Sample records for quantized anomalous hall

  1. Disorder-induced half-integer quantized conductance plateau in quantum anomalous Hall insulator-superconductor structures

    NASA Astrophysics Data System (ADS)

    Huang, Yingyi; Setiawan, F.; Sau, Jay D.

    2018-03-01

    A weak superconducting proximity effect in the vicinity of the topological transition of a quantum anomalous Hall system has been proposed as a venue to realize a topological superconductor (TSC) with chiral Majorana edge modes (CMEMs). A recent experiment [Science 357, 294 (2017), 10.1126/science.aag2792] claimed to have observed such CMEMs in the form of a half-integer quantized conductance plateau in the two-terminal transport measurement of a quantum anomalous Hall-superconductor junction. Although the presence of a superconducting proximity effect generically splits the quantum Hall transition into two phase transitions with a gapped TSC in between, in this Rapid Communication we propose that a nearly flat conductance plateau, similar to that expected from CMEMs, can also arise from the percolation of quantum Hall edges well before the onset of the TSC or at temperatures much above the TSC gap. Our Rapid Communication, therefore, suggests that, in order to confirm the TSC, it is necessary to supplement the observation of the half-quantized conductance plateau with a hard superconducting gap (which is unlikely for a disordered system) from the conductance measurements or the heat transport measurement of the transport gap. Alternatively, the half-quantized thermal conductance would also serve as a smoking-gun signature of the TSC.

  2. Quantized topological magnetoelectric effect of the zero-plateau quantum anomalous Hall state

    DOE PAGES

    Wang, Jing; Lian, Biao; Qi, Xiao-Liang; ...

    2015-08-10

    The topological magnetoelectric effect in a three-dimensional topological insulator is a novel phenomenon, where an electric field induces a magnetic field in the same direction, with a universal coefficient of proportionality quantized in units of $e²/2h$. Here in this paper, we propose that the topological magnetoelectric effect can be realized in the zero-plateau quantum anomalous Hall state of magnetic topological insulators or a ferromagnet-topological insulator heterostructure. The finite-size effect is also studied numerically, where the magnetoelectric coefficient is shown to converge to a quantized value when the thickness of the topological insulator film increases. We further propose a device setupmore » to eliminate nontopological contributions from the side surface.« less

  3. Intrinsic quantum spin Hall and anomalous Hall effects in h-Sb/Bi epitaxial growth on a ferromagnetic MnO2 thin film.

    PubMed

    Zhou, Jian; Sun, Qiang; Wang, Qian; Kawazoe, Yoshiyuki; Jena, Puru

    2016-06-07

    Exploring a two-dimensional intrinsic quantum spin Hall state with a large band gap as well as an anomalous Hall state in realizable materials is one of the most fundamental and important goals for future applications in spintronics, valleytronics, and quantum computing. Here, by combining first-principles calculations with a tight-binding model, we predict that Sb or Bi can epitaxially grow on a stable and ferromagnetic MnO2 thin film substrate, forming a flat honeycomb sheet. The flatness of Sb or Bi provides an opportunity for the existence of Dirac points in the Brillouin zone, with its position effectively tuned by surface hydrogenation. The Dirac points in spin up and spin down channels split due to the proximity effects induced by MnO2. In the presence of both intrinsic and Rashba spin-orbit coupling, we find two band gaps exhibiting a large band gap quantum spin Hall state and a nearly quantized anomalous Hall state which can be tuned by adjusting the Fermi level. Our findings provide an efficient way to realize both quantized intrinsic spin Hall conductivity and anomalous Hall conductivity in a single material.

  4. Spontaneous magnetization and anomalous Hall effect in an emergent Dice lattice

    PubMed Central

    Dutta, Omjyoti; Przysiężna, Anna; Zakrzewski, Jakub

    2015-01-01

    Ultracold atoms in optical lattices serve as a tool to model different physical phenomena appearing originally in condensed matter. To study magnetic phenomena one needs to engineer synthetic fields as atoms are neutral. Appropriately shaped optical potentials force atoms to mimic charged particles moving in a given field. We present the realization of artificial gauge fields for the observation of anomalous Hall effect. Two species of attractively interacting ultracold fermions are considered to be trapped in a shaken two dimensional triangular lattice. A combination of interaction induced tunneling and shaking can result in an emergent Dice lattice. In such a lattice the staggered synthetic magnetic flux appears and it can be controlled with external parameters. The obtained synthetic fields are non-Abelian. Depending on the tuning of the staggered flux we can obtain either anomalous Hall effect or its quantized version. Our results are reminiscent of Anomalous Hall conductivity in spin-orbit coupled ferromagnets. PMID:26057635

  5. Tunneling Anomalous and Spin Hall Effects.

    PubMed

    Matos-Abiague, A; Fabian, J

    2015-07-31

    We predict, theoretically, the existence of the anomalous Hall effect when a tunneling current flows through a tunnel junction in which only one of the electrodes is magnetic. The interfacial spin-orbit coupling present in the barrier region induces a spin-dependent momentum filtering in the directions perpendicular to the tunneling current, resulting in a skew tunneling even in the absence of impurities. This produces an anomalous Hall conductance and spin Hall currents in the nonmagnetic electrode when a bias voltage is applied across the tunneling heterojunction. If the barrier is composed of a noncentrosymmetric material, the anomalous Hall conductance and spin Hall currents become anisotropic with respect to both the magnetization and crystallographic directions, allowing us to separate this interfacial phenomenon from the bulk anomalous and spin Hall contributions. The proposed effect should be useful for proving and quantifying the interfacial spin-orbit fields in metallic and metal-semiconductor systems.

  6. Anomalous Hall resistance in bilayer quantum Hall systems

    NASA Astrophysics Data System (ADS)

    Ezawa, Z. F.; Suzuki, S.; Tsitsishvili, G.

    2007-07-01

    We present a microscopic theory of the Hall current in the bilayer quantum Hall system on the basis of noncommutative geometry. By analyzing the Heisenberg equation of motion and the continuity equation of charge, we demonstrate the emergence of the phase current in a system where the interlayer phase coherence develops spontaneously. The phase current arranges itself to minimize the total energy of the system, as it induces certain anomalous behaviors in the Hall current in the counterflow geometry and also in the drag experiment. They explain the recent experimental data for anomalous Hall resistances due to Kellogg [Phys. Rev. Lett. 88, 126804 (2002); 93, 036801 (2004)] and Tutuc [Phys. Rev. Lett. 93, 036802 (2004)] at ν=1 .

  7. Direct comparison of fractional and integer quantized Hall resistance

    NASA Astrophysics Data System (ADS)

    Ahlers, Franz J.; Götz, Martin; Pierz, Klaus

    2017-08-01

    We present precision measurements of the fractional quantized Hall effect, where the quantized resistance {{R}≤ft[ 1/3 \\right]} in the fractional quantum Hall state at filling factor 1/3 was compared with a quantized resistance {{R}[2]} , represented by an integer quantum Hall state at filling factor 2. A cryogenic current comparator bridge capable of currents down to the nanoampere range was used to directly compare two resistance values of two GaAs-based devices located in two cryostats. A value of 1-(5.3  ±  6.3) 10-8 (95% confidence level) was obtained for the ratio ({{R}≤ft[ 1/3 \\right]}/6{{R}[2]} ). This constitutes the most precise comparison of integer resistance quantization (in terms of h/e 2) in single-particle systems and of fractional quantization in fractionally charged quasi-particle systems. While not relevant for practical metrology, such a test of the validity of the underlying physics is of significance in the context of the upcoming revision of the SI.

  8. Observation of the Zero Hall Plateau in a Quantum Anomalous Hall Insulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Yang; Feng, Xiao; Ou, Yunbo

    We report experimental investigations on the quantum phase transition between the two opposite Hall plateaus of a quantum anomalous Hall insulator. We observe a well-defined plateau with zero Hall conductivity over a range of magnetic field around coercivity when the magnetization reverses. The features of the zero Hall plateau are shown to be closely related to that of the quantum anomalous Hall effect, but its temperature evolution exhibits a significant difference from the network model for a conventional quantum Hall plateau transition. We propose that the chiral edge states residing at the magnetic domain boundaries, which are unique to amore » quantum anomalous Hall insulator, are responsible for the novel features of the zero Hall plateau.« less

  9. Quantum anomalous Hall effect in time-reversal-symmetry breaking topological insulators

    NASA Astrophysics Data System (ADS)

    Chang, Cui-Zu; Li, Mingda

    2016-03-01

    The quantum anomalous Hall effect (QAHE), the last member of Hall family, was predicted to exhibit quantized Hall conductivity {σyx}=\\frac{{{e}2}}{h} without any external magnetic field. The QAHE shares a similar physical phenomenon with the integer quantum Hall effect (QHE), whereas its physical origin relies on the intrinsic topological inverted band structure and ferromagnetism. Since the QAHE does not require external energy input in the form of magnetic field, it is believed that this effect has unique potential for applications in future electronic devices with low-power consumption. More recently, the QAHE has been experimentally observed in thin films of the time-reversal symmetry breaking ferromagnetic (FM) topological insulators (TI), Cr- and V- doped (Bi,Sb)2Te3. In this topical review, we review the history of TI based QAHE, the route to the experimental observation of the QAHE in the above two systems, the current status of the research of the QAHE, and finally the prospects for future studies.

  10. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state.

    PubMed

    Okada, Ken N; Takahashi, Youtarou; Mogi, Masataka; Yoshimi, Ryutaro; Tsukazaki, Atsushi; Takahashi, Kei S; Ogawa, Naoki; Kawasaki, Masashi; Tokura, Yoshinori

    2016-07-20

    Electrodynamic responses from three-dimensional topological insulators are characterized by the universal magnetoelectric term constituent of the Lagrangian formalism. The quantized magnetoelectric coupling, which is generally referred to as topological magnetoelectric effect, has been predicted to induce exotic phenomena including the universal low-energy magneto-optical effects. Here we report the experimental indication of the topological magnetoelectric effect, which is exemplified by magneto-optical Faraday and Kerr rotations in the quantum anomalous Hall states of magnetic topological insulator surfaces by terahertz magneto-optics. The universal relation composed of the observed Faraday and Kerr rotation angles but not of any material parameters (for example, dielectric constant and magnetic susceptibility) well exhibits the trajectory towards the fine structure constant in the quantized limit.

  11. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state

    PubMed Central

    Okada, Ken N.; Takahashi, Youtarou; Mogi, Masataka; Yoshimi, Ryutaro; Tsukazaki, Atsushi; Takahashi, Kei S.; Ogawa, Naoki; Kawasaki, Masashi; Tokura, Yoshinori

    2016-01-01

    Electrodynamic responses from three-dimensional topological insulators are characterized by the universal magnetoelectric term constituent of the Lagrangian formalism. The quantized magnetoelectric coupling, which is generally referred to as topological magnetoelectric effect, has been predicted to induce exotic phenomena including the universal low-energy magneto-optical effects. Here we report the experimental indication of the topological magnetoelectric effect, which is exemplified by magneto-optical Faraday and Kerr rotations in the quantum anomalous Hall states of magnetic topological insulator surfaces by terahertz magneto-optics. The universal relation composed of the observed Faraday and Kerr rotation angles but not of any material parameters (for example, dielectric constant and magnetic susceptibility) well exhibits the trajectory towards the fine structure constant in the quantized limit. PMID:27436710

  12. Intrinsic quantum anomalous hall effect in a two-dimensional anilato-based lattice.

    PubMed

    Ni, Xiaojuan; Jiang, Wei; Huang, Huaqing; Jin, Kyung-Hwan; Liu, Feng

    2018-06-13

    Using first-principles calculations, we predict an intrinsic quantum anomalous Hall (QAH) state in a monolayer anilato-based metal-organic framework M2(C6O4X2)3 (M = Mn and Tc, X = F, Cl, Br and I). The spin-orbit coupling of M d orbitals opens a nontrivial band gap up to 18 meV at the Dirac point. The electron counting rule is used to explain the intrinsic nature of the QAH state. The calculated nonzero Chern number, gapless edge states and quantized Hall conductance all confirm the nontrivial topological properties in the anilato-based lattice. Our findings provide an organic materials platform for the realization of the QAH effect without the need for magnetic and charge doping, which are highly desirable for the development of low-energy-consumption spintronic devices.

  13. Thermally driven anomalous Hall effect transitions in FeRh

    NASA Astrophysics Data System (ADS)

    Popescu, Adrian; Rodriguez-Lopez, Pablo; Haney, Paul M.; Woods, Lilia M.

    2018-04-01

    Materials exhibiting controllable magnetic phase transitions are currently in demand for many spintronics applications. Here, we investigate from first principles the electronic structure and intrinsic anomalous Hall, spin Hall, and anomalous Nernst response properties of the FeRh metallic alloy which undergoes a thermally driven antiferromagnetic-to-ferromagnetic phase transition. We show that the energy band structures and underlying Berry curvatures have important signatures in the various Hall effects. Specifically, the suppression of the anomalous Hall and Nernst effects in the antiferromagnetic state and a sign change in the spin Hall conductivity across the transition are found. It is suggested that the FeRh can be used as a spin current detector capable of differentiating the spin Hall effect from other anomalous transverse effects. The implications of this material and its thermally driven phases as a spin current detection scheme are also discussed.

  14. Integer, fractional, and anomalous quantum Hall effects explained with Eyring's rate process theory and free volume concept.

    PubMed

    Hao, Tian

    2017-02-22

    The Hall effects, especially the integer, fractional and anomalous quantum Hall effects, have been addressed using Eyring's rate process theory and free volume concept. The basic assumptions are that the conduction process is a common rate controlled "reaction" process that can be described with Eyring's absolute rate process theory; the mobility of electrons should be dependent on the free volume available for conduction electrons. The obtained Hall conductivity is clearly quantized as with prefactors related to both the magnetic flux quantum number and the magnetic quantum number via the azimuthal quantum number, with and without an externally applied magnetic field. This article focuses on two dimensional (2D) systems, but the approaches developed in this article can be extended to 3D systems.

  15. Anomalous Hall effect in calcium-doped lanthanum cobaltite and gadolinium

    NASA Astrophysics Data System (ADS)

    Baily, Scott Alan

    The physical origin of the anomalous (proportional to magnetization) Hall effect is not very well understood. While many theories account for a Hall effect proportional to the magnetization of a material, these theories often predict effects significantly smaller than those found in ferromagnetic materials. An even more significant deficiency of the conventional theories is that they predict an anomalous Hall resistivity that is proportional to a power of the resistivity, and in the absence of a metal insulator transition cannot account for the anomalous Hall effect that peaks near TC. Recent models based on a geometric, or Berry, phase have had a great deal of success describing the anomalous Hall effect in double-exchange systems (e.g., lanthanum manganite and chromium dioxide). In gadolinium, as in double-exchange magnets, the exchange interaction is mediated by the conduction electrons and the anomalous Hall effect may therefore resemble that of CrO2 and other metallic double-exchange ferromagnets. Lanthanum cobaltite is similar to manganite in many ways, but a strong double-exchange interaction is not present. Calcium-doped lanthanum cobaltite films were found to have the largest anomalous Hall effect of any ferromagnetic metal. The primary purpose of this study is to gain insight into the origin of the anomalous Hall effect with the hope that these theories can be extended to account for the effect in other materials. The Hall resistivity, magnetoresistance, and magnetization of a Gadolinium single crystal were measured in fields up to 30 T. Cobaltite films were grown via laser ablation and characterized by a variety of techniques. Hall resistivity, magnetoresistance, magnetization, and magnetothermopower of L 1-xCaxCoO3 samples with 0.15 < x < 0.4 were measured in fields up to 7 T. The Gd results suggest that Berry's phase contributes partially to the Hall effect near TC. Berry's phase theories hold promise for explaining the large anomalous Hall effect in

  16. Chiral Majorana fermion modes in a quantum anomalous Hall insulator–superconductor structure

    DOE PAGES

    He, Qing Lin; Pan, Lei; Stern, Alexander L.; ...

    2017-07-21

    Majorana fermion is a hypothetical particle that is its own antiparticle. We report transport measurements that suggest the existence of one-dimensional chiral Majorana fermion modes in the hybrid system of a quantum anomalous Hall insulator thin film coupled with a superconductor. As the external magnetic field is swept, half-integer quantized conductance plateaus are observed at the locations of magnetization reversals, giving a distinct signature of the Majorana fermion modes. This transport signature is reproducible over many magnetic field sweeps and appears at different temperatures. This finding may open up an avenue to control Majorana fermions for implementing robust topological quantummore » computing.« less

  17. Observation of anomalous Hall effect in a non-magnetic two-dimensional electron system

    PubMed Central

    Maryenko, D.; Mishchenko, A. S.; Bahramy, M. S.; Ernst, A.; Falson, J.; Kozuka, Y.; Tsukazaki, A.; Nagaosa, N.; Kawasaki, M.

    2017-01-01

    Anomalous Hall effect, a manifestation of Hall effect occurring in systems without time-reversal symmetry, has been mostly observed in ferromagnetically ordered materials. However, its realization in high-mobility two-dimensional electron system remains elusive, as the incorporation of magnetic moments deteriorates the device performance compared to non-doped structure. Here we observe systematic emergence of anomalous Hall effect in various MgZnO/ZnO heterostructures that exhibit quantum Hall effect. At low temperatures, our nominally non-magnetic heterostructures display an anomalous Hall effect response similar to that of a clean ferromagnetic metal, while keeping a large anomalous Hall effect angle θAHE≈20°. Such a behaviour is consistent with Giovannini–Kondo model in which the anomalous Hall effect arises from the skew scattering of electrons by localized paramagnetic centres. Our study unveils a new aspect of many-body interactions in two-dimensional electron systems and shows how the anomalous Hall effect can emerge in a non-magnetic system. PMID:28300133

  18. Anderson Localization from the Berry-Curvature Interchange in Quantum Anomalous Hall Systems

    NASA Astrophysics Data System (ADS)

    Qiao, Zhenhua; Han, Yulei; Zhang, Lei; Wang, Ke; Deng, Xinzhou; Jiang, Hua; Yang, Shengyuan A.; Wang, Jian; Niu, Qian

    2016-07-01

    We theoretically investigate the localization mechanism of the quantum anomalous Hall effect (QAHE) in the presence of spin-flip disorders. We show that the QAHE stays quantized at weak disorders, then enters a Berry-curvature mediated metallic phase at moderate disorders, and finally goes into the Anderson insulating phase at strong disorders. From the phase diagram, we find that at the charge neutrality point although the QAHE is most robust against disorders, the corresponding metallic phase is much easier to be localized into the Anderson insulating phase due to the interchange of Berry curvatures carried, respectively, by the conduction and valence bands. In the end, we provide a phenomenological picture related to the topological charges to better understand the underlying physical origin of the QAHE Anderson localization.

  19. Tunable-φ Josephson junction with a quantum anomalous Hall insulator

    NASA Astrophysics Data System (ADS)

    Sakurai, Keimei; Ikegaya, Satoshi; Asano, Yasuhiro

    2017-12-01

    We theoretically study the Josephson current in a superconductor/quantum anomalous Hall insulator/superconductor junction by using the lattice Green function technique. When an in-plane external Zeeman field is applied to the quantum anomalous Hall insulator, the Josephson current J flows without a phase difference across the junction θ . The phase shift φ appearing in the current-phase relationship J ∝sin(θ -φ ) is proportional to the amplitude of Zeeman fields and depends on the direction of Zeeman fields. A phenomenological analysis of the Andreev reflection processes explains the physical origin of φ . In a quantum anomalous Hall insulator, time-reversal symmetry and mirror-reflection symmetry are broken simultaneously. However, magnetic mirror-reflection symmetry is preserved. Such characteristic symmetry properties enable us to have a tunable φ junction with a quantum Hall insulator.

  20. Role of helical edge modes in the chiral quantum anomalous Hall state.

    PubMed

    Mani, Arjun; Benjamin, Colin

    2018-01-22

    Although indications are that a single chiral quantum anomalous Hall(QAH) edge mode might have been experimentally detected. There have been very many recent experiments which conjecture that a chiral QAH edge mode always materializes along with a pair of quasi-helical quantum spin Hall (QSH) edge modes. In this work we deal with a substantial 'What If?' question- in case the QSH edge modes, from which these QAH edge modes evolve, are not topologically-protected then the QAH edge modes wont be topologically-protected too and thus unfit for use in any applications. Further, as a corollary one can also ask if the topological-protection of QSH edge modes does not carry over during the evolution process to QAH edge modes then again our 'What if?' scenario becomes apparent. The 'how' of the resolution of this 'What if?' conundrum is the main objective of our work. We show in similar set-ups affected by disorder and inelastic scattering, transport via trivial QAH edge mode leads to quantization of Hall resistance and not that via topological QAH edge modes. This perhaps begs a substantial reinterpretation of those experiments which purported to find signatures of chiral(topological) QAH edge modes albeit in conjunction with quasi helical QSH edge modes.

  1. Anderson Localization from the Berry-Curvature Interchange in Quantum Anomalous Hall Systems

    NASA Astrophysics Data System (ADS)

    Han, Yulei; Qiao, Zhenhua

    In this talk, we theoretically investigate the localization mechanism of the quantum anomalous Hall effect (QAHE) in the presence of spin-flip disorders. We show that the QAHE stays quantized at weak disorders, then enters a Berry-curvature mediated metallic phase at moderate disorders, and finally goes into the Anderson insulating phase at strong disorders. From the phase diagram, we find that at the charge neutrality point although the QAHE is most robust against disorders, the corresponding metallic phase is much easier to be localized into the Anderson insulating phase due to the interchange of Berry curvatures carried, respectively, by the conduction and valence bands. In the end, we provide a phenomenological picture related to the topological charges to better understand the underlying physical origin of the QAHE Anderson localization.

  2. Chiral Majorana fermion modes in a quantum anomalous Hall insulator-superconductor structure.

    PubMed

    He, Qing Lin; Pan, Lei; Stern, Alexander L; Burks, Edward C; Che, Xiaoyu; Yin, Gen; Wang, Jing; Lian, Biao; Zhou, Quan; Choi, Eun Sang; Murata, Koichi; Kou, Xufeng; Chen, Zhijie; Nie, Tianxiao; Shao, Qiming; Fan, Yabin; Zhang, Shou-Cheng; Liu, Kai; Xia, Jing; Wang, Kang L

    2017-07-21

    Majorana fermion is a hypothetical particle that is its own antiparticle. We report transport measurements that suggest the existence of one-dimensional chiral Majorana fermion modes in the hybrid system of a quantum anomalous Hall insulator thin film coupled with a superconductor. As the external magnetic field is swept, half-integer quantized conductance plateaus are observed at the locations of magnetization reversals, giving a distinct signature of the Majorana fermion modes. This transport signature is reproducible over many magnetic field sweeps and appears at different temperatures. This finding may open up an avenue to control Majorana fermions for implementing robust topological quantum computing. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  3. Highly-ordered wide bandgap materials for quantized anomalous Hall and magnetoelectric effects

    NASA Astrophysics Data System (ADS)

    Otrokov, M. M.; Menshchikova, T. V.; Vergniory, M. G.; Rusinov, I. P.; Vyazovskaya, A. Yu; Koroteev, Yu M.; Bihlmayer, G.; Ernst, A.; Echenique, P. M.; Arnau, A.; Chulkov, E. V.

    2017-06-01

    An interplay of spin-orbit coupling and intrinsic magnetism is known to give rise to the quantum anomalous Hall and topological magnetoelectric effects under certain conditions. Their realization could open access to low power consumption electronics as well as many fundamental phenomena like image magnetic monopoles, Majorana fermions and others. Unfortunately, being realized very recently, these effects are only accessible at extremely low temperatures and the lack of appropriate materials that would enable the temperature increase is a most severe challenge. Here, we propose a novel material platform with unique combination of properties making it perfectly suitable for the realization of both effects at elevated temperatures. The key element of the computational material design is an extension of a topological insulator (TI) surface by a thin film of ferromagnetic insulator, which is both structurally and compositionally compatible with the TI. Following this proposal we suggest a variety of specific systems and discuss their numerous advantages, in particular wide band gaps with the Fermi level located in the gap.

  4. Electrical control of the anomalous valley Hall effect in antiferrovalley bilayers

    NASA Astrophysics Data System (ADS)

    Tong, Wen-Yi; Duan, Chun-Gang

    2017-08-01

    In analogy to all-electric spintronics, all-electric valleytronics, i.e., valley manipulation via electric means, becomes an exciting new frontier as it may bring revolutions in the field of data storage with ultra-high speed and ultra-low power consumption. The existence of the anomalous valley Hall effect in ferrovalley materials demonstrates the possibility of electrical detection for valley polarization. However, in previously proposed valley-polarized monolayers, the anomalous valley Hall effect is controlled by external magnetic fields. Here, through elaborate structural design, we propose the antiferrovally bilayer as an ideal candidate for realizing all-electric valleytronic devices. Using the minimal k.p model, we show that the energy degeneracy between valley indexes in such system can be lifted by electric approaches. Subsequently, the anomalous valley Hall effect strongly depends on the electric field as well. Taking the bilayer VSe2 as an example, all-electric tuning and detecting of anomalous valley Hall effect is confirmed by density-functional theory calculations, indicating that the valley information in such antiferrovalley bilayer can be reversed by an electric field perpendicular to the plane of the system and easily probed through the sign of the Hall voltage.

  5. Anomalous Nernst and Hall effects in magnetized platinum and palladium

    NASA Astrophysics Data System (ADS)

    Guo, G. Y.; Niu, Q.; Nagaosa, N.

    2014-06-01

    We study the anomalous Nernst effect (ANE) and anomalous Hall effect (AHE) in proximity-induced ferromagnetic palladium and platinum which is widely used in spintronics, within the Berry phase formalism based on the relativistic band-structure calculations. We find that both the anomalous Hall (σxyA) and Nernst (αxyA) conductivities can be related to the spin Hall conductivity (σxyS) and band exchange splitting (Δex) by relations σxyA=ΔexeℏσxyS(EF)' and αxyA=-π23kB2TΔexℏσxys(μ )'', respectively. In particular, these relations would predict that the σxyA in the magnetized Pt (Pd) would be positive (negative) since the σxyS(EF)' is positive (negative). Furthermore, both σxyA and αxyA are approximately proportional to the induced spin magnetic moment (ms) because the Δex is a linear function of ms. Using the reported ms in the magnetized Pt and Pd, we predict that the intrinsic anomalous Nernst conductivity (ANC) in the magnetic platinum and palladium would be gigantic, being up to ten times larger than, e.g., iron, while the intrinsic anomalous Hall conductivity (AHC) would also be significant.

  6. Modeling of anomalous electron mobility in Hall thrusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koo, Justin W.; Boyd, Iain D.

    Accurate modeling of the anomalous electron mobility is absolutely critical for successful simulation of Hall thrusters. In this work, existing computational models for the anomalous electron mobility are used to simulate the UM/AFRL P5 Hall thruster (a 5 kW laboratory model) in a two-dimensional axisymmetric hybrid particle-in-cell Monte Carlo collision code. Comparison to experimental results indicates that, while these computational models can be tuned to reproduce the correct thrust or discharge current, it is very difficult to match all integrated performance parameters (thrust, power, discharge current, etc.) simultaneously. Furthermore, multiple configurations of these computational models can produce reasonable integrated performancemore » parameters. A semiempirical electron mobility profile is constructed from a combination of internal experimental data and modeling assumptions. This semiempirical electron mobility profile is used in the code and results in more accurate simulation of both the integrated performance parameters and the mean potential profile of the thruster. Results indicate that the anomalous electron mobility, while absolutely necessary in the near-field region, provides a substantially smaller contribution to the total electron mobility in the high Hall current region near the thruster exit plane.« less

  7. Quantum anomalous Hall Majorana platform

    NASA Astrophysics Data System (ADS)

    Zeng, Yongxin; Lei, Chao; Chaudhary, Gaurav; MacDonald, Allan H.

    2018-02-01

    We show that quasi-one-dimensional quantum wires can be written onto the surface of magnetic topological insulator (MTI) thin films by gate arrays. When the MTI is in a quantum anomalous Hall state, MTI/superconductor quantum wires have especially broad stability regions for both topological and nontopological states, facilitating creation and manipulation of Majorana particles on the MTI surface.

  8. Anomalous Hall Resistance in Bilayer Electron Systems

    NASA Astrophysics Data System (ADS)

    Ezawa, Z. F.; Suzuki, S.; Tsitsishvili, G.

    2007-04-01

    Interlayer phase coherence has revealed various novel features in bilayer quantum Hall (QH) systems. It is shown to make the QH resistance vanish instead of developing a Hall plateau in a bilayer counterflow geometry. It also induces another anomalous QH resistance discovered in a drag experiment. These theoretical results explain recent experimental data due to Kellogg et al. [PRL 93 (2004) 036801;PRL 88 (2002) 126804] and Tutuc et al.[PRL 93 (2004) 036802].

  9. Approaching quantum anomalous Hall effect in proximity-coupled YIG/graphene/h-BN sandwich structure

    NASA Astrophysics Data System (ADS)

    Tang, Chi; Cheng, Bin; Aldosary, Mohammed; Wang, Zhiyong; Jiang, Zilong; Watanabe, K.; Taniguchi, T.; Bockrath, Marc; Shi, Jing

    2018-02-01

    Quantum anomalous Hall state is expected to emerge in Dirac electron systems such as graphene under both sufficiently strong exchange and spin-orbit interactions. In pristine graphene, neither interaction exists; however, both interactions can be acquired by coupling graphene to a magnetic insulator as revealed by the anomalous Hall effect. Here, we show enhanced magnetic proximity coupling by sandwiching graphene between a ferrimagnetic insulator yttrium iron garnet (YIG) and hexagonal-boron nitride (h-BN) which also serves as a top gate dielectric. By sweeping the top-gate voltage, we observe Fermi level-dependent anomalous Hall conductance. As the Dirac point is approached from both electron and hole sides, the anomalous Hall conductance reaches ¼ of the quantum anomalous Hall conductance 2e2/h. The exchange coupling strength is determined to be as high as 27 meV from the transition temperature of the induced magnetic phase. YIG/graphene/h-BN is an excellent heterostructure for demonstrating proximity-induced interactions in two-dimensional electron systems.

  10. Nonlinear dynamics induced anomalous Hall effect in topological insulators

    PubMed Central

    Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng

    2016-01-01

    We uncover an alternative mechanism for anomalous Hall effect. In particular, we investigate the magnetisation dynamics of an insulating ferromagnet (FM) deposited on the surface of a three-dimensional topological insulator (TI), subject to an external voltage. The spin-polarised current on the TI surface induces a spin-transfer torque on the magnetisation of the top FM while its dynamics can change the transmission probability of the surface electrons through the exchange coupling and hence the current. We find a host of nonlinear dynamical behaviors including multistability, chaos, and phase synchronisation. Strikingly, a dynamics mediated Hall-like current can arise, which exhibits a nontrivial dependence on the channel conductance. We develop a physical understanding of the mechanism that leads to the anomalous Hall effect. The nonlinear dynamical origin of the effect stipulates that a rich variety of final states exist, implying that the associated Hall current can be controlled to yield desirable behaviors. The phenomenon can find applications in Dirac-material based spintronics. PMID:26819223

  11. Nonlinear dynamics induced anomalous Hall effect in topological insulators.

    PubMed

    Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng

    2016-01-28

    We uncover an alternative mechanism for anomalous Hall effect. In particular, we investigate the magnetisation dynamics of an insulating ferromagnet (FM) deposited on the surface of a three-dimensional topological insulator (TI), subject to an external voltage. The spin-polarised current on the TI surface induces a spin-transfer torque on the magnetisation of the top FM while its dynamics can change the transmission probability of the surface electrons through the exchange coupling and hence the current. We find a host of nonlinear dynamical behaviors including multistability, chaos, and phase synchronisation. Strikingly, a dynamics mediated Hall-like current can arise, which exhibits a nontrivial dependence on the channel conductance. We develop a physical understanding of the mechanism that leads to the anomalous Hall effect. The nonlinear dynamical origin of the effect stipulates that a rich variety of final states exist, implying that the associated Hall current can be controlled to yield desirable behaviors. The phenomenon can find applications in Dirac-material based spintronics.

  12. Anomalous Hall effect in ZrTe5

    NASA Astrophysics Data System (ADS)

    Liang, Tian; Lin, Jingjing; Gibson, Quinn; Kushwaha, Satya; Liu, Minhao; Wang, Wudi; Xiong, Hongyu; Sobota, Jonathan A.; Hashimoto, Makoto; Kirchmann, Patrick S.; Shen, Zhi-Xun; Cava, R. J.; Ong, N. P.

    2018-05-01

    Research in topological matter has expanded to include the Dirac and Weyl semimetals1-10, which feature three-dimensional Dirac states protected by symmetry. Zirconium pentatelluride has been of recent interest as a potential Dirac or Weyl semimetal material. Here, we report the results of experiments performed by in situ three-dimensional double-axis rotation to extract the full 4π solid angular dependence of the transport properties. A clear anomalous Hall effect is detected in every sample studied, with no magnetic ordering observed in the system to the experimental sensitivity of torque magnetometry. Large anomalous Hall signals develop when the magnetic field is rotated in the plane of the stacked quasi-two-dimensional layers, with the values vanishing above about 60 K, where the negative longitudinal magnetoresistance also disappears. This suggests a close relation in their origins, which we attribute to the Berry curvature generated by the Weyl nodes.

  13. Prospect of quantum anomalous Hall and quantum spin Hall effect in doped kagome lattice Mott insulators.

    PubMed

    Guterding, Daniel; Jeschke, Harald O; Valentí, Roser

    2016-05-17

    Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions.

  14. The Anomalous Hall Effect and Non-Equilibrium Transport

    NASA Astrophysics Data System (ADS)

    Ye, Fei

    1995-01-01

    This thesis contains three relatively independent research areas. In the first part of this thesis, the anomalous Hall effect of amorphous, high-resistance, Fe films (2 -10 monolayers thick) is investigated as a function of temperature. We find a logarithmic temperature dependence of the anomalous Hall resistance similar to the Coulomb anomaly of the resistance but twice its magnitude. The measurements are in excellent agreement with a theoretical calculation and provide us with an independent confirmation of the influence of the enhanced Coulomb interaction in disordered electron systems on transport properties. In the second part of the thesis, the nonequilibrium transport properties of metallic microstructures are studied. An electron beam lithography technique is used in making small structures. The electron temperature and phonon temperature are calculated. It is confirmed that the electron temperatures obtained from both thermometers (weak localization and the Coulomb anomaly) are consistent. It is also found that the phonon temperature in the film is considerably higher than the substrate temperature in the experiments. In addition, the dimensionality of the phonon system in the film is discussed, as well as the phonon escape time. In the third part, the magnetic behavior of V on Au films is studied. Weak localization and the anomalous Hall effect are used to investigate the magnetic properties of sub-mono, mono-, and multilayers of Vanadium on the surface of an Au film. Dilute V atoms possess a strong magnetic moment. For a monolayer the magnetic scattering is reduced by a factor of about 40. This suggests a strongly reduced moment of V compared with the dilute V coverage. From the anomalous Hall effect, it is concluded that the magnetic structure is anti-ferromagnetic; the moment per V atom in multilayers progressively diminishes but is still finite for 16 atomic layers of V. In Appendix A, the nonequilibrium distribution of the phonon system in a metal

  15. Anomalous Hall effect in epitaxial permalloy thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y. Q.; Sun, N. Y.; Shan, R.

    2013-10-28

    Anomalous Hall effect (AHE) of epitaxial permalloy thin films grown on MgO (001) substrates is investigated. The longitudinal conductivity independent term (i.e., the sum of intrinsic and side-jump contributions) of the anomalous Hall conductivity (AHC) is found to be much smaller than those of Fe and Ni films. Band theoretical calculations of the intrinsic AHC as a function of the number of valence electrons (band filling) indicate that the AHC of the permalloy is in the vicinity of sign change, thus resulting in the smallness of the intrinsic AHC. The contribution of the phonon scattering is found to be comparablemore » to that of the impurity scattering. This work suggests that the permalloy films are ideal systems to understand the AHE mechanisms induced by impurity scattering.« less

  16. Quasi-one-dimensional quantum anomalous Hall systems as new platforms for scalable topological quantum computation

    NASA Astrophysics Data System (ADS)

    Chen, Chui-Zhen; Xie, Ying-Ming; Liu, Jie; Lee, Patrick A.; Law, K. T.

    2018-03-01

    Quantum anomalous Hall insulator/superconductor heterostructures emerged as a competitive platform to realize topological superconductors with chiral Majorana edge states as shown in recent experiments [He et al. Science 357, 294 (2017), 10.1126/science.aag2792]. However, chiral Majorana modes, being extended, cannot be used for topological quantum computation. In this work, we show that quasi-one-dimensional quantum anomalous Hall structures exhibit a large topological regime (much larger than the two-dimensional case) which supports localized Majorana zero energy modes. The non-Abelian properties of a cross-shaped quantum anomalous Hall junction is shown explicitly by time-dependent calculations. We believe that the proposed quasi-one-dimensional quantum anomalous Hall structures can be easily fabricated for scalable topological quantum computation.

  17. Anomalous Hall effect in ZrTe 5

    DOE PAGES

    Liang, Tian; Lin, Jingjing; Gibson, Quinn; ...

    2018-03-19

    Research in topological matter has expanded to include the Dirac and Weyl semimetals which feature three-dimensional Dirac states protected by symmetry. Zirconium pentatelluride has been of recent interest as a potential Dirac or Weyl semimetal material. Here, we report the results of experiments performed by in situ three-dimensional double-axis rotation to extract the full 4π solid angular dependence of the transport properties. A clear anomalous Hall effect is detected in every sample studied, with no magnetic ordering observed in the system to the experimental sensitivity of torque magnetometry. Large anomalous Hall signals develop when the magnetic field is rotated inmore » the plane of the stacked quasi-two-dimensional layers, with the values vanishing above about 60 K, where the negative longitudinal magnetoresistance also disappears. Finally, this suggests a close relation in their origins, which we attribute to the Berry curvature generated by the Weyl nodes.« less

  18. Anomalous Hall effect in ZrTe 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Tian; Lin, Jingjing; Gibson, Quinn

    Research in topological matter has expanded to include the Dirac and Weyl semimetals which feature three-dimensional Dirac states protected by symmetry. Zirconium pentatelluride has been of recent interest as a potential Dirac or Weyl semimetal material. Here, we report the results of experiments performed by in situ three-dimensional double-axis rotation to extract the full 4π solid angular dependence of the transport properties. A clear anomalous Hall effect is detected in every sample studied, with no magnetic ordering observed in the system to the experimental sensitivity of torque magnetometry. Large anomalous Hall signals develop when the magnetic field is rotated inmore » the plane of the stacked quasi-two-dimensional layers, with the values vanishing above about 60 K, where the negative longitudinal magnetoresistance also disappears. Finally, this suggests a close relation in their origins, which we attribute to the Berry curvature generated by the Weyl nodes.« less

  19. Anisotropic anomalous Hall effect in triangular itinerant ferromagnet Fe3GeTe2

    NASA Astrophysics Data System (ADS)

    Wang, Yihao; Xian, Cong; Wang, Jian; Liu, Bingjie; Ling, Langsheng; Zhang, Lei; Cao, Liang; Qu, Zhe; Xiong, Yimin

    2017-10-01

    Magnetic frustrated materials are of great interest for their novel spin-dependent transport properties. We report an anisotropic anomalous Hall effect in the triangular itinerant ferromagnet Fe3GeTe2 . When the current flows along the a b plane, Fe3GeTe2 exhibits the conventional anomalous Hall effect below the Curie temperature Tc, which can be depicted by Karplus-Luttinger theory. On the other hand, the topological Hall effect shows up below Tc with current along the c axis. The enhancement of Hall resistivity can be attributed to the chiral effect during the spin-flop process.

  20. Anomalous Hall effect in semiconductor quantum wells in proximity to chiral p -wave superconductors

    NASA Astrophysics Data System (ADS)

    Yang, F.; Yu, T.; Wu, M. W.

    2018-05-01

    By using the gauge-invariant optical Bloch equation, we perform a microscopic kinetic investigation on the anomalous Hall effect in chiral p -wave superconducting states. Specifically, the intrinsic anomalous Hall conductivity in the absence of the magnetic field is zero as a consequence of Galilean invariance in our description. As for the extrinsic channel, a finite anomalous Hall current is obtained from the impurity scattering with the optically excited normal quasiparticle current even at zero temperature. From our kinetic description, it can be clearly seen that the excited normal quasiparticle current is due to an induced center-of-mass momentum of Cooper pairs through the acceleration driven by ac electric field. For the induced anomalous Hall current, we show that the conventional skew-scattering channel in the linear response makes the dominant contribution in the strong impurity interaction. In this case, our kinetic description as a supplementary viewpoint mostly confirms the results of Kubo formalism in the literature. Nevertheless, in the weak impurity interaction, this skew-scattering channel becomes marginal and we reveal that an induction channel from the Born contribution dominates the anomalous Hall current. This channel, which has long been overlooked in the literature, is due to the particle-hole asymmetry by nonlinear optical excitation. Finally, we study the case in the chiral p -wave superconducting state with a transverse conical magnetization, which breaks the Galilean invariance. In this situation, the intrinsic anomalous Hall conductivity is no longer zero. Comparison of this intrinsic channel with the extrinsic one from impurity scattering is addressed.

  1. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge.

    PubMed

    Nayak, Ajaya K; Fischer, Julia Erika; Sun, Yan; Yan, Binghai; Karel, Julie; Komarek, Alexander C; Shekhar, Chandra; Kumar, Nitesh; Schnelle, Walter; Kübler, Jürgen; Felser, Claudia; Parkin, Stuart S P

    2016-04-01

    It is well established that the anomalous Hall effect displayed by a ferromagnet scales with its magnetization. Therefore, an antiferromagnet that has no net magnetization should exhibit no anomalous Hall effect. We show that the noncolinear triangular antiferromagnet Mn3Ge exhibits a large anomalous Hall effect comparable to that of ferromagnetic metals; the magnitude of the anomalous conductivity is ~500 (ohm·cm)(-1) at 2 K and ~50 (ohm·cm)(-1) at room temperature. The angular dependence of the anomalous Hall effect measurements confirms that the small residual in-plane magnetic moment has no role in the observed effect except to control the chirality of the spin triangular structure. Our theoretical calculations demonstrate that the large anomalous Hall effect in Mn3Ge originates from a nonvanishing Berry curvature that arises from the chiral spin structure, and that also results in a large spin Hall effect of 1100 (ħ/e) (ohm·cm)(-1), comparable to that of platinum. The present results pave the way toward the realization of room temperature antiferromagnetic spintronics and spin Hall effect-based data storage devices.

  2. Theory of the Quantized Hall Conductance in Periodic Systems: a Topological Analysis.

    NASA Astrophysics Data System (ADS)

    Czerwinski, Michael Joseph

    The integral quantization of the Hall conductance in two-dimensional periodic systems is investigated from a topological point of view. Attention is focused on the contributions from the electronic sub-bands which arise from perturbed Landau levels. After reviewing the theoretical work leading to the identification of the Hall conductance as a topological quantum number, both a determination and interpretation of these quantized values for the sub-band conductances is made. It is shown that the Hall conductance of each sub-band can be regarded as the sum of two terms which will be referred to as classical and nonclassical. Although each of these contributions individually leads to a fractional conductance, the sum of these two contributions does indeed yield an integer. These integral conductances are found to be given by the solution of a simple Diophantine equation which depends on the periodic perturbation. A connection between the quantized value of the Hall conductance and the covering of real space by the zeroes of the sub-band wavefunctions allows for a determination of these conductances under more general potentials. A method is described for obtaining the conductance values from only those states bordering the Brillouin zone, and not the states in its interior. This method is demonstrated to give Hall conductances in agreement with those obtained from the Diophantine equation for the sinusoidal potential case explored earlier. Generalizing a simple gauge invariance argument from real space to k-space, a k-space 'vector potential' is introduced. This allows for a explicit identification of the Hall conductance with the phase winding number of the sub-band wavefunction around the Brillouin zone. The previously described division of the Hall conductance into classical and nonclassical contributions is in this way made more rigorous; based on periodicity considerations alone, these terms are identified as the winding numbers associated with (i) the basis

  3. Origin of the low critical observing temperature of the quantum anomalous Hall effect in V-doped (Bi, Sb) 2Te 3 film

    DOE PAGES

    Li, W.; Claassen, M.; Chang, Cui -Zu; ...

    2016-09-07

    The experimental realization of the quantum anomalous Hall (QAH) effect in magnetically-doped (Bi, Sb) 2Te 3 films stands out as a landmark of modern condensed matter physics. However, ultra-low temperatures down to few tens of mK are needed to reach the quantization of Hall resistance, which is two orders of magnitude lower than the ferromagnetic phase transition temperature of the films. Here, we systematically study the band structure of V-doped (Bi, Sb) 2Te 3 thin films by angle-resolved photoemission spectroscopy (ARPES) and show unambiguously that the bulk valence band (BVB) maximum lies higher in energy than the surface state Diracmore » point. Finally, our results demonstrate clear evidence that localization of BVB carriers plays an active role and can account for the temperature discrepancy.« less

  4. Chiral topological superconductor and half-integer conductance plateau from quantum anomalous Hall plateau transition

    DOE PAGES

    Wang, Jing; Zhou, Quan; Lian, Biao; ...

    2015-08-31

    Here, we propose to realize a two-dimensional chiral topological superconducting (TSC) state from the quantum anomalous Hall plateau transition in a magnetic topological insulator thin film through the proximity effect to a conventional s -wave superconductor. This state has a full pairing gap in the bulk and a single chiral Majorana mode at the edge. The optimal condition for realizing such chiral TSC is to have inequivalent superconducting pairing amplitudes on top and bottom surfaces of the doped magnetic topological insulator. We further propose several transport experiments to detect the chiral TSC. One unique signature is that the conductance willmore » be quantized into a half-integer plateau at the coercive field in this hybrid system. In particular, with the point contact formed by a superconducting junction, the conductance oscillates between e 2 /2h and e2 /h with the frequency determined by the voltage across the junction. We close by discussing the feasibility of these experimental proposals.« less

  5. Chiral topological superconductor and half-integer conductance plateau from quantum anomalous Hall plateau transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jing; Zhou, Quan; Lian, Biao

    Here, we propose to realize a two-dimensional chiral topological superconducting (TSC) state from the quantum anomalous Hall plateau transition in a magnetic topological insulator thin film through the proximity effect to a conventional s -wave superconductor. This state has a full pairing gap in the bulk and a single chiral Majorana mode at the edge. The optimal condition for realizing such chiral TSC is to have inequivalent superconducting pairing amplitudes on top and bottom surfaces of the doped magnetic topological insulator. We further propose several transport experiments to detect the chiral TSC. One unique signature is that the conductance willmore » be quantized into a half-integer plateau at the coercive field in this hybrid system. In particular, with the point contact formed by a superconducting junction, the conductance oscillates between e 2 /2h and e2 /h with the frequency determined by the voltage across the junction. We close by discussing the feasibility of these experimental proposals.« less

  6. Effective anomalous Hall coefficient in an ultrathin Co layer sandwiched by Pt layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Peng; Wu, Di; Jiang, Zhengsheng

    2014-02-14

    Anomalous Hall effect in Co/Pt multilayer is important to study the effect of interface with strong spin-orbit coupling. However, the shunting effect of the layers in such system and the circuit in the plane perpendicular to the injected current were overlooked in most works and thus, anomalous Hall coefficient in Co/Pt multilayer has not been determined accurately. Considering the shunting effect and the equivalent circuit, we show that the effective anomalous Hall coefficient of a 0.5 nm thick Co layer sandwiched by Pt layers R{sub S} is 0.29 ± 0.01 μΩ cm/T at the zero temperature limit and increases to about 0.73 μΩ cm/T at the temperaturemore » of 300 K. R{sub S} is one order larger than that in bulk Co film, indicating the large contribution of the Co/Pt interface. R{sub S} increases with the resistivity of Co as well as a resistivity independent contribution of −0.23 ± 0.01 μΩ cm/T. The equivalent anomalous Hall current in the Co layer has a maximum of 1.1% of the injected transverse current in the Co layer around the temperature of 80 K.« less

  7. Anomalous Hall Effect in a Feromagnetic Rare-Earth Cobalite

    NASA Technical Reports Server (NTRS)

    Samoilov, A. V.; Yeh, N. C.; Vasquez, R. P.

    1996-01-01

    Rare-Earth manganites and cobalites with the perovskite structure have been a subject of great recent interest because their electrical resistance changes significantly when a magnetic field is applied...we have studied the Hall effect in thin film La(sub 0.5)Ca(sub 0.5)CoO(sub 3) material and have obtained convincing evidence fo the so called anomalous Hall effect, typical for magnetic metals...Our results suggest that near the ferromagnetic ordering temperature, the dominant electron scattering mechanism is the spin fluctuation.

  8. Engineering the quantum anomalous Hall effect in graphene with uniaxial strains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diniz, G. S., E-mail: ginetom@gmail.com; Guassi, M. R.; Qu, F.

    2013-12-28

    We theoretically investigate the manipulation of the quantum anomalous Hall effect (QAHE) in graphene by means of the uniaxial strain. The values of Chern number and Hall conductance demonstrate that the strained graphene in presence of Rashba spin-orbit coupling and exchange field, for vanishing intrinsic spin-orbit coupling, possesses non-trivial topological phase, which is robust against the direction and modulus of the strain. Besides, we also find that the interplay between Rashba and intrinsic spin-orbit couplings results in a topological phase transition in the strained graphene. Remarkably, as the strain strength is increased beyond approximately 7%, the critical parameters of themore » exchange field for triggering the quantum anomalous Hall phase transition show distinct behaviors—decrease (increase) for strains along zigzag (armchair) direction. Our findings open up a new platform for manipulation of the QAHE by an experimentally accessible strain deformation of the graphene structure, with promising application on novel quantum electronic devices with high efficiency.« less

  9. Crossover to the anomalous quantum regime in the extrinsic spin Hall effect of graphene

    NASA Astrophysics Data System (ADS)

    Ferreira, Aires; Milletari, Mirco

    Recent reports of spin-orbit coupling enhancement in chemically modified graphene have opened doors to studies of the spin Hall effect with massless chiral fermions. Here, we theoretically investigate the interaction and impurity density dependence of the extrinsic spin Hall effect in spin-orbit coupled graphene. We present a nonperturbative quantum diagrammatic calculation of the spin Hall response function in the strong-coupling regime that incorporates skew scattering and anomalous impurity density-independent contributions on equal footing. The spin Hall conductivity dependence on Fermi energy and electron-impurity interaction strength reveals the existence of experimentally accessible regions where anomalous quantum processes dominate. Our findings suggest that spin-orbit-coupled graphene is an ideal model system for probing the competition between semiclassical and bona fide quantum scattering mechanisms underlying the spin Hall effect. A.F. gratefully acknowledges the financial support of the Royal Society (U.K.).

  10. Domain wall in a quantum anomalous Hall insulator as a magnetoelectric piston

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Pramey; Tserkovnyak, Yaroslav

    2016-07-01

    We theoretically study the magnetoelectric coupling in a quantum anomalous Hall insulator state induced by interfacing a dynamic magnetization texture to a topological insulator. In particular, we propose that the quantum anomalous Hall insulator with a magnetic configuration of a domain wall, when contacted by electrical reservoirs, acts as a magnetoelectric piston. A moving domain wall pumps charge current between electrical leads in a closed circuit, while applying an electrical bias induces reciprocal domain-wall motion. This pistonlike action is enabled by a finite reflection of charge carriers via chiral modes imprinted by the domain wall. Moreover, we find that, when compared with the recently discovered spin-orbit torque-induced domain-wall motion in heavy metals, the reflection coefficient plays the role of an effective spin-Hall angle governing the efficiency of the proposed electrical control of domain walls. Quantitatively, this effective spin-Hall angle is found to approach a universal value of 2, providing an efficient scheme to reconfigure the domain-wall chiral interconnects for possible memory and logic applications.

  11. Large anomalous Hall effect in a non-collinear antiferromagnet Mn3Sn at room temperature

    NASA Astrophysics Data System (ADS)

    Higo, Tomoya; Kiyohara, Naoki; Nakatsuji, Satoru

    Recent development in theoretical and experimental studies have provided a framework for understanding the anomalous Hall effect using Berry-phase concepts, and this perspective has led to predictions that, under certain conditions, a large anomalous Hall effect may appear in spin liquids and antiferromagnets. In this talk, we will present experimental results showing that the antiferromagnet Mn3Sn, which has a non-collinear 120-degree spin order, exhibits a large anomalous Hall effect. The magnitude of the Hall conductivity is ~ 20 Ω-1 cm-1 at room temperature and > 100 Ω-1 cm-1 at low temperatures. We found that a main component of the Hall signal, which is nearly independent of a magnetic field and magnetization, can change the sign with the reversal of a small applied field, corresponding to the rotation of the staggered moments of the non-collinear antiferromagnetic spin order which carries a very small net moment of a few of mμB. Supported by PRESTO, JST, and Grants-in-Aid for Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers (No. R2604) and Scientific Research on Innovative Areas (15H05882 and 15H05883) from JSPS.

  12. Scaling relation of the anomalous Hall effect in (Ga,Mn)As

    NASA Astrophysics Data System (ADS)

    Glunk, M.; Daeubler, J.; Schoch, W.; Sauer, R.; Limmer, W.

    2009-09-01

    We present magnetotransport studies performed on an extended set of (Ga,Mn)As samples at 4.2 K with longitudinal conductivities σxx ranging from the low-conductivity to the high-conductivity regime. The anomalous Hall conductivity σxy(AH) is extracted from the measured longitudinal and Hall resistivities. A transition from σxy(AH)=20Ω-1cm-1 due to the Berry phase effect in the high-conductivity regime to a scaling relation σxy(AH)∝σxx1.6 for low-conductivity samples is observed. This scaling relation is consistent with a recently developed unified theory of the anomalous Hall effect in the framework of the Keldysh formalism. It turns out to be independent of crystallographic orientation, growth conditions, Mn concentration, and strain, and can therefore be considered universal for low-conductivity (Ga,Mn)As. The relation plays a crucial role when deriving values of the hole concentration from magnetotransport measurements in low-conductivity (Ga,Mn)As. In addition, the hole diffusion constants for the high-conductivity samples are determined from the measured longitudinal conductivities.

  13. Tunnelling anomalous and planar Hall effects (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Matos-Abiague, Alex; Scharf, Benedikt; Han, Jong E.; Hankiewicz, Ewelina M.; Zutic, Igor

    2016-10-01

    We theoretically show how the interplay between spin-orbit coupling (SOC) and magnetism can result in a finite tunneling Hall conductance, transverse to the applied bias. For two-dimensional tunnel junctions with a ferromagnetic lead and magnetization perpendicular to the current flow, the detected anomalous Hall voltage can be used to extract information not only about the spin polarization but also about the strength of the interfacial SOC. In contrast, a tunneling current across a ferromagnetic barrier on the surface of a three-dimensional topological insulator (TI) can induce a planar Hall response even when the magnetization is oriented along the current flow[1]. The tunneling nature of the states contributing to the planar Hall conductance can be switched from the ordinary to the Klein regimes by the electrostatic control of the barrier strength. This allows for an enhancement of the transverse response and a giant Hall angle, with the tunneling planar Hall conductance exceeding the longitudinal component. Despite the simplicity of a single ferromagnetic region, the TI/ferromagnet system exhibits a variety of functionalities. In addition to a spin-valve operation for magnetic sensing and storing information, positive, negative, and negative differential conductances can be tuned by properly adjusting the barrier potential and/or varying the magnetization direction. Such different resistive behaviors in the same system are attractive for potential applications in reconfigurable spintronic devices. [1] B. Scharf, A. Matos-Abiague, J. E. Han, E. M. Hankiewicz, and I. Zutic, arXiv:1601.01009 (2016).

  14. Topological Defects in Double Exchange Materials and Anomalous Hall Resistance.

    NASA Astrophysics Data System (ADS)

    Calderón, M. J.; Brey, L.

    2000-03-01

    Recently it has been proposed that the anomalous Hall effect observed in Double Exchange materials is due to Berry phase effects caused by carrier hopping in a nontrivial spins background (J.Ye et al.) Phys.Rev.Lett. 83, 3737 1999.In order to study this possibility we have performed Monte Carlo simulations of the Double Exchange model and we have computed, as a function of the temperature, the number of topological defects in the system and the internal gauge magnetic field associated with these defects. In the simplest Double Exchange model the gauge magnetic field is random, and its average value is zero. The inclusion in the problem of spin-orbit coupling privileges the opposite direction of the magnetization and an anomalous Hall resistance (AHR) effect arises. We have computed the AHR, and we have obtained its temperature dependence. In agreement with previous experiments we obtain that AHR increases exponentially at low temperature and presents a maximum at a temperature slightly higher than the critical temperature.

  15. Spin injection and detection via the anomalous spin Hall effect of a ferromagnetic metal

    NASA Astrophysics Data System (ADS)

    Das, K. S.; Schoemaker, W. Y.; van Wees, B. J.; Vera-Marun, I. J.

    2017-12-01

    We report a spin injection and detection mechanism via the anomalous Hall effect in a ferromagnetic metal. The anomalous spin Hall effect (ASHE) refers to the transverse spin current generated within the ferromagnet. We utilize the ASHE and its reciprocal effect to electrically inject and detect magnons in a magnetic insulator (yttrium iron garnet) in a nonlocal geometry. Our experiments reveal that permalloy has a comparable spin injection and detection efficiency to that of platinum, owing to the ASHE. We also demonstrate the tunability of the ASHE via the orientation of the permalloy magnetization, thus creating possibilities for spintronic applications.

  16. Anomalous Hall effect assisted by interfacial chemical reaction in perpendicular Co/Pt multilayers

    NASA Astrophysics Data System (ADS)

    Liu, Qian; Jiang, Shaolong; Teng, Jiao

    2018-05-01

    To uncover the underlying mechanism of Mg effect on the improved anomalous Hall effect (AHE) of perpendicular [Pt/Co]3/Mg/HfO2 multilayers, the X-ray photoelectron spectroscopy analysis has been carried out. It is found that Mg interlayer at the Co/HfO2 interface could prevent the Co oxidation to some extent via interfacial chemical reaction. As a result, A large anomalous Hall resistivity (ρAH) is obtained in perpendicular [Pt/Co]3/Mg/HfO2 multilayers, with a maximum ρAH of 3.02 μΩ cm, which is 59% larger than that in Co/Pt multilayers without Mg insertion. This effective modification of the AHE based on interfacial chemical reaction provides a promising pathway for spintronic applications.

  17. Thermopower and the Fractional Quantized Hall Effect in the N=1 Landau Level

    NASA Astrophysics Data System (ADS)

    Chickering, W. E.; Eisenstein, J. P.; Pfeiffer, L. N.; West, K. W.

    2012-02-01

    Having recently eliminated an issue involving long thermal time constants [1], we are now able to resolve diffusion thermopower deep into the fractional quantized Hall effect (FQHE) regime. In this talk we report measurements of thermopower in the first excited (N=1) Landau level as a continuous function of magnetic field down to temperatures as low as 30mK. Above 50mK we can clearly resolve the ν = 5/2 as well as ν = 7/3, 8/3, and 14/5 FQHEs in both the electrical and thermoelectrical transport. Below 50mK a prominent feature of the electrical transport in the first excited Landau level is the Re-entrant Integer Quantized Hall Effect (RIQHE) which is associated with insulating collective phases [2]. In this temperature regime the thermopower exhibits a series of intriguing sign reversals that are as yet not fully understood. We will conclude with a brief discussion of the connection between thermopower and the entropy of the 2D electron system. This connection is invoked by a recent prediction [3] of the thermopower at ν = 5/2, which assumes the ground state is the non-Abelian Moore-Read paired composite fermion state.[4pt] [1] Chickering, Phys. Rev. B 81, 245319 (2010)[0pt] [2] Eisenstein, Phys. Rev. Lett. 88, 076801 (2002)[0pt] [3] Yang, Phys. Rev. B 79, 115317 (2009)

  18. Anomalous Nernst and thermal Hall effects in tilted Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Ferreiros, Yago; Zyuzin, A. A.; Bardarson, Jens H.

    2017-09-01

    We study the anomalous Nernst and thermal Hall effects in a linearized low-energy model of a tilted Weyl semimetal, with two Weyl nodes separated in momentum space. For inversion symmetric tilt, we give analytic expressions in two opposite limits: For a small tilt, corresponding to a type-I Weyl semimetal, the Nernst conductivity is finite and independent of the Fermi level; for a large tilt, corresponding to a type-II Weyl semimetal, it acquires a contribution depending logarithmically on the Fermi energy. This result is in a sharp contrast to the nontilted case, where the Nernst response is known to be zero in the linear model. The thermal Hall conductivity similarly acquires Fermi surface contributions, which add to the Fermi level-independent, zero-tilt result, and is suppressed as one over the tilt parameter at half filling in the type-II phase. In the case of inversion-breaking tilt, with the tilting vector of equal modulus in the two Weyl cones, all Fermi surface contributions to both anomalous responses cancel out, resulting in zero Nernst conductivity. We discuss two possible experimental setups, representing open and closed thermoelectric circuits.

  19. Metal-to-insulator switching in quantum anomalous Hall states

    DOE PAGES

    Kou, Xufeng; Pan, Lei; Wang, Jing; ...

    2015-10-07

    After decades of searching for the dissipationless transport in the absence of any external magnetic field, quantum anomalous Hall effect (QAHE) was recently achieved in magnetic topological insulator films. However, the universal phase diagram of QAHE and its relation with quantum Hall effect (QHE) remain to be investigated. Here, we report the experimental observation of the giant longitudinal resistance peak and zero Hall conductance plateau at the coercive field in the six quintuple-layer (Cr 0.12Bi 0.26Sb 0.62) 2Te 3 film, and demonstrate the metal-to-insulator switching between two opposite QAHE plateau states up to 0.3 K. Moreover, the universal QAHE phasemore » diagram is confirmed through the angle-dependent measurements. Our results address that the quantum phase transitions in both QAHE and QHE regimes are in the same universality class, yet the microscopic details are different. Additionally, the realization of the QAHE insulating state unveils new ways to explore quantum phase-related physics and applications.« less

  20. Anomalous Hall effect scaling in ferromagnetic thin films

    NASA Astrophysics Data System (ADS)

    Grigoryan, Vahram L.; Xiao, Jiang; Wang, Xuhui; Xia, Ke

    2017-10-01

    We propose a scaling law for anomalous Hall effect in ferromagnetic thin films. Our approach distinguishes multiple scattering sources, namely, bulk impurity, phonon for Hall resistivity, and most importantly the rough surface contribution to longitudinal resistivity. In stark contrast to earlier laws that rely on temperature- and thickness-dependent fitting coefficients, this scaling law fits the recent experimental data excellently with constant parameters that are independent of temperature and film thickness, strongly indicating that this law captures the underlying physical processes. Based on a few data points, this scaling law can even fit all experimental data in full temperature and thickness range. We apply this law to interpret the experimental data for Fe, Co, and Ni and conclude that (i) the phonon-induced skew scattering is unimportant as expected; (ii) contribution from the impurity-induced skew scattering is negative; (iii) the intrinsic (extrinsic) mechanism dominates in Fe (Co), and both the extrinsic and intrinsic contributions are important in Ni.

