Science.gov

Sample records for quantized interaction field

  1. Self-adjointness of the Fourier expansion of quantized interaction field Lagrangians

    PubMed Central

    Paneitz, S. M.; Segal, I. E.

    1983-01-01

    Regularity properties significantly stronger than were previously known are developed for four-dimensional non-linear conformally invariant quantized fields. The Fourier coefficients of the interaction Lagrangian in the interaction representation—i.e., evaluated after substitution of the associated quantized free field—is a densely defined operator on the associated free field Hilbert space K. These Fourier coefficients are with respect to a natural basis in the universal cosmos ˜M, to which such fields canonically and maximally extend from Minkowski space-time M0, which is covariantly a submanifold of ˜M. However, conformally invariant free fields over M0 and ˜M are canonically identifiable. The kth Fourier coefficient of the interaction Lagrangian has domain inclusive of all vectors in K to which arbitrary powers of the free hamiltonian in ˜M are applicable. Its adjoint in the rigorous Hilbert space sense is a-k in the case of a hermitian Lagrangian. In particular (k = 0) the leading term in the perturbative expansion of the S-matrix for a conformally invariant quantized field in M0 is a self-adjoint operator. Thus, e.g., if ϕ(x) denotes the free massless neutral scalar field in M0, then ∫M0:ϕ(x)4:d4x is a self-adjoint operator. No coupling constant renormalization is involved here. PMID:16593346

  2. Effects of Landau quantization on the equations of state in intense laser plasma interactions with strong magnetic fields

    SciTech Connect

    Eliezer, Shalom; Norreys, Peter; Mendonca, Jose T.; Lancaster, Kate

    2005-05-15

    Recently, magnetic fields of 0.7({+-}0.1) gigaGauss (GG) have been observed in the laboratory in laser plasma interactions. From scaling arguments, it appears that a few gigaGauss magnetic fields may be within reach of existing petawatt lasers. In this paper, the equations of state (EOS) are calculated in the presence of these very large magnetic fields. The appropriate domain for electron degeneracy and for Landau quantization is calculated for the density-temperature domain relevant to laser plasma interactions. The conditions for a strong Landau quantization, for a magnetic field in the domain of 1-10 GG, are obtained. The role of this paper is to formulate the EOS in terms of those that can potentially be realized in laboratory plasmas. By doing so, it is intended to alert the experimental laser-plasma physics community to the potential of realizing Landau quantization in the laboratory for the first time since the theory was first formulated.

  3. Quantization of higher spin fields

    SciTech Connect

    Wagenaar, J. W.; Rijken, T. A

    2009-11-15

    In this article we quantize (massive) higher spin (1{<=}j{<=}2) fields by means of Dirac's constrained Hamilton procedure both in the situation were they are totally free and were they are coupled to (an) auxiliary field(s). A full constraint analysis and quantization is presented by determining and discussing all constraints and Lagrange multipliers and by giving all equal times (anti)commutation relations. Also we construct the relevant propagators. In the free case we obtain the well-known propagators and show that they are not covariant, which is also well known. In the coupled case we do obtain covariant propagators (in the spin-3/2 case this requires b=0) and show that they have a smooth massless limit connecting perfectly to the massless case (with auxiliary fields). We notice that in our system of the spin-3/2 and spin-2 case the massive propagators coupled to conserved currents only have a smooth limit to the pure massless spin-propagator, when there are ghosts in the massive case.

  4. Modeling molecule-plasmon interactions using quantized radiation fields within time-dependent electronic structure theory

    SciTech Connect

    Nascimento, Daniel R.; DePrince, A. Eugene

    2015-12-07

    We present a combined cavity quantum electrodynamics/ab initio electronic structure approach for simulating plasmon-molecule interactions in the time domain. The simple Jaynes-Cummings-type model Hamiltonian typically utilized in such simulations is replaced with one in which the molecular component of the coupled system is treated in a fully ab initio way, resulting in a computationally efficient description of general plasmon-molecule interactions. Mutual polarization effects are easily incorporated within a standard ground-state Hartree-Fock computation, and time-dependent simulations carry the same formal computational scaling as real-time time-dependent Hartree-Fock theory. As a proof of principle, we apply this generalized method to the emergence of a Fano-like resonance in coupled molecule-plasmon systems; this feature is quite sensitive to the nanoparticle-molecule separation and the orientation of the molecule relative to the polarization of the external electric field.

  5. Modeling molecule-plasmon interactions using quantized radiation fields within time-dependent electronic structure theory.

    PubMed

    Nascimento, Daniel R; DePrince, A Eugene

    2015-12-01

    We present a combined cavity quantum electrodynamics/ab initio electronic structure approach for simulating plasmon-molecule interactions in the time domain. The simple Jaynes-Cummings-type model Hamiltonian typically utilized in such simulations is replaced with one in which the molecular component of the coupled system is treated in a fully ab initio way, resulting in a computationally efficient description of general plasmon-molecule interactions. Mutual polarization effects are easily incorporated within a standard ground-state Hartree-Fock computation, and time-dependent simulations carry the same formal computational scaling as real-time time-dependent Hartree-Fock theory. As a proof of principle, we apply this generalized method to the emergence of a Fano-like resonance in coupled molecule-plasmon systems; this feature is quite sensitive to the nanoparticle-molecule separation and the orientation of the molecule relative to the polarization of the external electric field. PMID:26646866

  6. Modeling molecule-plasmon interactions using quantized radiation fields within time-dependent electronic structure theory.

    PubMed

    Nascimento, Daniel R; DePrince, A Eugene

    2015-12-01

    We present a combined cavity quantum electrodynamics/ab initio electronic structure approach for simulating plasmon-molecule interactions in the time domain. The simple Jaynes-Cummings-type model Hamiltonian typically utilized in such simulations is replaced with one in which the molecular component of the coupled system is treated in a fully ab initio way, resulting in a computationally efficient description of general plasmon-molecule interactions. Mutual polarization effects are easily incorporated within a standard ground-state Hartree-Fock computation, and time-dependent simulations carry the same formal computational scaling as real-time time-dependent Hartree-Fock theory. As a proof of principle, we apply this generalized method to the emergence of a Fano-like resonance in coupled molecule-plasmon systems; this feature is quite sensitive to the nanoparticle-molecule separation and the orientation of the molecule relative to the polarization of the external electric field.

  7. Quantization of Electromagnetic Fields in Cavities

    NASA Technical Reports Server (NTRS)

    Kakazu, Kiyotaka; Oshiro, Kazunori

    1996-01-01

    A quantization procedure for the electromagnetic field in a rectangular cavity with perfect conductor walls is presented, where a decomposition formula of the field plays an essential role. All vector mode functions are obtained by using the decomposition. After expanding the field in terms of the vector mode functions, we get the quantized electromagnetic Hamiltonian.

  8. Quantum dynamics of a BEC interacting with a single-mode quantized field in the presence of interatom collisions

    NASA Astrophysics Data System (ADS)

    Ghasemian, E.; Tavassoly, M. K.

    2016-09-01

    In this paper, we consider a model in which N two-level atoms in a Bose-Einstein condensate (BEC) interact with a single-mode quantized laser field. Our goal is to investigate the quantum dynamics of atoms in the BEC in the presence of interatom interactions. To achieve the purpose, at first, using the collective angular momentum operators, we try to reduce the dynamical Hamiltonian of the system to a well-known Jaynes-Cummings like model (JCM). We also use the Dicke model to construct the state of atomic subsystem, by which the analytical solution of the system may be obtained. Then, we analyze the atomic population inversion, the degree of entanglement between the "atoms in BEC" and the "field" as well as the Mandel parameter. Numerical results show that, the atomic population inversion, atom-field entanglement and quantum statistics of photons are very sensitive to the evolved parameters in the model (and so can be well-adjusted), such as the number of atoms in BEC, the intensity of initial field, the interatom coupling constant and detuning. To investigate the entanglement properties, we pay attention to the entropy and linear entropy. It is shown that, oscillations in the two entropy criteria may be seen, with some maxima of entanglement at some moments of time. Finally, looking for the quantum statistics, we evaluate the Mandel parameter, by which we demonstrate the sub-Poissonian statistics and so the nonclassical characteristics of the field state of system. Collapse-revival phenomenon, which is a distinguishable nonclassical characteristic of the system, can be apparently observed in the atomic population inversion and the Mandel parameter.

  9. Canonical quantization theory of general singular QED system of Fermi field interaction with generally decomposed gauge potential

    SciTech Connect

    Zhang, Zhen-Lu; Huang, Yong-Chang

    2014-03-15

    Quantization theory gives rise to transverse phonons for the traditional Coulomb gauge condition and to scalar and longitudinal photons for the Lorentz gauge condition. We describe a new approach to quantize the general singular QED system by decomposing a general gauge potential into two orthogonal components in general field theory, which preserves scalar and longitudinal photons. Using these two orthogonal components, we obtain an expansion of the gauge-invariant Lagrangian density, from which we deduce the two orthogonal canonical momenta conjugate to the two components of the gauge potential. We then obtain the canonical Hamiltonian in the phase space and deduce the inherent constraints. In terms of the naturally deduced gauge condition, the quantization results are exactly consistent with those in the traditional Coulomb gauge condition and superior to those in the Lorentz gauge condition. Moreover, we find that all the nonvanishing quantum commutators are permanently gauge-invariant. A system can only be measured in physical experiments when it is gauge-invariant. The vanishing longitudinal vector potential means that the gauge invariance of the general QED system cannot be retained. This is similar to the nucleon spin crisis dilemma, which is an example of a physical quantity that cannot be exactly measured experimentally. However, the theory here solves this dilemma by keeping the gauge invariance of the general QED system. -- Highlights: •We decompose the general gauge potential into two orthogonal parts according to general field theory. •We identify a new approach for quantizing the general singular QED system. •The results obtained are superior to those for the Lorentz gauge condition. •The theory presented solves dilemmas such as the nucleon spin crisis.

  10. Quantized vortices in interacting gauge theories

    NASA Astrophysics Data System (ADS)

    Butera, Salvatore; Valiente, Manuel; Öhberg, Patrik

    2016-01-01

    We consider a two-dimensional weakly interacting ultracold Bose gas whose constituents are two-level atoms. We study the effects of a synthetic density-dependent gauge field that arises from laser-matter coupling in the adiabatic limit with a laser configuration such that the single-particle zeroth-order vector potential corresponds to a constant synthetic magnetic field. We find a new exotic type of current nonlinearity in the Gross-Pitaevskii equation which affects the dynamics of the order parameter of the condensate. We investigate the rotational properties of this system in the Thomas-Fermi limit, focusing in particular on the physical conditions that make the existence of a quantized vortex in the system energetically favourable with respect to the non-rotating solution. We point out that two different physical interpretations can be given to this new nonlinearity: firstly it can be seen as a local modification of the mean field coupling constant, whose value depends on the angular momentum of the condensate. Secondly, it can be interpreted as a density modulated angular velocity given to the cloud. Looking at the problem from both of these viewpoints, we show that the effect of the new nonlinearity is to induce a rotation to the condensate, where the transition from non-rotating to rotating states depends on the density of the cloud.

  11. Quantized vortices in interacting gauge theories

    NASA Astrophysics Data System (ADS)

    Butera, Salvatore; Valiente, Manuel; Ohberg, Patrik

    2015-05-01

    We consider a two-dimensional weakly interacting ultracold Bose gas whose constituents are two-level atoms. We study the effects of a synthetic density-dependent gauge field that arises from laser-matter coupling in the adiabatic limit with a laser configuration such that the single-particle vector potential corresponds to a constant synthetic magnetic field. We find a new type of current non-linearity in the Gross-Pitaevskii equation which affects the dynamics of the order parameter of the condensate. We investigate on the physical conditions that make the nucleation of a quantized vortex in the system energetically favourable with respect to the non rotating solution. Two different physical interpretations can be given to this new non linearity: firstly it can be seen as a local modification of the mean field coupling constant, whose value depends on the angular momentum of the condensate. Secondly, it can be interpreted as a density modulated angular velocity given to the cloud. We analyze the physical conditions that make a single vortex state energetically favourable. In the Thomas-Fermi limit, we show that the effect of the new nonlinearity is to induce a rotation to the condensate, where the transition from non-rotating to rotating depends on the density of the cloud. The authors acknowledge support from CM-DTC and EPSRC.

  12. Entanglement Evolution Between Various Subsystems of Two Three-level Atoms Interacting with a Two-mode Quantized Field in the Presence of Converter Terms

    NASA Astrophysics Data System (ADS)

    Faraji, Elham; Tavassoly, Mohammad Kazem; Baghshahi, Hamid Reza

    2016-05-01

    In this paper, we study the interaction between two Λ-type three-level atoms (a typical qutrit-qutrit system) and two coupled modes of a quantized radiation field in the presence of field-field interaction (parametric down conversion) which are simultaneously injected within an optical cavity. Then, by applying an appropriate canonical transformation, the introduced model is reduced to a well-known form of the generalized Jaynes-Cummings model. Under particular initial conditions for atoms (in some possible states) and the fields (in the finite dimensional pair coherent state) which may be prepared, the explicit form of the state vector of the whole system is analytically evaluated. In order to find the degree of entanglement between different parts of subsystems ("atom+atom"-field, "atom+field"-atom and atom-atom) the dynamics of entanglement through different measures, namely, linear entropy and negativity is evaluated. In each case, the effect of various types of initial atomic states on the above measures are numerically analyzed, in detail. It is indicated that the amount of entanglement can be tuned by choosing appropriate initial states of atoms. Particularly, it is shown that the entanglement sudden death (ESD) can be controlled by adjusting the initial state of the atoms.

  13. Entropic quantization of scalar fields

    SciTech Connect

    Ipek, Selman; Caticha, Ariel

    2015-01-13

    Entropic Dynamics is an information-based framework that seeks to derive the laws of physics as an application of the methods of entropic inference. The dynamics is derived by maximizing an entropy subject to constraints that represent the physically relevant information that the motion is continuous and non-dissipative. Here we focus on the quantum theory of scalar fields. We provide an entropic derivation of Hamiltonian dynamics and using concepts from information geometry derive the standard quantum field theory in the Schrödinger representation.

  14. Features of multiphoton-stimulated bremsstrahlung in a quantized field

    NASA Astrophysics Data System (ADS)

    Burenkov, Ivan A.; Tikhonova, Olga V.

    2010-12-01

    The process of absorption and emission of external field quanta by a free electron during the scattering on a potential centre is investigated in the case of interaction with a quantized electromagnetic field. The analytical expression for differential cross-sections and probabilities of different multiphoton channels are obtained. We demonstrate that in the case of a non-classical 'squeezed vacuum' initial field state the probability for the electron to absorb a large number of photons appears to be larger by several orders of magnitude in comparison to the classical field and leads to the formation of the high-energy plateau in the electron energy spectrum. The generalization of the Marcuse effect to the case of the quantized field is worked out. The total probability of energy absorption by electron from the non-classical light is analysed.

  15. Phase-space quantization of field theory.

    SciTech Connect

    Curtright, T.; Zachos, C.

    1999-04-20

    In this lecture, a limited introduction of gauge invariance in phase-space is provided, predicated on canonical transformations in quantum phase-space. Exact characteristic trajectories are also specified for the time-propagating Wigner phase-space distribution function: they are especially simple--indeed, classical--for the quantized simple harmonic oscillator. This serves as the underpinning of the field theoretic Wigner functional formulation introduced. Scalar field theory is thus reformulated in terms of distributions in field phase-space. This is a pedagogical selection from work published and reported at the Yukawa Institute Workshop ''Gauge Theory and Integrable Models'', 26-29 January, 1999.

  16. Interactions between unidirectional quantized vortex rings

    NASA Astrophysics Data System (ADS)

    Zhu, T.; Evans, M. L.; Brown, R. A.; Walmsley, P. M.; Golov, A. I.

    2016-08-01

    We have used the vortex filament method to numerically investigate the interactions between pairs of quantized vortex rings that are initially traveling in the same direction but with their axes offset by a variable impact parameter. The interaction of two circular rings of comparable radii produces outcomes that can be categorized into four regimes, dependent only on the impact parameter; the two rings can either miss each other on the inside or outside or reconnect leading to final states consisting of either one or two deformed rings. The fraction of energy that went into ring deformations and the transverse component of velocity of the rings are analyzed for each regime. We find that rings of very similar radius only reconnect for a very narrow range of the impact parameter, much smaller than would be expected from the geometrical cross-section alone. In contrast, when the radii of the rings are very different, the range of impact parameters producing a reconnection is close to the geometrical value. A second type of interaction considered is the collision of circular rings with a highly deformed ring. This type of interaction appears to be a productive mechanism for creating small vortex rings. The simulations are discussed in the context of experiments on colliding vortex rings and quantum turbulence in superfluid helium in the zero-temperature limit.

  17. A physically motivated quantization of the electromagnetic field

    NASA Astrophysics Data System (ADS)

    Bennett, Robert; Barlow, Thomas M.; Beige, Almut

    2016-01-01

    The notion that the electromagnetic field is quantized is usually inferred from observations such as the photoelectric effect and the black-body spectrum. However accounts of the quantization of this field are usually mathematically motivated and begin by introducing a vector potential, followed by the imposition of a gauge that allows the manipulation of the solutions of Maxwell’s equations into a form that is amenable for the machinery of canonical quantization. By contrast, here we quantize the electromagnetic field in a less mathematically and more physically motivated way. Starting from a direct description of what one sees in experiments, we show that the usual expressions of the electric and magnetic field observables follow from Heisenberg’s equation of motion. In our treatment, there is no need to invoke the vector potential in a specific gauge and we avoid the commonly used notion of a fictitious cavity that applies boundary conditions to the field.

  18. Scalar field quantization without divergences in all spacetime dimensions

    NASA Astrophysics Data System (ADS)

    Klauder, John R.

    2011-07-01

    Covariant, self-interacting scalar quantum field theories admit solutions for low enough spacetime dimensions, but when additional divergences appear in higher dimensions, the traditional approach leads to results, such as triviality, that are less than satisfactory. Guided by idealized but soluble nonrenormalizable models, a nontraditional proposal for the quantization of covariant scalar field theories is advanced, which achieves a term-by-term, divergence-free, perturbation analysis of interacting models expanded about a suitable pseudofree theory, which differs from a free theory by an O(planck2) counterterm. These positive features are realized within a functional integral formulation by a local, nonclassical, counterterm that effectively transforms parameter changes in the action from generating mutually singular measures, which are the basis for divergences, to equivalent measures, thereby removing all divergences. The use of an alternative model about which to perturb is already supported by properties of the classical theory and is allowed by the inherent ambiguity in the quantization process itself. This procedure not only provides acceptable solutions for models for which no acceptable, faithful solution currently exists, e.g. phiv4n, for spacetime dimensions n >= 4, but offers a new, divergence-free solution for less-singular models as well, e.g. phiv4n, for n = 2, 3. Our analysis implies similar properties for multicomponent scalar models, such as those associated with the Higgs model.

  19. Stochastic variational method as quantization scheme: Field quantization of the complex Klein-Gordon equation

    NASA Astrophysics Data System (ADS)

    Koide, T.; Kodama, T.

    2015-09-01

    The stochastic variational method (SVM) is the generalization of the variational approach to systems described by stochastic variables. In this paper, we investigate the applicability of SVM as an alternative field-quantization scheme, by considering the complex Klein-Gordon equation. There, the Euler-Lagrangian equation for the stochastic field variables leads to the functional Schrödinger equation, which can be interpreted as the Euler (ideal fluid) equation in the functional space. The present formulation is a quantization scheme based on commutable variables, so that there appears no ambiguity associated with the ordering of operators, e.g., in the definition of Noether charges.

  20. Berry's phase in cavity QED: Proposal for observing an effect of field quantization

    SciTech Connect

    Carollo, A.; Santos, M. Franca; Vedral, V.

    2003-06-01

    We propose a feasible experiment to investigate quantum effects in geometric phases, arising when a classical source drives not a single quantum system, but two interacting ones. In particular, we show how to observe a signature of the quantization of the electromagnetic field through a vacuum effect in Berry's phase. To do so, we describe the interaction of an atom and a quantized cavity mode altogether driven by an external quasiclassical field. We also analyze the semiclassical limit recovering the usual Berry's phase results.

  1. Mathematics of Quantization and Quantum Fields

    NASA Astrophysics Data System (ADS)

    Dereziński, Jan; Gérard, Christian

    2013-03-01

    Preface; 1. Vector spaces; 2. Operators in Hilbert spaces; 3. Tensor algebras; 4. Analysis in L2(Rd); 5. Measures; 6. Algebras; 7. Anti-symmetric calculus; 8. Canonical commutation relations; 9. CCR on Fock spaces; 10. Symplectic invariance of CCR in finite dimensions; 11. Symplectic invariance of the CCR on Fock spaces; 12. Canonical anti-commutation relations; 13. CAR on Fock spaces; 14. Orthogonal invariance of CAR algebras; 15. Clifford relations; 16. Orthogonal invariance of the CAR on Fock spaces; 17. Quasi-free states; 18. Dynamics of quantum fields; 19. Quantum fields on space-time; 20. Diagrammatics; 21. Euclidean approach for bosons; 22. Interacting bosonic fields; Subject index; Symbols index.

  2. Quantization of gauge fields, graph polynomials and graph homology

    SciTech Connect

    Kreimer, Dirk; Sars, Matthias; Suijlekom, Walter D. van

    2013-09-15

    We review quantization of gauge fields using algebraic properties of 3-regular graphs. We derive the Feynman integrand at n loops for a non-abelian gauge theory quantized in a covariant gauge from scalar integrands for connected 3-regular graphs, obtained from the two Symanzik polynomials. The transition to the full gauge theory amplitude is obtained by the use of a third, new, graph polynomial, the corolla polynomial. This implies effectively a covariant quantization without ghosts, where all the relevant signs of the ghost sector are incorporated in a double complex furnished by the corolla polynomial–we call it cycle homology–and by graph homology. -- Highlights: •We derive gauge theory Feynman from scalar field theory with 3-valent vertices. •We clarify the role of graph homology and cycle homology. •We use parametric renormalization and the new corolla polynomial.

  3. Enhanced current quantization in high-frequency electron pumps in a perpendicular magnetic field

    SciTech Connect

    Wright, S. J.; Blumenthal, M. D.; Gumbs, Godfrey; Thorn, A. L.; Pepper, M.; Anderson, D.; Jones, G. A. C.; Nicoll, C. A.; Ritchie, D. A.; Janssen, T. J. B. M.; Holmes, S. N.

    2008-12-15

    We present experimental results of high-frequency quantized charge pumping through a quantum dot formed by the electric field arising from applied voltages in a GaAs/AlGaAs system in the presence of a perpendicular magnetic field B. Clear changes are observed in the quantized current plateaus as a function of applied magnetic field. We report on the robustness in the length of the quantized plateaus and improvements in the quantization as a result of the applied B field.

  4. The Theory of Quantized Fields. II

    DOE R&D Accomplishments Database

    Schwinger, J.

    1951-01-01

    The arguments leading to the formulation of the Action Principle for a general field are presented. In association with the complete reduction of all numerical matrices into symmetrical and anti-symmetrical parts, the general field is decomposed into two sets, which are identified with Bose-Einstein and Fermi-Dirac fields. The spin restriction on the two kinds of fields is inferred from the time reflection invariance requirement. The consistency of the theory is verified in terms of a criterion involving the various generators of infinitesimal transformations. Following a discussion of charged fields, the electromagnetic field is introduced to satisfy the postulate of general gauge invariance. As an aspect of the latter, it is recognized that the electromagnetic field and charged fields are not kinematically independent. After a discussion of the field-strength commutation relations, the independent dynamical variable of the electromagnetic field are exhibited in terms of a special gauge.

  5. Gravity quantized: Loop quantum gravity with a scalar field

    SciTech Connect

    Domagala, Marcin; Kaminski, Wojciech; Giesel, Kristina; Lewandowski, Jerzy

    2010-11-15

    ...''but we do not have quantum gravity.'' This phrase is often used when analysis of a physical problem enters the regime in which quantum gravity effects should be taken into account. In fact, there are several models of the gravitational field coupled to (scalar) fields for which the quantization procedure can be completed using loop quantum gravity techniques. The model we present in this paper consists of the gravitational field coupled to a scalar field. The result has similar structure to the loop quantum cosmology models, except that it involves all the local degrees of freedom of the gravitational field because no symmetry reduction has been performed at the classical level.

  6. Novel properties of the q-analogue quantized radiation field

    NASA Technical Reports Server (NTRS)

    Nelson, Charles A.

    1993-01-01

    The 'classical limit' of the q-analog quantized radiation field is studied paralleling conventional quantum optics analyses. The q-generalizations of the phase operator of Susskind and Glogower and that of Pegg and Barnett are constructed. Both generalizations and their associated number-phase uncertainty relations are manifestly q-independent in the n greater than g number basis. However, in the q-coherent state z greater than q basis, the variance of the generic electric field, (delta(E))(sup 2) is found to be increased by a factor lambda(z) where lambda(z) greater than 1 if q not equal to 1. At large amplitudes, the amplitude itself would be quantized if the available resolution of unity for the q-analog coherent states is accepted in the formulation. These consequences are remarkable versus the conventional q = 1 limit.

  7. The Theory of Quantized Fields. III

    DOE R&D Accomplishments Database

    Schwinger, J.

    1953-05-01

    In this paper we discuss the electromagnetic field, as perturbed by a prescribed current. All quantities of physical interest in various situations, eigenvalues, eigenfunctions, and transformation probabilities, are derived from a general transformation function which is expressed in a non-Hermitian representation. The problems treated are: the determination of the energy-momentum eigenvalues and eigenfunctions for the isolated electromagnetic field, and the energy eigenvalues and eigenfunctions for the field perturbed by a time-independent current that departs from zero only within a finite time interval, and for a time-dependent current that assumes non-vanishing time-independent values initially and finally. The results are applied in a discussion of the intra-red catastrophe and of the adiabatic theorem. It is shown how the latter can be exploited to give a uniform formulation for all problems requiring the evaluation of transition probabilities or eigenvalue displacements.

  8. Quantum logic with quantized control fields beyond the 1/ nmacr limit: Mathematically possible, physically unlikely

    NASA Astrophysics Data System (ADS)

    Gea-Banacloche, Julio; Miller, Mayo

    2008-09-01

    A formal Hamiltonian is presented that allows quantum logic with quantized control fields beyond the 1/ nmacr error level, if the field is initially in a (multimode) number state. The key requirement is that the interaction be completely insensitive to the phase of the field. We find, however, that when we try to satisfy this requirement by using a realistic interaction model for trapped ions in phase-insensitive decoherence-free subspaces, the 1/ nmacr scaling is obtained again. We conjecture that it may not be possible to improve on this scaling by physically realizable radiation-matter interactions.

  9. Precise quantization of anomalous Hall effect near zero magnetic field

    SciTech Connect

    Bestwick, A. J.; Fox, E. J.; Kou, Xufeng; Pan, Lei; Wang, Kang L.; Goldhaber-Gordon, D.

    2015-05-04

    In this study, we report a nearly ideal quantum anomalous Hall effect in a three-dimensional topological insulator thin film with ferromagnetic doping. Near zero applied magnetic field we measure exact quantization in the Hall resistance to within a part per 10,000 and a longitudinal resistivity under 1 Ω per square, with chiral edge transport explicitly confirmed by nonlocal measurements. Deviations from this behavior are found to be caused by thermally activated carriers, as indicated by an Arrhenius law temperature dependence. Using the deviations as a thermometer, we demonstrate an unexpected magnetocaloric effect and use it to reach near-perfect quantization by cooling the sample below the dilution refrigerator base temperature in a process approximating adiabatic demagnetization refrigeration.

  10. Quantization of scalar fields coupled to point masses

    NASA Astrophysics Data System (ADS)

    Barbero G, J. Fernando; Juárez-Aubry, Benito A.; Margalef-Bentabol, Juan; Villaseñor, Eduardo J. S.

    2015-12-01

    We study the Fock quantization of a compound classical system consisting of point masses and a scalar field. We consider the Hamiltonian formulation of the model by using the geometric constraint algorithm of Gotay, Nester and Hinds. By relying on this Hamiltonian description, we characterize in a precise way the real Hilbert space of classical solutions to the equations of motion and use it to rigorously construct the Fock space of the system. We finally discuss the structure of this space, in particular the impossibility of writing it in a natural way as a tensor product of Hilbert spaces associated with the point masses and the field, respectively.

  11. Direct Images, Fields of Hilbert Spaces, and Geometric Quantization

    NASA Astrophysics Data System (ADS)

    Lempert, László; Szőke, Róbert

    2014-04-01

    Geometric quantization often produces not one Hilbert space to represent the quantum states of a classical system but a whole family H s of Hilbert spaces, and the question arises if the spaces H s are canonically isomorphic. Axelrod et al. (J. Diff. Geo. 33:787-902, 1991) and Hitchin (Commun. Math. Phys. 131:347-380, 1990) suggest viewing H s as fibers of a Hilbert bundle H, introduce a connection on H, and use parallel transport to identify different fibers. Here we explore to what extent this can be done. First we introduce the notion of smooth and analytic fields of Hilbert spaces, and prove that if an analytic field over a simply connected base is flat, then it corresponds to a Hermitian Hilbert bundle with a flat connection and path independent parallel transport. Second we address a general direct image problem in complex geometry: pushing forward a Hermitian holomorphic vector bundle along a non-proper map . We give criteria for the direct image to be a smooth field of Hilbert spaces. Third we consider quantizing an analytic Riemannian manifold M by endowing TM with the family of adapted Kähler structures from Lempert and Szőke (Bull. Lond. Math. Soc. 44:367-374, 2012). This leads to a direct image problem. When M is homogeneous, we prove the direct image is an analytic field of Hilbert spaces. For certain such M—but not all—the direct image is even flat; which means that in those cases quantization is unique.

  12. Note on Stochastic Quantization of Field Theories with Bottomless Actions

    NASA Astrophysics Data System (ADS)

    Ito, M.; Morita, K.

    1993-07-01

    It is shown that the kerneled Langevin equation, which has recently been proposed by Tanaka et al. to quantize field theories with bottomless actions, reproduces perturbation theory results independent of the initial conditions. The effective potential is approximately determined from the kerneled Langevin equation to be bounded from below. The evolution equation for the two-point correlation function also defines the effective potential for the propagator, which is given for the zero-dimensional ``wrong-sign'' -λφ4 model under the assumption that all higher-moment cumulants than the second vanish.

  13. q-bosons and the q-analogue quantized field

    NASA Technical Reports Server (NTRS)

    Nelson, Charles A.

    1995-01-01

    The q-analogue coherent states are used to identify physical signatures for the presence of a 1-analogue quantized radiation field in the q-CS classical limits where the absolute value of z is large. In this quantum-optics-like limit, the fractional uncertainties of most physical quantities (momentum, position, amplitude, phase) which characterize the quantum field are O(1). They only vanish as O(1/absolute value of z) when q = 1. However, for the number operator, N, and the N-Hamiltonian for a free q-boson gas, H(sub N) = h(omega)(N + 1/2), the fractional uncertainties do still approach zero. A signature for q-boson counting statistics is that (Delta N)(exp 2)/ (N) approaches 0 as the absolute value of z approaches infinity. Except for its O(1) fractional uncertainty, the q-generalization of the Hermitian phase operator of Pegg and Barnett, phi(sub q), still exhibits normal classical behavior. The standard number-phase uncertainty-relation, Delta(N) Delta phi(sub q) = 1/2, and the approximate commutation relation, (N, phi(sub q)) = i, still hold for the single-mode q-analogue quantized field. So, N and phi(sub q) are almost canonically conjugate operators in the q-CS classical limit. The q-analogue CS's minimize this uncertainty relation for moderate (absolute value of z)(exp 2).

  14. Casimir effect for a scalar field via Krein quantization

    SciTech Connect

    Pejhan, H.; Tanhayi, M.R.; Takook, M.V.

    2014-02-15

    In this work, we present a rather simple method to study the Casimir effect on a spherical shell for a massless scalar field with Dirichlet boundary condition by applying the indefinite metric field (Krein) quantization technique. In this technique, the field operators are constructed from both negative and positive norm states. Having understood that negative norm states are un-physical, they are only used as a mathematical tool for renormalizing the theory and then one can get rid of them by imposing some proper physical conditions. -- Highlights: • A modification of QFT is considered to address the vacuum energy divergence problem. • Casimir energy of a spherical shell is calculated, through this approach. • In this technique, it is shown, the theory is automatically regularized.

  15. Quantization of electromagnetic field and analysis of Purcell effect based on formalism of scattering matrix

    NASA Astrophysics Data System (ADS)

    Kaliteevski, M. A.; Gubaydullin, A. R.; Ivanov, K. A.; Mazlin, V. A.

    2016-09-01

    We have developed a rigorous self-consistent approach for the quantization of electromagnetic field in inhomogeneous structures. The approach is based on utilization of the scattering matrix of the system. Instead of the use of standard periodic Born-Karman boundary conditions, we use the quantization condition implying equating eigenvalues of the scattering matrix (S-matrix) of the system to unity (S-quantization). In the trivial case of uniform medium boundary condition for S-quantization is nothing but periodic boundary condition. S-quantization allows calculating modification of the spontaneous emission rate for arbitrary inhomogeneous structure and direction of the emitted radiation. S-quantization solves the long-standing problem coupled to normalization of the quasi-stationary electromagnetic modes. Examples of application of S-quantization for the calculation of spontaneous emission rate for the cases of Bragg reflector and microcavity are demonstrated.

  16. Electromagnetic-field quantization and spontaneous decay in left-handed media

    SciTech Connect

    Dung, Ho Trung; Buhmann, Stefan Yoshi; Knoell, Ludwig; Welsch, Dirk-Gunnar; Scheel, Stefan; Kaestel, Juergen

    2003-10-01

    We present a quantization scheme for the electromagnetic field interacting with atomic systems in the presence of dispersing and absorbing magnetodielectric media, including left-handed material having negative real part of the refractive index. The theory is applied to the spontaneous decay of a two-level atom at the center of a spherical free-space cavity surrounded by magnetodielectric matter of overlapping band-gap zones. Results for both big and small cavities are presented, and the problem of local-field corrections within the real-cavity model is addressed.

  17. Quantization of β-Fermi-Pasta-Ulam Lattice with Nearest and Next-nearest Neighbour Interactions

    NASA Astrophysics Data System (ADS)

    Dey, Bishwajyoti

    2015-03-01

    We quantize the β-Fermi-Pasta-Ulam (FPU) model with nearest and next-nearest neighbour (NNN) interactions using a number conserving approximation and a numerically exact diagonalization method. Our numerical mean field bi-phonon spectrum shows excellent agreement with the analytic mean field results of Ivic and Tsironis, except for the wave vector at the midpoint of the Brillouin zone. We then relax the mean field approximation and calculate the eigenvalue spectrum of the full Hamiltonian. We show the existence of multi-phonon bound states and analyze the properties of these states by varying the system parameters. From the calculation of the spatial correlation function we then show that these multi-phonon bound states are particle like states with finite spatial correlation. Accordingly we identify these multi-phonon bound states as the quantum equivalent of the breather solutions of the corresponding classical FPU model. The four-phonon spectrum of the system is then obtained and its properties are studied. We then generalize the study to an extended range interaction and quantize the β-FPU model with NNN interactions. We analyze the effects of the NNN interactions on the eigenvalue spectrum and the correlation functions of the system. I would like to thank DST, India and BCUD, Pune University, Pune for financial support through research projects.

  18. Cosmological backreaction of a quantized massless scalar field

    SciTech Connect

    Kaya, Ali; Tarman, Merve E-mail: merve.tarman@boun.edu.tr

    2012-01-01

    We consider the backreaction problem of a quantized minimally coupled massless scalar field in cosmology. The adiabatically regularized stress-energy tensor in a general Friedmann-Robertson-Walker background is approximately evaluated by using the fact that subhorizon modes evolve adiabatically and superhorizon modes are frozen. The vacuum energy density is verified to obey a new first order differential equation depending on a dimensionless parameter of order unity, which calibrates subhorizon/superhorizon division. We check the validity of the approximation by calculating the corresponding vacuum energy densities in fixed backgrounds, which are shown to agree with the known results in de Sitter space and space-times undergoing power law expansions. We then apply our findings to slow-roll inflationary models. Although backreaction effects are found to be negligible during the near exponential expansion, the vacuum energy density generated during this period might be important at later stages since it decreases slower than radiation or dust.

  19. Response of two-band systems to a single-mode quantized field

    NASA Astrophysics Data System (ADS)

    Shi, Z. C.; Shen, H. Z.; Wang, W.; Yi, X. X.

    2016-03-01

    The response of topological insulators (TIs) to an external weakly classical field can be expressed in terms of Kubo formula, which predicts quantized Hall conductivity of the quantum Hall family. The response of TIs to a single-mode quantized field, however, remains unexplored. In this work, we take the quantum nature of the external field into account and define a Hall conductance to characterize the linear response of a two-band system to the quantized field. The theory is then applied to topological insulators. Comparisons with the traditional Hall conductance are presented and discussed.

  20. Quantizing remote sensing radiation field research based on J-C model

    NASA Astrophysics Data System (ADS)

    Zhen, Ming; Bi, Siwen

    2014-03-01

    Remote sensing provides a powerful tool for human to explore the environment around us from multidimensional perspective and macroscopic view. As marrow of remote sensing, remote sensing information is about the message of light or electromagnetic wave obtained by remote sensing platform. Quantum remote sensing reveals remote sensing theories and methods in quantum level. Quantum remote sensing information is about how to express and transmit information by quantum state. Quantizing remote sensing radiation field is its main basis. Based on J-C model, which describes interaction between single mode light field and a two-level atom, expressions of operators correlated with light field can be obtained through state vector of atom-light field coupling system and Schrodinger equation. Both analysis and calculations show that quantum fluctuation of the light field can be squeezed. Numerical simulation is used to study the variation of quantum fluctuation, which deepens our understanding of quantum remote sensing information.

  1. Anatomy of a deformed symmetry: Field quantization on curved momentum space

    SciTech Connect

    Arzano, Michele

    2011-01-15

    In certain scenarios of deformed relativistic symmetries relevant for noncommutative field theories particles exhibit a momentum space described by a non-Abelian group manifold. Starting with a formulation of phase space for such particles which allows for a generalization to include group-valued momenta we discuss quantization of the corresponding field theory. Focusing on the particular case of {kappa}-deformed phase space we construct the one-particle Hilbert space and show how curvature in momentum space leads to an ambiguity in the quantization procedure reminiscent of the ambiguities one finds when quantizing fields in curved space-times. The tools gathered in the discussion on quantization allow for a clear definition of the basic deformed field mode operators and two-point function for {kappa}-quantum fields.

  2. Effect of trapping in a degenerate plasma in the presence of a quantizing magnetic field

    NASA Astrophysics Data System (ADS)

    Shah, H. A.; Iqbal, M. J.; Tsintsadze, N.; Masood, W.; Qureshi, M. N. S.

    2012-09-01

    Effect of trapping as a microscopic phenomenon in a degenerate plasma is investigated in the presence of a quantizing magnetic field. The plasma comprises degenerate electrons and non-degenerate ions. The presence of the quantizing magnetic field is discussed briefly and the effect of trapping is investigated by using the Fermi-Dirac distribution function. The linear dispersion relation for ion acoustic wave is derived in the presence of the quantizing magnetic field and its influence on the propagation characteristics of the linear ion acoustic wave is discussed. Subsequently, fully nonlinear equations for ion acoustic waves are used to obtain the Sagdeev potential and the investigation of solitary structures. The formation of solitary structures is studied both for fully and partially degenerate plasmas in the presence of a quantizing magnetic field. Both compressive and rarefactive solitons are obtained for different conditions of temperature and magnetic field.

  3. Effective Field Theory of Fractional Quantized Hall Nematics

    SciTech Connect

    Mulligan, Michael; Nayak, Chetan; Kachru, Shamit; /Stanford U., Phys. Dept. /SLAC

    2012-06-06

    We present a Landau-Ginzburg theory for a fractional quantized Hall nematic state and the transition to it from an isotropic fractional quantum Hall state. This justifies Lifshitz-Chern-Simons theory - which is shown to be its dual - on a more microscopic basis and enables us to compute a ground state wave function in the symmetry-broken phase. In such a state of matter, the Hall resistance remains quantized while the longitudinal DC resistivity due to thermally-excited quasiparticles is anisotropic. We interpret recent experiments at Landau level filling factor {nu} = 7/3 in terms of our theory.

  4. Conformally covariant quantization of the Maxwell field in de Sitter space

    NASA Astrophysics Data System (ADS)

    Faci, S.; Huguet, E.; Queva, J.; Renaud, J.

    2009-12-01

    In this article, we quantize the Maxwell (“massless spin one”) de Sitter field in a conformally invariant gauge. This quantization is invariant under the SO0(2,4) group and consequently under the de Sitter group. We obtain a new de Sitter-invariant two-point function which is very simple. Our method relies on the one hand on a geometrical point of view which uses the realization of Minkowski, de Sitter and anti-de Sitter spaces as intersections of the null cone in R6 and a moving plane, and on the other hand on a canonical quantization scheme of the Gupta-Bleuler type.

  5. Conformally covariant quantization of the Maxwell field in de Sitter space

    SciTech Connect

    Faci, S.; Huguet, E.; Queva, J.; Renaud, J.

    2009-12-15

    In this article, we quantize the Maxwell ('massless spin one') de Sitter field in a conformally invariant gauge. This quantization is invariant under the SO{sub 0}(2,4) group and consequently under the de Sitter group. We obtain a new de Sitter-invariant two-point function which is very simple. Our method relies on the one hand on a geometrical point of view which uses the realization of Minkowski, de Sitter and anti-de Sitter spaces as intersections of the null cone in R{sup 6} and a moving plane, and on the other hand on a canonical quantization scheme of the Gupta-Bleuler type.

  6. Quantized states in superconducting quantum wells biased by an external field

    NASA Astrophysics Data System (ADS)

    Shafranjuk, Serhii; Ketterson, John

    2004-03-01

    The interest to quantized states in superconducting quantum wells (SQW) is stimulated by rapid development of qubit devices. The SQW may be formed in different ways. In this report we consider SQW at a minimum of the superconducting order parameter, which happens, e.g, at a normal core of an Abrikosov vortex or in SINIS junctions (S are the superconducting banks, I is an insulating barrier, N is a thin normal metal layer). The Andreev reflection (when an incident electron is reflected as a hole and vice versa) at opposite SN and NS interfaces (or on SIN and NIS interfaces, which have an intermediate transparency) creates quantized states, which are observed in experiments. The quantization condition depends on the sample purity and the quantum well size, which should be comparable to the superconducting coherence length. However, the quantization condition may also be changed when a bias field is applied across the quantum well, and the phase of the superfluid condensate wave function becomes time-dependent. If the time dependence is arbitrary, and the energy is a bad quantum number, then in accordance with a general quantum mechanical rules no quantized states could arise. However, if the behavior is time-homogeneous (e.g., under influence of a dc field, or of an ac field of constant amplitude), the energy is a good quantum number, and the quantized states may exist. In this work we consider the formation of the quantized states in the SINIS junction biased by a dc and ac voltages. The calculations are made using the boundary conditions in the quasiclassical approximation. The quantization conditions are analyzed versus the quantum well size, the electron mean free path, and the external bias field magnitude.

  7. Quantized Conductance in InSb nanowires at zero magnetic field

    NASA Astrophysics Data System (ADS)

    Kammhuber, Jakob; Cassidy, Maja; Zhang, Hao; Gül, Önder; Pei, Fei; de Moor, Michiel; Watanabe, Kenji; Taniguchi, Takashi; Car, Diana; Bakkers, Erik; Kouwenhoven, Leo

    We present measurements of InSb nanowires in the ballistic transport regime. In 1D materials such as nanowires, electron scattering has an increased chance of back-reflection, obscuring the observation of quantized conductance at low magnetic fields. By improving the contacts to the nanowire as well as its dielectric environment backscattering events are minimized and conductance quantization is observable at zero magnetic field with high device yield. We study the evolution of individual sub-bands in an external magnetic field, observing a degeneracy between the 2nd and 3rd sub-band when the magnetic field is orientated perpendicular to the nanowire axis.

  8. Thermoelectric power of n-InSb in a transverse quantizing magnetic field

    SciTech Connect

    Gadzhialiev, M. M. Bashirov, R. R.; Pirmagomedov, Z. Sh.; Efendieva, T. N.; Mädge, H.; Filar, K.

    2015-07-15

    The thermoelectric power of electronic InSb is investigated in a transverse magnetic field up to 14 T at 80 K. It is established that the experimental results for a quantizing magnetic field agree with theoretical data obtained without accounting for spin splitting of the Landau levels.

  9. Phase space quantization, noncommutativity, and the gravitational field

    NASA Astrophysics Data System (ADS)

    Chatzistavrakidis, Athanasios

    2014-07-01

    In this paper we study the structure of the phase space in noncommutative geometry in the presence of a nontrivial frame. Our basic assumptions are that the underlying space is a symplectic and parallelizable manifold. Furthermore, we assume the validity of the Leibniz rule and the Jacobi identities. We consider noncommutative spaces due to the quantization of the symplectic structure and determine the momentum operators that guarantee a set of canonical commutation relations, appropriately extended to include the nontrivial frame. We stress the important role of left vs right acting operators and of symplectic duality. This enables us to write down the form of the full phase space algebra on these noncommutative spaces, both in the noncompact and in the compact case. We test our results against the class of four-dimensional and six-dimensional symplectic nilmanifolds, thus presenting a large set of nontrivial examples that realizes the general formalism.

  10. Fourth quantization

    NASA Astrophysics Data System (ADS)

    Faizal, Mir

    2013-12-01

    In this Letter we will analyze the creation of the multiverse. We will first calculate the wave function for the multiverse using third quantization. Then we will fourth-quantize this theory. We will show that there is no single vacuum state for this theory. Thus, we can end up with a multiverse, even after starting from a vacuum state. This will be used as a possible explanation for the creation of the multiverse. We also analyze the effect of interactions in this fourth-quantized theory.

  11. Canonical quantization of lattice Higgs-Yang-Mills fields: Krein essential selfadjointness of the Hamiltonian

    NASA Astrophysics Data System (ADS)

    Challifour, John L.; Timko, Edward J.

    2016-06-01

    Using a Krein indefinite metric in Fock space, the Hamiltonian for cut-off models of canonically quantized Higgs-Yang-Mills fields interpolating between the Gupta-Bleuler-Feynman and Landau gauges is shown to be essentially maximal accretive and essentially Krein selfadjoint.

  12. Reformulation of the covering and quantizer problems as ground states of interacting particles

    NASA Astrophysics Data System (ADS)

    Torquato, S.

    2010-11-01

    It is known that the sphere-packing problem and the number-variance problem (closely related to an optimization problem in number theory) can be posed as energy minimizations associated with an infinite number of point particles in d -dimensional Euclidean space Rd interacting via certain repulsive pair potentials. We reformulate the covering and quantizer problems as the determination of the ground states of interacting particles in Rd that generally involve single-body, two-body, three-body, and higher-body interactions. This is done by linking the covering and quantizer problems to certain optimization problems involving the “void” nearest-neighbor functions that arise in the theory of random media and statistical mechanics. These reformulations, which again exemplify the deep interplay between geometry and physics, allow one now to employ theoretical and numerical optimization techniques to analyze and solve these energy minimization problems. The covering and quantizer problems have relevance in numerous applications, including wireless communication network layouts, the search of high-dimensional data parameter spaces, stereotactic radiation therapy, data compression, digital communications, meshing of space for numerical analysis, and coding and cryptography, among other examples. In the first three space dimensions, the best known solutions of the sphere-packing and number-variance problems (or their “dual” solutions) are directly related to those of the covering and quantizer problems, but such relationships may or may not exist for d≥4 , depending on the peculiarities of the dimensions involved. Our reformulation sheds light on the reasons for these similarities and differences. We also show that disordered saturated sphere packings provide relatively thin (economical) coverings and may yield thinner coverings than the best known lattice coverings in sufficiently large dimensions. In the case of the quantizer problem, we derive improved upper

  13. Conformally covariant coupled non-linear field theory on the hypercone: Vacuum solutions and quantization of normal modes

    SciTech Connect

    Aciktepe, T.; Akdeniz, K.G.; Barut, A.O.; Kalayci, J.

    1988-01-01

    For the conformally covariant coupled non-linear spinor-scalar field of the sigma-model type the authors show that the non-trivial vacuum instanton solutions have a geometric meaning as constant spinors on the five-dimensional hypercone. The quantized fields around these solutions correspond to the normal modes of the hypercone. A connection is thus established between field theory, particle spectrum of the fields and quantized excitations of a geometry (the hypercone).

  14. Uniqueness of the Fock quantization of scalar fields in spatially flat cosmological spacetimes

    NASA Astrophysics Data System (ADS)

    Castelló Gomar, Laura; Cortez, Jerónimo; Martín-de Blas, Daniel; Mena Marugán, Guillermo A.; Velhinho, José M.

    2012-11-01

    We study the Fock quantization of scalar fields in (generically) time dependent scenarios, focusing on the case in which the field propagation occurs in -either a background or effective- spacetime with spatial sections of flat compact topology. The discussion finds important applications in cosmology, like e.g. in the description of test Klein-Gordon fields and scalar perturbations in Friedmann-Robertson-Walker spacetime in the observationally favored flat case. Two types of ambiguities in the quantization are analyzed. First, the infinite ambiguity existing in the choice of a Fock representation for the canonical commutation relations, understandable as the freedom in the choice of inequivalent vacua for a given field. Besides, in cosmological situations, it is customary to scale the fields by time dependent functions, which absorb part of the evolution arising from the spacetime, which is treated classically. This leads to an additional ambiguity, this time in the choice of a canonical pair of field variables. We show that both types of ambiguities are removed by the requirements of (a) invariance of the vacuum under the symmetries of the three-torus, and (b) unitary implementation of the dynamics in the quantum theory. In this way, one arrives at a unique class of unitarily equivalent Fock quantizations for the system. This result provides considerable robustness to the quantum predictions and renders meaningful the confrontation with observation.

  15. Effect of adiabatic trapping on vortices and solitons in degenerate plasma in the presence of a quantizing magnetic field

    NASA Astrophysics Data System (ADS)

    Arshad, S.; Shah, H. A.; Qureshi, M. N. S.

    2014-07-01

    The effect of adiabatic trapping as a microscopic phenomenon in an inhomogeneous degenerate plasma is investigated in the presence of a quantizing magnetic field, and a modified Hasegawa Mima equation for the drift ion-acoustic wave is obtained. The linear dispersion relation in the presence of the quantizing magnetic field is investigated. The modified Hasegawa Mima equation is investigated to obtain bounce frequencies of the trapped particles. The Korteweg-de Vries equation is derived for the two-dimensional case and finally the Sagdeev potential approach is used to obtain solitary structures. The theoretically obtained results have been analyzed numerically for different astrophysical plasma and quantizing magnetic field values.

  16. Quantization of the superconducting energy gap in an intense microwave field

    NASA Astrophysics Data System (ADS)

    Boris, A. A.; Krasnov, V. M.

    2015-11-01

    We study experimentally photon-assisted tunneling in Nb /AlOx/Nb Josephson junctions. We perform a quantitative calibration of the microwave field inside the junction. This allows direct verification of the quantum efficiency of microwave photon detection, which corresponds to tunneling of one electron per one absorbed microwave photon. We observe that voltages of photon-assisted tunneling steps vary both with the microwave power and the tunneling current. However, this variation is not monotonous but staircaselike. The phenomenon is caused by mutual locking of positive and negative step series. A similar locking is observed with Shapiro steps. As a result, the superconducting gap assumes quantized values equal to multiples of the quarter of the photon energy. The quantization is a manifestation of nonequilibrium tuning (suppression or enhancement) of superconductivity by the microwave field.

  17. Quantum Rabi oscillation: A direct test of field quantization in a cavity

    SciTech Connect

    Brune, M.; Schmidt-Kaler, F.; Maali, A.; Dreyer, J.; Hagley, E.; Raimond, J.M.; Haroche, S.

    1996-03-01

    We have observed the Rabi oscillation of circular Rydberg atoms in the vacuum and in small coherent fields stored in a high {ital Q} cavity. The signal exhibits discrete Fourier components at frequencies proportional to the square root of successive integers. This provides direct evidence of field quantization in the cavity. The weights of the Fourier components yield the photon number distribution in the field. This investigation of the excited levels of the atom-cavity system reveals nonlinear quantum features at extremely low field strengths. {copyright} {ital 1996 The American Physical Society.}

  18. Quantization of massive scalar fields over static black string backgrounds

    SciTech Connect

    Fernandez Piedra, Owen Pavel; Montes de Oca, Alejandro Cabo

    2007-05-15

    The renormalized mean value of the corresponding components of the energy-momentum tensor for massive scalar fields coupled to an arbitrary gravitational field configuration having cylindrical symmetry are analytically evaluated using the Schwinger-DeWitt approximation, up to second order in the inverse mass value. The general results are employed to explicitly derive compact analytical expressions for the energy-momentum tensor in the particular background of the black-string space-time. In the case of the black string considered in this work, we prove that a violation of the weak energy condition occurs at the horizon of the space-time for values of the coupling constant, which include as particular cases the most interesting of minimal and conformal coupling.

  19. Quantized scalar field as DM: the axion's case

    SciTech Connect

    Barranco, J.; Bernal, A.

    2008-12-04

    We derive a rough estimation of the radius and the mass of a self-gravitating system made of axions. The system is a stationary solution of the Einstein-Klein-Gordon equations with a source term given by the vacuum expectation value of the energy-momentum operator constructed from the axion field. We found that such system would have masses of the order of asteroids ({approx}10{sup -10} M{sub {center_dot}}) and radius of the order of few centimeters. Some implications of such type of objects are discussed.

  20. Electromagnetic field quantization in an anisotropic magnetodielectric medium with spatial temporal dispersion

    NASA Astrophysics Data System (ADS)

    Amooshahi, M.; Kheirandish, F.

    2008-07-01

    By modeling a linear, anisotropic and inhomogeneous magnetodielectric medium with two independent sets of harmonic oscillators, the electromagnetic field is quantized in such a medium. The electric and magnetic polarizations of the medium are expressed as linear combinations of the ladder operators of the harmonic oscillators modeling the magnetodielectric medium. Maxwell and the constitutive equations of the medium are obtained as the Heisenberg equations of the total system. The electric and magnetic susceptibility tensors of the medium are obtained in terms of the tensors coupling the medium with the electromagnetic field. The explicit forms of the electromagnetic field operators are obtained for a translationally invariant medium.

  1. Precise Quantization of the Anomalous Hall Effect near Zero Magnetic Field.

    PubMed

    Bestwick, A J; Fox, E J; Kou, Xufeng; Pan, Lei; Wang, Kang L; Goldhaber-Gordon, D

    2015-05-01

    We report a nearly ideal quantum anomalous Hall effect in a three-dimensional topological insulator thin film with ferromagnetic doping. Near zero applied magnetic field we measure exact quantization in the Hall resistance to within a part per 10 000 and a longitudinal resistivity under 1  Ω per square, with chiral edge transport explicitly confirmed by nonlocal measurements. Deviations from this behavior are found to be caused by thermally activated carriers, as indicated by an Arrhenius law temperature dependence. Using the deviations as a thermometer, we demonstrate an unexpected magnetocaloric effect and use it to reach near-perfect quantization by cooling the sample below the dilution refrigerator base temperature in a process approximating adiabatic demagnetization refrigeration. PMID:26001016

  2. Particle on a torus knot: Constrained dynamics and semi-classical quantization in a magnetic field

    NASA Astrophysics Data System (ADS)

    Das, Praloy; Pramanik, Souvik; Ghosh, Subir

    2016-11-01

    Kinematics and dynamics of a particle moving on a torus knot poses an interesting problem as a constrained system. In the first part of the paper we have derived the modified symplectic structure or Dirac brackets of the above model in Dirac's Hamiltonian framework, both in toroidal and Cartesian coordinate systems. This algebra has been used to study the dynamics, in particular small fluctuations in motion around a specific torus. The spatial symmetries of the system have also been studied. In the second part of the paper we have considered the quantum theory of a charge moving in a torus knot in the presence of a uniform magnetic field along the axis of the torus in a semiclassical quantization framework. We exploit the Einstein-Brillouin-Keller (EBK) scheme of quantization that is appropriate for multidimensional systems. Embedding of the knot on a specific torus is inherently two dimensional that gives rise to two quantization conditions. This shows that although the system, after imposing the knot condition reduces to a one dimensional system, even then it has manifested non-planar features which shows up again in the study of fractional angular momentum. Finally we compare the results obtained from EBK (multi-dimensional) and Bohr-Sommerfeld (single dimensional) schemes. The energy levels and fractional spin depend on the torus knot parameters that specifies its non-planar features. Interestingly, we show that there can be non-planar corrections to the planar anyon-like fractional spin.

  3. Electron electric-dipole-moment experiment using electric-field quantized slow cesium atoms

    SciTech Connect

    Amini, Jason M.; Munger, Charles T. Jr.; Gould, Harvey

    2007-06-15

    A proof-of-principle electron electric-dipole-moment (e-EDM) experiment using slow cesium atoms, nulled magnetic fields, and electric-field quantization has been performed. With the ambient magnetic fields seen by the atoms reduced to less than 200 pT, an electric field of 6 MV/m lifts the degeneracy between states of unequal |m{sub F}| and, along with the low ({approx_equal}3 m/s) velocity, suppresses the systematic effect from the motional magnetic field. The low velocity and small residual magnetic field have made it possible to induce transitions between states and to perform state preparation, analysis, and detection in regions free of applied static magnetic and electric fields. This experiment demonstrates techniques that may be used to improve the e-EDM limit by two orders of magnitude, but it is not in itself a sensitive e-EDM search, mostly due to limitations of the laser system.

