR images compressed to 125:1. Furthermore, contrast-detail analysis demonstrated that many pulmonary nodules encountered in clinical practice are significantly above the average observer threshold for detection. We designed a 2AFC observer study using simulated 1-cm lesions introduced into normal CR chest radiographs. Detectability was reduced for all compressed CR radiographs.

  1. Deformation quantizations with separation of variables on a Kähler manifold

    NASA Astrophysics Data System (ADS)

    Karabegov, Alexander V.

    1996-10-01

    We give a simple geometric description of all formal differentiable deformation quantizations on a Kähler manifold M such that for each open subset U⊂ M ⋆-multiplication from the left by a holomorphic function and from the right by an antiholomorphic function on U coincides with the pointwise multiplication by these functions. We show that these quantizations are in 1-1 correspondence with the formal deformations of the original Kähler metrics on M.

  2. Combinatorial quantization of the Hamiltonian Chern-Simons theory II

    NASA Astrophysics Data System (ADS)

    Alekseev, Anton Yu.; Grosse, Harald; Schomerus, Volker

    1996-01-01

    This paper further develops the combinatorial approach to quantization of the Hamiltonian Chern Simons theory advertised in [1]. Using the theory of quantum Wilson lines, we show how the Verlinde algebra appears within the context of quantum group gauge theory. This allows to discuss flatness of quantum connections so that we can give a mathematically rigorous definition of the algebra of observables A CS of the Chern Simons model. It is a *-algebra of “functions on the quantum moduli space of flat connections” and comes equipped with a positive functional ω (“integration”). We prove that this data does not depend on the particular choices which have been made in the construction. Following ideas of Fock and Rosly [2], the algebra A CS provides a deformation quantization of the algebra of functions on the moduli space along the natural Poisson bracket induced by the Chern Simons action. We evaluate a volume of the quantized moduli space and prove that it coincides with the Verlinde number. This answer is also interpreted as a partition partition function of the lattice Yang-Mills theory corresponding to a quantum gauge group.

  3. Scalets, wavelets and (complex) turning point quantization

    NASA Astrophysics Data System (ADS)

    Handy, C. R.; Brooks, H. A.

    2001-05-01

    Despite the many successes of wavelet analysis in image and signal processing, the incorporation of continuous wavelet transform theory within quantum mechanics has lacked a compelling, first principles, motivating analytical framework, until now. For arbitrary one-dimensional rational fraction Hamiltonians, we develop a simple, unified formalism, which clearly underscores the complementary, and mutually interdependent, role played by moment quantization theory (i.e. via scalets, as defined herein) and wavelets. This analysis involves no approximation of the Hamiltonian within the (equivalent) wavelet space, and emphasizes the importance of (complex) multiple turning point contributions in the quantization process. We apply the method to three illustrative examples. These include the (double-well) quartic anharmonic oscillator potential problem, V(x) = Z2x2 + gx4, the quartic potential, V(x) = x4, and the very interesting and significant non-Hermitian potential V(x) = -(ix)3, recently studied by Bender and Boettcher.

  4. 30 CFR 57.13020 - Use of compressed air.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Use of compressed air. 57.13020 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13020 Use of compressed air. At no time shall compressed air be directed toward a...

  5. 30 CFR 57.13020 - Use of compressed air.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Use of compressed air. 57.13020 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13020 Use of compressed air. At no time shall compressed air be directed toward a...

  6. 30 CFR 57.13020 - Use of compressed air.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Use of compressed air. 57.13020 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13020 Use of compressed air. At no time shall compressed air be directed toward a...

  7. 46 CFR 197.338 - Compressed gas cylinders.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... STANDARDS GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.338 Compressed gas cylinders. Each compressed gas cylinder must— (a) Be stored in a ventilated area; (b) Be protected from excessive heat; (c... 46 Shipping 7 2010-10-01 2010-10-01 false Compressed gas cylinders. 197.338 Section 197.338...

  8. TBA-like integral equations from quantized mirror curves

    NASA Astrophysics Data System (ADS)

    Okuyama, Kazumi; Zakany, Szabolcs

    2016-03-01

    Quantizing the mirror curve of certain toric Calabi-Yau (CY) three-folds leads to a family of trace class operators. The resolvent function of these operators is known to encode topological data of the CY. In this paper, we show that in certain cases, this resolvent function satisfies a system of non-linear integral equations whose structure is very similar to the Thermodynamic Bethe Ansatz (TBA) systems. This can be used to compute spectral traces, both exactly and as a semiclassical expansion. As a main example, we consider the system related to the quantized mirror curve of local P2. According to a recent proposal, the traces of this operator are determined by the refined BPS indices of the underlying CY. We use our non-linear integral equations to test that proposal.

  9. On two mathematical problems of canonical quantization. IV

    NASA Astrophysics Data System (ADS)

    Kirillov, A. I.

    1992-11-01

    A method for solving the problem of reconstructing a measure beginning with its logarithmic derivative is presented. The method completes that of solving the stochastic differential equation via Dirichlet forms proposed by S. Albeverio and M. Rockner. As a result one obtains the mathematical apparatus for the stochastic quantization. The apparatus is applied to prove the existence of the Feynman-Kac measure of the sine-Gordon and λφ2n/(1 + K2φ2n)-models. A synthesis of both mathematical problems of canonical quantization is obtained in the form of a second-order martingale problem for vacuum noise. It is shown that in stochastic mechanics the martingale problem is an analog of Newton's second law and enables us to find the Nelson's stochastic trajectories without determining the wave functions.

  10. Prior-Based Quantization Bin Matching for Cloud Storage of JPEG Images.

    PubMed

    Liu, Xianming; Cheung, Gene; Lin, Chia-Wen; Zhao, Debin; Gao, Wen

    2018-07-01

    Millions of user-generated images are uploaded to social media sites like Facebook daily, which translate to a large storage cost. However, there exists an asymmetry in upload and download data: only a fraction of the uploaded images are subsequently retrieved for viewing. In this paper, we propose a cloud storage system that reduces the storage cost of all uploaded JPEG photos, at the expense of a controlled increase in computation mainly during download of requested image subset. Specifically, the system first selectively re-encodes code blocks of uploaded JPEG images using coarser quantization parameters for smaller storage sizes. Then during download, the system exploits known signal priors-sparsity prior and graph-signal smoothness prior-for reverse mapping to recover original fine quantization bin indices, with either deterministic guarantee (lossless mode) or statistical guarantee (near-lossless mode). For fast reverse mapping, we use small dictionaries and sparse graphs that are tailored for specific clusters of similar blocks, which are classified via tree-structured vector quantizer. During image upload, cluster indices identifying the appropriate dictionaries and graphs for the re-quantized blocks are encoded as side information using a differential distributed source coding scheme to facilitate reverse mapping during image download. Experimental results show that our system can reap significant storage savings (up to 12.05%) at roughly the same image PSNR (within 0.18 dB).

  11. A progressive data compression scheme based upon adaptive transform coding: Mixture block coding of natural images

    NASA Technical Reports Server (NTRS)

    Rost, Martin C.; Sayood, Khalid

    1991-01-01

    A method for efficiently coding natural images using a vector-quantized variable-blocksized transform source coder is presented. The method, mixture block coding (MBC), incorporates variable-rate coding by using a mixture of discrete cosine transform (DCT) source coders. Which coders are selected to code any given image region is made through a threshold driven distortion criterion. In this paper, MBC is used in two different applications. The base method is concerned with single-pass low-rate image data compression. The second is a natural extension of the base method which allows for low-rate progressive transmission (PT). Since the base method adapts easily to progressive coding, it offers the aesthetic advantage of progressive coding without incorporating extensive channel overhead. Image compression rates of approximately 0.5 bit/pel are demonstrated for both monochrome and color images.

  12. 30 CFR 56.13020 - Use of compressed air.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Use of compressed air. 56.13020 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13020 Use of compressed air. At no time shall compressed air be directed toward a person...

  13. 30 CFR 56.13020 - Use of compressed air.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Use of compressed air. 56.13020 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13020 Use of compressed air. At no time shall compressed air be directed toward a person...

  14. 30 CFR 56.13020 - Use of compressed air.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Use of compressed air. 56.13020 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13020 Use of compressed air. At no time shall compressed air be directed toward a person...

  15. 30 CFR 56.13020 - Use of compressed air.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Use of compressed air. 56.13020 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13020 Use of compressed air. At no time shall compressed air be directed toward a person...

  16. Reducing the complexity of the CCSDS standard for image compression decreasing the DWT filter order

    NASA Astrophysics Data System (ADS)

    Ito, Leandro H.; Pinho, Marcelo S.

    2014-10-01

    The goal for this work is to evaluate the impact of utilizing shorter wavelet filters in the CCSDS standard for lossy and lossless image compression. Another constraint considered was the existence of symmetry in the filters. That approach was desired to maintain the symmetric extension compatibility of the filter banks. Even though this strategy works well for oat wavelets, it is not always the case for their integer approximations. The periodic extension was utilized whenever symmetric extension was not applicable. Even though the latter outperforms the former, for fair comparison the symmetric extension compatible integer-to-integer wavelet approximations were evaluated under both extensions. The evaluation methods adopted were bit rate (bpp), PSNR and the number of operations required by each wavelet transforms. All these results were compared against the ones obtained utilizing the standard CCSDS with 9/7 filter banks, for lossy and lossless compression. The tests were performed over tallies (512x512) of raw remote sensing images from CBERS-2B (China-Brazil Earth Resources Satellites) captured from its high resolution CCD camera. These images were cordially made available by INPE (National Institute for Space Research) in Brazil. For the CCSDS implementation, it was utilized the source code developed by Hongqiang Wang from the Electrical Department at Nebraska-Lincoln University, applying the appropriate changes on the wavelet transform. For lossy compression, the results have shown that the filter bank built from the Deslauriers-Dubuc scaling function, with respectively 2 and 4 vanishing moments on the synthesis and analysis banks, presented not only a reduction of 21% in the number of operations required, but also a performance on par with the 9/7 filter bank. In the lossless case, the biorthogonal Cohen-Daubechies-Feauveau with 2 vanishing moments presented a performance close to the 9/7 integer approximation of the CCSDS, with the number of operations

  17. Color image lossy compression based on blind evaluation and prediction of noise characteristics

    NASA Astrophysics Data System (ADS)

    Ponomarenko, Nikolay N.; Lukin, Vladimir V.; Egiazarian, Karen O.; Lepisto, Leena

    2011-03-01

    The paper deals with JPEG adaptive lossy compression of color images formed by digital cameras. Adaptation to noise characteristics and blur estimated for each given image is carried out. The dominant factor degrading image quality is determined in a blind manner. Characteristics of this dominant factor are then estimated. Finally, a scaling factor that determines quantization steps for default JPEG table is adaptively set (selected). Within this general framework, two possible strategies are considered. A first one presumes blind estimation for an image after all operations in digital image processing chain just before compressing a given raster image. A second strategy is based on prediction of noise and blur parameters from analysis of RAW image under quite general assumptions concerning characteristics parameters of transformations an image will be subject to at further processing stages. The advantages of both strategies are discussed. The first strategy provides more accurate estimation and larger benefit in image compression ratio (CR) compared to super-high quality (SHQ) mode. However, it is more complicated and requires more resources. The second strategy is simpler but less beneficial. The proposed approaches are tested for quite many real life color images acquired by digital cameras and shown to provide more than two time increase of average CR compared to SHQ mode without introducing visible distortions with respect to SHQ compressed images.

  18. On Fock-space representations of quantized enveloping algebras related to noncommutative differential geometry

    NASA Astrophysics Data System (ADS)

    Jurčo, B.; Schlieker, M.

    1995-07-01

    In this paper explicitly natural (from the geometrical point of view) Fock-space representations (contragradient Verma modules) of the quantized enveloping algebras are constructed. In order to do so, one starts from the Gauss decomposition of the quantum group and introduces the differential operators on the corresponding q-deformed flag manifold (assumed as a left comodule for the quantum group) by a projection to it of the right action of the quantized enveloping algebra on the quantum group. Finally, the representatives of the elements of the quantized enveloping algebra corresponding to the left-invariant vector fields on the quantum group are expressed as first-order differential operators on the q-deformed flag manifold.

  19. Quantized phase coding and connected region labeling for absolute phase retrieval.

    PubMed

    Chen, Xiangcheng; Wang, Yuwei; Wang, Yajun; Ma, Mengchao; Zeng, Chunnian

    2016-12-12

    This paper proposes an absolute phase retrieval method for complex object measurement based on quantized phase-coding and connected region labeling. A specific code sequence is embedded into quantized phase of three coded fringes. Connected regions of different codes are labeled and assigned with 3-digit-codes combining the current period and its neighbors. Wrapped phase, more than 36 periods, can be restored with reference to the code sequence. Experimental results verify the capability of the proposed method to measure multiple isolated objects.

  20. q-Derivatives, quantization methods and q-algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Twarock, Reidun

    1998-12-15

    Using the example of Borel quantization on S{sup 1}, we discuss the relation between quantization methods and q-algebras. In particular, it is shown that a q-deformation of the Witt algebra with generators labeled by Z is realized by q-difference operators. This leads to a discrete quantum mechanics. Because of Z, the discretization is equidistant. As an approach to a non-equidistant discretization of quantum mechanics one can change the Witt algebra using not the number field Z as labels but a quadratic extension of Z characterized by an irrational number {tau}. This extension is denoted as quasi-crystal Lie algebra, because thismore » is a relation to one-dimensional quasicrystals. The q-deformation of this quasicrystal Lie algebra is discussed. It is pointed out that quasicrystal Lie algebras can be considered also as a 'deformed' Witt algebra with a 'deformation' of the labeling number field. Their application to the theory is discussed.« less

  1. Quantized circular photogalvanic effect in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    de Juan, Fernando; Grushin, Adolfo G.; Morimoto, Takahiro; Moore, Joel E.

    The circular photogalvanic effect (CPGE) is the part of a photocurrent that switches depending on the sense of circular polarization of the incident light. It has been consistently observed in systems without inversion symmetry and depends on non-universal material details. We find that in a class of Weyl semimetals (e.g. SrSi2) and three-dimensional Rashba materials (e.g. doped Te) without inversion and mirror symmetries, the CPGE trace is effectively Quantized in terms of the combination of fundamental constants e3/h2 cɛ0 with no material-dependent parameters. This is so because the CPGE directly measures the topological charge of Weyl points near the Fermi surface, and non-quantized corrections from disorder and additional bands can be small over a significant range of incident frequencies. Moreover, the magnitude of the CPGE induced by a Weyl node is relatively large, which enables the direct detection of the monopole charge with current techniques.

  2. Quantized circular photogalvanic effect in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    de Juan, Fernando; Grushin, Adolfo G.; Morimoto, Takahiro; Moore, Joel E.

    2017-07-01

    The circular photogalvanic effect (CPGE) is the part of a photocurrent that switches depending on the sense of circular polarization of the incident light. It has been consistently observed in systems without inversion symmetry and depends on non-universal material details. Here we find that in a class of Weyl semimetals (for example, SrSi2) and three-dimensional Rashba materials (for example, doped Te) without inversion and mirror symmetries, the injection contribution to the CPGE trace is effectively quantized in terms of the fundamental constants e, h, c and with no material-dependent parameters. This is so because the CPGE directly measures the topological charge of Weyl points, and non-quantized corrections from disorder and additional bands can be small over a significant range of incident frequencies. Moreover, the magnitude of the CPGE induced by a Weyl node is relatively large, which enables the direct detection of the monopole charge with current techniques.

  3. Quantization with maximally degenerate Poisson brackets: the harmonic oscillator!

    NASA Astrophysics Data System (ADS)

    Nutku, Yavuz

    2003-07-01

    Nambu's construction of multi-linear brackets for super-integrable systems can be thought of as degenerate Poisson brackets with a maximal set of Casimirs in their kernel. By introducing privileged coordinates in phase space these degenerate Poisson brackets are brought to the form of Heisenberg's equations. We propose a definition for constructing quantum operators for classical functions, which enables us to turn the maximally degenerate Poisson brackets into operators. They pose a set of eigenvalue problems for a new state vector. The requirement of the single-valuedness of this eigenfunction leads to quantization. The example of the harmonic oscillator is used to illustrate this general procedure for quantizing a class of maximally super-integrable systems.

  4. Floating-point system quantization errors in digital control systems

    NASA Technical Reports Server (NTRS)

    Phillips, C. L.

    1973-01-01

    The results are reported of research into the effects on system operation of signal quantization in a digital control system. The investigation considered digital controllers (filters) operating in floating-point arithmetic in either open-loop or closed-loop systems. An error analysis technique is developed, and is implemented by a digital computer program that is based on a digital simulation of the system. As an output the program gives the programing form required for minimum system quantization errors (either maximum of rms errors), and the maximum and rms errors that appear in the system output for a given bit configuration. The program can be integrated into existing digital simulations of a system.

  5. An analogue of Weyl’s law for quantized irreducible generalized flag manifolds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matassa, Marco, E-mail: marco.matassa@gmail.com, E-mail: mmatassa@math.uio.no

    2015-09-15

    We prove an analogue of Weyl’s law for quantized irreducible generalized flag manifolds. This is formulated in terms of a zeta function which, similarly to the classical setting, satisfies the following two properties: as a functional on the quantized algebra it is proportional to the Haar state and its first singularity coincides with the classical dimension. The relevant formulas are given for the more general case of compact quantum groups.

  6. A Heisenberg Algebra Bundle of a Vector Field in Three-Space and its Weyl Quantization

    NASA Astrophysics Data System (ADS)

    Binz, Ernst; Pods, Sonja

    2006-01-01

    In these notes we associate a natural Heisenberg group bundle Ha with a singularity free smooth vector field X = (id,a) on a submanifold M in a Euclidean three-space. This bundle yields naturally an infinite dimensional Heisenberg group HX∞. A representation of the C*-group algebra of HX∞ is a quantization. It causes a natural Weyl-deformation quantization of X. The influence of the topological structure of M on this quantization is encoded in the Chern class of a canonical complex line bundle inside Ha.

  7. A novel data hiding scheme for block truncation coding compressed images using dynamic programming strategy

    NASA Astrophysics Data System (ADS)

    Chang, Ching-Chun; Liu, Yanjun; Nguyen, Son T.

    2015-03-01

    Data hiding is a technique that embeds information into digital cover data. This technique has been concentrated on the spatial uncompressed domain, and it is considered more challenging to perform in the compressed domain, i.e., vector quantization, JPEG, and block truncation coding (BTC). In this paper, we propose a new data hiding scheme for BTC-compressed images. In the proposed scheme, a dynamic programming strategy was used to search for the optimal solution of the bijective mapping function for LSB substitution. Then, according to the optimal solution, each mean value embeds three secret bits to obtain high hiding capacity with low distortion. The experimental results indicated that the proposed scheme obtained both higher hiding capacity and hiding efficiency than the other four existing schemes, while ensuring good visual quality of the stego-image. In addition, the proposed scheme achieved a low bit rate as original BTC algorithm.

  8. New vertices and canonical quantization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexandrov, Sergei

    2010-07-15

    We present two results on the recently proposed new spin foam models. First, we show how a (slightly modified) restriction on representations in the Engle-Pereira-Rovelli-Livine model leads to the appearance of the Ashtekar-Barbero connection, thus bringing this model even closer to loop quantum gravity. Second, we however argue that the quantization procedure used to derive the new models is inconsistent since it relies on the symplectic structure of the unconstrained BF theory.

  9. Classification Techniques for Digital Map Compression

    DTIC Science & Technology

    1989-03-01

    classification improved the performance of the K-means classification algorithm resulting in a compression of 8.06:1 with Lempel - Ziv coding. Run-length coding... compression performance are run-length coding [2], [8] and Lempel - Ziv coding 110], [11]. These techniques are chosen because they are most efficient when...investigated. After the classification, some standard file compression methods, such as Lempel - Ziv and run-length encoding were applied to the

  10. Theory of quantized systems: formal basis for DEVS/HLA distributed simulation environment

    NASA Astrophysics Data System (ADS)

    Zeigler, Bernard P.; Lee, J. S.

    1998-08-01

    In the context of a DARPA ASTT project, we are developing an HLA-compliant distributed simulation environment based on the DEVS formalism. This environment will provide a user- friendly, high-level tool-set for developing interoperable discrete and continuous simulation models. One application is the study of contract-based predictive filtering. This paper presents a new approach to predictive filtering based on a process called 'quantization' to reduce state update transmission. Quantization, which generates state updates only at quantum level crossings, abstracts a sender model into a DEVS representation. This affords an alternative, efficient approach to embedding continuous models within distributed discrete event simulations. Applications of quantization to message traffic reduction are discussed. The theory has been validated by DEVSJAVA simulations of test cases. It will be subject to further test in actual distributed simulations using the DEVS/HLA modeling and simulation environment.

  11. Polymer quantization of the Einstein-Rosen wormhole throat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunstatter, Gabor; Peltola, Ari; Louko, Jorma

    2010-01-15

    We present a polymer quantization of spherically symmetric Einstein gravity in which the polymerized variable is the area of the Einstein-Rosen wormhole throat. In the classical polymer theory, the singularity is replaced by a bounce at a radius that depends on the polymerization scale. In the polymer quantum theory, we show numerically that the area spectrum is evenly spaced and in agreement with a Bohr-Sommerfeld semiclassical estimate, and this spectrum is not qualitatively sensitive to issues of factor ordering or boundary conditions except in the lowest few eigenvalues. In the limit of small polymerization scale we recover, within the numericalmore » accuracy, the area spectrum obtained from a Schroedinger quantization of the wormhole throat dynamics. The prospects of recovering from the polymer throat theory a full quantum-corrected spacetime are discussed.« less

  12. Distance learning in discriminative vector quantization.

    PubMed

    Schneider, Petra; Biehl, Michael; Hammer, Barbara

    2009-10-01

    Discriminative vector quantization schemes such as learning vector quantization (LVQ) and extensions thereof offer efficient and intuitive classifiers based on the representation of classes by prototypes. The original methods, however, rely on the Euclidean distance corresponding to the assumption that the data can be represented by isotropic clusters. For this reason, extensions of the methods to more general metric structures have been proposed, such as relevance adaptation in generalized LVQ (GLVQ) and matrix learning in GLVQ. In these approaches, metric parameters are learned based on the given classification task such that a data-driven distance measure is found. In this letter, we consider full matrix adaptation in advanced LVQ schemes. In particular, we introduce matrix learning to a recent statistical formalization of LVQ, robust soft LVQ, and we compare the results on several artificial and real-life data sets to matrix learning in GLVQ, a derivation of LVQ-like learning based on a (heuristic) cost function. In all cases, matrix adaptation allows a significant improvement of the classification accuracy. Interestingly, however, the principled behavior of the models with respect to prototype locations and extracted matrix dimensions shows several characteristic differences depending on the data sets.