  1. External electric field driven modification of the anomalous and spin Hall conductivities in Fe thin films on MgO(001)

    NASA Astrophysics Data System (ADS)

    Pradipto, Abdul-Muizz; Akiyama, Toru; Ito, Tomonori; Nakamura, Kohji

    2018-01-01

    The effects of applying external electric fields to the anomalous and spin Hall conductivities in Fe thin-film models with different layer thicknesses on MgO(001) are investigated by using first-principles calculations. We observe that, for the considered systems, the application of positive electric field associated with the accumulation of negative charges on the Fe side generally decreases (increases) the anomalous (spin) Hall conductivities. The mapping of the Hall conductivities within the two-dimensional Brillouin zone shows that the electric-field-induced modifications are related to the modification of the band structures of the atoms at the interface with the MgO substrate. In particular, the external electric field affects the Hall conductivities via the modifications of the dx z,dy z orbitals, in which the application of positive electric field pushes the minority-spin states of the dx z,dy z bands closer to the Fermi level. Better agreement with the anomalous Hall conductivity for bulk Fe and a more realistic scenario for the electric field modification of Hall conductivities are obtained by using the thicker layers of Fe on MgO (Fe3/MgO and Fe5/MgO).

  2. Numerical Study of Current Driven Instabilities and Anomalous Electron Transport in Hall-effect Thrusters

    NASA Astrophysics Data System (ADS)

    Tran, Jonathan

    Plasma turbulence and the resulting anomalous electron transport due to azimuthal current driven instabilities in Hall-effect thrusters is a promising candidate for developing predictive models for the observed anomalous transport. A theory for anomalous electron transport and current driven instabilities has been recently studied by [Lafluer et al., 2016a]. Due to the extreme cost of fully resolving the Debye length and plasma frequency, hybrid plasma simulations utilizing kinetic ions and quasi-steady state fluid electrons have long been the principle workhorse methodology for Hall-effect thruster modeling. Using a reduced dimension particle in cell simulation implemented in the Thermophysics Universal Research Framework developed by the Air Force Research Lab, we show collective electron-wave scattering due to large amplitude azimuthal fluctuations of the electric field and the plasma density. These high-frequency and short wavelength fluctuations can lead to an effective cross-field mobility many orders of magnitude larger than what is expected from classical electron-neutral momentum collisions in the low neutral density regime. We further adapt the previous study by [Lampe et al., 1971] and [Stringer, 1964] for related current driven instabilities to electric propulsion relevant mass ratios and conditions. Finally, we conduct a preliminary study of resolving this instability with a modified hybrid simulation with the hope of integration with established hybrid Hall-effect thruster simulations.

  3. Current Driven Instabilities and Anomalous Mobility in Hall-effect Thrusters

    NASA Astrophysics Data System (ADS)

    Tran, Jonathan; Eckhardt, Daniel; Martin, Robert

    2017-10-01

    Due to the extreme cost of fully resolving the Debye length and plasma frequency, hybrid plasma simulations utilizing kinetic ions and quasi-steady state fluid electrons have long been the principle workhorse methodology for Hall-effect thruster (HET) modeling. Plasma turbulence and the resulting anomalous electron transport in HETs is a promising candidate for developing predictive models for the observed anomalous transport. In this work, we investigate the implementation of an anomalous electron cross field transport model for hybrid HET simulations such a HPHall. A theory for anomalous transport in HETs and current driven instabilities has been recently studied by Lafleur et al. This work has shown collective electron-wave scattering due to large amplitude azimuthal fluctuations of the electric field. We will further adapt the previous results for related current driven instabilities to electric propulsion relevant mass ratios and conduct a preliminary study of resolving this instability with a modified hybrid (fluid electron and kinetic ion) simulation with the hope of integration with established hybrid HET simulations. This work is supported by the Air Force Office of Scientific Research award FA9950-17RQCOR465.

  4. Tunable anomalous hall effect induced by interfacial catalyst in perpendicular multilayers

    NASA Astrophysics Data System (ADS)

    Zhang, J. Y.; Peng, W. L.; Sun, Q. Y.; Liu, Y. W.; Dong, B. W.; Zheng, X. Q.; Yu, G. H.; Wang, C.; Zhao, Y. C.; Wang, S. G.

    2018-04-01

    The interfacial structures, playing a critical role on the transport properties and the perpendicular magnetic anisotropy in thin films and multilayers, can be modified by inserting an ultrathin functional layer at the various interfaces. The anomalous Hall effect (AHE) in the multilayers with core structure of Ta/CoFeB/X/MgO/Ta (X: Hf or Pt) is tuned by interfacial catalytic engineering. The saturation anomalous Hall resistance (RAH) is increased by 16.5% with 0.1 nm Hf insertion compared with the reference sample without insertion. However, the RAH value is decreased by 9.0% with 0.1 nm Pt insertion. The interfacial states were characterized by the X-ray photoelectron spectroscopy (XPS). The XPS results indicate that a strong bonding between Hf and O for Hf insertion, but no bonding between Pt and O for Pt insertion. The bonding between metal and oxygen leads to various oxygen migration behavior at the interfaces. Therefore, the opposite behavior about the RAH originates from the different oxygen behavior due to various interfacial insertion. This work provides a new approach to manipulate spin transport property for the potential applications.

  5. Chiral transport along magnetic domain walls in the quantum anomalous Hall effect

    DOE PAGES

    Rosen, Ilan T.; Fox, Eli J.; Kou, Xufeng; ...

    2017-12-01

    The recent prediction, and subsequent discovery, of the quantum anomalous Hall (QAH) effect in thin films of the three-dimensional ferromagnetic topological insulator (MTI) (Crmore » $$_y$$Bi$$_x$$Sb$$_{1-x-y}$$)$$_2$$Te$$_3$$ has opened new possibilities for chiral-edge-state-based devices in zero external magnetic field. Like the $$\

  6. Large anomalous Hall effect in Pt interfaced with perpendicular anisotropy ferrimagnetic insulator

    NASA Astrophysics Data System (ADS)

    Tang, Chi; Sellappan, Pathikumar; Liu, Yawen; Garay, Javier; Shi, Jing; Shines Team

    We demonstrate the strain induced perpendicular magnetic anisotropy (PMA) in a ferrimagnetic insulator (FMI), Tm3Fe5O12 (TIG) and the first observation of large anomalous Hall effect (AHE) in TIG/Pt bilayers. Atomically flat TIG films were deposited by a laser molecular beam epitaxy system on (111)-orientated substituted gadolinium gallium garnet substrates. The strength of PMA could be effectively tuned by controlling the oxygen pressure during deposition. Sharp squared anomalous Hall hysteresis loops were observed in bilayers of TIG/Pt over a range of thicknesses of Pt, with the maximum AHE conductivity reaching 1 S/cm at room temperature. The AHE vanishes when a 5 nm Cu layer was inserted between Pt and TIG, strongly indicating the proximity-induced ferromagnetism in Pt. The large AHE in the bilayer structures demonstrates a potential use of PMA-FMI related heterostructures in spintronics. This work was supported as part of the SHINES, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # SC0012670.

  7. Response of two-band systems to a single-mode quantized field

    NASA Astrophysics Data System (ADS)

    Shi, Z. C.; Shen, H. Z.; Wang, W.; Yi, X. X.

    2016-03-01

    The response of topological insulators (TIs) to an external weakly classical field can be expressed in terms of Kubo formula, which predicts quantized Hall conductivity of the quantum Hall family. The response of TIs to a single-mode quantized field, however, remains unexplored. In this work, we take the quantum nature of the external field into account and define a Hall conductance to characterize the linear response of a two-band system to the quantized field. The theory is then applied to topological insulators. Comparisons with the traditional Hall conductance are presented and discussed.

  8. Quantum anomalous Hall effect in magnetic topological insulators

    DOE PAGES

    Wang, Jing; Lian, Biao; Zhang, Shou -Cheng

    2015-08-25

    The search for topologically non-trivial states of matter has become an important goal for condensed matter physics. Here, we give a theoretical introduction to the quantum anomalous Hall (QAH) effect based on magnetic topological insulators in two-dimensions (2D) and three-dimensions (3D). In 2D topological insulators, magnetic order breaks the symmetry between the counter-propagating helical edge states, and as a result, the quantum spin Hall effect can evolve into the QAH effect. In 3D, magnetic order opens up a gap for the topological surface states, and chiral edge state has been predicted to exist on the magnetic domain walls. We presentmore » the phase diagram in thin films of a magnetic topological insulator and review the basic mechanism of ferromagnetic order in magnetically doped topological insulators. We also review the recent experimental observation of the QAH effect. Furthermore, we discuss more recent theoretical work on the coexistence of the helical and chiral edge states, multi-channel chiral edge states, the theory of the plateau transition, and the thickness dependence in the QAH effect.« less

  9. Berry phase mechanism of the anomalous Hall effect in a disordered two-dimensional magnetic semiconductor structure.

    DOE PAGES

    Oveshnikov, L. N.; Kulbachinskii, V. A.; Davydov, A. B.; ...

    2015-11-24

    In this study, the anomalous Hall effect (AHE) arises from the interplay of spin-orbit interactions and ferromagnetic order and is a potentially useful probe of electron spin polarization, especially in nanoscale systems where direct measurement is not feasible. While AHE is rather well-understood in metallic ferromagnets, much less is known about the relevance of different physical mechanisms governing AHE in insulators. As ferromagnetic insulators, but not metals, lend themselves to gatecontrol of electron spin polarization, understanding AHE in the insulating state is valuable from the point of view of spintronic applications. Among the mechanisms proposed in the literature for AHEmore » in insulators, the one related to a geometric (Berry) phase effect has been elusive in past studies. The recent discovery of quantized AHE in magnetically doped topological insulators - essentially a Berry phase effect - provides strong additional motivation to undertake more careful search for geometric phase effects in AHE in the magnetic semiconductors. Here we report our experiments on the temperature and magnetic field dependences of AHE in insulating, strongly-disordered two-dimensional Mn delta-doped semiconductor heterostructures in the hopping regime. In particular, it is shown that at sufficiently low temperatures, the mechanism of AHE related to the Berry phase is favoured.« less

  10. Berry phase mechanism of the anomalous Hall effect in a disordered two-dimensional magnetic semiconductor structure

    PubMed Central

    Oveshnikov, L. N.; Kulbachinskii, V. A.; Davydov, A. B.; Aronzon, B. A.; Rozhansky, I. V.; Averkiev, N. S.; Kugel, K. I.; Tripathi, V.

    2015-01-01

    The anomalous Hall effect (AHE) arises from the interplay of spin-orbit interactions and ferromagnetic order and is a potentially useful probe of electron spin polarization, especially in nanoscale systems where direct measurement is not feasible. While AHE is rather well-understood in metallic ferromagnets, much less is known about the relevance of different physical mechanisms governing AHE in insulators. As ferromagnetic insulators, but not metals, lend themselves to gate-control of electron spin polarization, understanding AHE in the insulating state is valuable from the point of view of spintronic applications. Among the mechanisms proposed in the literature for AHE in insulators, the one related to a geometric (Berry) phase effect has been elusive in past studies. The recent discovery of quantized AHE in magnetically doped topological insulators - essentially a Berry phase effect - provides strong additional motivation to undertake more careful search for geometric phase effects in AHE in the magnetic semiconductors. Here we report our experiments on the temperature and magnetic field dependences of AHE in insulating, strongly-disordered two-dimensional Mn delta-doped semiconductor heterostructures in the hopping regime. In particular, it is shown that at sufficiently low temperatures, the mechanism of AHE related to the Berry phase is favoured. PMID:26596472

  11. Anomalous Hall effect in two-dimensional non-collinear antiferromagnetic semiconductor Cr0.68Se

    NASA Astrophysics Data System (ADS)

    Yan, J.; Luo, X.; Chen, F. C.; Pei, Q. L.; Lin, G. T.; Han, Y. Y.; Hu, L.; Tong, P.; Song, W. H.; Zhu, X. B.; Sun, Y. P.

    2017-07-01

    Cr0.68Se single crystals with two-dimensional (2D) character have been grown, and the detailed magnetization M(T), electrical transport properties (including longitudinal resistivity ρxx and Hall resistivity ρxy), and thermal transport properties [including heat capacity Cp(T) and thermoelectric power S(T)] have been measured. There are some interesting phenomena: (i) Cr0.68Se presents a non-collinear antiferromagnetic (AFM) semiconducting behavior at the Néel temperature of TN = 42 K and with the activated energy of Eg = 3.9 meV; (ii) it exhibits the anomalous Hall effect (AHE) below TN and large negative magnetoresistance about 83.7% (2 K, 8.5 T). The AHE coefficient RS is 0.385 cm-3/C at T = 2 K, and the AHE conductivity σH is about 1 Ω-1 cm-1 at T = 40 K; (iii) the scaling behavior between the anomalous Hall resistivity ρxy A and the longitudinal resistivity ρxx is linear, and further analysis implies that the origin of the AHE in Cr0.68Se is dominated by the skew-scattering mechanism. Our results may be helpful for exploring the potential application of these kinds of 2D AFM semiconductors.

  12. Interfacial scattering effect on anisotropic magnetoresistance and anomalous Hall effect in Ta/Fe multilayers

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Zhang, Junwei; Zhao, Yuelei; Wen, Yan; Li, Peng; Zhang, Senfu; He, Xin; Zhang, Junli; Zhang, Xixiang

    2018-05-01

    The effect of interfacial scattering on anisotropic magnetoresistance (AMR) and anomalous Hall effect (AHE) was studied in the (Ta12/n/Fe36/n) n multilayers, where the numbers give the thickness in nanometer and n is an integer from 1 to 12. The multilayer structure has been confirmed by the XRR spectra and STEM images of cross-sections. The magneto-transport properties were measured by four-point probe method in Hall bar shaped samples in the temperature range of 5 - 300 K. The AMR increases with n, which could be ascribed to the interfacial spin-orbit scattering. At 5 K, the longitudinal resistivity (ρxx) increases by 6.4 times and the anomalous Hall resistivity (ρAHE) increases by 49.4 times from n =1 to n =12, indicative of the interfacial scattering effect. The skew-scattering, side-jump and intrinsic contributions to the AHE were separated successfully. As n increases from 1 to 12, the intrinsic contribution decreases because of the decaying crystallinity or finite size effect and the intrinsic contribution dominated the AHE for all samples. The side jump changes from negative to positive because the interfacial scattering and intralayer scattering in Fe layers both contribute to side jump in the AHE but with opposite sign.

  13. Temperature Ddependence of Anomalous Hall Conductivity in Rashba-type Ferromagnets

    NASA Astrophysics Data System (ADS)

    Sakuma, Akimasa

    2018-03-01

    We theoretically investigated the anomalous Hall conductivity (AHC) of Rashba-type ferromagnets at a finite temperature, taking into account spin fluctuation. We observed that the intrinsic AHC increases with increasing temperature. This can be understood from the characteristic nature of the spin chirality in the k-space, which increases with decreasing exchange splitting (EXS) when the spin-orbit interaction is much smaller than the EXS. The extrinsic part of the AHC also increases with temperature owing to the enhancement of the scattering strength of electrons due to the thermal fluctuation of the exchange field.

  14. Intrinsic quantum anomalous Hall effect in the kagome lattice Cs 2LiMn 3F 12

    DOE PAGES

    Xu, Gang; Lian, Biao; Zhang, Shou -Cheng

    2015-10-27

    In a kagome lattice, the time reversal symmetry can be broken by a staggered magnetic flux emerging from ferromagnetic ordering and intrinsic spin-orbit coupling, leading to several well-separated nontrivial Chern bands and intrinsic quantum anomalous Hall effect. Based on this idea and ab initio calculations, we propose the realization of the intrinsic quantum anomalous Hall effect in the single layer Cs 2Mn 3F 12 kagome lattice and on the (001) surface of a Cs 2LiMn 3F 12 single crystal by modifying the carrier coverage on it, where the band gap is around 20 meV. Furthermore, a simplified tight binding modelmore » based on the in-plane ddσ antibonding states is constructed to understand the topological band structures of the system.« less

  15. Hysteretic magnetoresistance and unconventional anomalous Hall effect in the frustrated magnet TmB 4

    DOE PAGES

    Sunku, Sai Swaroop; Kong, Tai; Ito, Toshimitsu; ...

    2016-05-11

    We study TmB 4, a frustrated magnet on the Archimedean Shastry-Sutherland lattice, through magnetization and transport experiments. The lack of anisotropy in resistivity shows that TmB4 is an electronically three-dimensional system. The magnetoresistance (MR) is hysteretic at low temperature even though a corresponding hysteresis in magnetization is absent. The Hall resistivity shows unconventional anomalous Hall effect (AHE) and is linear above saturation despite a large MR. In conclusion, we propose that complex structures at magnetic domain walls may be responsible for the hysteretic MR and may also lead to the AHE.

  16. Quantum Anomalous Hall Effect in Low-buckled Honeycomb Lattice with In-plane Magnetization

    NASA Astrophysics Data System (ADS)

    Ren, Yafei; Pan, Hui; Yang, Fei; Li, Xin; Qiao, Zhenhua; Zhenhua Qiao's Group Team; Hui Pan's Group Team

    With out-of-plane magnetization, the quantum anomalous Hall effect has been extensively studied in quantum wells and two-dimensional atomic crystal layers. Here, we investigate the possibility of realizing quantum anomalous Hall effect (QAHE) in honeycomb lattices with in-plane magnetization. We show that the QAHE can only occur in low-buckled honeycomb lattice where both intrinsic and intrinsic Rashba spin-orbit coupling appear spontaneously. The extrinsic Rashba spin-orbit coupling is detrimental to this phase. In contrast to the out-of-plane magnetization induced QAHE, the QAHE from in-plane magnetization is achieved in the vicinity of the time reversal symmetric momenta at M points rather than Dirac points. In monolayer case, the QAHE can be characterized by Chern number  = +/- 1 whereas additional phases with Chern number  = +/- 2 appear in chiral stacked bilayer system. The Chern number strongly depends on the orientation of the magnetization. The bilayer system also provides additional tunability via out-of-plane electric field, which can reduce the critical magnetization strength required to induce QAHE. It can also lead to topological phase transitions from  = +/- 2 to +/- 1 and finally to 0 Equal contribution from Yafei Ren and Hui Pan.

  17. A quantized microwave quadrupole insulator with topologically protected corner states

    NASA Astrophysics Data System (ADS)

    Peterson, Christopher W.; Benalcazar, Wladimir A.; Hughes, Taylor L.; Bahl, Gaurav

    2018-03-01

    The theory of electric polarization in crystals defines the dipole moment of an insulator in terms of a Berry phase (geometric phase) associated with its electronic ground state. This concept not only solves the long-standing puzzle of how to calculate dipole moments in crystals, but also explains topological band structures in insulators and superconductors, including the quantum anomalous Hall insulator and the quantum spin Hall insulator, as well as quantized adiabatic pumping processes. A recent theoretical study has extended the Berry phase framework to also account for higher electric multipole moments, revealing the existence of higher-order topological phases that have not previously been observed. Here we demonstrate experimentally a member of this predicted class of materials—a quantized quadrupole topological insulator—produced using a gigahertz-frequency reconfigurable microwave circuit. We confirm the non-trivial topological phase using spectroscopic measurements and by identifying corner states that result from the bulk topology. In addition, we test the critical prediction that these corner states are protected by the topology of the bulk, and are not due to surface artefacts, by deforming the edges of the crystal lattice from the topological to the trivial regime. Our results provide conclusive evidence of a unique form of robustness against disorder and deformation, which is characteristic of higher-order topological insulators.

  18. Anomalous Hall effect in the van der Waals bonded ferromagnet Fe3 -xGeTe2

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Stavitski, Eli; Attenkofer, Klaus; Petrovic, C.

    2018-04-01

    We report the anomalous Hall effect (AHE) in single crystals of a quasi-two-dimensional Fe3 -xGeTe2 (x ≈0.36 ) ferromagnet grown by the flux method which induces defects on the Fe site and bad metallic resistivity. Fe K-edge x-ray absorption spectroscopy was measured to provide information on the local atomic environment in such crystals. The dc and ac magnetic susceptibility measurements indicate a second-stage transition below 119 K in addition to the paramagnetic to ferromagnetic transition at 153 K. A linear scaling behavior between the modified anomalous Hall resistivity ρx y/μ0Heff and longitudinal resistivity ρxx 2M /μ0Heff implies that the AHE in Fe3 -xGeTe2 should be dominated by the intrinsic Karplus-Luttinger mechanism rather than the extrinsic skew-scattering and side-jump mechanisms. The observed deviation in the linear-M Hall conductivity σxy A below 30 K is in line with its transport characteristic at low temperatures, implying the scattering of conduction electrons due to magnetic disorder and the evolution of the Fermi surface induced by a possible spin-reorientation transition.

  19. Anomalous Hall effect in ion-beam sputtered Co2FeAl full Heusler alloy thin films

    NASA Astrophysics Data System (ADS)

    Husain, Sajid; Kumar, Ankit; Akansel, Serkan; Svedlindh, Peter; Chaudhary, Sujeet

    2017-11-01

    Investigations of temperature dependent anomalous Hall effect and longitudinal resistivity in Co2FeAl (CFA) thin films grown on Si(1 0 0) at different substrate temperature Ts are reported. The scaling of the anomalous Hall conductivity (AHC) and the associated phenomenological mechanisms (intrinsic and extrinsic) are analyzed vis-à-vis influence of Ts. The intrinsic contribution to AHC is found to be dominating over the extrinsic one. The appearance of a resistivity minimum at low temperature necessitates the inclusion of quantum corrections on account of weak localization and electron-electron scattering effects whose strength reduces with increase in Ts. The study establishes that the optimization of Ts plays an important role in the improvement of atomic ordering which indicates the higher strength of spin-orbit coupling and leads to the dominant intrinsic contribution to AHC in these CFA full Heusler alloy thin films.

  20. Anomalous Hall effect in the van der Waals bonded ferromagnet Fe 3 - x GeTe 2

    DOE PAGES

    Liu, Yu; Stavitski, Eli; Attenkofer, Klaus; ...

    2018-04-09

    Here, we report the anomalous Hall effect (AHE) in single crystals of a quasi-two-dimensional Fe 3–xGeTe 2 (x ≈ 0.36) ferromagnet grown by the flux method which induces defects on the Fe site and bad metallic resistivity. Fe K-edge x-ray absorption spectroscopy was measured to provide information on the local atomic environment in such crystals. The dc and ac magnetic susceptibility measurements indicate a second-stage transition below 119 K in addition to the paramagnetic to ferromagnetic transition at 153 K. A linear scaling behavior between the modified anomalous Hall resistivity ρxy/μ0Heff and longitudinal resistivity ρ 2 xxM/μ 0H eff impliesmore » that the AHE in Fe 3–xGeTe 2 should be dominated by the intrinsic Karplus-Luttinger mechanism rather than the extrinsic skew-scattering and side-jump mechanisms. The observed deviation in the linear- M Hall conductivity σ A xy below 30 K is in line with its transport characteristic at low temperatures, implying the scattering of conduction electrons due to magnetic disorder and the evolution of the Fermi surface induced by a possible spin-reorientation transition.« less

  1. Anomalous Hall effect in the van der Waals bonded ferromagnet Fe 3 - x GeTe 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yu; Stavitski, Eli; Attenkofer, Klaus

    Here, we report the anomalous Hall effect (AHE) in single crystals of a quasi-two-dimensional Fe 3–xGeTe 2 (x ≈ 0.36) ferromagnet grown by the flux method which induces defects on the Fe site and bad metallic resistivity. Fe K-edge x-ray absorption spectroscopy was measured to provide information on the local atomic environment in such crystals. The dc and ac magnetic susceptibility measurements indicate a second-stage transition below 119 K in addition to the paramagnetic to ferromagnetic transition at 153 K. A linear scaling behavior between the modified anomalous Hall resistivity ρxy/μ0Heff and longitudinal resistivity ρ 2 xxM/μ 0H eff impliesmore » that the AHE in Fe 3–xGeTe 2 should be dominated by the intrinsic Karplus-Luttinger mechanism rather than the extrinsic skew-scattering and side-jump mechanisms. The observed deviation in the linear- M Hall conductivity σ A xy below 30 K is in line with its transport characteristic at low temperatures, implying the scattering of conduction electrons due to magnetic disorder and the evolution of the Fermi surface induced by a possible spin-reorientation transition.« less

  2. Magnetic phase dependence of the anomalous Hall effect in Mn3Sn single crystals

    NASA Astrophysics Data System (ADS)

    Sung, N. H.; Ronning, F.; Thompson, J. D.; Bauer, E. D.

    2018-03-01

    Thermodynamic and transport properties are reported on single crystals of the hexagonal antiferromagnet Mn3Sn grown by the Sn flux technique. Magnetization measurements reveal two magnetic phase transitions at T1 = 275 K and T2 = 200 K, below the antiferromagnetic phase transition at TN ≈ 420 K. The Hall conductivity in zero magnetic field is suppressed dramatically from 4.7 Ω-1 cm-1 to near zero below T1, coincident with the vanishing of the weak ferromagnetic moment. This illustrates that the large anomalous Hall effect arising from the Berry curvature can be switched on and off by a subtle change in the symmetry of the magnetic structure near room temperature.

  3. Anomalous DC Hall response in noncentrosymmetric tilted Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Mukherjee, S. P.; Carbotte, J. P.

    2018-03-01

    Weyl nodes come in pairs of opposite chirality. For broken time reversal symmetry (TR) they are displaced in momentum space by {Q} and the anomalous DC Hall conductivity σxy is proportional to {Q} at charge neutrality. For finite doping there are additive corrections to σxy which depend on the chemical potential as well as on the tilt (C ) of the Dirac cones and on their relative orientation. If inversion symmetry (I) is also broken the Weyl nodes are shifted in energy by an amount Q0 . This introduces further changes in σxy and we provide simple analytic formulas for these modifications for both type I (C<1 ) and type II (C>1 , overtilted) Weyl. For type I when the Weyl nodes have equal magnitude but oppositely directed tilts, the correction to σxy is proportional to the chemical potential μ and completely independent of the energy shift Q0 . When instead the tilts are parallel, the correction is linear in Q0 and μ drops out. For type II the corrections involve both μ and Q0 , are nonlinear and also involve a momentum cut off. We discuss the implied changes to the Nernst coefficient and to the thermal Hall effect of a finite Q0 .

  4. Magnetization and anomalous Hall effect in SiO2/Fe/SiO2 trilayers

    NASA Astrophysics Data System (ADS)

    Sekhar Das, Sudhansu; Senthil Kumar, M.

    2017-03-01

    SiO2/Fe/SiO2 sandwich structure films fabricated by sputtering were studied by varying the Fe layer thickness (t Fe). The structural and microstructural studies on the samples showed that the Fe layer has grown in nanocrystalline form with (1 1 0) texture and that the two SiO2 layers are amorphous. Magnetic measurements performed with the applied field in in-plane and perpendicular direction to the film plane confirmed that the samples are soft ferromagnetic having strong in-plane magnetic anisotropy. The temperature dependence of magnetization shows complex behavior with the coexistence of both ferromagnetic and superparamagnetic properties. The transport properties of the samples as studied through Hall effect measurements show anomalous Hall effect (AHE). An enhancement of about 14 times in the saturation anomalous Hall resistance (R\\text{hs}\\text{A} ) was observed upon reducing the t Fe from 300 to 50 Å. The maximum value of R\\text{hs}\\text{A}   =  2.3 Ω observed for t Fe  =  50 Å sample is about 4 orders of magnitude larger than that reported for bulk Fe. When compared with the single Fe film, a maximum increase of about 56% in the R\\text{hs}\\text{A} was observed in sandwiched Fe (50 Å) film. Scaling law suggests that the R s follows the longitudinal resistivity (ρ) as, {{R}\\text{s}}\\propto {ρ1.9} , suggesting side jump as the dominant mechanism of the AHE. A maximum enhancement of about 156% in the sensitivity S was observed.

  5. Effect of band filling on anomalous Hall conductivity and magneto-crystalline anisotropy in NiFe epitaxial thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Zhong; Jiang, Hang-Yu; Zhou, Shi-Ming, E-mail: shiming@tongji.edu.cn

    2016-01-15

    The anomalous Hall effect (AHE) and magneto-crystalline anisotropy (MCA) are investigated in epitaxial Ni{sub x}Fe{sub 1−x} thin films grown on MgO (001) substrates. The scattering independent term b of anomalous Hall conductivity shows obvious correlation with cubic magneto-crystalline anisotropy K{sub 1}. When nickel content x decreasing, both b and K{sub 1} vary continuously from negative to positive, changing sign at about x = 0.85. Ab initio calculations indicate Ni{sub x}Fe{sub 1−x} has more abundant band structures than pure Ni due to the tuning of valence electrons (band fillings), resulting in the increased b and K{sub 1}. This remarkable correlation betweenmore » b and K{sub 1} can be attributed to the effect of band filling near the Fermi surface.« less

  6. Magnetic phase dependence of the anomalous Hall effect in Mn 3Sn single crystals

    DOE PAGES

    Sung, Nakheon H.; Ronning, Filip; Thompson, Joe David; ...

    2018-03-29

    Thermodynamic and transport properties are reported on single crystals of the hexagonal antiferromagnet Mn 3Sn grown by the Sn flux technique. Magnetization measurements reveal two magnetic phase transitions at T 1 = 275 K and T 2 = 200 K, below the antiferromagnetic phase transition at T N ≈ 420 K. The Hall conductivity in zero magnetic field is suppressed dramatically from 4.7 Ω -1 cm -1 to near zero below T 1, coincident with the vanishing of the weak ferromagnetic moment. Finally, this illustrates that the large anomalous Hall effect arising from the Berry curvature can be switched onmore » and off by a subtle change in the symmetry of the magnetic structure near room temperature.« less

  7. Magnetic phase dependence of the anomalous Hall effect in Mn 3Sn single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, Nakheon H.; Ronning, Filip; Thompson, Joe David

    Thermodynamic and transport properties are reported on single crystals of the hexagonal antiferromagnet Mn 3Sn grown by the Sn flux technique. Magnetization measurements reveal two magnetic phase transitions at T 1 = 275 K and T 2 = 200 K, below the antiferromagnetic phase transition at T N ≈ 420 K. The Hall conductivity in zero magnetic field is suppressed dramatically from 4.7 Ω -1 cm -1 to near zero below T 1, coincident with the vanishing of the weak ferromagnetic moment. Finally, this illustrates that the large anomalous Hall effect arising from the Berry curvature can be switched onmore » and off by a subtle change in the symmetry of the magnetic structure near room temperature.« less

  8. Oxidized Mn:Ge magnetic semiconductor: Observation of anomalous Hall effect and large magnetoresistance

    NASA Astrophysics Data System (ADS)

    Duc Dung, Dang; Choi, Jiyoun; Feng, Wuwei; Cao Khang, Nguyen; Cho, Sunglae

    2018-03-01

    We report on the structural and magneto-transport properties of the as-grown and oxidized Mn:Ge magnetic semiconductors. Based on X-ray diffraction and X-ray photoelectron spectroscopy results, the samples annealed at 650 and 700 °C became fully oxidized and the chemical binding energies of Mn was found to be Mn3O4. Thus, the system became Mn3O4 clusters embedded in Ge1-yOy. The as-grown sample showed positive linear Hall effect and negligible negative magnetoresistance (MR), which trend remained for the sample annealed up to 550 °C. Interestingly, for the samples annealed at above 650 °C, we observed the anomalous Hall effect around 45 K and the giant positive MR, which are respectively 59.2% and 78.5% at 7 kOe annealed at 650 °C and 700 °C.

  9. Anomalous Hall effect in the van der Waals bonded ferromagnet Fe 3 − x GeTe 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yu; Stavitski, Eli; Attenkofer, Klaus

    2018-04-09

    Here, we report the anomalous Hall effect (AHE) in single crystals of a quasi-two-dimensional Fe 3–xGeTe 2 (x ≈ 0.36) ferromagnet grown by the flux method which induces defects on the Fe site and bad metallic resistivity. Fe K-edge x-ray absorption spectroscopy was measured to provide information on the local atomic environment in such crystals. The dc and ac magnetic susceptibility measurements indicate a second-stage transition below 119 K in addition to the paramagnetic to ferromagnetic transition at 153 K. A linear scaling behavior between the modified anomalous Hall resistivity ρxy/μ0Heff and longitudinal resistivity ρ 2 xxM/μ 0H eff impliesmore » that the AHE in Fe 3–xGeTe 2 should be dominated by the intrinsic Karplus-Luttinger mechanism rather than the extrinsic skew-scattering and side-jump mechanisms. The observed deviation in the linear- M Hall conductivity σ A xy below 30 K is in line with its transport characteristic at low temperatures, implying the scattering of conduction electrons due to magnetic disorder and the evolution of the Fermi surface induced by a possible spin-reorientation transition.« less

  10. Skew scattering dominated anomalous Hall effect in Co x (MgO)100-x granular thin films

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Wen, Yan; Zhao, Yuelei; Li, Peng; He, Xin; Zhang, Junli; He, Yao; Peng, Yong; Yu, Ronghai; Zhang, Xixiang

    2017-10-01

    We investigated the mechanism(s) of the anomalous Hall effect (AHE) in magnetic granular materials by fabricating 100 nm-thick thin films of Co x (MgO)100-x with a Co volume fraction of 34  ⩽  x  ⩽  100 using co-sputtering at room temperature. We measured the temperature dependence of longitudinal resistivity ({{ρ }xx} ) and anomalous Hall resistivity ({{ρ }AHE} ) from 5 K to 300 K in all samples. We found that when x decreases from 100 to 34, the values of {{ρ }xx} and {{ρ }AHE} respectively increased by about four and three orders in magnitude. By linearly fitting the data, obtained at 5 K, of anomalous Hall coefficient ({{R}s} ) and of {{ρ }xx} to log({{R}s})˜ γ log({{ρ }xx}) , we found that our results perfectly fell on a straight line with a slope of γ = 0.97  ±  0.02. This fitting value of γ in {{R}s}\\propto ρ xxγ ~ clearly suggests that skew scattering dominated the AHE in this granular system. To explore the effect of the scattering on the AHE, we performed the same measurements on annealed samples. We found that although both {{ρ }xx} and {{ρ }AHE} significantly reduced after annealing, the correlation between them was almost the same, which was confirmed by the fitted value, γ   =  0.99  ±  0.03. These data strongly suggest that the AHE originates from the skew scattering in Co-MgO granular thin films no matter how strong the scattering of electrons by the interfaces and defects is. This observation may be of importance to the development of spintronic devices based on MgO.

  11. Helical magnetic structure and the anomalous and topological Hall effects in epitaxial B20 Fe1 -yCoyGe films

    NASA Astrophysics Data System (ADS)

    Spencer, Charles S.; Gayles, Jacob; Porter, Nicholas A.; Sugimoto, Satoshi; Aslam, Zabeada; Kinane, Christian J.; Charlton, Timothy R.; Freimuth, Frank; Chadov, Stanislav; Langridge, Sean; Sinova, Jairo; Felser, Claudia; Blügel, Stefan; Mokrousov, Yuriy; Marrows, Christopher H.

    2018-06-01

    Epitaxial films of the B20-structure compound Fe1 -yCoyGe were grown by molecular beam epitaxy on Si (111) substrates. The magnetization varied smoothly from the bulklike values of one Bohr magneton per Fe atom for FeGe to zero for nonmagnetic CoGe. The chiral lattice structure leads to a Dzyaloshinskii-Moriya interaction (DMI), and the films' helical magnetic ground state was confirmed using polarized neutron reflectometry measurements. The pitch of the spin helix, measured by this method, varies with Co content y and diverges at y ˜0.45 . This indicates a zero crossing of the DMI, which we reproduced in calculations using first-principles methods. We also measured the longitudinal and Hall resistivity of our films as a function of magnetic field, temperature, and Co content y . The Hall resistivity is expected to contain contributions from the ordinary, anomalous, and topological Hall effects. Both the anomalous and topological Hall resistivities show peaks around y ˜0.5 . Our first-principles calculations show a peak in the topological Hall constant at this value of y , related to the strong spin polarization predicted for intermediate values of y . Our calculations predict half-metallicity for y =0.6 , consistent with the experimentally observed linear magnetoresistance at this composition, and potentially related to the other unusual transport properties for intermediate value of y . While it is possible to reconcile theory with experiment for the various Hall effects for FeGe, the large topological Hall resistivities for y ˜0.5 are much larger than expected when the very small emergent fields associated with the divergence in the DMI are taken into account.

  12. Quantized Rabi oscillations and circular dichroism in quantum Hall systems

    NASA Astrophysics Data System (ADS)

    Tran, D. T.; Cooper, N. R.; Goldman, N.

    2018-06-01

    The dissipative response of a quantum system upon periodic driving can be exploited as a probe of its topological properties. Here we explore the implications of such phenomena in two-dimensional gases subjected to a uniform magnetic field. It is shown that a filled Landau level exhibits a quantized circular dichroism, which can be traced back to its underlying nontrivial topology. Based on selection rules, we find that this quantized effect can be suitably described in terms of Rabi oscillations, whose frequencies satisfy simple quantization laws. We discuss how quantized dissipative responses can be probed locally, both in the bulk and at the boundaries of the system. This work suggests alternative forms of topological probes based on circular dichroism.

  13. Effect of IrMn inserted layer on anomalous-Hall resistance and spin-Hall magnetoresistance in Pt/IrMn/YIG heterostructures

    NASA Astrophysics Data System (ADS)

    Shang, T.; Yang, H. L.; Zhan, Q. F.; Zuo, Z. H.; Xie, Y. L.; Liu, L. P.; Zhang, S. L.; Zhang, Y.; Li, H. H.; Wang, B. M.; Wu, Y. H.; Zhang, S.; Li, Run-Wei

    2016-10-01

    We report an investigation of anomalous-Hall resistance (AHR) and spin-Hall magnetoresistance (SMR) in Pt/Ir20Mn80/Y3Fe5O12 (Pt/IrMn/YIG) heterostructures. The AHR of Pt/IrMn/YIG heterostructures with an antiferromagnetic inserted layer is dramatically enhanced as compared to that of the Pt/YIG bilayer. The temperature dependent AHR behavior is nontrivial, while the IrMn thickness dependent AHR displays a peak at an IrMn thickness of 3 nm. The observed SMR in the temperature range of 10-300 K indicates that the spin current generated in the Pt layer can penetrate the IrMn layer (≤3 nm) to interact with the ferromagnetic YIG layer. The lack of conventional anisotropic magnetoresistance (AMR) implies that the insertion of the IrMn layer between Pt and YIG could efficiently suppress the magnetic proximity effect (MPE) on induced Pt moments by YIG.

  14. Prediction of a magnetic Weyl semimetal without spin-orbit coupling and strong anomalous Hall effect in the Heusler compensated ferrimagnet Ti2MnAl

    NASA Astrophysics Data System (ADS)

    Shi, Wujun; Muechler, Lukas; Manna, Kaustuv; Zhang, Yang; Koepernik, Klaus; Car, Roberto; van den Brink, Jeroen; Felser, Claudia; Sun, Yan

    2018-02-01

    We predict a magnetic Weyl semimetal in the inverse Heusler Ti2MnAl , a compensated ferrimagnet with a vanishing net magnetic moment and a Curie temperature of over 650 K. Despite the vanishing net magnetic moment, we calculate a large intrinsic anomalous Hall effect (AHE) of about 300 S/cm. It derives from the Berry curvature distribution of the Weyl points, which are only 14 meV away from the Fermi level and isolated from trivial bands. Different from antiferromagnets Mn3X (X =Ge , Sn, Ga, Ir, Rh, and Pt), where the AHE originates from the noncollinear magnetic structure, the AHE in Ti2MnAl stems directly from the Weyl points and is topologically protected. The large anomalous Hall conductivity (AHC) together with a low charge carrier concentration should give rise to a large anomalous Hall angle. In contrast to the Co-based ferromagnetic Heusler compounds, the Weyl nodes in Ti2MnAl do not derive from nodal lines due to the lack of mirror symmetries in the inverse Heusler structure. Since the magnetic structure breaks spin-rotation symmetry, the Weyl nodes are stable without SOC. Moreover, because of the large separation between Weyl points of opposite topological charge, the Fermi arcs extent up to 75 % of the reciprocal lattice vectors in length. This makes Ti2MnAl an excellent candidate for the comprehensive study of magnetic Weyl semimetals. It is the first example of a material with Weyl points, large anomalous Hall effect, and angle despite a vanishing net magnetic moment.

  15. Emerging magnetism and anomalous Hall effect in iridate–manganite heterostructures

    PubMed Central

    Nichols, John; Gao, Xiang; Lee, Shinbuhm; Meyer, Tricia L.; Freeland, John W.; Lauter, Valeria; Yi, Di; Liu, Jian; Haskel, Daniel; Petrie, Jonathan R.; Guo, Er-Jia; Herklotz, Andreas; Lee, Dongkyu; Ward, Thomas Z.; Eres, Gyula; Fitzsimmons, Michael R.; Lee, Ho Nyung

    2016-01-01

    Strong Coulomb repulsion and spin–orbit coupling are known to give rise to exotic physical phenomena in transition metal oxides. Initial attempts to investigate systems, where both of these fundamental interactions are comparably strong, such as 3d and 5d complex oxide superlattices, have revealed properties that only slightly differ from the bulk ones of the constituent materials. Here we observe that the interfacial coupling between the 3d antiferromagnetic insulator SrMnO3 and the 5d paramagnetic metal SrIrO3 is enormously strong, yielding an anomalous Hall response as the result of charge transfer driven interfacial ferromagnetism. These findings show that low dimensional spin–orbit entangled 3d–5d interfaces provide an avenue to uncover technologically relevant physical phenomena unattainable in bulk materials. PMID:27596572

  16. Emerging magnetism and anomalous Hall effect in iridate–manganite heterostructures

    DOE PAGES

    Nichols, John; Gao, Xiang; Lee, Shinbuhm; ...

    2016-09-06

    We know strong Coulomb repulsion and spin–orbit coupling to give rise to exotic physical phenomena in transition metal oxides. Initial attempts to investigate systems, where both of these fundamental interactions are comparably strong, such as 3d and 5d complex oxide superlattices, have revealed properties that only slightly differ from the bulk ones of the constituent materials. Furthermore, we observe that the interfacial coupling between the 3d antiferromagnetic insulator SrMnO 3 and the 5d paramagnetic metal SrIrO 3 is enormously strong, yielding an anomalous Hall response as the result of charge transfer driven interfacial ferromagnetism. Our findings show that low dimensionalmore » spin–orbit entangled 3d–5d interfaces provide an avenue to uncover technologically relevant physical phenomena unattainable in bulk materials.« less

  17. Prediction of Quantum Anomalous Hall Insulator in half-fluorinated GaBi Honeycomb

    PubMed Central

    Chen, Sung-Ping; Huang, Zhi-Quan; Crisostomo, Christian P.; Hsu, Chia-Hsiu; Chuang, Feng-Chuan; Lin, Hsin; Bansil, Arun

    2016-01-01

    Using first-principles electronic structure calculations, we predict half-fluorinated GaBi honeycomb under tensile strain to harbor a quantum anomalous Hall (QAH) insulator phase. We show that this QAH phase is driven by a single inversion in the band structure at the Γ point. Moreover, we have computed the electronic spectrum of a half-fluorinated GaBi nanoribbon with zigzag edges, which shows that only one edge band crosses the Fermi level within the band gap. Our results suggest that half-fluorination of the GaBi honeycomb under tensile strain could provide a new platform for developing novel spintronics devices based on the QAH effect. PMID:27507248

  18. Observation of the Quantum Anomalous Hall Insulator to Anderson Insulator Quantum Phase Transition and its Scaling Behavior.

    PubMed

    Chang, Cui-Zu; Zhao, Weiwei; Li, Jian; Jain, J K; Liu, Chaoxing; Moodera, Jagadeesh S; Chan, Moses H W

    2016-09-16

    Fundamental insight into the nature of the quantum phase transition from a superconductor to an insulator in two dimensions, or from one plateau to the next or to an insulator in the quantum Hall effect, has been revealed through the study of its scaling behavior. Here, we report on the experimental observation of a quantum phase transition from a quantum-anomalous-Hall insulator to an Anderson insulator in a magnetic topological insulator by tuning the chemical potential. Our experiment demonstrates the existence of scaling behavior from which we extract the critical exponent for this quantum phase transition. We expect that our work will motivate much further investigation of many properties of quantum phase transition in this new context.

  19. Prediction of Quantum Anomalous Hall Insulator in half-fluorinated GaBi Honeycomb

    DOE PAGES

    Chen, Sung-Ping; Huang, Zhi-Quan; Crisostomo, Christian P.; ...

    2016-08-10

    Using first-principles electronic structure calculations, we predict half-fluorinated GaBi honeycomb under tensile strain to harbor a quantum anomalous Hall (QAH) insulator phase. We show that this QAH phase is driven by a single inversion in the band structure at the Γ point. Moreover, we have computed the electronic spectrum of a half-fluorinated GaBi nanoribbon with zigzag edges, which shows that only one edge band crosses the Fermi level within the band gap. In conclusion, our results suggest that half-fluorination of the GaBi honeycomb under tensile strain could provide a new platform for developing novel spintronics devices based on the QAHmore » effect.« less

  20. Topological quantization in units of the fine structure constant.

    PubMed

    Maciejko, Joseph; Qi, Xiao-Liang; Drew, H Dennis; Zhang, Shou-Cheng

    2010-10-15

    Fundamental topological phenomena in condensed matter physics are associated with a quantized electromagnetic response in units of fundamental constants. Recently, it has been predicted theoretically that the time-reversal invariant topological insulator in three dimensions exhibits a topological magnetoelectric effect quantized in units of the fine structure constant α=e²/ℏc. In this Letter, we propose an optical experiment to directly measure this topological quantization phenomenon, independent of material details. Our proposal also provides a way to measure the half-quantized Hall conductances on the two surfaces of the topological insulator independently of each other.

  1. Quantum anomalous Hall phase in a one-dimensional optical lattice

    NASA Astrophysics Data System (ADS)

    Liu, Sheng; Shao, L. B.; Hou, Qi-Zhe; Xue, Zheng-Yuan

    2018-03-01

    We propose to simulate and detect quantum anomalous Hall phase with ultracold atoms in a one-dimensional optical lattice, with the other synthetic dimension being realized by modulating spin-orbit coupling. We show that the system manifests a topologically nontrivial phase with two chiral edge states which can be readily detected in this synthetic two-dimensional system. Moreover, it is interesting that at the phase transition point there is a flat energy band and this system can also be in a topologically nontrivial phase with two Fermi zero modes existing at the boundaries by considering the synthetic dimension as a modulated parameter. We also show how to measure these topological phases experimentally in ultracold atoms. Another model with a random Rashba and Dresselhaus spin-orbit coupling strength is also found to exhibit topological nontrivial phase, and the impact of the disorder to the system is revealed.

  2. Anomalous Hall hysteresis in T m3F e5O12/Pt with strain-induced perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Tang, Chi; Sellappan, Pathikumar; Liu, Yawen; Xu, Yadong; Garay, Javier E.; Shi, Jing

    2016-10-01

    We demonstrate robust interface strain-induced perpendicular magnetic anisotropy in atomically flat ferrimagnetic insulator T m3F e5O12 (TIG) films grown with pulsed laser deposition on a substituted G d3G a5O12 substrate which maximizes the tensile strain at the interface. In bilayers consisting of Pt and TIG, we observe large squared Hall hysteresis loops over a wide range of thicknesses of Pt at room temperature. When a thin Cu layer is inserted between Pt and TIG, the Hall hysteresis magnitude decays but stays finite as the thickness of Cu increases up to 5 nm. However, if the Cu layer is placed atop Pt instead, the Hall hysteresis magnitude is consistently larger than when the Cu layer with the same thickness is inserted in between for all Cu thicknesses. These results suggest that both the proximity-induced ferromagnetism and spin current contribute to the anomalous Hall effect.

  3. Ultrahigh sensitivity of anomalous Hall effect sensor based on Cr-doped Bi 2Te 3 topological insulator thin films

    DOE PAGES

    Ni, Y.; Zhang, Z.; Nlebedim, I. C.; ...

    2016-07-01

    Anomalous Hall effect (AHE) was recently discovered in magnetic element-doped topological insulators (TIs), which promises low power consumption and high efficiency spintronics and electronics. This discovery broadens the family of Hall sensors. In this paper, AHE sensors based on Cr-doped Bi 2Te 3 topological insulator thin films are studied with two thicknesses (15 and 65 nm). It is found, in both cases, that ultrahigh Hall sensitivity can be obtained in Cr-doped Bi 2Te 3. Hall sensitivity reaches 1666 Ω/T in the sensor with the 15 nm TI thin film, which is higher than that of the conventional semiconductor HE sensor.more » The AHE of 65 nm sensors is even stronger, which causes the sensitivity increasing to 2620 Ω/T. Furthermore, after comparing Cr-doped Bi 2Te 3 with the previously studied Mn-doped Bi 2Te 3 TI Hall sensor, the sensitivity of the present AHE sensor shows about 60 times higher in 65 nm sensors. Furthermore, the implementation of AHE sensors based on a magnetic-doped TI thin film indicates that the TIs are good candidates for ultrasensitive AHE sensors.« less

  4. Anomalous magnetotransport properties of high-quality single crystals of Weyl semimetal WTe2: Sign change of Hall resistivity

    NASA Astrophysics Data System (ADS)

    Jha, Rajveer; Higashinaka, Ryuji; Matsuda, Tatsuma D.; Ribeiro, Raquel A.; Aoki, Yuji

    2018-05-01

    We report on a systematic study of Hall effect using high quality single crystals of type-II Weyl semimetal WTe2 with the applied magnetic field B//c. The residual resistivity ratio of 1330 and the large magnetoresistance of 1.5 × 106 % in 9 T at 2 K, being in the highest class in the literature, attest to their high quality. Based on a simple two-carrier model, the densities (ne and nh) and mobilities (μe and μh) for electron and hole carriers have been uniquely determined combining both Hall- and electrical-resistivity data. The difference between ne and nh is 1% at 2 K, indicating that the system is in an compensated condition. The negative Hall resistivity growing rapidly below 20 K is due to a rapidly increasing μh/μe approaching one. Below 3 K in a low field region, we found the Hall resistivity becomes positive, reflecting that μh/μe finally exceeds one in this region. These anomalous behaviors of the carrier densities and mobilities might be associated with the existence of a Lifshitz transition and/or the spin texture on the Fermi surface.

  5. Fractional Quantization of the Hall Effect

    DOE R&D Accomplishments Database

    Laughlin, R. B.

    1984-02-27

    The Fractional Quantum Hall Effect is caused by the condensation of a two-dimensional electron gas in a strong magnetic field into a new type of macroscopic ground state, the elementary excitations of which are fermions of charge 1/m, where m is an odd integer. A mathematical description is presented.

  6. Quenching of the Quantum Hall Effect in Graphene with Scrolled Edges

    NASA Astrophysics Data System (ADS)

    Cresti, Alessandro; Fogler, Michael M.; Guinea, Francisco; Castro Neto, A. H.; Roche, Stephan

    2012-04-01

    Edge nanoscrolls are shown to strongly influence transport properties of suspended graphene in the quantum Hall regime. The relatively long arclength of the scrolls in combination with their compact transverse size results in formation of many nonchiral transport channels in the scrolls. They short circuit the bulk current paths and inhibit the observation of the quantized two-terminal resistance. Unlike competing theoretical proposals, this mechanism of disrupting the Hall quantization in suspended graphene is not caused by ill-chosen placement of the contacts, singular elastic strains, or a small sample size.

  7. Exploring 4D quantum Hall physics with a 2D topological charge pump

    NASA Astrophysics Data System (ADS)

    Lohse, Michael; Schweizer, Christian; Price, Hannah M.; Zilberberg, Oded; Bloch, Immanuel

    2018-01-01

    The discovery of topological states of matter has greatly improved our understanding of phase transitions in physical systems. Instead of being described by local order parameters, topological phases are described by global topological invariants and are therefore robust against perturbations. A prominent example is the two-dimensional (2D) integer quantum Hall effect: it is characterized by the first Chern number, which manifests in the quantized Hall response that is induced by an external electric field. Generalizing the quantum Hall effect to four-dimensional (4D) systems leads to the appearance of an additional quantized Hall response, but one that is nonlinear and described by a 4D topological invariant—the second Chern number. Here we report the observation of a bulk response with intrinsic 4D topology and demonstrate its quantization by measuring the associated second Chern number. By implementing a 2D topological charge pump using ultracold bosonic atoms in an angled optical superlattice, we realize a dynamical version of the 4D integer quantum Hall effect. Using a small cloud of atoms as a local probe, we fully characterize the nonlinear response of the system via in situ imaging and site-resolved band mapping. Our findings pave the way to experimentally probing higher-dimensional quantum Hall systems, in which additional strongly correlated topological phases, exotic collective excitations and boundary phenomena such as isolated Weyl fermions are predicted.

  8. Exploring 4D quantum Hall physics with a 2D topological charge pump.

    PubMed

    Lohse, Michael; Schweizer, Christian; Price, Hannah M; Zilberberg, Oded; Bloch, Immanuel

    2018-01-03

    The discovery of topological states of matter has greatly improved our understanding of phase transitions in physical systems. Instead of being described by local order parameters, topological phases are described by global topological invariants and are therefore robust against perturbations. A prominent example is the two-dimensional (2D) integer quantum Hall effect: it is characterized by the first Chern number, which manifests in the quantized Hall response that is induced by an external electric field. Generalizing the quantum Hall effect to four-dimensional (4D) systems leads to the appearance of an additional quantized Hall response, but one that is nonlinear and described by a 4D topological invariant-the second Chern number. Here we report the observation of a bulk response with intrinsic 4D topology and demonstrate its quantization by measuring the associated second Chern number. By implementing a 2D topological charge pump using ultracold bosonic atoms in an angled optical superlattice, we realize a dynamical version of the 4D integer quantum Hall effect. Using a small cloud of atoms as a local probe, we fully characterize the nonlinear response of the system via in situ imaging and site-resolved band mapping. Our findings pave the way to experimentally probing higher-dimensional quantum Hall systems, in which additional strongly correlated topological phases, exotic collective excitations and boundary phenomena such as isolated Weyl fermions are predicted.

  9. Large power factor and anomalous Hall effect and their correlation with observed linear magneto resistance in Co-doped Bi2Se3 3D topological insulator

    NASA Astrophysics Data System (ADS)

    Singh, Rahul; Shukla, K. K.; Kumar, A.; Okram, G. S.; Singh, D.; Ganeshan, V.; Lakhani, Archana; Ghosh, A. K.; Chatterjee, Sandip

    2016-09-01

    Magnetoresistance (MR), thermo power, magnetization and Hall effect measurements have been performed on Co-doped Bi2Se3 topological insulators. The undoped sample shows that the maximum MR as a destructive interference due to a π-Berry phase leads to a decrease of MR. As the Co is doped, the linearity in MR is increased. The observed MR of Bi2Se3 can be explained with the classical model. The low temperature MR behavior of Co doped samples cannot be explained with the same model, but can be explained with the quantum linear MR model. Magnetization behavior indicates the establishment of ferromagnetic ordering with Co doping. Hall effect data also supports the establishment of ferromagnetic ordering in Co-doped Bi2Se3 samples by showing the anomalous Hall effect. Furthermore, when spectral weight suppression is insignificant, Bi2Se3 behaves as a dilute magnetic semiconductor. Moreover, the maximum power factor is observed when time reversal symmetry (TRS) is maintained. As the TRS is broken the power factor value is decreased, which indicates that with the rise of Dirac cone above the Fermi level the anomalous Hall effect and linearity in MR increase and the power factor decreases.

  10. Nonlocal electrical detection of spin accumulation generated by anomalous Hall effect in mesoscopic N i81F e19 films

    NASA Astrophysics Data System (ADS)

    Qin, Chuan; Chen, Shuhan; Cai, Yunjiao; Kandaz, Fatih; Ji, Yi

    2017-10-01

    Spin accumulation generated by the anomalous Hall effect (AHE) in mesoscopic ferromagnetic N i81F e19 (permalloy, Py) films is detected electrically by a nonlocal method. The reciprocal phenomenon, the inverse spin Hall effect (ISHE), can also be generated and detected all electrically in the same structure. For accurate quantitative analysis, a series of nonlocal AHE/ISHE structures and supplementary structures are fabricated on each sample substrate to account for statistical variations and to accurately determine all essential physical parameters in situ. By exploring Py thicknesses of 4, 8, and 12 nm, the Py spin diffusion length λPy is found to be much shorter than the film thicknesses. The product of λPy and the Py spin Hall angle αSH is determined to be independent of thickness and resistivity: αSHλPy=(0.066 ±0.009 ) nm at 5 K and (0.041 ±0.010 )nm at 295 K. These values are comparable to those obtained from mesoscopic Pt films.

  11. Semiclassical theory of Hall viscosity

    NASA Astrophysics Data System (ADS)

    Biswas, Rudro

    2014-03-01

    Hall viscosity is an intriguing stress response in quantum Hall systems and is predicted to be observable via the conductivity in an inhomogeneous electric field. This has been studied extensively using a range of techniques, such as adiabatic transport, effective field theories, and Kubo formulae. All of these are, however, agnostic as to the distinction between strongly correlated quantum Hall states and non-interacting ones, where the effect arises due to the fundamental non-commuting nature of velocities and orbit positions in a magnetic field. In this talk I shall develop the semiclassical theory of quantized cyclotron orbits drifting in an applied inhomogeneous electric field and use it to provide a clear physical picture of how single particle properties in a magnetic field contribute to the Hall viscosity-dependence of the conductivity.

  12. Quantum Hall resistance standard in graphene devices under relaxed experimental conditions

    NASA Astrophysics Data System (ADS)

    Ribeiro-Palau, R.; Lafont, F.; Brun-Picard, J.; Kazazis, D.; Michon, A.; Cheynis, F.; Couturaud, O.; Consejo, C.; Jouault, B.; Poirier, W.; Schopfer, F.

    2015-11-01

    The quantum Hall effect provides a universal standard for electrical resistance that is theoretically based on only the Planck constant h and the electron charge e. Currently, this standard is implemented in GaAs/AlGaAs, but graphene's electronic properties have given hope for a more practical device. Here, we demonstrate that the experimental conditions necessary for the operation of devices made of high-quality graphene grown by chemical vapour deposition on silicon carbide can be extended and significantly relaxed compared with those for state-of-the-art GaAs/AlGaAs devices. In particular, the Hall resistance can be accurately quantized to within 1 × 10-9 over a 10 T wide range of magnetic flux density, down to 3.5 T, at a temperature of up to 10 K or with a current of up to 0.5 mA. This experimental simplification highlights the great potential of graphene in the development of user-friendly and versatile quantum standards that are compatible with broader industrial uses beyond those in national metrology institutes. Furthermore, the measured agreement of the quantized Hall resistance in graphene and GaAs/AlGaAs, with an ultimate uncertainty of 8.2 × 10-11, supports the universality of the quantum Hall effect. This also provides evidence of the relation of the quantized Hall resistance with h and e, which is crucial for the new Système International d'unités to be based on fixing such fundamental constants of nature.

  13. Macroscopic Quantum Phase-Locking Model for the Quantum Hall = Effect

    NASA Astrophysics Data System (ADS)

    Wang, Te-Chun; Gou, Yih-Shun

    1997-08-01

    A macroscopic model of nonlinear dissipative phase-locking between a Josephson-like frequency and a macroscopic electron wave frequency is proposed to explain the Quantum Hall Effect. It is well known that a r.f-biased Josephson junction displays a collective phase-locking behavior which can be described by a non-autonomous second order equation or an equivalent 2+1-dimensional dynamical system. Making a direct analogy between the QHE and the Josephson system, this report proposes a computer-solving nonlinear dynamical model for the quantization of the Hall resistance. In this model, the Hall voltage is assumed to be proportional to a Josephson-like frequency and the Hall current is assumed related to a coherent electron wave frequency. The Hall resistance is shown to be quantized in units of the fine structure constant as the ratio of these two frequencies are locked into a rational winding number. To explain the sample-width dependence of the critical current, the 2DEG under large applied current is further assumed to develop a Josephson-like junction array in which all Josephson-like frequencies are synchronized. Other remarkable features of the QHE such as the resistance fluctuation and the even-denominator states are also discussed within this picture.

  14. Reversible electrical-field control of magnetization and anomalous Hall effect in Co/PMN-PT hybrid heterostructures

    NASA Astrophysics Data System (ADS)

    Wang, J.; Huang, Q. K.; Lu, S. Y.; Tian, Y. F.; Chen, Y. X.; Bai, L. H.; Dai, Y.; Yan, S. S.

    2018-04-01

    Room-temperature reversible electrical-field control of the magnetization and the anomalous Hall effect was reported in hybrid multiferroic heterojunctions based on Co/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (PMN-PT). We demonstrate herein that electrical-field-induced strain and oxygen-ion migration in ZnO/Co/PMN-PT junctions exert opposing effects on the magnetic properties of the Co sublayer, and the competition between these effects determines the final magnitude of magnetization. This proof-of-concept investigation opens an alternative way to optimize and enhance the electrical-field effect on magnetism through the combination of multiple electrical manipulation mechanisms in hybrid multiferroic devices.

  15. Mini array of quantum Hall devices based on epitaxial graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novikov, S.; Lebedeva, N.; Hämäläinen, J.

    2016-05-07

    Series connection of four quantum Hall effect (QHE) devices based on epitaxial graphene films was studied for realization of a quantum resistance standard with an up-scaled value. The tested devices showed quantum Hall plateaux R{sub H,2} at a filling factor v = 2 starting from a relatively low magnetic field (between 4 T and 5 T) when the temperature was 1.5 K. The precision measurements of quantized Hall resistance of four QHE devices connected by triple series connections and external bonding wires were done at B = 7 T and T = 1.5 K using a commercial precision resistance bridge with 50 μA current through the QHE device. The results showed thatmore » the deviation of the quantized Hall resistance of the series connection of four graphene-based QHE devices from the expected value of 4×R{sub H,2} = 2 h/e{sup 2} was smaller than the relative standard uncertainty of the measurement (<1 × 10{sup −7}) limited by the used resistance bridge.« less

  16. Quantum transport in graphene Hall bars: Effects of side gates

    NASA Astrophysics Data System (ADS)

    Petrović, M. D.; Peeters, F. M.

    2017-05-01

    Quantum electron transport in side-gated graphene Hall bars is investigated in the presence of quantizing external magnetic fields. The asymmetric potential of four side-gates distorts the otherwise flat bands of the relativistic Landau levels, and creates new propagating states in the Landau spectrum (i.e. snake states). The existence of these new states leads to an interesting modification of the bend and Hall resistances, with new quantizing plateaus appearing in close proximity of the Landau levels. The electron guiding in this system can be understood by studying the current density profiles of the incoming and outgoing modes. From the fact that guided electrons fully transmit without any backscattering (similarly to edge states), we are able to analytically predict the values of the quantized resistances, and they match the resistance data we obtain with our numerical (tight-binding) method. These insights in the electron guiding will be useful in predicting the resistances for other side-gate configurations, and possibly in other system geometries, as long as there is no backscattering of the guided states.

  17. Theory for the anomalous electron transport in Hall-effect thrusters

    NASA Astrophysics Data System (ADS)

    Lafleur, Trevor; Baalrud, Scott; Chabert, Pascal

    2016-09-01

    Using insights from particle-in-cell (PIC) simulations, we develop a kinetic theory to explain the anomalous cross-field electron transport in Hall-effect thrusters (HETs). The large axial electric field in the acceleration region of HETs, together with the radially applied magnetic field, causes electrons to drift in the azimuthal direction with a very high velocity. This drives an electron cyclotron instability that produces large amplitude oscillations in the plasma density and azimuthal electric field, and which is convected downstream due to the large axial ion drift velocity. The frequency and wavelength of the instability are of the order of 5 MHz and 1 mm respectively, while the electric field amplitude can be of a similar magnitude to axial electric field itself. The instability leads to enhanced electron scattering many orders of magnitude higher than that from standard electron-neutral or electron-ion Coulomb collisions, and gives electron mobilities in good agreement with experiment. Since the instability is a strong function of almost all plasma properties, the mobility cannot in general be fitted with simple 1/B or 1/B2 scaling laws, and changes to the secondary electron emission coefficient of the HET channel walls are expected to play a role in the evolution of the instability. This work received financial support from a CNES postdoctoral research award.