  4. Interaction of half-quantized vortices in two-component Bose-Einstein condensates

    SciTech Connect

    Eto, Minoru; Kasamatsu, Kenichi; Nitta, Muneto; Takeuchi, Hiromitsu; Tsubota, Makoto

    2011-06-15

    We study the asymptotic interaction between two half-quantized vortices in two-component Bose-Einstein condensates. When two vortices in different components are placed at distance 2R, the leading order of the force between them is found to be (lnR/{xi}-1/2)/R{sup 3}, in contrast to 1/R between vortices placed in the same component. We derive it analytically using the Abrikosov ansatz and the profile functions of the vortices, confirmed numerically with the Gross-Pitaevskii model. We also find that the short-range cutoff of the intervortex potential linearly depends on the healing length.

  5. Network synchronization landscape reveals compensatory structures, quantization, and the positive effect of negative interactions

    PubMed Central

    Nishikawa, Takashi; Motter, Adilson E.

    2010-01-01

    Synchronization, in which individual dynamical units keep in pace with each other in a decentralized fashion, depends both on the dynamical units and on the properties of the interaction network. Yet, the role played by the network has resisted comprehensive characterization within the prevailing paradigm that interactions facilitating pairwise synchronization also facilitate collective synchronization. Here we challenge this paradigm and show that networks with best complete synchronization, least coupling cost, and maximum dynamical robustness, have arbitrary complexity but quantized total interaction strength, which constrains the allowed number of connections. It stems from this characterization that negative interactions as well as link removals can be used to systematically improve and optimize synchronization properties in both directed and undirected networks. These results extend the recently discovered compensatory perturbations in metabolic networks to the realm of oscillator networks and demonstrate why “less can be more” in network synchronization. PMID:20489183

  6. Third quantization: modeling the universe as a 'particle' in a quantum field theory of the minisuperspace

    NASA Astrophysics Data System (ADS)

    Robles Pérez, S. J.

    2013-02-01

    The third quantization formalism of quantum cosmology adds simplicity and conceptual insight into the quantum description of the multiverse. Within such a formalism, the existence of squeezed and entangled states raises the question of whether the complementary principle of quantum mechanics has to be extended to the quantum description of the whole space-time manifold. If so, the particle description entails the consideration of a multiverse scenario and the wave description induces us to consider as well correlations and interactions among the universes of the multiverse.

  7. Quantization of charged fields in the presence of critical potential steps

    NASA Astrophysics Data System (ADS)

    Gavrilov, S. P.; Gitman, D. M.

    2016-02-01

    QED with strong external backgrounds that can create particles from the vacuum is well developed for the so-called t -electric potential steps, which are time-dependent external electric fields that are switched on and off at some time instants. However, there exist many physically interesting situations where external backgrounds do not switch off at the time infinity. E.g., these are time-independent nonuniform electric fields that are concentrated in restricted space areas. The latter backgrounds represent a kind of spatial x -electric potential steps for charged particles. They can also create particles from the vacuum, the Klein paradox being closely related to this process. Approaches elaborated for treating quantum effects in the t -electric potential steps are not directly applicable to the x -electric potential steps and their generalization for x -electric potential steps was not sufficiently developed. We believe that the present work represents a consistent solution of the latter problem. We have considered a canonical quantization of the Dirac and scalar fields with x -electric potential step and have found in- and out-creation and annihilation operators that allow one to have particle interpretation of the physical system under consideration. To identify in- and out-operators we have performed a detailed mathematical and physical analysis of solutions of the relativistic wave equations with an x -electric potential step with subsequent QFT analysis of correctness of such an identification. We elaborated a nonperturbative (in the external field) technique that allows one to calculate all characteristics of zero-order processes, such, for example, scattering, reflection, and electron-positron pair creation, without radiation corrections, and also to calculate Feynman diagrams that describe all characteristics of processes with interaction between the in-, out-particles and photons. These diagrams have formally the usual form, but contain special

  8. Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field

    NASA Astrophysics Data System (ADS)

    Piazza, L.; Lummen, T. T. A.; Quiñonez, E.; Murooka, Y.; Reed, B. W.; Barwick, B.; Carbone, F.

    2015-03-01

    Surface plasmon polaritons can confine electromagnetic fields in subwavelength spaces and are of interest for photonics, optical data storage devices and biosensing applications. In analogy to photons, they exhibit wave-particle duality, whose different aspects have recently been observed in separate tailored experiments. Here we demonstrate the ability of ultrafast transmission electron microscopy to simultaneously image both the spatial interference and the quantization of such confined plasmonic fields. Our experiments are accomplished by spatiotemporally overlapping electron and light pulses on a single nanowire suspended on a graphene film. The resulting energy exchange between single electrons and the quanta of the photoinduced near-field is imaged synchronously with its spatial interference pattern. This methodology enables the control and visualization of plasmonic fields at the nanoscale, providing a promising tool for understanding the fundamental properties of confined electromagnetic fields and the development of advanced photonic circuits.

  9. Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field

    PubMed Central

    Piazza, L; Lummen, T.T.A.; Quiñonez, E; Murooka, Y; Reed, B.W.; Barwick, B; Carbone, F

    2015-01-01

    Surface plasmon polaritons can confine electromagnetic fields in subwavelength spaces and are of interest for photonics, optical data storage devices and biosensing applications. In analogy to photons, they exhibit wave–particle duality, whose different aspects have recently been observed in separate tailored experiments. Here we demonstrate the ability of ultrafast transmission electron microscopy to simultaneously image both the spatial interference and the quantization of such confined plasmonic fields. Our experiments are accomplished by spatiotemporally overlapping electron and light pulses on a single nanowire suspended on a graphene film. The resulting energy exchange between single electrons and the quanta of the photoinduced near-field is imaged synchronously with its spatial interference pattern. This methodology enables the control and visualization of plasmonic fields at the nanoscale, providing a promising tool for understanding the fundamental properties of confined electromagnetic fields and the development of advanced photonic circuits. PMID:25728197

  10. Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field

    SciTech Connect

    Piazza, L.; Lummen, T. T. A.; Quiñonez, E.; Murooka, Y.; Reed, B. W.; Barwick, B.; Carbone, F.

    2015-03-02

    Surface plasmon polaritons can confine electromagnetic fields in subwavelength spaces and are of interest for photonics, optical data storage devices and biosensing applications. In analogy to photons, they exhibit wave–particle duality, whose different aspects have recently been observed in separate tailored experiments. Here we demonstrate the ability of ultrafast transmission electron microscopy to simultaneously image both the spatial interference and the quantization of such confined plasmonic fields. Our experiments are accomplished by spatiotemporally overlapping electron and light pulses on a single nanowire suspended on a graphene film. The resulting energy exchange between single electrons and the quanta of the photoinduced near-field is imaged synchronously with its spatial interference pattern. In conclusion, this methodology enables the control and visualization of plasmonic fields at the nanoscale, providing a promising tool for understanding the fundamental properties of confined electromagnetic fields and the development of advanced photonic circuits.

  11. Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field

    DOE PAGESBeta

    Piazza, L.; Lummen, T. T. A.; Quiñonez, E.; Murooka, Y.; Reed, B. W.; Barwick, B.; Carbone, F.

    2015-03-02

    Surface plasmon polaritons can confine electromagnetic fields in subwavelength spaces and are of interest for photonics, optical data storage devices and biosensing applications. In analogy to photons, they exhibit wave–particle duality, whose different aspects have recently been observed in separate tailored experiments. Here we demonstrate the ability of ultrafast transmission electron microscopy to simultaneously image both the spatial interference and the quantization of such confined plasmonic fields. Our experiments are accomplished by spatiotemporally overlapping electron and light pulses on a single nanowire suspended on a graphene film. The resulting energy exchange between single electrons and the quanta of the photoinducedmore » near-field is imaged synchronously with its spatial interference pattern. In conclusion, this methodology enables the control and visualization of plasmonic fields at the nanoscale, providing a promising tool for understanding the fundamental properties of confined electromagnetic fields and the development of advanced photonic circuits.« less

  12. Group field theory as the second quantization of loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Oriti, Daniele

    2016-04-01

    We construct a second quantized reformulation of canonical loop quantum gravity (LQG) at both kinematical and dynamical level, in terms of a Fock space of spin networks, and show in full generality that it leads directly to the group field theory (GFT) formalism. In particular, we show the correspondence between canonical LQG dynamics and GFT dynamics leading to a specific GFT model from any definition of quantum canonical dynamics of spin networks. We exemplify the correspondence of dynamics in the specific example of 3d quantum gravity. The correspondence between canonical LQG and covariant spin foam models is obtained via the GFT definition of the latter.

  13. Unique Fock quantization of a massive fermion field in a cosmological scenario

    NASA Astrophysics Data System (ADS)

    Cortez, Jerónimo; Elizaga Navascués, Beatriz; Martín-Benito, Mercedes; Mena Marugán, Guillermo A.; Velhinho, José M.

    2016-04-01

    It is well known that the Fock quantization of field theories in general spacetimes suffers from an infinite ambiguity, owing to the inequivalent possibilities in the selection of a representation of the canonical commutation or anticommutation relations, but also owing to the freedom in the choice of variables to describe the field among all those related by linear time-dependent transformations, including the dependence through functions of the background. In this work we remove this ambiguity (up to unitary equivalence) in the case of a massive Dirac free field propagating in a spacetime with homogeneous and isotropic spatial sections of spherical topology. Two physically reasonable conditions are imposed in order to arrive at this result: (a) The invariance of the vacuum under the spatial isometries of the background, and (b) the unitary implementability of the dynamical evolution that dictates the Dirac equation. We characterize the Fock quantizations with a nontrivial fermion dynamics that satisfy these two conditions. Then, we provide a complete proof of the unitary equivalence of the representations in this class under very mild requirements on the time variation of the background, once a criterion to discern between particles and antiparticles has been set.

  14. Second quantized scalar QED in homogeneous time-dependent electromagnetic fields

    SciTech Connect

    Kim, Sang Pyo

    2014-12-15

    We formulate the second quantization of a charged scalar field in homogeneous, time-dependent electromagnetic fields, in which the Hamiltonian is an infinite system of decoupled, time-dependent oscillators for electric fields, but it is another infinite system of coupled, time-dependent oscillators for magnetic fields. We then employ the quantum invariant method to find various quantum states for the charged field. For time-dependent electric fields, a pair of quantum invariant operators for each oscillator with the given momentum plays the role of the time-dependent annihilation and the creation operators, constructs the exact quantum states, and gives the vacuum persistence amplitude as well as the pair-production rate. We also find the quantum invariants for the coupled oscillators for the charged field in time-dependent magnetic fields and advance a perturbation method when the magnetic fields change adiabatically. Finally, the quantum state and the pair production are discussed when a time-dependent electric field is present in parallel to the magnetic field.

  15. Solitary structures in a spatially nonuniform degenerate plasma in the presence of quantizing magnetic field

    SciTech Connect

    Masood, W.; Shaukat, Muzzamal I.; Shah, H. A.; Mirza, Arshad M.

    2015-03-15

    In the present investigation, linear and nonlinear propagation of low frequency (ω≪Ω{sub ci}) electrostatic waves have been studied in a spatially inhomogeneous degenerate plasma with one dimensional electron trapping in the presence of a quantizing magnetic field and finite temperature effects. Using the drift approximation, formation of 1 and 2D drift ion solitary structures have been studied both for fully and partially degenerate plasmas. The theoretical results obtained have been analyzed numerically for the parameters typically found in white dwarfs for illustrative purpose. It is observed that the inclusion of Landau quantization significantly changes the expression of the electron number density of a dense degenerate plasma which affects the linear and nonlinear propagation of drift acoustic solitary waves in such a system. The present work may be beneficial to understand the propagation of drift solitary structures with weak transverse perturbation in a variety of physical situations, such as white dwarfs and laser-induced plasmas, where the quantum effects are expected to dominate.

  16. Master equation with quantized atomic motion including dipole-dipole interactions

    NASA Astrophysics Data System (ADS)

    Damanet, François; Braun, Daniel; Martin, John

    2016-05-01

    We derive a markovian master equation for the internal dynamics of an ensemble of two-level atoms including all effects related to the quantization of their motion. Our equation provides a unifying picture of the consequences of recoil and indistinguishability of atoms beyond the Lamb-Dicke regime on both their dissipative and conservative dynamics, and is relevant for experiments with ultracold trapped atoms. We give general expressions for the decay rates and the dipole-dipole shifts for any motional states, and we find analytical formulas for a number of relevant states (Gaussian states, Fock states and thermal states). In particular, we show that the dipole-dipole interactions and cooperative photon emission can be modulated through the external state of motion. The effects predicted should be experimentally observable with Rydberg atoms. FD would like to thank the F.R.S.-FNRS for financial support. FD is a FRIA Grant holder of the Fonds de la Recherche Scientifique-FNRS.

  17. Vacuum polarization of the quantized massive scalar field in Reissner-Nordstroem spacetime

    SciTech Connect

    Matyjasek, Jerzy; Tryniecki, Dariusz; Zwierzchowska, Katarzyna

    2010-06-15

    The approximation of the renormalized stress-energy tensor of the quantized massive scalar field in Reissner-Nordstroem spacetime is constructed. It is achieved by functional differentiation of the first two nonvanishing terms of the Schwinger-DeWitt expansion involving the coincidence limit of the Hadamard-Minakshisundaram-DeWitt-Seely coefficients [a{sub 3}] and [a{sub 4}] with respect to the metric tensor. It is shown, by comparison with the existing numerical results, that inclusion of the second-order term leads to substantial improvement of the approximation of the exact stress-energy tensor. The approximation to the field fluctuation, <{phi}{sup 2}>, is constructed and briefly discussed.

  18. A comparison between the quasi-species evolution and stochastic quantization of fields

    NASA Astrophysics Data System (ADS)

    Bianconi, G.; Rahmede, C.

    2012-06-01

    The quasi-species equation describes the evolution of the probability that a random individual in a population carries a given genome. Here we map the quasi-species equation for individuals of a self-reproducing population to an ensemble of scalar field elementary units undergoing a creation and annihilation process. In this mapping, the individuals of the population are mapped to field units and their genome to the field value. The selective pressure is mapped to an inverse temperature β of the system regulating the evolutionary dynamics of the fields. We show that the quasi-species equation if applied to an ensemble of field units gives in the small β limit can be put in relation with existing stochastic quantization approaches. The ensemble of field units described by the quasi-species equation relaxes to the fundamental state, describing an intrinsically dissipative dynamics. For a quadratic dispersion relation the mean energy ⟨U⟩ of the system changes as a function of the inverse temperature β. For small values of β the average energy ⟨U⟩ takes a relativistic form, for large values of β, the average energy ⟨U⟩ takes a classical form.

  19. Topological insulators in magnetic fields: Quantum Hall effect and edge channels with non-quantized θ-term

    NASA Astrophysics Data System (ADS)

    Fritz, Lars; Sitte, Matthias; Rosch, Achim; Altman, Ehud

    2012-02-01

    We investigate how a magnetic field induces one-dimensional edge channels when the two-dimensional surface states of three-dimensional topological insulators become gapped. The Hall effect, measured by contacting those channels, remains quantized even in situations, where the θ-term in the bulk and the associated surface Hall conductivities, σxy^S, are not quantized due to the breaking of time-reversal symmetry. The quantization arises as the θ-term changes by ±2 πn along a loop around n edge channels. Model calculations show how an interplay of orbital and Zeeman effects leads to quantum Hall transitions, where channels get redistributed along the edges of the crystal. The network of edges opens new possibilities to investigate the coupling of edge channels.

  20. Minimum-length deformed quantization of a free field on the de Sitter background and corrections to the inflaton perturbations

    NASA Astrophysics Data System (ADS)

    Maziashvili, Michael

    2012-06-01

    The effect of string- and quantum-gravity-inspired minimum-length deformed quantization on a free, massless scalar field is studied on the de Sitter background at the level of second quantization. An analytic solution of a field operator is obtained to the first order in deformation parameter. Using this solution, we then estimate the two-point and four-point correlation functions (with respect to the Bunch-Davies vacuum). The field operator shows up a nonlinear dependence on creation and annihilation operators, therefore the perturbation spectrum proves to be non-Gaussian. The correction to the power spectrum is of the same order as obtained previously in a similar study that incorporates the minimum-length deformed momentum operator into the first quantization picture and then proceeds in the standard way for second quantization. The non-Gaussianity comes at the level of four-point correlation function; its magnitude appears to be suppressed by the factor ˜exp⁡(-6N), where N is the number of e-foldings.

  1. A new mechanism of realizing inflationary universe with recourse to backreaction of quantized free fields — Inflation without inflaton —

    NASA Astrophysics Data System (ADS)

    Habara, Yoshinobu; Kawai, Hikaru; Ninomiya, Masao

    2015-02-01

    It is shown that the inflationary era in early universe is realized due to the effect of backreaction of quantized matter fields. In fact we start by quantizing a free scalar field in the Friedmann-Robertson-Walker space-time, and the field is fluctuating quantum mechanically around the bottom of the mass potential. We then obtain the vacuum expectation value of the energy density of the scalar field as a functional of the scale factor a( t) of the universe. By plugging it into the Einstein equation, a self-consistent equation is established in which the matter fields determine the time evolution of the universe. We solve this equation by setting few conditions and find the following solution: the universe expands à la de Sitter with e-folding number ≳ 60 and then it turns to shrink with a decreasing Hubble parameter H( t) which rapidly goes to zero.

  2. Field-induced Gap and Quantized Charge Pumping in Nano-helix

    SciTech Connect

    Qi, Xiao-Liang; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-02-15

    We propose several novel physical phenomena based on nano-scale helical wires. Applying a static electric field transverse to the helical wire induces a metal to insulator transition, with the band gap determined by the applied voltage. Similar idea can be applied to 'geometrically' constructing one-dimensional systems with arbitrary external potential. With a quadrupolar electrode configuration, the electric field could rotate in the transverse plane, leading to a quantized dc charge current proportional to the frequency of the rotation. Such a device could be used as a new standard for the high precession measurement of the electric current. The inverse effect implies that passing an electric current through a helical wire in the presence of a transverse static electric field can lead to a mechanical rotation of the helix. This effect can be used to construct nano-scale electro-mechanical motors. Finally, our methodology also enables new ways of controlling and measuring the electronic properties of helical biological molecules such as the DNA.

  3. Unconventional quantization of phi/sub 4//sup 4/ field theory does contain the physics of the conventional theory

    SciTech Connect

    Banai, M.; Lukacs, B.

    1988-09-01

    The authors demonstrate on the specific phi/sub 4//sup 4/-model of field theory that the set of perturbative S-matrix elements of this model obtained in the recently proposed unconventional canonical quantization approach of fields over quantum spacetime contains the standard renormalized perturbative S-matrix elements of the same model. This result, being essentially independent of the model chosen, legitimates the unconventional approach.

  4. Interaction of ions, atoms, and small molecules with quantized vortex lines in superfluid 4He

    NASA Astrophysics Data System (ADS)

    Mateo, David; Eloranta, Jussi; Williams, Gary A.

    2015-02-01

    The interaction of a number of impurities (H2, Ag, Cu, Ag2, Cu2, Li, He3 + , He* (3S), He2∗ (3Σu), and e-) with quantized rectilinear vortex lines in superfluid 4He is calculated by using the Orsay-Trento density functional theory (DFT) method at 0 K. The Donnelly-Parks (DP) potential function binding ions to the vortex is combined with DFT data, yielding the impurity radius as well as the vortex line core parameter. The vortex core parameter at 0 K (0.74 Å) obtained either directly from the vortex line geometry or through the DP potential fitting is smaller than previously suggested but is compatible with the value obtained from re-analysis of the Rayfield-Reif experiment. All of the impurities have significantly higher binding energies to vortex lines below 1 K than the available thermal energy, where the thermally assisted escape process becomes exponentially negligible. Even at higher temperatures 1.5-2.0 K, the trapping times for larger metal clusters are sufficiently long that the previously observed metal nanowire assembly in superfluid helium can take place at vortex lines. The binding energy of the electron bubble is predicted to decrease as a function of both temperature and pressure, which allows adjusting the trap depth for either permanent trapping or to allow thermally assisted escape. Finally, a new scheme for determining the trapping of impurities on vortex lines by optical absorption spectroscopy is outlined and demonstrated for He*.

  5. Interaction of Ions, Atoms and Small Molecules with Quantized Vortex Lines in Superfluid 4He

    NASA Astrophysics Data System (ADS)

    Eloranta, Jussi; Matteo, David; Williams, Gary

    2015-03-01

    The interaction of a number of impurities (H2, Ag, Cu, Ag2, Cu2, Li, He3+,He* (3 S), He2*(3Σu) and e-) with quantized rectilinear vortex lines in superfluid 4He is calculated using density functional methods at 0 K. The technique yields the impurity radius as well as the vortex line core parameter. The core parameter at 0 K (0.74 Å) obtained either directly from the vortex line geometry or from the trapping potential fitting is smaller than previously suggested but is compatible with a re-analysis of the Rayfield-Reif experiment. All of the impurities have significant binding energies to the vortex lines below 1 K where the thermally assisted escape process becomes very inefficient. Even at higher temperatures the trapping times, especially for larger clusters, are sufficiently long that the observed metal nanowire assembly in superfluid helium can take place at vortex lines. The binding energy of the electron bubble is predicted to decrease as a function of both temperature and pressure, which allows adjusting the trap depth for either permanent trapping or thermally assisted escape. A new scheme for determining the trapping of impurities on vortex lines by optical absorption spectroscopy is outlined and demonstrated for He*. Work supported by the NSF, Grants CHE-1262306 and DMR-1205734, and the Interdisciplinary Research Institute for the Sciences.

  6. Background field quantization in non-covariant gauges: renormalization and WTST identities

    NASA Astrophysics Data System (ADS)

    Mckeon, G.; Phillips, S. B.; Samant, S. S.; Sherry, T. N.

    1986-04-01

    Background field quantization of pure YM theories in non-covariant gauges is treated with particular emphasis on renormalization. Gauge fixing terms of the form ( {1}/{2α})n · Q aƒ abn · Q b are considered where ƒ ab can assume the forms ƒ ( i) ab = -δ ab (the axial gauge), ƒ ( ii) ab = (n · D(A)) 2ab/n 4 and ƒ ( iii) ab = D 2(A) ab/n 2 (the planar gauge). For the cases where ƒ ab depends explicitly on the background field Aμa the ghost sector is enlarged by the addition of appropriate Nielsen-Kallosh ghost fields. The BRS identities for these gauge choices are derived and solved. The quantum-corrected versions of both the bare background field gauge transformations and the bare quantum field gauge transformations are obtained from the BRS analysis. It is also shown that, to one loop, all the counter terms are determined by the background field independent part of the theory and this result is used, in cases (ii) and (iii), to derive all the counter terms and to show that Kallosh's theorem is verified. The result is also used to demonstrate the pathological nature of case (i) for α ≠ 0, in particular the result that Kallosh's theorem is not applicable. The result that the generating functional of Green functions is independent of the background field Aμa in the absence of all external sources is generalized to the case of non-covariant gauges. The equality established by Abbott between the 1PI generating functionals overlineΓ[A, 0] and Γ c[ overlineQ; A] overlineQ = A , where Γ c is a conventional generating functional in an A-dependent gauge, is analysed. We show that the WTST identities satisfied by Γc reduce, when overlineQ is set equal to A, to the naive Ward-identity satisfied by overlineΓ[A, 0] .

  7. Interaction of ions, atoms, and small molecules with quantized vortex lines in superfluid {sup 4}He

    SciTech Connect

    Mateo, David; Eloranta, Jussi; Williams, Gary A.

    2015-02-14

    The interaction of a number of impurities (H{sub 2}, Ag, Cu, Ag{sub 2}, Cu{sub 2}, Li, He{sub 3}{sup +}, He{sup *} ({sup 3}S), He{sub 2}{sup ∗} ({sup 3}Σ{sub u}), and e{sup −}) with quantized rectilinear vortex lines in superfluid {sup 4}He is calculated by using the Orsay-Trento density functional theory (DFT) method at 0 K. The Donnelly-Parks (DP) potential function binding ions to the vortex is combined with DFT data, yielding the impurity radius as well as the vortex line core parameter. The vortex core parameter at 0 K (0.74 Å) obtained either directly from the vortex line geometry or through the DP potential fitting is smaller than previously suggested but is compatible with the value obtained from re-analysis of the Rayfield-Reif experiment. All of the impurities have significantly higher binding energies to vortex lines below 1 K than the available thermal energy, where the thermally assisted escape process becomes exponentially negligible. Even at higher temperatures 1.5-2.0 K, the trapping times for larger metal clusters are sufficiently long that the previously observed metal nanowire assembly in superfluid helium can take place at vortex lines. The binding energy of the electron bubble is predicted to decrease as a function of both temperature and pressure, which allows adjusting the trap depth for either permanent trapping or to allow thermally assisted escape. Finally, a new scheme for determining the trapping of impurities on vortex lines by optical absorption spectroscopy is outlined and demonstrated for He{sup *}.

  8. Classical, semi-classical, and quantized-field descriptions of light propagation in general non-local and non-stationary dispersive and absorbing media

    NASA Astrophysics Data System (ADS)

    Jacobs, Verne L.

    2016-03-01

    Classical, semi-classical, and quantum-field descriptions for the interaction of light with matter are systematically discussed. Applications of interest include precise determinations of the linear and the non-linear electromagnetic response relevant to resonant pump-probe optical phenomena, such as electromagnetically induced transparency. In the quantum-mechanical description of matter systems, we introduce a general reduced-density-matrix framework. Time-domain (equation-of-motion) and frequency-domain (resolvent-operator) formulations are developed in a unified and self-consistent manner, using a Liouville-space operator representation. A preliminary semi-classical perturbation treatment of the electromagnetic interaction is adopted, in which the electromagnetic field is described as a classical field satisfying the Maxwell equations. Compact Liouville-space operator expressions are derived for the linear and the general (nth order) non-linear electromagnetic-response tensors describing moving many-electron systems. The tetradic matrix elements of the Liouville-space self-energy operators, which are introduced in the time-domain and frequency-domain formulations, are evaluated for environmental collisional and radiative interactions, in order to provide explicit forms for the quantum kinetic equations and the spectral-line shape formulas. It is emphasized that a quantized-field approach is essential for a fully self-consistent quantum-mechanical description of the interacting light-matter system.

  9. Anderson localization with second quantized fields in a coupled array of waveguides

    SciTech Connect

    Thompson, Clinton; Vemuri, Gautam; Agarwal, G. S.

    2010-11-15

    We report a theoretical study of Anderson localization of nonclassical light in an array of waveguides in which neighboring waveguides are evanescently coupled and in which the disorder can be added in a controlled manner. We use squeezed light at the input to investigate the effects of nonclassicality and compare the results with those obtained by using conventional classical fields, such as a coherent field and a Gaussian field. Our results show that there is an enhancement in fluctuations of localized light due to the medium's disorder. We find superbunching of the localized light, which may be useful for enhancing the interaction between radiation and matter. Another important consequence of sub-Poissonian statistics of the incoming light is to quench the total fluctuations at the output. Finally, we show that as a result of the multiplicative noise in the problem, the output field is far from Gaussian even if the input is a coherent field.

  10. Modifying atom-surface interactions with optical fields

    NASA Astrophysics Data System (ADS)

    Perreault, John D.; Bhattacharya, M.; Lonij, Vincent P. A.; Cronin, Alexander D.

    2008-04-01

    The ability to control matter on the nanometer scale is greatly influenced by the van der Waals (vdW) interaction. Therefore, understanding and manipulating the vdW interaction is of interest to the fields of nanotechnology and atom optics. We show that near-resonant light can significantly modify atom-surface vdW interactions in the nonretarded regime. A theory based on quantized electromagnetic fields is used to calculate (1) the ordinary vdW interaction, (2) corrections to the ordinary vdW interaction due to thermal radiation, and (3) modifications to the ordinary vdW interaction that result from monochromatic (laser) radiation. Near-resonant laser light with an intensity of 5W/cm2 is predicted to double the vdW interaction strength for sodium atoms, and possible experiments to detect this effect are discussed.

  11. Reservoir induced topological order and quantized charge pumps in open lattice models with interactions

    NASA Astrophysics Data System (ADS)

    Linzner, Dominik; Koster, Malte; Grusdt, Fabian; Fleischhauer, Michael

    2016-05-01

    Since the discovery of the quantum Hall effect, topological states of matter have attracted the attention of scientists in many fields of physics. By now there is a rather good understanding of topological order in closed, non-interacting systems. In contrast the extension to open systems in particular with interactions is entirely in its infancy. Recently there have been advances in characterizing topology in reservoir driven systems without interactions, but the topological invariants introduced lack a clear physical interpretation and are restricted to non-interacting systems. We consider a one-dimensional interacting topological system whose dynamics is entirely driven by reservoir couplings. By slowly tuning these couplings periodically in time we realize an open-system analogue of the Thouless charge pump that proves to be robust against unitary and non-unitary perturbations. Making use of this Thouless pump we introduce a topological invariant, which is applicable to interacting systems. Finally we propose a conceptual detection scheme that translates the open-system topological invariant into the context of a well understood closed system.

  12. Vector quantization

    NASA Technical Reports Server (NTRS)

    Gray, Robert M.

    1989-01-01

    During the past ten years Vector Quantization (VQ) has developed from a theoretical possibility promised by Shannon's source coding theorems into a powerful and competitive technique for speech and image coding and compression at medium to low bit rates. In this survey, the basic ideas behind the design of vector quantizers are sketched and some comments made on the state-of-the-art and current research efforts.

  13. The temperature dependence of the thermopower of the InSb Corbino disc in a quantizing magnetic field

    SciTech Connect

    Gadjialiev, M. M. Pirmagomedov, Z. Sh.

    2009-08-15

    Thermopower of the Corbino disc made of InSb with n{sub 77} = 2 x 10{sup 14} cm{sup -3} in a transverse magnetic field as high as 30 kOe at temperatures of 60, 67, and 80 K is studied. It is established that the diffusion fraction of thermopower in a quantizing magnetic field rises according to the power law H{sup 2.2} at all mentioned temperatures. By the magnitude of saturation thermopower {alpha}{sub xx}({infinity}) in a high field, the scattering mechanism of charge carriers is determined. It is established that in a temperature region of 60-80 K, the electrons are scattered by acoustic phonons.

  14. Semi-Classical and Quantized-Field Descriptions of Light Propagation in General Non-Local and Non-Stationary Dispersive and Absorbing Media

    NASA Astrophysics Data System (ADS)

    Jacobs, Verne

    2016-05-01

    Semi-classical and quantum-field descriptions for the interaction of light with matter are systematically discussed. Applications of interest include resonant pump-probe optical phenomena, such as electromagnetically induced transparency. In the quantum-mechanical description of matter systems, we introduce a general reduced-density-matrix framework. Time-domain (equation-of-motion) and frequency-domain (resolvent-operator) formulations are developed in a unified and self-consistent manner, using a Liouville-space operator representation. In the semi-classical description, the electromagnetic field is described as a classical field satisfying the Maxwell equations. Compact Liouville-space operator expressions are derived for the linear and the general (n'th order) non-linear electromagnetic-response tensors describing moving many-electron systems. The tetradic matrix elements of the Liouville-space self-energy operators are evaluated for environmental collisional and radiative interactions. The quantized-field approach is essential for a fully self-consistent quantum-mechanical description. Work supported by the Office of Naval Research through the Basic Research Program at The Naval Research Laboratory.

  15. Three-dimensional topological insulator in a magnetic field: chiral side surface states and quantized Hall conductance.

    PubMed

    Zhang, Yan-Yang; Wang, Xiang-Rong; Xie, X C

    2012-01-11

    Low energy excitation of surface states of a three-dimensional topological insulator (3DTI) can be described by Dirac fermions. By using a tight-binding model, the transport properties of the surface states in a uniform magnetic field are investigated. It is found that chiral surface states parallel to the magnetic field are responsible for the quantized Hall (QH) conductance (2n + 1)e²/h multiplied by the number of Dirac cones. Due to the two-dimensional nature of the surface states, the robustness of the QH conductance against impurity scattering is determined by the oddness and evenness of the Dirac cone number. An experimental setup for transport measurement is proposed.

  16. Electric charge quantization from gauge invariance of a Lagrangian: A catalogue of baryon-number-violating scalar interactions

    NASA Astrophysics Data System (ADS)

    Bowes, J. P.; Foot, R.; Volkas, R. R.

    1996-12-01

    In gauge theories such as the standard model, the electric charges of the fermions can be heavily constrained from the classical structure of the theory and from the cancellation of anomalies. There is, however, mounting evidence suggesting that these anomaly constraints are not as well motivated as the classical constraints. In light of this we discuss possible modifications of the minimal standard model that will give us complete electric charge quantization from classical constraints alone. Because these modifications to the standard model involve the consideration of baryon-number-violating scalar interactions, we present a complete catalogue of the simplest ways to modify the standard model so as to introduce explicit baryon number violation. This has implications for proton decay searches and baryogenesis.

  17. Coherent state quantization of quaternions

    SciTech Connect

    Muraleetharan, B. E-mail: santhar@gmail.com; Thirulogasanthar, K. E-mail: santhar@gmail.com

    2015-08-15

    Parallel to the quantization of the complex plane, using the canonical coherent states of a right quaternionic Hilbert space, quaternion field of quaternionic quantum mechanics is quantized. Associated upper symbols, lower symbols, and related quantities are analyzed. Quaternionic version of the harmonic oscillator and Weyl-Heisenberg algebra are also obtained.

  18. Coherent state quantization of quaternions

    NASA Astrophysics Data System (ADS)

    Muraleetharan, B.; Thirulogasanthar, K.

    2015-08-01

    Parallel to the quantization of the complex plane, using the canonical coherent states of a right quaternionic Hilbert space, quaternion field of quaternionic quantum mechanics is quantized. Associated upper symbols, lower symbols, and related quantities are analyzed. Quaternionic version of the harmonic oscillator and Weyl-Heisenberg algebra are also obtained.

  19. Electrical probing of field-driven cascading quantized transitions of skyrmion cluster states in MnSi nanowires

    NASA Astrophysics Data System (ADS)

    Du, Haifeng; Liang, Dong; Jin, Chiming; Kong, Lingyao; Stolt, Matthew J.; Ning, Wei; Yang, Jiyong; Xing, Ying; Wang, Jian; Che, Renchao; Zang, Jiadong; Jin, Song; Zhang, Yuheng; Tian, Mingliang

    2015-07-01

    Magnetic skyrmions are topologically stable whirlpool-like spin textures that offer great promise as information carriers for future spintronic devices. To enable such applications, particular attention has been focused on the properties of skyrmions in highly confined geometries such as one-dimensional nanowires. Hitherto, it is still experimentally unclear what happens when the width of the nanowire is comparable to that of a single skyrmion. Here, we achieve this by measuring the magnetoresistance in ultra-narrow MnSi nanowires. We observe quantized jumps in magnetoresistance versus magnetic field curves. By tracking the size dependence of the jump number, we infer that skyrmions are assembled into cluster states with a tunable number of skyrmions, in agreement with the Monte Carlo simulations. Our results enable an electric reading of the number of skyrmions in the cluster states, thus laying a solid foundation to realize skyrmion-based memory devices.

  20. Electrical probing of field-driven cascading quantized transitions of skyrmion cluster states in MnSi nanowires.

    PubMed

    Du, Haifeng; Liang, Dong; Jin, Chiming; Kong, Lingyao; Stolt, Matthew J; Ning, Wei; Yang, Jiyong; Xing, Ying; Wang, Jian; Che, Renchao; Zang, Jiadong; Jin, Song; Zhang, Yuheng; Tian, Mingliang

    2015-01-01

    Magnetic skyrmions are topologically stable whirlpool-like spin textures that offer great promise as information carriers for future spintronic devices. To enable such applications, particular attention has been focused on the properties of skyrmions in highly confined geometries such as one-dimensional nanowires. Hitherto, it is still experimentally unclear what happens when the width of the nanowire is comparable to that of a single skyrmion. Here, we achieve this by measuring the magnetoresistance in ultra-narrow MnSi nanowires. We observe quantized jumps in magnetoresistance versus magnetic field curves. By tracking the size dependence of the jump number, we infer that skyrmions are assembled into cluster states with a tunable number of skyrmions, in agreement with the Monte Carlo simulations. Our results enable an electric reading of the number of skyrmions in the cluster states, thus laying a solid foundation to realize skyrmion-based memory devices. PMID:26143867

  1. Consistent quantization of massive chiral electrodynamics in four dimensions

    SciTech Connect

    Andrianov, A. ); Bassetto, A.; Soldati, R.

    1989-10-09

    We discuss the quantization of a four-dimensional model in which a massive Abelian vector field interacts with chiral massless fermions. We show that, by introducing extra scalar fields, a renormalizable unitary {ital S} matrix can be obtained in a suitably defined Hilbert space of physical states.

  2. Quantized beam shifts in graphene

    SciTech Connect

    de Melo Kort-Kamp, Wilton Junior; Sinitsyn, Nikolai; Dalvit, Diego Alejandro Roberto

    2015-10-08

    We predict the existence of quantized Imbert-Fedorov, Goos-Hanchen, and photonic spin Hall shifts for light beams impinging on a graphene-on-substrate system in an external magnetic field. In the quantum Hall regime the Imbert-Fedorov and photonic spin Hall shifts are quantized in integer multiples of the fine structure constant α, while the Goos-Hanchen ones in multiples of α2. We investigate the influence on these shifts of magnetic field, temperature, and material dispersion and dissipation. An experimental demonstration of quantized beam shifts could be achieved at terahertz frequencies for moderate values of the magnetic field.

  3. Short-range intervortex interaction and interacting dynamics of half-quantized vortices in two-component Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Kasamatsu, Kenichi; Eto, Minoru; Nitta, Muneto

    2016-01-01

    We study the interaction and dynamics of two half-quantized vortices in two-component Bose-Einstein condensates. Using the Padé approximation for the vortex core profile, we calculate the intervortex potential, whose asymptotic form for a large distance has been derived by Eto et al. [Phys. Rev. A 83, 063603 (2011), 10.1103/PhysRevA.83.063603]. Through numerical simulations of the two-dimensional Gross-Pitaevskii equations, we reveal different kinds of dynamical trajectories of the vortices depending on the combinations of signs of circulations and the intercomponent density coupling. Under the adiabatic limit, we derive the equations of motion for the vortex coordinates, in which the motion is caused by the balance between Magnus force and the intervortex forces. The initial velocity of the vortex motion can be explained quantitatively by this point vortex approximation, but understanding the long-time behavior of the dynamics needs more consideration beyond our model.

  4. Quantized Pumping and Topology of the Phase Diagram for a System of Interacting Bosons

    NASA Astrophysics Data System (ADS)

    Berg, Erez; Levin, Michael; Altman, Ehud

    2011-03-01

    Interacting lattice bosons at integer filling can support two distinct insulating phases, which are separated by a critical point: the Mott insulator and the Haldane insulator [E. G. Dalla Torre, E. Berg, and E. Altman, Phys. Rev. Lett. 97, 260401 (2006).PRLTAO0031-900710.1103/PhysRevLett.97.260401]. The critical point can be gapped out by breaking lattice inversion symmetry. Here, we show that encircling this critical point adiabatically pumps one boson across the system. When multiple chains are coupled, the two insulating phases are no longer sharply distinct, but the pumping property survives. This leads to strict constraints on the topology of the phase diagram of systems of quasi-one-dimensional interacting bosons.

  5. Resistively detected NMR spectra of the crystal states of the two-dimensional electron gas in a quantizing magnetic field

    NASA Astrophysics Data System (ADS)

    Côté, R.; Simoneau, Alexandre M.

    2016-02-01

    Transport experiments on the two-dimensional electron gas (2DEG) confined into a semiconductor quantum well and subjected to a quantizing magnetic field have uncovered a rich variety of uniform and nonuniform phases such as the Laughlin liquids, the Wigner, bubble, and Skyrme crystals, and the quantum Hall stripe state. Optically pumped nuclear magnetic resonance (OP-NMR) has also been extremely useful in studying the magnetization and dynamics of electron solids with exotic spin textures such as the Skyrme crystal. Recently, it has been demonstrated that a related technique, resistively-detected nuclear magnetic resonance (RD-NMR), could be a good tool to study the topography of the electron solids in the fractional and integer quantum Hall regimes. In this work, we compute theoretically the RD-NMR line shapes of various crystal phases of the 2DEG and study the relation between their spin density and texture and their NMR spectra. This allows us to evaluate the ability of the RD-NMR to discriminate between the various types of crystal states.

  6. Quantization of Algebraic Reduction

    SciTech Connect

    Sniatycki, Jeodrzej

    2007-11-14

    For a Poisson algebra obtained by algebraic reduction of symmetries of a quantizable system we develop an analogue of geometric quantization based on the quantization structure of the original system.

  7. Next-to-leading term of the renormalized stress-energy tensor of the quantized massive scalar field in Schwarzschild spacetime. The back reaction

    SciTech Connect

    Matyjasek, Jerzy; Tryniecki, Dariusz

    2009-04-15

    The next-to-leading term of the renormalized stress-energy tensor of the quantized massive field with an arbitrary curvature coupling in the spacetime of the Schwarzschild black hole is constructed. It is achieved by functional differentiation of the DeWitt-Schwinger effective action involving coincidence limit of the Hadamard-Minakshisundaram-DeWitt-Seely coefficients a{sub 3} and a{sub 4}. It is shown, by comparison with the existing numerical results, that inclusion of the second-order term leads to substantial improvement of the approximation of the exact stress-energy tensor even in the closest vicinity of the event horizon. The back reaction of the quantized field upon the Schwarzschild black hole is briefly discussed.

  8. Observation of quantized motion of Rb atoms in an optical field

    NASA Astrophysics Data System (ADS)

    Jessen, P. S.; Gerz, C.; Lett, P. D.; Phillips, W. D.; Rolston, S. L.; Spreeuw, R. J. C.; Westbrook, C. I.

    1992-07-01

    We observe transitions of laser-cooled Rb between vibrational levels in subwavelength-sized optical potential wells, using high-resolution spectroscopy of resonance fluorescence. We measure the spacing of the levels and the population distribution, and find the atoms to be localized to 1/15 of the optical wavelength. We find up to 60% of the population of trapped atoms in the vibrational ground state. The dependence of the spectrum on the parameters of the optical field provides detailed information about the dynamics of laser-cooled atoms.

  9. Third quantization

    NASA Astrophysics Data System (ADS)

    Seligman, Thomas H.; Prosen, Tomaž

    2010-12-01

    The basic ideas of second quantization and Fock space are extended to density operator states, used in treatments of open many-body systems. This can be done for fermions and bosons. While the former only requires the use of a non-orthogonal basis, the latter requires the introduction of a dual set of spaces. In both cases an operator algebra closely resembling the canonical one is developed and used to define the dual sets of bases. We here concentrated on the bosonic case where the unboundedness of the operators requires the definitions of dual spaces to support the pair of bases. Some applications, mainly to non-equilibrium steady states, will be mentioned.

  10. Area potentials and deformation quantization.

    SciTech Connect

    Curtright, T. L.; Polychronakos, A. P.; Zachos, C. K.; High Energy Physics; Univ. of Miami; Rockefeller Univ.; Univ. of Ioannina

    2002-04-01

    Systems built out of N-body interactions, beyond 2-body interactions, are formulated on the plane, and investigated classically and quantum mechanically (in phase space). Their Wigner functions--the density matrices in phase-space quantization--are given and analyzed.

  11. Bloch theory and quantization of magnetic systems

    NASA Astrophysics Data System (ADS)

    Gruber, Michael J.

    2000-06-01

    Quantizing the motion of particles on a Riemannian manifold in the presence of a magnetic field poses the problems of existence and uniqueness of quantizations. Both of them are considered since the early days of geometric quantization but there is still some structural insight to gain from spectral theory. Following the work of Asch et al. (Magnetic Bloch analysis and Bochner Laplacians, J. Geom. Phys. 13 (3) (1994) 275-288) for the 2-torus we describe the relation between quantization on the manifold and Bloch theory on its covering space for more general compact manifolds.

  12. Four-dimensional symmetry from a broad viewpoint. II Invariant distribution of quantized field oscillators and questions on infinities

    NASA Technical Reports Server (NTRS)

    Hsu, J. P.

    1983-01-01

    The foundation of the quantum field theory is changed by introducing a new universal probability principle into field operators: one single inherent and invariant probability distribution P(/k/) is postulated for boson and fermion field oscillators. This can be accomplished only when one treats the four-dimensional symmetry from a broad viewpoint. Special relativity is too restrictive to allow such a universal probability principle. A radical length, R, appears in physics through the probability distribution P(/k/). The force between two point particles vanishes when their relative distance tends to zero. This appears to be a general property for all forces and resembles the property of asymptotic freedom. The usual infinities in vacuum fluctuations and in local interactions, however complicated they may be, are all removed from quantum field theories. In appendix A a simple finite and unitary theory of unified electroweak interactions is discussed without assuming Higgs scalar bosons.

  13. Light-Front Quantization of Gauge Theories

    SciTech Connect

    Brodskey, Stanley

    2002-12-01

    Light-front wavefunctions provide a frame-independent representation of hadrons in terms of their physical quark and gluon degrees of freedom. The light-front Hamiltonian formalism provides new nonperturbative methods for obtaining the QCD spectrum and eigensolutions, including resolvant methods, variational techniques, and discretized light-front quantization. A new method for quantizing gauge theories in light-cone gauge using Dirac brackets to implement constraints is presented. In the case of the electroweak theory, this method of light-front quantization leads to a unitary and renormalizable theory of massive gauge particles, automatically incorporating the Lorentz and 't Hooft conditions as well as the Goldstone boson equivalence theorem. Spontaneous symmetry breaking is represented by the appearance of zero modes of the Higgs field leaving the light-front vacuum equal to the perturbative vacuum. I also discuss an ''event amplitude generator'' for automatically computing renormalized amplitudes in perturbation theory. The importance of final-state interactions for the interpretation of diffraction, shadowing, and single-spin asymmetries in inclusive reactions such as deep inelastic lepton-hadron scattering is emphasized.

  14. Quantization of a scalar field in two Poincaré patches of anti-de Sitter space and AdS/CFT

    NASA Astrophysics Data System (ADS)

    Fujisawa, Ippei; Nakayama, Ryuichi

    2014-09-01

    Two sets of modes of a massive free scalar field are quantized in a pair of Poincaré patches of Lorentzian anti-de Sitter (AdS) space, AdSd+1 (d≥2). It is shown that in Poincaré coordinates (r,t,x→), the two boundaries at r=±∞ are connected. When the scalar mass m satisfies a condition 0<ν=√{(d2/4)+(}<1, there exist two sets of mode solutions to Klein-Gordon equation, with distinct fall-off behaviors at the boundary. By using the fact that the boundaries at r=±∞ are connected, a conserved Klein-Gordon norm can be defined for these two sets of scalar modes, and these modes are canonically quantized. Energy is also conserved. A prescription within the approximation of semi-classical gravity is presented for computing two- and three-point functions of the operators in the boundary CFT, which correspond to the two fall-off behaviours of scalar field solutions.

  15. Quantum transport equation for systems with rough surfaces and its application to ultracold neutrons in a quantizing gravity field

    SciTech Connect

    Escobar, M.; Meyerovich, A. E.

    2014-12-15

    We discuss transport of particles along random rough surfaces in quantum size effect conditions. As an intriguing application, we analyze gravitationally quantized ultracold neutrons in rough waveguides in conjunction with GRANIT experiments (ILL, Grenoble). We present a theoretical description of these experiments in the biased diffusion approximation for neutron mirrors with both one- and two-dimensional (1D and 2D) roughness. All system parameters collapse into a single constant which determines the depletion times for the gravitational quantum states and the exit neutron count. This constant is determined by a complicated integral of the correlation function (CF) of surface roughness. The reliable identification of this CF is always hindered by the presence of long fluctuation-driven correlation tails in finite-size samples. We report numerical experiments relevant for the identification of roughness of a new GRANIT waveguide and make predictions for ongoing experiments. We also propose a radically new design for the rough waveguide.

  16. Geothermal field's interaction with geophysical fields of another nature

    SciTech Connect

    Novik, Oleg B.; Mikhailovskaya, Irina B.; Repin, Dmitry G.; Yershov, Sergey V.

    1996-01-24

    The energy balance of active lithosphere zones is to a large extent determined by nonstationary interaction of mechanical (elastic and hydrodynamic), thermal, electromagnetic, and gravitational geophysical fields. Seismic disturbances of electromagnetic and temperature fields, repeatedly observed before earthquakes are a striking manifestation of this interaction (Sec. 1). Technological processes of exploitation of hydrothermal deposits are determined by the interaction of hydrodynamical and temperature field (Sec. 2). These “fast” interactions (with the characteristic time scale from seconds to years) take place against the background of “slow” thermomechanical interactions (time scale of Myears), the latter determining the formation of regional geothermal fields (Sec. 3).

  17. Quantization and Quantum-Like Phenomena: A Number Amplitude Approach

    NASA Astrophysics Data System (ADS)

    Robinson, T. R.; Haven, E.

    2015-12-01

    Historically, quantization has meant turning the dynamical variables of classical mechanics that are represented by numbers into their corresponding operators. Thus the relationships between classical variables determine the relationships between the corresponding quantum mechanical operators. Here, we take a radically different approach to this conventional quantization procedure. Our approach does not rely on any relations based on classical Hamiltonian or Lagrangian mechanics nor on any canonical quantization relations, nor even on any preconceptions of particle trajectories in space and time. Instead we examine the symmetry properties of certain Hermitian operators with respect to phase changes. This introduces harmonic operators that can be identified with a variety of cyclic systems, from clocks to quantum fields. These operators are shown to have the characteristics of creation and annihilation operators that constitute the primitive fields of quantum field theory. Such an approach not only allows us to recover the Hamiltonian equations of classical mechanics and the Schrödinger wave equation from the fundamental quantization relations, but also, by freeing the quantum formalism from any physical connotation, makes it more directly applicable to non-physical, so-called quantum-like systems. Over the past decade or so, there has been a rapid growth of interest in such applications. These include, the use of the Schrödinger equation in finance, second quantization and the number operator in social interactions, population dynamics and financial trading, and quantum probability models in cognitive processes and decision-making. In this paper we try to look beyond physical analogies to provide a foundational underpinning of such applications.

  18. Quantum optical random walk: Quantization rules and quantum simulation of asymptotics

    SciTech Connect

    Ellinas, Demosthenes; Smyrnakis, Ioannis

    2007-08-15

    Rules for quantizing the walker-coin parts of a classical random walk are provided by treating them as interacting quantum systems. A quantum optical walk (QOW) is introduced by means of a rule that treats the quantum or classical noise affecting the coin's state as a source of quantization. The long-term asymptotic statistics of the QO walker's position, which shows enhanced diffusion rates as compared to the classical case, is exactly solved. A quantum optical implementation of the walk provides a physical framework for quantum simulation of its asymptotic statistics. The simulation utilizes interacting two-level atoms and/or randomly pulsating laser fields with fluctuating parameters.

  19. Using the Relevance Vector Machine Model Combined with Local Phase Quantization to Predict Protein-Protein Interactions from Protein Sequences

    PubMed Central

    An, Ji-Yong; Meng, Fan-Rong; You, Zhu-Hong; Fang, Yu-Hong; Zhao, Yu-Jun; Zhang, Ming

    2016-01-01

    We propose a novel computational method known as RVM-LPQ that combines the Relevance Vector Machine (RVM) model and Local Phase Quantization (LPQ) to predict PPIs from protein sequences. The main improvements are the results of representing protein sequences using the LPQ feature representation on a Position Specific Scoring Matrix (PSSM), reducing the influence of noise using a Principal Component Analysis (PCA), and using a Relevance Vector Machine (RVM) based classifier. We perform 5-fold cross-validation experiments on Yeast and Human datasets, and we achieve very high accuracies of 92.65% and 97.62%, respectively, which is significantly better than previous works. To further evaluate the proposed method, we compare it with the state-of-the-art support vector machine (SVM) classifier on the Yeast dataset. The experimental results demonstrate that our RVM-LPQ method is obviously better than the SVM-based method. The promising experimental results show the efficiency and simplicity of the proposed method, which can be an automatic decision support tool for future proteomics research. PMID:27314023

  20. First quantized electrodynamics

    SciTech Connect

    Bennett, A.F.

    2014-06-15

    The parametrized Dirac wave equation represents position and time as operators, and can be formulated for many particles. It thus provides, unlike field-theoretic Quantum Electrodynamics (QED), an elementary and unrestricted representation of electrons entangled in space or time. The parametrized formalism leads directly and without further conjecture to the Bethe–Salpeter equation for bound states. The formalism also yields the Uehling shift of the hydrogenic spectrum, the anomalous magnetic moment of the electron to leading order in the fine structure constant, the Lamb shift and the axial anomaly of QED. -- Highlights: •First-quantized electrodynamics of the parametrized Dirac equation is developed. •Unrestricted entanglement in time is made explicit. •Bethe and Salpeter’s equation for relativistic bound states is derived without further conjecture. •One-loop scattering corrections and the axial anomaly are derived using a partial summation. •Wide utility of semi-classical Quantum Electrodynamics is argued.

  1. Geometric Quantization and Foliation Reduction

    NASA Astrophysics Data System (ADS)

    Skerritt, Paul

    A standard question in the study of geometric quantization is whether symplectic reduction interacts nicely with the quantized theory, and in particular whether "quantization commutes with reduction." Guillemin and Sternberg first proposed this question, and answered it in the affirmative for the case of a free action of a compact Lie group on a compact Kahler manifold. Subsequent work has focused mainly on extending their proof to non-free actions and non-Kahler manifolds. For realistic physical examples, however, it is desirable to have a proof which also applies to non-compact symplectic manifolds. In this thesis we give a proof of the quantization-reduction problem for general symplectic manifolds. This is accomplished by working in a particular wavefunction representation, associated with a polarization that is in some sense compatible with reduction. While the polarized sections described by Guillemin and Sternberg are nonzero on a dense subset of the Kahler manifold, the ones considered here are distributional, having support only on regions of the phase space associated with certain quantized, or "admissible", values of momentum. We first propose a reduction procedure for the prequantum geometric structures that "covers" symplectic reduction, and demonstrate how both symplectic and prequantum reduction can be viewed as examples of foliation reduction. Consistency of prequantum reduction imposes the above-mentioned admissibility conditions on the quantized momenta, which can be seen as analogues of the Bohr-Wilson-Sommerfeld conditions for completely integrable systems. We then describe our reduction-compatible polarization, and demonstrate a one-to-one correspondence between polarized sections on the unreduced and reduced spaces. Finally, we describe a factorization of the reduced prequantum bundle, suggested by the structure of the underlying reduced symplectic manifold. This in turn induces a factorization of the space of polarized sections that agrees

  2. Magnetic field evolution in interacting galaxies

    NASA Astrophysics Data System (ADS)

    Drzazga, R. T.; Chyży, K. T.; Jurusik, W.; Wiórkiewicz, K.

    2011-09-01

    Aims: Violent gravitational interactions can change the morphologies of galaxies and, by means of merging, transform them into elliptical galaxies. We aim to investigate how they affect the evolution of galactic magnetic fields. Methods: We selected 16 systems of interacting galaxies with available VLA archive radio data at 4.86 and 1.4 GHz and compared their radio emission and estimated magnetic field strengths with their star-forming activity, far-infrared emission, and the stage of tidal interaction. Results: The estimated mean of total magnetic field strength for our sample of interacting galaxies is 14 ± 5 μG, which is larger than for the non-interacting objects. The field regularity (of 0.27 ± 0.09) is lower than in typical spirals and indicates enhanced production of random magnetic fields in the interacting objects. We find a general evolution of magnetic fields: for weak interactions the strength of magnetic field is almost constant (10-15 μG) as interaction advances, then it increases up to 2× , peaks at the nuclear coalescence (25 μG), and decreases again, down to 5-6 μG, for the post-merger remnants. The main production of magnetic fields in colliding galaxies thus terminates somewhere close to the nuclear coalescence, after which magnetic field diffuses. The magnetic field strength for whole galaxies is weakly affected by the star formation rate (SFR), while the dependence is higher for galactic centres. We show that the morphological distortions visible in the radio total and polarized emission do not depend statistically on the global or local SFRs, while they do increase (especially in the polarization) with the advance of interaction. The constructed radio-far-infrared relations for interacting and non-interacting galaxies display a similar balance between the generation of cosmic rays, magnetic fields, and the production of the thermal energy and dust radiation. Conclusions: The regular magnetic fields are much more sensitive to

  3. Basis Light-Front Quantization: Recent Progress and Future Prospects

    NASA Astrophysics Data System (ADS)

    Vary, James P.; Adhikari, Lekha; Chen, Guangyao; Li, Yang; Maris, Pieter; Zhao, Xingbo

    2016-08-01

    Light-front Hamiltonian field theory has advanced to the stage of becoming a viable non-perturbative method for solving forefront problems in strong interaction physics. Physics drivers include hadron mass spectroscopy, generalized parton distribution functions, spin structures of the hadrons, inelastic structure functions, hadronization, particle production by strong external time-dependent fields in relativistic heavy ion collisions, and many more. We review selected recent results and future prospects with basis light-front quantization that include fermion-antifermion bound states in QCD, fermion motion in a strong time-dependent external field and a novel non-perturbative renormalization scheme.

  4. Vacuum-Induced Berry Phase Measured Via a Phase-Tunable Atom-Field Interaction

    NASA Astrophysics Data System (ADS)

    Gasparinetti, S.; Berger, S.; Abdumalikov, A. A.; Pechal, M.; Filipp, S.; Wallraff, A.

    2015-03-01

    Geometric phases incorporate a fundamental aspect of quantum mechanics. They are at the heart of many quantum phenomena in solid-state physics, from the quantum Hall effect to topologically protected phases, and may provide a resource for quantum computation. We present the first experimental observation of the vacuum-induced Berry phase, a geometric effect that arises when the phase of a quantized field mode coupled to an atom is adiabatically steered. Our atom-field system is a transmon embedded in a 3D microwave cavity. A phase-coherent microwave tone induces a tunable interaction between the third level of the transmon and a long-lived mode of the cavity. By adiabatically steering the phase of the interaction, we demonstrate that the qubit accumulates a geometric phase even when the cavity mode is empty. We characterize this effect by varying the effective atom-field detuning as well as the photon number in the cavity mode.