  13. Quantization of Gaussian samples at very low SNR regime in continuous variable QKD applications

    NASA Astrophysics Data System (ADS)

    Daneshgaran, Fred; Mondin, Marina

    2016-09-01

    The main problem for information reconciliation in continuous variable Quantum Key Distribution (QKD) at low Signal to Noise Ratio (SNR) is quantization and assignment of labels to the samples of the Gaussian Random Variables (RVs) observed at Alice and Bob. Trouble is that most of the samples, assuming that the Gaussian variable is zero mean which is de-facto the case, tend to have small magnitudes and are easily disturbed by noise. Transmission over longer and longer distances increases the losses corresponding to a lower effective SNR exasperating the problem. This paper looks at the quantization problem of the Gaussian samples at very low SNR regime from an information theoretic point of view. We look at the problem of two bit per sample quantization of the Gaussian RVs at Alice and Bob and derive expressions for the mutual information between the bit strings as a result of this quantization. The quantization threshold for the Most Significant Bit (MSB) should be chosen based on the maximization of the mutual information between the quantized bit strings. Furthermore, while the LSB string at Alice and Bob are balanced in a sense that their entropy is close to maximum, this is not the case for the second most significant bit even under optimal threshold. We show that with two bit quantization at SNR of -3 dB we achieve 75.8% of maximal achievable mutual information between Alice and Bob, hence, as the number of quantization bits increases beyond 2-bits, the number of additional useful bits that can be extracted for secret key generation decreases rapidly. Furthermore, the error rates between the bit strings at Alice and Bob at the same significant bit level are rather high demanding very powerful error correcting codes. While our calculations and simulation shows that the mutual information between the LSB at Alice and Bob is 0.1044 bits, that at the MSB level is only 0.035 bits. Hence, it is only by looking at the bits jointly that we are able to achieve a

  14. A Secure and Robust Compressed Domain Video Steganography for Intra- and Inter-Frames Using Embedding-Based Byte Differencing (EBBD) Scheme

    PubMed Central

    Idbeaa, Tarik; Abdul Samad, Salina; Husain, Hafizah

    2016-01-01

    This paper presents a novel secure and robust steganographic technique in the compressed video domain namely embedding-based byte differencing (EBBD). Unlike most of the current video steganographic techniques which take into account only the intra frames for data embedding, the proposed EBBD technique aims to hide information in both intra and inter frames. The information is embedded into a compressed video by simultaneously manipulating the quantized AC coefficients (AC-QTCs) of luminance components of the frames during MPEG-2 encoding process. Later, during the decoding process, the embedded information can be detected and extracted completely. Furthermore, the EBBD basically deals with two security concepts: data encryption and data concealing. Hence, during the embedding process, secret data is encrypted using the simplified data encryption standard (S-DES) algorithm to provide better security to the implemented system. The security of the method lies in selecting candidate AC-QTCs within each non-overlapping 8 × 8 sub-block using a pseudo random key. Basic performance of this steganographic technique verified through experiments on various existing MPEG-2 encoded videos over a wide range of embedded payload rates. Overall, the experimental results verify the excellent performance of the proposed EBBD with a better trade-off in terms of imperceptibility and payload, as compared with previous techniques while at the same time ensuring minimal bitrate increase and negligible degradation of PSNR values. PMID:26963093

  15. A Secure and Robust Compressed Domain Video Steganography for Intra- and Inter-Frames Using Embedding-Based Byte Differencing (EBBD) Scheme.

    PubMed

    Idbeaa, Tarik; Abdul Samad, Salina; Husain, Hafizah

    2016-01-01

    This paper presents a novel secure and robust steganographic technique in the compressed video domain namely embedding-based byte differencing (EBBD). Unlike most of the current video steganographic techniques which take into account only the intra frames for data embedding, the proposed EBBD technique aims to hide information in both intra and inter frames. The information is embedded into a compressed video by simultaneously manipulating the quantized AC coefficients (AC-QTCs) of luminance components of the frames during MPEG-2 encoding process. Later, during the decoding process, the embedded information can be detected and extracted completely. Furthermore, the EBBD basically deals with two security concepts: data encryption and data concealing. Hence, during the embedding process, secret data is encrypted using the simplified data encryption standard (S-DES) algorithm to provide better security to the implemented system. The security of the method lies in selecting candidate AC-QTCs within each non-overlapping 8 × 8 sub-block using a pseudo random key. Basic performance of this steganographic technique verified through experiments on various existing MPEG-2 encoded videos over a wide range of embedded payload rates. Overall, the experimental results verify the excellent performance of the proposed EBBD with a better trade-off in terms of imperceptibility and payload, as compared with previous techniques while at the same time ensuring minimal bitrate increase and negligible degradation of PSNR values.

  16. Generation new MP3 data set after compression

    NASA Astrophysics Data System (ADS)

    Atoum, Mohammed Salem; Almahameed, Mohammad

    2016-02-01

    The success of audio steganography techniques is to ensure imperceptibility of the embedded secret message in stego file and withstand any form of intentional or un-intentional degradation of secret message (robustness). Crucial to that using digital audio file such as MP3 file, which comes in different compression rate, however research studies have shown that performing steganography in MP3 format after compression is the most suitable one. Unfortunately until now the researchers can not test and implement their algorithm because no standard data set in MP3 file after compression is generated. So this paper focuses to generate standard data set with different compression ratio and different Genre to help researchers to implement their algorithms.

  17. Biological sequence compression algorithms.

    PubMed

    Matsumoto, T; Sadakane, K; Imai, H

    2000-01-01

    Today, more and more DNA sequences are becoming available. The information about DNA sequences are stored in molecular biology databases. The size and importance of these databases will be bigger and bigger in the future, therefore this information must be stored or communicated efficiently. Furthermore, sequence compression can be used to define similarities between biological sequences. The standard compression algorithms such as gzip or compress cannot compress DNA sequences, but only expand them in size. On the other hand, CTW (Context Tree Weighting Method) can compress DNA sequences less than two bits per symbol. These algorithms do not use special structures of biological sequences. Two characteristic structures of DNA sequences are known. One is called palindromes or reverse complements and the other structure is approximate repeats. Several specific algorithms for DNA sequences that use these structures can compress them less than two bits per symbol. In this paper, we improve the CTW so that characteristic structures of DNA sequences are available. Before encoding the next symbol, the algorithm searches an approximate repeat and palindrome using hash and dynamic programming. If there is a palindrome or an approximate repeat with enough length then our algorithm represents it with length and distance. By using this preprocessing, a new program achieves a little higher compression ratio than that of existing DNA-oriented compression algorithms. We also describe new compression algorithm for protein sequences.

  18. Telemetry advances in data compression and channel coding

    NASA Technical Reports Server (NTRS)

    Miller, Warner H.; Morakis, James C.; Yeh, Pen-Shu

    1990-01-01

    Addressed in this paper is the dependence of telecommunication channel, forward error correcting coding and source data compression coding on integrated circuit technology. Emphasis is placed on real time high speed Reed Solomon (RS) decoding using full custom VLSI technology. Performance curves of NASA's standard channel coder and a proposed standard lossless data compression coder are presented.

  19. Equivalence of Einstein and Jordan frames in quantized anisotropic cosmological models

    NASA Astrophysics Data System (ADS)

    Pandey, Sachin; Pal, Sridip; Banerjee, Narayan

    2018-06-01

    The present work shows that the mathematical equivalence of the Jordan frame and its conformally transformed version, the Einstein frame, so as far as Brans-Dicke theory is concerned, survives a quantization of cosmological models, arising as solutions to the Brans-Dicke theory. We work with the Wheeler-deWitt quantization scheme and take up quite a few anisotropic cosmological models as examples. We effectively show that the transformation from the Jordan to the Einstein frame is a canonical one and hence two frames furnish equivalent description of same physical scenario.

  20. Integral Sliding Mode Fault-Tolerant Control for Uncertain Linear Systems Over Networks With Signals Quantization.

    PubMed

    Hao, Li-Ying; Park, Ju H; Ye, Dan

    2017-09-01

    In this paper, a new robust fault-tolerant compensation control method for uncertain linear systems over networks is proposed, where only quantized signals are assumed to be available. This approach is based on the integral sliding mode (ISM) method where two kinds of integral sliding surfaces are constructed. One is the continuous-state-dependent surface with the aim of sliding mode stability analysis and the other is the quantization-state-dependent surface, which is used for ISM controller design. A scheme that combines the adaptive ISM controller and quantization parameter adjustment strategy is then proposed. Through utilizing H ∞ control analytical technique, once the system is in the sliding mode, the nature of performing disturbance attenuation and fault tolerance from the initial time can be found without requiring any fault information. Finally, the effectiveness of our proposed ISM control fault-tolerant schemes against quantization errors is demonstrated in the simulation.

  1. H.264/AVC Video Compression on Smartphones

    NASA Astrophysics Data System (ADS)

    Sharabayko, M. P.; Markov, N. G.

    2017-01-01

    In this paper, we studied the usage of H.264/AVC video compression tools by the flagship smartphones. The results show that only a subset of tools is used, meaning that there is still a potential to achieve higher compression efficiency within the H.264/AVC standard, but the most advanced smartphones are already reaching the compression efficiency limit of H.264/AVC.

  2. Table look-up estimation of signal and noise parameters from quantized observables

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V. A.; Rodemich, E. R.

    1986-01-01

    A table look-up algorithm for estimating underlying signal and noise parameters from quantized observables is examined. A general mathematical model is developed, and a look-up table designed specifically for estimating parameters from four-bit quantized data is described. Estimator performance is evaluated both analytically and by means of numerical simulation, and an example is provided to illustrate the use of the look-up table for estimating signal-to-noise ratios commonly encountered in Voyager-type data.

  3. Sub-Selective Quantization for Learning Binary Codes in Large-Scale Image Search.

    PubMed

    Li, Yeqing; Liu, Wei; Huang, Junzhou

    2018-06-01

    Recently with the explosive growth of visual content on the Internet, large-scale image search has attracted intensive attention. It has been shown that mapping high-dimensional image descriptors to compact binary codes can lead to considerable efficiency gains in both storage and performing similarity computation of images. However, most existing methods still suffer from expensive training devoted to large-scale binary code learning. To address this issue, we propose a sub-selection based matrix manipulation algorithm, which can significantly reduce the computational cost of code learning. As case studies, we apply the sub-selection algorithm to several popular quantization techniques including cases using linear and nonlinear mappings. Crucially, we can justify the resulting sub-selective quantization by proving its theoretic properties. Extensive experiments are carried out on three image benchmarks with up to one million samples, corroborating the efficacy of the sub-selective quantization method in terms of image retrieval.

  4. BFV-BRST quantization of two-dimensional supergravity

    NASA Astrophysics Data System (ADS)

    Fujiwara, T.; Igarashi, Y.; Kuriki, R.; Tabei, T.

    1996-01-01

    Two-dimensional supergravity theory is quantized as an anomalous gauge theory. In the Batalin-Fradkin (BF) formalism, the anomaly-canceling super-Liouville fields are introduced to identify the original second-class constrained system with a gauge-fixed version of a first-class system. The BFV-BRST quantization applies to formulate the theory in the most general class of gauges. A local effective action constructed in the configuration space contains two super-Liouville actions; one is a noncovariant but local functional written only in terms of two-dimensional supergravity fields, and the other contains the super-Liouville fields canceling the super-Weyl anomaly. Auxiliary fields for the Liouville and the gravity supermultiplets are introduced to make the BRST algebra close off-shell. Inclusion of them turns out to be essentially important especially in the super-light-cone gauge fixing, where the supercurvature equations (∂3-g++=∂2-χ++=0) are obtained as a result of BRST invariance of the theory. Our approach reveals the origin of the OSp(1,2) current algebra symmetry in a transparent manner.

  5. A Quantized Metric As an Alternative to Dark Matter

    NASA Astrophysics Data System (ADS)

    Maker, Joel

    2010-03-01

    The cosmological spherical symmetry background metric coefficient (g44≡) g00= 1-2GM/c^2r should be inserted into a Dirac equation σμ(gμμγ^μψ/xμ)-φψ = 0 (1,Maker) to make it generally covariant. The spin of this cosmological Dirac object is nearly unobservable due to inertial frame dragging and has rotational L(L+1) δɛ and oscillatory ɛ interactions with external objects at distance away r>>10^10 LY. The inside and outside frequencies φ match at the boundary allowing the outside metric eigenvalues to propagate inside. To include the correct 3 lepton masses in this Dirac equation we must use ansatz goo= e^i(2ɛ+δɛ) with ɛ=.06, δɛ=.00058. For local metric effects our ansatz is goo=e^iδɛ. Here the metric coefficient goo levels off to the quantized value e^iδɛ in the galaxy halo: goo=1-2GM/rc^2-> rel(e^iδɛ) =cos(δɛ)= 1-(δɛ)^2/2 ->(δɛ)^2/2=2GM/rc^2 for this circular motion v^2/r=GM/r^2=c^2(δɛ)^2/4r ->v^2 =c^2(δɛ)^2/4 =87km/sec)^2 100km/sec)^2. So the metric acts to quantize v. Note also there is rotational energy quantization for the δɛ rotational states that goes as: (L(L+1)) .5ex1 -.1em/ -.15em.25ex2 mv^2 ->√L(L+1) v. Thus differences in v are proportional to L, L being an integer. Therefore δv = kL so v = 1k, v = 2k, v = 3k, v = 4k. v=N (the above ˜100km/sec) with dark matter then not required to give these high halo velocities. Recent nearby galaxy Doppler halo velocity data strongly support this velocity quantization result.

  6. The canonical quantization of chaotic maps on the torus

    NASA Astrophysics Data System (ADS)

    Rubin, Ron Shai

    In this thesis, a quantization method for classical maps on the torus is presented. The quantum algebra of observables is defined as the quantization of measurable functions on the torus with generators exp (2/pi ix) and exp (2/pi ip). The Hilbert space we use remains the infinite-dimensional L2/ (/IR, dx). The dynamics is given by a unitary quantum propagator such that as /hbar /to 0, the classical dynamics is returned. We construct such a quantization for the Kronecker map, the cat map, the baker's map, the kick map, and the Harper map. For the cat map, we find the same for the propagator on the plane the same integral kernel conjectured in (HB) using semiclassical methods. We also define a quantum 'integral over phase space' as a trace over the quantum algebra. Using this definition, we proceed to define quantum ergodicity and mixing for maps on the torus. We prove that the quantum cat map and Kronecker map are both ergodic, but only the cat map is mixing, true to its classical origins. For Planck's constant satisfying the integrality condition h = 1/N, with N/in doubz+, we construct an explicit isomorphism between L2/ (/IR, dx) and the Hilbert space of sections of an N-dimensional vector bundle over a θ-torus T2 of boundary conditions. The basis functions are distributions in L2/ (/IR, dx), given by an infinite comb of Dirac δ-functions. In Bargmann space these distributions take on the form of Jacobi ϑ-functions. Transformations from position to momentum representation can be implemented via a finite N-dimensional discrete Fourier transform. With the θ-torus, we provide a connection between the finite-dimensional quantum maps given in the physics literature and the canonical quantization presented here and found in the language of pseudo-differential operators elsewhere in mathematics circles. Specifically, at a fixed point of the dynamics on the θ-torus, we return a finite-dimensional matrix propagator. We present this connection explicitly for several

  7. Quantization ambiguities and bounds on geometric scalars in anisotropic loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Singh, Parampreet; Wilson-Ewing, Edward

    2014-02-01

    We study quantization ambiguities in loop quantum cosmology that arise for space-times with non-zero spatial curvature and anisotropies. Motivated by lessons from different possible loop quantizations of the closed Friedmann-Lemaître-Robertson-Walker cosmology, we find that using open holonomies of the extrinsic curvature, which due to gauge-fixing can be treated as a connection, leads to the same quantum geometry effects that are found in spatially flat cosmologies. More specifically, in contrast to the quantization based on open holonomies of the Ashtekar-Barbero connection, the expansion and shear scalars in the effective theories of the Bianchi type II and Bianchi type IX models have upper bounds, and these are in exact agreement with the bounds found in the effective theories of the Friedmann-Lemaître-Robertson-Walker and Bianchi type I models in loop quantum cosmology. We also comment on some ambiguities present in the definition of inverse triad operators and their role.

  8. Exact quantization of Einstein-Rosen waves coupled to massless scalar matter.

    PubMed

    Barbero G, J Fernando; Garay, Iñaki; Villaseñor, Eduardo J S

    2005-07-29

    We show in this Letter that gravity coupled to a massless scalar field with full cylindrical symmetry can be exactly quantized by an extension of the techniques used in the quantization of Einstein-Rosen waves. This system provides a useful test bed to discuss a number of issues in quantum general relativity, such as the emergence of the classical metric, microcausality, and large quantum gravity effects. It may also provide an appropriate framework to study gravitational critical phenomena from a quantum point of view, issues related to black hole evaporation, and the consistent definition of test fields and particles in quantum gravity.

  9. Covariant scalar representation of ? and quantization of the scalar relativistic particle

    NASA Astrophysics Data System (ADS)

    Jarvis, P. D.; Tsohantjis, I.

    1996-03-01

    A covariant scalar representation of iosp(d,2/2) is constructed and analysed in comparison with existing BFV-BRST methods for the quantization of the scalar relativistic particle. It is found that, with appropriately defined wavefunctions, this iosp(d,2/2) produced representation can be identified with the state space arising from the canonical BFV-BRST quantization of the modular-invariant, unoriented scalar particle (or antiparticle) with admissible gauge-fixing conditions. For this model, the cohomological determination of physical states can thus be obtained purely from the representation theory of the iosp(d,2/2) algebra.

  10. Face Recognition Using Local Quantized Patterns and Gabor Filters

    NASA Astrophysics Data System (ADS)

    Khryashchev, V.; Priorov, A.; Stepanova, O.; Nikitin, A.

    2015-05-01

    The problem of face recognition in a natural or artificial environment has received a great deal of researchers' attention over the last few years. A lot of methods for accurate face recognition have been proposed. Nevertheless, these methods often fail to accurately recognize the person in difficult scenarios, e.g. low resolution, low contrast, pose variations, etc. We therefore propose an approach for accurate and robust face recognition by using local quantized patterns and Gabor filters. The estimation of the eye centers is used as a preprocessing stage. The evaluation of our algorithm on different samples from a standardized FERET database shows that our method is invariant to the general variations of lighting, expression, occlusion and aging. The proposed approach allows about 20% correct recognition accuracy increase compared with the known face recognition algorithms from the OpenCV library. The additional use of Gabor filters can significantly improve the robustness to changes in lighting conditions.

  11. Fractional quantization of the magnetic flux in cylindrical unconventional superconductors.

    PubMed

    Loder, F; Kampf, A P; Kopp, T

    2013-07-26

    The magnetic flux threading a conventional superconducting ring is typically quantized in units of Φ0=hc/2e. The factor of 2 in the denominator of Φ0 originates from the existence of two different types of pairing states with minima of the free energy at even and odd multiples of Φ0. Here we show that spatially modulated pairing states exist with energy minima at fractional flux values, in particular, at multiples of Φ0/2. In such states, condensates with different center-of-mass momenta of the Cooper pairs coexist. The proposed mechanism for fractional flux quantization is discussed in the context of cuprate superconductors, where hc/4e flux periodicities were observed.

  12. Cascade Error Projection with Low Bit Weight Quantization for High Order Correlation Data

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.; Daud, Taher

    1998-01-01

    In this paper, we reinvestigate the solution for chaotic time series prediction problem using neural network approach. The nature of this problem is such that the data sequences are never repeated, but they are rather in chaotic region. However, these data sequences are correlated between past, present, and future data in high order. We use Cascade Error Projection (CEP) learning algorithm to capture the high order correlation between past and present data to predict a future data using limited weight quantization constraints. This will help to predict a future information that will provide us better estimation in time for intelligent control system. In our earlier work, it has been shown that CEP can sufficiently learn 5-8 bit parity problem with 4- or more bits, and color segmentation problem with 7- or more bits of weight quantization. In this paper, we demonstrate that chaotic time series can be learned and generalized well with as low as 4-bit weight quantization using round-off and truncation techniques. The results show that generalization feature will suffer less as more bit weight quantization is available and error surfaces with the round-off technique are more symmetric around zero than error surfaces with the truncation technique. This study suggests that CEP is an implementable learning technique for hardware consideration.

  13. Improving multispectral satellite image compression using onboard subpixel registration

    NASA Astrophysics Data System (ADS)

    Albinet, Mathieu; Camarero, Roberto; Isnard, Maxime; Poulet, Christophe; Perret, Jokin

    2013-09-01

    Future CNES earth observation missions will have to deal with an ever increasing telemetry data rate due to improvements in resolution and addition of spectral bands. Current CNES image compressors implement a discrete wavelet transform (DWT) followed by a bit plane encoding (BPE) but only on a mono spectral basis and do not profit from the multispectral redundancy of the observed scenes. Recent CNES studies have proven a substantial gain on the achievable compression ratio, +20% to +40% on selected scenarios, by implementing a multispectral compression scheme based on a Karhunen Loeve transform (KLT) followed by the classical DWT+BPE. But such results can be achieved only on perfectly registered bands; a default of registration as low as 0.5 pixel ruins all the benefits of multispectral compression. In this work, we first study the possibility to implement a multi-bands subpixel onboard registration based on registration grids generated on-the-fly by the satellite attitude control system and simplified resampling and interpolation techniques. Indeed bands registration is usually performed on ground using sophisticated techniques too computationally intensive for onboard use. This fully quantized algorithm is tuned to meet acceptable registration performances within stringent image quality criteria, with the objective of onboard real-time processing. In a second part, we describe a FPGA implementation developed to evaluate the design complexity and, by extrapolation, the data rate achievable on a spacequalified ASIC. Finally, we present the impact of this approach on the processing chain not only onboard but also on ground and the impacts on the design of the instrument.

  14. A Posteriori Restoration of Block Transform-Compressed Data

    NASA Technical Reports Server (NTRS)

    Brown, R.; Boden, A. F.

    1995-01-01

    The Galileo spacecraft will use lossy data compression for the transmission of its science imagery over the low-bandwidth communication system. The technique chosen for image compression is a block transform technique based on the Integer Cosine Transform, a derivative of the JPEG image compression standard. Considered here are two known a posteriori enhancement techniques, which are adapted.

  15. Topological charge quantization via path integration: An application of the Kustaanheimo-Stiefel transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inomata, A.; Junker, G.; Wilson, R.

    1993-08-01

    The unified treatment of the Dirac monopole, the Schwinger monopole, and the Aharonov-Bahn problem by Barut and Wilson is revisited via a path integral approach. The Kustaanheimo-Stiefel transformation of space and time is utilized to calculate the path integral for a charged particle in the singular vector potential. In the process of dimensional reduction, a topological charge quantization rule is derived, which contains Dirac's quantization condition as a special case. 32 refs.

  16. ChIPWig: a random access-enabling lossless and lossy compression method for ChIP-seq data.

    PubMed

    Ravanmehr, Vida; Kim, Minji; Wang, Zhiying; Milenkovic, Olgica

    2018-03-15

    Chromatin immunoprecipitation sequencing (ChIP-seq) experiments are inexpensive and time-efficient, and result in massive datasets that introduce significant storage and maintenance challenges. To address the resulting Big Data problems, we propose a lossless and lossy compression framework specifically designed for ChIP-seq Wig data, termed ChIPWig. ChIPWig enables random access, summary statistics lookups and it is based on the asymptotic theory of optimal point density design for nonuniform quantizers. We tested the ChIPWig compressor on 10 ChIP-seq datasets generated by the ENCODE consortium. On average, lossless ChIPWig reduced the file sizes to merely 6% of the original, and offered 6-fold compression rate improvement compared to bigWig. The lossy feature further reduced file sizes 2-fold compared to the lossless mode, with little or no effects on peak calling and motif discovery using specialized NarrowPeaks methods. The compression and decompression speed rates are of the order of 0.2 sec/MB using general purpose computers. The source code and binaries are freely available for download at https://github.com/vidarmehr/ChIPWig-v2, implemented in C ++. milenkov@illinois.edu. Supplementary data are available at Bioinformatics online.