  18. Background and Recent Progress in Anomalous Transport Simulation

    DTIC Science & Technology

    2017-07-19

    NUMBER (Include area code) 19 July 2017 Briefing Charts 14 June 2017 - 19 July 2017 Background and Recent Progress in Anomalous Transport Simulation ...and Recent Progress in Anomalous Transport Simulation 19 Jul 2017 Justin Koo AFRL/RQRS Edwards AFB, CA 2DISTRIBUTION A: Approved for public release...Baalrud, S.D. and Chabert, P., “Theory for the anomalous electron transport in Hall effect thrusters. I. Insights from particle-in-cell simulations

  19. Novel behaviors of anomalous Hall effect in TbFeCo ferrimagnetic thin films

    NASA Astrophysics Data System (ADS)

    Ando, Ryo; Komine, Takashi; Sato, Shiori; Kaneta, Shingo; Hara, Yoshiaki

    2018-05-01

    We investigate the temperature dependence and the thickness dependence of anomalous Hall effect (AHE) of TbFeCo ultra-thin films under high magnetic field. The sign change on temperature dependence of AHE in 20nm-thick TbFeCo film with rare-earth (RE) rich composition was observed. The AHE sign at low temperature is negative while it gradually becomes positive as the temperature increases. Moreover, the AHE sign for 5nm-thick TbFeCo film remains positive while that for 50nm-thick TbFeCo film remains negative at temperature in the range from 5 K to 400 K. The similar thickness dependence of AHE in TM-rich samples was also observed. From the mean-field approximation, the sign change temperature in AHE is related to the compensation temperature and the existence of interfacial region, which has the TM-rich composition and the weak anisotropy. Therefore, We clarified that the novel behavior of AHE sign changes in TbFeCo thin films with different thickness can be explained by the interfacial layer with weak anisotropy and two phase model.

  20. Photonic topological boundary pumping as a probe of 4D quantum Hall physics

    NASA Astrophysics Data System (ADS)

    Zilberberg, Oded; Huang, Sheng; Guglielmon, Jonathan; Wang, Mohan; Chen, Kevin P.; Kraus, Yaacov E.; Rechtsman, Mikael C.

    2018-01-01

    When a two-dimensional (2D) electron gas is placed in a perpendicular magnetic field, its in-plane transverse conductance becomes quantized; this is known as the quantum Hall effect. It arises from the non-trivial topology of the electronic band structure of the system, where an integer topological invariant (the first Chern number) leads to quantized Hall conductance. It has been shown theoretically that the quantum Hall effect can be generalized to four spatial dimensions, but so far this has not been realized experimentally because experimental systems are limited to three spatial dimensions. Here we use tunable 2D arrays of photonic waveguides to realize a dynamically generated four-dimensional (4D) quantum Hall system experimentally. The inter-waveguide separation in the array is constructed in such a way that the propagation of light through the device samples over momenta in two additional synthetic dimensions, thus realizing a 2D topological pump. As a result, the band structure has 4D topological invariants (known as second Chern numbers) that support a quantized bulk Hall response with 4D symmetry. In a finite-sized system, the 4D topological bulk response is carried by localized edge modes that cross the sample when the synthetic momenta are modulated. We observe this crossing directly through photon pumping of our system from edge to edge and corner to corner. These crossings are equivalent to charge pumping across a 4D system from one three-dimensional hypersurface to the spatially opposite one and from one 2D hyperedge to another. Our results provide a platform for the study of higher-dimensional topological physics.

  1. Photonic topological boundary pumping as a probe of 4D quantum Hall physics.

    PubMed

    Zilberberg, Oded; Huang, Sheng; Guglielmon, Jonathan; Wang, Mohan; Chen, Kevin P; Kraus, Yaacov E; Rechtsman, Mikael C

    2018-01-03

    When a two-dimensional (2D) electron gas is placed in a perpendicular magnetic field, its in-plane transverse conductance becomes quantized; this is known as the quantum Hall effect. It arises from the non-trivial topology of the electronic band structure of the system, where an integer topological invariant (the first Chern number) leads to quantized Hall conductance. It has been shown theoretically that the quantum Hall effect can be generalized to four spatial dimensions, but so far this has not been realized experimentally because experimental systems are limited to three spatial dimensions. Here we use tunable 2D arrays of photonic waveguides to realize a dynamically generated four-dimensional (4D) quantum Hall system experimentally. The inter-waveguide separation in the array is constructed in such a way that the propagation of light through the device samples over momenta in two additional synthetic dimensions, thus realizing a 2D topological pump. As a result, the band structure has 4D topological invariants (known as second Chern numbers) that support a quantized bulk Hall response with 4D symmetry. In a finite-sized system, the 4D topological bulk response is carried by localized edge modes that cross the sample when the synthetic momenta are modulated. We observe this crossing directly through photon pumping of our system from edge to edge and corner to corner. These crossings are equivalent to charge pumping across a 4D system from one three-dimensional hypersurface to the spatially opposite one and from one 2D hyperedge to another. Our results provide a platform for the study of higher-dimensional topological physics.

  2. Chiral pair of Fermi arcs, anomaly cancellation, and spin or valley Hall effects in Weyl metals with broken inversion symmetry

    NASA Astrophysics Data System (ADS)

    Jang, Iksu; Kim, Ki-Seok

    2018-04-01

    Anomaly cancellation has been shown to occur in broken time-reversal symmetry Weyl metals, which explains the existence of a Fermi arc. We extend this result in the case of broken inversion symmetry Weyl metals. Constructing a minimal model that takes a double pair of Weyl points, we demonstrate the anomaly cancellation explicitly. This demonstration explains why a chiral pair of Fermi arcs appear in broken inversion symmetry Weyl metals. In particular, we find that this pair of Fermi arcs gives rise to either "quantized" spin Hall or valley Hall effects, which corresponds to the "quantized" version of the charge Hall effect in broken time-reversal symmetry Weyl metals.

  3. ION ACOUSTIC TURBULENCE, ANOMALOUS TRANSPORT, AND SYSTEM DYNAMICS IN HALL EFFECT THRUSTERS

    DTIC Science & Technology

    2017-06-30

    17394 4 / 13 HALL EFFECT THRUSTERS Hall Effect Thrusters (HET): Traditionally Modeled in R-Z Named for Hall Current in θ Uses Quasi -1D Electron Fluid...HET): Traditionally Modeled in R-Z Named for Hall Current in θ Uses Quasi -1D Electron Fluid Solve Ohm’s Law→ No e−-momentum Zθ Unrolled to YZ...Current in θ Uses Quasi -1D Electron Fluid Solve Ohm’s Law→ No e−-momentum Zθ Unrolled to YZ Electron ExB Drift Unmagnetized Ions Results in Hall Current

  4. Evidence for the absence of electron-electron Coulomb interaction quantum correction to the anomalous Hall effect in Co2FeSi Heusler-alloy thin films

    NASA Astrophysics Data System (ADS)

    Hazra, Binoy Krishna; Kaul, S. N.; Srinath, S.; Raja, M. Manivel; Rawat, R.; Lakhani, Archana

    2017-11-01

    Electrical (longitudinal) resistivity ρx x, at H =0 and H =80 kOe, anomalous Hall resistivity ρxy A H, and magnetization M , have been measured at different temperatures in the range 5-300 K on the Co2FeSi (CFS) Heusler-alloy thin films, grown on Si(111) substrate, with thickness ranging from 12 to 100 nm. At fixed fields H =0 and H =80 kOe, ρx x(T ) goes through a minimum at T =Tmin (which depends on the film thickness) in all the CFS thin films. In sharp contrast, both the anomalous Hall coefficient RA and ρxy A H monotonously increase with temperature without exhibiting a minimum. Elaborate analyses of ρx x, RA, and ρxy A H establishes the following. (i) The enhanced electron-electron Coulomb interaction (EEI) quantum correction (QC) is solely responsible for the upturn in "zero-field" and "in-field" ρx x(T ) at T anomalous Hall resistivity/coefficient vanish for both skew scattering and side-jump mechanisms even though the EEI corrections to longitudinal resistivity are finite. A strong suppression (by an order of magnitude) is observed in the anomalous Hall conductivity from the resonantly enhanced intrinsic value of 103 S/cm when the Fermi level is located near the anticrossing

  5. Scaling of anomalous Hall effect in Ta/CoFeB/MgAl2O4/Ta multilayers

    NASA Astrophysics Data System (ADS)

    Wu, Yong; Zhang, Qimeng; Meng, Kangkang; Chen, Jikun; Xu, Xiaoguang; Miao, Jun; Jiang, Yong

    2017-06-01

    The anomalous Hall effect (AHE) is studied in Ta/CoFeB/MgAl2O4/Ta multilayers with different thicknesses of MgAl2O4 (t), which causes in-plane magnetic anisotropy (IMA) for t = 1.0 nm and perpendicular magnetic anisotropy (PMA) for t ≥ 1.2 nm. Conventional scaling was demonstrated to be not inadequate in our case. The origin of the AHE in Ta/CoFeB/MgAl2O4/Ta multilayers is mainly an extrinsic mechanism. The contribution of skew scattering (SS) is unneglectable, and both the SS and side jump are enhanced when the magnetic anisotropy changes from IMA to PMA, indicating that the oxidation at the interface of CoFeB/MgAl2O4 has a dominant influence on the AHE.

  6. Theory of Multifarious Quantum Phases and Large Anomalous Hall Effect in Pyrochlore Iridate Thin Films

    PubMed Central

    Hwang, Kyusung; Kim, Yong Baek

    2016-01-01

    We theoretically investigate emergent quantum phases in the thin film geometries of the pyrochore iridates, where a number of exotic quantum ground states are proposed to occur in bulk materials as a result of the interplay between electron correlation and strong spin-orbit coupling. The fate of these bulk phases as well as novel quantum states that may arise only in the thin film platforms, are studied via a theoretical model that allows layer-dependent magnetic structures. It is found that the magnetic order develop in inhomogeneous fashions in the thin film geometries. This leads to a variety of magnetic metal phases with modulated magnetic ordering patterns across different layers. Both the bulk and boundary electronic states in these phases conspire to promote unusual electronic properties. In particular, such phases are akin to the Weyl semimetal phase in the bulk system and they would exhibit an unusually large anomalous Hall effect. PMID:27418293

  7. Anomalous thermoelectric phenomena in lattice models of multi-Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Gorbar, E. V.; Miransky, V. A.; Shovkovy, I. A.; Sukhachov, P. O.

    2017-10-01

    The thermoelectric transport coefficients are calculated in a generic lattice model of multi-Weyl semimetals with a broken time-reversal symmetry by using the Kubo's linear response theory. The contributions connected with the Berry curvature-induced electromagnetic orbital and heat magnetizations are systematically taken into account. It is shown that the thermoelectric transport is profoundly affected by the nontrivial topology of multi-Weyl semimetals. In particular, the calculation reveals a number of thermal coefficients of the topological origin which describe the anomalous Nernst and thermal Hall effects in the absence of background magnetic fields. Similarly to the anomalous Hall effect, all anomalous thermoelectric coefficients are proportional to the integer topological charge of the Weyl nodes. The dependence of the thermoelectric coefficients on the chemical potential and temperature is also studied.

  8. Light-Induced Type-II Band Inversion and Quantum Anomalous Hall State in Monolayer FeSe

    NASA Astrophysics Data System (ADS)

    Wang, Z. F.; Liu, Zhao; Yang, Jinlong; Liu, Feng

    2018-04-01

    Coupling a quantum anomalous Hall (QAH) state with a superconducting state offers an attractive approach to detect the signature alluding to a topological superconducting state [Q. L. He et al., Science 357, 294 (2017), 10.1126/science.aag2792], but its explanation could be clouded by disorder effects in magnetic doped QAH materials. On the other hand, an antiferromagnetic (AFM) quantum spin Hall (QSH) state is identified in the well-known high-temperature 2D superconductor of monolayer FeSe [Z. F. Wang et al., Nat. Mater. 15, 968 (2016), 10.1038/nmat4686]. Here, we report a light-induced type-II band inversion (BI) and a QSH-to-QAH phase transition in the monolayer FeSe. Depending on the handedness of light, a spin-tunable QAH state with a high Chern number of ±2 is realized. In contrast to the conventional type-I BI resulting from intrinsic spin-orbital coupling (SOC), which inverts the band an odd number of times and respects time reversal symmetry, the type-II BI results from a light-induced handedness-dependent effective SOC, which inverts the band an even number of times and does not respect time reversal symmetry. The interplay between these two SOC terms makes the spin-up and -down bands of an AFM QSH state respond oppositely to a circularly polarized light, leading to the type-II BI and an exotic topological phase transition. Our finding affords an exciting opportunity to detect Majorana fermions in one single material without magnetic doping.

  9. Anomalous electron transport in Hall-effect thrusters: Comparison between quasi-linear kinetic theory and particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Lafleur, T.; Martorelli, R.; Chabert, P.; Bourdon, A.

    2018-06-01

    Kinetic drift instabilities have been implicated as a possible mechanism leading to anomalous electron cross-field transport in E × B discharges, such as Hall-effect thrusters. Such instabilities, which are driven by the large disparity in electron and ion drift velocities, present a significant challenge to modelling efforts without resorting to time-consuming particle-in-cell (PIC) simulations. Here, we test aspects of quasi-linear kinetic theory with 2D PIC simulations with the aim of developing a self-consistent treatment of these instabilities. The specific quantities of interest are the instability growth rate (which determines the spatial and temporal evolution of the instability amplitude), and the instability-enhanced electron-ion friction force (which leads to "anomalous" electron transport). By using the self-consistently obtained electron distribution functions from the PIC simulations (which are in general non-Maxwellian), we find that the predictions of the quasi-linear kinetic theory are in good agreement with the simulation results. By contrast, the use of Maxwellian distributions leads to a growth rate and electron-ion friction force that is around 2-4 times higher, and consequently significantly overestimates the electron transport. A possible method for self-consistently modelling the distribution functions without requiring PIC simulations is discussed.

  10. Inverse spin Hall effect by spin injection

    NASA Astrophysics Data System (ADS)

    Liu, S. Y.; Horing, Norman J. M.; Lei, X. L.

    2007-09-01

    Motivated by a recent experiment [S. O. Valenzuela and M. Tinkham, Nature (London) 442, 176 (2006)], the authors present a quantitative microscopic theory to investigate the inverse spin-Hall effect with spin injection into aluminum considering both intrinsic and extrinsic spin-orbit couplings using the orthogonalized-plane-wave method. Their theoretical results are in good agreement with the experimental data. It is also clear that the magnitude of the anomalous Hall resistivity is mainly due to contributions from extrinsic skew scattering.

  11. Spontaneous Hall effects in the electron system at the SmTiO3/EuTiO3 interface

    NASA Astrophysics Data System (ADS)

    Ahadi, Kaveh; Kim, Honggyu; Stemmer, Susanne

    2018-05-01

    Magnetotransport and magnetism of epitaxial SmTiO3/EuTiO3 heterostructures grown by molecular beam epitaxy are investigated. It is shown that the polar discontinuity at the interface introduces ˜3.9 × 1014 cm-2 carriers into the EuTiO3. The itinerant carriers exhibit two distinct contributions to the spontaneous Hall effect. The anomalous Hall effect appears despite a very small magnetization, indicating a non-collinear spin structure, and the second contribution resembles a topological Hall effect. Qualitative differences exist in the temperature dependence of both Hall effects when compared to uniformly doped EuTiO3. In particular, the topological Hall effect contribution appears at higher temperatures and the anomalous Hall effect shows a sign change with temperature. The results suggest that interfaces can be used to tune topological phenomena in itinerant magnetic systems.

  12. Fractional quantum Hall effect at Landau level filling ν = 4/11

    DOE PAGES

    Pan, W.; Baldwin, K. W.; West, K. W.; ...

    2015-01-09

    In this study, we report low temperature electronic transport results on the fractional quantum Hall effect of composite fermions at Landau level filling ν = 4/11 in a very high mobility and low density sample. Measurements were carried out at temperatures down to 15mK, where an activated magnetoresistance R xx and a quantized Hall resistance R xy, within 1% of the expected value of h/(4/11)e 2, were observed. The temperature dependence of the R xx minimum at 4/11 yields an activation energy gap of ~ 7 mK. Developing Hall plateaus were also observed at the neighboring states at ν =more » 3/8 and 5/13.« less

  13. Gate-Controlled Transmission of Quantum Hall Edge States in Bilayer Graphene.

    PubMed

    Li, Jing; Wen, Hua; Watanabe, Kenji; Taniguchi, Takashi; Zhu, Jun

    2018-02-02

    The edge states of the quantum Hall and fractional quantum Hall effect of a two-dimensional electron gas carry key information of the bulk excitations. Here we demonstrate gate-controlled transmission of edge states in bilayer graphene through a potential barrier with tunable height. The backscattering rate is continuously varied from 0 to close to 1, with fractional quantized values corresponding to the sequential complete backscattering of individual modes. Our experiments demonstrate the feasibility to controllably manipulate edge states in bilayer graphene, thus opening the door to more complex experiments.

  14. Gate-Controlled Transmission of Quantum Hall Edge States in Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Li, Jing; Wen, Hua; Watanabe, Kenji; Taniguchi, Takashi; Zhu, Jun

    2018-02-01

    The edge states of the quantum Hall and fractional quantum Hall effect of a two-dimensional electron gas carry key information of the bulk excitations. Here we demonstrate gate-controlled transmission of edge states in bilayer graphene through a potential barrier with tunable height. The backscattering rate is continuously varied from 0 to close to 1, with fractional quantized values corresponding to the sequential complete backscattering of individual modes. Our experiments demonstrate the feasibility to controllably manipulate edge states in bilayer graphene, thus opening the door to more complex experiments.

  15. Anomalous spin Hall magnetoresistance in Pt/Co bilayers

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Masashi; Towa, Daiki; Lau, Yong-Chang; Takahashi, Saburo; Hayashi, Masamitsu

    2018-05-01

    We have studied the spin Hall magnetoresistance (SMR), the magnetoresistance within the plane transverse to the current flow, of Pt/Co bilayers. We find that the SMR increases with increasing Co thickness: the effective spin Hall angle for bilayers with thick Co exceeds the reported values of Pt when a conventional drift-diffusion model is used. An extended model including spin transport within the Co layer cannot account for the large SMR. To identify its origin, contributions from other sources are studied. For most bilayers, the SMR increases with decreasing temperature and increasing magnetic field, indicating that magnon-related effects in the Co layer play little role. Without the Pt layer, we do not observe the large SMR found for the Pt/Co bilayers with thick Co. Implementing the effect of the so-called interface magnetoresistance and the textured induced anisotropic scattering cannot account for the Co thickness dependent SMR. Since the large SMR is present for W/Co but its magnitude reduces in W/CoFeB, we infer that its origin is associated with a particular property of Co.

  16. Master equation for open two-band systems and its applications to Hall conductance

    NASA Astrophysics Data System (ADS)

    Shen, H. Z.; Zhang, S. S.; Dai, C. M.; Yi, X. X.

    2018-02-01

    Hall conductivity in the presence of a dephasing environment has recently been investigated with a dissipative term introduced phenomenologically. In this paper, we study the dissipative topological insulator (TI) and its topological transition in the presence of quantized electromagnetic environments. A Lindblad-type equation is derived to determine the dynamics of a two-band system. When the two-band model describes TIs, the environment may be the fluctuations of radiation that surround the TIs. We find the dependence of decay rates in the master equation on Bloch vectors in the two-band system, which leads to a mixing of the band occupations. Hence the environment-induced current is in general not perfectly topological in the presence of coupling to the environment, although deviations are small in the weak limit. As an illustration, we apply the Bloch-vector-dependent master equation to TIs and calculate the Hall conductance of tight-binding electrons in a two-dimensional lattice. The influence of environments on the Hall conductance is presented and discussed. The calculations show that the phase transition points of the TIs are robust against the quantized electromagnetic environment. The results might bridge the gap between quantum optics and topological photonic materials.

  17. Degradation of GaAs/AlGaAs Quantized Hall Resistors With Alloyed AuGe/Ni Contacts.

    PubMed

    Lee, Kevin C

    1998-01-01

    Careful testing over a period of 6 years of a number of GaAs/AlGaAs quantized Hall resistors (QHR) made with alloyed AuGe/Ni contacts, both with and without passivating silicon nitride coatings, has resulted in the identification of important mechanisms responsible for degradation in the performance of the devices as resistance standards. Covering the contacts with a film, such as a low-temperature silicon nitride, that is impervious to humidity and other contaminants in the atmosphere prevents the contacts from degrading. The devices coated with silicon nitride used in this study, however, showed the effects of a conducting path in parallel with the 2-dimensional electron gas (2-DEG) at temperatures above 1.1 K which interferes with their use as resistance standards. Several possible causes of this parallel conduction are evaluated. On the basis of this work, two methods are proposed for protecting QHR devices with alloyed AuGe/Ni contacts from degradation: the heterostructure can be left unpassivated, but the alloyed contacts can be completely covered with a very thick (> 3 μm) coating of gold; or the GaAs cap layer can be carefully etched away after alloying the contacts and prior to depositing a passivating silicon nitride coating over the entire sample. Of the two, the latter is more challenging to effect, but preferable because both the contacts and the heterostructure are protected from corrosion and oxidation.

  18. Anomalous effects of dense matter under rotation

    NASA Astrophysics Data System (ADS)

    Huang, Xu-Guang; Nishimura, Kentaro; Yamamoto, Naoki

    2018-02-01

    We study the anomaly induced effects of dense baryonic matter under rotation. We derive the anomalous terms that account for the chiral vortical effect in the low-energy effective theory for light Nambu-Goldstone modes. The anomalous terms lead to new physical consequences, such as the anomalous Hall energy current and spontaneous generation of angular momentum in a magnetic field (or spontaneous magnetization by rotation). In particular, we show that, due to the presence of such anomalous terms, the ground state of the quantum chromodynamics (QCD) under sufficiently fast rotation becomes the "chiral soliton lattice" of neutral pions that has lower energy than the QCD vacuum and nuclear matter. We briefly discuss the possible realization of the chiral soliton lattice induced by a fast rotation in noncentral heavy ion collisions.

  19. Power Dependence of the Electron Mobility Profile in a Hall Thruster

    NASA Technical Reports Server (NTRS)

    Jorns, Benjamin A.; Hofery, Richard H.; Mikellides, Ioannis G.

    2014-01-01

    The electron mobility profile is estimated in a 4.5 kW commercial Hall thruster as a function of discharge power. Internal measurements of plasma potential and electron temperature are made in the thruster channel with a high-speed translating probe. These measurements are presented for a range of throttling conditions from 150 - 400 V and 0.6 - 4.5 kW. The fluid-based solver, Hall2De, is used in conjunction with these internal plasma parameters to estimate the anomalous collision frequency profile at fixed voltage, 300 V, and three power levels. It is found that the anomalous collision frequency profile does not change significantly upstream of the location of the magnetic field peak but that the extent and magnitude of the anomalous collision frequency downstream of the magnetic peak does change with thruster power. These results are discussed in the context of developing phenomenological models for how the collision frequency profile depends on thruster operating conditions.

  20. Quantum Hall signatures of dipolar Mahan excitons

    NASA Astrophysics Data System (ADS)

    Schinner, G. J.; Repp, J.; Kowalik-Seidl, K.; Schubert, E.; Stallhofer, M. P.; Rai, A. K.; Reuter, D.; Wieck, A. D.; Govorov, A. O.; Holleitner, A. W.; Kotthaus, J. P.

    2013-01-01

    We explore the photoluminescence of spatially indirect, dipolar Mahan excitons in a gated double quantum well diode containing a mesoscopic electrostatic trap for neutral dipolar excitons at low temperatures down to 250 mK and in quantizing magnetic fields. Mahan excitons in the surrounding of the trap, consisting of individual holes interacting with a degenerate two-dimensional electron system confined in one of the quantum wells, exhibit strong quantum Hall signatures at integer filling factors and related anomalies around filling factor ν=(2)/(3),(3)/(5), and (1)/(2), reflecting the formation of composite fermions. Interactions across the trap perimeter are found to influence the energy of the confined neutral dipolar excitons by the presence of the quantum Hall effects in the two-dimensional electron system surrounding the trap.

  1. Validation of a quantized-current source with 0.2 ppm uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stein, Friederike; Fricke, Lukas, E-mail: lukas.fricke@ptb.de; Scherer, Hansjörg

    2015-09-07

    We report on high-accuracy measurements of quantized current, sourced by a tunable-barrier single-electron pump at frequencies f up to 1 GHz. The measurements were performed with an ultrastable picoammeter instrument, traceable to the Josephson and quantum Hall effects. Current quantization according to I = ef with e being the elementary charge was confirmed at f = 545 MHz with a total relative uncertainty of 0.2 ppm, improving the state of the art by about a factor of 5. The accuracy of a possible future quantum current standard based on single-electron transport was experimentally validated to be better than the best (indirect) realization of the ampere within themore » present SI.« less

  2. Instabilities and transport in Hall plasmas with ExB drift

    NASA Astrophysics Data System (ADS)

    Smolyakov, Andrei

    2016-10-01

    Low temperature plasma with moderate magnetic field, where the ions are not or just weakly magnetized, i.e. the ion Larmor radius being larger or comparable to the characteristic length scale of interest (e.g. the size ofthe system), have distinctly different properties from strongly magnetized plasmas such as that for fusion applications. Such parameters regimes are generally defined here as Hall plasmas. The natural scale separation between the ion and electron Larmor radii in Hall plasma, further exploited by the application of the external electric field, offers unique applications in various plasma devices for material processing and electric propulsion. Plasmas in such devices are in strongly non-equilibrium state making it prone to a number of instabilities. This talk presents physics description of the dominant unstable modes in ExB Hall plasmas resulting in highly turbulent state with nonlinear coherent structures and anomalous electron current. Since ions are un-magnetized, fundamental instabilities operating in low temperature Hall plasmas are very different from much studied gradients (density, temperature and magnetic field) driven drift-wave turbulence in strongly magnetized plasmas for fusion applications. As a result the nonlinear saturation mechanisms, role of the ExB shear flows are also markedly different in such plasmas. We review the basic instabilities in these plasmas which are related to the ion-sound, low-hybrid and anti-drift modes, discuss nonlinear saturation and anomalous transport mechanisms. The advanced nonlinear fluid model for such plasmas and results of nonlinear simulations of turbulence and anomalous transport performed within a modified BOUT++ framework will be presented. Research supported by NSERC Canada and US AFOSR FA9550-15-1-0226.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bestwick, A. J.; Fox, E. J.; Kou, Xufeng

    In this study, we report a nearly ideal quantum anomalous Hall effect in a three-dimensional topological insulator thin film with ferromagnetic doping. Near zero applied magnetic field we measure exact quantization in the Hall resistance to within a part per 10,000 and a longitudinal resistivity under 1 Ω per square, with chiral edge transport explicitly confirmed by nonlocal measurements. Deviations from this behavior are found to be caused by thermally activated carriers, as indicated by an Arrhenius law temperature dependence. Using the deviations as a thermometer, we demonstrate an unexpected magnetocaloric effect and use it to reach near-perfect quantization bymore » cooling the sample below the dilution refrigerator base temperature in a process approximating adiabatic demagnetization refrigeration.« less

  4. The enhancement of anomalous Hall effect by inserting MgO layer in perpendicular anisotropic Pd/Co2MnSi/MgO/Pd films

    NASA Astrophysics Data System (ADS)

    Fu, H. R.; Ma, L.; Tian, N.; You, C. Y.; Wang, K.

    2018-05-01

    A systematic study of anomalous Hall effect (AHE) was performed in perpendicular magnetic anisotropic Pd/Co2MnSi(tCMS)/MgO/Pd films. The AHE was significantly intensified by inserting MgO layer, which can be ascribed to the enhancement of spin-orbit coupling and interfacial scattering contribution. Moreover, it was found that the Co and Mn ions were reduced at the interface of Co2MnSi/MgO with annealing process. The stable amount of Mn-O bonding was observed at the Co2MnSi/MgO interface after annealing, implying that the proper Mn-O bonding could be favorable for achieving large AHE.

  5. Anomalous Change of Hall Coefficient in Overdoped La2-xSrxCu1-yZnyO4 around x = 0.2

    NASA Astrophysics Data System (ADS)

    Tonishi, Jun; Suzuki, Takao; Goto, Takayuki

    2006-09-01

    The Hall coefficient (RH) has been measured in 0.5% Zn-doped La2-xSrxCu0.995Zn0.005O4 under high magnetic fields up to 12 T. With decreasing temperature, RH increases and begins to decrease below a temperature TRH. This characteristic temperature TRH has the local maximum around x = 0.195, and this Sr-concentration coincides with that the superconducting transition temperature is slightly suppressed. This behavior is quite similar to the phenomena observed in the stripe phase in x ˜ 0.12. These results suggest that the anomalous decrease of RH around x = 0.195 observed in this study is responsible for the "1/4"-anomaly [as reported by Kakinuma et al., Phys. Rev. B 59, 1491 (1999).].

  6. Non-Abelian fermionization and fractional quantum Hall transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hui, Aaron; Mulligan, Michael; Kim, Eun-Ah

    There has been a recent surge of interest in dualities relating theories of Chern-Simons gauge fields coupled to either bosons or fermions within the condensed matter community, particularly in the context of topological insulators and the half-filled Landau level. Here, we study the application of one such duality to the long-standing problem of quantum Hall interplateaux transitions. The key motivating experimental observations are the anomalously large value of the correlation length There has been a recent surge of interest in dualities relating theories of Chern-Simons gauge fields coupled to either bosons or fermions within the condensed matter community, particularly in the context of topological insulators and the half-filled Landau level. Here, we study the application of one such duality to the long-standing problem of quantum Hall inter-plateaux transitions. The key motivating experimental observations are the anomalously large value of the correlation length exponentmore » $$\

  7. Non-Abelian fermionization and fractional quantum Hall transitions

    DOE PAGES

    Hui, Aaron; Mulligan, Michael; Kim, Eun-Ah

    2018-02-08

    There has been a recent surge of interest in dualities relating theories of Chern-Simons gauge fields coupled to either bosons or fermions within the condensed matter community, particularly in the context of topological insulators and the half-filled Landau level. Here, we study the application of one such duality to the long-standing problem of quantum Hall interplateaux transitions. The key motivating experimental observations are the anomalously large value of the correlation length There has been a recent surge of interest in dualities relating theories of Chern-Simons gauge fields coupled to either bosons or fermions within the condensed matter community, particularly in the context of topological insulators and the half-filled Landau level. Here, we study the application of one such duality to the long-standing problem of quantum Hall inter-plateaux transitions. The key motivating experimental observations are the anomalously large value of the correlation length exponentmore » $$\

  8. Plasmon Geometric Phase and Plasmon Hall Shift

    NASA Astrophysics Data System (ADS)

    Shi, Li-kun; Song, Justin C. W.

    2018-04-01

    The collective plasmonic modes of a metal comprise a simple pattern of oscillating charge density that yields enhanced light-matter interaction. Here we unveil that beneath this familiar facade plasmons possess a hidden internal structure that fundamentally alters its dynamics. In particular, we find that metals with nonzero Hall conductivity host plasmons with an intricate current density configuration that sharply departs from that of ordinary zero Hall conductivity metals. This nontrivial internal structure dramatically enriches the dynamics of plasmon propagation, enabling plasmon wave packets to acquire geometric phases as they scatter. At boundaries, these phases accumulate allowing plasmon waves that reflect off to experience a nonreciprocal parallel shift. This plasmon Hall shift, tunable by Hall conductivity as well as plasmon wavelength, displaces the incident and reflected plasmon trajectories and can be readily probed by near-field photonics techniques. Anomalous plasmon geometric phases dramatically enrich the nanophotonics toolbox, and yield radical new means for directing plasmonic beams.

  9. BFV-BRST quantization of two-dimensional supergravity

    NASA Astrophysics Data System (ADS)

    Fujiwara, T.; Igarashi, Y.; Kuriki, R.; Tabei, T.

    1996-01-01

    Two-dimensional supergravity theory is quantized as an anomalous gauge theory. In the Batalin-Fradkin (BF) formalism, the anomaly-canceling super-Liouville fields are introduced to identify the original second-class constrained system with a gauge-fixed version of a first-class system. The BFV-BRST quantization applies to formulate the theory in the most general class of gauges. A local effective action constructed in the configuration space contains two super-Liouville actions; one is a noncovariant but local functional written only in terms of two-dimensional supergravity fields, and the other contains the super-Liouville fields canceling the super-Weyl anomaly. Auxiliary fields for the Liouville and the gravity supermultiplets are introduced to make the BRST algebra close off-shell. Inclusion of them turns out to be essentially important especially in the super-light-cone gauge fixing, where the supercurvature equations (∂3-g++=∂2-χ++=0) are obtained as a result of BRST invariance of the theory. Our approach reveals the origin of the OSp(1,2) current algebra symmetry in a transparent manner.

  10. Controlling the anomalous Hall effect by electric-field-induced piezo-strain in Fe40Pt60/(001)-Pb(Mg1/3Nb2/3)0.67Ti0.33O3 multiferroic heterostructures

    NASA Astrophysics Data System (ADS)

    Yang, Yuanjun; Yao, Yingxue; Chen, Lei; Huang, Haoliang; Zhang, Benjian; Lin, Hui; Luo, Zhenlin; Gao, Chen; Lu, Y. L.; Li, Xiaoguang; Xiao, Gang; Feng, Ce; Zhao, Y. G.

    2018-01-01

    Electric-field control of the anomalous Hall effect (AHE) was investigated in Fe40Pt60/(001)-Pb(Mg1/3Nb2/3)0.67Ti0.33O3 (FePt/PMN-PT) multiferroic heterostructures at room temperature. It was observed that a very large Hall resistivity change of up to 23.9% was produced using electric fields under a magnetic field bias of 100 Oe. A pulsed electric field sequence was used to generate nonvolatile strain to manipulate the Hall resistivity. Two corresponding nonvolatile states with distinct Hall resistivities were achieved after the electric fields were removed, thus enabling the encoding of binary information for memory applications. These results demonstrate that the Hall resistivity can be reversibly switched in a nonvolatile manner using programmable electric fields. Two remanent magnetic states that were created by electric-field-induced piezo-strain from the PMN-PT were attributed to the nonvolatile and reversible properties of the AHE. This work suggests that a low-energy-consumption-based approach can be used to create nonvolatile resistance states for spintronic devices based on electric-field control of the AHE.

  11. Analytical theory and possible detection of the ac quantum spin Hall effect

    DOE PAGES

    Deng, W. Y.; Ren, Y. J.; Lin, Z. X.; ...

    2017-07-11

    Here, we develop an analytical theory of the low-frequency ac quantum spin Hall (QSH) effect based upon the scattering matrix formalism. It is shown that the ac QSH effect can be interpreted as a bulk quantum pumping effect. When the electron spin is conserved, the integer-quantized ac spin Hall conductivity can be linked to the winding numbers of the reflection matrices in the electrodes, which also equal to the bulk spin Chern numbers of the QSH material. Furthermore, a possible experimental scheme by using ferromagnetic metals as electrodes is proposed to detect the topological ac spin current by electrical means.

  12. Dissipationless Hall current in dense quark matter in a magnetic field

    DOE PAGES

    Ferrer, Efrain J.; de la Incera, V.

    2017-03-29

    Here, we show the realization of axion electrodynamics within the Dual Chiral Density Wave phase of dense quark matter in the presence of a magnetic field. This system exhibits an anomalous dissipationless Hall current perpendicular to the magnetic field and an anomalous electric charge density. This connection to topological insulators and 3D optical lattices, as well as possible implications for heavy-ion collisions and neutron stars are outlined.

  13. Tunneling Spectroscopy of Quantum Hall States in Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Harzheim, Achim; Watanabe, Kenji; Taniguchi, Takashi; Kim, Philip

    In the quantum Hall (QH) regime, ballistic conducting paths along the physical edges of a sample appear, leading to quantized Hall conductance and vanishing longitudinal magnetoconductance. These QH edge states are often described as ballistic compressible strips separated by insulating incompressible strips, the spatial profiles of which can be crucial in understanding the stability and emergence of interaction driven QH states. In this work, we present tunneling transport between two QH edge states in bilayer graphene. Employing locally gated device structure, we guide and control the separation between the QH edge states in bilayer graphene. Using resonant Landau level tunneling as a spectroscopy tool, we measure the energy gap in bilayer graphene as a function of displacement field and probe the emergence and evolution of incompressible strips.

  14. Intrinsic Dirac half-metal and quantum anomalous Hall phase in a hexagonal metal-oxide lattice

    NASA Astrophysics Data System (ADS)

    Zhang, Shou-juan; Zhang, Chang-wen; Zhang, Shu-feng; Ji, Wei-xiao; Li, Ping; Wang, Pei-ji; Li, Sheng-shi; Yan, Shi-shen

    2017-11-01

    The quantum anomalous Hall (QAH) effect has attracted extensive attention due to time-reversal symmetry broken by a staggered magnetic flux emerging from ferromagnetic ordering and spin-orbit coupling. However, the experimental observations of the QAH effect are still challenging due to its small nontrivial bulk gap. Here, based on density functional theory and Berry curvature calculations, we propose the realization of intrinsic QAH effect in two-dimensional hexagonal metal-oxide lattice, N b2O3 , which is characterized by the nonzero Chern number (C =1 ) and chiral edge states. Spin-polarized calculations indicate that it exhibits a Dirac half-metal feature with temperature as large as TC=392 K using spin-wave theory. When the spin-orbit coupling is switched on, N b2O3 becomes a QAH insulator. Notably, the nontrivial topology is robust against biaxial strain with its band gap reaching up to Eg=75 meV , which is far beyond room temperature. A tight-binding model is further constructed to understand the origin of nontrivially electronic properties. Our findings on the Dirac half-metal and room-temperature QAH effect in the N b2O3 lattice can serve as an ideal platform for developing future topotronics devices.

  15. Sign reversal of Hall signals in Tm3Fe5O12 /Pt with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Liu, Yawen; Tang, Chi; Xu, Yadong; Shi, Zhong; Shi, Jing

    Robust interface strain-induced perpendicular magnetic anisotropy is produced in atomically flat ferromagnetic insulator Tm3Fe5O12 (TIG) films grown with pulsed laser deposition on both substituted-Gd3Ga5O12 and Nd3Ga5O12 (NGG). In TIG/Pt bilayers, we observe large hysteresis loops over a wide range of Pt thicknesses and temperatures. Both the ordinary Hall effect and anomalous Hall effect undergo a sign reversal as the temperature is lowered. The temperature dependence of the Hall signals in bilayers with different thickness of Pt indicates the existence of exchange interaction at the interface. Our results provide a clue to further understand the origin of the anomalous Hall effect in ferromagnetic insulator/normal metal bilayer systems. The work was supported as part of the SHINES, an Energy Frontier Research Center funded by the US Department of Energy, BES under Award No. SC0012670.

  16. 3D Quantum Hall Effect of Fermi Arc in Topological Semimetals

    NASA Astrophysics Data System (ADS)

    Wang, C. M.; Sun, Hai-Peng; Lu, Hai-Zhou; Xie, X. C.

    2017-09-01

    The quantum Hall effect is usually observed in 2D systems. We show that the Fermi arcs can give rise to a distinctive 3D quantum Hall effect in topological semimetals. Because of the topological constraint, the Fermi arc at a single surface has an open Fermi surface, which cannot host the quantum Hall effect. Via a "wormhole" tunneling assisted by the Weyl nodes, the Fermi arcs at opposite surfaces can form a complete Fermi loop and support the quantum Hall effect. The edge states of the Fermi arcs show a unique 3D distribution, giving an example of (d -2 )-dimensional boundary states. This is distinctly different from the surface-state quantum Hall effect from a single surface of topological insulator. As the Fermi energy sweeps through the Weyl nodes, the sheet Hall conductivity evolves from the 1 /B dependence to quantized plateaus at the Weyl nodes. This behavior can be realized by tuning gate voltages in a slab of topological semimetal, such as the TaAs family, Cd3 As2 , or Na3Bi . This work will be instructive not only for searching transport signatures of the Fermi arcs but also for exploring novel electron gases in other topological phases of matter.

  17. Quantum anomalous Hall phase and half-metallic phase in ferromagnetic (111) bilayers of 4 d and 5 d transition metal perovskites

    NASA Astrophysics Data System (ADS)

    Chandra, Hirak Kumar; Guo, Guang-Yu

    2017-04-01

    Extraordinary electronic phases can form in artificial oxide heterostructures, which will provide a fertile ground for new physics and also give rise to novel device functions. Based on a systematic first-principles density functional theory study of the magnetic and electronic properties of the (111) superlattices (ABO3) 2/(AB'O3)10 of 4 d and 5 d transition metal perovskite (B = Ru, Rh, Ag, Re, Os, Ir, Au; AB'O3=LaAlO3 , SrTiO3) , we demonstrate that due to quantum confinement, bilayers (LaBO3)2 (B = Ru, Re, Os) and (SrBO3)2 (B = Rh, Os, Ir) are ferromagnetic with ordering temperatures up to room temperature. In particular, bilayer (LaOsO3)2 is an exotic spin-polarized quantum anomalous Hall insulator, while the other ferromagnetic bilayers are metallic with large Hall conductances comparable to the conductance quantum. Furthermore, bilayers (LaRuO3)2 and (SrRhO3)2 are half metallic, while the bilayer (SrIrO3)2 exhibits a peculiar colossal magnetic anisotropy. Our findings thus show that 4 d and 5 d metal perovskite (111) bilayers are a class of quasi-two-dimensional materials for exploring exotic quantum phases and also for advanced applications such as low-power nanoelectronics and oxide spintronics.

  18. Spin Hall effects

    NASA Astrophysics Data System (ADS)

    Sinova, Jairo; Valenzuela, Sergio O.; Wunderlich, J.; Back, C. H.; Jungwirth, T.

    2015-10-01

    Spin Hall effects are a collection of relativistic spin-orbit coupling phenomena in which electrical currents can generate transverse spin currents and vice versa. Despite being observed only a decade ago, these effects are already ubiquitous within spintronics, as standard spin-current generators and detectors. Here the theoretical and experimental results that have established this subfield of spintronics are reviewed. The focus is on the results that have converged to give us the current understanding of the phenomena, which has evolved from a qualitative to a more quantitative measurement of spin currents and their associated spin accumulation. Within the experimental framework, optical-, transport-, and magnetization-dynamics-based measurements are reviewed and linked to both phenomenological and microscopic theories of the effect. Within the theoretical framework, the basic mechanisms in both the extrinsic and intrinsic regimes are reviewed, which are linked to the mechanisms present in their closely related phenomenon in ferromagnets, the anomalous Hall effect. Also reviewed is the connection to the phenomenological treatment based on spin-diffusion equations applicable to certain regimes, as well as the spin-pumping theory of spin generation used in many measurements of the spin Hall angle. A further connection to the spin-current-generating spin Hall effect to the inverse spin galvanic effect is given, in which an electrical current induces a nonequilibrium spin polarization. This effect often accompanies the spin Hall effect since they share common microscopic origins. Both can exhibit the same symmetries when present in structures comprising ferromagnetic and nonmagnetic layers through their induced current-driven spin torques or induced voltages. Although a short chronological overview of the evolution of the spin Hall effect field and the resolution of some early controversies is given, the main body of this review is structured from a pedagogical

  19. Spin Hall effect and Landau spectrum of Dirac electrons in bismuth

    NASA Astrophysics Data System (ADS)

    Fuseya, Yuki

    2015-03-01

    Bismuth has played an important role in solid-state physics. Many key phenomena were first discovered in bismuth, such as diamagnetism, Seebeck, Nernst, Shubnikov-de Haas, and de Haas-van Alphen effects. These phenomena result from particular electronic states of bismuth. The strong spin-orbit interaction (~ 1.5eV) causes strong spin-dependent interband couplings resulting in an anomalous spin magnetic moment. We investigate the spin Hall effect and the angular dependent Landau spectrum of bismuth paying special attention to the effect of the anomalous spin magnetic moment. It is shown that the spin Hall insulator is possible and there is a fundamental relationship between the spin Hall conductivity and orbital diamagnetism in the insulating state of the Dirac electrons. Based on this theoretical finding, the magnitude of spin Hall conductivity is estimated for bismuth by that of orbital susceptibility. The magnitude of spin Hall conductivity turns out to be as large as 104Ω-1 cm-1, which is about 100 times larger than that of Pt. It is also shown that the ratio of the Zeeman splitting to the cyclotron energy, which reflects the effect of crystalline spin-orbit interaction, for holes at the T-point can be larger than 1.0 (the maximum of previous theories) and exhibit strong angular dependence, which gives a possible solution to the long-standing mystery of holes at the T-point. In collaboration with Masao Ogata, Hidetoshi Fukuyama, Zengwei Zhu, Benoît Fauqué, Woun Kang, and Kamran Behnia. Supported by JSPS (KAKENHI 24244053, 25870231, and 13428660).

  20. Quantization and anomalous structures in the conductance of Si/SiGe quantum point contacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pock, J. F. von; Salloch, D.; Qiao, G.

    2016-04-07

    Quantum point contacts (QPCs) are fabricated on modulation-doped Si/SiGe heterostructures and ballistic transport is studied at low temperatures. We observe quantized conductance with subband separations up to 4 meV and anomalies in the first conductance plateau at 4e{sup 2}/h. At a temperature of T = 22 mK in the linear transport regime, a weak anomalous kink structure arises close to 0.5(4e{sup 2}/h), which develops into a distinct plateau-like structure as temperature is raised up to T = 4 K. Under magnetic field parallel to the wire up to B = 14 T, the anomaly evolves into the Zeeman spin-split level at 0.5(4e{sup 2}/h), resembling the '0.7 anomaly' in GaAs/AlGaAsmore » QPCs. Additionally, a zero-bias anomaly (ZBA) is observed in nonlinear transport spectroscopy. At T = 22 mK, a parallel magnetic field splits the ZBA peak up into two peaks. At B = 0, elevated temperatures lead to similar splitting, which differs from the behavior of ZBAs in GaAs/AlGaAs QPCs. Under finite dc bias, the differential resistance exhibits additional plateaus approximately at 0.8(4e{sup 2}/h) and 0.2(4e{sup 2}/h) known as '0.85 anomaly' and '0.25 anomaly' in GaAs/AlGaAs QPCs. Unlike the first regular plateau at 4e{sup 2}/h, the 0.2(4e{sup 2}/h) plateau is insensitive to dc bias voltage up to at least V{sub DS} = 80 mV, in-plane magnetic fields up to B = 15 T, and to elevated temperatures up to T = 25 K. We interpret this effect as due to pinching off one of the reservoirs close to the QPC. We do not see any indication of lifting of the valley degeneracy in our samples.« less

  1. Hall viscosity and electromagnetic response of electrons in graphene

    NASA Astrophysics Data System (ADS)

    Sherafati, Mohammad; Principi, Alessandro; Vignale, Giovanni

    The Hall viscosity is a dissipationless component of the viscosity tensor of an electron liquid with broken time- reversal symmetry, such as a two-dimensional electron gas (2DEG) in the quantum Hall state. Similar to the Hall conductivity, the Hall viscosity is an anomalous transport coefficient; however, while the former is connected with the current response, the latter stems from the stress response to a geometric deformation. For a Galilean-invariant system such as 2DEG, the current density is indeed the generator of the geometric deformation: therefore a connection between the Hall connectivity and viscosity is expected and by now well established. In the case of graphene, a non-Galilean-invariant system, the existence of such a connection is far from obvious, as the current operator is essentially different from the momentum operator. In this talk, I will first present our results of the geometric Hall viscosity of electrons in single-layer graphene. Then, from the expansion of the nonlocal Hall conductivity for small wave vectors, I demonstrate that, in spite of the lack of Galilean invariance, an effective mass can be defined such that the relationship between the Hall conductivity and the viscosity retains the form it has in Galilean-invariant systems, not only for a large number of occupied Landau levels, but also, with very high accuracy, for the undoped system.

  2. Quantum mechanics, gravity and modified quantization relations.

    PubMed

    Calmet, Xavier

    2015-08-06

    In this paper, we investigate a possible energy scale dependence of the quantization rules and, in particular, from a phenomenological point of view, an energy scale dependence of an effective [Formula: see text] (reduced Planck's constant). We set a bound on the deviation of the value of [Formula: see text] at the muon scale from its usual value using measurements of the anomalous magnetic moment of the muon. Assuming that inflation has taken place, we can conclude that nature is described by a quantum theory at least up to an energy scale of about 10(16) GeV. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  3. Study of electron transport in a Hall thruster by axial–radial fully kinetic particle simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Shinatora, E-mail: choh.shinatora@jaxa.jp; Kubota, Kenichi; Funaki, Ikkoh

    2015-10-15

    Electron transport across a magnetic field in a magnetic-layer-type Hall thruster was numerically investigated for the future predictive modeling of Hall thrusters. The discharge of a 1-kW-class magnetic-layer-type Hall thruster designed for high-specific-impulse operation was modeled using an r-z two-dimensional fully kinetic particle code with and without artificial electron-diffusion models. The thruster performance results showed that both electron transport models captured the experimental result within discrepancies less than 20% in thrust and discharge current for all the simulated operation conditions. The electron cross-field transport mechanism of the so-called anomalous diffusion was self-consistently observed in the simulation without artificial diffusion models;more » the effective electron mobility was two orders of magnitude higher than the value obtained using the classical diffusion theory. To account for the self-consistently observed anomalous transport, the oscillation of plasma properties was speculated. It was suggested that the enhanced random-walk diffusion due to the velocity oscillation of low-frequency electron flow could explain the observed anomalous diffusion within an order of magnitude. The dominant oscillation mode of the electron flow velocity was found to be 20 kHz, which was coupled to electrostatic oscillation excited by global ionization instability.« less

  4. Magnetic Dirac Fermions and Chern Insulator Supported on Pristine Silicon Surface

    NASA Astrophysics Data System (ADS)

    Fu, Huixia; Liu, Zheng; Sun, Jia-Tao; Meng, Sheng

    Emergence of ferromagnetism in non-magnetic semiconductors is strongly desirable, especially in topological materials thanks to the possibility to achieve quantum anomalous Hall effect. Based on first principles calculations, we propose that for Si thin film grown on metal substrate, the pristine Si(111)-r3xr3 surface with a spontaneous weak reconstruction has a strong tendency of ferromagnetism and nontrivial topological properties, characterized by spin polarized Dirac-fermion surface states. In contrast to conventional routes relying on introduction of alien charge carriers or specially patterned substrates, the spontaneous magnetic order and spin-orbit coupling on the pristine silicon surface together gives rise to quantized anomalous Hall effect with a finite Chern number C = -1. This work suggests exciting opportunities in silicon-based spintronics and quantum computing free from alien dopants or proximity effects.

  5. Large anomalous Nernst and spin Nernst effects in the noncollinear antiferromagnets Mn3X (X =Sn ,Ge ,Ga )

    NASA Astrophysics Data System (ADS)

    Guo, Guang-Yu; Wang, Tzu-Cheng

    2017-12-01

    Noncollinear antiferromagnets have recently been attracting considerable interest partly due to recent surprising discoveries of the anomalous Hall effect (AHE) in them and partly because they have promising applications in antiferromagnetic spintronics. Here we study the anomalous Nernst effect (ANE), a phenomenon having the same origin as the AHE, and also the spin Nernst effect (SNE) as well as AHE and the spin Hall effect (SHE) in noncollinear antiferromagnetic Mn3X (X =Sn , Ge, Ga) within the Berry phase formalism based on ab initio relativistic band structure calculations. For comparison, we also calculate the anomalous Nernst conductivity (ANC) and anomalous Hall conductivity (AHC) of ferromagnetic iron as well as the spin Nernst conductivity (SNC) of platinum metal. Remarkably, the calculated ANC at room temperature (300 K) for all three alloys is huge, being 10-40 times larger than that of iron. Moreover, the calculated SNC for Mn3Sn and Mn3Ga is also larger, being about five times larger than that of platinum. This suggests that these antiferromagnets would be useful materials for thermoelectronic devices and spin caloritronic devices. The calculated ANC of Mn3Sn and iron are in reasonably good agreement with the very recent experiments. The calculated SNC of platinum also agrees with the very recent experiments in both sign and magnitude. The calculated thermoelectric and thermomagnetic properties are analyzed in terms of the band structures as well as the energy-dependent AHC, ANC, SNC, and spin Hall conductivity via the Mott relations.

  6. Geometric Defects in Quantum Hall States

    NASA Astrophysics Data System (ADS)

    Gromov, Andrey

    I will describe a geometric analogue of Laughlin quasiholes in fractional quantum Hall (FQH) states. These ``quasiholes'' are generated by an insertion of quantized fluxes of curvature - which can be modeled by branch points of a certain Riemann surface - and, consequently, are related to genons. Unlike quasiholes, the genons are not excitations, but extrinsic defects. Fusion of genons describes the response of an FQH state to a process that changes (effective) topology of the physical space. These defects are abelian for IQH states and non-abelian for FQH states. I will explain how to calculate an electric charge, geometric spin and adiabatic mutual statistics of the these defects. Leo Kadanoff Fellowship.

  7. BFV-BRST quantization of two-dimensional supergravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujiwara, T.; Igarashi, Y.; Kuriki, R.

    1996-01-01

    Two-dimensional supergravity theory is quantized as an anomalous gauge theory. In the Batalin-Fradkin (BF) formalism, the anomaly-canceling super-Liouville fields are introduced to identify the original second-class constrained system with a gauge-fixed version of a first-class system. The BFV-BRST quantization applies to formulate the theory in the most general class of gauges. A local effective action constructed in the configuration space contains two super-Liouville actions; one is a noncovariant but local functional written only in terms of two-dimensional supergravity fields, and the other contains the super-Liouville fields canceling the super-Weyl anomaly. Auxiliary fields for the Liouville and the gravity supermultiplets aremore » introduced to make the BRST algebra close off-shell. Inclusion of them turns out to be essentially important especially in the super-light-cone gauge fixing, where the supercurvature equations ({partial_derivative}{sup 3}{sub {minus}}{ital g}{sub +}{sub +}={partial_derivative}{sup 2}{sub {minus}}{chi}{sub +}{sub +}=0) are obtained as a result of BRST invariance of the theory. Our approach reveals the origin of the OSp(1,2) current algebra symmetry in a transparent manner. {copyright} {ital 1996 The American Physical Society.}« less

  8. Spin Hall magnetoresistance in CoFe 2O 4/Pt films

    DOE PAGES

    Wu, Hao; Qintong, Zhang; Caihua, Wan; ...

    2015-05-13

    Pulse laser deposition and magnetron sputtering techniques have been employed to prepare MgO(001)//CoFe 2O 4/Pt samples. Cross section transmission electron microscope results prove that the CoFe 2O 4 film epitaxially grew along (001) direction. X-ray magnetic circular dichroism results show that magnetic proximity effect in this sample is negligible. Magnetoresistance (MR) properties confirm that spin Hall MR (SMR) dominates in this system. Spin Hall effect-induced anomalous Hall voltage was also observed in this sample. Lastly, these results not only demonstrate the universality of SMR effect but also demonstrate the utility in spintronics of CoFe 2O 4 as a new typemore » of magnetic insulator.« less

  9. Are quantum spin Hall edge modes more resilient to disorder, sample geometry and inelastic scattering than quantum Hall edge modes?

    PubMed

    Mani, Arjun; Benjamin, Colin

    2016-04-13

    On the surface of 2D topological insulators, 1D quantum spin Hall (QSH) edge modes occur with Dirac-like dispersion. Unlike quantum Hall (QH) edge modes, which occur at high magnetic fields in 2D electron gases, the occurrence of QSH edge modes is due to spin-orbit scattering in the bulk of the material. These QSH edge modes are spin-dependent, and chiral-opposite spins move in opposing directions. Electronic spin has a larger decoherence and relaxation time than charge. In view of this, it is expected that QSH edge modes will be more robust to disorder and inelastic scattering than QH edge modes, which are charge-dependent and spin-unpolarized. However, we notice no such advantage accrues in QSH edge modes when subjected to the same degree of contact disorder and/or inelastic scattering in similar setups as QH edge modes. In fact we observe that QSH edge modes are more susceptible to inelastic scattering and contact disorder than QH edge modes. Furthermore, while a single disordered contact has no effect on QH edge modes, it leads to a finite charge Hall current in the case of QSH edge modes, and thus a vanishing of the pure QSH effect. For more than a single disordered contact while QH states continue to remain immune to disorder, QSH edge modes become more susceptible--the Hall resistance for the QSH effect changes sign with increasing disorder. In the case of many disordered contacts with inelastic scattering included, while quantization of Hall edge modes holds, for QSH edge modes a finite charge Hall current still flows. For QSH edge modes in the inelastic scattering regime we distinguish between two cases: with spin-flip and without spin-flip scattering. Finally, while asymmetry in sample geometry can have a deleterious effect in the QSH case, it has no impact in the QH case.

  10. Hydrodynamic Electron Flow and Hall Viscosity

    NASA Astrophysics Data System (ADS)

    Scaffidi, Thomas; Nandi, Nabhanila; Schmidt, Burkhard; Mackenzie, Andrew P.; Moore, Joel E.

    2017-06-01

    In metallic samples of small enough size and sufficiently strong momentum-conserving scattering, the viscosity of the electron gas can become the dominant process governing transport. In this regime, momentum is a long-lived quantity whose evolution is described by an emergent hydrodynamical theory. Furthermore, breaking time-reversal symmetry leads to the appearance of an odd component to the viscosity called the Hall viscosity, which has attracted considerable attention recently due to its quantized nature in gapped systems but still eludes experimental confirmation. Based on microscopic calculations, we discuss how to measure the effects of both the even and odd components of the viscosity using hydrodynamic electronic transport in mesoscopic samples under applied magnetic fields.

  11. Hydrodynamic Electron Flow and Hall Viscosity.

    PubMed

    Scaffidi, Thomas; Nandi, Nabhanila; Schmidt, Burkhard; Mackenzie, Andrew P; Moore, Joel E

    2017-06-02

    In metallic samples of small enough size and sufficiently strong momentum-conserving scattering, the viscosity of the electron gas can become the dominant process governing transport. In this regime, momentum is a long-lived quantity whose evolution is described by an emergent hydrodynamical theory. Furthermore, breaking time-reversal symmetry leads to the appearance of an odd component to the viscosity called the Hall viscosity, which has attracted considerable attention recently due to its quantized nature in gapped systems but still eludes experimental confirmation. Based on microscopic calculations, we discuss how to measure the effects of both the even and odd components of the viscosity using hydrodynamic electronic transport in mesoscopic samples under applied magnetic fields.

  12. Probing topology by "heating": Quantized circular dichroism in ultracold atoms.

    PubMed

    Tran, Duc Thanh; Dauphin, Alexandre; Grushin, Adolfo G; Zoller, Peter; Goldman, Nathan

    2017-08-01

    We reveal an intriguing manifestation of topology, which appears in the depletion rate of topological states of matter in response to an external drive. This phenomenon is presented by analyzing the response of a generic two-dimensional (2D) Chern insulator subjected to a circular time-periodic perturbation. Because of the system's chiral nature, the depletion rate is shown to depend on the orientation of the circular shake; taking the difference between the rates obtained from two opposite orientations of the drive, and integrating over a proper drive-frequency range, provides a direct measure of the topological Chern number (ν) of the populated band: This "differential integrated rate" is directly related to the strength of the driving field through the quantized coefficient η 0 = ν/ ℏ 2 , where h = 2π ℏ is Planck's constant. Contrary to the integer quantum Hall effect, this quantized response is found to be nonlinear with respect to the strength of the driving field, and it explicitly involves interband transitions. We investigate the possibility of probing this phenomenon in ultracold gases and highlight the crucial role played by edge states in this effect. We extend our results to 3D lattices, establishing a link between depletion rates and the nonlinear photogalvanic effect predicted for Weyl semimetals. The quantized circular dichroism revealed in this work designates depletion rate measurements as a universal probe for topological order in quantum matter.

  13. Unambiguous separation of the inverse spin Hall and anomalous Nernst effects within a ferromagnetic metal using the spin Seebeck effect

    DOE PAGES

    Wu, Stephen M.; Hoffman, Jason; Pearson, John E.; ...

    2014-09-05

    In this paper, the longitudinal spin Seebeck effect is measured on the ferromagnetic insulator Fe 3O 4 with the ferromagnetic metal Co 0.2Fe 0.6B 0.2 (CoFeB) as the spin detector. By using a non-magnetic spacer material between the two materials (Ti), it is possible to decouple the two ferromagnetic materials and directly observe pure spin flow from Fe 3O 4 into CoFeB. It is shown that in a single ferromagnetic metal, the inverse spin Hall effect (ISHE) and anomalous Nernst effect (ANE) can occur simultaneously with opposite polarity. Using this and the large difference in the coercive fields between themore » two magnets, it is possible to unambiguously separate the contributions of the spin Seebeck effect from the ANE and observe the degree to which each effect contributes to the total response. Finally, these experiments show conclusively that the ISHE and ANE in CoFeB are separate phenomena with different origins and can coexist in the same material with opposite response to a thermal gradient.« less

  14. Unconventional topological Hall effect in skyrmion crystals caused by the topology of the lattice

    NASA Astrophysics Data System (ADS)

    Göbel, Börge; Mook, Alexander; Henk, Jürgen; Mertig, Ingrid

    2017-03-01

    The hallmark of a skyrmion crystal (SkX) is the topological Hall effect (THE). In this article we predict and explain an unconventional behavior of the topological Hall conductivity in SkXs. In simple terms, the spin texture of the skyrmions causes an inhomogeneous emergent magnetic field whose associated Lorentz force acts on the electrons. By making the emergent field homogeneous, the THE is mapped onto the quantum Hall effect (QHE). Consequently, each electronic band of the SkX is assigned to a Landau level. This correspondence of THE and QHE allows us to explain the unconventional behavior of the THE of electrons in SkXs. For example, a skyrmion crystal on a triangular lattice exhibits a quantized topological Hall conductivity with steps of 2 .e2/h below and with steps of 1 .e2/h above the van Hove singularity. On top of this, the conductivity shows a prominent sign change at the van Hove singularity. These unconventional features are deeply connected to the topology of the structural lattice.

  15. Observation of the quantum Hall effect in δ-doped SrTiO3

    PubMed Central

    Matsubara, Y.; Takahashi, K. S.; Bahramy, M. S.; Kozuka, Y.; Maryenko, D.; Falson, J.; Tsukazaki, A.; Tokura, Y.; Kawasaki, M.

    2016-01-01

    The quantum Hall effect is a macroscopic quantum phenomenon in a two-dimensional electron system. The two-dimensional electron system in SrTiO3 has sparked a great deal of interest, mainly because of the strong electron correlation effects expected from the 3d orbitals. Here we report the observation of the quantum Hall effect in a dilute La-doped SrTiO3-two-dimensional electron system, fabricated by metal organic molecular-beam epitaxy. The quantized Hall plateaus are found to be solely stemming from the low Landau levels with even integer-filling factors, ν=4 and 6 without any contribution from odd ν's. For ν=4, the corresponding plateau disappears on decreasing the carrier density. Such peculiar behaviours are proposed to be due to the crossing between the Landau levels originating from the two subbands composed of d orbitals with different effective masses. Our findings pave a way to explore unprecedented quantum phenomena in d-electron systems. PMID:27228903

  16. Hamiltonian theory of gaps, masses, and polarization in quantum Hall states

    NASA Astrophysics Data System (ADS)

    Shankar, R.

