Science.gov

Sample records for quantized interaction field

  1. Self-adjointness of the Fourier expansion of quantized interaction field Lagrangians

    PubMed Central

    Paneitz, S. M.; Segal, I. E.

    1983-01-01

    Regularity properties significantly stronger than were previously known are developed for four-dimensional non-linear conformally invariant quantized fields. The Fourier coefficients of the interaction Lagrangian in the interaction representation—i.e., evaluated after substitution of the associated quantized free field—is a densely defined operator on the associated free field Hilbert space K. These Fourier coefficients are with respect to a natural basis in the universal cosmos ˜M, to which such fields canonically and maximally extend from Minkowski space-time M0, which is covariantly a submanifold of ˜M. However, conformally invariant free fields over M0 and ˜M are canonically identifiable. The kth Fourier coefficient of the interaction Lagrangian has domain inclusive of all vectors in K to which arbitrary powers of the free hamiltonian in ˜M are applicable. Its adjoint in the rigorous Hilbert space sense is a-k in the case of a hermitian Lagrangian. In particular (k = 0) the leading term in the perturbative expansion of the S-matrix for a conformally invariant quantized field in M0 is a self-adjoint operator. Thus, e.g., if ϕ(x) denotes the free massless neutral scalar field in M0, then ∫M0:ϕ(x)4:d4x is a self-adjoint operator. No coupling constant renormalization is involved here. PMID:16593346

  2. Generic suppression of conductance quantization of interacting electrons in graphene nanoribbons in a perpendicular magnetic field

    NASA Astrophysics Data System (ADS)

    Shylau, A. A.; Zozoulenko, I. V.; Xu, H.; Heinzel, T.

    2010-09-01

    The effects of electron interaction on the magnetoconductance of graphene nanoribbons (GNRs) are studied within the Hartree approximation. We find that a perpendicular magnetic field leads to a suppression instead of an expected improvement of the quantization. This suppression is traced back to interaction-induced modifications of the band structure leading to the formation of compressible strips in the middle of GNRs. It is also shown that the hard-wall confinement combined with electron interaction generates overlaps between forward and backward propagating states, which may significantly enhance backscattering in realistic GNRs. The relation to available experiments is discussed.

  3. Description of Atom-Field Interaction via Quantized Caldirola-Kanai Hamiltonian

    NASA Astrophysics Data System (ADS)

    Daneshmand, Roohollah; Tavassoly, Mohammad Kazem

    2017-04-01

    In this paper we outline an approach to the study of atom-field interacting systems, where the Hamiltonian of the field is simply inspired from the quantized Caldirola-Kanai Hamiltonian. As a simple physical realization of the model, the interaction between a two-level atom with such a single-mode field is studied. The explicit form of the atom-field entangled state associated with the considered system is analytically deduced and the dynamics of a few of its physical properties is numerically evaluated. To achieve the latter purposes, the temporal behavior of the degree of entanglement, atomic population inversion as well as sub-Poissonian statistics and quadrature squeezing of the field are evaluated. Moreover, the effects of the intensity of initial field and the damping parameter within the Caldirola-Kanai Hamiltonian on the above-mentioned criteria are investigated. As is shown, by adjusting the latter evolved parameters one can appropriately tune the discussed physical quantities.

  4. Description of Atom-Field Interaction via Quantized Caldirola-Kanai Hamiltonian

    NASA Astrophysics Data System (ADS)

    Daneshmand, Roohollah; Tavassoly, Mohammad Kazem

    2017-01-01

    In this paper we outline an approach to the study of atom-field interacting systems, where the Hamiltonian of the field is simply inspired from the quantized Caldirola-Kanai Hamiltonian. As a simple physical realization of the model, the interaction between a two-level atom with such a single-mode field is studied. The explicit form of the atom-field entangled state associated with the considered system is analytically deduced and the dynamics of a few of its physical properties is numerically evaluated. To achieve the latter purposes, the temporal behavior of the degree of entanglement, atomic population inversion as well as sub-Poissonian statistics and quadrature squeezing of the field are evaluated. Moreover, the effects of the intensity of initial field and the damping parameter within the Caldirola-Kanai Hamiltonian on the above-mentioned criteria are investigated. As is shown, by adjusting the latter evolved parameters one can appropriately tune the discussed physical quantities.

  5. Deformation quantization of fermi fields

    SciTech Connect

    Galaviz, I. Garcia-Compean, H. Przanowski, M. Turrubiates, F.J.

    2008-04-15

    Deformation quantization for any Grassmann scalar free field is described via the Weyl-Wigner-Moyal formalism. The Stratonovich-Weyl quantizer, the Moyal *-product and the Wigner functional are obtained by extending the formalism proposed recently in [I. Galaviz, H. Garcia-Compean, M. Przanowski, F.J. Turrubiates, Weyl-Wigner-Moyal Formalism for Fermi Classical Systems, arXiv:hep-th/0612245] to the fermionic systems of infinite number of degrees of freedom. In particular, this formalism is applied to quantize the Dirac free field. It is observed that the use of suitable oscillator variables facilitates considerably the procedure. The Stratonovich-Weyl quantizer, the Moyal *-product, the Wigner functional, the normal ordering operator, and finally, the Dirac propagator have been found with the use of these variables.

  6. Quantization of higher spin fields

    SciTech Connect

    Wagenaar, J. W.; Rijken, T. A

    2009-11-15

    In this article we quantize (massive) higher spin (1{<=}j{<=}2) fields by means of Dirac's constrained Hamilton procedure both in the situation were they are totally free and were they are coupled to (an) auxiliary field(s). A full constraint analysis and quantization is presented by determining and discussing all constraints and Lagrange multipliers and by giving all equal times (anti)commutation relations. Also we construct the relevant propagators. In the free case we obtain the well-known propagators and show that they are not covariant, which is also well known. In the coupled case we do obtain covariant propagators (in the spin-3/2 case this requires b=0) and show that they have a smooth massless limit connecting perfectly to the massless case (with auxiliary fields). We notice that in our system of the spin-3/2 and spin-2 case the massive propagators coupled to conserved currents only have a smooth limit to the pure massless spin-propagator, when there are ghosts in the massive case.

  7. Generation and evolution of entanglement in coupled quantum dots interacting with a quantized cavity field

    SciTech Connect

    Mitra, Arnab; Vyas, Reeta; Erenso, Daniel

    2007-11-15

    The generation of entanglement between two identical, interacting quantum dots - initially in ground states--by a coherent field and the subsequent time evolution of the entanglement are studied by calculating the concurrence between the two dots. The results predict that while it is possible to generate entanglement (or entanglement of formation, as defined for a mixed state) between the two dots, at no time do the dots become fully entangled to each other or is a maximally entangled Bell state ever achieved. We also observe that the degree of entanglement increases with an increase in the photon number inside the cavity and a decrease in the dot-photon coupling. The behavior of the two-dot system, initially prepared in an entangled state and interacting with thermal light, is also studied.

  8. Modeling molecule-plasmon interactions using quantized radiation fields within time-dependent electronic structure theory

    SciTech Connect

    Nascimento, Daniel R.; DePrince, A. Eugene

    2015-12-07

    We present a combined cavity quantum electrodynamics/ab initio electronic structure approach for simulating plasmon-molecule interactions in the time domain. The simple Jaynes-Cummings-type model Hamiltonian typically utilized in such simulations is replaced with one in which the molecular component of the coupled system is treated in a fully ab initio way, resulting in a computationally efficient description of general plasmon-molecule interactions. Mutual polarization effects are easily incorporated within a standard ground-state Hartree-Fock computation, and time-dependent simulations carry the same formal computational scaling as real-time time-dependent Hartree-Fock theory. As a proof of principle, we apply this generalized method to the emergence of a Fano-like resonance in coupled molecule-plasmon systems; this feature is quite sensitive to the nanoparticle-molecule separation and the orientation of the molecule relative to the polarization of the external electric field.

  9. Quantum dynamics of a BEC interacting with a single-mode quantized field in the presence of interatom collisions

    NASA Astrophysics Data System (ADS)

    Ghasemian, E.; Tavassoly, M. K.

    2016-09-01

    In this paper, we consider a model in which N two-level atoms in a Bose-Einstein condensate (BEC) interact with a single-mode quantized laser field. Our goal is to investigate the quantum dynamics of atoms in the BEC in the presence of interatom interactions. To achieve the purpose, at first, using the collective angular momentum operators, we try to reduce the dynamical Hamiltonian of the system to a well-known Jaynes-Cummings like model (JCM). We also use the Dicke model to construct the state of atomic subsystem, by which the analytical solution of the system may be obtained. Then, we analyze the atomic population inversion, the degree of entanglement between the "atoms in BEC" and the "field" as well as the Mandel parameter. Numerical results show that, the atomic population inversion, atom-field entanglement and quantum statistics of photons are very sensitive to the evolved parameters in the model (and so can be well-adjusted), such as the number of atoms in BEC, the intensity of initial field, the interatom coupling constant and detuning. To investigate the entanglement properties, we pay attention to the entropy and linear entropy. It is shown that, oscillations in the two entropy criteria may be seen, with some maxima of entanglement at some moments of time. Finally, looking for the quantum statistics, we evaluate the Mandel parameter, by which we demonstrate the sub-Poissonian statistics and so the nonclassical characteristics of the field state of system. Collapse-revival phenomenon, which is a distinguishable nonclassical characteristic of the system, can be apparently observed in the atomic population inversion and the Mandel parameter.

  10. Canonical quantization theory of general singular QED system of Fermi field interaction with generally decomposed gauge potential

    SciTech Connect

    Zhang, Zhen-Lu; Huang, Yong-Chang

    2014-03-15

    Quantization theory gives rise to transverse phonons for the traditional Coulomb gauge condition and to scalar and longitudinal photons for the Lorentz gauge condition. We describe a new approach to quantize the general singular QED system by decomposing a general gauge potential into two orthogonal components in general field theory, which preserves scalar and longitudinal photons. Using these two orthogonal components, we obtain an expansion of the gauge-invariant Lagrangian density, from which we deduce the two orthogonal canonical momenta conjugate to the two components of the gauge potential. We then obtain the canonical Hamiltonian in the phase space and deduce the inherent constraints. In terms of the naturally deduced gauge condition, the quantization results are exactly consistent with those in the traditional Coulomb gauge condition and superior to those in the Lorentz gauge condition. Moreover, we find that all the nonvanishing quantum commutators are permanently gauge-invariant. A system can only be measured in physical experiments when it is gauge-invariant. The vanishing longitudinal vector potential means that the gauge invariance of the general QED system cannot be retained. This is similar to the nucleon spin crisis dilemma, which is an example of a physical quantity that cannot be exactly measured experimentally. However, the theory here solves this dilemma by keeping the gauge invariance of the general QED system. -- Highlights: •We decompose the general gauge potential into two orthogonal parts according to general field theory. •We identify a new approach for quantizing the general singular QED system. •The results obtained are superior to those for the Lorentz gauge condition. •The theory presented solves dilemmas such as the nucleon spin crisis.

  11. Quantized vortices in interacting gauge theories

    NASA Astrophysics Data System (ADS)

    Butera, Salvatore; Valiente, Manuel; Ohberg, Patrik

    2015-05-01

    We consider a two-dimensional weakly interacting ultracold Bose gas whose constituents are two-level atoms. We study the effects of a synthetic density-dependent gauge field that arises from laser-matter coupling in the adiabatic limit with a laser configuration such that the single-particle vector potential corresponds to a constant synthetic magnetic field. We find a new type of current non-linearity in the Gross-Pitaevskii equation which affects the dynamics of the order parameter of the condensate. We investigate on the physical conditions that make the nucleation of a quantized vortex in the system energetically favourable with respect to the non rotating solution. Two different physical interpretations can be given to this new non linearity: firstly it can be seen as a local modification of the mean field coupling constant, whose value depends on the angular momentum of the condensate. Secondly, it can be interpreted as a density modulated angular velocity given to the cloud. We analyze the physical conditions that make a single vortex state energetically favourable. In the Thomas-Fermi limit, we show that the effect of the new nonlinearity is to induce a rotation to the condensate, where the transition from non-rotating to rotating depends on the density of the cloud. The authors acknowledge support from CM-DTC and EPSRC.

  12. Quantized vortices in interacting gauge theories

    NASA Astrophysics Data System (ADS)

    Butera, Salvatore; Valiente, Manuel; Öhberg, Patrik

    2016-01-01

    We consider a two-dimensional weakly interacting ultracold Bose gas whose constituents are two-level atoms. We study the effects of a synthetic density-dependent gauge field that arises from laser-matter coupling in the adiabatic limit with a laser configuration such that the single-particle zeroth-order vector potential corresponds to a constant synthetic magnetic field. We find a new exotic type of current nonlinearity in the Gross-Pitaevskii equation which affects the dynamics of the order parameter of the condensate. We investigate the rotational properties of this system in the Thomas-Fermi limit, focusing in particular on the physical conditions that make the existence of a quantized vortex in the system energetically favourable with respect to the non-rotating solution. We point out that two different physical interpretations can be given to this new nonlinearity: firstly it can be seen as a local modification of the mean field coupling constant, whose value depends on the angular momentum of the condensate. Secondly, it can be interpreted as a density modulated angular velocity given to the cloud. Looking at the problem from both of these viewpoints, we show that the effect of the new nonlinearity is to induce a rotation to the condensate, where the transition from non-rotating to rotating states depends on the density of the cloud.

  13. Entropic quantization of scalar fields

    SciTech Connect

    Ipek, Selman; Caticha, Ariel

    2015-01-13

    Entropic Dynamics is an information-based framework that seeks to derive the laws of physics as an application of the methods of entropic inference. The dynamics is derived by maximizing an entropy subject to constraints that represent the physically relevant information that the motion is continuous and non-dissipative. Here we focus on the quantum theory of scalar fields. We provide an entropic derivation of Hamiltonian dynamics and using concepts from information geometry derive the standard quantum field theory in the Schrödinger representation.

  14. Phase-space quantization of field theory.

    SciTech Connect

    Curtright, T.; Zachos, C.

    1999-04-20

    In this lecture, a limited introduction of gauge invariance in phase-space is provided, predicated on canonical transformations in quantum phase-space. Exact characteristic trajectories are also specified for the time-propagating Wigner phase-space distribution function: they are especially simple--indeed, classical--for the quantized simple harmonic oscillator. This serves as the underpinning of the field theoretic Wigner functional formulation introduced. Scalar field theory is thus reformulated in terms of distributions in field phase-space. This is a pedagogical selection from work published and reported at the Yukawa Institute Workshop ''Gauge Theory and Integrable Models'', 26-29 January, 1999.

  15. Alternate Light Front Quantization Procedure for Scalar Fields

    NASA Astrophysics Data System (ADS)

    Przeszowski, Jerzy A.

    2017-03-01

    The novel procedure for the light-front (LF) quantization is formulated and applied for models of free scalar fields. The expected well-known results are rediscovered for a single field and new results are obtained for the two fields model. We use fields smeared with a test function on the LF hypersurface as the basic ingredient of our novel quantization procedure.

  16. Precise quantization of anomalous Hall effect near zero magnetic field

    NASA Astrophysics Data System (ADS)

    Bestwick, Andrew; Fox, Eli; Kou, Xufeng; Pan, Lei; Wang, Kang; Goldhaber-Gordon, David

    2015-03-01

    The quantum anomalous Hall effect (QAHE) has recently been of great interest due to its recent experimental realization in thin films of Cr-doped (Bi, Sb)2Te3, a ferromagnetic 3D topological insulator. The presence of ferromagnetic exchange breaks time-reversal symmetry, opening a gap in the surface states, but gives rise to dissipationless chiral conduction at the edge of a magnetized film. Ideally, this leads to vanishing longitudinal resistance and Hall resistance quantized to h /e2 , where h is Planck's constant and e is the electron charge, but perfect quantization has so far proved elusive. Here, we study the QAHE in the limit of zero applied magnetic field, and measure Hall resistance quantized to within one part per 10,000. Deviation from quantization is due primarily to thermally activated carriers, which can be nearly eliminated through adiabatic demagnetization cooling. This result demonstrates an important step toward dissipationless electron transport in technologically relevant conditions.

  17. Polymer-Fourier quantization of the scalar field revisited

    NASA Astrophysics Data System (ADS)

    Garcia-Chung, Angel; Vergara, J. David

    2016-10-01

    The polymer quantization of the Fourier modes of the real scalar field is studied within algebraic scheme. We replace the positive linear functional of the standard Poincaré invariant quantization by a singular one. This singular positive linear functional is constructed as mimicking the singular limit of the complex structure of the Poincaré invariant Fock quantization. The resulting symmetry group of such polymer quantization is the subgroup SDiff(ℝ4) which is a subgroup of Diff(ℝ4) formed by spatial volume preserving diffeomorphisms. In consequence, this yields an entirely different irreducible representation of the canonical commutation relations, nonunitary equivalent to the standard Fock representation. We also compared the Poincaré invariant Fock vacuum with the polymer Fourier vacuum.

  18. Potential scattering of electrons in a quantized radiation field

    NASA Astrophysics Data System (ADS)

    Bergou, J.; Ehlotzky, F.

    1986-05-01

    Potential scattering of electrons in a strong laser field is reconsidered. The laser beam is described by a quantized single-mode plane-wave field with a finite number of quanta in the mode. The scattering amplitude is expanded in powers of the potential, and the first two Born terms are considered. It is shown that in the limit of an infinite number of field quanta, the Kroll-Watson approximation is recovered. Additional insight is gained into the validity of this low-frequency theorem. The approach rests on the introduction of electron-dressed quantized-field states. Relations to earlier work are indicated.

  19. Quantization of gauge fields, graph polynomials and graph homology

    SciTech Connect

    Kreimer, Dirk; Sars, Matthias; Suijlekom, Walter D. van

    2013-09-15

    We review quantization of gauge fields using algebraic properties of 3-regular graphs. We derive the Feynman integrand at n loops for a non-abelian gauge theory quantized in a covariant gauge from scalar integrands for connected 3-regular graphs, obtained from the two Symanzik polynomials. The transition to the full gauge theory amplitude is obtained by the use of a third, new, graph polynomial, the corolla polynomial. This implies effectively a covariant quantization without ghosts, where all the relevant signs of the ghost sector are incorporated in a double complex furnished by the corolla polynomial–we call it cycle homology–and by graph homology. -- Highlights: •We derive gauge theory Feynman from scalar field theory with 3-valent vertices. •We clarify the role of graph homology and cycle homology. •We use parametric renormalization and the new corolla polynomial.