  17. Quantization of geometric phase with integer and fractional topological characterization in a quantum Ising chain with long-range interaction.

    PubMed

    Sarkar, Sujit

    2018-04-12

    An attempt is made to study and understand the behavior of quantization of geometric phase of a quantum Ising chain with long range interaction. We show the existence of integer and fractional topological characterization for this model Hamiltonian with different quantization condition and also the different quantized value of geometric phase. The quantum critical lines behave differently from the perspective of topological characterization. The results of duality and its relation to the topological quantization is presented here. The symmetry study for this model Hamiltonian is also presented. Our results indicate that the Zak phase is not the proper physical parameter to describe the topological characterization of system with long range interaction. We also present quite a few exact solutions with physical explanation. Finally we present the relation between duality, symmetry and topological characterization. Our work provides a new perspective on topological quantization.

  18. Parallel design patterns for a low-power, software-defined compressed video encoder

    NASA Astrophysics Data System (ADS)

    Bruns, Michael W.; Hunt, Martin A.; Prasad, Durga; Gunupudi, Nageswara R.; Sonachalam, Sekar

    2011-06-01

    Video compression algorithms such as H.264 offer much potential for parallel processing that is not always exploited by the technology of a particular implementation. Consumer mobile encoding devices often achieve real-time performance and low power consumption through parallel processing in Application Specific Integrated Circuit (ASIC) technology, but many other applications require a software-defined encoder. High quality compression features needed for some applications such as 10-bit sample depth or 4:2:2 chroma format often go beyond the capability of a typical consumer electronics device. An application may also need to efficiently combine compression with other functions such as noise reduction, image stabilization, real time clocks, GPS data, mission/ESD/user data or software-defined radio in a low power, field upgradable implementation. Low power, software-defined encoders may be implemented using a massively parallel memory-network processor array with 100 or more cores and distributed memory. The large number of processor elements allow the silicon device to operate more efficiently than conventional DSP or CPU technology. A dataflow programming methodology may be used to express all of the encoding processes including motion compensation, transform and quantization, and entropy coding. This is a declarative programming model in which the parallelism of the compression algorithm is expressed as a hierarchical graph of tasks with message communication. Data parallel and task parallel design patterns are supported without the need for explicit global synchronization control. An example is described of an H.264 encoder developed for a commercially available, massively parallel memorynetwork processor device.

  19. Spectrally efficient digitized radio-over-fiber system with k-means clustering-based multidimensional quantization.

    PubMed

    Zhang, Lu; Pang, Xiaodan; Ozolins, Oskars; Udalcovs, Aleksejs; Popov, Sergei; Xiao, Shilin; Hu, Weisheng; Chen, Jiajia

    2018-04-01

    We propose a spectrally efficient digitized radio-over-fiber (D-RoF) system by grouping highly correlated neighboring samples of the analog signals into multidimensional vectors, where the k-means clustering algorithm is adopted for adaptive quantization. A 30  Gbit/s D-RoF system is experimentally demonstrated to validate the proposed scheme, reporting a carrier aggregation of up to 40 100 MHz orthogonal frequency division multiplexing (OFDM) channels with quadrate amplitude modulation (QAM) order of 4 and an aggregation of 10 100 MHz OFDM channels with a QAM order of 16384. The equivalent common public radio interface rates from 37 to 150  Gbit/s are supported. Besides, the error vector magnitude (EVM) of 8% is achieved with the number of quantization bits of 4, and the EVM can be further reduced to 1% by increasing the number of quantization bits to 7. Compared with conventional pulse coding modulation-based D-RoF systems, the proposed D-RoF system improves the signal-to-noise-ratio up to ∼9  dB and greatly reduces the EVM, given the same number of quantization bits.

  20. S-EMG signal compression based on domain transformation and spectral shape dynamic bit allocation

    PubMed Central

    2014-01-01

    Background Surface electromyographic (S-EMG) signal processing has been emerging in the past few years due to its non-invasive assessment of muscle function and structure and because of the fast growing rate of digital technology which brings about new solutions and applications. Factors such as sampling rate, quantization word length, number of channels and experiment duration can lead to a potentially large volume of data. Efficient transmission and/or storage of S-EMG signals are actually a research issue. That is the aim of this work. Methods This paper presents an algorithm for the data compression of surface electromyographic (S-EMG) signals recorded during isometric contractions protocol and during dynamic experimental protocols such as the cycling activity. The proposed algorithm is based on discrete wavelet transform to proceed spectral decomposition and de-correlation, on a dynamic bit allocation procedure to code the wavelets transformed coefficients, and on an entropy coding to minimize the remaining redundancy and to pack all data. The bit allocation scheme is based on mathematical decreasing spectral shape models, which indicates a shorter digital word length to code high frequency wavelets transformed coefficients. Four bit allocation spectral shape methods were implemented and compared: decreasing exponential spectral shape, decreasing linear spectral shape, decreasing square-root spectral shape and rotated hyperbolic tangent spectral shape. Results The proposed method is demonstrated and evaluated for an isometric protocol and for a dynamic protocol using a real S-EMG signal data bank. Objective performance evaluations metrics are presented. In addition, comparisons with other encoders proposed in scientific literature are shown. Conclusions The decreasing bit allocation shape applied to the quantized wavelet coefficients combined with arithmetic coding results is an efficient procedure. The performance comparisons of the proposed S-EMG data

  1. A consistent covariant quantization of the Brink-Schwarz superparticle

    NASA Astrophysics Data System (ADS)

    Eisenberg, Yeshayahu

    1992-02-01

    We perform the covariant quantization of the ten-dimensional Brink-Schwarz superparticle by reducing it to a system whose constraints are all first class, covariant and have only two levels of reducibility. Research supported by the Rothschild Fellowship.

  2. Novel properties of the q-analogue quantized radiation field

    NASA Technical Reports Server (NTRS)

    Nelson, Charles A.

    1993-01-01

    The 'classical limit' of the q-analog quantized radiation field is studied paralleling conventional quantum optics analyses. The q-generalizations of the phase operator of Susskind and Glogower and that of Pegg and Barnett are constructed. Both generalizations and their associated number-phase uncertainty relations are manifestly q-independent in the n greater than g number basis. However, in the q-coherent state z greater than q basis, the variance of the generic electric field, (delta(E))(sup 2) is found to be increased by a factor lambda(z) where lambda(z) greater than 1 if q not equal to 1. At large amplitudes, the amplitude itself would be quantized if the available resolution of unity for the q-analog coherent states is accepted in the formulation. These consequences are remarkable versus the conventional q = 1 limit.

  3. Can The Periods of Some Extra-Solar Planetary Systems be Quantized?

    NASA Astrophysics Data System (ADS)

    El Fady Morcos, Abd

    A simple formula was derived before by Morcos (2013 ), to relate the quantum numbers of planetary systems and their periods. This formula is applicable perfectly for the solar system planets, and some extra-solar planets , of stars of approximately the same masses like the Sun. This formula has been used to estimate the periods of some extra-solar planet of known quantum numbers. The used quantum numbers were calculated previously by other authors. A comparison between the observed and estimated periods, from the given formula has been done. The differences between the observed and calculated periods for the extra-solar systems have been calculated and tabulated. It is found that there is an error of the range of 10% The same formula has been also used to find the quantum numbers, of some known periods, exo-planet. Keywords: Quantization; Periods; Extra-Planetary; Extra-Solar Planet REFERENCES [1] Agnese, A. G. and Festa, R. “Discretization on the Cosmic Scale Inspirred from the Old Quantum Mechanics,” 1998. http://arxiv.org/abs/astro-ph/9807186 [2] Agnese, A. G. and Festa, R. “Discretizing ups-Andro- medae Planetary System,” 1999. http://arxiv.org/abs/astro-ph/9910534. [3] Barnothy, J. M. “The Stability of the Solar Systemand of Small Stellar Systems,” Proceedings of the IAU Sympo-sium 62, Warsaw, 5-8 September 1973, pp. 23-31. [4] Morcos, A.B. , “Confrontation between Quantized Periods of Some Extra-Solar Planetary Systems and Observations”, International Journal of Astronomy and Astrophysics, 2013, 3, 28-32. [5] Nottale, L. “Fractal Space-Time and Microphysics, To-wards a Theory of Scale Relativity,” World Scientific, London, 1994. [6] Nottale , L., “Scale-Relativity and Quantization of Extra- Solar Planetary Systems,” Astronomy & Astrophysics, Vol. 315, 1996, pp. L9-L12 [7] Nottale, L., Schumacher, G. and Gay, J. “Scale-Relativity and Quantization of the Solar Systems,” Astronomy & Astrophysics letters, Vol. 322, 1997, pp. 1018-10 [8

  4. DNABIT Compress - Genome compression algorithm.

    PubMed

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-22

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, "DNABIT Compress" for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that "DNABIT Compress" algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases.

  5. Compressed air massage hastens healing of the diabetic foot.

    PubMed

    Mars, M; Desai, Y; Gregory, M A

    2008-02-01

    The management of diabetic foot ulcers remains a problem. A treatment modality that uses compressed air massage has been developed as a supplement to standard surgical and medical treatment. Compressed air massage is thought to improve local tissue oxygenation around ulcers. The aim of this study was to determine whether the addition of compressed air massage influences the rate of healing of diabetic ulcers. Sixty consecutive patients with diabetes, admitted to one hospital for urgent surgical management of diabetic foot ulcers, were randomized into two groups. Both groups received standard medical and surgical management of their diabetes and ulcer. In addition, one group received 15-20 min of compressed air massage, at 1 bar pressure, daily, for 5 days a week, to the foot and the tissue around the ulcer. Healing time was calculated as the time from admission to the time of re-epithelialization. Fifty-seven patients completed the trial; 28 received compressed air massage. There was no difference in the mean age, Wagner score, ulcer size, pulse status, or peripheral sensation in the two groups. The time to healing in the compressed air massage group was significantly reduced: 58.1 +/- 22.3 days (95% confidence interval: 49.5-66.6) versus 82.7 +/- 30.7 days (95% confidence interval: 70.0-94.3) (P = 0.001). No adverse effects in response to compressed air massage were noted. The addition of compressed air massage to standard medical and surgical management of diabetic ulcers appears to enhance ulcer healing. Further studies with this new treatment modality are warranted.

  6. Quantization error of CCD cameras and their influence on phase calculation in fringe pattern analysis.

    PubMed

    Skydan, Oleksandr A; Lilley, Francis; Lalor, Michael J; Burton, David R

    2003-09-10

    We present an investigation into the phase errors that occur in fringe pattern analysis that are caused by quantization effects. When acquisition devices with a limited value of camera bit depth are used, there are a limited number of quantization levels available to record the signal. This may adversely affect the recorded signal and adds a potential source of instrumental error to the measurement system. Quantization effects also determine the accuracy that may be achieved by acquisition devices in a measurement system. We used the Fourier fringe analysis measurement technique. However, the principles can be applied equally well for other phase measuring techniques to yield a phase error distribution that is caused by the camera bit depth.

  7. Effect of temperature degeneracy and Landau quantization on drift solitary waves and double layers

    NASA Astrophysics Data System (ADS)

    Shan, Shaukat Ali; Haque, Q.

    2018-01-01

    The linear and nonlinear drift ion acoustic waves have been investigated in an inhomogeneous, magnetized, dense degenerate, and quantized magnetic field plasma. The linear drift ion acoustic wave propagation along with the nonlinear structures like double layers and solitary waves has been found to be strongly dependent on the drift speed, magnetic field quantization parameter β, and the temperature degeneracy. The graphical illustrations show that the frequency of linear waves and the amplitude of the solitary waves increase with the increase in temperature degeneracy and Landau quantization effect, while the amplitude of the double layers decreases with the increase in η and T. The relevance of the present study is pointed out in the plasma environment of fast ignition inertial confinement fusion, the white dwarf stars, and short pulsed petawatt laser technology.

  8. A CAM-based LZ data compression IC

    NASA Technical Reports Server (NTRS)

    Winters, K.; Bode, R.; Schneider, E.

    1993-01-01

    A custom CMOS processor is introduced that implements the Data Compression Lempel-Ziv (DCLZ) standard, a variation of the LZ2 Algorithm. This component presently achieves a sustained compression and decompression rate of 10 megabytes/second by employing an on-chip content-addressable memory for string table storage.

  9. Advances in image compression and automatic target recognition; Proceedings of the Meeting, Orlando, FL, Mar. 30, 31, 1989

    NASA Technical Reports Server (NTRS)

    Tescher, Andrew G. (Editor)

    1989-01-01

    Various papers on image compression and automatic target recognition are presented. Individual topics addressed include: target cluster detection in cluttered SAR imagery, model-based target recognition using laser radar imagery, Smart Sensor front-end processor for feature extraction of images, object attitude estimation and tracking from a single video sensor, symmetry detection in human vision, analysis of high resolution aerial images for object detection, obscured object recognition for an ATR application, neural networks for adaptive shape tracking, statistical mechanics and pattern recognition, detection of cylinders in aerial range images, moving object tracking using local windows, new transform method for image data compression, quad-tree product vector quantization of images, predictive trellis encoding of imagery, reduced generalized chain code for contour description, compact architecture for a real-time vision system, use of human visibility functions in segmentation coding, color texture analysis and synthesis using Gibbs random fields.

  10. JPEG XS, a new standard for visually lossless low-latency lightweight image compression

    NASA Astrophysics Data System (ADS)

    Descampe, Antonin; Keinert, Joachim; Richter, Thomas; Fößel, Siegfried; Rouvroy, Gaël.

    2017-09-01

    JPEG XS is an upcoming standard from the JPEG Committee (formally known as ISO/IEC SC29 WG1). It aims to provide an interoperable visually lossless low-latency lightweight codec for a wide range of applications including mezzanine compression in broadcast and Pro-AV markets. This requires optimal support of a wide range of implementation technologies such as FPGAs, CPUs and GPUs. Targeted use cases are professional video links, IP transport, Ethernet transport, real-time video storage, video memory buffers, and omnidirectional video capture and rendering. In addition to the evaluation of the visual transparency of the selected technologies, a detailed analysis of the hardware and software complexity as well as the latency has been done to make sure that the new codec meets the requirements of the above-mentioned use cases. In particular, the end-to-end latency has been constrained to a maximum of 32 lines. Concerning the hardware complexity, neither encoder nor decoder should require more than 50% of an FPGA similar to Xilinx Artix 7 or 25% of an FPGA similar to Altera Cyclon 5. This process resulted in a coding scheme made of an optional color transform, a wavelet transform, the entropy coding of the highest magnitude level of groups of coefficients, and the raw inclusion of the truncated wavelet coefficients. This paper presents the details and status of the standardization process, a technical description of the future standard, and the latest performance evaluation results.

  11. 41 CFR 50-204.8 - Use of compressed air.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 1 2013-07-01 2013-07-01 false Use of compressed air. 50-204.8 Section 50-204.8 Public Contracts and Property Management Other Provisions Relating to... CONTRACTS General Safety and Health Standards § 50-204.8 Use of compressed air. Compressed air shall not be...

  12. 41 CFR 50-204.8 - Use of compressed air.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 1 2014-07-01 2014-07-01 false Use of compressed air. 50-204.8 Section 50-204.8 Public Contracts and Property Management Other Provisions Relating to... CONTRACTS General Safety and Health Standards § 50-204.8 Use of compressed air. Compressed air shall not be...

  13. Compressing DNA sequence databases with coil.

    PubMed

    White, W Timothy J; Hendy, Michael D

    2008-05-20

    Publicly available DNA sequence databases such as GenBank are large, and are growing at an exponential rate. The sheer volume of data being dealt with presents serious storage and data communications problems. Currently, sequence data is usually kept in large "flat files," which are then compressed using standard Lempel-Ziv (gzip) compression - an approach which rarely achieves good compression ratios. While much research has been done on compressing individual DNA sequences, surprisingly little has focused on the compression of entire databases of such sequences. In this study we introduce the sequence database compression software coil. We have designed and implemented a portable software package, coil, for compressing and decompressing DNA sequence databases based on the idea of edit-tree coding. coil is geared towards achieving high compression ratios at the expense of execution time and memory usage during compression - the compression time represents a "one-off investment" whose cost is quickly amortised if the resulting compressed file is transmitted many times. Decompression requires little memory and is extremely fast. We demonstrate a 5% improvement in compression ratio over state-of-the-art general-purpose compression tools for a large GenBank database file containing Expressed Sequence Tag (EST) data. Finally, coil can efficiently encode incremental additions to a sequence database. coil presents a compelling alternative to conventional compression of flat files for the storage and distribution of DNA sequence databases having a narrow distribution of sequence lengths, such as EST data. Increasing compression levels for databases having a wide distribution of sequence lengths is a direction for future work.

  14. Electronic quantization in dielectric nanolaminates

    NASA Astrophysics Data System (ADS)

    Willemsen, T.; Geerke, P.; Jupé, M.; Gallais, L.; Ristau, D.

    2016-12-01

    The scientific background in the field of the laser induced damage processes in optical coatings has been significantly extended during the last decades. Especially for the ultra-short pulse regime a clear correlation between the electronic material parameters and the laser damage threshold could be demonstrated. In the present study, the quantization in nanolaminates is investigated to gain a deeper insight into the behavior of the blue shift of the bandgap in specific coating materials as well as to find approximations for the effective mass of the electrons. The theoretical predictions are correlated to the measurements.

  15. Generalized Ehrenfest Relations, Deformation Quantization, and the Geometry of Inter-model Reduction

    NASA Astrophysics Data System (ADS)

    Rosaler, Joshua

    2018-03-01

    This study attempts to spell out more explicitly than has been done previously the connection between two types of formal correspondence that arise in the study of quantum-classical relations: one the one hand, deformation quantization and the associated continuity between quantum and classical algebras of observables in the limit \\hbar → 0, and, on the other, a certain generalization of Ehrenfest's Theorem and the result that expectation values of position and momentum evolve approximately classically for narrow wave packet states. While deformation quantization establishes a direct continuity between the abstract algebras of quantum and classical observables, the latter result makes in-eliminable reference to the quantum and classical state spaces on which these structures act—specifically, via restriction to narrow wave packet states. Here, we describe a certain geometrical re-formulation and extension of the result that expectation values evolve approximately classically for narrow wave packet states, which relies essentially on the postulates of deformation quantization, but describes a relationship between the actions of quantum and classical algebras and groups over their respective state spaces that is non-trivially distinct from deformation quantization. The goals of the discussion are partly pedagogical in that it aims to provide a clear, explicit synthesis of known results; however, the particular synthesis offered aspires to some novelty in its emphasis on a certain general type of mathematical and physical relationship between the state spaces of different models that represent the same physical system, and in the explicitness with which it details the above-mentioned connection between quantum and classical models.

  16. EPR & Klein Paradoxes in Complex Hamiltonian Dynamics and Krein Space Quantization

    NASA Astrophysics Data System (ADS)

    Payandeh, Farrin

    2015-07-01

    -time) states, the original version of EPR paradox can be discussed and the correct answer can be verified based on the strong rooted complex quantum Hamilton-Jacobi theory [2-27] and as another example we can use the negative energy states, to remove the Klein's paradox without the need of any further explanations or justifications like backwardly moving electrons. Finally, comparing the two approaches, we can point out to the existence of a connection between quantum Hamiltonian dynamics, standard quantum field theory, and Krein space quantization [28-43].

  17. Polymer quantization, stability and higher-order time derivative terms

    NASA Astrophysics Data System (ADS)

    Cumsille, Patricio; Reyes, Carlos M.; Ossandon, Sebastian; Reyes, Camilo

    2016-03-01

    The possibility that fundamental discreteness implicit in a quantum gravity theory may act as a natural regulator for ultraviolet singularities arising in quantum field theory has been intensively studied. Here, along the same expectations, we investigate whether a nonstandard representation called polymer representation can smooth away the large amount of negative energy that afflicts the Hamiltonians of higher-order time derivative theories, rendering the theory unstable when interactions come into play. We focus on the fourth-order Pais-Uhlenbeck model which can be reexpressed as the sum of two decoupled harmonic oscillators one producing positive energy and the other negative energy. As expected, the Schrödinger quantization of such model leads to the stability problem or to negative norm states called ghosts. Within the framework of polymer quantization we show the existence of new regions where the Hamiltonian can be defined well bounded from below.

  18. 41 CFR 50-204.8 - Use of compressed air.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Use of compressed air. 50-204.8 Section 50-204.8 Public Contracts and Property Management Other Provisions Relating to Public... General Safety and Health Standards § 50-204.8 Use of compressed air. Compressed air shall not be used for...

  19. Distributed Adaptive Containment Control for a Class of Nonlinear Multiagent Systems With Input Quantization.

    PubMed

    Wang, Chenliang; Wen, Changyun; Hu, Qinglei; Wang, Wei; Zhang, Xiuyu

    2018-06-01

    This paper is devoted to distributed adaptive containment control for a class of nonlinear multiagent systems with input quantization. By employing a matrix factorization and a novel matrix normalization technique, some assumptions involving control gain matrices in existing results are relaxed. By fusing the techniques of sliding mode control and backstepping control, a two-step design method is proposed to construct controllers and, with the aid of neural networks, all system nonlinearities are allowed to be unknown. Moreover, a linear time-varying model and a similarity transformation are introduced to circumvent the obstacle brought by quantization, and the controllers need no information about the quantizer parameters. The proposed scheme is able to ensure the boundedness of all closed-loop signals and steer the containment errors into an arbitrarily small residual set. The simulation results illustrate the effectiveness of the scheme.

  20. Direct Images, Fields of Hilbert Spaces, and Geometric Quantization

    NASA Astrophysics Data System (ADS)

    Lempert, László; Szőke, Róbert

    2014-04-01

    Geometric quantization often produces not one Hilbert space to represent the quantum states of a classical system but a whole family H s of Hilbert spaces, and the question arises if the spaces H s are canonically isomorphic. Axelrod et al. (J. Diff. Geo. 33:787-902, 1991) and Hitchin (Commun. Math. Phys. 131:347-380, 1990) suggest viewing H s as fibers of a Hilbert bundle H, introduce a connection on H, and use parallel transport to identify different fibers. Here we explore to what extent this can be done. First we introduce the notion of smooth and analytic fields of Hilbert spaces, and prove that if an analytic field over a simply connected base is flat, then it corresponds to a Hermitian Hilbert bundle with a flat connection and path independent parallel transport. Second we address a general direct image problem in complex geometry: pushing forward a Hermitian holomorphic vector bundle along a non-proper map . We give criteria for the direct image to be a smooth field of Hilbert spaces. Third we consider quantizing an analytic Riemannian manifold M by endowing TM with the family of adapted Kähler structures from Lempert and Szőke (Bull. Lond. Math. Soc. 44:367-374, 2012). This leads to a direct image problem. When M is homogeneous, we prove the direct image is an analytic field of Hilbert spaces. For certain such M—but not all—the direct image is even flat; which means that in those cases quantization is unique.

  1. Rotating effects on the Landau quantization for an atom with a magnetic quadrupole moment

    NASA Astrophysics Data System (ADS)

    Fonseca, I. C.; Bakke, K.