  5. Lifshitz transition with interactions in high magnetic fields: Application to CeIn3

    NASA Astrophysics Data System (ADS)

    Schlottmann, Pedro

    2012-02-01

    The N'eel ordered state of CeIn3 is suppressed by a magnetic field of 61 T at ambient pressure. There is a second transition at ˜45 T, which has been associated with a Lifshitz transition [1,2]. Skin depth measurements [2] indicate that the transition is discontinuous as T ->0. Motivated by this transition we study the effects of Landau quantization and interaction among carriers on a Lifshitz transition. The Landau quantization leads to quasi-one-dimensional behavior for the direction parallel to the field. Repulsive Coulomb interactions give rise to a gas of strongly coupled carriers [3]. The density correlation function is calculated for a special long-ranged potential [4]. It is concluded that in CeIn3 a pocket is being emptied as a function of field in a discontinuous fashion in the ground state. This discontinuity is gradually smeared by the temperature [4] in agreement with the skin depth experiments [2]. 0.05in [1] S.E. Sebastian et al, PNAS 106, 7741 (2009). [2] K.M. Purcell et al, Phys. Rev. B 79, 214428 (2009). [3] P. Schlottmann and R. Gerhardts, Z. Phys. B 34, 363 (1979). [4] P. Schlottmann, Phys. Rev. B 83, 115133 (2011); J. Appl. Phys., in print.

  6. Quantum field theory of photon–Dirac fermion interacting system in graphene monolayer

    NASA Astrophysics Data System (ADS)

    Nguyen, Bich Ha; Hieu Nguyen, Van

    2016-06-01

    The purpose of the present work is to elaborate quantum field theory of interacting systems comprising Dirac fermion fields in a graphene monolayer and the electromagnetic field. Since the Dirac fermions are confined in a two-dimensional plane, the interaction Hamiltonian of this system contains the projection of the electromagnetic field operator onto the plane of a graphene monolayer. Following the quantization procedure in traditional quantum electrodynamics we chose to work in the gauge determined by the weak Lorentz condition imposed on the state vectors of all physical states of the system. The explicit expression of the two-point Green function of the projection onto a graphene monolayer of a free electromagnetic field is derived. This two-point Green function and the expression of the interaction Hamiltonian together with the two-point Green functions of free Dirac fermion fields established in our previous work form the basics of the perturbation theory of the above-mentioned interacting field system. As an example, the perturbation theory is applied to the study of two-point Green functions of this interacting system of quantum fields.

  7. An Interacting Gauge Field Theoretic Model for Hodge Theory: Basic Canonical Brackets

    NASA Astrophysics Data System (ADS)

    R., Kumar; Gupta, S.; R. P., Malik

    2014-06-01

    We derive the basic canonical brackets amongst the creation and annihilation operators for a two (1 + 1)-dimensional (2D) gauge held theoretic model of an interacting Hodge theory where a U(1) gauge field (Aμ) is coupled with the fermionic Dirac fields (ψ and bar psi). In this derivation, we exploit the spin-statistics theorem, normal ordering and the strength of the underlying six infinitesimal continuous symmetries (and the concept of their generators) that are present in the theory. We do not use the definition of the canonical conjugate momenta (corresponding to the basic fields of the theory) anywhere in our whole discussion. Thus, we conjecture that our present approach provides an alternative to the canonical method of quantization for a class of gauge field theories that are physical examples of Hodge theory where the continuous symmetries (and corresponding generators) provide the physical realizations of the de Rham cohomological operators of differential geometry at the algebraic level.

  8. Periodic orbit quantization of a weakly interacting two-body system using perturbed symmetry-broken trace formulas

    SciTech Connect

    Sakhr, Jamal; Whelan, Niall D.; Dumont, Randall S.

    2006-11-15

    The semiclassical limit of the quantum few-body problem has not been studied in general terms from the point of view of periodic orbit theory. In a previous paper, we studied noninteracting two-body systems [Phys. Rev. A 62, 042109 (2000)] and discussed the fact that the periodic orbits occur in continuous families. Interactions destroy the periodic orbit families leaving a discrete set of isolated periodic orbits. In this paper, we consider the effect of weak two-body interactions, which can be thought of as symmetry-breaking perturbations and can thus be analyzed using a theory developed by Creagh [Ann. Phys. (N.Y.) 248, 1 (1996)]. The Poeschl-Teller two-body system confined in a square well is analyzed to illustrate the use of the formalism. It is shown that the effect of the interaction can be evaluated for all two-particle periodic orbits, and that the coarse-grained quantum density of states can be fully reproduced from simply summing the perturbed contributions of each periodic orbit family. Good numerical estimates of the quantum singlet energies can actually be obtained, but it is found that that perturbed trace formulas cannot reproduce the multiplet splittings predicted from quantum mechanics. Several interesting properties are observed depending on the range of the interaction and on whether the interaction is attractive or repulsive.

  9. Interacting quantum fields and the chronometric principle

    PubMed Central

    Segal, I. E.

    1976-01-01

    A form of interaction in quantum field theory is described that is physically intrinsic rather than superimposed via a postulated nonlinearity on a hypothetical free field. It derives from the extension to general symmetries of the distinction basic for the chronometric cosmology between the physical (driving) and the observed energies, together with general precepts of quantum field theory applicable to nonunitary representations. The resulting interacting field is covariant, causal, involves real particle production, and is devoid of nontrivial ultraviolet divergences. Possible physical applications are discussed. PMID:16592353

  10. Criteria for the determination of time dependent scalings in the Fock quantization of scalar fields with a time dependent mass in ultrastatic spacetimes

    NASA Astrophysics Data System (ADS)

    Cortez, Jerónimo; Mena Marugán, Guillermo A.; Olmedo, Javier; Velhinho, José M.

    2012-11-01

    We consider the quantization of scalar fields in spacetimes such that, by means of a suitable scaling of the field by a time dependent function, the field equation can be regarded as that of a field with a time dependent mass propagating in an auxiliary ultrastatic static background. For Klein-Gordon fields, it is well known that there exist an infinite number of nonequivalent Fock representations of the canonical commutation relations and, therefore, of inequivalent quantum theories. A context in which this kind of ambiguities arises and prevents the derivation of robust results is, e.g., in the quantum analysis of cosmological perturbations. In these situations, typically, a suitable scaling of the field by a time dependent function leads to a description in an auxiliary static background, though the nonstationarity still shows up in a time dependent mass. For such a field description, and assuming the compactness of the spatial sections, we recently proved in three or less spatial dimensions that the criteria of a natural implementation of the spatial symmetries and of a unitary time evolution are able to select a unique class of unitarily equivalent vacua, and hence of Fock representations. In this work, we succeed to extend our uniqueness result to the consideration of all possible field descriptions that can be reached by a time dependent canonical transformation which, in particular, involves a scaling of the field by a function of time. These kinds of canonical transformations modify the dynamics of the system and introduce a further ambiguity in its quantum description, exceeding the choice of a Fock representation. Remarkably, for any compact spatial manifold in less than four dimensions, we show that our criteria eliminate any possible nontrivial scaling of the field other than that leading to the description in an auxiliary static background. Besides, we show that either no time dependent redefinition of the field momentum is allowed or, if this may

  11. Flow volumes for interactive vector field visualization

    SciTech Connect

    Max, N.; Becker, B.; Crawfis, R.

    1993-04-06

    Flow volumes are the volumetric equivalent of stream lines. They provide more information about the vector field being visualized than do stream lines or ribbons. Presented is an efficient method for producing flow volumes, composed of transparently rendered tetrahedra, for use in an interactive system. The problems of rendering, subdivision, sorting, rendering artifacts, and user interaction are dealt with.

  12. Lagrange structure and quantization

    NASA Astrophysics Data System (ADS)

    Kazinski, Peter O.; Lyakhovich, Simon L.; Sharapov, Alexey A.

    2005-07-01

    A path-integral quantization method is proposed for dynamical systems whose classical equations of motion do not necessarily follow from the action principle. The key new notion behind this quantization scheme is the Lagrange structure which is more general than the lagrangian formalism in the same sense as Poisson geometry is more general than the symplectic one. The Lagrange structure is shown to admit a natural BRST description which is used to construct an AKSZ-type topological sigma-model. The dynamics of this sigma-model in d+1 dimensions, being localized on the boundary, are proved to be equivalent to the original theory in d dimensions. As the topological sigma-model has a well defined action, it is path-integral quantized in the usual way that results in quantization of the original (not necessarily lagrangian) theory. When the original equations of motion come from the action principle, the standard BV path-integral is explicitly deduced from the proposed quantization scheme. The general quantization scheme is exemplified by several models including the ones whose classical dynamics are not variational.

  13. A hybrid approach for quantizing complicated motion of a charged particle in time-varying magnetic field

    SciTech Connect

    Menouar, Salah; Choi, Jeong Ryeol

    2015-02-15

    Quantum characteristics of a charged particle subjected to a singular oscillator potential under an external magnetic field is investigated via SU(1,1) Lie algebraic approach together with the invariant operator and the unitary transformation methods. The system we managed is somewhat complicated since we considered not only the time-variation of the effective mass of the system but also the dependence of the external magnetic field on time in an arbitrary fashion. In this case, the system is a kind of time-dependent Hamiltonian systems which require more delicate treatment when we study it. The complete wave functions are obtained without relying on the methods of perturbation and/or approximation, and the global phases of the system are identified. To promote the understanding of our development, we applied it to a particular case, assuming that the effective mass slowly varies with time under a time-dependent magnetic field.

  14. The decoding method based on wavelet image En vector quantization

    NASA Astrophysics Data System (ADS)

    Liu, Chun-yang; Li, Hui; Wang, Tao

    2013-12-01

    With the rapidly progress of internet technology, large scale integrated circuit and computer technology, digital image processing technology has been greatly developed. Vector quantization technique plays a very important role in digital image compression. It has the advantages other than scalar quantization, which possesses the characteristics of higher compression ratio, simple algorithm of image decoding. Vector quantization, therefore, has been widely used in many practical fields. This paper will combine the wavelet analysis method and vector quantization En encoder efficiently, make a testing in standard image. The experiment result in PSNR will have a great improvement compared with the LBG algorithm.

  15. Deterministic Quantization by Dynamical Boundary Conditions

    SciTech Connect

    Dolce, Donatello

    2010-06-15

    We propose an unexplored quantization method. It is based on the assumption of dynamical space-time intrinsic periodicities for relativistic fields, which in turn can be regarded as dual to extra-dimensional fields. As a consequence we obtain a unified and consistent interpretation of Special Relativity and Quantum Mechanics in terms of Deterministic Geometrodynamics.

  16. Quantization Effects on Complex Networks

    PubMed Central

    Wang, Ying; Wang, Lin; Yang, Wen; Wang, Xiaofan

    2016-01-01

    Weights of edges in many complex networks we constructed are quantized values of the real weights. To what extent does the quantization affect the properties of a network? In this work, quantization effects on network properties are investigated based on the spectrum of the corresponding Laplacian. In contrast to the intuition that larger quantization level always implies a better approximation of the quantized network to the original one, we find a ubiquitous periodic jumping phenomenon with peak-value decreasing in a power-law relationship in all the real-world weighted networks that we investigated. We supply theoretical analysis on the critical quantization level and the power laws. PMID:27226049

  17. Quantization Effects on Complex Networks

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Wang, Lin; Yang, Wen; Wang, Xiaofan

    2016-05-01

    Weights of edges in many complex networks we constructed are quantized values of the real weights. To what extent does the quantization affect the properties of a network? In this work, quantization effects on network properties are investigated based on the spectrum of the corresponding Laplacian. In contrast to the intuition that larger quantization level always implies a better approximation of the quantized network to the original one, we find a ubiquitous periodic jumping phenomenon with peak-value decreasing in a power-law relationship in all the real-world weighted networks that we investigated. We supply theoretical analysis on the critical quantization level and the power laws.

  18. Quantization Effects on Complex Networks.

    PubMed

    Wang, Ying; Wang, Lin; Yang, Wen; Wang, Xiaofan

    2016-01-01

    Weights of edges in many complex networks we constructed are quantized values of the real weights. To what extent does the quantization affect the properties of a network? In this work, quantization effects on network properties are investigated based on the spectrum of the corresponding Laplacian. In contrast to the intuition that larger quantization level always implies a better approximation of the quantized network to the original one, we find a ubiquitous periodic jumping phenomenon with peak-value decreasing in a power-law relationship in all the real-world weighted networks that we investigated. We supply theoretical analysis on the critical quantization level and the power laws. PMID:27226049

  19. Faddeev-Jackiw quantization of non-autonomous singular systems

    NASA Astrophysics Data System (ADS)

    Belhadi, Zahir; Bérard, Alain; Mohrbach, Hervé

    2016-10-01

    We extend the quantization à la Faddeev-Jackiw for non-autonomous singular systems. This leads to a generalization of the Schrödinger equation for those systems. The method is exemplified by the quantization of the damped harmonic oscillator and the relativistic particle in an external electromagnetic field.

  20. Dual field theory of strong interactions

    SciTech Connect

    Akers, D.

    1987-07-01

    A dual field theory of strong interactions is derived from a Lagrangian of the Yang-Mills and Higgs fields. The existence of a magnetic monopole of mass 2397 MeV and Dirac charge g = (137/2)e is incorporated into the theory. Unification of the strong, weak, and electromagnetic forces is shown to converge at the mass of the intermediate vector boson W/sup +/-/. The coupling constants of the strong and weak interactions are derived in terms of the fine-structure constant ..cap alpha.. = 1/137.

  1. Quantization of general linear electrodynamics

    SciTech Connect

    Rivera, Sergio; Schuller, Frederic P.

    2011-03-15

    General linear electrodynamics allow for an arbitrary linear constitutive relation between the field strength 2-form and induction 2-form density if crucial hyperbolicity and energy conditions are satisfied, which render the theory predictive and physically interpretable. Taking into account the higher-order polynomial dispersion relation and associated causal structure of general linear electrodynamics, we carefully develop its Hamiltonian formulation from first principles. Canonical quantization of the resulting constrained system then results in a quantum vacuum which is sensitive to the constitutive tensor of the classical theory. As an application we calculate the Casimir effect in a birefringent linear optical medium.

  2. Observation of Quantized and Partial Quantized Conductance in Polymer-Suspended Graphene Nanoplatelets

    NASA Astrophysics Data System (ADS)

    Kang, Yuhong; Ruan, Hang; Claus, Richard O.; Heremans, Jean; Orlowski, Marius

    2016-04-01

    Quantized conductance is observed at zero magnetic field and room temperature in metal-insulator-metal structures with graphene submicron-sized nanoplatelets embedded in a 3-hexylthiophene (P3HT) polymer layer. In devices with medium concentration of graphene platelets, integer multiples of G o = 2 e 2/ h (=12.91 kΩ-1), and in some devices partially quantized including a series of with ( n/7) × G o, steps are observed. Such an organic memory device exhibits reliable memory operation with an on/off ratio of more than 10. We attribute the quantized conductance to the existence of a 1-D electron waveguide along the conductive path. The partial quantized conductance results likely from imperfect transmission coefficient due to impedance mismatch of the first waveguide modes.

  3. Hadamard renormalization of the stress-energy tensor for a quantized scalar field in a general spacetime of arbitrary dimension

    SciTech Connect

    Decanini, Yves; Folacci, Antoine

    2008-08-15

    We develop the Hadamard renormalization of the stress-energy tensor for a massive scalar field theory defined on a general spacetime of arbitrary dimension. Our formalism could be helpful in treating some aspects of the quantum physics of extra spatial dimensions. More precisely, for spacetime dimensions up to six, we explicitly describe the Hadamard renormalization procedure and for spacetime dimensions from 7 to 11, we provide the framework permitting the interested reader to perform this procedure explicitly in a given spacetime. We complete our study (i) by considering the ambiguities of the Hadamard renormalization of the stress-energy tensor and the corresponding ambiguities for the trace anomaly, (ii) by providing the expressions of the gravitational counterterms involved in the renormalization process, and (iii) by discussing the connections between Hadamard renormalization and renormalization in the effective action. All our results are expanded on standard bases for Riemann polynomials constructed from group theoretical considerations and thus given on irreducible forms.

  4. Resonant tunneling of electrons between two-dimensional systems of different densities in a quantizing magnetic field

    SciTech Connect

    Popov, V. G. Dubrovskii, Yu. V.; Portal, J.-C.

    2006-04-15

    The results of experimental investigation of the vertical electron transport in a GaAs/Al{sub 0.3}Ga{sub 0.7}As/GaAs single-barrier tunneling heterostructure with a doped barrier are presented. Two-dimensional accumulation layers appear on different sides of the barrier as a result of the ionization of Si donors in the barrier layer. The nonmonotonic shift of the current peak is found in the I-V curve of the tunneling diode in a magnetic field perpendicular to the planes of two-dimensional layers. Such a behavior is shown to be successfully explained in the model of appearing the Coulomb pseudogap and the pinning of the spin-split Landau levels at the Fermi levels of the contacts. In this explanation, it is necessary to assume that the Lande factor is independent of the filling factors of the Landau levels and is g* = 7.5 for both layers.

  5. Quantization of Black Holes

    NASA Astrophysics Data System (ADS)

    He, Xiao-Gang; Ma, Bo-Qiang

    We show that black holes can be quantized in an intuitive and elegant way with results in agreement with conventional knowledge of black holes by using Bohr's idea of quantizing the motion of an electron inside the atom in quantum mechanics. We find that properties of black holes can also be derived from an ansatz of quantized entropy Δ S = 4π k Δ R/{{-{λ }}}, which was suggested in a previous work to unify the black hole entropy formula and Verlinde's conjecture to explain gravity as an entropic force. Such an Ansatz also explains gravity as an entropic force from quantum effect. This suggests a way to unify gravity with quantum theory. Several interesting and surprising results of black holes are given from which we predict the existence of primordial black holes ranging from Planck scale both in size and energy to big ones in size but with low energy behaviors.

  6. Enhanced Cloud Disruption by Magnetic Field Interaction.

    PubMed

    Gregori; Miniati; Ryu; Jones

    1999-12-20

    We present results from the first three-dimensional numerical simulations of moderately supersonic cloud motion through a tenuous, magnetized medium. We show that the interaction of the cloud with a magnetic field perpendicular to its motion has a great dynamical impact on the development of instabilities at the cloud surface. Even for initially spherical clouds, magnetic field lines become trapped in surface deformations and undergo stretching. The consequent field amplification that occurs there and, in particular, its variation across the cloud face then dramatically enhance the growth rate of Rayleigh-Taylor unstable modes, hastening the cloud disruption.

  7. On Quantizable Odd Lie Bialgebras

    NASA Astrophysics Data System (ADS)

    Khoroshkin, Anton; Merkulov, Sergei; Willwacher, Thomas

    2016-09-01

    Motivated by the obstruction to the deformation quantization of Poisson structures in infinite dimensions, we introduce the notion of a quantizable odd Lie bialgebra. The main result of the paper is a construction of the highly non-trivial minimal resolution of the properad governing such Lie bialgebras, and its link with the theory of so-called quantizable Poisson structures.

  8. The Analysis of Lagrangian and Hamiltonian Properties of the Classical Relativistic Electrodynamics Models and Their Quantization

    NASA Astrophysics Data System (ADS)

    Bogolubov, Nikolai N.; Prykarpatsky, Anatoliy K.

    2010-05-01

    The Lagrangian and Hamiltonian properties of classical electrodynamics models and their associated Dirac quantizations are studied. Using the vacuum field theory approach developed in (Prykarpatsky et al. Theor. Math. Phys. 160(2): 1079-1095, 2009 and The field structure of a vacuum, Maxwell equations and relativity theory aspects. Preprint ICTP) consistent canonical Hamiltonian reformulations of some alternative classical electrodynamics models are devised, and these formulations include the Lorentz condition in a natural way. The Dirac quantization procedure corresponding to the Hamiltonian formulations is developed. The crucial importance of the rest reference systems, with respect to which the dynamics of charged point particles is framed, is explained and emphasized. A concise expression for the Lorentz force is derived by suitably taking into account the duality of electromagnetic field and charged particle interactions. Finally, a physical explanation of the vacuum field medium and its relativistic properties fitting the mathematical framework developed is formulated and discussed.

  9. Quantized Algebra I Texts

    ERIC Educational Resources Information Center

    DeBuvitz, William

    2014-01-01

    I am a volunteer reader at the Princeton unit of "Learning Ally" (formerly "Recording for the Blind & Dyslexic") and I recently discovered that high school students are introduced to the concept of quantization well before they take chemistry and physics. For the past few months I have been reading onto computer files a…

  10. Nonlinear Bubble Interactions in Acoustic Pressure Fields

    NASA Technical Reports Server (NTRS)

    Barbat, Tiberiu; Ashgriz, Nasser; Liu, Ching-Shi

    1996-01-01

    The systems consisting of a two-phase mixture, as clouds of bubbles or drops, have shown many common features in their responses to different external force fields. One of particular interest is the effect of an unsteady pressure field applied to these systems, case in which the coupling of the vibrations induced in two neighboring components (two drops or two bubbles) may result in an interaction force between them. This behavior was explained by Bjerknes by postulating that every body that is moving in an accelerating fluid is subjected to a 'kinetic buoyancy' equal with the product of the acceleration of the fluid multiplied by the mass of the fluid displaced by the body. The external sound wave applied to a system of drops/bubbles triggers secondary sound waves from each component of the system. These secondary pressure fields integrated over the surface of the neighboring drop/bubble may result in a force additional to the effect of the primary sound wave on each component of the system. In certain conditions, the magnitude of these secondary forces may result in significant changes in the dynamics of each component, thus in the behavior of the entire system. In a system containing bubbles, the sound wave radiated by one bubble at the location of a neighboring one is dominated by the volume oscillation mode and its effects can be important for a large range of frequencies. The interaction forces in a system consisting of drops are much smaller than those consisting of bubbles. Therefore, as a first step towards the understanding of the drop-drop interaction subject to external pressure fluctuations, it is more convenient to study the bubble interactions. This paper presents experimental results and theoretical predictions concerning the interaction and the motion of two levitated air bubbles in water in the presence of an acoustic field at high frequencies (22-23 KHz).

  11. Crossing resonance of stochastically interacting wave fields

    SciTech Connect

    Ignatchenko, V. A. Polukhin, D. S.

    2013-02-15

    The dynamic susceptibilities (Green's functions) of the system of two interacting wave fields of different physical natures with a stochastically inhomogeneous coupling parameter between them with zero mean value have been examined. The well-known self-consistent approximation taking into account all diagrams with noncrossing correlation/interaction lines has been generalized to the case of stochastically interacting wave fields. The analysis has been performed for spin and elastic waves. The results obtained taking into account the processes of multiple scattering of waves from inhomogeneities are significantly different from those obtained for this situation earlier in the Bourret approximation [R.C. Bourret, Nuovo Cimento 26, 1 (1962)]. Instead of frequencies degeneracy removal in the wave spectrum and the splitting of resonance peaks of dynamic susceptibilities, a wide single-mode resonance peak should be observed at the crossing point of the unperturbed dispersion curves. The fine structure appears at vertices of these wide peaks in the form of a narrow resonance on the Green's-function curve of one field and a narrow antiresonance on the vertex of the Green's-function curve of the other field.

  12. Interaction Between Flames and Electric Fields Studied

    NASA Technical Reports Server (NTRS)

    Yuan, Zeng-Guang; Hegde, Uday

    2003-01-01

    The interaction between flames and electric fields has long been an interesting research subject that has theoretical importance as well as practical significance. Many of the reactions in a flame follow an ionic pathway: that is, positive and negative ions are formed during the intermediate steps of the reaction. When an external electric field is applied, the ions move according to the electric force (the Coulomb force) exerted on them. The motion of the ions modifies the chemistry because the reacting species are altered, it changes the velocity field of the flame, and it alters the electric field distribution. As a result, the flame will change its shape and location to meet all thermal, chemical, and electrical constraints. In normal gravity, the strong buoyant effect often makes the flame multidimensional and, thus, hinders the detailed study of the problem.

  13. Electromagnetic field interactions with biological systems

    SciTech Connect

    Frey, A.H. )

    1993-02-01

    This is a report on Symposia organized by the International Society for Bioelectricity and presented at the 1992 FASEB Meeting. The presentations summarized here were intended to provide a sampling of new and fruitful lines of research. The theme topics for the Symposia were cancer, neural function, cell signaling, pineal gland function, and immune system interactions. Living organisms are complex electrochemical systems that evolved over billions of years in a world with a relatively simple weak magnetic field and with few electromagnetic energy emitters. As is characteristic of living organisms, they interacted with and adapted to this environment of electric and magnetic fields. In recent years there has been a massive introduction of equipment that emits electromagnetic fields in an enormous range of new frequencies, modulations, and intensities. As living organisms have only recently found themselves immersed in this new and virtually ubiquitous environment, they have not had the opportunity to adapt to it. This gives biologists the opportunity to use these electromagnetic fields as probes to study the functioning of living systems. This is a significant opportunity, as new approaches to studying living systems so often provide the means to make great leaps in science. In recent years, a diversity of biologists have carried out experiments using electromagnetic fields to study the function of living cells and systems. This approach is now becoming quite fruitful and is yielding data that are advancing our knowledge in diverse areas of biology. 25 refs., 6 figs., 3 tabs.

  14. Interaction of electromagnetic fields and biological tissues

    NASA Astrophysics Data System (ADS)

    Darshan Shrivastava, Bhakt; Barde, Ravindra; Mishra, Ashutosh; Phadke, S.

    2014-09-01

    This paper deals with the electromagnetic field interact in biological tissues. It is actually one of the important challenges for the electromagnetic field for the recent years. The experimental techniques are use in Broad-band Dielectric Measurement (BDM) with LCR meters. The authors used Bones and scales of Fish taken from Narmada River (Rajghat Dist. Barwani) as biological tissues. Experimental work carried out done in inter-university consortium (IUC) Indore. The major difficulties that appear are related to the material properties, to the effect of the electromagnetic problem and to the thermal model of the biological tissues.

  15. Path-memory induced quantization of classical orbits

    PubMed Central

    Fort, Emmanuel; Eddi, Antonin; Boudaoud, Arezki; Moukhtar, Julien; Couder, Yves

    2010-01-01

    A droplet bouncing on a liquid bath can self-propel due to its interaction with the waves it generates. The resulting “walker” is a dynamical association where, at a macroscopic scale, a particle (the droplet) is driven by a pilot-wave field. A specificity of this system is that the wave field itself results from the superposition of the waves generated at the points of space recently visited by the particle. It thus contains a memory of the past trajectory of the particle. Here, we investigate the response of this object to forces orthogonal to its motion. We find that the resulting closed orbits present a spontaneous quantization. This is observed only when the memory of the system is long enough for the particle to interact with the wave sources distributed along the whole orbit. An additional force then limits the possible orbits to a discrete set. The wave-sustained path memory is thus demonstrated to generate a quantization of angular momentum. Because a quantum-like uncertainty was also observed recently in these systems, the nonlocality generated by path memory opens new perspectives.

  16. Breathers on quantized superfluid vortices.

    PubMed

    Salman, Hayder

    2013-10-18

    We consider the propagation of breathers along a quantized superfluid vortex. Using the correspondence between the local induction approximation (LIA) and the nonlinear Schrödinger equation, we identify a set of initial conditions corresponding to breather solutions of vortex motion governed by the LIA. These initial conditions, which give rise to a long-wavelength modulational instability, result in the emergence of large amplitude perturbations that are localized in both space and time. The emergent structures on the vortex filament are analogous to loop solitons but arise from the dual action of bending and twisting of the vortex. Although the breather solutions we study are exact solutions of the LIA equations, we demonstrate through full numerical simulations that their key emergent attributes carry over to vortex dynamics governed by the Biot-Savart law and to quantized vortices described by the Gross-Pitaevskii equation. The breather excitations can lead to self-reconnections, a mechanism that can play an important role within the crossover range of scales in superfluid turbulence. Moreover, the observation of breather solutions on vortices in a field model suggests that these solutions are expected to arise in a wide range of other physical contexts from classical vortices to cosmological strings. PMID:24182275

  17. Breathers on Quantized Superfluid Vortices

    NASA Astrophysics Data System (ADS)

    Salman, Hayder

    2013-10-01

    We consider the propagation of breathers along a quantized superfluid vortex. Using the correspondence between the local induction approximation (LIA) and the nonlinear Schrödinger equation, we identify a set of initial conditions corresponding to breather solutions of vortex motion governed by the LIA. These initial conditions, which give rise to a long-wavelength modulational instability, result in the emergence of large amplitude perturbations that are localized in both space and time. The emergent structures on the vortex filament are analogous to loop solitons but arise from the dual action of bending and twisting of the vortex. Although the breather solutions we study are exact solutions of the LIA equations, we demonstrate through full numerical simulations that their key emergent attributes carry over to vortex dynamics governed by the Biot-Savart law and to quantized vortices described by the Gross-Pitaevskii equation. The breather excitations can lead to self-reconnections, a mechanism that can play an important role within the crossover range of scales in superfluid turbulence. Moreover, the observation of breather solutions on vortices in a field model suggests that these solutions are expected to arise in a wide range of other physical contexts from classical vortices to cosmological strings.

  18. Effects of electron-electron interactions on the electronic Raman scattering of graphite in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Kim, Y.; Kalugin, N. G.; Lombardo, A.; Ferrari, A. C.; Kono, J.; Imambekov, A.; Smirnov, D.

    2014-03-01

    We report the observation of strongly temperature (T)-dependent spectral lines in electronic Raman-scattering spectra of graphite in a high magnetic field up to 45 T applied along the c axis. The magnetic field quantizes the in-plane motion, while the out-of-plane motion remains free, effectively reducing the system dimension from 3 to 1. Optically created electron-hole pairs interact with, or shake up, the one-dimensional Fermi sea in the lowest Landau subbands. Based on the Tomonaga-Luttinger liquid theory, we show that interaction effects modify the spectral line shape from (ω-Δ)-1/2 to (ω-Δ)2α-1/2 at T = 0. At finite T, we predict a thermal broadening factor that increases linearly with T. Our model reproduces the observed T-dependent line shape, determining the electron-electron interaction parameter α to be ˜0.05 at 40 T.

  19. Analysis of size quantization and temperature effects on the threshold voltage of thin silicon film double-gate metal-oxide-semiconductor field-effect transistor (MOSFET)

    NASA Astrophysics Data System (ADS)

    Sankar Medury, Aditya; Bhat, K. N.; Bhat, Navakanta

    2013-07-01

    In this paper, we analyze the combined effects of size quantization and device temperature variations (T = 50 K to 400 K) on the intrinsic carrier concentration (ni), electron concentration (n) and thereby on the threshold voltage (Vth) for thin silicon film (tsi = 1 nm to 10 nm) based fully-depleted Double-Gate Silicon-on-Insulator MOSFETs. The threshold voltage (Vth) is defined as the gate voltage (Vg) at which the potential at the center of the channel (Φc) begins to saturate (Φc=Φc(sat)). It is shown that in the strong quantum confinement regime (tsi≤3nm), the effects of size quantization far over-ride the effects of temperature variations on the total change in band-gap (ΔEg(eff)), intrinsic carrier concentration (ni), electron concentration (n), Φc(sat) and the threshold voltage (Vth). On the other hand, for tsi≥4 nm, it is shown that size quantization effects recede with increasing tsi, while the effects of temperature variations become increasingly significant. Through detailed analysis, a physical model for the threshold voltage is presented both for the undoped and doped cases valid over a wide-range of device temperatures, silicon film thicknesses and substrate doping densities. Both in the undoped and doped cases, it is shown that the threshold voltage strongly depends on the channel charge density and that it is independent of incomplete ionization effects, at lower device temperatures. The results are compared with the published work available in literature, and it is shown that the present approach incorporates quantization and temperature effects over the entire temperature range. We also present an analytical model for Vth as a function of device temperature (T).

  20. Uniform quantized electron gas.

    PubMed

    Høye, Johan S; Lomba, Enrique

    2016-10-19

    In this work we study the correlation energy of the quantized electron gas of uniform density at temperature T  =  0. To do so we utilize methods from classical statistical mechanics. The basis for this is the Feynman path integral for the partition function of quantized systems. With this representation the quantum mechanical problem can be interpreted as, and is equivalent to, a classical polymer problem in four dimensions where the fourth dimension is imaginary time. Thus methods, results, and properties obtained in the statistical mechanics of classical fluids can be utilized. From this viewpoint we recover the well known RPA (random phase approximation). Then to improve it we modify the RPA by requiring the corresponding correlation function to be such that electrons with equal spins can not be on the same position. Numerical evaluations are compared with well known results of a standard parameterization of Monte Carlo correlation energies. PMID:27546166

  1. Uniform quantized electron gas

    NASA Astrophysics Data System (ADS)

    Høye, Johan S.; Lomba, Enrique

    2016-10-01

    In this work we study the correlation energy of the quantized electron gas of uniform density at temperature T  =  0. To do so we utilize methods from classical statistical mechanics. The basis for this is the Feynman path integral for the partition function of quantized systems. With this representation the quantum mechanical problem can be interpreted as, and is equivalent to, a classical polymer problem in four dimensions where the fourth dimension is imaginary time. Thus methods, results, and properties obtained in the statistical mechanics of classical fluids can be utilized. From this viewpoint we recover the well known RPA (random phase approximation). Then to improve it we modify the RPA by requiring the corresponding correlation function to be such that electrons with equal spins can not be on the same position. Numerical evaluations are compared with well known results of a standard parameterization of Monte Carlo correlation energies.

  2. Focal field interactions from cylindrical vector beams

    NASA Astrophysics Data System (ADS)

    Biss, David Paul

    In optical imaging there is always a push to improve image quality or find methods to gain new imaging information. This is apparent in the optical lithography and semiconductor inspection industries, where optical metrology and imaging systems are using larger numerical aperture systems and finding new imaging methods, such as immersion imaging, to shrink focal fields. At high numerical apertures, scalar diffraction theories break down and polarization effects play a large role in focal field interactions. With this interest in polarization, new models for local polarization effects are needed. Along with new models, cylindrically-symmetric polarized beams known as cylindrical vector (CV) beams, can provide new methods of imaging in this high NA regime. In this thesis, we examine the modeling of radially and azimuthally polarized beams focused at high numerical aperture in the presence of a planar interface. These focal fields are also modeled with primary spherical, coma, and astigmatism wavefront aberrations in the entrance pupil of the focusing system. Particular attention is given to the longitudinal field component generated by the focused radial beam, and the correlation between the magnetic and electric fields of radial and azimuthal beams. A scanning edge test using linearly polarized beams is modeled using a rigorous coupled wave (RCW) method and is compared to experimental data. The ability of the scanning edge test to predict spot asymmetry is investigated though the comparison of the RCW scanning edge model with free space vector diffraction theories. This RCW model is extended to include CV beam illumination and mode filtering of the system's exit pupil fields. This extension provides a model to accurately predict the performance of a dark-field imaging modality using radially and azimuthally polarized beams. Predictions from this model are compared to experimental results with attention given to defocus effects and the ability to accurately measure

  3. High-field electron-photon interactions

    SciTech Connect

    Hartemann, F V

    1999-02-26

    Recent advances in novel technologies (including chirped-pulse amplification, femtosecond laser systems operating in the TW-PW range, high-gradient rf photoinjectors, and synchronized relativistic electron bunches with subpicosecond durations and THz bandwidths) allow experimentalists to study the interaction of relativistic electrons with ultrahigh-intensity photon fields. Ponderomotive scattering can accelerate these electrons with extremely high gradients in a three-dimensional vacuum laser focus. The nonlinear Doppler shift induced by relativistic radiation pressure in Compton backscattering is shown to yield complex nonlinear spectra which can be modified by using temporal laser pulse shaping techniques. Colliding laser pulses, where ponderomotive acceleration and Compton backscattering are combined, could also yield extremely short wavelength photons. Finally, one expects strong radiative corrections when the Doppler-upshifted laser wavelength approaches the Compton scale. These are discussed within the context of high-field classical electrodynamics, a new discipline borne out of the aforementioned innovations.

  4. Near field interactions in terahertz metamaterials

    NASA Astrophysics Data System (ADS)

    Keiser, George R.

    Terahertz (THz) frequencies comprise the portion of the electromagnetic spectrum more energetic than microwaves, but less energetic than infrared light. The THz band presents many opportunities for condensed matter physics and optics engineering. From the physics perspective, advances in the generation and detection of THz radiation have opened the door for spectroscopic studies of a range of solid-state phenomena that manifest at THz frequencies. From an engineering perspective, THz frequencies are an under-used spectral region, ripe for the development of new devices. In both cases, the challenge for researchers is to overcome a lack of sources, detectors, and optics for THz light, termed the THz Gap. Metamaterials (MMs), composite structures with engineered index of refraction, n, and impedance, Z, provide one path towards realizing THz optics. MMs are an ideal platform for the design of local EM field distributions, and far-field optical properties. This is especially true at THz frequencies, where fabrication of inclusions is easily accomplished with photolithography. Historically, MM designs have been based around static configurations of resonant inclusions that work only in a narrow frequency band, limiting applications. Broadband and tunable MMs are needed to overcome this limit. This dissertation focuses on creating tunable and controllable MM structures through the manipulation of electromagnetic interactions between MM inclusions. We introduce three novel MM systems. Each system is studied computationally with CST-Studio, and experimentally via THz spectroscopy. First, we look at the tunable transmission spectrum of two coupled split ring resonators (SRRs) with different resonant frequencies. We show that introducing a lateral displacement between the two component resonators lowers the electromagnetic coupling between the SRRs, activating a new resonance. Second, we study an SRR array, coupled to a non-resonant closed ring array. We show that lowering

  5. Hysteresis in a quantized superfluid 'atomtronic' circuit.

    PubMed

    Eckel, Stephen; Lee, Jeffrey G; Jendrzejewski, Fred; Murray, Noel; Clark, Charles W; Lobb, Christopher J; Phillips, William D; Edwards, Mark; Campbell, Gretchen K

    2014-02-13

    Atomtronics is an emerging interdisciplinary field that seeks to develop new functional methods by creating devices and circuits where ultracold atoms, often superfluids, have a role analogous to that of electrons in electronics. Hysteresis is widely used in electronic circuits-it is routinely observed in superconducting circuits and is essential in radio-frequency superconducting quantum interference devices. Furthermore, it is as fundamental to superfluidity (and superconductivity) as quantized persistent currents, critical velocity and Josephson effects. Nevertheless, despite multiple theoretical predictions, hysteresis has not been previously observed in any superfluid, atomic-gas Bose-Einstein condensate. Here we directly detect hysteresis between quantized circulation states in an atomtronic circuit formed from a ring of superfluid Bose-Einstein condensate obstructed by a rotating weak link (a region of low atomic density). This contrasts with previous experiments on superfluid liquid helium where hysteresis was observed directly in systems in which the quantization of flow could not be observed, and indirectly in systems that showed quantized flow. Our techniques allow us to tune the size of the hysteresis loop and to consider the fundamental excitations that accompany hysteresis. The results suggest that the relevant excitations involved in hysteresis are vortices, and indicate that dissipation has an important role in the dynamics. Controlled hysteresis in atomtronic circuits may prove to be a crucial feature for the development of practical devices, just as it has in electronic circuits such as memories, digital noise filters (for example Schmitt triggers) and magnetometers (for example superconducting quantum interference devices). PMID:24522597

  6. Hysteresis in a quantized superfluid 'atomtronic' circuit.

    PubMed

    Eckel, Stephen; Lee, Jeffrey G; Jendrzejewski, Fred; Murray, Noel; Clark, Charles W; Lobb, Christopher J; Phillips, William D; Edwards, Mark; Campbell, Gretchen K

    2014-02-13

    Atomtronics is an emerging interdisciplinary field that seeks to develop new functional methods by creating devices and circuits where ultracold atoms, often superfluids, have a role analogous to that of electrons in electronics. Hysteresis is widely used in electronic circuits-it is routinely observed in superconducting circuits and is essential in radio-frequency superconducting quantum interference devices. Furthermore, it is as fundamental to superfluidity (and superconductivity) as quantized persistent currents, critical velocity and Josephson effects. Nevertheless, despite multiple theoretical predictions, hysteresis has not been previously observed in any superfluid, atomic-gas Bose-Einstein condensate. Here we directly detect hysteresis between quantized circulation states in an atomtronic circuit formed from a ring of superfluid Bose-Einstein condensate obstructed by a rotating weak link (a region of low atomic density). This contrasts with previous experiments on superfluid liquid helium where hysteresis was observed directly in systems in which the quantization of flow could not be observed, and indirectly in systems that showed quantized flow. Our techniques allow us to tune the size of the hysteresis loop and to consider the fundamental excitations that accompany hysteresis. The results suggest that the relevant excitations involved in hysteresis are vortices, and indicate that dissipation has an important role in the dynamics. Controlled hysteresis in atomtronic circuits may prove to be a crucial feature for the development of practical devices, just as it has in electronic circuits such as memories, digital noise filters (for example Schmitt triggers) and magnetometers (for example superconducting quantum interference devices).

  7. Light-cone quantization and hadron structure

    SciTech Connect

    Brodsky, S.J.

    1996-04-01

    Quantum chromodynamics provides a fundamental description of hadronic and nuclear structure and dynamics in terms of elementary quark and gluon degrees of freedom. In practice, the direct application of QCD to reactions involving the structure of hadrons is extremely complex because of the interplay of nonperturbative effects such as color confinement and multi-quark coherence. In this talk, the author will discuss light-cone quantization and the light-cone Fock expansion as a tractable and consistent representation of relativistic many-body systems and bound states in quantum field theory. The Fock state representation in QCD includes all quantum fluctuations of the hadron wavefunction, including fax off-shell configurations such as intrinsic strangeness and charm and, in the case of nuclei, hidden color. The Fock state components of the hadron with small transverse size, which dominate hard exclusive reactions, have small color dipole moments and thus diminished hadronic interactions. Thus QCD predicts minimal absorptive corrections, i.e., color transparency for quasi-elastic exclusive reactions in nuclear targets at large momentum transfer. In other applications, such as the calculation of the axial, magnetic, and quadrupole moments of light nuclei, the QCD relativistic Fock state description provides new insights which go well beyond the usual assumptions of traditional hadronic and nuclear physics.

  8. Quaternionic quantization principle in general relativity and supergravity

    NASA Astrophysics Data System (ADS)

    Kober, Martin

    2016-01-01

    A generalized quantization principle is considered, which incorporates nontrivial commutation relations of the components of the variables of the quantized theory with the components of the corresponding canonical conjugated momenta referring to other space-time directions. The corresponding commutation relations are formulated by using quaternions. At the beginning, this extended quantization concept is applied to the variables of quantum mechanics. The resulting Dirac equation and the corresponding generalized expression for plane waves are formulated and some consequences for quantum field theory are considered. Later, the quaternionic quantization principle is transferred to canonical quantum gravity. Within quantum geometrodynamics as well as the Ashtekar formalism, the generalized algebraic properties of the operators describing the gravitational observables and the corresponding quantum constraints implied by the generalized representations of these operators are determined. The generalized algebra also induces commutation relations of the several components of the quantized variables with each other. Finally, the quaternionic quantization procedure is also transferred to 𝒩 = 1 supergravity. Accordingly, the quantization principle has to be generalized to be compatible with Dirac brackets, which appear in canonical quantum supergravity.

  9. Quantization of Inequivalent Classical Hamiltonians.

    ERIC Educational Resources Information Center

    Edwards, Ian K.

    1979-01-01

    Shows how the quantization of a Hamiltonian which is not canonically related to the energy is ambiguous and thereby results in conflicting physical interpretations. Concludes that only the Hamiltonian corresponding to the total energy of a classical system or one canonically related to it is suitable for consistent quantization. (GA)

  10. On the deformation quantization description of Matrix compactifications

    NASA Astrophysics Data System (ADS)

    García-Compeán, Hugo

    1999-03-01

    Matrix theory compactifications on tori have associated Yang-Mills theories on the dual tori with sixteen supercharges. A non-commutative description of these Yang-Mills theories based in deformation quantization theory is provided. We show that this framework allows a natural generalization of the 'Moya B-deformation' of the Yang-Mills theories to non-constant background B-fields on curved spaces. This generalization is described through Fedosov's geometry of deformation quantization.

  11. Analysis of the quantum bouncer using polymer quantization

    NASA Astrophysics Data System (ADS)

    Martín-Ruiz, A.; Frank, A.; Urrutia, L. F.

    2015-08-01

    Polymer quantization (PQ) is a background independent quantization scheme that arises in loop quantum gravity. This framework leads to a new short-distance (discretized) structure characterized by a fundamental length. In this paper we use PQ to analyze the problem of a particle bouncing on a perfectly reflecting surface under the influence of Earth's gravitational field. In this scenario, deviations from the usual quantum effects are induced by the spatial discreteness, but not by a new short-range gravitational interaction. We solve the polymer Schrödinger equation in an analytical fashion, and we evaluate numerically the corresponding energy levels. We find that the polymer energy spectrum exhibits a negative shift compared to the one obtained for the quantum bouncer. The comparison of our results with those obtained in the GRANIT experiment leads to an upper bound for the fundamental length scale, namely λ ≪0.6 Å . We find polymer corrections to the transition probability between levels, induced by small vibrations, together with the probability of spontaneous emission in the quadrupole approximation.

  12. Second quantization in bit-string physics

    NASA Technical Reports Server (NTRS)

    Noyes, H. Pierre

    1993-01-01

    Using a new fundamental theory based on bit-strings, a finite and discrete version of the solutions of the free one particle Dirac equation as segmented trajectories with steps of length h/mc along the forward and backward light cones executed at velocity +/- c are derived. Interpreting the statistical fluctuations which cause the bends in these segmented trajectories as emission and absorption of radiation, these solutions are analogous to a fermion propagator in a second quantized theory. This allows us to interpret the mass parameter in the step length as the physical mass of the free particle. The radiation in interaction with it has the usual harmonic oscillator structure of a second quantized theory. How these free particle masses can be generated gravitationally using the combinatorial hierarchy sequence (3,10,137,2(sup 127) + 136), and some of the predictive consequences are sketched.

  13. Cosmology with three interacting spin-2 fields

    NASA Astrophysics Data System (ADS)

    Lüben, Marvin; Akrami, Yashar; Amendola, Luca; Solomon, Adam R.

    2016-08-01

    Theories of massive gravity with one or two dynamical metrics generically lack stable and observationally viable cosmological solutions that are distinguishable from Λ cold dark matter (CDM). We consider an extension to trimetric gravity, with three interacting spin-2 fields which are not plagued by the Boulware-Deser ghost. We systematically explore every combination with two free parameters in search of background cosmologies that are competitive with Λ CDM . For each case we determine whether the expansion history satisfies viability criteria, and whether or not it contains beyond-Λ CDM phenomenology. Among the many models we consider, there are only three cases that seem to be both viable and distinguishable from standard cosmology. One of the models has only one free parameter and displays a crossing from above to below the phantom divide. The other two provide scaling behavior, although they contain future singularities that need to be studied in more detail. These models possess interesting features that make them compelling targets for a full comparison to observations of both cosmological expansion history and structure formation.

  14. Quantized magnetoresistance in atomic-size contacts.

    PubMed

    Sokolov, Andrei; Zhang, Chunjuan; Tsymbal, Evgeny Y; Redepenning, Jody; Doudin, Bernard

    2007-03-01

    When the dimensions of a metallic conductor are reduced so that they become comparable to the de Broglie wavelengths of the conduction electrons, the absence of scattering results in ballistic electron transport and the conductance becomes quantized. In ferromagnetic metals, the spin angular momentum of the electrons results in spin-dependent conductance quantization and various unusual magnetoresistive phenomena. Theorists have predicted a related phenomenon known as ballistic anisotropic magnetoresistance (BAMR). Here we report the first experimental evidence for BAMR by observing a stepwise variation in the ballistic conductance of cobalt nanocontacts as the direction of an applied magnetic field is varied. Our results show that BAMR can be positive and negative, and exhibits symmetric and asymmetric angular dependences, consistent with theoretical predictions. PMID:18654248

  15. The effects of damping on the approximate teleportation and nonclassical properties in the atom-field interaction

    NASA Astrophysics Data System (ADS)

    Daneshmand, R.; Tavassoly, M. K.

    2016-04-01

    Based on the Jaynes-Cummings interaction model of a Ξ-type three-level atom with a single-mode quantized field, the effect of damping on teleportation is studied. To achieve this purpose, we have taken into account the decay rates of the two upper atomic levels. The influences of such atomic damping on the teleportation of atomic as well as field states are evaluated. It is shown that, by increasing the damping parameter the fidelity and success probability is decreased. Finally, beside our main motivation of the paper, we end it with some marginal, however, of interest purposes like the analyzing the dynamics of a few interesting physical properties such as entanglement, Mandel parameter and quadrature squeezing in the presence of damping.

  16. Quantized fiber dynamics for extended elementary objects involving gravitation

    NASA Astrophysics Data System (ADS)

    Drechsler, W.

    1992-08-01

    The geometro-stochastic quantization of a gauge theory for extended objects based on the (4, 1)-de Sitter group is used for the description of quantized matter in interaction with gravitation. In this context a Hilbert bundle ℋ over curved space-time B is introduced, possessing the standard fiber ℋ_{bar η }^{(ρ )} , being a resolution kernel Hilbert space (with resolution generatortilde η and generalized coherent state basis) carrying a spin-zero phase space representation of G=SO( 4, 1) belonging to the principal series of unitary irreducible representations determined by the parameter ρ. The bundle ℋ, associated to the de Sitter frame bundle P(B, G), provides a geometric arena with built-in fundamental length parameter R (taken to be of the order of 10-13 cm characterizing hadron physics) yielding, in the presence of gravitation, a quantum kinematical framework for the geometro-stochastic description of spinless matter described in terms of generalized quantum mechanical wave functions, Ψ{x/ρ}(ξ, ζ), defined on #x210B;. By going over to a nonlinear realization of the de Sitter group with the help of a section ξ(x) on the soldered bundle E, associated to P, with homogeneous fiber V'4⋍G/H, one is able to recover gravitation in a de Sitter gauge invariant manner as a gauge theory related to the Lorentz subgroup H of G. ξ(x) plays the dual role of a symmetry-reducing and an extension field. After introducing covariant bilinear source currents in the fields Ψ{x/ρ}(ξ, ζ) and their adjoints determined by G-invariant integration over the local fibers in ℋ, a quantum fiber dynamical (QFD) framework is set up for the dynamics at small distances in B determining the geometric quantities beyond the classical metric of Einstein's theory through a set of current-curvature field equations representing the source equations for axial vector torsion and the de Sitter boost contributions to the bundle connection (the latter defining the soldering forms of

  17. Landau quantization for a neutral particle in the presence of topological defects

    SciTech Connect

    Bakke, K.; Ribeiro, L. R.; Furtado, C.; Nascimento, J. R.

    2009-01-15

    In this paper we study the Landau levels in the nonrelativistic dynamics of a neutral particle which possesses a permanent magnetic dipole moment interacting with an external electric field in the curved space-time background with the presence or absence of a torsion field. The eigenfunction and eigenvalues of the Hamiltonian are obtained. We show that the presence of the topological defect breaks the infinite degeneracy of the Landau levels arising in this system. We also apply a duality transformation to discuss this same quantization for a dynamics of a neutral particle with a permanent electric dipole moment.

  18. Theory of the Knight Shift and Flux Quantization in Superconductors

    DOE R&D Accomplishments Database

    Cooper, L. N.; Lee, H. J.; Schwartz, B. B.; Silvert, W.

    1962-05-01

    Consequences of a generalization of the theory of superconductivity that yields a finite Knight shift are presented. In this theory, by introducing an electron-electron interaction that is not spatially invariant, the pairing of electrons with varying total momentum is made possible. An expression for Xs (the spin susceptibility in the superconducting state) is derived. In general Xs is smaller than Xn, but is not necessarily zero. The precise magnitude of Xs will vary from sample to sample and will depend on the nonuniformity of the samples. There should be no marked size dependence and no marked dependence on the strength of the magnetic field; this is in accord with observation. The basic superconducting properties are retained, but there are modifications in the various electromagnetic and thermal properties since the electrons paired are not time sequences of this generalized theory on flux quantization arguments are presented.(auth)

  19. Minimum distortion quantizers. [determined by max algorithm

    NASA Technical Reports Server (NTRS)

    Jones, H. W., Jr.

    1977-01-01

    The well-known algorithm of Max is used to determine the minimum distortion quantizers for normal, two-sided exponential, and specialized two-sided gamma input distributions and for mean-square, magnitude, and relative magnitude error distortion criteria. The optimum equally-spaced and unequally-spaced quantizers are found, with the resulting quantizer distortion and entropy. The quantizers, and the quantizers with entropy coding, are compared to the rate distortion bounds for mean-square and magnitude error.

  20. Study made of interaction between sound fields and structural vibrations

    NASA Technical Reports Server (NTRS)

    Lyon, R. H.; Smith, P. W., Jr.

    1967-01-01

    Study analyzes structural vibrations and the interactions between them and sound fields. It outlines a conceptual framework to analyze the vibrations of systems and their interactions, incorporating the results of earlier studies and establishing a unified basis for continuing research.

  1. Successive refinement lattice vector quantization.

    PubMed

    Mukherjee, Debargha; Mitra, Sanjit K

    2002-01-01

    Lattice Vector quantization (LVQ) solves the complexity problem of LBG based vector quantizers, yielding very general codebooks. However, a single stage LVQ, when applied to high resolution quantization of a vector, may result in very large and unwieldy indices, making it unsuitable for applications requiring successive refinement. The goal of this work is to develop a unified framework for progressive uniform quantization of vectors without having to sacrifice the mean- squared-error advantage of lattice quantization. A successive refinement uniform vector quantization methodology is developed, where the codebooks in successive stages are all lattice codebooks, each in the shape of the Voronoi regions of the lattice at the previous stage. Such Voronoi shaped geometric lattice codebooks are named Voronoi lattice VQs (VLVQ). Measures of efficiency of successive refinement are developed based on the entropy of the indices transmitted by the VLVQs. Additionally, a constructive method for asymptotically optimal uniform quantization is developed using tree-structured subset VLVQs in conjunction with entropy coding. The methodology developed here essentially yields the optimal vector counterpart of scalar "bitplane-wise" refinement. Unfortunately it is not as trivial to implement as in the scalar case. Furthermore, the benefits of asymptotic optimality in tree-structured subset VLVQs remain elusive in practical nonasymptotic situations. Nevertheless, because scalar bitplane- wise refinement is extensively used in modern wavelet image coders, we have applied the VLVQ techniques to successively refine vectors of wavelet coefficients in the vector set-partitioning (VSPIHT) framework. The results are compared against SPIHT and the previous successive approximation wavelet vector quantization (SA-W-VQ) results of Sampson, da Silva and Ghanbari.

  2. The quantized D-transformation.

    PubMed

    Saraceno, M.; Vallejos, R. O.

    1996-06-01

    We construct a new example of a quantum map, the quantized version of the D-transformation, which is the natural extension to two dimensions of the tent map. The classical, quantum and semiclassical behavior is studied. We also exhibit some relationships between the quantum versions of the D-map and the parity projected baker's map. The method of construction allows a generalization to dissipative maps which includes the quantization of a horseshoe. (c) 1996 American Institute of Physics.

  3. Visibility of wavelet quantization noise

    NASA Technical Reports Server (NTRS)

    Watson, A. B.; Yang, G. Y.; Solomon, J. A.; Villasenor, J.

    1997-01-01

    The discrete wavelet transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that we call DWT uniform quantization noise; it is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2-lambda, where r is display visual resolution in pixels/degree, and lambda is the wavelet level. Thresholds increase rapidly with wavelet spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from lowpass to horizontal/vertical to diagonal. We construct a mathematical model for DWT noise detection thresholds that is a function of level, orientation, and display visual resolution. This allows calculation of a "perceptually lossless" quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.

  4. Visibility of Wavelet Quantization Noise

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Yang, Gloria Y.; Solomon, Joshua A.; Villasenor, John; Null, Cynthia H. (Technical Monitor)

    1995-01-01

    The Discrete Wavelet Transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter, which we call DWT uniform quantization noise. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2(exp)-L , where r is display visual resolution in pixels/degree, and L is the wavelet level. Amplitude thresholds increase rapidly with spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from low-pass to horizontal/vertical to diagonal. We describe a mathematical model to predict DWT noise detection thresholds as a function of level, orientation, and display visual resolution. This allows calculation of a "perceptually lossless" quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.

  5. Quantized string models

    NASA Astrophysics Data System (ADS)

    Fradkin, E. S.; Tseytlin, A. A.

    1982-10-01

    We discuss and compare the Lorentz covariant path integral quantization of the three bose string models, namely, the Nambu, Eguchi and Brink-Di Vecchia-Howe-Polyakov (BDHP) ones. Along with a critical review of the subject with some uncertainties and ambiguities clearly stated, various new results are presented. We work out the form of the BDHP string ansatz for the Wilson average and prove a formal inequivalence of the exact Nambu and BDHP models for any space-time dimension d. The above three models, known to be equivalent on the classical level, are shown to be equivalent in a semiclassical approximation near a minimal surface and also in the leading 1/d- approximation for the static overlineqq-potential. We analyse scattering amplitudes predicted by the BDHP string and find that when exactly calculated for d < 26 they are different from the old dual ones, and possess a non-linear spectrum which may be considered as free from tachyons in the ground state.

  6. Quantized visual awareness

    PubMed Central

    Escobar, W. A.