  20. The Quantization of Classical Fields Equations and the Cyclic Universe

    NASA Astrophysics Data System (ADS)

    Guo, Zhu Ho

    2011-03-01

    Basically nothing is known definitely about the early universe. Einstein gravity field equation, based on general relativity and the grand unified field theories, has been employed for the study of the early universe but has not provided definitive answers. As detailed in this article, for understanding the enormous energy of the early universe, classical field equations, including general relativity, must be quantized. The quantization of general relativity by using Feynman's formulation has also faced difficulties. Unified Field theory also needs quantization of Einstein equation for studying the universe. New interpretations of the uncertainty principles indicates that physical quantities should have both lower and upper limits. Physical quantities form pairs, couple and complement to each other performing cyclic process. Their limits should overcome the limits of coupling formulae. In this article, cyclic universe theories are reviewed and limits coupling formulae are derived for pairs of physical quantities. By means of these limits coupling formulae, most of the classical field equations, including Einstein equation, are quantized. The equations derived are used successfully to describe quantitatively the whole development of our cyclic universe. Some long-standing questions in cosmology may be answered with this approach, such as the origin of quasar and the existence of other universes.

  1. The Theory of Quantized Fields. II

    DOE R&D Accomplishments Database

    Schwinger, J.

    1951-01-01

    The arguments leading to the formulation of the Action Principle for a general field are presented. In association with the complete reduction of all numerical matrices into symmetrical and anti-symmetrical parts, the general field is decomposed into two sets, which are identified with Bose-Einstein and Fermi-Dirac fields. The spin restriction on the two kinds of fields is inferred from the time reflection invariance requirement. The consistency of the theory is verified in terms of a criterion involving the various generators of infinitesimal transformations. Following a discussion of charged fields, the electromagnetic field is introduced to satisfy the postulate of general gauge invariance. As an aspect of the latter, it is recognized that the electromagnetic field and charged fields are not kinematically independent. After a discussion of the field-strength commutation relations, the independent dynamical variable of the electromagnetic field are exhibited in terms of a special gauge.

  2. Gravity quantized: Loop quantum gravity with a scalar field

    SciTech Connect

    Domagala, Marcin; Kaminski, Wojciech; Giesel, Kristina; Lewandowski, Jerzy

    2010-11-15

    ...''but we do not have quantum gravity.'' This phrase is often used when analysis of a physical problem enters the regime in which quantum gravity effects should be taken into account. In fact, there are several models of the gravitational field coupled to (scalar) fields for which the quantization procedure can be completed using loop quantum gravity techniques. The model we present in this paper consists of the gravitational field coupled to a scalar field. The result has similar structure to the loop quantum cosmology models, except that it involves all the local degrees of freedom of the gravitational field because no symmetry reduction has been performed at the classical level.

  3. Novel properties of the q-analogue quantized radiation field

    NASA Technical Reports Server (NTRS)

    Nelson, Charles A.

    1993-01-01

    The 'classical limit' of the q-analog quantized radiation field is studied paralleling conventional quantum optics analyses. The q-generalizations of the phase operator of Susskind and Glogower and that of Pegg and Barnett are constructed. Both generalizations and their associated number-phase uncertainty relations are manifestly q-independent in the n greater than g number basis. However, in the q-coherent state z greater than q basis, the variance of the generic electric field, (delta(E))(sup 2) is found to be increased by a factor lambda(z) where lambda(z) greater than 1 if q not equal to 1. At large amplitudes, the amplitude itself would be quantized if the available resolution of unity for the q-analog coherent states is accepted in the formulation. These consequences are remarkable versus the conventional q = 1 limit.

  4. The Theory of Quantized Fields. III

    DOE R&D Accomplishments Database

    Schwinger, J.

    1953-05-01

    In this paper we discuss the electromagnetic field, as perturbed by a prescribed current. All quantities of physical interest in various situations, eigenvalues, eigenfunctions, and transformation probabilities, are derived from a general transformation function which is expressed in a non-Hermitian representation. The problems treated are: the determination of the energy-momentum eigenvalues and eigenfunctions for the isolated electromagnetic field, and the energy eigenvalues and eigenfunctions for the field perturbed by a time-independent current that departs from zero only within a finite time interval, and for a time-dependent current that assumes non-vanishing time-independent values initially and finally. The results are applied in a discussion of the intra-red catastrophe and of the adiabatic theorem. It is shown how the latter can be exploited to give a uniform formulation for all problems requiring the evaluation of transition probabilities or eigenvalue displacements.

  5. Quantum paradoxes, entanglement and their explanation on the basis of quantization of fields

    NASA Astrophysics Data System (ADS)

    Melkikh, A. V.

    2017-01-01

    Quantum entanglement is discussed as a consequence of the quantization of fields. The inclusion of quantum fields self-consistently explains some quantum paradoxes (EPR and Hardy’s paradox). The definition of entanglement was introduced, which depends on the maximum energy of the interaction of particles. The destruction of entanglement is caused by the creation and annihilation of particles. On this basis, an algorithm for quantum particle evolution was formulated.

  6. Precise quantization of anomalous Hall effect near zero magnetic field

    SciTech Connect

    Bestwick, A. J.; Fox, E. J.; Kou, Xufeng; Pan, Lei; Wang, Kang L.; Goldhaber-Gordon, D.

    2015-05-04

    In this study, we report a nearly ideal quantum anomalous Hall effect in a three-dimensional topological insulator thin film with ferromagnetic doping. Near zero applied magnetic field we measure exact quantization in the Hall resistance to within a part per 10,000 and a longitudinal resistivity under 1 Ω per square, with chiral edge transport explicitly confirmed by nonlocal measurements. Deviations from this behavior are found to be caused by thermally activated carriers, as indicated by an Arrhenius law temperature dependence. Using the deviations as a thermometer, we demonstrate an unexpected magnetocaloric effect and use it to reach near-perfect quantization by cooling the sample below the dilution refrigerator base temperature in a process approximating adiabatic demagnetization refrigeration.

  7. Noise suppression in three-level atomic system driven by quantized field

    NASA Astrophysics Data System (ADS)

    Gelman, A.; Mironov, V.

    2010-02-01

    Numerically by the Monte-Carlo wave function (MCWF) method and analytically by the Heisenberg-Langevin method the interaction of three-level atom with quantized electromagnetic field is investigated in the conditions of electromagnetically induced transparency (EIT) conditions. A possibility of noise suppression in atomic system by means of quantum features of squeezed light is examined in detail. The characteristics of atomic system responsible for relaxation processes and noise in EIT are found.

  8. Noise suppression in three-level atomic system driven by quantized field

    NASA Astrophysics Data System (ADS)

    Gelman, A.; Mironov, V.

    2009-10-01

    Numerically by the Monte-Carlo wave function (MCWF) method and analytically by the Heisenberg-Langevin method the interaction of three-level atom with quantized electromagnetic field is investigated in the conditions of electromagnetically induced transparency (EIT) conditions. A possibility of noise suppression in atomic system by means of quantum features of squeezed light is examined in detail. The characteristics of atomic system responsible for relaxation processes and noise in EIT are found.

  9. q-bosons and the q-analogue quantized field

    NASA Technical Reports Server (NTRS)

    Nelson, Charles A.

    1995-01-01

    The q-analogue coherent states are used to identify physical signatures for the presence of a 1-analogue quantized radiation field in the q-CS classical limits where the absolute value of z is large. In this quantum-optics-like limit, the fractional uncertainties of most physical quantities (momentum, position, amplitude, phase) which characterize the quantum field are O(1). They only vanish as O(1/absolute value of z) when q = 1. However, for the number operator, N, and the N-Hamiltonian for a free q-boson gas, H(sub N) = h(omega)(N + 1/2), the fractional uncertainties do still approach zero. A signature for q-boson counting statistics is that (Delta N)(exp 2)/ (N) approaches 0 as the absolute value of z approaches infinity. Except for its O(1) fractional uncertainty, the q-generalization of the Hermitian phase operator of Pegg and Barnett, phi(sub q), still exhibits normal classical behavior. The standard number-phase uncertainty-relation, Delta(N) Delta phi(sub q) = 1/2, and the approximate commutation relation, (N, phi(sub q)) = i, still hold for the single-mode q-analogue quantized field. So, N and phi(sub q) are almost canonically conjugate operators in the q-CS classical limit. The q-analogue CS's minimize this uncertainty relation for moderate (absolute value of z)(exp 2).

  10. Nonlinear density excitations in electron-positron-ion plasmas with trapping in a quantizing magnetic field

    NASA Astrophysics Data System (ADS)

    Iqbal, M. J.; Masood, W.; Shah, H. A.; Tsintsadze, N. L.

    2017-01-01

    In the present work, we have investigated the effect of trapping as a microscopic phenomenon on the formation of solitary structures in the presence of a quantizing magnetic field in an electron-positron-ion (e-p-i) plasma having degenerate electrons and positrons, whereas ions are taken to be classical and cold. We have found that positron concentration, quantizing magnetic field, and finite electron temperature effects not only affect the linear dispersion characteristics of the electrostatic waves under consideration but also have a significant bearing on the propagation of solitary structures in the nonlinear regime. Importantly, the system under consideration has been found to allow the formation of compressive solitary structures only. The work presented here may be beneficial to understand the propagation of nonlinear electrostatic structures in dense astrophysical environments and in intense-laser plasma interactions.

  11. Casimir effect for a scalar field via Krein quantization

    SciTech Connect

    Pejhan, H.; Tanhayi, M.R.; Takook, M.V.

    2014-02-15

    In this work, we present a rather simple method to study the Casimir effect on a spherical shell for a massless scalar field with Dirichlet boundary condition by applying the indefinite metric field (Krein) quantization technique. In this technique, the field operators are constructed from both negative and positive norm states. Having understood that negative norm states are un-physical, they are only used as a mathematical tool for renormalizing the theory and then one can get rid of them by imposing some proper physical conditions. -- Highlights: • A modification of QFT is considered to address the vacuum energy divergence problem. • Casimir energy of a spherical shell is calculated, through this approach. • In this technique, it is shown, the theory is automatically regularized.

  12. Quantization of electromagnetic field and analysis of Purcell effect based on formalism of scattering matrix

    NASA Astrophysics Data System (ADS)

    Kaliteevski, M. A.; Gubaydullin, A. R.; Ivanov, K. A.; Mazlin, V. A.

    2016-09-01

    We have developed a rigorous self-consistent approach for the quantization of electromagnetic field in inhomogeneous structures. The approach is based on utilization of the scattering matrix of the system. Instead of the use of standard periodic Born-Karman boundary conditions, we use the quantization condition implying equating eigenvalues of the scattering matrix (S-matrix) of the system to unity (S-quantization). In the trivial case of uniform medium boundary condition for S-quantization is nothing but periodic boundary condition. S-quantization allows calculating modification of the spontaneous emission rate for arbitrary inhomogeneous structure and direction of the emitted radiation. S-quantization solves the long-standing problem coupled to normalization of the quasi-stationary electromagnetic modes. Examples of application of S-quantization for the calculation of spontaneous emission rate for the cases of Bragg reflector and microcavity are demonstrated.

  13. Plasmon-photon interaction in metal nanoparticles: Second-quantization perturbative approach

    NASA Astrophysics Data System (ADS)

    Finazzi, Marco; Ciccacci, Franco

    2012-07-01

    We present a description of photon-plasmon interactions in metal nanoparticles based on the second quantization of electromagnetic fields and collective electron excitations. The quantum optical properties of nanostructured systems sustaining resonant charge oscillations will be derived by applying perturbation theory. The linear optical properties can be completely derived from the plasmon-photon coupling coefficients that apply to the particular particle material, environment, and geometry. Nonlinear electromagnetic phenomena such as second harmonic generation need instead to be described by explicitly accounting for the nonlinear corrections of the plasmon-photon interaction Hamiltonian.

  14. Cotangent bundle quantization: entangling of metric and magnetic field

    NASA Astrophysics Data System (ADS)

    Karasev, M. V.; Osborn, T. A.

    2005-10-01

    For manifolds \\mathcal{M} of noncompact type endowed with an affine connection (for example, the Levi-Civita connection) and a closed 2-form (magnetic field), we define a Hilbert algebra structure in the space L^2(T^*\\!{\\mathcal{M}}) and construct an irreducible representation of this algebra in L^2(\\mathcal{M}) . This algebra is automatically extended to polynomial in momenta functions and distributions. Under some natural conditions, this algebra is unique. The non-commutative product over T^*\\!{\\mathcal{M}} is given by an explicit integral formula. This product is exact (not formal) and is expressed in invariant geometrical terms. Our analysis reveals that this product has a front, which is described in terms of geodesic triangles in \\mathcal{M} . The quantization of δ-functions induces a family of symplectic reflections in T^*\\!{\\mathcal{M}} and generates a magneto-geodesic connection Γ on T^*\\mathcal{M} . This symplectic connection entangles, on the phase space level, the original affine structure on \\mathcal{M} and the magnetic field. In the classical approximation, the planck2-part of the quantum product contains the Ricci curvature of Γ and a magneto-geodesic coupling tensor.

  15. Anatomy of a deformed symmetry: Field quantization on curved momentum space

    SciTech Connect

    Arzano, Michele

    2011-01-15

    In certain scenarios of deformed relativistic symmetries relevant for noncommutative field theories particles exhibit a momentum space described by a non-Abelian group manifold. Starting with a formulation of phase space for such particles which allows for a generalization to include group-valued momenta we discuss quantization of the corresponding field theory. Focusing on the particular case of {kappa}-deformed phase space we construct the one-particle Hilbert space and show how curvature in momentum space leads to an ambiguity in the quantization procedure reminiscent of the ambiguities one finds when quantizing fields in curved space-times. The tools gathered in the discussion on quantization allow for a clear definition of the basic deformed field mode operators and two-point function for {kappa}-quantum fields.

  16. Effective Field Theory of Fractional Quantized Hall Nematics

    SciTech Connect

    Mulligan, Michael; Nayak, Chetan; Kachru, Shamit; /Stanford U., Phys. Dept. /SLAC

    2012-06-06

    We present a Landau-Ginzburg theory for a fractional quantized Hall nematic state and the transition to it from an isotropic fractional quantum Hall state. This justifies Lifshitz-Chern-Simons theory - which is shown to be its dual - on a more microscopic basis and enables us to compute a ground state wave function in the symmetry-broken phase. In such a state of matter, the Hall resistance remains quantized while the longitudinal DC resistivity due to thermally-excited quasiparticles is anisotropic. We interpret recent experiments at Landau level filling factor {nu} = 7/3 in terms of our theory.

  17. The Indispensability of Ghost Fields in the Light-Cone Gauge Quantization of Gauge Fields

    NASA Astrophysics Data System (ADS)

    Nakawaki, Y.; McCartor, G.

    1999-07-01

    We continue McCartor and Robertson's recent demonstration of the indispensability of ghost fields in the light-cone gauge quantization of gauge fields. It is shown that the ghost fields are indispensable in deriving well-defined antiderivatives and in regularizing the most singular component of the gauge field propagator. To this end it is sufficient to confine ourselves to noninteracting abelian fields. Furthermore, to circumvent dealing with constrained systems, we construct the temporal gauge canonical formulation of the free electromagnetic field in auxiliary coordinates xμ=(x-, x+, x1, x2), where x- = x0 cos {θ}-x3 sin θ x+ = x0 sin θ +x3 cos θ and x- plays the role of time. In so doing we can quantize the fields canonically without any constraints, unambiguously introduce ``static ghost fields" as residual gauge degrees of freedom and construct the light-cone gauge solution in the light-cone representation by simply taking the light-cone limit (θ --> (π / 4) ). As a by product we find that, with a suitable choice of vacuum, the Mandelstam-Leibbrandt form of the propagator can be derived in the θ=0 case (the temporal gauge formulation in the equal-time representation).

  18. Thomas-Fermi and Thomas-Fermi-Dirac models in two-dimension - Effect of strong quantizing magnetic field

    NASA Astrophysics Data System (ADS)

    De, Sanchari; Chakrabarty, Somenath

    2017-01-01

    Using Thomas-Fermi (TF) and Thomas-Fermi-Dirac (TFD) models, we have investigated the properties of electron gas inside two-dimensional (2D) Wigner-Seitz (WS) cells in presence of a strong orthogonal quantizing magnetic field. The electron-electron Coulomb exchange interaction in quasi-2D case is obtained. The exact form of exchange term in 2D is derived making the width of the system tending to zero. Further, using the exchange term, the Thomas-Fermi-Dirac equation in 2D is established. It has been observed that only the ionized WS cell can have finite radius in the Thomas-Fermi model, even in presence of a strong quantizing magnetic field. On the other hand, in the Thomas-Fermi-Dirac model a neutral WS cell can have finite radius.

  19. On the magnetotransport of 3D systems in quantizing magnetic field

    NASA Astrophysics Data System (ADS)

    Cheremisin, M. V.

    2014-12-01

    The resistivity components of 3D electron gas placed in quantizing magnetic field are calculated taking into account the correction caused by combined action of the Peltier and Seebeck thermoelectric effects. The longitudinal, transverse and the Hall magnetoresistivities exhibit familiar 1/B-period oscillations being universal functions of magnetic field and temperature.

  20. Thermoelectric power of n-InSb in a transverse quantizing magnetic field

    SciTech Connect

    Gadzhialiev, M. M. Bashirov, R. R.; Pirmagomedov, Z. Sh.; Efendieva, T. N.; Mädge, H.; Filar, K.

    2015-07-15

    The thermoelectric power of electronic InSb is investigated in a transverse magnetic field up to 14 T at 80 K. It is established that the experimental results for a quantizing magnetic field agree with theoretical data obtained without accounting for spin splitting of the Landau levels.