    2016-01-01

    Based on the single particle approximation [Dmitriev et al., Phys. Rev. C 50, 2358 (1994) and C.-C. Chen, Phys. Rev. A 51, 2611 (1995)], the Landau quantization associated with an atom with a magnetic quadrupole moment is introduced, and then, rotating effects on this analogue of the Landau quantization is investigated. It is shown that rotating effects can modify the cyclotron frequency and breaks the degeneracy of the analogue of the Landau levels.

  2. Rotating effects on the Landau quantization for an atom with a magnetic quadrupole moment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fonseca, I. C.; Bakke, K., E-mail: kbakke@fisica.ufpb.br

    2016-01-07

    Based on the single particle approximation [Dmitriev et al., Phys. Rev. C 50, 2358 (1994) and C.-C. Chen, Phys. Rev. A 51, 2611 (1995)], the Landau quantization associated with an atom with a magnetic quadrupole moment is introduced, and then, rotating effects on this analogue of the Landau quantization is investigated. It is shown that rotating effects can modify the cyclotron frequency and breaks the degeneracy of the analogue of the Landau levels.

  3. Correspondence between quantization schemes for two-player nonzero-sum games and CNOT complexity

    NASA Astrophysics Data System (ADS)

    Vijayakrishnan, V.; Balakrishnan, S.

    2018-05-01

    The well-known quantization schemes for two-player nonzero-sum games are Eisert-Wilkens-Lewenstein scheme and Marinatto-Weber scheme. In this work, we establish the connection between the two schemes from the perspective of quantum circuits. Further, we provide the correspondence between any game quantization schemes and the CNOT complexity, where CNOT complexity is up to the local unitary operations. While CNOT complexity is known to be useful in the analysis of universal quantum circuit, in this work, we find its applicability in quantum game theory.

  4. On the Perturbative Equivalence Between the Hamiltonian and Lagrangian Quantizations

    NASA Astrophysics Data System (ADS)

    Batalin, I. A.; Tyutin, I. V.

    The Hamiltonian (BFV) and Lagrangian (BV) quantization schemes are proved to be perturbatively equivalent to each other. It is shown in particular that the quantum master equation being treated perturbatively possesses a local formal solution.

  5. Fast and accurate face recognition based on image compression

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Blasch, Erik

    2017-05-01

    Image compression is desired for many image-related applications especially for network-based applications with bandwidth and storage constraints. The face recognition community typical reports concentrate on the maximal compression rate that would not decrease the recognition accuracy. In general, the wavelet-based face recognition methods such as EBGM (elastic bunch graph matching) and FPB (face pattern byte) are of high performance but run slowly due to their high computation demands. The PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis) algorithms run fast but perform poorly in face recognition. In this paper, we propose a novel face recognition method based on standard image compression algorithm, which is termed as compression-based (CPB) face recognition. First, all gallery images are compressed by the selected compression algorithm. Second, a mixed image is formed with the probe and gallery images and then compressed. Third, a composite compression ratio (CCR) is computed with three compression ratios calculated from: probe, gallery and mixed images. Finally, the CCR values are compared and the largest CCR corresponds to the matched face. The time cost of each face matching is about the time of compressing the mixed face image. We tested the proposed CPB method on the "ASUMSS face database" (visible and thermal images) from 105 subjects. The face recognition accuracy with visible images is 94.76% when using JPEG compression. On the same face dataset, the accuracy of FPB algorithm was reported as 91.43%. The JPEG-compressionbased (JPEG-CPB) face recognition is standard and fast, which may be integrated into a real-time imaging device.

  6. Biometric and Emotion Identification: An ECG Compression Based Method.

    PubMed

    Brás, Susana; Ferreira, Jacqueline H T; Soares, Sandra C; Pinho, Armando J

    2018-01-01

    We present an innovative and robust solution to both biometric and emotion identification using the electrocardiogram (ECG). The ECG represents the electrical signal that comes from the contraction of the heart muscles, indirectly representing the flow of blood inside the heart, it is known to convey a key that allows biometric identification. Moreover, due to its relationship with the nervous system, it also varies as a function of the emotional state. The use of information-theoretic data models, associated with data compression algorithms, allowed to effectively compare ECG records and infer the person identity, as well as emotional state at the time of data collection. The proposed method does not require ECG wave delineation or alignment, which reduces preprocessing error. The method is divided into three steps: (1) conversion of the real-valued ECG record into a symbolic time-series, using a quantization process; (2) conditional compression of the symbolic representation of the ECG, using the symbolic ECG records stored in the database as reference; (3) identification of the ECG record class, using a 1-NN (nearest neighbor) classifier. We obtained over 98% of accuracy in biometric identification, whereas in emotion recognition we attained over 90%. Therefore, the method adequately identify the person, and his/her emotion. Also, the proposed method is flexible and may be adapted to different problems, by the alteration of the templates for training the model.

  7. Permutation modulation for quantization and information reconciliation in CV-QKD systems

    NASA Astrophysics Data System (ADS)

    Daneshgaran, Fred; Mondin, Marina; Olia, Khashayar

    2017-08-01

    This paper is focused on the problem of Information Reconciliation (IR) for continuous variable Quantum Key Distribution (QKD). The main problem is quantization and assignment of labels to the samples of the Gaussian variables observed at Alice and Bob. Trouble is that most of the samples, assuming that the Gaussian variable is zero mean which is de-facto the case, tend to have small magnitudes and are easily disturbed by noise. Transmission over longer and longer distances increases the losses corresponding to a lower effective Signal to Noise Ratio (SNR) exasperating the problem. Here we propose to use Permutation Modulation (PM) as a means of quantization of Gaussian vectors at Alice and Bob over a d-dimensional space with d ≫ 1. The goal is to achieve the necessary coding efficiency to extend the achievable range of continuous variable QKD by quantizing over larger and larger dimensions. Fractional bit rate per sample is easily achieved using PM at very reasonable computational cost. Ordered statistics is used extensively throughout the development from generation of the seed vector in PM to analysis of error rates associated with the signs of the Gaussian samples at Alice and Bob as a function of the magnitude of the observed samples at Bob.

  8. FAST TRACK COMMUNICATION: Quantization over boson operator spaces

    NASA Astrophysics Data System (ADS)

    Prosen, Tomaž; Seligman, Thomas H.

    2010-10-01

    The framework of third quantization—canonical quantization in the Liouville space—is developed for open many-body bosonic systems. We show how to diagonalize the quantum Liouvillean for an arbitrary quadratic n-boson Hamiltonian with arbitrary linear Lindblad couplings to the baths and, as an example, explicitly work out a general case of a single boson.

  9. Quantized Vector Potential and the Photon Wave-function

    NASA Astrophysics Data System (ADS)

    Meis, C.; Dahoo, P. R.

    2017-12-01

    The vector potential function {\\overrightarrow{α }}kλ (\\overrightarrow{r},t) for a k-mode and λ-polarization photon, with the quantized amplitude α 0k (ω k ) = ξω k , satisfies the classical wave propagation equation as well as the Schrodinger’s equation with the relativistic massless Hamiltonian \\mathop{H}\\limits∼ =-i\\hslash c\\overrightarrow{\

  10. Compressing DNA sequence databases with coil

    PubMed Central

    White, W Timothy J; Hendy, Michael D

    2008-01-01

    Background Publicly available DNA sequence databases such as GenBank are large, and are growing at an exponential rate. The sheer volume of data being dealt with presents serious storage and data communications problems. Currently, sequence data is usually kept in large "flat files," which are then compressed using standard Lempel-Ziv (gzip) compression – an approach which rarely achieves good compression ratios. While much research has been done on compressing individual DNA sequences, surprisingly little has focused on the compression of entire databases of such sequences. In this study we introduce the sequence database compression software coil. Results We have designed and implemented a portable software package, coil, for compressing and decompressing DNA sequence databases based on the idea of edit-tree coding. coil is geared towards achieving high compression ratios at the expense of execution time and memory usage during compression – the compression time represents a "one-off investment" whose cost is quickly amortised if the resulting compressed file is transmitted many times. Decompression requires little memory and is extremely fast. We demonstrate a 5% improvement in compression ratio over state-of-the-art general-purpose compression tools for a large GenBank database file containing Expressed Sequence Tag (EST) data. Finally, coil can efficiently encode incremental additions to a sequence database. Conclusion coil presents a compelling alternative to conventional compression of flat files for the storage and distribution of DNA sequence databases having a narrow distribution of sequence lengths, such as EST data. Increasing compression levels for databases having a wide distribution of sequence lengths is a direction for future work. PMID:18489794

  11. Dissipation and quantization for composite systems

    NASA Astrophysics Data System (ADS)

    Blasone, Massimo; Jizba, Petr; Scardigli, Fabio; Vitiello, Giuseppe

    2009-11-01

    In the framework of 't Hooft's quantization proposal, we show how to obtain from the composite system of two classical Bateman's oscillators a quantum isotonic oscillator. In a specific range of parameters, such a system can be interpreted as a particle in an effective magnetic field, interacting through a spin-orbit interaction term. In the limit of a large separation from the interaction region one can describe the system in terms of two irreducible elementary subsystems which correspond to two independent quantum harmonic oscillators.

  12. 't Hooft Quantization for Interacting Systems

    NASA Astrophysics Data System (ADS)

    Jizba, Petr; Scardigli, Fabio; Blasone, Massimo; Vitiello, Giuseppe

    2012-02-01

    In the framework of 't Hooft's "deterministic quantization" proposal, we show how to obtain from a composite system of two classical Bateman's oscillators a quantum isotonic oscillator. In a specific range of parameters, such a system can be also interpreted as a particle in an effective magnetic field, interacting through a spin-orbit interaction term. In the limit of a large separation from the interaction region, the system can be described in terms of two irreducible elementary subsystems, corresponding to two independent quantum harmonic oscillators.

  13. Intra Frame Coding In Advanced Video Coding Standard (H.264) to Obtain Consistent PSNR and Reduce Bit Rate for Diagonal Down Left Mode Using Gaussian Pulse

    NASA Astrophysics Data System (ADS)

    Manjanaik, N.; Parameshachari, B. D.; Hanumanthappa, S. N.; Banu, Reshma

    2017-08-01

    Intra prediction process of H.264 video coding standard used to code first frame i.e. Intra frame of video to obtain good coding efficiency compare to previous video coding standard series. More benefit of intra frame coding is to reduce spatial pixel redundancy with in current frame, reduces computational complexity and provides better rate distortion performance. To code Intra frame it use existing process Rate Distortion Optimization (RDO) method. This method increases computational complexity, increases in bit rate and reduces picture quality so it is difficult to implement in real time applications, so the many researcher has been developed fast mode decision algorithm for coding of intra frame. The previous work carried on Intra frame coding in H.264 standard using fast decision mode intra prediction algorithm based on different techniques was achieved increased in bit rate, degradation of picture quality(PSNR) for different quantization parameters. Many previous approaches of fast mode decision algorithms on intra frame coding achieved only reduction of computational complexity or it save encoding time and limitation was increase in bit rate with loss of quality of picture. In order to avoid increase in bit rate and loss of picture quality a better approach was developed. In this paper developed a better approach i.e. Gaussian pulse for Intra frame coding using diagonal down left intra prediction mode to achieve higher coding efficiency in terms of PSNR and bitrate. In proposed method Gaussian pulse is multiplied with each 4x4 frequency domain coefficients of 4x4 sub macro block of macro block of current frame before quantization process. Multiplication of Gaussian pulse for each 4x4 integer transformed coefficients at macro block levels scales the information of the coefficients in a reversible manner. The resulting signal would turn abstract. Frequency samples are abstract in a known and controllable manner without intermixing of coefficients, it avoids

  14. Gain-adaptive vector quantization for medium-rate speech coding

    NASA Technical Reports Server (NTRS)

    Chen, J.-H.; Gersho, A.

    1985-01-01

    A class of adaptive vector quantizers (VQs) that can dynamically adjust the 'gain' of codevectors according to the input signal level is introduced. The encoder uses a gain estimator to determine a suitable normalization of each input vector prior to VQ coding. The normalized vectors have reduced dynamic range and can then be more efficiently coded. At the receiver, the VQ decoder output is multiplied by the estimated gain. Both forward and backward adaptation are considered and several different gain estimators are compared and evaluated. An approach to optimizing the design of gain estimators is introduced. Some of the more obvious techniques for achieving gain adaptation are substantially less effective than the use of optimized gain estimators. A novel design technique that is needed to generate the appropriate gain-normalized codebook for the vector quantizer is introduced. Experimental results show that a significant gain in segmental SNR can be obtained over nonadaptive VQ with a negligible increase in complexity.

  15. Quantized transport and steady states of Floquet topological insulators

    NASA Astrophysics Data System (ADS)

    Esin, Iliya; Rudner, Mark S.; Refael, Gil; Lindner, Netanel H.

    2018-06-01

    Robust electronic edge or surface modes play key roles in the fascinating quantized responses exhibited by topological materials. Even in trivial materials, topological bands and edge states can be induced dynamically by a time-periodic drive. Such Floquet topological insulators (FTIs) inherently exist out of equilibrium; the extent to which they can host quantized transport, which depends on the steady-state population of their dynamically induced edge states, remains a crucial question. In this work, we obtain the steady states of two-dimensional FTIs in the presence of the natural dissipation mechanisms present in solid state systems. We give conditions under which the steady-state distribution resembles that of a topological insulator in the Floquet basis. In this state, the distribution in the Floquet edge modes exhibits a sharp feature akin to a Fermi level, while the bulk hosts a small density of excitations. We determine the regimes where topological edge-state transport persists and can be observed in FTIs.

  16. Subjective evaluation of mobile 3D video content: depth range versus compression artifacts

    NASA Astrophysics Data System (ADS)

    Jumisko-Pyykkö, Satu; Haustola, Tomi; Boev, Atanas; Gotchev, Atanas

    2011-02-01

    Mobile 3D television is a new form of media experience, which combines the freedom of mobility with the greater realism of presenting visual scenes in 3D. Achieving this combination is a challenging task as greater viewing experience has to be achieved with the limited resources of the mobile delivery channel such as limited bandwidth and power constrained handheld player. This challenge sets need for tight optimization of the overall mobile 3DTV system. Presence of depth and compression artifacts in the played 3D video are two major factors that influence viewer's subjective quality of experience and satisfaction. The primary goal of this study has been to examine the influence of varying depth and compression artifacts on the subjective quality of experience for mobile 3D video content. In addition, the influence of the studied variables on simulator sickness symptoms has been studied and vocabulary-based descriptive quality of experience has been conducted for a sub-set of variables in order to understand the perceptual characteristics in detail. In the experiment, 30 participants have evaluated the overall quality of different 3D video contents with varying depth ranges and compressed with varying quantization parameters. The test video content has been presented on a portable autostereoscopic LCD display with horizontal double density pixel arrangement. The results of the psychometric study indicate that compression artifacts are a dominant factor determining the quality of experience compared to varying depth range. More specifically, contents with strong compression has been rejected by the viewers and deemed unacceptable. The results of descriptive study confirm the dominance of visible spatial artifacts along the added value of depth for artifact-free content. The level of visual discomfort has been determined as not offending.

  17. Minimum uncertainty and squeezing in diffusion processes and stochastic quantization

    NASA Technical Reports Server (NTRS)

    Demartino, S.; Desiena, S.; Illuminati, Fabrizo; Vitiello, Giuseppe

    1994-01-01

    We show that uncertainty relations, as well as minimum uncertainty coherent and squeezed states, are structural properties for diffusion processes. Through Nelson stochastic quantization we derive the stochastic image of the quantum mechanical coherent and squeezed states.

  18. BFV-BRST quantization of two-dimensional supergravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujiwara, T.; Igarashi, Y.; Kuriki, R.

    1996-01-01

    Two-dimensional supergravity theory is quantized as an anomalous gauge theory. In the Batalin-Fradkin (BF) formalism, the anomaly-canceling super-Liouville fields are introduced to identify the original second-class constrained system with a gauge-fixed version of a first-class system. The BFV-BRST quantization applies to formulate the theory in the most general class of gauges. A local effective action constructed in the configuration space contains two super-Liouville actions; one is a noncovariant but local functional written only in terms of two-dimensional supergravity fields, and the other contains the super-Liouville fields canceling the super-Weyl anomaly. Auxiliary fields for the Liouville and the gravity supermultiplets aremore » introduced to make the BRST algebra close off-shell. Inclusion of them turns out to be essentially important especially in the super-light-cone gauge fixing, where the supercurvature equations ({partial_derivative}{sup 3}{sub {minus}}{ital g}{sub +}{sub +}={partial_derivative}{sup 2}{sub {minus}}{chi}{sub +}{sub +}=0) are obtained as a result of BRST invariance of the theory. Our approach reveals the origin of the OSp(1,2) current algebra symmetry in a transparent manner. {copyright} {ital 1996 The American Physical Society.}« less

  19. Topos quantum theory on quantization-induced sheaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakayama, Kunji, E-mail: nakayama@law.ryukoku.ac.jp

    2014-10-15

    In this paper, we construct a sheaf-based topos quantum theory. It is well known that a topos quantum theory can be constructed on the topos of presheaves on the category of commutative von Neumann algebras of bounded operators on a Hilbert space. Also, it is already known that quantization naturally induces a Lawvere-Tierney topology on the presheaf topos. We show that a topos quantum theory akin to the presheaf-based one can be constructed on sheaves defined by the quantization-induced Lawvere-Tierney topology. That is, starting from the spectral sheaf as a state space of a given quantum system, we construct sheaf-basedmore » expressions of physical propositions and truth objects, and thereby give a method of truth-value assignment to the propositions. Furthermore, we clarify the relationship to the presheaf-based quantum theory. We give translation rules between the sheaf-based ingredients and the corresponding presheaf-based ones. The translation rules have “coarse-graining” effects on the spaces of the presheaf-based ingredients; a lot of different proposition presheaves, truth presheaves, and presheaf-based truth-values are translated to a proposition sheaf, a truth sheaf, and a sheaf-based truth-value, respectively. We examine the extent of the coarse-graining made by translation.« less

  20. Probing topology by "heating": Quantized circular dichroism in ultracold atoms.

    PubMed

    Tran, Duc Thanh; Dauphin, Alexandre; Grushin, Adolfo G; Zoller, Peter; Goldman, Nathan

    2017-08-01

    We reveal an intriguing manifestation of topology, which appears in the depletion rate of topological states of matter in response to an external drive. This phenomenon is presented by analyzing the response of a generic two-dimensional (2D) Chern insulator subjected to a circular time-periodic perturbation. Because of the system's chiral nature, the depletion rate is shown to depend on the orientation of the circular shake; taking the difference between the rates obtained from two opposite orientations of the drive, and integrating over a proper drive-frequency range, provides a direct measure of the topological Chern number (ν) of the populated band: This "differential integrated rate" is directly related to the strength of the driving field through the quantized coefficient η 0 = ν/ ℏ 2 , where h = 2π ℏ is Planck's constant. Contrary to the integer quantum Hall effect, this quantized response is found to be nonlinear with respect to the strength of the driving field, and it explicitly involves interband transitions. We investigate the possibility of probing this phenomenon in ultracold gases and highlight the crucial role played by edge states in this effect. We extend our results to 3D lattices, establishing a link between depletion rates and the nonlinear photogalvanic effect predicted for Weyl semimetals. The quantized circular dichroism revealed in this work designates depletion rate measurements as a universal probe for topological order in quantum matter.

  1. Hamiltonian description and quantization of dissipative systems

    NASA Astrophysics Data System (ADS)

    Enz, Charles P.

    1994-09-01

    Dissipative systems are described by a Hamiltonian, combined with a “dynamical matrix” which generalizes the simplectic form of the equations of motion. Criteria for dissipation are given and the examples of a particle with friction and of the Lotka-Volterra model are presented. Quantization is first introduced by translating generalized Poisson brackets into commutators and anticommutators. Then a generalized Schrödinger equation expressed by a dynamical matrix is constructed and discussed.

  2. Development of Advanced Technologies for Complete Genomic and Proteomic Characterization of Quantized Human Tumor Cells

    DTIC Science & Technology

    2014-07-01

    establishment of Glioblastoma ( GBM ) cell lines from GBM patient’s tumor samples and quantized cell populations of each of the parental GBM cell lines, we... GBM patients are now well established and from the basis of the molecular characterization of the tumor development and signatures presented by these...analysis of these quantized cell sub populations and have begun to assemble the protein signatures of GBM tumors underpinned by the comprehensive

  3. JPEG2000 vs. full frame wavelet packet compression for smart card medical records.

    PubMed

    Leehan, Joaquín Azpirox; Lerallut, Jean-Francois

    2006-01-01

    This paper describes a comparison among different compression methods to be used in the context of electronic health records in the newer version of "smart cards". The JPEG2000 standard is compared to a full-frame wavelet packet compression method at high (33:1 and 50:1) compression rates. Results show that the full-frame method outperforms the JPEG2K standard qualitatively and quantitatively.

  4. Oblivious image watermarking combined with JPEG compression

    NASA Astrophysics Data System (ADS)

    Chen, Qing; Maitre, Henri; Pesquet-Popescu, Beatrice

    2003-06-01

    For most data hiding applications, the main source of concern is the effect of lossy compression on hidden information. The objective of watermarking is fundamentally in conflict with lossy compression. The latter attempts to remove all irrelevant and redundant information from a signal, while the former uses the irrelevant information to mask the presence of hidden data. Compression on a watermarked image can significantly affect the retrieval of the watermark. Past investigations of this problem have heavily relied on simulation. It is desirable not only to measure the effect of compression on embedded watermark, but also to control the embedding process to survive lossy compression. In this paper, we focus on oblivious watermarking by assuming that the watermarked image inevitably undergoes JPEG compression prior to watermark extraction. We propose an image-adaptive watermarking scheme where the watermarking algorithm and the JPEG compression standard are jointly considered. Watermark embedding takes into consideration the JPEG compression quality factor and exploits an HVS model to adaptively attain a proper trade-off among transparency, hiding data rate, and robustness to JPEG compression. The scheme estimates the image-dependent payload under JPEG compression to achieve the watermarking bit allocation in a determinate way, while maintaining consistent watermark retrieval performance.

  5. Optimisation algorithms for ECG data compression.

    PubMed

    Haugland, D; Heber, J G; Husøy, J H

    1997-07-01

    The use of exact optimisation algorithms for compressing digital electrocardiograms (ECGs) is demonstrated. As opposed to traditional time-domain methods, which use heuristics to select a small subset of representative signal samples, the problem of selecting the subset is formulated in rigorous mathematical terms. This approach makes it possible to derive algorithms guaranteeing the smallest possible reconstruction error when a bounded selection of signal samples is interpolated. The proposed model resembles well-known network models and is solved by a cubic dynamic programming algorithm. When applied to standard test problems, the algorithm produces a compressed representation for which the distortion is about one-half of that obtained by traditional time-domain compression techniques at reasonable compression ratios. This illustrates that, in terms of the accuracy of decoded signals, existing time-domain heuristics for ECG compression may be far from what is theoretically achievable. The paper is an attempt to bridge this gap.