    2001-02-01

    In two short papers I had described an extension, to all length scales, of the Hamiltonian theory of composite fermions (CF) that Murthy and I developed for the infrared, and applied it to compute finite-temperature quantities for quantum Hall fractions. I furnish details of the extended theory and apply it to Jain fractions ν=p/(2ps+1). The explicit operator description in terms of the CF allows one to answer quantitative and qualitative issues, some of which cannot even be posed otherwise. I compute activation gaps for several potentials, exhibit their particle-hole symmetry, the profiles of charge density in states with a quasiparticle or hole (all in closed form), and compare to results from trial wave functions and exact diagonalization. The Hartree-Fock approximation is used, since much of the nonperturbative physics is built-in at tree level. I compare the gaps to experiment, and comment on the rough equality of normalized masses near half- and quarter-filling. I compute the critical fields at which the Hall system will jump from one quantized value of polarization to another, and the polarization and relaxation rates for half-filling as a function of temperature and propose a Korringa-like law. After providing some plausibility arguments, I explore the possibility of describing several magnetic phenomena in dirty systems with an effective potential, by extracting a free parameter describing the potential from one data point and then using it to predict all the others from that sample. This works to the accuracy typical of this theory (10-20 %). I explain why the CF behaves like a free particle in some magnetic experiments when it is not, what exactly the CF is made of, what one means by its dipole moment, and how the comparison of theory to experiment must be modified to fit the peculiarities of the quantized Hall problem.

  17. Quantum Nonlinear Hall Effect Induced by Berry Curvature Dipole in Time-Reversal Invariant Materials.

    PubMed

    Sodemann, Inti; Fu, Liang

    2015-11-20

    It is well known that a nonvanishing Hall conductivity requires broken time-reversal symmetry. However, in this work, we demonstrate that Hall-like currents can occur in second-order response to external electric fields in a wide class of time-reversal invariant and inversion breaking materials, at both zero and twice the driving frequency. This nonlinear Hall effect has a quantum origin arising from the dipole moment of the Berry curvature in momentum space, which generates a net anomalous velocity when the system is in a current-carrying state. The nonlinear Hall coefficient is a rank-two pseudotensor, whose form is determined by point group symmetry. We discus optimal conditions to observe this effect and propose candidate two- and three-dimensional materials, including topological crystalline insulators, transition metal dichalcogenides, and Weyl semimetals.

  18. Anomalous Hall conductivity and electronic structures of Si-substituted Mn2CoAl epitaxial films

    NASA Astrophysics Data System (ADS)

    Arima, K.; Kuroda, F.; Yamada, S.; Fukushima, T.; Oguchi, T.; Hamaya, K.

    2018-02-01

    We study anomalous Hall conductivity (σAHC) and electronic band structures of Si-substituted Mn2CoAl (Mn2CoAl1 -xSix ). First-principles calculations reveal that the electronic band structure is like a spin-gapless system even after substituting a quaternary element of Si for Al up to x =0.2 in Mn2CoAl1 -xSix . This means that the Si substitution enables the Fermi-level shift without largely changing the electronic structures in Mn2CoAl . By using molecular beam epitaxy techniques, Mn2CoAl1 -xSix epitaxial films can be grown, leading to the systematic control of x (0 ⩽x ⩽0.3 ). In addition to the electrical conductivity, the values of σAHC for the Mn2CoAl1 -xSix films are similar to those in Mn2CoAl films shown in previous reports. We note that a very small σAHC of ˜1.1 S/cm is obtained for x = 0.225, and the sign of σAHC is changed from positive to negative at around x = 0.25. We discuss the origin of the sign reversal of σAHC as a consequence of the Fermi-level shift in Mn2CoAl . Considering the presence of the structural disorder in the Mn2CoAl1 -xSix films, we can conclude that the small value and sign reversal of σAHC are not related to the characteristics of spin-gapless semiconductors.

  19. Influence of magnetic disorders on quantum anomalous Hall effect in magnetic topological insulator films beyond the two-dimensional limit

    NASA Astrophysics Data System (ADS)

    Xing, Yanxia; Xu, Fuming; Cheung, King Tai; Sun, Qing-feng; Wang, Jian; Yao, Yugui

    2018-04-01

    Quantum anomalous Hall effect (QAHE) has been experimentally realized in magnetic topological insulator (MTI) thin films fabricated on magnetically doped {({{Bi}},{{Sb}})}2{{{Te}}}3. In an MTI thin film with the magnetic easy axis along the normal direction (z-direction), orientations of magnetic dopants are randomly distributed around the magnetic easy axis, acting as magnetic disorders. With the aid of the non-equilibrium Green's function and Landauer–Büttiker formalism, we numerically study the influence of magnetic disorders on QAHE in an MTI thin film modeled by a three-dimensional tight-binding Hamiltonian. It is found that, due to the existence of gapless side surface states, QAHE is protected even in the presence of magnetic disorders as long as the z-component of magnetic moment of all magnetic dopants are positive. More importantly, such magnetic disorders also suppress the dissipation of the chiral edge states and enhance the quality of QAHE in MTI films. In addition, the effect of magnetic disorders depends very much on the film thickness, and the optimal influence is achieved at certain thickness. These findings are new features for QAHE in three-dimensional systems, not present in two-dimensional systems.

  20. Emergent Topological Phenomena in Thin Films of Pyrochlore Iridates

    NASA Astrophysics Data System (ADS)

    Yang, Bohm-Jung; Nagaosa, Naoto

    2014-06-01

    Because of the recent development of thin film and artificial superstructure growth techniques, it is possible to control the dimensionality of the system, smoothly between two and three dimensions. In this Letter we unveil the dimensional crossover of emergent topological phenomena in correlated topological materials. In particular, by focusing on the thin film of pyrochlore iridate antiferromagnets grown along the [111] direction, we demonstrate that the thin film can have a giant anomalous Hall conductance, proportional to the thickness of the film, even though there is no Hall effect in 3D bulk material. Moreover, in the case of ultrathin films, a quantized anomalous Hall conductance can be observed, despite the fact that the system is an antiferromagnet. In addition, we uncover the emergence of a new topological phase, the nontrivial topological properties of which are hidden in the bulk insulator and manifest only in thin films. This shows that the thin film of correlated topological materials is a new platform to search for unexplored novel topological phenomena.

  1. Observation of the fractional quantum Hall effect in graphene.

    PubMed

    Bolotin, Kirill I; Ghahari, Fereshte; Shulman, Michael D; Stormer, Horst L; Kim, Philip

    2009-11-12

    When electrons are confined in two dimensions and subject to strong magnetic fields, the Coulomb interactions between them can become very strong, leading to the formation of correlated states of matter, such as the fractional quantum Hall liquid. In this strong quantum regime, electrons and magnetic flux quanta bind to form complex composite quasiparticles with fractional electronic charge; these are manifest in transport measurements of the Hall conductivity as rational fractions of the elementary conductance quantum. The experimental discovery of an anomalous integer quantum Hall effect in graphene has enabled the study of a correlated two-dimensional electronic system, in which the interacting electrons behave like massless chiral fermions. However, owing to the prevailing disorder, graphene has so far exhibited only weak signatures of correlated electron phenomena, despite intense experimental and theoretical efforts. Here we report the observation of the fractional quantum Hall effect in ultraclean, suspended graphene. In addition, we show that at low carrier density graphene becomes an insulator with a magnetic-field-tunable energy gap. These newly discovered quantum states offer the opportunity to study correlated Dirac fermions in graphene in the presence of large magnetic fields.

  2. Probing topology by “heating”: Quantized circular dichroism in ultracold atoms

    PubMed Central

    Tran, Duc Thanh; Dauphin, Alexandre; Grushin, Adolfo G.; Zoller, Peter; Goldman, Nathan

    2017-01-01

    We reveal an intriguing manifestation of topology, which appears in the depletion rate of topological states of matter in response to an external drive. This phenomenon is presented by analyzing the response of a generic two-dimensional (2D) Chern insulator subjected to a circular time-periodic perturbation. Because of the system’s chiral nature, the depletion rate is shown to depend on the orientation of the circular shake; taking the difference between the rates obtained from two opposite orientations of the drive, and integrating over a proper drive-frequency range, provides a direct measure of the topological Chern number (ν) of the populated band: This “differential integrated rate” is directly related to the strength of the driving field through the quantized coefficient η0 = ν/ℏ2, where h = 2π ℏ is Planck’s constant. Contrary to the integer quantum Hall effect, this quantized response is found to be nonlinear with respect to the strength of the driving field, and it explicitly involves interband transitions. We investigate the possibility of probing this phenomenon in ultracold gases and highlight the crucial role played by edge states in this effect. We extend our results to 3D lattices, establishing a link between depletion rates and the nonlinear photogalvanic effect predicted for Weyl semimetals. The quantized circular dichroism revealed in this work designates depletion rate measurements as a universal probe for topological order in quantum matter. PMID:28835930

  3. Optimal Quantization Scheme for Data-Efficient Target Tracking via UWSNs Using Quantized Measurements.

    PubMed

    Zhang, Senlin; Chen, Huayan; Liu, Meiqin; Zhang, Qunfei

    2017-11-07

    Target tracking is one of the broad applications of underwater wireless sensor networks (UWSNs). However, as a result of the temporal and spatial variability of acoustic channels, underwater acoustic communications suffer from an extremely limited bandwidth. In order to reduce network congestion, it is important to shorten the length of the data transmitted from local sensors to the fusion center by quantization. Although quantization can reduce bandwidth cost, it also brings about bad tracking performance as a result of information loss after quantization. To solve this problem, this paper proposes an optimal quantization-based target tracking scheme. It improves the tracking performance of low-bit quantized measurements by minimizing the additional covariance caused by quantization. The simulation demonstrates that our scheme performs much better than the conventional uniform quantization-based target tracking scheme and the increment of the data length affects our scheme only a little. Its tracking performance improves by only 4.4% from 2- to 3-bit, which means our scheme weakly depends on the number of data bits. Moreover, our scheme also weakly depends on the number of participate sensors, and it can work well in sparse sensor networks. In a 6 × 6 × 6 sensor network, compared with 4 × 4 × 4 sensor networks, the number of participant sensors increases by 334.92%, while the tracking accuracy using 1-bit quantized measurements improves by only 50.77%. Overall, our optimal quantization-based target tracking scheme can achieve the pursuit of data-efficiency, which fits the requirements of low-bandwidth UWSNs.

  4. Topological Weyl superconductor to diffusive thermal Hall metal crossover in the B phase of UPt3

    NASA Astrophysics Data System (ADS)

    Goswami, Pallab; Nevidomskyy, Andriy H.

    2015-12-01

    The recent phase-sensitive measurements in the superconducting B phase of UPt3 provide strong evidence for the triplet, chiral kz(kx±i ky) 2 pairing symmetries, which endow the Cooper pairs with orbital angular momentum projections Lz=±2 along the c axis. In the absence of disorder such pairing can support both line and point nodes, and both types of nodal quasiparticles exhibit nontrivial topology in the momentum space. The point nodes, located at the intersections of the closed Fermi surfaces with the c axis, act as the double monopoles and the antimonopoles of the Berry curvature, and generalize the notion of Weyl quasiparticles. Consequently, the B phase should support an anomalous thermal Hall effect, the polar Kerr effect, in addition to the protected Fermi arcs on the (1 ,0 ,0 ) and the (0 ,1 ,0 ) surfaces. The line node at the Fermi surface equator acts as a vortex loop in the momentum space and gives rise to the zero-energy, dispersionless Andreev bound states on the (0 ,0 ,1 ) surface. At the transition from the B phase to the A phase, the time-reversal symmetry is restored, and only the line node survives inside the A phase. As both line and double-Weyl point nodes possess linearly vanishing density of states, we show that weak disorder acts as a marginally relevant perturbation. Consequently, an infinitesimal amount of disorder destroys the ballistic quasiparticle pole, while giving rise to a diffusive phase with a finite density of states at the zero energy. The resulting diffusive phase exhibits T -linear specific heat, and an anomalous thermal Hall effect. We predict that the low-temperature thermodynamic and transport properties display a crossover between a ballistic thermal Hall semimetal and a diffusive thermal Hall metal. By contrast, the diffusive phase obtained from a time-reversal-invariant pairing exhibits only the T -linear specific heat without any anomalous thermal Hall effect.

  5. BRST quantization of cosmological perturbations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armendariz-Picon, Cristian; Şengör, Gizem

    2016-11-08

    BRST quantization is an elegant and powerful method to quantize theories with local symmetries. In this article we study the Hamiltonian BRST quantization of cosmological perturbations in a universe dominated by a scalar field, along with the closely related quantization method of Dirac. We describe how both formalisms apply to perturbations in a time-dependent background, and how expectation values of gauge-invariant operators can be calculated in the in-in formalism. Our analysis focuses mostly on the free theory. By appropriate canonical transformations we simplify and diagonalize the free Hamiltonian. BRST quantization in derivative gauges allows us to dramatically simplify the structuremore » of the propagators, whereas Dirac quantization, which amounts to quantization in synchronous gauge, dispenses with the need to introduce ghosts and preserves the locality of the gauge-fixed action.« less

  6. Computed versus measured ion velocity distribution functions in a Hall effect thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrigues, L.; CNRS, LAPLACE, F-31062 Toulouse; Mazouffre, S.

    2012-06-01

    We compare time-averaged and time-varying measured and computed ion velocity distribution functions in a Hall effect thruster for typical operating conditions. The ion properties are measured by means of laser induced fluorescence spectroscopy. Simulations of the plasma properties are performed with a two-dimensional hybrid model. In the electron fluid description of the hybrid model, the anomalous transport responsible for the electron diffusion across the magnetic field barrier is deduced from the experimental profile of the time-averaged electric field. The use of a steady state anomalous mobility profile allows the hybrid model to capture some properties like the time-averaged ion meanmore » velocity. Yet, the model fails at reproducing the time evolution of the ion velocity. This fact reveals a complex underlying physics that necessitates to account for the electron dynamics over a short time-scale. This study also shows the necessity for electron temperature measurements. Moreover, the strength of the self-magnetic field due to the rotating Hall current is found negligible.« less

  7. Topological gapped edge states in fractional quantum Hall-superconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Cook, Ashley; Repellin, Cécile; Regnault, Nicolas; Neupert, Titus

    We propose and implement a numerical setup for studying edge states of fractional quantum Hall droplets with a superconducting instability. We focus on a time-reversal symmetric bilayer fractional quantum Hall system of Laughlin ν = 1 / 3 states. The fully gapped edges carry a topological parafermionic degree of freedom that can encode quantum information protected against local perturbations. We numerically simulate such a system using exact diagonalization by restricting the calculation to the Laughlin quasihole subspace. We study the quantization of the total charge on each edge and show that the ground states are permuted by spin flux insertion and the parafermionic Josephson effect, evidencing their topological nature and the Cooper pairing of fractionalized quasiparticles. The full affiliation for Author 3 is: Laboratoire Pierre Aigrain, Ecole Normale Supérieure-PSL Research University, CNRS, Université Pierre et Marie Curie-Sorbonne Universités, Université Paris Diderot-Sorbonne Paris Cité, 24 rue Lhomond, 75231 Paris.

  8. Quantum spin Hall state in monolayer 1T '-WTe 2

    DOE PAGES

    Tang, Shujie; Zhang, Chaofan; Wong, Dillon; ...

    2017-06-26

    A quantum spin Hall (QSH) insulator is a novel two-dimensional quantum state of matter that features quantized Hall conductance in the absence of a magnetic field, resulting from topologically protected dissipationless edge states that bridge the energy gap opened by band inversion and strong spin–orbit coupling. By investigating the electronic structure of epitaxially grown monolayer 1T '-WTe 2 using angle-resolved photoemission (ARPES) and first-principles calculations, we observe clear signatures of topological band inversion and bandgap opening, which are the hallmarks of a QSH state. Scanning tunnelling microscopy measurements further confirm the correct crystal structure and the existence of a bulkmore » bandgap, and provide evidence for a modified electronic structure near the edge that is consistent with the expectations for a QSH insulator. Our results establish monolayer 1T '-WTe 2 as a new class of QSH insulator with large band gap in a robust two-dimensional materials family of transition metal dichalcogenides (TMDCs).« less

  9. Quantum spin Hall state in monolayer 1T '-WTe 2

    DOE PAGES

    Tang, Shujie; Zhang, Chaofan; Wong, Dillon; ...

    2017-06-26

    A quantum spin Hall (QSH) insulator is a novel two-dimensional quantum state of matter that features quantized Hall conductance in the absence of a magnetic field, resulting from topologically protected dissipationless edge states that bridge the energy gap opened by band inversion and strong spin–orbit coupling. By investigating the electronic structure of epitaxially grown monolayer 1T '-WTe 2 using angle-resolved photoemission (ARPES) and first-principles calculations, we observe clear signatures of topological band inversion and bandgap opening, which are the hallmarks of a QSH state. Scanning tunnelling microscopy measurements further confirm the correct crystal structure and the existence of a bulkmore » bandgap, and provide evidence for a modified electronic structure near the edge that is consistent with the expectations for a QSH insulator. Finally, our results establish monolayer 1T '-WTe 2 as a new class of QSH insulator with large band gap in a robust two-dimensional materials family of transition metal dichalcogenides (TMDCs).« less

  10. Unambiguous separation of the inverse spin Hall and anomalous Nernst effects within a ferromagnetic metal using the spin Seebeck effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Stephen M., E-mail: swu@anl.gov; Hoffman, Jason; Pearson, John E.

    2014-09-01

    The longitudinal spin Seebeck effect is measured on the ferromagnetic insulator Fe{sub 3}O{sub 4} with the ferromagnetic metal Co{sub 0.2}Fe{sub 0.6}B{sub 0.2} (CoFeB) as the spin detector. By using a non-magnetic spacer material between the two materials (Ti), it is possible to decouple the two ferromagnetic materials and directly observe pure spin flow from Fe{sub 3}O{sub 4} into CoFeB. It is shown that in a single ferromagnetic metal, the inverse spin Hall effect (ISHE) and anomalous Nernst effect (ANE) can occur simultaneously with opposite polarity. Using this and the large difference in the coercive fields between the two magnets, itmore » is possible to unambiguously separate the contributions of the spin Seebeck effect from the ANE and observe the degree to which each effect contributes to the total response. These experiments show conclusively that the ISHE and ANE in CoFeB are separate phenomena with different origins and can coexist in the same material with opposite response to a thermal gradient.« less

  11. Hydrodynamic Electron Flow and Hall Viscosity

    NASA Astrophysics Data System (ADS)

    Scaffidi, Thomas; Moll, Philip; Kushwaha, Pallavi; Nandi, Nabhanila; Schmidt, Burkhard; MacKenzie, Andrew; Moore, Joel

    In metallic samples of small enough size and sufficiently strong electron-electron scattering, the viscosity of the electron gas can become the dominant process governing transport. In this regime, momentum is a long-lived quantity whose evolution is described by an emergent hydrodynamical theory for which bounds on diffusion were conjectured based on an holographic correspondence. Furthermore, breaking time-reversal symmetry can lead to the appearance of an odd component to the viscosity called the Hall viscosity which has attracted a lot of attention recently due to its quantized nature in gapped systems but still eludes experimental confirmation. Based on microscopic calculations, we discuss how to measure the effects of both the even and odd components of the viscosity using hydrodynamic electronic transport in mesoscopic samples under applied magnetic fields. Gordon and Betty Moore Foundation.

  12. Electron Transport and Ion Acceleration in a Low-power Cylindrical Hall Thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Smirnov; Y. Raitses; N.J. Fisch

    2004-06-24

    Conventional annular Hall thrusters become inefficient when scaled to low power. Cylindrical Hall thrusters, which have lower surface-to-volume ratio, are therefore more promising for scaling down. They presently exhibit performance comparable with conventional annular Hall thrusters. Electron cross-field transport in a 2.6 cm miniaturized cylindrical Hall thruster (100 W power level) has been studied through the analysis of experimental data and Monte Carlo simulations of electron dynamics in the thruster channel. The numerical model takes into account elastic and inelastic electron collisions with atoms, electron-wall collisions, including secondary electron emission, and Bohm diffusion. We show that in order to explainmore » the observed discharge current, the electron anomalous collision frequency {nu}{sub B} has to be on the order of the Bohm value, {nu}{sub B} {approx} {omega}{sub c}/16. The contribution of electron-wall collisions to cross-field transport is found to be insignificant. The plasma density peak observed at the axis of the 2.6 cm cylindrical Hall thruster is likely to be due to the convergent flux of ions, which are born in the annular part of the channel and accelerated towards the thruster axis.« less

  13. Vector quantization

    NASA Technical Reports Server (NTRS)

    Gray, Robert M.

    1989-01-01

    During the past ten years Vector Quantization (VQ) has developed from a theoretical possibility promised by Shannon's source coding theorems into a powerful and competitive technique for speech and image coding and compression at medium to low bit rates. In this survey, the basic ideas behind the design of vector quantizers are sketched and some comments made on the state-of-the-art and current research efforts.

  14. The Hall-induced stability of gravitating fluids

    NASA Astrophysics Data System (ADS)

    Karmakar, P. K.; Goutam, H. P.

    2018-05-01

    We analyze the stability behavior of low-density partially ionized self-gravitating magnetized unbounded dusty plasma fluid in the presence of the Hall diffusion effects (HDEs) in the non-ideal magnetohydrodynamic (MHD) equilibrium framework. The effects of inhomogeneous self-gravity are methodically included in the basic model tapestry. Application of the Fourier plane-wave perturbative treatment decouples the structuration representative parameters into a linear generalized dispersion relation (sextic) in a judicious mean-fluid approximation. The dispersion analysis shows that the normal mode, termed as the gravito-magneto-acoustic (GMA) mode, is drastically modified due to the HDEs. This mode is highly dispersive, and driven unstable by the Hall current resulting from the symmetry-breaking of electrons and ions relative to the magnetic field. The mode feature, which is derived from a modified induction with the positive Hall, is against the ideal MHD. It is further demonstrated that the HDEs play stabilizing roles by supporting the cloud against gravitational collapse. Provided that the HDEs are concurrently switched off, the collapse occurs on the global spatial scale due to enhanced inward accretion of the gravitating dust constituents. It is seen explicitly that the enhanced dust-charge leads to stabilizing effects. Besides, the Hall-induced fluctuations, as propagatory wave modes, exhibit both normal and anomalous dispersions. The reliability checkup of the entailed results as diverse corollaries and special cases are illustratively discussed in the panoptic light of the earlier paradigmatic predictions available in the literature.

  15. A Small Modular Laboratory Hall Effect Thruster

    NASA Astrophysics Data System (ADS)

    Lee, Ty Davis

    Electric propulsion technologies promise to revolutionize access to space, opening the door for mission concepts unfeasible by traditional propulsion methods alone. The Hall effect thruster is a relatively high thrust, moderate specific impulse electric propulsion device that belongs to the class of electrostatic thrusters. Hall effect thrusters benefit from an extensive flight history, and offer significant performance and cost advantages when compared to other forms of electric propulsion. Ongoing research on these devices includes the investigation of mechanisms that tend to decrease overall thruster efficiency, as well as the development of new techniques to extend operational lifetimes. This thesis is primarily concerned with the design and construction of a Small Modular Laboratory Hall Effect Thruster (SMLHET), and its operation on argon propellant gas. Particular attention was addressed at low-cost, modular design principles, that would facilitate simple replacement and modification of key thruster parts such as the magnetic circuit and discharge channel. This capability is intended to facilitate future studies of device physics such as anomalous electron transport and magnetic shielding of the channel walls, that have an impact on thruster performance and life. Preliminary results demonstrate SMLHET running on argon in a manner characteristic of Hall effect thrusters, additionally a power balance method was utilized to estimate thruster performance. It is expected that future thruster studies utilizing heavier though more expensive gases like xenon or krypton, will observe increased efficiency and stability.

  16. Nearly associative deformation quantization

    NASA Astrophysics Data System (ADS)

    Vassilevich, Dmitri; Oliveira, Fernando Martins Costa

    2018-04-01

    We study several classes of non-associative algebras as possible candidates for deformation quantization in the direction of a Poisson bracket that does not satisfy Jacobi identities. We show that in fact alternative deformation quantization algebras require the Jacobi identities on the Poisson bracket and, under very general assumptions, are associative. At the same time, flexible deformation quantization algebras exist for any Poisson bracket.

  17. Quantized Majorana conductance

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Liu, Chun-Xiao; Gazibegovic, Sasa; Xu, Di; Logan, John A.; Wang, Guanzhong; van Loo, Nick; Bommer, Jouri D. S.; de Moor, Michiel W. A.; Car, Diana; Op Het Veld, Roy L. M.; van Veldhoven, Petrus J.; Koelling, Sebastian; Verheijen, Marcel A.; Pendharkar, Mihir; Pennachio, Daniel J.; Shojaei, Borzoyeh; Lee, Joon Sue; Palmstrøm, Chris J.; Bakkers, Erik P. A. M.; Sarma, S. Das; Kouwenhoven, Leo P.

    2018-04-01

    Majorana zero-modes—a type of localized quasiparticle—hold great promise for topological quantum computing. Tunnelling spectroscopy in electrical transport is the primary tool for identifying the presence of Majorana zero-modes, for instance as a zero-bias peak in differential conductance. The height of the Majorana zero-bias peak is predicted to be quantized at the universal conductance value of 2e2/h at zero temperature (where e is the charge of an electron and h is the Planck constant), as a direct consequence of the famous Majorana symmetry in which a particle is its own antiparticle. The Majorana symmetry protects the quantization against disorder, interactions and variations in the tunnel coupling. Previous experiments, however, have mostly shown zero-bias peaks much smaller than 2e2/h, with a recent observation of a peak height close to 2e2/h. Here we report a quantized conductance plateau at 2e2/h in the zero-bias conductance measured in indium antimonide semiconductor nanowires covered with an aluminium superconducting shell. The height of our zero-bias peak remains constant despite changing parameters such as the magnetic field and tunnel coupling, indicating that it is a quantized conductance plateau. We distinguish this quantized Majorana peak from possible non-Majorana origins by investigating its robustness to electric and magnetic fields as well as its temperature dependence. The observation of a quantized conductance plateau strongly supports the existence of Majorana zero-modes in the system, consequently paving the way for future braiding experiments that could lead to topological quantum computing.

  18. Quantized Majorana conductance.

    PubMed

    Zhang, Hao; Liu, Chun-Xiao; Gazibegovic, Sasa; Xu, Di; Logan, John A; Wang, Guanzhong; van Loo, Nick; Bommer, Jouri D S; de Moor, Michiel W A; Car, Diana; Op Het Veld, Roy L M; van Veldhoven, Petrus J; Koelling, Sebastian; Verheijen, Marcel A; Pendharkar, Mihir; Pennachio, Daniel J; Shojaei, Borzoyeh; Lee, Joon Sue; Palmstrøm, Chris J; Bakkers, Erik P A M; Sarma, S Das; Kouwenhoven, Leo P

    2018-04-05

    Majorana zero-modes-a type of localized quasiparticle-hold great promise for topological quantum computing. Tunnelling spectroscopy in electrical transport is the primary tool for identifying the presence of Majorana zero-modes, for instance as a zero-bias peak in differential conductance. The height of the Majorana zero-bias peak is predicted to be quantized at the universal conductance value of 2e 2 /h at zero temperature (where e is the charge of an electron and h is the Planck constant), as a direct consequence of the famous Majorana symmetry in which a particle is its own antiparticle. The Majorana symmetry protects the quantization against disorder, interactions and variations in the tunnel coupling. Previous experiments, however, have mostly shown zero-bias peaks much smaller than 2e 2 /h, with a recent observation of a peak height close to 2e 2 /h. Here we report a quantized conductance plateau at 2e 2 /h in the zero-bias conductance measured in indium antimonide semiconductor nanowires covered with an aluminium superconducting shell. The height of our zero-bias peak remains constant despite changing parameters such as the magnetic field and tunnel coupling, indicating that it is a quantized conductance plateau. We distinguish this quantized Majorana peak from possible non-Majorana origins by investigating its robustness to electric and magnetic fields as well as its temperature dependence. The observation of a quantized conductance plateau strongly supports the existence of Majorana zero-modes in the system, consequently paving the way for future braiding experiments that could lead to topological quantum computing.

  19. Quantum Hall effect with small numbers of vortices in Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Byrnes, Tim; Dowling, Jonathan P.

    2015-08-01

    When vortices are displaced in Bose-Einstein condensates (BECs), the Magnus force gives the system a momentum transverse in the direction to the displacement. We show that BECs in long channels with vortices exhibit a quantization of the current response with respect to the spatial vortex distribution. The quantization originates from the well-known topological property of the phase around a vortex; it is an integer multiple of 2 π . In a way similar to that of the integer quantum Hall effect, the current along the channel is related to this topological phase and can be extracted from two experimentally measurable quantities: the total momentum of the BEC and the spatial distribution. The quantization is in units of m /2 h , where m is the mass of the atoms and h is Planck's constant. We derive an exact vortex momentum-displacement relation for BECs in long channels under general circumstances. Our results present the possibility that the configuration described here can be used as a novel way of measuring the mass of the atoms in the BEC using a topological invariant of the system. If an accurate determination of the plateaus are experimentally possible, this gives the possibility of a topological quantum mass standard and precise determination of the fine structure constant.

  20. Observation of the Quantum Hall Effect in Confined Films of the Three-Dimensional Dirac Semimetal Cd3 As2

    NASA Astrophysics Data System (ADS)

    Schumann, Timo; Galletti, Luca; Kealhofer, David A.; Kim, Honggyu; Goyal, Manik; Stemmer, Susanne

    2018-01-01

    The magnetotransport properties of epitaxial films of Cd3 As2 , a paradigm three-dimensional Dirac semimetal, are investigated. We show that an energy gap opens in the bulk electronic states of sufficiently thin films and, at low temperatures, carriers residing in surface states dominate the electrical transport. The carriers in these states are sufficiently mobile to give rise to a quantized Hall effect. The sharp quantization demonstrates surface transport that is virtually free of parasitic bulk conduction and paves the way for novel quantum transport studies in this class of topological materials. Our results also demonstrate that heterostructuring approaches can be used to study and engineer quantum states in topological semimetals.

  1. Anomalous cross-B field transport and spokes in HiPIMS plasma

    NASA Astrophysics Data System (ADS)

    Hecimovic, Ante; Maszl, Christian; Schulz-von der Gathen, Volker; von Keudell, Achim

    2016-09-01

    The rotation of localised ionisation zones, i.e. spokes, in magnetron discharge is investigated as a function of discharge current, ranging from 10 mA (current density 0.5 mA cm-2) to 140 A (7 A cm-2) . The presence of spokes throughout the complete discharge current range indicates that the spokes are an intrinsic property of a magnetron sputtering plasma discharge. Up to discharge currents of several amperes, the spokes rotate in a retrograde ExB direction and beyond the spokes rotate in a ExB direction. In this contribution we present experimental evidence that anomalous diffusion is triggered by the appearance of spokes rotating in the ExB direction. The Hall parameter ωceτc , product of the electron cyclotron frequency and the classical collision time, reduces from Bohm diffusion values (16 and higher) down to the value of 3 as spokes appear, indicating anomalous cross-B field transport. The ion diffusion coefficients calculated from a sideways image of the spoke is six times higher than Bohm diffusion coefficients, which is consistent with the reduction of the Hall parameter.

  2. Non-Abelian fermionization and fractional quantum Hall transitions

    NASA Astrophysics Data System (ADS)

    Hui, Aaron; Mulligan, Michael; Kim, Eun-Ah

    2018-02-01

    There has been a recent surge of interest in dualities relating theories of Chern-Simons gauge fields coupled to either bosons or fermions within the condensed matter community, particularly in the context of topological insulators and the half-filled Landau level. Here, we study the application of one such duality to the long-standing problem of quantum Hall interplateaux transitions. The key motivating experimental observations are the anomalously large value of the correlation length exponent ν ≈2.3 and that ν is observed to be superuniversal, i.e., the same in the vicinity of distinct critical points [Sondhi et al., Rev. Mod. Phys. 69, 315 (1997), 10.1103/RevModPhys.69.315]. Duality motivates effective descriptions for a fractional quantum Hall plateau transition involving a Chern-Simons field with U (Nc) gauge group coupled to Nf=1 fermion. We study one class of theories in a controlled limit where Nf≫Nc and calculate ν to leading nontrivial order in the absence of disorder. Although these theories do not yield an anomalously large exponent ν within the large Nf≫Nc expansion, they do offer a new parameter space of theories that is apparently different from prior works involving Abelian Chern-Simons gauge fields [Wen and Wu, Phys. Rev. Lett. 70, 1501 (1993), 10.1103/PhysRevLett.70.1501; Chen et al., Phys. Rev. B 48, 13749 (1993), 10.1103/PhysRevB.48.13749].

  3. Deformation of second and third quantization

    NASA Astrophysics Data System (ADS)

    Faizal, Mir

    2015-03-01

    In this paper, we will deform the second and third quantized theories by deforming the canonical commutation relations in such a way that they become consistent with the generalized uncertainty principle. Thus, we will first deform the second quantized commutator and obtain a deformed version of the Wheeler-DeWitt equation. Then we will further deform the third quantized theory by deforming the third quantized canonical commutation relation. This way we will obtain a deformed version of the third quantized theory for the multiverse.

  4. Robustness of topological Hall effect of nontrivial spin textures

    NASA Astrophysics Data System (ADS)

    Jalil, Mansoor B. A.; Tan, Seng Ghee

    2014-05-01

    We analyze the topological Hall conductivity (THC) of topologically nontrivial spin textures like magnetic vortices and skyrmions and investigate its possible application in the readback for magnetic memory based on those spin textures. Under adiabatic conditions, such spin textures would theoretically yield quantized THC values, which are related to topological invariants such as the winding number and polarity, and as such are insensitive to fluctuations and smooth deformations. However, in a practical setting, the finite size of spin texture elements and the influence of edges may cause them to deviate from their ideal configurations. We calculate the degree of robustness of the THC output in practical magnetic memories in the presence of edge and finite size effects.

  5. Quantization and fractional quantization of currents in periodically driven stochastic systems. I. Average currents

    NASA Astrophysics Data System (ADS)

    Chernyak, Vladimir Y.; Klein, John R.; Sinitsyn, Nikolai A.

    2012-04-01

    This article studies Markovian stochastic motion of a particle on a graph with finite number of nodes and periodically time-dependent transition rates that satisfy the detailed balance condition at any time. We show that under general conditions, the currents in the system on average become quantized or fractionally quantized for adiabatic driving at sufficiently low temperature. We develop the quantitative theory of this quantization and interpret it in terms of topological invariants. By implementing the celebrated Kirchhoff theorem we derive a general and explicit formula for the average generated current that plays a role of an efficient tool for treating the current quantization effects.

  6. Hall effect in Ce/sub 1-x/Y/sub x/Pd/sub 3/ mixed-valence alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fert, A.; Pureur, P.; Hamzic, A.

    Mixed-valence and Kondo lattice systems exhibit large anomalous Hall coefficients with a striking change of sign at low temperature in several systems (CePd/sub 3/, CeCu/sub 6/,..., etc.). We have studied the Hall effect of Ce/sub 1-x/Y/sub x/Pd/sub 3/, in which the substitution of small amounts of Y for Ce prevents the development of coherence at low temperature. We find that the Hall coefficient does not change its sign at low temperature and can be well understood in the one-impurity model of Ramakrishnan, Coleman, and Anderson. We infer that the change of sign observed in CePd/sub 3/ is an effect ofmore » coherence.« less

  7. Fractional charge revealed in computer simulations of resonant tunneling in the fractional quantum Hall regime.

    PubMed

    Tsiper, E V

    2006-08-18

    The concept of fractional charge is central to the theory of the fractional quantum Hall effect. Here I use exact diagonalization as well as configuration space renormalization to study finite clusters which are large enough to contain two independent edges. I analyze the conditions of resonant tunneling between the two edges. The "computer experiment" reveals a periodic sequence of resonant tunneling events consistent with the experimentally observed fractional quantization of electric charge in units of e/3 and e/5.

  8. A variational theory of Hall effect of Anderson lattice model: Application to colossal magnetoresistance manganites (Re1-x Ax MnO3)

    NASA Astrophysics Data System (ADS)

    Panwar, Sunil; Kumar, Vijay; Singh, Ishwar

    2017-10-01

    An anomalous Hall constant RH has been observed in various rare earth manganites doped with alkaline earths namely Re1-xAxMnO3 (where Re = La, Pr, Nd etc., and A = Ca, Sr, Ba etc.) which exhibit colossal magnetoresistance (CMR), metal- insulator transition and many other poorly understood phenomena. We show that this phenomenon of anomalous Hall constant can be understood using two band (ℓ-b) Anderson lattice model Hamiltonian alongwith (ℓ-b) hybridization recently studied by us for manganites in the strong electron-lattice Jahn-Teller (JT) coupling regime an approach similar to the two - fluid models. We use a variational method in this work to study the temperature variation of Hall constant RH (T) in these compounds. We have already used this variational method to study the zero field electrical resistivity ρ (T) and magnetic susceptibility of doped CMR manganites. In the present study, we find that the Hall constant RH (T) reduces with increasing magnetic field parameters h&m and the metal-insulator transition temperature (Tρ) shifts towards higher temperature region. We have also observed the role of the model parameters e.g. local Coulomb repulsion U, Hund's rule coupling JH between eg spins and t2g spins, ferromagnetic nearest neighbor exchange coupling JF between t2g core spins and hybridization Vk between ℓ-polarons and d-electrons on Hall constant RH (T) of these materials at different magnetic fields. Here we find that RH (T) for a particular value of h and m shows a rapid initial increase, followed by a sharp peak at low temperature say 50 K in our case and a slow decrease at high temperatures, resembling with the key feature of many CMR compounds like La0.8Ba0.2 MnO3.The magnitude of RH (T) reduces and the anomaly (sharp peak) in RH becomes broader and shifts towards higher temperature region on increasing Vk or JH or doping x and even vanishes on further increasing these parameters. Our results of anomalous Hall constant (RH) have same

  9. An adaptive vector quantization scheme

    NASA Technical Reports Server (NTRS)

    Cheung, K.-M.

    1990-01-01

    Vector quantization is known to be an effective compression scheme to achieve a low bit rate so as to minimize communication channel bandwidth and also to reduce digital memory storage while maintaining the necessary fidelity of the data. However, the large number of computations required in vector quantizers has been a handicap in using vector quantization for low-rate source coding. An adaptive vector quantization algorithm is introduced that is inherently suitable for simple hardware implementation because it has a simple architecture. It allows fast encoding and decoding because it requires only addition and subtraction operations.

  10. Canonical quantization of classical mechanics in curvilinear coordinates. Invariant quantization procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Błaszak, Maciej, E-mail: blaszakm@amu.edu.pl; Domański, Ziemowit, E-mail: ziemowit@amu.edu.pl

    In the paper is presented an invariant quantization procedure of classical mechanics on the phase space over flat configuration space. Then, the passage to an operator representation of quantum mechanics in a Hilbert space over configuration space is derived. An explicit form of position and momentum operators as well as their appropriate ordering in arbitrary curvilinear coordinates is demonstrated. Finally, the extension of presented formalism onto non-flat case and related ambiguities of the process of quantization are discussed. -- Highlights: •An invariant quantization procedure of classical mechanics on the phase space over flat configuration space is presented. •The passage tomore » an operator representation of quantum mechanics in a Hilbert space over configuration space is derived. •Explicit form of position and momentum operators and their appropriate ordering in curvilinear coordinates is shown. •The invariant form of Hamiltonian operators quadratic and cubic in momenta is derived. •The extension of presented formalism onto non-flat case and related ambiguities of the quantization process are discussed.« less

  11. Theory of the disordered ν =5/2 quantum thermal Hall state: Emergent symmetry and phase diagram

    NASA Astrophysics Data System (ADS)

    Lian, Biao; Wang, Juven

    2018-04-01

    Fractional quantum Hall (FQH) system at Landau level filling fraction ν =5 /2 has long been suggested to be non-Abelian, either Pfaffian (Pf) or antiPfaffian (APf) states by numerical studies, both with quantized Hall conductance σx y=5 e2/2 h . Thermal Hall conductances of the Pf and APf states are quantized at κx y=7 /2 and κx y=3 /2 , respectively, in a proper unit. However, a recent experiment shows the thermal Hall conductance of ν =5 /2 FQH state is κx y=5 /2 . It has been speculated that the system contains random Pf and APf domains driven by disorders, and the neutral chiral Majorana modes on the domain walls may undergo a percolation transition to a κx y=5 /2 phase. In this paper, we do perturbative and nonperturbative analyses on the domain walls between Pf and APf. We show the domain wall theory possesses an emergent SO(4) symmetry at energy scales below a threshold Λ1, which is lowered to an emergent U (1 )×U (1) symmetry at energy scales between Λ1 and a higher value Λ2, and is finally lowered to the composite fermion parity symmetry Z2F above Λ2. Based on the emergent symmetries, we propose a phase diagram of the disordered ν =5 /2 FQH system and show that a κx y=5 /2 phase arises at disorder energy scales Λ >Λ1 . Furthermore, we show the gapped double-semion sector of ND compact domain walls contributes nonlocal topological degeneracy 2ND-1, causing a low-temperature peak in the heat capacity. We implement a nonperturbative method to bootstrap generic topological 1 +1 D domain walls (two-surface defects) applicable to any 2 +1 D non-Abelian topological order. We also identify potentially relevant spin topological quantum field theories (TQFTs) for various ν =5 /2 FQH states in terms of fermionic version of U (1) ±8 Chern-Simons theory ×Z8 -class TQFTs.

  12. Time-Reversal Symmetry-Breaking Nematic Insulators near Quantum Spin Hall Phase Transitions.

    PubMed

    Xue, Fei; MacDonald, A H

    2018-05-04

    We study the phase diagram of a model quantum spin Hall system as a function of band inversion and band-coupling strength, demonstrating that when band hybridization is weak, an interaction-induced nematic insulator state emerges over a wide range of band inversion. This property is a consequence of the long-range Coulomb interaction, which favors interband phase coherence that is weakly dependent on momentum and therefore frustrated by the single-particle Hamiltonian at the band inversion point. For weak band hybridization, interactions convert the continuous gap closing topological phase transition at inversion into a pair of continuous phase transitions bounding a state with broken time-reversal and rotational symmetries. At intermediate band hybridization, the topological phase transition proceeds instead via a quantum anomalous Hall insulator state, whereas at strong hybridization interactions play no role. We comment on the implications of our findings for InAs/GaSb and HgTe/CdTe quantum spin Hall systems.

  13. Time-Reversal Symmetry-Breaking Nematic Insulators near Quantum Spin Hall Phase Transitions

    NASA Astrophysics Data System (ADS)

    Xue, Fei; MacDonald, A. H.

    2018-05-01

    We study the phase diagram of a model quantum spin Hall system as a function of band inversion and band-coupling strength, demonstrating that when band hybridization is weak, an interaction-induced nematic insulator state emerges over a wide range of band inversion. This property is a consequence of the long-range Coulomb interaction, which favors interband phase coherence that is weakly dependent on momentum and therefore frustrated by the single-particle Hamiltonian at the band inversion point. For weak band hybridization, interactions convert the continuous gap closing topological phase transition at inversion into a pair of continuous phase transitions bounding a state with broken time-reversal and rotational symmetries. At intermediate band hybridization, the topological phase transition proceeds instead via a quantum anomalous Hall insulator state, whereas at strong hybridization interactions play no role. We comment on the implications of our findings for InAs/GaSb and HgTe/CdTe quantum spin Hall systems.

  14. On-chip microwave circulators using quantum Hall plasmonics

    NASA Astrophysics Data System (ADS)

    Mahoney, Alice; Colless, James; Pauka, Sebastian; Hornibrook, John; Doherty, Andrew; Reilly, David; Peeters, Lucas; Fox, Eli; Goldhaber-Gordon, David; Kou, Xuefeng; Pan, Lei; Wang, Kang; Watson, John; Gardner, Geoffrey; Manfra, Michael

    Circulators are directional circuit elements integral to technologies including radar systems, microwave communication transceivers and the readout of quantum information devices. Their non-reciprocity commonly arises from the interference of microwaves over the centimetre-scale of the signal wavelength in the presence of bulky magnetic media that breaks time-reversal symmetry. We present a completely passive on-chip microwave circulator with size 1/1000th the wavelength by exploiting the chiral, `slow-light' response of a GaAs/AlGaAs 2-dimensional electron gas in the quantum Hall regime. Further, by implementing this circulator design on a thin film of a magnetic topological insulator (Cr0.12(Bi0.26Sb0.62)2Te3), we show that similar non-reciprocity can be achieved at zero magnetic field. This additional mode of operation serves as a non-invasive probe of edge states in the quantum anomalous Hall effect, while also extending the possibility for integration with superconducting devices.

  15. Dual-wavelength photo-Hall effect spectroscopy of deep levels in high resistive CdZnTe with negative differential photoconductivity

    NASA Astrophysics Data System (ADS)

    Musiienko, A.; Grill, R.; Moravec, P.; Korcsmáros, G.; Rejhon, M.; Pekárek, J.; Elhadidy, H.; Šedivý, L.; Vasylchenko, I.

    2018-04-01

    Photo-Hall effect spectroscopy was used in the study of deep levels in high resistive CdZnTe. The monochromator excitation in the photon energy range 0.65-1.77 eV was complemented by a laser diode high-intensity excitation at selected photon energies. A single sample characterized by multiple unusual features like negative differential photoconductivity and anomalous depression of electron mobility was chosen for the detailed study involving measurements at both the steady and dynamic regimes. We revealed that the Hall mobility and photoconductivity can be both enhanced and suppressed by an additional illumination at certain photon energies. The anomalous mobility decrease was explained by an excitation of the inhomogeneously distributed deep level at the energy Ev + 1.0 eV, thus enhancing potential non-uniformities. The appearance of negative differential photoconductivity was interpreted by an intensified electron occupancy of that level by a direct valence band-to-level excitation. Modified Shockley-Read-Hall theory was used for fitting experimental results by a model comprising five deep levels. Properties of the deep levels and their impact on the device performance were deduced.

  16. Visibility of wavelet quantization noise

    NASA Technical Reports Server (NTRS)

    Watson, A. B.; Yang, G. Y.; Solomon, J. A.; Villasenor, J.

    1997-01-01

    The discrete wavelet transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that we call DWT uniform quantization noise; it is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2-lambda, where r is display visual resolution in pixels/degree, and lambda is the wavelet level. Thresholds increase rapidly with wavelet spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from lowpass to horizontal/vertical to diagonal. We construct a mathematical model for DWT noise detection thresholds that is a function of level, orientation, and display visual resolution. This allows calculation of a "perceptually lossless" quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.

  17. The Importance of the Cathode Plume and Its Interactions with the Ion Beam in Numerical Simulations of Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Lopez Ortega, Alejandro; Mikellides, Ioannis G.

    2015-01-01

    Hall2De is a first-principles, 2-D axisymmetric code that solves the equations of motion for ions, electrons, and neutrals on a magnetic-field-aligned grid. The computational domain downstream of the acceleration channel exit plane is large enough to include self-consistently the cathode boundary. In this paper, we present results from numerical simulations of the H6 laboratory thruster with an internally mounted cathode, with the aim of highlighting the importance of properly accounting for the interactions between the ion beam and cathode plume. The anomalous transport of electrons across magnetic field lines in Hall2De is modelled using an anomalous collision frequency, ?anom, yielding ?anom approximately equal to omega ce (i.e., the electron cyclotron frequency) in the plume. We first show that restricting the anomalous collision frequency to only regions where the current density of ions is large does not alter the plasma discharge in the Hall thruster as long as the interaction between the ion beam and the cathode plume is captured properly in the computational domain. This implies that the boundary conditions must be placed sufficiently far as to not interfere with the electron transport in this region. These simulation results suggest that electron transport across magnetic field lines occurs largely inside the beam and may be driven by the interactions between beam ions and electrons. A second finding that puts in relevance the importance of including the cathode plume in numerical simulations is on the significance of accounting for the ion acoustic turbulence (IAT), now known to occur in the vicinity of the cathode exit. We have included in the Hall2De simulations a model of the IAT-driven anomalous collision frequency based on Sagdeev's model for saturation of the ion-acoustic instability. This implementation has allowed us to achieve excellent agreement with experimental measurements in the near plume obtained during the operation of the H6 thruster at

  18. Quantized discrete space oscillators

    NASA Technical Reports Server (NTRS)

    Uzes, C. A.; Kapuscik, Edward

    1993-01-01

    A quasi-canonical sequence of finite dimensional quantizations was found which has canonical quantization as its limit. In order to demonstrate its practical utility and its numerical convergence, this formalism is applied to the eigenvalue and 'eigenfunction' problem of several harmonic and anharmonic oscillators.

  19. Flux and Hall states in ABJM with dynamical flavors

    NASA Astrophysics Data System (ADS)

    Bea, Yago; Jokela, Niko; Lippert, Matthew; Ramallo, Alfonso V.; Zoakos, Dimitrios

    2015-03-01

    We study the physics of probe D6-branes with quantized internal worldvolume flux in the ABJM background with unquenched massless flavors. This flux breaks parity in the (2+1)-dimensional gauge theory and allows quantum Hall states. Parity breaking is also explicitly demonstrated via the helicity dependence of the meson spectrum. We obtain general expressions for the conductivities, both in the gapped Minkowski embeddings and in the compressible black hole ones. These conductivities depend on the flux and contain a contribution from the dynamical flavors which can be regarded as an effect of intrinsic disorder due to quantum fluctuations of the fundamentals. We present an explicit, analytic family of supersymmetric solutions with nonzero charge density, electric, and magnetic fields.

  20. Quantum Computing and Second Quantization

    DOE PAGES

    Makaruk, Hanna Ewa

    2017-02-10

    Quantum computers are by their nature many particle quantum systems. Both the many-particle arrangement and being quantum are necessary for the existence of the entangled states, which are responsible for the parallelism of the quantum computers. Second quantization is a very important approximate method of describing such systems. This lecture will present the general idea of the second quantization, and discuss shortly some of the most important formulations of second quantization.

  1. Quantum Computing and Second Quantization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makaruk, Hanna Ewa

    Quantum computers are by their nature many particle quantum systems. Both the many-particle arrangement and being quantum are necessary for the existence of the entangled states, which are responsible for the parallelism of the quantum computers. Second quantization is a very important approximate method of describing such systems. This lecture will present the general idea of the second quantization, and discuss shortly some of the most important formulations of second quantization.

  2. Electron-Fluxon Approach to the Quantum Hall Effect

    NASA Astrophysics Data System (ADS)

    Fujita, Shigeji; Morabito, David; Godoy, Salvador

    2001-04-01

    Experimental data by Willett et al.(R. Willett et al.), Phys. Rev. Lett. 59, 1776 (1987). show that the Hall resistivity ρ_xy at the extreme low temperatures has plateaus at fractional occupation ratios (2D electron density / fluxon density) ν with odd denominators, where the longitudinal resistivity ρ_xx (nearly) vanishes. The plateau heights are quantized in units of h/e^2. Each plateau is material- and shape-independent and indicates the stability of the superconducting state. The same data show that ρ_xy is linear in B at ν=1/2, where ρ_xx has a small dip, indicating a Fermi-liquid-like state with a different kind of stability. We develop a microscopic theory of the quantum Hall effect in analogy with the theory of the high temperature superconductivity, regarding the fluxon as a quantum particle with half spin and zero mass. Each Landau level, E=(N+1/2)hbar ω_0, ω_0=eB/m, has a great degeneracy. Exchange of a longitudinal phonon can generate an attractive transition between the degenerate states. The same exchange can also pair-create electron-fluxon composites, bosonic and fermionic depending on the number of fluxons. The model accounts for the energy gap at each plateau, ensuring the stability of the superconducting state.

  3. BFV approach to geometric quantization

    NASA Astrophysics Data System (ADS)

    Fradkin, E. S.; Linetsky, V. Ya.

    1994-12-01

    A gauge-invariant approach to geometric quantization is developed. It yields a complete quantum description for dynamical systems with non-trivial geometry and topology of the phase space. The method is a global version of the gauge-invariant approach to quantization of second-class constraints developed by Batalin, Fradkin and Fradkina (BFF). Physical quantum states and quantum observables are respectively described by covariantly constant sections of the Fock bundle and the bundle of hermitian operators over the phase space with a flat connection defined by the nilpotent BVF-BRST operator. Perturbative calculation of the first non-trivial quantum correction to the Poisson brackets leads to the Chevalley cocycle known in deformation quantization. Consistency conditions lead to a topological quantization condition with metaplectic anomaly.

  4. Quantum anomalous Hall effect and topological phase transition in two-dimensional antiferromagnetic Chern insulator NiOsCl6

    NASA Astrophysics Data System (ADS)

    Yang, Wei-Wei; Li, Lei; Zhao, Jing-Sheng; Liu, Xiao-Xiong; Deng, Jian-Bo; Tao, Xiao-Ma; Hu, Xian-Ru

    2018-05-01

    By doing calculations based on density functional theory, we predict that the two-dimensional anti-ferromagnetic (AFM) NiOsCl6 as a Chern insulator can realize the quantum anomalous Hall (QAH) effect. We investigate the magnetocrystalline anisotropy energies in different magnetic configurations and the Néel AFM configuration is proved to be ground state. When considering spin–orbit coupling (SOC), this layered material with spins perpendicular to the plane shows properties as a Chern insulator characterized by an inversion band structure and a nonzero Chern number. The nontrivial band gap is 37 meV and the Chern number C  =  ‑1, which are induced by a strong SOC and AFM order. With strong SOC, the NiOsCl6 system performs a continuous topological phase transition from the Chern insulator to the trivial insulator upon the increasing Coulomb repulsion U. The critical U c is indicated as 0.23 eV, at which the system is in a metallic phase with . Upon increasing U, the E g reduces linearly with C  =  ‑1 for 0  <  U  <  U c and increases linearly with C  =  0 for U  >  U c . At last we analysis the QAH properties and this continuous topological phase transition theoretically in a two-band model. This AFM Chern insulator NiOsCl6 proposes not only a promising way to realize the QAH effect, but also a new material to study the continuous topological phase transition.

  5. Floquet Engineering of Optical Solenoids and Quantized Charge Pumping along Tailored Paths in Two-Dimensional Chern Insulators

    NASA Astrophysics Data System (ADS)

    Wang, Botao; Ünal, F. Nur; Eckardt, André

    2018-06-01

    The insertion of a local magnetic flux, as the one created by a thin solenoid, plays an important role in gedanken experiments of quantum Hall physics. By combining Floquet engineering of artificial magnetic fields with the ability of single-site addressing in quantum gas microscopes, we propose a scheme for the realization of such local solenoid-type magnetic fields in optical lattices. We show that it can be employed to manipulate and probe elementary excitations of a topological Chern insulator. This includes quantized adiabatic charge pumping along tailored paths inside the bulk, as well as the controlled population of edge modes.

  6. Deformation quantization of fermi fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galaviz, I.; Garcia-Compean, H.; Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del IPN, P.O. Box 14-740, 07000 Mexico, D.F.

    2008-04-15

    Deformation quantization for any Grassmann scalar free field is described via the Weyl-Wigner-Moyal formalism. The Stratonovich-Weyl quantizer, the Moyal *-product and the Wigner functional are obtained by extending the formalism proposed recently in [I. Galaviz, H. Garcia-Compean, M. Przanowski, F.J. Turrubiates, Weyl-Wigner-Moyal Formalism for Fermi Classical Systems, arXiv:hep-th/0612245] to the fermionic systems of infinite number of degrees of freedom. In particular, this formalism is applied to quantize the Dirac free field. It is observed that the use of suitable oscillator variables facilitates considerably the procedure. The Stratonovich-Weyl quantizer, the Moyal *-product, the Wigner functional, the normal ordering operator, and finally,more » the Dirac propagator have been found with the use of these variables.« less

  7. Large discrete jumps observed in the transition between Chern states in a ferromagnetic topological insulator

    PubMed Central

    Liu, Minhao; Wang, Wudi; Richardella, Anthony R.; Kandala, Abhinav; Li, Jian; Yazdani, Ali; Samarth, Nitin; Ong, N. Phuan

    2016-01-01

    A striking prediction in topological insulators is the appearance of the quantized Hall resistance when the surface states are magnetized. The surface Dirac states become gapped everywhere on the surface, but chiral edge states remain on the edges. In an applied current, the edge states produce a quantized Hall resistance that equals the Chern number C = ±1 (in natural units), even in zero magnetic field. This quantum anomalous Hall effect was observed by Chang et al. With reversal of the magnetic field, the system is trapped in a metastable state because of magnetic anisotropy. We investigate how the system escapes the metastable state at low temperatures (10 to 200 mK). When the dissipation (measured by the longitudinal resistance) is ultralow, we find that the system escapes by making a few very rapid transitions, as detected by large jumps in the Hall and longitudinal resistances. Using the field at which the initial jump occurs to estimate the escape rate, we find that raising the temperature strongly suppresses the rate. From a detailed map of the resistance versus gate voltage and temperature, we show that dissipation strongly affects the escape rate. We compare the observations with dissipative quantum tunneling predictions. In the ultralow dissipation regime, two temperature scales (T1 ~ 70 mK and T2 ~ 145 mK) exist, between which jumps can be observed. The jumps display a spatial correlation that extends over a large fraction of the sample. PMID:27482539

  8. Fluctuations, Electron Transport, and Flow Shear in 2D Axial, Azimuthal (z-θ) Hybrid Hall Thruster Simulations.

    NASA Astrophysics Data System (ADS)

    Fernandez, Eduardo; Gascon, Nicolas; Knoll, Aaron; Scharfe, Michelle; Cappelli, Mark

    2007-11-01

    Motivated by the inability of radial-axial (r-z) simulations to properly treat cross-field electron transport in Hall thrusters, a novel 2D z-θ model has been implemented. In common with many r-z descriptions, the simulation is hybrid in nature and assumes quasi-neutrality. Unlike r-z models, electron transport is not enhanced with an ad-hoc mobility coefficient; instead it is given by collisional or ``classical'' terms as well as ``anomalous'' contributions associated with azimuthal electric field fluctuations. Results indicate that anomalous transport dominates classical transport for most of the channel and near field, except in a strong electron flow shear region near the channel exit. The correlation between flow shear, fluctuation behavior, and electron transport will be examined, along with experimental data from the Stanford Hall Thruster. Our findings make a strong link to the turbulent transport suppression mechanism by flow shear seen in fusion devices. The scheme for combining the r-z and z-θ descriptions into an upcoming 3D hybrid model will be presented.

  9. Spin-polarized ground state and exact quantization at ν=5/2

    NASA Astrophysics Data System (ADS)

    Pan, Wei

    2002-03-01

    The nature of the even-denominator fractional quantum Hall effect at ν=5/2 remains elusive, in particular, its ground state spin-polarization. An earlier, so-called "hollow core" model arrived at a spin-unpolarized wave function. The more recent calculations based on a model of BCS-like pairing of composite fermions, however, suggest that its ground state is spin-polarized. In this talk, I will first review the earlier experiments and then present our recent experimental results showing evidence for a spin-polarized state at ν=5/2. Our ultra-low temperature experiments on a high quality sample established the fully developed FQHE state at ν=5/2 as well as at ν=7/3 and 8/3, manifested by a vanishing R_xx and exact quantization of the Hall plateau. The tilted field experiments showed that the added in-plane magnetic fields not only destroyed the FQHE at ν=5/2, as seen before, but also induced an electrical anisotropy, which is now interpreted as a phase transition from a paired, spin-polarized ν=5/2 state to a stripe phase, not unlike the ones at ν=9/2, 11/2, etc in the N > 1 higher Landau levels. Furthermore, in the experiments on the heterojunction insulated-gate field-effect transistors (HIGFET) at dilution refrigerator temperatures, a strong R_xx minimum and a concomitant developing Hall plateau were observed at ν=5/2 in a magnetic field as high as 12.6 Tesla. This and the subsequent density dependent studies of its energy gap largely rule out a spin-singlet state and point quite convincingly towards a spin-polarized ground state at ν=5/2.

  10. Experiments on Quantum Hall Topological Phases in Ultra Low Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Rui-Rui

    2015-02-14

    This project is to cool electrons in semiconductors to extremely low temperatures and to study new states of matter formed by low-dimensional electrons (or holes). At such low temperatures (and with an intense magnetic field), electronic behavior differs completely from ordinary ones observed at room temperatures or regular low temperature. Studies of electrons at such low temperatures would open the door for fundamental discoveries in condensed matter physics. Present studies have been focused on topological phases in the fractional quantum Hall effect in GaAs/AlGaAs semiconductor heterostructures, and the newly discovered (by this group) quantum spin Hall effect in InAs/GaSb materials.more » This project consists of the following components: 1) Development of efficient sample cooling techniques and electron thermometry: Our goal is to reach 1 mK electron temperature and reasonable determination of electron temperature; 2) Experiments at ultra-low temperatures: Our goal is to understand the energy scale of competing quantum phases, by measuring the temperature-dependence of transport features. Focus will be placed on such issues as the energy gap of the 5/2 state, and those of 12/5 (and possible 13/5); resistive signature of instability near 1/2 at ultra-low temperatures; 3) Measurement of the 5/2 gaps in the limit of small or large Zeeman energies: Our goal is to gain physics insight of 5/2 state at limiting experimental parameters, especially those properties concerning the spin polarization; 4) Experiments on tuning the electron-electron interaction in a screened quantum Hall system: Our goal is to gain understanding of the formation of paired fractional quantum Hall state as the interaction pseudo-potential is being modified by a nearby screening electron layer; 5) Experiments on the quantized helical edge states under a strong magnetic field and ultralow temperatures: our goal is to investigate both the bulk and edge states in a quantum spin Hall insulator

  11. Spin Hall and Nernst effects of Weyl magnons

    NASA Astrophysics Data System (ADS)

    Zyuzin, Vladimir A.; Kovalev, Alexey A.

    2018-05-01

    In this paper, we present a simple model of a three-dimensional insulating magnetic structure which represents a magnonic analog of the layered electronic system described by A. A. Burkov and L. Balents [Phys. Rev. Lett. 107, 127205 (2011), 10.1103/PhysRevLett.107.127205]. In particular, our model realizes Weyl magnons as well as surface states with a Dirac spectrum. In this model, the Dzyaloshinskii-Moriya interaction is responsible for the separation of opposite Weyl points in momentum space. We calculate the intrinsic (due to the Berry curvature) transport properties of Weyl and so-called anomalous Hall effect magnons. The results are compared with fermionic analogs.

  12. Defect control of conventional and anomalous electron transport at complex oxide interfaces

    DOE PAGES

    Gunkel, F.; Bell, Chris; Inoue, Hisashi; ...