  1. Effects of quantized scalar fields in cosmological spacetimes with big rip singularities

    SciTech Connect

    Bates, Jason D.; Anderson, Paul R.

    2010-07-15

    Effects of quantized free scalar fields in cosmological spacetimes with big rip singularities are investigated. The energy densities for these fields are computed at late times when the expansion is very rapid. For the massless minimally coupled field it is shown that an attractor state exists in the sense that, for a large class of states, the energy density of the field asymptotically approaches the energy density it would have if it was in the attractor state. Results of numerical computations of the energy density for the massless minimally coupled field and for massive fields with minimal and conformal couplings to the scalar curvature are presented. For the massive fields the energy density is seen to always asymptotically approach that of the corresponding massless field. The question of whether the energy densities of quantized fields can be large enough for backreaction effects to remove the big rip singularity is addressed.

  2. Phase space quantization, noncommutativity, and the gravitational field

    NASA Astrophysics Data System (ADS)

    Chatzistavrakidis, Athanasios

    2014-07-01

    In this paper we study the structure of the phase space in noncommutative geometry in the presence of a nontrivial frame. Our basic assumptions are that the underlying space is a symplectic and parallelizable manifold. Furthermore, we assume the validity of the Leibniz rule and the Jacobi identities. We consider noncommutative spaces due to the quantization of the symplectic structure and determine the momentum operators that guarantee a set of canonical commutation relations, appropriately extended to include the nontrivial frame. We stress the important role of left vs right acting operators and of symplectic duality. This enables us to write down the form of the full phase space algebra on these noncommutative spaces, both in the noncompact and in the compact case. We test our results against the class of four-dimensional and six-dimensional symplectic nilmanifolds, thus presenting a large set of nontrivial examples that realizes the general formalism.

  3. Quantized photonic spin Hall effect in graphene

    NASA Astrophysics Data System (ADS)

    Cai, Liang; Liu, Mengxia; Chen, Shizhen; Liu, Yachao; Shu, Weixing; Luo, Hailu; Wen, Shuangchun

    2017-01-01

    We examine the photonic spin Hall effect (SHE) in a graphene-substrate system with the presence of an external magnetic field. In the quantum Hall regime, we demonstrate that the in-plane and transverse spin-dependent splittings in the photonic SHE exhibit different quantized behaviors. The quantized SHE can be described as a consequence of a quantized geometric phase (Berry phase), which corresponds to the quantized spin-orbit interaction. Furthermore, an experimental scheme based on quantum weak value amplification is proposed to detect the quantized SHE in the terahertz frequency regime. By incorporating the quantum weak measurement techniques, the quantized photonic SHE holds great promise for detecting quantized Hall conductivity and the Berry phase. These results may bridge the gap between the electronic SHE and photonic SHE in graphene.

  4. B-V quantization and field-anti-field duality for p-form gauge fields, topological field theories and 2D gravity

    NASA Astrophysics Data System (ADS)

    Baulieu, Laurent

    1996-02-01

    We construct a framework which unifies in pairs the fields and anti-fields of the Batalin and Vilkovisky quantization method. We consider gauge theories of p-forms coupled to Yang-Mills fields. Our algorithm generates many topological models of the Chern-Simons type or of the Donaldson-Witten type. Some of these models can undergo a partial breaking of their topological symmetries. We investigate the properties of 2D gravity in the Batalin and Vilkovisky quantization scheme. We find a structure which satisfies the holomorphic factorization and also properties analogous to those existing in the topological theories of forms. New conformal fields are introduced with their invariant action.

  5. Field quantization and squeezed states generation in resonators with time-dependent parameters

    NASA Technical Reports Server (NTRS)

    Dodonov, V. V.; Klimov, A. B.; Nikonov, D. E.

    1992-01-01

    The problem of electromagnetic field quantization is usually considered in textbooks under the assumption that the field occupies some empty box. The case when a nonuniform time-dependent dielectric medium is confined in some space region with time-dependent boundaries is studied. The basis of the subsequent consideration is the system of Maxwell's equations in linear passive time-dependent dielectric and magnetic medium without sources.

  6. Uniqueness of the Fock quantization of scalar fields in spatially flat cosmological spacetimes

    SciTech Connect

    Gomar, Laura Castelló; Cortez, Jerónimo; Blas, Daniel Martín-de; Marugán, Guillermo A. Mena; Velhinho, José M. E-mail: jacq@ciencias.unam.mx E-mail: jvelhi@ubi.pt

    2012-11-01

    We study the Fock quantization of scalar fields in (generically) time dependent scenarios, focusing on the case in which the field propagation occurs in –either a background or effective– spacetime with spatial sections of flat compact topology. The discussion finds important applications in cosmology, like e.g. in the description of test Klein-Gordon fields and scalar perturbations in Friedmann-Robertson-Walker spacetime in the observationally favored flat case. Two types of ambiguities in the quantization are analyzed. First, the infinite ambiguity existing in the choice of a Fock representation for the canonical commutation relations, understandable as the freedom in the choice of inequivalent vacua for a given field. Besides, in cosmological situations, it is customary to scale the fields by time dependent functions, which absorb part of the evolution arising from the spacetime, which is treated classically. This leads to an additional ambiguity, this time in the choice of a canonical pair of field variables. We show that both types of ambiguities are removed by the requirements of (a) invariance of the vacuum under the symmetries of the three-torus, and (b) unitary implementation of the dynamics in the quantum theory. In this way, one arrives at a unique class of unitarily equivalent Fock quantizations for the system. This result provides considerable robustness to the quantum predictions and renders meaningful the confrontation with observation.

  7. Markov Random Fields, Stochastic Quantization and Image Analysis

    DTIC Science & Technology

    1990-01-01

    Markov random fields based on the lattice Z2 have been extensively used in image analysis in a Bayesian framework as a-priori models for the...of Image Analysis can be given some fundamental justification then there is a remarkable connection between Probabilistic Image Analysis , Statistical Mechanics and Lattice-based Euclidean Quantum Field Theory.

  8. The study of relatively low density stellar matter in presence of strong quantizing magnetic field

    SciTech Connect

    Nag, Nandini; Ghosh, Sutapa; Chakrabarty, Somenath

    2009-03-15

    The effect of strong quantizing magnetic field on the equation of state of matter at the outer crust region of magnetars is studied. The density of such matter is low enough compared to the matter density at the inner crust or outer core region. Based on the relativistic version of semi-classical Thomas-Fermi-Dirac model in presence of strong quantizing magnetic field a formalism is developed to investigate this specific problem. The equation of state of such low density crustal matter is obtained by replacing the compressed atoms/ions by Wigner-Seitz cells with nonuniform electron density. The results are compared with other possible scenarios. The appearance of Thomas-Fermi induced electric charge within each Wigner-Seitz cell is also discussed.

  9. Surface photocurrent in an electron gas over liquid He subjected to a quantizing magnetic field

    NASA Astrophysics Data System (ADS)

    Magarill, L. I.; Entin, M. V.

    2015-06-01

    The photogalvanic effect is studied in electron gas over the liquid He surface with the presence of quantizing magnetic field. The gas is affected by the weak alternating microwave electric field tilted towards the surface normal. Both linear and circular photogalvanic effects are studied. The current occurs via indirect phototransition with the participation of ripplons emission or absorption. The photogalvanic tensor has strong resonances at the microwave frequency ω approaching to the frequencies of transitions between size-quantized subbands. The resonances are symmetric or antisymmetric, depending on a tensor component. Other resonances appear at ω ≈ nω c , where n being integer and ω c is the cyclotron frequency. It is found that the latter resonances split to two peaks connected with emission or absorption of ripplons. The calculated photogalvanic coefficients are in accord with the experimental observed values.

  10. Quantized scalar field as DM: the axion's case

    SciTech Connect

    Barranco, J.; Bernal, A.

    2008-12-04

    We derive a rough estimation of the radius and the mass of a self-gravitating system made of axions. The system is a stationary solution of the Einstein-Klein-Gordon equations with a source term given by the vacuum expectation value of the energy-momentum operator constructed from the axion field. We found that such system would have masses of the order of asteroids ({approx}10{sup -10} M{sub {center_dot}}) and radius of the order of few centimeters. Some implications of such type of objects are discussed.

  11. Generation of SU(1, 1) and SU(2) entangled states in a quantized cavity field by strong-driving-assisted classical field approach

    NASA Astrophysics Data System (ADS)

    Daneshmand, R. N.; Tavassoly, M. K.

    2015-05-01

    Following the approach of Solano et al (2003 Phys. Rev. Lett. 90 027903) we propose a scheme for a generation of a few classes of entangled (nonlinear) coherent states. To achieve this purpose, the interaction of a spatially narrow collection of two-level atoms with a quantized field in a high-Q factor cavity in the presence of a strong-driving classical field is studied. We perform appropriate Hamiltonians describing the atom-field interaction by focusing on two particular forms of intensity-dependent functions which are directly related to su(1, 1) and su(2) Lie algebras. It is shown that the dynamical evolution of the considered systems can generate bipartite, tripartite (nonlinear) and more complicated entangled states corresponding to the mentioned groups depending on the number of atoms in the cavity. In the processes of the abovementioned generation schemes, even and odd nonlinear coherent states are produced. In the end, in a particular circumstance with the two-mode quantized field we can turn easily from Jaynes-Cummings to anti-Jaynes-Cummings interactions which brings us to the maximally entangled number state. Finally, to quantify the degree of entanglement of the produced states, the measures of von Neumann and linear entropies are applied.

  12. Particle on a torus knot: Constrained dynamics and semi-classical quantization in a magnetic field

    NASA Astrophysics Data System (ADS)

    Das, Praloy; Pramanik, Souvik; Ghosh, Subir

    2016-11-01

    Kinematics and dynamics of a particle moving on a torus knot poses an interesting problem as a constrained system. In the first part of the paper we have derived the modified symplectic structure or Dirac brackets of the above model in Dirac's Hamiltonian framework, both in toroidal and Cartesian coordinate systems. This algebra has been used to study the dynamics, in particular small fluctuations in motion around a specific torus. The spatial symmetries of the system have also been studied. In the second part of the paper we have considered the quantum theory of a charge moving in a torus knot in the presence of a uniform magnetic field along the axis of the torus in a semiclassical quantization framework. We exploit the Einstein-Brillouin-Keller (EBK) scheme of quantization that is appropriate for multidimensional systems. Embedding of the knot on a specific torus is inherently two dimensional that gives rise to two quantization conditions. This shows that although the system, after imposing the knot condition reduces to a one dimensional system, even then it has manifested non-planar features which shows up again in the study of fractional angular momentum. Finally we compare the results obtained from EBK (multi-dimensional) and Bohr-Sommerfeld (single dimensional) schemes. The energy levels and fractional spin depend on the torus knot parameters that specifies its non-planar features. Interestingly, we show that there can be non-planar corrections to the planar anyon-like fractional spin.

  13. Field-induced diverse quantizations in monolayer and bilayer black phosphorus

    NASA Astrophysics Data System (ADS)

    Wu, Jhao-Ying; Chen, Szu-Chao; Gumbs, Godfrey; Lin, Ming-Fa

    2017-03-01

    This report provides a comprehensive understanding of the magnetic quantization effects in phosphorene with the use of the generalized tight-binding model. Especially for bilayer systems, a composite magnetic and electric field can induce the feature-rich LL spectrum. We demonstrate the existence of two subgroups of Landau levels (LLs) near the Fermi level according to their distinguishable localization centers. The strong competition between the two subgroups induces unusual quantization behaviors, such as multiple anticrossings for the Bz- and Ez-dependent energy spectra. These results are clearly explained by the spatial distributions of subenvelope functions from which two types of LLs are characterized by being either the usual or the perturbed distribution modes. The detailed analysis of the diverse magnetic quantizations is quite important in understanding other physical properties, such as the dispersion relations of magnetoplasmons, magneto-optical selection rules, as well as electron transport properties. The unusual energy spectra are directly revealed by the special features of the density of states, which could be further validated by measurements employing scanning tunneling spectroscopy.

  14. Electron polarizability of crystalline solids in quantizing magnetic fields and topological gap numbers.

    PubMed

    Streda, Pavel; Jonckheere, Thibaut; Martin, Thierry

    2008-04-11

    A theory of the static electron polarizability of crystals whose energy spectrum is modified by quantizing magnetic fields is presented. The polarizability is strongly affected by nondissipative Hall currents induced by the presence of crossed electric and magnetic fields: these can even change its sign. Results are illustrated in detail for a two-dimensional square lattice. The polarizability and the Hall conductivity are, respectively, linked to the two topological quantum numbers entering the so-called Diophantine equation. These numbers could in principle be detected in actual experiments.

  15. Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field

    PubMed Central

    Piazza, L; Lummen, T.T.A.; Quiñonez, E; Murooka, Y; Reed, B.W.; Barwick, B; Carbone, F

    2015-01-01

    Surface plasmon polaritons can confine electromagnetic fields in subwavelength spaces and are of interest for photonics, optical data storage devices and biosensing applications. In analogy to photons, they exhibit wave–particle duality, whose different aspects have recently been observed in separate tailored experiments. Here we demonstrate the ability of ultrafast transmission electron microscopy to simultaneously image both the spatial interference and the quantization of such confined plasmonic fields. Our experiments are accomplished by spatiotemporally overlapping electron and light pulses on a single nanowire suspended on a graphene film. The resulting energy exchange between single electrons and the quanta of the photoinduced near-field is imaged synchronously with its spatial interference pattern. This methodology enables the control and visualization of plasmonic fields at the nanoscale, providing a promising tool for understanding the fundamental properties of confined electromagnetic fields and the development of advanced photonic circuits. PMID:25728197

  16. Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field

    SciTech Connect

    Piazza, L.; Lummen, T. T. A.; Quiñonez, E.; Murooka, Y.; Reed, B. W.; Barwick, B.; Carbone, F.

    2015-03-02

    Surface plasmon polaritons can confine electromagnetic fields in subwavelength spaces and are of interest for photonics, optical data storage devices and biosensing applications. In analogy to photons, they exhibit wave–particle duality, whose different aspects have recently been observed in separate tailored experiments. Here we demonstrate the ability of ultrafast transmission electron microscopy to simultaneously image both the spatial interference and the quantization of such confined plasmonic fields. Our experiments are accomplished by spatiotemporally overlapping electron and light pulses on a single nanowire suspended on a graphene film. The resulting energy exchange between single electrons and the quanta of the photoinduced near-field is imaged synchronously with its spatial interference pattern. In conclusion, this methodology enables the control and visualization of plasmonic fields at the nanoscale, providing a promising tool for understanding the fundamental properties of confined electromagnetic fields and the development of advanced photonic circuits.

  17. Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field

    DOE PAGES

    Piazza, L.; Lummen, T. T. A.; Quiñonez, E.; ...

    2015-03-02

    Surface plasmon polaritons can confine electromagnetic fields in subwavelength spaces and are of interest for photonics, optical data storage devices and biosensing applications. In analogy to photons, they exhibit wave–particle duality, whose different aspects have recently been observed in separate tailored experiments. Here we demonstrate the ability of ultrafast transmission electron microscopy to simultaneously image both the spatial interference and the quantization of such confined plasmonic fields. Our experiments are accomplished by spatiotemporally overlapping electron and light pulses on a single nanowire suspended on a graphene film. The resulting energy exchange between single electrons and the quanta of the photoinducedmore » near-field is imaged synchronously with its spatial interference pattern. In conclusion, this methodology enables the control and visualization of plasmonic fields at the nanoscale, providing a promising tool for understanding the fundamental properties of confined electromagnetic fields and the development of advanced photonic circuits.« less

  18. Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field

    NASA Astrophysics Data System (ADS)

    Piazza, L.; Lummen, T. T. A.; Quiñonez, E.; Murooka, Y.; Reed, B. W.; Barwick, B.; Carbone, F.

    2015-03-01

    Surface plasmon polaritons can confine electromagnetic fields in subwavelength spaces and are of interest for photonics, optical data storage devices and biosensing applications. In analogy to photons, they exhibit wave-particle duality, whose different aspects have recently been observed in separate tailored experiments. Here we demonstrate the ability of ultrafast transmission electron microscopy to simultaneously image both the spatial interference and the quantization of such confined plasmonic fields. Our experiments are accomplished by spatiotemporally overlapping electron and light pulses on a single nanowire suspended on a graphene film. The resulting energy exchange between single electrons and the quanta of the photoinduced near-field is imaged synchronously with its spatial interference pattern. This methodology enables the control and visualization of plasmonic fields at the nanoscale, providing a promising tool for understanding the fundamental properties of confined electromagnetic fields and the development of advanced photonic circuits.

  19. Group field theory as the second quantization of loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Oriti, Daniele

    2016-04-01

    We construct a second quantized reformulation of canonical loop quantum gravity (LQG) at both kinematical and dynamical level, in terms of a Fock space of spin networks, and show in full generality that it leads directly to the group field theory (GFT) formalism. In particular, we show the correspondence between canonical LQG dynamics and GFT dynamics leading to a specific GFT model from any definition of quantum canonical dynamics of spin networks. We exemplify the correspondence of dynamics in the specific example of 3d quantum gravity. The correspondence between canonical LQG and covariant spin foam models is obtained via the GFT definition of the latter.

  20. Non-quantized penetration of magnetic field in the vortex state of superconductors

    PubMed

    Geim; Dubonos; Grigorieva; Novoselov; Peeters; Schweigert

    2000-09-07

    As first pointed out by Bardeen and Ginzburg in the early sixties, the amount of magnetic flux carried by vortices in superconducting materials depends on their distance from the sample edge, and can be smaller than one flux quantum, phi0 = h/2e (where h is Planck's constant and e is the electronic charge). In bulk superconductors, this reduction of flux becomes negligible at submicrometre distances from the edge, but in thin films the effect may survive much farther into the material. But the effect has not been observed experimentally, and it is often assumed that magnetic field enters type II superconductors in units of phi0. Here we measure the amount of flux introduced by individual vortices in a superconducting film, finding that the flux always differs substantially from phi0. We have observed vortices that carry as little as 0.001phi0, as well as 'negative vortices', whose penetration leads to the expulsion of magnetic field. We distinguish two phenomena responsible for non-quantized flux penetration: the finite-size effect and a nonlinear screening of the magnetic field due to the presence of a surface barrier. The latter effect has not been considered previously, but is likely to cause non-quantized penetration in most cases.