  6. Event-triggered H∞ state estimation for semi-Markov jumping discrete-time neural networks with quantization.

    PubMed

    Rakkiyappan, R; Maheswari, K; Velmurugan, G; Park, Ju H

    2018-05-17

    This paper investigates H ∞ state estimation problem for a class of semi-Markovian jumping discrete-time neural networks model with event-triggered scheme and quantization. First, a new event-triggered communication scheme is introduced to determine whether or not the current sampled sensor data should be broad-casted and transmitted to the quantizer, which can save the limited communication resource. Second, a novel communication framework is employed by the logarithmic quantizer that quantifies and reduces the data transmission rate in the network, which apparently improves the communication efficiency of networks. Third, a stabilization criterion is derived based on the sufficient condition which guarantees a prescribed H ∞ performance level in the estimation error system in terms of the linear matrix inequalities. Finally, numerical simulations are given to illustrate the correctness of the proposed scheme. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Model predictive control of non-linear systems over networks with data quantization and packet loss.

    PubMed

    Yu, Jimin; Nan, Liangsheng; Tang, Xiaoming; Wang, Ping

    2015-11-01

    This paper studies the approach of model predictive control (MPC) for the non-linear systems under networked environment where both data quantization and packet loss may occur. The non-linear controlled plant in the networked control system (NCS) is represented by a Tagaki-Sugeno (T-S) model. The sensed data and control signal are quantized in both links and described as sector bound uncertainties by applying sector bound approach. Then, the quantized data are transmitted in the communication networks and may suffer from the effect of packet losses, which are modeled as Bernoulli process. A fuzzy predictive controller which guarantees the stability of the closed-loop system is obtained by solving a set of linear matrix inequalities (LMIs). A numerical example is given to illustrate the effectiveness of the proposed method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  8. DNABIT Compress – Genome compression algorithm

    PubMed Central

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-01

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, “DNABIT Compress” for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that “DNABIT Compress” algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases. PMID:21383923

  9. Vector quantization for efficient coding of upper subbands

    NASA Technical Reports Server (NTRS)

    Zeng, W. J.; Huang, Y. F.

    1994-01-01

    This paper examines the application of vector quantization (VQ) to exploit both intra-band and inter-band redundancy in subband coding. The focus here is on the exploitation of inter-band dependency. It is shown that VQ is particularly suitable and effective for coding the upper subbands. Three subband decomposition-based VQ coding schemes are proposed here to exploit the inter-band dependency by making full use of the extra flexibility of VQ approach over scalar quantization. A quadtree-based variable rate VQ (VRVQ) scheme which takes full advantage of the intra-band and inter-band redundancy is first proposed. Then, a more easily implementable alternative based on an efficient block-based edge estimation technique is employed to overcome the implementational barriers of the first scheme. Finally, a predictive VQ scheme formulated in the context of finite state VQ is proposed to further exploit the dependency among different subbands. A VRVQ scheme proposed elsewhere is extended to provide an efficient bit allocation procedure. Simulation results show that these three hybrid techniques have advantages, in terms of peak signal-to-noise ratio (PSNR) and complexity, over other existing subband-VQ approaches.

  10. Comparative performance between compressed and uncompressed airborne imagery

    NASA Astrophysics Data System (ADS)

    Phan, Chung; Rupp, Ronald; Agarwal, Sanjeev; Trang, Anh; Nair, Sumesh

    2008-04-01

    The US Army's RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD), Countermine Division is evaluating the compressibility of airborne multi-spectral imagery for mine and minefield detection application. Of particular interest is to assess the highest image data compression rate that can be afforded without the loss of image quality for war fighters in the loop and performance of near real time mine detection algorithm. The JPEG-2000 compression standard is used to perform data compression. Both lossless and lossy compressions are considered. A multi-spectral anomaly detector such as RX (Reed & Xiaoli), which is widely used as a core algorithm baseline in airborne mine and minefield detection on different mine types, minefields, and terrains to identify potential individual targets, is used to compare the mine detection performance. This paper presents the compression scheme and compares detection performance results between compressed and uncompressed imagery for various level of compressions. The compression efficiency is evaluated and its dependence upon different backgrounds and other factors are documented and presented using multi-spectral data.

  11. Code Compression for DSP

    DTIC Science & Technology

    1998-12-01

    PAGES 6 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b . ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8...Automation Conference, June 1998. [Liao95] S. Liao, S. Devadas , K. Keutzer, “Code Density Optimization for Embedded DSP Processors Using Data Compression

  12. Quantized Chiral Magnetic Current from Reconnections of Magnetic Flux.

    PubMed

    Hirono, Yuji; Kharzeev, Dmitri E; Yin, Yi

    2016-10-21

    We introduce a new mechanism for the chiral magnetic effect that does not require an initial chirality imbalance. The chiral magnetic current is generated by reconnections of magnetic flux that change the magnetic helicity of the system. The resulting current is entirely determined by the change of magnetic helicity, and it is quantized.

  13. Quantized Synchronization of Chaotic Neural Networks With Scheduled Output Feedback Control.

    PubMed

    Wan, Ying; Cao, Jinde; Wen, Guanghui

    In this paper, the synchronization problem of master-slave chaotic neural networks with remote sensors, quantization process, and communication time delays is investigated. The information communication channel between the master chaotic neural network and slave chaotic neural network consists of several remote sensors, with each sensor able to access only partial knowledge of output information of the master neural network. At each sampling instants, each sensor updates its own measurement and only one sensor is scheduled to transmit its latest information to the controller's side in order to update the control inputs for the slave neural network. Thus, such communication process and control strategy are much more energy-saving comparing with the traditional point-to-point scheme. Sufficient conditions for output feedback control gain matrix, allowable length of sampling intervals, and upper bound of network-induced delays are derived to ensure the quantized synchronization of master-slave chaotic neural networks. Lastly, Chua's circuit system and 4-D Hopfield neural network are simulated to validate the effectiveness of the main results.In this paper, the synchronization problem of master-slave chaotic neural networks with remote sensors, quantization process, and communication time delays is investigated. The information communication channel between the master chaotic neural network and slave chaotic neural network consists of several remote sensors, with each sensor able to access only partial knowledge of output information of the master neural network. At each sampling instants, each sensor updates its own measurement and only one sensor is scheduled to transmit its latest information to the controller's side in order to update the control inputs for the slave neural network. Thus, such communication process and control strategy are much more energy-saving comparing with the traditional point-to-point scheme. Sufficient conditions for output feedback control

  14. Quantum Hall resistance standard in graphene devices under relaxed experimental conditions

    NASA Astrophysics Data System (ADS)

    Ribeiro-Palau, R.; Lafont, F.; Brun-Picard, J.; Kazazis, D.; Michon, A.; Cheynis, F.; Couturaud, O.; Consejo, C.; Jouault, B.; Poirier, W.; Schopfer, F.

    2015-11-01

    The quantum Hall effect provides a universal standard for electrical resistance that is theoretically based on only the Planck constant h and the electron charge e. Currently, this standard is implemented in GaAs/AlGaAs, but graphene's electronic properties have given hope for a more practical device. Here, we demonstrate that the experimental conditions necessary for the operation of devices made of high-quality graphene grown by chemical vapour deposition on silicon carbide can be extended and significantly relaxed compared with those for state-of-the-art GaAs/AlGaAs devices. In particular, the Hall resistance can be accurately quantized to within 1 × 10-9 over a 10 T wide range of magnetic flux density, down to 3.5 T, at a temperature of up to 10 K or with a current of up to 0.5 mA. This experimental simplification highlights the great potential of graphene in the development of user-friendly and versatile quantum standards that are compatible with broader industrial uses beyond those in national metrology institutes. Furthermore, the measured agreement of the quantized Hall resistance in graphene and GaAs/AlGaAs, with an ultimate uncertainty of 8.2 × 10-11, supports the universality of the quantum Hall effect. This also provides evidence of the relation of the quantized Hall resistance with h and e, which is crucial for the new Système International d'unités to be based on fixing such fundamental constants of nature.

  15. Stokes Profile Compression Applied to VSM Data

    NASA Astrophysics Data System (ADS)

    Toussaint, W. A.; Henney, C. J.; Harvey, J. W.

    2012-02-01

    The practical details of applying the Expansion in Hermite Functions (EHF) method to compression of full-disk full-Stokes solar spectroscopic data from the SOLIS/VSM instrument are discussed in this paper. The algorithm developed and discussed here preserves the 630.15 and 630.25 nm Fe i lines, along with the local continuum and telluric lines. This compression greatly reduces the amount of space required to store these data sets while maintaining the quality of the data, allowing these observations to be archived and made publicly available with limited bandwidth. Applying EHF to the full-Stokes profiles and saving the coefficient files with Rice compression reduces the disk space required to store these observations by a factor of 20, while maintaining the quality of the data and with a total compression time only 35% slower than the standard gzip (GNU zip) compression.

  16. Image quality (IQ) guided multispectral image compression

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Chen, Genshe; Wang, Zhonghai; Blasch, Erik

    2016-05-01

    Image compression is necessary for data transportation, which saves both transferring time and storage space. In this paper, we focus on our discussion on lossy compression. There are many standard image formats and corresponding compression algorithms, for examples, JPEG (DCT -- discrete cosine transform), JPEG 2000 (DWT -- discrete wavelet transform), BPG (better portable graphics) and TIFF (LZW -- Lempel-Ziv-Welch). The image quality (IQ) of decompressed image will be measured by numerical metrics such as root mean square error (RMSE), peak signal-to-noise ratio (PSNR), and structural Similarity (SSIM) Index. Given an image and a specified IQ, we will investigate how to select a compression method and its parameters to achieve an expected compression. Our scenario consists of 3 steps. The first step is to compress a set of interested images by varying parameters and compute their IQs for each compression method. The second step is to create several regression models per compression method after analyzing the IQ-measurement versus compression-parameter from a number of compressed images. The third step is to compress the given image with the specified IQ using the selected compression method (JPEG, JPEG2000, BPG, or TIFF) according to the regressed models. The IQ may be specified by a compression ratio (e.g., 100), then we will select the compression method of the highest IQ (SSIM, or PSNR). Or the IQ may be specified by a IQ metric (e.g., SSIM = 0.8, or PSNR = 50), then we will select the compression method of the highest compression ratio. Our experiments tested on thermal (long-wave infrared) images (in gray scales) showed very promising results.

  17. Compression performance of HEVC and its format range and screen content coding extensions

    NASA Astrophysics Data System (ADS)

    Li, Bin; Xu, Jizheng; Sullivan, Gary J.

    2015-09-01

    This paper presents a comparison-based test of the objective compression performance of the High Efficiency Video Coding (HEVC) standard, its format range extensions (RExt), and its draft screen content coding extensions (SCC). The current dominant standard, H.264/MPEG-4 AVC, is used as an anchor reference in the comparison. The conditions used for the comparison tests were designed to reflect relevant application scenarios and to enable a fair comparison to the maximum extent feasible - i.e., using comparable quantization settings, reference frame buffering, intra refresh periods, rate-distortion optimization decision processing, etc. It is noted that such PSNR-based objective comparisons generally provide more conservative estimates of HEVC benefit than are found in subjective studies. The experimental results show that, when compared with H.264/MPEG-4 AVC, HEVC version 1 provides a bit rate savings for equal PSNR of about 23% for all-intra coding, 34% for random access coding, and 38% for low-delay coding. This is consistent with prior studies and the general characterization that HEVC can provide about a bit rate savings of about 50% for equal subjective quality for most applications. The HEVC format range extensions provide a similar bit rate savings of about 13-25% for all-intra coding, 28-33% for random access coding, and 32-38% for low-delay coding at different bit rate ranges. For lossy coding of screen content, the HEVC screen content coding extensions achieve a bit rate savings of about 66%, 63%, and 61% for all-intra coding, random access coding, and low-delay coding, respectively. For lossless coding, the corresponding bit rate savings are about 40%, 33%, and 32%, respectively.

  18. Quantization of the Szekeres system

    NASA Astrophysics Data System (ADS)

    Paliathanasis, A.; Zampeli, Adamantia; Christodoulakis, T.; Mustafa, M. T.

    2018-06-01

    We study the quantum corrections on the Szekeres system in the context of canonical quantization in the presence of symmetries. We start from an effective point-like Lagrangian with two integrals of motion, one corresponding to the Hamiltonian and the other to a second rank killing tensor. Imposing their quantum version on the wave function results to a solution which is then interpreted in the context of Bohmian mechanics. In this semiclassical approach, it is shown that there is no quantum corrections, thus the classical trajectories of the Szekeres system are not affected at this level. Finally, we define a probability function which shows that a stationary surface of the probability corresponds to a classical exact solution.

  19. Adaptive robust fault tolerant control design for a class of nonlinear uncertain MIMO systems with quantization.

    PubMed

    Ao, Wei; Song, Yongdong; Wen, Changyun

    2017-05-01

    In this paper, we investigate the adaptive control problem for a class of nonlinear uncertain MIMO systems with actuator faults and quantization effects. Under some mild conditions, an adaptive robust fault-tolerant control is developed to compensate the affects of uncertainties, actuator failures and errors caused by quantization, and a range of the parameters for these quantizers is established. Furthermore, a Lyapunov-like approach is adopted to demonstrate that the ultimately uniformly bounded output tracking error is guaranteed by the controller, and the signals of the closed-loop system are ensured to be bounded, even in the presence of at most m-q actuators stuck or outage. Finally, numerical simulations are provided to verify and illustrate the effectiveness of the proposed adaptive schemes. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Second quantization techniques in the scattering of nonidentical composite bodies

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Townsend, L. W.; Deutchman, P. A.

    1986-01-01

    Second quantization techniques for describing elastic and inelastic interactions between nonidentical composite bodies are presented and are applied to nucleus-nucleus collisions involving ground-state and one-particle-one-hole excitations. Evaluations of the resultant collision matrix elements are made through use of Wick's theorem.

  1. Quantized Chiral Magnetic Current from Reconnections of Magnetic Flux

    DOE PAGES

    Hirono, Yuji; Kharzeev, Dmitri E.; Yin, Yi

    2016-10-20

    We introduce a new mechanism for the chiral magnetic e ect that does not require an initial chirality imbalance. The chiral magnetic current is generated by reconnections of magnetic ux that change the magnetic helicity of the system. The resulting current is entirely determined by the change of magnetic helicity, and it is quantized.

  2. GPU Lossless Hyperspectral Data Compression System

    NASA Technical Reports Server (NTRS)

    Aranki, Nazeeh I.; Keymeulen, Didier; Kiely, Aaron B.; Klimesh, Matthew A.

    2014-01-01

    Hyperspectral imaging systems onboard aircraft or spacecraft can acquire large amounts of data, putting a strain on limited downlink and storage resources. Onboard data compression can mitigate this problem but may require a system capable of a high throughput. In order to achieve a high throughput with a software compressor, a graphics processing unit (GPU) implementation of a compressor was developed targeting the current state-of-the-art GPUs from NVIDIA(R). The implementation is based on the fast lossless (FL) compression algorithm reported in "Fast Lossless Compression of Multispectral-Image Data" (NPO- 42517), NASA Tech Briefs, Vol. 30, No. 8 (August 2006), page 26, which operates on hyperspectral data and achieves excellent compression performance while having low complexity. The FL compressor uses an adaptive filtering method and achieves state-of-the-art performance in both compression effectiveness and low complexity. The new Consultative Committee for Space Data Systems (CCSDS) Standard for Lossless Multispectral & Hyperspectral image compression (CCSDS 123) is based on the FL compressor. The software makes use of the highly-parallel processing capability of GPUs to achieve a throughput at least six times higher than that of a software implementation running on a single-core CPU. This implementation provides a practical real-time solution for compression of data from airborne hyperspectral instruments.

  3. Quantized Average Consensus on Gossip Digraphs with Reduced Computation

    NASA Astrophysics Data System (ADS)

    Cai, Kai; Ishii, Hideaki

    The authors have recently proposed a class of randomized gossip algorithms which solve the distributed averaging problem on directed graphs, with the constraint that each node has an integer-valued state. The essence of this algorithm is to maintain local records, called “surplus”, of individual state updates, thereby achieving quantized average consensus even though the state sum of all nodes is not preserved. In this paper we study a modified version of this algorithm, whose feature is primarily in reducing both computation and communication effort. Concretely, each node needs to update fewer local variables, and can transmit surplus by requiring only one bit. Under this modified algorithm we prove that reaching the average is ensured for arbitrary strongly connected graphs. The condition of arbitrary strong connection is less restrictive than those known in the literature for either real-valued or quantized states; in particular, it does not require the special structure on the network called balanced. Finally, we provide numerical examples to illustrate the convergence result, with emphasis on convergence time analysis.

  4. Compressing Aviation Data in XML Format

    NASA Technical Reports Server (NTRS)

    Patel, Hemil; Lau, Derek; Kulkarni, Deepak

    2003-01-01

    Design, operations and maintenance activities in aviation involve analysis of variety of aviation data. This data is typically in disparate formats making it difficult to use with different software packages. Use of a self-describing and extensible standard called XML provides a solution to this interoperability problem. XML provides a standardized language for describing the contents of an information stream, performing the same kind of definitional role for Web content as a database schema performs for relational databases. XML data can be easily customized for display using Extensible Style Sheets (XSL). While self-describing nature of XML makes it easy to reuse, it also increases the size of data significantly. Therefore, transfemng a dataset in XML form can decrease throughput and increase data transfer time significantly. It also increases storage requirements significantly. A natural solution to the problem is to compress the data using suitable algorithm and transfer it in the compressed form. We found that XML-specific compressors such as Xmill and XMLPPM generally outperform traditional compressors. However, optimal use of Xmill requires of discovery of optimal options to use while running Xmill. This, in turn, depends on the nature of data used. Manual disc0ver.y of optimal setting can require an engineer to experiment for weeks. We have devised an XML compression advisory tool that can analyze sample data files and recommend what compression tool would work the best for this data and what are the optimal settings to be used with a XML compression tool.

  5. Improved image decompression for reduced transform coding artifacts

    NASA Technical Reports Server (NTRS)

    Orourke, Thomas P.; Stevenson, Robert L.

    1994-01-01

    The perceived quality of images reconstructed from low bit rate compression is severely degraded by the appearance of transform coding artifacts. This paper proposes a method for producing higher quality reconstructed images based on a stochastic model for the image data. Quantization (scalar or vector) partitions the transform coefficient space and maps all points in a partition cell to a representative reconstruction point, usually taken as the centroid of the cell. The proposed image estimation technique selects the reconstruction point within the quantization partition cell which results in a reconstructed image which best fits a non-Gaussian Markov random field (MRF) image model. This approach results in a convex constrained optimization problem which can be solved iteratively. At each iteration, the gradient projection method is used to update the estimate based on the image model. In the transform domain, the resulting coefficient reconstruction points are projected to the particular quantization partition cells defined by the compressed image. Experimental results will be shown for images compressed using scalar quantization of block DCT and using vector quantization of subband wavelet transform. The proposed image decompression provides a reconstructed image with reduced visibility of transform coding artifacts and superior perceived quality.

  6. Bfv Quantization of Relativistic Spinning Particles with a Single Bosonic Constraint

    NASA Astrophysics Data System (ADS)

    Rabello, Silvio J.; Vaidya, Arvind N.

    Using the BFV approach we quantize a pseudoclassical model of the spin-1/2 relativistic particle that contains a single bosonic constraint, contrary to the usual locally supersymmetric models that display first and second class constraints.

  7. Progress on the three-particle quantization condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briceno, Raul; Hansen, Mawell T.; Sharpe, Stephen R.

    2016-10-01

    We report progress on extending the relativistic model-independent quantization condition for three particles, derived previously by two of us, to a broader class of theories, as well as progress on checking the formalism. In particular, we discuss the extension to include the possibility of 2->3 and 3->2 transitions and the calculation of the finite-volume energy shift of an Efimov-like three-particle bound state. The latter agrees with the results obtained previously using non-relativistic quantum mechanics.

  8. How quantizable matter gravitates: A practitioner's guide

    NASA Astrophysics Data System (ADS)

    Schuller, Frederic P.; Witte, Christof

    2014-05-01

    We present the practical step-by-step procedure for constructing canonical gravitational dynamics and kinematics directly from any previously specified quantizable classical matter dynamics, and then illustrate the application of this recipe by way of two completely worked case studies. Following the same procedure, any phenomenological proposal for fundamental matter dynamics must be supplemented with a suitable gravity theory providing the coefficients and kinematical interpretation of the matter theory, before any of the two theories can be meaningfully compared to experimental data.

  9. Compressing the fluctuation of the magnetic field by dynamic compensation

    NASA Astrophysics Data System (ADS)

    Wang, Wenli; Dong, Richang; Wei, Rong; Chen, Tingting; Wang, Qian; Wang, Yuzhu

    2018-03-01

    We present a dynamic compensation method to compress the spatial fluctuation of the static magnetic field (C-field) that provides a quantization axis in the atomic fountain clock. The coil current of the C-field is point-by-point modulated in accordance with the atoms probing the magnetic field along the flight trajectory. A homogeneous field with a 0.2 nT inhomogeneity is produced compared to a 5 nT under the static magnetic field with a constant current during the Ramsey interrogation. The corresponding uncertainty associated with the second-order Zeeman shift that we calculate is improved by one order of magnitude. The technique provides an alternative method to improve the uniformity of the magnetic field, particularly for large-scale equipment that is difficult to construct with an effective magnetic shielding. Our method is simple, robust, and essentially important in frequency evaluations concerning the dominant uncertainty contribution due to the quadratic Zeeman shift.

  10. Biometric and Emotion Identification: An ECG Compression Based Method

    PubMed Central

    Brás, Susana; Ferreira, Jacqueline H. T.; Soares, Sandra C.; Pinho, Armando J.

    2018-01-01

    We present an innovative and robust solution to both biometric and emotion identification using the electrocardiogram (ECG). The ECG represents the electrical signal that comes from the contraction of the heart muscles, indirectly representing the flow of blood inside the heart, it is known to convey a key that allows biometric identification. Moreover, due to its relationship with the nervous system, it also varies as a function of the emotional state. The use of information-theoretic data models, associated with data compression algorithms, allowed to effectively compare ECG records and infer the person identity, as well as emotional state at the time of data collection. The proposed method does not require ECG wave delineation or alignment, which reduces preprocessing error. The method is divided into three steps: (1) conversion of the real-valued ECG record into a symbolic time-series, using a quantization process; (2) conditional compression of the symbolic representation of the ECG, using the symbolic ECG records stored in the database as reference; (3) identification of the ECG record class, using a 1-NN (nearest neighbor) classifier. We obtained over 98% of accuracy in biometric identification, whereas in emotion recognition we attained over 90%. Therefore, the method adequately identify the person, and his/her emotion. Also, the proposed method is flexible and may be adapted to different problems, by the alteration of the templates for training the model. PMID:29670564

  11. Quantized Self-Assembly of Discotic Rings in a Liquid Crystal Confined in Nanopores

    NASA Astrophysics Data System (ADS)

    Sentker, Kathrin; Zantop, Arne W.; Lippmann, Milena; Hofmann, Tommy; Seeck, Oliver H.; Kityk, Andriy V.; Yildirim, Arda; Schönhals, Andreas; Mazza, Marco G.; Huber, Patrick

    2018-02-01

    Disklike molecules with aromatic cores spontaneously stack up in linear columns with high, one-dimensional charge carrier mobilities along the columnar axes, making them prominent model systems for functional, self-organized matter. We show by high-resolution optical birefringence and synchrotron-based x-ray diffraction that confining a thermotropic discotic liquid crystal in cylindrical nanopores induces a quantized formation of annular layers consisting of concentric circular bent columns, unknown in the bulk state. Starting from the walls this ring self-assembly propagates layer by layer towards the pore center in the supercooled domain of the bulk isotropic-columnar transition and thus allows one to switch on and off reversibly single, nanosized rings through small temperature variations. By establishing a Gibbs free energy phase diagram we trace the phase transition quantization to the discreteness of the layers' excess bend deformation energies in comparison to the thermal energy, even for this near room-temperature system. Monte Carlo simulations yielding spatially resolved nematic order parameters, density maps, and bond-orientational order parameters corroborate the universality and robustness of the confinement-induced columnar ring formation as well as its quantized nature.