    2013-01-01

    The proposed model holds that, at its most fundamental level, visual awareness is quantized. That is to say that visual awareness arises as individual bits of awareness through the action of neural circuits with hundreds to thousands of neurons in at least the human striate cortex. Circuits with specific topologies will reproducibly result in visual awareness that correspond to basic aspects of vision like color, motion, and depth. These quanta of awareness (qualia) are produced by the feedforward sweep that occurs through the geniculocortical pathway but are not integrated into a conscious experience until recurrent processing from centers like V4 or V5 select the appropriate qualia being produced in V1 to create a percept. The model proposed here has the potential to shift the focus of the search for visual awareness to the level of microcircuits and these likely exist across the kingdom Animalia. Thus establishing qualia as the fundamental nature of visual awareness will not only provide a deeper understanding of awareness, but also allow for a more quantitative understanding of the evolution of visual awareness throughout the animal kingdom. PMID:24319436

  7. On second quantization on noncommutative spaces with twisted symmetries

    NASA Astrophysics Data System (ADS)

    Fiore, Gaetano

    2010-04-01

    By the application of the general twist-induced sstarf-deformation procedure we translate second quantization of a system of bosons/fermions on a symmetric spacetime into a noncommutative language. The procedure deforms, in a coordinated way, the spacetime algebra and its symmetries, the wave-mechanical description of a system of n bosons/fermions, the algebra of creation and annihilation operators and also the commutation relations of the latter with functions of spacetime; our key requirement is the mode-decomposition independence of the quantum field. In a minimalistic view, the use of noncommutative coordinates can be seen just as a way to better express non-local interactions of a special kind. In a non-conservative one, we obtain a closed, covariant framework for quantum field theory (QFT) on the corresponding noncommutative spacetime consistent with quantum mechanical axioms and Bose-Fermi statistics. One distinguishing feature is that the field commutation relations remain of the type 'field (anti)commutator=a distribution'. We illustrate the results by choosing as examples interacting non-relativistic and free relativistic QFT on Moyal space(time)s.

  8. Dancing in the thresholds: Exploring the interactive field

    NASA Astrophysics Data System (ADS)

    Rodriguez, Constance S.

    This dissertation is an attempt to investigate the nature of the interactive field to deepen as well as broaden its scope as it applies to depth psychology and its praxis. With a phenomenological eye toward field dynamics from other paradigms, this exploration demonstrates an additional theoretical framework within the interactive field. It opens other possibilities creating a neither/nor position from which to contain our work with an alchemical/metaphorical position and allows for the liberation of the imaginal realm through which ``the Other'' may be of service, and in fact, may ask us to be in service to it. The literature review not only surveys the three primary schools in psychology-the psychoanalytical, the classical, and archetypal as the genesis of the interactive field, but also investigates shamanic realms as a backdrop from which to see field theory. Field theory is also explored in the world of quantum physics where the universal field is examined from paradigms situated in varied consciousness models. The somatic unconscious, an intrinsic part of the interactive field in mutual engagement with two or more persons, is also woven into the fabric of this study as an intersection between the universal field and the psychodynamic field. This study, as a psychological gnosis, initiates subtle body awareness from Eastern cosmologies from a depth perspective in the psychodynamics of the interactive field. Synchronistic encounters are integrated into field theory as a threshold where universal fields engage the somatic unconscious, initiating numinous and sometimes transformative change into one's life.

  9. Semiclassical Quantization of the Electron-Dipole System.

    ERIC Educational Resources Information Center

    Turner, J. E.

    1979-01-01

    This paper presents a derivation of the number given by Fermi in 1925, in his semiclassical treatment of the motion of an electron in the field of two stationary positive charges, for Bohr quantization of the electron orbits when the stationary charges are positive, and applies it to an electron moving in the field of a stationary dipole.…

  10. The cosmology of interacting spin-2 fields

    SciTech Connect

    Tamanini, Nicola; Saridakis, Emmanuel N.; Koivisto, Tomi S. E-mail: Emmanuel_Saridakis@baylor.edu

    2014-02-01

    We investigate the cosmology of interacting spin-2 particles, formulating the multi-gravitational theory in terms of vierbeins and without imposing any Deser-van Nieuwen-huizen-like constraint. The resulting multi-vierbein theory represents a wider class of gravitational theories if compared to the corresponding multi-metric models. Moreover, as opposed to its metric counterpart which in general seems to contain ghosts, it has already been proved to be ghost-free. We outline a discussion about the possible matter couplings and we focus on the study of cosmological scenarios in the case of three and four interacting vierbeins. We find rich behavior, including de Sitter solutions with an effective cosmological constant arising from the multi-vierbein interaction, dark-energy solutions and nonsingular bouncing behavior.

  11. Effective field theory analysis of the self-interacting chameleon

    NASA Astrophysics Data System (ADS)

    Sanctuary, Hillary; Sturani, Riccardo

    2010-08-01

    We analyse the phenomenology of a self-interacting scalar field in the context of the chameleon scenario originally proposed by Khoury and Weltman. In the absence of self-interactions, this type of scalar field can mediate long range interactions and simultaneously evade constraints from violation of the weak equivalence principle. By applying to such a scalar field the effective field theory method proposed for Einstein gravity by Goldberger and Rothstein, we give a thorough perturbative evaluation of the importance of non-derivative self-interactions in determining the strength of the chameleon mediated force in the case of orbital motion. The self-interactions are potentially dangerous as they can change the long range behaviour of the field. Nevertheless, we show that they do not lead to any dramatic phenomenological consequence with respect to the linear case and solar system constraints are fulfilled.

  12. Interaction mechanisms and biological effects of static magnetic fields

    SciTech Connect

    Tenforde, T.S.

    1994-06-01

    Mechanisms through which static magnetic fields interact with living systems are described and illustrated by selected experimental observations. These mechanisms include electrodynamic interactions with moving, ionic charges (blood flow and nerve impulse conduction), magnetomechanical interactions (orientation and translation of molecules structures and magnetic particles), and interactions with electronic spin states in charge transfer reactions (photo-induced electron transfer in photosynthesis). A general summary is also presented of the biological effects of static magnetic fields. There is convincing experimental evidence for magnetoreception mechanisms in several classes of lower organisms, including bacteria and marine organisms. However, in more highly evolved species of animals, there is no evidence that the interactions of static magnetic fields with flux densities up to 2 Tesla (1 Tesla [T] = 10{sup 4} Gauss) produce either behavioral or physiolocical alterations. These results, based on controlled studies with laboratory animals, are consistent with the outcome of recent epidemiological surveys on human populations exposed occupationally to static magnetic fields.

  13. Periodic roads and quantized wheels

    NASA Astrophysics Data System (ADS)

    de Campos Valadares, Eduardo

    2016-08-01

    We propose a simple approach to determine all possible wheels that can roll smoothly without slipping on a periodic roadbed, while maintaining the center of mass at a fixed height. We also address the inverse problem that of obtaining the roadbed profile compatible with a specific wheel and all other related "quantized wheels." The role of symmetry is highlighted, which might preclude the center of mass from remaining at a fixed height. A straightforward consequence of such geometric quantization is that the gravitational potential energy and the moment of inertia are discrete, suggesting a parallelism between macroscopic wheels and nano-systems, such as carbon nanotubes.

  14. Wake Fields in the Super B Factory Interaction Region

    SciTech Connect

    Weathersby, Stephen; Novokhatski, Alexander; /SLAC

    2011-06-02

    The geometry of storage ring collider interaction regions present an impedance to beam fields resulting in the generation of additional electromagnetic fields (higher order modes or wake fields) which affect the beam energy and trajectory. These affects are computed for the Super B interaction region by evaluating longitudinal loss factors and averaged transverse kicks for short range wake fields. Results indicate at least a factor of 2 lower wake field power generation in comparison with the interaction region geometry of the PEP-II B-factory collider. Wake field reduction is a consderation in the Super B design. Transverse kicks are consistent with an attractive potential from the crotch nearest the beam trajectory. The longitudinal loss factor scales as the -2.5 power of the bunch length. A factor of 60 loss factor reduction is possible with crotch geometry based on an intersecting tubes model.

  15. Compact and extended objects from self-interacting phantom fields

    NASA Astrophysics Data System (ADS)

    Dzhunushaliev, Vladimir; Folomeev, Vladimir; Makhmudov, Arislan; Urazalina, Ainur; Singleton, Douglas; Scott, John

    2016-07-01

    In this work, we investigate localized and extended objects for gravitating, self-interacting phantom fields. The phantom fields come from two scalar fields with a "wrong-sign" (negative) kinetic energy term in the Lagrangian. This study covers several solutions supported by these phantom fields: phantom balls, traversable wormholes, phantom cosmic strings, and "phantom" domain walls. These four systems are solved numerically, and we try to draw out general, interesting features in each case.

  16. Classical fields method for a relativistic interacting Bose gas

    SciTech Connect

    Witkowska, Emilia; Zin, Pawel; Gajda, Mariusz

    2009-01-15

    We formulate a classical fields method for the description of relativistic interacting bosonic particles at nonzero temperatures. The method relies on the assumption that at low temperatures the Bose field can be described by a c-number function. We discuss a very important role of the cutoff momentum which divides the field into a dominant classical part and a small quantum correction. We illustrate the method by studying the thermodynamics of a relativistic Bose field which is governed by the Klein-Gordon equation with a {lambda}{psi}{sup 4} term responsible for the interactions.

  17. Analysis of magnetic field plasma interactions using microparticles as probes.

    PubMed

    Dropmann, Michael; Laufer, Rene; Herdrich, Georg; Matthews, Lorin S; Hyde, Truell W

    2015-08-01

    The interaction between a magnetic field and plasma close to a nonconductive surface is of interest for both science and technology. In space, crustal magnetic fields on celestial bodies without atmosphere can interact with the solar wind. In advanced technologies such as those used in fusion or spaceflight, magnetic fields can be used to either control a plasma or protect surfaces exposed to the high heat loads produced by plasma. In this paper, a method will be discussed for investigating magnetic field plasma interactions close to a nonconductive surface inside a Gaseous Electronics Conference reference cell employing dust particles as probes. To accomplish this, a magnet covered by a glass plate was exposed to a low power argon plasma. The magnetic field was strong enough to magnetize the electrons, while not directly impacting the dynamics of the ions or the dust particles used for diagnostics. In order to investigate the interaction of the plasma with the magnetic field and the nonconductive surface, micron-sized dust particles were introduced into the plasma and their trajectories were recorded with a high-speed camera. Based on the resulting particle trajectories, the accelerations of the dust particles were determined and acceleration maps over the field of view were generated which are representative of the forces acting on the particles. The results show that the magnetic field is responsible for the development of strong electric fields in the plasma, in both horizontal and vertical directions, leading to complex motion of the dust particles. PMID:26382535

  18. Analysis of magnetic field plasma interactions using microparticles as probes.

    PubMed

    Dropmann, Michael; Laufer, Rene; Herdrich, Georg; Matthews, Lorin S; Hyde, Truell W

    2015-08-01

    The interaction between a magnetic field and plasma close to a nonconductive surface is of interest for both science and technology. In space, crustal magnetic fields on celestial bodies without atmosphere can interact with the solar wind. In advanced technologies such as those used in fusion or spaceflight, magnetic fields can be used to either control a plasma or protect surfaces exposed to the high heat loads produced by plasma. In this paper, a method will be discussed for investigating magnetic field plasma interactions close to a nonconductive surface inside a Gaseous Electronics Conference reference cell employing dust particles as probes. To accomplish this, a magnet covered by a glass plate was exposed to a low power argon plasma. The magnetic field was strong enough to magnetize the electrons, while not directly impacting the dynamics of the ions or the dust particles used for diagnostics. In order to investigate the interaction of the plasma with the magnetic field and the nonconductive surface, micron-sized dust particles were introduced into the plasma and their trajectories were recorded with a high-speed camera. Based on the resulting particle trajectories, the accelerations of the dust particles were determined and acceleration maps over the field of view were generated which are representative of the forces acting on the particles. The results show that the magnetic field is responsible for the development of strong electric fields in the plasma, in both horizontal and vertical directions, leading to complex motion of the dust particles.

  19. Quantized topological Hall effect in skyrmion crystal

    NASA Astrophysics Data System (ADS)

    Hamamoto, Keita; Ezawa, Motohiko; Nagaosa, Naoto

    2015-09-01

    We theoretically study the quantized topological Hall effect (QTHE) in skyrmion crystal (SkX) without external magnetic field. The emergent magnetic field in SkX could be gigantic, as much as 4000 T , when its lattice constant is 1 nm . The band structure is not flat but has a finite gap in the low electron-density regime. We also study the conditions to realize the QTHE for the skyrmion size, carrier density, disorder strength, and temperature. Comparing the SkX and the system under the corresponding uniform magnetic field, the former is more fragile against the temperature compared with the latter since the gap is reduced by a factor of 1/5, while they are almost equally robust against the disorder. Therefore, it is expected that the QTHE of the SkX system is realized even with strong disorder at room temperature when the electron density is of the order of 1 per skyrmion.

  20. The vortex interaction in a propeller/stator flow field

    NASA Technical Reports Server (NTRS)

    Johnston, R. T.; Sullivan, J. P.

    1991-01-01

    The vortex interaction encounered in the flow field of a propeller and a stator has been investigated using smoke flow visualization. A stator at angle of attack was used to generate a line vortex which interacted with the helical vortex filaments generated by a propeller. Changes in the relative vortex strengths and vortex rotational directions yielded several distinct vortex structures. Axial flow in the vortex cores is determined to influence the development of the vortex interaction.

  1. Deformation of second and third quantization

    NASA Astrophysics Data System (ADS)

    Faizal, Mir

    2015-03-01

    In this paper, we will deform the second and third quantized theories by deforming the canonical commutation relations in such a way that they become consistent with the generalized uncertainty principle. Thus, we will first deform the second quantized commutator and obtain a deformed version of the Wheeler-DeWitt equation. Then we will further deform the third quantized theory by deforming the third quantized canonical commutation relation. This way we will obtain a deformed version of the third quantized theory for the multiverse.

  2. On the macroscopic quantization in mesoscopic rings and single-electron devices

    NASA Astrophysics Data System (ADS)

    Semenov, Andrew G.

    2016-05-01

    In this letter we investigate the phenomenon of macroscopic quantization and consider particle on the ring interacting with the dissipative bath as an example. We demonstrate that even in presence of environment, there is macroscopically quantized observable which can take only integer values in the zero temperature limit. This fact follows from the total angular momentum conservation combined with momentum quantization for bare particle on the ring. The nontrivial thing is that the model under consideration, including the notion of quantized observable, can be mapped onto the Ambegaokar-Eckern-Schon model of the single-electron box (SEB). We evaluate SEB observable, originating after mapping, and reveal new physics, which follows from the macroscopic quantization phenomenon and the existence of additional conservation law. Some generalizations of the obtained results are also presented.

  3. Magnetic quantization of s p3 bonding in monolayer gray tin

    NASA Astrophysics Data System (ADS)

    Chen, Szu-Chao; Wu, Chung-Lin; Wu, Jhao-Ying; Lin, Ming-Fa

    2016-07-01

    A generalized tight-binding model, which is based on the subenvelope functions of the different sublattices, is developed to explore the novel magnetic quantization in monolayer gray tin (tinene). The effects due to the s p3 bonding, the spin-orbital coupling, the magnetic field, and the electric field are simultaneously taken into consideration. The unique magnetoelectronic properties lie in two groups of low-lying Landau levels, with different orbital components, localization centers, state degeneracy, spin configurations, and magnetic- and electric-field dependencies. The first and second groups mainly come from the 5 pz and (5 px,5 py ) orbitals, respectively. Their Landau-level splittings are, respectively, induced by the electric field and spin-orbital interactions. The intragroup anticrossings are only revealed in the former. The unique tinene Landau levels are absent in graphene, silicene, and germanene.

  4. Width dependent transition of quantized spin-wave modes in Ni{sub 80}Fe{sub 20} square nanorings

    SciTech Connect

    Banerjee, Chandrima; Saha, Susmita; Barman, Saswati; Barman, Anjan; Rousseau, Olivier; Otani, YoshiChika

    2014-10-28

    We investigated optically induced ultrafast magnetization dynamics in square shaped Ni{sub 80}Fe{sub 20} nanorings with varying ring width. Rich spin-wave spectra are observed whose frequencies showed a strong dependence on the ring width. Micromagnetic simulations showed different types of spin-wave modes, which are quantized upto very high quantization number. In the case of widest ring, the spin-wave mode spectrum shows quantized modes along the applied field direction, which is similar to the mode spectrum of an antidot array. As the ring width decreases, additional quantization in the azimuthal direction appears causing mixed modes. In the narrowest ring, the spin-waves exhibit quantization solely in azimuthal direction. The different quantization is attributed to the variation in the internal field distribution for different ring width as obtained from micromagnetic analysis and supported by magnetic force microscopy.

  5. Asymmetric error field interaction with rotating conducting walls

    SciTech Connect

    Paz-Soldan, C.; Brookhart, M. I.; Hegna, C. C.; Forest, C. B.

    2012-07-15

    The interaction of error fields with a system of differentially rotating conducting walls is studied analytically and compared to experimental data. Wall rotation causes eddy currents to persist indefinitely, attenuating and rotating the original error field. Superposition of error fields from external coils and plasma currents are found to break the symmetry in wall rotation direction. The vacuum and plasma eigenmodes are modified by wall rotation, with the error field penetration time decreased and the kink instability stabilized, respectively. Wall rotation is also predicted to reduce error field amplification by the marginally stable plasma.

  6. Derivative self-interactions for a massive vector field

    NASA Astrophysics Data System (ADS)

    Beltrán Jiménez, Jose; Heisenberg, Lavinia

    2016-06-01

    In this work we revisit the construction of theories for a massive vector field with derivative self-interactions such that only the 3 desired polarizations corresponding to a Proca field propagate. We start from the decoupling limit by constructing healthy interactions containing second derivatives of the Stueckelberg field with itself and also with the transverse modes. The resulting interactions can then be straightforwardly generalized beyond the decoupling limit. We then proceed to a systematic construction of the interactions by using the Levi-Civita tensors. Both approaches lead to a finite family of allowed derivative self-interactions for the Proca field. This construction allows us to show that some higher order terms recently introduced as new interactions trivialize in 4 dimensions by virtue of the Cayley-Hamilton theorem. Moreover, we discuss how the resulting derivative interactions can be written in a compact determinantal form, which can also be regarded as a generalization of the Born-Infeld lagrangian for electromagnetism. Finally, we generalize our results for a curved background and give the necessary non-minimal couplings guaranteeing that no additional polarizations propagate even in the presence of gravity.

  7. Quantization on the circle

    NASA Astrophysics Data System (ADS)

    Merad, M.

    2006-05-01

    We present, via the path-integral approach, the quantum study of a particle without spin constrained to move on a circle and subjected to the action of an external field (V, A). In the first stage, we follow the Faddeev-Senjanovic constraints technique that is essentially based on the Dirac algorithm; and in the second stage, we use the path-integral coherent state relative to the circle, compatible with the topological properties. In the two cases, the free particle and the problem of the magnetic field are shown as an illustrative calculation.

  8. Bohmian quantization of the big rip

    NASA Astrophysics Data System (ADS)

    Pinto-Neto, Nelson; Pantoja, Diego Moraes

    2009-10-01

    It is shown in this paper that minisuperspace quantization of homogeneous and isotropic geometries with phantom scalar fields, when examined in the light of the Bohm-de Broglie interpretation of quantum mechanics, does not eliminate, in general, the classical big rip singularity present in the classical model. For some values of the Hamilton-Jacobi separation constant present in a class of quantum state solutions of the Wheeler-De Witt equation, the big rip can be either completely eliminated or may still constitute a future attractor for all expanding solutions. This is contrary to the conclusion presented in [M. P. Dabrowski, C. Kiefer, and B. Sandhofer, Phys. Rev. DPRVDAQ1550-7998 74, 044022 (2006).10.1103/PhysRevD.74.044022], using a different interpretation of the wave function, where the big rip singularity is completely eliminated (“smoothed out”) through quantization, independently of such a separation constant and for all members of the above mentioned class of solutions. This is an example of the very peculiar situation where different interpretations of the same quantum state of a system are predicting different physical facts, instead of just giving different descriptions of the same observable facts: in fact, there is nothing more observable than the fate of the whole Universe.

  9. Cellular studies and interaction mechanisms of extremely low frequency fields

    NASA Astrophysics Data System (ADS)

    Liburdy, Robert P.

    1995-01-01

    Worldwide interest in the biological effects of ELF (extremely low frequency, <1 kHz) electromagnetic fields has grown significantly. Health professionals and government administrators and regulators, scientists and engineers, and, importantly, an increasing number of individuals in the general public are interested in this health issue. The goal of research at the cellular level is to identify cellular responses to ELF fields, to develop a dose threshold for such interactions, and with such information to formulate and test appropriate interaction mechanisms. This review is selective and will discuss the most recent cellular studies directed at these goals which relate to power line, sinusoidal ELF fields. In these studies an interaction site at the cell membrane is by consensus a likely candidate, since changes in ion transport, ligand-receptor events such as antibody binding, and G protein activation have been reported. These changes strongly indicate that signal transduction (ST) can be influenced. Also, ELF fields are reported to influence enzyme activation, gene expression, protein synthesis, and cell proliferation, which are triggered by earlier ST events at the cell membrane. The concept of ELF fields altering early cell membrane events and thereby influencing intracellular cell function via the ST cascade is perhaps the most plausible biological framework currently being investigated for understanding ELF effects on cells. For example, the consequence of an increase due to ELF fields in mitogenesis, the final endpoint of the ST cascade, is an overall increase in the probability of mutagenesis and consequently cancer, according to the Ames epigenetic model of carcinogenesis. Consistent with this epigenetic mechanism and the ST pathway to carcinogenesis is recent evidence that ELF fields can alter breast cancer cell proliferation and can act as a copromoter in vitro. The most important dosimetric question being addressed currently is whether the electric (E

  10. Plasma-satellite interaction driven magnetic field perturbations

    SciTech Connect

    Saeed-ur-Rehman; Marchand, Richard

    2014-09-15

    We report the first fully kinetic quantitative estimate of magnetic field perturbations caused by the interaction of a spacecraft with space environment. Such perturbations could affect measurements of geophysical magnetic fields made with very sensitive magnetometers on-board satellites. Our approach is illustrated with a calculation of perturbed magnetic fields near the recently launched Swarm satellites. In this case, magnetic field perturbations do not exceed 20 pT, and they are below the sensitivity threshold of the on-board magnetometers. Anticipating future missions in which satellites and instruments would be subject to more intense solar UV radiation, however, it appears that magnetic field perturbations associated with satellite interaction with space environment, might approach or exceed instruments' sensitivity thresholds.

  11. On quantization of matrix models

    NASA Astrophysics Data System (ADS)

    Starodubtsev, Artem

    2002-12-01

    The issue of non-perturbative background independent quantization of matrix models is addressed. The analysis is carried out by considering a simple matrix model which is a matrix extension of ordinary mechanics reduced to 0 dimension. It is shown that this model has an ordinary mechanical system evolving in time as a classical solution. But in this treatment the action principle admits a natural modification which results in algebraic relations describing quantum theory. The origin of quantization is similar to that in Adler's generalized quantum dynamics. The problem with extension of this formalism to many degrees of freedom is solved by packing all the degrees of freedom into a single matrix. The possibility to apply this scheme to various matrix models is discussed.

  12. Field theoretic treatment of gravitational interaction in electrodynamics

    NASA Astrophysics Data System (ADS)

    Serdyukov, A. N.

    2011-03-01

    A theory of gravitational interaction in classical electrodynamics is developed on the basis of an earlier-proposed minimal relativistic model of gravitation. From the variation principle, a system of gaugeinvariant equations of the interacting electromagnetic and gravitational fields is deduced and their common energy-momentum tensor is constructed. A rigorous solution to the problem of regularizing the field mass of a point charge is given with consideration for the coupling energy of the gravitational interaction. The propagation of electromagnetic waves in the gravitational field is discussed. It is shown that, under the condition of the existing resonant ratio 2: 3 for the periods of Mercury's orbital revolution and daily rotation, tidal forces cause a regular shift in the planet's perihelion in an observable forward direction.

  13. Quantum Monte Carlo calculations with chiral effective field theory interactions.

    PubMed

    Gezerlis, A; Tews, I; Epelbaum, E; Gandolfi, S; Hebeler, K; Nogga, A; Schwenk, A

    2013-07-19

    We present the first quantum Monte Carlo (QMC) calculations with chiral effective field theory (EFT) interactions. To achieve this, we remove all sources of nonlocality, which hamper the inclusion in QMC calculations, in nuclear forces to next-to-next-to-leading order. We perform auxiliary-field diffusion Monte Carlo (AFDMC) calculations for the neutron matter energy up to saturation density based on local leading-order, next-to-leading order, and next-to-next-to-leading order nucleon-nucleon interactions. Our results exhibit a systematic order-by-order convergence in chiral EFT and provide nonperturbative benchmarks with theoretical uncertainties. For the softer interactions, perturbative calculations are in excellent agreement with the AFDMC results. This work paves the way for QMC calculations with systematic chiral EFT interactions for nuclei and nuclear matter, for testing the perturbativeness of different orders, and allows for matching to lattice QCD results by varying the pion mass.

  14. Finite- to zero-range relativistic mean-field interactions

    SciTech Connect

    Niksic, T.; Vretenar, D.; Lalazissis, G. A.; Ring, P.

    2008-03-15

    We study the relation between the finite-range (meson-exchange) and zero-range (point-coupling) representations of effective nuclear interactions in the relativistic mean-field framework. Starting from the phenomenological interaction DD-ME2 with density-dependent meson-nucleon couplings, we construct a family of point-coupling effective interactions for different values of the strength parameter of the isoscalar-scalar derivative term. In the meson-exchange picture this corresponds to different values of the {sigma}-meson mass. The parameters of the isoscalar-scalar and isovector-vector channels of the point-coupling interactions are adjusted to nuclear matter and ground-state properties of finite nuclei. By comparing results for infinite and semi-infinite nuclear matter, ground-state masses, charge radii, and collective excitations, we discuss constraints on the parameters of phenomenological point-coupling relativistic effective interaction.

  15. Numerical Investigations of Reconnection of Quantized Vortices

    NASA Astrophysics Data System (ADS)

    Rorai, Cecilia; Fisher, Michael E.; Lathrop, Daniel P.; Sreenivasan, Katepalli R.; Kerr, Robert M.

    2011-11-01

    Reconnection of quantized vortices in superfluid helium was conjectured by Feynman in 1955, and first observed experimentally by Bewley et al. (PNAS 105, 13708, 2007). The nature of this phenomenon is quantum mechanical, involving atomically thin vortex cores. At the same time, this phenomenon influences the large scale dynamics, since a tangle of vortices can change topology through reconnection and evolve in time. Numerically, the Gross-Pitaevskii (GP) equation allows detailed predictions of vortex reconnection as first shown by Koplik and Levine (1993). We have undertaken further calculations to characterize the dynamics of isolated reconnection events. Initial conditions have been analyzed carefully, different geometries have been considered and a new approach has been proposed. This approach consists in using the diffusion equation associated to the GP equation to set minimum energy initial vortex profiles. The underlying questions we wish to answer are the universality of vortex reconnection and its effect on energy dissipation to the phonon field.

  16. Quantization noise filtering in ADPCM systems

    NASA Astrophysics Data System (ADS)

    Gibson, J. D.

    1980-08-01

    Differential pulse code modulation (DPCM) systems utilizing adaptive quantizers and fixed or adaptive predictors are effective methods for voice encoding at data rates of 9.6 to 40 kbits/s. The principal performance limitation on these systems is the presence of quantization noise in the receiver output and the predictor feedback loop. An approach to reducing the quantization noise using sequential filtering methods based on estimation theory concepts is described. Several different filter structures are presented and the efficacy of the approach is illustrated via system simulations using actual speech. Signal-to-quantization noise ratio, sound spectrograms, and subjective listening tests are used for system performance evaluations.

  17. Dynamics of interacting scalar fields in expanding space-time

    SciTech Connect

    Berera, Arjun; Ramos, Rudnei O.

    2005-01-15

    The effective equation of motion is derived for a scalar field interacting with other fields in a Friedmann-Robertson-Walker background space-time. The dissipative behavior reflected in this effective evolution equation is studied both in simplified approximations as well as numerically. The relevance of our results to inflation are considered both in terms of the evolution of the inflaton field as well as its fluctuation spectrum. A brief examination also is made of supersymmetric models that yield dissipative effects during inflation.

  18. Radiative self-interaction in classical field theory

    NASA Astrophysics Data System (ADS)

    Kalman, P.

    The products of mass renormalization in an electromagnetic field were studied in order to construct a classical theory of radiative self-interaction. A constraint was applied to the solution of the Dirac equation to ensure that the rest mass contained an electromagnetic component. The level shifts and decay rates of field states were calculated according to the method of Feynman (1961), and the results are discussed. Some applications of the theoretical results in the fields of laser physics and nonlinear optics are considered.

  19. Higgs particles interacting via a scalar Dark Matter field

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Yajnavalkya; Darewych, Jurij

    2016-07-01

    We study a system of two Higgs particles, interacting via a scalar Dark Matter mediating field. The variational method in the Hamiltonian formalism of QFT is used to derive relativistic wave equations for the two-Higgs system, using a truncated Fock-space trial state. Approximate solutions of the two-body equations are used to examine the existence of Higgs bound states.

  20. Interaction of a free flame front with a turbulence field

    NASA Technical Reports Server (NTRS)

    Tucker, Maurice

    1956-01-01

    Small-perturbation spectral-analysis techniques are used to obtain the root-mean-square flame-generated turbulence velocities and the attenuating pressure fluctuations stemming from interaction of a constant-pressure flame front with a field of isotropic turbulence in the absence of turbulence decay processes.

  1. Finite-temperature effective boundary theory of the quantized thermal Hall effect

    NASA Astrophysics Data System (ADS)

    Nakai, Ryota; Ryu, Shinsei; Nomura, Kentaro

    2016-02-01

    A finite-temperature effective free energy of the boundary of a quantized thermal Hall system is derived microscopically from the bulk two-dimensional Dirac fermion coupled with a gravitational field. In two spatial dimensions, the thermal Hall conductivity of fully gapped insulators and superconductors is quantized and given by the bulk Chern number, in analogy to the quantized electric Hall conductivity in quantum Hall systems. From the perspective of effective action functionals, two distinct types of the field theory have been proposed to describe the quantized thermal Hall effect. One of these, known as the gravitational Chern-Simons action, is a kind of topological field theory, and the other is a phenomenological theory relevant to the Strěda formula. In order to solve this problem, we derive microscopically an effective theory that accounts for the quantized thermal Hall effect. In this paper, the two-dimensional Dirac fermion under a static background gravitational field is considered in equilibrium at a finite temperature, from which an effective boundary free energy functional of the gravitational field is derived. This boundary theory is shown to explain the quantized thermal Hall conductivity and thermal Hall current in the bulk by assuming the Lorentz symmetry. The bulk effective theory is consistently determined via the boundary effective theory.

  2. Adaptive image segmentation by quantization

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Yun, David Y.

    1992-12-01

    Segmentation of images into textural homogeneous regions is a fundamental problem in an image understanding system. Most region-oriented segmentation approaches suffer from the problem of different thresholds selecting for different images. In this paper an adaptive image segmentation based on vector quantization is presented. It automatically segments images without preset thresholds. The approach contains a feature extraction module and a two-layer hierarchical clustering module, a vector quantizer (VQ) implemented by a competitive learning neural network in the first layer. A near-optimal competitive learning algorithm (NOLA) is employed to train the vector quantizer. NOLA combines the advantages of both Kohonen self- organizing feature map (KSFM) and K-means clustering algorithm. After the VQ is trained, the weights of the network and the number of input vectors clustered by each neuron form a 3- D topological feature map with separable hills aggregated by similar vectors. This overcomes the inability to visualize the geometric properties of data in a high-dimensional space for most other clustering algorithms. The second clustering algorithm operates in the feature map instead of the input set itself. Since the number of units in the feature map is much less than the number of feature vectors in the feature set, it is easy to check all peaks and find the `correct' number of clusters, also a key problem in current clustering techniques. In the experiments, we compare our algorithm with K-means clustering method on a variety of images. The results show that our algorithm achieves better performance.

  3. Quantized Fields à la Clifford and Unification

    NASA Astrophysics Data System (ADS)

    Pavšič, Matej

    It is shown that the generators of Clifford algebras behave as creation and annihilation operators for fermions and bosons. They can create extended objects, such as strings and branes, and can induce curved metric of our space-time. At a fixed point, we consider the Clifford algebra Cl(8) of the 8D phase space, and show that one quarter of the basis elements of Cl(8) can represent all known particles of the first generation of the Standard model, whereas the other three quarters are invisible to us and can thus correspond to dark matter.

  4. Dynamic near-field optical interaction between oscillating nanomechanical structures

    PubMed Central

    Ahn, Phillip; Chen, Xiang; Zhang, Zhen; Ford, Matthew; Rosenmann, Daniel; Jung, II Woong; Sun, Cheng; Balogun, Oluwaseyi

    2015-01-01

    Near-field optical techniques exploit light-matter interactions at small length scales for mechanical sensing and actuation of nanomechanical structures. Here, we study the optical interaction between two mechanical oscillators—a plasmonic nanofocusing probe-tip supported by a low frequency cantilever, and a high frequency nanomechanical resonator—and leverage their interaction for local detection of mechanical vibrations. The plasmonic nanofocusing probe provides a confined optical source to enhance the interaction between the two oscillators. Dynamic perturbation of the optical cavity between the probe-tip and the resonator leads to nonlinear modulation of the scattered light intensity at the sum and difference of their frequencies. This double-frequency demodulation scheme is explored to suppress unwanted background and to detect mechanical vibrations with a minimum detectable displacement sensitivity of 0.45 pm/Hz1/2, which is limited by shot noise and electrical noise. We explore the demodulation scheme for imaging the bending vibration mode shape of the resonator with a lateral spatial resolution of 20 nm. We also demonstrate the time-resolved aspect of the local optical interaction by recording the ring-down vibrations of the resonator at frequencies of up to 129 MHz. The near-field optical technique is promising for studying dynamic mechanical processes in individual nanostructures. PMID:26014599

  5. Effective field theory of thermal Casimir interactions between anisotropic particles.

    PubMed

    Haussman, Robert C; Deserno, Markus

    2014-06-01

    We employ an effective field theory (EFT) approach to study thermal Casimir interactions between objects bound to a fluctuating fluid surface or interface dominated by surface tension, with a focus on the effects of particle anisotropy. The EFT prescription disentangles the constraints imposed by the particles' boundaries from the calculation of the interaction free energy by constructing an equivalent point particle description. The finite-size information is captured in a derivative expansion that encodes the particles' response to external fields. The coefficients of the expansion terms correspond to generalized tensorial polarizabilities and are found by matching the results of a linear response boundary value problem computed in both the full and effective theories. We demonstrate the versatility of the EFT approach by constructing the general effective Hamiltonian for a collection of particles of arbitrary shapes. Taking advantage of the conformal symmetry of the Hamiltonian, we discuss a straightforward conformal mapping procedure to systematically determine the polarizabilities and derive a complete description for elliptical particles. We compute the pairwise interaction energies to several orders for nonidentical ellipses as well as their leading-order triplet interactions and discuss the resulting preferred pair and multibody configurations. Furthermore, we elaborate on the complications that arise with pinned particle boundary conditions and show that the powerlike corrections expected from dimensional analysis are exponentially suppressed by the leading-order interaction energies. PMID:25019720

  6. Dynamic near-field optical interaction between oscillating nanomechanical structures

    DOE PAGESBeta

    Ahn, Phillip; Chen, Xiang; Zhang, Zhen; Ford, Matthew; Rosenmann, Daniel; Jung, II Woong; Sun, Cheng; Balogun, Oluwaseyi

    2015-05-27

    Near-field optical techniques exploit light-matter interactions at small length scales for mechanical sensing and actuation of nanomechanical structures. Here, we study the optical interaction between two mechanical oscillators—a plasmonic nanofocusing probe-tip supported by a low frequency cantilever, and a high frequency nanomechanical resonator—and leverage their interaction for local detection of mechanical vibrations. The plasmonic nanofocusing probe provides a confined optical source to enhance the interaction between the two oscillators. Dynamic perturbation of the optical cavity between the probe-tip and the resonator leads to nonlinear modulation of the scattered light intensity at the sum and difference of their frequencies. This double-frequencymore » demodulation scheme is explored to suppress unwanted background and to detect mechanical vibrations with a minimum detectable displacement sensitivity of 0.45pm/Hz1/2, which is limited by shot noise and electrical noise. We explore the demodulation scheme for imaging the bending vibration mode shape of the resonator with a lateral spatial resolution of 20nm. We also demonstrate the time-resolved aspect of the local optical interaction by recording the ring-down vibrations of the resonator at frequencies of up to 129MHz. The near-field optical technique is promising for studying dynamic mechanical processes in individual nanostructures.« less

  7. Dynamic near-field optical interaction between oscillating nanomechanical structures

    SciTech Connect

    Ahn, Phillip; Chen, Xiang; Zhang, Zhen; Ford, Matthew; Rosenmann, Daniel; Jung, II Woong; Sun, Cheng; Balogun, Oluwaseyi

    2015-05-27

    Near-field optical techniques exploit light-matter interactions at small length scales for mechanical sensing and actuation of nanomechanical structures. Here, we study the optical interaction between two mechanical oscillators—a plasmonic nanofocusing probe-tip supported by a low frequency cantilever, and a high frequency nanomechanical resonator—and leverage their interaction for local detection of mechanical vibrations. The plasmonic nanofocusing probe provides a confined optical source to enhance the interaction between the two oscillators. Dynamic perturbation of the optical cavity between the probe-tip and the resonator leads to nonlinear modulation of the scattered light intensity at the sum and difference of their frequencies. This double-frequency demodulation scheme is explored to suppress unwanted background and to detect mechanical vibrations with a minimum detectable displacement sensitivity of 0.45pm/Hz1/2, which is limited by shot noise and electrical noise. We explore the demodulation scheme for imaging the bending vibration mode shape of the resonator with a lateral spatial resolution of 20nm. We also demonstrate the time-resolved aspect of the local optical interaction by recording the ring-down vibrations of the resonator at frequencies of up to 129MHz. The near-field optical technique is promising for studying dynamic mechanical processes in individual nanostructures.

  8. Differentiation of optical isomers through enhanced weak-field interactions

    NASA Technical Reports Server (NTRS)

    Aronowitz, S.

    1980-01-01

    The influence of weak field interaction terms due to the cooperative effects which arise from a macroscopic assemblage of interacting sites is studied. Differential adsorption of optical isomers onto an achiral surface is predicted to occur if the surface was continuous and sufficiently large. However, the quantity of discontinuous crystal surfaces did not enhance the percentage of differentiation and thus the procedure of using large quantities of small particles was not a viable technique for obtaining a detectable differentiation of optical isomers on an achiral surface.

  9. Boson stars: Gravitational equilibria of self-interacting scalar fields

    SciTech Connect

    Colpi, M.; Shapiro, S.L.; Wasserman, I.

    1986-11-17

    Spherically symmetric gravitational equilibria of self-interacting scalar fields phi with interaction potential V(phi) = (1/4)lambdachemically bondphichemically bond/sup 4/ are determined. Surprisingly, the resulting configurations may differ markedly from the noninteracting case even when lambda<<1. Contrary to generally accepted astrophysical folklore, it is found that the maximum masses of such boson stars may be comparable to the Chandrasekhar mass for fermions of mass m/sub fermion/--lambda/sup -1/4/m/sub boson/. .AE

  10. Weak associativity and deformation quantization

    NASA Astrophysics Data System (ADS)

    Kupriyanov, V. G.

    2016-09-01

    Non-commutativity and non-associativity are quite natural in string theory. For open strings it appears due to the presence of non-vanishing background two-form in the world volume of Dirichlet brane, while in closed string theory the flux compactifications with non-vanishing three-form also lead to non-geometric backgrounds. In this paper, working in the framework of deformation quantization, we study the violation of associativity imposing the condition that the associator of three elements should vanish whenever each two of them are equal. The corresponding star products are called alternative and satisfy important for physical applications properties like the Moufang identities, alternative identities, Artin's theorem, etc. The condition of alternativity is invariant under the gauge transformations, just like it happens in the associative case. The price to pay is the restriction on the non-associative algebra which can be represented by the alternative star product, it should satisfy the Malcev identity. The example of nontrivial Malcev algebra is the algebra of imaginary octonions. For this case we construct an explicit expression of the non-associative and alternative star product. We also discuss the quantization of Malcev-Poisson algebras of general form, study its properties and provide the lower order expression for the alternative star product. To conclude we define the integration on the algebra of the alternative star products and show that the integrated associator vanishes.

  11. Weighted Bergman Kernels and Quantization}

    NASA Astrophysics Data System (ADS)

    Engliš, Miroslav

    Let Ω be a bounded pseudoconvex domain in CN, φ, ψ two positive functions on Ω such that - log ψ, - log φ are plurisubharmonic, and z∈Ω a point at which - log φ is smooth and strictly plurisubharmonic. We show that as k-->∞, the Bergman kernels with respect to the weights φkψ have an asymptotic expansion for x,y near z, where φ(x,y) is an almost-analytic extension of &\\phi(x)=φ(x,x) and similarly for ψ. Further, . If in addition Ω is of finite type, φ,ψ behave reasonably at the boundary, and - log φ, - log ψ are strictly plurisubharmonic on Ω, we obtain also an analogous asymptotic expansion for the Berezin transform and give applications to the Berezin quantization. Finally, for Ω smoothly bounded and strictly pseudoconvex and φ a smooth strictly plurisubharmonic defining function for Ω, we also obtain results on the Berezin-Toeplitz quantization.

  12. Integral quantizations with two basic examples

    SciTech Connect

    Bergeron, H.; Gazeau, J.P.

    2014-05-15

    The paper concerns integral quantization, a procedure based on operator-valued measure and resolution of the identity. We insist on covariance properties in the important case where group representation theory is involved. We also insist on the inherent probabilistic aspects of this classical–quantum map. The approach includes and generalizes coherent state quantization. Two applications based on group representation are carried out. The first one concerns the Weyl–Heisenberg group and the euclidean plane viewed as the corresponding phase space. We show that a world of quantizations exist, which yield the canonical commutation rule and the usual quantum spectrum of the harmonic oscillator. The second one concerns the affine group of the real line and gives rise to an interesting regularization of the dilation origin in the half-plane viewed as the corresponding phase space. -- Highlights: •Original approach to quantization based on (positive) operator-valued measures. •Includes Berezin–Klauder–Toeplitz and Weyl–Wigner quantizations. •Infinitely many such quantizations produce canonical commutation rule. •Set of objects to be quantized is enlarged in order to include singular functions or distributions. •Are given illuminating examples like quantum angle and affine or wavelet quantization.

  13. The method of Ostrogradsky, quantization, and a move toward a ghost-free future

    SciTech Connect

    Nucci, M C; Leach, P G L

    2009-11-15

    The method of Ostrogradsky has been used to construct a first-order Lagrangian, hence Hamiltonian, for the fourth-order field-theoretical model of Pais-Uhlenbeck with unfortunate results when quantization is undertaken since states with negative norm, commonly called ''ghosts,'' appear. We propose an alternative route based on the preservation of symmetry and this leads to a ghost-free quantization.

  14. Causal Poisson bracket via deformation quantization

    NASA Astrophysics Data System (ADS)

    Berra-Montiel, Jasel; Molgado, Alberto; Palacios-García, César D.

    2016-06-01

    Starting with the well-defined product of quantum fields at two spacetime points, we explore an associated Poisson structure for classical field theories within the deformation quantization formalism. We realize that the induced star-product is naturally related to the standard Moyal product through an appropriate causal Green’s functions connecting points in the space of classical solutions to the equations of motion. Our results resemble the Peierls-DeWitt bracket that has been analyzed in the multisymplectic context. Once our star-product is defined, we are able to apply the Wigner-Weyl map in order to introduce a generalized version of Wick’s theorem. Finally, we include some examples to explicitly test our method: the real scalar field, the bosonic string and a physically motivated nonlinear particle model. For the field theoretic models, we have encountered causal generalizations of the creation/annihilation relations, and also a causal generalization of the Virasoro algebra for the bosonic string. For the nonlinear particle case, we use the approximate solution in terms of the Green’s function, in order to construct a well-behaved causal bracket.

  15. Dissipation coefficients from scalar and fermion quantum field interactions

    SciTech Connect

    Bastero-Gil, Mar; Berera, Arjun; Ramos, Rudnei O. E-mail: ab@ph.ed.ac.uk

    2011-09-01

    Dissipation coefficients are calculated in the adiabatic, near thermal equilibrium regime for a large class of renormalizable interaction configurations involving a two-stage mechanism, where a background scalar field is coupled to heavy intermediate scalar or fermion fields which in turn are coupled to light scalar or fermion radiation fields. These interactions are typical of warm inflation microscopic model building. Two perturbative regimes are shown where well defined approximations for the spectral functions apply. One regime is at high temperature, when the masses of both intermediate and radiation fields are less than the temperature scale and where the poles of the spectral functions dominate. The other regime is at low temperature, when the intermediate field masses are much bigger than the temperature and where the low energy and low three-momentum regime dominate the spectral functions. The dissipation coefficients in these two regimes are derived. However, due to resummation issues for the high temperature case, only phenomenological approximate estimates are provided for the dissipation in this regime. In the low temperature case, higher loop contributions are suppressed and so no resummation is necessary. In addition to inflationary cosmology, the application of our results to cosmological phase transitions is also discussed.

  16. Benchmarking of Force Fields for Molecule-Membrane Interactions.

    PubMed

    Paloncýová, Markéta; Fabre, Gabin; DeVane, Russell H; Trouillas, Patrick; Berka, Karel; Otyepka, Michal

    2014-09-01

    Studies of drug-membrane interactions witness an ever-growing interest, as penetration, accumulation, and positioning of drugs play a crucial role in drug delivery and metabolism in human body. Molecular dynamics simulations complement nicely experimental measurements and provide us with new insight into drug-membrane interactions; however, the quality of the theoretical data dramatically depends on the quality of the force field used. We calculated the free energy profiles of 11 molecules through a model dimyristoylphosphatidylcholine (DMPC) membrane bilayer using five force fields, namely Berger, Slipids, CHARMM36, GAFFlipids, and GROMOS 43A1-S3. For the sake of comparison, we also employed the semicontinuous tool COSMOmic. High correlation was observed between theoretical and experimental partition coefficients (log K). Partition coefficients calculated by all-atomic force fields (Slipids, CHARMM36, and GAFFlipids) and COSMOmic differed by less than 0.75 log units from the experiment and Slipids emerged as the best performing force field. This work provides the following recommendations (i) for a global, systematic and high throughput thermodynamic evaluations (e.g., log K) of drugs COSMOmic is a tool of choice due to low computational costs; (ii) for studies of the hydrophilic molecules CHARMM36 should be considered; and (iii) for studies of more complex systems, taking into account all pros and cons, Slipids is the force field of choice.

  17. Interaction between two magnetic dipoles in a uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Ku, J. G.; Liu, X. Y.; Chen, H. H.; Deng, R. D.; Yan, Q. X.

    2016-02-01

    A new formula for the interaction force between two magnetic dipoles in a uniform magnetic field is derived taking their mutual magnetic interaction into consideration and used to simulate their relative motion. Results show that when the angle β between the direction of external magnetic field and the centerline of two magnetic dipoles is 0 ° or 90 °, magnetic dipoles approach each other or move away from each other in a straight line, respectively. And the time required for them to contact each other from the initial position is related to the specific susceptibility and the diameter of magnetic particles, medium viscosity and magnetic field strength. When β is between 0 ° and 90 °, magnetic dipole pair performs approximate elliptical motion, and the motion trajectory is affected by the specific susceptibility, diameter and medium viscosity but not magnetic field strength. However, time required for magnetic dipoles to complete the same motion trajectory is shorter when adopting stronger magnetic field. Moreover, the subsequent motion trajectory of magnetic dipoles is ascertained once the initial position is set in a predetermined motion trajectory. Additionally, magnetic potential energy of magnetic dipole pairs is transformed into kinetic energy and friction energy during the motion.

  18. Microwave magnetoelectric fields and their role in the matter-field interaction.

    PubMed

    Kamenetskii, E O; Joffe, R; Shavit, R

    2013-02-01

    We show that in a source-free subwavelength region of microwave fields, there can exist field structures with a local coupling between the time-varying electric and magnetic fields differing from the electric-magnetic coupling in regular-propagating free-space electromagnetic waves. To distinguish such field structures from regular electromagnetic (EM) field structures, we term them as magnetoelectric (ME) fields. We study a structure and conservation laws of microwave ME near fields. We show that there exist sources of microwave ME near fields-the ME particles. These particles are represented by small quasi-two-dimensional ferrite disks with magnetic-dipolar-oscillation spectra. The near fields originating from such particles are characterized by topologically distinctive power-flow vortices, nonzero helicity, and a torsion degree of freedom. The paper consists of two main parts. In the first one, we give a theoretical background of properties of the electric and magnetic fields inside and outside of a ferrite particle with magnetic-dipolar-oscillation spectra resulting in the appearance of microwave ME near fields. In the second main part, we represent numerical and experimental studies of the microwave ME near fields and their interactions with matter. Based on the obtained properties of the ME near fields, we discuss possibilities for effective microwave sensing of natural and artificial chiral structures.

  19. Stream-Field Interactions in the Magnetic Accretor AO Piscium

    NASA Astrophysics Data System (ADS)

    Hellier, Coel; van Zyl, Liza

    2005-06-01

    UV spectra of the magnetic accretor AO Psc show absorption features for half the binary orbit. The absorption is unlike the wind-formed features often seen in similar stars. Instead, we attribute it to a fraction of the stream that overflows the impact with the accretion disk. Rapid velocity variations can be explained by changes in the trajectory of the stream depending on the orientation of the white dwarf's magnetic field. Hence, we are directly observing the interaction of an accretion stream with a rotating field. We compare this behavior to that seen in other intermediate polars and in SW Sex stars.

  20. Small oscillations of two interacting particles in a magnetic field

    NASA Astrophysics Data System (ADS)

    del Pino, L. A.; Curilef, S.

    2016-11-01

    The classical behavior of two interacting particles in the presence of a uniform magnetic field is studied in the small oscillations approximation. Using the Lagrangian formalism, the equations of motion are derived, as are their solutions and constants of motion. Normal modes of oscillations and their corresponding normal coordinates are obtained that strongly depend on the initial condition; therefore, we observe that the oscillation along the line that joins the particles is non-isochronous. In addition, particular attention has been paid to the planar motion, without the pseudomomentum component parallel to the magnetic field, where one longitudinal mode and two transversal modes are obtained.

  1. Conformal field theory of critical Casimir interactions in 2D

    NASA Astrophysics Data System (ADS)

    Bimonte, G.; Emig, T.; Kardar, M.

    2013-10-01

    Thermal fluctuations of a critical system induce long-ranged Casimir forces between objects that couple to the underlying field. For two-dimensional (2D) conformal field theories (CFT) we derive an exact result for the Casimir interaction between two objects of arbitrary shape, in terms of 1) the free energy of a circular ring whose radii are determined by the mutual capacitance of two conductors with the objects' shape; and 2) a purely geometric energy that is proportional to the conformal charge of the CFT, but otherwise super-universal in that it depends only on the shapes and is independent of boundary conditions and other details.

  2. Logarithmic Adaptive Quantization Projection for Audio Watermarking

    NASA Astrophysics Data System (ADS)

    Zhao, Xuemin; Guo, Yuhong; Liu, Jian; Yan, Yonghong; Fu, Qiang

    In this paper, a logarithmic adaptive quantization projection (LAQP) algorithm for digital watermarking is proposed. Conventional quantization index modulation uses a fixed quantization step in the watermarking embedding procedure, which leads to poor fidelity. Moreover, the conventional methods are sensitive to value-metric scaling attack. The LAQP method combines the quantization projection scheme with a perceptual model. In comparison to some conventional quantization methods with a perceptual model, the LAQP only needs to calculate the perceptual model in the embedding procedure, avoiding the decoding errors introduced by the difference of the perceptual model used in the embedding and decoding procedure. Experimental results show that the proposed watermarking scheme keeps a better fidelity and is robust against the common signal processing attack. More importantly, the proposed scheme is invariant to value-metric scaling attack.

  3. Cascade of FISDW Phases: Wave Vector Quantization and its Consequences

    NASA Astrophysics Data System (ADS)

    Héritier, M.

    We discuss a formation of the field-induced spin-density-wave phases in organic conductors (TMTSF)2X in terms of the so-called quantized nesting model (QNM), suggested by Heritier, Montambaux, and Lederer on a basis of the Go'kov- Lebed theory. The QNM, developed by Lebed, Maki et al., Yamaji, Poilblanc et al., and Yakovenko et al., is able to account for experimentally observed threedimensional quantum Hall effect.

  4. Interaction field modeling of mini-UAV swarm

    NASA Astrophysics Data System (ADS)

    Liou, William W.; Ro, Kapseong; Szu, Harold

    2006-05-01

    A behavior-based, simple interaction model inspired by molecular interaction field depicted by the Lennard-Jones function is examined for the averaged interaction in swarming. The modeled kinematic equation of motion contains only one variable, instead of a multiple state variable dependence a more complete dynamics entails. The model assumes a spatial distribution of the potential associate with the swarm. The model has been applied to examine the formation of swarm and the results are reported. The modeling can be reflected in an equilibrium theory for the operation of a swarm of mini-UAVs pioneered by Szu, where every member serves the mission while exploiting other's loss, resulting in a zero-sum game among the team members.

  5. Long-range interactions in lattice field theory

    SciTech Connect

    Rabin, J.M.

    1981-06-01

    Lattice quantum field theories containing fermions can be formulated in a chirally invariant way provided long-range interactions are introduced. It is established that in weak-coupling perturbation theory such a lattice theory is renormalizable when the corresponding continuum theory is, and that the continuum theory is indeed recovered in the perturbative continuum limit. In the strong-coupling limit of these theories one is led to study an effective Hamiltonian describing a Heisenberg antiferromagnet with long-range interactions. Block-spin renormalization group methods are used to find a critical rate of falloff of the interactions, approximately as inverse distance squared, which separates a nearest-neighbor-antiferromagnetic phase from a phase displaying identifiable long-range effects. A duality-type symmetry is present in some block-spin calculations.

  6. Quantized conic sections; quantum gravity

    SciTech Connect

    Noyes, H.P.

    1993-03-15

    Starting from free relativistic particles whose position and velocity can only be measured to a precision < {Delta}r{Delta}v > {equivalent_to} {plus_minus} k/2 meter{sup 2}sec{sup {minus}1} , we use the relativistic conservation laws to define the relative motion of the coordinate r = r{sub 1} {minus} r{sub 2} of two particles of mass m{sub 1}, m{sub 2} and relative velocity v = {beta}c = {sub (k{sub 1} + k{sub 2}})/ {sup (k{sub 1} {minus} k{sub 2}}) in terms of conic section equation v{sup 2} = {Gamma} [2/r {plus_minus} 1/a] where ``+`` corresponds to hyperbolic and ``{minus}`` to elliptical trajectories. Equation is quantized by expressing Kepler`s Second Law as conservation of angular niomentum per unit mass in units of k. Principal quantum number is n {equivalent_to} j + {1/2} with``square`` {sub T{sup 2}}/{sup A{sup 2}} = (n {minus}1)nk{sup 2} {equivalent_to} {ell}{sub {circle_dot}}({ell}{sub {circle_dot}} + 1)k{sup 2}. Here {ell}{sub {circle_dot}} = n {minus} 1 is the angular momentumquantum number for circular orbits. In a sense, we obtain ``spin`` from this quantization. Since {Gamma}/a cannot reach c{sup 2} without predicting either circular or asymptotic velocities equal to the limiting velocity for particulate motion, we can also quantize velocities in terms of the principle quantum number by defining {beta}{sub n}/{sup 2} = {sub c{sup 2}}/{sup v{sub n{sup 2}} = {sub n{sup 2}}/1({sub c{sup 2}}a/{Gamma}) = ({sub nN{Gamma}}/1){sup 2}. For the Z{sub 1}e,Z{sub 2}e of the same sign and {alpha} {triple_bond} e{sup 2}/m{sub e}{kappa}c, we find that {Gamma}/c{sup 2}a = Z{sub 1}Z{sub 2}{alpha}. The characteristic Coulomb parameter {eta}(n) {triple_bond} Z{sub 1}Z{sub 2}{alpha}/{beta}{sub n} = Z{sub 1}Z{sub 2}nN{sub {Gamma}} then specifies the penetration factor C{sup 2}({eta}) = 2{pi}{eta}/(e{sup 2{pi}{eta}} {minus} 1}). For unlike charges, with {eta} still taken as positive, C{sup 2}({minus}{eta}) = 2{pi}{eta}/(1 {minus} e{sup {minus}2{pi}{eta}}).

  7. Gigagauss Magnetic Field Generation from High Intensity Laser Solid Interactions

    NASA Astrophysics Data System (ADS)

    Sefcik, J.; Perry, M. D.; Lasinski, B. F.; Langdon, A. B.; Cowan, T.; Hammer, J.; Hatchett, S.; Hunt, A.; Key, M. H.; Moran, M.; Pennington, D.; Snavely, R.; Trebes, J.; Wilks, S. C.

    2004-11-01

    Intense laser (>1021 W/cm2) sources using pulse compression techniques in the sub-picosecond time frame have been used to create dynamic electric field strengths in excess of 100 Megavolts/micron with associated magnetic field strengths in the gigagauss regime. We have begun a series of experiments using the Petawatt Laser system at LLNL to determine the potential of these sources for a variety of applications. Hot electron spectra from laser-target interactions in Au have been measured with energies up to 100 MeV. Hot x-ray production has been measured using filtered thermoluminescent dosimeters and threshold nuclear activation (γ,n) from giant resonance interactions. High-resolution radiographs through ρr ≥ 165 gm/cm2 have been obtained. Dose levels in the x-ray band from 2-8 MeV have been measured at the level of several rads at one meter from the target for a single pulse. The physics of these sources and the scaling relationships and laser technology required to provide high magnetic fields are discussed. Results of preliminary magnetic field calculations are presented along with potential applications of this technology and estimates of the fundamental scaling limits for future development.