  1. Field-induced gap and quantized charge pumping in a nanoscale helical wire

    NASA Astrophysics Data System (ADS)

    Qi, Xiao-Liang; Zhang, Shou-Cheng

    2009-06-01

    We propose several physical phenomena based on nanoscale helical wires. Applying a static electric field transverse to the helical wire induces a metal to insulator transition, with the band gap determined by the applied voltage. A similar idea can be applied to “geometrically” construct one-dimensional systems with arbitrary external potential. With a quadrupolar electrode configuration, the electric field could rotate in the transverse plane, leading to a quantized dc charge current proportional to the frequency of the rotation. Such a device could be used as a standard for the high-precession measurement of the electric current. The inverse effect implies that passing an electric current through a helical wire in the presence of a transverse static electric field can lead to a mechanical rotation of the helix. This effect can be used to construct nanoscale electromechanical motors. Finally, our methodology also enables ways of controlling and measuring the electronic properties of helical biological molecules such as the DNA.

  2. Second quantized scalar QED in homogeneous time-dependent electromagnetic fields

    SciTech Connect

    Kim, Sang Pyo

    2014-12-15

    We formulate the second quantization of a charged scalar field in homogeneous, time-dependent electromagnetic fields, in which the Hamiltonian is an infinite system of decoupled, time-dependent oscillators for electric fields, but it is another infinite system of coupled, time-dependent oscillators for magnetic fields. We then employ the quantum invariant method to find various quantum states for the charged field. For time-dependent electric fields, a pair of quantum invariant operators for each oscillator with the given momentum plays the role of the time-dependent annihilation and the creation operators, constructs the exact quantum states, and gives the vacuum persistence amplitude as well as the pair-production rate. We also find the quantum invariants for the coupled oscillators for the charged field in time-dependent magnetic fields and advance a perturbation method when the magnetic fields change adiabatically. Finally, the quantum state and the pair production are discussed when a time-dependent electric field is present in parallel to the magnetic field.

  3. Master equation with quantized atomic motion including dipole-dipole interactions

    NASA Astrophysics Data System (ADS)

    Damanet, François; Braun, Daniel; Martin, John

    2016-05-01

    We derive a markovian master equation for the internal dynamics of an ensemble of two-level atoms including all effects related to the quantization of their motion. Our equation provides a unifying picture of the consequences of recoil and indistinguishability of atoms beyond the Lamb-Dicke regime on both their dissipative and conservative dynamics, and is relevant for experiments with ultracold trapped atoms. We give general expressions for the decay rates and the dipole-dipole shifts for any motional states, and we find analytical formulas for a number of relevant states (Gaussian states, Fock states and thermal states). In particular, we show that the dipole-dipole interactions and cooperative photon emission can be modulated through the external state of motion. The effects predicted should be experimentally observable with Rydberg atoms. FD would like to thank the F.R.S.-FNRS for financial support. FD is a FRIA Grant holder of the Fonds de la Recherche Scientifique-FNRS.

  4. Manipulating and probing angular momentum and quantized circulation in optical fields and matter waves

    NASA Astrophysics Data System (ADS)

    Lowney, Joseph Daniel

    Methods to generate, manipulate, and measure optical and atomic fields with global or local angular momentum have a wide range of applications in both fundamental physics research and technology development. In optics, the engineering of angular momentum states of light can aid studies of orbital angular momentum (OAM) exchange between light and matter. The engineering of optical angular momentum states can also be used to increase the bandwidth of optical communications or serve as a means to distribute quantum keys, for example. Similar capabilities in Bose-Einstein condensates are being investigated to improve our understanding of superfluid dynamics, superconductivity, and turbulence, the last of which is widely considered to be one of most ubiquitous yet poorly understood subjects in physics. The first part of this two-part dissertation presents an analysis of techniques for measuring and manipulating quantized vortices in BECs. The second part of this dissertation presents theoretical and numerical analyses of new methods to engineer the OAM spectra of optical beams. The superfluid dynamics of a BEC are often well described by a nonlinear Schrodinger equation. The nonlinearity arises from interatomic scattering and enables BECs to support quantized vortices, which have quantized circulation and are fundamental structural elements of quantum turbulence. With the experimental tools to dynamically manipulate and measure quantized vortices, BECs are proving to be a useful medium for testing the theoretical predictions of quantum turbulence. In this dissertation we analyze a method for making minimally destructive in situ observations of quantized vortices in a BEC. Secondly, we numerically study a mechanism to imprint vortex dipoles in a BEC. With these advancements, more robust experiments of vortex dynamics and quantum turbulence will be within reach. A more complete understanding of quantum turbulence will enable principles of microscopic fluid flow to be

  5. Uniqueness of the Fock quantization of scalar fields in a Bianchi I cosmology with unitary dynamics

    NASA Astrophysics Data System (ADS)

    Cortez, Jerónimo; Navascués, Beatriz Elizaga; Martín-Benito, Mercedes; Mena Marugán, Guillermo A.; Olmedo, Javier; Velhinho, José M.

    2016-11-01

    The Fock quantization of free scalar fields is subject to an infinite ambiguity when it comes to choosing a set of annihilation and creation operators, a choice that is equivalent to the determination of a vacuum state. In highly symmetric situations, this ambiguity can be removed by asking vacuum invariance under the symmetries of the system. Similarly, in stationary backgrounds, one can demand time-translation invariance plus positivity of the energy. However, in more general situations, additional criteria are needed. For the case of free (test) fields minimally coupled to a homogeneous and isotropic cosmology, it has been proven that the ambiguity is resolved by introducing the criterion of unitary implementability of the quantum dynamics, as an endomorphism in Fock space. This condition determines a specific separation of the time dependence of the field, so that this splits into a very precise background dependence and a genuine quantum evolution. Furthermore, together with the condition of vacuum invariance under the spatial Killing symmetries, unitarity of the dynamics selects a unique Fock representation for the canonical commutation relations, up to unitary equivalence. In this work, we generalize these results to anisotropic spacetimes with shear, which are therefore not conformally symmetric, by considering the case of a free scalar field in a Bianchi I cosmology.

  6. KP flows and quantization

    NASA Astrophysics Data System (ADS)

    Luu, Martin T.

    2016-12-01

    The quantization of a pair of commuting differential operators is a pair of non-commuting differential operators. Both at the classical and quantum levels, the flows of the Kadomtsev-Petviashvili (KP) hierarchy are defined and further one can consider switching, up to a sign, the ordering of the operators. We discuss the interaction of these operations with the quantization.

  7. Classical analogs of quasifree quantum stochastic processes given by stochastic states of the quantized electromagnetic field

    NASA Astrophysics Data System (ADS)

    Hertfelder, C.; Kümmerer, B.

    2001-03-01

    The mathematical model describing a light beam prepared in an arbitrary quantum optical state is a quasifree quantum stochastic process on the C* algebra of the canonical commutatation relations. For such quantum stochastic processes the concept of stochastic states is introduced. Stochastic quantum states have a classical analog in the following sense: If the light beam is prepared in a stochastic state, one can construct a generalized classical stochastic process, such that the distributions of the quantum observables and the classical random variables coincide. A sufficient algebraic condition for the stochasticity of a quantum state is formulated. The introduced formalism generalizes the Wigner representation from a single field mode to a continuum of modes. For the special case of a single field mode the stochasticity condition provides a new criterion for the positivity of the Wigner function related to the given state. As an example the quantized eletromagnetic field in empty space at temperature T=0 is discussed. It turns out that the corresponding classical stochastic process is not a white noise but a colored noise with a linearly increasing spectrum.

  8. Field-induced Gap and Quantized Charge Pumping in Nano-helix

    SciTech Connect

    Qi, Xiao-Liang; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-02-15

    We propose several novel physical phenomena based on nano-scale helical wires. Applying a static electric field transverse to the helical wire induces a metal to insulator transition, with the band gap determined by the applied voltage. Similar idea can be applied to 'geometrically' constructing one-dimensional systems with arbitrary external potential. With a quadrupolar electrode configuration, the electric field could rotate in the transverse plane, leading to a quantized dc charge current proportional to the frequency of the rotation. Such a device could be used as a new standard for the high precession measurement of the electric current. The inverse effect implies that passing an electric current through a helical wire in the presence of a transverse static electric field can lead to a mechanical rotation of the helix. This effect can be used to construct nano-scale electro-mechanical motors. Finally, our methodology also enables new ways of controlling and measuring the electronic properties of helical biological molecules such as the DNA.

  9. Dirac fields in flat FLRW cosmology: Uniqueness of the Fock quantization

    NASA Astrophysics Data System (ADS)

    Cortez, Jerónimo; Elizaga Navascués, Beatriz; Martín-Benito, Mercedes; Mena Marugán, Guillermo A.; Velhinho, José M.

    2017-01-01

    We address the issue of the infinite ambiguity that affects the construction of a Fock quantization of a Dirac field propagating in a cosmological spacetime with flat compact sections. In particular, we discuss a physical criterion that restricts to a unique possibility (up to unitary equivalence) the infinite set of available vacua. We prove that this desired uniqueness is guaranteed, for any possible choice of spin structure on the spatial sections, if we impose two conditions. The first one is that the symmetries of the classical system must be implemented quantum mechanically, so that the vacuum is invariant under the symmetry transformations. The second and more important condition is that the constructed theory must have a quantum dynamics that is implementable as a (non-trivial) unitary operator in Fock space. Actually, this unitarity of the quantum dynamics leads us to identify as explicitly time dependent some very specific contributions of the Dirac field. In doing that, we essentially characterize the part of the dynamics governed by the Dirac equation that is unitarily implementable. The uniqueness of the Fock vacuum is attained then once a physically motivated convention for the concepts of particles and antiparticles is fixed.

  10. Interaction of ions, atoms, and small molecules with quantized vortex lines in superfluid {sup 4}He

    SciTech Connect

    Mateo, David; Eloranta, Jussi; Williams, Gary A.

    2015-02-14

    The interaction of a number of impurities (H{sub 2}, Ag, Cu, Ag{sub 2}, Cu{sub 2}, Li, He{sub 3}{sup +}, He{sup *} ({sup 3}S), He{sub 2}{sup ∗} ({sup 3}Σ{sub u}), and e{sup −}) with quantized rectilinear vortex lines in superfluid {sup 4}He is calculated by using the Orsay-Trento density functional theory (DFT) method at 0 K. The Donnelly-Parks (DP) potential function binding ions to the vortex is combined with DFT data, yielding the impurity radius as well as the vortex line core parameter. The vortex core parameter at 0 K (0.74 Å) obtained either directly from the vortex line geometry or through the DP potential fitting is smaller than previously suggested but is compatible with the value obtained from re-analysis of the Rayfield-Reif experiment. All of the impurities have significantly higher binding energies to vortex lines below 1 K than the available thermal energy, where the thermally assisted escape process becomes exponentially negligible. Even at higher temperatures 1.5-2.0 K, the trapping times for larger metal clusters are sufficiently long that the previously observed metal nanowire assembly in superfluid helium can take place at vortex lines. The binding energy of the electron bubble is predicted to decrease as a function of both temperature and pressure, which allows adjusting the trap depth for either permanent trapping or to allow thermally assisted escape. Finally, a new scheme for determining the trapping of impurities on vortex lines by optical absorption spectroscopy is outlined and demonstrated for He{sup *}.

  11. Quantization of the electromagnetic field outside static black holes and its application to low-energy phenomena

    SciTech Connect

    Crispino, Lui {prime}s C. B.; Higuchi, Atsushi; Matsas, George E. A.

    2001-06-15

    We discuss the Gupta-Bleuler quantization of the free electromagnetic field outside static black holes in the Boulware vacuum. We use a gauge which reduces to the Feynman gauge in Minkowski spacetime. We also discuss its relation with gauges used previously. Then we apply the low-energy sector of this field theory to investigate some low-energy phenomena. First, we discuss the response rate of a static charge outside the Schwarzschild black hole in four dimensions. Next, motivated by string physics, we compute the absorption cross sections of low-energy plane waves for the Schwarzschild and extreme Reissner-Nordstro''m black holes in arbitrary dimensions higher than three.

  12. Quantization of emergent gravity

    NASA Astrophysics Data System (ADS)

    Yang, Hyun Seok

    2015-02-01

    Emergent gravity is based on a novel form of the equivalence principle known as the Darboux theorem or the Moser lemma in symplectic geometry stating that the electromagnetic force can always be eliminated by a local coordinate transformation as far as space-time admits a symplectic structure, in other words, a microscopic space-time becomes noncommutative (NC). If gravity emerges from U(1) gauge theory on NC space-time, this picture of emergent gravity suggests a completely new quantization scheme where quantum gravity is defined by quantizing space-time itself, leading to a dynamical NC space-time. Therefore the quantization of emergent gravity is radically different from the conventional approach trying to quantize a phase space of metric fields. This approach for quantum gravity allows a background-independent formulation where space-time and matter fields are equally emergent from a universal vacuum of quantum gravity.

  13. BRST quantization of cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Armendariz-Picon, Cristian; Şengör, Gizem

    2016-11-01

    BRST quantization is an elegant and powerful method to quantize theories with local symmetries. In this article we study the Hamiltonian BRST quantization of cosmological perturbations in a universe dominated by a scalar field, along with the closely related quantization method of Dirac. We describe how both formalisms apply to perturbations in a time-dependent background, and how expectation values of gauge-invariant operators can be calculated in the in-in formalism. Our analysis focuses mostly on the free theory. By appropriate canonical transformations we simplify and diagonalize the free Hamiltonian. BRST quantization in derivative gauges allows us to dramatically simplify the structure of the propagators, whereas Dirac quantization, which amounts to quantization in synchronous gauge, dispenses with the need to introduce ghosts and preserves the locality of the gauge-fixed action.

  14. BRST quantization of cosmological perturbations

    SciTech Connect

    Armendariz-Picon, Cristian; Şengör, Gizem

    2016-11-08

    BRST quantization is an elegant and powerful method to quantize theories with local symmetries. In this article we study the Hamiltonian BRST quantization of cosmological perturbations in a universe dominated by a scalar field, along with the closely related quantization method of Dirac. We describe how both formalisms apply to perturbations in a time-dependent background, and how expectation values of gauge-invariant operators can be calculated in the in-in formalism. Our analysis focuses mostly on the free theory. By appropriate canonical transformations we simplify and diagonalize the free Hamiltonian. BRST quantization in derivative gauges allows us to dramatically simplify the structure of the propagators, whereas Dirac quantization, which amounts to quantization in synchronous gauge, dispenses with the need to introduce ghosts and preserves the locality of the gauge-fixed action.

  15. The influence of instructional interactions on students’ mental models about the quantization of physical observables: a modern physics course case

    NASA Astrophysics Data System (ADS)

    Didiş Körhasan, Nilüfer; Eryılmaz, Ali; Erkoç, Şakir

    2016-01-01

    Mental models are coherently organized knowledge structures used to explain phenomena. They interact with social environments and evolve with the interaction. Lacking daily experience with phenomena, the social interaction gains much more importance. In this part of our multiphase study, we investigate how instructional interactions influenced students’ mental models about the quantization of physical observables. Class observations and interviews were analysed by studying students’ mental models constructed in a modern physics course during an academic semester. The research revealed that students’ mental models were influenced by (1) the manner of teaching, including instructional methodologies and content specific techniques used by the instructor, (2) order of the topics and familiarity with concepts, and (3) peers.

  16. Reservoir induced topological order and quantized charge pumps in open lattice models with interactions

    NASA Astrophysics Data System (ADS)

    Linzner, Dominik; Koster, Malte; Grusdt, Fabian; Fleischhauer, Michael

    2016-05-01

    Since the discovery of the quantum Hall effect, topological states of matter have attracted the attention of scientists in many fields of physics. By now there is a rather good understanding of topological order in closed, non-interacting systems. In contrast the extension to open systems in particular with interactions is entirely in its infancy. Recently there have been advances in characterizing topology in reservoir driven systems without interactions, but the topological invariants introduced lack a clear physical interpretation and are restricted to non-interacting systems. We consider a one-dimensional interacting topological system whose dynamics is entirely driven by reservoir couplings. By slowly tuning these couplings periodically in time we realize an open-system analogue of the Thouless charge pump that proves to be robust against unitary and non-unitary perturbations. Making use of this Thouless pump we introduce a topological invariant, which is applicable to interacting systems. Finally we propose a conceptual detection scheme that translates the open-system topological invariant into the context of a well understood closed system.

  17. Electric charge quantization from gauge invariance of a Lagrangian: A catalogue of baryon-number-violating scalar interactions

    NASA Astrophysics Data System (ADS)

    Bowes, J. P.; Foot, R.; Volkas, R. R.

    1996-12-01

    In gauge theories such as the standard model, the electric charges of the fermions can be heavily constrained from the classical structure of the theory and from the cancellation of anomalies. There is, however, mounting evidence suggesting that these anomaly constraints are not as well motivated as the classical constraints. In light of this we discuss possible modifications of the minimal standard model that will give us complete electric charge quantization from classical constraints alone. Because these modifications to the standard model involve the consideration of baryon-number-violating scalar interactions, we present a complete catalogue of the simplest ways to modify the standard model so as to introduce explicit baryon number violation. This has implications for proton decay searches and baryogenesis.

  18. Coherent state quantization of quaternions

    SciTech Connect

    Muraleetharan, B. E-mail: santhar@gmail.com; Thirulogasanthar, K. E-mail: santhar@gmail.com

    2015-08-15

    Parallel to the quantization of the complex plane, using the canonical coherent states of a right quaternionic Hilbert space, quaternion field of quaternionic quantum mechanics is quantized. Associated upper symbols, lower symbols, and related quantities are analyzed. Quaternionic version of the harmonic oscillator and Weyl-Heisenberg algebra are also obtained.

  19. Consistent quantization of massive chiral electrodynamics in four dimensions

    SciTech Connect

    Andrianov, A. ); Bassetto, A.; Soldati, R.