    2016-08-30

    Using low-temperature electrical measurements, the interrelation between electron transport, magnetic properties, and ionic defect structure in complex oxide interface systems is investigated, focusing on NdGaO 3/SrTiO 3 (100) interfaces. Field-dependent Hall characteristics (2–300 K) are obtained for samples grown at various growth pressures. In addition to multiple electron transport, interfacial magnetism is tracked exploiting the anomalous Hall effect (AHE). These two properties both contribute to a nonlinearity in the field dependence of the Hall resistance, with multiple carrier conduction evident below 30 K and AHE at temperatures ≲10 K. Considering these two sources of nonlinearity, we suggest a phenomenological modelmore » capturing the complex field dependence of the Hall characteristics in the low-temperature regime. Our model allows the extraction of the conventional transport parameters and a qualitative analysis of the magnetization. The electron mobility is found to decrease systematically with increasing growth pressure. This suggests dominant electron scattering by acceptor-type strontium vacancies incorporated during growth. The AHE scales with growth pressure. In conclusion, the most pronounced AHE is found at increased growth pressure and, thus, in the most defective, low-mobility samples, indicating a correlation between transport, magnetism, and cation defect concentration.« less

  13. Real-space and reciprocal-space Berry phases in the Hall effect of Mn(1-x)Fe(x)Si.

    PubMed

    Franz, C; Freimuth, F; Bauer, A; Ritz, R; Schnarr, C; Duvinage, C; Adams, T; Blügel, S; Rosch, A; Mokrousov, Y; Pfleiderer, C

    2014-05-09

    We report an experimental and computational study of the Hall effect in Mn(1-x)Fe(x)Si, as complemented by measurements in Mn(1-x)Co(x)Si, when helimagnetic order is suppressed under substitutional doping. For small x the anomalous Hall effect (AHE) and the topological Hall effect (THE) change sign. Under larger doping the AHE remains small and consistent with the magnetization, while the THE grows by over a factor of 10. Both the sign and the magnitude of the AHE and the THE are in excellent agreement with calculations based on density functional theory. Our study provides the long-sought material-specific microscopic justification that, while the AHE is due to the reciprocal-space Berry curvature, the THE originates in real-space Berry phases.

  14. Perceptual Optimization of DCT Color Quantization Matrices

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Statler, Irving C. (Technical Monitor)

    1994-01-01

    Many image compression schemes employ a block Discrete Cosine Transform (DCT) and uniform quantization. Acceptable rate/distortion performance depends upon proper design of the quantization matrix. In previous work, we showed how to use a model of the visibility of DCT basis functions to design quantization matrices for arbitrary display resolutions and color spaces. Subsequently, we showed how to optimize greyscale quantization matrices for individual images, for optimal rate/perceptual distortion performance. Here we describe extensions of this optimization algorithm to color images.

  15. Influence of Mn concentration on magnetic topological insulator Mn xBi 2−xTe 3 thin-film Hall-effect sensor

    DOE PAGES

    Ni, Y.; Zhang, Z.; Nlebedim, I. C.; ...

    2015-06-11

    Hall-effect (HE) sensors based on high-quality Mn-doped Bi 2Te 3 topological insulator (TI) thin films have been systematically studied in this paper. Improvement of Hall sensitivity is found after doping the magnetic element Mn into Bi 2Te 3. The sensors with low Mn concentrations, Mn xBi 2-xTe 3, x = 0.01 and 0.08 show the linear behavior of Hall resistance with sensitivity about 5 Ω/T. And their Hall sensitivity shows weak dependence on temperature. For sensors with high Mn concentration (x = 0.23), the Hall resistance with respect to magnetic field shows a hysteretic behavior. Moreover, its sensitivity shows almostmore » eight times as high as that of the HE sensors with low Mn concentration. The highest sensitivity can reach 43 Ω/T at very low magnetic field. This increase of Hall sensitivity is caused by the occurrence of anomalous HE (AHE) after ferromagnetic phase transition. Our work indicates that the magnetic-element-doped TIs with AHE are good candidates for HE sensors.« less

  16. Noncommutative gerbes and deformation quantization

    NASA Astrophysics Data System (ADS)

    Aschieri, Paolo; Baković, Igor; Jurčo, Branislav; Schupp, Peter

    2010-11-01

    We define noncommutative gerbes using the language of star products. Quantized twisted Poisson structures are discussed as an explicit realization in the sense of deformation quantization. Our motivation is the noncommutative description of D-branes in the presence of topologically non-trivial background fields.

  17. A visual detection model for DCT coefficient quantization

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.; Watson, Andrew B.

    1994-01-01

    The discrete cosine transform (DCT) is widely used in image compression and is part of the JPEG and MPEG compression standards. The degree of compression and the amount of distortion in the decompressed image are controlled by the quantization of the transform coefficients. The standards do not specify how the DCT coefficients should be quantized. One approach is to set the quantization level for each coefficient so that the quantization error is near the threshold of visibility. Results from previous work are combined to form the current best detection model for DCT coefficient quantization noise. This model predicts sensitivity as a function of display parameters, enabling quantization matrices to be designed for display situations varying in luminance, veiling light, and spatial frequency related conditions (pixel size, viewing distance, and aspect ratio). It also allows arbitrary color space directions for the representation of color. A model-based method of optimizing the quantization matrix for an individual image was developed. The model described above provides visual thresholds for each DCT frequency. These thresholds are adjusted within each block for visual light adaptation and contrast masking. For given quantization matrix, the DCT quantization errors are scaled by the adjusted thresholds to yield perceptual errors. These errors are pooled nonlinearly over the image to yield total perceptual error. With this model one may estimate the quantization matrix for a particular image that yields minimum bit rate for a given total perceptual error, or minimum perceptual error for a given bit rate. Custom matrices for a number of images show clear improvement over image-independent matrices. Custom matrices are compatible with the JPEG standard, which requires transmission of the quantization matrix.

  18. Systematics of electronic and magnetic properties in the transition metal doped Sb2Te3 quantum anomalous Hall platform

    NASA Astrophysics Data System (ADS)

    Islam, M. F.; Canali, C. M.; Pertsova, A.; Balatsky, A.; Mahatha, S. K.; Carbone, C.; Barla, A.; Kokh, K. A.; Tereshchenko, O. E.; Jiménez, E.; Brookes, N. B.; Gargiani, P.; Valvidares, M.; Schatz, S.; Peixoto, T. R. F.; Bentmann, H.; Reinert, F.; Jung, J.; Bathon, T.; Fauth, K.; Bode, M.; Sessi, P.

    2018-04-01

    The quantum anomalous Hall effect (QAHE) has recently been reported to emerge in magnetically doped topological insulators. Although its general phenomenology is well established, the microscopic origin is far from being properly understood and controlled. Here, we report on a detailed and systematic investigation of transition metal (TM) doped Sb2Te3 . By combining density functional theory calculations with complementary experimental techniques, i.e., scanning tunneling microscopy, resonant photoemission, and x-ray magnetic circular dichroism, we provide a complete spectroscopic characterization of both electronic and magnetic properties. Our results reveal that the TM dopants not only affect the magnetic state of the host material, but also significantly alter the electronic structure by generating impurity-derived energy bands. Our findings demonstrate the existence of a delicate interplay between electronic and magnetic properties in TM doped topological insulators. In particular, we find that the fate of the topological surface states critically depends on the specific character of the TM impurity: while V- and Fe-doped Sb2Te3 display resonant impurity states in the vicinity of the Dirac point, Cr and Mn impurities leave the energy gap unaffected. The single-ion magnetic anisotropy energy and easy axis, which control the magnetic gap opening and its stability, are also found to be strongly TM impurity dependent and can vary from in plane to out of plane depending on the impurity and its distance from the surface. Overall, our results provide general guidelines for the realization of a robust QAHE in TM doped Sb2Te3 in the ferromagnetic state.

  19. Full Spectrum Conversion Using Traveling Pulse Wave Quantization

    DTIC Science & Technology

    2017-03-01

    Full Spectrum Conversion Using Traveling Pulse Wave Quantization Michael S. Kappes Mikko E. Waltari IQ-Analog Corporation San Diego, California...temporal-domain quantization technique called Traveling Pulse Wave Quantization (TPWQ). Full spectrum conversion is defined as the complete...pulse width measurements that are continuously generated hence the name “traveling” pulse wave quantization. Our TPWQ-based ADC is composed of a

  20. Geometrical Description of fractional quantum Hall quasiparticles

    NASA Astrophysics Data System (ADS)

    Park, Yeje; Yang, Bo; Haldane, F. D. M.

    2012-02-01

    We examine a description of fractional quantum Hall quasiparticles and quasiholes suggested by a recent geometrical approach (F. D. M. Haldane, Phys. Rev. Lett. 108, 116801 (2011)) to FQH systems, where the local excess electric charge density in the incompressible state is given by a topologically-quantized ``guiding-center spin'' times the Gaussian curvature of a ``guiding-center metric tensor'' that characterizes the local shape of the correlation hole around electrons in the fluid. We use a phenomenological energy function with two ingredients: the shear distortion energy of area-preserving distortions of the fluid, and a local (short-range) approximation to the Coulomb energy of the fluctuation of charge density associated with the Gaussian curvature. Quasiparticles and quasiholes of the 1/3 Laughlin state are modeled as ``punctures'' in the incompressible fluid which then relax by geometric distortion which generates Gaussian curvature, giving rise to the charge-density profile around the topological excitation.

  1. Coherent state quantization of quaternions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muraleetharan, B., E-mail: bbmuraleetharan@jfn.ac.lk, E-mail: santhar@gmail.com; Thirulogasanthar, K., E-mail: bbmuraleetharan@jfn.ac.lk, E-mail: santhar@gmail.com

    Parallel to the quantization of the complex plane, using the canonical coherent states of a right quaternionic Hilbert space, quaternion field of quaternionic quantum mechanics is quantized. Associated upper symbols, lower symbols, and related quantities are analyzed. Quaternionic version of the harmonic oscillator and Weyl-Heisenberg algebra are also obtained.

  2. BFV quantization on hermitian symmetric spaces

    NASA Astrophysics Data System (ADS)

    Fradkin, E. S.; Linetsky, V. Ya.

    1995-02-01

    Gauge-invariant BFV approach to geometric quantization is applied to the case of hermitian symmetric spaces G/ H. In particular, gauge invariant quantization on the Lobachevski plane and sphere is carried out. Due to the presence of symmetry, master equations for the first-class constraints, quantum observables and physical quantum states are exactly solvable. BFV-BRST operator defines a flat G-connection in the Fock bundle over G/ H. Physical quantum states are covariantly constant sections with respect to this connection and are shown to coincide with the generalized coherent states for the group G. Vacuum expectation values of the quantum observables commuting with the quantum first-class constraints reduce to the covariant symbols of Berezin. The gauge-invariant approach to quantization on symplectic manifolds synthesizes geometric, deformation and Berezin quantization approaches.

  3. Pure spin-Hall magnetoresistance in Rh/Y3Fe5O12 hybrid

    NASA Astrophysics Data System (ADS)

    Shang, T.; Zhan, Q. F.; Ma, L.; Yang, H. L.; Zuo, Z. H.; Xie, Y. L.; Li, H. H.; Liu, L. P.; Wang, B. M.; Wu, Y. H.; Zhang, S.; Li, Run-Wei

    2015-12-01

    We report an investigation of anisotropic magnetoresistance (AMR) and anomalous Hall resistance (AHR) of Rh and Pt thin films sputtered on epitaxial Y3Fe5O12 (YIG) ferromagnetic insulator films. For the Pt/YIG hybrid, large spin-Hall magne toresistance (SMR) along with a sizable conventional anisotropic magnetoresistance (CAMR) and a nontrivial temperature dependence of AHR were observed in the temperature range of 5-300 K. In contrast, a reduced SMR with negligible CAMR and AHR was found in Rh/YIG hybrid. Since CAMR and AHR are characteristics for all ferromagnetic metals, our results suggest that the Pt is likely magnetized by YIG due to the magnetic proximity effect (MPE) while Rh remains free of MPE. Thus the Rh/YIG hybrid could be an ideal model system to explore physics and devices associated with pure spin current.

  4. A visual detection model for DCT coefficient quantization

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.; Peterson, Heidi A.

    1993-01-01

    The discrete cosine transform (DCT) is widely used in image compression, and is part of the JPEG and MPEG compression standards. The degree of compression, and the amount of distortion in the decompressed image are determined by the quantization of the transform coefficients. The standards do not specify how the DCT coefficients should be quantized. Our approach is to set the quantization level for each coefficient so that the quantization error is at the threshold of visibility. Here we combine results from our previous work to form our current best detection model for DCT coefficient quantization noise. This model predicts sensitivity as a function of display parameters, enabling quantization matrices to be designed for display situations varying in luminance, veiling light, and spatial frequency related conditions (pixel size, viewing distance, and aspect ratio). It also allows arbitrary color space directions for the representation of color.

  5. Controlling charge quantization with quantum fluctuations.

    PubMed

    Jezouin, S; Iftikhar, Z; Anthore, A; Parmentier, F D; Gennser, U; Cavanna, A; Ouerghi, A; Levkivskyi, I P; Idrisov, E; Sukhorukov, E V; Glazman, L I; Pierre, F

    2016-08-04

    In 1909, Millikan showed that the charge of electrically isolated systems is quantized in units of the elementary electron charge e. Today, the persistence of charge quantization in small, weakly connected conductors allows for circuits in which single electrons are manipulated, with applications in, for example, metrology, detectors and thermometry. However, as the connection strength is increased, the discreteness of charge is progressively reduced by quantum fluctuations. Here we report the full quantum control and characterization of charge quantization. By using semiconductor-based tunable elemental conduction channels to connect a micrometre-scale metallic island to a circuit, we explore the complete evolution of charge quantization while scanning the entire range of connection strengths, from a very weak (tunnel) to a perfect (ballistic) contact. We observe, when approaching the ballistic limit, that charge quantization is destroyed by quantum fluctuations, and scales as the square root of the residual probability for an electron to be reflected across the quantum channel; this scaling also applies beyond the different regimes of connection strength currently accessible to theory. At increased temperatures, the thermal fluctuations result in an exponential suppression of charge quantization and in a universal square-root scaling, valid for all connection strengths, in agreement with expectations. Besides being pertinent for the improvement of single-electron circuits and their applications, and for the metal-semiconductor hybrids relevant to topological quantum computing, knowledge of the quantum laws of electricity will be essential for the quantum engineering of future nanoelectronic devices.

  6. Activation energies for the ν=5/2 Fractional Quantum Hall Effect at 10 Tesla

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Du, R. R.; Pfeiffer, L. N.; West, K. W.

    2010-03-01

    We reported on the low-temperature magnetotransport in a high-purity (mobility ˜ 1x10^7cm^2/Vs) modulation-doped GaAs/AlGaAs quantum well with a high electron density (6x10^11 cm-2). A quantized ν=5/2 Hall plateau is observed at B ˜ 10 T, with an activation gap δ5/2˜ 125±10 mK; the plateau can persist up to ˜ 25^o tilt-field. We determined the activation energies δ and quasi-gap energies δ^quasi for the ν=5/2, 7/3, and 8/3 fractional quantum Hall states in tilted-magnetic field (θ). The δ5/2, δ7/3 and the δ5/2^quasi , δ7/3^quasi are found to decrease in θ. We will present the systematic data and discuss their implications on the spin-polarization of ν=5/2 states observed at 10 T.[4pt] [1] R. Willett, Phys. Rev. Lett. 59, 1776 (1987).[0pt] [2] W. Pan et al, Solid State Commun. 119, 641 (2001).

  7. On the Dequantization of Fedosov's Deformation Quantization

    NASA Astrophysics Data System (ADS)

    Karabegov, Alexander V.

    2003-08-01

    To each natural deformation quantization on a Poisson manifold M we associate a Poisson morphism from the formal neighborhood of the zero section of the cotangent bundle to M to the formal neighborhood of the diagonal of the product M x M~, where M~ is a copy of M with the opposite Poisson structure. We call it dequantization of the natural deformation quantization. Then we "dequantize" Fedosov's quantization.

  8. Quantizing and sampling considerations in digital phased-locked loops

    NASA Technical Reports Server (NTRS)

    Hurst, G. T.; Gupta, S. C.

    1974-01-01

    The quantizer problem is first considered. The conditions under which the uniform white sequence model for the quantizer error is valid are established independent of the sampling rate. An equivalent spectral density is defined for the quantizer error resulting in an effective SNR value. This effective SNR may be used to determine quantized performance from infinitely fine quantized results. Attention is given to sampling rate considerations. Sampling rate characteristics of the digital phase-locked loop (DPLL) structure are investigated for the infinitely fine quantized system. The predicted phase error variance equation is examined as a function of the sampling rate. Simulation results are presented and a method is described which enables the minimum required sampling rate to be determined from the predicted phase error variance equations.

  9. Anomalous Nernst effect in type-II Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Saha, Subhodip; Tewari, Sumanta

    2018-01-01

    Topological Weyl semimetals (WSM), a new state of quantum matter with gapless nodal bulk spectrum and open Fermi arc surface states, have recently sparked enormous interest in condensed matter physics. Based on the symmetry and fermiology, it has been proposed that WSMs can be broadly classified into two types, type-I and type-II Weyl semimetals. While the undoped, conventional, type-I WSMs have point like Fermi surface and vanishing density of states (DOS) at the Fermi energy, the type-II Weyl semimetals break Lorentz symmetry explicitly and have tilted conical spectra with electron and hole pockets producing finite DOS at the Fermi level. The tilted conical spectrum and finite DOS at Fermi level in type-II WSMs have recently been shown to produce interesting effects such as a chiral anomaly induced longitudinal magnetoresistance that is strongly anisotropic in direction and a novel anomalous Hall effect. In this work, we consider the anomalous Nernst effect in type-II WSMs in the absence of an external magnetic field using the framework of semi-classical Boltzmann theory. Based on both a linearized model of time-reversal breaking WSM with a higher energy cut-off and a more realistic lattice model, we show that the anomalous Nernst response in these systems is strongly anisotropic in space, and can serve as a reliable signature of type-II Weyl semimetals in a host of magnetic systems with spontaneously broken time reversal symmetry.

  10. A recursive technique for adaptive vector quantization

    NASA Technical Reports Server (NTRS)

    Lindsay, Robert A.

    1989-01-01

    Vector Quantization (VQ) is fast becoming an accepted, if not preferred method for image compression. The VQ performs well when compressing all types of imagery including Video, Electro-Optical (EO), Infrared (IR), Synthetic Aperture Radar (SAR), Multi-Spectral (MS), and digital map data. The only requirement is to change the codebook to switch the compressor from one image sensor to another. There are several approaches for designing codebooks for a vector quantizer. Adaptive Vector Quantization is a procedure that simultaneously designs codebooks as the data is being encoded or quantized. This is done by computing the centroid as a recursive moving average where the centroids move after every vector is encoded. When computing the centroid of a fixed set of vectors the resultant centroid is identical to the previous centroid calculation. This method of centroid calculation can be easily combined with VQ encoding techniques. The defined quantizer changes after every encoded vector by recursively updating the centroid of minimum distance which is the selected by the encoder. Since the quantizer is changing definition or states after every encoded vector, the decoder must now receive updates to the codebook. This is done as side information by multiplexing bits into the compressed source data.

  11. Resonant Hall effect under generation of a self-sustaining mode of spin current in nonmagnetic bipolar conductors with identical characters between holes and electrons

    NASA Astrophysics Data System (ADS)

    Sakai, Masamichi; Takao, Hiraku; Matsunaga, Tomoyoshi; Nishimagi, Makoto; Iizasa, Keitaro; Sakuraba, Takahito; Higuchi, Koji; Kitajima, Akira; Hasegawa, Shigehiko; Nakamura, Osamu; Kurokawa, Yuichiro; Awano, Hiroyuki

    2018-03-01

    We have proposed an enhancement mechanism of the Hall effect, the signal of which is amplified due to the generation of a sustaining mode of spin current. Our analytic derivations of the Hall resistivity revealed the conditions indispensable for the observation of the effect: (i) the presence of the transverse component of an effective electric field due to spin splitting in chemical potential in addition to the longitudinal component; (ii) the simultaneous presence of holes and electrons each having approximately the same characteristics; (iii) spin-polarized current injection from magnetized electrodes; (iv) the boundary condition for the transverse current (J c, y = 0). The model proposed in this study was experimentally verified by using van der Pauw-type Hall devices consisting of the nonmagnetic bipolar conductor YH x (x ≃ 2) and TbFeCo electrodes. Replacing Au electrodes with TbFeCo electrodes alters the Hall resistivity from the ordinary Hall effect to the anomalous Hall-like effect with an enhancement factor of approximately 50 at 4 T. We interpreted the enhancement phenomenon in terms of the present model.

  12. Quantized kernel least mean square algorithm.

    PubMed

    Chen, Badong; Zhao, Songlin; Zhu, Pingping; Príncipe, José C

    2012-01-01

    In this paper, we propose a quantization approach, as an alternative of sparsification, to curb the growth of the radial basis function structure in kernel adaptive filtering. The basic idea behind this method is to quantize and hence compress the input (or feature) space. Different from sparsification, the new approach uses the "redundant" data to update the coefficient of the closest center. In particular, a quantized kernel least mean square (QKLMS) algorithm is developed, which is based on a simple online vector quantization method. The analytical study of the mean square convergence has been carried out. The energy conservation relation for QKLMS is established, and on this basis we arrive at a sufficient condition for mean square convergence, and a lower and upper bound on the theoretical value of the steady-state excess mean square error. Static function estimation and short-term chaotic time-series prediction examples are presented to demonstrate the excellent performance.

  13. Quantum Hall resistance standard in graphene devices under relaxed experimental conditions

    NASA Astrophysics Data System (ADS)

    Schopfer, F.; Ribeiro-Palau, R.; Lafont, F.; Brun-Picard, J.; Kazazis, D.; Michon, A.; Cheynis, F.; Couturaud, O.; Consejo, C.; Jouault, B.; Poirier, W.

    Large-area and high-quality graphene devices synthesized by CVD on SiC are used to develop reliable electrical resistance standards, based on the quantum Hall effect (QHE), with state-of-the-art accuracy of 1x10-9 and under an extended range of experimental conditions of magnetic field (down to 3.5 T), temperature (up to 10 K) or current (up to 0.5 mA). These conditions are much relaxed as compared to what is required by GaAs/AlGaAs standards and will enable to broaden the use of the primary quantum electrical standards to the benefit of Science and Industry for electrical measurements. Furthermore, by comparison of these graphene devices with GaAs/AlGaAs standards, we demonstrate the universality of the QHE within an ultimate uncertainty of 8.2x10-11. This suggests the exact relation of the quantized Hall resistance with the Planck constant and the electron charge, which is crucial for the new SI to be based on fixing such fundamental constants. These results show that graphene realizes its promises and demonstrates its superiority over other materials for a demanding application. Nature Nanotech. 10, 965-971, 2015, Nature Commun. 6, 6806, 2015

  14. Imaginary part of Hall conductivity in a tilted doped Weyl semimetal with both broken time-reversal and inversion symmetry

    NASA Astrophysics Data System (ADS)

    Mukherjee, S. P.; Carbotte, J. P.

    2018-01-01

    We consider a Weyl semimetal with finite doping and tilt within a continuum model Hamiltonian with both broken time-reversal and inversion symmetry. We calculate the absorptive part of the anomalous ac Hall conductivity as a function of photon energy Ω for both type-I and type-II Weyl semimetals. For a given Weyl node, changing the sign of its chirality or of its tilt changes the sign of its contribution to the absorptive Hall conductivity with no change in magnitude. For a noncentrosymmetric system we find that there are ranges of photon energies for which only the positive or only the negative-chirality node contributes to the imaginary (absorptive) part of the Hall conductivity. There are also other photon energies where both chiralities contribute, and there can be other ranges of Ω where there is no absorption associated with the ac Hall conductivity in type-I semimetals and regions where it is instead constant for type-II semimetals. We comment on implications for the absorption of circularly polarized light.

  15. Quantization of Non-Lagrangian Systems

    NASA Astrophysics Data System (ADS)

    Kochan, Denis

    A novel method for quantization of non-Lagrangian (open) systems is proposed. It is argued that the essential object, which provides both classical and quantum evolution, is a certain canonical two-form defined in extended velocity space. In this setting classical dynamics is recovered from the stringy-type variational principle, which employs umbilical surfaces instead of histories of the system. Quantization is then accomplished in accordance with the introduced variational principle. The path integral for the transition probability amplitude (propagator) is rearranged to a surface functional integral. In the standard case of closed (Lagrangian) systems the presented method reduces to the standard Feynman's approach. The inverse problem of the calculus of variation, the problem of quantization ambiguity and the quantum mechanics in the presence of friction are analyzed in detail.

  16. Self-induced inverse spin-Hall effect in an iron and a cobalt single-layer films themselves under the ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Kanagawa, Kazunari; Teki, Yoshio; Shikoh, Eiji

    2018-05-01

    The inverse spin-Hall effect (ISHE) is produced even in a "single-layer" ferromagnetic material film. Previously, the self-induced ISHE in a Ni80Fe20 film under the ferromagnetic resonance (FMR) was discovered. In this study, we observed an electromotive force (EMF) in an iron (Fe) and a cobalt (Co) single-layer films themselves under the FMR. As origins of the EMFs in the films themselves, the ISHE was main for Fe and dominant for Co, respectively 2 and 18 times larger than the anomalous Hall effect. Thus, we demonstrated the self-induced ISHE in an Fe and a Co single-layer films themselves under the FMR.

  17. Robust vector quantization for noisy channels

    NASA Technical Reports Server (NTRS)

    Demarca, J. R. B.; Farvardin, N.; Jayant, N. S.; Shoham, Y.

    1988-01-01

    The paper briefly discusses techniques for making vector quantizers more tolerant to tranmsission errors. Two algorithms are presented for obtaining an efficient binary word assignment to the vector quantizer codewords without increasing the transmission rate. It is shown that about 4.5 dB gain over random assignment can be achieved with these algorithms. It is also proposed to reduce the effects of error propagation in vector-predictive quantizers by appropriately constraining the response of the predictive loop. The constrained system is shown to have about 4 dB of SNR gain over an unconstrained system in a noisy channel, with a small loss of clean-channel performance.

  18. Natural inflation from polymer quantization

    NASA Astrophysics Data System (ADS)

    Ali, Masooma; Seahra, Sanjeev S.

    2017-11-01

    We study the polymer quantization of a homogeneous massive scalar field in the early Universe using a prescription inequivalent to those previously appearing in the literature. Specifically, we assume a Hilbert space for which the scalar field momentum is well defined but its amplitude is not. This is closer in spirit to the quantization scheme of loop quantum gravity, in which no unique configuration operator exists. We show that in the semiclassical approximation, the main effect of this polymer quantization scheme is to compactify the phase space of chaotic inflation in the field amplitude direction. This gives rise to an effective scalar potential closely resembling that of hybrid natural inflation. Unlike polymer schemes in which the scalar field amplitude is well defined, the semiclassical dynamics involves a past cosmological singularity; i.e., this approach does not mitigate the big bang.

  19. Modulating action of low frequency oscillations on high frequency instabilities in Hall thrusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liqiu, Wei, E-mail: weiliqiu@gmail.com, E-mail: weiliqiu@hit.edu.cn; Liang, Han; Ziyi, Yang

    2015-02-07

    It is found that the low frequency oscillations have modulating action on high frequency instabilities in Hall thrusters. The physical mechanism of this modulation is discussed and verified by numerical simulations. Theoretical analyses indicate that the wide-range fluctuations of plasma density and electric field associated with the low frequency oscillations affect the electron drift velocity and anomalous electron transport across the magnetic field. The amplitude and frequency of high frequency oscillations are modulated by low frequency oscillations, which show the periodic variation in the time scale of low frequency oscillations.

  20. Pseudo-Kähler Quantization on Flag Manifolds

    NASA Astrophysics Data System (ADS)

    Karabegov, Alexander V.

    A unified approach to geometric, symbol and deformation quantizations on a generalized flag manifold endowed with an invariant pseudo-Kähler structure is proposed. In particular cases we arrive at Berezin's quantization via covariant and contravariant symbols.

  1. 5. View of Community Hall, first floor interior, entrance hall ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. View of Community Hall, first floor interior, entrance hall on east side of building, facing southeast. Ticket booth center foreground, stairway to auditorium right foreground. - Community Hall, Rainier Avenue & View Drive, Port Gamble, Kitsap County, WA

  2. Quantization of Electromagnetic Fields in Cavities

    NASA Technical Reports Server (NTRS)

    Kakazu, Kiyotaka; Oshiro, Kazunori

    1996-01-01

    A quantization procedure for the electromagnetic field in a rectangular cavity with perfect conductor walls is presented, where a decomposition formula of the field plays an essential role. All vector mode functions are obtained by using the decomposition. After expanding the field in terms of the vector mode functions, we get the quantized electromagnetic Hamiltonian.

  3. Low-rate image coding using vector quantization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makur, A.

    1990-01-01

    This thesis deals with the development and analysis of a computationally simple vector quantization image compression system for coding monochrome images at low bit rate. Vector quantization has been known to be an effective compression scheme when a low bit rate is desirable, but the intensive computation required in a vector quantization encoder has been a handicap in using it for low rate image coding. The present work shows that, without substantially increasing the coder complexity, it is indeed possible to achieve acceptable picture quality while attaining a high compression ratio. Several modifications to the conventional vector quantization coder aremore » proposed in the thesis. These modifications are shown to offer better subjective quality when compared to the basic coder. Distributed blocks are used instead of spatial blocks to construct the input vectors. A class of input-dependent weighted distortion functions is used to incorporate psychovisual characteristics in the distortion measure. Computationally simple filtering techniques are applied to further improve the decoded image quality. Finally, unique designs of the vector quantization coder using electronic neural networks are described, so that the coding delay is reduced considerably.« less

  4. Tribology of the lubricant quantized sliding state.

    PubMed

    Castelli, Ivano Eligio; Capozza, Rosario; Vanossi, Andrea; Santoro, Giuseppe E; Manini, Nicola; Tosatti, Erio

    2009-11-07

    In the framework of Langevin dynamics, we demonstrate clear evidence of the peculiar quantized sliding state, previously found in a simple one-dimensional boundary lubricated model [A. Vanossi et al., Phys. Rev. Lett. 97, 056101 (2006)], for a substantially less idealized two-dimensional description of a confined multilayer solid lubricant under shear. This dynamical state, marked by a nontrivial "quantized" ratio of the averaged lubricant center-of-mass velocity to the externally imposed sliding speed, is recovered, and shown to be robust against the effects of thermal fluctuations, quenched disorder in the confining substrates, and over a wide range of loading forces. The lubricant softness, setting the width of the propagating solitonic structures, is found to play a major role in promoting in-registry commensurate regions beneficial to this quantized sliding. By evaluating the force instantaneously exerted on the top plate, we find that this quantized sliding represents a dynamical "pinned" state, characterized by significantly low values of the kinetic friction. While the quantized sliding occurs due to solitons being driven gently, the transition to ordinary unpinned sliding regimes can involve lubricant melting due to large shear-induced Joule heating, for example at large speed.

  5. Optically adjustable valley Hall current in single-layer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Sengupta, Parijat; Pavlidis, Dimitris; Shi, Junxia

    2018-02-01

    The illumination of a single-layer transition metal dichalcogenide with an elliptically polarized light beam is shown to give rise to a differential rate of inter-band carrier excitation between the valence and conduction states around the valley edges, K and K' . This rate with a linear dependence on the beam ellipticity and inverse of the optical gap manifests as an asymmetric Fermi distribution between the valleys or a non-equilibrium population which under an external field and a Berry curvature induced anomalous velocity, results in an externally tunable finite valley Hall current. Surface imperfections that influence the excitation rates are included through the self-consistent Born approximation. Further, we describe applications centered around circular dichroism, quantum computing, and spin torque via optically excited spin currents within the framework of the suggested formalism. A closing summary points to the possibility of extending the calculations to composite charged particles like trions. The role of the substrate in renormalizing the fundamental band gap and moderating the valley Hall current is also discussed.

  6. Position-Momentum Duality and Fractional Quantum Hall Effect in Chern Insulators

    DOE PAGES

    Claassen, Martin; Lee, Ching-Hua; Thomale, Ronny; ...

    2015-06-11

    We develop a first quantization description of fractional Chern insulators that is the dual of the conventional fractional quantum Hall (FQH) problem, with the roles of position and momentum interchanged. In this picture, FQH states are described by anisotropic FQH liquids forming in momentum-space Landau levels in a fluctuating magnetic field. The fundamental quantum geometry of the problem emerges from the interplay of single-body and interaction metrics, both of which act as momentum-space duals of the geometrical picture of the anisotropic FQH effect. We then present a novel broad class of ideal Chern insulator lattice models that act as dualsmore » of the isotropic FQH effect. The interacting problem is well-captured by Haldane pseudopotentials and affords a detailed microscopic understanding of the interplay of interactions and non-trivial quantum geometry.« less

  7. Image Coding Based on Address Vector Quantization.

    NASA Astrophysics Data System (ADS)

    Feng, Yushu

    Image coding is finding increased application in teleconferencing, archiving, and remote sensing. This thesis investigates the potential of Vector Quantization (VQ), a relatively new source coding technique, for compression of monochromatic and color images. Extensions of the Vector Quantization technique to the Address Vector Quantization method have been investigated. In Vector Quantization, the image data to be encoded are first processed to yield a set of vectors. A codeword from the codebook which best matches the input image vector is then selected. Compression is achieved by replacing the image vector with the index of the code-word which produced the best match, the index is sent to the channel. Reconstruction of the image is done by using a table lookup technique, where the label is simply used as an address for a table containing the representative vectors. A code-book of representative vectors (codewords) is generated using an iterative clustering algorithm such as K-means, or the generalized Lloyd algorithm. A review of different Vector Quantization techniques are given in chapter 1. Chapter 2 gives an overview of codebook design methods including the Kohonen neural network to design codebook. During the encoding process, the correlation of the address is considered and Address Vector Quantization is developed for color image and monochrome image coding. Address VQ which includes static and dynamic processes is introduced in chapter 3. In order to overcome the problems in Hierarchical VQ, Multi-layer Address Vector Quantization is proposed in chapter 4. This approach gives the same performance as that of the normal VQ scheme but the bit rate is about 1/2 to 1/3 as that of the normal VQ method. In chapter 5, a Dynamic Finite State VQ based on a probability transition matrix to select the best subcodebook to encode the image is developed. In chapter 6, a new adaptive vector quantization scheme, suitable for color video coding, called "A Self -Organizing

  8. Quantization of simple parametrized systems

    NASA Astrophysics Data System (ADS)

    Ruffini, G.

    2005-11-01

    I study the canonical formulation and quantization of some simple parametrized systems, including the non-relativistic parametrized particle and the relativistic parametrized particle. Using Dirac's formalism I construct for each case the classical reduced phase space and study the dependence on the gauge fixing used. Two separate features of these systems can make this construction difficult: the actions are not invariant at the boundaries, and the constraints may have disconnected solution spaces. The relativistic particle is affected by both, while the non-relativistic particle displays only by the first. Analyzing the role of canonical transformations in the reduced phase space, I show that a change of gauge fixing is equivalent to a canonical transformation. In the relativistic case, quantization of one branch of the constraint at the time is applied and I analyze the electromagenetic backgrounds in which it is possible to quantize simultaneously both branches and still obtain a covariant unitary quantum theory. To preserve unitarity and space-time covariance, second quantization is needed unless there is no electric field. I motivate a definition of the inner product in all these cases and derive the Klein-Gordon inner product for the relativistic case. I construct phase space path integral representations for amplitudes for the BFV and the Faddeev path integrals, from which the path integrals in coordinate space (Faddeev-Popov and geometric path integrals) are derived.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Qing Lin; Pan, Lei; Stern, Alexander L.

    Majorana fermion is a hypothetical particle that is its own antiparticle. We report transport measurements that suggest the existence of one-dimensional chiral Majorana fermion modes in the hybrid system of a quantum anomalous Hall insulator thin film coupled with a superconductor. As the external magnetic field is swept, half-integer quantized conductance plateaus are observed at the locations of magnetization reversals, giving a distinct signature of the Majorana fermion modes. This transport signature is reproducible over many magnetic field sweeps and appears at different temperatures. This finding may open up an avenue to control Majorana fermions for implementing robust topological quantummore » computing.« less

  10. Functional renormalization group and variational Monte Carlo studies of the electronic instabilities in graphene near (1)/(4) doping

    NASA Astrophysics Data System (ADS)

    Wang, Wan-Sheng; Xiang, Yuan-Yuan; Wang, Qiang-Hua; Wang, Fa; Yang, Fan; Lee, Dung-Hai

    2012-01-01

    We study the electronic instabilities of near 1/4 electron doped graphene using the singular-mode functional renormalization group, with a self-adaptive k mesh to improve the treatment of the van Hove singularities, and variational Monte Carlo method. At 1/4 doping the system is a chiral spin-density wave state exhibiting the anomalous quantized Hall effect. When the doping deviates from 1/4, the dx2-y2+idxy Cooper pairing becomes the leading instability. Our results suggest that near 1/4 electron or hole doping (away from the neutral point) the graphene is either a Chern insulator or a topoligical superconductor.

  11. Gravitational surface Hamiltonian and entropy quantization

    NASA Astrophysics Data System (ADS)

    Bakshi, Ashish; Majhi, Bibhas Ranjan; Samanta, Saurav

    2017-02-01

    The surface Hamiltonian corresponding to the surface part of a gravitational action has xp structure where p is conjugate momentum of x. Moreover, it leads to TS on the horizon of a black hole. Here T and S are temperature and entropy of the horizon. Imposing the hermiticity condition we quantize this Hamiltonian. This leads to an equidistant spectrum of its eigenvalues. Using this we show that the entropy of the horizon is quantized. This analysis holds for any order of Lanczos-Lovelock gravity. For general relativity, the area spectrum is consistent with Bekenstein's observation. This provides a more robust confirmation of this earlier result as the calculation is based on the direct quantization of the Hamiltonian in the sense of usual quantum mechanics.

  12. Surface and 3D Quantum Hall Effects from Engineering of Exceptional Points in Nodal-Line Semimetals

    NASA Astrophysics Data System (ADS)

    Molina, Rafael A.; González, José

    2018-04-01

    We show that, under a strong magnetic field, a 3D nodal-line semimetal is driven into a topological insulating phase in which the electronic transport takes place at the surface of the material. When the magnetic field is perpendicular to the nodal ring, the surface states of the semimetal are transmuted into Landau states which correspond to exceptional points, i.e., branch points in the spectrum of a non-Hermitian Hamiltonian which arise upon the extension to complex values of the momentum. The complex structure of the spectrum then allows us to express the number of zero-energy flat bands in terms of a new topological invariant counting the number of exceptional points. When the magnetic field is parallel to the nodal ring, we find that the bulk states are built from the pairing of surfacelike evanescent waves, giving rise to a 3D quantum Hall effect with a flat level of Landau states residing in parallel 2D slices of the 3D material. The Hall conductance is quantized in either case in units of e2/h , leading in the 3D Hall effect to a number of channels growing linearly with the section of the surface and opening the possibility to observe a macroscopic chiral current at the surface of the material.

  13. Spin Hall and Spin Swapping Torques in Diffusive Ferromagnets

    NASA Astrophysics Data System (ADS)

    Pauyac, Christian Ortiz; Chshiev, Mairbek; Manchon, Aurelien; Nikolaev, Sergey A.

    2018-04-01

    A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach, covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin precession, and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin precession effects displays a complex spatial dependence that can be exploited to generate torques and nucleate or propagate domain walls in centrosymmetric geometries without the use of external polarizers, as opposed to the conventional understanding of spin-orbit mediated torques.

  14. Absence of anomalous Nernst effect in spin Seebeck effect of Pt/YIG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, B. F., E-mail: bfmiao@nju.edu.cn; Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218; Huang, S. Y.

    2016-01-15

    The Pt/YIG structure has been widely used to study spin Seebeck effect (SSE), inverse spin Hall effect, and other pure spin current phenomena. However, the magnetic proximity effect in Pt when in contact with YIG, and the potential anomalous Nernst effect (ANE) may compromise the spin current phenomena in Pt/YIG. By inserting a Cu layer of various thicknesses between Pt and YIG, we have separated the signals from the SSE and that of the ANE. It is demonstrated that the thermal voltage in Pt/YIG mainly comes from spin current due to the longitudinal SSE with negligible contribution from the ANE.

  15. Polymer-Fourier quantization of the scalar field revisited

    NASA Astrophysics Data System (ADS)

    Garcia-Chung, Angel; Vergara, J. David

    2016-10-01

    The polymer quantization of the Fourier modes of the real scalar field is studied within algebraic scheme. We replace the positive linear functional of the standard Poincaré invariant quantization by a singular one. This singular positive linear functional is constructed as mimicking the singular limit of the complex structure of the Poincaré invariant Fock quantization. The resulting symmetry group of such polymer quantization is the subgroup SDiff(ℝ4) which is a subgroup of Diff(ℝ4) formed by spatial volume preserving diffeomorphisms. In consequence, this yields an entirely different irreducible representation of the canonical commutation relations, nonunitary equivalent to the standard Fock representation. We also compared the Poincaré invariant Fock vacuum with the polymer Fourier vacuum.

  16. Video data compression using artificial neural network differential vector quantization

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, Ashok K.; Bibyk, Steven B.; Ahalt, Stanley C.

    1991-01-01

    An artificial neural network vector quantizer is developed for use in data compression applications such as Digital Video. Differential Vector Quantization is used to preserve edge features, and a new adaptive algorithm, known as Frequency-Sensitive Competitive Learning, is used to develop the vector quantizer codebook. To develop real time performance, a custom Very Large Scale Integration Application Specific Integrated Circuit (VLSI ASIC) is being developed to realize the associative memory functions needed in the vector quantization algorithm. By using vector quantization, the need for Huffman coding can be eliminated, resulting in superior performance against channel bit errors than methods that use variable length codes.

  17. Instabilities caused by floating-point arithmetic quantization.

    NASA Technical Reports Server (NTRS)

    Phillips, C. L.

    1972-01-01

    It is shown that an otherwise stable digital control system can be made unstable by signal quantization when the controller operates on floating-point arithmetic. Sufficient conditions of instability are determined, and an example of loss of stability is treated when only one quantizer is operated.

  18. Topologies on quantum topoi induced by quantization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakayama, Kunji

    2013-07-15

    In the present paper, we consider effects of quantization in a topos approach of quantum theory. A quantum system is assumed to be coded in a quantum topos, by which we mean the topos of presheaves on the context category of commutative subalgebras of a von Neumann algebra of bounded operators on a Hilbert space. A classical system is modeled by a Lie algebra of classical observables. It is shown that a quantization map from the classical observables to self-adjoint operators on the Hilbert space naturally induces geometric morphisms from presheaf topoi related to the classical system to the quantummore » topos. By means of the geometric morphisms, we give Lawvere-Tierney topologies on the quantum topos (and their equivalent Grothendieck topologies on the context category). We show that, among them, there exists a canonical one which we call a quantization topology. We furthermore give an explicit expression of a sheafification functor associated with the quantization topology.« less

  19. Quantization improves stabilization of dynamical systems with delayed feedback

    NASA Astrophysics Data System (ADS)

    Stepan, Gabor; Milton, John G.; Insperger, Tamas

    2017-11-01

    We show that an unstable scalar dynamical system with time-delayed feedback can be stabilized by quantizing the feedback. The discrete time model corresponds to a previously unrecognized case of the microchaotic map in which the fixed point is both locally and globally repelling. In the continuous-time model, stabilization by quantization is possible when the fixed point in the absence of feedback is an unstable node, and in the presence of feedback, it is an unstable focus (spiral). The results are illustrated with numerical simulation of the unstable Hayes equation. The solutions of the quantized Hayes equation take the form of oscillations in which the amplitude is a function of the size of the quantization step. If the quantization step is sufficiently small, the amplitude of the oscillations can be small enough to practically approximate the dynamics around a stable fixed point.

  20. Dimensional quantization effects in the thermodynamics of conductive filaments

    NASA Astrophysics Data System (ADS)

    Niraula, D.; Grice, C. R.; Karpov, V. G.

    2018-06-01

    We consider the physical effects of dimensional quantization in conductive filaments that underlie operations of some modern electronic devices. We show that, as a result of quantization, a sufficiently thin filament acquires a positive charge. Several applications of this finding include the host material polarization, the stability of filament constrictions, the equilibrium filament radius, polarity in device switching, and quantization of conductance.

  1. Dimensional quantization effects in the thermodynamics of conductive filaments.

    PubMed

    Niraula, D; Grice, C R; Karpov, V G

    2018-06-29

    We consider the physical effects of dimensional quantization in conductive filaments that underlie operations of some modern electronic devices. We show that, as a result of quantization, a sufficiently thin filament acquires a positive charge. Several applications of this finding include the host material polarization, the stability of filament constrictions, the equilibrium filament radius, polarity in device switching, and quantization of conductance.

  2. Gauge fixing and BFV quantization

    NASA Astrophysics Data System (ADS)

    Rogers, Alice

    2000-01-01

    Non-singularity conditions are established for the Batalin-Fradkin-Vilkovisky (BFV) gauge-fixing fermion which are sufficient for it to lead to the correct path integral for a theory with constraints canonically quantized in the BFV approach. The conditions ensure that the anticommutator of this fermion with the BRST charge regularizes the path integral by regularizing the trace over non-physical states in each ghost sector. The results are applied to the quantization of a system which has a Gribov problem, using a non-standard form of the gauge-fixing fermion.

  3. Quantum Hall effect in dual gated BiSbTeSe2 topological insulator

    NASA Astrophysics Data System (ADS)

    Chong, Su Kong; Han, Kyu Bum; Nagaoka, Akira; Harmer, Jared; Tsuchikawa, Ryuichi; Sparks, Taylor D.; Deshpande, Vikram V.

    The discovery of topological insulators (TIs) has expanded the family of Dirac materials and enables the probing of exotic matter such as Majorana fermions and magnetic monopoles. Different from conventional 2D electron gas, 3D TIs exhibit a gapped insulating bulk and gapless topological surface states as a result of the strong spin-orbit coupling. BiSbTeSe2 is also known to be a 3D TI with a large intrinsic bulk gap of about 0.3 eV and a single Dirac cone surface state. The highly bulk insulating BiSbTeSe2 permits surface dominated conduction, which is an ideal system for the study of quantum Hall effect (QHE). Due to the spin-momentum locking, the Dirac fermions at the topological surface states have a degeneracy of one. In the QH regime, the Hall conductance is quantized to (n + 1 / 2) e2 / h , where n is an integer and the factor of half is related to Berry curvature. In this work, we study the QHE 3D TI using a dual gated BiSbTeSe2 device. By tuning the chemical potentials on top and bottom surfaces, integer QHE with Landau filling factors, ν = 0, +/-1, and +/-2 are observed.

  4. Thermal field theory and generalized light front quantization

    NASA Astrophysics Data System (ADS)

    Weldon, H. Arthur

    2003-04-01

    The dependence of thermal field theory on the surface of quantization and on the velocity of the heat bath is investigated by working in general coordinates that are arbitrary linear combinations of the Minkowski coordinates. In the general coordinates the metric tensor gμν¯ is nondiagonal. The Kubo-Martin-Schwinger condition requires periodicity in thermal correlation functions when the temporal variable changes by an amount -i/(T(g00¯)). Light-front quantization fails since g00¯=0; however, various related quantizations are possible.

  5. Probabilistic distance-based quantizer design for distributed estimation

    NASA Astrophysics Data System (ADS)

    Kim, Yoon Hak

    2016-12-01

    We consider an iterative design of independently operating local quantizers at nodes that should cooperate without interaction to achieve application objectives for distributed estimation systems. We suggest as a new cost function a probabilistic distance between the posterior distribution and its quantized one expressed as the Kullback Leibler (KL) divergence. We first present the analysis that minimizing the KL divergence in the cyclic generalized Lloyd design framework is equivalent to maximizing the logarithmic quantized posterior distribution on the average which can be further computationally reduced in our iterative design. We propose an iterative design algorithm that seeks to maximize the simplified version of the posterior quantized distribution and discuss that our algorithm converges to a global optimum due to the convexity of the cost function and generates the most informative quantized measurements. We also provide an independent encoding technique that enables minimization of the cost function and can be efficiently simplified for a practical use of power-constrained nodes. We finally demonstrate through extensive experiments an obvious advantage of improved estimation performance as compared with the typical designs and the novel design techniques previously published.

  6. Relational symplectic groupoid quantization for constant poisson structures

    NASA Astrophysics Data System (ADS)

    Cattaneo, Alberto S.; Moshayedi, Nima; Wernli, Konstantin

    2017-09-01

    As a detailed application of the BV-BFV formalism for the quantization of field theories on manifolds with boundary, this note describes a quantization of the relational symplectic groupoid for a constant Poisson structure. The presence of mixed boundary conditions and the globalization of results are also addressed. In particular, the paper includes an extension to space-times with boundary of some formal geometry considerations in the BV-BFV formalism, and specifically introduces into the BV-BFV framework a "differential" version of the classical and quantum master equations. The quantization constructed in this paper induces Kontsevich's deformation quantization on the underlying Poisson manifold, i.e., the Moyal product, which is known in full details. This allows focussing on the BV-BFV technology and testing it. For the inexperienced reader, this is also a practical and reasonably simple way to learn it.

  7. Deficiency of the bulk spin Hall effect model for spin-orbit torques in magnetic-insulator/heavy-metal heterostructures

    NASA Astrophysics Data System (ADS)

    Li, Junxue; Yu, Guoqiang; Tang, Chi; Liu, Yizhou; Shi, Zhong; Liu, Yawen; Navabi, Aryan; Aldosary, Mohammed; Shao, Qiming; Wang, Kang L.; Lake, Roger; Shi, Jing

    2017-06-01

    Electrical currents in a magnetic-insulator/heavy-metal heterostructure can induce two simultaneous effects, namely, spin Hall magnetoresistance (SMR) on the heavy-metal side and spin-orbit torques (SOTs) on the magnetic-insulator side. Within the framework of a pure spin current model based on the bulk spin Hall effect (SHE), the ratio of the spin Hall-induced anomalous Hall effect (SH-AHE) to SMR should be equal to the ratio of the fieldlike torque (FLT) to the dampinglike torque (DLT). We perform a quantitative study of SMR, SH-AHE, and SOTs in a series of thulium iron garnet/platinum or T m3F e5O12/Pt heterostructures with different T m3F e5O12 thicknesses, where T m3F e5O12 is a ferrimagnetic insulator with perpendicular magnetic anisotropy. We find the ratio between the measured effective fields of FLT and DLT is at least two times larger than the ratio of the SH-AHE to SMR. In addition, the bulk SHE model grossly underestimates the spin-torque efficiency of FLT. Our results reveal deficiencies of the bulk SHE model and also address the importance of interfacial effects such as the Rashba and magnetic proximity effects in magnetic-insulator/heavy-metal heterostructures.

  8. Quantization Distortion in Block Transform-Compressed Data

    NASA Technical Reports Server (NTRS)

    Boden, A. F.

    1995-01-01

    The popular JPEG image compression standard is an example of a block transform-based compression scheme; the image is systematically subdivided into block that are individually transformed, quantized, and encoded. The compression is achieved by quantizing the transformed data, reducing the data entropy and thus facilitating efficient encoding. A generic block transform model is introduced.

  9. Instant-Form and Light-Front Quantization of Field Theories

    NASA Astrophysics Data System (ADS)

    Kulshreshtha, Usha; Kulshreshtha, Daya Shankar; Vary, James

    2018-05-01

    In this work we consider the instant-form and light-front quantization of some field theories. As an example, we consider a class of gauged non-linear sigma models with different regularizations. In particular, we present the path integral quantization of the gauged non-linear sigma model in the Faddeevian regularization. We also make a comparision of the possible differences in the instant-form and light-front quantization at appropriate places.

  10. Universe creation from the third-quantized vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuigan, M.

    1989-04-15

    Third quantization leads to a Hilbert space containing a third-quantized vacuum in which no universes are present as well as multiuniverse states. We consider the possibility of universe creation for the special case where the universe emerges in a no-particle state. The probability of such a creation is computed from both the path-integral and operator formalisms.

  11. Universe creation from the third-quantized vacuum

    NASA Astrophysics Data System (ADS)

    McGuigan, Michael

    1989-04-01

    Third quantization leads to a Hilbert space containing a third-quantized vacuum in which no universes are present as well as multiuniverse states. We consider the possibility of universe creation for the special case where the universe emerges in a no-particle state. The probability of such a creation is computed from both the path-integral and operator formalisms.

  12. Concert hall acoustics

    NASA Astrophysics Data System (ADS)

    Schroeder, Manfred

    2004-05-01

    I will review some work at Bell Laboratories on artificial reverberation and concert hall acoustics including Philharmonic Hall (Lincoln Center for the Performing Arts, New York). I will also touch on sound diffusion by number-theoretic surfaces and the measurement of reverberation time using the music as played in the hall as a ``test'' signal.

  13. Hall thruster microturbulence under conditions of modified electron wall emission

    NASA Astrophysics Data System (ADS)

    Tsikata, S.; Héron, A.; Honoré, C.

    2017-05-01

    In recent numerical, theoretical, and experimental papers, the short-scale electron cyclotron drift instability (ECDI) has been studied as a possible contributor to the anomalous electron current observed in Hall thrusters. In this work, features of the instability, in the presence of a zero-electron emission material at the thruster exit plane, are analyzed using coherent Thomson scattering. Limiting the electron emission at the exit plane alters the localization of the accelerating electric field and the expected drift velocity profile, which in turn modifies the amplitude and localization of the ECDI. The resulting changes to the standard thruster operation are expected to favor an increased contribution by the ECDI to electron current. Such an operation is associated with a degradation of thruster performance and stability.

  14. Absence of anomalous Nernst effect in spin Seebeck effect of Pt/YIG

    DOE PAGES

    Miao, B. F.; Huang, S. Y.; Qu, D.; ...

    2016-01-29

    The Pt/YIG structure has been widely used to study spin Seebeck effect (SSE), inverse spin Hall effect, and other pure spin current phenomena. However, the magnetic proximity effect in Pt when in contact with YIG, and the potential anomalous Nernst effect (ANE) may compromise the spin current phenomena in Pt/YIG. By inserting a Cu layer of various thicknesses between Pt and YIG, we have separated the signals from the SSE and that of the ANE. Here, it is demonstrated that the thermal voltage in Pt/YIG mainly comes from spin current due to the longitudinal SSE with negligible contribution from themore » ANE.« less

  15. Magnetically Defined Qubits on 3D Topological Insulators

    NASA Astrophysics Data System (ADS)

    Ferreira, Gerson J.; Loss, Daniel

    2014-03-01

    We explore potentials that break time-reversal symmetry to confine the surface states of 3D topological insulators into quantum wires and quantum dots. A magnetic domain wall on a ferromagnet insulator cap layer provides interfacial states predicted to show the quantum anomalous Hall effect. Here, we show that confinement can also occur at magnetic domain heterostructures, with states extended in the inner domain, as well as interfacial QAHE states at the surrounding domain walls. The proposed geometry allows the isolation of the wire and dot from spurious circumventing surface states. For the quantum dots, we find that highly spin-polarized quantized QAHE states at the dot edge constitute a promising candidate for quantum computing qubits. See [Ferreira and Loss, Phys. Rev. Lett. 111, 106802 (2013)]. We explore potentials that break time-reversal symmetry to confine the surface states of 3D topological insulators into quantum wires and quantum dots. A magnetic domain wall on a ferromagnet insulator cap layer provides interfacial states predicted to show the quantum anomalous Hall effect. Here, we show that confinement can also occur at magnetic domain heterostructures, with states extended in the inner domain, as well as interfacial QAHE states at the surrounding domain walls. The proposed geometry allows the isolation of the wire and dot from spurious circumventing surface states. For the quantum dots, we find that highly spin-polarized quantized QAHE states at the dot edge constitute a promising candidate for quantum computing qubits. See [Ferreira and Loss, Phys. Rev. Lett. 111, 106802 (2013)]. We acknowledge support from the Swiss NSF, NCCR Nanoscience, NCCR QSIT, and the Brazillian Research Support Center Initiative (NAP Q-NANO) from Pró-Reitoria de Pesquisa (PRP/USP).

  16. Modeling and analysis of energy quantization effects on single electron inverter performance

    NASA Astrophysics Data System (ADS)

    Dan, Surya Shankar; Mahapatra, Santanu

    2009-08-01

    In this paper, for the first time, the effects of energy quantization on single electron transistor (SET) inverter performance are analyzed through analytical modeling and Monte Carlo simulations. It is shown that energy quantization mainly changes the Coulomb blockade region and drain current of SET devices and thus affects the noise margin, power dissipation, and the propagation delay of SET inverter. A new analytical model for the noise margin of SET inverter is proposed which includes the energy quantization effects. Using the noise margin as a metric, the robustness of SET inverter is studied against the effects of energy quantization. A compact expression is developed for a novel parameter quantization threshold which is introduced for the first time in this paper. Quantization threshold explicitly defines the maximum energy quantization that an SET inverter logic circuit can withstand before its noise margin falls below a specified tolerance level. It is found that SET inverter designed with CT:CG=1/3 (where CT and CG are tunnel junction and gate capacitances, respectively) offers maximum robustness against energy quantization.

  17. Fast large-scale object retrieval with binary quantization

    NASA Astrophysics Data System (ADS)

    Zhou, Shifu; Zeng, Dan; Shen, Wei; Zhang, Zhijiang; Tian, Qi

    2015-11-01

    The objective of large-scale object retrieval systems is to search for images that contain the target object in an image database. Where state-of-the-art approaches rely on global image representations to conduct searches, we consider many boxes per image as candidates to search locally in a picture. In this paper, a feature quantization algorithm called binary quantization is proposed. In binary quantization, a scale-invariant feature transform (SIFT) feature is quantized into a descriptive and discriminative bit-vector, which allows itself to adapt to the classic inverted file structure for box indexing. The inverted file, which stores the bit-vector and box ID where the SIFT feature is located inside, is compact and can be loaded into the main memory for efficient box indexing. We evaluate our approach on available object retrieval datasets. Experimental results demonstrate that the proposed approach is fast and achieves excellent search quality. Therefore, the proposed approach is an improvement over state-of-the-art approaches for object retrieval.

  18. Prediction-guided quantization for video tone mapping

    NASA Astrophysics Data System (ADS)

    Le Dauphin, Agnès.; Boitard, Ronan; Thoreau, Dominique; Olivier, Yannick; Francois, Edouard; LeLéannec, Fabrice

    2014-09-01

    Tone Mapping Operators (TMOs) compress High Dynamic Range (HDR) content to address Low Dynamic Range (LDR) displays. However, before reaching the end-user, this tone mapped content is usually compressed for broadcasting or storage purposes. Any TMO includes a quantization step to convert floating point values to integer ones. In this work, we propose to adapt this quantization, in the loop of an encoder, to reduce the entropy of the tone mapped video content. Our technique provides an appropriate quantization for each mode of both the Intra and Inter-prediction that is performed in the loop of a block-based encoder. The mode that minimizes a rate-distortion criterion uses its associated quantization to provide integer values for the rest of the encoding process. The method has been implemented in HEVC and was tested over two different scenarios: the compression of tone mapped LDR video content (using the HM10.0) and the compression of perceptually encoded HDR content (HM14.0). Results show an average bit-rate reduction under the same PSNR for all the sequences and TMO considered of 20.3% and 27.3% for tone mapped content and 2.4% and 2.7% for HDR content.

  19. Effect of growth temperature on the electronic transport and anomalous Hall effect response in co-sputtered Co2FeSi thin films

    NASA Astrophysics Data System (ADS)

    Yadav, Anjali; Chaudhary, Sujeet

    2015-11-01

    Co-sputtered Co2FeSi thin films are studied by varying the growth temperature (Ts) as a control parameter in terms of the appreciable change in the disorder. The effect of Ts on structural, magnetic, electrical, and magneto-transport properties was investigated. As Ts is increased from room temperature to 400 °C, an improvement in the crystallinity and atomic ordering are observed. These are found to be correlated with the associated reduction in residual resistivity ( ρ x x 0 ) from 410 to 88 μΩ cm, an increment in residual resistivity ratio (r) from 0.8 to 1.23, and an increase in saturation magnetization from 1074 to 1196 emu/cc. The spin wave stiffness constant in these films is found to increase with Ts, with a reasonably high value of 358 meVÅ2 at the optimum value of Ts of 400 °C. Further, the obtained high carrier concentration and mobility values (at 10 K) of ˜30 e-s/f.u. and ˜0.11 cm2 V-1 s-1 for the films deposited at Ts = 400 °C shows the presence of compensated Fermi surface. The transport properties are investigated qualitatively from the scaling of anomalous Hall resistivity ρx y s (T) with the longitudinal resistivity ρ x x ( T ) data, employing the extrinsic (skew- and side-jump scatterings) and intrinsic scattering contributions. The variation in the intrinsic scattering contributions observed via the variation in linear dependence of ρx y s on ρx x 2 with the change in Ts is found to be associated with the improvement in the crystallinity of these films.

  20. Quantization of Simple Parametrized Systems

    NASA Astrophysics Data System (ADS)

    Ruffini, Giulio

    1995-01-01

    I study the canonical formulation and quantization of some simple parametrized systems using Dirac's formalism and the Becchi-Rouet-Stora-Tyutin (BRST) extended phase space method. These systems include the parametrized particle and minisuperspace. Using Dirac's formalism I first analyze for each case the construction of the classical reduced phase space. There are two separate features of these systems that may make this construction difficult: (a) Because of the boundary conditions used, the actions are not gauge invariant at the boundaries. (b) The constraints may have a disconnected solution space. The relativistic particle and minisuperspace have such complicated constraints, while the non-relativistic particle displays only the first feature. I first show that a change of gauge fixing is equivalent to a canonical transformation in the reduced phase space, thus resolving the problems associated with the first feature above. Then I consider the quantization of these systems using several approaches: Dirac's method, Dirac-Fock quantization, and the BRST formalism. In the cases of the relativistic particle and minisuperspace I consider first the quantization of one branch of the constraint at the time and then discuss the backgrounds in which it is possible to quantize simultaneously both branches. I motivate and define the inner product, and obtain, for example, the Klein-Gordon inner product for the relativistic case. Then I show how to construct phase space path integral representations for amplitudes in these approaches--the Batalin-Fradkin-Vilkovisky (BFV) and the Faddeev path integrals --from which one can then derive the path integrals in coordinate space--the Faddeev-Popov path integral and the geometric path integral. In particular I establish the connection between the Hilbert space representation and the range of the lapse in the path integrals. I also examine the class of paths that contribute in the path integrals and how they affect space

  1. Berezin-Toeplitz quantization and naturally defined star products for Kähler manifolds

    NASA Astrophysics Data System (ADS)

    Schlichenmaier, Martin

    2018-04-01

    For compact quantizable Kähler manifolds the Berezin-Toeplitz quantization schemes, both operator and deformation quantization (star product) are reviewed. The treatment includes Berezin's covariant symbols and the Berezin transform. The general compact quantizable case was done by Bordemann-Meinrenken-Schlichenmaier, Schlichenmaier, and Karabegov-Schlichenmaier. For star products on Kähler manifolds, separation of variables, or equivalently star product of (anti-) Wick type, is a crucial property. As canonically defined star products the Berezin-Toeplitz, Berezin, and the geometric quantization are treated. It turns out that all three are equivalent, but different.

  2. Magnon Hall effect without Dzyaloshinskii-Moriya interaction.

    PubMed

    Owerre, S A

    2017-01-25

    Topological magnon bands and magnon Hall effect in insulating collinear ferromagnets are induced by the Dzyaloshinskii-Moriya interaction (DMI) even at zero magnetic field. In the geometrically frustrated star lattice, a coplanar/noncollinear [Formula: see text] magnetic ordering may be present due to spin frustration. This magnetic structure, however, does not exhibit topological magnon effects even with DMI in contrast to collinear ferromagnets. We show that a magnetic field applied perpendicular to the star plane induces a non-coplanar spin configuration with nonzero spin scalar chirality, which provides topological effects without the need of DMI. The non-coplanar spin texture originates from the topology of the spin configurations and does not need the presence of DMI or magnetic ordering, which suggests that this phenomenon may be present in the chiral spin liquid phases of frustrated magnetic systems. We propose that these anomalous topological magnon effects can be accessible in polymeric iron (III) acetate-a star-lattice antiferromagnet with both spin frustration and long-range magnetic ordering.