  12. The fundamental role of quantized vibrations in coherent light harvesting by cryptophyte algae

    NASA Astrophysics Data System (ADS)

    Kolli, Avinash; O'Reilly, Edward J.; Scholes, Gregory D.; Olaya-Castro, Alexandra

    2012-11-01

    The influence of fast vibrations on energy transfer and conversion in natural molecular aggregates is an issue of central interest. This article shows the important role of high-energy quantized vibrations and their non-equilibrium dynamics for energy transfer in photosynthetic systems with highly localized excitonic states. We consider the cryptophyte antennae protein phycoerythrin 545 and show that coupling to quantized vibrations, which are quasi-resonant with excitonic transitions is fundamental for biological function as it generates non-cascaded transport with rapid and wider spatial distribution of excitation energy. Our work also indicates that the non-equilibrium dynamics of such vibrations can manifest itself in ultrafast beating of both excitonic populations and coherences at room temperature, with time scales in agreement with those reported in experiments. Moreover, we show that mechanisms supporting coherent excitonic dynamics assist coupling to selected modes that channel energy to preferential sites in the complex. We therefore argue that, in the presence of strong coupling between electronic excitations and quantized vibrations, a concrete and important advantage of quantum coherent dynamics is precisely to tune resonances that promote fast and effective energy distribution.

  13. Generalized centripetal force law and quantization of motion constrained on 2D surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Q. H.; Zhang, J.; Lian, D. K.; Hu, L. D.; Li, Z.

    2017-03-01

    For a particle of mass μ moves on a 2D surface f(x) = 0 embedded in 3D Euclidean space of coordinates x, there is an open and controversial problem whether the Dirac's canonical quantization scheme for the constrained motion allows for the geometric potential that has been experimentally confirmed. We note that the Dirac's scheme hypothesizes that the symmetries indicated by classical brackets among positions x and momenta p and Hamiltonian Hc remain in quantum mechanics, i.e., the following Dirac brackets [ x ,Hc ] D and [ p ,Hc ] D holds true after quantization, in addition to the fundamental ones [ x , x ] D, [ x , p ] D and [ p , p ] D. This set of hypotheses implies that the Hamiltonian operator is simultaneously determined during the quantization. The quantum mechanical relations corresponding to the classical mechanical ones p / μ =[ x ,Hc ] D directly give the geometric momenta. The time t derivative of the momenta p ˙ =[ p ,Hc ] D in classical mechanics is in fact the generalized centripetal force law for particle on the 2D surface, which in quantum mechanics permits both the geometric momenta and the geometric potential.

  14. Floating-point system quantization errors in digital control systems

    NASA Technical Reports Server (NTRS)

    Phillips, C. L.; Vallely, D. P.

    1978-01-01

    This paper considers digital controllers (filters) operating in floating-point arithmetic in either open-loop or closed-loop systems. A quantization error analysis technique is developed, and is implemented by a digital computer program that is based on a digital simulation of the system. The program can be integrated into existing digital simulations of a system.

  15. Device Assists Cardiac Chest Compression

    NASA Technical Reports Server (NTRS)

    Eichstadt, Frank T.

    1995-01-01

    Portable device facilitates effective and prolonged cardiac resuscitation by chest compression. Developed originally for use in absence of gravitation, also useful in terrestrial environments and situations (confined spaces, water rescue, medical transport) not conducive to standard manual cardiopulmonary resuscitation (CPR) techniques.

  16. Covariant spinor representation of iosp(d,2/2) and quantization of the spinning relativistic particle

    NASA Astrophysics Data System (ADS)

    Jarvis, P. D.; Corney, S. P.; Tsohantjis, I.

    1999-12-01

    A covariant spinor representation of iosp(d,2/2) is constructed for the quantization of the spinning relativistic particle. It is found that, with appropriately defined wavefunctions, this representation can be identified with the state space arising from the canonical extended BFV-BRST quantization of the spinning particle with admissible gauge fixing conditions after a contraction procedure. For this model, the cohomological determination of physical states can thus be obtained purely from the representation theory of the iosp(d,2/2) algebra.

  17. Survey of Header Compression Techniques

    NASA Technical Reports Server (NTRS)

    Ishac, Joseph

    2001-01-01

    This report provides a summary of several different header compression techniques. The different techniques included are: (1) Van Jacobson's header compression (RFC 1144); (2) SCPS (Space Communications Protocol Standards) header compression (SCPS-TP, SCPS-NP); (3) Robust header compression (ROHC); and (4) The header compression techniques in RFC2507 and RFC2508. The methodology for compression and error correction for these schemes are described in the remainder of this document. All of the header compression schemes support compression over simplex links, provided that the end receiver has some means of sending data back to the sender. However, if that return path does not exist, then neither Van Jacobson's nor SCPS can be used, since both rely on TCP (Transmission Control Protocol). In addition, under link conditions of low delay and low error, all of the schemes perform as expected. However, based on the methodology of the schemes, each scheme is likely to behave differently as conditions degrade. Van Jacobson's header compression relies heavily on the TCP retransmission timer and would suffer an increase in loss propagation should the link possess a high delay and/or bit error rate (BER). The SCPS header compression scheme protects against high delay environments by avoiding delta encoding between packets. Thus, loss propagation is avoided. However, SCPS is still affected by an increased BER (bit-error-rate) since the lack of delta encoding results in larger header sizes. Next, the schemes found in RFC2507 and RFC2508 perform well for non-TCP connections in poor conditions. RFC2507 performance with TCP connections is improved by various techniques over Van Jacobson's, but still suffers a performance hit with poor link properties. Also, RFC2507 offers the ability to send TCP data without delta encoding, similar to what SCPS offers. ROHC is similar to the previous two schemes, but adds additional CRCs (cyclic redundancy check) into headers and improves

  18. Probing topology by “heating”: Quantized circular dichroism in ultracold atoms

    PubMed Central

    Tran, Duc Thanh; Dauphin, Alexandre; Grushin, Adolfo G.; Zoller, Peter; Goldman, Nathan

    2017-01-01

    We reveal an intriguing manifestation of topology, which appears in the depletion rate of topological states of matter in response to an external drive. This phenomenon is presented by analyzing the response of a generic two-dimensional (2D) Chern insulator subjected to a circular time-periodic perturbation. Because of the system’s chiral nature, the depletion rate is shown to depend on the orientation of the circular shake; taking the difference between the rates obtained from two opposite orientations of the drive, and integrating over a proper drive-frequency range, provides a direct measure of the topological Chern number (ν) of the populated band: This “differential integrated rate” is directly related to the strength of the driving field through the quantized coefficient η0 = ν/ℏ2, where h = 2π ℏ is Planck’s constant. Contrary to the integer quantum Hall effect, this quantized response is found to be nonlinear with respect to the strength of the driving field, and it explicitly involves interband transitions. We investigate the possibility of probing this phenomenon in ultracold gases and highlight the crucial role played by edge states in this effect. We extend our results to 3D lattices, establishing a link between depletion rates and the nonlinear photogalvanic effect predicted for Weyl semimetals. The quantized circular dichroism revealed in this work designates depletion rate measurements as a universal probe for topological order in quantum matter. PMID:28835930

  19. The New CCSDS Image Compression Recommendation

    NASA Technical Reports Server (NTRS)

    Yeh, Pen-Shu; Armbruster, Philippe; Kiely, Aaron; Masschelein, Bart; Moury, Gilles; Schaefer, Christoph

    2005-01-01

    The Consultative Committee for Space Data Systems (CCSDS) data compression working group has recently adopted a recommendation for image data compression, with a final release expected in 2005. The algorithm adopted in the recommendation consists of a two-dimensional discrete wavelet transform of the image, followed by progressive bit-plane coding of the transformed data. The algorithm can provide both lossless and lossy compression, and allows a user to directly control the compressed data volume or the fidelity with which the wavelet-transformed data can be reconstructed. The algorithm is suitable for both frame-based image data and scan-based sensor data, and has applications for near-Earth and deep-space missions. The standard will be accompanied by free software sources on a future web site. An Application-Specific Integrated Circuit (ASIC) implementation of the compressor is currently under development. This paper describes the compression algorithm along with the requirements that drove the selection of the algorithm. Performance results and comparisons with other compressors are given for a test set of space images.

  20. Quantized topological magnetoelectric effect of the zero-plateau quantum anomalous Hall state

    DOE PAGES

    Wang, Jing; Lian, Biao; Qi, Xiao-Liang; ...

    2015-08-10

    The topological magnetoelectric effect in a three-dimensional topological insulator is a novel phenomenon, where an electric field induces a magnetic field in the same direction, with a universal coefficient of proportionality quantized in units of $e²/2h$. Here in this paper, we propose that the topological magnetoelectric effect can be realized in the zero-plateau quantum anomalous Hall state of magnetic topological insulators or a ferromagnet-topological insulator heterostructure. The finite-size effect is also studied numerically, where the magnetoelectric coefficient is shown to converge to a quantized value when the thickness of the topological insulator film increases. We further propose a device setupmore » to eliminate nontopological contributions from the side surface.« less

  1. Highly Efficient Compression Algorithms for Multichannel EEG.

    PubMed

    Shaw, Laxmi; Rahman, Daleef; Routray, Aurobinda

    2018-05-01

    The difficulty associated with processing and understanding the high dimensionality of electroencephalogram (EEG) data requires developing efficient and robust compression algorithms. In this paper, different lossless compression techniques of single and multichannel EEG data, including Huffman coding, arithmetic coding, Markov predictor, linear predictor, context-based error modeling, multivariate autoregression (MVAR), and a low complexity bivariate model have been examined and their performances have been compared. Furthermore, a high compression algorithm named general MVAR and a modified context-based error modeling for multichannel EEG have been proposed. The resulting compression algorithm produces a higher relative compression ratio of 70.64% on average compared with the existing methods, and in some cases, it goes up to 83.06%. The proposed methods are designed to compress a large amount of multichannel EEG data efficiently so that the data storage and transmission bandwidth can be effectively used. These methods have been validated using several experimental multichannel EEG recordings of different subjects and publicly available standard databases. The satisfactory parametric measures of these methods, namely percent-root-mean square distortion, peak signal-to-noise ratio, root-mean-square error, and cross correlation, show their superiority over the state-of-the-art compression methods.

  2. Improved compression technique for multipass color printers

    NASA Astrophysics Data System (ADS)

    Honsinger, Chris

    1998-01-01

    A multipass color printer prints a color image by printing one color place at a time in a prescribed order, e.g., in a four-color systems, the cyan plane may be printed first, the magenta next, and so on. It is desirable to discard the data related to each color plane once it has been printed, so that data from the next print may be downloaded. In this paper, we present a compression scheme that allows the release of a color plane memory, but still takes advantage of the correlation between the color planes. The compression scheme is based on a block adaptive technique for decorrelating the color planes followed by a spatial lossy compression of the decorrelated data. A preferred method of lossy compression is the DCT-based JPEG compression standard, as it is shown that the block adaptive decorrelation operations can be efficiently performed in the DCT domain. The result of the compression technique are compared to that of using JPEG on RGB data without any decorrelating transform. In general, the technique is shown to improve the compression performance over a practical range of compression ratios by at least 30 percent in all images, and up to 45 percent in some images.

  3. The lattice and quantized Yang–Mills theory

    DOE PAGES

    Creutz, Michael

    2015-11-30

    Quantized Yang–Mills fields lie at the heart of our understanding of the strong nuclear force. To understand the theory at low energies, we must work in the strong coupling regime. The primary technique for this is the lattice. While basically an ultraviolet regulator, the lattice avoids the use of a perturbative expansion. In this paper, I discuss the historical circumstances that drove us to this approach, which has had immense success, convincingly demonstrating quark confinement and obtaining crucial properties of the strong interactions from first principles.

  4. Compressing the Inert Doublet Model

    DOE PAGES

    Blinov, Nikita; Kozaczuk, Jonathan; Morrissey, David E.; ...

    2016-02-16

    The Inert Doublet Model relies on a discrete symmetry to prevent couplings of the new scalars to Standard Model fermions. We found that this stabilizes the lightest inert state, which can then contribute to the observed dark matter density. In the presence of additional approximate symmetries, the resulting spectrum of exotic scalars can be compressed. Here, we study the phenomenological and cosmological implications of this scenario. In conclusion, we derive new limits on the compressed Inert Doublet Model from LEP, and outline the prospects for exclusion and discovery of this model at dark matter experiments, the LHC, and future colliders.

  5. Superfield Hamiltonian quantization in terms of quantum antibrackets

    NASA Astrophysics Data System (ADS)

    Batalin, Igor A.; Lavrov, Peter M.

    2016-04-01

    We develop a new version of the superfield Hamiltonian quantization. The main new feature is that the BRST-BFV charge and the gauge fixing Fermion are introduced on equal footing within the sigma model approach, which provides for the actual use of the quantum/derived antibrackets. We study in detail the generating equations for the quantum antibrackets and their primed counterparts. We discuss the finite quantum anticanonical transformations generated by the quantum antibracket.

  6. Flux Quantization in Aperiodic and Periodic Networks

    NASA Astrophysics Data System (ADS)

    Behrooz, Angelika

    The normal - superconducting phase boundary, T_{c}(H), of a periodic wire network shows periodic oscillations with period H _{o} = phi_ {o}/A due to flux quantization around the individual plaquettes (of area A) of the network. The magnetic flux quantum is phi_{o } = hc/2e. The phase boundary also shows fine structure at fields H = (p/q)H_{o} (p,q integers), where the flux vortices can form commensurate superlattices on the periodic substrate. We have studied the phase boundary of quasicrystalline, quasiperiodic and random networks. We have found that if a network is composed of two different tiles, whose areas are relatively irrational then the T_ {c}(H) curve shows large scale structure at fields that approximate flux quantization around the tiles, i.e. when the ratio of fluxoids contained in the large tiles to those in the small tiles is a rational approximant to the irrational area ratio. The phase boundaries of quasicrystalline and quasiperiodic networks show fine structure indicating the existence of commensurate vortex superlattices on these networks. No such fine structure is found on the random array. For a quasicrystal whose quasiperiodic long-range order is characterized by the irrational number tau the commensurate vortex lattices are all found at H = H_{o}| n + mtau| (n,m integers). We have found that the commensurate superlattices on quasicrystalline as well as on crystalline networks are related to the inflation symmetry. We propose a general definition of commensurability.

  7. Mid-IR soliton compression in silicon optical fibers and fiber tapers.

    PubMed

    Peacock, Anna C

    2012-03-01

    Numerical simulations are used to investigate soliton compression in silicon core optical fibers at 2.3 μm in the mid-infrared waveguide regime. Compression in both standard silicon fibers and fiber tapers is compared to establish the relative compression ratios for a range of input pulse conditions. The results show that tapered fibers can be used to obtain higher levels of compression for moderate soliton orders and thus lower input powers. © 2012 Optical Society of America

  8. Compression of Martian atmosphere for production of oxygen

    NASA Technical Reports Server (NTRS)

    Lynch, D. C.; Cutler, A. H.; Nolan, P. E.

    1991-01-01

    The compression of CO2 from the Martian atmosphere for production of O2 via an electrochemical cell is addressed. Design specifications call for an oxygen production rate of 10 kg per day and for compression of 50 times that mass of CO2. Those specifications require a compression rate of over 770 cfm at standard Martian temperature and pressure (SMTP). Much of the CO2 being compressed represents waste, unless it can be recycled. Recycling can reduce the volume of gas that must be compressed to 40 cfm at SMTP. That volume reduction represents significant mass savings in the compressor, heating equipment, filters, and energy source. Successful recycle of the gas requires separation of CO (produced in the electrochemical cell) from CO2, N2, and Ar found in the Martian atmosphere. That aspect was the focus of this work.

  9. Application of content-based image compression to telepathology

    NASA Astrophysics Data System (ADS)

    Varga, Margaret J.; Ducksbury, Paul G.; Callagy, Grace

    2002-05-01

    Telepathology is a means of practicing pathology at a distance, viewing images on a computer display rather than directly through a microscope. Without compression, images take too long to transmit to a remote location and are very expensive to store for future examination. However, to date the use of compressed images in pathology remains controversial. This is because commercial image compression algorithms such as JPEG achieve data compression without knowledge of the diagnostic content. Often images are lossily compressed at the expense of corrupting informative content. None of the currently available lossy compression techniques are concerned with what information has been preserved and what data has been discarded. Their sole objective is to compress and transmit the images as fast as possible. By contrast, this paper presents a novel image compression technique, which exploits knowledge of the slide diagnostic content. This 'content based' approach combines visually lossless and lossy compression techniques, judiciously applying each in the appropriate context across an image so as to maintain 'diagnostic' information while still maximising the possible compression. Standard compression algorithms, e.g. wavelets, can still be used, but their use in a context sensitive manner can offer high compression ratios and preservation of diagnostically important information. When compared with lossless compression the novel content-based approach can potentially provide the same degree of information with a smaller amount of data. When compared with lossy compression it can provide more information for a given amount of compression. The precise gain in the compression performance depends on the application (e.g. database archive or second opinion consultation) and the diagnostic content of the images.

  10. Wigner functions on non-standard symplectic vector spaces

    NASA Astrophysics Data System (ADS)

    Dias, Nuno Costa; Prata, João Nuno

    2018-01-01

    We consider the Weyl quantization on a flat non-standard symplectic vector space. We focus mainly on the properties of the Wigner functions defined therein. In particular we show that the sets of Wigner functions on distinct symplectic spaces are different but have non-empty intersections. This extends previous results to arbitrary dimension and arbitrary (constant) symplectic structure. As a by-product we introduce and prove several concepts and results on non-standard symplectic spaces which generalize those on the standard symplectic space, namely, the symplectic spectrum, Williamson's theorem, and Narcowich-Wigner spectra. We also show how Wigner functions on non-standard symplectic spaces behave under the action of an arbitrary linear coordinate transformation.

  11. Treatment of constraints in the stochastic quantization method and covariantized Langevin equation

    NASA Astrophysics Data System (ADS)

    Ikegami, Kenji; Kimura, Tadahiko; Mochizuki, Riuji

    1993-04-01

    We study the treatment of the constraints in the stochastic quantization method. We improve the treatment of the stochastic consistency condition proposed by Namiki et al. by suitably taking into account the Ito calculus. Then we obtain an improved Langevi equation and the Fokker-Planck equation which naturally leads to the correct path integral quantization of the constrained system as the stochastic equilibrium state. This treatment is applied to an O( N) non-linear α model and it is shown that singular terms appearing in the improved Langevin equation cancel out the σ n(O) divergences in one loop order. We also ascertain that the above Langevin equation, rewritten in terms of idependent variables, is actually equivalent to the one in the general-coordinate transformation covariant and vielbein-rotation invariant formalish.

  12. Quantization of higher abelian gauge theory in generalized differential cohomology

    NASA Astrophysics Data System (ADS)

    Szabo, R.

    We review and elaborate on some aspects of the quantization of certain classes of higher abelian gauge theories using techniques of generalized differential cohomology. Particular emphasis is placed on the examples of generalized Maxwell theory and Cheeger-Simons cohomology, and of Ramond-Ramond fields in Type II superstring theory and differential K-theory.

  13. Fast or slow? Compressions (or not) in number-to-line mappings.

    PubMed

    Candia, Victor; Deprez, Paola; Wernery, Jannis; Núñez, Rafael

    2015-01-01

    We investigated, in a university student population, spontaneous (non-speeded) fast and slow number-to-line mapping responses using non-symbolic (dots) and symbolic (words) stimuli. Seeking for less conventionalized responses, we used anchors 0-130, rather than the standard 0-100. Slow responses to both types of stimuli only produced linear mappings with no evidence of non-linear compression. In contrast, fast responses revealed distinct patterns of non-linear compression for dots and words. A predicted logarithmic compression was observed in fast responses to dots in the 0-130 range, but not in the reduced 0-100 range, indicating compression in proximity of the upper anchor 130, not the standard 100. Moreover, fast responses to words revealed an unexpected significant negative compression in the reduced 0-100 range, but not in the 0-130 range, indicating compression in proximity to the lower anchor 0. Results show that fast responses help revealing the fundamentally distinct nature of symbolic and non-symbolic quantity representation. Whole number words, being intrinsically mediated by cultural phenomena such as language and education, emphasize the invariance of magnitude between them—essential for linear mappings, and therefore, unlike non-symbolic (psychophysical) stimuli, yield spatial mappings that don't seem to be influenced by the Weber-Fechner law of psychophysics. However, high levels of education (when combined with an absence of standard upper anchors) may lead fast responses to overestimate magnitude invariance on the lower end of word numerals.

  14. Adaptive variable-length coding for efficient compression of spacecraft television data.

    NASA Technical Reports Server (NTRS)

    Rice, R. F.; Plaunt, J. R.

    1971-01-01

    An adaptive variable length coding system is presented. Although developed primarily for the proposed Grand Tour missions, many features of this system clearly indicate a much wider applicability. Using sample to sample prediction, the coding system produces output rates within 0.25 bit/picture element (pixel) of the one-dimensional difference entropy for entropy values ranging from 0 to 8 bit/pixel. This is accomplished without the necessity of storing any code words. Performance improvements of 0.5 bit/pixel can be simply achieved by utilizing previous line correlation. A Basic Compressor, using concatenated codes, adapts to rapid changes in source statistics by automatically selecting one of three codes to use for each block of 21 pixels. The system adapts to less frequent, but more dramatic, changes in source statistics by adjusting the mode in which the Basic Compressor operates on a line-to-line basis. Furthermore, the compression system is independent of the quantization requirements of the pulse-code modulation system.