    1989-10-09

    We discuss the quantization of a four-dimensional model in which a massive Abelian vector field interacts with chiral massless fermions. We show that, by introducing extra scalar fields, a renormalizable unitary {ital S} matrix can be obtained in a suitably defined Hilbert space of physical states.

  20. Quantized beam shifts in graphene

    SciTech Connect

    de Melo Kort-Kamp, Wilton Junior; Sinitsyn, Nikolai; Dalvit, Diego Alejandro Roberto

    2015-10-08

    We predict the existence of quantized Imbert-Fedorov, Goos-Hanchen, and photonic spin Hall shifts for light beams impinging on a graphene-on-substrate system in an external magnetic field. In the quantum Hall regime the Imbert-Fedorov and photonic spin Hall shifts are quantized in integer multiples of the fine structure constant α, while the Goos-Hanchen ones in multiples of α2. We investigate the influence on these shifts of magnetic field, temperature, and material dispersion and dissipation. An experimental demonstration of quantized beam shifts could be achieved at terahertz frequencies for moderate values of the magnetic field.

  1. Isomorphism between the multi-state Hamiltonian and the second-quantized many-electron Hamiltonian with only 1-electron interactions

    NASA Astrophysics Data System (ADS)

    Liu, Jian

    2017-01-01

    We introduce the isomorphism between an multi-state Hamiltonian and the second-quantized many-electron Hamiltonian (with only 1-electron interactions). This suggests that all methods developed for the former can be employed for the latter, and vice versa. The resonant level (Landauer) model for nonequilibrium quantum transport is used as a proof-of-concept example. Such as the classical mapping models for the multi-state Hamiltonian proposed in our previous work [J. Liu, J. Chem. Phys. 145, 204105 (2016)] lead to exact results for this model problem. We further demonstrate how these methods can also be applied to the second-quantized many-electron Hamiltonian even when 2-electron interactions are included.

  2. Short-range intervortex interaction and interacting dynamics of half-quantized vortices in two-component Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Kasamatsu, Kenichi; Eto, Minoru; Nitta, Muneto

    2016-01-01

    We study the interaction and dynamics of two half-quantized vortices in two-component Bose-Einstein condensates. Using the Padé approximation for the vortex core profile, we calculate the intervortex potential, whose asymptotic form for a large distance has been derived by Eto et al. [Phys. Rev. A 83, 063603 (2011), 10.1103/PhysRevA.83.063603]. Through numerical simulations of the two-dimensional Gross-Pitaevskii equations, we reveal different kinds of dynamical trajectories of the vortices depending on the combinations of signs of circulations and the intercomponent density coupling. Under the adiabatic limit, we derive the equations of motion for the vortex coordinates, in which the motion is caused by the balance between Magnus force and the intervortex forces. The initial velocity of the vortex motion can be explained quantitatively by this point vortex approximation, but understanding the long-time behavior of the dynamics needs more consideration beyond our model.

  3. Vacuum polarization of a quantized scalar field in the thermal state in a long throat

    NASA Astrophysics Data System (ADS)

    Popov, Arkady A.

    2016-12-01

    Vacuum polarization of scalar fields in the background of a long throat is investigated. The field is assumed to be both massive or massless, with arbitrary coupling to the scalar curvature, and in a thermal state at an arbitrary temperature. Analytical approximation for ⟨φ2⟩ren is obtained.

  4. Field quantization in 5D space-time with Z{sub 2} parity and position/momentum propagator

    SciTech Connect

    Ichinose, S.; Murayama, A.

    2007-09-15

    Field quantization in 5D flat and warped space-times with Z{sub 2} parity is comparatively examined. We carefully and closely derive 5D position/momentum propagators. Their characteristic behaviors depend on the 4D (real world) momentum in relation to the boundary parameter (l) and the bulk curvature ({omega}). They also depend on whether the 4D momentum is spacelike or timelike. Their behaviors are graphically presented, and the Z{sub 2} symmetry, the brane formation, and the singularities are examined. It is shown that the use of absolute functions is important for properly treating the singular behavior. The extra coordinate appears as a directed one like the temperature. The {delta}(0) problem, which is an important consistency check of the bulk-boundary system, is solved without the use of Kaluza-Klein (KK) expansion. The relation between the position/momentum propagator (a closed expression which takes into account all KK modes) and the KK-expansion-series propagator is clarified. In this process of comparison, two views on the extra space naturally come up: the orbifold picture and the interval (boundary) picture. Sturm-Liouville expansion (a generalized Fourier expansion) is essential there. Both 5D flat and warped quantum systems are formulated by Dirac's bra and ket vector formalism, which shows that the warped model can be regarded as a deformation of the flat one with the deformation parameter {omega}. We examine the meaning of the position-dependent cutoff proposed by Randall and Schwartz.

  5. Loop quantization

    SciTech Connect

    Nicolau, A.

    1988-10-01

    Loop unwinding is a known technique for reducing loop overhead, exposing parallelism, and increasing the efficiency of pipelining. Traditional loop unwinding is limited to the innermost loop in a group of nested loops and the amount of unwinding either is fixed or must be specified by the user, on a case by case basis. In this paper the authors present a general technique for automatically unwinding multiply nested loops, explain its advantages over other transformation techniques, and illustrate its practical effectiveness. Lopp Quantization could be beneficial by itself or coupled with other loop transformations.

  6. Faddeev-Jackiw quantization and the path integral

    NASA Astrophysics Data System (ADS)

    Toms, David J.

    2015-11-01

    The method for quantization of constrained theories that was suggested originally by Faddeev and Jackiw along with later modifications is discussed. The particular emphasis of this paper is to show how it is simple to implement their method within the path integral framework using the natural geometric structure that their method utilizes. The procedure is exemplified with the analysis of two models: a quantum mechanical particle constrained to a surface (of which the hypersphere is a special case), and a quantized Schrödinger field interacting with a quantized vector field for both the massive and the massless cases. The results are shown to agree with what is found using the Dirac method for constrained path integrals. We comment on a previous path integral analysis of the Faddeev-Jackiw method. We also discuss why a previous criticism of the Faddeev-Jackiw method is unfounded and why suggested modifications of their method are unnecessary.

  7. A quantization of twistor Yang-Mills theory through the background field method

    NASA Astrophysics Data System (ADS)

    Boels, Rutger

    2007-11-01

    Four-dimensional Yang-Mills theory formulated through an action on twistor space has a larger gauge symmetry than the usual formulation, which in previous work was shown to allow a simple gauge transformation between textbook perturbation theory and the Cachazo-Svrček-Witten rules. In this paper we study nonsupersymmetric twistor Yang-Mills theory at loop level using the background field method. For an appropriate partial quantum field gauge choice it is shown that the calculation of the effective action is equivalent to (the twistor lift of) the calculation in ordinary Yang-Mills theory in the Chalmers and Siegel formulation to all orders in perturbation theory. A direct consequence is that the twistor version of Yang-Mills theory is just as renormalizable in this particular gauge. As applications an explicit calculation of the Yang-Mills beta function and some preliminary investigations into using the formalism to calculate S-matrix elements at loop level are presented. In principle the technique described in this paper generates consistent quantum completions of the Cachazo-Svrček-Witten rules. However, by inherent limitations of the partial gauge choice employed here, this offers in its current form mainly simplifications for tree-level forestry. The method is expected to be applicable to a wide class of four-dimensional gauge theories.

  8. Quarter-Filled Honeycomb Lattice with a Quantized Hall Conductance

    NASA Astrophysics Data System (ADS)

    Shimshoni, Efrat; Murthy, Ganpathy; Shankar, Ramamurti; Fertig, Herbert

    2012-02-01

    We study a generic two-dimensional hopping model on a honeycomb lattice with strong spin-orbit coupling, without the requirement that the half-filled lattice be a Topological Insulator. For quarter-(or three-quarter) filling, we show that a state with a quantized Hall conductance generically arises in the presence of a Zeeman field of sufficient strength. We discuss the influence of Hubbard interactions and argue that spontaneous ferromagnetism (which breaks time-reversal) will occur, leading to a quantized anomalous Hall effect. G. Murthy, E. Shimshoni, R. Shankar, and H. A. Fertig, arxiv:1108.2010[cond-mat.mes-hall

  9. Comment on ``Effects of quantized scalar fields in cosmological spacetimes with big rip singularities''

    NASA Astrophysics Data System (ADS)

    Haro, Jaume; Amoros, Jaume

    2011-08-01

    There are two nonequivalent ways to check if quantum effects in the context of semiclassical gravity can moderate or even cancel the final singularity appearing in a universe filled with dark energy: The method followed in [J. D. Bates and P. R. Anderson, Phys. Rev. DPRVDAQ1550-7998 82, 024018 (2010).10.1103/PhysRevD.82.024018] is to introduce the classical Friedmann solution in the energy density of the quantum field, and to compare the result with the density of dark energy determined by the Friedmann equation. The method followed in this comment is to solve directly the semiclassical equations. The results obtained by either method are very different, leading to opposed conclusions. The authors of [J. D. Bates and P. R. Anderson, Phys. Rev. DPRVDAQ1550-7998 82, 024018 (2010)10.1103/PhysRevD.82.024018] find that for a perfect fluid with state equation p=ωρ and ω<-1 (phantom fluid), considering realistic values of ω leads to a quantum field energy density that remains small compared to the dark energy density until the curvature reaches the Planck scale or higher, at which point the semiclassical approach stops being valid. The conclusion is that quantum effects do not affect significantly the expansion of the universe until the scalar curvature reaches the Planck scale. In this comment we will show by numerical integration of the semiclassical equations that quantum effects modify drastically the expansion of the universe from an early point. We also present an analytic argument explaining why the method of [J. D. Bates and P. R. Anderson, Phys. Rev. DPRVDAQ1550-7998 82, 024018 (2010)10.1103/PhysRevD.82.024018] fails to detect this. The units employed are the same as in [J. D. Bates and P. R. Anderson, Phys. Rev. DPRVDAQ1550-7998 82, 024018 (2010)10.1103/PhysRevD.82.024018] (c=ℏ=G=1).

  10. Graphene p n junction in a quantizing magnetic field: Conductance at intermediate disorder strength

    NASA Astrophysics Data System (ADS)

    Fräßdorf, Christian; Trifunovic, Luka; Bogdanoff, Nils; Brouwer, Piet W.

    2016-11-01

    In a graphene p n junction at high magnetic field, unidirectional "snake states" are formed at the p n interface. In a clean p n junction, each snake state exists in one of the valleys of the graphene band structure, and the conductance of the junction as a whole is determined by microscopic details of the coupling between the snake states at the p n interface and quantum Hall edge states at the sample boundaries [Tworzydło et al., Phys. Rev. B 76, 035411 (2007), 10.1103/PhysRevB.76.035411]. Disorder mixes and couples the snake states. We here report a calculation of the full conductance distribution in the crossover between the clean limit and the strong-disorder limit, in which the conductance distribution is given by random matrix theory [Abanin and Levitov, Science 317, 641 (2007), 10.1126/science.1144672]. Our calculation involves an exact solution of the relevant scaling equation for the scattering matrix, and the results are formulated in terms of parameters describing the microscopic disorder potential in bulk graphene.

  11. Field Theory of Fundamental Interactions

    NASA Astrophysics Data System (ADS)

    Wang, Shouhong; Ma, Tian

    2017-01-01

    First, we present two basic principles, the principle of interaction dynamics (PID) and the principle of representation invariance (PRI). Intuitively, PID takes the variation of the action under energy-momentum conservation constraint. We show that the PID is the requirement of the presence of dark matter and dark energy, the Higgs field and the quark confinement. PRI requires that the SU(N) gauge theory be independent of representations of SU(N). It is clear that PRI is the logic requirement of any gauge theory. With PRI, we demonstrate that the coupling constants for the strong and the weak interactions are the main sources of these two interactions, reminiscent of the electric charge. Second, we emphasize that symmetry principles-the principle of general relativity and the principle of Lorentz invariance and gauge invariance-together with the simplicity of laws of nature, dictate the actions for the four fundamental interactions. Finally, we show that the PID and the PRI, together with the symmetry principles give rise to a unified field model for the fundamental interactions, which is consistent with current experimental observations and offers some new physical predictions. The research is supported in part by the National Science Foundation (NSF) grant DMS-1515024, and by the Office of Naval Research (ONR) grant N00014-15-1-2662.

  12. Four-dimensional symmetry from a broad viewpoint. II Invariant distribution of quantized field oscillators and questions on infinities

    NASA Technical Reports Server (NTRS)

    Hsu, J. P.

    1983-01-01

    The foundation of the quantum field theory is changed by introducing a new universal probability principle into field operators: one single inherent and invariant probability distribution P(/k/) is postulated for boson and fermion field oscillators. This can be accomplished only when one treats the four-dimensional symmetry from a broad viewpoint. Special relativity is too restrictive to allow such a universal probability principle. A radical length, R, appears in physics through the probability distribution P(/k/). The force between two point particles vanishes when their relative distance tends to zero. This appears to be a general property for all forces and resembles the property of asymptotic freedom. The usual infinities in vacuum fluctuations and in local interactions, however complicated they may be, are all removed from quantum field theories. In appendix A a simple finite and unitary theory of unified electroweak interactions is discussed without assuming Higgs scalar bosons.

  13. Generalized noise terms for the quantized fluctuational electrodynamics

    NASA Astrophysics Data System (ADS)

    Partanen, Mikko; Häyrynen, Teppo; Tulkki, Jukka; Oksanen, Jani

    2017-03-01

    The quantization of optical fields in vacuum has been known for decades, but extending the field quantization to lossy and dispersive media in nonequilibrium conditions has proven to be complicated due to the position-dependent electric and magnetic responses of the media. In fact, consistent position-dependent quantum models for the photon number in resonant structures have only been formulated very recently and only for dielectric media. Here we present a general position-dependent quantized fluctuational electrodynamics (QFED) formalism that extends the consistent field quantization to describe the photon number also in the presence of magnetic field-matter interactions. It is shown that the magnetic fluctuations provide an additional degree of freedom in media where the magnetic coupling to the field is prominent. Therefore, the field quantization requires an additional independent noise operator that is commuting with the conventional bosonic noise operator describing the polarization current fluctuations in dielectric media. In addition to allowing the detailed description of field fluctuations, our methods provide practical tools for modeling optical energy transfer and the formation of thermal balance in general dielectric and magnetic nanodevices. We use QFED to investigate the magnetic properties of microcavity systems to demonstrate an example geometry in which it is possible to probe fields arising from the electric and magnetic source terms. We show that, as a consequence of the magnetic Purcell effect, the tuning of the position of an emitter layer placed inside a vacuum cavity can make the emissivity of a magnetic emitter to exceed the emissivity of a corresponding electric emitter.

  14. Light-Front Quantization of Gauge Theories

    SciTech Connect

    Brodskey, Stanley

    2002-12-01

    Light-front wavefunctions provide a frame-independent representation of hadrons in terms of their physical quark and gluon degrees of freedom. The light-front Hamiltonian formalism provides new nonperturbative methods for obtaining the QCD spectrum and eigensolutions, including resolvant methods, variational techniques, and discretized light-front quantization. A new method for quantizing gauge theories in light-cone gauge using Dirac brackets to implement constraints is presented. In the case of the electroweak theory, this method of light-front quantization leads to a unitary and renormalizable theory of massive gauge particles, automatically incorporating the Lorentz and 't Hooft conditions as well as the Goldstone boson equivalence theorem. Spontaneous symmetry breaking is represented by the appearance of zero modes of the Higgs field leaving the light-front vacuum equal to the perturbative vacuum. I also discuss an ''event amplitude generator'' for automatically computing renormalized amplitudes in perturbation theory. The importance of final-state interactions for the interpretation of diffraction, shadowing, and single-spin asymmetries in inclusive reactions such as deep inelastic lepton-hadron scattering is emphasized.

  15. Magnetic quantization over Riemannian manifolds

    NASA Astrophysics Data System (ADS)

    Karasev, M. V.; Osborn, T. A.

    2006-06-01

    We demonstrate that Weyl's pioneering idea (1918) to intertwine metric and magnetic fields into a single joint connection can be naturally realized, on the phase space level, by the gauge-invariant quantization of the cotangent bundle with magnetic symplectic form. Quantization, for systems over a noncompact Riemannian configuration manifold, may be achieved by the introduction of a magneto-metric analog of the Stratonovich quantizer - a family of invertible, selfadjoint operators representing quantum delta functions. Based on the quantizer, we construct a generalized Wigner transform that maps Hilbert-Schmidt operators into L-2 phase-space functions. The algebraic properties of the quantizer allow one to extract a family of symplectic reflections, which are then used to (i) derive a simple, explicit, and geometrically invariant formula for the noncommutative product of functions on phase space, and (ii) construct a magneto-metric connection on phase space. The classical limit of this product is given by the usual multiplication of functions (zeroth-order term), the magnetic Poisson bracket (first-order term), and by the magneto-metric connection (second-order term).

  16. Geometry of physical systems on quantized spaces

    NASA Astrophysics Data System (ADS)

    Milani, Vida; Mansourbeigi, Seyed M. H.; Clyde, Stephen W.

    We present a mathematical model for physical systems. A large class of functions is built through the functional quantization method and applied to the geometric study of the model. Quantized equations of motion along the Hamiltonian vector field are built up. It is seen that the procedure in higher dimension carries more physical information. The metric tensor appears to induce an electromagnetic field into the system and the dynamical nature of the electromagnetic field in curved space arises naturally. In the end, an explicit formula for the curvature tensor in the quantized space is given.

  17. String fields and their interactions

    NASA Astrophysics Data System (ADS)

    Erler, Theodore George, IV

    2005-07-01

    In this thesis is devoted to illuminating the underlying structure of Witten's star product, which defines the interactions of open strings in cubic bosonic string field theory [3]. We give an in depth analysis of the product from the perspective of noncommutative geometry, specifically using the split string [19] and Moyal formalisms [20, 22]. We identify some fundamental algebraic features of the star product originating from the singular structure of the overlap conditions at the string midpoint. Finally, we use some of these insights to construct a consistent and nonsingular initial value formulation of the theory in lightcone time. Such a general formalism seems prerequisite to address questions of time, causality, and cosmology in string theory.