  3. Image-adapted visually weighted quantization matrices for digital image compression

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor)

    1994-01-01

    A method for performing image compression that eliminates redundant and invisible image components is presented. The image compression uses a Discrete Cosine Transform (DCT) and each DCT coefficient yielded by the transform is quantized by an entry in a quantization matrix which determines the perceived image quality and the bit rate of the image being compressed. The present invention adapts or customizes the quantization matrix to the image being compressed. The quantization matrix comprises visual masking by luminance and contrast techniques and by an error pooling technique all resulting in a minimum perceptual error for any given bit rate, or minimum bit rate for a given perceptual error.

  4. Hierarchically clustered adaptive quantization CMAC and its learning convergence.

    PubMed

    Teddy, S D; Lai, E M K; Quek, C

    2007-11-01

    The cerebellar model articulation controller (CMAC) neural network (NN) is a well-established computational model of the human cerebellum. Nevertheless, there are two major drawbacks associated with the uniform quantization scheme of the CMAC network. They are the following: (1) a constant output resolution associated with the entire input space and (2) the generalization-accuracy dilemma. Moreover, the size of the CMAC network is an exponential function of the number of inputs. Depending on the characteristics of the training data, only a small percentage of the entire set of CMAC memory cells is utilized. Therefore, the efficient utilization of the CMAC memory is a crucial issue. One approach is to quantize the input space nonuniformly. For existing nonuniformly quantized CMAC systems, there is a tradeoff between memory efficiency and computational complexity. Inspired by the underlying organizational mechanism of the human brain, this paper presents a novel CMAC architecture named hierarchically clustered adaptive quantization CMAC (HCAQ-CMAC). HCAQ-CMAC employs hierarchical clustering for the nonuniform quantization of the input space to identify significant input segments and subsequently allocating more memory cells to these regions. The stability of the HCAQ-CMAC network is theoretically guaranteed by the proof of its learning convergence. The performance of the proposed network is subsequently benchmarked against the original CMAC network, as well as two other existing CMAC variants on two real-life applications, namely, automated control of car maneuver and modeling of the human blood glucose dynamics. The experimental results have demonstrated that the HCAQ-CMAC network offers an efficient memory allocation scheme and improves the generalization and accuracy of the network output to achieve better or comparable performances with smaller memory usages. Index Terms-Cerebellar model articulation controller (CMAC), hierarchical clustering, hierarchically

  5. Quantization noise in digital speech. M.S. Thesis- Houston Univ.

    NASA Technical Reports Server (NTRS)

    Schmidt, O. L.

    1972-01-01

    The amount of quantization noise generated in a digital-to-analog converter is dependent on the number of bits or quantization levels used to digitize the analog signal in the analog-to-digital converter. The minimum number of quantization levels and the minimum sample rate were derived for a digital voice channel. A sample rate of 6000 samples per second and lowpass filters with a 3 db cutoff of 2400 Hz are required for 100 percent sentence intelligibility. Consonant sounds are the first speech components to be degraded by quantization noise. A compression amplifier can be used to increase the weighting of the consonant sound amplitudes in the analog-to-digital converter. An expansion network must be installed at the output of the digital-to-analog converter to restore the original weighting of the consonant sounds. This technique results in 100 percent sentence intelligibility for a sample rate of 5000 samples per second, eight quantization levels, and lowpass filters with a 3 db cutoff of 2000 Hz.

  6. Quantization and Superselection Sectors I:. Transformation Group C*-ALGEBRAS

    NASA Astrophysics Data System (ADS)

    Landsman, N. P.

    Quantization is defined as the act of assigning an appropriate C*-algebra { A} to a given configuration space Q, along with a prescription mapping self-adjoint elements of { A} into physically interpretable observables. This procedure is adopted to solve the problem of quantizing a particle moving on a homogeneous locally compact configuration space Q=G/H. Here { A} is chosen to be the transformation group C*-algebra corresponding to the canonical action of G on Q. The structure of these algebras and their representations are examined in some detail. Inequivalent quantizations are identified with inequivalent irreducible representations of the C*-algebra corresponding to the system, hence with its superselection sectors. Introducing the concept of a pre-Hamiltonian, we construct a large class of G-invariant time-evolutions on these algebras, and find the Hamiltonians implementing these time-evolutions in each irreducible representation of { A}. “Topological” terms in the Hamiltonian (or the corresponding action) turn out to be representation-dependent, and are automatically induced by the quantization procedure. Known “topological” charge quantization or periodicity conditions are then identically satisfied as a consequence of the representation theory of { A}.

  7. Magnetic resonance image compression using scalar-vector quantization

    NASA Astrophysics Data System (ADS)

    Mohsenian, Nader; Shahri, Homayoun

    1995-12-01

    A new coding scheme based on the scalar-vector quantizer (SVQ) is developed for compression of medical images. SVQ is a fixed-rate encoder and its rate-distortion performance is close to that of optimal entropy-constrained scalar quantizers (ECSQs) for memoryless sources. The use of a fixed-rate quantizer is expected to eliminate some of the complexity issues of using variable-length scalar quantizers. When transmission of images over noisy channels is considered, our coding scheme does not suffer from error propagation which is typical of coding schemes which use variable-length codes. For a set of magnetic resonance (MR) images, coding results obtained from SVQ and ECSQ at low bit-rates are indistinguishable. Furthermore, our encoded images are perceptually indistinguishable from the original, when displayed on a monitor. This makes our SVQ based coder an attractive compression scheme for picture archiving and communication systems (PACS), currently under consideration for an all digital radiology environment in hospitals, where reliable transmission, storage, and high fidelity reconstruction of images are desired.

  8. Can one ADM quantize relativistic bosonicstrings and membranes?

    NASA Astrophysics Data System (ADS)

    Moncrief, Vincent

    2006-04-01

    The standard methods for quantizing relativistic strings diverge significantly from the Dirac-Wheeler-DeWitt program for quantization of generally covariant systems and one wonders whether the latter could be successfully implemented as an alternative to the former. As a first step in this direction, we consider the possibility of quantizing strings (and also relativistic membranes) via a partially gauge-fixed ADM (Arnowitt, Deser and Misner) formulation of the reduced field equations for these systems. By exploiting some (Euclidean signature) Hamilton-Jacobi techniques that Mike Ryan and I had developed previously for the quantization of Bianchi IX cosmological models, I show how to construct Diff( S 1)-invariant (or Diff(Σ)-invariant in the case of membranes) ground state wave functionals for the cases of co-dimension one strings and membranes embedded in Minkowski spacetime. I also show that the reduced Hamiltonian density operators for these systems weakly commute when applied to physical (i.e. Diff( S 1) or Diff(Σ)-invariant) states. While many open questions remain, these preliminary results seem to encourage further research along the same lines.

  9. Chromium-induced ferromagnetism with perpendicular anisotropy in topological crystalline insulator SnTe (111) thin films

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Zhang, Hongrui; Jiang, Jue; Zhao, Yi-Fan; Yu, Jia; Liu, Wei; Li, Da; Chan, Moses H. W.; Sun, Jirong; Zhang, Zhidong; Chang, Cui-Zu

    2018-03-01

    Topological crystalline insulator is a recently discovered topological phase of matter. It possesses multiple Dirac surface states, which are protected by the crystal symmetry. This is in contrast to the time-reversal symmetry that is operative in the well-known topological insulators. In the presence of a Zeeman field and/or strain, the multiple Dirac surface states are gapped. The high-Chern-number quantum anomalous Hall (QAH) state is predicted to emerge if the chemical potential resides in all the Zeeman gaps. Here, we use molecular-beam epitaxy to grow 12 double-layer (DL) pure and Cr-doped SnTe (111) thin film on heat-treated SrTi O3 (111) substrate using a quintuple layer of insulating (Bi0.2Sb0.8 ) 2T e3 topological insulator as a buffer film. The Hall traces of Cr-doped SnTe film at low temperatures display square hysteresis loops indicating long-range ferromagnetic order with perpendicular anisotropy. The Curie temperature of the 12 DL S n0.9C r0.1Te film is ˜110 K. Due to the chemical potential crossing the bulk valence bands, the anomalous Hall resistance of 12 DL S n0.9C r0.1Te film is substantially lower than the predicted quantized value (˜1 /4 h /e2 ). It is possible that with systematic tuning the chemical potential via chemical doping and electrical gating, the high-Chern-number QAH state can be realized in the Cr-doped SnTe (111) thin film.

  10. Topological Hall and Spin Hall Effects in Disordered Skyrmionic Textures

    NASA Astrophysics Data System (ADS)

    Ndiaye, Papa Birame; Akosa, Collins; Manchon, Aurelien; Spintronics Theory Group Team

    We carry out a throughout study of the topological Hall and topological spin Hall effects in disordered skyrmionic systems: the dimensionless (spin) Hall angles are evaluated across the energy band structure in the multiprobe Landauer-Büttiker formalism and their link to the effective magnetic field emerging from the real space topology of the spin texture is highlighted. We discuss these results for an optimal skyrmion size and for various sizes of the sample and found that the adiabatic approximation still holds for large skyrmions as well as for few atomic size-nanoskyrmions. Finally, we test the robustness of the topological signals against disorder strength and show that topological Hall effect is highly sensitive to momentum scattering. This work was supported by the King Abdullah University of Science and Technology (KAUST) through the Award No OSR-CRG URF/1/1693-01 from the Office of Sponsored Research (OSR).

  11. Differential calculus on quantized simple lie groups

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav

    1991-07-01

    Differential calculi, generalizations of Woronowicz's four-dimensional calculus on SU q (2), are introduced for quantized classical simple Lie groups in a constructive way. For this purpose, the approach of Faddeev and his collaborators to quantum groups was used. An equivalence of Woronowicz's enveloping algebra generated by the dual space to the left-invariant differential forms and the corresponding quantized universal enveloping algebra, is obtained for our differential calculi. Real forms for q ∈ ℝ are also discussed.

  12. Absence of quantum anomalous Hall state in 4 d transition-metal-doped B i2S e3 : An ab initio study

    NASA Astrophysics Data System (ADS)

    Deng, Bei; Liu, Feng; Zhu, Junyi

    2017-11-01

    The realization of insulating ferromagnetic states in topological insulator (TI) systems, with sufficiently high Curie temperatures (TC) and large magnetically induced gaps, has been the key bottleneck towards the realization of the quantum anomalous Hall effect (QAHE). Despite the limited reports on 3 d or 4 f transition-metal (TM)-doped B i2S e3 , there remains a lack of systematic studies on 4 d TMs, which may be potential candidates since the atomic sizes of 4 d TMs and that of Bi are similar. Here, we report a theoretical work that probes the magnetic behaviors of the 4 d TM-doped B i2S e3 system. We discovered that among the 4 d TMs, Nb and Mo can create magnetic moments of 1.76 and 2.96 μ B in B i2S e3 , respectively. While Mo yields a stable gapless antiferromagnetic ground state, Nb favors a strong ferromagnetic order, with the magnetic coupling strength (TC) ˜6 times of that induced by the traditional Cr impurity. Yet, we found that Nb is still unfavorable to support the QAH state in B i2S e3 because of the reduced correlation in the t2 g band that gives a gapless character. This rationale is not only successful in interpreting why Nb, the strongest candidate among 4 d TMs for achieving ferromagnetism in B i2S e3 , actually cannot lead to QAHE in the B i2S e3 system even with the assistance of codoping but also is particularly important to fully understand the mechanism of acquisition of insulating ferromagnetic states inside TI. On the other hand, we discovered that Mo-doped B i2S e3 favors strong antiferromagnetic states and may lead to superconducting states.

  13. Facility Focus: Residence Halls.

    ERIC Educational Resources Information Center

    College Planning & Management, 2002

    2002-01-01

    Describes residence halls seeking to meet needs beyond traditional mass housing for the 18- to 22-year-old students: Whittemore Hall at the Tuck School of Business at Dartmouth College (for older students); Small Group Housing at Washington University (grouping students with common interests); and the renovation of the residence hall at Boston's…

  14. Astronaut Hall of Fame

    NASA Image and Video Library

    2018-04-21

    Scott D. Altman, second from left, is inducted into the Astronaut Hall of Fame (AHOF) during a ceremony inside the Space Shuttle Atlantis attraction at NASA's Kennedy Space Center Visitor Complex in Florida. At far left, Hall of Famer Curt Brown, board chairman, Astronaut Scholarship Foundation (ASF), inducts Altman into the Hall of Fame Class of 2018. At right is Hall of Famer John Grunsfeld, who spoke on Altman's behalf during the ceremony. At far right is Thomas D. Jones, Ph.D., who also was inducted into the AHOF Class of 2018. Inductees into the Hall of Fame are selected by a committee of Hall of Fame astronauts, former NASA officials, flight directors, historians and journalists. The process is administered by the Astronaut Scholarship Foundation. To be eligible, an astronaut must have made his or her first flight at least 17 years before the induction. Candidates must be a U.S. citizen and a NASA-trained commander, pilot or mission specialist who has orbited the earth at least once. Including Altman and Jones, 97 astronauts have been inducted into the AHOF.

  15. Astronaut Hall of Fame

    NASA Image and Video Library

    2018-04-21

    Thomas D. Jones, Ph.D., in the center, is inducted into the Astronaut Hall of Fame (AHOF) during a ceremony inside the Space Shuttle Atlantis attraction at NASA’s Kennedy Space Center Visitor Complex in Florida. At left, Hall of Famer Curt Brown, board chairman, Astronaut Scholarship Foundation (ASF), inducts Jones into the Hall of Fame Class of 2018. At right is Hall of Famer Storey Musgrave, who spoke on Jones behalf during the ceremony. Also inducted was retired astronaut Scott D. Altman. Inductees into the Hall of Fame are selected by a committee of Hall of Fame astronauts, former NASA officials, flight directors, historians and journalists. The process is administered by the Astronaut Scholarship Foundation. To be eligible, an astronaut must have made his or her first flight at least 17 years before the induction. Candidates must be a U.S. citizen and a NASA-trained commander, pilot or mission specialist who has orbited the earth at least once. Including Altman and Jones, 97 astronauts have been inducted into the AHOF.

  16. NASA's 2004 Hall Thruster Program

    NASA Technical Reports Server (NTRS)

    Jacobson, David T.; Manzella, David H.; Hofer, Richard R.; Peterson, Peter Y.

    2004-01-01

    An overview of NASA's Hall thruster research and development tasks conducted during fiscal year 2004 is presented. These tasks focus on: raising the technology readiness level of high power Hall thrusters, developing a moderate-power/ moderate specific impulse Hall thruster, demonstrating high-power/high specific impulse Hall thruster operation, and addressing the fundamental technical challenges of emerging Hall thruster concepts. Programmatic background information, technical accomplishments and out year plans for each program element performed under the sponsorship of the In-Space Transportation Program, Project Prometheus, and the Energetics Project are provided.

  17. 2-Step scalar deadzone quantization for bitplane image coding.

    PubMed

    Auli-Llinas, Francesc

    2013-12-01

    Modern lossy image coding systems generate a quality progressive codestream that, truncated at increasing rates, produces an image with decreasing distortion. Quality progressivity is commonly provided by an embedded quantizer that employs uniform scalar deadzone quantization (USDQ) together with a bitplane coding strategy. This paper introduces a 2-step scalar deadzone quantization (2SDQ) scheme that achieves same coding performance as that of USDQ while reducing the coding passes and the emitted symbols of the bitplane coding engine. This serves to reduce the computational costs of the codec and/or to code high dynamic range images. The main insights behind 2SDQ are the use of two quantization step sizes that approximate wavelet coefficients with more or less precision depending on their density, and a rate-distortion optimization technique that adjusts the distortion decreases produced when coding 2SDQ indexes. The integration of 2SDQ in current codecs is straightforward. The applicability and efficiency of 2SDQ are demonstrated within the framework of JPEG2000.

  18. Third Quantization and Quantum Universes

    NASA Astrophysics Data System (ADS)

    Kim, Sang Pyo

    2014-01-01

    We study the third quantization of the Friedmann-Robertson-Walker cosmology with N-minimal massless fields. The third quantized Hamiltonian for the Wheeler-DeWitt equation in the minisuperspace consists of infinite number of intrinsic time-dependent, decoupled oscillators. The Hamiltonian has a pair of invariant operators for each universe with conserved momenta of the fields that play a role of the annihilation and the creation operators and that construct various quantum states for the universe. The closed universe exhibits an interesting feature of transitions from stable states to tachyonic states depending on the conserved momenta of the fields. In the classical forbidden unstable regime, the quantum states have googolplex growing position and conjugate momentum dispersions, which defy any measurements of the position of the universe.

  19. Quantization selection in the high-throughput H.264/AVC encoder based on the RD

    NASA Astrophysics Data System (ADS)

    Pastuszak, Grzegorz

    2013-10-01

    In the hardware video encoder, the quantization is responsible for quality losses. On the other hand, it allows the reduction of bit rates to the target one. If the mode selection is based on the rate-distortion criterion, the quantization can also be adjusted to obtain better compression efficiency. Particularly, the use of Lagrangian function with a given multiplier enables the encoder to select the most suitable quantization step determined by the quantization parameter QP. Moreover, the quantization offset added before discarding the fraction value after quantization can be adjusted. In order to select the best quantization parameter and offset in real time, the HD/SD encoder should be implemented in the hardware. In particular, the hardware architecture should embed the transformation and quantization modules able to process the same residuals many times. In this work, such an architecture is used. Experimental results show what improvements in terms of compression efficiency are achievable for Intra coding.

  20. Group theoretical quantization of isotropic loop cosmology

    NASA Astrophysics Data System (ADS)

    Livine, Etera R.; Martín-Benito, Mercedes

    2012-06-01

    We achieve a group theoretical quantization of the flat Friedmann-Robertson-Walker model coupled to a massless scalar field adopting the improved dynamics of loop quantum cosmology. Deparemetrizing the system using the scalar field as internal time, we first identify a complete set of phase space observables whose Poisson algebra is isomorphic to the su(1,1) Lie algebra. It is generated by the volume observable and the Hamiltonian. These observables describe faithfully the regularized phase space underlying the loop quantization: they account for the polymerization of the variable conjugate to the volume and for the existence of a kinematical nonvanishing minimum volume. Since the Hamiltonian is an element in the su(1,1) Lie algebra, the dynamics is now implemented as SU(1, 1) transformations. At the quantum level, the system is quantized as a timelike irreducible representation of the group SU(1, 1). These representations are labeled by a half-integer spin, which gives the minimal volume. They provide superselection sectors without quantization anomalies and no factor ordering ambiguity arises when representing the Hamiltonian. We then explicitly construct SU(1, 1) coherent states to study the quantum evolution. They not only provide semiclassical states but truly dynamical coherent states. Their use further clarifies the nature of the bounce that resolves the big bang singularity.

  1. Room temperature quantum spin Hall insulators with a buckled square lattice.

    PubMed

    Luo, Wei; Xiang, Hongjun

    2015-05-13

    Two-dimensional (2D) topological insulators (TIs), also known as quantum spin Hall (QSH) insulators, are excellent candidates for coherent spin transport related applications because the edge states of 2D TIs are robust against nonmagnetic impurities since the only available backscattering channel is forbidden. Currently, most known 2D TIs are based on a hexagonal (specifically, honeycomb) lattice. Here, we propose that there exists the quantum spin Hall effect (QSHE) in a buckled square lattice. Through performing global structure optimization, we predict a new three-layer quasi-2D (Q2D) structure, which has the lowest energy among all structures with the thickness less than 6.0 Å for the BiF system. It is identified to be a Q2D TI with a large band gap (0.69 eV). The electronic states of the Q2D BiF system near the Fermi level are mainly contributed by the middle Bi square lattice, which are sandwiched by two inert BiF2 layers. This is beneficial since the interaction between a substrate and the Q2D material may not change the topological properties of the system, as we demonstrate in the case of the NaF substrate. Finally, we come up with a new tight-binding model for a two-orbital system with the buckled square lattice to explain the low-energy physics of the Q2D BiF material. Our study not only predicts a QSH insulator for realistic room temperature applications but also provides a new lattice system for engineering topological states such as quantum anomalous Hall effect.

  2. Electronic transport in the quantum spin Hall state due to the presence of adatoms in graphene

    NASA Astrophysics Data System (ADS)

    Lima, Leandro; Lewenkopf, Caio

    Heavy adatoms, even at low concentrations, are predicted to turn a graphene sheet into a topological insulator with substantial gap. The adatoms mediate the spin-orbit coupling that is fundamental to the quantum spin Hall effect. The adatoms act as local spin-orbit scatterer inducing hopping processes between distant carbon atoms giving origin to transverse spin currents. Although there are effective models that describe spectral properties of such systems with great detail, quantitative theoretical work for the transport counterpart is still lacking. We developed a multiprobe recursive Green's function technique with spin resolution to analyze the transport properties for large geometries. We use an effective tight-binding Hamiltonian to describe the problem of adatoms randomly placed at the center of the honeycomb hexagons, which is the case for most transition metals. Our choice of current and voltage probes is favorable to experiments since it filters the contribution of only one spin orientation, leading to a quantized spin Hall conductance of e2 / h . We also discuss the electronic propagation in the system by imaging the local density of states and the electronic current densities. The authors acknowledge the Brazilian agencies CNPq, CAPES, FAPERJ and INCT de Nanoestruturas de Carbono for financial support.

  3. Anomalous reversal of transverse thermoelectric voltage in CoδFe100-δ /YIG junction

    NASA Astrophysics Data System (ADS)

    Ramos, R.; Wongjom, P.; Iguchi, R.; Yagmur, A.; Qiu, Z.; Pinitsoontorn, S.; Uchida, K.; Saitoh, E.

    2018-02-01

    We have studied thermoelectric conversion in all-ferromagnetic CoδFe100-δ /YIG bilayer junctions as a function of the chemical composition δ . We performed measurements of the transverse thermoelectric voltage upon application of a magnetic field. The voltage measured in the longitudinal spin Seebeck effect configuration shows a sign reversal at δ = 40%, which cannot be explained by the conventional electronic transport, such as the anomalous Nernst and Hall effects in the CoδFe100-δ layer. Our results suggest a possible role of the sd-type exchange interaction between Co40Fe60 and YIG at the interface as a possible origin for the observed behavior.

  4. Generalized noise terms for the quantized fluctuational electrodynamics

    NASA Astrophysics Data System (ADS)

    Partanen, Mikko; Häyrynen, Teppo; Tulkki, Jukka; Oksanen, Jani

    2017-03-01

    The quantization of optical fields in vacuum has been known for decades, but extending the field quantization to lossy and dispersive media in nonequilibrium conditions has proven to be complicated due to the position-dependent electric and magnetic responses of the media. In fact, consistent position-dependent quantum models for the photon number in resonant structures have only been formulated very recently and only for dielectric media. Here we present a general position-dependent quantized fluctuational electrodynamics (QFED) formalism that extends the consistent field quantization to describe the photon number also in the presence of magnetic field-matter interactions. It is shown that the magnetic fluctuations provide an additional degree of freedom in media where the magnetic coupling to the field is prominent. Therefore, the field quantization requires an additional independent noise operator that is commuting with the conventional bosonic noise operator describing the polarization current fluctuations in dielectric media. In addition to allowing the detailed description of field fluctuations, our methods provide practical tools for modeling optical energy transfer and the formation of thermal balance in general dielectric and magnetic nanodevices. We use QFED to investigate the magnetic properties of microcavity systems to demonstrate an example geometry in which it is possible to probe fields arising from the electric and magnetic source terms. We show that, as a consequence of the magnetic Purcell effect, the tuning of the position of an emitter layer placed inside a vacuum cavity can make the emissivity of a magnetic emitter to exceed the emissivity of a corresponding electric emitter.

  5. Quantization of an electromagnetic field in two-dimensional photonic structures based on the scattering matrix formalism ( S-quantization)

    NASA Astrophysics Data System (ADS)

    Ivanov, K. A.; Nikolaev, V. V.; Gubaydullin, A. R.; Kaliteevski, M. A.

    2017-10-01

    Based on the scattering matrix formalism, we have developed a method of quantization of an electromagnetic field in two-dimensional photonic nanostructures ( S-quantization in the two-dimensional case). In this method, the fields at the boundaries of the quantization box are expanded into a Fourier series and are related with each other by the scattering matrix of the system, which is the product of matrices describing the propagation of plane waves in empty regions of the quantization box and the scattering matrix of the photonic structure (or an arbitrary inhomogeneity). The quantization condition (similarly to the onedimensional case) is formulated as follows: the eigenvalues of the scattering matrix are equal to unity, which corresponds to the fact that the set of waves that are incident on the structure (components of the expansion into the Fourier series) is equal to the set of waves that travel away from the structure (outgoing waves). The coefficients of the matrix of scattering through the inhomogeneous structure have been calculated using the following procedure: the structure is divided into parallel layers such that the permittivity in each layer varies only along the axis that is perpendicular to the layers. Using the Fourier transform, the Maxwell equations have been written in the form of a matrix that relates the Fourier components of the electric field at the boundaries of neighboring layers. The product of these matrices is the transfer matrix in the basis of the Fourier components of the electric field. Represented in a block form, it is composed by matrices that contain the reflection and transmission coefficients for the Fourier components of the field, which, in turn, constitute the scattering matrix. The developed method considerably simplifies the calculation scheme for the analysis of the behavior of the electromagnetic field in structures with a two-dimensional inhomogeneity. In addition, this method makes it possible to obviate

  6. Uniform quantized electron gas

    NASA Astrophysics Data System (ADS)

    Høye, Johan S.; Lomba, Enrique

    2016-10-01

    In this work we study the correlation energy of the quantized electron gas of uniform density at temperature T  =  0. To do so we utilize methods from classical statistical mechanics. The basis for this is the Feynman path integral for the partition function of quantized systems. With this representation the quantum mechanical problem can be interpreted as, and is equivalent to, a classical polymer problem in four dimensions where the fourth dimension is imaginary time. Thus methods, results, and properties obtained in the statistical mechanics of classical fluids can be utilized. From this viewpoint we recover the well known RPA (random phase approximation). Then to improve it we modify the RPA by requiring the corresponding correlation function to be such that electrons with equal spins can not be on the same position. Numerical evaluations are compared with well known results of a standard parameterization of Monte Carlo correlation energies.

  7. Density-Dependent Quantized Least Squares Support Vector Machine for Large Data Sets.

    PubMed

    Nan, Shengyu; Sun, Lei; Chen, Badong; Lin, Zhiping; Toh, Kar-Ann

    2017-01-01

    Based on the knowledge that input data distribution is important for learning, a data density-dependent quantization scheme (DQS) is proposed for sparse input data representation. The usefulness of the representation scheme is demonstrated by using it as a data preprocessing unit attached to the well-known least squares support vector machine (LS-SVM) for application on big data sets. Essentially, the proposed DQS adopts a single shrinkage threshold to obtain a simple quantization scheme, which adapts its outputs to input data density. With this quantization scheme, a large data set is quantized to a small subset where considerable sample size reduction is generally obtained. In particular, the sample size reduction can save significant computational cost when using the quantized subset for feature approximation via the Nyström method. Based on the quantized subset, the approximated features are incorporated into LS-SVM to develop a data density-dependent quantized LS-SVM (DQLS-SVM), where an analytic solution is obtained in the primal solution space. The developed DQLS-SVM is evaluated on synthetic and benchmark data with particular emphasis on large data sets. Extensive experimental results show that the learning machine incorporating DQS attains not only high computational efficiency but also good generalization performance.

  8. Superfield quantization

    NASA Astrophysics Data System (ADS)

    Batalin, I. A.; Bering, K.; Damgaard, P. H.

    1998-03-01

    We present a superfield formulation of the quantization program for theories with first-class constraints. An exact operator formulation is given, and we show how to set up a phase-space path integral entirely in terms of superfields. BRST transformations and canonical transformations enter on equal footing, and they allow us to establish a superspace analog of the BFV theorem. We also present a formal derivation of the Lagrangian superfield analogue of the field-antifield formalism by an integration over half of the phase-space variables.

  9. Shot noise generated by graphene p–n junctions in the quantum Hall effect regime

    PubMed Central

    Kumada, N.; Parmentier, F. D.; Hibino, H.; Glattli, D. C.; Roulleau, P.

    2015-01-01

    Graphene offers a unique system to investigate transport of Dirac Fermions at p–n junctions. In a magnetic field, combination of quantum Hall physics and the characteristic transport across p–n junctions leads to a fractionally quantized conductance associated with the mixing of electron-like and hole-like modes and their subsequent partitioning. The mixing and partitioning suggest that a p–n junction could be used as an electronic beam splitter. Here we report the shot noise study of the mode-mixing process and demonstrate the crucial role of the p–n junction length. For short p–n junctions, the amplitude of the noise is consistent with an electronic beam-splitter behaviour, whereas, for longer p–n junctions, it is reduced by the energy relaxation. Remarkably, the relaxation length is much larger than typical size of mesoscopic devices, encouraging using graphene for electron quantum optics and quantum information processing. PMID:26337067

  10. 4D Sommerfeld quantization of the complex extended charge

    NASA Astrophysics Data System (ADS)

    Bulyzhenkov, Igor E.

    2017-12-01

    Gravitational fields and accelerations cannot change quantized magnetic flux in closed line contours due to flat 3D section of curved 4D space-time-matter. The relativistic Bohr-Sommerfeld quantization of the imaginary charge reveals an electric analog of the Compton length, which can introduce quantitatively the fine structure constant and the Plank length.

  11. Time-Symmetric Quantization in Spacetimes with Event Horizons

    NASA Astrophysics Data System (ADS)

    Kobakhidze, Archil; Rodd, Nicholas

    2013-08-01

    The standard quantization formalism in spacetimes with event horizons implies a non-unitary evolution of quantum states, as initial pure states may evolve into thermal states. This phenomenon is behind the famous black hole information loss paradox which provoked long-standing debates on the compatibility of quantum mechanics and gravity. In this paper we demonstrate that within an alternative time-symmetric quantization formalism thermal radiation is absent and states evolve unitarily in spacetimes with event horizons. We also discuss the theoretical consistency of the proposed formalism. We explicitly demonstrate that the theory preserves the microcausality condition and suggest a "reinterpretation postulate" to resolve other apparent pathologies associated with negative energy states. Accordingly as there is a consistent alternative, we argue that choosing to use time-asymmetric quantization is a necessary condition for the black hole information loss paradox.

  12. Generalized radiation-field quantization method and the Petermann excess-noise factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Y.-J.; Siegman, A.E.; E.L. Ginzton Laboratory, Stanford University, Stanford, California 94305

    2003-10-01

    We propose a generalized radiation-field quantization formalism, where quantization does not have to be referenced to a set of power-orthogonal eigenmodes as conventionally required. This formalism can be used to directly quantize the true system eigenmodes, which can be non-power-orthogonal due to the open nature of the system or the gain/loss medium involved in the system. We apply this generalized field quantization to the laser linewidth problem, in particular, lasers with non-power-orthogonal oscillation modes, and derive the excess-noise factor in a fully quantum-mechanical framework. We also show that, despite the excess-noise factor for oscillating modes, the total spatially averaged decaymore » rate for the laser atoms remains unchanged.« less

  13. A New Cell-Centered Implicit Numerical Scheme for Ions in the 2-D Axisymmetric Code Hall2de

    NASA Technical Reports Server (NTRS)

    Lopez Ortega, Alejandro; Mikellides, Ioannis G.

    2014-01-01

    We present a new algorithm in the Hall2De code to simulate the ion hydrodynamics in the acceleration channel and near plume regions of Hall-effect thrusters. This implementation constitutes an upgrade of the capabilities built in the Hall2De code. The equations of mass conservation and momentum for unmagnetized ions are solved using a conservative, finite-volume, cell-centered scheme on a magnetic-field-aligned grid. Major computational savings are achieved by making use of an implicit predictor/multi-corrector algorithm for time evolution. Inaccuracies in the prediction of the motion of low-energy ions in the near plume in hydrodynamics approaches are addressed by implementing a multi-fluid algorithm that tracks ions of different energies separately. A wide range of comparisons with measurements are performed to validate the new ion algorithms. Several numerical experiments with the location and value of the anomalous collision frequency are also presented. Differences in the plasma properties in the near-plume between the single fluid and multi-fluid approaches are discussed. We complete our validation by comparing predicted erosion rates at the channel walls of the thruster with measurements. Erosion rates predicted by the plasma properties obtained from simulations replicate accurately measured rates of erosion within the uncertainty range of the sputtering models employed.

  14. Quantized Algebra I Texts

    ERIC Educational Resources Information Center

    DeBuvitz, William

    2014-01-01

    I am a volunteer reader at the Princeton unit of "Learning Ally" (formerly "Recording for the Blind & Dyslexic") and I recently discovered that high school students are introduced to the concept of quantization well before they take chemistry and physics. For the past few months I have been reading onto computer files a…

  15. The uniform quantized electron gas revisited

    NASA Astrophysics Data System (ADS)

    Lomba, Enrique; Høye, Johan S.

    2017-11-01

    In this article we continue and extend our recent work on the correlation energy of the quantized electron gas of uniform density at temperature T=0 . As before, we utilize the methods, properties, and results obtained by means of classical statistical mechanics. These were extended to quantized systems via the Feynman path integral formalism. The latter translates the quantum problem into a classical polymer problem in four dimensions. Again, the well known RPA (random phase approximation) is recovered as a basic result which we then modify and improve upon. Here we analyze the condition of thermodynamic self-consistency. Our numerical calculations exhibit a remarkable agreement with well known results of a standard parameterization of Monte Carlo correlation energies.

  16. Introduction to quantized LIE groups and algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tjin, T.

    1992-10-10

    In this paper, the authors give a self-contained introduction to the theory of quantum groups according to Drinfeld, highlighting the formal aspects as well as the applications to the Yang-Baxter equation and representation theory. Introductions to Hopf algebras, Poisson structures and deformation quantization are also provided. After defining Poisson Lie groups the authors study their relation to Lie bialgebras and the classical Yang-Baxter equation. Then the authors explain in detail the concept of quantization for them. As an example the quantization of sl[sub 2] is explicitly carried out. Next, the authors show how quantum groups are related to the Yang-Baxtermore » equation and how they can be used to solve it. Using the quantum double construction, the authors explicitly construct the universal R matrix for the quantum sl[sub 2] algebra. In the last section, the authors deduce all finite-dimensional irreducible representations for q a root of unity. The authors also give their tensor product decomposition (fusion rules), which is relevant to conformal field theory.« less

  17. Conductance Quantization in Resistive Random Access Memory

    NASA Astrophysics Data System (ADS)

    Li, Yang; Long, Shibing; Liu, Yang; Hu, Chen; Teng, Jiao; Liu, Qi; Lv, Hangbing; Suñé, Jordi; Liu, Ming

    2015-10-01

    The intrinsic scaling-down ability, simple metal-insulator-metal (MIM) sandwich structure, excellent performances, and complementary metal-oxide-semiconductor (CMOS) technology-compatible fabrication processes make resistive random access memory (RRAM) one of the most promising candidates for the next-generation memory. The RRAM device also exhibits rich electrical, thermal, magnetic, and optical effects, in close correlation with the abundant resistive switching (RS) materials, metal-oxide interface, and multiple RS mechanisms including the formation/rupture of nanoscale to atomic-sized conductive filament (CF) incorporated in RS layer. Conductance quantization effect has been observed in the atomic-sized CF in RRAM, which provides a good opportunity to deeply investigate the RS mechanism in mesoscopic dimension. In this review paper, the operating principles of RRAM are introduced first, followed by the summarization of the basic conductance quantization phenomenon in RRAM and the related RS mechanisms, device structures, and material system. Then, we discuss the theory and modeling of quantum transport in RRAM. Finally, we present the opportunities and challenges in quantized RRAM devices and our views on the future prospects.

  18. Conductance Quantization in Resistive Random Access Memory.

    PubMed

    Li, Yang; Long, Shibing; Liu, Yang; Hu, Chen; Teng, Jiao; Liu, Qi; Lv, Hangbing; Suñé, Jordi; Liu, Ming

    2015-12-01

    The intrinsic scaling-down ability, simple metal-insulator-metal (MIM) sandwich structure, excellent performances, and complementary metal-oxide-semiconductor (CMOS) technology-compatible fabrication processes make resistive random access memory (RRAM) one of the most promising candidates for the next-generation memory. The RRAM device also exhibits rich electrical, thermal, magnetic, and optical effects, in close correlation with the abundant resistive switching (RS) materials, metal-oxide interface, and multiple RS mechanisms including the formation/rupture of nanoscale to atomic-sized conductive filament (CF) incorporated in RS layer. Conductance quantization effect has been observed in the atomic-sized CF in RRAM, which provides a good opportunity to deeply investigate the RS mechanism in mesoscopic dimension. In this review paper, the operating principles of RRAM are introduced first, followed by the summarization of the basic conductance quantization phenomenon in RRAM and the related RS mechanisms, device structures, and material system. Then, we discuss the theory and modeling of quantum transport in RRAM. Finally, we present the opportunities and challenges in quantized RRAM devices and our views on the future prospects.

  19. Quantization Of Temperature

    NASA Astrophysics Data System (ADS)

    O'Brien, Paul

    2017-01-01

    Max Plank did not quantize temperature. I will show that the Plank temperature violates the Plank scale. Plank stated that the Plank scale was Natures scale and independent of human construct. Also stating that even aliens would derive the same values. He made a huge mistake, because temperature is based on the Kelvin scale, which is man-made just like the meter and kilogram. He did not discover natures scale for the quantization of temperature. His formula is flawed, and his value is incorrect. Plank's calculation is Tp = c2Mp/Kb. The general form of this equation is T = E/Kb Why is this wrong? The temperature for a fixed amount of energy is dependent upon the volume it occupies. Using the correct formula involves specifying the radius of the volume in the form of (RE). This leads to an inequality and a limit that is equivalent to the Bekenstein Bound, but using temperature instead of entropy. Rewriting this equation as a limit defines both the maximum temperature and Boltzmann's constant. This will saturate any space-time boundary with maximum temperature and information density, also the minimum radius and entropy. The general form of the equation then becomes a limit in BH thermodynamics T <= (RE)/(λKb) .

  20. Performance of customized DCT quantization tables on scientific data

    NASA Technical Reports Server (NTRS)

    Ratnakar, Viresh; Livny, Miron

    1994-01-01

    We show that it is desirable to use data-specific or customized quantization tables for scaling the spatial frequency coefficients obtained using the Discrete Cosine Transform (DCT). DCT is widely used for image and video compression (MP89, PM93) but applications typically use default quantization matrices. Using actual scientific data gathered from divers sources such as spacecrafts and electron-microscopes, we show that the default compression/quality tradeoffs can be significantly improved upon by using customized tables. We also show that significant improvements are possible for the standard test images Lena and Baboon. This work is part of an effort to develop a practical scheme for optimizing quantization matrices for any given image or video stream, under any given quality or compression constraints.

  1. Astronaut Hall of Fame

    NASA Image and Video Library

    2018-04-21

    Inside the Space Shuttle Atlantis attraction at NASA’s Kennedy Space Center Visitor Complex in Florida, two space explorers, Scott D. Altman, second from left, and Thomas D. Jones, Ph.D., far right, are inducted into the U.S. Astronaut Hall of Fame Class of 2018. At far left is Hall of Famer Curt Brown, board chairman, Astronaut Scholarship Foundation, who inducted Altman and Jones into the AHOF. Second from right is Hall of Famer John Grunsfeld, who spoke on behalf of Altman during the ceremony. Inductees into the Hall of Fame are selected by a committee of Hall of Fame astronauts, former NASA officials, flight directors, historians and journalists. The process is administered by the Astronaut Scholarship Foundation. To be eligible, an astronaut must have made his or her first flight at least 17 years before the induction. Candidates must be a U.S. citizen and a NASA-trained commander, pilot or mission specialist who has orbited the earth at least once. Including Altman and Jones, 97 astronauts have been inducted into the AHOF.

  2. A hybrid LBG/lattice vector quantizer for high quality image coding

    NASA Technical Reports Server (NTRS)

    Ramamoorthy, V.; Sayood, K.; Arikan, E. (Editor)

    1991-01-01

    It is well known that a vector quantizer is an efficient coder offering a good trade-off between quantization distortion and bit rate. The performance of a vector quantizer asymptotically approaches the optimum bound with increasing dimensionality. A vector quantized image suffers from the following types of degradations: (1) edge regions in the coded image contain staircase effects, (2) quasi-constant or slowly varying regions suffer from contouring effects, and (3) textured regions lose details and suffer from granular noise. All three of these degradations are due to the finite size of the code book, the distortion measures used in the design, and due to the finite training procedure involved in the construction of the code book. In this paper, we present an adaptive technique which attempts to ameliorate the edge distortion and contouring effects.

  3. Total anomalous systemic with partial anomalous pulmonary venous connections.

    PubMed

    Vallath, Gopakumar; Gajjar, Trushar; Desai, Neelam

    2013-12-01

    A 9-year-old girl with cyanosis, dyspnea, and grade II clubbing was diagnosed by contrast transthoracic echocardiography and angiocardiography to have an anomalous connection of the venae cavae to the physiologic left atrium with partial anomalous pulmonary venous connection. Successful surgical correction was achieved, and the patient's recovery was uneventful.

  4. Simultaneous Conduction and Valence Band Quantization in Ultrashallow High-Density Doping Profiles in Semiconductors

    NASA Astrophysics Data System (ADS)

    Mazzola, F.; Wells, J. W.; Pakpour-Tabrizi, A. C.; Jackman, R. B.; Thiagarajan, B.; Hofmann, Ph.; Miwa, J. A.

    2018-01-01

    We demonstrate simultaneous quantization of conduction band (CB) and valence band (VB) states in silicon using ultrashallow, high-density, phosphorus doping profiles (so-called Si:P δ layers). We show that, in addition to the well-known quantization of CB states within the dopant plane, the confinement of VB-derived states between the subsurface P dopant layer and the Si surface gives rise to a simultaneous quantization of VB states in this narrow region. We also show that the VB quantization can be explained using a simple particle-in-a-box model, and that the number and energy separation of the quantized VB states depend on the depth of the P dopant layer beneath the Si surface. Since the quantized CB states do not show a strong dependence on the dopant depth (but rather on the dopant density), it is straightforward to exhibit control over the properties of the quantized CB and VB states independently of each other by choosing the dopant density and depth accordingly, thus offering new possibilities for engineering quantum matter.

  5. Emergent Momentum-Space Skyrmion Texture on the Surface of Topological Insulators

    NASA Astrophysics Data System (ADS)

    Mohanta, Narayan; Kampf, Arno P.; Kopp, Thilo

    The quantum anomalous Hall effect has been theoretically predicted and experimentally verified in magnetic topological insulators. In addition, the surface states of these materials exhibit a hedgehog-like ``spin'' texture in momentum space. Here, we apply the previously formulated low-energy model for Bi2Se3, a parent compound for magnetic topological insulators, to a slab geometry in which an exchange field acts only within one of the surface layers. In this sample set up, the hedgehog transforms into a skyrmion texture beyond a critical exchange field. This critical field marks a transition between two topologically distinct phases. The topological phase transition takes place without energy gap closing at the Fermi level and leaves the transverse Hall conductance unchanged and quantized to e2 / 2 h . The momentum-space skyrmion texture persists in a finite field range. It may find its realization in hybrid heterostructures with an interface between a three-dimensional topological insulator and a ferromagnetic insulator. The work was supported by the Deutsche Forschungsgemeinschaft through TRR 80.

  6. Constraints on operator ordering from third quantization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohkuwa, Yoshiaki; Faizal, Mir, E-mail: f2mir@uwaterloo.ca; Ezawa, Yasuo

    2016-02-15

    In this paper, we analyse the Wheeler–DeWitt equation in the third quantized formalism. We will demonstrate that for certain operator ordering, the early stages of the universe are dominated by quantum fluctuations, and the universe becomes classical at later stages during the cosmic expansion. This is physically expected, if the universe is formed from quantum fluctuations in the third quantized formalism. So, we will argue that this physical requirement can be used to constrain the form of the operator ordering chosen. We will explicitly demonstrate this to be the case for two different cosmological models.

  7. NASA's Hall Thruster Program 2002

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert S.; Jacobson, David T.; Pinero, Luis R.; Manzella, David H.; Hofer, Richard R.; Peterson, Peter Y.

    2002-01-01

    The NASA Hall thruster program currently supports a number of tasks related to high power thruster development for a number of customers including the Energetics Program (formerly called the Space-based Program), the Space Solar Power Program, and the In-space Propulsion Program. In program year 2002, two tasks were central to the NASA Hall thruster program: 1) the development of a laboratory Hall thruster capable of providing high thrust at high power-, and 2) investigations into operation of Hall thrusters at high specific impulse. In addition to these two primary thruster development activities, there are a number of other on-going activities supported by the NASA Hall thruster program. These additional activities are related to issues such as high-power power processor architecture, thruster lifetime, and spacecraft integration.

  8. Quantum Phase Transition in Few-Layer NbSe2 Probed through Quantized Conductance Fluctuations

    NASA Astrophysics Data System (ADS)

    Kundu, Hemanta Kumar; Ray, Sujay; Dolui, Kapildeb; Bagwe, Vivas; Choudhury, Palash Roy; Krupanidhi, S. B.; Das, Tanmoy; Raychaudhuri, Pratap; Bid, Aveek

    2017-12-01

    We present the first observation of dynamically modulated quantum phase transition between two distinct charge density wave (CDW) phases in two-dimensional 2 H -NbSe2 . There is recent spectroscopic evidence for the presence of these two quantum phases, but its evidence in bulk measurements remained elusive. We studied suspended, ultrathin 2 H -NbSe2 devices fabricated on piezoelectric substrates—with tunable flakes thickness, disorder level, and strain. We find a surprising evolution of the conductance fluctuation spectra across the CDW temperature: the conductance fluctuates between two precise values, separated by a quantum of conductance. These quantized fluctuations disappear for disordered and on-substrate devices. With the help of mean-field calculations, these observations can be explained as to arise from dynamical phase transition between the two CDW states. To affirm this idea, we vary the lateral strain across the device via piezoelectric medium and map out the phase diagram near the quantum critical point. The results resolve a long-standing mystery of the anomalously large spectroscopic gap in NbSe2 .

  9. Numerical Simulations of the XR-5 Hall Thruster for Life Assessment at Different Operating Conditions

    NASA Technical Reports Server (NTRS)

    Lopez Ortega, Alejandro; Jorns, Benjamin A.; Mikellides, Ioannis G.; Hofer, Richard R.

    2015-01-01

    NASA's Jet Propulsion Laboratory has been investigating the applicability of Aerojet Rocketdyne's XR-5 thruster, a 4.5 kW class Hall thruster, for deep-space missions. Major considerations for qualifying the XR-5 for deep-space missions are demonstration of a wide throttling envelope and a usable life capability in excess of 10,000 h. Numerical simulations with the 2-D axisymmetric code Hall2De are employed to inform the qualification process by assessing erosion rates at the thruster surfaces in a wide range of throttling conditions without the need for conducting costly endurance testing. In previous work at JPL by Jorns et al., the anomalous collision frequency distribution for 11 different throttling conditions of the XR-5 spanning 0.3-4.5 kW were identified based on probe measurements of the electron temperature in the near plume region. In this paper, we provide estimates for the erosion rates at the channel walls and pole covers for the same 11 conditions. Uncertainties in the plasma measurements and in the anomalous collision frequency distribution are addressed by determining upper and lower bounds of the erosion rates. Results suggest that erosion of the walls only occurs in the last 5% of the acceleration channel and the rate of such erosion decreases as the geometry of the thruster changes in time due to magnetic shielding. A quasi-zero-erosion state is eventually achieved in all the examined throttling conditions. Examination of the results for pole surface erosion and estimated cathode life indicates that the XR-5 propellant throughput capability will exceed 700 kg, which provides 50% margin over the usable throughput capability of 466 kg as already demonstrated in wear testing.

  10. Equilibration of quantum hall edge states and its conductance fluctuations in graphene p-n junctions

    NASA Astrophysics Data System (ADS)

    Kumar, Chandan; Kuiri, Manabendra; Das, Anindya

    2018-02-01

    We report an observation of conductance fluctuations (CFs) in the bipolar regime of quantum hall (QH) plateaus in graphene (p-n-p/n-p-n) devices. The CFs in the bipolar regime are shown to decrease with increasing bias and temperature. At high temperature (above 7 K) the CFs vanishes completely and the flat quantized plateaus are recovered in the bipolar regime. The values of QH plateaus are in theoretical agreement based on full equilibration of chiral channels at the p-n junction. The amplitude of CFs for different filling factors follows a trend predicted by the random matrix theory. Although, there are mismatch in the values of CFs between the experiment and theory but at higher filling factors the experimental values become closer to the theoretical prediction. The suppression of CFs and its dependence has been understood in terms of time dependent disorders present at the p-n junctions.

  11. Not your grandfather's concert hall

    NASA Astrophysics Data System (ADS)

    Cooper, Russell; Malenka, Richard; Griffith, Charles; Friedlander, Steven

    2004-05-01

    The opening of Judy and Arthur Zankel Hall on 12 September 2003, restores Andrew Carnegie's original 1891 concept of having three outstanding auditoriums of different sizes under one roof, and creates a 21st-century venue for music performance and education. With concerts ranging from early music to avant-garde multimedia productions, from jazz to world music, and from solo recitals to chamber music, Zankel Hall expands the breadth and depth of Carnegie Hall's offerings. It allows for the integration of programming across three halls with minifestivals tailored both to the size and strengths of each hall and to the artists and music to be performed. The new flexible space also provides Carnegie Hall with an education center equipped with advanced communications technology. This paper discusses the unique program planned for this facility and how the architects, theatre consultants, and acousticians developed a design that fulfilled the client's expectations and coordinated the construction of the facility under the floor of the main Isaac Stern Auditorium without having to cancel a single performance.

  12. Quantization and Quantum-Like Phenomena: A Number Amplitude Approach

    NASA Astrophysics Data System (ADS)

    Robinson, T. R.; Haven, E.

    2015-12-01

    Historically, quantization has meant turning the dynamical variables of classical mechanics that are represented by numbers into their corresponding operators. Thus the relationships between classical variables determine the relationships between the corresponding quantum mechanical operators. Here, we take a radically different approach to this conventional quantization procedure. Our approach does not rely on any relations based on classical Hamiltonian or Lagrangian mechanics nor on any canonical quantization relations, nor even on any preconceptions of particle trajectories in space and time. Instead we examine the symmetry properties of certain Hermitian operators with respect to phase changes. This introduces harmonic operators that can be identified with a variety of cyclic systems, from clocks to quantum fields. These operators are shown to have the characteristics of creation and annihilation operators that constitute the primitive fields of quantum field theory. Such an approach not only allows us to recover the Hamiltonian equations of classical mechanics and the Schrödinger wave equation from the fundamental quantization relations, but also, by freeing the quantum formalism from any physical connotation, makes it more directly applicable to non-physical, so-called quantum-like systems. Over the past decade or so, there has been a rapid growth of interest in such applications. These include, the use of the Schrödinger equation in finance, second quantization and the number operator in social interactions, population dynamics and financial trading, and quantum probability models in cognitive processes and decision-making. In this paper we try to look beyond physical analogies to provide a foundational underpinning of such applications.

  13. Quantized magnetoresistance in atomic-size contacts.

    PubMed

    Sokolov, Andrei; Zhang, Chunjuan; Tsymbal, Evgeny Y; Redepenning, Jody; Doudin, Bernard

    2007-03-01

    When the dimensions of a metallic conductor are reduced so that they become comparable to the de Broglie wavelengths of the conduction electrons, the absence of scattering results in ballistic electron transport and the conductance becomes quantized. In ferromagnetic metals, the spin angular momentum of the electrons results in spin-dependent conductance quantization and various unusual magnetoresistive phenomena. Theorists have predicted a related phenomenon known as ballistic anisotropic magnetoresistance (BAMR). Here we report the first experimental evidence for BAMR by observing a stepwise variation in the ballistic conductance of cobalt nanocontacts as the direction of an applied magnetic field is varied. Our results show that BAMR can be positive and negative, and exhibits symmetric and asymmetric angular dependences, consistent with theoretical predictions.

  14. Thermal distributions of first, second and third quantization

    NASA Astrophysics Data System (ADS)

    McGuigan, Michael

    1989-05-01

    We treat first quantized string theory as two-dimensional gravity plus matter. This allows us to compute the two-dimensional density of one string states by the method of Darwin and Fowler. One can then use second quantized methods to form a grand microcanonical ensemble in which one can compute the density of multistring states of arbitrary momentum and mass. It is argued that modelling an elementary particle as a d-1-dimensional object whose internal degrees of freedom are described by a massless d-dimensional gas yields a density of internal states given by σ d(m)∼m -aexp((bm) {2(d-1)}/{d}) . This indicates that these objects cannot be in thermal equilibrium at any temperature unless d⩽2; that is for a string or a particle. Finally, we discuss the application of the above ideas to four-dimensional gravity and introduce an ensemble of multiuniverse states parameterized by second quantized canonical momenta and particle number.

  15. NASA's Hall Thruster Program

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert S.; Jacobson, David T.; Rawlin, Vincent K.; Mason, Lee S.; Mantenieks, Maris A.; Manzella, David H.; Hofer, Richard R.; Peterson, Peter Y.

    2001-01-01

    NASA's Hall thruster program has base research and focused development efforts in support of the Advanced Space Transportation Program, Space-Based Program, and various other programs. The objective of the base research is to gain an improved understanding of the physical processes and engineering constraints of Hall thrusters to enable development of advanced Hall thruster designs. Specific technical questions that are current priorities of the base effort are: (1) How does thruster life vary with operating point? (2) How can thruster lifetime and wear rate be most efficiently evaluated? (3) What are the practical limitations for discharge voltage as it pertains to high specific impulse operation (high discharge voltage) and high thrust operation (low discharge voltage)? (4) What are the practical limits for extending Hall thrusters to very high input powers? and (5) What can be done during thruster design to reduce cost and integration concerns? The objective of the focused development effort is to develop a 50 kW-class Hall propulsion system, with a milestone of a 50 kW engineering model thruster/system by the end of program year 2006. Specific program wear 2001 efforts, along with the corporate and academic participation, are described.

  16. Anomalous hydrodynamics and normal fluids in rapidly rotating Bose-Einstein condensates.

    PubMed

    Bourne, A; Wilkin, N K; Gunn, J M F

    2006-06-23

    In rapidly rotating condensed Bose systems we show that there is a regime of anomalous hydrodynamics which coincides with the mean field quantum Hall regime. A consequence is the absence of a normal fluid in any conventional sense. However, even the superfluid hydrodynamics is not described by conventional Bernoulli and continuity equations. We show that there are constraints which connect spatial variations of density and phase and that the vortex positions are not the simplest description of the dynamics. We demonstrate, inter alia, a simple relation between vortices and surface waves. We show that the surface waves can emulate a "normal fluid," allowing dissipation by energy and angular momentum absorbtion from vortex motion in the trap. The time scale is sensitive to the initial configuration, which can lead to long-lived vortex patches--perhaps related to those observed at JILA.

  17. Anomalous Hydrodynamics and Normal Fluids in Rapidly Rotating Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Bourne, A.; Wilkin, N. K.; Gunn, J. M. F.

    2006-06-01

    In rapidly rotating condensed Bose systems we show that there is a regime of anomalous hydrodynamics which coincides with the mean field quantum Hall regime. A consequence is the absence of a normal fluid in any conventional sense. However, even the superfluid hydrodynamics is not described by conventional Bernoulli and continuity equations. We show that there are constraints which connect spatial variations of density and phase and that the vortex positions are not the simplest description of the dynamics. We demonstrate, inter alia, a simple relation between vortices and surface waves. We show that the surface waves can emulate a “normal fluid,” allowing dissipation by energy and angular momentum absorbtion from vortex motion in the trap. The time scale is sensitive to the initial configuration, which can lead to long-lived vortex patches—perhaps related to those observed at JILA.

  18. Unique Fock quantization of scalar cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Fernández-Méndez, Mikel; Mena Marugán, Guillermo A.; Olmedo, Javier; Velhinho, José M.

    2012-05-01

    We investigate the ambiguities in the Fock quantization of the scalar perturbations of a Friedmann-Lemaître-Robertson-Walker model with a massive scalar field as matter content. We consider the case of compact spatial sections (thus avoiding infrared divergences), with the topology of a three-sphere. After expanding the perturbations in series of eigenfunctions of the Laplace-Beltrami operator, the Hamiltonian of the system is written up to quadratic order in them. We fix the gauge of the local degrees of freedom in two different ways, reaching in both cases the same qualitative results. A canonical transformation, which includes the scaling of the matter-field perturbations by the scale factor of the geometry, is performed in order to arrive at a convenient formulation of the system. We then study the quantization of these perturbations in the classical background determined by the homogeneous variables. Based on previous work, we introduce a Fock representation for the perturbations in which: (a) the complex structure is invariant under the isometries of the spatial sections and (b) the field dynamics is implemented as a unitary operator. These two properties select not only a unique unitary equivalence class of representations, but also a preferred field description, picking up a canonical pair of field variables among all those that can be obtained by means of a time-dependent scaling of the matter field (completed into a linear canonical transformation). Finally, we present an equivalent quantization constructed in terms of gauge-invariant quantities. We prove that this quantization can be attained by a mode-by-mode time-dependent linear canonical transformation which admits a unitary implementation, so that it is also uniquely determined.

  19. A Algebraic Approach to the Quantization of Constrained Systems: Finite Dimensional Examples.

    NASA Astrophysics Data System (ADS)

    Tate, Ranjeet Shekhar

    1992-01-01

    General relativity has two features in particular, which make it difficult to apply to it existing schemes for the quantization of constrained systems. First, there is no background structure in the theory, which could be used, e.g., to regularize constraint operators, to identify a "time" or to define an inner product on physical states. Second, in the Ashtekar formulation of general relativity, which is a promising avenue to quantum gravity, the natural variables for quantization are not canonical; and, classically, there are algebraic identities between them. Existing schemes are usually not concerned with such identities. Thus, from the point of view of canonical quantum gravity, it has become imperative to find a framework for quantization which provides a general prescription to find the physical inner product, and is flexible enough to accommodate non -canonical variables. In this dissertation I present an algebraic formulation of the Dirac approach to the quantization of constrained systems. The Dirac quantization program is augmented by a general principle to find the inner product on physical states. Essentially, the Hermiticity conditions on physical operators determine this inner product. I also clarify the role in quantum theory of possible algebraic identities between the elementary variables. I use this approach to quantize various finite dimensional systems. Some of these models test the new aspects of the algebraic framework. Others bear qualitative similarities to general relativity, and may give some insight into the pitfalls lurking in quantum gravity. The previous quantizations of one such model had many surprising features. When this model is quantized using the algebraic program, there is no longer any unexpected behaviour. I also construct the complete quantum theory for a previously unsolved relativistic cosmology. All these models indicate that the algebraic formulation provides powerful new tools for quantization. In (spatially compact

  20. Subband Image Coding with Jointly Optimized Quantizers

    NASA Technical Reports Server (NTRS)

    Kossentini, Faouzi; Chung, Wilson C.; Smith Mark J. T.

    1995-01-01

    An iterative design algorithm for the joint design of complexity- and entropy-constrained subband quantizers and associated entropy coders is proposed. Unlike conventional subband design algorithms, the proposed algorithm does not require the use of various bit allocation algorithms. Multistage residual quantizers are employed here because they provide greater control of the complexity-performance tradeoffs, and also because they allow efficient and effective high-order statistical modeling. The resulting subband coder exploits statistical dependencies within subbands, across subbands, and across stages, mainly through complexity-constrained high-order entropy coding. Experimental results demonstrate that the complexity-rate-distortion performance of the new subband coder is exceptional.

  1. Quantized impedance dealing with the damping behavior of the one-dimensional oscillator

    NASA Astrophysics Data System (ADS)

    Zhu, Jinghao; Zhang, Jing; Li, Yuan; Zhang, Yong; Fang, Zhengji; Zhao, Peide; Li, Erping

    2015-11-01

    A quantized impedance is proposed to theoretically establish the relationship between the atomic eigenfrequency and the intrinsic frequency of the one-dimensional oscillator in this paper. The classical oscillator is modified by the idea that the electron transition is treated as a charge-discharge process of a suggested capacitor with the capacitive energy equal to the energy level difference of the jumping electron. The quantized capacitance of the impedance interacting with the jumping electron can lead the resonant frequency of the oscillator to the same as the atomic eigenfrequency. The quantized resistance reflects that the damping coefficient of the oscillator is the mean collision frequency of the transition electron. In addition, the first and third order electric susceptibilities based on the oscillator are accordingly quantized. Our simulation of the hydrogen atom emission spectrum based on the proposed method agrees well with the experimental one. Our results exhibits that the one-dimensional oscillator with the quantized impedance may become useful in the estimations of the refractive index and one- or multi-photon absorption coefficients of some nonmagnetic media composed of hydrogen-like atoms.

  2. Magnetic quantization in monolayer bismuthene

    NASA Astrophysics Data System (ADS)

    Chen, Szu-Chao; Chiu, Chih-Wei; Lin, Hui-Chi; Lin, Ming-Fa

    The magnetic quantization in monolayer bismuthene is investigated by the generalized tight-binding model. The quite large Hamiltonian matrix is built from the tight-binding functions of the various sublattices, atomic orbitals and spin states. Due to the strong spin orbital coupling and sp3 bonding, monolayer bismuthene has the diverse low-lying energy bands such as the parabolic, linear and oscillating energy bands. The main features of band structures are further reflected in the rich magnetic quantization. Under a uniform perpendicular magnetic field (Bz) , three groups of Landau levels (LLs) with distinct features are revealed near the Fermi level. Their Bz-dependent energy spectra display the linear, square-root and non-monotonous dependences, respectively. These LLs are dominated by the combinations of the 6pz orbital and (6px,6py) orbitals as a result of strong sp3 bonding. Specifically, the LL anti-crossings only occur between LLs originating from the oscillating energy band.

  3. Weighted Bergman Kernels and Quantization}

    NASA Astrophysics Data System (ADS)

    Engliš, Miroslav

    Let Ω be a bounded pseudoconvex domain in CN, φ, ψ two positive functions on Ω such that - log ψ, - log φ are plurisubharmonic, and z∈Ω a point at which - log φ is smooth and strictly plurisubharmonic. We show that as k-->∞, the Bergman kernels with respect to the weights φkψ have an asymptotic expansion for x,y near z, where φ(x,y) is an almost-analytic extension of &\\phi(x)=φ(x,x) and similarly for ψ. Further, . If in addition Ω is of finite type, φ,ψ behave reasonably at the boundary, and - log φ, - log ψ are strictly plurisubharmonic on Ω, we obtain also an analogous asymptotic expansion for the Berezin transform and give applications to the Berezin quantization. Finally, for Ω smoothly bounded and strictly pseudoconvex and φ a smooth strictly plurisubharmonic defining function for Ω, we also obtain results on the Berezin-Toeplitz quantization.

  4. The Holographic Electron Density Theorem, de-quantization, re-quantization, and nuclear charge space extrapolations of the Universal Molecule Model

    NASA Astrophysics Data System (ADS)

    Mezey, Paul G.