  15. Network Compression as a Quality Measure for Protein Interaction Networks

    PubMed Central

    Royer, Loic; Reimann, Matthias; Stewart, A. Francis; Schroeder, Michael

    2012-01-01

    With the advent of large-scale protein interaction studies, there is much debate about data quality. Can different noise levels in the measurements be assessed by analyzing network structure? Because proteomic regulation is inherently co-operative, modular and redundant, it is inherently compressible when represented as a network. Here we propose that network compression can be used to compare false positive and false negative noise levels in protein interaction networks. We validate this hypothesis by first confirming the detrimental effect of false positives and false negatives. Second, we show that gold standard networks are more compressible. Third, we show that compressibility correlates with co-expression, co-localization, and shared function. Fourth, we also observe correlation with better protein tagging methods, physiological expression in contrast to over-expression of tagged proteins, and smart pooling approaches for yeast two-hybrid screens. Overall, this new measure is a proxy for both sensitivity and specificity and gives complementary information to standard measures such as average degree and clustering coefficients. PMID:22719828

  16. ERGC: an efficient referential genome compression algorithm

    PubMed Central

    Saha, Subrata; Rajasekaran, Sanguthevar

    2015-01-01

    Motivation: Genome sequencing has become faster and more affordable. Consequently, the number of available complete genomic sequences is increasing rapidly. As a result, the cost to store, process, analyze and transmit the data is becoming a bottleneck for research and future medical applications. So, the need for devising efficient data compression and data reduction techniques for biological sequencing data is growing by the day. Although there exists a number of standard data compression algorithms, they are not efficient in compressing biological data. These generic algorithms do not exploit some inherent properties of the sequencing data while compressing. To exploit statistical and information-theoretic properties of genomic sequences, we need specialized compression algorithms. Five different next-generation sequencing data compression problems have been identified and studied in the literature. We propose a novel algorithm for one of these problems known as reference-based genome compression. Results: We have done extensive experiments using five real sequencing datasets. The results on real genomes show that our proposed algorithm is indeed competitive and performs better than the best known algorithms for this problem. It achieves compression ratios that are better than those of the currently best performing algorithms. The time to compress and decompress the whole genome is also very promising. Availability and implementation: The implementations are freely available for non-commercial purposes. They can be downloaded from http://engr.uconn.edu/∼rajasek/ERGC.zip. Contact: rajasek@engr.uconn.edu PMID:26139636

  17. KungFQ: a simple and powerful approach to compress fastq files.

    PubMed

    Grassi, Elena; Di Gregorio, Federico; Molineris, Ivan

    2012-01-01

    Nowadays storing data derived from deep sequencing experiments has become pivotal and standard compression algorithms do not exploit in a satisfying manner their structure. A number of reference-based compression algorithms have been developed but they are less adequate when approaching new species without fully sequenced genomes or nongenomic data. We developed a tool that takes advantages of fastq characteristics and encodes them in a binary format optimized in order to be further compressed with standard tools (such as gzip or lzma). The algorithm is straightforward and does not need any external reference file, it scans the fastq only once and has a constant memory requirement. Moreover, we added the possibility to perform lossy compression, losing some of the original information (IDs and/or qualities) but resulting in smaller files; it is also possible to define a quality cutoff under which corresponding base calls are converted to N. We achieve 2.82 to 7.77 compression ratios on various fastq files without losing information and 5.37 to 8.77 losing IDs, which are often not used in common analysis pipelines. In this paper, we compare the algorithm performance with known tools, usually obtaining higher compression levels.

  18. Quantized Algebra I Texts

    NASA Astrophysics Data System (ADS)

    DeBuvitz, William

    2014-03-01

    I am a volunteer reader at the Princeton unit of "Learning Ally" (formerly "Recording for the Blind & Dyslexic") and I recently discovered that high school students are introduced to the concept of quantization well before they take chemistry and physics. For the past few months I have been reading onto computer files a popular Algebra I textbook, and I was surprised and dismayed by how it treated simultaneous equations and quadratic equations. The coefficients are always simple integers in examples and exercises, even when they are related to physics. This is probably a good idea when these topics are first presented to the students. It makes it easy to solve simultaneous equations by the method of elimination of a variable. And it makes it easy to solve some quadratic equations by factoring. The textbook also discusses the method of substitution for linear equations and the use of the quadratic formula, but only with simple integers.

  19. Lossless Coding Standards for Space Data Systems

    NASA Technical Reports Server (NTRS)

    Rice, R. F.

    1996-01-01

    The International Consultative Committee for Space Data Systems (CCSDS) is preparing to issue its first recommendation for a digital data compression standard. Because the space data systems of primary interest are employed to support scientific investigations requiring accurate representation, this initial standard will be restricted to lossless compression.

  20. Quantized visual awareness.

    PubMed

    Escobar, W A

    2013-01-01

    The proposed model holds that, at its most fundamental level, visual awareness is quantized. That is to say that visual awareness arises as individual bits of awareness through the action of neural circuits with hundreds to thousands of neurons in at least the human striate cortex. Circuits with specific topologies will reproducibly result in visual awareness that correspond to basic aspects of vision like color, motion, and depth. These quanta of awareness (qualia) are produced by the feedforward sweep that occurs through the geniculocortical pathway but are not integrated into a conscious experience until recurrent processing from centers like V4 or V5 select the appropriate qualia being produced in V1 to create a percept. The model proposed here has the potential to shift the focus of the search for visual awareness to the level of microcircuits and these likely exist across the kingdom Animalia. Thus establishing qualia as the fundamental nature of visual awareness will not only provide a deeper understanding of awareness, but also allow for a more quantitative understanding of the evolution of visual awareness throughout the animal kingdom.

  1. Compressing with dominant hand improves quality of manual chest compressions for rescuers who performed suboptimal CPR in manikins.

    PubMed

    Wang, Juan; Tang, Ce; Zhang, Lei; Gong, Yushun; Yin, Changlin; Li, Yongqin

    2015-07-01

    The question of whether the placement of the dominant hand against the sternum could improve the quality of manual chest compressions remains controversial. In the present study, we evaluated the influence of dominant vs nondominant hand positioning on the quality of conventional cardiopulmonary resuscitation (CPR) during prolonged basic life support (BLS) by rescuers who performed optimal and suboptimal compressions. Six months after completing a standard BLS training course, 101 medical students were instructed to perform adult single-rescuer BLS for 8 minutes on a manikin with a randomized hand position. Twenty-four hours later, the students placed the opposite hand in contact with the sternum while performing CPR. Those with an average compression depth of less than 50 mm were considered suboptimal. Participants who had performed suboptimal compressions were significantly shorter (170.2 ± 6.8 vs 174.0 ± 5.6 cm, P = .008) and lighter (58.9 ± 7.6 vs 66.9 ± 9.6 kg, P < .001) than those who performed optimal compressions. No significant differences in CPR quality were observed between dominant and nondominant hand placements for these who had an average compression depth of greater than 50 mm. However, both the compression depth (49.7 ± 4.2 vs 46.5 ± 4.1 mm, P = .003) and proportion of chest compressions with an appropriate depth (47.6% ± 27.8% vs 28.0% ± 23.4%, P = .006) were remarkably higher when compressing the chest with the dominant hand against the sternum for those who performed suboptimal CPR. Chest compression quality significantly improved when the dominant hand was placed against the sternum for those who performed suboptimal compressions during conventional CPR. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Optimal color coding for compression of true color images

    NASA Astrophysics Data System (ADS)

    Musatenko, Yurij S.; Kurashov, Vitalij N.

    1998-11-01

    In the paper we present the method that improves lossy compression of the true color or other multispectral images. The essence of the method is to project initial color planes into Karhunen-Loeve (KL) basis that gives completely decorrelated representation for the image and to compress basis functions instead of the planes. To do that the new fast algorithm of true KL basis construction with low memory consumption is suggested and our recently proposed scheme for finding optimal losses of Kl functions while compression is used. Compare to standard JPEG compression of the CMYK images the method provides the PSNR gain from 0.2 to 2 dB for the convenient compression ratios. Experimental results are obtained for high resolution CMYK images. It is demonstrated that presented scheme could work on common hardware.

  3. Optimum SNR data compression in hardware using an Eigencoil array.

    PubMed

    King, Scott B; Varosi, Steve M; Duensing, G Randy

    2010-05-01

    With the number of receivers available on clinical MRI systems now ranging from 8 to 32 channels, data compression methods are being explored to lessen the demands on the computer for data handling and processing. Although software-based methods of compression after reception lessen computational requirements, a hardware-based method before the receiver also reduces the number of receive channels required. An eight-channel Eigencoil array is constructed by placing a hardware radiofrequency signal combiner inline after preamplification, before the receiver system. The Eigencoil array produces signal-to-noise ratio (SNR) of an optimal reconstruction using a standard sum-of-squares reconstruction, with peripheral SNR gains of 30% over the standard array. The concept of "receiver channel reduction" or MRI data compression is demonstrated, with optimal SNR using only four channels, and with a three-channel Eigencoil, superior sum-of-squares SNR was achieved over the standard eight-channel array. A three-channel Eigencoil portion of a product neurovascular array confirms in vivo SNR performance and demonstrates parallel MRI up to R = 3. This SNR-preserving data compression method advantageously allows users of MRI systems with fewer receiver channels to achieve the SNR of higher-channel MRI systems. (c) 2010 Wiley-Liss, Inc.

  4. Effect of signal intensity and camera quantization on laser speckle contrast analysis

    PubMed Central

    Song, Lipei; Elson, Daniel S.

    2012-01-01

    Laser speckle contrast analysis (LASCA) is limited to being a qualitative method for the measurement of blood flow and tissue perfusion as it is sensitive to the measurement configuration. The signal intensity is one of the parameters that can affect the contrast values due to the quantization of the signals by the camera and analog-to-digital converter (ADC). In this paper we deduce the theoretical relationship between signal intensity and contrast values based on the probability density function (PDF) of the speckle pattern and simplify it to a rational function. A simple method to correct this contrast error is suggested. The experimental results demonstrate that this relationship can effectively compensate the bias in contrast values induced by the quantized signal intensity and correct for bias induced by signal intensity variations across the field of view. PMID:23304650

  5. Distributed Compressive Sensing

    DTIC Science & Technology

    2009-01-01

    example, smooth signals are sparse in the Fourier basis, and piecewise smooth signals are sparse in a wavelet basis [8]; the commercial coding standards MP3...including wavelets [8], Gabor bases [8], curvelets [35], etc., are widely used for representation and compression of natural signals, images, and...spikes and the sine waves of a Fourier basis, or the Fourier basis and wavelets . Signals that are sparsely represented in frames or unions of bases can

  6. Integrability, Quantization and Moduli Spaces of Curves

    NASA Astrophysics Data System (ADS)

    Rossi, Paolo

    2017-07-01

    This paper has the purpose of presenting in an organic way a new approach to integrable (1+1)-dimensional field systems and their systematic quantization emerging from intersection theory of the moduli space of stable algebraic curves and, in particular, cohomological field theories, Hodge classes and double ramification cycles. This methods are alternative to the traditional Witten-Kontsevich framework and its generalizations by Dubrovin and Zhang and, among other advantages, have the merit of encompassing quantum integrable systems. Most of this material originates from an ongoing collaboration with A. Buryak, B. Dubrovin and J. Guéré.

  7. ERGC: an efficient referential genome compression algorithm.

    PubMed

    Saha, Subrata; Rajasekaran, Sanguthevar

    2015-11-01

    Genome sequencing has become faster and more affordable. Consequently, the number of available complete genomic sequences is increasing rapidly. As a result, the cost to store, process, analyze and transmit the data is becoming a bottleneck for research and future medical applications. So, the need for devising efficient data compression and data reduction techniques for biological sequencing data is growing by the day. Although there exists a number of standard data compression algorithms, they are not efficient in compressing biological data. These generic algorithms do not exploit some inherent properties of the sequencing data while compressing. To exploit statistical and information-theoretic properties of genomic sequences, we need specialized compression algorithms. Five different next-generation sequencing data compression problems have been identified and studied in the literature. We propose a novel algorithm for one of these problems known as reference-based genome compression. We have done extensive experiments using five real sequencing datasets. The results on real genomes show that our proposed algorithm is indeed competitive and performs better than the best known algorithms for this problem. It achieves compression ratios that are better than those of the currently best performing algorithms. The time to compress and decompress the whole genome is also very promising. The implementations are freely available for non-commercial purposes. They can be downloaded from http://engr.uconn.edu/∼rajasek/ERGC.zip. rajasek@engr.uconn.edu. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Learning-Based Just-Noticeable-Quantization- Distortion Modeling for Perceptual Video Coding.

    PubMed

    Ki, Sehwan; Bae, Sung-Ho; Kim, Munchurl; Ko, Hyunsuk

    2018-07-01

    Conventional predictive video coding-based approaches are reaching the limit of their potential coding efficiency improvements, because of severely increasing computation complexity. As an alternative approach, perceptual video coding (PVC) has attempted to achieve high coding efficiency by eliminating perceptual redundancy, using just-noticeable-distortion (JND) directed PVC. The previous JNDs were modeled by adding white Gaussian noise or specific signal patterns into the original images, which were not appropriate in finding JND thresholds due to distortion with energy reduction. In this paper, we present a novel discrete cosine transform-based energy-reduced JND model, called ERJND, that is more suitable for JND-based PVC schemes. Then, the proposed ERJND model is extended to two learning-based just-noticeable-quantization-distortion (JNQD) models as preprocessing that can be applied for perceptual video coding. The two JNQD models can automatically adjust JND levels based on given quantization step sizes. One of the two JNQD models, called LR-JNQD, is based on linear regression and determines the model parameter for JNQD based on extracted handcraft features. The other JNQD model is based on a convolution neural network (CNN), called CNN-JNQD. To our best knowledge, our paper is the first approach to automatically adjust JND levels according to quantization step sizes for preprocessing the input to video encoders. In experiments, both the LR-JNQD and CNN-JNQD models were applied to high efficiency video coding (HEVC) and yielded maximum (average) bitrate reductions of 38.51% (10.38%) and 67.88% (24.91%), respectively, with little subjective video quality degradation, compared with the input without preprocessing applied.

  9. Photoinduced half-integer quantized conductance plateaus in topological-insulator/superconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Yap, Han Hoe; Zhou, Longwen; Lee, Ching Hua; Gong, Jiangbin

    2018-04-01

    The past few years have witnessed increased attention to the quest for Majorana-like excitations in the condensed matter community. As a promising candidate in this race, the one-dimensional chiral Majorana edge mode (CMEM) in topological insulator-superconductor heterostructures has gathered renewed interests after an experimental breakthrough [Q. L. He et al., Science 357, 294 (2017), 10.1126/science.aag2792]. In this work, we study computationally the quantum transport of topological insulator-superconductor hybrid devices subject to time-periodic modulation. We report half-integer quantized conductance plateaus at 1/2 e/2h and 3/2 e/2h upon applying the so-called sum rule in the theory of quantum transport in Floquet topological matter. In particular, in a photoinduced topological superconductor sandwiched between two Floquet Chern insulators, it is found that for each Floquet sideband, the CMEM admits equal probability for normal transmission and local Andreev reflection over a wide range of parameter regimes, yielding half-integer quantized plateaus that resist static and time-periodic disorder. While it is well-established that periodic driving fields can simultaneously create and manipulate multiple pairs of Majorana bound states, their detection scheme remains elusive, in part due to their being neutral excitations. Therefore the 3/2 e/2h plateau indicates the possibility to verify the generation of multiple pairs of photoinduced CMEMs via transport measurements. The robust and half-quantized conductance plateaus due to CMEMs are both fascinating and subtle because they only emerge after a summation over contributions from all Floquet sidebands. Our work may add insights into the transport properties of Floquet topological systems and stimulate further studies on the optical control of topological superconductivity.

  10. Exploratory research session on the quantization of the gravitational field. At the Institute for Theoretical Physics, Copenhagen, Denmark, June-July 1957

    NASA Astrophysics Data System (ADS)

    DeWitt, Bryce S.

    2017-06-01

    During the period June-July 1957 six physicists met at the Institute for Theoretical Physics of the University of Copenhagen in Denmark to work together on problems connected with the quantization of the gravitational field. A large part of the discussion was devoted to exposition of the individual work of the various participants, but a number of new results were also obtained. The topics investigated by these physicists are outlined in this report and may be grouped under the following main headings: The theory of measurement. Topographical problems in general relativity. Feynman quantization. Canonical quantization. Approximation methods. Special problems.

  11. Qiang-Dong proper quantization rule and its applications to exactly solvable quantum systems

    NASA Astrophysics Data System (ADS)

    Serrano, F. A.; Gu, Xiao-Yan; Dong, Shi-Hai

    2010-08-01

    We propose proper quantization rule, ∫x_Ax_B k(x)dx-∫x0Ax0Bk0(x)dx=nπ, where k(x )=√2M[E -V(x)] /ℏ. The xA and xB are two turning points determined by E =V(x), and n is the number of the nodes of wave function ψ(x ). We carry out the exact solutions of solvable quantum systems by this rule and find that the energy spectra of solvable systems can be determined only from its ground state energy. The previous complicated and tedious integral calculations involved in exact quantization rule are greatly simplified. The beauty and simplicity of the rule come from its meaning—whenever the number of the nodes of ϕ(x ) or the number of the nodes of the wave function ψ(x ) increases by 1, the momentum integral ∫xAxBk(x )dx will increase by π. We apply this proper quantization rule to carry out solvable quantum systems such as the one-dimensional harmonic oscillator, the Morse potential and its generalization, the Hulthén potential, the Scarf II potential, the asymmetric trigonometric Rosen-Morse potential, the Pöschl-Teller type potentials, the Rosen-Morse potential, the Eckart potential, the harmonic oscillator in three dimensions, the hydrogen atom, and the Manning-Rosen potential in D dimensions.

  12. A Novel Texture-Quantization-Based Reversible Multiple Watermarking Scheme Applied to Health Information System.

    PubMed

    Turuk, Mousami; Dhande, Ashwin

    2018-04-01

    The recent innovations in information and communication technologies have appreciably changed the panorama of health information system (HIS). These advances provide new means to process, handle, and share medical images and also augment the medical image security issues in terms of confidentiality, reliability, and integrity. Digital watermarking has emerged as new era that offers acceptable solutions to the security issues in HIS. Texture is a significant feature to detect the embedding sites in an image, which further leads to substantial improvement in the robustness. However, considering the perspective of digital watermarking, this feature has received meager attention in the reported literature. This paper exploits the texture property of an image and presents a novel hybrid texture-quantization-based approach for reversible multiple watermarking. The watermarked image quality has been accessed by peak signal to noise ratio (PSNR), structural similarity measure (SSIM), and universal image quality index (UIQI), and the obtained results are superior to the state-of-the-art methods. The algorithm has been evaluated on a variety of medical imaging modalities (CT, MRA, MRI, US) and robustness has been verified, considering various image processing attacks including JPEG compression. The proposed scheme offers additional security using repetitive embedding of BCH encoded watermarks and ADM encrypted ECG signal. Experimental results achieved a maximum of 22,616 bits hiding capacity with PSNR of 53.64 dB.

  13. Compressive behavior of laminated neoprene bridge bearing pads under thermal aging condition

    NASA Astrophysics Data System (ADS)

    Jun, Xie; Zhang, Yannian; Shan, Chunhong

    2017-10-01

    The present study was conducted to obtain a better understanding of the variation rule of mechanical properties of laminated neoprene bridge bearing pads under thermal aging condition using compression tests. A total of 5 specimens were processed in a high-temperature chamber. After that, the specimens were tested subjected to axial load. The parameter mainly considered time of thermal aging processing for specimens. The results of compression tests show that the specimens after thermal aging processing are more probably brittle failure than the standard specimen. Moreover, the exposure of steel plate, cracks and other failure phenomena are more serious than the standard specimen. The compressive capacity, ultimate compressive strength, compressive elastic modulus of the laminated neoprene bridge bearing pads decreased dramatically with the increasing in the aging time of thermal aging processing. The attenuation trends of ultimate compressive strength, compressive elastic modulus of laminated neoprene bridge bearing pads under thermal aging condition accord with power function. The attenuation models are acquired by regressing data of experiment with the least square method. The attenuation models conform to reality well which shows that this model is applicable and has vast prospect in assessing the performance of laminated neoprene bridge bearing pads under thermal aging condition.

  14. Multipurpose image watermarking algorithm based on multistage vector quantization.

    PubMed

    Lu, Zhe-Ming; Xu, Dian-Guo; Sun, Sheng-He

    2005-06-01

    The rapid growth of digital multimedia and Internet technologies has made copyright protection, copy protection, and integrity verification three important issues in the digital world. To solve these problems, the digital watermarking technique has been presented and widely researched. Traditional watermarking algorithms are mostly based on discrete transform domains, such as the discrete cosine transform, discrete Fourier transform (DFT), and discrete wavelet transform (DWT). Most of these algorithms are good for only one purpose. Recently, some multipurpose digital watermarking methods have been presented, which can achieve the goal of content authentication and copyright protection simultaneously. However, they are based on DWT or DFT. Lately, several robust watermarking schemes based on vector quantization (VQ) have been presented, but they can only be used for copyright protection. In this paper, we present a novel multipurpose digital image watermarking method based on the multistage vector quantizer structure, which can be applied to image authentication and copyright protection. In the proposed method, the semi-fragile watermark and the robust watermark are embedded in different VQ stages using different techniques, and both of them can be extracted without the original image. Simulation results demonstrate the effectiveness of our algorithm in terms of robustness and fragility.

  15. Minimizing embedding impact in steganography using trellis-coded quantization

    NASA Astrophysics Data System (ADS)

    Filler, Tomáš; Judas, Jan; Fridrich, Jessica

    2010-01-01

    In this paper, we propose a practical approach to minimizing embedding impact in steganography based on syndrome coding and trellis-coded quantization and contrast its performance with bounds derived from appropriate rate-distortion bounds. We assume that each cover element can be assigned a positive scalar expressing the impact of making an embedding change at that element (single-letter distortion). The problem is to embed a given payload with minimal possible average embedding impact. This task, which can be viewed as a generalization of matrix embedding or writing on wet paper, has been approached using heuristic and suboptimal tools in the past. Here, we propose a fast and very versatile solution to this problem that can theoretically achieve performance arbitrarily close to the bound. It is based on syndrome coding using linear convolutional codes with the optimal binary quantizer implemented using the Viterbi algorithm run in the dual domain. The complexity and memory requirements of the embedding algorithm are linear w.r.t. the number of cover elements. For practitioners, we include detailed algorithms for finding good codes and their implementation. Finally, we report extensive experimental results for a large set of relative payloads and for different distortion profiles, including the wet paper channel.

  16. A Variant of the Mukai Pairing via Deformation Quantization

    NASA Astrophysics Data System (ADS)

    Ramadoss, Ajay C.

    2012-06-01

    Let X be a smooth projective complex variety. The Hochschild homology HH•( X) of X is an important invariant of X, which is isomorphic to the Hodge cohomology of X via the Hochschild-Kostant-Rosenberg isomorphism. On HH•( X), one has the Mukai pairing constructed by Caldararu. An explicit formula for the Mukai pairing at the level of Hodge cohomology was proven by the author in an earlier work (following ideas of Markarian). This formula implies a similar explicit formula for a closely related variant of the Mukai pairing on HH•( X). The latter pairing on HH•( X) is intimately linked to the study of Fourier-Mukai transforms of complex projective varieties. We give a new method to prove a formula computing the aforementioned variant of Caldararu's Mukai pairing. Our method is based on some important results in the area of deformation quantization. In particular, we use part of the work of Kashiwara and Schapira on Deformation Quantization modules together with an algebraic index theorem of Bressler, Nest and Tsygan. Our new method explicitly shows that the "Noncommutative Riemann-Roch" implies the classical Riemann-Roch. Further, it is hoped that our method would be useful for generalization to settings involving certain singular varieties.

  17. Pressure profiles of sport compression stockings.

    PubMed

    Reich-Schupke, Stefanie; Surhoff, Stefan; Stücker, Markus

    2016-05-01

    While sport compression stockings (SCS) have become increasingly popular, there is no regulatory norm as exists for medical compression stockings (MCS). The objective of this pilot study was to compare five SCS with respect to their pressure profiles ex vivo and in vivo, and in relation to German standards for MCS (RAL norm). In vivo (10 competitive athletes; standardized procedure using the Kikuhime pressure monitor) and ex vivo (tested at the Hohenstein Institute) pressure profiles were tested for the following products: CEP Running Progressive Socks, Falke Running Energizing, Sigvaris Performance, X-Socks Speed Metal Energizer, and 2XU Compression Race Socks. Ex vivo ankle pressures of CEP (25.6 mmHg) and 2XU (23.2 mmHg) corresponded to class 2 MCS; that of Sigvaris (20.8 mmHg), to class 1 MCS. The remaining SCS achieved lower pressure values. The pressure gradients showed marked differences, and did not meet MCS standards. Average in vivo pressures were higher for 2XU, CEP, and Sigvaris than for Falke and X-Socks. However, in vivo values for all SCS were below those of class 1 MCS. None of the SCS showed the decreasing pressure gradient (from distal to proximal) required for MCS. In vivo and ex vivo pressure profiles of all SCS examined showed marked heterogeneity, and did not meet MCS standards. Consequently, the clinical and practical effects of SCS cannot be compared, either. It would therefore be desirable to establish a classification that allows for the categorization and comparison of various SCS as well as their selection based on individual preferences and needs (high vs. low pressure, progressive vs. degressive profile). © 2016 Deutsche Dermatologische Gesellschaft (DDG). Published by John Wiley & Sons Ltd.