  8. Quantized conductance through the quantum evaporation of bosonic atoms

    NASA Astrophysics Data System (ADS)

    Papoular, D. J.; Pitaevskii, L. P.; Stringari, S.

    2016-08-01

    We analyze theoretically the quantization of conductance occurring with cold bosonic atoms trapped in two reservoirs connected by a constriction with an attractive gate potential. We focus on temperatures slightly above the condensation threshold in the reservoirs. We show that a conductance step occurs, coinciding with the appearance of a condensate in the constriction. Conductance relies on a collective process involving the quantum condensation of an atom into an elementary excitation and the subsequent quantum evaporation of an atom, in contrast with ballistic fermion transport. The value of the bosonic conductance plateau is strongly enhanced compared to fermions and explicitly depends on temperature. We highlight the role of the repulsive interactions between the bosons in preventing them from collapsing into the constriction. We also point out the differences between the bosonic and fermionic thermoelectric effects in the quantized conductance regime.

  9. Magnetic fields of Mars and Venus - Solar wind interactions

    NASA Technical Reports Server (NTRS)

    Ness, N. F.

    1974-01-01

    Recent USSR studies of the magnetic field and solar wind flow in the vicinity of Mars and Venus confirm earlier U.S. reports of a bow shock wave developed as the solar wind interacts with these planets. Mars 2 and 3 magnetometer experiments report the existence of an intrinsic planetary magnetic field, sufficiently strong to form a magnetopause, deflecting the solar wind around the planet and its ionosphere. This is in contrast to the case for Venus, where it is assumed to be the ionosphere and processes therein which are responsible for the solar wind deflection. An empirical relationship appears to exist between planetary dipole magnetic moments and their angular momentum for the Moon, Mars, Venus, Earth, and Jupiter. Implications for the magnetic fields of Mercury and Saturn are discussed.

  10. Kalb-Ramond field interactions in a braneworld scenario

    SciTech Connect

    Chatterjee, Ayan; Majumdar, Parthasarathi

    2005-09-15

    Electromagnetic and (linearized) gravitational interactions of the Kalb-Ramond (KR) field, derived from an underlying ten-dimensional heterotic string in the zero slope limit, are studied in a five-dimensional background Randall-Sundrum I spacetime with standard model fields confined to the visible brane having negative tension. The warp factor responsible for generating the gauge hierarchy in the Higgs sector is seen to appear inverted in the KR field couplings, when reduced to four dimensions. This leads to dramatically enhanced rotation, far beyond observational bounds, of the polarization plane of electromagnetic and gravitational waves, when scattered by a homogeneous KR background. Possible reasons for the conflict between theory and observation are discussed.

  11. Interaction Forces Between Multiple Bodies in a Magnetic Field

    NASA Technical Reports Server (NTRS)

    Joffe, Benjamin

    1996-01-01

    Some of the results from experiments to determine the interaction forces between multiple bodies in a magnetic field are presented in this paper. It is shown how the force values and the force directions depend on the configuration of the bodies, their relative positions to each other, and the vector of the primary magnetic field. A number of efficient new automatic loading and assembly machines, as well as manipulators and robots, have been created based on the relationship between bodies and magnetic fields. A few of these patented magnetic devices are presented. The concepts involved open a new way to design universal grippers for robot and other kinds of mechanisms for the manipulation of objects. Some of these concepts can be used for space applications.

  12. Interaction of magnetic resonators studied by the magnetic field enhancement

    NASA Astrophysics Data System (ADS)

    Hou, Yumin

    2013-12-01

    It is the first time that the magnetic field enhancement (MFE) is used to study the interaction of magnetic resonators (MRs), which is more sensitive than previous parameters-shift and damping of resonance frequency. To avoid the coherence of lattice and the effect of Bloch wave, the interaction is simulated between two MRs with same primary phase when the distance is changed in the range of several resonance wavelengths, which is also compared with periodic structure. The calculated MFE oscillating and decaying with distance with the period equal to resonance wavelength directly shows the retardation effect. Simulation also shows that the interaction at normal incidence is sensitive to the phase correlation which is related with retardation effect and is ultra-long-distance interaction when the two MRs are strongly localized. When the distance is very short, the amplitude of magnetic resonance is oppressed by the strong interaction and thus the MFE can be much lower than that of single MR. This study provides the design rules of metamaterials for engineering resonant properties of MRs.

  13. Interaction of magnetic resonators studied by the magnetic field enhancement

    SciTech Connect

    Hou, Yumin

    2013-12-15

    It is the first time that the magnetic field enhancement (MFE) is used to study the interaction of magnetic resonators (MRs), which is more sensitive than previous parameters–shift and damping of resonance frequency. To avoid the coherence of lattice and the effect of Bloch wave, the interaction is simulated between two MRs with same primary phase when the distance is changed in the range of several resonance wavelengths, which is also compared with periodic structure. The calculated MFE oscillating and decaying with distance with the period equal to resonance wavelength directly shows the retardation effect. Simulation also shows that the interaction at normal incidence is sensitive to the phase correlation which is related with retardation effect and is ultra-long-distance interaction when the two MRs are strongly localized. When the distance is very short, the amplitude of magnetic resonance is oppressed by the strong interaction and thus the MFE can be much lower than that of single MR. This study provides the design rules of metamaterials for engineering resonant properties of MRs.

  14. Flux Quantization Without Cooper Pairs

    NASA Astrophysics Data System (ADS)

    Kadin, Alan

    2013-03-01

    It is universally accepted that the superconducting flux quantum h/2e requires the existence of a phase-coherent macroscopic wave function of Cooper pairs, each with charge 2e. On the contrary, we assert that flux quantization can be better understood in terms of single-electron quantum states, localized on the scale of the coherence length and organized into a real-space phase-antiphase structure. This packing configuration is consistent with the Pauli exclusion principle for single-electron states, maintains long-range phase coherence, and is compatible with much of the BCS formalism. This also accounts for h/2e in the Josephson effect, without Cooper pairs. Experimental evidence for this alternative picture may be found in deviations from h/2e in loops and devices much smaller than the coherence length. A similar phase-antiphase structure may also account for superfluids, without the need for boson condensation.

  15. Quantized ionic conductance in nanopores

    SciTech Connect

    Zwolak, Michael; Lagerqvist, Johan; Di Ventra, Massimilliano

    2009-01-01

    Ionic transport in nanopores is a fundamentally and technologically important problem in view of its ubiquitous occurrence in biological processes and its impact on DNA sequencing applications. Using microscopic calculations, we show that ion transport may exhibit strong non-liDearities as a function of the pore radius reminiscent of the conductance quantization steps as a function of the transverse cross section of quantum point contacts. In the present case, however, conductance steps originate from the break up of the hydration layers that form around ions in aqueous solution. Once in the pore, the water molecules form wavelike structures due to multiple scattering at the surface of the pore walls and interference with the radial waves around the ion. We discuss these effects as well as the conditions under which the step-like features in the ionic conductance should be experimentally observable.

  16. Colloidal interactions in field-directed self-assembly

    NASA Astrophysics Data System (ADS)

    Lele, Pushkar P.

    This thesis discusses: (1) the fabrication of an experimental tool, namely holographic optical tweezers for simultaneously manipulating spatial locations of multiple particles, (2) development of a framework for interpreting hydrodynamic interactions between multiple particles close to a no-slip surface and comparisons of experimental data with predictive modeling results (Stokesian dynamics simulations) (3) investigations of colloidal particle interactions under external AC fields and the intriguing spontaneous pattern formations in the suspension and, (4) the use of an unconventional assemble-stretch technique for creating novel 2D and 3D crystalline arrays of anisotropically shaped particles, from spherical particle templates. By blinking holographic optical traps, we investigate the hydrodynamic interactions in multi-particle ensembles, influenced by a no-slip surface. The measurements are carried out by screening out electrostatic interactions in the suspension. We observe that with increasing proximity with the surface, the effect of particle-particle hydrodynamic interactions on the short-time self-diffusivities is screened. We use the Stokeslet representation of particles and combine it with the method of images to understand the correlated motion of particles within the ensembles. Analysis of the resultant ensemble eigen-modes reveals that even in dilute suspensions, the effective diffusivities decay as the inverse of the separations, over the range of particle-particle separations we experimented with. The relative modes exhibit dominant contributions from close neighboring particles and the collective modes incorporate long-range contributions from all particles in the ensemble. Our analysis also confirms that for larger number of particles in the ensemble, the contributions from particle-particle interactions increase and in concentrated suspensions they over-ride the strong hydrodynamic screening by the wall. We investigate the microstructure of

  17. Modeling of interactions of electromagnetic fields with human bodies

    NASA Astrophysics Data System (ADS)

    Caputa, Krzysztof

    Interactions of electromagnetic fields with the human body have been a subject of scientific interest and public concern. In recent years, issues in power line field effects and those of wireless telephones have been in the forefront of research. Engineering research compliments biological investigations by quantifying the induced fields in biological bodies due to exposure to external fields. The research presented in this thesis aims at providing reliable tools, and addressing some of the unresolved issues related to interactions with the human body of power line fields and fields produced by handheld wireless telephones. The research comprises two areas, namely development of versatile models of the human body and their visualisation, and verification and application of numerical codes to solve selected problems of interest. The models of the human body, which are based on the magnetic resonance scans of the body, are unique and differ considerably from other models currently available. With the aid of computer software developed, the models can be arranged to different postures, and medical devices can be accurately placed inside them. A previously developed code for modeling interactions of power line fields with biological bodies has been verified by rigorous, quantitative inter-laboratory comparison for two human body models. This code has been employed to model electromagnetic interference (EMI) of the magnetic field with implanted cardiac pacemakers. In this case, the correct placement and representation of the pacemaker leads are critical, as simplified computations have been shown to result in significant errors. In modeling interactions of wireless communication devices, the finite difference time domain technique (FDTD) has become a de facto standard. The previously developed code has been verified by comparison with the analytical solution for a conductive sphere. While previously researchers limited their verifications to principal axes of the sphere

  18. Black-hole-scalar-field interactions in spherical symmetry

    NASA Astrophysics Data System (ADS)

    Marsa, R. L.; Choptuik, M. W.

    1996-10-01

    We examine the interactions of a black hole with a massless scalar field using a coordinate system which extends ingoing Eddington-Finkelstein coordinates to dynamic spherically-symmetric spacetimes. We avoid problems with the singularity by excising the region of the black-hole interior to the apparent horizon. We use a second-order finite difference scheme to solve the equations. The resulting program is stable and convergent and will run forever without problems. We are able to observe quasinormal ringing and power-law tails as well as an interesting nonlinear feature.

  19. Interaction of physical fields in the acoustomagnetic effect

    NASA Astrophysics Data System (ADS)

    Polunin, V. M.; Storozhenko, A. M.

    2012-03-01

    Experimental studies of the acoustomagnetic effect in a magnetic fluid are performed. The linear sizes of magnetic nanoparticles of the dispersed phase are determined by the acoustogranulometric method. The mean deviation of the diameters of magnetic nanoparticles obtained at eight fixed frequencies in the range of 18-65 kHz from their average values < d max> = 16 nm and < d max> = 9 nm is 4.4%. These results are in satisfactory agreement with the results obtained by the magnetorelaxometry method for magnetite nanoparticles. On the basis of experimental data, in the framework of the concentrational model, interaction between the elastic and thermal fields and between the magnetic and dynamic demagnetizing fields in the acoustomagnetic effect is studied. The conclusions of the model theory are confirmed by the experimental results.

  20. Large-Scale Effect of Krein Quantization Method on the Matter Density Perturbations

    NASA Astrophysics Data System (ADS)

    Sojasi, A.; Mohsenzadeh, M.; Saffari, R.

    2015-10-01

    According to the theoretical results obtained in usual quantum cosmology in which the field operator is constructed on the Hilbert space, the power spectrum of the scalar field fluctuations is scale invariant in the inflationary epoch. On the other hand, the observational data predict some deviation from scale-invariance in the power spectrum. It has been shown previously that by using Krein quantization method for constructing field operator, the power spectrum is obtained scale dependent (Mohsenzadeh et al. IJTP 48, 755, 2009). The main goal in this work is to investigate the effect of Krein quantization method on the matter density perturbation at present. The results show if one uses covariant two point function for mass-less minimally coupled scalar field in de Sitter space-time which is calculated via Krein quantization method, the power spectrum of primordial gravitational potential set up during inflation and the power spectrum of matter density perturbation at present deviate from scale-invariant result.

  1. Loop quantization of Schwarzschild interior revisited

    NASA Astrophysics Data System (ADS)

    Singh, Parampreet; Corichi, Alejandro

    2016-03-01

    Several studies of different inequivalent loop quantizations have shown, that there exists no fully satisfactory quantum theory for the Schwarzschild interior. Existing quantizations fail either on dependence on the fiducial structure or on the lack of the classical limit. Here we put forward a novel viewpoint to construct the quantum theory that overcomes all of the known problems of the existing quantizations. It is shown that the quantum gravitational constraint is well defined past the singularity and that its effective dynamics possesses a bounce into an expanding regime. The classical singularity is avoided, and a semiclassical spacetime satisfying vacuum Einstein's equations is recovered on the ``other side'' of the bounce. We argue that such metric represents the interior region of a white-hole spacetime, but for which the corresponding ``white-hole mass'' differs from the original black hole mass. We compare the differences in physical implications with other quantizations.

  2. Topologies on quantum topoi induced by quantization

    SciTech Connect

    Nakayama, Kunji

    2013-07-15

    In the present paper, we consider effects of quantization in a topos approach of quantum theory. A quantum system is assumed to be coded in a quantum topos, by which we mean the topos of presheaves on the context category of commutative subalgebras of a von Neumann algebra of bounded operators on a Hilbert space. A classical system is modeled by a Lie algebra of classical observables. It is shown that a quantization map from the classical observables to self-adjoint operators on the Hilbert space naturally induces geometric morphisms from presheaf topoi related to the classical system to the quantum topos. By means of the geometric morphisms, we give Lawvere-Tierney topologies on the quantum topos (and their equivalent Grothendieck topologies on the context category). We show that, among them, there exists a canonical one which we call a quantization topology. We furthermore give an explicit expression of a sheafification functor associated with the quantization topology.

  3. Towards quantized current arbitrary waveform synthesis

    NASA Astrophysics Data System (ADS)

    Mirovsky, P.; Fricke, L.; Hohls, F.; Kaestner, B.; Leicht, Ch.; Pierz, K.; Melcher, J.; Schumacher, H. W.

    2013-06-01

    The generation of ac modulated quantized current waveforms using a semiconductor non-adiabatic single electron pump is demonstrated. In standard operation, the single electron pump generates a quantized output current of I = ef, where e is the charge of the electron and f is the pumping frequency. Suitable frequency modulation of f allows the generation of ac modulated output currents with different characteristics. By sinusoidal and saw tooth like modulation of f accordingly modulated quantized current waveforms with kHz modulation frequencies and peak currents up to 100 pA are obtained. Such ac quantized current sources could find applications ranging from precision ac metrology to on-chip signal generation.

  4. Color quantization and processing by Fibonacci lattices.

    PubMed

    Mojsilovic, A; Soljanin, E

    2001-01-01

    Color quantization is sampling of three-dimensional (3-D) color spaces (such as RGB or Lab) which results in a discrete subset of colors known as a color codebook or palette. It is extensively used for display, transfer, and storage of natural images in Internet-based applications, computer graphics, and animation. We propose a sampling scheme which provides a uniform quantization of the Lab space. The idea is based on several results from number theory and phyllotaxy. The sampling algorithm is very much systematic and allows easy design of universal (image-independent) color codebooks for a given set of parameters. The codebook structure allows fast quantization and ordered dither of color images. The display quality of images quantized by the proposed color codebooks is comparable with that of image-dependent quantizers. Most importantly, the quantized images are more amenable to the type of processing used for grayscale ones. Methods for processing grayscale images cannot be simply extended to color images because they rely on the fact that each gray-level is described by a single number and the fact that a relation of full order can be easily established on the set of those numbers. Color spaces (such as RGB or Lab) are, on the other hand, 3-D. The proposed color quantization, i.e., color space sampling and numbering of sampled points, makes methods for processing grayscale images extendible to color images. We illustrate possible processing of color images by first introducing the basic average and difference operations and then implementing edge detection and compression of color quantized images. PMID:18255513

  5. Field Guide for Designing Human Interaction with Intelligent Systems

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Thronesbery, Carroll G.

    1998-01-01

    The characteristics of this Field Guide approach address the problems of designing innovative software to support user tasks. The requirements for novel software are difficult to specify a priori, because there is not sufficient understanding of how the users' tasks should be supported, and there are not obvious pre-existing design solutions. When the design team is in unfamiliar territory, care must be taken to avoid rushing into detailed design, requirements specification, or implementation of the wrong product. The challenge is to get the right design and requirements in an efficient, cost-effective manner. This document's purpose is to describe the methods we are using to design human interactions with intelligent systems which support Space Shuttle flight controllers in the Mission Control Center at NASA/Johnson Space Center. Although these software systems usually have some intelligent features, the design challenges arise primarily from the innovation needed in the software design. While these methods are tailored to our specific context, they should be extensible, and helpful to designers of human interaction with other types of automated systems. We review the unique features of this context so that you can determine how to apply these methods to your project Throughout this Field Guide, goals of the design methods are discussed. This should help designers understand how a specific method might need to be adapted to the project at hand.

  6. Controlling charge quantization with quantum fluctuations

    NASA Astrophysics Data System (ADS)

    Jezouin, S.; Iftikhar, Z.; Anthore, A.; Parmentier, F. D.; Gennser, U.; Cavanna, A.; Ouerghi, A.; Levkivskyi, I. P.; Idrisov, E.; Sukhorukov, E. V.; Glazman, L. I.; Pierre, F.

    2016-08-01

    In 1909, Millikan showed that the charge of electrically isolated systems is quantized in units of the elementary electron charge e. Today, the persistence of charge quantization in small, weakly connected conductors allows for circuits in which single electrons are manipulated, with applications in, for example, metrology, detectors and thermometry. However, as the connection strength is increased, the discreteness of charge is progressively reduced by quantum fluctuations. Here we report the full quantum control and characterization of charge quantization. By using semiconductor-based tunable elemental conduction channels to connect a micrometre-scale metallic island to a circuit, we explore the complete evolution of charge quantization while scanning the entire range of connection strengths, from a very weak (tunnel) to a perfect (ballistic) contact. We observe, when approaching the ballistic limit, that charge quantization is destroyed by quantum fluctuations, and scales as the square root of the residual probability for an electron to be reflected across the quantum channel; this scaling also applies beyond the different regimes of connection strength currently accessible to theory. At increased temperatures, the thermal fluctuations result in an exponential suppression of charge quantization and in a universal square-root scaling, valid for all connection strengths, in agreement with expectations. Besides being pertinent for the improvement of single-electron circuits and their applications, and for the metal–semiconductor hybrids relevant to topological quantum computing, knowledge of the quantum laws of electricity will be essential for the quantum engineering of future nanoelectronic devices.

  7. A recursive technique for adaptive vector quantization

    NASA Technical Reports Server (NTRS)

    Lindsay, Robert A.

    1989-01-01

    Vector Quantization (VQ) is fast becoming an accepted, if not preferred method for image compression. The VQ performs well when compressing all types of imagery including Video, Electro-Optical (EO), Infrared (IR), Synthetic Aperture Radar (SAR), Multi-Spectral (MS), and digital map data. The only requirement is to change the codebook to switch the compressor from one image sensor to another. There are several approaches for designing codebooks for a vector quantizer. Adaptive Vector Quantization is a procedure that simultaneously designs codebooks as the data is being encoded or quantized. This is done by computing the centroid as a recursive moving average where the centroids move after every vector is encoded. When computing the centroid of a fixed set of vectors the resultant centroid is identical to the previous centroid calculation. This method of centroid calculation can be easily combined with VQ encoding techniques. The defined quantizer changes after every encoded vector by recursively updating the centroid of minimum distance which is the selected by the encoder. Since the quantizer is changing definition or states after every encoded vector, the decoder must now receive updates to the codebook. This is done as side information by multiplexing bits into the compressed source data.

  8. Controlling charge quantization with quantum fluctuations.

    PubMed

    Jezouin, S; Iftikhar, Z; Anthore, A; Parmentier, F D; Gennser, U; Cavanna, A; Ouerghi, A; Levkivskyi, I P; Idrisov, E; Sukhorukov, E V; Glazman, L I; Pierre, F

    2016-08-01

    In 1909, Millikan showed that the charge of electrically isolated systems is quantized in units of the elementary electron charge e. Today, the persistence of charge quantization in small, weakly connected conductors allows for circuits in which single electrons are manipulated, with applications in, for example, metrology, detectors and thermometry. However, as the connection strength is increased, the discreteness of charge is progressively reduced by quantum fluctuations. Here we report the full quantum control and characterization of charge quantization. By using semiconductor-based tunable elemental conduction channels to connect a micrometre-scale metallic island to a circuit, we explore the complete evolution of charge quantization while scanning the entire range of connection strengths, from a very weak (tunnel) to a perfect (ballistic) contact. We observe, when approaching the ballistic limit, that charge quantization is destroyed by quantum fluctuations, and scales as the square root of the residual probability for an electron to be reflected across the quantum channel; this scaling also applies beyond the different regimes of connection strength currently accessible to theory. At increased temperatures, the thermal fluctuations result in an exponential suppression of charge quantization and in a universal square-root scaling, valid for all connection strengths, in agreement with expectations. Besides being pertinent for the improvement of single-electron circuits and their applications, and for the metal-semiconductor hybrids relevant to topological quantum computing, knowledge of the quantum laws of electricity will be essential for the quantum engineering of future nanoelectronic devices.

  9. Perceptual vector quantization for video coding

    NASA Astrophysics Data System (ADS)

    Valin, Jean-Marc; Terriberry, Timothy B.

    2015-03-01

    This paper applies energy conservation principles to the Daala video codec using gain-shape vector quantization to encode a vector of AC coefficients as a length (gain) and direction (shape). The technique originates from the CELT mode of the Opus audio codec, where it is used to conserve the spectral envelope of an audio signal. Conserving energy in video has the potential to preserve textures rather than low-passing them. Explicitly quantizing a gain allows a simple contrast masking model with no signaling cost. Vector quantizing the shape keeps the number of degrees of freedom the same as scalar quantization, avoiding redundancy in the representation. We demonstrate how to predict the vector by transforming the space it is encoded in, rather than subtracting off the predictor, which would make energy conservation impossible. We also derive an encoding of the vector-quantized codewords that takes advantage of their non-uniform distribution. We show that the resulting technique outperforms scalar quantization by an average of 0.90 dB on still images, equivalent to a 24.8% reduction in bitrate at equal quality, while for videos, the improvement averages 0.83 dB, equivalent to a 13.7% reduction in bitrate.

  10. Controlling charge quantization with quantum fluctuations

    NASA Astrophysics Data System (ADS)

    Jezouin, S.; Iftikhar, Z.; Anthore, A.; Parmentier, F. D.; Gennser, U.; Cavanna, A.; Ouerghi, A.; Levkivskyi, I. P.; Idrisov, E.; Sukhorukov, E. V.; Glazman, L. I.; Pierre, F.

    2016-08-01

    In 1909, Millikan showed that the charge of electrically isolated systems is quantized in units of the elementary electron charge e. Today, the persistence of charge quantization in small, weakly connected conductors allows for circuits in which single electrons are manipulated, with applications in, for example, metrology, detectors and thermometry. However, as the connection strength is increased, the discreteness of charge is progressively reduced by quantum fluctuations. Here we report the full quantum control and characterization of charge quantization. By using semiconductor-based tunable elemental conduction channels to connect a micrometre-scale metallic island to a circuit, we explore the complete evolution of charge quantization while scanning the entire range of connection strengths, from a very weak (tunnel) to a perfect (ballistic) contact. We observe, when approaching the ballistic limit, that charge quantization is destroyed by quantum fluctuations, and scales as the square root of the residual probability for an electron to be reflected across the quantum channel; this scaling also applies beyond the different regimes of connection strength currently accessible to theory. At increased temperatures, the thermal fluctuations result in an exponential suppression of charge quantization and in a universal square-root scaling, valid for all connection strengths, in agreement with expectations. Besides being pertinent for the improvement of single-electron circuits and their applications, and for the metal-semiconductor hybrids relevant to topological quantum computing, knowledge of the quantum laws of electricity will be essential for the quantum engineering of future nanoelectronic devices.

  11. Controlling charge quantization with quantum fluctuations.

    PubMed

    Jezouin, S; Iftikhar, Z; Anthore, A; Parmentier, F D; Gennser, U; Cavanna, A; Ouerghi, A; Levkivskyi, I P; Idrisov, E; Sukhorukov, E V; Glazman, L I; Pierre, F

    2016-08-01

    In 1909, Millikan showed that the charge of electrically isolated systems is quantized in units of the elementary electron charge e. Today, the persistence of charge quantization in small, weakly connected conductors allows for circuits in which single electrons are manipulated, with applications in, for example, metrology, detectors and thermometry. However, as the connection strength is increased, the discreteness of charge is progressively reduced by quantum fluctuations. Here we report the full quantum control and characterization of charge quantization. By using semiconductor-based tunable elemental conduction channels to connect a micrometre-scale metallic island to a circuit, we explore the complete evolution of charge quantization while scanning the entire range of connection strengths, from a very weak (tunnel) to a perfect (ballistic) contact. We observe, when approaching the ballistic limit, that charge quantization is destroyed by quantum fluctuations, and scales as the square root of the residual probability for an electron to be reflected across the quantum channel; this scaling also applies beyond the different regimes of connection strength currently accessible to theory. At increased temperatures, the thermal fluctuations result in an exponential suppression of charge quantization and in a universal square-root scaling, valid for all connection strengths, in agreement with expectations. Besides being pertinent for the improvement of single-electron circuits and their applications, and for the metal-semiconductor hybrids relevant to topological quantum computing, knowledge of the quantum laws of electricity will be essential for the quantum engineering of future nanoelectronic devices. PMID:27488797

  12. Quantized Eigenstates of a Classical Particle in a Ponderomotive Potential

    SciTech Connect

    I.Y. Dodin; N.J. Fisch

    2004-12-21

    The average dynamics of a classical particle under the action of a high-frequency radiation resembles quantum particle motion in a conservative field with an effective de Broglie wavelength ë equal to the particle average displacement on a period of oscillations. In a "quasi-classical" field, with a spatial scale large compared to ë, the guiding center motion is adiabatic. Otherwise, a particle exhibits quantized eigenstates in a ponderomotive potential well, can tunnel through classically forbidden regions and experience reflection from an attractive potential. Discrete energy levels are also found for a "crystal" formed by multiple ponderomotive barriers.

  13. Canonical quantization of electromagnetism in spatially dispersive media

    NASA Astrophysics Data System (ADS)

    Horsley, S. A. R.; Philbin, T. G.

    2014-01-01

    We find the action that describes the electromagnetic field in a spatially dispersive, homogeneous medium. This theory is quantized and the Hamiltonian is diagonalized in terms of a continuum of normal modes. It is found that the introduction of nonlocal response in the medium automatically regulates some previously divergent results, and we calculate a finite value for the intensity of the electromagnetic field at a fixed frequency within a homogeneous medium. To conclude we discuss the potential importance of spatial dispersion in taming the divergences that arise in calculations of Casimir-type effects.

  14. An Interactive Web System for Field Data Sharing and Collaboration

    NASA Astrophysics Data System (ADS)

    Weng, Y.; Sun, F.; Grigsby, J. D.

    2010-12-01

    A Web 2.0 system is designed and developed to facilitate data collection for the field studies in the Geological Sciences department at Ball State University. The system provides a student-centered learning platform that enables the users to first upload their collected data in various formats, interact and collaborate dynamically online, and ultimately create a shared digital repository of field experiences. The data types considered for the system and their corresponding format and requirements are listed in the table below. The system has six main functionalities as follows. (1) Only the registered users can access the system with confidential identification and password. (2) Each user can upload/revise/delete data in various formats such as image, audio, video, and text files to the system. (3) Interested users are allowed to co-edit the contents and join the collaboration whiteboard for further discussion. (4) The system integrates with Google, Yahoo, or Flickr to search for similar photos with same tags. (5) Users can search the web system according to the specific key words. (6) Photos with recorded GPS readings can be mashed and mapped to Google Maps/Earth for visualization. Application of the system to geology field trips at Ball State University will be demonstrated to assess the usability of the system.Data Requirements

  15. Strain-induced one-dimensional Landau level quantization in corrugated graphene

    NASA Astrophysics Data System (ADS)

    Meng, Lan; He, Wen-Yu; Zheng, Hong; Liu, Mengxi; Yan, Hui; Yan, Wei; Chu, Zhao-Dong; Bai, Keke; Dou, Rui-Fen; Zhang, Yanfeng; Liu, Zhongfan; Nie, Jia-Cai; He, Lin

    2013-05-01

    Theoretical research has predicted that a ripple of graphene generates an effective gauge field on its low-energy electronic structure and could lead to Landau quantization. Here, we demonstrate using a combination of an experimental method (scanning tunneling microscopy) and a theoretical approach (tight-binding approximation) that Landau levels will form when the effective pseudomagnetic flux per ripple Φ˜(h2/la)Φ0 is larger than the flux quantum Φ0 (here, h is the height, l is the width of the ripple, and a is the nearest C-C bond length). The strain-induced gauge field in the ripple only results in one-dimensional (1D) Landau-level quantization along the ripple. Such 1D Landau quantization does not exist in two-dimensional systems in an external magnetic field. Its existence offers a unique opportunity to realize interesting electronic properties in strained graphene.

  16. Quantization and Excitation of Longitudinal Electrostatic Waves in Magnetized Quantum Plasmas

    NASA Astrophysics Data System (ADS)

    Tsintsadze, Levan N.

    2010-12-01

    Effects of the Landau diamagnetism and the Pauli paramagnetism on the longitudinal electric wave characteristics in a quantum plasma are studied. It is shown that a dispersion relation of the longitudinal wave propagating along a magnetic field strongly depends on the magnetic field, in radical contrast to the classical case. Instabilities of the quantized longitudinal electric waves are studied by a newly derived dispersion equation. Novel branches of longitudinal waves are found, which have no analogies without the Landau quantization. Growth rates of these new modes are obtained. The excitation of the zero sound by an electron beam is discussed and found that the quantization of the energy of electrons imposes a new condition. Furthermore, the excitation of Bogolyubov's type of spectrum by a strong electric field is considered.

  17. Theoretical analysis of magnetic field interactions with aortic blood flow

    SciTech Connect

    Kinouchi, Y.; Yamaguchi, H.; Tenforde, T.S.

    1996-04-01

    The flow of blood in the presence of a magnetic field gives rise to induced voltages in the major arteries of the central circulatory system. Under certain simplifying conditions, such as the assumption that the length of major arteries (e.g., the aorta) is infinite and that the vessel walls are not electrically conductive, the distribution of induced voltages and currents within these blood vessels can be calculated with reasonable precision. However, the propagation of magnetically induced voltages and currents from the aorta into neighboring tissue structures such as the sinuatrial node of the heart has not been previously determined by any experimental or theoretical technique. In the analysis presented in this paper, a solution of the complete Navier-Stokes equation was obtained by the finite element technique for blood flow through the ascending and descending aortic vessels in the presence of a uniform static magnetic field. Spatial distributions of the magnetically induced voltage and current were obtained for the aortic vessel and surrounding tissues under the assumption that the wall of the aorta is electrically conductive. Results are presented for the calculated values of magnetically induced voltages and current densities in the aorta and surrounding tissue structures, including the sinuatrial node, and for their field-strength dependence. In addition, an analysis is presented of magnetohydrodynamic interactions that lead to a small reduction of blood volume flow at high field levels above approximately 10 tesla (T). Quantitative results are presented on the offsetting effects of oppositely directed blood flows in the ascending and descending aortic segments, and a quantitative estimate is made of the effects of assuming an infinite vs. a finite length of the aortic vessel in calculating the magnetically induced voltage and current density distribution in tissue.

  18. A quantum mechanical polarizable force field for biomolecular interactions.

    PubMed

    Donchev, A G; Ozrin, V D; Subbotin, M V; Tarasov, O V; Tarasov, V I

    2005-05-31

    We introduce a quantum mechanical polarizable force field (QMPFF) fitted solely to QM data at the MP2/aTZ(-hp) level. Atomic charge density is modeled by point-charge nuclei and floating exponentially shaped electron clouds. The functional form of interaction energy parallels quantum mechanics by including electrostatic, exchange, induction, and dispersion terms. Separate fitting of each term to the counterpart calculated from high-quality QM data ensures high transferability of QMPFF parameters to different molecular environments, as well as accurate fit to a broad range of experimental data in both gas and liquid phases. QMPFF, which is much more efficient than ab initio QM, is optimized for the accurate simulation of biomolecular systems and the design of drugs.

  19. Multiverse in the Third Quantized Horava-Lifshitz Theory of Gravity

    NASA Astrophysics Data System (ADS)

    Faizal, Mir

    In this paper we analyze the third quantization of Horava-Lifshitz theory of gravity without detail balance. We show that the Wheeler-DeWitt equation for Horava-Lifshitz theory of gravity in minisuperspace approximation becomes the equation for time-dependent harmonic oscillator. After interpreting the scaling factor as the time, we are able to derive the third quantized wave function for multiverse. We also show in third quantized formalism it is possible that the universe can form from nothing. Then we go on to analyze the effect of introducing interactions in the Wheeler-DeWitt equation. We see how this model of interacting universes can be used to explain baryogenesis with violation of baryon number conservation in the multiverse. We also analyze how this model can possibly explain the present value of the cosmological constant. Finally we analyze the possibility of the multiverse being formed from perturbations around a false vacuum and its decay to a true vacuum.

  20. Force Fields for Carbohydrate-Divalent Cation Interactions.

    PubMed

    Chen, Hsieh; Cox, Jason R; Panagiotopoulos, Athanassios Z

    2016-06-16

    We report molecular dynamics simulations to study intermolecular interactions for carbohydrate-divalent cation complexes. We observed that common force fields from literature with standard Lorentz-Berthelot combining rules are unable to reproduce the experimental stability constants for model carbohydrate monomer (α-d-Allopyranose) and alkali earth metal cation (Mg(2+), Ca(2+), Sr(2+), or Ba(2+)) complexes. A modified combining rule with rescaled effective cross-interaction radius between cations and the hydroxyl oxygens on the carbohydrates was introduced to reproduce the experimental stability constants, which the preferential carbohydrate-cation complexing structures through the ax-eq-ax sequence of O-1, O-2, and O-3 on α-d-Allopyranose were also observed. The effective radius scaling factor obtained from (α-d-Allopyranose)-Ca(2+) complexes was directly transferrable to the similar six-membered ring (α-d-Ribopyranose)-Ca(2+) complexes; however, reparameterization for the scaling factor may be necessary for the five-membered ring (α-d-Ribofuranose)-Ca(2+) complexes. PMID:27210229

  1. Field evaluation of an acid rain-drought stress interaction.

    PubMed

    Banwart, W L

    1988-01-01

    Various methods have been proposed to simulate natural field conditions for growing agricultural crops while controlling conditions to study specific environmental effects. This report briefly describes the use of moveable rain exclusion shelters (10.4 x 40.9 m) to study the results of the interaction of acid rain and drought stress on corn and soybean yields. The rain exclusion shelters are constructed of galvanized pipe framing and covered with polyethylene film. Movement is automated by a rain switch to protect crops from ambient rainfall and to treat them with simulated acid rain The facility simulates a real environment with respect to variables such as solar exposure, wind movement, dew formation, and insect exposure, while allowing careful control of moisture regimes. Soybeans and corn were treated with average rainfall amounts, and with one-half and one-quarter of these rainfall amounts (drought stress) at two levels of rainfall acidity, pH 5.6 and 3.0. While drought stress resulted in considerable yield reduction for Amsoy and Williams soybeans, no additional reduction in yield was observed with rainfall of pH 3.0, as compared to rainfall of approximately pH 5.6. Similar results were observed for one corn cultivar, Pioneer 3377. For one year of the study however, yield of B73 x Mo17 (corn) was reduced 3139 kg ha(-1) by the most severe drought, and an additional 1883 kg ha(-1) by acid rain of pH 3.0, as compared to the control (pH 5.6). Yield reduction from acidic rain was considerably less at full water rates, resulting in a significant pH by drought stress interaction. However, during the second year of the experiment, no pH effect or drought by pH interaction was observed for this cultivar. The reason for the difference in the two years was not identified.

  2. Quantization of Generally Covariant Systems

    NASA Astrophysics Data System (ADS)

    Sforza, Daniel M.

    2000-12-01

    Finite dimensional models that mimic the constraint structure of Einstein's General Relativity are quantized in the framework of BRST and Dirac's canonical formalisms. The first system to be studied is one featuring a constraint quadratic in the momenta (the "super-Hamiltonian") and a set of constraints linear in the momenta (the "supermomentum" constraints). The starting point is to realize that the ghost contributions to the supermomentum constraint operators can be read in terms of the natural volume induced by the constraints in the orbits. This volume plays a fundamental role in the construction of the quadratic sector of the nilpotent BRST charge. It is shown that the quantum theory is invariant under scaling of the super-Hamiltonian. As long as the system has an intrinsic time, this property translates in a contribution of the potential to the kinetic term. In this aspect, the results substantially differ from other works where the scaling invariance is forced by introducing a coupling to the curvature. The contribution of the potential, far from being unnatural, is beautifully justified in the light of the Jacobi's principle. Then, it is shown that the obtained results can be extended to systems with extrinsic time. In this case, if the metric has a conformal temporal Killing vector and the potential exhibits a suitable behavior with respect to it, the role played by the potential in the case of intrinsic time is now played by the norm of the Killing vector. Finally, the results for the previous cases are extended to a system featuring two super-Hamiltonian constraints. This step is extremely important due to the fact that General Relativity features an infinite number of such constraints satisfying a non trivial algebra among themselves.

  3. Optical field enhancement by strong plasmon interaction in graphene nanostructures.

    PubMed

    Thongrattanasiri, Sukosin; García de Abajo, F Javier

    2013-05-01

    The ability of plasmons to enhance the electromagnetic field intensity in the gap between metallic nanoparticles derives from their strong optical confinement relative to the light wavelength. The spatial extension of plasmons in doped graphene has recently been shown to be boldly reduced with respect to conventional plasmonic metals. Here, we show that graphene nanostructures are capable of capitalizing such strong confinement to yield unprecedented levels of field enhancement, well beyond what is found in noble metals of similar dimensions (~ tens of nanometers). We perform realistic, quantum-mechanical calculations of the optical response of graphene dimers formed by nanodisks and nanotriangles, showing a strong sensitivity of the level of enhancement to the type of carbon edges near the gap region, with armchair edges favoring stronger interactions than zigzag edges. Our quantum-mechanical description automatically incorporates nonlocal effects that are absent in classical electromagnetic theory, leading to over an order of magnitude higher enhancement in armchair structures. The classical limit is recovered for large structures. We predict giant levels of light concentration for dimers ~200 nm, leading to infrared-absorption enhancement factors ~10(8). This extreme light enhancement and confinement in nanostructured graphene has great potential for optical sensing and nonlinear devices.

  4. Properties of solitary ion acoustic waves in a quantized degenerate magnetoplasma with trapped electrons

    SciTech Connect

    Tsintsadze, N. L.; Tagviashvili, M. N.; Shah, H. A.; Qureshi, M. N. S.

    2015-02-15

    We have undertaken the investigation of ion acoustic solitary waves in both weakly and strongly quantized degenerate magnetoplasmas. It is seen that a singular point clearly demarcates the regions of weak and strong quantization due to the ambient magnetic field. The effect of the magnetic field is taken into account via the parameter  η{sub 0}=ℏω{sub ce}/ε{sub Fe} and the Mach number, and their effect on the formation of solitary structures is investigated in both cases and some results are presented graphically.

  5. Perturbation theory in light-cone quantization

    SciTech Connect

    Langnau, A.

    1992-01-01

    A thorough investigation of light-cone properties which are characteristic for higher dimensions is very important. The easiest way of addressing these issues is by analyzing the perturbative structure of light-cone field theories first. Perturbative studies cannot be substituted for an analysis of problems related to a nonperturbative approach. However, in order to lay down groundwork for upcoming nonperturbative studies, it is indispensable to validate the renormalization methods at the perturbative level, i.e., to gain control over the perturbative treatment first. A clear understanding of divergences in perturbation theory, as well as their numerical treatment, is a necessary first step towards formulating such a program. The first objective of this dissertation is to clarify this issue, at least in second and fourth-order in perturbation theory. The work in this dissertation can provide guidance for the choice of counterterms in Discrete Light-Cone Quantization or the Tamm-Dancoff approach. A second objective of this work is the study of light-cone perturbation theory as a competitive tool for conducting perturbative Feynman diagram calculations. Feynman perturbation theory has become the most practical tool for computing cross sections in high energy physics and other physical properties of field theory. Although this standard covariant method has been applied to a great range of problems, computations beyond one-loop corrections are very difficult. Because of the algebraic complexity of the Feynman calculations in higher-order perturbation theory, it is desirable to automatize Feynman diagram calculations so that algebraic manipulation programs can carry out almost the entire calculation. This thesis presents a step in this direction. The technique we are elaborating on here is known as light-cone perturbation theory.

  6. Recovery of quantized compressed sensing measurements

    NASA Astrophysics Data System (ADS)

    Tsagkatakis, Grigorios; Tsakalides, Panagiotis

    2015-03-01

    Compressed Sensing (CS) is a novel mathematical framework that has revolutionized modern signal and image acquisition architectures ranging from one-pixel cameras, to range imaging and medical ultrasound imaging. According to CS, a sparse signal, or a signal that can be sparsely represented in an appropriate collection of elementary examples, can be recovered from a small number of random linear measurements. However, real life systems may introduce non-linearities in the encoding in order to achieve a particular goal. Quantization of the acquired measurements is an example of such a non-linearity introduced in order to reduce storage and communications requirements. In this work, we consider the case of scalar quantization of CS measurements and propose a novel recovery mechanism that enforces the constraints associated with the quantization processes during recovery. The proposed recovery mechanism, termed Quantized Orthogonal Matching Pursuit (Q-OMP) is based on a modification of the OMP greedy sparsity seeking algorithm where the process of quantization is explicit considered during decoding. Simulation results on the recovery of images acquired by a CS approach reveal that the modified framework is able to achieve significantly higher reconstruction performance compared to its naive counterpart under a wide range of sampling rates and sensing parameters, at a minimum cost in computational complexity.

  7. Canonical Functional Quantization of Pseudo-Photons in Planar Systems

    SciTech Connect

    Ferreira, P. Castelo

    2008-06-25

    Extended U{sub e}(1)xU{sub g}(1) electromagnetism containing both a photon and a pseudo-photon is introduced at the variational level and is justified by the violation of the Bianchi identities in conceptual systems, either in the presence of magnetic monopoles or non-regular external fields, not being accounted for by the standard Maxwell Lagrangian. A dimensional reduction is carried out that yields a U{sub e}(1)xU{sub g}(1) Maxwell-BF type theory and a canonical functional quantization in planar systems is considered which may be relevant in Hall systems.

  8. Canonical quantization of general relativity in discrete space-times.

    PubMed

    Gambini, Rodolfo; Pullin, Jorge

    2003-01-17

    It has long been recognized that lattice gauge theory formulations, when applied to general relativity, conflict with the invariance of the theory under diffeomorphisms. We analyze discrete lattice general relativity and develop a canonical formalism that allows one to treat constrained theories in Lorentzian signature space-times. The presence of the lattice introduces a "dynamical gauge" fixing that makes the quantization of the theories conceptually clear, albeit computationally involved. The problem of a consistent algebra of constraints is automatically solved in our approach. The approach works successfully in other field theories as well, including topological theories. A simple cosmological application exhibits quantum elimination of the singularity at the big bang.

  9. Canonical quantization of general relativity in discrete space-times.

    PubMed

    Gambini, Rodolfo; Pullin, Jorge

    2003-01-17

    It has long been recognized that lattice gauge theory formulations, when applied to general relativity, conflict with the invariance of the theory under diffeomorphisms. We analyze discrete lattice general relativity and develop a canonical formalism that allows one to treat constrained theories in Lorentzian signature space-times. The presence of the lattice introduces a "dynamical gauge" fixing that makes the quantization of the theories conceptually clear, albeit computationally involved. The problem of a consistent algebra of constraints is automatically solved in our approach. The approach works successfully in other field theories as well, including topological theories. A simple cosmological application exhibits quantum elimination of the singularity at the big bang. PMID:12570532

  10. Nucleation of Quantized Vortices from Rotating Superfluid Drops

    NASA Technical Reports Server (NTRS)

    Donnelly, Russell J.

    2001-01-01

    The long-term goal of this project is to study the nucleation of quantized vortices in helium II by investigating the behavior of rotating droplets of helium II in a reduced gravity environment. The objective of this ground-based research grant was to develop new experimental techniques to aid in accomplishing that goal. The development of an electrostatic levitator for superfluid helium, described below, and the successful suspension of charged superfluid drops in modest electric fields was the primary focus of this work. Other key technologies of general low temperature use were developed and are also discussed.

  11. Smooth big bounce from affine quantization

    NASA Astrophysics Data System (ADS)

    Bergeron, Hervé; Dapor, Andrea; Gazeau, Jean Pierre; Małkiewicz, Przemysław

    2014-04-01

    We examine the possibility of dealing with gravitational singularities on a quantum level through the use of coherent state or wavelet quantization instead of canonical quantization. We consider the Robertson-Walker metric coupled to a perfect fluid. It is the simplest model of a gravitational collapse, and the results obtained here may serve as a useful starting point for more complex investigations in the future. We follow a quantization procedure based on affine coherent states or wavelets built from the unitary irreducible representation of the affine group of the real line with positive dilation. The main issue of our approach is the appearance of a quantum centrifugal potential allowing for regularization of the singularity, essential self-adjointness of the Hamiltonian, and unambiguous quantum dynamical evolution.

  12. Single Abrikosov vortices as quantized information bits.

    PubMed

    Golod, T; Iovan, A; Krasnov, V M

    2015-10-12

    Superconducting digital devices can be advantageously used in future supercomputers because they can greatly reduce the dissipation power and increase the speed of operation. Non-volatile quantized states are ideal for the realization of classical Boolean logics. A quantized Abrikosov vortex represents the most compact magnetic object in superconductors, which can be utilized for creation of high-density digital cryoelectronics. In this work we provide a proof of concept for Abrikosov-vortex-based random access memory cell, in which a single vortex is used as an information bit. We demonstrate high-endurance write operation and two different ways of read-out using a spin valve or a Josephson junction. These memory cells are characterized by an infinite magnetoresistance between 0 and 1 states, a short access time, a scalability to nm sizes and an extremely low write energy. Non-volatility and perfect reproducibility are inherent for such a device due to the quantized nature of the vortex.

  13. Single Abrikosov vortices as quantized information bits

    NASA Astrophysics Data System (ADS)

    Golod, T.; Iovan, A.; Krasnov, V. M.

    2015-10-01

    Superconducting digital devices can be advantageously used in future supercomputers because they can greatly reduce the dissipation power and increase the speed of operation. Non-volatile quantized states are ideal for the realization of classical Boolean logics. A quantized Abrikosov vortex represents the most compact magnetic object in superconductors, which can be utilized for creation of high-density digital cryoelectronics. In this work we provide a proof of concept for Abrikosov-vortex-based random access memory cell, in which a single vortex is used as an information bit. We demonstrate high-endurance write operation and two different ways of read-out using a spin valve or a Josephson junction. These memory cells are characterized by an infinite magnetoresistance between 0 and 1 states, a short access time, a scalability to nm sizes and an extremely low write energy. Non-volatility and perfect reproducibility are inherent for such a device due to the quantized nature of the vortex.

  14. Subband Image Coding with Jointly Optimized Quantizers

    NASA Technical Reports Server (NTRS)

    Kossentini, Faouzi; Chung, Wilson C.; Smith Mark J. T.

    1995-01-01

    An iterative design algorithm for the joint design of complexity- and entropy-constrained subband quantizers and associated entropy coders is proposed. Unlike conventional subband design algorithms, the proposed algorithm does not require the use of various bit allocation algorithms. Multistage residual quantizers are employed here because they provide greater control of the complexity-performance tradeoffs, and also because they allow efficient and effective high-order statistical modeling. The resulting subband coder exploits statistical dependencies within subbands, across subbands, and across stages, mainly through complexity-constrained high-order entropy coding. Experimental results demonstrate that the complexity-rate-distortion performance of the new subband coder is exceptional.

  15. Quantization of the massive gravitino on FRW spacetimes

    NASA Astrophysics Data System (ADS)

    Schenkel, Alexander; Uhlemann, Christoph F.

    2012-01-01

    In this article we study the quantization and causal properties of a massive spin 3/2 Rarita-Schwinger field on spatially flat Friedmann-Robertson-Walker (FRW) spacetimes. We construct Zuckerman’s universal conserved current and prove that it leads to a positive definite inner product on solutions of the field equation. Based on this inner product, we quantize the Rarita-Schwinger field in terms of a CAR-algebra. The transversal and longitudinal parts constituting the independent on-shell degrees of freedom decouple. We find a Dirac-type equation for the transversal polarizations, ensuring a causal propagation. The equation of motion for the longitudinal part is also of Dirac-type, but with respect to an “effective metric”. We obtain that for all four-dimensional FRW solutions with a matter equation of state p=ωρ and ω∈(-1,1] the light cones of the effective metric are more narrow than the standard cones, which are recovered for the de Sitter case ω=-1. In particular, this shows that the propagation of the longitudinal part, although nonstandard for ω≠-1, is completely causal in cosmological constant, dust and radiation dominated universes.

  16. Universal behavior after a quantum quench in interacting field theories

    NASA Astrophysics Data System (ADS)

    Mitra, Aditi

    The dynamics of an isolated quantum system represented by a field theory with O(N) symmetry, and in d>2 spatial dimensions, is investigated after a quantum quench from a disordered initial state to the critical point. A perturbative renormalization-group approach involving an expansion around d=4 is employed to study the time-evolution, and is supplemented by an exact solution of the Hartree-Fock equations in the large-N limit. The results show that the dynamics is characterized by a prethermal regime controlled by elastic dephasing where excitations propagate ballistically, and a light cone emerges in correlation functions in real space. The memory of the initial state, together with the absence of time-scales at the critical point, gives rise to universal power-law aging which is characterized by a new non-equilibrium short-time exponent. The dynamics of the entanglement following a quench is also explored, and reveals that while the time evolution of the entanglement entropy itself is not much different between a free bosonic theory and an interacting bosonic theory, the low-energy entanglement spectrum on the other hand shows clear signature of the non-equilibrium short-time exponent related to aging. This work was done in collaboration with Y. Lemonik (NYU), M. Tavora (NYU), A. Chiocchetta (SISSA), A. Maraga (SISSA), and A. Gambassi (SISSA). Supported by NSF-DMR 1303177.

  17. Field-scale simulation of matrix-fracture interactions

    SciTech Connect

    Shook, G.M.

    1997-05-01

    Simulation of flow in fractured media continues to be among the most challenging problems faced in geothermal reservoir engineering. Because of a lack of information regarding specific matrix-fracture characteristics (e.g., fracture distribution, spacing, and aperture, and interfacial area for exchange of fluid), explicit representation of the reservoir is generally not feasible. Instead, a multiple (but usually dual) continua model is used. In multiple continua models, specific details of the reservoir are replaced with averaged properties (average fracture spacing, for example). Such averaging facilitates the simulation of fractured reservoirs; however, field-scale simulation remains numerically intensive. For example, it has been stated that 5-10 nested shells are required in the Multiple Interacting Continua formulation in order to adequately resolve transient pressure and saturation gradients between the fracture and matrix domains. While this results in a large amount of additional work (compared with a single porosity system of the same dimension), it should be noted that the MINC method is capable of resolving such transients, whereas most dual porosity simulators cannot.

  18. Quantized impedance dealing with the damping behavior of the one-dimensional oscillator

    SciTech Connect

    Zhu, Jinghao; Zhang, Jing; Li, Yuan; Zhang, Yong; Fang, Zhengji; Zhao, Peide E-mail: pdzhao@hebut.edu.cn; Li, Erping

    2015-11-15

    A quantized impedance is proposed to theoretically establish the relationship between the atomic eigenfrequency and the intrinsic frequency of the one-dimensional oscillator in this paper. The classical oscillator is modified by the idea that the electron transition is treated as a charge-discharge process of a suggested capacitor with the capacitive energy equal to the energy level difference of the jumping electron. The quantized capacitance of the impedance interacting with the jumping electron can lead the resonant frequency of the oscillator to the same as the atomic eigenfrequency. The quantized resistance reflects that the damping coefficient of the oscillator is the mean collision frequency of the transition electron. In addition, the first and third order electric susceptibilities based on the oscillator are accordingly quantized. Our simulation of the hydrogen atom emission spectrum based on the proposed method agrees well with the experimental one. Our results exhibits that the one-dimensional oscillator with the quantized impedance may become useful in the estimations of the refractive index and one- or multi-photon absorption coefficients of some nonmagnetic media composed of hydrogen-like atoms.

  19. Education and Education Research: Moribund Fields or Dynamic Interacting Systems?

    ERIC Educational Resources Information Center

    Reddy, C.

    2011-01-01

    The complex field of education is often depicted as a static field governed by technocratic approaches to activities that characterise the field. Education change is equally viewed in such limited and positivistic ways and linear means-end processes (Hoban 2002). In such orientations to the field, educational research therefore, is about finding…

  20. The Interaction of Electromagnetic Fields with Simulated Biostructures.

    NASA Astrophysics Data System (ADS)

    Li, Shuchen

    In this thesis we analyze integral equation formulations of electromagnetic scattering problems, show their relation to Maxwell equation formulations of scattering problems, and use them to predict via computer computation the response of simulated biological structures to electromagnetic radiation. Chapter I provides an overview of the problem. In the second chapter we describe scattering bodies and ambient electromagnetic fields and associated subgroups of the real orthogonal group for which one can greatly reduce the computational complexity of an electromagnetic interaction problem using symmetry groups. The results of computer calculations implementing the theory are provided. In Chapter III we show that every solution in a prescribed function space of the integral equation is a solution of Maxwell's equations, and satisfies the standard regularity conditions and the Silver-Muller radiation conditions. The methods of proof require Sobolev embedding theorems and addition theorem representations of dyadic Green's functions. We then show that in the same function space there is only one solution of the Maxwell equation formulation of the problem. This uses a novel energy relation for electromagnetic interactions which could perhaps be applied to other transmission problems. In chapter IV we investigate by computer calculation the potential ability of the blood to remove heat from irradiated tissue. The thermal response of models of cylinders of muscle equivalent material to normally incident transverse -magnetic or transverse-electric plane waves is predicted by computer calculation. These calculations are carried out when the scattering body is a solid cylinder of muscle equivalent material and when the scattering body is a two layer structure consisting on an inner column of blood at normal body temperature electromagnetically coupled to a surrounding layer of muscle equivalent material. Appendix A contains a listing of the computer programs developed as a part

  1. Mode-selective quantization and multimodal effective models for spherically layered systems

    NASA Astrophysics Data System (ADS)

    Dzsotjan, D.; Rousseaux, B.; Jauslin, H. R.; des Francs, G. Colas; Couteau, C.; Guérin, S.

    2016-08-01

    We propose a geometry-specific, mode-selective quantization scheme in coupled field-emitter systems which makes it easy to include material and geometrical properties, and intrinsic losses, as well as the positions of an arbitrary number of quantum emitters. The method is presented through the example of a spherically symmetric, nonmagnetic, arbitrarily layered system. We follow it up by a framework to project the system on simpler, effective cavity QED models. Maintaining a well-defined connection to the original quantization, we derive the emerging effective quantities from the full, mode-selective model in a mathematically consistent way. We discuss the uses and limitations of these effective models.

  2. The Multiphoton Interaction of Lambda Model Atom and Two-Mode Fields

    NASA Technical Reports Server (NTRS)

    Liu, Tang-Kun

    1996-01-01

    The system of two-mode fields interacting with atom by means of multiphotons is addressed, and the non-classical statistic quality of two-mode fields with interaction is discussed. Through mathematical calculation, some new rules of non-classical effects of two-mode fields which evolue with time, are established.

  3. Nonlinear ADC with digitally selectable quantizing characteristics

    SciTech Connect

    Lygouras, J.N.

    1988-10-01

    In this paper a method is presented for generating linear or nonlinear functions digitally. The Nonlinear Analog to Digital Conversion (NLADC) is accomplished using the Pulse Width Modulation (PWM) of the analog input voltage. The conversion is done according to a special Quantizing Characteristic Function (Q.C.F.), which depends on the specific application. This special Q.C.F. sampled, quantized and coded has been stored in an EPROM. The quantizing characteristic can be any monotonically increasing function of any type (e.g. linear, square, exponential e.t.c.) resulting in a very flexible linear or nonlinear A/D converter. More than one Q.C.F. can be stored in the EPROM. Such a NLADC could be used for the expansion or compression of the dynamic range in Nuclear Science measurements, in robotics for the cartesian space path planning, as in the case of Pulse Code Modulation (PCM) nonlinear quantization, e.t.c. The corresponding nonlinear Digital to Analog Converter is described.

  4. Bolometric Device Based on Fluxoid Quantization

    NASA Technical Reports Server (NTRS)

    Bonetti, Joseph A.; Kenyon, Matthew E.; Leduc, Henry G.; Day, Peter K.

    2010-01-01

    The temperature dependence of fluxoid quantization in a superconducting loop. The sensitivity of the device is expected to surpass that of other superconducting- based bolometric devices, such as superconducting transition-edge sensors and superconducting nanowire devices. Just as important, the proposed device has advantages in sample fabrication.

  5. Deformation quantization and boundary value problems

    NASA Astrophysics Data System (ADS)

    Tarkhanov, Nikolai

    2016-11-01

    We describe a natural construction of deformation quantization on a compact symplectic manifold with boundary. On the algebra of quantum observables a trace functional is defined which as usual annihilates the commutators. This gives rise to an index as the trace of the unity element. We formulate the index theorem as a conjecture and examine it by the classical harmonic oscillator.