  18. Geothermal field's interaction with geophysical fields of another nature

    SciTech Connect

    Novik, Oleg B.; Mikhailovskaya, Irina B.; Repin, Dmitry G.; Yershov, Sergey V.

    1996-01-24

    The energy balance of active lithosphere zones is to a large extent determined by nonstationary interaction of mechanical (elastic and hydrodynamic), thermal, electromagnetic, and gravitational geophysical fields. Seismic disturbances of electromagnetic and temperature fields, repeatedly observed before earthquakes are a striking manifestation of this interaction (Sec. 1). Technological processes of exploitation of hydrothermal deposits are determined by the interaction of hydrodynamical and temperature field (Sec. 2). These “fast” interactions (with the characteristic time scale from seconds to years) take place against the background of “slow” thermomechanical interactions (time scale of Myears), the latter determining the formation of regional geothermal fields (Sec. 3).

  19. Quantum transport equation for systems with rough surfaces and its application to ultracold neutrons in a quantizing gravity field

    SciTech Connect

    Escobar, M.; Meyerovich, A. E.

    2014-12-15

    We discuss transport of particles along random rough surfaces in quantum size effect conditions. As an intriguing application, we analyze gravitationally quantized ultracold neutrons in rough waveguides in conjunction with GRANIT experiments (ILL, Grenoble). We present a theoretical description of these experiments in the biased diffusion approximation for neutron mirrors with both one- and two-dimensional (1D and 2D) roughness. All system parameters collapse into a single constant which determines the depletion times for the gravitational quantum states and the exit neutron count. This constant is determined by a complicated integral of the correlation function (CF) of surface roughness. The reliable identification of this CF is always hindered by the presence of long fluctuation-driven correlation tails in finite-size samples. We report numerical experiments relevant for the identification of roughness of a new GRANIT waveguide and make predictions for ongoing experiments. We also propose a radically new design for the rough waveguide.

  20. Quantization and Quantum-Like Phenomena: A Number Amplitude Approach

    NASA Astrophysics Data System (ADS)

    Robinson, T. R.; Haven, E.

    2015-12-01

    Historically, quantization has meant turning the dynamical variables of classical mechanics that are represented by numbers into their corresponding operators. Thus the relationships between classical variables determine the relationships between the corresponding quantum mechanical operators. Here, we take a radically different approach to this conventional quantization procedure. Our approach does not rely on any relations based on classical Hamiltonian or Lagrangian mechanics nor on any canonical quantization relations, nor even on any preconceptions of particle trajectories in space and time. Instead we examine the symmetry properties of certain Hermitian operators with respect to phase changes. This introduces harmonic operators that can be identified with a variety of cyclic systems, from clocks to quantum fields. These operators are shown to have the characteristics of creation and annihilation operators that constitute the primitive fields of quantum field theory. Such an approach not only allows us to recover the Hamiltonian equations of classical mechanics and the Schrödinger wave equation from the fundamental quantization relations, but also, by freeing the quantum formalism from any physical connotation, makes it more directly applicable to non-physical, so-called quantum-like systems. Over the past decade or so, there has been a rapid growth of interest in such applications. These include, the use of the Schrödinger equation in finance, second quantization and the number operator in social interactions, population dynamics and financial trading, and quantum probability models in cognitive processes and decision-making. In this paper we try to look beyond physical analogies to provide a foundational underpinning of such applications.

  1. Damping, field-field correlation and dipole-dipole interaction effects on the entanglement and atomic inversion dynamics

    NASA Astrophysics Data System (ADS)

    Rustaee, N.; Tavassoly, M. K.; Daneshmand, R.

    2017-01-01

    In this paper we study the interaction between two two-level atoms with a two-mode quantized field in the presence of damping. Dipole-dipole interaction between the two atoms and the correlation between the two modes of field are also taken into account. To solve the model, using appropriate transformations, we reduce the considered model to a well-known Jaynes-Cummings model. After finding the analytical solution for the atom-field system, the effects of damping, field-field correlation and atomic dipole-dipole interaction on the entanglement between atoms and population inversion are investigated, numerically. It is observed that the dynamical behavior of the degree of entanglement for damped systems, in relatively large domains of time, takes a low but constant value adequately far from the beginning of the interaction. In addition, it is found that the value of population inversion after the initial oscillations takes negative values for damped systems and eventually vanishes by increasing time. Also, it is seen that simultaneous presence of both dipole-dipole interaction and field-field correlation provides typical collapse-revival phenomenon in the time-behavior of atomic inversion.

  2. Using the Relevance Vector Machine Model Combined with Local Phase Quantization to Predict Protein-Protein Interactions from Protein Sequences.

    PubMed

    An, Ji-Yong; Meng, Fan-Rong; You, Zhu-Hong; Fang, Yu-Hong; Zhao, Yu-Jun; Zhang, Ming

    2016-01-01

    We propose a novel computational method known as RVM-LPQ that combines the Relevance Vector Machine (RVM) model and Local Phase Quantization (LPQ) to predict PPIs from protein sequences. The main improvements are the results of representing protein sequences using the LPQ feature representation on a Position Specific Scoring Matrix (PSSM), reducing the influence of noise using a Principal Component Analysis (PCA), and using a Relevance Vector Machine (RVM) based classifier. We perform 5-fold cross-validation experiments on Yeast and Human datasets, and we achieve very high accuracies of 92.65% and 97.62%, respectively, which is significantly better than previous works. To further evaluate the proposed method, we compare it with the state-of-the-art support vector machine (SVM) classifier on the Yeast dataset. The experimental results demonstrate that our RVM-LPQ method is obviously better than the SVM-based method. The promising experimental results show the efficiency and simplicity of the proposed method, which can be an automatic decision support tool for future proteomics research.

  3. Using the Relevance Vector Machine Model Combined with Local Phase Quantization to Predict Protein-Protein Interactions from Protein Sequences

    PubMed Central

    An, Ji-Yong; Meng, Fan-Rong; You, Zhu-Hong; Fang, Yu-Hong; Zhao, Yu-Jun; Zhang, Ming

    2016-01-01

    We propose a novel computational method known as RVM-LPQ that combines the Relevance Vector Machine (RVM) model and Local Phase Quantization (LPQ) to predict PPIs from protein sequences. The main improvements are the results of representing protein sequences using the LPQ feature representation on a Position Specific Scoring Matrix (PSSM), reducing the influence of noise using a Principal Component Analysis (PCA), and using a Relevance Vector Machine (RVM) based classifier. We perform 5-fold cross-validation experiments on Yeast and Human datasets, and we achieve very high accuracies of 92.65% and 97.62%, respectively, which is significantly better than previous works. To further evaluate the proposed method, we compare it with the state-of-the-art support vector machine (SVM) classifier on the Yeast dataset. The experimental results demonstrate that our RVM-LPQ method is obviously better than the SVM-based method. The promising experimental results show the efficiency and simplicity of the proposed method, which can be an automatic decision support tool for future proteomics research. PMID:27314023

  4. First quantized electrodynamics

    SciTech Connect

    Bennett, A.F.

    2014-06-15

    The parametrized Dirac wave equation represents position and time as operators, and can be formulated for many particles. It thus provides, unlike field-theoretic Quantum Electrodynamics (QED), an elementary and unrestricted representation of electrons entangled in space or time. The parametrized formalism leads directly and without further conjecture to the Bethe–Salpeter equation for bound states. The formalism also yields the Uehling shift of the hydrogenic spectrum, the anomalous magnetic moment of the electron to leading order in the fine structure constant, the Lamb shift and the axial anomaly of QED. -- Highlights: •First-quantized electrodynamics of the parametrized Dirac equation is developed. •Unrestricted entanglement in time is made explicit. •Bethe and Salpeter’s equation for relativistic bound states is derived without further conjecture. •One-loop scattering corrections and the axial anomaly are derived using a partial summation. •Wide utility of semi-classical Quantum Electrodynamics is argued.

  5. Magnetic field evolution in interacting galaxies

    NASA Astrophysics Data System (ADS)

    Drzazga, R. T.; Chyży, K. T.; Jurusik, W.; Wiórkiewicz, K.

    2011-09-01

    Aims: Violent gravitational interactions can change the morphologies of galaxies and, by means of merging, transform them into elliptical galaxies. We aim to investigate how they affect the evolution of galactic magnetic fields. Methods: We selected 16 systems of interacting galaxies with available VLA archive radio data at 4.86 and 1.4 GHz and compared their radio emission and estimated magnetic field strengths with their star-forming activity, far-infrared emission, and the stage of tidal interaction. Results: The estimated mean of total magnetic field strength for our sample of interacting galaxies is 14 ± 5 μG, which is larger than for the non-interacting objects. The field regularity (of 0.27 ± 0.09) is lower than in typical spirals and indicates enhanced production of random magnetic fields in the interacting objects. We find a general evolution of magnetic fields: for weak interactions the strength of magnetic field is almost constant (10-15 μG) as interaction advances, then it increases up to 2× , peaks at the nuclear coalescence (25 μG), and decreases again, down to 5-6 μG, for the post-merger remnants. The main production of magnetic fields in colliding galaxies thus terminates somewhere close to the nuclear coalescence, after which magnetic field diffuses. The magnetic field strength for whole galaxies is weakly affected by the star formation rate (SFR), while the dependence is higher for galactic centres. We show that the morphological distortions visible in the radio total and polarized emission do not depend statistically on the global or local SFRs, while they do increase (especially in the polarization) with the advance of interaction. The constructed radio-far-infrared relations for interacting and non-interacting galaxies display a similar balance between the generation of cosmic rays, magnetic fields, and the production of the thermal energy and dust radiation. Conclusions: The regular magnetic fields are much more sensitive to

  6. Geometric Quantization and Foliation Reduction

    NASA Astrophysics Data System (ADS)

    Skerritt, Paul

    A standard question in the study of geometric quantization is whether symplectic reduction interacts nicely with the quantized theory, and in particular whether "quantization commutes with reduction." Guillemin and Sternberg first proposed this question, and answered it in the affirmative for the case of a free action of a compact Lie group on a compact Kahler manifold. Subsequent work has focused mainly on extending their proof to non-free actions and non-Kahler manifolds. For realistic physical examples, however, it is desirable to have a proof which also applies to non-compact symplectic manifolds. In this thesis we give a proof of the quantization-reduction problem for general symplectic manifolds. This is accomplished by working in a particular wavefunction representation, associated with a polarization that is in some sense compatible with reduction. While the polarized sections described by Guillemin and Sternberg are nonzero on a dense subset of the Kahler manifold, the ones considered here are distributional, having support only on regions of the phase space associated with certain quantized, or "admissible", values of momentum. We first propose a reduction procedure for the prequantum geometric structures that "covers" symplectic reduction, and demonstrate how both symplectic and prequantum reduction can be viewed as examples of foliation reduction. Consistency of prequantum reduction imposes the above-mentioned admissibility conditions on the quantized momenta, which can be seen as analogues of the Bohr-Wilson-Sommerfeld conditions for completely integrable systems. We then describe our reduction-compatible polarization, and demonstrate a one-to-one correspondence between polarized sections on the unreduced and reduced spaces. Finally, we describe a factorization of the reduced prequantum bundle, suggested by the structure of the underlying reduced symplectic manifold. This in turn induces a factorization of the space of polarized sections that agrees

  7. Generalized gravitational entropy of interacting scalar field and Maxwell field

    NASA Astrophysics Data System (ADS)

    Huang, Wung-Hong

    2014-12-01

    The generalized gravitational entropy proposed recently by Lewkowycz and Maldacena is extended to the interacting real scalar field and Maxwell field system. Using the BTZ geometry we first investigate the case of free real scalar field and then show a possible way to calculate the entropy of the interacting scalar field. Next, we investigate the Maxwell field system. We exactly solve the wave equation and calculate the analytic value of the generalized gravitational entropy. We also use the Einstein equation to find the effect of backreaction of the Maxwell field on the area of horizon. The associated modified area law is consistent with the generalized gravitational entropy.

  8. Spacetime rotation-induced Landau quantization

    NASA Astrophysics Data System (ADS)

    Konno, Kohkichi; Takahashi, Rohta

    2012-03-01

    We investigate noninertial and gravitational effects on quantum states in electromagnetic fields and present the analytic solution for energy eigenstates for the Schrödinger equation including noninertial, gravitational, and electromagnetic effects. We find that in addition to the Landau quantization the rotation of spacetime itself leads to the additional quantization, and that the energy levels for an electron are different from those for a proton at the level of gravitational corrections.

  9. Casimir energy-momentum tensor for a quantized bulk scalar field in the geometry of two curved branes on Friedmann-Robertson-Walker background

    NASA Astrophysics Data System (ADS)

    Pejhan, Hamed; Rahbardehghan, Surena

    2016-09-01

    In a previous work [S. Rahbardehghan and H. Pejhan, Phys. Lett. B 750, 627 (2015)], we considered a simple brane-world model: a single four-dimensional brane embedded in a five-dimensional de Sitter (dS) space-time. Then, by including a conformally coupled scalar field in the bulk, we studied the induced Casimir energy-momentum tensor. Technically, the Krein-Gupta-Bleuler quantization scheme as a covariant and renormalizable quantum field theory in dS space was used to perform the calculations. In the present paper, we generalize this study to a less idealized, but physically motivated, scenario; namely, we consider Friedmann-Robertson-Walker (FRW) space-time which behaves asymptotically as a dS space-time. More precisely, we evaluate a Casimir energy-momentum tensor for a system with two D -dimensional curved branes on background of D +1 -dimensional FRW space-time with negative spatial curvature and a conformally coupled bulk scalar field that satisfied the Dirichlet boundary condition on the branes.

  10. Symmetry breaking induced by charge density and the entropy of interacting fields

    NASA Astrophysics Data System (ADS)

    Bekenstein, Jacob D.; Guendelman, E. I.

    1987-01-01

    We study interacting complex scalar field theories with global U(1) symmetry and concave potentials. It is usually assumed that spontaneous symmetry breaking is excluded for such interaction. However, we show that degenerate ground states appear when the system is considered as a charged medium, which we take to be so large that it makes sense to speak of a uniform, finite, charge density. This of course implies that we are considering as ground states solutions that select a particular Lorentz frame. The consequent symmetry breaking is accompanied by the usual Goldstone modes. It makes topological solitons possible in 1+1 dimensions. Further, a new kind of nontopological solitons appears, again in 1+1 dimensions. These are embedded in a uniformly charged background. Unlike the Friedberg-Lee-Sirlin solitons, those studied here do not require a complicatedly shaped potential to exist. Although Derrick's theorem, which forbids higher-dimensional solitons, cannot be proved in the present context, it appears that such solitons are still forbidden in the presence of finite charge density. When the field is confined to a box, the frequency spectrum is, classically, a continuum. This is in sharp contrast to the situation for linear fields. However, semiclassical quantization, or the requirement that charge be quantized, both make the spectrum discrete. We show by general arguments that the energy spectrum (distinct from the frequency spectrum for nonlinear fields) for the interacting field in a box must have widely spaced levels. For the case of a quartic potential we compute the energy levels exactly in 1+1 dimensions, and verify this conclusion directly. The interacting scalar field thus complies in detail with the bound on specific entropy proposed by one of us earlier as applicable to all finite physical systems.

  11. Polymer quantization, stability and higher-order time derivative terms

    NASA Astrophysics Data System (ADS)

    Cumsille, Patricio; Reyes, Carlos M.; Ossandon, Sebastian; Reyes, Camilo

    2016-03-01

    The possibility that fundamental discreteness implicit in a quantum gravity theory may act as a natural regulator for ultraviolet singularities arising in quantum field theory has been intensively studied. Here, along the same expectations, we investigate whether a nonstandard representation called polymer representation can smooth away the large amount of negative energy that afflicts the Hamiltonians of higher-order time derivative theories, rendering the theory unstable when interactions come into play. We focus on the fourth-order Pais-Uhlenbeck model which can be reexpressed as the sum of two decoupled harmonic oscillators one producing positive energy and the other negative energy. As expected, the Schrödinger quantization of such model leads to the stability problem or to negative norm states called ghosts. Within the framework of polymer quantization we show the existence of new regions where the Hamiltonian can be defined well bounded from below.

  12. Basis light-front quantization approach to positronium

    NASA Astrophysics Data System (ADS)

    Wiecki, Paul; Li, Yang; Zhao, Xingbo; Maris, Pieter; Vary, James P.

    2015-05-01

    We present the first application of the recently developed basis light-front quantization (BLFQ) method to self-bound systems in quantum field theory, using the positronium system as a test case. Within the BLFQ framework, we develop a two-body effective interaction, operating only in the lowest Fock sector, that implements photon exchange, neglecting fermion self-energy effects. We then solve for the mass spectrum of this interaction at the unphysical coupling α =0.3 . The resulting spectrum is in good agreement with the expected Bohr spectrum of nonrelativistic quantum mechanics. We examine in detail the dependence of the results on the regulators of the theory.

  13. Interacting quantum fields and the chronometric principle

    PubMed Central

    Segal, I. E.

    1976-01-01

    A form of interaction in quantum field theory is described that is physically intrinsic rather than superimposed via a postulated nonlinearity on a hypothetical free field. It derives from the extension to general symmetries of the distinction basic for the chronometric cosmology between the physical (driving) and the observed energies, together with general precepts of quantum field theory applicable to nonunitary representations. The resulting interacting field is covariant, causal, involves real particle production, and is devoid of nontrivial ultraviolet divergences. Possible physical applications are discussed. PMID:16592353

  14. Stochastic Quantization of Instantons

    NASA Astrophysics Data System (ADS)

    Grandati, Y.; Bérard, A.; Grangé, P.