    2017-11-01

    Two strongly related theorems on non-degenerate ground state electron densities serve as the basis of "Molecular Informatics". The Hohenberg-Kohn theorem is a statement on global molecular information, ensuring that the complete electron density contains the complete molecular information. However, the Holographic Electron Density Theorem states more: the local information present in each and every positive volume density fragment is already complete: the information in the fragment is equivalent to the complete molecular information. In other words, the complete molecular information provided by the Hohenberg-Kohn Theorem is already provided, in full, by any positive volume, otherwise arbitrarily small electron density fragment. In this contribution some of the consequences of the Holographic Electron Density Theorem are discussed within the framework of the "Nuclear Charge Space" and the Universal Molecule Model. In the Nuclear Charge Space" the nuclear charges are regarded as continuous variables, and in the more general Universal Molecule Model some other quantized parameteres are also allowed to become "de-quantized and then re-quantized, leading to interrelations among real molecules through abstract molecules. Here the specific role of the Holographic Electron Density Theorem is discussed within the above context.

  5. Optimal sampling and quantization of synthetic aperture radar signals

    NASA Technical Reports Server (NTRS)

    Wu, C.

    1978-01-01

    Some theoretical and experimental results on optimal sampling and quantization of synthetic aperture radar (SAR) signals are presented. It includes a description of a derived theoretical relationship between the pixel signal to noise ratio of processed SAR images and the number of quantization bits per sampled signal, assuming homogeneous extended targets. With this relationship known, a solution may be realized for the problem of optimal allocation of a fixed data bit-volume (for specified surface area and resolution criterion) between the number of samples and the number of bits per sample. The results indicate that to achieve the best possible image quality for a fixed bit rate and a given resolution criterion, one should quantize individual samples coarsely and thereby maximize the number of multiple looks. The theoretical results are then compared with simulation results obtained by processing aircraft SAR data.

  6. Anomalous photoconductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korsunskii, M.I.

    1973-01-01

    Translated from Russian by E. Harnik. This book investigates the nature and properties of anomalous (negative) photoconductivity observed in specially treated (mercury-activated) amorphous selenium films. A phenomenological theory is given, some properties of long-life traps are described, and a new type of centers (s-centers or storage centers) is discussed. Preparation of anomalously photoconductive Se and possible applications are considered. (86 references) (DLC)

  7. Splitting Times of Doubly Quantized Vortices in Dilute Bose-Einstein Condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huhtamaeki, J. A. M.; Pietilae, V.; Virtanen, S. M. M.

    2006-09-15

    Recently, the splitting of a topologically created doubly quantized vortex into two singly quantized vortices was experimentally investigated in dilute atomic cigar-shaped Bose-Einstein condensates [Y. Shin et al., Phys. Rev. Lett. 93, 160406 (2004)]. In particular, the dependency of the splitting time on the peak particle density was studied. We present results of theoretical simulations which closely mimic the experimental setup. We show that the combination of gravitational sag and time dependency of the trapping potential alone suffices to split the doubly quantized vortex in time scales which are in good agreement with the experiments.

  8. Synchronization of spin-transfer torque oscillators by spin pumping, inverse spin Hall, and spin Hall effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elyasi, Mehrdad; Bhatia, Charanjit S.; Yang, Hyunsoo, E-mail: eleyang@nus.edu.sg

    2015-02-14

    We have proposed a method to synchronize multiple spin-transfer torque oscillators based on spin pumping, inverse spin Hall, and spin Hall effects. The proposed oscillator system consists of a series of nano-magnets in junction with a normal metal with high spin-orbit coupling, and an accumulative feedback loop. We conduct simulations to demonstrate the effect of modulated charge currents in the normal metal due to spin pumping from each nano-magnet. We show that the interplay between the spin Hall effect and inverse spin Hall effect results in synchronization of the nano-magnets.

  9. Holographic anyonic superfluidity

    NASA Astrophysics Data System (ADS)

    Jokela, Niko; Lifschytz, Gilad; Lippert, Matthew

    2013-10-01

    Starting with a holographic construction for a fractional quantum Hall state based on the D3-D7' system, we explore alternative quantization conditions for the bulk gauge fields. This gives a description of a quantum Hall state with various filling fractions. For a particular alternative quantization of the bulk gauge fields, we obtain a holographic anyon fluid in a vanishing background magnetic field. We show that this system is a superfluid, exhibiting the relevant gapless excitation.

  10. Development Status of the Helicon Hall Thruster

    DTIC Science & Technology

    2009-09-15

    Hall thruster , the Helicon Hall Thruster , is presented. The Helicon Hall Thruster combines the efficient ionization mechanism of a helicon source with the favorable plasma acceleration properties of a Hall thruster . Conventional Hall thrusters rely on direct current electron bombardment to ionize the flow in order to generate thrust. Electron bombardment typically results in an ionization cost that can be on the order of ten times the ionization potential, leading to reduced efficiency, particularly at low

  11. Educational Information Quantization for Improving Content Quality in Learning Management Systems

    ERIC Educational Resources Information Center

    Rybanov, Alexander Aleksandrovich

    2014-01-01

    The article offers the educational information quantization method for improving content quality in Learning Management Systems. The paper considers questions concerning analysis of quality of quantized presentation of educational information, based on quantitative text parameters: average frequencies of parts of speech, used in the text; formal…

  12. A non-invasive Hall current distribution measurement system for Hall Effect thrusters

    NASA Astrophysics Data System (ADS)

    Mullins, Carl Raymond

    A direct, accurate method to measure thrust produced by a Hall Effect thruster on orbit does not currently exist. The ability to calculate produced thrust will enable timely and precise maneuvering of spacecraft---a capability particularly important to satellite formation flying. The means to determine thrust directly is achievable by remotely measuring the magnetic field of the thruster and solving the inverse magnetostatic problem for the Hall current density distribution. For this thesis, the magnetic field was measured by employing an array of eight tunneling magnetoresistive (TMR) sensors capable of milligauss sensitivity when placed in a high background field. The array was positioned outside the channel of a 1.5 kW Colorado State University Hall thruster equipped with a center-mounted electride cathode. In this location, the static magnetic field is approximately 30 Gauss, which is within the linear operating range of the TMR sensors. Furthermore, the induced field at this distance is greater than tens of milligauss, which is within the sensitivity range of the TMR sensors. Due to the nature of the inverse problem, the induced-field measurements do not provide the Hall current density by a simple inversion; however, a Tikhonov regularization of the induced field along with a non-negativity constraint and a zero boundary condition provides current density distributions. Our system measures the sensor outputs at 2 MHz allowing the determination of the Hall current density distribution as a function of time. These data are shown in contour plots in sequential frames. The measured ratios between the average Hall current and the discharge current ranged from 0.1 to 10 over a range of operating conditions from 1.3 kW to 2.2 kW. The temporal inverse solution at 2.0 kW exhibited a breathing mode of 37 kHz, which was in agreement with temporal measurements of the discharge current.

  13. Hall viscosity of hierarchical quantum Hall states

    NASA Astrophysics Data System (ADS)

    Fremling, M.; Hansson, T. H.; Suorsa, J.

    2014-03-01

    Using methods based on conformal field theory, we construct model wave functions on a torus with arbitrary flat metric for all chiral states in the abelian quantum Hall hierarchy. These functions have no variational parameters, and they transform under the modular group in the same way as the multicomponent generalizations of the Laughlin wave functions. Assuming the absence of Berry phases upon adiabatic variations of the modular parameter τ, we calculate the quantum Hall viscosity and find it to be in agreement with the formula, given by Read, which relates the viscosity to the average orbital spin of the electrons. For the filling factor ν =2/5 Jain state, which is at the second level in the hierarchy, we compare our model wave function with the numerically obtained ground state of the Coulomb interaction Hamiltonian in the lowest Landau level, and find very good agreement in a large region of the complex τ plane. For the same example, we also numerically compute the Hall viscosity and find good agreement with the analytical result for both the model wave function and the numerically obtained Coulomb wave function. We argue that this supports the notion of a generalized plasma analogy that would ensure that wave functions obtained using the conformal field theory methods do not acquire Berry phases upon adiabatic evolution.

  14. Dynamic State Estimation of Power Systems With Quantization Effects: A Recursive Filter Approach.

    PubMed

    Hu, Liang; Wang, Zidong; Liu, Xiaohui

    2016-08-01

    In this paper, a recursive filter algorithm is developed to deal with the state estimation problem for power systems with quantized nonlinear measurements. The measurements from both the remote terminal units and the phasor measurement unit are subject to quantizations described by a logarithmic quantizer. Attention is focused on the design of a recursive filter such that, in the simultaneous presence of nonlinear measurements and quantization effects, an upper bound for the estimation error covariance is guaranteed and subsequently minimized. Instead of using the traditional approximation methods in nonlinear estimation that simply ignore the linearization errors, we treat both the linearization and quantization errors as norm-bounded uncertainties in the algorithm development so as to improve the performance of the estimator. For the power system with such kind of introduced uncertainties, a filter is designed in the framework of robust recursive estimation, and the developed filter algorithm is tested on the IEEE benchmark power system to demonstrate its effectiveness.

  15. On Correspondence of BRST-BFV, Dirac, and Refined Algebraic Quantizations of Constrained Systems

    NASA Astrophysics Data System (ADS)

    Shvedov, O. Yu.

    2002-11-01

    The correspondence between BRST-BFV, Dirac, and refined algebraic (group averaging, projection operator) approaches to quantizing constrained systems is analyzed. For the closed-algebra case, it is shown that the component of the BFV wave function corresponding to maximal (minimal) value of number of ghosts and antighosts in the Schrodinger representation may be viewed as a wave function in the refined algebraic (Dirac) quantization approach. The Giulini-Marolf group averaging formula for the inner product in the refined algebraic quantization approach is obtained from the Batalin-Marnelius prescription for the BRST-BFV inner product, which should be generally modified due to topological problems. The considered prescription for the correspondence of states is observed to be applicable to the open-algebra case. The refined algebraic quantization approach is generalized then to the case of nontrivial structure functions. A simple example is discussed. The correspondence of observables for different quantization methods is also investigated.

  16. Astronaut Hall of Fame

    NASA Image and Video Library

    2018-04-21

    Kelvin Manning, associate director of NASA's Kennedy Space Center in Florida, welcomes guests to the 2018 U.S. Astronaut Hall of Fame (AHOF) Induction inside the Space Shuttle Atlantis attraction at the Kennedy Space Center Visitor Complex (KSCVC). Two veteran space explorers were inducted into the Hall of Fame Class of 2018. They are Scott D. Altman and Thomas D. Jones, Ph.D. Inductees into the Hall of Fame are selected by a committee of Hall of Fame astronauts, former NASA officials, flight directors, historians and journalists. The process is administered by the Astronaut Scholarship Foundation. To be eligible, an astronaut must have made his or her first flight at least 17 years before the induction. Candidates must be a U.S. citizen and a NASA-trained commander, pilot or mission specialist who has orbited the earth at least once. Including Altman and Jones, 97 astronauts have been inducted into the AHOF.

  17. Astronaut Hall of Fame

    NASA Image and Video Library

    2018-04-21

    Former astronauts and space explorers Scott D. Altman, at left, and Thomas D. Jones, Ph.D., are inducted into the U.S. Astronaut Hall of Fame Class of 2018 during a ceremony inside the Space Shuttle Atlantis attraction at NASA’s Kennedy Space Center Visitor Complex in Florida. They unveiled their plaques, which will be placed in Hall of Fame at the visitor complex. At far right is Master of Ceremonies, John Zarella, former CNN space correspondent. Inductees into the Hall of Fame are selected by a committee of Hall of Fame astronauts, former NASA officials, flight directors, historians and journalists. The process is administered by the Astronaut Scholarship Foundation. To be eligible, an astronaut must have made his or her first flight at least 17 years before the induction. Candidates must be a U.S. citizen and a NASA-trained commander, pilot or mission specialist who has orbited the earth at least once. Including Altman and Jones, 97 astronauts have been inducted into the AHOF.

  18. Astronaut Hall of Fame

    NASA Image and Video Library

    2018-04-21

    Former astronauts and space explorers Scott D. Altman, at left, and Thomas D. Jones, Ph.D., are inducted into the U.S. Astronaut Hall of Fame Class of 2018 during a ceremony inside the Space Shuttle Atlantis attraction at NASA’s Kennedy Space Center Visitor Complex in Florida. They unveiled their plaques, which will be placed in the Hall of Fame at the visitor complex. At far right is Master of Ceremonies, John Zarella, former CNN space correspondent. Inductees into the Hall of Fame are selected by a committee of Hall of Fame astronauts, former NASA officials, flight directors, historians and journalists. The process is administered by the Astronaut Scholarship Foundation. To be eligible, an astronaut must have made his or her first flight at least 17 years before the induction. Candidates must be a U.S. citizen and a NASA-trained commander, pilot or mission specialist who has orbited the earth at least once. Including Altman and Jones, 97 astronauts have been inducted into the AHOF.

  19. Application of heterogeneous pulse coupled neural network in image quantization

    NASA Astrophysics Data System (ADS)

    Huang, Yi; Ma, Yide; Li, Shouliang; Zhan, Kun

    2016-11-01

    On the basis of the different strengths of synaptic connections between actual neurons, this paper proposes a heterogeneous pulse coupled neural network (HPCNN) algorithm to perform quantization on images. HPCNNs are developed from traditional pulse coupled neural network (PCNN) models, which have different parameters corresponding to different image regions. This allows pixels of different gray levels to be classified broadly into two categories: background regional and object regional. Moreover, an HPCNN also satisfies human visual characteristics. The parameters of the HPCNN model are calculated automatically according to these categories, and quantized results will be optimal and more suitable for humans to observe. At the same time, the experimental results of natural images from the standard image library show the validity and efficiency of our proposed quantization method.

  20. Quantization of gauge fields, graph polynomials and graph homology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreimer, Dirk, E-mail: kreimer@physik.hu-berlin.de; Sars, Matthias; Suijlekom, Walter D. van

    2013-09-15

    We review quantization of gauge fields using algebraic properties of 3-regular graphs. We derive the Feynman integrand at n loops for a non-abelian gauge theory quantized in a covariant gauge from scalar integrands for connected 3-regular graphs, obtained from the two Symanzik polynomials. The transition to the full gauge theory amplitude is obtained by the use of a third, new, graph polynomial, the corolla polynomial. This implies effectively a covariant quantization without ghosts, where all the relevant signs of the ghost sector are incorporated in a double complex furnished by the corolla polynomial–we call it cycle homology–and by graph homology.more » -- Highlights: •We derive gauge theory Feynman from scalar field theory with 3-valent vertices. •We clarify the role of graph homology and cycle homology. •We use parametric renormalization and the new corolla polynomial.« less

  1. Augmenting Phase Space Quantization to Introduce Additional Physical Effects

    NASA Astrophysics Data System (ADS)

    Robbins, Matthew P. G.

    Quantum mechanics can be done using classical phase space functions and a star product. The state of the system is described by a quasi-probability distribution. A classical system can be quantized in phase space in different ways with different quasi-probability distributions and star products. A transition differential operator relates different phase space quantizations. The objective of this thesis is to introduce additional physical effects into the process of quantization by using the transition operator. As prototypical examples, we first look at the coarse-graining of the Wigner function and the damped simple harmonic oscillator. By generalizing the transition operator and star product to also be functions of the position and momentum, we show that additional physical features beyond damping and coarse-graining can be introduced into a quantum system, including the generalized uncertainty principle of quantum gravity phenomenology, driving forces, and decoherence.

  2. Electrical and thermal conductance quantization in nanostructures

    NASA Astrophysics Data System (ADS)

    Nawrocki, Waldemar

    2008-10-01

    In the paper problems of electron transport in mesoscopic structures and nanostructures are considered. The electrical conductance of nanowires was measured in a simple experimental system. Investigations have been performed in air at room temperature measuring the conductance between two vibrating metal wires with standard oscilloscope. Conductance quantization in units of G0 = 2e2/h = (12.9 kΩ)-1 up to five quanta of conductance has been observed for nanowires formed in many metals. The explanation of this universal phenomena is the formation of a nanometer-sized wire (nanowire) between macroscopic metallic contacts which induced, due to theory proposed by Landauer, the quantization of conductance. Thermal problems in nanowires are also discussed in the paper.

  3. Landau quantization effects on hole-acoustic instability in semiconductor plasmas

    NASA Astrophysics Data System (ADS)

    Sumera, P.; Rasheed, A.; Jamil, M.; Siddique, M.; Areeb, F.

    2017-12-01

    The growth rate of the hole acoustic waves (HAWs) exciting in magnetized semiconductor quantum plasma pumped by the electron beam has been investigated. The instability of the waves contains quantum effects including the exchange and correlation potential, Bohm potential, Fermi-degenerate pressure, and the magnetic quantization of semiconductor plasma species. The effects of various plasma parameters, which include relative concentration of plasma particles, beam electron temperature, beam speed, plasma temperature (temperature of electrons/holes), and Landau electron orbital magnetic quantization parameter η, on the growth rate of HAWs, have been discussed. The numerical study of our model of acoustic waves has been applied, as an example, to the GaAs semiconductor exposed to electron beam in the magnetic field environment. An increment in either the concentration of the semiconductor electrons or the speed of beam electrons, in the presence of magnetic quantization of fermion orbital motion, enhances remarkably the growth rate of the HAWs. Although the growth rate of the waves reduces with a rise in the thermal temperature of plasma species, at a particular temperature, we receive a higher instability due to the contribution of magnetic quantization of fermions to it.

  4. Quantized impedance dealing with the damping behavior of the one-dimensional oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jinghao; Zhang, Jing; Li, Yuan

    2015-11-15

    A quantized impedance is proposed to theoretically establish the relationship between the atomic eigenfrequency and the intrinsic frequency of the one-dimensional oscillator in this paper. The classical oscillator is modified by the idea that the electron transition is treated as a charge-discharge process of a suggested capacitor with the capacitive energy equal to the energy level difference of the jumping electron. The quantized capacitance of the impedance interacting with the jumping electron can lead the resonant frequency of the oscillator to the same as the atomic eigenfrequency. The quantized resistance reflects that the damping coefficient of the oscillator is themore » mean collision frequency of the transition electron. In addition, the first and third order electric susceptibilities based on the oscillator are accordingly quantized. Our simulation of the hydrogen atom emission spectrum based on the proposed method agrees well with the experimental one. Our results exhibits that the one-dimensional oscillator with the quantized impedance may become useful in the estimations of the refractive index and one- or multi-photon absorption coefficients of some nonmagnetic media composed of hydrogen-like atoms.« less

  5. Immirzi parameter without Immirzi ambiguity: Conformal loop quantization of scalar-tensor gravity

    NASA Astrophysics Data System (ADS)

    Veraguth, Olivier J.; Wang, Charles H.-T.

    2017-10-01

    Conformal loop quantum gravity provides an approach to loop quantization through an underlying conformal structure i.e. conformally equivalent class of metrics. The property that general relativity itself has no conformal invariance is reinstated with a constrained scalar field setting the physical scale. Conformally equivalent metrics have recently been shown to be amenable to loop quantization including matter coupling. It has been suggested that conformal geometry may provide an extended symmetry to allow a reformulated Immirzi parameter necessary for loop quantization to behave like an arbitrary group parameter that requires no further fixing as its present standard form does. Here, we find that this can be naturally realized via conformal frame transformations in scalar-tensor gravity. Such a theory generally incorporates a dynamical scalar gravitational field and reduces to general relativity when the scalar field becomes a pure gauge. In particular, we introduce a conformal Einstein frame in which loop quantization is implemented. We then discuss how different Immirzi parameters under this description may be related by conformal frame transformations and yet share the same quantization having, for example, the same area gaps, modulated by the scalar gravitational field.

  6. Nondestructive hall coefficient measurements using ACPD techniques

    NASA Astrophysics Data System (ADS)

    Velicheti, Dheeraj; Nagy, Peter B.; Hassan, Waled

    2018-04-01

    Hall coefficient measurements offer great opportunities as well as major challenges for nondestructive materials characterization. The Hall effect is produced by the magnetic Lorentz force acting on moving charge carriers in the presence of an applied magnetic field. The magnetic perturbation gives rise to a Hall current that is normal to the conduction current but does not directly perturb the electric potential distribution. Therefore, Hall coefficient measurements usually exploit the so-called transverse galvanomagnetic potential drop effect that arises when the Hall current is intercepted by the boundaries of the specimen and thereby produce a measurable potential drop. In contrast, no Hall potential is produced in a large plate in the presence of a uniform normal field at quasi-static low frequencies. In other words, conventional Hall coefficient measurements are inherently destructive since they require cutting the material under tests. This study investigated the feasibility of using alternating current potential drop (ACPD) techniques for nondestructive Hall coefficient measurements in plates. Specifically, the directional four-point square-electrode configuration is investigated with superimposed external magnetic field. Two methods are suggested to make Hall coefficient measurements in large plates without destructive machining. At low frequencies, constraining the bias magnetic field can replace constraining the dimensions of the specimen, which is inherently destructive. For example, when a cylindrical permanent magnet is used to provide the bias magnetic field, the peak Hall voltage is produced when the diameter of the magnet is equal to the diagonal of the square ACPD probe. Although this method is less effective than cutting the specimen to a finite size, the loss of sensitivity is less than one order of magnitude even at very low frequencies. In contrast, at sufficiently high inspection frequencies the magnetic field of the Hall current induces a

  7. Second quantization in bit-string physics

    NASA Technical Reports Server (NTRS)

    Noyes, H. Pierre

    1993-01-01

    Using a new fundamental theory based on bit-strings, a finite and discrete version of the solutions of the free one particle Dirac equation as segmented trajectories with steps of length h/mc along the forward and backward light cones executed at velocity +/- c are derived. Interpreting the statistical fluctuations which cause the bends in these segmented trajectories as emission and absorption of radiation, these solutions are analogous to a fermion propagator in a second quantized theory. This allows us to interpret the mass parameter in the step length as the physical mass of the free particle. The radiation in interaction with it has the usual harmonic oscillator structure of a second quantized theory. How these free particle masses can be generated gravitationally using the combinatorial hierarchy sequence (3,10,137,2(sup 127) + 136), and some of the predictive consequences are sketched.

  8. Perspectives of Light-Front Quantized Field Theory: Some New Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Prem P.

    1999-08-13

    A review of some basic topics in the light-front (LF) quantization of relativistic field theory is made. It is argued that the LF quantization is equally appropriate as the conventional one and that they lead, assuming the microcausality principle, to the same physical content. This is confirmed in the studies on the LF of the spontaneous symmetry breaking (SSB), of the degenerate vacua in Schwinger model (SM) and Chiral SM (CSM), of the chiral boson theory, and of the QCD in covariant gauges among others. The discussion on the LF is more economical and more transparent than that found inmore » the conventional equal-time quantized theory. The removal of the constraints on the LF phase space by following the Dirac method, in fact, results in a substantially reduced number of independent dynamical variables. Consequently, the descriptions of the physical Hilbert space and the vacuum structure, for example, become more tractable. In the context of the Dyson-Wick perturbation theory the relevant propagators in the front form theory are causal. The Wick rotation can then be performed to employ the Euclidean space integrals in momentum space. The lack of manifest covariance becomes tractable, and still more so if we employ, as discussed in the text, the Fourier transform of the fermionic field based on a special construction of the LF spinor. The fact that the hyperplanes x{sup {+-}} = 0 constitute characteristic surfaces of the hyperbolic partial differential equation is found irrelevant in the quantized theory; it seems sufficient to quantize the theory on one of the characteristic hyperplanes.« less

  9. Quantized Iterative Learning Consensus Tracking of Digital Networks With Limited Information Communication.

    PubMed

    Xiong, Wenjun; Yu, Xinghuo; Chen, Yao; Gao, Jie

    2017-06-01

    This brief investigates the quantized iterative learning problem for digital networks with time-varying topologies. The information is first encoded as symbolic data and then transmitted. After the data are received, a decoder is used by the receiver to get an estimate of the sender's state. Iterative learning quantized communication is considered in the process of encoding and decoding. A sufficient condition is then presented to achieve the consensus tracking problem in a finite interval using the quantized iterative learning controllers. Finally, simulation results are given to illustrate the usefulness of the developed criterion.

  10. Hall effect of copper nitride thin films

    NASA Astrophysics Data System (ADS)

    Yue, G. H.; Liu, J. Z.; Li, M.; Yuan, X. M.; Yan, P. X.; Liu, J. L.

    2005-08-01

    The Hall effect of copper nitride (Cu3N) thin films was investigated in our work. Cu3N films were deposited on glass substrates by radio-frequency (RF) magnetron sputtering at different temperatures using pure copper as the sputtering target. The Hall coefficients of the films are demonstrated to be dependent on the deposition gas flow rate and the measuring temperature. Both the Hall coefficient and resistance of the Cu3N films increase with the nitrogen gas flow rate at room temperature, while the Hall mobility and the carrier density of the films decrease. As the temperature changed from 100 K to 300 K, the Hall coefficient and the resistivity of the films decreased, while the carrier density increased and Hall mobility shows no great change. The energy band gap of the Cu3N films deduced from the curve of the common logarithm of the Hall coefficient against 1/T is 1.17-1.31 eV.

  11. Simultaneous fault detection and control design for switched systems with two quantized signals.

    PubMed

    Li, Jian; Park, Ju H; Ye, Dan

    2017-01-01

    The problem of simultaneous fault detection and control design for switched systems with two quantized signals is presented in this paper. Dynamic quantizers are employed, respectively, before the output is passed to fault detector, and before the control input is transmitted to the switched system. Taking the quantized errors into account, the robust performance for this kind of system is given. Furthermore, sufficient conditions for the existence of fault detector/controller are presented in the framework of linear matrix inequalities, and fault detector/controller gains and the supremum of quantizer range are derived by a convex optimized method. Finally, two illustrative examples demonstrate the effectiveness of the proposed method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Locally adaptive vector quantization: Data compression with feature preservation

    NASA Technical Reports Server (NTRS)

    Cheung, K. M.; Sayano, M.

    1992-01-01

    A study of a locally adaptive vector quantization (LAVQ) algorithm for data compression is presented. This algorithm provides high-speed one-pass compression and is fully adaptable to any data source and does not require a priori knowledge of the source statistics. Therefore, LAVQ is a universal data compression algorithm. The basic algorithm and several modifications to improve performance are discussed. These modifications are nonlinear quantization, coarse quantization of the codebook, and lossless compression of the output. Performance of LAVQ on various images using irreversible (lossy) coding is comparable to that of the Linde-Buzo-Gray algorithm, but LAVQ has a much higher speed; thus this algorithm has potential for real-time video compression. Unlike most other image compression algorithms, LAVQ preserves fine detail in images. LAVQ's performance as a lossless data compression algorithm is comparable to that of Lempel-Ziv-based algorithms, but LAVQ uses far less memory during the coding process.

  13. Image compression system and method having optimized quantization tables

    NASA Technical Reports Server (NTRS)

    Ratnakar, Viresh (Inventor); Livny, Miron (Inventor)

    1998-01-01

    A digital image compression preprocessor for use in a discrete cosine transform-based digital image compression device is provided. The preprocessor includes a gathering mechanism for determining discrete cosine transform statistics from input digital image data. A computing mechanism is operatively coupled to the gathering mechanism to calculate a image distortion array and a rate of image compression array based upon the discrete cosine transform statistics for each possible quantization value. A dynamic programming mechanism is operatively coupled to the computing mechanism to optimize the rate of image compression array against the image distortion array such that a rate-distortion-optimal quantization table is derived. In addition, a discrete cosine transform-based digital image compression device and a discrete cosine transform-based digital image compression and decompression system are provided. Also, a method for generating a rate-distortion-optimal quantization table, using discrete cosine transform-based digital image compression, and operating a discrete cosine transform-based digital image compression and decompression system are provided.

  14. Third quantization

    NASA Astrophysics Data System (ADS)

    Seligman, Thomas H.; Prosen, Tomaž

    2010-12-01

    The basic ideas of second quantization and Fock space are extended to density operator states, used in treatments of open many-body systems. This can be done for fermions and bosons. While the former only requires the use of a non-orthogonal basis, the latter requires the introduction of a dual set of spaces. In both cases an operator algebra closely resembling the canonical one is developed and used to define the dual sets of bases. We here concentrated on the bosonic case where the unboundedness of the operators requires the definitions of dual spaces to support the pair of bases. Some applications, mainly to non-equilibrium steady states, will be mentioned.

  15. Third quantization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seligman, Thomas H.; Centro Internacional de Ciencias, Cuernavaca, Morelos; Prosen, Tomaz

    2010-12-23

    The basic ideas of second quantization and Fock space are extended to density operator states, used in treatments of open many-body systems. This can be done for fermions and bosons. While the former only requires the use of a non-orthogonal basis, the latter requires the introduction of a dual set of spaces. In both cases an operator algebra closely resembling the canonical one is developed and used to define the dual sets of bases. We here concentrated on the bosonic case where the unboundedness of the operators requires the definitions of dual spaces to support the pair of bases. Somemore » applications, mainly to non-equilibrium steady states, will be mentioned.« less

  16. Faster Hall-Effect Current-Measuring Circuit

    NASA Technical Reports Server (NTRS)

    Sullender, Craig C.; Johnson, Daniel D.; Walker, Daniel D.

    1993-01-01

    Current-measuring circuit operates on Hall-effect-sensing and magnetic-field-nulling principles similar to those described in article, "Nulling Hall-Effect Current-Measuring Circuit" (LEW-15023), but simpler and responds faster. Designed without feedback loop, and analog pulse-width-modulated output indicates measured current. Circuit measures current at frequency higher than bandwidth of its Hall-effect sensor.

  17. Luminance-model-based DCT quantization for color image compression

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.; Peterson, Heidi A.

    1992-01-01

    A model is developed to approximate visibility thresholds for discrete cosine transform (DCT) coefficient quantization error based on the peak-to-peak luminance of the error image. Experimentally measured visibility thresholds for R, G, and B DCT basis functions can be predicted by a simple luminance-based detection model. This model allows DCT coefficient quantization matrices to be designed for display conditions other than those of the experimental measurements: other display luminances, other veiling luminances, and other spatial frequencies (different pixel spacings, viewing distances, and aspect ratios).

  18. Conductivity predictions for the 5/2 fractional quantum Hall state using the composite fermion superconductor model

    NASA Astrophysics Data System (ADS)

    Foster, Kerwin Crayton

    The fractional quantum Hall effect (FQHE) occurs when a two-dimensional electron gas is placed in a strong magnetic field at low temperatures. When this effect occurs the Hall resistance, RH, defined to be the Hall voltage divided by the current, is quantized, with RH = (1/nu)h/ e2 where nu = p/q is the Landau level filling fraction; and p and q are relatively prime integers. For almost all observed FQHE states, q is odd with one notable exception: the nu = 5/2 FQHE state. Understanding the nature of this incompressible even-denominator state is one of the central questions in the theory of the FQHE and is the subject of this Dissertation. We use a powerful theoretical tool for studying the FQHE: composite fermion theory. Composite fermions can be viewed as electrons bound to an even number of magnetic flux quanta. Jain has shown that the FQHE for electrons can be viewed as an integer quantum Hall effect (p = 1) for composite fermions. More recently, Halperin, Lee and Read developed a successful theory of the compressible nu = 1/2 state using composite fermions. There is now compelling theoretical evidence that the 5/2 state is a so-called Moore-Read state---a state which can be viewed as a spin-polarized p-wave superconductor of composite fermions. We have developed a semi-phenomenological description of this state by modifying the Halperin-Lee-Read theory, adding a p-wave pairing interaction between composite fermions by hand. The electromagnetic response functions for the resulting superconducting state of composite fermions are then calculated. We show that these response functions exhibit the expected BCS 'coherence factor' effects, such as the Hebel-Slichter peak. Using the composite fermion response functions, we then calculate the corresponding electronic response functions using Chern-Simons theory. We find that in the electronic response, the most striking coherence factor effects (e.g., the Hebel-Slichter peak) are strongly suppressed. However, the low

  19. Segmentation of magnetic resonance images using fuzzy algorithms for learning vector quantization.

    PubMed

    Karayiannis, N B; Pai, P I

    1999-02-01

    This paper evaluates a segmentation technique for magnetic resonance (MR) images of the brain based on fuzzy algorithms for learning vector quantization (FALVQ). These algorithms perform vector quantization by updating all prototypes of a competitive network through an unsupervised learning process. Segmentation of MR images is formulated as an unsupervised vector quantization process, where the local values of different relaxation parameters form the feature vectors which are represented by a relatively small set of prototypes. The experiments evaluate a variety of FALVQ algorithms in terms of their ability to identify different tissues and discriminate between normal tissues and abnormalities.

  20. Light-cone quantization of two dimensional field theory in the path integral approach

    NASA Astrophysics Data System (ADS)

    Cortés, J. L.; Gamboa, J.

    1999-05-01

    A quantization condition due to the boundary conditions and the compatification of the light cone space-time coordinate x- is identified at the level of the classical equations for the right-handed fermionic field in two dimensions. A detailed analysis of the implications of the implementation of this quantization condition at the quantum level is presented. In the case of the Thirring model one has selection rules on the excitations as a function of the coupling and in the case of the Schwinger model a double integer structure of the vacuum is derived in the light-cone frame. Two different quantized chiral Schwinger models are found, one of them without a θ-vacuum structure. A generalization of the quantization condition to theories with several fermionic fields and to higher dimensions is presented.

  1. Jefferson Lab Experimental Hall C

    NASA Astrophysics Data System (ADS)

    Carlini, Roger D.

    1996-10-01

    Jefferson Lab's Hall C went into initial operation in November 1995. The hall has a short orbit spectrometer (SOS) for short-lived particles such as pions and kaons and a high-momentum spectrometer (HMS) usually used for electrons. The SOS can also be used for protons. The HMS can range to 7 GeV/c. Both the SOS and HMS have typical resolutions of (10-3). Experiments for this hall range from measuring the neutron electric form factor, to color transparency, to creating strange nuclei. This paper will present the optical capabilities of the spectrometers, the parameters of the detection systems, and the overall beam line characteristics of the hall as determined from the results from the recent physics experiments along with the upcoming experimental schedule. Additional information is available at URL http://www.cebaf.gov/hallc.html.

  2. Fedosov Deformation Quantization as a BRST Theory

    NASA Astrophysics Data System (ADS)

    Grigoriev, M. A.; Lyakhovich, S. L.

    The relationship is established between the Fedosov deformation quantization of a general symplectic manifold and the BFV-BRST quantization of constrained dynamical systems. The original symplectic manifold M is presented as a second class constrained surface in the fibre bundle ?*ρM which is a certain modification of a usual cotangent bundle equipped with a natural symplectic structure. The second class system is converted into the first class one by continuation of the constraints into the extended manifold, being a direct sum of ?*ρM and the tangent bundle TM. This extended manifold is equipped with a nontrivial Poisson bracket which naturally involves two basic ingredients of Fedosov geometry: the symplectic structure and the symplectic connection. The constructed first class constrained theory, being equivalent to the original symplectic manifold, is quantized through the BFV-BRST procedure. The existence theorem is proven for the quantum BRST charge and the quantum BRST invariant observables. The adjoint action of the quantum BRST charge is identified with the Abelian Fedosov connection while any observable, being proven to be a unique BRST invariant continuation for the values defined in the original symplectic manifold, is identified with the Fedosov flat section of the Weyl bundle. The Fedosov fibrewise star multiplication is thus recognized as a conventional product of the quantum BRST invariant observables.

  3. Observation of a superfluid Hall effect

    PubMed Central

    Jiménez-García, Karina; Williams, Ross A.; Beeler, Matthew C.; Perry, Abigail R.; Phillips, William D.; Spielman, Ian B.

    2012-01-01

    Measurement techniques based upon the Hall effect are invaluable tools in condensed-matter physics. When an electric current flows perpendicular to a magnetic field, a Hall voltage develops in the direction transverse to both the current and the field. In semiconductors, this behavior is routinely used to measure the density and charge of the current carriers (electrons in conduction bands or holes in valence bands)—internal properties of the system that are not accessible from measurements of the conventional resistance. For strongly interacting electron systems, whose behavior can be very different from the free electron gas, the Hall effect’s sensitivity to internal properties makes it a powerful tool; indeed, the quantum Hall effects are named after the tool by which they are most distinctly measured instead of the physics from which the phenomena originate. Here we report the first observation of a Hall effect in an ultracold gas of neutral atoms, revealed by measuring a Bose–Einstein condensate’s transport properties perpendicular to a synthetic magnetic field. Our observations in this vortex-free superfluid are in good agreement with hydrodynamic predictions, demonstrating that the system’s global irrotationality influences this superfluid Hall signal. PMID:22699494

  4. From Weyl to Born-Jordan quantization: The Schrödinger representation revisited

    NASA Astrophysics Data System (ADS)

    de Gosson, Maurice A.

    2016-03-01

    The ordering problem has been one of the long standing and much discussed questions in quantum mechanics from its very beginning. Nowadays, there is more or less a consensus among physicists that the right prescription is Weyl's rule, which is closely related to the Moyal-Wigner phase space formalism. We propose in this report an alternative approach by replacing Weyl quantization with the less well-known Born-Jordan quantization. This choice is actually natural if we want the Heisenberg and Schrödinger pictures of quantum mechanics to be mathematically equivalent. It turns out that, in addition, Born-Jordan quantization can be recovered from Feynman's path integral approach provided that one used short-time propagators arising from correct formulas for the short-time action, as observed by Makri and Miller. These observations lead to a slightly different quantum mechanics, exhibiting some unexpected features, and this without affecting the main existing theory; for instance quantizations of physical Hamiltonian functions are the same as in the Weyl correspondence. The differences are in fact of a more subtle nature; for instance, the quantum observables will not correspond in a one-to-one fashion to classical ones, and the dequantization of a Born-Jordan quantum operator is less straightforward than that of the corresponding Weyl operator. The use of Born-Jordan quantization moreover solves the "angular momentum dilemma", which already puzzled L. Pauling. Born-Jordan quantization has been known for some time (but not fully exploited) by mathematicians working in time-frequency analysis and signal analysis, but ignored by physicists. One of the aims of this report is to collect and synthesize these sporadic discussions, while analyzing the conceptual differences with Weyl quantization, which is also reviewed in detail. Another striking feature is that the Born-Jordan formalism leads to a redefinition of phase space quantum mechanics, where the usual Wigner

  5. Quantization of Space-like States in Lorentz-Violating Theories

    NASA Astrophysics Data System (ADS)

    Colladay, Don

    2018-01-01

    Lorentz violation frequently induces modified dispersion relations that can yield space-like states that impede the standard quantization procedures. In certain cases, an extended Hamiltonian formalism can be used to define observer-covariant normalization factors for field expansions and phase space integrals. These factors extend the theory to include non-concordant frames in which there are negative-energy states. This formalism provides a rigorous way to quantize certain theories containing space-like states and allows for the consistent computation of Cherenkov radiation rates in arbitrary frames and avoids singular expressions.

  6. Fractional Diffusion Equations and Anomalous Diffusion

    NASA Astrophysics Data System (ADS)

    Evangelista, Luiz Roberto; Kaminski Lenzi, Ervin

    2018-01-01

    Preface; 1. Mathematical preliminaries; 2. A survey of the fractional calculus; 3. From normal to anomalous diffusion; 4. Fractional diffusion equations: elementary applications; 5. Fractional diffusion equations: surface effects; 6. Fractional nonlinear diffusion equation; 7. Anomalous diffusion: anisotropic case; 8. Fractional Schrödinger equations; 9. Anomalous diffusion and impedance spectroscopy; 10. The Poisson–Nernst–Planck anomalous (PNPA) models; References; Index.

  7. Anomalous high-frequency wave activity flux preceding anomalous changes in the Northern polar jet

    NASA Astrophysics Data System (ADS)

    Nakamura, Mototaka; Kadota, Minoru; Yamane, Shozo

    2010-05-01

    Anomalous forcing by quasi-geostrophic (QG) waves has been reported as an important forcing factor in the Northern Annular Mode (NAM) in recent literatures. In order to shed a light on the dynamics of the NAM from a different angle, we have examined anomalous behavior of the winter jets in the upper troposphere and stratosphere by focusing our diagnosis on not the anomalous geopotential height (Z) itself, but on the anomalous change in the Z (dZ) between two successive months and preceding transient QG wave activity flux during the cold season. We calculated EOFs of dZ between two successive months at 150hPa for a 46-year period, from 1958 to 2003, using the monthly mean NCEP reanalysis data. We then formed anomaly composites of changes in Z and the zonal velocity (U), as well as the preceding and following wave activity flux, Z, U, and temperature at various heights, for both positive and negative phases of the first EOF. For the wave forcing fields, we adopted the diagnostic system for the three-dimensional QG transient wave activity flux in the zonally-varying three-dimensional mean flow developed by Plumb (1986) with a slight modification in its application to the data. Our choice of the Plumb86 is based on the fact that the winter mean flow in the Northern Hemisphere is characterized by noticeable zonal asymmetry, and has a symbiotic relationship with waves in the extra-tropics. The Plumb86 flux was calculated for high-frequency (period of 2 to 7 days) and low-frequency (period of 10 to 20 days) waves with the ultra-low-frequency (period of 30 days or longer) flow as the reference state for each time frame of the 6 hourly NCEP reanalysis data from 1958 to 2003. By replacing the mean flow with the ultra-low-frequency flow in the application of the Plumb86 formula, the flux fields were calculated as time series at 6 hour intervals. The time series of the wave activity flux was then averaged for each month. The patterns of composited anomalous dZ and dU clearly

  8. High Power Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert; Tverdokhlebov, Sergery; Manzella, David

    1999-01-01

    The development of Hall thrusters with powers ranging from tens of kilowatts to in excess of one hundred kilowatts is considered based on renewed interest in high power. high thrust electric propulsion applications. An approach to develop such thrusters based on previous experience is discussed. It is shown that the previous experimental data taken with thrusters of 10 kW input power and less can be used. Potential mass savings due to the design of high power Hall thrusters are discussed. Both xenon and alternate thruster propellant are considered, as are technological issues that will challenge the design of high power Hall thrusters. Finally, the implications of such a development effort with regard to ground testing and spacecraft intecrati'on issues are discussed.

  9. Error diffusion concept for multi-level quantization

    NASA Astrophysics Data System (ADS)

    Broja, Manfred; Michalowski, Kristina; Bryngdahl, Olof

    1990-11-01

    The error diffusion binarization procedure is adapted to multi-level quantization. The threshold parameters then available have a noticeable influence on the process. Characteristic features of the technique are shown together with experimental results.

  10. Combining Vector Quantization and Histogram Equalization.

    ERIC Educational Resources Information Center

    Cosman, Pamela C.; And Others

    1992-01-01

    Discussion of contrast enhancement techniques focuses on the use of histogram equalization with a data compression technique, i.e., tree-structured vector quantization. The enhancement technique of intensity windowing is described, and the use of enhancement techniques for medical images is explained, including adaptive histogram equalization.…

  11. Phase-Quantized Block Noncoherent Communication

    DTIC Science & Technology

    2013-07-01

    2828 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 7, JULY 2013 Phase-Quantized Block Noncoherent Communication Jaspreet Singh and Upamanyu...in a carrier asynchronous system. Specifically, we consider transmission over the block noncoherent additive white Gaussian noise channel, and...block noncoherent channel. Several results, based on the symmetry inherent in the channel model, are provided to characterize this transition density

  12. The Hall effect in star formation

    NASA Astrophysics Data System (ADS)

    Braiding, C. R.; Wardle, M.

    2012-05-01

    Magnetic fields play an important role in star formation by regulating the removal of angular momentum from collapsing molecular cloud cores. Hall diffusion is known to be important to the magnetic field behaviour at many of the intermediate densities and field strengths encountered during the gravitational collapse of molecular cloud cores into protostars, and yet its role in the star formation process is not well studied. We present a semianalytic self-similar model of the collapse of rotating isothermal molecular cloud cores with both Hall and ambipolar diffusion, and similarity solutions that demonstrate the profound influence of the Hall effect on the dynamics of collapse. The solutions show that the size and sign of the Hall parameter can change the size of the protostellar disc by up to an order of magnitude and the protostellar accretion rate by 50 per cent when the ratio of the Hall to ambipolar diffusivities is varied between -0.5 ≤ηH/ηA≤ 0.2. These changes depend upon the orientation of the magnetic field with respect to the axis of rotation and create a preferred handedness to the solutions that could be observed in protostellar cores using next-generation instruments such as ALMA. Hall diffusion also determines the strength and position of the shocks that bound the pseudo and rotationally supported discs, and can introduce subshocks that further slow accretion on to the protostar. In cores that are not initially rotating (not examined here), Hall diffusion can even induce rotation, which could give rise to disc formation and resolve the magnetic braking catastrophe. The Hall effect clearly influences the dynamics of gravitational collapse and its role in controlling the magnetic braking and radial diffusion of the field merits further exploration in numerical simulations of star formation.

  13. Fine structure constant and quantized optical transparency of plasmonic nanoarrays.

    PubMed

    Kravets, V G; Schedin, F; Grigorenko, A N

    2012-01-24

    Optics is renowned for displaying quantum phenomena. Indeed, studies of emission and absorption lines, the photoelectric effect and blackbody radiation helped to build the foundations of quantum mechanics. Nevertheless, it came as a surprise that the visible transparency of suspended graphene is determined solely by the fine structure constant, as this kind of universality had been previously reserved only for quantized resistance and flux quanta in superconductors. Here we describe a plasmonic system in which relative optical transparency is determined solely by the fine structure constant. The system consists of a regular array of gold nanoparticles fabricated on a thin metallic sublayer. We show that its relative transparency can be quantized in the near-infrared, which we attribute to the quantized contact resistance between the nanoparticles and the metallic sublayer. Our results open new possibilities in the exploration of universal dynamic conductance in plasmonic nanooptics.

  14. Non-invasive Hall current distribution measurement in a Hall effect thruster

    NASA Astrophysics Data System (ADS)

    Mullins, Carl R.; Farnell, Casey C.; Farnell, Cody C.; Martinez, Rafael A.; Liu, David; Branam, Richard D.; Williams, John D.

    2017-01-01

    A means is presented to determine the Hall current density distribution in a closed drift thruster by remotely measuring the magnetic field and solving the inverse problem for the current density. The magnetic field was measured by employing an array of eight tunneling magnetoresistive (TMR) sensors capable of milligauss sensitivity when placed in a high background field. The array was positioned just outside the thruster channel on a 1.5 kW Hall thruster equipped with a center-mounted hollow cathode. In the sensor array location, the static magnetic field is approximately 30 G, which is within the linear operating range of the TMR sensors. Furthermore, the induced field at this distance is approximately tens of milligauss, which is within the sensitivity range of the TMR sensors. Because of the nature of the inverse problem, the induced-field measurements do not provide the Hall current density by a simple inversion; however, a Tikhonov regularization of the induced field does provide the current density distributions. These distributions are shown as a function of time in contour plots. The measured ratios between the average Hall current and the average discharge current ranged from 6.1 to 7.3 over a range of operating conditions from 1.3 kW to 2.2 kW. The temporal inverse solution at 1.5 kW exhibited a breathing mode frequency of 24 kHz, which was in agreement with temporal measurements of the discharge current.

  15. Non-invasive Hall current distribution measurement in a Hall effect thruster.

    PubMed

    Mullins, Carl R; Farnell, Casey C; Farnell, Cody C; Martinez, Rafael A; Liu, David; Branam, Richard D; Williams, John D

    2017-01-01

    A means is presented to determine the Hall current density distribution in a closed drift thruster by remotely measuring the magnetic field and solving the inverse problem for the current density. The magnetic field was measured by employing an array of eight tunneling magnetoresistive (TMR) sensors capable of milligauss sensitivity when placed in a high background field. The array was positioned just outside the thruster channel on a 1.5 kW Hall thruster equipped with a center-mounted hollow cathode. In the sensor array location, the static magnetic field is approximately 30 G, which is within the linear operating range of the TMR sensors. Furthermore, the induced field at this distance is approximately tens of milligauss, which is within the sensitivity range of the TMR sensors. Because of the nature of the inverse problem, the induced-field measurements do not provide the Hall current density by a simple inversion; however, a Tikhonov regularization of the induced field does provide the current density distributions. These distributions are shown as a function of time in contour plots. The measured ratios between the average Hall current and the average discharge current ranged from 6.1 to 7.3 over a range of operating conditions from 1.3 kW to 2.2 kW. The temporal inverse solution at 1.5 kW exhibited a breathing mode frequency of 24 kHz, which was in agreement with temporal measurements of the discharge current.

  16. Star Formation and the Hall Effect

    NASA Astrophysics Data System (ADS)

    Braiding, Catherine

    2011-10-01

    Magnetic fields play an important role in star formation by regulating the removal of angular momentum from collapsing molecular cloud cores. Hall diffusion is known to be important to the magnetic field behaviour at many of the intermediate densities and field strengths encountered during the gravitational collapse of molecular cloud cores into protostars, and yet its role in the star formation process is not well-studied. This thesis describes a semianalytic self-similar model of the collapse of rotating isothermal molecular cloud cores with both Hall and ambipolar diffusion, presenting similarity solutions that demonstrate that the Hall effect has a profound influence on the dynamics of collapse. ... Hall diffusion also determines the strength of the magnetic diffusion and centrifugal shocks that bound the pseudo and rotationally-supported discs, and can introduce subshocks that further slow accretion onto the protostar. In cores that are not initially rotating Hall diffusion can even induce rotation, which could give rise to disc formation and resolve the magnetic braking catastrophe. The Hall effect clearly influences the dynamics of gravitational collapse and its role in controlling the magnetic braking and radial diffusion of the field would be worth exploring in future numerical simulations of star formation.

  17. Robust fault tolerant control based on sliding mode method for uncertain linear systems with quantization.

    PubMed

    Hao, Li-Ying; Yang, Guang-Hong

    2013-09-01

    This paper is concerned with the problem of robust fault-tolerant compensation control problem for uncertain linear systems subject to both state and input signal quantization. By incorporating novel matrix full-rank factorization technique with sliding surface design successfully, the total failure of certain actuators can be coped with, under a special actuator redundancy assumption. In order to compensate for quantization errors, an adjustment range of quantization sensitivity for a dynamic uniform quantizer is given through the flexible choices of design parameters. Comparing with the existing results, the derived inequality condition leads to the fault tolerance ability stronger and much wider scope of applicability. With a static adjustment policy of quantization sensitivity, an adaptive sliding mode controller is then designed to maintain the sliding mode, where the gain of the nonlinear unit vector term is updated automatically to compensate for the effects of actuator faults, quantization errors, exogenous disturbances and parameter uncertainties without the need for a fault detection and isolation (FDI) mechanism. Finally, the effectiveness of the proposed design method is illustrated via a model of a rocket fairing structural-acoustic. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Anomalous heat conduction and anomalous diffusion in nonlinear lattices, single walled nanotubes, and billiard gas channels.

    PubMed

    Li, Baowen; Wang, Jiao; Wang, Lei; Zhang, Gang

    2005-03-01

    We study anomalous heat conduction and anomalous diffusion in low-dimensional systems ranging from nonlinear lattices, single walled carbon nanotubes, to billiard gas channels. We find that in all discussed systems, the anomalous heat conductivity can be connected with the anomalous diffusion, namely, if energy diffusion is sigma(2)(t)=2Dt(alpha) (01) implies an anomalous heat conduction with a divergent thermal conductivity (beta>0), and more interestingly, a subdiffusion (alpha<1) implies an anomalous heat conduction with a convergent thermal conductivity (beta<0), consequently, the system is a thermal insulator in the thermodynamic limit. Existing numerical data support our theoretical prediction.

  19. On the quantization of the massless Bateman system

    NASA Astrophysics Data System (ADS)

    Takahashi, K.

    2018-03-01

    The so-called Bateman system for the damped harmonic oscillator is reduced to a genuine dual dissipation system (DDS) by setting the mass to zero. We explore herein the condition under which the canonical quantization of the DDS is consistently performed. The roles of the observable and auxiliary coordinates are discriminated. The results show that the complete and orthogonal Fock space of states can be constructed on the stable vacuum if an anti-Hermite representation of the canonical Hamiltonian is adopted. The amplitude of the one-particle wavefunction is consistent with the classical solution. The fields can be quantized as bosonic or fermionic. For bosonic systems, the quantum fluctuation of the field is directly associated with the dissipation rate.

  20. Reduced Spin Hall Effects from Magnetic Proximity.

    DOE PAGES

    Zhang, Wei; Jungfleisch, Matthias B.; Jiang, Wanjun; ...

    2015-03-26

    We investigate temperature-dependent spin pumping and inverse spin Hall effects in thin Pt and Pd in contact with Permalloy. Our experiments show a decrease of the spin Hall effect with decreasing temperature, which is attributed to a temperature-dependent proximity effect. The spin Hall angle decreases from 0.086 at room temperature to 0.042 at 10 K for Pt and is nearly negligible at 10 K for Pd. By first-principle calculations, we show that the spin Hall conductivity indeed reduces by increasing the proximity-induced spin magnetic moments for both Pt and Pd. This work highlights the important role of proximity-induced magnetic orderingmore » to spin Hall phenomena in Pt and Pd.« less

  1. Residence Hall Seating That Works.

    ERIC Educational Resources Information Center

    Wiens, Janet

    2003-01-01

    Describes the seating chosen for residence halls at the Massachusetts Institute of Technology and the University of New England. The seating required depends on ergonomics, aesthetics, durability, cost, and code requirements. In addition, residence halls must have a range of seating types to accommodate various uses. (SLD)

  2. Fill-in binary loop pulse-torque quantizer

    NASA Technical Reports Server (NTRS)

    Lory, C. B.

    1975-01-01

    Fill-in binary (FIB) loop provides constant heating of torque generator, an advantage of binary current switching. At the same time, it avoids mode-related dead zone and data delay of binary, an advantage of ternary quantization.

  3. 75 FR 22770 - Gary E. Hall and Rita Hall; Notice of Availability of Environmental Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13652-000-Montana] Gary E. Hall and Rita Hall; Notice of Availability of Environmental Assessment April 22, 2010. In accordance with the National Environmental Policy Act of 1969, as amended, and the Federal Energy Regulatory...

  4. Charge carrier coherence and Hall effect in organic semiconductors

    DOE PAGES

    Yi, H. T.; Gartstein, Y. N.; Podzorov, V.

    2016-03-30

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force actingmore » on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Lastly, our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.« less

  5. Charge carrier coherence and Hall effect in organic semiconductors.

    PubMed

    Yi, H T; Gartstein, Y N; Podzorov, V

    2016-03-30

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.

  6. Charge carrier coherence and Hall effect in organic semiconductors

    PubMed Central

    Yi, H. T.; Gartstein, Y. N.; Podzorov, V.

    2016-01-01

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor. PMID:27025354

  7. The wavelet/scalar quantization compression standard for digital fingerprint images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, J.N.; Brislawn, C.M.

    1994-04-01

    A new digital image compression standard has been adopted by the US Federal Bureau of Investigation for use on digitized gray-scale fingerprint images. The algorithm is based on adaptive uniform scalar quantization of a discrete wavelet transform image decomposition and is referred to as the wavelet/scalar quantization standard. The standard produces archival quality images at compression ratios of around 20:1 and will allow the FBI to replace their current database of paper fingerprint cards with digital imagery.

  8. Supporting Dynamic Quantization for High-Dimensional Data Analytics.

    PubMed

    Guzun, Gheorghi; Canahuate, Guadalupe

    2017-05-01

    Similarity searches are at the heart of exploratory data analysis tasks. Distance metrics are typically used to characterize the similarity between data objects represented as feature vectors. However, when the dimensionality of the data increases and the number of features is large, traditional distance metrics fail to distinguish between the closest and furthest data points. Localized distance functions have been proposed as an alternative to traditional distance metrics. These functions only consider dimensions close to query to compute the distance/similarity. Furthermore, in order to enable interactive explorations of high-dimensional data, indexing support for ad-hoc queries is needed. In this work we set up to investigate whether bit-sliced indices can be used for exploratory analytics such as similarity searches and data clustering for high-dimensional big-data. We also propose a novel dynamic quantization called Query dependent Equi-Depth (QED) quantization and show its effectiveness on characterizing high-dimensional similarity. When applying QED we observe improvements in kNN classification accuracy over traditional distance functions. Gheorghi Guzun and Guadalupe Canahuate. 2017. Supporting Dynamic Quantization for High-Dimensional Data Analytics. In Proceedings of Ex-ploreDB'17, Chicago, IL, USA, May 14-19, 2017, 6 pages. https://doi.org/http://dx.doi.org/10.1145/3077331.3077336.

  9. Symplectic Quantization of a Reducible Theory

    NASA Astrophysics Data System (ADS)

    Barcelos-Neto, J.; Silva, M. B. D.

    We use the symplectic formalism to quantize the Abelian antisymmetric tensor gauge field. It is related to a reducible theory in the sense that all of its constraints are not independent. A procedure like ghost-of-ghost of the BFV method has to be used, but in terms of Lagrange multipliers.

  10. Laurance David Hall.

    PubMed

    Coxon, Bruce

    2011-01-01

    An account is given of the life, scientific contributions, and passing of Laurance David Hall (1938-2009), including his early history and education at the University of Bristol, UK, and the synthesis and NMR spectroscopy of carbohydrates and other natural products during ∼20 years of research and teaching at the University of British Columbia in Vancouver, Canada. Lists of graduate students, post-doctoral fellows, and sabbatical visitors are provided for this period. Following a generous endowment by Dr. Herchel Smith, Professor Hall built a new Department of Medicinal Chemistry at Cambridge University, UK, and greatly expanded his researches into the technology and applications of magnetic resonance imaging (MRI) and zero quantum NMR. MRI technology was applied both to medical problems such as the characterization of cartilage degeneration in knee joints, the measurement of ventricular function, lipid localization in animal models of atherosclerosis, paramagnetic metal complexes of polysaccharides as contrast agents, and studies of many other anatomical features, but also to several aspects of materials analysis, including food analyses, process control, and the elucidation of such physical phenomena as the flow of liquids through porous media, defects in concrete, and the visualization of fungal damage to wood. Professor Hall's many publications, patents, lectures, and honors and awards are described, and also his successful effort to keep the Asilomar facility in Pacific Grove, California as the alternating venue for the annual Experimental NMR Conference. Two memorial services for Professor Hall are remembered. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Landau quantization of Dirac fermions in graphene and its multilayers

    NASA Astrophysics Data System (ADS)

    Yin, Long-Jing; Bai, Ke-Ke; Wang, Wen-Xiao; Li, Si-Yu; Zhang, Yu; He, Lin

    2017-08-01

    When electrons are confined in a two-dimensional (2D) system, typical quantum-mechanical phenomena such as Landau quantization can be detected. Graphene systems, including the single atomic layer and few-layer stacked crystals, are ideal 2D materials for studying a variety of quantum-mechanical problems. In this article, we review the experimental progress in the unusual Landau quantized behaviors of Dirac fermions in monolayer and multilayer graphene by using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). Through STS measurement of the strong magnetic fields, distinct Landau-level spectra and rich level-splitting phenomena are observed in different graphene layers. These unique properties provide an effective method for identifying the number of layers, as well as the stacking orders, and investigating the fundamentally physical phenomena of graphene. Moreover, in the presence of a strain and charged defects, the Landau quantization of graphene can be significantly modified, leading to unusual spectroscopic and electronic properties.

  12. More on quantum groups from the quantization point of view

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav

    1994-12-01

    Star products on the classical double group of a simple Lie group and on corresponding symplectic groupoids are given so that the quantum double and the “quantized tangent bundle” are obtained in the deformation description. “Complex” quantum groups and bicovariant quantum Lie algebras are discussed from this point of view. Further we discuss the quantization of the Poisson structure on the symmetric algebra S(g) leading to the quantized enveloping algebra U h (g) as an example of biquantization in the sense of Turaev. Description of U h (g) in terms of the generators of the bicovariant differential calculus on F(G q ) is very convenient for this purpose. Finaly we interpret in the deformation framework some well known properties of compact quantum groups as simple consequences of corresponding properties of classical compact Lie groups. An analogue of the classical Kirillov's universal character formula is given for the unitary irreducble representation in the compact case.

  13. Mass quantization of the Schwarzschild black hole

    NASA Astrophysics Data System (ADS)

    Vaz, Cenalo; Witten, Louis

    1999-07-01

    We examine the Wheeler-DeWitt equation for a static, eternal Schwarzschild black hole in Kuchař-Brown variables and obtain its energy eigenstates. Consistent solutions vanish in the exterior of the Kruskal manifold and are nonvanishing only in the interior. The system is reminiscent of a particle in a box. States of definite parity avoid the singular geometry by vanishing at the origin. These definite parity states admit a discrete energy spectrum, depending on one quantum number which determines the Arnowitt-Deser-Misner mass of the black hole according to a relation conjectured long ago by Bekenstein M~nMp. If attention is restricted only to these quantized energy states, a black hole is described not only by its mass but also by its parity. States of indefinite parity do not admit a quantized mass spectrum.

  14. Quantization of the nonlinear sigma model revisited

    NASA Astrophysics Data System (ADS)

    Nguyen, Timothy

    2016-08-01

    We revisit the subject of perturbatively quantizing the nonlinear sigma model in two dimensions from a rigorous, mathematical point of view. Our main contribution is to make precise the cohomological problem of eliminating potential anomalies that may arise when trying to preserve symmetries under quantization. The symmetries we consider are twofold: (i) diffeomorphism covariance for a general target manifold; (ii) a transitive group of isometries when the target manifold is a homogeneous space. We show that there are no anomalies in case (i) and that (ii) is also anomaly-free under additional assumptions on the target homogeneous space, in agreement with the work of Friedan. We carry out some explicit computations for the O(N)-model. Finally, we show how a suitable notion of the renormalization group establishes the Ricci flow as the one loop renormalization group flow of the nonlinear sigma model.

  15. The first vineyard concert hall in North America

    NASA Astrophysics Data System (ADS)

    Jaffe, Christopher; Rivera, Carlos

    2002-11-01

    The first vineyard or surround concert hall designed and built in the Western Hemisphere is the Sala Nezahualcoyotl in Mexico City. The Hall was completed in 1976 and is part of the Cultural Center at the Universidad Nacional Autonoma de Mexico. The hall was named after a Toltec poet, architect, and musician who lived in the 15th century and was the Renaissance man of his day. In order to provide the familiar traditional sound of the rectangular (shoebox) European Hall, the acoustic designers set the criteria for reverberation times through the frequency spectrum and the Initial Time Delay Gap at every seat in the house to match the measurements taken at the Grosser Musik vereinssaal in Vienna and Boston Symphony Hall. In this paper we discuss the techniques used to create the traditional sound in a vineyard hall and the reaction of musicians and audiences to the completed facility. The Sala was the model for Suntory Hall in Japan which in turn spawned a number of vineyard halls in Japan. Most recently, the vineyard style seems to be appealing to more and more symphonic organizations in Europe and North America.