  6. Quantization of the chiral soliton in medium

    NASA Astrophysics Data System (ADS)

    Nagai, S.; Sawado, N.; Shiiki, N.

    2006-01-01

    Chiral solitons coupled with quarks in medium are studied based on the Wigner-Seitz approximation. The chiral quark soliton model is used to obtain the classical soliton solutions. To investigate nucleon and Δ in matter, the semi-classical quantization is performed by the cranking method. The saturation for nucleon matter and Δ matter are observed.

  7. Scalar-vector quantization of medical images.

    PubMed

    Mohsenian, N; Shahri, H; Nasrabadi, N M

    1996-01-01

    A new coding scheme based on the scalar-vector quantizer (SVQ) is developed for compression of medical images. The SVQ is a fixed rate encoder and its rate-distortion performance is close to that of optimal entropy-constrained scalar quantizers (ECSQs) for memoryless sources. The use of a fixed-rate quantizer is expected to eliminate some of the complexity of using variable-length scalar quantizers. When transmission of images over noisy channels is considered, our coding scheme does not suffer from error propagation that is typical of coding schemes using variable-length codes. For a set of magnetic resonance (MR) images, coding results obtained from SVQ and ECSQ at low bit rates are indistinguishable. Furthermore, our encoded images are perceptually indistinguishable from the original when displayed on a monitor. This makes our SVQ-based coder an attractive compression scheme for picture archiving and communication systems (PACS). PACS are currently under study for use in an all-digital radiology environment in hospitals, where reliable transmission, storage, and high fidelity reconstruction of images are desired. PMID:18285124

  8. Multiverse in the Third Quantized Formalism

    NASA Astrophysics Data System (ADS)

    Mir, Faizal

    2014-11-01

    In this paper we will analyze the third quantization of gravity in path integral formalism. We will use the time-dependent version of Wheeler—DeWitt equation to analyze the multiverse in this formalism. We will propose a mechanism for baryogenesis to occur in the multiverse, without violating the baryon number conservation.

  9. Visual data mining for quantized spatial data

    NASA Technical Reports Server (NTRS)

    Braverman, Amy; Kahn, Brian

    2004-01-01

    In previous papers we've shown how a well known data compression algorithm called Entropy-constrained Vector Quantization ( can be modified to reduce the size and complexity of very large, satellite data sets. In this paper, we descuss how to visualize and understand the content of such reduced data sets.

  10. Image compression using address-vector quantization

    NASA Astrophysics Data System (ADS)

    Nasrabadi, Nasser M.; Feng, Yushu

    1990-12-01

    A novel vector quantization scheme, the address-vector quantizer (A-VQ), is proposed which exploits the interblock correlation by encoding a group of blocks together using an address-codebook (AC). The AC is a set of address-codevectors (ACVs), each representing a combination of addresses or indices. Each element of the ACV is an address of an entry in the LBG-codebook, representing a vector-quantized block. The AC consists of an active (addressable) region and an inactive (nonaddressable) region. During encoding the ACVs in the AC are reordered adaptively to bring the most probable ACVs into the active region. When encoding an ACV, the active region is checked, and if such an address combination exists, its index is transmitted to the receiver. Otherwise, the address of each block is transmitted individually. The SNR of the images encoded by the A-VQ method is the same as that of a memoryless vector quantizer, but the bit rate is by a factor of approximately two.

  11. Optimized vector quantization with fuzzy distortion measure

    NASA Astrophysics Data System (ADS)

    Mitra, Sunanda; Pemmaraju, Suryalakshmi

    1996-06-01

    From the perspective of information theory, the design of vector quantizers (VQs) in optimizing the rate distortion function has been extensively studied. In practice, however, the existing VQ algorithms, often, suffer from a number of serious problems, e.g., long search process, codebook initialization, and getting trapped in local minima, inherent to most iterative processes. The generalized Lloyd algorithm, for designing VQs with embedded k-means clustering for codebook generation has been recently used by a number of researcher for efficient image coding by quantizing wavelet decomposed subimages. We present a new approach to vector quantization by generating such multiresolution codebooks using two different neuro-fuzzy clustering techniques that eliminate the existing problems. These clustering techniques integrate fuzzy optimization constraints from the fuzzy-C-means with self-organizing neural network architectures. In one of the new clustering techniques, a new distance measure has also been introduced. The resulting multiresolution codebooks generated from the wavelet decomposed images yield significant improvement in the coding process. The signal transformation and vector quantization stages together yield, at least, 64:1 bit rate reduction with good visual quality and acceptable peak signal to noise ratio (PSNR) and mean square error (MSE). Additional bit rate reduction can be easily obtained by employing conventional entropy encoding after the quantization stage. The performance of this new VQ coding technique has been compared to that of the well-known Linde, Buzo, and Gray (LBG) - VQ for a variety of image classes. The new VQ technique demonstrated superior ability for fast convergence with minimum distortion at similar bit rate reduction then the existing VQ technique for several classes of images/signals including standard test images and medical images in terms of mean-squared error (MSE), peak-signal-to- noise-ratio (PSNR), and visual quality.

  12. Video data compression using artificial neural network differential vector quantization

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, Ashok K.; Bibyk, Steven B.; Ahalt, Stanley C.

    1991-01-01

    An artificial neural network vector quantizer is developed for use in data compression applications such as Digital Video. Differential Vector Quantization is used to preserve edge features, and a new adaptive algorithm, known as Frequency-Sensitive Competitive Learning, is used to develop the vector quantizer codebook. To develop real time performance, a custom Very Large Scale Integration Application Specific Integrated Circuit (VLSI ASIC) is being developed to realize the associative memory functions needed in the vector quantization algorithm. By using vector quantization, the need for Huffman coding can be eliminated, resulting in superior performance against channel bit errors than methods that use variable length codes.

  13. The Angular Momentum Dilemma and Born-Jordan Quantization

    NASA Astrophysics Data System (ADS)

    de Gosson, Maurice A.

    2016-10-01

    The rigorous equivalence of the Schrödinger and Heisenberg pictures requires that one uses Born-Jordan quantization in place of Weyl quantization. We confirm this by showing that the much discussed " angular momentum dilemma" disappears if one uses Born-Jordan quantization. We argue that the latter is the only physically correct quantization procedure. We also briefly discuss a possible redefinition of phase space quantum mechanics, where the usual Wigner distribution has to be replaced with a new quasi-distribution associated with Born-Jordan quantization, and which has proven to be successful in time-frequency analysis.

  14. Creation of quantized particles, gravitons, and scalar perturbations by the expanding universe

    NASA Astrophysics Data System (ADS)

    Parker, Leonard

    2015-04-01

    Quantum creation processes during the very rapid early expansion of the universe are believed to give rise to temperature anisotropies and polarization patterns in the CMB radiation. These have been observed by satellites such as COBE, WMAP, and PLANCK, and by bolometric instruments placed near the South Pole by the BICEP collaborations. The expected temperature anisotropies are well-confirmed. The B-mode polarization patterns in the CMB are currently under measurement jointly by the PLANCK and BICEP groups to determine the extent to which the B-modes can be attributed to gravitational waves from the creation of gravitons in the earliest universe. As the original discoverer of the quantum phenomenon of particle creation from vacuum by the expansion of the universe, I will explain how the discovery came about and how it relates to the current observations. The first system that I considered when I started my Ph.D. thesis in 1962 was the quantized minimally-coupled scalar field in an expanding FLRW (Friedmann, Lemaitré, Robertson, Walker) universe having a general continuous scale factor a(t) with continuous time derivatives. I also considered quantized fermion fields of spin-1/2 and the spin-1 massless photon field, as well as the quantized conformally-invariant field equations of arbitrary integer and half-integer spins that had been written down in the classical context for general gravitational metrics by Penrose. It was during 1962 that I proved that quanta of the minimally-coupled scalar field were created by the general expanding FLRW universe. This was relevant also to the creation of quantized perturbations of the gravitational field, since these perturbations satisfied linear field equations that could be quantized in the same way as the minimally-coupled scalar field equation. In fact, in 1946, E.M. Lifshitz had considered the classical Einstein gravitational field in FLRW expanding universes and had shown that the classical linearized Einstein field

  15. Aerodynamic sound generation due to vortex-aerofoil interaction. Part 2: Analysis of the acoustic field

    NASA Technical Reports Server (NTRS)

    Parasarathy, R.; Karamcheti, K.

    1972-01-01

    The Lighthill method was the basic procedure used to analyze the sound field associated with a vortex of modified strength interacting with an airfoil. A free vortex interacting with an airfoil in uniform motion was modeled in order to determine the sound field due to all the acoustic sources, not only on the airfoil surfaces (dipoles), but also the ones distributed on the perturbed flow field (quadrupoles) due to the vortex-airfoil interaction. Because inviscid flow is assumed in the study of the interaction, the quadrupoles considered in the perturbed flow field are entirely due to an unsteady flow field. The effects of airfoil thickness on the second radiation are examined by using a symmetric Joukowski airfoil for the vortex-airfoil interaction. Sound radiation in a plane, far field simplification, and computation of the sound field are discussed.

  16. Nonlinear interactions between black holes and Proca fields

    NASA Astrophysics Data System (ADS)

    Zilhão, Miguel; Witek, Helvi; Cardoso, Vitor

    2015-12-01

    Physics beyond the standard model is an important candidate for dark matter, and an interesting testing ground for strong-field gravity: the equivalence principle ‘forces’ all forms of matter to fall in the same way, and it is therefore natural to look for imprints of these fields in regions with strong gravitational fields, such as compact stars or black holes (BHs). Here we study general relativity minimally coupled to a massive vector field, and how BHs in this theory lose ‘hair’. Our results indicate that BHs can sustain Proca field condensates for extremely long time-scales.

  17. Influence of strong field vacuum polarization on gravitational-electromagnetic wave interaction

    SciTech Connect

    Forsberg, M.; Brodin, G.; Papadopoulos, D.

    2010-07-15

    The interaction between gravitational and electromagnetic waves in the presence of a static magnetic field is studied. The field strength of the static field is allowed to surpass the Schwinger critical field, such that the QED effects of vacuum polarization and magnetization are significant. Equations governing the interaction are derived and analyzed. It turns out that the energy conversion from gravitational to electromagnetic waves can be significantly altered due to the QED effects. The consequences of our results are discussed.

  18. Size quantization of Dirac fermions in graphene constrictions

    PubMed Central

    Terrés, B.; Chizhova, L. A.; Libisch, F.; Peiro, J.; Jörger, D.; Engels, S.; Girschik, A.; Watanabe, K.; Taniguchi, T.; Rotkin, S. V.; Burgdörfer, J.; Stampfer, C.

    2016-01-01

    Quantum point contacts are cornerstones of mesoscopic physics and central building blocks for quantum electronics. Although the Fermi wavelength in high-quality bulk graphene can be tuned up to hundreds of nanometres, the observation of quantum confinement of Dirac electrons in nanostructured graphene has proven surprisingly challenging. Here we show ballistic transport and quantized conductance of size-confined Dirac fermions in lithographically defined graphene constrictions. At high carrier densities, the observed conductance agrees excellently with the Landauer theory of ballistic transport without any adjustable parameter. Experimental data and simulations for the evolution of the conductance with magnetic field unambiguously confirm the identification of size quantization in the constriction. Close to the charge neutrality point, bias voltage spectroscopy reveals a renormalized Fermi velocity of ∼1.5 × 106 m s−1 in our constrictions. Moreover, at low carrier density transport measurements allow probing the density of localized states at edges, thus offering a unique handle on edge physics in graphene devices. PMID:27198961

  19. A short course on quantum mechanics and methods of quantization

    NASA Astrophysics Data System (ADS)

    Ercolessi, Elisa

    2015-07-01

    These notes collect the lectures given by the author to the "XXIII International Workshop on Geometry and Physics" held in Granada (Spain) in September 2014. The first part of this paper aims at introducing a mathematical oriented reader to the realm of Quantum Mechanics (QM) and then to present the geometric structures that underline the mathematical formalism of QM which, contrary to what is usually done in Classical Mechanics (CM), are usually not taught in introductory courses. The mathematics related to Hilbert spaces and Differential Geometry are assumed to be known by the reader. In the second part, we concentrate on some quantization procedures, that are founded on the geometric structures of QM — as we have described them in the first part — and represent the ones that are more operatively used in modern theoretical physics. We will discuss first the so-called Coherent State Approach which, mainly complemented by "Feynman Path Integral Technique", is the method which is most widely used in quantum field theory. Finally, we will describe the "Weyl Quantization Approach" which is at the origin of modern tomographic techniques, originally used in optics and now in quantum information theory.

  20. Oscillating magnetocaloric effect in size-quantized diamagnetic film

    SciTech Connect

    Alisultanov, Z. Z.

    2014-03-21

    We investigate the oscillating magnetocaloric effect on a size-quantized diamagnetic film in a transverse magnetic field. We obtain the analytical expression for the thermodynamic potential in case of the arbitrary spectrum of carriers. The entropy change is shown to be the oscillating function of the magnetic field and the film thickness. The nature of this effect is the same as for the de Haas–van Alphen effect. The magnetic part of entropy has a maximal value at some temperature. Such behavior of the entropy is not observed in magneto-ordered materials. We discuss the nature of unusual behavior of the magnetic entropy. We compare our results with the data obtained for 2D and 3D cases.

  1. The Einstein-Brillouin Action Quantization for Dirac Fermions

    NASA Astrophysics Data System (ADS)

    Onorato, P.

    The Einstein-Brillouin-Keller semiclassical quantization and the topological Maslov index are used to compute the electronic structure of carbon based nanostructures with or without transverse magnetic field. The calculation is based on the Dirac Fermions approach in the limit of strong coupling for the pseudospin. The electronic bandstructure for carbon nanotubes and graphene nanoribbons are discussed, focusing on the role of the chirality and of the unbonded edges configuration respectively. The effects of a transverse uniform magnetic field are analyzed, the different kinds of classical trajectories are discussed and related to the corresponding energies. The development is concise, transparent, and involves only elementary integral calculus and provides a conceptual and intuitive introduction to the quantum nature of carbon nanostructures.

  2. Paul Weiss and the genesis of canonical quantization

    NASA Astrophysics Data System (ADS)

    Rickles, Dean; Blum, Alexander

    2015-12-01

    This paper describes the life and work of a figure who, we argue, was of primary importance during the early years of field quantisation and (albeit more indirectly) quantum gravity. A student of Dirac and Born, he was interned in Canada during the second world war as an enemy alien and after his release never seemed to regain a good foothold in physics, identifying thereafter as a mathematician. He developed a general method of quantizing (linear and non-linear) field theories based on the parameters labelling an arbitrary hypersurface. This method (the `parameter formalism' often attributed to Dirac), though later discarded, was employed (and viewed at the time as an extremely important tool) by the leading figures associated with canonical quantum gravity: Dirac, Pirani and Schild, Bergmann, DeWitt, and others. We argue that he deserves wider recognition for this and other innovations.

  3. Interaction of gravitational waves with magnetic and electric fields

    SciTech Connect

    Barrabes, C.; Hogan, P. A.

    2010-03-15

    The existence of large-scale magnetic fields in the universe has led to the observation that if gravitational waves propagating in a cosmological environment encounter even a small magnetic field then electromagnetic radiation is produced. To study this phenomenon in more detail we take it out of the cosmological context and at the same time simplify the gravitational radiation to impulsive waves. Specifically, to illustrate our findings, we describe the following three physical situations: (1) a cylindrical impulsive gravitational wave propagating into a universe with a magnetic field, (2) an axially symmetric impulsive gravitational wave propagating into a universe with an electric field and (3) a 'spherical' impulsive gravitational wave propagating into a universe with a small magnetic field. In cases (1) and (3) electromagnetic radiation is produced behind the gravitational wave. In case (2) no electromagnetic radiation appears after the wave unless a current is established behind the wave breaking the Maxwell vacuum. In all three cases the presence of the magnetic or electric fields results in a modification of the amplitude of the incoming gravitational wave which is explicitly calculated using the Einstein-Maxwell vacuum field equations.

  4. Block adaptive quantization of Magellan SAR data

    NASA Technical Reports Server (NTRS)

    Kwok, Ronald; Johnson, William T. K.

    1989-01-01

    A report is presented on a data compression scheme that will be used to reduce the SAR data rate on the NASA Magellan mission to Venus. The spacecraft has only one scientific instrument, a radar system for imaging the surface, for altimetric profiling of the planet topography, and for measuring radiation from the planet surface. A straightforward implementation of the scientific requirements of the mission results in a data rate higher than can be accommodated by the available system bandwidth. A data-rate-reduction scheme which includes operation of the radar in burst mode and block-adaptive quantization of the SAR data is selected to satisfy the scientific requirements. Descriptions of the quantization scheme and its hardware implementation are given. Burst-mode SAR operation is also briefly discussed.

  5. Loop quantization of the Schwarzschild black hole.

    PubMed

    Gambini, Rodolfo; Pullin, Jorge

    2013-05-24

    We quantize spherically symmetric vacuum gravity without gauge fixing the diffeomorphism constraint. Through a rescaling, we make the algebra of Hamiltonian constraints Abelian, and therefore the constraint algebra is a true Lie algebra. This allows the completion of the Dirac quantization procedure using loop quantum gravity techniques. We can construct explicitly the exact solutions of the physical Hilbert space annihilated by all constraints. New observables living in the bulk appear at the quantum level (analogous to spin in quantum mechanics) that are not present at the classical level and are associated with the discrete nature of the spin network states of loop quantum gravity. The resulting quantum space-times resolve the singularity present in the classical theory inside black holes. PMID:23745855

  6. Loop quantization of the Schwarzschild black hole.

    PubMed

    Gambini, Rodolfo; Pullin, Jorge

    2013-05-24

    We quantize spherically symmetric vacuum gravity without gauge fixing the diffeomorphism constraint. Through a rescaling, we make the algebra of Hamiltonian constraints Abelian, and therefore the constraint algebra is a true Lie algebra. This allows the completion of the Dirac quantization procedure using loop quantum gravity techniques. We can construct explicitly the exact solutions of the physical Hilbert space annihilated by all constraints. New observables living in the bulk appear at the quantum level (analogous to spin in quantum mechanics) that are not present at the classical level and are associated with the discrete nature of the spin network states of loop quantum gravity. The resulting quantum space-times resolve the singularity present in the classical theory inside black holes.

  7. Quantization of the nonlinear sigma model revisited

    NASA Astrophysics Data System (ADS)

    Nguyen, Timothy

    2016-08-01

    We revisit the subject of perturbatively quantizing the nonlinear sigma model in two dimensions from a rigorous, mathematical point of view. Our main contribution is to make precise the cohomological problem of eliminating potential anomalies that may arise when trying to preserve symmetries under quantization. The symmetries we consider are twofold: (i) diffeomorphism covariance for a general target manifold; (ii) a transitive group of isometries when the target manifold is a homogeneous space. We show that there are no anomalies in case (i) and that (ii) is also anomaly-free under additional assumptions on the target homogeneous space, in agreement with the work of Friedan. We carry out some explicit computations for the O(N)-model. Finally, we show how a suitable notion of the renormalization group establishes the Ricci flow as the one loop renormalization group flow of the nonlinear sigma model.

  8. Quantized Mechanics of Nanotubes and Bundles

    NASA Astrophysics Data System (ADS)

    Pugno, Nicola M.

    In this chapter, the mechanics of carbon nanotubes and related bundles is reviewed, with an eye to their application as ultra-sharp tips for scanning probe "nanoscopy". In particular, the role of thermodynamically unavoidable, atomistic defects with different sizes and shapes on the fracture strength, fatigue life, and elasticity is quantified, thanks to new quantized fracture mechanics approaches. The reader is introduced in a simple way to such innovative treatments at the beginning of the chapter.

  9. Capture and transparency in coarse quantized images.

    PubMed

    Morrone, M C; Burr, D C

    1997-09-01

    This study examines the effect of coarse quantization (blocking) on image recognition, and explores possible mechanisms. Thresholds for noise corruption showed that coarse quantization reduces drastically the recognizability of both faces and letters, well beyond the levels expected by equivalent blurring. Phase-shifting the spurious high frequencies introduced by the blocking (with an operation designed to leave both overall and local contrast unaffected, and feature localization) greatly improved recognizability of both faces and letters. For large phase shifts, the low spatial frequencies appear in transparency behind a grid structure of checks or lines. We also studied a more simple example of blocking, the checkerboard, that can be considered as a coarse quantized diagonal sinusoidal plaid. When one component of the plaid was contrast-inverted, it was seen in transparency against the checkerboard, while the other remained "captured" within the block structure. If the higher harmonics are then phase-shifted by pi, the contrast-reversed fundamental becomes captured and the other seen in transparency. Intermediate phase shifts of the higher harmonics cause intermediate effects, which we measured by adjusting the relative contrast of the fundamentals until neither orientation dominated. The contrast match varied considerably with the phase of the higher harmonics, over a range of about 1.5 log units. Simulations with the local energy model predicted qualitatively the results of the recognizability of both faces and letters, and quantitatively the apparent orientation of the modified checkerboard pattern. More generally, the model predicts the conditions under which an image will be "captured" by coarse quantization, or seen in transparency.

  10. Interacting scalar field theory in general curved space-time

    SciTech Connect

    Kodaira, J.

    1986-05-15

    The ultraviolet divergences of two-loop diagrams in general curved space-time are determined for the six-dimensional phi/sup 3/ theory. The background-field method is used to evaluate the effective action. In order to isolate the short-distance singularities, the Feynman propagator is expanded by the heat kernel and dimensional regularization is employed. The gravitational counterterms as well as those for the matter field are explicitly given to the two-loop order.

  11. Single Abrikosov vortices as quantized information bits.

    PubMed

    Golod, T; Iovan, A; Krasnov, V M

    2015-01-01

    Superconducting digital devices can be advantageously used in future supercomputers because they can greatly reduce the dissipation power and increase the speed of operation. Non-volatile quantized states are ideal for the realization of classical Boolean logics. A quantized Abrikosov vortex represents the most compact magnetic object in superconductors, which can be utilized for creation of high-density digital cryoelectronics. In this work we provide a proof of concept for Abrikosov-vortex-based random access memory cell, in which a single vortex is used as an information bit. We demonstrate high-endurance write operation and two different ways of read-out using a spin valve or a Josephson junction. These memory cells are characterized by an infinite magnetoresistance between 0 and 1 states, a short access time, a scalability to nm sizes and an extremely low write energy. Non-volatility and perfect reproducibility are inherent for such a device due to the quantized nature of the vortex. PMID:26456592

  12. Single Abrikosov vortices as quantized information bits

    PubMed Central

    Golod, T.; Iovan, A.; Krasnov, V. M.

    2015-01-01

    Superconducting digital devices can be advantageously used in future supercomputers because they can greatly reduce the dissipation power and increase the speed of operation. Non-volatile quantized states are ideal for the realization of classical Boolean logics. A quantized Abrikosov vortex represents the most compact magnetic object in superconductors, which can be utilized for creation of high-density digital cryoelectronics. In this work we provide a proof of concept for Abrikosov-vortex-based random access memory cell, in which a single vortex is used as an information bit. We demonstrate high-endurance write operation and two different ways of read-out using a spin valve or a Josephson junction. These memory cells are characterized by an infinite magnetoresistance between 0 and 1 states, a short access time, a scalability to nm sizes and an extremely low write energy. Non-volatility and perfect reproducibility are inherent for such a device due to the quantized nature of the vortex. PMID:26456592

  13. Can realistic interaction be useful for nuclear mean-field approaches?

    NASA Astrophysics Data System (ADS)

    Nakada, H.; Sugiura, K.; Inakura, T.; Margueron, J.

    2016-07-01

    Recent applications of the M3Y-type semi-realistic interaction to the nuclear mean-field approaches are presented: i) Prediction of magic numbers and ii) isotope shifts of nuclei with magic proton numbers. The results exemplify that the realistic interaction, which is derived from the bare 2 N and 3 N interaction, furnishes a new theoretical instrument for advancing nuclear mean-field approaches.

  14. Spin-one matter fields

    NASA Astrophysics Data System (ADS)

    Napsuciale, M.; Rodríguez, S.; Ferro-Hernández, Rodolfo; Gómez-Ávila, Selim

    2016-04-01

    Spin-one matter fields are relevant both for the description of hadronic states and as potential extensions of the Standard Model. In this work we present a formalism for the description of massive spin-one fields transforming in the (1 ,0 )⊕(0 ,1 ) representation of the Lorentz group, based on the covariant projection onto parity eigenspaces and Poincaré orbits. The formalism yields a constrained dynamics. We solve the constraints and perform the canonical quantization accordingly. This formulation uses the recent construction of a parity-based covariant basis for matrix operators acting on the (j ,0 )⊕(0 ,j ) representations. The algebraic properties of the covariant basis play an important role in solving the constraints and allowing the canonical quantization of the theory. We study the chiral structure of the theory and conclude that it is not chirally symmetric in the massless limit, hence it is not possible to have chiral gauge interactions. However, spin-one matter fields can have vector gauge interactions. Also, the dimension of the field makes self-interactions naively renormalizable. Using the covariant basis, we classify all possible self-interaction terms.

  15. Interaction of MRI field gradients with the human body.

    PubMed

    Glover, P M

    2009-11-01

    In this review, the effects of low-frequency electromagnetic fields encountered specifically during magnetic resonance imaging (MRI) are examined. The primary biological effect at frequencies of between 100 and 5000 Hz (typical of MRI magnetic field gradient switching) is peripheral nerve stimulation, the result of which can be a mild tingling and muscle twitching to a sensation of pain. The models for nerve stimulation and how they are related to the rate of change of magnetic field are examined. The experimental measurements, and analytic and computational modelling work in this area are reviewed. The review concludes with a discussion of current regulation in this area and current practice as both are applied to MRI.

  16. Solar wind interaction effects on the magnetic fields around Mars: Consequences for interplanetary and crustal field measurements

    NASA Astrophysics Data System (ADS)

    Luhmann, J. G.; Ma, Y.-J.; Brain, D. A.; Ulusen, D.; Lillis, R. J.; Halekas, J. S.; Espley, J. R.

    2015-11-01

    The first unambiguous detections of the crustal remanent magnetic fields of Mars were obtained by Mars Global Surveyor (MGS) during its initial orbits around Mars, which probed altitudes to within ∼110 km of the surface. However, the majority of its measurements were carried out around 400 km altitude, fixed 2 a.m. to 2 p.m. local time, mapping orbit. While the general character and planetary origins of the localized crustal fields were clearly revealed by the mapping survey data, their effects on the solar wind interaction could not be investigated in much detail because of the limited mapping orbit sampling. Previous analyses (Brain et al., 2006) of the field measurements on the dayside nevertheless provided an idea of the extent to which the interaction of the solar wind and planetary fields leads to non-ideal field draping at the mapping altitude. In this study we use numerical simulations of the global solar wind interaction with Mars as an aid to interpreting that observed non-ideal behavior. In addition, motivated by models for different interplanetary field orientations, we investigate the effects of induced and reconnected (planetary and external) fields on the Martian field's properties derived at the MGS mapping orbit altitude. The results suggest that inference of the planetary low order moments is compromised by their influence. In particular, the intrinsic dipole contribution may differ from that in the current models because the induced component is so dominant.

  17. A field experiment comparing different workgroup interactive techniques.

    PubMed

    Eisele, Per

    2007-02-01

    Participants (N=149) belonging to real life workgroups from different work organisations took part in a project with the aim of improving organisational culture. Two techniques for enhancing effectiveness were used in the study, the individual-group-individual technique and the nominal group technique. In a control group were participants in nonstructured interactive groups. Thus, the workgroups were randomised into these 3 conditions. Analysis indicated that both techniques affect idea generation but not generation of goals.

  18. Coulomb interactions in sharp tip pulsed photo field emitters

    NASA Astrophysics Data System (ADS)

    Cook, Ben; Kruit, Pieter

    2016-10-01

    Photofield emitters show great potential for many single electron pulsed applications. However, for the brightest pulses > 10 11 A / ( m 2 sr V ) , our simulations show that Poisson statistics and stochastic Coulomb interactions limit the brightness and increase the energy spread even with an average of a single electron per pulse. For the systems, we study we find that the energy spread is probably the limiting factor for most applications.

  19. Quantized Nambu-Poisson manifolds and n-Lie algebras

    NASA Astrophysics Data System (ADS)

    DeBellis, Joshua; Sämann, Christian; Szabo, Richard J.

    2010-12-01

    We investigate the geometric interpretation of quantized Nambu-Poisson structures in terms of noncommutative geometries. We describe an extension of the usual axioms of quantization in which classical Nambu-Poisson structures are translated to n-Lie algebras at quantum level. We demonstrate that this generalized procedure matches an extension of Berezin-Toeplitz quantization yielding quantized spheres, hyperboloids, and superspheres. The extended Berezin quantization of spheres is closely related to a deformation quantization of n-Lie algebras as well as the approach based on harmonic analysis. We find an interpretation of Nambu-Heisenberg n-Lie algebras in terms of foliations of {{R}}^n by fuzzy spheres, fuzzy hyperboloids, and noncommutative hyperplanes. Some applications to the quantum geometry of branes in M-theory are also briefly discussed.

  20. Analysis and Design of Logarithmic-type Dynamic Quantizer

    NASA Astrophysics Data System (ADS)

    Sugie, Toshiharu; Okamoto, Tetsuro

    This paper is concerned with quantized feedback control in the case where logarithmic-type dynamic quantizers are adopted instead of conventional static (memoryless) ones. First, when the plant and the state feedback controller are given, the admissible coarsest quantization density which guarantees quadratic stability of the closed loop system is given in a closed form, which does not depend on the choice of controller in contrast to the static quantizer case. Second, when the plant, the state feedback controller and the coarseness of the quantization density are given, we provide a design method of the dynamic quantizers via convex optimization. Third, these results are extended to the case of output feedback control systems. Finally, some numerical examples are given to demonstrate the effectiveness of the proposed method.

  1. Quantized Nambu-Poisson manifolds and n-Lie algebras

    SciTech Connect

    DeBellis, Joshua; Saemann, Christian; Szabo, Richard J.

    2010-12-15

    We investigate the geometric interpretation of quantized Nambu-Poisson structures in terms of noncommutative geometries. We describe an extension of the usual axioms of quantization in which classical Nambu-Poisson structures are translated to n-Lie algebras at quantum level. We demonstrate that this generalized procedure matches an extension of Berezin-Toeplitz quantization yielding quantized spheres, hyperboloids, and superspheres. The extended Berezin quantization of spheres is closely related to a deformation quantization of n-Lie algebras as well as the approach based on harmonic analysis. We find an interpretation of Nambu-Heisenberg n-Lie algebras in terms of foliations of R{sup n} by fuzzy spheres, fuzzy hyperboloids, and noncommutative hyperplanes. Some applications to the quantum geometry of branes in M-theory are also briefly discussed.

  2. Remote Laboratory and Animal Behaviour: An Interactive Open Field System

    ERIC Educational Resources Information Center

    Fiore, Lorenzo; Ratti, Giovannino

    2007-01-01

    Remote laboratories can provide distant learners with practical acquisitions which would otherwise remain precluded. Our proposal here is a remote laboratory on a behavioural test (open field test), with the aim of introducing learners to the observation and analysis of stereotyped behaviour in animals. A real-time video of a mouse in an…

  3. Interactive Tooth Separation from Dental Model Using Segmentation Field

    PubMed Central

    2016-01-01

    Tooth segmentation on dental model is an essential step of computer-aided-design systems for orthodontic virtual treatment planning. However, fast and accurate identifying cutting boundary to separate teeth from dental model still remains a challenge, due to various geometrical shapes of teeth, complex tooth arrangements, different dental model qualities, and varying degrees of crowding problems. Most segmentation approaches presented before are not able to achieve a balance between fine segmentation results and simple operating procedures with less time consumption. In this article, we present a novel, effective and efficient framework that achieves tooth segmentation based on a segmentation field, which is solved by a linear system defined by a discrete Laplace-Beltrami operator with Dirichlet boundary conditions. A set of contour lines are sampled from the smooth scalar field, and candidate cutting boundaries can be detected from concave regions with large variations of field data. The sensitivity to concave seams of the segmentation field facilitates effective tooth partition, as well as avoids obtaining appropriate curvature threshold value, which is unreliable in some case. Our tooth segmentation algorithm is robust to dental models with low quality, as well as is effective to dental models with different levels of crowding problems. The experiments, including segmentation tests of varying dental models with different complexity, experiments on dental meshes with different modeling resolutions and surface noises and comparison between our method and the morphologic skeleton segmentation method are conducted, thus demonstrating the effectiveness of our method. PMID:27532266

  4. Field analysis of helix traveling wave tube interaction

    SciTech Connect

    Vanderplaats, N.R.; Kodis, M.A.; Freund, H.P.

    1994-12-31

    Recent results are presented for the linear field analysis of the coupled beam-wave system for the traveling wave tube (TWT) and numerical techniques for TWT design. The basic model includes an electron beam of constant current density located inside the helix. The helix is loaded externally by lossy dielectric material, a conducting shell and vanes for dispersion modification. The model is further divided into axial regions which may include severs, lossy materials, or circuit velocity steps, with the helix geometry varied arbitrarily in each region. The backward-wave root of the coupled dispersion equation is discarded and the sum of the fields for the three forward waves is followed to the circuit output. The dispersion equations are expressed in terms of equating admittance functions at radial boundaries. The numerical procedures to solve the dispersion equations will be described. Results obtained using the field analysis will be compared with those from the conventional coupled-mode Pierce theory for the same geometry. The issue of weak (Brillouin) vs. strong focusing will be discussed and recent refinements to the field theory will be described.

  5. Interactive Tooth Separation from Dental Model Using Segmentation Field.

    PubMed

    Li, Zhongyi; Wang, Hao

    2016-01-01

    Tooth segmentation on dental model is an essential step of computer-aided-design systems for orthodontic virtual treatment planning. However, fast and accurate identifying cutting boundary to separate teeth from dental model still remains a challenge, due to various geometrical shapes of teeth, complex tooth arrangements, different dental model qualities, and varying degrees of crowding problems. Most segmentation approaches presented before are not able to achieve a balance between fine segmentation results and simple operating procedures with less time consumption. In this article, we present a novel, effective and efficient framework that achieves tooth segmentation based on a segmentation field, which is solved by a linear system defined by a discrete Laplace-Beltrami operator with Dirichlet boundary conditions. A set of contour lines are sampled from the smooth scalar field, and candidate cutting boundaries can be detected from concave regions with large variations of field data. The sensitivity to concave seams of the segmentation field facilitates effective tooth partition, as well as avoids obtaining appropriate curvature threshold value, which is unreliable in some case. Our tooth segmentation algorithm is robust to dental models with low quality, as well as is effective to dental models with different levels of crowding problems. The experiments, including segmentation tests of varying dental models with different complexity, experiments on dental meshes with different modeling resolutions and surface noises and comparison between our method and the morphologic skeleton segmentation method are conducted, thus demonstrating the effectiveness of our method. PMID:27532266

  6. The Beginner's Guide to Interactive Virtual Field Trips

    ERIC Educational Resources Information Center

    Zanetis, Jan

    2010-01-01

    For students, field trips can be the best of both worlds: a welcome and exciting break from day-to-day classroom activities and a memorable, real-world experience that will solidify the curriculum in their minds. Unfortunately, the most desirable trips--those to far-away, enticing destinations--have long been inaccessible to all but a select few,…

  7. Furry representation for fermions interacting with an external gauge field

    NASA Astrophysics Data System (ADS)

    Gavrilov, S. P.; Gitman, D. M.

    1995-04-01

    We have obtained a Furry representation for the fermion sector (spin 1/2) of any gauge theory based on a semisimple compact group with an external field breaking down the stability of the vacuum. We have found expressions for the generating functionals of the matrix elements of the processes and averages, and have determined all the required types of propagators.

  8. Interaction of Two Differently Sized Bubbles in a Free Field

    NASA Astrophysics Data System (ADS)

    Chew, Lup Wai; Khoo, Boo Cheong; Klaseboer, Evert; Ohl, Siew-Wan

    The interaction between two different sized (spark created, non-equilibrium) bubbles is studied by using high speed photography. The bubble size ranges from 2 to 7 mm. The experimental results are compared to that of the similar sized bubbles reported in the literature. Interestingly, all the four major behaviors of bubble-bubble interactions (i.e. 'bubble-collapsed' induced liquid jets directed away from each other, liquid jets directed towards each other, bubble coalescence and the 'catapult' effect) are observed which bear much similarity to that found for similar sized bubbles' interaction. The main parameters studied/varied are the size of the bubbles, the dimensionless separation distance and the phase difference between the two bubbles. The results obtained are consistent with the cases of similar sized bubbles reported in the literature, with each type of behavior occupying a distinct region in the graphical plot. This indicates that the results for the (special) similar sized bubbles can be generalized to cases with different sized bubbles. Many of the real life applications such as cavitations corrosions often involve bubbles with significant size difference, thus the present findings are useful in predicting the behavior of multiple bubbles in many situations.

  9. Jet-Surface Interaction Test: Far-Field Noise Results

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.

    2012-01-01

    Many configurations proposed for the next generation of aircraft rely on the wing or other aircraft surfaces to shield the engine noise from the observers on the ground. However, the ability to predict the shielding effect and any new noise sources that arise from the high-speed jet flow interacting with a hard surface is currently limited. Furthermore, quality experimental data from jets with surfaces nearby suitable for developing and validating noise prediction methods are usually tied to a particular vehicle concept and, therefore, very complicated. The Jet/Surface Interaction Test was intended to supply a high quality set of data covering a wide range of surface geometries and positions and jet flows to researchers developing aircraft noise prediction tools. During phase one, the goal was to measure the noise of a jet near a simple planar surface while varying the surface length and location in order to: (1) validate noise prediction schemes when the surface is acting only as a jet noise shield and when the jet/surface interaction is creating additional noise, and (2) determine regions of interest for more detailed tests in phase two. To meet these phase one objectives, a flat plate was mounted on a two-axis traverse in two distinct configurations: (1) as a shield between the jet and the observer (microphone array) and (2) as a reflecting surface on the opposite side of the jet from the observer.

  10. A constrained joint source/channel coder design and vector quantization of nonstationary sources

    NASA Technical Reports Server (NTRS)

    Sayood, Khalid; Chen, Y. C.; Nori, S.; Araj, A.

    1993-01-01

    The emergence of broadband ISDN as the network for the future brings with it the promise of integration of all proposed services in a flexible environment. In order to achieve this flexibility, asynchronous transfer mode (ATM) has been proposed as the transfer technique. During this period a study was conducted on the bridging of network transmission performance and video coding. The successful transmission of variable bit rate video over ATM networks relies on the interaction between the video coding algorithm and the ATM networks. Two aspects of networks that determine the efficiency of video transmission are the resource allocation algorithm and the congestion control algorithm. These are explained in this report. Vector quantization (VQ) is one of the more popular compression techniques to appear in the last twenty years. Numerous compression techniques, which incorporate VQ, have been proposed. While the LBG VQ provides excellent compression, there are also several drawbacks to the use of the LBG quantizers including search complexity and memory requirements, and a mismatch between the codebook and the inputs. The latter mainly stems from the fact that the VQ is generally designed for a specific rate and a specific class of inputs. In this work, an adaptive technique is proposed for vector quantization of images and video sequences. This technique is an extension of the recursively indexed scalar quantization (RISQ) algorithm.

  11. A constrained joint source/channel coder design and vector quantization of nonstationary sources

    NASA Astrophysics Data System (ADS)

    Sayood, Khalid; Chen, Y. C.; Nori, S.; Araj, A.

    1993-12-01

    The emergence of broadband ISDN as the network for the future brings with it the promise of integration of all proposed services in a flexible environment. In order to achieve this flexibility, asynchronous transfer mode (ATM) has been proposed as the transfer technique. During this period a study was conducted on the bridging of network transmission performance and video coding. The successful transmission of variable bit rate video over ATM networks relies on the interaction between the video coding algorithm and the ATM networks. Two aspects of networks that determine the efficiency of video transmission are the resource allocation algorithm and the congestion control algorithm. These are explained in this report. Vector quantization (VQ) is one of the more popular compression techniques to appear in the last twenty years. Numerous compression techniques, which incorporate VQ, have been proposed. While the LBG VQ provides excellent compression, there are also several drawbacks to the use of the LBG quantizers including search complexity and memory requirements, and a mismatch between the codebook and the inputs. The latter mainly stems from the fact that the VQ is generally designed for a specific rate and a specific class of inputs. In this work, an adaptive technique is proposed for vector quantization of images and video sequences. This technique is an extension of the recursively indexed scalar quantization (RISQ) algorithm.

  12. Scalar field theory in the strong self-interaction limit

    NASA Astrophysics Data System (ADS)

    Frasca, Marco

    2014-06-01

    The Standard Model with a classical conformal invariance holds the promise to lead to a better understanding of the hierarchy problem and could pave the way beyond the Standard Model physics. Thus, we give here a mathematical treatment of a massless quartic scalar field theory with a strong self-coupling both classically and for quantum field theory. We use a set of classical solutions recently found and show that there exist an infinite set of infrared trivial scalar theories with a mass gap. Free particles have superimposed a harmonic oscillator set of states. The classical solution is displayed through a current expansion and the next-to-leading order quantum correction is provided. Application to the Standard Model would entail the existence of higher excited states of the Higgs particle and reduced decay rates to WW and ZZ that could already be measured.

  13. Observing the quantization of zero mass carriers in graphene.

    PubMed

    Miller, David L; Kubista, Kevin D; Rutter, Gregory M; Ruan, Ming; de Heer, Walt A; First, Phillip N; Stroscio, Joseph A

    2009-05-15

    Application of a magnetic field to conductors causes the charge carriers to circulate in cyclotron orbits with quantized energies called Landau levels (LLs). These are equally spaced in normal metals and two-dimensional electron gases. In graphene, however, the charge carrier velocity is independent of their energy (like massless photons). Consequently, the LL energies are not equally spaced and include a characteristic zero-energy state (the n = 0 LL). With the use of scanning tunneling spectroscopy of graphene grown on silicon carbide, we directly observed the discrete, non-equally-spaced energy-level spectrum of LLs, including the hallmark zero-energy state of graphene. We also detected characteristic magneto-oscillations in the tunneling conductance and mapped the electrostatic potential of graphene by measuring spatial variations in the energy of the n = 0 LL.

  14. Semiclassical quantization of nonadiabatic systems with hopping periodic orbits.

    PubMed

    Fujii, Mikiya; Yamashita, Koichi

    2015-02-21

    We present a semiclassical quantization condition, i.e., quantum-classical correspondence, for steady states of nonadiabatic systems consisting of fast and slow degrees of freedom (DOFs) by extending Gutzwiller's trace formula to a nonadiabatic form. The quantum-classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow DOF, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels. In addition to the semiclassical quantization condition, we also discuss chaotic dynamics involved in the classical limit of nonadiabatic dynamics.

  15. Perceptually optimized quantization tables for H.264/AVC

    NASA Astrophysics Data System (ADS)

    Chen, Heng; Braeckman, Geert; Barbarien, Joeri; Munteanu, Adrian; Schelkens, Peter

    2010-08-01

    The H.264/AVC video coding standard currently represents the state-of-the-art in video compression technology. The initial version of the standard only supported a single quantization step size for all the coefficients in a transformed block. Later, support for custom quantization tables was added, which allows to independently specify the quantization step size for each coefficient in a transformed block. In this way, different quantization can be applied to the highfrequency and low-frequency coefficients, reflecting the human visual system's different sensitivity to high-frequency and low-frequency spatial variations in the signal. In this paper, we design custom quantization tables taking into account the properties of the human visual system as well as the viewing conditions. Our proposed design is based on a model for the human visual system's contrast sensitivity function, which specifies the contrast sensitivity in function of the spatial frequency of the signal. By calculating the spatial frequencies corresponding to each of the transform's basis functions, taking into account viewing distance and dot pitch of the screen, the sensitivity of the human visual system to variations in the transform coefficient corresponding to each basis function can be determined and used to define the corresponding quantization step size. Experimental results, whereby the video quality is measured using VQM, show that the designed quantization tables yield improved performance compared to uniform quantization and to the default quantization tables provided as a part of the reference encoder.

  16. Semiclassical quantization of nonadiabatic systems with hopping periodic orbits

    NASA Astrophysics Data System (ADS)

    Fujii, Mikiya; Yamashita, Koichi

    2015-02-01

    We present a semiclassical quantization condition, i.e., quantum-classical correspondence, for steady states of nonadiabatic systems consisting of fast and slow degrees of freedom (DOFs) by extending Gutzwiller's trace formula to a nonadiabatic form. The quantum-classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow DOF, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels. In addition to the semiclassical quantization condition, we also discuss chaotic dynamics involved in the classical limit of nonadiabatic dynamics.

  17. Semiclassical quantization of nonadiabatic systems with hopping periodic orbits

    SciTech Connect

    Fujii, Mikiya Yamashita, Koichi

    2015-02-21

    We present a semiclassical quantization condition, i.e., quantum–classical correspondence, for steady states of nonadiabatic systems consisting of fast and slow degrees of freedom (DOFs) by extending Gutzwiller’s trace formula to a nonadiabatic form. The quantum–classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow DOF, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels. In addition to the semiclassical quantization condition, we also discuss chaotic dynamics involved in the classical limit of nonadiabatic dynamics.

  18. Separable quantizations of Stäckel systems

    NASA Astrophysics Data System (ADS)

    Błaszak, Maciej; Marciniak, Krzysztof; Domański, Ziemowit

    2016-08-01

    In this article we prove that many Hamiltonian systems that cannot be separably quantized in the classical approach of Robertson and Eisenhart can be separably quantized if we extend the class of admissible quantizations through a suitable choice of Riemann space adapted to the Poisson geometry of the system. Actually, in this article we prove that for every quadratic in momenta Stäckel system (defined on 2 n dimensional Poisson manifold) for which Stäckel matrix consists of monomials in position coordinates there exist infinitely many quantizations-parametrized by n arbitrary functions-that turn this system into a quantum separable Stäckel system.

  19. Quantization effects in radiation spectroscopy based on digital pulse processing

    SciTech Connect

    Jordanov, V. T.; Jordanova, K. V.

    2011-07-01

    Radiation spectra represent inherently quantization data in the form of stacked channels of equal width. The spectrum is an experimental measurement of the discrete probability density function (PDF) of the detector pulse heights. The quantization granularity of the spectra depends on the total number of channels covering the full range of pulse heights. In analog pulse processing the total number of channels is equal to the total digital values produced by a spectroscopy analog-to-digital converter (ADC). In digital pulse processing each detector pulse is sampled and quantized by a fast ADC producing certain number of quantized numerical values. These digital values are linearly processed to obtain a digital quantity representing the peak of the digitally shaped pulse. Using digital pulse processing it is possible to acquire a spectrum with the total number of channels greater than the number of ADC values. Noise and sample averaging are important in the transformation of ADC quantized data into spectral quantized data. Analysis of this transformation is performed using an area sampling model of quantization. Spectrum differential nonlinearity (DNL) is shown to be related to the quantization at low noise levels and small number of averaged samples. Theoretical analysis and experimental measurements are used to obtain the condition to minimize the DNL due to quantization. (authors)

  20. On Quantization in Light-cone Variables Compatible with Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Altaisky, M. V.; Kaputkina, N. E.

    2016-06-01

    Canonical quantization of quantum field theory models is inherently related to the Lorentz invariant partition of classical fields into the positive and the negative frequency parts u( x) = u +( x) + u -( x), performed with the help of Fourier transform in Minkowski space. That is the commutation relations are being established between nonlocalized solutions of field equations. At the same time the construction of divergence free physical theory requires the separation of the contributions of different space-time scales. In present paper, using the light-cone variables, we propose a quantization procedure which is compatible with separation of scales using continuous wavelet transform, as described in our previous paper (Altaisky, M.V., Kaputkina, N.E.: Phys. Rev. D 88, 025015 2013).

  1. Resonant tunneling of interacting electrons in an AC electric field

    SciTech Connect

    Elesin, V. F.

    2013-11-15

    The problem of the effect of electron-electron interaction on the static and dynamic properties of a double-barrier nanostructure (resonant tunneling diode (RTD)) is studied in terms of a coherent tunneling model, which includes a set of Schrödinger and Poisson equations with open boundary conditions. Explicit analytical expressions are derived for dc and ac potentials and reduced (active and reactive) currents in the quasi-classical approximation over a wide frequency range. These expressions are used to analyze the frequency characteristics of RTD. It is shown that the interaction can radically change the form of these expressions, especially in the case of a hysteretic I-V characteristic. In this case, the active current and the ac potentials can increase sharply at both low and high frequencies. For this increase to occur, it is necessary to meet quantum regime conditions and to choose a proper working point in the I-V characteristic of RTD. The possibility of appearance of specific plasma oscillations, which can improve the high-frequency characteristics of RTD, is predicted. It is found that the active current can be comparable with the resonant dc current of RTD.

  2. Quantization of an electromagnetic tornado and the origin of bands in the spectrum of giant pulses from the Crab pulsar

    NASA Astrophysics Data System (ADS)

    Kontorovich, V. M.

    2014-12-01

    When electrons are accelerated to relativistic energies in the inner gap of a pulsar, their motion is quantized in an external magnetic field and the electric field of the space charge of a rotating electron beam, an electromagnetic tornado appearing during breakdown in the pulsar's polar gap. Quantization allows one to propose a natural explanation for the observed bands in the frequency spectrum of interpulse radiation from the pulsar PSR J0534+22 in the Crab Nebula and to determine the physical parameters of the tornado. The difference in the spectra of main pulses and interpulses is discussed.

  3. A FDR-Preserving Field Theory for Interacting Brownian Particles: One-Loop Theory and MCT

    SciTech Connect

    Kim, Bongsoo; Kawasaki, Kyozi

    2008-02-21

    We develop a field theoretical treatment of a model of interacting Brownian particles. We pay particlular attention to the requirement of the time reversal (TR) invariance and the flucutation-dissipation relationship (FDR). Previous field theoretical formulations were found to be inconsistent with this requirement. The method used in the present formulation is a modified version of the auxilliary field method due originally to Andreanov, Biroli and Lefevre (ABL). We recover the correct diffusion law when the interaction is dropped as well as the standard mode coupling equation in the one-loop order calculation for interacting Brownian particle systems.

  4. Mass Charge Interactions for Visualizing the Quantum Field

    NASA Astrophysics Data System (ADS)

    Baer, Wolfgang

    Our goal is to integrate the objective and subjective aspects of our personal experience into a single complete theory of reality. To further this endeavor we replace elementary particles with elementary events as the building blocks of an event oriented description of that reality. The simplest event in such a conception is an adaptation of A. Wheeler's primitive explanatory--measurement cycle between internal observations experienced by an observer and their assumed physical causes. We will show how internal forces between charge and mass are required to complete the cyclic sequence of activity. This new formulation of internal material is easier to visualize and map to cognitive experiences than current formulations of sub-atomic physics. In our formulation, called Cognitive Action Theory, such internal forces balance the external forces of gravity-inertia and electricity-magnetism. They thereby accommodate outside influences by adjusting the internal structure of material from which all things are composed. Such accommodation is interpreted as the physical implementation of a model of the external physical world in the brain of a cognitive being or alternatively the response mechanism to external influences in the material of inanimate objects. We adopt the deBroglie-Bohm causal interpretation of QT to show that the nature of space in our model is mathematically equivalent to a field of clocks. Within this field small oscillations form deBroglie waves. This interpretation allows us to visualize the underlying structure of empty space with a charge-mass separation field in equilibrium, and objects appearing in space with quantum wave disturbances to that equilibrium occurring inside material. Space is thereby associated with the internal structure of material and quantum mechanics is shown to be, paraphrasing Heisenberg, the physics of the material that knows the world.

  5. ELF (extremely-low-frequency) field interactions at the animal, tissue and cellular levels

    SciTech Connect

    Tenforde, T.S.

    1990-10-01

    A description is given of the fundamental physical properties of extremely-low-frequency (ELF) electromagnetic fields, and the mechanisms through which these fields interact with the human body at a macroscopic level. Biological responses to ELF fields at the tissue, cellular and molecular levels are summarized, including new evidence that ELF field exposure produces alterations in gene expression and the cytoplasmic concentrations of specific proteins.

  6. The interaction between plasma rotation, stochastic fields and tearing mode excitation by external perturbation fields

    NASA Astrophysics Data System (ADS)

    DeBock, M. F. M.; Classen, I. G. J.; Busch, C.; Jaspers, R. J. E.; Koslowski, H. R.; Unterberg, B.; TEXTOR Team

    2008-01-01

    For fusion reactors, based on the principle of magnetic confinement, it is important to avoid so-called magnetic islands or tearing modes. They reduce confinement and can be the cause of major disruptions. One class of magnetic islands is that of the perturbation field driven modes. This perturbation field can, for example, be the intrinsic error field. Theoretical work predicts a strong relationship between plasma rotation and the excitation of perturbation field modes. Experimentally, the theory on mode excitation and plasma rotation has been confirmed on several tokamaks. In those experiments, however, the control over the plasma rotation velocity and direction, and over the externally applied perturbation field was limited. In this paper experiments are presented that were carried out at the TEXTOR tokamak. Two tangential neutral beam injectors and a set of helical perturbation coils, called the dynamic ergodic divertor (DED), provide control over both the plasma rotation and the external perturbation field in TEXTOR. This made it possible to set up a series of experiments to test the theory on mode excitation and plasma rotation in detail. The perturbation field induced by the DED not only excites magnetic islands, it also sets up a layer near the plasma boundary where the magnetic field is stochastic. It will be shown that this stochastic field alters both the rotational response of the plasma on the perturbation field and the threshold for mode excitation. It therefore has to be included in an extended theory on mode excitation.

  7. Canonical quantization of classical mechanics in curvilinear coordinates. Invariant quantization procedure

    SciTech Connect

    Błaszak, Maciej Domański, Ziemowit

    2013-12-15

    In the paper is presented an invariant quantization procedure of classical mechanics on the phase space over flat configuration space. Then, the passage to an operator representation of quantum mechanics in a Hilbert space over configuration space is derived. An explicit form of position and momentum operators as well as their appropriate ordering in arbitrary curvilinear coordinates is demonstrated. Finally, the extension of presented formalism onto non-flat case and related ambiguities of the process of quantization are discussed. -- Highlights: •An invariant quantization procedure of classical mechanics on the phase space over flat configuration space is presented. •The passage to an operator representation of quantum mechanics in a Hilbert space over configuration space is derived. •Explicit form of position and momentum operators and their appropriate ordering in curvilinear coordinates is shown. •The invariant form of Hamiltonian operators quadratic and cubic in momenta is derived. •The extension of presented formalism onto non-flat case and related ambiguities of the quantization process are discussed.

  8. Basics of quantum field theory of electromagnetic interaction processes in single-layer graphene

    NASA Astrophysics Data System (ADS)

    Hieu Nguyen, Van

    2016-09-01

    The content of this work is the study of electromagnetic interaction in single-layer graphene by means of the perturbation theory. The interaction of electromagnetic field with Dirac fermions in single-layer graphene has a peculiarity: Dirac fermions in graphene interact not only with the electromagnetic wave propagating within the graphene sheet, but also with electromagnetic field propagating from a location outside the graphene sheet and illuminating this sheet. The interaction Hamiltonian of the system comprising electromagnetic field and Dirac fermions fields contains the limits at graphene plane of electromagnetic field vector and scalar potentials which can be shortly called boundary electromagnetic field. The study of S-matrix requires knowing the limits at graphene plane of 2-point Green functions of electromagnetic field which also can be shortly called boundary 2-point Green functions of electromagnetic field. As the first example of the application of perturbation theory, the second order terms in the perturbative expansions of boundary 2-point Green functions of electromagnetic field as well as of 2-point Green functions of Dirac fermion fields are explicitly derived. Further extension of the application of perturbation theory is also discussed.

  9. Quantization of soluble classical constrained systems

    SciTech Connect

    Belhadi, Z.; Menas, F.; Bérard, A.; Mohrbach, H.

    2014-12-15

    The derivation of the brackets among coordinates and momenta for classical constrained systems is a necessary step toward their quantization. Here we present a new approach for the determination of the classical brackets which does neither require Dirac’s formalism nor the symplectic method of Faddeev and Jackiw. This approach is based on the computation of the brackets between the constants of integration of the exact solutions of the equations of motion. From them all brackets of the dynamical variables of the system can be deduced in a straightforward way.

  10. Lattices of quantized vortices in polariton superfluids

    NASA Astrophysics Data System (ADS)

    Boulier, Thomas; Cancellieri, Emiliano; Sangouard, Nicolas D.; Hivet, Romain; Glorieux, Quentin; Giacobino, Élisabeth; Bramati, Alberto

    2016-10-01

    In this review, we will focus on the description of the recent studies conducted in the quest for the observation of lattices of quantized vortices in resonantly injected polariton superfluids. In particular, we will show how the implementation of optical traps for polaritons allows for the realization of vortex-antivortex lattices in confined geometries and how the development of a flexible method to inject a controlled orbital angular momentum (OAM) in such systems results in the observation of patterns of same-sign vortices.

  11. Quantization of soluble classical constrained systems

    NASA Astrophysics Data System (ADS)

    Belhadi, Z.; Menas, F.; Bérard, A.; Mohrbach, H.

    2014-12-01

    The derivation of the brackets among coordinates and momenta for classical constrained systems is a necessary step toward their quantization. Here we present a new approach for the determination of the classical brackets which does neither require Dirac's formalism nor the symplectic method of Faddeev and Jackiw. This approach is based on the computation of the brackets between the constants of integration of the exact solutions of the equations of motion. From them all brackets of the dynamical variables of the system can be deduced in a straightforward way.

  12. Conductance quantization in strongly disordered graphene ribbons

    NASA Astrophysics Data System (ADS)

    Ihnatsenka, S.; Kirczenow, G.