    1996-03-01

    The method of Parisi and Wu to quantize classical fields is applied to instanton solutionsϕIof euclidian non-linear theory in one dimension. The solutionϕεof the corresponding Langevin equation is built through a singular perturbative expansion inε=ℏ1/2in the frame of the center of mass of the instanton, where the differenceϕε-ϕIcarries only fluctuations of the instanton form. The relevance of the method is shown for the stochasticK dVequation with uniform noise in space: the exact solution usually obtained by the inverse scattering method is retrieved easily by the singular expansion. A general diagrammatic representation of the solution is then established which makes a thorough use of regrouping properties of stochastic diagrams derived in scalar field theory. Averaging over the noise and in the limit of infinite stochastic time, we obtain explicit expressions for the first two orders inεof the perturbed instanton and of its Green function. Specializing to the Sine-Gordon andϕ4models, the first anharmonic correction is obtained analytically. The calculation is carried to second order for theϕ4model, showing good convergence.

  15. Riemann surface and quantization

    NASA Astrophysics Data System (ADS)

    Perepelkin, E. E.; Sadovnikov, B. I.; Inozemtseva, N. G.

    2017-01-01

    This paper proposes an approach of the unified consideration of classical and quantum mechanics from the standpoint of the complex analysis effects. It turns out that quantization can be interpreted in terms of the Riemann surface corresponding to the multivalent LnΨ function. A visual interpretation of "trajectories" of the quantum system and of the Feynman's path integral is presented. A magnetic dipole having a magnetic charge that satisfies the Dirac quantization rule was obtained.

  16. Perturbative quantization of two-dimensional space-time noncommutative QED

    SciTech Connect

    Ghasemkhani, M.; Sadooghi, N.

    2010-02-15

    Using the method of perturbative quantization in the first order approximation, we quantize a nonlocal QED-like theory including fermions and bosons whose interactions are described by terms containing higher order space-time derivatives. As an example, the two-dimensional space-time noncommutative QED (NC-QED) is quantized perturbatively up to O(e{sup 2},{theta}{sup 3}), where e is the NC-QED coupling constant and {theta} is the noncommutativity parameter. The resulting modified Lagrangian density is shown to include terms consisting of first order time-derivative and higher order space-derivatives of the modified field variables that satisfy the ordinary equal-time commutation relations up to O(e{sup 2},{theta}{sup 3}). Using these commutation relations, the canonical current algebra of the modified theory is also derived.

  17. Action Quantization, Energy Quantization, and Time Parametrization

    NASA Astrophysics Data System (ADS)

    Floyd, Edward R.

    2017-03-01

    The additional information within a Hamilton-Jacobi representation of quantum mechanics is extra, in general, to the Schrödinger representation. This additional information specifies the microstate of ψ that is incorporated into the quantum reduced action, W. Non-physical solutions of the quantum stationary Hamilton-Jacobi equation for energies that are not Hamiltonian eigenvalues are examined to establish Lipschitz continuity of the quantum reduced action and conjugate momentum. Milne quantization renders the eigenvalue J. Eigenvalues J and E mutually imply each other. Jacobi's theorem generates a microstate-dependent time parametrization t-τ =partial _E W even where energy, E, and action variable, J, are quantized eigenvalues. Substantiating examples are examined in a Hamilton-Jacobi representation including the linear harmonic oscillator numerically and the square well in closed form. Two byproducts are developed. First, the monotonic behavior of W is shown to ease numerical and analytic computations. Second, a Hamilton-Jacobi representation, quantum trajectories, is shown to develop the standard energy quantization formulas of wave mechanics.

  18. A hybrid approach for quantizing complicated motion of a charged particle in time-varying magnetic field

    NASA Astrophysics Data System (ADS)

    Menouar, Salah; Choi, Jeong Ryeol

    2015-02-01

    Quantum characteristics of a charged particle subjected to a singular oscillator potential under an external magnetic field is investigated via SU(1,1) Lie algebraic approach together with the invariant operator and the unitary transformation methods. The system we managed is somewhat complicated since we considered not only the time-variation of the effective mass of the system but also the dependence of the external magnetic field on time in an arbitrary fashion. In this case, the system is a kind of time-dependent Hamiltonian systems which require more delicate treatment when we study it. The complete wave functions are obtained without relying on the methods of perturbation and/or approximation, and the global phases of the system are identified. To promote the understanding of our development, we applied it to a particular case, assuming that the effective mass slowly varies with time under a time-dependent magnetic field.

  19. A hybrid approach for quantizing complicated motion of a charged particle in time-varying magnetic field

    SciTech Connect

    Menouar, Salah; Choi, Jeong Ryeol

    2015-02-15

    Quantum characteristics of a charged particle subjected to a singular oscillator potential under an external magnetic field is investigated via SU(1,1) Lie algebraic approach together with the invariant operator and the unitary transformation methods. The system we managed is somewhat complicated since we considered not only the time-variation of the effective mass of the system but also the dependence of the external magnetic field on time in an arbitrary fashion. In this case, the system is a kind of time-dependent Hamiltonian systems which require more delicate treatment when we study it. The complete wave functions are obtained without relying on the methods of perturbation and/or approximation, and the global phases of the system are identified. To promote the understanding of our development, we applied it to a particular case, assuming that the effective mass slowly varies with time under a time-dependent magnetic field.

  20. Interaction of the geomagnetic field with northward interplanetary magnetic field

    NASA Astrophysics Data System (ADS)

    Bhattarai, Shree Krishna

    The interaction of the solar wind with Earth's magnetic field causes the transfer of momentum and energy from the solar wind to geospace. The study of this interaction is gaining significance as our society is becoming more and more space based, due to which, predicting space weather has become more important. The solar wind interacts with the geomagnetic field primarily via two processes: viscous interaction and the magnetic reconnection. Both of these interactions result in the generation of an electric field in Earth's ionosphere. The overall topology and dynamics of the magnetosphere, as well as the electric field imposed on the ionosphere, vary with speed, density, and magnetic field orientation of the solar wind as well as the conductivity of the ionosphere. In this dissertation, I will examine the role of northward interplanetary magnetic field (IMF) and discuss the global topology of the magnetosphere and the interaction with the ionosphere using results obtained from the Lyon-Fedder-Mobarry (LFM) simulation. The electric potentials imposed on the ionosphere due to viscous interaction and magnetic reconnection are called the viscous and the reconnection potentials, respectively. A proxy to measure the overall effect of these potentials is to measure the cross polar potential (CPP). The CPP is defined as the difference between the maximum and the minimum of the potential in a given polar ionosphere. I will show results from the LFM simulation showing saturation of the CPP during periods with purely northward IMF of sufficiently large magnitude. I will further show that the viscous potential, which was assumed to be independent of IMF orientation until this work, is reduced during periods of northward IMF. Furthermore, I will also discuss the implications of these results for a simulation of an entire solar rotation.

  1. Deterministic Quantization by Dynamical Boundary Conditions

    SciTech Connect

    Dolce, Donatello

    2010-06-15

    We propose an unexplored quantization method. It is based on the assumption of dynamical space-time intrinsic periodicities for relativistic fields, which in turn can be regarded as dual to extra-dimensional fields. As a consequence we obtain a unified and consistent interpretation of Special Relativity and Quantum Mechanics in terms of Deterministic Geometrodynamics.

  2. Semiclassical theory of the self-consistent vibration-rotation fields and its application to the bending-rotation interaction in the H{sub 2}O molecule

    SciTech Connect

    Skalozub, A.S.; Tsaune, A.Ya.

    1994-12-01

    A new approach for analyzing the highly excited vibration-rotation (VR) states of nonrigid molecules is suggested. It is based on the separation of the vibrational and rotational terms in the molecular VR Hamiltonian by introducing periodic auxiliary fields. These fields transfer different interactions within a molecule and are treated in terms of the mean-field approximation. As a result, the solution of the stationary Schroedinger equation with the VR Hamiltonian amounts to a quantization of the Berry phase in a problem of the molecular angular-momentum motion in a certain periodic VR field (rotational problem). The quantization procedure takes into account the motion of the collective vibrational variables in the appropriate VR potentials (vibrational problem). The quantization rules, the mean-field configurations of auxiliary interactions, and the solutions to the Schrodinger equations for the vibrational and rotational problems are self-consistently connected with one another. The potentialities of the theory are demonstrated by the bending-rotation interaction modeled by the Bunker-Landsberg potential function in the H{sub 2} molecule. The calculations are compared with both the results of the exact computations and those of other approximate methods. 32 refs., 4 tabs.

  3. Quantization Effects on Complex Networks

    PubMed Central

    Wang, Ying; Wang, Lin; Yang, Wen; Wang, Xiaofan

    2016-01-01

    Weights of edges in many complex networks we constructed are quantized values of the real weights. To what extent does the quantization affect the properties of a network? In this work, quantization effects on network properties are investigated based on the spectrum of the corresponding Laplacian. In contrast to the intuition that larger quantization level always implies a better approximation of the quantized network to the original one, we find a ubiquitous periodic jumping phenomenon with peak-value decreasing in a power-law relationship in all the real-world weighted networks that we investigated. We supply theoretical analysis on the critical quantization level and the power laws. PMID:27226049

  4. An Exact Solution to the Quantized Electromagnetic Field in D-Dimensional de Sitter Space-Times

    NASA Astrophysics Data System (ADS)

    Alencar, G.; Guedes, I.; Landim, R. R.; Filho, R. N. Costa

    2012-12-01

    In this work, we investigate the quantum theory of light propagating in D-dimensional de Sitter space-times. To do so, we use the method of dynamic invariants to obtain the solution of the time-dependent Schrödinger equation. The quantum behavior of the electromagnetic field in this background is analyzed. As the electromagnetism loses its conformality in D≠4, we point out that there will be particle production and comoving objects will feel a Bunch-Davies thermal bath. This may become important in extra dimension physics and raises the intriguing possibility that precise measurements of the Cosmic Microwave Background could verify the existence of extra dimensions.

  5. Dual field theory of strong interactions

    SciTech Connect

    Akers, D.

    1987-07-01

    A dual field theory of strong interactions is derived from a Lagrangian of the Yang-Mills and Higgs fields. The existence of a magnetic monopole of mass 2397 MeV and Dirac charge g = (137/2)e is incorporated into the theory. Unification of the strong, weak, and electromagnetic forces is shown to converge at the mass of the intermediate vector boson W/sup +/-/. The coupling constants of the strong and weak interactions are derived in terms of the fine-structure constant ..cap alpha.. = 1/137.

  6. Quantization of general linear electrodynamics

    SciTech Connect

    Rivera, Sergio; Schuller, Frederic P.

    2011-03-15

    General linear electrodynamics allow for an arbitrary linear constitutive relation between the field strength 2-form and induction 2-form density if crucial hyperbolicity and energy conditions are satisfied, which render the theory predictive and physically interpretable. Taking into account the higher-order polynomial dispersion relation and associated causal structure of general linear electrodynamics, we carefully develop its Hamiltonian formulation from first principles. Canonical quantization of the resulting constrained system then results in a quantum vacuum which is sensitive to the constitutive tensor of the classical theory. As an application we calculate the Casimir effect in a birefringent linear optical medium.

  7. Electronic quantization in dielectric nanolaminates

    NASA Astrophysics Data System (ADS)

    Willemsen, T.; Geerke, P.; Jupé, M.; Gallais, L.; Ristau, D.

    2016-12-01

    The scientific background in the field of the laser induced damage processes in optical coatings has been significantly extended during the last decades. Especially for the ultra-short pulse regime a clear correlation between the electronic material parameters and the laser damage threshold could be demonstrated. In the present study, the quantization in nanolaminates is investigated to gain a deeper insight into the behavior of the blue shift of the bandgap in specific coating materials as well as to find approximations for the effective mass of the electrons. The theoretical predictions are correlated to the measurements.

  8. First Astronaut- Rover Interaction Field Test

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J.; Ross, Amy; Cabrol, Nathalie A.

    2000-01-01

    The first Astronaut - Rover (ASRO) Interaction field test was conducted successfully on February 22-27, 1999, in Silver Lake, Mojave Desert, California in a representative planetary surface terrain. This test was a joint effort between the NASA Ames Research Center , Moffett Field, California and the NASA Johnson Space Center, Houston, Texas. As prototype advanced planetary surface space suit and rover technologies are being developed for human planetary surface exploration , it has been determined that it is important to better understand the potential interaction and benefits of an EVA astronaut interacting with a robotic rover . This interaction between an EVA astronaut and a robotic rover is seen as complementary and can greatly enhance the productivity and safety of surface excursions . This test also identified design requirements and options in an advanced space suit and robotic rover. The test objectives were: 1. To identify the operational domains where the EVA astronauts and rover are complementary and can interact and thus collaborate in a safe , productive and cost- effective way, 2. To identify preliminary requirements and recommendations for advanced space suits and rovers that facilitate their cooperative and complementary interaction, 3. To develop operational procedures for the astronaut-rover teams in the identified domains, 4. To test these procedures during representative mission scenarios during field tests by simulating the exploration of a planetary surface by an EVA crew interacting with a robotic rover, 5. To train a space suited test subject, simulated Earth-based and l or lander-based science teams, and robotic vehicle operators in mission configurations, and 6. To evaluate and understand socio-technical aspects of the astronaut - rover interaction experiment in order to guide future technologies and designs. Test results and areas for future research in the design of planetary space suits will be discussed .

  9. Interacting scale invariant but nonconformal field theories

    NASA Astrophysics Data System (ADS)

    Nakayama, Yu

    2017-03-01

    There is a dilemma in constructing interacting scale invariant Euclidean field theories that are not conformal invariant. On one hand, scale invariance without conformal invariance seems more generic by requiring only a smaller symmetry. On the other hand, the existence of a nonconserved current with exact scaling dimension d -1 in d dimensions seems to require extra fine-tuning. To understand the competition better, we explore some examples without the reflection positivity. We show that a theory of elasticity (also known as Riva-Cardy theory) coupled with massless fermions in d =4 -ɛ dimensions does not possess an interacting scale invariant fixed point except for an unstable (and unphysical) one with an infinite coefficient of compression. We do, however, find interacting scale invariant but nonconformal field theories in gauge fixed versions of the Banks-Zaks fixed points in d =4 dimensions.

  10. Inconsistency of the ‘spin-3/2 gauge invariant’ interaction of Rarita-Schwinger fields

    NASA Astrophysics Data System (ADS)

    Badagnani, D.; Mariano, A.; Barbero, C.

    2017-02-01

    We perform the Dirac quantization of Rarita-Schwinger fields interacting with a spinor and the first derivative of a pseudoscalar field. We achieve the calculations for two forms of this interaction: first we review the conventional coupling of lowest derivative order, reproducing the well known inconsistencies in its anticommutator algebra. Then, we perform the analysis on the next order term popularly known as ‘spin-3/2 gauge invariant interaction’, which is claimed to be free of these inconsistencies. Nevertheless we find that the direct application of the Dirac formalism leads to inconsistencies in complete analogy to the previous case. This is of high relevance in the particle phenomenology field, where these interactions are used to interpret experimental data involving {{Δ }}(1232) resonances.

  11. The Analysis of Lagrangian and Hamiltonian Properties of the Classical Relativistic Electrodynamics Models and Their Quantization

    NASA Astrophysics Data System (ADS)

    Bogolubov, Nikolai N.; Prykarpatsky, Anatoliy K.

    2010-05-01

    The Lagrangian and Hamiltonian properties of classical electrodynamics models and their associated Dirac quantizations are studied. Using the vacuum field theory approach developed in (Prykarpatsky et al. Theor. Math. Phys. 160(2): 1079-1095, 2009 and The field structure of a vacuum, Maxwell equations and relativity theory aspects. Preprint ICTP) consistent canonical Hamiltonian reformulations of some alternative classical electrodynamics models are devised, and these formulations include the Lorentz condition in a natural way. The Dirac quantization procedure corresponding to the Hamiltonian formulations is developed. The crucial importance of the rest reference systems, with respect to which the dynamics of charged point particles is framed, is explained and emphasized. A concise expression for the Lorentz force is derived by suitably taking into account the duality of electromagnetic field and charged particle interactions. Finally, a physical explanation of the vacuum field medium and its relativistic properties fitting the mathematical framework developed is formulated and discussed.

  12. On Quantizable Odd Lie Bialgebras

    NASA Astrophysics Data System (ADS)

    Khoroshkin, Anton; Merkulov, Sergei; Willwacher, Thomas

    2016-09-01

    Motivated by the obstruction to the deformation quantization of Poisson structures in infinite dimensions, we introduce the notion of a quantizable odd Lie bialgebra. The main result of the paper is a construction of the highly non-trivial minimal resolution of the properad governing such Lie bialgebras, and its link with the theory of so-called quantizable Poisson structures.

  13. Quantized Algebra I Texts

    ERIC Educational Resources Information Center

    DeBuvitz, William

    2014-01-01

    I am a volunteer reader at the Princeton unit of "Learning Ally" (formerly "Recording for the Blind & Dyslexic") and I recently discovered that high school students are introduced to the concept of quantization well before they take chemistry and physics. For the past few months I have been reading onto computer files a…

  14. Nonlinear Bubble Interactions in Acoustic Pressure Fields

    NASA Technical Reports Server (NTRS)

    Barbat, Tiberiu; Ashgriz, Nasser; Liu, Ching-Shi

    1996-01-01

    The systems consisting of a two-phase mixture, as clouds of bubbles or drops, have shown many common features in their responses to different external force fields. One of particular interest is the effect of an unsteady pressure field applied to these systems, case in which the coupling of the vibrations induced in two neighboring components (two drops or two bubbles) may result in an interaction force between them. This behavior was explained by Bjerknes by postulating that every body that is moving in an accelerating fluid is subjected to a 'kinetic buoyancy' equal with the product of the acceleration of the fluid multiplied by the mass of the fluid displaced by the body. The external sound wave applied to a system of drops/bubbles triggers secondary sound waves from each component of the system. These secondary pressure fields integrated over the surface of the neighboring drop/bubble may result in a force additional to the effect of the primary sound wave on each component of the system. In certain conditions, the magnitude of these secondary forces may result in significant changes in the dynamics of each component, thus in the behavior of the entire system. In a system containing bubbles, the sound wave radiated by one bubble at the location of a neighboring one is dominated by the volume oscillation mode and its effects can be important for a large range of frequencies. The interaction forces in a system consisting of drops are much smaller than those consisting of bubbles. Therefore, as a first step towards the understanding of the drop-drop interaction subject to external pressure fluctuations, it is more convenient to study the bubble interactions. This paper presents experimental results and theoretical predictions concerning the interaction and the motion of two levitated air bubbles in water in the presence of an acoustic field at high frequencies (22-23 KHz).