  16. Anomalous Extracellular Diffusion in Rat Cerebellum

    PubMed Central

    Xiao, Fanrong; Hrabe, Jan; Hrabetova, Sabina

    2015-01-01

    Extracellular space (ECS) is a major channel transporting biologically active molecules and drugs in the brain. Diffusion-mediated transport of these substances is hindered by the ECS structure but the microscopic basis of this hindrance is not fully understood. One hypothesis proposes that the hindrance originates in large part from the presence of dead-space (DS) microdomains that can transiently retain diffusing molecules. Because previous theoretical and modeling work reported an initial period of anomalous diffusion in similar environments, we expected that brain regions densely populated by DS microdomains would exhibit anomalous extracellular diffusion. Specifically, we targeted granular layers (GL) of rat and turtle cerebella that are populated with large and geometrically complex glomeruli. The integrative optical imaging (IOI) method was employed to evaluate diffusion of fluorophore-labeled dextran (MW 3000) in GL, and the IOI data analysis was adapted to quantify the anomalous diffusion exponent dw from the IOI records. Diffusion was significantly anomalous in rat GL, where dw reached 4.8. In the geometrically simpler turtle GL, dw was elevated but not robustly anomalous (dw = 2.6). The experimental work was complemented by numerical Monte Carlo simulations of anomalous ECS diffusion in several three-dimensional tissue models containing glomeruli-like structures. It demonstrated that both the duration of transiently anomalous diffusion and the anomalous exponent depend on the size of model glomeruli and the degree of their wrapping. In conclusion, we have found anomalous extracellular diffusion in the GL of rat cerebellum. This finding lends support to the DS microdomain hypothesis. Transiently anomalous diffusion also has a profound effect on the spatiotemporal distribution of molecules released into the ECS, especially at diffusion distances on the order of a few cell diameters, speeding up short-range diffusion-mediated signals in less permeable

  17. Anomalous extracellular diffusion in rat cerebellum.

    PubMed

    Xiao, Fanrong; Hrabe, Jan; Hrabetova, Sabina

    2015-05-05

    Extracellular space (ECS) is a major channel transporting biologically active molecules and drugs in the brain. Diffusion-mediated transport of these substances is hindered by the ECS structure but the microscopic basis of this hindrance is not fully understood. One hypothesis proposes that the hindrance originates in large part from the presence of dead-space (DS) microdomains that can transiently retain diffusing molecules. Because previous theoretical and modeling work reported an initial period of anomalous diffusion in similar environments, we expected that brain regions densely populated by DS microdomains would exhibit anomalous extracellular diffusion. Specifically, we targeted granular layers (GL) of rat and turtle cerebella that are populated with large and geometrically complex glomeruli. The integrative optical imaging (IOI) method was employed to evaluate diffusion of fluorophore-labeled dextran (MW 3000) in GL, and the IOI data analysis was adapted to quantify the anomalous diffusion exponent dw from the IOI records. Diffusion was significantly anomalous in rat GL, where dw reached 4.8. In the geometrically simpler turtle GL, dw was elevated but not robustly anomalous (dw = 2.6). The experimental work was complemented by numerical Monte Carlo simulations of anomalous ECS diffusion in several three-dimensional tissue models containing glomeruli-like structures. It demonstrated that both the duration of transiently anomalous diffusion and the anomalous exponent depend on the size of model glomeruli and the degree of their wrapping. In conclusion, we have found anomalous extracellular diffusion in the GL of rat cerebellum. This finding lends support to the DS microdomain hypothesis. Transiently anomalous diffusion also has a profound effect on the spatiotemporal distribution of molecules released into the ECS, especially at diffusion distances on the order of a few cell diameters, speeding up short-range diffusion-mediated signals in less permeable

  18. Turbulence Measurements in a Tropical Zoo Hall

    NASA Astrophysics Data System (ADS)

    Eugster, Werner; Denzler, Basil; Bogdal, Christian

    2017-04-01

    The Masoala rainforest hall of the Zurich Zoo, Switzerland, covers a ground surface area of 10,856 m2 and reaches 30 m in height. With its transparent ETFE foiled roof it provides a tropical climate for a large diversity of plants and animals. In combination with an effort to estimate dry deposition of elemental mercury, we made an attempt to measure turbulent transfer velocity with an ultrasonic anemometer inside the hall. Not surprising, the largest turbulence elements were on the order of the hall dimension. Although the dimensions of the hall seem to be small (200,000 m3) for eddy covariance flux measurements and the air circulation inside the hall was extremely weak, the spectra of wind velocity components and virtual (sonic) temperature obeyed the general statistical description expected under unconstrained outdoor measurement conditions. We will present results from a two-week measurement campaign in the Masoala rainforest hall and make a suggestion for the deposition velocity to be used to estimate dry deposition of atmospheric components to the tropical vegetation surface.

  19. On a canonical quantization of 3D Anti de Sitter pure gravity

    NASA Astrophysics Data System (ADS)

    Kim, Jihun; Porrati, Massimo

    2015-10-01

    We perform a canonical quantization of pure gravity on AdS 3 using as a technical tool its equivalence at the classical level with a Chern-Simons theory with gauge group SL(2,{R})× SL(2,{R}) . We first quantize the theory canonically on an asymptotically AdS space -which is topologically the real line times a Riemann surface with one connected boundary. Using the "constrain first" approach we reduce canonical quantization to quantization of orbits of the Virasoro group and Kähler quantization of Teichmüller space. After explicitly computing the Kähler form for the torus with one boundary component and after extending that result to higher genus, we recover known results, such as that wave functions of SL(2,{R}) Chern-Simons theory are conformal blocks. We find new restrictions on the Hilbert space of pure gravity by imposing invariance under large diffeomorphisms and normalizability of the wave function. The Hilbert space of pure gravity is shown to be the target space of Conformal Field Theories with continuous spectrum and a lower bound on operator dimensions. A projection defined by topology changing amplitudes in Euclidean gravity is proposed. It defines an invariant subspace that allows for a dual interpretation in terms of a Liouville CFT. Problems and features of the CFT dual are assessed and a new definition of the Hilbert space, exempt from those problems, is proposed in the case of highly-curved AdS 3.

  20. The Other Hall Effect: College Board Physics

    ERIC Educational Resources Information Center

    Sheppard, Keith; Gunning, Amanda M.

    2013-01-01

    Edwin Herbert Hall (1855-1938), discoverer of the Hall effect, was one of the first winners of the AAPT Oersted Medal for his contributions to the teaching of physics. While Hall's role in establishing laboratory work in high schools is widely acknowledged, his position as chair of the physics section of the Committee on College Entrance…

  1. Entropy-aware projected Landweber reconstruction for quantized block compressive sensing of aerial imagery

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Li, Kangda; Wang, Bing; Tang, Hainie; Gong, Xiaohui

    2017-01-01

    A quantized block compressive sensing (QBCS) framework, which incorporates the universal measurement, quantization/inverse quantization, entropy coder/decoder, and iterative projected Landweber reconstruction, is summarized. Under the QBCS framework, this paper presents an improved reconstruction algorithm for aerial imagery, QBCS, with entropy-aware projected Landweber (QBCS-EPL), which leverages the full-image sparse transform without Wiener filter and an entropy-aware thresholding model for wavelet-domain image denoising. Through analyzing the functional relation between the soft-thresholding factors and entropy-based bitrates for different quantization methods, the proposed model can effectively remove wavelet-domain noise of bivariate shrinkage and achieve better image reconstruction quality. For the overall performance of QBCS reconstruction, experimental results demonstrate that the proposed QBCS-EPL algorithm significantly outperforms several existing algorithms. With the experiment-driven methodology, the QBCS-EPL algorithm can obtain better reconstruction quality at a relatively moderate computational cost, which makes it more desirable for aerial imagery applications.

  2. Chapin Hall Center for Children.

    ERIC Educational Resources Information Center

    Chicago Univ., IL. Chapin Hall Center for Children.

    This document consists of two separate publications: (1) "The Power of Knowing", a brief 12-page description of the Chapin Hall Center for Children, and (2) "Projects and Publications", a 67-page list of the center's projects and publications as of Autumn 1997. "The Power of Knowing" describes the Chapin Hall Center…

  3. Reformulation of the covering and quantizer problems as ground states of interacting particles.

    PubMed

    Torquato, S

    2010-11-01

    It is known that the sphere-packing problem and the number-variance problem (closely related to an optimization problem in number theory) can be posed as energy minimizations associated with an infinite number of point particles in d-dimensional Euclidean space R(d) interacting via certain repulsive pair potentials. We reformulate the covering and quantizer problems as the determination of the ground states of interacting particles in R(d) that generally involve single-body, two-body, three-body, and higher-body interactions. This is done by linking the covering and quantizer problems to certain optimization problems involving the "void" nearest-neighbor functions that arise in the theory of random media and statistical mechanics. These reformulations, which again exemplify the deep interplay between geometry and physics, allow one now to employ theoretical and numerical optimization techniques to analyze and solve these energy minimization problems. The covering and quantizer problems have relevance in numerous applications, including wireless communication network layouts, the search of high-dimensional data parameter spaces, stereotactic radiation therapy, data compression, digital communications, meshing of space for numerical analysis, and coding and cryptography, among other examples. In the first three space dimensions, the best known solutions of the sphere-packing and number-variance problems (or their "dual" solutions) are directly related to those of the covering and quantizer problems, but such relationships may or may not exist for d≥4 , depending on the peculiarities of the dimensions involved. Our reformulation sheds light on the reasons for these similarities and differences. We also show that disordered saturated sphere packings provide relatively thin (economical) coverings and may yield thinner coverings than the best known lattice coverings in sufficiently large dimensions. In the case of the quantizer problem, we derive improved upper bounds

  4. Reformulation of the covering and quantizer problems as ground states of interacting particles

    NASA Astrophysics Data System (ADS)

    Torquato, S.

    2010-11-01

    It is known that the sphere-packing problem and the number-variance problem (closely related to an optimization problem in number theory) can be posed as energy minimizations associated with an infinite number of point particles in d -dimensional Euclidean space Rd interacting via certain repulsive pair potentials. We reformulate the covering and quantizer problems as the determination of the ground states of interacting particles in Rd that generally involve single-body, two-body, three-body, and higher-body interactions. This is done by linking the covering and quantizer problems to certain optimization problems involving the “void” nearest-neighbor functions that arise in the theory of random media and statistical mechanics. These reformulations, which again exemplify the deep interplay between geometry and physics, allow one now to employ theoretical and numerical optimization techniques to analyze and solve these energy minimization problems. The covering and quantizer problems have relevance in numerous applications, including wireless communication network layouts, the search of high-dimensional data parameter spaces, stereotactic radiation therapy, data compression, digital communications, meshing of space for numerical analysis, and coding and cryptography, among other examples. In the first three space dimensions, the best known solutions of the sphere-packing and number-variance problems (or their “dual” solutions) are directly related to those of the covering and quantizer problems, but such relationships may or may not exist for d≥4 , depending on the peculiarities of the dimensions involved. Our reformulation sheds light on the reasons for these similarities and differences. We also show that disordered saturated sphere packings provide relatively thin (economical) coverings and may yield thinner coverings than the best known lattice coverings in sufficiently large dimensions. In the case of the quantizer problem, we derive improved upper

  5. Hall Thruster Technology for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Manzella, David; Oh, David; Aadland, Randall

    2005-01-01

    The performance of a prototype Hall thruster designed for Discovery-class NASA science mission applications was evaluated at input powers ranging from 0.2 to 2.9 kilowatts. These data were used to construct a throttle profile for a projected Hall thruster system based on this prototype thruster. The suitability of such a Hall thruster system to perform robotic exploration missions was evaluated through the analysis of a near Earth asteroid sample return mission. This analysis demonstrated that a propulsion system based on the prototype Hall thruster offers mission benefits compared to a propulsion system based on an existing ion thruster.

  6. Deformation quantizations with separation of variables on a Kähler manifold

    NASA Astrophysics Data System (ADS)

    Karabegov, Alexander V.

    1996-10-01

    We give a simple geometric description of all formal differentiable deformation quantizations on a Kähler manifold M such that for each open subset U⊂ M ⋆-multiplication from the left by a holomorphic function and from the right by an antiholomorphic function on U coincides with the pointwise multiplication by these functions. We show that these quantizations are in 1-1 correspondence with the formal deformations of the original Kähler metrics on M.

  7. Numerical analysis of Hall effect on the performance of magnetohydrodynamic heat shield system based on nonequilibrium Hall parameter model

    NASA Astrophysics Data System (ADS)

    Li, Kai; Liu, Jun; Liu, Weiqiang

    2017-01-01

    Magnetohydrodynamic (MHD) heat shield system, a novel thermal protection technique in the hypersonic field, has been paid much attention in recent years. In the real flight condition, not only the Lorentz force but also the Hall electric field is induced by the interaction between ionized air post shock and magnetic field. In order to analyze the action mechanisms of the Hall effect, numerical methods of coupling thermochemical nonequilibrium flow field with externally applied magnetic field as well as the induced electric field are constructed and validated. Based on the nonequilibrium model of Hall parameter, numerical simulations of the MHD heat shield system is conducted under two different magnetic induction strengths (B0=0.2 T, 0.5 T) on a reentry capsule forebody. Results show that, the Hall effect is the same under the two magnetic induction strengths when the wall is assumed to be conductive. For this case, with the Hall effect taken into account, the Lorentz force counter stream diminishes a lot and the circumferential component dominates, resulting that the heat flux and shock-off distance approach the case without MHD control. However, for the insulating wall, the Hall effect acts in different ways under these two magnetic induction strengths. For this case, with the Hall effect taken into account, the performance of MHD heat shield system approaches the case neglecting the Hall effect when B0 equals 0.2 T. Such performance becomes worse when B0 equals 0.5 T and the aerothermal environment on the capsule shoulder is even worse than the case without MHD control.

  8. Hall mobility in multicrystalline silicon

    NASA Astrophysics Data System (ADS)

    Schindler, F.; Geilker, J.; Kwapil, W.; Warta, W.; Schubert, M. C.

    2011-08-01

    Knowledge of the carrier mobility in silicon is of utmost importance for photovoltaic applications, as it directly influences the diffusion length and thereby the cell efficiency. Moreover, its value is needed for a correct quantitative evaluation of a variety of lifetime measurements. However, models that describe the carrier mobility in silicon are based on theoretical calculations or fits to experimental data in monocrystalline silicon. Multicrystalline (mc) silicon features crystal defects such as dislocations and grain boundaries, with the latter possibly leading to potential barriers through the trapping of charge carriers and thereby influencing the mobility, as shown, for example, by Maruska et al. [Appl. Phys. Lett. 36, 381 (1980)]. To quantify the mobilities in multicrystalline silicon, we performed Hall measurements in p-type mc-Si samples of various resistivities and different crystal structures and compared the data to majority carrier Hall mobilities in p-type monocrystalline floatzone (FZ) silicon. For lack of a model that provides reliable values of the Hall mobility in silicon, an empirical fit similar to existing models for conductivity mobilities is proposed based on Hall measurements of monocrystalline p-type FZ silicon. By comparing the measured Hall mobilities obtained from mc silicon with the corresponding Hall mobilities in monocrystalline silicon of the same resistivity, we found that the mobility reduction due to the presence of crystal defects in mc-Si ranges between 0% and 5% only. Mobility decreases of up to 30% as reported by Peter et al. [Proceedings of the 23rd European Photovoltaic Solar Energy Conference, Valencia, Spain, 1-5 September 2008], or even of a factor of 2 to 3 as detected by Palais et al. [Mater. Sci. Eng. B 102, 184 (2003)], in multicrystalline silicon were not observed.

  9. Combinatorial quantization of the Hamiltonian Chern-Simons theory II

    NASA Astrophysics Data System (ADS)

    Alekseev, Anton Yu.; Grosse, Harald; Schomerus, Volker

    1996-01-01

    This paper further develops the combinatorial approach to quantization of the Hamiltonian Chern Simons theory advertised in [1]. Using the theory of quantum Wilson lines, we show how the Verlinde algebra appears within the context of quantum group gauge theory. This allows to discuss flatness of quantum connections so that we can give a mathematically rigorous definition of the algebra of observables A CS of the Chern Simons model. It is a *-algebra of “functions on the quantum moduli space of flat connections” and comes equipped with a positive functional ω (“integration”). We prove that this data does not depend on the particular choices which have been made in the construction. Following ideas of Fock and Rosly [2], the algebra A CS provides a deformation quantization of the algebra of functions on the moduli space along the natural Poisson bracket induced by the Chern Simons action. We evaluate a volume of the quantized moduli space and prove that it coincides with the Verlinde number. This answer is also interpreted as a partition partition function of the lattice Yang-Mills theory corresponding to a quantum gauge group.

  10. A Gift for Reading Hall No. 1

    ERIC Educational Resources Information Center

    MacWilliams, Bryon

    2009-01-01

    In this article, the author describes Reading Hall No. 1 of the Russian State Library. He was placed in the first reading hall in the mid-1990s, when the Russian government still honored Soviet traditions of granting certain privileges to certain foreigners. In the first hall, the rules are different. He can request as many books as he wants. He…

  11. Quantum hall ferromagnets

    NASA Astrophysics Data System (ADS)

    Kumar, Akshay

    We study several quantum phases that are related to the quantum Hall effect. Our initial focus is on a pair of quantum Hall ferromagnets where the quantum Hall ordering occurs simultaneously with a spontaneous breaking of an internal symmetry associated with a semiconductor valley index. In our first example ---AlAs heterostructures--- we study domain wall structure, role of random-field disorder and dipole moment physics. Then in the second example ---Si(111)--- we show that symmetry breaking near several integer filling fractions involves a combination of selection by thermal fluctuations known as "order by disorder" and a selection by the energetics of Skyrme lattices induced by moving away from the commensurate fillings, a mechanism we term "order by doping". We also study ground state of such systems near filling factor one in the absence of valley Zeeman energy. We show that even though the lowest energy charged excitations are charge one skyrmions, the lowest energy skyrmion lattice has charge > 1 per unit cell. We then broaden our discussion to include lattice systems having multiple Chern number bands. We find analogs of quantum Hall ferromagnets in the menagerie of fractional Chern insulator phases. Unlike in the AlAs system, here the domain walls come naturally with gapped electronic excitations. We close with a result involving only topology: we show that ABC stacked multilayer graphene placed on boron nitride substrate has flat bands with non-zero local Berry curvature but zero Chern number. This allows access to an interaction dominated system with a non-trivial quantum distance metric but without the extra complication of a non-zero Chern number.

  12. Scalets, wavelets and (complex) turning point quantization

    NASA Astrophysics Data System (ADS)

    Handy, C. R.; Brooks, H. A.

    2001-05-01

    Despite the many successes of wavelet analysis in image and signal processing, the incorporation of continuous wavelet transform theory within quantum mechanics has lacked a compelling, first principles, motivating analytical framework, until now. For arbitrary one-dimensional rational fraction Hamiltonians, we develop a simple, unified formalism, which clearly underscores the complementary, and mutually interdependent, role played by moment quantization theory (i.e. via scalets, as defined herein) and wavelets. This analysis involves no approximation of the Hamiltonian within the (equivalent) wavelet space, and emphasizes the importance of (complex) multiple turning point contributions in the quantization process. We apply the method to three illustrative examples. These include the (double-well) quartic anharmonic oscillator potential problem, V(x) = Z2x2 + gx4, the quartic potential, V(x) = x4, and the very interesting and significant non-Hermitian potential V(x) = -(ix)3, recently studied by Bender and Boettcher.

  13. Anomalous random correlations of force constants on the lattice dynamical properties of disordered Au-Fe alloys

    NASA Astrophysics Data System (ADS)

    Kangsabanik, Jiban; Chouhan, Rajiv K.; Johnson, D. D.; Alam, Aftab

    2017-09-01

    Gold iron (Au-Fe) alloys are of immense interest due to their biocompatibility, anomalous Hall conductivity, and applications in various medical treatments. However, irrespective of the method of preparation, they often exhibit a high level of disorder with properties sensitive to the thermal or magnetic annealing temperatures. We calculate the lattice dynamical properties of Au1 -xFex alloys using density functional theory methods where, being multisite properties, reliable interatomic force constant (IFC) calculations in disordered alloys remain a challenge. We follow a twofold approach: (1) an accurate IFC calculation in an environment with nominally zero chemical pair correlations to mimic the homogeneously disordered alloy and (2) a configurational averaging for the desired phonon properties (e.g., dispersion, density of states, and entropy). We find an anomalous change in the IFC's and phonon dispersion (split bands) near x =0.19 , which is attributed to the local stiffening of the Au-Au bonds when Au is in the vicinity of Fe. Other results based on mechanical and thermophysical properties reflect a similar anomaly: Phonon entropy, e.g., becomes negative below x =0.19 , suggesting a tendency for chemical unmixing, reflecting the onset of a miscibility gap in the phase diagram. Our results match fairly well with reported data wherever available.

  14. Anomalous random correlations of force constants on the lattice dynamical properties of disordered Au-Fe alloys

    DOE PAGES

    Kangsabanik, Jiban; Chouhan, Rajiv K.; Johnson, D. D.; ...

    2017-09-20

    Here, gold iron (Au-Fe) alloys are of immense interest due to their biocompatibility, anomalous Hall conductivity, and applications in various medical treatments. However, irrespective of the method of preparation, they often exhibit a high level of disorder with properties sensitive to the thermal or magnetic annealing temperatures. We calculate the lattice dynamical properties of Au 1–xFe x alloys using density functional theory methods where, being multisite properties, reliable interatomic force constant (IFC) calculations in disordered alloys remain a challenge. We follow a twofold approach: an accurate IFC calculation in an environment with nominally zero chemical pair correlations to mimic themore » homogeneously disordered alloy and a configurational averaging for the desired phonon properties (e.g., dispersion, density of states, and entropy). We find an anomalous change in the IFC's and phonon dispersion (split bands) near x=0.19, which is attributed to the local stiffening of the Au-Au bonds when Au is in the vicinity of Fe. Other results based on mechanical and thermophysical properties reflect a similar anomaly: Phonon entropy, e.g., becomes negative below x=0.19, suggesting a tendency for chemical unmixing, reflecting the onset of a miscibility gap in the phase diagram. Our results match fairly well with reported data wherever available.« less

  15. Anomalous random correlations of force constants on the lattice dynamical properties of disordered Au-Fe alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kangsabanik, Jiban; Chouhan, Rajiv K.; Johnson, D. D.

    Here, gold iron (Au-Fe) alloys are of immense interest due to their biocompatibility, anomalous Hall conductivity, and applications in various medical treatments. However, irrespective of the method of preparation, they often exhibit a high level of disorder with properties sensitive to the thermal or magnetic annealing temperatures. We calculate the lattice dynamical properties of Au 1–xFe x alloys using density functional theory methods where, being multisite properties, reliable interatomic force constant (IFC) calculations in disordered alloys remain a challenge. We follow a twofold approach: an accurate IFC calculation in an environment with nominally zero chemical pair correlations to mimic themore » homogeneously disordered alloy and a configurational averaging for the desired phonon properties (e.g., dispersion, density of states, and entropy). We find an anomalous change in the IFC's and phonon dispersion (split bands) near x=0.19, which is attributed to the local stiffening of the Au-Au bonds when Au is in the vicinity of Fe. Other results based on mechanical and thermophysical properties reflect a similar anomaly: Phonon entropy, e.g., becomes negative below x=0.19, suggesting a tendency for chemical unmixing, reflecting the onset of a miscibility gap in the phase diagram. Our results match fairly well with reported data wherever available.« less

  16. Overview of Hall D Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chudakov, Eugene A.

    Hall D is a new experimental hall at Jefferson Lab, designed for experiments with a photon beam. The primary motivation for Hall D is the GlueX experiment [1,2], dedicated to meson spectroscopy. The Hall D complex consists of: An electron beam line used to extract the 5.5-pass electrons from the accelerator into the Tagger Hall. The designed beam energy is E e = 12 GeV;The Tagger Hall, where the electron beam passes through a thin radiator (~0.01% R.L.) and is deflected into the beam dump. The electrons that lost >30% of their energy in the radiator are detected with scintillatormore » hodoscopes providing a ~0.1% energy resolution for the tagged photons. Aligned diamond radiators allow to produce linearly polarized photons via the Coherent Bremsstrahlung. The beam dump is limited to 60 kW (5 µA at 12 GeV); The Collimator Cave contains a collimator for the photon beam and dipole magnets downstream in order to remove charged particles. The 3.4 mm diameter collimator, located about 75 m downstream of the radiator, selects the central cone of the photon beam increasing its average linear polarization, up to ~40%in the coherent peak at 9 GeV; Hall D contains several elements of the photon beam line, and themain spectrometer. A Pair Spectrometer consists of a thin converter, a dipole magnet, and a two-arm detector used to measure the energy spectrum of the photon beam. The main spectrometer is based on a 2-T superconducting solenoid, 4 m long and 1.85 m bore diameter. The liquid hydrogen target is located in the front part the solenoid. The charged tracks are detected with a set of drift chambers; photons are detected with two electromagnetic calorimeters. There are also scintillator hodoscopes for triggering and time-of-flight measurements. The spectrometer is nearly hermetic in an angular range of 1° < θ < 120 •. The momentum resolution is σ p /p ~ 1 ₋ ₋3% depending on the polar angle θ. The energy resolution of the electromagnetic calorimeters is about 7

  17. Astronaut Hall of Fame

    NASA Image and Video Library

    2018-04-21

    Former astronauts and space explorers, Thomas D. Jones, Ph.D., and Scott D. Altman, front row, center, left and right, respectively, were inducted into the U.S. Astronaut Hall of Fame Class of 2018 during a ceremony inside the Space Shuttle Atlantis attraction at NASA’s Kennedy Space Center Visitor Complex in Florida. They are standing with previous Hall of Famers, including, Curt Brown, back row, far left, chairman of the board, Astronaut Scholarship Foundation. Brown performed the induction ceremony. Also in the group is former astronaut and NASA administrator Charlie Bolden, in the center, behind Jones and Altman. In the back row, second from left is John Grunsfeld, who spoke on behalf of Altman during the ceremony. Directly behind Altman is Storey Musgrave, who spoke on behalf of Jones during the ceremony. Inductees into the Hall of Fame are selected by a committee of Hall of Fame astronauts, former NASA officials, flight directors, historians and journalists. The process is administered by the Astronaut Scholarship Foundation. To be eligible, an astronaut must have made his or her first flight at least 17 years before the induction. Candidates must be a U.S. citizen and a NASA-trained commander, pilot or mission specialist who has orbited the earth at least once. Including Altman and Jones, 97 astronauts have been inducted into the AHOF.

  18. Dr. Hall and the work cure.

    PubMed

    Reed, Kathlyn L

    2005-01-01

    Herbert James Hall, MD (1870-1923), was a pioneer in the systematic and organized study of occupation as therapy for persons with nervous and mental disorders that he called the "work cure." He began his work in 1904 during the early years of the Arts and Crafts Movement in the United States. His primary interest was the disorder neurasthenia, a condition with many symptoms including chronic fatigue, stress, and inability to work or perform everyday tasks. The prevailing treatment of the day was absolute bed rest known as the "rest cure." Hall believed that neurasthenia was not caused by overwork but by faulty living habits that could be corrected through an ordered life schedule and selected occupations. He identified several principles of therapy that are still used today including graded activity and energy conservation. Dr. Adolph Meyer credits Hall for organizing the ideas on the therapeutic use of occupation (Meyer, 1922). Hall also provided the name American Occupational Therapy Association for the professional organization and served as the fourth president. For his many contributions to the profession Hall deserves to be recognized as a major contributor to the development and organization of occupational therapy.

  19. Magnet/Hall-Effect Random-Access Memory

    NASA Technical Reports Server (NTRS)

    Wu, Jiin-Chuan; Stadler, Henry L.; Katti, Romney R.

    1991-01-01

    In proposed magnet/Hall-effect random-access memory (MHRAM), bits of data stored magnetically in Perm-alloy (or equivalent)-film memory elements and read out by using Hall-effect sensors to detect magnetization. Value of each bit represented by polarity of magnetization. Retains data for indefinite time or until data rewritten. Speed of Hall-effect sensors in MHRAM results in readout times of about 100 nanoseconds. Other characteristics include high immunity to ionizing radiation and storage densities of order 10(Sup6)bits/cm(Sup 2) or more.

  20. 2017 Astronaut Hall of Fame Induction Ceremony

    NASA Image and Video Library

    2017-05-19

    In the Space Shuttle Atlantis facility at the Kennedy Space Center Visitor Complex in Florida, Astronaut Scholarship Foundation Chairman Dan Brandenstein, left, also a Hall of Fame astronaut, presents inductee Michael Foale with his hall of fame medal. Former NASA Administrator Charlie Bolden, right, a Hall of Fame member, presented Foale for induction. During this year's ceremonies, space shuttle astronaut Ellen Ochoa also was enshrined.

  1. 2017 Astronaut Hall of Fame Induction Ceremony

    NASA Image and Video Library

    2017-05-19

    In the Space Shuttle Atlantis facility at the Kennedy Space Center Visitor Complex in Florida, Astronaut Scholarship Foundation Chairman Dan Brandenstein, left, also a Hall of Fame astronaut, presents inductee Ellen Ochoa with her hall of fame medal. Former Johnson Space Center Director Mike Coats, right, a Hall of Fame member, presented Ochoa for induction. During this year's ceremonies, space shuttle astronaut Michael Foale also was enshrined.

  2. Necessary conditions for the optimality of variable rate residual vector quantizers

    NASA Technical Reports Server (NTRS)

    Kossentini, Faouzi; Smith, Mark J. T.; Barnes, Christopher F.

    1993-01-01

    Residual vector quantization (RVQ), or multistage VQ, as it is also called, has recently been shown to be a competitive technique for data compression. The competitive performance of RVQ reported in results from the joint optimization of variable rate encoding and RVQ direct-sum code books. In this paper, necessary conditions for the optimality of variable rate RVQ's are derived, and an iterative descent algorithm based on a Lagrangian formulation is introduced for designing RVQ's having minimum average distortion subject to an entropy constraint. Simulation results for these entropy-constrained RVQ's (EC-RVQ's) are presented for memory less Gaussian, Laplacian, and uniform sources. A Gauss-Markov source is also considered. The performance is superior to that of entropy-constrained scalar quantizers (EC-SQ's) and practical entropy-constrained vector quantizers (EC-VQ's), and is competitive with that of some of the best source coding techniques that have appeared in the literature.

  3. Wanted: A Positive Control for Anomalous Subdiffusion

    PubMed Central

    Saxton, Michael J.

    2012-01-01

    Anomalous subdiffusion in cells and model systems is an active area of research. The main questions are whether diffusion is anomalous or normal, and if it is anomalous, its mechanism. The subject is controversial, especially the hypothesis that crowding causes anomalous subdiffusion. Anomalous subdiffusion measurements would be strengthened by an experimental standard, particularly one able to cross-calibrate the different types of measurements. Criteria for a calibration standard are proposed. First, diffusion must be anomalous over the length and timescales of the different measurements. The length-scale is fundamental; the time scale can be adjusted through the viscosity of the medium. Second, the standard must be theoretically well understood, with a known anomalous subdiffusion exponent, ideally readily tunable. Third, the standard must be simple, reproducible, and independently characterizable (by, for example, electron microscopy for nanostructures). Candidate experimental standards are evaluated, including obstructed lipid bilayers; aqueous systems obstructed by nanopillars; a continuum percolation system in which a prescribed fraction of randomly chosen obstacles in a regular array is ablated; single-file diffusion in pores; transient anomalous subdiffusion due to binding of particles in arrays such as transcription factors in randomized DNA arrays; and computer-generated physical trajectories. PMID:23260043

  4. Subband directional vector quantization in radiological image compression

    NASA Astrophysics Data System (ADS)

    Akrout, Nabil M.; Diab, Chaouki; Prost, Remy; Goutte, Robert; Amiel, Michel

    1992-05-01

    The aim of this paper is to propose a new scheme for image compression. The method is very efficient for images which have directional edges such as the tree-like structure of the coronary vessels in digital angiograms. This method involves two steps. First, the original image is decomposed at different resolution levels using a pyramidal subband decomposition scheme. For decomposition/reconstruction of the image, free of aliasing and boundary errors, we use an ideal band-pass filter bank implemented in the Discrete Cosine Transform domain (DCT). Second, the high-frequency subbands are vector quantized using a multiresolution codebook with vertical and horizontal codewords which take into account the edge orientation of each subband. The proposed method reduces the blocking effect encountered at low bit rates in conventional vector quantization.

  5. TBA-like integral equations from quantized mirror curves

    NASA Astrophysics Data System (ADS)

    Okuyama, Kazumi; Zakany, Szabolcs

    2016-03-01

    Quantizing the mirror curve of certain toric Calabi-Yau (CY) three-folds leads to a family of trace class operators. The resolvent function of these operators is known to encode topological data of the CY. In this paper, we show that in certain cases, this resolvent function satisfies a system of non-linear integral equations whose structure is very similar to the Thermodynamic Bethe Ansatz (TBA) systems. This can be used to compute spectral traces, both exactly and as a semiclassical expansion. As a main example, we consider the system related to the quantized mirror curve of local P2. According to a recent proposal, the traces of this operator are determined by the refined BPS indices of the underlying CY. We use our non-linear integral equations to test that proposal.

  6. On two mathematical problems of canonical quantization. IV

    NASA Astrophysics Data System (ADS)

    Kirillov, A. I.

    1992-11-01

    A method for solving the problem of reconstructing a measure beginning with its logarithmic derivative is presented. The method completes that of solving the stochastic differential equation via Dirichlet forms proposed by S. Albeverio and M. Rockner. As a result one obtains the mathematical apparatus for the stochastic quantization. The apparatus is applied to prove the existence of the Feynman-Kac measure of the sine-Gordon and λφ2n/(1 + K2φ2n)-models. A synthesis of both mathematical problems of canonical quantization is obtained in the form of a second-order martingale problem for vacuum noise. It is shown that in stochastic mechanics the martingale problem is an analog of Newton's second law and enables us to find the Nelson's stochastic trajectories without determining the wave functions.

  7. Prior-Based Quantization Bin Matching for Cloud Storage of JPEG Images.

    PubMed

    Liu, Xianming; Cheung, Gene; Lin, Chia-Wen; Zhao, Debin; Gao, Wen

    2018-07-01

    Millions of user-generated images are uploaded to social media sites like Facebook daily, which translate to a large storage cost. However, there exists an asymmetry in upload and download data: only a fraction of the uploaded images are subsequently retrieved for viewing. In this paper, we propose a cloud storage system that reduces the storage cost of all uploaded JPEG photos, at the expense of a controlled increase in computation mainly during download of requested image subset. Specifically, the system first selectively re-encodes code blocks of uploaded JPEG images using coarser quantization parameters for smaller storage sizes. Then during download, the system exploits known signal priors-sparsity prior and graph-signal smoothness prior-for reverse mapping to recover original fine quantization bin indices, with either deterministic guarantee (lossless mode) or statistical guarantee (near-lossless mode). For fast reverse mapping, we use small dictionaries and sparse graphs that are tailored for specific clusters of similar blocks, which are classified via tree-structured vector quantizer. During image upload, cluster indices identifying the appropriate dictionaries and graphs for the re-quantized blocks are encoded as side information using a differential distributed source coding scheme to facilitate reverse mapping during image download. Experimental results show that our system can reap significant storage savings (up to 12.05%) at roughly the same image PSNR (within 0.18 dB).

  8. Vector quantizer designs for joint compression and terrain categorization of multispectral imagery

    NASA Technical Reports Server (NTRS)

    Gorman, John D.; Lyons, Daniel F.

    1994-01-01

    Two vector quantizer designs for compression of multispectral imagery and their impact on terrain categorization performance are evaluated. The mean-squared error (MSE) and classification performance of the two quantizers are compared, and it is shown that a simple two-stage design minimizing MSE subject to a constraint on classification performance has a significantly better classification performance than a standard MSE-based tree-structured vector quantizer followed by maximum likelihood classification. This improvement in classification performance is obtained with minimal loss in MSE performance. The results show that it is advantageous to tailor compression algorithm designs to the required data exploitation tasks. Applications of joint compression/classification include compression for the archival or transmission of Landsat imagery that is later used for land utility surveys and/or radiometric analysis.

  9. Remote Diagnostic Measurements of Hall Thruster Plumes

    DTIC Science & Technology

    2009-08-14

    This paper describes measurements of Hall thruster plumes that characterize ion energy distributions and charge state fractions using remotely...charge state. Next, energy and charge state measurements are described from testing of a 200 W Hall thruster at AFIT. Measurements showed variation in...position. Finally, ExB probe charge state measurements are presented from a 6-kW laboratory Hall thruster operated at low discharge voltage levels at AFRL

  10. Berry phase and anomalous transport of the composite fermions at the half-filled Landau level

    NASA Astrophysics Data System (ADS)

    Pan, W.; Kang, W.; Baldwin, K. W.; West, K. W.; Pfeiffer, L. N.; Tsui, D. C.

    2017-12-01

    The fractional quantum Hall effect (FQHE) in two-dimensional electron systems is an exotic, superfluid-like matter with an emergent topological order. From the consideration of the Aharonov-Bohm interaction between electrons and magnetic field, the ground state of a half-filled lowest Landau level is mathematically transformed to a Fermi sea of composite objects of electrons bound to two flux quanta, termed composite fermions (CFs). A strong support for the CF theories comes from experimental confirmation of the predicted Fermi surface at ν = 1/2 (where ν is the Landau level filling factor) from the detection of the Fermi wavevector in semi-classical geometrical resonance experiments. Recent developments in the theory of CFs have led to the prediction of a π Berry phase for the CF circling around the Fermi surface at half-filling. In this paper we provide experimental evidence for the detection of the Berry phase of CFs in the fractional quantum Hall effect. Our measurements of the Shubnikov-de Haas oscillations of CFs as a function carrier density at a fixed magnetic field provide strong support for the existence of a π Berry phase at ν = 1/2. We also discover that the conductivity of composite fermions at ν = 1/2 displays an anomalous linear density dependence, whose origin remains mysterious yet tantalizing.

  11. On Fock-space representations of quantized enveloping algebras related to noncommutative differential geometry

    NASA Astrophysics Data System (ADS)

    Jurčo, B.; Schlieker, M.

    1995-07-01

    In this paper explicitly natural (from the geometrical point of view) Fock-space representations (contragradient Verma modules) of the quantized enveloping algebras are constructed. In order to do so, one starts from the Gauss decomposition of the quantum group and introduces the differential operators on the corresponding q-deformed flag manifold (assumed as a left comodule for the quantum group) by a projection to it of the right action of the quantized enveloping algebra on the quantum group. Finally, the representatives of the elements of the quantized enveloping algebra corresponding to the left-invariant vector fields on the quantum group are expressed as first-order differential operators on the q-deformed flag manifold.

  12. Quantized phase coding and connected region labeling for absolute phase retrieval.

    PubMed

    Chen, Xiangcheng; Wang, Yuwei; Wang, Yajun; Ma, Mengchao; Zeng, Chunnian

    2016-12-12

    This paper proposes an absolute phase retrieval method for complex object measurement based on quantized phase-coding and connected region labeling. A specific code sequence is embedded into quantized phase of three coded fringes. Connected regions of different codes are labeled and assigned with 3-digit-codes combining the current period and its neighbors. Wrapped phase, more than 36 periods, can be restored with reference to the code sequence. Experimental results verify the capability of the proposed method to measure multiple isolated objects.

  13. Vector Quantization Algorithm Based on Associative Memories

    NASA Astrophysics Data System (ADS)

    Guzmán, Enrique; Pogrebnyak, Oleksiy; Yáñez, Cornelio; Manrique, Pablo

    This paper presents a vector quantization algorithm for image compression based on extended associative memories. The proposed algorithm is divided in two stages. First, an associative network is generated applying the learning phase of the extended associative memories between a codebook generated by the LBG algorithm and a training set. This associative network is named EAM-codebook and represents a new codebook which is used in the next stage. The EAM-codebook establishes a relation between training set and the LBG codebook. Second, the vector quantization process is performed by means of the recalling stage of EAM using as associative memory the EAM-codebook. This process generates a set of the class indices to which each input vector belongs. With respect to the LBG algorithm, the main advantages offered by the proposed algorithm is high processing speed and low demand of resources (system memory); results of image compression and quality are presented.

  14. q-Derivatives, quantization methods and q-algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Twarock, Reidun

    1998-12-15

    Using the example of Borel quantization on S{sup 1}, we discuss the relation between quantization methods and q-algebras. In particular, it is shown that a q-deformation of the Witt algebra with generators labeled by Z is realized by q-difference operators. This leads to a discrete quantum mechanics. Because of Z, the discretization is equidistant. As an approach to a non-equidistant discretization of quantum mechanics one can change the Witt algebra using not the number field Z as labels but a quadratic extension of Z characterized by an irrational number {tau}. This extension is denoted as quasi-crystal Lie algebra, because thismore » is a relation to one-dimensional quasicrystals. The q-deformation of this quasicrystal Lie algebra is discussed. It is pointed out that quasicrystal Lie algebras can be considered also as a 'deformed' Witt algebra with a 'deformation' of the labeling number field. Their application to the theory is discussed.« less

  15. Quantized circular photogalvanic effect in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    de Juan, Fernando; Grushin, Adolfo G.; Morimoto, Takahiro; Moore, Joel E.

    The circular photogalvanic effect (CPGE) is the part of a photocurrent that switches depending on the sense of circular polarization of the incident light. It has been consistently observed in systems without inversion symmetry and depends on non-universal material details. We find that in a class of Weyl semimetals (e.g. SrSi2) and three-dimensional Rashba materials (e.g. doped Te) without inversion and mirror symmetries, the CPGE trace is effectively Quantized in terms of the combination of fundamental constants e3/h2 cɛ0 with no material-dependent parameters. This is so because the CPGE directly measures the topological charge of Weyl points near the Fermi surface, and non-quantized corrections from disorder and additional bands can be small over a significant range of incident frequencies. Moreover, the magnitude of the CPGE induced by a Weyl node is relatively large, which enables the direct detection of the monopole charge with current techniques.

  16. Quantized circular photogalvanic effect in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    de Juan, Fernando; Grushin, Adolfo G.; Morimoto, Takahiro; Moore, Joel E.

    2017-07-01

    The circular photogalvanic effect (CPGE) is the part of a photocurrent that switches depending on the sense of circular polarization of the incident light. It has been consistently observed in systems without inversion symmetry and depends on non-universal material details. Here we find that in a class of Weyl semimetals (for example, SrSi2) and three-dimensional Rashba materials (for example, doped Te) without inversion and mirror symmetries, the injection contribution to the CPGE trace is effectively quantized in terms of the fundamental constants e, h, c and with no material-dependent parameters. This is so because the CPGE directly measures the topological charge of Weyl points, and non-quantized corrections from disorder and additional bands can be small over a significant range of incident frequencies. Moreover, the magnitude of the CPGE induced by a Weyl node is relatively large, which enables the direct detection of the monopole charge with current techniques.

  17. Quantization with maximally degenerate Poisson brackets: the harmonic oscillator!

    NASA Astrophysics Data System (ADS)

    Nutku, Yavuz

    2003-07-01

    Nambu's construction of multi-linear brackets for super-integrable systems can be thought of as degenerate Poisson brackets with a maximal set of Casimirs in their kernel. By introducing privileged coordinates in phase space these degenerate Poisson brackets are brought to the form of Heisenberg's equations. We propose a definition for constructing quantum operators for classical functions, which enables us to turn the maximally degenerate Poisson brackets into operators. They pose a set of eigenvalue problems for a new state vector. The requirement of the single-valuedness of this eigenfunction leads to quantization. The example of the harmonic oscillator is used to illustrate this general procedure for quantizing a class of maximally super-integrable systems.

  18. Floating-point system quantization errors in digital control systems

    NASA Technical Reports Server (NTRS)

    Phillips, C. L.

    1973-01-01

    The results are reported of research into the effects on system operation of signal quantization in a digital control system. The investigation considered digital controllers (filters) operating in floating-point arithmetic in either open-loop or closed-loop systems. An error analysis technique is developed, and is implemented by a digital computer program that is based on a digital simulation of the system. As an output the program gives the programing form required for minimum system quantization errors (either maximum of rms errors), and the maximum and rms errors that appear in the system output for a given bit configuration. The program can be integrated into existing digital simulations of a system.

  19. An analogue of Weyl’s law for quantized irreducible generalized flag manifolds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matassa, Marco, E-mail: marco.matassa@gmail.com, E-mail: mmatassa@math.uio.no

    2015-09-15

    We prove an analogue of Weyl’s law for quantized irreducible generalized flag manifolds. This is formulated in terms of a zeta function which, similarly to the classical setting, satisfies the following two properties: as a functional on the quantized algebra it is proportional to the Haar state and its first singularity coincides with the classical dimension. The relevant formulas are given for the more general case of compact quantum groups.

  20. Toward a perceptual image quality assessment of color quantized images

    NASA Astrophysics Data System (ADS)

    Frackiewicz, Mariusz; Palus, Henryk

    2018-04-01

    Color image quantization is an important operation in the field of color image processing. In this paper, we consider new perceptual image quality metrics for assessment of quantized images. These types of metrics, e.g. DSCSI, MDSIs, MDSIm and HPSI achieve the highest correlation coefficients with MOS during tests on the six publicly available image databases. Research was limited to images distorted by two types of compression: JPG and JPG2K. Statistical analysis of correlation coefficients based on the Friedman test and post-hoc procedures showed that the differences between the four new perceptual metrics are not statistically significant.

  1. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe

    NASA Astrophysics Data System (ADS)

    Bandurin, Denis A.; Tyurnina, Anastasia V.; Yu, Geliang L.; Mishchenko, Artem; Zólyomi, Viktor; Morozov, Sergey V.; Kumar, Roshan Krishna; Gorbachev, Roman V.; Kudrynskyi, Zakhar R.; Pezzini, Sergio; Kovalyuk, Zakhar D.; Zeitler, Uli; Novoselov, Konstantin S.; Patanè, Amalia; Eaves, Laurence; Grigorieva, Irina V.; Fal'Ko, Vladimir I.; Geim, Andre K.; Cao, Yang

    2017-03-01

    A decade of intense research on two-dimensional (2D) atomic crystals has revealed that their properties can differ greatly from those of the parent compound. These differences are governed by changes in the band structure due to quantum confinement and are most profound if the underlying lattice symmetry changes. Here we report a high-quality 2D electron gas in few-layer InSe encapsulated in hexagonal boron nitride under an inert atmosphere. Carrier mobilities are found to exceed 103 cm2 V-1 s-1 and 104 cm2 V-1 s-1 at room and liquid-helium temperatures, respectively, allowing the observation of the fully developed quantum Hall effect. The conduction electrons occupy a single 2D subband and have a small effective mass. Photoluminescence spectroscopy reveals that the bandgap increases by more than 0.5 eV with decreasing the thickness from bulk to bilayer InSe. The band-edge optical response vanishes in monolayer InSe, which is attributed to the monolayer's mirror-plane symmetry. Encapsulated 2D InSe expands the family of graphene-like semiconductors and, in terms of quality, is competitive with atomically thin dichalcogenides and black phosphorus.

  2. A Heisenberg Algebra Bundle of a Vector Field in Three-Space and its Weyl Quantization

    NASA Astrophysics Data System (ADS)

    Binz, Ernst; Pods, Sonja

    2006-01-01

    In these notes we associate a natural Heisenberg group bundle Ha with a singularity free smooth vector field X = (id,a) on a submanifold M in a Euclidean three-space. This bundle yields naturally an infinite dimensional Heisenberg group HX∞. A representation of the C*-group algebra of HX∞ is a quantization. It causes a natural Weyl-deformation quantization of X. The influence of the topological structure of M on this quantization is encoded in the Chern class of a canonical complex line bundle inside Ha.

  3. Anomalous Subsidence at Rifted Continental Margins: Distinguishing Mantle Dynamic Topography from Anomalous Oceanic Crustal Thickness

    NASA Astrophysics Data System (ADS)

    Cowie, L.; Kusznir, N. J.

    2012-12-01

    It has been proposed that some continental rifted margins have anomalous subsidence histories and that at breakup they were elevated at shallower bathymetries than the isostatic response of classical rift models (McKenzie 1978) would predict. The existence of anomalous syn or post breakup subsidence of this form would have important implications for our understanding of the geodynamics of continental breakup and rifted continental margin formation, margin subsidence history and the evolution of syn and post breakup depositional systems. We have investigated three rifted continental margins; the Gulf of Aden, Galicia Bank and the Gulf of Lions, to determine whether the oceanic crust in the ocean-continent transition of these margins has present day anomalous subsidence and if so, whether it is caused by mantle dynamic topography or anomalous oceanic crustal thickness. Residual depth anomalies (RDA) corrected for sediment loading, using flexural backstripping and decompaction, have been calculated by comparing observed and age predicted oceanic bathymetries in order to identify anomalous oceanic bathymetry and subsidence at these margins. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions from Crosby & McKenzie (2009). Non-zero sediment corrected RDAs may result from anomalous oceanic crustal thickness with respect to the global average, or from mantle dynamic uplift. Positive RDAs may result from thicker than average oceanic crust or mantle dynamic uplift; negative RDAs may result from thinner than average oceanic crust or mantle dynamic subsidence. Gravity inversion incorporating a lithosphere thermal gravity anomaly correction and sediment thickness from 2D seismic data has been used to determine Moho depth and oceanic crustal basement thickness. The reference Moho depths used in the gravity inversion have been calibrated against seismic refraction Moho depths. The gravity inversion crustal basement thicknesses

  4. New vertices and canonical quantization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexandrov, Sergei

    2010-07-15

    We present two results on the recently proposed new spin foam models. First, we show how a (slightly modified) restriction on representations in the Engle-Pereira-Rovelli-Livine model leads to the appearance of the Ashtekar-Barbero connection, thus bringing this model even closer to loop quantum gravity. Second, we however argue that the quantization procedure used to derive the new models is inconsistent since it relies on the symplectic structure of the unconstrained BF theory.

  5. Hall thruster with grooved walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Hong; Ning Zhongxi; Yu Daren

    2013-02-28

    Axial-oriented and azimuthal-distributed grooves are formed on channel walls of a Hall thruster after the engine undergoes a long-term operation. Existing studies have demonstrated the relation between the grooves and the near-wall physics, such as sheath and electron near-wall transport. The idea to optimize the thruster performance with such grooves was also proposed. Therefore, this paper is devoted to explore the effects of wall grooves on the discharge characteristics of a Hall thruster. With experimental measurements, the variations on electron conductivity, ionization distribution, and integrated performance are obtained. The involved physical mechanisms are then analyzed and discussed. The findings helpmore » to not only better understand the working principle of Hall thruster discharge but also establish a physical fundamental for the subsequent optimization with artificial grooves.« less

  6. Spin Hall Effects in Metallic Antiferromagnets

    DOE PAGES

    Zhang, Wei; Jungfleisch, Matthias B.; Jiang, Wanjun; ...

    2014-11-04

    In this paper, we investigate four CuAu-I-type metallic antiferromagnets for their potential as spin current detectors using spin pumping and inverse spin Hall effect. Nontrivial spin Hall effects were observed for FeMn, PdMn, and IrMn while a much higher effect was obtained for PtMn. Using thickness-dependent measurements, we determined the spin diffusion lengths of these materials to be short, on the order of 1 nm. The estimated spin Hall angles of the four materials follow the relationship PtMn > IrMn > PdMn > FeMn, highlighting the correlation between the spin-orbit coupling of nonmagnetic species and the magnitude of the spinmore » Hall effect in their antiferromagnetic alloys. These experiments are compared with first-principles calculations. Finally, engineering the properties of the antiferromagnets as well as their interfaces can pave the way for manipulation of the spin dependent transport properties in antiferromagnet-based spintronics.« less

  7. Valley-chiral quantum Hall state in graphene superlattice structure

    NASA Astrophysics Data System (ADS)

    Tian, H. Y.; Tao, W. W.; Wang, J.; Cui, Y. H.; Xu, N.; Huang, B. B.; Luo, G. X.; Hao, Y. H.

    2016-05-01

    We theoretically investigate the quantum Hall effect in a graphene superlattice (GS) system, in which the two valleys of graphene are coupled together. In the presence of a perpendicular magnetic field, an ordinary quantum Hall effect is found with the sequence σxy=ν e^2/h(ν=0,+/-1,+/-2,\\cdots) . At the zeroth Hall platform, a valley-chiral Hall state stemming from the single K or K' valley is found and it is localized only on one sample boundary contributing to the longitudinal conductance but not to the Hall conductivity. Our findings may shed light on the graphene-based valleytronics applications.

  8. Chiral Majorana fermion modes regulated by a scanning tunneling microscope tip

    NASA Astrophysics Data System (ADS)

    Zhou, Yan-Feng; Hou, Zhe; Zhang, Ying-Tao; Sun, Qing-Feng

    2018-03-01

    The Majorana fermion can be described by a real wave function with only two phases (zero and π ) which provide a controllable degree of freedom. We propose a strategy to regulate the phase of the chiral Majorana state by coupling with a scanning tunneling microscope tip in a system consisting of a quantum anomalous Hall insulator coupled with a superconductor. With the change in the chemical potential, the chiral Majorana state can be tuned alternately between zero and π , in which the perfect normal tunneling and perfect crossed Andreev reflection appear, respectively. The perfect crossed Andreev reflection, by which a Cooper pair can be split into two electrons going into different terminals completely, leads to a pumping current and distinct quantized resistances. These findings may provide a signature of Majorana fermions and pave a feasible avenue to regulate the phase of the Majorana state.

  9. Theory of quantized systems: formal basis for DEVS/HLA distributed simulation environment

    NASA Astrophysics Data System (ADS)

    Zeigler, Bernard P.; Lee, J. S.

    1998-08-01

    In the context of a DARPA ASTT project, we are developing an HLA-compliant distributed simulation environment based on the DEVS formalism. This environment will provide a user- friendly, high-level tool-set for developing interoperable discrete and continuous simulation models. One application is the study of contract-based predictive filtering. This paper presents a new approach to predictive filtering based on a process called 'quantization' to reduce state update transmission. Quantization, which generates state updates only at quantum level crossings, abstracts a sender model into a DEVS representation. This affords an alternative, efficient approach to embedding continuous models within distributed discrete event simulations. Applications of quantization to message traffic reduction are discussed. The theory has been validated by DEVSJAVA simulations of test cases. It will be subject to further test in actual distributed simulations using the DEVS/HLA modeling and simulation environment.

  10. Nonlinearity in the effect of an inhomogeneous Hall angle

    NASA Astrophysics Data System (ADS)

    Koon, Daniel W.

    2007-03-01

    The differential equation for the electric potential in a conducting material with an inhomogeneous Hall angle is extended to the large-field limit. This equation is solved for a square specimen, using a successive over-relaxation [SOR] technique for matrices of up to 101x101 size, and the Hall weighting function -- the effect of local pointlike perturbations on the measured Hall angle -- is calculated as both the unperturbed Hall angle, θH, and the perturbation, δθH, exceed the linear, small angle limit. Preliminary results show that the Hall angle varies by no more than 5% if both | θH |<1 and | δθH |<1. Thus, previously calculated results for the Hall weighting function can be used for most materials in all but the most extreme magnetic fields.

  11. Anomalous neuronal responses to fluctuated inputs

    NASA Astrophysics Data System (ADS)

    Hosaka, Ryosuke; Sakai, Yutaka

    2015-10-01

    The irregular firing of a cortical neuron is thought to result from a highly fluctuating drive that is generated by the balance of excitatory and inhibitory synaptic inputs. A previous study reported anomalous responses of the Hodgkin-Huxley neuron to the fluctuated inputs where an irregularity of spike trains is inversely proportional to an input irregularity. In the current study, we investigated the origin of these anomalous responses with the Hindmarsh-Rose neuron model, map-based models, and a simple mixture of interspike interval distributions. First, we specified the parameter regions for the bifurcations in the Hindmarsh-Rose model, and we confirmed that the model reproduced the anomalous responses in the dynamics of the saddle-node and subcritical Hopf bifurcations. For both bifurcations, the Hindmarsh-Rose model shows bistability in the resting state and the repetitive firing state, which indicated that the bistability was the origin of the anomalous input-output relationship. Similarly, the map-based model that contained bistability reproduced the anomalous responses, while the model without bistability did not. These results were supported by additional findings that the anomalous responses were reproduced by mimicking the bistable firing with a mixture of two different interspike interval distributions. Decorrelation of spike trains is important for neural information processing. For such spike train decorrelation, irregular firing is key. Our results indicated that irregular firing can emerge from fluctuating drives, even weak ones, under conditions involving bistability. The anomalous responses, therefore, contribute to efficient processing in the brain.

  12. Giant Hall Photoconductivity in Narrow-Gapped Dirac Materials

    NASA Astrophysics Data System (ADS)

    Song, Justin C. W.; Kats, Mikhail A.

    2016-12-01

    Carrier dynamics acquire a new character in the presence of Bloch-band Berry curvature, which naturally arises in gapped Dirac materials (GDMs). Here we argue that photoresponse in GDMs with small band gaps is dramatically enhanced by Berry curvature. This manifests in a giant and saturable Hall photoconductivity when illuminated by circularly polarized light. Unlike Hall motion arising from a Lorentz force in a magnetic field, which impedes longitudinal carrier motion, Hall photoconductivity arising from Berry curvature can boost longitudinal carrier transport. In GDMs, this results in a helicity-dependent photoresponse in the Hall regime, where photoconductivity is dominated by its Hall component. We find that the induced Hall conductivity per incident irradiance is enhanced by up to six orders of magnitude when moving from the visible regime (with corresponding band gaps) to the far infrared. These results suggest that narrow-gap GDMs are an ideal test-bed for the unique physics that arise in the presence of Berry curvature, and open a new avenue for infrared and terahertz optoelectronics.

  13. Polymer quantization of the Einstein-Rosen wormhole throat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunstatter, Gabor; Peltola, Ari; Louko, Jorma

    2010-01-15

    We present a polymer quantization of spherically symmetric Einstein gravity in which the polymerized variable is the area of the Einstein-Rosen wormhole throat. In the classical polymer theory, the singularity is replaced by a bounce at a radius that depends on the polymerization scale. In the polymer quantum theory, we show numerically that the area spectrum is evenly spaced and in agreement with a Bohr-Sommerfeld semiclassical estimate, and this spectrum is not qualitatively sensitive to issues of factor ordering or boundary conditions except in the lowest few eigenvalues. In the limit of small polymerization scale we recover, within the numericalmore » accuracy, the area spectrum obtained from a Schroedinger quantization of the wormhole throat dynamics. The prospects of recovering from the polymer throat theory a full quantum-corrected spacetime are discussed.« less

  14. Distance learning in discriminative vector quantization.

    PubMed

    Schneider, Petra; Biehl, Michael; Hammer, Barbara

    2009-10-01

    Discriminative vector quantization schemes such as learning vector quantization (LVQ) and extensions thereof offer efficient and intuitive classifiers based on the representation of classes by prototypes. The original methods, however, rely on the Euclidean distance corresponding to the assumption that the data can be represented by isotropic clusters. For this reason, extensions of the methods to more general metric structures have been proposed, such as relevance adaptation in generalized LVQ (GLVQ) and matrix learning in GLVQ. In these approaches, metric parameters are learned based on the given classification task such that a data-driven distance measure is found. In this letter, we consider full matrix adaptation in advanced LVQ schemes. In particular, we introduce matrix learning to a recent statistical formalization of LVQ, robust soft LVQ, and we compare the results on several artificial and real-life data sets to matrix learning in GLVQ, a derivation of LVQ-like learning based on a (heuristic) cost function. In all cases, matrix adaptation allows a significant improvement of the classification accuracy. Interestingly, however, the principled behavior of the models with respect to prototype locations and extracted matrix dimensions shows several characteristic differences depending on the data sets.

  15. Chiral Anomalous Dispersion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadofyev, Andrey; Sen, Srimoyee

    The linearized Einstein equation describing graviton propagation through a chiral medium appears to be helicity dependent. We analyze features of the corresponding spectrum in a collision-less regime above a flat background. In the long wave-length limit, circularly polarized metric perturbations travel with a helicity dependent group velocity that can turn negative giving rise to a new type of an anomalous dispersion. We further show that this chiral anomalous dispersion is a general feature of polarized modes propagating through chiral plasmas extending our result to the electromagnetic sector.

  16. Chiral Anomalous Dispersion

    DOE PAGES

    Sadofyev, Andrey; Sen, Srimoyee

    2018-02-16

    The linearized Einstein equation describing graviton propagation through a chiral medium appears to be helicity dependent. We analyze features of the corresponding spectrum in a collision-less regime above a flat background. In the long wave-length limit, circularly polarized metric perturbations travel with a helicity dependent group velocity that can turn negative giving rise to a new type of an anomalous dispersion. We further show that this chiral anomalous dispersion is a general feature of polarized modes propagating through chiral plasmas extending our result to the electromagnetic sector.

  17. Air temperature gradient in large industrial hall

    NASA Astrophysics Data System (ADS)

    Karpuk, Michał; Pełech, Aleksander; Przydróżny, Edward; Walaszczyk, Juliusz; Szczęśniak, Sylwia

    2017-11-01

    In the rooms with dominant sensible heat load, volume airflow depends on many factors incl. pre-established temperature difference between exhaust and supply airflow. As the temperature difference is getting higher, airflow volume drops down, consequently, the cost of AHU is reduced. In high industrial halls with air exhaust grids located under the ceiling additional temperature gradient above working zone should be taken into consideration. In this regard, experimental research of the vertical air temperature gradient in high industrial halls were carried out for the case of mixing ventilation system The paper presents the results of air temperature distribution measurements in high technological hall (mechanically ventilated) under significant sensible heat load conditions. The supply airflow was delivered to the hall with the help of the swirl diffusers while exhaust grids were located under the hall ceiling. Basing on the air temperature distribution measurements performed on the seven pre-established levels, air temperature gradient in the area between 2.0 and 7.0 m above the floor was calculated and analysed.

  18. Visual data mining for quantized spatial data

    NASA Technical Reports Server (NTRS)

    Braverman, Amy; Kahn, Brian

    2004-01-01

    In previous papers we've shown how a well known data compression algorithm called Entropy-constrained Vector Quantization ( can be modified to reduce the size and complexity of very large, satellite data sets. In this paper, we descuss how to visualize and understand the content of such reduced data sets.

  19. Quantization of Gaussian samples at very low SNR regime in continuous variable QKD applications

    NASA Astrophysics Data System (ADS)

    Daneshgaran, Fred; Mondin, Marina

    2016-09-01

    The main problem for information reconciliation in continuous variable Quantum Key Distribution (QKD) at low Signal to Noise Ratio (SNR) is quantization and assignment of labels to the samples of the Gaussian Random Variables (RVs) observed at Alice and Bob. Trouble is that most of the samples, assuming that the Gaussian variable is zero mean which is de-facto the case, tend to have small magnitudes and are easily disturbed by noise. Transmission over longer and longer distances increases the losses corresponding to a lower effective SNR exasperating the problem. This paper looks at the quantization problem of the Gaussian samples at very low SNR regime from an information theoretic point of view. We look at the problem of two bit per sample quantization of the Gaussian RVs at Alice and Bob and derive expressions for the mutual information between the bit strings as a result of this quantization. The quantization threshold for the Most Significant Bit (MSB) should be chosen based on the maximization of the mutual information between the quantized bit strings. Furthermore, while the LSB string at Alice and Bob are balanced in a sense that their entropy is close to maximum, this is not the case for the second most significant bit even under optimal threshold. We show that with two bit quantization at SNR of -3 dB we achieve 75.8% of maximal achievable mutual information between Alice and Bob, hence, as the number of quantization bits increases beyond 2-bits, the number of additional useful bits that can be extracted for secret key generation decreases rapidly. Furthermore, the error rates between the bit strings at Alice and Bob at the same significant bit level are rather high demanding very powerful error correcting codes. While our calculations and simulation shows that the mutual information between the LSB at Alice and Bob is 0.1044 bits, that at the MSB level is only 0.035 bits. Hence, it is only by looking at the bits jointly that we are able to achieve a

  20. Preliminary Study of Arcjet Neutralization of Hall Thruster Clusters (Postprint)

    DTIC Science & Technology

    2007-01-18

    Clustered Hall thrusters have emerged as a favored choice for extending Hall thruster options to very high powers (50 kW - 150 kW). This paper...examines the possible use of an arcjet to neutralize clustered Hall thrusters, as the hybrid arcjet- Hall thruster concept can fill a performance niche...and helium, and then demonstrate the first successful operation of a low power Hall thruster -arcjet neutralizer package. In the surrogate anode studies