    2009-11-01

    We present numerical studies of conduction in graphene nanoribbons with different types of disorder. We find that even when defect scattering depresses the conductance to values two orders of magnitude lower than 2e2/h , equally spaced conductance plateaus occur at moderately low temperatures due to enhanced electron backscattering near subband edge energies if bulk vacancies are present in the ribbon. This work accounts quantitatively for the surprising conductance quantization observed by Lin [Phys. Rev. B 78, 161409(R) (2008)] in ribbons with such low conductances.

  13. Path integral quantization of generalized quantum electrodynamics

    SciTech Connect

    Bufalo, R.; Pimentel, B. M.; Zambrano, G. E. R.

    2011-02-15

    In this paper, a complete covariant quantization of generalized electrodynamics is shown through the path integral approach. To this goal, we first studied the Hamiltonian structure of the system following Dirac's methodology and, then, we followed the Faddeev-Senjanovic procedure to obtain the transition amplitude. The complete propagators (Schwinger-Dyson-Fradkin equations) of the correct gauge fixation and the generalized Ward-Fradkin-Takahashi identities are also obtained. Afterwards, an explicit calculation of one-loop approximations of all Green's functions and a discussion about the obtained results are presented.

  14. Lorenz gauge quantization in conformally flat spacetimes

    NASA Astrophysics Data System (ADS)

    Cresswell, Jesse C.; Vollick, Dan N.

    2015-04-01

    Recently it was shown that Dirac's method of quantizing constrained dynamical systems can be used to impose the Lorenz gauge condition in a four-dimensional cosmological spacetime. In this paper we use Dirac's method to impose the Lorenz gauge condition in a general four-dimensional conformally flat spacetime and find that there is no particle production. We show that in cosmological spacetimes with dimension D ≠4 there will be particle production when the scale factor changes, and we calculate the particle production due to a sudden change.

  15. Quantum mechanics, gravity and modified quantization relations.

    PubMed

    Calmet, Xavier

    2015-08-01

    In this paper, we investigate a possible energy scale dependence of the quantization rules and, in particular, from a phenomenological point of view, an energy scale dependence of an effective [Formula: see text] (reduced Planck's constant). We set a bound on the deviation of the value of [Formula: see text] at the muon scale from its usual value using measurements of the anomalous magnetic moment of the muon. Assuming that inflation has taken place, we can conclude that nature is described by a quantum theory at least up to an energy scale of about 10(16) GeV.

  16. Far-field measurements of vortex beams interacting with nanoholes

    PubMed Central

    Zambrana-Puyalto, Xavier; Vidal, Xavier; Fernandez-Corbaton, Ivan; Molina-Terriza, Gabriel

    2016-01-01

    We measure the far-field intensity of vortex beams going through nanoholes. The process is analyzed in terms of helicity and total angular momentum. It is seen that the total angular momentum is preserved in the process, and helicity is not. We compute the ratio between the two transmitted helicity components, γm,p. We observe that this ratio is highly dependent on the helicity (p) and the angular momentum (m) of the incident vortex beam in consideration. Due to the mirror symmetry of the nanoholes, we are able to relate the transmission properties of vortex beams with a certain helicity and angular momentum, with the ones with opposite helicity and angular momentum. Interestingly, vortex beams enhance the γm,p ratio as compared to those obtained by Gaussian beams. PMID:26911547

  17. A visual detection model for DCT coefficient quantization

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.; Watson, Andrew B.

    1994-01-01

    The discrete cosine transform (DCT) is widely used in image compression and is part of the JPEG and MPEG compression standards. The degree of compression and the amount of distortion in the decompressed image are controlled by the quantization of the transform coefficients. The standards do not specify how the DCT coefficients should be quantized. One approach is to set the quantization level for each coefficient so that the quantization error is near the threshold of visibility. Results from previous work are combined to form the current best detection model for DCT coefficient quantization noise. This model predicts sensitivity as a function of display parameters, enabling quantization matrices to be designed for display situations varying in luminance, veiling light, and spatial frequency related conditions (pixel size, viewing distance, and aspect ratio). It also allows arbitrary color space directions for the representation of color. A model-based method of optimizing the quantization matrix for an individual image was developed. The model described above provides visual thresholds for each DCT frequency. These thresholds are adjusted within each block for visual light adaptation and contrast masking. For given quantization matrix, the DCT quantization errors are scaled by the adjusted thresholds to yield perceptual errors. These errors are pooled nonlinearly over the image to yield total perceptual error. With this model one may estimate the quantization matrix for a particular image that yields minimum bit rate for a given total perceptual error, or minimum perceptual error for a given bit rate. Custom matrices for a number of images show clear improvement over image-independent matrices. Custom matrices are compatible with the JPEG standard, which requires transmission of the quantization matrix.

  18. Quantum fields and poisson processes II: Interaction of boson-boson and boson-fermion fields with a cut-off

    NASA Astrophysics Data System (ADS)

    Bertrand, J.; Gaveau, B.; Rideau, G.

    1985-05-01

    Quantum field evolutions are written as expectation values with respect to Poisson processes in two simple models: interaction of two boson fields (with conservation of the number of particles in one field) and interaction of a boson with a fermion field. The introduction of a cut-off ensures that the expectation values are well-defined.

  19. Reducing and filtering point clouds with enhanced vector quantization.

    PubMed

    Ferrari, Stefano; Ferrigno, Giancarlo; Piuri, Vincenzo; Borghese, N Alberto

    2007-01-01

    Modern scanners are able to deliver huge quantities of three-dimensional (3-D) data points sampled on an object's surface, in a short time. These data have to be filtered and their cardinality reduced to come up with a mesh manageable at interactive rates. We introduce here a novel procedure to accomplish these two tasks, which is based on an optimized version of soft vector quantization (VQ). The resulting technique has been termed enhanced vector quantization (EVQ) since it introduces several improvements with respect to the classical soft VQ approaches. These are based on computationally expensive iterative optimization; local computation is introduced here, by means of an adequate partitioning of the data space called hyperbox (HB), to reduce the computational time so as to be linear in the number of data points N, saving more than 80% of time in real applications. Moreover, the algorithm can be fully parallelized, thus leading to an implementation that is sublinear in N. The voxel side and the other parameters are automatically determined from data distribution on the basis of the Zador's criterion. This makes the algorithm completely automatic. Because the only parameter to be specified is the compression rate, the procedure is suitable even for nontrained users. Results obtained in reconstructing faces of both humans and puppets as well as artifacts from point clouds publicly available on the web are reported and discussed, in comparison with other methods available in the literature. EVQ has been conceived as a general procedure, suited for VQ applications with large data sets whose data space has relatively low dimensionality.

  20. Interacting double dark resonances in a hot atomic vapor of helium

    SciTech Connect

    Kumar, S.; Ghosh, R.; Laupretre, T.; Bretenaker, F.; Goldfarb, F.

    2011-08-15

    We experimentally and theoretically study two different tripod configurations using metastable helium ({sup 4}He*), with the probe field polarization perpendicular and parallel to the quantization axis, defined by an applied weak magnetic field. In the first case, the two dark resonances interact incoherently and merge together into a single electromagnetically induced transparency peak with increasing coupling power. In the second case, we observe destructive interference between the two dark resonances inducing an extra absorption peak at the line center.

  1. Quantum fields and poisson processes: Interaction of a cut-off boson field with a quantum particle

    NASA Astrophysics Data System (ADS)

    Bertrand, Jacqueline; Gaveau, Bernard; Rideau, Guy

    1985-01-01

    The solution of the Schrödinger equation for a boson field interacting with a quantum particle is written as an expectation on a Poisson process counting the variations of the boson-occupation numbers for each momentum. An energy cut-off is needed for the expectation to be meaningful.

  2. Quantum Charged Fields in (1+1) Rindler Space

    NASA Astrophysics Data System (ADS)

    Gabriel, Cl.; Spindel, Ph.

    2000-09-01

    We study, using Rindler coordinates, the quantization of a charged scalar field interacting with a constant (Poincaré invariant), external, electric field in (1+1) dimensionnal flatspace: our main motivation is pedagogy. We illustrate in this framework the equivalence between various approaches to field quantization commonly used in the framework of curved backgrounds. First we establish the expression of the Schwinger vacuum decay rate, using the operator formalism. Then we rederive it in the framework of the Feynman path integral method. Our analysis reinforces the conjecture which identifies the zero winding sector of the Minkowski propagator with the Rindler propagator. Moreover, we compute the expression of the Unruh's modes that allow us to make a connection between the Minkowskian and Rindlerian quantization schemes by purely algebraic relations. We use these modes to study the physics of a charged two level detector moving in an electric field whose transitions are due to the exchange of charged quanta. In the limit where the Schwinger pair production mechanism of the exchanged quanta becomes negligible we recover the Boltzman equilibrium ratio for the population of the levels of the detector. Finally we explicitly show how the detector can be taken as the large mass and charge limit of an interacting fields system.

  3. Quantized topological magnetoelectric effect of the zero-plateau quantum anomalous Hall state

    SciTech Connect

    Wang, Jing; Lian, Biao; Qi, Xiao-Liang; Zhang, Shou-Cheng

    2015-08-10

    The topological magnetoelectric effect in a three-dimensional topological insulator is a novel phenomenon, where an electric field induces a magnetic field in the same direction, with a universal coefficient of proportionality quantized in units of $e²/2h$. Here in this paper, we propose that the topological magnetoelectric effect can be realized in the zero-plateau quantum anomalous Hall state of magnetic topological insulators or a ferromagnet-topological insulator heterostructure. The finite-size effect is also studied numerically, where the magnetoelectric coefficient is shown to converge to a quantized value when the thickness of the topological insulator film increases. We further propose a device setup to eliminate nontopological contributions from the side surface.

  4. Quantized topological magnetoelectric effect of the zero-plateau quantum anomalous Hall state

    DOE PAGESBeta

    Wang, Jing; Lian, Biao; Qi, Xiao-Liang; Zhang, Shou-Cheng

    2015-08-10

    The topological magnetoelectric effect in a three-dimensional topological insulator is a novel phenomenon, where an electric field induces a magnetic field in the same direction, with a universal coefficient of proportionality quantized in units of $e²/2h$. Here in this paper, we propose that the topological magnetoelectric effect can be realized in the zero-plateau quantum anomalous Hall state of magnetic topological insulators or a ferromagnet-topological insulator heterostructure. The finite-size effect is also studied numerically, where the magnetoelectric coefficient is shown to converge to a quantized value when the thickness of the topological insulator film increases. We further propose a device setupmore » to eliminate nontopological contributions from the side surface.« less

  5. Inflation of small true vacuum bubble by quantization of Einstein-Hilbert action

    NASA Astrophysics Data System (ADS)

    He, DongShan; Cai, QingYu

    2015-07-01

    We study the quantization of the Einstein-Hilbert action for a small true vacuum bubble without matter or scalar field. The quantization of action induces an extra term of potential called quantum potential in Hamilton-Jacobi equation, which gives expanding solutions, including the exponential expansion solutions of the scalar factor a for the bubble. We show that exponential expansion of the bubble continues with a short period, no matter whether the bubble is closed, flat, or open. The exponential expansion ends spontaneously when the bubble becomes large, that is, the scalar factor a of the bubble approaches a Planck length l p. We show that it is the quantum potential of the small true vacuum bubble that plays the role of the scalar field potential suggested in the slow-roll inflation model. With the picture of quantum tunneling, we calculate particle creation rate during inflation, which shows that particles created by inflation have the capability of reheating the universe.

  6. Distance learning in discriminative vector quantization.

    PubMed

    Schneider, Petra; Biehl, Michael; Hammer, Barbara

    2009-10-01

    Discriminative vector quantization schemes such as learning vector quantization (LVQ) and extensions thereof offer efficient and intuitive classifiers based on the representation of classes by prototypes. The original methods, however, rely on the Euclidean distance corresponding to the assumption that the data can be represented by isotropic clusters. For this reason, extensions of the methods to more general metric structures have been proposed, such as relevance adaptation in generalized LVQ (GLVQ) and matrix learning in GLVQ. In these approaches, metric parameters are learned based on the given classification task such that a data-driven distance measure is found. In this letter, we consider full matrix adaptation in advanced LVQ schemes. In particular, we introduce matrix learning to a recent statistical formalization of LVQ, robust soft LVQ, and we compare the results on several artificial and real-life data sets to matrix learning in GLVQ, a derivation of LVQ-like learning based on a (heuristic) cost function. In all cases, matrix adaptation allows a significant improvement of the classification accuracy. Interestingly, however, the principled behavior of the models with respect to prototype locations and extracted matrix dimensions shows several characteristic differences depending on the data sets.

  7. Loop quantization of the Schwarzschild interior revisited

    NASA Astrophysics Data System (ADS)

    Corichi, Alejandro; Singh, Parampreet

    2016-03-01

    The loop quantization of the Schwarzschild interior region, as described by a homogeneous anisotropic Kantowski-Sachs model, is re-examined. As several studies of different—inequivalent—loop quantizations have shown, to date there exists no fully satisfactory quantum theory for this model. This fact poses challenges to the validity of some scenarios to address the black hole information problem. Here we put forward a novel viewpoint to construct the quantum theory that builds from some of the models available in the literature. The final picture is a quantum theory that is both independent of any auxiliary structure and possesses a correct low curvature limit. It represents a subtle but non-trivial modification of the original prescription given by Ashtekar and Bojowald. It is shown that the quantum gravitational constraint is well defined past the singularity and that its effective dynamics possesses a bounce into an expanding regime. The classical singularity is avoided, and a semiclassical spacetime satisfying vacuum Einstein’s equations is recovered on the ‘other side’ of the bounce. We argue that such a metric represents the interior region of a white-hole spacetime, but for which the corresponding ‘white hole mass’ differs from the original black hole mass. Furthermore, we find that the value of the white hole mass is proportional to the third power of the starting black hole mass.

  8. Second-quantized formulation of geometric phases

    SciTech Connect

    Deguchi, Shinichi; Fujikawa, Kazuo

    2005-07-15

    The level crossing problem and associated geometric terms are neatly formulated by the second-quantized formulation. This formulation exhibits a hidden local gauge symmetry related to the arbitrariness of the phase choice of the complete orthonormal basis set. By using this second-quantized formulation, which does not assume adiabatic approximation, a convenient exact formula for the geometric terms including off-diagonal geometric terms is derived. The analysis of geometric phases is then reduced to a simple diagonalization of the Hamiltonian, and it is analyzed both in the operator and path-integral formulations. If one diagonalizes the geometric terms in the infinitesimal neighborhood of level crossing, the geometric phases become trivial (and thus no monopole singularity) for arbitrarily large but finite time interval T. The integrability of Schroedinger equation and the appearance of the seemingly nonintegrable phases are thus consistent. The topological proof of the Longuet-Higgins' phase-change rule, for example, fails in the practical Born-Oppenheimer approximation where a large but finite ratio of two time scales is involved and T is identified with the period of the slower system. The difference and similarity between the geometric phases associated with level crossing and the exact topological object such as the Aharonov-Bohm phase become clear in the present formulation. A crucial difference between the quantum anomaly and the geometric phases is also noted.

  9. Exciton condensation in microcavities under three-dimensional quantization conditions

    SciTech Connect

    Kochereshko, V. P. Platonov, A. V.; Savvidis, P.; Kavokin, A. V.; Bleuse, J.; Mariette, H.

    2013-11-15

    The dependence of the spectra of the polarized photoluminescence of excitons in microcavities under conditions of three-dimensional quantization on the optical-excitation intensity is investigated. The cascade relaxation of polaritons between quantized states of a polariton Bose condensate is observed.

  10. Image Compression on a VLSI Neural-Based Vector Quantizer.

    ERIC Educational Resources Information Center

    Chen, Oscal T.-C.; And Others

    1992-01-01

    Describes a modified frequency-sensitive self-organization (FSO) algorithm for image data compression and the associated VLSI architecture. Topics discussed include vector quantization; VLSI neural processor architecture; detailed circuit implementation; and a neural network vector quantization prototype chip. Examples of images using the FSO…

  11. Design and Performance of Tree-Structured Vector Quantizers.

    ERIC Educational Resources Information Center

    Lin, Jianhua; Storer, James A.

    1994-01-01

    Describes the design of optimal tree-structured vector quantizers that minimize the expected distortion subject to cost functions related to storage cost, encoding rate, or quantization time. Since the optimal design problem is intractable in most cases, the performance of a general design heuristic based on successive partitioning is analyzed.…

  12. General properties of quantum optical systems in a strong field limit

    NASA Technical Reports Server (NTRS)

    Chumakov, S. M.; Klimov, Andrei B.

    1994-01-01

    We investigate the dynamics of an arbitrary atomic system (n-level atoms or many n-level atoms) interacting with a resonant quantized mode of an em field. If the initial field state is a coherent state with a large photon number then the system dynamics possesses some general features, independently of the particular structure of the atomic system. Namely, trapping states, factorization of the wave function, collapses and revivals of the atomic energy oscillations are discussed.

  13. Weighted MinMax Algorithm for Color Image Quantization

    NASA Technical Reports Server (NTRS)

    Reitan, Paula J.

    1999-01-01

    The maximum intercluster distance and the maximum quantization error that are minimized by the MinMax algorithm are shown to be inappropriate error measures for color image quantization. A fast and effective (improves image quality) method for generalizing activity weighting to any histogram-based color quantization algorithm is presented. A new non-hierarchical color quantization technique called weighted MinMax that is a hybrid between the MinMax and Linde-Buzo-Gray (LBG) algorithms is also described. The weighted MinMax algorithm incorporates activity weighting and seeks to minimize WRMSE, whereby obtaining high quality quantized images with significantly less visual distortion than the MinMax algorithm.

  14. Translation invariant theory of polaron (bipolaron) and the problem of quantizing near the classical solution

    SciTech Connect

    Lakhno, V. D.

    2013-06-15

    A physical interpretation of translation-invariant polarons and bipolarons is presented, some results of their existence are discussed. Consideration is given to the problem of quantization in the vicinity of the classical solution in the quantum field theory. The lowest variational estimate is obtained for the bipolaron energy E({eta}) with E(0) = -0.440636{alpha}{sup 2}, where {alpha} is a constant of electron-phonon coupling, {eta} is a parameter of ion binding.

  15. Particle interactions in three-dimensional electrical field simulated by iterative dipole moment method

    NASA Astrophysics Data System (ADS)

    Liu, Le; Xie, Chuanchuan; Chen, Bo; Wu, Jiankang

    2016-06-01

    The dielectrophoresis (DEP) interactions of a few particles in a uniform two-dimensional (2D) electrical field have well been studied by Maxwell stress tensor (MST) method. Multiple particle interactions in three-dimensional (3D) electrical field are investigated in this work using iterative dipole moment (IDM) method which is an analytic algorithm without complicated numerical computations to solve for electrical field. The interactive DEP forces of particles calculated by IDM are found to be well agreed with those of MST method and much simple to implement. Using IDM method, a series of examples of multiple particles interactions and particle chains in a 3D uniform DC electrical field is presented. Randomly distributed similar dense particles (either all positive DEP (pDEP) or all negative DEP (nDEP) particles) in 3D uniform electrical field can generally form chains in lines parallel to the electrical field, except the case that all similar particles are in a plane perpendicular to the electrical field where the particles repel each other and move away in the plane. Randomly distributed dissimilar dense particles (mixture of pDEP and nDEP particles) can form (1) chains in lines, (2) clusters in a plane or (3) 3D groups. The chains, clusters and groups are of staggered arrangements of pDEP and nDEP particles, which are perpendicular to the electrical field.

  16. Playing the (Sexual) Field: The Interactional Basis of Systems of Sexual Stratification

    ERIC Educational Resources Information Center

    Green, Adam Isaiah

    2011-01-01

    Recently, scholars have used a Bourdieusian theory of practice to analyze systems of sexual stratification, including an examination of sexual fields and sexual (or erotic) capital. While the broad structural features of the sexual field have been a point of focus in this latter research, a systematic analysis of the interactional processes that…

  17. Interactions and reversal-field memory in complex magnetic nanowire arrays

    NASA Astrophysics Data System (ADS)

    Rotaru, Aurelian; Lim, Jin-Hee; Lenormand, Denny; Diaconu, Andrei; Wiley, John. B.; Postolache, Petronel; Stancu, Alexandru; Spinu, Leonard

    2011-10-01

    Interactions and magnetization reversal of Ni nanowire arrays have been investigated by the first-order reversal curve (FORC) method. Several series of samples with controlled spatial distribution were considered including simple wires of different lengths and diameters (70 and 110 nm) and complex wires with a single modulated diameter along their length. Subtle features of magnetic interactions are revealed through a quantitative analysis of the local interaction field profile distributions obtained from the FORC method. In addition, the FORC analysis indicates that the nanowire systems with a mean diameter of 70 nm appear to be organized in symmetric clusters indicative of a reversal-field memory effect.

  18. Magnetic field effect on the Coulomb interaction of acceptors in semimagnetic quantum dot

    SciTech Connect

    Kalpana, P.; Merwyn, A.; Nithiananthi, P.; Jayakumar, K.; Reuben, Jasper D.

    2015-06-24

    The Coulomb interaction of holes in a Semimagnetic Cd{sub 1-x}Mn{sub x}Te / CdTe Spherical and Cubical Quantum Dot (SMQD) in a magnetic field is studied using variational approach in the effective mass approximation. Since these holes in QD show a pronounced collective behavior, while distinct single particle phenomena is suppressed, their interaction in confined potential becomes very significant. It has been observed that acceptor-acceptor interaction is more in cubical QD than in spherical QD which can be controlled by the magnetic field. The results are presented and discussed.

  19. Venus internal magnetic field and its interaction with the interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Knudsen, W. C.

    1992-01-01

    In a previous study, Knudsen et al. suggested that Venus has a weak internal magnetic dipole field of the order of 7 x 10 + 20 G cm(exp -3) that is manifested in the form of magnetic flux tubes threading the ionospheric holes in the Venus nightside ionosphere. They pointed out that any internal field of Venus, dipole or multipole, would be weakened in the subsolar region and concentrated in the antisolar region of the planet by the supersonic transterminator convection of the dayside ionosphere into the nightside hemisphere. The inferred magnitude of the dipole field does not violate the upper limit for an internal magnetic field established by the Pioneer Venus magnetometer experiment. The most compelling objection to the model suggested by Knudsen et al. has been the fact that it does not explain the observed interplanetary magnetic field (IMF) control of the polarity of the ionospheric hole flux tubes. In this presentation I suggest that a magnetic reconnection process analogous to that occurring at earth is occurring at Venus between the IMF and a weak internal dipole field. At Venus in the subsolar region, the reconnection occurs within the ionosphere. At Earth it occurs at the magnetopause. Reconnection will occur only when the IMF has an appropriate orientation relative to that of the weak internal field. Thus, reconnection provides a process for the IMF to control the flux tube polarity. The reconnection in the subsolar region takes place in the ionosphere as the barrier magnetic field is transported downward into the lower ionosphere by downward convection of ionospheric plasma and approaches the oppositely directed internal magnetic field that is diffusing upward. The reconnected flux tubes are then transported anti-Sunward by the anti-Sunward convecting ionospheric plasma as well as by the anti-Sunward-flowing solar wind. Reconnection will also occur in the Venus magnetic tail region, somewhat analogously to the reconnection that occurs in the

  20. Furry picture transition rates in the intense fields at a lepton collider interaction point

    NASA Astrophysics Data System (ADS)

    Hartin, A.

    2015-04-01

    The effect on particle physics processes by intense electromagnetic fields in the charge bunch collisions at future lepton colliders is considered. Since the charge bunch fields are tied to massive sources (the e+e- charges), a reference frame is chosen in which the fields appear to be co-propagating. Solutions of the Dirac equation minimally coupled to the electromagnetic fields reasonably associated with two intense overlapping charge bunches are obtained and found to be a Volkov solution with respect to a null 4-vector whose 3-vector part lies in the common propagation direction. These solutions are used within the Furry interaction picture to calculate the beamstrahlung transition rate for electron radiation due to interaction with the electromagnetic fields of two colliding charge bunches. New analytic expressions are obtained and compared numerically with the beamstrahlung in the electromagnetic field of one charge bunch. The techniques developed will be applied to other collider physics processes in due course.

  1. Electromagnetic field interactions with the human body: Observed effects and theories

    NASA Technical Reports Server (NTRS)

    Raines, J. K.

    1981-01-01

    The effects of nonionizing electromagnetic (EM) field interactions with the human body were reported and human related studies were collected. Nonionizing EM fields are linked to cancer in humans in three different ways: cause, means of detection, and effective treatment. Bad and benign effects are expected from nonionizing EM fields and much more knowledge is necessary to properly categorize and qualify EM field characteristics. It is concluded that knowledge of the boundary between categories, largely dependent on field intensity, is vital to proper future use of EM radiation for any purpose and the protection of the individual from hazard.

  2. Strong-field S -matrix theory with final-state Coulomb interaction in all orders

    NASA Astrophysics Data System (ADS)

    Faisal, F. H. M.

    2016-09-01

    During the last several decades the so-called Keldysh-Faisal-Reiss or strong-field approximation (SFA) has been highly useful for the analysis of atomic and molecular processes in intense laser fields. However, it is well known that SFA does not account for the final-state Coulomb interaction which is, however, unavoidable for the ubiquitous ionization process. In this Rapid Communication we solve this long-standing problem and give a complete strong-field S -matrix expansion that accounts for the final-state Coulomb interaction in all orders, explicitly.

  3. Electronic dynamics under effect of a nonlinear Morse interaction and a static electric field

    NASA Astrophysics Data System (ADS)

    Ranciaro Neto, A.; de Moura, F. A. B. F.

    2016-11-01

    Considering non-interacting electrons in a one-dimension alloy in which atoms are coupled by a Morse potential, we study the system dynamics in the presence of a static electric field. Calculations are performed assuming a quantum mechanical treatment for the electronic transport and a classical Hamiltonian model for the lattice vibrations. We report numerical evidence of the existence of a soliton-electron pair, even when the electric field is turned on, and we offer a description of how the existence of such a phase depends on the magnitude of the electric field and the electron-phonon interaction.

  4. Tissue interactions with nonionizing electromagnetic fields. Final report, March 1979-February 1986

    SciTech Connect

    Adey, W.R.; Bawin, S.M.; Byus, C.V.; Cain, C.D.; Lin-Liu, S.; Luben, R.A.; Lyle, D.B.; Sagan, P.M.; Sheppard, A.R.; Stell, M.A.

    1986-08-01

    This report provides an overview of this research program focused on basic research in nervous system responses to electric fields at 60 Hz. The emphasis in this project was to determine the fundamental mechanisms underlying some phenomena of electric field interactions in neural systems. The five studies of the initial program were tests of behavioral responses in the rat based upon the hypothesis that electric field detection might follow psychophysical rules known from prior research with light, sound and other stimuli; tests of electrophysiological responses to ''normal'' forms of stimulation in rat brain tissue exposed in vitro to electric fields, based on the hypothesis that the excitability of brain tissue might be affected by fields in the extracellular environment; tests of electrophysiological responses of spontaneously active pacemaker neurons of the Aplysia abdominal ganglion, based on the hypothesis that electric field interactions at the cell membrane might affect the balance among the several membrane-related processes that govern pacemaker activity; studies of mechanisms of low frequency electromagnetic field interactions with bone cells in the context of field therapy of ununited fractures; and manipulation of cell surface receptor proteins in studies of their mobility during EM field exposure.

  5. Renormalization of interactions of ultracold atoms in simulated Rashba gauge fields

    SciTech Connect

    Ozawa, Tomoki; Baym, Gordon

    2011-10-15

    Interactions of ultracold atoms with Rashba spin-orbit coupling, currently being studied with simulated (artificial) gauge fields, have nontrivial ultraviolet and infrared behavior. Examining the ultrastructure of the Bethe-Salpeter equation, we show that the linear ultraviolet divergence in the bare interaction can be renormalized as usual in terms of low-energy scattering lengths, and that for both bosons and fermions ultraviolet logarithmic divergences are absent. Calculating the leading order effective interaction with full dependence on the spin-orbit coupling strength and the center-of-mass momentum of the colliding pair, we elucidate the relation between mean-field interactions and physical three-dimensional scattering lengths. As a consequence of infrared logarithmic divergences in the two-particle propagator, the effective interaction vanishes as the center-of-mass momentum approaches zero.

  6. Fractional field equations for highly improbable events

    NASA Astrophysics Data System (ADS)

    Kleinert, H.

    2013-06-01

    Free and weakly interacting particles perform approximately Gaussian random walks with collisions. They follow a second-quantized nonlinear Schrödinger equation, or relativistic versions of it. By contrast, the fields of strongly interacting particles extremize more involved effective actions obeying fractional wave equations with anomalous dimensions. Their particle orbits perform universal Lévy walks with heavy tails, in which rare events are much more frequent than in Gaussian random walks. Such rare events are observed in exceptionally strong windgusts, monster or rogue waves, earthquakes, and financial crashes. While earthquakes may destroy entire cities, the latter have the potential of devastating entire economies.

  7. Kerr Black Hole Entropy and its Quantization

    NASA Astrophysics Data System (ADS)

    Jiang, Ji-Jian; Li, Chuan-An; Cheng, Xie-Feng

    2016-08-01

    By constructing the four-dimensional phase space based on the observable physical quantity of Kerr black hole and gauge transformation, the Kerr black hole entropy in the phase space was obtained. Then considering the corresponding mechanical quantities as operators and making the operators quantized, entropy spectrum of Kerr black hole was obtained. Our results show that the Kerr black hole has the entropy spectrum with equal intervals, which is in agreement with the idea of Bekenstein. In the limit of large event horizon, the area of the adjacent event horizon of the black hole have equal intervals. The results are in consistent with the results based on the loop quantum gravity theory by Dreyer et al.

  8. Interaction of biological systems with static and ELF electric and magnetic fields

    SciTech Connect

    Anderson, L.E.; Kelman, B.J.; Weigel, R.J.

    1987-01-01

    Although background levels of atmospheric electric and geomagnetic field levels are extremely low, over the past several decades, human beings and other life forms on this planet have been subjected to a dramatically changing electromagnetic milieu. An exponential increase in exposure to electromagnetic fields has occurred, largely because of such technological advances as the growth of electrical power generation and transmission systems, the increased use of wireless communications, and the use of radar. In addition, electromagnetic field generating devices have proliferated in industrial plants, office buildings, homes, public transportation systems, and elsewhere. Although significant increases have occurred in electromagnetic field strenghths spanning all frequency ranges, this symposium addresses only the impact of these fields at static and extremely low frequencies (ELF), primarily 50 and 60 Hz. This volume contains the proceedings of the symposium entitled /open quotes/Interaction of biological systems with static and ELF electric and magnetic fields/close quotes/. The purpose of the symposium was to provide a forum for discussions of all aspects of research on the interaction of static and ELF electromagnetic fields with biological systems. These systems include simple biophysical models, cell and organ preparations, whole animals, and man. Dosimetry, exposure system design, and artifacts in ELF bioeffects research were also addressed, along with current investigations that examine fundamental mechanisms of interactions between the fields and biological processes. Papers are indexed separately.

  9. Measurement of untruncated nuclear spin interactions via zero- to ultralow-field nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Blanchard, J. W.; Sjolander, T. F.; King, J. P.; Ledbetter, M. P.; Levine, E. H.; Bajaj, V. S.; Budker, D.; Pines, A.

    2015-12-01

    Zero- to ultralow-field nuclear magnetic resonance (ZULF NMR) provides a new regime for the measurement of nuclear spin-spin interactions free from the effects of large magnetic fields, such as truncation of terms that do not commute with the Zeeman Hamiltonian. One such interaction, the magnetic dipole-dipole coupling, is a valuable source of spatial information in NMR, though many terms are unobservable in high-field NMR, and the coupling averages to zero under isotropic molecular tumbling. Under partial alignment, this information is retained in the form of so-called residual dipolar couplings. We report zero- to ultralow-field NMR measurements of residual dipolar couplings in acetonitrile-2-13C aligned in stretched polyvinyl acetate gels. This permits the investigation of dipolar couplings as a perturbation on the indirect spin-spin J coupling in the absence of an applied magnetic field. As a consequence of working at zero magnetic field, we observe terms of the dipole-dipole coupling Hamiltonian that are invisible in conventional high-field NMR. This technique expands the capabilities of zero- to ultralow-field NMR and has potential applications in precision measurement of subtle physical interactions, chemical analysis, and characterization of local mesoscale structure in materials.

  10. Static magnetic fields: A summary of biological interactions, potential health effects, and exposure guidelines

    SciTech Connect

    Tenforde, T.S.

    1992-05-01

    Interest in the mechanisms of interaction and the biological effects of static magnetic fields has increased significantly during the past two decades as a result of the growing number of applications of these fields in research, industry and medicine. A major stimulus for research on the bioeffects of static magnetic fields has been the effort to develop new technologies for energy production and storage that utilize intense magnetic fields (e.g., thermonuclear fusion reactors and superconducting magnet energy storage devices). Interest in the possible biological interactions and health effects of static magnetic fields has also been increased as a result of recent developments in magnetic levitation as a mode of public transportation. In addition, the rapid emergence of magnetic resonance imaging as a new clinical diagnostic procedure has, in recent years, provided a strong rationale for defining the possible biological effects of magnetic fields with high flux densities. In this review, the principal interaction mechanisms of static magnetic fields will be described, and a summary will be given of the present state of knowledge of the biological, environmental, and human health effects of these fields.

  11. Charge dynamics and "in plane" magnetic field I: Rashba-Dresselhauss interaction, Majorana fermions and Aharonov-Casher theorems

    NASA Astrophysics Data System (ADS)

    Cirilo-Lombardo, Diego Julio

    2015-06-01

    The two-dimensional charge transport with parallel (in plane) magnetic field is considered from the physical and mathematical point of view. To this end, we start with the magnetic field parallel to the plane of charge transport, in sharp contrast to the configuration described by the theorems of Aharonov and Casher where the magnetic field is perpendicular. We explicitly show that the specific form of the arising equation enforces the respective field solution to fulfill the Majorana condition. Consequently, as soon any physical system is represented by this equation, the rise of fields with Majorana type behavior is immediately explained and predicted. In addition, there exists a quantized particular phase that removes the action of the vector potential producing interesting effects. Such new effects are able to explain due to the geometrical framework introduced, several phenomenological results recently obtained in the area of spintronics and quantum electronic devices. The quantum ring as spin filter is worked out in this framework and also the case of the quantum Hall effect.

  12. Unified position-dependent photon-number quantization in layered structures

    NASA Astrophysics Data System (ADS)

    Partanen, Mikko; Häyrynen, Teppo; Oksanen, Jani; Tulkki, Jukka

    2014-12-01

    We have recently developed a position-dependent quantization scheme for describing the ladder and effective photon-number operators associated with the electric field to analyze quantum optical energy transfer in lossy and dispersive dielectrics [Phys. Rev. A 89, 033831 (2014), 10.1103/PhysRevA.89.033831]. While having a simple connection to the thermal balance of the system, these operators only described the electric field and its coupling to lossy dielectric bodies. Here we extend this field quantization scheme to include the magnetic field and thus to enable description of the total electromagnetic field and discuss conceptual measurement schemes to verify the predictions. In addition to conveniently describing the formation of thermal balance, the generalized approach allows modeling of the electromagnetic pressure and Casimir forces. We apply the formalism to study the local steady-state field temperature distributions and electromagnetic force density in cavities with cavity walls at different temperatures. The calculated local electric and magnetic field temperatures exhibit oscillations that depend on the position as well as the photon energy. However, the effective photon number and field temperature associated with the total electromagnetic field is always position independent in lossless media. Furthermore, we show that the direction of the electromagnetic force varies as a function of frequency, position, and material thickness.

  13. Hiding patients confidential datainthe ECG signal viaa transform-domain quantization scheme.

    PubMed

    Chen, Shuo-Tsung; Guo, Yuan-Jie; Huang, Huang-Nan; Kung, Woon-Man; Tseng, Kuo-Kun; Tu, Shu-Yi

    2014-06-01

    Watermarking is the most widely used technology in the field of copyright and biological information protection. In this paper, we use quantization based digital watermark encryption technology on the Electrocardiogram (ECG) to protect patient rights and information. Three transform domains, DWT, DCT, and DFT are adopted to implement the quantization based watermarking technique. Although the watermark embedding process is not invertible, the change of the PQRST complexes and amplitude of the ECG signal is very small and so the watermarked data can meet the requirements of physiological diagnostics. In addition, the hidden information can be extracted without knowledge of the original ECG data. In other words, the proposed watermarking scheme is blind. Experimental results verify the efficiency of the proposed scheme. PMID:24832688

  14. Realization of optical bistability and multistability in Landau-quantized graphene

    SciTech Connect

    Hamedi, H. R.; Asadpour, S. H.

    2015-05-14

    The solution of input-output curves in an optical ring cavity containing Landau-quantized graphene is theoretically investigated taking the advantage of density-matrix method. It is found that under the action of strong magnetic and infrared laser fields, one can efficiently reduce the threshold of the onset of optical bistability (OB) at resonance condition. At non-resonance condition, we observed that graphene metamaterial can support the possibility to obtain optical multistability (OM), which is more practical in all-optical switching or coding elements. We present an analytical approach to elucidate our simulations. Due to very high infrared optical nonlinearity of graphene stemming from very unique and unusual properties of quantized Landau levels near the Dirac point, such controllability on OB and OM may provide new technological possibilities in solid state quantum information science.

  15. Quantized anomalous Hall effect in two-dimensional ferromagnets: quantum Hall effect in metals.

    PubMed

    Onoda, Masaru; Nagaosa, Naoto

    2003-05-23

    We study the effect of disorder on the anomalous Hall effect (AHE) in two-dimensional ferromagnets. The topological nature of the AHE leads to the integer quantum Hall effect from a metal, i.e., the quantization of sigma(xy) induced by the localization except for the few extended states carrying Chern numbers. Extensive numerical study on a model reveals that Pruisken's two-parameter scaling theory holds even when the system has no gap with the overlapping multibands and without the uniform magnetic field. Therefore, the condition for the quantized AHE is given only by the Hall conductivity sigma(xy) without the quantum correction, i.e., /sigma(xy)/>e(2)/(2h).

  16. Quantum geometry and quantization on U(u(2)) background. Noncommutative Dirac monopole

    NASA Astrophysics Data System (ADS)

    Gurevich, Dimitri; Saponov, Pavel

    2016-08-01

    In our previous publications we introduced differential calculus on the enveloping algebras U(gl(m)) similar to the usual calculus on the commutative algebra Sym (gl(m)) . The main ingredients of our calculus are quantum partial derivatives which turn into the usual partial derivatives in the classical limit. In the particular case m = 2 we prolonged this calculus on a central extension A of the algebra U(gl(2)) . In the present paper we consider the problem of a further extension of the quantum partial derivatives on the skew-field of the algebra A and define the corresponding de Rham complex. As an application of the differential calculus we suggest a method of transferring dynamical models defined on an extended Sym (u(2)) to an extended algebra U(u(2)) . We call this procedure the quantization with noncommutative configuration space. In this sense we quantize the Dirac monopole and find a solution of this model.

  17. Interaction of extremely-low-frequency electromagnetic fields with living systems

    SciTech Connect

    Tenforde, T.S.

    1991-11-01

    The sources and physical properties of extremely-low-frequency (ELF) electromagnetic fields are described in this paper. Biological effects and mechanisms through which ELF fields interact with humans and other organisms are discussed, including several aspects of this subject that are presently under active laboratory investigation. Studies on the potential health effects of ELF fields present in the home and workplace are also summarized, including a critical evaluation of evidence for a possible linkage between exposure to ELF fields and cancer risk. 53 refs.

  18. Monotonically convergent optimal control theory of quantum systems under a nonlinear interaction with the control field

    NASA Astrophysics Data System (ADS)

    Lapert, M.; Tehini, R.; Turinici, G.; Sugny, D.

    2008-08-01

    We consider the optimal control of quantum systems interacting nonlinearly with an electromagnetic field. We propose monotonically convergent algorithms to solve the optimal equations. The monotonic behavior of the algorithm is ensured by a nonstandard choice of the cost, which is not quadratic in the field. These algorithms can be constructed for pure- and mixed-state quantum systems. The efficiency of the method is shown numerically for molecular orientation with a nonlinearity of order 3 in the field. Discretizing the amplitude and the phase of the Fourier transform of the optimal field, we show that the optimal solution can be well approximated by pulses that could be implemented experimentally.

  19. Implementation of digital filters for minimum quantization errors

    NASA Technical Reports Server (NTRS)

    Phillips, C. L.; Vallely, D. P.

    1974-01-01

    In this paper a technique is developed for choosing programing forms and bit configurations for digital filters that minimize the quantization errors. The technique applies to digital filters operating in fixed-point arithmetic in either open-loop or closed-loop systems, and is implemented by a digital computer program that is based on a digital simulation of the system. As an output the program gives the programing form required for minimum quantization errors, the total bit configuration required in the filter, and the location of the binary decimal point at each quantizer within the filter.

  20. Direct observation of Kelvin waves excited by quantized vortex reconnection.

    PubMed

    Fonda, Enrico; Meichle, David P; Ouellette, Nicholas T; Hormoz, Sahand; Lathrop, Daniel P

    2014-03-25

    Quantized vortices are key features of quantum fluids such as superfluid helium and Bose-Einstein condensates. The reconnection of quantized vortices and subsequent emission of Kelvin waves along the vortices are thought to be central to dissipation in such systems. By visualizing the motion of submicron particles dispersed in superfluid (4)He, we have directly observed the emission of Kelvin waves from quantized vortex reconnection. We characterize one event in detail, using dimensionless similarity coordinates, and compare it with several theories. Finally, we give evidence for other examples of wavelike behavior in our system.

  1. Modified 8×8 quantization table and Huffman encoding steganography

    NASA Astrophysics Data System (ADS)

    Guo, Yongning; Sun, Shuliang

    2014-10-01

    A new secure steganography, which is based on Huffman encoding and modified quantized discrete cosine transform (DCT) coefficients, is provided in this paper. Firstly, the cover image is segmented into 8×8 blocks and modified DCT transformation is applied on each block. Huffman encoding is applied to code the secret image before embedding. DCT coefficients are quantized by modified quantization table. Inverse DCT(IDCT) is conducted on each block. All the blocks are combined together and the steg image is finally achieved. The experiment shows that the proposed method is better than DCT and Mahender Singh's in PSNR and Capacity.

  2. Quantization of Fayet-Iliopoulos parameters in supergravity

    SciTech Connect

    Distler, Jacques; Sharpe, Eric

    2011-04-15

    In this short article we discuss quantization of the Fayet-Iliopoulos parameter in supergravity theories. We argue that, in supergravity, the Fayet-Iliopoulos parameter determines a lift of the group action to a line bundle, and such lifts are quantized. Just as D-terms in rigid N=1 supersymmetry are interpreted in terms of moment maps and symplectic reductions, we argue that in supergravity the quantization of the Fayet-Iliopoulos parameter has a natural understanding in terms of linearizations in geometric invariant theory quotients, the algebro-geometric version of symplectic quotients.

  3. Direct observation of Kelvin waves excited by quantized vortex reconnection

    PubMed Central

    Fonda, Enrico; Meichle, David P.; Ouellette, Nicholas T.; Hormoz, Sahand; Lathrop, Daniel P.

    2014-01-01

    Quantized vortices are key features of quantum fluids such as superfluid helium and Bose–Einstein condensates. The reconnection of quantized vortices and subsequent emission of Kelvin waves along the vortices are thought to be central to dissipation in such systems. By visualizing the motion of submicron particles dispersed in superfluid 4He, we have directly observed the emission of Kelvin waves from quantized vortex reconnection. We characterize one event in detail, using dimensionless similarity coordinates, and compare it with several theories. Finally, we give evidence for other examples of wavelike behavior in our system. PMID:24704878

  4. Impact of nonlinear effective interactions on group field theory quantum gravity condensates

    NASA Astrophysics Data System (ADS)

    Pithis, Andreas G. A.; Sakellariadou, Mairi; Tomov, Petar

    2016-09-01

    We present the numerical analysis of effectively interacting group field theory models in the context of the group field theory quantum gravity condensate analog of the Gross-Pitaevskii equation for real Bose-Einstein condensates including combinatorially local interaction terms. Thus, we go beyond the usually considered construction for free models. More precisely, considering such interactions in a weak regime, we find solutions for which the expectation value of the number operator N is finite, as in the free case. When tuning the interaction to the strongly nonlinear regime, however, we obtain solutions for which N grows and eventually blows up, which is reminiscent of what one observes for real Bose-Einstein condensates, where a strong interaction regime can only be realized at high density. This behavior suggests the breakdown of the Bogoliubov ansatz for quantum gravity condensates and the need for non-Fock representations to describe the system when the condensate constituents are strongly correlated. Furthermore, we study the expectation values of certain geometric operators imported from loop quantum gravity in the free and interacting cases. In particular, computing solutions around the nontrivial minima of the interaction potentials, one finds, already in the weakly interacting case, a nonvanishing condensate population for which the spectra are dominated by the lowest nontrivial configuration of the quantum geometry. This result indicates that the condensate may indeed consist of many smallest building blocks giving rise to an effectively continuous geometry, thus suggesting the interpretation of the condensate phase to correspond to a geometric phase.

  5. Interacting spin-2 fields in the Stückelberg picture

    SciTech Connect

    Noller, Johannes; Ferreira, Pedro G.; Scargill, James H.C. E-mail: james.scargill@physics.ox.ac.uk

    2014-02-01

    We revisit and extend the 'Effective field theory for massive gravitons' constructed by Arkani-Hamed, Georgi and Schwartz in the light of recent progress in constructing ghost-free theories with multiple interacting spin-2 fields. We show that there exist several dual ways of restoring gauge invariance in such multi-gravity theories, find a generalised Fierz-Pauli tuning condition relevant in this context and highlight subtleties in demixing tensor and scalar modes. The generic multi-gravity feature of scalar mixing and its consequences for higher order interactions are discussed. In particular we show how the decoupling limit is qualitatively changed in theories of interacting spin-2 fields. We relate this to dRGT (de Rham, Gabadadze, Tolley) massive gravity, Hassan-Rosen bigravity and the multi-gravity constructions by Hinterbichler and Rosen. As an additional application we show that EBI (Eddington-Born-Infeld) bigravity and higher order generalisations thereof possess ghost-like instabilities.

  6. Interplanetary magnetic field control of the Mars bow shock - Evidence for Venuslike interaction

    NASA Technical Reports Server (NTRS)

    Zhang, T. L.; Schwingenschuh, K.; Lichtenegger, H.; Riedler, W.; Russell, C. T.

    1991-01-01

    The Mars bow shock location and shape have been determined by examining the Phobos spacecraft magnetometer data. Observations show that the position of the terminator bow shock varies with interplanetary magnetic field orientation in the same way as at Venus. The shock is farthest from Mars in the direction of the interplanetary electric field, consistent with the idea that mass loading plays an important role in the solar wind interaction with Mars. The shock cross section at the terminator plane is asymmetric and is controlled by the interplanetary magnetic field. The shock is farther from Mars during solar maximum. Thus the solar wind interaction with Mars appears to be Venuslike, with a magnetic moment too small to affect significantly the solar wind interaction.

  7. Interplanetary magnetic field control of the Mars bow shock: Evidence for Venuslike interaction

    SciTech Connect

    Zhang, T.L.; Schwingenschuh, K.; Lichtenegger, H.; Riedler, W. ); Russell, C.T.; Luhmann, J.G. )

    1991-07-01

    The Mars bow shock location and shape have been determined by examining the PHOBOS spacecraft magnetometer data. Observations show that the position of the terminator bow shock varies with interplanetary magnetic field orientation in the same way as at Venus. The shock is farthest from Mars in the direction of the interplanetary electric field, consistent with the idea that mass loading plays an important role in the solar wind interaction with Mars. The authors also find that the shock cross section at the terminator plane is asymmetric and is controlled by the interplanetary magnetic field as expected from the asymmetric propagation velocity of the fast magnetosonic wave. Comparing with earlier mission data, they show that the Mars shock location varies with solar activity. The shock is farther from Mars during solar maximum. Thus the solar wind interaction with Mars appears to be Venuslike, with a magnetic moment too small to affect significantly the solar wind interaction.

  8. Mapping near-field plasmonic interactions of silver particles with scanning near-field optical microscopy measurements

    NASA Astrophysics Data System (ADS)

    Andrae, Patrick; Song, Min; Haggui, Mohamed; Fumagalli, Paul; Schmid, Martina

    2015-08-01

    A scanning near-field optical microscope (SNOM) is a powerful tool to investigate optical effects that are smaller than Abbe's limit. Its greatest strength is the simultaneous measurement of high-resolution topography and optical nearfield data that can be correlated to each other. However, the resolution of an aperture SNOM is always limited by the probe. It is a technical challenge to fabricate small illumination tips with a well-defined aperture and high transmission. The aperture size and the coating homogeneity will define the optical resolution and the optical image whereas the tip size and shape influence the topographic accuracy. Although the technique has been developing for many years, the correlation between simulated near-field data and measurement is still not convincing. To overcome this challenge, the mapping of near-field plasmonic interactions of silver nanoparticles is investigated. Different nanocluster samples with diverse distributions of silver particles are characterized via SNOM in illumination and collection mode. This will lead to topographical and optical images that can be used as an input for SNOM simulations with the aim of estimating optical artifacts. Including tip, particles, and substrate, our finite-elementmethod (FEM) simulations are based on the realistic geometry. Correlating the high-precision SNOM measurement and the detailed simulation of a full image scan will enable us to draw conclusions regarding near-field enhancements caused by interacting particles.

  9. Compatibility polymorphism in snail/schistosome interactions: From field to theory to molecular mechanisms

    PubMed Central

    Mitta, G.; Adema, C.M.; Gourbal, B.; Loker, E.S.; Theron, A.

    2013-01-01

    Coevolutionary dynamics in host–parasite interactions potentially lead to an arms race that results in compatibility polymorphism. The mechanisms underlying compatibility have remained largely unknown in the interactions between the snail Biomphalaria glabrata and Schistosoma mansoni, one of the agents of human schistosomiasis. This review presents a combination of data obtained from field and laboratory studies arguing in favor of a matching phenotype model to explain compatibility polymorphism. Investigations focused on the molecular determinants of compatibility have revealed two repertoires of polymorphic and/or diversified molecules that have been shown to interact: the parasite antigens S. mansoni polymorphic mucins and the B. glabrata fibrinogen-related proteins immune receptors. We hypothesize their interactions define the compatible/incompatible status of a specific snail/schistosome combination. This line of thought suggests concrete approaches amenable to testing in field-oriented studies attempting to control schistosomiasis by disrupting schistosome–snail compatibility. PMID:21945832

  10. Effects of field interactions upon particle creation in Robertson-Walker universes

    NASA Technical Reports Server (NTRS)

    Birrell, N. D.; Davies, P. C. W.; Ford, L. H.

    1980-01-01

    Particle creation due to field interactions in an expanding Robertson-Walker universe is investigated. A model in which pseudoscalar mesons and photons are created as a result of their mutual interaction is considered, and the energy density of created particles is calculated in model universes which undergo a bounce at some maximum curvature. The free-field creation of non-conformally coupled scalar particles and of gravitons is calculated in the same space-times. It is found that if the bounce occurs at a sufficiently early time the interacting particle creation will dominate. This result may be traced to the fact that the model interaction chosen introduces a length scale which is much larger than the Planck length.

  11. Role of particle masses in the magnetic field generation driven by the parity violating interaction

    NASA Astrophysics Data System (ADS)

    Dvornikov, Maxim

    2016-09-01

    Recently the new model for the generation of strong large scale magnetic fields in neutron stars, driven by the parity violating interaction, was proposed. In this model, the magnetic field instability results from the modification of the chiral magnetic effect in presence of the electroweak interaction between ultrarelativistic electrons and nucleons. In the present work we study how a nonzero mass of charged particles, which are degenerate relativistic electrons and nonrelativistic protons, influences the generation of the magnetic field in frames of this approach. For this purpose we calculate the induced electric current of these charged particles, electroweakly interacting with background neutrons and an external magnetic field, exactly accounting for the particle mass. This current is calculated by two methods: using the exact solution of the Dirac equation for a charged particle in external fields and computing the polarization operator of a photon in matter composed of background neutrons. We show that the induced current is vanishing in both approaches leading to the zero contribution of massive particles to the generated magnetic field. We discuss the implication of our results for the problem of the magnetic field generation in compact stars.

  12. Absorption spectra of two-level atoms interacting with a strong polychromatic pump field and an arbitrarily intense probe field

    NASA Astrophysics Data System (ADS)

    Yoon, Tai Hyun; Chung, Myung Sai; Lee, Hai-Woong

    1999-09-01

    A numerical method is introduced that solves the optical Bloch equations describing a two-level atom interacting with a strong polychromatic pump field with an equidistant spectrum and an arbitrarily intense monochromatic probe field. The method involves a transformation of the optical Bloch equations into a system of equations with time-independent coefficients at steady state via double harmonic expansion of the density-matrix elements, which is then solved by the method of matrix inversion. The solutions so obtained lead immediately to the determination of the polarization of the atomic medium and of the absorption and dispersion spectra. The method is applied to the case when the pump field is bichromatic and trichromatic, and the physical interpretation of the numerically computed spectra is given.

  13. Quantum Field Theory of Black-Swan Events

    NASA Astrophysics Data System (ADS)

    Kleinert, H.

    2014-05-01

    Free and weakly interacting particles are described by a second-quantized nonlinear Schrödinger equation, or relativistic versions of it. They describe Gaussian random walks with collisions. By contrast, the fields of strongly interacting particles are governed by effective actions, whose extremum yields fractional field equations. Their particle orbits perform universal Lévy walks with heavy tails, in which rare events are much more frequent than in Gaussian random walks. Such rare events are observed in exceptionally strong windgusts, monster or rogue waves, earthquakes, and financial crashes. While earthquakes may destroy entire cities, the latter have the potential of devastating entire economies.

  14. Finite energy quantization on a topology changing spacetime

    NASA Astrophysics Data System (ADS)

    Krasnikov, S.

    2016-08-01

    The "trousers" spacetime is a pair of flat two-dimensional cylinders ("legs") merging into a single one ("trunk"). In spite of its simplicity this spacetime has a few features (including, in particular, a naked singularity in the "crotch") each of which is presumably unphysical, but for none of which a mechanism is known able to prevent its occurrence. Therefore, it is interesting and important to study the behavior of the quantum fields in such a space. Anderson and DeWitt were the first to consider the free scalar field in the trousers spacetime. They argued that the crotch singularity produces an infinitely bright flash, which was interpreted as evidence that the topology of space is dynamically preserved. Similar divergencies were later discovered by Manogue, Copeland, and Dray who used a more exotic quantization scheme. Later yet the same result obtained within a somewhat different approach led Sorkin to the conclusion that the topological transition in question is suppressed in quantum gravity. In this paper I show that the Anderson-DeWitt divergence is an artifact of their choice of the Fock space. By choosing a different one-particle Hilbert space one gets a quantum state in which the components of the stress-energy tensor (SET) are bounded in the frame of a free-falling observer.

  15. Magnetic field generation from Self-Consistent collective neutrino-plasma interactions

    SciTech Connect

    Brizard, A.J.; Murayama H.; Wurtele, J.S.

    1999-11-24

    A new Lagrangian formalism for self-consistent collective neutrino-plasma interactions is presented in which each neutrino species is described as a classical ideal fluid. The neutrino-plasma fluid equations are derived from a covariant relativistic variational principle in which finite-temperature effects are retained. This new formalism is then used to investigate the generation of magnetic fields and the production of magnetic helicity as a result of collective neutrino-plasma interactions.

  16. Magnetic phase diagram of interacting nanoparticle systems under the mean-field model

    NASA Astrophysics Data System (ADS)

    Mao, Zhongquan; Chen, Xi

    2011-06-01

    The disordered random-anisotropy magnetic nanoparticle systems with competing dipolar interactions and ferromagnetic exchange couplings are investigated by Monte Carlo simulations. Superspin glass (SSG) and superferromagnetic (SFM) behaviors are found at low temperatures depending on the interactions. Based on the mean-field approximation, the Curie-Weiss temperature TCW = 0 is suggested as the phase boundary between the SSG systems and the SFM systems, which is evidenced by the spontaneous magnetizations and relaxations. The magnetic phase diagram is plotted.

  17. Coordinate transformations for studies of interactions between interplanetary and geomagnetic fields. [satellite vector data analysis

    NASA Technical Reports Server (NTRS)

    Burch, J. L.; Janetzke, R. W.

    1974-01-01

    A graphical procedure is provided for performing coordinate transformations between the geocentric-solar-equatorial, geocentric-solar-ecliptic and geocentric-solar-magnetospheric coordinate systems. The procedure is designed to facilitate intercomparison of previous studies of interactions between interplanetary and geomagnetic fields that made use of these coordinate systems. The interaction in the geocentric-solar-magnetosphere system has been shown to give the most consistent results.

  18. Quantum aspects of a moving magnetic quadrupole moment interacting with an electric field

    SciTech Connect

    Fonseca, I. C.; Bakke, K.

    2015-06-15

    The quantum dynamics of a moving particle with a magnetic quadrupole moment that interacts with electric and magnetic fields is introduced. By dealing with the interaction between an electric field and the magnetic quadrupole moment, it is shown that an analogue of the Coulomb potential can be generated and bound state solutions can be obtained. Besides, the influence of the Coulomb-type potential on the harmonic oscillator is investigated, where bound state solutions to both repulsive and attractive Coulomb-type potentials are achieved and the arising of a quantum effect characterized by the dependence of the harmonic oscillator frequency on the quantum numbers of the system is discussed.