  18. Mixed raster content (MRC) model for compound image compression

    NASA Astrophysics Data System (ADS)

    de Queiroz, Ricardo L.; Buckley, Robert R.; Xu, Ming

    1998-12-01

    This paper will describe the Mixed Raster Content (MRC) method for compressing compound images, containing both binary test and continuous-tone images. A single compression algorithm that simultaneously meets the requirements for both text and image compression has been elusive. MRC takes a different approach. Rather than using a single algorithm, MRC uses a multi-layered imaging model for representing the results of multiple compression algorithms, including ones developed specifically for text and for images. As a result, MRC can combine the best of existing or new compression algorithms and offer different quality-compression ratio tradeoffs. The algorithms used by MRC set the lower bound on its compression performance. Compared to existing algorithms, MRC has some image-processing overhead to manage multiple algorithms and the imaging model. This paper will develop the rationale for the MRC approach by describing the multi-layered imaging model in light of a rate-distortion trade-off. Results will be presented comparing images compressed using MRC, JPEG and state-of-the-art wavelet algorithms such as SPIHT. MRC has been approved or proposed as an architectural model for several standards, including ITU Color Fax, IETF Internet Fax, and JPEG 2000.

  19. On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide

    PubMed Central

    Kang, Zhe; Yuan, Jinhui; Zhang, Xianting; Sang, Xinzhu; Wang, Kuiru; Wu, Qiang; Yan, Binbin; Li, Feng; Zhou, Xian; Zhong, Kangping; Zhou, Guiyao; Yu, Chongxiu; Farrell, Gerald; Lu, Chao; Yaw Tam, Hwa; Wai, P. K. A.

    2016-01-01

    High performance all-optical quantizer based on silicon waveguide is believed to have significant applications in photonic integratable optical communication links, optical interconnection networks, and real-time signal processing systems. In this paper, we propose an integratable all-optical quantizer for on-chip and low power consumption all-optical analog-to-digital converters. The quantization is realized by the strong cross-phase modulation and interference in a silicon-organic hybrid (SOH) slot waveguide based Mach-Zehnder interferometer. By carefully designing the dimension of the SOH waveguide, large nonlinear coefficients up to 16,000 and 18,069 W−1/m for the pump and probe signals can be obtained respectively, along with a low pulse walk-off parameter of 66.7 fs/mm, and all-normal dispersion in the wavelength regime considered. Simulation results show that the phase shift of the probe signal can reach 8π at a low pump pulse peak power of 206 mW and propagation length of 5 mm such that a 4-bit all-optical quantizer can be realized. The corresponding signal-to-noise ratio is 23.42 dB and effective number of bit is 3.89-bit. PMID:26777054

  20. Disorder-induced half-integer quantized conductance plateau in quantum anomalous Hall insulator-superconductor structures

    NASA Astrophysics Data System (ADS)

    Huang, Yingyi; Setiawan, F.; Sau, Jay D.

    2018-03-01

    A weak superconducting proximity effect in the vicinity of the topological transition of a quantum anomalous Hall system has been proposed as a venue to realize a topological superconductor (TSC) with chiral Majorana edge modes (CMEMs). A recent experiment [Science 357, 294 (2017), 10.1126/science.aag2792] claimed to have observed such CMEMs in the form of a half-integer quantized conductance plateau in the two-terminal transport measurement of a quantum anomalous Hall-superconductor junction. Although the presence of a superconducting proximity effect generically splits the quantum Hall transition into two phase transitions with a gapped TSC in between, in this Rapid Communication we propose that a nearly flat conductance plateau, similar to that expected from CMEMs, can also arise from the percolation of quantum Hall edges well before the onset of the TSC or at temperatures much above the TSC gap. Our Rapid Communication, therefore, suggests that, in order to confirm the TSC, it is necessary to supplement the observation of the half-quantized conductance plateau with a hard superconducting gap (which is unlikely for a disordered system) from the conductance measurements or the heat transport measurement of the transport gap. Alternatively, the half-quantized thermal conductance would also serve as a smoking-gun signature of the TSC.

  1. Compressibility characteristics of Sabak Bernam Marine Clay

    NASA Astrophysics Data System (ADS)

    Lat, D. C.; Ali, N.; Jais, I. B. M.; Baharom, B.; Yunus, N. Z. M.; Salleh, S. M.; Azmi, N. A. C.

    2018-04-01

    This study is carried out to determine the geotechnical properties and compressibility characteristics of marine clay collected at Sabak Bernam. The compressibility characteristics of this soil are determined from 1-D consolidation test and verified by existing correlations by other researchers. No literature has been found on the compressibility characteristics of Sabak Bernam Marine Clay. It is important to carry out this study since this type of marine clay covers large coastal area of west coast Malaysia. This type of marine clay was found on the main road connecting Klang to Perak and the road keeps experiencing undulation and uneven settlement which jeopardise the safety of the road users. The soil is indicated in the Generalised Soil Map of Peninsular Malaysia as a CLAY with alluvial soil on recent marine and riverine alluvium. Based on the British Standard Soil Classification and Plasticity Chart, the soil is classified as a CLAY with very high plasticity (CV). Results from laboratory test on physical properties and compressibility parameters show that Sabak Bernam Marine Clay (SBMC) is highly compressible, has low permeability and poor drainage characteristics. The compressibility parameters obtained for SBMC is in a good agreement with other researchers in the same field.

  2. Stochastic quantization of conformally coupled scalar in AdS

    NASA Astrophysics Data System (ADS)

    Jatkar, Dileep P.; Oh, Jae-Hyuk

    2013-10-01

    We explore the relation between stochastic quantization and holographic Wilsonian renormalization group flow further by studying conformally coupled scalar in AdS d+1. We establish one to one mapping between the radial flow of its double trace deformation and stochastic 2-point correlation function. This map is shown to be identical, up to a suitable field re-definition of the bulk scalar, to the original proposal in arXiv:1209.2242.

  3. A VLSI chip set for real time vector quantization of image sequences

    NASA Technical Reports Server (NTRS)

    Baker, Richard L.

    1989-01-01

    The architecture and implementation of a VLSI chip set that vector quantizes (VQ) image sequences in real time is described. The chip set forms a programmable Single-Instruction, Multiple-Data (SIMD) machine which can implement various vector quantization encoding structures. Its VQ codebook may contain unlimited number of codevectors, N, having dimension up to K = 64. Under a weighted least squared error criterion, the engine locates at video rates the best code vector in full-searched or large tree searched VQ codebooks. The ability to manipulate tree structured codebooks, coupled with parallelism and pipelining, permits searches in as short as O (log N) cycles. A full codebook search results in O(N) performance, compared to O(KN) for a Single-Instruction, Single-Data (SISD) machine. With this VLSI chip set, an entire video code can be built on a single board that permits realtime experimentation with very large codebooks.

  4. Quantization of the Kadomtsev-Petviashvili equation

    NASA Astrophysics Data System (ADS)

    Kozlowski, K.; Sklyanin, E. K.; Torrielli, A.

    2017-08-01

    We propose a quantization of the Kadomtsev-Petviashvili equation on a cylinder equivalent to an infinite system of nonrelativistic one-dimensional bosons with the masses m = 1, 2,.... The Hamiltonian is Galilei-invariant and includes the split and merge terms Ψ _{{m_1}}^\\dag Ψ _{{m_2}}^\\dag {Ψ _{{m_1} + {m_2}}} and Ψ _{{m_1} + {m_2}}^\\dag {Ψ _{{m_1}}}{Ψ _{{m_2}}} for all combinations of particles with masses m 1, m 2, and m 1 + m 2 for a special choice of coupling constants. We construct the Bethe eigenfunctions for the model and verify the consistency of the coordinate Bethe ansatz and hence the quantum integrability of the model up to the mass M=8 sector.

  5. A new technique for the diagnosis of acute appendicitis: abdominal CT with compression to the right lower quadrant.

    PubMed

    Kılınçer, Abidin; Akpınar, Erhan; Erbil, Bülent; Ünal, Emre; Karaosmanoğlu, Ali Devrim; Kaynaroğlu, Volkan; Akata, Deniz; Özmen, Mustafa

    2017-08-01

    To determine the diagnostic accuracy of abdominal CT with compression to the right lower quadrant (RLQ) in adults with acute appendicitis. 168 patients (age range, 18-78 years) were included who underwent contrast-enhanced CT for suspected appendicitis performed either using compression to the RLQ (n = 71) or a standard protocol (n = 97). Outer diameter of the appendix, appendiceal wall thickening, luminal content and associated findings were evaluated in each patient. Kruskal-Wallis, Fisher's and Pearson's chi-squared tests were used for statistical analysis. There was no significant difference in the mean outer diameter (MOD) between compression CT scans (10.6 ± 1.9 mm) and standard protocol (11.2 ± 2.3 mm) in patients with acute appendicitis (P = 1). MOD was significantly lower in the compression group (5.2 ± 0.8 mm) compared to the standard protocol (6.5 ± 1.1 mm) (P < 0.01) in patients without appendicitis. A cut-off value of 6.75 mm for the outer diameter of the appendix was found to be 100% sensitive in the diagnosis of acute appendicitis for both groups. The specificity was higher for compression CT technique (67.7 vs. 94.9%). Normal appendix diameter was significantly smaller in the compression-CT group compared to standard-CT group, increasing diagnostic accuracy of abdominal compression CT. • Normal appendix diameter is significantly smaller in compression CT. • Compression could force contrast material to flow through the appendiceal lumen. • Compression CT may be a CT counterpart of graded compression US.

  6. The Pixon Method for Data Compression Image Classification, and Image Reconstruction

    NASA Technical Reports Server (NTRS)

    Puetter, Richard; Yahil, Amos

    2002-01-01

    As initially proposed, this program had three goals: (1) continue to develop the highly successful Pixon method for image reconstruction and support other scientist in implementing this technique for their applications; (2) develop image compression techniques based on the Pixon method; and (3) develop artificial intelligence algorithms for image classification based on the Pixon approach for simplifying neural networks. Subsequent to proposal review the scope of the program was greatly reduced and it was decided to investigate the ability of the Pixon method to provide superior restorations of images compressed with standard image compression schemes, specifically JPEG-compressed images.

  7. Improving 3D Wavelet-Based Compression of Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Klimesh, Matthew; Kiely, Aaron; Xie, Hua; Aranki, Nazeeh

    2009-01-01

    Two methods of increasing the effectiveness of three-dimensional (3D) wavelet-based compression of hyperspectral images have been developed. (As used here, images signifies both images and digital data representing images.) The methods are oriented toward reducing or eliminating detrimental effects of a phenomenon, referred to as spectral ringing, that is described below. In 3D wavelet-based compression, an image is represented by a multiresolution wavelet decomposition consisting of several subbands obtained by applying wavelet transforms in the two spatial dimensions corresponding to the two spatial coordinate axes of the image plane, and by applying wavelet transforms in the spectral dimension. Spectral ringing is named after the more familiar spatial ringing (spurious spatial oscillations) that can be seen parallel to and near edges in ordinary images reconstructed from compressed data. These ringing phenomena are attributable to effects of quantization. In hyperspectral data, the individual spectral bands play the role of edges, causing spurious oscillations to occur in the spectral dimension. In the absence of such corrective measures as the present two methods, spectral ringing can manifest itself as systematic biases in some reconstructed spectral bands and can reduce the effectiveness of compression of spatially-low-pass subbands. One of the two methods is denoted mean subtraction. The basic idea of this method is to subtract mean values from spatial planes of spatially low-pass subbands prior to encoding, because (a) such spatial planes often have mean values that are far from zero and (b) zero-mean data are better suited for compression by methods that are effective for subbands of two-dimensional (2D) images. In this method, after the 3D wavelet decomposition is performed, mean values are computed for and subtracted from each spatial plane of each spatially-low-pass subband. The resulting data are converted to sign-magnitude form and compressed in a

  8. Two dimensional topological insulator in quantizing magnetic fields

    NASA Astrophysics Data System (ADS)

    Olshanetsky, E. B.; Kvon, Z. D.; Gusev, G. M.; Mikhailov, N. N.; Dvoretsky, S. A.

    2018-05-01

    The effect of quantizing magnetic field on the electron transport is investigated in a two dimensional topological insulator (2D TI) based on a 8 nm (013) HgTe quantum well (QW). The local resistance behavior is indicative of a metal-insulator transition at B ≈ 6 T. On the whole the experimental data agrees with the theory according to which the helical edge states transport in a 2D TI persists from zero up to a critical magnetic field Bc after which a gap opens up in the 2D TI spectrum.

  9. Digital Model of Fourier and Fresnel Quantized Holograms

    NASA Astrophysics Data System (ADS)

    Boriskevich, Anatoly A.; Erokhovets, Valery K.; Tkachenko, Vadim V.

    Some models schemes of Fourier and Fresnel quantized protective holograms with visual effects are suggested. The condition to arrive at optimum relationship between the quality of reconstructed images, and the coefficient of data reduction about a hologram, and quantity of iterations in the reconstructing hologram process has been estimated through computer model. Higher protection level is achieved by means of greater number both bi-dimensional secret keys (more than 2128) in form of pseudorandom amplitude and phase encoding matrixes, and one-dimensional encoding key parameters for every image of single-layer or superimposed holograms.

  10. A heat kernel proof of the index theorem for deformation quantization

    NASA Astrophysics Data System (ADS)

    Karabegov, Alexander

    2017-11-01

    We give a heat kernel proof of the algebraic index theorem for deformation quantization with separation of variables on a pseudo-Kähler manifold. We use normalizations of the canonical trace density of a star product and of the characteristic classes involved in the index formula for which this formula contains no extra constant factors.

  11. Closed almost-periodic orbits in semiclassical quantization of generic polygons

    PubMed

    Biswas

    2000-05-01

    Periodic orbits are the central ingredients of modern semiclassical theories and corrections to these are generally nonclassical in origin. We show here that, for the class of generic polygonal billiards, the corrections are predominantly classical in origin owing to the contributions from closed almost-periodic (CAP) orbit families. Furthermore, CAP orbit families outnumber periodic families but have comparable weights. They are hence indispensable for semiclassical quantization.

  12. Coil compression in simultaneous multislice functional MRI with concentric ring slice-GRAPPA and SENSE.

    PubMed

    Chu, Alan; Noll, Douglas C

    2016-10-01

    Simultaneous multislice (SMS) imaging is a useful way to accelerate functional magnetic resonance imaging (fMRI). As acceleration becomes more aggressive, an increasingly larger number of receive coils are required to separate the slices, which significantly increases the computational burden. We propose a coil compression method that works with concentric ring non-Cartesian SMS imaging and should work with Cartesian SMS as well. We evaluate the method on fMRI scans of several subjects and compare it to standard coil compression methods. The proposed method uses a slice-separation k-space kernel to simultaneously compress coil data into a set of virtual coils. Five subjects were scanned using both non-SMS fMRI and SMS fMRI with three simultaneous slices. The SMS fMRI scans were processed using the proposed method, along with other conventional methods. Code is available at https://github.com/alcu/sms. The proposed method maintained functional activation with a fewer number of virtual coils than standard SMS coil compression methods. Compression of non-SMS fMRI maintained activation with a slightly lower number of virtual coils than the proposed method, but does not have the acceleration advantages of SMS fMRI. The proposed method is a practical way to compress and reconstruct concentric ring SMS data and improves the preservation of functional activation over standard coil compression methods in fMRI. Magn Reson Med 76:1196-1209, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  13. Compact universal logic gates realized using quantization of current in nanodevices.

    PubMed

    Zhang, Wancheng; Wu, Nan-Jian; Yang, Fuhua

    2007-12-12

    This paper proposes novel universal logic gates using the current quantization characteristics of nanodevices. In nanodevices like the electron waveguide (EW) and single-electron (SE) turnstile, the channel current is a staircase quantized function of its control voltage. We use this unique characteristic to compactly realize Boolean functions. First we present the concept of the periodic-threshold threshold logic gate (PTTG), and we build a compact PTTG using EW and SE turnstiles. We show that an arbitrary three-input Boolean function can be realized with a single PTTG, and an arbitrary four-input Boolean function can be realized by using two PTTGs. We then use one PTTG to build a universal programmable two-input logic gate which can be used to realize all two-input Boolean functions. We also build a programmable three-input logic gate by using one PTTG. Compared with linear threshold logic gates, with the PTTG one can build digital circuits more compactly. The proposed PTTGs are promising for future smart nanoscale digital system use.

  14. Quantization-Based Adaptive Actor-Critic Tracking Control With Tracking Error Constraints.

    PubMed

    Fan, Quan-Yong; Yang, Guang-Hong; Ye, Dan

    2018-04-01

    In this paper, the problem of adaptive actor-critic (AC) tracking control is investigated for a class of continuous-time nonlinear systems with unknown nonlinearities and quantized inputs. Different from the existing results based on reinforcement learning, the tracking error constraints are considered and new critic functions are constructed to improve the performance further. To ensure that the tracking errors keep within the predefined time-varying boundaries, a tracking error transformation technique is used to constitute an augmented error system. Specific critic functions, rather than the long-term cost function, are introduced to supervise the tracking performance and tune the weights of the AC neural networks (NNs). A novel adaptive controller with a special structure is designed to reduce the effect of the NN reconstruction errors, input quantization, and disturbances. Based on the Lyapunov stability theory, the boundedness of the closed-loop signals and the desired tracking performance can be guaranteed. Finally, simulations on two connected inverted pendulums are given to illustrate the effectiveness of the proposed method.

  15. Performance Analysis for Channel Estimation With 1-Bit ADC and Unknown Quantization Threshold

    NASA Astrophysics Data System (ADS)

    Stein, Manuel S.; Bar, Shahar; Nossek, Josef A.; Tabrikian, Joseph

    2018-05-01

    In this work, the problem of signal parameter estimation from measurements acquired by a low-complexity analog-to-digital converter (ADC) with $1$-bit output resolution and an unknown quantization threshold is considered. Single-comparator ADCs are energy-efficient and can be operated at ultra-high sampling rates. For analysis of such systems, a fixed and known quantization threshold is usually assumed. In the symmetric case, i.e., zero hard-limiting offset, it is known that in the low signal-to-noise ratio (SNR) regime the signal processing performance degrades moderately by ${2}/{\\pi}$ ($-1.96$ dB) when comparing to an ideal $\\infty$-bit converter. Due to hardware imperfections, low-complexity $1$-bit ADCs will in practice exhibit an unknown threshold different from zero. Therefore, we study the accuracy which can be obtained with receive data processed by a hard-limiter with unknown quantization level by using asymptotically optimal channel estimation algorithms. To characterize the estimation performance of these nonlinear algorithms, we employ analytic error expressions for different setups while modeling the offset as a nuisance parameter. In the low SNR regime, we establish the necessary condition for a vanishing loss due to missing offset knowledge at the receiver. As an application, we consider the estimation of single-input single-output wireless channels with inter-symbol interference and validate our analysis by comparing the analytic and experimental performance of the studied estimation algorithms. Finally, we comment on the extension to multiple-input multiple-output channel models.

  16. Stochastic quantization of topological field theory: Generalized Langevin equation with memory kernel

    NASA Astrophysics Data System (ADS)

    Menezes, G.; Svaiter, N. F.

    2006-07-01

    We use the method of stochastic quantization in a topological field theory defined in an Euclidean space, assuming a Langevin equation with a memory kernel. We show that our procedure for the Abelian Chern-Simons theory converges regardless of the nature of the Chern-Simons coefficient.

  17. The behavior of quantization spectra as a function of signal-to-noise ratio

    NASA Technical Reports Server (NTRS)

    Flanagan, M. J.

    1991-01-01

    An expression for the spectrum of quantization error in a discrete-time system whose input is a sinusoid plus white Gaussian noise is derived. This quantization spectrum consists of two components: a white-noise floor and spurious harmonics. The dithering effect of the input Gaussian noise in both components of the spectrum is considered. Quantitative results in a discrete Fourier transform (DFT) example show the behavior of spurious harmonics as a function of the signal-to-noise ratio (SNR). These results have strong implications for digital reception and signal analysis systems. At low SNRs, spurious harmonics decay exponentially on a log-log scale, and the resulting spectrum is white. As the SNR increases, the spurious harmonics figure prominently in the output spectrum. A useful expression is given that roughly bounds the magnitude of a spurious harmonic as a function of the SNR.

  18. Wavelet-based compression of pathological images for telemedicine applications

    NASA Astrophysics Data System (ADS)

    Chen, Chang W.; Jiang, Jianfei; Zheng, Zhiyong; Wu, Xue G.; Yu, Lun

    2000-05-01

    In this paper, we present the performance evaluation of wavelet-based coding techniques as applied to the compression of pathological images for application in an Internet-based telemedicine system. We first study how well suited the wavelet-based coding is as it applies to the compression of pathological images, since these images often contain fine textures that are often critical to the diagnosis of potential diseases. We compare the wavelet-based compression with the DCT-based JPEG compression in the DICOM standard for medical imaging applications. Both objective and subjective measures have been studied in the evaluation of compression performance. These studies are performed in close collaboration with expert pathologists who have conducted the evaluation of the compressed pathological images and communication engineers and information scientists who designed the proposed telemedicine system. These performance evaluations have shown that the wavelet-based coding is suitable for the compression of various pathological images and can be integrated well with the Internet-based telemedicine systems. A prototype of the proposed telemedicine system has been developed in which the wavelet-based coding is adopted for the compression to achieve bandwidth efficient transmission and therefore speed up the communications between the remote terminal and the central server of the telemedicine system.

  19. Finite-time H∞ control for a class of discrete-time switched time-delay systems with quantized feedback

    NASA Astrophysics Data System (ADS)

    Song, Haiyu; Yu, Li; Zhang, Dan; Zhang, Wen-An

    2012-12-01

    This paper is concerned with the finite-time quantized H∞ control problem for a class of discrete-time switched time-delay systems with time-varying exogenous disturbances. By using the sector bound approach and the average dwell time method, sufficient conditions are derived for the switched system to be finite-time bounded and ensure a prescribed H∞ disturbance attenuation level, and a mode-dependent quantized state feedback controller is designed by solving an optimization problem. Two illustrative examples are provided to demonstrate the effectiveness of the proposed theoretical results.

  20. Quantized Step-up Model for Evaluation of Internship in Teaching of Prospective Science Teachers.

    ERIC Educational Resources Information Center

    Sindhu, R. S.

    2002-01-01

    Describes the quantized step-up model developed for the evaluation purposes of internship in teaching which is an analogous model of the atomic structure. Assesses prospective teachers' abilities in lesson delivery. (YDS)