  19. Exploring Direct 3D Interaction for Full Horizontal Parallax Light Field Displays Using Leap Motion Controller

    PubMed Central

    Adhikarla, Vamsi Kiran; Sodnik, Jaka; Szolgay, Peter; Jakus, Grega

    2015-01-01

    This paper reports on the design and evaluation of direct 3D gesture interaction with a full horizontal parallax light field display. A light field display defines a visual scene using directional light beams emitted from multiple light sources as if they are emitted from scene points. Each scene point is rendered individually resulting in more realistic and accurate 3D visualization compared to other 3D displaying technologies. We propose an interaction setup combining the visualization of objects within the Field Of View (FOV) of a light field display and their selection through freehand gesture tracked by the Leap Motion Controller. The accuracy and usefulness of the proposed interaction setup was also evaluated in a user study with test subjects. The results of the study revealed high user preference for free hand interaction with light field display as well as relatively low cognitive demand of this technique. Further, our results also revealed some limitations and adjustments of the proposed setup to be addressed in future work. PMID:25875189

  20. Spin-wave propagation steered by electric field modulated exchange interaction

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Guan, Xiawei; Cheng, Xiaomin; Lian, Chen; Huang, Ting; Miao, Xiangshui

    2016-09-01

    Combined ab initio and micromagnetic simulations are carried out to demonstrate the feasibility on the electrical manipulation of spin-wave propagation in ultrathin Fe films. It is discovered that the exchange interaction can be substantially weakened under the influence of electric field applied perpendicular to the magnetic film surface. Furthermore, we demonstrate that the electric field modified exchange constant could effectively control the propagation of spin waves. To be specific, an external applied electric field of 5 V/nm can effectively weaken exchange interaction by 80% and is sufficient to induce nearly twofold change of the wavenumber. This discovery may open a door to energy-efficient local manipulation of the spin wave propagation utilizing electric fields, which is crucial for both fundamental research and spin wave based logic applications.

  1. Spin-wave propagation steered by electric field modulated exchange interaction.

    PubMed

    Wang, Sheng; Guan, Xiawei; Cheng, Xiaomin; Lian, Chen; Huang, Ting; Miao, Xiangshui

    2016-01-01

    Combined ab initio and micromagnetic simulations are carried out to demonstrate the feasibility on the electrical manipulation of spin-wave propagation in ultrathin Fe films. It is discovered that the exchange interaction can be substantially weakened under the influence of electric field applied perpendicular to the magnetic film surface. Furthermore, we demonstrate that the electric field modified exchange constant could effectively control the propagation of spin waves. To be specific, an external applied electric field of 5 V/nm can effectively weaken exchange interaction by 80% and is sufficient to induce nearly twofold change of the wavenumber. This discovery may open a door to energy-efficient local manipulation of the spin wave propagation utilizing electric fields, which is crucial for both fundamental research and spin wave based logic applications. PMID:27587083

  2. Spin-wave propagation steered by electric field modulated exchange interaction

    PubMed Central

    Wang, Sheng; Guan, Xiawei; Cheng, Xiaomin; Lian, Chen; Huang, Ting; Miao, Xiangshui

    2016-01-01

    Combined ab initio and micromagnetic simulations are carried out to demonstrate the feasibility on the electrical manipulation of spin-wave propagation in ultrathin Fe films. It is discovered that the exchange interaction can be substantially weakened under the influence of electric field applied perpendicular to the magnetic film surface. Furthermore, we demonstrate that the electric field modified exchange constant could effectively control the propagation of spin waves. To be specific, an external applied electric field of 5 V/nm can effectively weaken exchange interaction by 80% and is sufficient to induce nearly twofold change of the wavenumber. This discovery may open a door to energy-efficient local manipulation of the spin wave propagation utilizing electric fields, which is crucial for both fundamental research and spin wave based logic applications. PMID:27587083

  3. Interacting electrons in a two-dimensional disordered environment: effect of a zeeman magnetic field.

    PubMed

    Denteneer, P J H; Scalettar, R T

    2003-06-20

    The effect of a Zeeman magnetic field coupled to the spin of the electrons on the conducting properties of the disordered Hubbard model is studied. Using the determinant quantum Monte Carlo method, the temperature- and magnetic-field-dependent conductivity is calculated, as well as the degree of spin polarization. We find that the Zeeman magnetic field suppresses the metallic behavior present for certain values of interaction and disorder strength and is able to induce a metal-insulator transition at a critical field strength. It is argued that the qualitative features of magnetoconductance in this microscopic model containing both repulsive interactions and disorder are in agreement with experimental findings in two-dimensional electron and hole gases in semiconductor structures.

  4. Domain wall interactions due to vacuum Dirac field fluctuations in 2 +1 dimensions

    NASA Astrophysics Data System (ADS)

    Fosco, C. D.; Mazzitelli, F. D.

    2016-07-01

    We evaluate quantum effects due to a two-component Dirac field in 2 +1 spacetime dimensions, coupled to domain-wall-like defects with a smooth shape. We show that these effects induce nontrivial contributions to the (shape-dependent) energy of the domain walls. For a single defect, we study the divergences in the corresponding self-energy, and also consider the role of the massless zero mode—corresponding to the Callan-Harvey mechanism—by coupling the Dirac field to an external gauge field. For two defects, we show that the Dirac field induces a nontrivial, Casimir-like effect between them, and we provide an exact expression for that interaction in the case of two straight-line parallel defects. As is the case for the Casimir interaction energy, the result is finite and unambiguous.

  5. In-loop atom modulus quantization for matching pursuit and its application to video coding.

    PubMed

    De Vleeschouwer, Christophe; Zakhor, Avideh

    2003-01-01

    This paper provides a precise analytical study of the selection and modulus quantization of matching pursuit (MP) coefficients. We demonstrate that an optimal rate-distortion trade-off is achieved by selecting the atoms up to a quality-dependent threshold, and by defining the modulus quantizer in terms of that threshold. In doing so, we take into account quantization error re-injection resulting from inserting the modulus quantizer inside the MP atom computation loop. In-loop quantization not only improves coding performance, but also affects the optimal quantizer design for both uniform and nonuniform quantization. We measure the impact of our work in the context of video coding. For both uniform and nonuniform quantization, the precise understanding of the relation between atom selection and quantization results in significant improvements in terms of coding efficiency. At high bitrates, the proposed nonuniform quantization scheme results in 0.5 to 2 dB improvement over the previous method.

  6. Mechanisms of interaction and biological effects of extremely-low-frequency electromagnetic fields

    SciTech Connect

    Tenforde, T.S.

    1994-07-01

    Evidence is mounting, that environmental electric and magnetic fields in the extremely-low-frequency (ELF) band below 300 Hz can influence biological functions by mechanisms that are only poorly understood at the present time. The primary objectives of this paper are to review the physical properties of ELF fields, their interactions with living systems at the tissue, cellular, and subcellular levels, and the key role of cell membranes in the transduction of signals from imposed ELF fields. Topics of discussion include signal-to-noise ratios for single cells and cell aggregates, resonance phenomena involving a combination of static and ELF magnetic fields, and the possible influence of ELF fields on molecular signaling pathways that involve membrane receptors and cytoplasmic second messengers. The implications of these findings for promotion of tumor growth by ELF fields are also reviewed.

  7. Applications, dosimetry and biological interactions of static and time-varying magnetic fields

    NASA Astrophysics Data System (ADS)

    Tenforde, T. S.

    1988-08-01

    The primary topics of this presentation include: (1) the applications of magnetic fields in research, industry, and medical technologies; (2) mechanisms of interaction of static and time-varying magnetic fields with living systems; (3) human health effects of exposure to static and time-varying magnetic fields in occupational, medical, and residential settings; and (4) recent advances in the dosimetry of extremely-low-frequency electromagnetic fields. The discussion of these topics is centered about two issues of considerable contemporary interest: (1) potential health effects of the fields used in magnetic resonance imaging and in vivo spectroscopy, and (2) the controversial issue of whether exposure to extremely-low-frequency (ELF) electromagnetic fields in the home and workplace leads to an elevated risk of cancer.

  8. Symmetry breaking and restoration for interacting scalar and gauge fields in Lifshitz type theories

    NASA Astrophysics Data System (ADS)

    Farakos, K.; Metaxas, D.

    2012-05-01

    We consider the one-loop effective potential at zero and finite temperature in field theories with anisotropic space-time scaling, with critical exponent z = 2, including both scalar and gauge fields. Depending on the relative strength of the coupling constants for the gauge and scalar interactions, we find that there is a symmetry breaking term induced at one loop at zero temperature and we find symmetry restoration through a first-order phase transition at high temperature.

  9. Statistical properties of an ensemble of vortices interacting with a turbulent field

    SciTech Connect

    Spineanu, F.; Vlad, M.

    2005-11-15

    An analytical formalism is developed with the purpose to determine the statistical properties of a system consisting of an ensemble of vortices with random position in plane interacting with a turbulent field. The generating functional is calculated by path-integral methods. The function space is the statistical ensemble composed of two parts, the first one representing the vortices influenced by the turbulence and the second one the turbulent field scattered by the randomly placed vortices.

  10. Riding a wild horse: Majorana fermions interacting with solitons of fast bosonic fields

    NASA Astrophysics Data System (ADS)

    Tsvelik, A. M.

    2012-01-01

    I consider a class of one-dimensional models where Majorana fermions interact with bosonic fields. Contrary to a more familiar situation where bosonic degrees of freedom are phonons and as such form a slow subsystem, I consider fast bosons. Such situation exists when the bosonic modes appear as collective excitations of interacting electrons as, for instance, in superconductors or carbon nanotubes. It is shown that an entire new class of excitations emerge, namely bound states of solitons and Majorana fermions. The latter bound states are not topological and their existence and number depend on the interactions and the soliton's velocity. Intriguingly the number of bound states increases with the soliton's velocity.

  11. Interplanetary magnetic field effects on the interaction of the solar wind with Venus

    NASA Astrophysics Data System (ADS)

    Phillips, John Lynch

    The solar wind interaction with Venus is examined with emphasis on the role of the interplanetary magnetic field (IMF) using observations from Pioneer Venus Orbiter (PVO). Based on a survey of low altitude magnetometer observations, the planetary magnetic moment is less than 8.4 times 10 to the 10th power Tm (3), or roughly 1/100,000 of the terrestrial moment. As a result, the impact of changing IMF orientation on the interaction is very different at Venus than at the magnetized planets. The solar plasma interacts directly with the ionospheric plasma, which generally is able to maintain a shielding current system which constitutes an impenetrable boundary.

  12. Π-Stacking Interaction between Heterocyclic Rings in a Reaction Field of Biological System

    NASA Astrophysics Data System (ADS)

    Koyimatu, Muhamad; Shimahara, Hideto; Sugimori, Kimikazu; Kawaguchi, Kazutomo; Saito, Hiroaki; Nagao, Hidemi

    Reaction fields in biological systems are given by surrounding structures where various interactions such as hydrogen bonding, van der Waals, and π-stacking interaction. However, there is no experimental method to evaluate the interaction energy. Recently, computational techniques have been used as a standard method in order to estimate the interaction energy or to verify the experimental results. Here, we are focusing on the π-electrons, p-orbitals, and conjugate systems in relation to the π-stacking interaction between heterocyclic rings in the reaction field: the active site of human carbonic anhydrase II (HCA II). The electron correlation interaction was calculated on the basis of the Møller-Plesset perturbation theory. Since the His64 has two conformations in the HCA II, the rotational motion of His64 has been used to explain the catalytic mechanism of HCA II. The calculated results indicate that the π-stacking interaction stabilizes the structure and restrict the rotational motion of His64.

  13. A broadband gyrotron backward-wave oscillator with tapered interaction structure and magnetic field

    SciTech Connect

    Li, G. D.; Chang, P. C.; Chiang, W. Y.; Lin, P. N.; Kao, S. H.; Lin, Y. N.; Huang, Y. J.; Barnett, L. R.; Chu, K. R.; Chen, H. Y.; Fan, C. T.

    2015-11-15

    The gyro-monotron and gyrotron backward-wave oscillator (gyro-BWO) are the two oscillator versions of gyrotrons. While serving different functions, they are also radically different in the RF field formation mechanisms. The gyro-monotron RF field profile is essentially fixed by the resonant interaction structure, while the gyro-BWO possesses an extra degree of freedom in that the axial RF field profile is self-determined by the beam-wave interaction in a waveguide structure. The present study examines ways to utilize the latter feature for bandwidth broadening with a tapered magnetic field, while also employing a tapered waveguide to enhance the interaction efficiency. We begin with a mode competition analysis, which suggests the theoretical feasibility of broadband frequency tuning in single-mode operation. It is then shown in theory that, by controlling the RF field profile with an up- or down-tapered magnetic field, the gyro-BWO is capable of efficient operation with a much improved tunable bandwidth.

  14. Minimum uncertainty and squeezing in diffusion processes and stochastic quantization

    NASA Technical Reports Server (NTRS)

    Demartino, S.; Desiena, S.; Illuminati, Fabrizo; Vitiello, Giuseppe

    1994-01-01

    We show that uncertainty relations, as well as minimum uncertainty coherent and squeezed states, are structural properties for diffusion processes. Through Nelson stochastic quantization we derive the stochastic image of the quantum mechanical coherent and squeezed states.

  15. Quantization of maximally charged slowly moving black holes

    NASA Astrophysics Data System (ADS)

    Siopsis, George

    2001-05-01

    We discuss the quantization of a system of slowly moving extreme Reissner-Nordström black holes. In the near-horizon limit, this system has been shown to possess an SL(2,R) conformal symmetry. However, the Hamiltonian appears to have no well-defined ground state. This problem can be circumvented by a redefinition of the Hamiltonian due to de Alfaro, Fubini, and Furlan (DFF). We apply the Faddeev-Popov quantization procedure to show that the Hamiltonian with no ground state corresponds to a gauge in which there is an obstruction at the singularities of moduli space requiring a modification of the quantization rules. The redefinition of the Hamiltonian in the manner of DFF corresponds to a different choice of gauge. The latter is a good gauge leading to standard quantization rules. Thus the DFF trick is a consequence of a standard gauge-fixing procedure in the case of black hole scattering.

  16. Fill-in binary loop pulse-torque quantizer

    NASA Technical Reports Server (NTRS)

    Lory, C. B.

    1975-01-01

    Fill-in binary (FIB) loop provides constant heating of torque generator, an advantage of binary current switching. At the same time, it avoids mode-related dead zone and data delay of binary, an advantage of ternary quantization.

  17. Towards phonon photonics: scattering-type near-field optical microscopy reveals phonon-enhanced near-field interaction.

    PubMed

    Hillenbrand, Rainer

    2004-08-01

    Diffraction limits the spatial resolution in classical microscopy or the dimensions of optical circuits to about half the illumination wavelength. Scanning near-field microscopy can overcome this limitation by exploiting the evanescent near fields existing close to any illuminated object. We use a scattering-type near-field optical microscope (s-SNOM) that uses the illuminated metal tip of an atomic force microscope (AFM) to act as scattering near-field probe. The presented images are direct evidence that the s-SNOM enables optical imaging at a spatial resolution on a 10nm scale, independent of the wavelength used (lambda=633 nm and 10 microm). Operating the microscope at specific mid-infrared frequencies we found a tip-induced phonon-polariton resonance on flat polar crystals such as SiC and Si3N4. Being a spectral fingerprint of any polar material such phonon-enhanced near-field interaction has enormous applicability in nondestructive, material-specific infrared microscopy at nanoscale resolution. The potential of s-SNOM to study eigenfields of surface polaritons in nanostructures opens the door to the development of phonon photonics-a proposed infrared nanotechnology that uses localized or propagating surface phonon polaritons for probing, manipulating and guiding infrared light in nanoscale devices, analogous to plasmon photonics.

  18. Extreme field limits in the interaction of laser light with ultrarelativistic electrons

    SciTech Connect

    Bulanov, S. V.; Esirkepov, T. Zh.; Hayashi, Y.; Kando, M.; Kiriyama, H.; Koga, J.; Kondo, K.; Kotaki, H.; Pirozhkov, A.; Bulanov, S. S.; Zhidkov, A.; Chen, P.; Neely, D.; Kato, Y.; Narozhny, N. B.; Korn, G.

    2012-07-11

    The critical electric field of quantum electrodynamics is so strong that it produces electron-positron pairs from vacuum, converting the energy of light into matter. This field has become feasible through the construction of extremely high power lasers or/and with the sophisticated use of nonlinear processes in relativistic plasmas. A feasibility of the experiments on the collision of laser light and high intensity electromagnetic pulses, generated by relativistic flying mirrors, with relativistic electrons for the studying of extreme field limits in the nonlinear interaction of electromagnetic waves is discussed.

  19. Extreme field limits in the interaction of laser light with ultrarelativistic electrons

    NASA Astrophysics Data System (ADS)

    Bulanov, S. V.; Esirkepov, T. Zh.; Hayashi, Y.; Kando, M.; Kiriyama, H.; Koga, J.; Kondo, K.; Kotaki, H.; Pirozhkov, A.; Bulanov, S. S.; Zhidkov, A.; Chen, P.; Neely, D.; Kato, Y.; Narozhny, N. B.; Korn, G.

    2012-07-01

    The critical electric field of quantum electrodynamics is so strong that it produces electron-positron pairs from vacuum, converting the energy of light into matter. This field has become feasible through the construction of extremely high power lasers or/and with the sophisticated use of nonlinear processes in relativistic plasmas. A feasibility of the experiments on the collision of laser light and high intensity electromagnetic pulses, generated by relativistic flying mirrors, with relativistic electrons for the studying of extreme field limits in the nonlinear interaction of electromagnetic waves is discussed.

  20. The application of light-cone quantization to quantum chromodynamics in one-plus-one dimensions

    SciTech Connect

    Hornbostel, K.J.

    1988-12-01

    Formal and computational aspects of light cone quantization are studied by application to quantum chromodynamics (QCD) in one spatial plus one temporal dimension. This quantization scheme, which has been extensively applied to perturbative calculations, is shown to provide an intuitively appealing and numerically tractable approach to non-perturbative computations as well. In the initial section, a light-cone quantization procedure is developed which incorporates fields on the boundaries. This allows for the consistent treatment of massless fermions and the construction of explicitly conserved momentum and charge operators. The next section, which comprises the majority of this work, focuses on the numerical solution of the light-cone Schrodinger equation for bound states. The state space is constructed and the Hamiltonian is evaluated and diagonalized by computer for arbitrary number of colors, baryon number and coupling constant strength. As a result, the full spectrum of mesons and baryons and their associated wavefunctions are determined. These results are compared with those which exist from other approaches to test the reliability of the method. The program also provides a preliminary test for the feasibility of, and an opportunity to develop approximation schemes for, an attack on three-plus-one dimensional QCD. Finally, analytic results are presented which include a discussion of integral equations for wavefunctions and their endpoint behavior. Solutions for hadronic masses and wavefunctions in the limits of both large and small quark mass are discussed. 49 refs., 32 figs., 10 tabs.

  1. Minimum distortion quantizer for fixed-rate 64-subband video coding

    NASA Astrophysics Data System (ADS)

    Alparone, Luciano; Andreadis, Alessandro; Argenti, Fabrizio; Benelli, Giuliano; Garzelli, Andrea; Tarchi, A.

    1995-02-01

    A motion-compensated sub-band coding (SBC) scheme for video signals, featuring fixed-rate and optimum quantizer, is presented. Block matching algorithm provides a suitable inter-frame prediction, and a 64 sub-band decomposition allows a high decorrelation of the motion- compensated difference field. The main drawback is that sub-bands containing sparse data of different statistics are produced, thus requiring run-length (RL) and variable length coding (VLC) for best performance. However, most digital communication channels operate at constant bit-rate (BR); hence, fixed-rate video coding is the main goal, in order to reduce buffering delays. The approach followed in this work is modeling the subbands as independent memoryless sources with generalized Gaussian PDFs and designing optimum uniform quantizers with the goal of minimizing distortion after a BR value, also accounting for the entropy of the RLs of zero/nonzero coefficients, has been specified. The problem is stated in terms of entropy allocation among sub-bands minimizing the overall distortion, analogously to optimal distortion allocation when fixed quality is requested. The constrained minimum is found by means of Lagrange multipliers, once the parametric PDFs have been assessed from true TV sequences. This procedure provides the optimum step for uniform quantization of each sub-band, thus leading to discarding some of the least significant ones.

  2. Multivariate Fronthaul Quantization for Downlink C-RAN

    NASA Astrophysics Data System (ADS)

    Lee, Wonju; Simeone, Osvaldo; Kang, Joonhyuk; Shamai, Shlomo

    2016-10-01

    The Cloud-Radio Access Network (C-RAN) cellular architecture relies on the transfer of complex baseband signals to and from a central unit (CU) over digital fronthaul links to enable the virtualization of the baseband processing functionalities of distributed radio units (RUs). The standard design of digital fronthauling is based on either scalar quantization or on more sophisticated point to-point compression techniques operating on baseband signals. Motivated by network-information theoretic results, techniques for fronthaul quantization and compression that improve over point-to-point solutions by allowing for joint processing across multiple fronthaul links at the CU have been recently proposed for both the uplink and the downlink. For the downlink, a form of joint compression, known in network information theory as multivariate compression, was shown to be advantageous under a non-constructive asymptotic information-theoretic framework. In this paper, instead, the design of a practical symbol-by-symbol fronthaul quantization algorithm that implements the idea of multivariate compression is investigated for the C-RAN downlink. As compared to current standards, the proposed multivariate quantization (MQ) only requires changes in the CU processing while no modification is needed at the RUs. The algorithm is extended to enable the joint optimization of downlink precoding and quantization, reduced-complexity MQ via successive block quantization, and variable-length compression. Numerical results, which include performance evaluations over standard cellular models, demonstrate the advantages of MQ and the merits of a joint optimization with precoding.

  3. Visual optimization of DCT quantization matrices for individual images

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.

    1993-01-01

    Many image compression standards (JPEG, MPEG, H.261) are based on the Discrete Cosine Transform (DCT). However, these standards do not specify the actual DCT quantization matrix. We have previously provided mathematical formulae to compute a perceptually lossless quantization matrix. Here I show how to compute a matrix that is optimized for a particular image. The method treats each DCT coefficient as an approximation to the local response of a visual 'channel'. For a given quantization matrix, the DCT quantization errors are adjusted by contrast sensitivity, light adaptation, and contrast masking, and are pooled non-linearly over the blocks of the image. This yields an 8x8 'perceptual error matrix'. A second non-linear pooling over the perceptual error matrix yields total perceptual error. With this model we may estimate the quantization matrix for a particular image that yields minimum bit rate for a given total perceptual error, or minimum perceptual error for a given bit rate. Custom matrices for a number of images show clear improvement over image-independent matrices. Custom matrices are compatible with the JPEG standard, which requires transmission of the quantization matrix.

  4. Error-resilient pyramid vector quantization for image compression.

    PubMed

    Hung, A C; Tsern, E K; Meng, T H

    1998-01-01

    Pyramid vector quantization (PVQ) uses the lattice points of a pyramidal shape in multidimensional space as the quantizer codebook. It is a fixed-rate quantization technique that can be used for the compression of Laplacian-like sources arising from transform and subband image coding, where its performance approaches the optimal entropy-coded scalar quantizer without the necessity of variable length codes. In this paper, we investigate the use of PVQ for compressed image transmission over noisy channels, where the fixed-rate quantization reduces the susceptibility to bit-error corruption. We propose a new method of deriving the indices of the lattice points of the multidimensional pyramid and describe how these techniques can also improve the channel noise immunity of general symmetric lattice quantizers. Our new indexing scheme improves channel robustness by up to 3 dB over previous indexing methods, and can be performed with similar computational cost. The final fixed-rate coding algorithm surpasses the performance of typical Joint Photographic Experts Group (JPEG) implementations and exhibits much greater error resilience.

  5. Interaction between the Kravchuck and Meixner oscillators coherent states and the coherent radiation field

    NASA Astrophysics Data System (ADS)

    Eugen Drăgănescu, Gheorghe

    2013-03-01

    To describe a series of phenomena that occur in micro- and nano-systems, we have used the discrete variable Kravchuk and Meixner oscillators for which some sets of coherent states and some squeezed states were established. For a system consisting of molecular oscillators interacting with the coherent radiation field, an oscillatory variation of the refractive index was established.

  6. Magnetic Field of a Dipole and the Dipole-Dipole Interaction

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2007-01-01

    With a data-acquisition system and sensors commercially available, it is easy to determine magnetic fields produced by permanent magnets and to study the dipole-dipole interaction for different separations and angular positions of the magnets. For sufficiently large distances, the results confirm the 1/R[superscript 3] law for the magnetic field…

  7. Gamma ray bursts from comet neutron star magnetosphere interaction, field twisting and E sub parallel formation

    SciTech Connect

    Colgate, S.A.

    1990-01-01

    Consider the problem of a comet in a collision trajectory with a magnetized neutron star. The question addressed in this paper is whether the comet interacts strongly enough with a magnetic field such as to capture at a large radius or whether in general the comet will escape a magnetized neutron star. 6 refs., 4 figs.

  8. The Interaction of Field Theory, Family Systems Theory, and Children's Rights.

    ERIC Educational Resources Information Center

    Schwartz, Lita Linzer

    1993-01-01

    Field theory is interactional. It asserts that genetic predispositions, acquired characteristics, uniqueness, and behaviors of individual impact are affected by events and people in environment. This can be seen clearly in development of children who join family rather than being born into it. Resulting complexities can be seen in family therapy…

  9. University Students' Explanatory Models of the Interactions between Electric Charges and Magnetic Fields

    ERIC Educational Resources Information Center

    Saglam, Murat

    2010-01-01

    This study aimed to investigate the models that co-existed in students' cognitive structure to explain the interactions between electric charges and uniform magnetic fields. The sample consisted of 129 first-year civil engineering, geology and geophysics students from a large state university in western Turkey. The students answered five…

  10. Determination of the quantized topological magneto-electric effect in topological insulators from Rayleigh scattering

    PubMed Central

    Ge, Lixin; Zhan, Tianrong; Han, Dezhuan; Liu, Xiaohan; Zi, Jian

    2015-01-01

    Topological insulators (TIs) exhibit many exotic properties. In particular, a topological magneto-electric (TME) effect, quantized in units of the fine structure constant, exists in TIs. Here, we theoretically study the scattering properties of electromagnetic waves by TI circular cylinders particularly in the Rayleigh scattering limit. Compared with ordinary dielectric cylinders, the scattering by TI cylinders shows many unusual features due to the TME effect. Two proposals are suggested to determine the TME effect of TIs simply by measuring the electric-field components of scattered waves in the far field at one or two scattering angles. Our results could also offer a way to measure the fine structure constant. PMID:25609462

  11. Interaction of two level systems in amorphous materials with arbitrary phonon fields.

    SciTech Connect

    Anghel, D. V.; Kuhn, T.; Galperin, Y. M.; Manninen, M.; Materials Science Division; National Inst. for Physics and Nuclear Engineering; Univ. Jyvaskyla; Univ. Oslo; Russian Academy of Sciences

    2007-01-01

    To describe the interaction of the two-level systems (TLSs) of an amorphous solid with arbitrary strain fields, we introduce a generalization of the standard interaction Hamiltonian. In this model, the interaction strength depends on the orientation of the TLS with respect to the strain field through a 6 x 6 symmetric tensor of deformation potential parameters [R]. Taking into account the isotropy of the amorphous solid, we deduce that [R] has only two independent parameters. We show how these two parameters can be calculated from experimental data, and we prove that for any amorphous bulk material, the average coupling of TLSs with longitudinal phonons is always stronger than the average coupling with transversal phonons (in standard notations, {gamma}{sub l} > {gamma}{sub t}).

  12. Electric field-perturbation measurement of the interaction between two laser-induced plasmas

    NASA Astrophysics Data System (ADS)

    Sánchez-Aké, C.; Bredice, F.; Villagrán-Muniz, M.

    2012-02-01

    The interaction between two ns-laser-induced plasmas in air at the early-stage of expansion has been analyzed by using a method based on the direct measurement of the perturbation of an externally applied electric field. In this experimental method, the plasmas were produced by focusing two laser beams between the plates of a parallel-plane-charged capacitor. These plasmas produce a perturbation in the electric field of the capacitor which can be measured as a voltage change across a resistor connected to the ground plate. It was found that for delays shorter than 5 ns, the interaction between plasmas is mainly due to the interaction of the dipole-charge distribution of each plasma. For longer time delays, the shielding effect was dominant.

  13. Electric field-perturbation measurement of the interaction between two laser-induced plasmas.

    PubMed

    Sánchez-Aké, C; Bredice, F; Villagrán-Muniz, M

    2012-02-01

    The interaction between two ns-laser-induced plasmas in air at the early-stage of expansion has been analyzed by using a method based on the direct measurement of the perturbation of an externally applied electric field. In this experimental method, the plasmas were produced by focusing two laser beams between the plates of a parallel-plane-charged capacitor. These plasmas produce a perturbation in the electric field of the capacitor which can be measured as a voltage change across a resistor connected to the ground plate. It was found that for delays shorter than 5 ns, the interaction between plasmas is mainly due to the interaction of the dipole-charge distribution of each plasma. For longer time delays, the shielding effect was dominant. PMID:22380088

  14. Resonance tuning due to Coulomb interaction in strong near-field coupled metamaterials

    SciTech Connect

    Roy Chowdhury, Dibakar; Xu, Ningning; Zhang, Weili; Singh, Ranjan

    2015-07-14

    Coulomb's law is one of the most fundamental laws of physics that describes the electrostatic interaction between two like or unlike point charges. Here, we experimentally observe a strong effect of Coulomb interaction in tightly coupled terahertz metamaterials where the split-ring resonator dimers in a unit cell are coupled through their near fields across the capacitive split gaps. Using a simple analytical model, we evaluated the Coulomb parameter that switched its sign from negative to positive values indicating the transition in the nature of Coulomb force from being repulsive to attractive depending upon the near field coupling between the split ring resonators. Apart from showing interesting effects in the strong coupling regime between meta-atoms, Coulomb interaction also allows an additional degree of freedom to achieve frequency tunable dynamic metamaterials.

  15. Electric field-perturbation measurement of the interaction between two laser-induced plasmas

    SciTech Connect

    Sanchez-Ake, C.; Villagran-Muniz, M.; Bredice, F.

    2012-02-15

    The interaction between two ns-laser-induced plasmas in air at the early-stage of expansion has been analyzed by using a method based on the direct measurement of the perturbation of an externally applied electric field. In this experimental method, the plasmas were produced by focusing two laser beams between the plates of a parallel-plane-charged capacitor. These plasmas produce a perturbation in the electric field of the capacitor which can be measured as a voltage change across a resistor connected to the ground plate. It was found that for delays shorter than 5 ns, the interaction between plasmas is mainly due to the interaction of the dipole-charge distribution of each plasma. For longer time delays, the shielding effect was dominant.

  16. Cosmological implications of interacting group field theory models: Cyclic universe and accelerated expansion

    NASA Astrophysics Data System (ADS)

    de Cesare, Marco; Pithis, Andreas G. A.; Sakellariadou, Mairi

    2016-09-01

    We study the cosmological implications of interactions between spacetime quanta in the group field theory (GFT) approach to quantum gravity from a phenomenological perspective. Our work represents a first step towards understanding early Universe cosmology by studying the dynamics of the emergent continuum spacetime, as obtained from a fundamentally discrete microscopic theory. In particular, we show how GFT interactions lead to a recollapse of the Universe while preserving the bounce replacing the initial singularity, which has already been shown to occur in the free case. It is remarkable that cyclic cosmologies are thus obtained in this framework without any a priori assumption on the geometry of spatial sections of the emergent spacetime. Furthermore, we show how interactions make it possible to have an early epoch of accelerated expansion, which can be made to last for an arbitrarily large number of e -folds, without the need to introduce an ad hoc potential for the scalar field.

  17. Physics of Gravitational Interaction: Geometry of Space or Quantum Field in Space

    NASA Astrophysics Data System (ADS)

    Baryshev, Yurij

    2006-03-01

    Thirring-Feynman's tensor field approach to gravitation opens new understanding on the physics of gravitational interaction and stimulates novel experiments on the nature of gravity. According to Field Gravity, the universal gravity force is caused by exchange of gravitons - the quanta of gravity field. Energy of this field is well-defined and excludes the singularity. All classical relativistic effects are the same as in General Relativity. The intrinsic scalar (spin 0) part of gravity field corresponds to ``antigravity'' and only together with the pure tensor (spin 2) part gives the usual Newtonian force. Laboratory and astrophysical experiments which may test the predictions of FG, will be performed in near future. In particular, observations at gravity observatories with bar and interferometric detectors, like Explorer, Nautilus, LIGO and VIRGO, will check the predicted scalar gravitational waves from supernova explosions. New types of cosmological models in Minkowski space are possible too.

  18. Depth-tunable three-dimensional display with interactive light field control

    NASA Astrophysics Data System (ADS)

    Xie, Songlin; Wang, Peng; Sang, Xinzhu; Li, Chenyu; Dou, Wenhua; Xiao, Liquan

    2016-07-01

    A software-defined depth-tunable three-dimensional (3D) display with interactive 3D depth control is presented. With the proposed post-processing system, the disparity of the multi-view media can be freely adjusted. Benefiting from a wealth of information inherently contains in dense multi-view images captured with parallel arrangement camera array, the 3D light field is built and the light field structure is controlled to adjust the disparity without additional acquired depth information since the light field structure itself contains depth information. A statistical analysis based on the least square is carried out to extract the depth information inherently exists in the light field structure and the accurate depth information can be used to re-parameterize light fields for the autostereoscopic display, and a smooth motion parallax can be guaranteed. Experimental results show that the system is convenient and effective to adjust the 3D scene performance in the 3D display.

  19. Cellular and molecular pathways of extremely-low-frequency electromagnetic field interactions with living systems

    SciTech Connect

    Tenforde, T.S.

    1992-06-01

    There is growing evidence that environmental electric and magnetic fields in the extremely-low-frequency (ELF) band below 300 Hz can influence biological functions by mechanisms that are only poorly understood at the present time. The primary objectives of this paper are to review the physical properties of ELF fields, their interactions with living systems at the tissue, cellular, and subcellular levels, and the key role of cell membranes ;in the transduction of signals from imposed ELF fields. Topics of discussion include signal-to-noise ratios for single cells and cell aggregates, resonance phenomena involving a combination of static and ELF magnetic fields, and the possible influence of ELF fields on molecular signaling pathways that involve membrane receptors and cytoplasmic second messengers.

  20. Interaction between emerging magnetic flux and the ambient solar coronal field

    NASA Astrophysics Data System (ADS)

    Cheung, M.; Derosa, M.

    2008-12-01

    We study the interaction between emerging magnetic flux and pre-existing coronal field by means of numerical simulations using the magneto-frictional method. By advancing the induction equation, the magneto-frictional method models the coronal magnetic field as a quasi-static sequence of non-linear force- free field configurations evolving in response to photospheric driving. A general feature of the simulations is the spontaneous formation of tangential discontinuities, interfaces where the field line torsional coefficient changes abruptly across separate domains of connectivity. Since the method evolves the vector potential, we can follow the evolution of the relative magnetic helicity and examine its relation to the magnetic free energy. Other tools, such as the squashing factor of Titov and Démoulin, are also used to study the topology of the field configurations.

  1. The Finite Time Lyapunov Exponent Field of N Interacting Vortices in the Zero Viscosity Limit

    NASA Astrophysics Data System (ADS)

    Galvez, Richard; Green, Melissa

    2015-11-01

    We present an analysis of the Finite Time Lyapunov Exponent (FTLE) field of interacting vortices in the potential flow limit. This work is based on an inviscid approximation, but develops a useful tool that will aid in the effort of understanding the interactions of vortices and turbulence in viscous fluids. The FTLE field of N interacting vortices is computed numerically in two dimensions in different physical scenarios: i) orbiting one another with no initial velocities, ii) approaching each other given an initial velocity and iii) as periodically produced behind a circular cylinder. For situation ii) we expand on the cases where the approach velocities of the vortices are less than or greater than a critical capture velocity, that is, the velocity necessary to escape a captured orbit between co-rotating vortices. We focus on the evolution and interaction of the Lagrangian coherent structures (LCS) in these scenarios to determine if there is a way to anticipate the character of vortex interaction by the initial structure of the LCS. Additional remarks will be made on the extrapolation of observations to a large number of interacting vortices (large N). This work was supported by the Air Force Office of Scientific Research under AFOSR Award No. FA9550-14-1-0210.

  2. Monte Carlo simulation of a quantized universe.

    NASA Astrophysics Data System (ADS)

    Berger, Beverly K.

    1988-08-01

    A Monte Carlo simulation method which yields groundstate wave functions for multielectron atoms is applied to quantized cosmological models. In quantum mechanics, the propagator for the Schrödinger equation reduces to the absolute value squared of the groundstate wave function in the limit of infinite Euclidean time. The wave function of the universe as the solution to the Wheeler-DeWitt equation may be regarded as the zero energy mode of a Schrödinger equation in coordinate time. The simulation evaluates the path integral formulation of the propagator by constructing a large number of paths and computing their contribution to the path integral using the Metropolis algorithm to drive the paths toward a global minimum in the path energy. The result agrees with a solution to the Wheeler-DeWitt equation which has the characteristics of a nodeless groundstate wave function. Oscillatory behavior cannot be reproduced although the simulation results may be physically reasonable. The primary advantage of the simulations is that they may easily be extended to cosmologies with many degrees of freedom. Examples with one, two, and three degrees of freedom (d.f.) are presented.

  3. Dynamics of Quantized Vortices Before Reconnection

    NASA Astrophysics Data System (ADS)

    Andryushchenko, V. A.; Kondaurova, L. P.; Nemirovskii, S. K.

    2016-04-01

    The main goal of this paper is to investigate numerically the dynamics of quantized vortex loops, just before the reconnection at finite temperature, when mutual friction essentially changes the evolution of lines. Modeling is performed on the base of vortex filament method using the full Biot-Savart equation. It was discovered that the initial position of vortices and the temperature strongly affect the dependence on time of the minimum distance δ (t) between tips of two vortex loops. In particular, in some cases, the shrinking and collapse of vortex loops due to mutual friction occur earlier than the reconnection, thereby canceling the latter. However, this relationship takes a universal square-root form δ ( t) =√{( κ/2π ) ( t_{*}-t) } at distances smaller than the distances, satisfying the Schwarz reconnection criterion, when the nonlocal contribution to the Biot-Savart equation becomes about equal to the local contribution. In the "universal" stage, the nearest parts of vortices form a pyramid-like structure with angles which neither depend on the initial configuration nor on temperature.

  4. Zonal Flow Magnetic Field Interaction in the Semi-Conducting Region of Giant Planets

    NASA Astrophysics Data System (ADS)

    Cao, Hao; Stevenson, David J.

    2016-10-01

    All four giant planets in the Solar System feature zonal flows on the order of 100 m/s in the cloud deck, and large-scale intrinsic magnetic fields on the order of 1 Gauss near the surface. The vertical structure of the zonal flows remains obscure. The end-member scenarios are shallow flows confined in the radiative atmosphere and deep flows throughout the planet with constant velocity along the direction of the spin-axis. The electrical conductivity increases smoothly as a function of depth inside Jupiter and Saturn, while a discontinuity of electrical conductivity inside Uranus and Neptune cannot be ruled out. Deep zonal flows will inevitably interact with the magnetic field, at depth with even modest electrical conductivity. Here we investigate the interaction between zonal flows and magnetic fields in the semi-conducting region of giant planets. Employing mean-field electrodynamics, we show that the interaction will generate detectable poloidal magnetic field perturbations spatially correlated with the deep zonal flows. Assuming the peak amplitude of the dynamo α-effect to be 0.1 mm/s, deep zonal flows on the order of 0.1 – 1 m/s in the semi-conducting region of Jupiter and Saturn would generate poloidal magnetic perturbations on the order of 0.01 % – 1 % of the background dipole field. These poloidal perturbations should be detectable with the in-situ magnetic field measurements from the upcoming Juno mission and the Cassini Grand Finale. This implies that magnetic field measurements can be employed to constrain the properties of deep zonal flows in the semi-conducting region of giant planets.

  5. Limiting P-odd interactions of cosmic fields with electrons, protons, and neutrons.

    PubMed

    Roberts, B M; Stadnik, Y V; Dzuba, V A; Flambaum, V V; Leefer, N; Budker, D

    2014-08-22

    We propose methods for extracting limits on the strength of P-odd interactions of pseudoscalar and pseudovector cosmic fields with electrons, protons, and neutrons, by exploiting the static and dynamic parity-nonconserving amplitudes and electric dipole moments they induce in atoms. Candidates for such fields are dark matter (including axions) and dark energy, as well as several more exotic sources described by Lorentz-violating standard model extensions. Atomic calculations are performed for H, Li, Na, K, Rb, Cs, Ba(+), Tl, Dy, Fr, and Ra(+). From these calculations and existing measurements in Dy, Cs, and Tl, we constrain the interaction strengths of the parity-violating static pseudovector cosmic field to be 7 × 10(-15) GeV with an electron, and 3 × 10(-8) GeV with a proton. PMID:25192086

  6. Anomalous self-generated electrostatic fields in nanosecond laser-plasma interaction

    SciTech Connect

    Lancia, L.; Antici, P.; Grech, M.; Weber, S.; Marques, J.-R.; Romagnani, L.; Bourgeois, N.; Audebert, P.; Fuchs, J.; Nakatsutsumi, M.; Bellue, A.; Feugeas, J.-L.; Nicolaie, Ph.; Tikhonchuk, V. T.; Grismayer, T.; Lin, T.; Nkonga, B.; Kodama, R.

    2011-03-15

    Electrostatic (E) fields associated with the interaction of a well-controlled, high-power, nanosecond laser pulse with an underdense plasma are diagnosed by proton radiography. Using a current three-dimensional wave propagation code equipped with nonlinear and nonlocal hydrodynamics, we can model the measured E-fields that are driven by the laser ponderomotive force in the region where the laser undergoes filamentation. However, strong fields of up to 110 MV/m measured in the first millimeter of propagation cannot be reproduced in the simulations. This could point to the presence of unexpected strong thermal electron pressure gradients possibly linked to ion acoustic turbulence, thus emphasizing the need for the development of full kinetic collisional simulations in order to properly model laser-plasma interaction in these strongly nonlinear conditions.

  7. Analyzing Carbohydrate-Protein Interaction Based on Single Plasmonic Nanoparticle by Conventional Dark Field Microscopy.

    PubMed

    Jin, Hong-Ying; Li, Da-Wei; Zhang, Na; Gu, Zhen; Long, Yi-Tao

    2015-06-10

    We demonstrated a practical method to analyze carbohydrate-protein interaction based on single plasmonic nanoparticles by conventional dark field microscopy (DFM). Protein concanavalin A (ConA) was modified on large sized gold nanoparticles (AuNPs), and dextran was conjugated on small sized AuNPs. As the interaction between ConA and dextran resulted in two kinds of gold nanoparticles coupled together, which caused coupling of plasmonic oscillations, apparent color changes (from green to yellow) of the single AuNPs were observed through DFM. Then, the color information was instantly transformed into a statistic peak wavelength distribution in less than 1 min by a self-developed statistical program (nanoparticleAnalysis). In addition, the interaction between ConA and dextran was proved with biospecific recognition. This approach is high-throughput and real-time, and is a convenient method to analyze carbohydrate-protein interaction at the single nanoparticle level efficiently. PMID:25985863

  8. Human-robot interaction for field operation of an autonomous helicopter

    NASA Astrophysics Data System (ADS)

    Jones, Henry L.; Frew, Eric W.; Woodley, Bruce R.; Rock, Stephen M.

    1999-01-01

    The robustness of autonomous robotic systems to unanticipated circumstances is typically insufficient for use in the field. The many skills of a human user often fill this gap in robotic capability. To incorporate the human into the system, a useful interaction between man and machine must exist. This interaction should enable useful communication to be exchanged in a natural way between human and robot on a variety of levels. This paper describes the current human-robot interaction of the Stanford HUMMINGBIRD autonomous helicopter. In particular, the paper discuses the elements of the system that enable multiple levels of communication. An intelligent system agent manages the different inputs given to the helicopter. An advanced user interface gives the user and helicopter a method for exchanging useful information. Using this human-robot interaction, the HUMMINGBIRD has carried out various autonomous search, tracking, and retrieval missions.

  9. Enriched open field facilitates exercise and social interaction in 2 strains of guinea pigs (Cavia porcellus).

    PubMed

    Brewer, Jacob S; Bellinger, Seanceray A; Joshi, Prianca; Kleven, Gale A

    2014-07-01

    Current housing guidelines for laboratory rodents include recommendations for enrichment. Working with guinea pigs, we have developed an open-field enrichment paradigm that provides several aspects of this species' natural environment. These naturalistic aspects include access to increased space for exploration, access to western timothy (Phleum pratense L.) hay, and grouping as a herd to facilitate social interaction. To determine the immediate effect on behavior from access to the enriched environment, female guinea pigs from 2 strains, IAF Hairless and NIH Hartley, were observed in both standard home cages and an open-field enriched environment. Subjects were housed with cagemates in pairs for the home-cage observation and were grouped as a herd when in the open-field arena. Behaviors were videorecorded for 1 h and then scored. Salivary cortisol levels were measured both prior to and immediately after behavioral observations. Analyses revealed higher levels of activity and social interaction in the open-field arena compared with the home cage, with no significant change in salivary cortisol levels. These results suggest that exposure to the open-field environment provide increased opportunities for exercise and social enrichment. Although additional studies are needed to determine long-term effects on experimental outcomes, the open-field configuration holds promise as a laboratory enrichment paradigm for guinea pigs.

  10. The interaction of the near-field plasma with antennas used in magnetic fusion research

    NASA Astrophysics Data System (ADS)

    Caughman, John

    2015-09-01

    Plasma heating and current drive using antennas in the Ion Cyclotron Range of Frequencies (ICRF) are important elements for the success of magnetic fusion. The antennas must operate in a harsh environment, where local plasma densities can be >1018/m3, magnetic fields can range from 0.2-5 Tesla, and antenna operating voltages can be >40 kV. This environment creates operational issues due to the interaction of the near-field of the antenna with the local plasma. In addition to parasitic losses in this plasma region, voltage and current distributions on the antenna structure lead to the formation of high electric fields and RF plasma sheaths, which can lead to enhanced particle and energy fluxes on the antenna and on surfaces intersected by magnetic field lines connected to or passing near the antenna. These issues are being studied using a simple electrode structure and a single-strap antenna on the Prototype Materials Plasma EXperiment (Proto-MPEX) at ORNL, which is a linear plasma device that uses an electron Bernstein wave heated helicon plasma source to create a high-density plasma suitable for use in a plasma-material interaction test stand. Several diagnostics are being used to characterize the near-field interactions, including double-Langmuir probes, a retarding field energy analyzer, and optical emission spectroscopy. The RF electric field is being studied utilizing Dynamic Stark Effect spectroscopy and Doppler-Free Saturation Spectroscopy. Recent experimental results and future plans will be presented. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under Contract DE-AC-05-00OR22725.

  11. Constraint algebra for interacting quantum systems

    NASA Astrophysics Data System (ADS)

    Fubini, S.; Roncadelli, M.

    1988-04-01

    We consider relativistic constrained systems interacting with external fields. We provide physical arguments to support the idea that the quantum constraint algebra should be the same as in the free quantum case. For systems with ordering ambiguities this principle is essential to obtain a unique quantization. This is shown explicitly in the case of a relativistic spinning particle, where our assumption about the constraint algebra plus invariance under general coordinate transformations leads to a unique S-matrix. On leave from Dipartimento di Fisica Nucleare e Teorica, Università di Pavia and INFN, I-27100 Pavia, Italy.

  12. Long-range interactions between chiral molecules

    SciTech Connect

    Salam, A.

    2015-01-22

    Results of molecular quantum electrodynamics calculations of discriminatory interactions between two chiral molecules undergoing resonance energy transfer, van der Waals dispersion, and optical binding are presented. A characteristic feature of the theory is that the radiation field is quantized with signals consequently propagating between centres at the speed of light. In order to correctly describe optically active chromophores, it is necessary to include magnetic as well as electric dipole coupling terms in the time-dependent perturbation theory computations. Recent work investigating the effect of an absorptive and dispersive chiral medium on the rate of migration of energy will also be discussed.

  13. Electric Field Effects on the Intermolecular Interactions in Water Whiskers: Insight from Structures, Energetics, and Properties

    SciTech Connect

    Bai, Yang; He, Hui-Min; Li, Ying; Zhou, Zhong-Jun; Wang, Jia-Jun; Wu, Di; Chen, Wei; Gu, Feng-Long; Sumpter, Bobby G.; Huang, Jingsong

    2015-02-19

    Modulation of intermolecular interactions in response to external electric fields could be fundamental to the formation of unusual forms of water, such as water whiskers. However, a detailed understanding of the nature of intermolecular interactions in such systems is lacking. In this study, we present novel theoretical results based on electron correlation calculations regarding the nature of H-bonds in water whiskers, which is revealed by studying their evolution under external electric fields with various field strengths. We find that the water whiskers consisting of 2-7 water molecules all have a chain-length dependent critical electric field. Under the critical electric field, the most compact chain structures are obtained, featuring very strong H-bonds, herein referred to as covalent H-bonds. In the case of a water dimer whisker, the bond length of the novel covalent H-bond shortens by 25%, the covalent bond order increases by 9 times, and accordingly the H-bond energy is strengthened by 5 times compared to the normal H-bond in a (H2O)2 cluster. Below the critical electric field, it is observed that with increasing field strength, H-bonding orbitals display gradual evolutions in the orbital energy, orbital ordering, and orbital nature (i.e., from typical -style orbital to unusual -style double H-bonding orbital). We also show that beyond the critical electric field, a single water whisker may disintegrate to form a loosely bound zwitterionic chain due to a relay-style proton transfer, whereas two water whiskers may undergo intermolecular cross-linking to form a quasi-two-dimensional water network. In conclusion, these results help shed new insight on the effects of electric fields on water whisker formation.

  14. Electric Field Effects on the Intermolecular Interactions in Water Whiskers: Insight from Structures, Energetics, and Properties

    DOE PAGESBeta

    Bai, Yang; He, Hui-Min; Li, Ying; Zhou, Zhong-Jun; Wang, Jia-Jun; Wu, Di; Chen, Wei; Gu, Feng-Long; Sumpter, Bobby G.; Huang, Jingsong

    2015-02-19

    Modulation of intermolecular interactions in response to external electric fields could be fundamental to the formation of unusual forms of water, such as water whiskers. However, a detailed understanding of the nature of intermolecular interactions in such systems is lacking. In this study, we present novel theoretical results based on electron correlation calculations regarding the nature of H-bonds in water whiskers, which is revealed by studying their evolution under external electric fields with various field strengths. We find that the water whiskers consisting of 2-7 water molecules all have a chain-length dependent critical electric field. Under the critical electric field,more » the most compact chain structures are obtained, featuring very strong H-bonds, herein referred to as covalent H-bonds. In the case of a water dimer whisker, the bond length of the novel covalent H-bond shortens by 25%, the covalent bond order increases by 9 times, and accordingly the H-bond energy is strengthened by 5 times compared to the normal H-bond in a (H2O)2 cluster. Below the critical electric field, it is observed that with increasing field strength, H-bonding orbitals display gradual evolutions in the orbital energy, orbital ordering, and orbital nature (i.e., from typical -style orbital to unusual -style double H-bonding orbital). We also show that beyond the critical electric field, a single water whisker may disintegrate to form a loosely bound zwitterionic chain due to a relay-style proton transfer, whereas two water whiskers may undergo intermolecular cross-linking to form a quasi-two-dimensional water network. In conclusion, these results help shed new insight on the effects of electric fields on water whisker formation.« less

  15. Turbulence generation by a shock wave interacting with a random density inhomogeneity field

    NASA Astrophysics Data System (ADS)

    Huete Ruiz de Lira, C.

    2010-12-01

    When a planar shock wave interacts with a random pattern of pre-shock density non-uniformities, it generates an anisotropic turbulent velocity/vorticity field. This turbulence plays an important role in the early stages of the mixing process in a compressed fluid. This situation emerges naturally in a shock interaction with weakly inhomogeneous deuterium-wicked foam targets in inertial confinement fusion and with density clumps/clouds in astrophysics. We present an exact small-amplitude linear theory describing such an interaction. It is based on the exact theory of time and space evolution of the perturbed quantities behind a corrugated shock front for a single-mode pre-shock non-uniformity. Appropriate mode averaging in two dimensions results in closed analytical expressions for the turbulent kinetic energy, degree of anisotropy of velocity and vorticity fields in the shocked fluid, shock amplification of the density non-uniformity and sonic energy flux radiated downstream. These explicit formulae are further simplified in the important asymptotic limits of weak/strong shocks and highly compressible fluids. A comparison with the related problem of a shock interacting with a pre-shock isotropic vorticity field is also presented.

  16. Inducing Resonant Interactions in Ultracold Atoms with an Oscillating Magnetic Field

    NASA Astrophysics Data System (ADS)

    Smith, D. Hudson

    2015-05-01

    In systems of ultracold atoms, two-atom interactions can be resonantly enhanced by a new mechanism which does not rely upon the presence of a Feshbach resonance. In this mechanism, interactions are controlled by tuning the frequency of an applied oscillating magnetic field near the Bohr frequency corresponding to the energy gap between a pair of low-energy atoms and a two-atom bound state. Near the resonance, the s-wave scattering length is a simple function of the oscillation frequency whose asymmetric line-shape is similar to that of Feshbach resonances. Atom pairs can absorb (emit) quanta from (to) the oscillating field leading to inelastic losses. This mechanism for inducing resonant interactions is illustrated using two simple models, from which the dependencies of the resonance parameters on the strength of oscillating field are extracted. This mechanism gives experimental access to strongly interacting systems of atoms that have no convenient Feshbach resonance. This research was supported by the National Science Foundation under grant PHY-1310862.

  17. Collapse of self-interacting fields in asymptotically flat spacetimes: Do self-interactions render Minkowski spacetime unstable?

    NASA Astrophysics Data System (ADS)

    Okawa, Hirotada; Cardoso, Vitor; Pani, Paolo

    2014-02-01

    The nonlinear instability of anti-de Sitter spacetime has recently been established with the striking result that generic initial data collapse to form black holes. This outcome suggests that confined matter might generically collapse, and that collapse could only be halted—at most—by nonlinear bound states. Here, we provide evidence that such a mechanism can operate even in asymptotically flat spacetimes by studying the evolution of the Einstein-Klein-Gordon system for a self-interacting scalar field. We show that (i) configurations which do not collapse promptly can do so after successive reflections off the potential barrier, but (ii) that at intermediate amplitudes and Compton wavelengths, collapse to black holes is replaced by the appearance of oscillating soliton stars, or "oscillatons." Finally, (iii) for very small initial amplitudes, the field disperses away in a manner consistent with power-law tails of massive fields. Minkowski is stable against gravitational collapse. Our results provide one further piece to the rich phenomenology of gravitational collapse and show the important interplay between bound states, blueshift, dissipation and confinement effects.

  18. On the effect of a radiation field in modifying the intermolecular interaction between two chiral molecules

    SciTech Connect

    Salam, A.

    2006-01-07

    The change in the mutual energy of interaction between a pair of chiral molecules coupled via the exchange of a single virtual photon and in the presence of an electromagnetic field is calculated using nonrelativistic quantum electrodynamics. The particular viewpoint adopted is one that has an intuitive physical appeal and resembles a classical treatment. It involves the coupling of electric and magnetic dipole moments induced at each center by the incident radiation field to the resonant dipole-dipole interaction tensor. The energy shift is evaluated for fixed as well as random orientations of the molecular pair with respect to the direction of propagation of the field. A complete polarization analysis is carried out for the former situation by examining the effect of incident radiation that is linearly or circularly polarized and traveling in a direction that is parallel or perpendicular to the intermolecular distance vector. After tumble averaging, all polarization dependence of the energy shift vanishes. In both cases the interaction energy is directly proportional to the irradiance of the applied field, and is discriminatory, changing sign when one optically active species is replaced by its enantiomer. The asymptotic behavior of the energy shift at the limits of large and small separations is also studied.

  19. Multi-dimensional simulations of Magnetic Field Seeding of Plasma via Laser Beatwave Interaction

    NASA Astrophysics Data System (ADS)

    Welch, Dale; Thoma, Carsten; Bruner, Nichelle; Hwang, David; Hsu, Scott

    2011-10-01

    Assembling magnetized plasma for inertial fusion permits longer duration and smaller density-radius product fuel implosions by reducing the energy transport significantly. For fusion energy, however, the field must be created with a significant standoff distance. A promising technique for magnetic field production is the beat-wave interaction. Some theoretical results have been confirmed by microwave experiments. Recently, fully-kinetic 2D and 3D simulations of the interaction have been simulated using the LSP particle-in-cell code. We inject 2 CO2 100-micron transverse-extent lasers both with 1013 W/cm2 intensity into a peak 3 × 1016 cm-3 density plasma at various angles. The calculated interaction produces beatwaves at the predicted wavelength and frequency and drives magnetic fields up to 2.5 kG. We will examine the sensitivity of the efficiency of magnetic field production to laser parameters and plasma density scale length and discuss the application to the Plasma Liner eXperiment at LANL. Work supported by US DOE, OFES.

  20. A Hilbert Space Setting for Interacting Higher Spin Fields and the Higgs Issue

    NASA Astrophysics Data System (ADS)

    Schroer, Bert

    2015-03-01

    Wigner's famous 1939 classification of positive energy representations, combined with the more recent modular localization principle, has led to a significant conceptual and computational extension of renormalized perturbation theory to interactions involving fields of higher spin. Traditionally the clash between pointlike localization and the the Hilbert space was resolved by passing to a Krein space setting which resulted in the well-known BRST gauge formulation. Recently it turned out that maintaining a Hilbert space formulation for interacting higher spin fields requires a weakening of localization from point- to string-like fields for which the d = s + 1 short distance scaling dimension for integer spins is reduced to d = 1 and and renormalizable couplings in the sense of power-counting exist for any spin. This new setting leads to a significant conceptual change of the relation of massless couplings with their massless counterpart. Whereas e.g. the renormalizable interactions of s = 1 massive vectormesons with s 1 matter falls within the standard field-particle setting, their zero mass limits lead to much less understood phenomena as "infraparticles" and gluon/quark confinement. It is not surprising that such drastic conceptual changes in the area of gauge theories also lead to a radical change concerning the Higgs issue.