  15. Electromagnetic field interactions with biological systems

    SciTech Connect

    Frey, A.H. )

    1993-02-01

    This is a report on Symposia organized by the International Society for Bioelectricity and presented at the 1992 FASEB Meeting. The presentations summarized here were intended to provide a sampling of new and fruitful lines of research. The theme topics for the Symposia were cancer, neural function, cell signaling, pineal gland function, and immune system interactions. Living organisms are complex electrochemical systems that evolved over billions of years in a world with a relatively simple weak magnetic field and with few electromagnetic energy emitters. As is characteristic of living organisms, they interacted with and adapted to this environment of electric and magnetic fields. In recent years there has been a massive introduction of equipment that emits electromagnetic fields in an enormous range of new frequencies, modulations, and intensities. As living organisms have only recently found themselves immersed in this new and virtually ubiquitous environment, they have not had the opportunity to adapt to it. This gives biologists the opportunity to use these electromagnetic fields as probes to study the functioning of living systems. This is a significant opportunity, as new approaches to studying living systems so often provide the means to make great leaps in science. In recent years, a diversity of biologists have carried out experiments using electromagnetic fields to study the function of living cells and systems. This approach is now becoming quite fruitful and is yielding data that are advancing our knowledge in diverse areas of biology. 25 refs., 6 figs., 3 tabs.

  16. Interaction of electromagnetic fields and biological tissues

    NASA Astrophysics Data System (ADS)

    Darshan Shrivastava, Bhakt; Barde, Ravindra; Mishra, Ashutosh; Phadke, S.

    2014-09-01

    This paper deals with the electromagnetic field interact in biological tissues. It is actually one of the important challenges for the electromagnetic field for the recent years. The experimental techniques are use in Broad-band Dielectric Measurement (BDM) with LCR meters. The authors used Bones and scales of Fish taken from Narmada River (Rajghat Dist. Barwani) as biological tissues. Experimental work carried out done in inter-university consortium (IUC) Indore. The major difficulties that appear are related to the material properties, to the effect of the electromagnetic problem and to the thermal model of the biological tissues.

  17. Path-memory induced quantization of classical orbits

    PubMed Central

    Fort, Emmanuel; Eddi, Antonin; Boudaoud, Arezki; Moukhtar, Julien; Couder, Yves

    2010-01-01

    A droplet bouncing on a liquid bath can self-propel due to its interaction with the waves it generates. The resulting “walker” is a dynamical association where, at a macroscopic scale, a particle (the droplet) is driven by a pilot-wave field. A specificity of this system is that the wave field itself results from the superposition of the waves generated at the points of space recently visited by the particle. It thus contains a memory of the past trajectory of the particle. Here, we investigate the response of this object to forces orthogonal to its motion. We find that the resulting closed orbits present a spontaneous quantization. This is observed only when the memory of the system is long enough for the particle to interact with the wave sources distributed along the whole orbit. An additional force then limits the possible orbits to a discrete set. The wave-sustained path memory is thus demonstrated to generate a quantization of angular momentum. Because a quantum-like uncertainty was also observed recently in these systems, the nonlocality generated by path memory opens new perspectives.

  18. Breathers on quantized superfluid vortices.

    PubMed

    Salman, Hayder

    2013-10-18

    We consider the propagation of breathers along a quantized superfluid vortex. Using the correspondence between the local induction approximation (LIA) and the nonlinear Schrödinger equation, we identify a set of initial conditions corresponding to breather solutions of vortex motion governed by the LIA. These initial conditions, which give rise to a long-wavelength modulational instability, result in the emergence of large amplitude perturbations that are localized in both space and time. The emergent structures on the vortex filament are analogous to loop solitons but arise from the dual action of bending and twisting of the vortex. Although the breather solutions we study are exact solutions of the LIA equations, we demonstrate through full numerical simulations that their key emergent attributes carry over to vortex dynamics governed by the Biot-Savart law and to quantized vortices described by the Gross-Pitaevskii equation. The breather excitations can lead to self-reconnections, a mechanism that can play an important role within the crossover range of scales in superfluid turbulence. Moreover, the observation of breather solutions on vortices in a field model suggests that these solutions are expected to arise in a wide range of other physical contexts from classical vortices to cosmological strings.

  19. Breathers on Quantized Superfluid Vortices

    NASA Astrophysics Data System (ADS)

    Salman, Hayder

    2013-10-01

    We consider the propagation of breathers along a quantized superfluid vortex. Using the correspondence between the local induction approximation (LIA) and the nonlinear Schrödinger equation, we identify a set of initial conditions corresponding to breather solutions of vortex motion governed by the LIA. These initial conditions, which give rise to a long-wavelength modulational instability, result in the emergence of large amplitude perturbations that are localized in both space and time. The emergent structures on the vortex filament are analogous to loop solitons but arise from the dual action of bending and twisting of the vortex. Although the breather solutions we study are exact solutions of the LIA equations, we demonstrate through full numerical simulations that their key emergent attributes carry over to vortex dynamics governed by the Biot-Savart law and to quantized vortices described by the Gross-Pitaevskii equation. The breather excitations can lead to self-reconnections, a mechanism that can play an important role within the crossover range of scales in superfluid turbulence. Moreover, the observation of breather solutions on vortices in a field model suggests that these solutions are expected to arise in a wide range of other physical contexts from classical vortices to cosmological strings.

  20. Cosmic Origin of Quantization

    NASA Astrophysics Data System (ADS)

    Calogero, Francesco

    An estimate is presented of the angular momentum associated with the stochastic cosmic tremor, which has been hypothesized to be caused by universal gravitation and by the granularity of matter, and to be itself the cause of quantization ("cosmic origin of quantization"). If that universal tremor has the spatial coherence which is instrumental in order that the estimated action associated with it have the order of magnitude of Planck's constant h, then the estimated order of magnitude of the angular momentum associated with it also has the same value. We moreover indicate how these findings (originally based on a simplified model of the Universe, as being made up only of particles having the nucleon mass) are affected (in fact, essentially unaffected) by the possible presence in the mass of the Universe of a large component made up of particles much lighter than nucleons ("dark", or "missing", mass).

  1. Resurgence matches quantization

    NASA Astrophysics Data System (ADS)

    Couso-Santamaría, Ricardo; Mariño, Marcos; Schiappa, Ricardo

    2017-04-01

    The quest to find a nonperturbative formulation of topological string theory has recently seen two unrelated developments. On the one hand, via quantization of the mirror curve associated to a toric Calabi–Yau background, it has been possible to give a nonperturbative definition of the topological-string partition function. On the other hand, using techniques of resurgence and transseries, it has been possible to extend the string (asymptotic) perturbative expansion into a transseries involving nonperturbative instanton sectors. Within the specific example of the local {{{P}}2} toric Calabi–Yau threefold, the present work shows how the Borel–Padé–Écalle resummation of this resurgent transseries, alongside occurrence of Stokes phenomenon, matches the string-theoretic partition function obtained via quantization of the mirror curve. This match is highly non-trivial, given the unrelated nature of both nonperturbative frameworks, signaling at the existence of a consistent underlying structure.

  2. Uniform quantized electron gas

    NASA Astrophysics Data System (ADS)

    Høye, Johan S.; Lomba, Enrique

    2016-10-01

    In this work we study the correlation energy of the quantized electron gas of uniform density at temperature T  =  0. To do so we utilize methods from classical statistical mechanics. The basis for this is the Feynman path integral for the partition function of quantized systems. With this representation the quantum mechanical problem can be interpreted as, and is equivalent to, a classical polymer problem in four dimensions where the fourth dimension is imaginary time. Thus methods, results, and properties obtained in the statistical mechanics of classical fluids can be utilized. From this viewpoint we recover the well known RPA (random phase approximation). Then to improve it we modify the RPA by requiring the corresponding correlation function to be such that electrons with equal spins can not be on the same position. Numerical evaluations are compared with well known results of a standard parameterization of Monte Carlo correlation energies.

  3. Inelastic scattering of xenon atoms by quantized vortices in superfluids

    NASA Astrophysics Data System (ADS)

    Pshenichnyuk, I. A.; Berloff, N. G.

    2016-11-01

    We study inelastic interactions of particles with quantized vortices in superfluids by using a semiclassical matter wave theory that is analogous to the Landau two-fluid equations, but allows for the vortex dynamics. The research is motivated by recent experiments on xenon-doped helium nanodroplets that show clustering of the impurities along the vortex cores. We numerically simulate the dynamics of trapping and interactions of xenon atoms by quantized vortices in superfluid helium and the obtained results can be extended to scattering of other impurities by quantized vortices. Different energies and impact parameters of incident particles are considered. We show that inelastic scattering is closely linked to the generation of Kelvin waves along a quantized vortex during the interaction even if there is no capture. The capture criterion of an impurity is formulated in terms of the binding energy.

  4. Near field interactions in terahertz metamaterials

    NASA Astrophysics Data System (ADS)

    Keiser, George R.

    Terahertz (THz) frequencies comprise the portion of the electromagnetic spectrum more energetic than microwaves, but less energetic than infrared light. The THz band presents many opportunities for condensed matter physics and optics engineering. From the physics perspective, advances in the generation and detection of THz radiation have opened the door for spectroscopic studies of a range of solid-state phenomena that manifest at THz frequencies. From an engineering perspective, THz frequencies are an under-used spectral region, ripe for the development of new devices. In both cases, the challenge for researchers is to overcome a lack of sources, detectors, and optics for THz light, termed the THz Gap. Metamaterials (MMs), composite structures with engineered index of refraction, n, and impedance, Z, provide one path towards realizing THz optics. MMs are an ideal platform for the design of local EM field distributions, and far-field optical properties. This is especially true at THz frequencies, where fabrication of inclusions is easily accomplished with photolithography. Historically, MM designs have been based around static configurations of resonant inclusions that work only in a narrow frequency band, limiting applications. Broadband and tunable MMs are needed to overcome this limit. This dissertation focuses on creating tunable and controllable MM structures through the manipulation of electromagnetic interactions between MM inclusions. We introduce three novel MM systems. Each system is studied computationally with CST-Studio, and experimentally via THz spectroscopy. First, we look at the tunable transmission spectrum of two coupled split ring resonators (SRRs) with different resonant frequencies. We show that introducing a lateral displacement between the two component resonators lowers the electromagnetic coupling between the SRRs, activating a new resonance. Second, we study an SRR array, coupled to a non-resonant closed ring array. We show that lowering

  5. Hysteresis in a quantized superfluid 'atomtronic' circuit.

    PubMed

    Eckel, Stephen; Lee, Jeffrey G; Jendrzejewski, Fred; Murray, Noel; Clark, Charles W; Lobb, Christopher J; Phillips, William D; Edwards, Mark; Campbell, Gretchen K

    2014-02-13

    Atomtronics is an emerging interdisciplinary field that seeks to develop new functional methods by creating devices and circuits where ultracold atoms, often superfluids, have a role analogous to that of electrons in electronics. Hysteresis is widely used in electronic circuits-it is routinely observed in superconducting circuits and is essential in radio-frequency superconducting quantum interference devices. Furthermore, it is as fundamental to superfluidity (and superconductivity) as quantized persistent currents, critical velocity and Josephson effects. Nevertheless, despite multiple theoretical predictions, hysteresis has not been previously observed in any superfluid, atomic-gas Bose-Einstein condensate. Here we directly detect hysteresis between quantized circulation states in an atomtronic circuit formed from a ring of superfluid Bose-Einstein condensate obstructed by a rotating weak link (a region of low atomic density). This contrasts with previous experiments on superfluid liquid helium where hysteresis was observed directly in systems in which the quantization of flow could not be observed, and indirectly in systems that showed quantized flow. Our techniques allow us to tune the size of the hysteresis loop and to consider the fundamental excitations that accompany hysteresis. The results suggest that the relevant excitations involved in hysteresis are vortices, and indicate that dissipation has an important role in the dynamics. Controlled hysteresis in atomtronic circuits may prove to be a crucial feature for the development of practical devices, just as it has in electronic circuits such as memories, digital noise filters (for example Schmitt triggers) and magnetometers (for example superconducting quantum interference devices).

  6. Hysteresis in a quantized superfluid `atomtronic' circuit

    NASA Astrophysics Data System (ADS)

    Eckel, Stephen; Lee, Jeffrey G.; Jendrzejewski, Fred; Murray, Noel; Clark, Charles W.; Lobb, Christopher J.; Phillips, William D.; Edwards, Mark; Campbell, Gretchen K.

    2014-02-01

    Atomtronics is an emerging interdisciplinary field that seeks to develop new functional methods by creating devices and circuits where ultracold atoms, often superfluids, have a role analogous to that of electrons in electronics. Hysteresis is widely used in electronic circuits--it is routinely observed in superconducting circuits and is essential in radio-frequency superconducting quantum interference devices. Furthermore, it is as fundamental to superfluidity (and superconductivity) as quantized persistent currents, critical velocity and Josephson effects. Nevertheless, despite multiple theoretical predictions, hysteresis has not been previously observed in any superfluid, atomic-gas Bose-Einstein condensate. Here we directly detect hysteresis between quantized circulation states in an atomtronic circuit formed from a ring of superfluid Bose-Einstein condensate obstructed by a rotating weak link (a region of low atomic density). This contrasts with previous experiments on superfluid liquid helium where hysteresis was observed directly in systems in which the quantization of flow could not be observed, and indirectly in systems that showed quantized flow. Our techniques allow us to tune the size of the hysteresis loop and to consider the fundamental excitations that accompany hysteresis. The results suggest that the relevant excitations involved in hysteresis are vortices, and indicate that dissipation has an important role in the dynamics. Controlled hysteresis in atomtronic circuits may prove to be a crucial feature for the development of practical devices, just as it has in electronic circuits such as memories, digital noise filters (for example Schmitt triggers) and magnetometers (for example superconducting quantum interference devices).

  7. Intense-field-stimulated multiphoton transitions in a two-level system

    SciTech Connect

    Milman, Perola; Zagury, Nicim

    2011-11-15

    We study the interaction of an intense classical field with a two-level system coupled to a bosonic quantized field. We focus on the regime where the classical field and the two-level system characteristic frequencies are the same, while the quantized mode is set off resonance with both. We show that a parameter governing the dynamics of the system is the ratio between the classical field's intensity and the quantized mode detuning. Depending on this parameter, multiple excitations can be created in the quantized mode in a single cycle of the two-level system. Examples of physical setups allowing for the application of the presented ideas are superconducting circuits in strip-line resonators, laser cooled trapped ions, and neutral atoms coupled to the quantized field of a cavity. We focus on the latter in order to show that, with realistic experimental parameters, it is possible to generate up to four photons in a single Rabi cycle.

  8. Quantization of interface currents

    SciTech Connect

    Kotani, Motoko; Schulz-Baldes, Hermann; Villegas-Blas, Carlos

    2014-12-15

    At the interface of two two-dimensional quantum systems, there may exist interface currents similar to edge currents in quantum Hall systems. It is proved that these interface currents are macroscopically quantized by an integer that is given by the difference of the Chern numbers of the two systems. It is also argued that at the interface between two time-reversal invariant systems with half-integer spin, one of which is trivial and the other non-trivial, there are dissipationless spin-polarized interface currents.

  9. Light-cone quantization and hadron structure

    SciTech Connect

    Brodsky, S.J.

    1996-04-01

    Quantum chromodynamics provides a fundamental description of hadronic and nuclear structure and dynamics in terms of elementary quark and gluon degrees of freedom. In practice, the direct application of QCD to reactions involving the structure of hadrons is extremely complex because of the interplay of nonperturbative effects such as color confinement and multi-quark coherence. In this talk, the author will discuss light-cone quantization and the light-cone Fock expansion as a tractable and consistent representation of relativistic many-body systems and bound states in quantum field theory. The Fock state representation in QCD includes all quantum fluctuations of the hadron wavefunction, including fax off-shell configurations such as intrinsic strangeness and charm and, in the case of nuclei, hidden color. The Fock state components of the hadron with small transverse size, which dominate hard exclusive reactions, have small color dipole moments and thus diminished hadronic interactions. Thus QCD predicts minimal absorptive corrections, i.e., color transparency for quasi-elastic exclusive reactions in nuclear targets at large momentum transfer. In other applications, such as the calculation of the axial, magnetic, and quadrupole moments of light nuclei, the QCD relativistic Fock state description provides new insights which go well beyond the usual assumptions of traditional hadronic and nuclear physics.

  10. Spin wave quantization in continuous film with stripe domains

    NASA Astrophysics Data System (ADS)

    Ha, Seung-Seok; Yoon, Jungbum; Lee, Sukmock; You, Chun-Yeol; Jung, Myung-Hwa; Kim, Young Keun

    2009-04-01

    We investigated the spin wave dynamics of CoFeSiB film, which has a stripe domain structure at a low magnetic field region (<1 kOe). We measured the spin wave excitation spectra by employing Brillouin light scattering. Abnormal field dependence and dispersion relations were observed, and they are similar to spin wave quantization in laterally confined magnetic structures such as arrays of magnetic nanowires. The observed spin wave excitation spectra must be interpreted with spin wave quantization such as Damon-Eshbach mode separation. It was found that the spin wave quantization is related to the stripe magnetic domain structure in continuous film. The physical origin of the quantization is the partial reflection of the propagating spin wave at the periodic stripe domain boundaries.

  11. Quaternionic quantization principle in general relativity and supergravity

    NASA Astrophysics Data System (ADS)

    Kober, Martin

    2016-01-01

    A generalized quantization principle is considered, which incorporates nontrivial commutation relations of the components of the variables of the quantized theory with the components of the corresponding canonical conjugated momenta referring to other space-time directions. The corresponding commutation relations are formulated by using quaternions. At the beginning, this extended quantization concept is applied to the variables of quantum mechanics. The resulting Dirac equation and the corresponding generalized expression for plane waves are formulated and some consequences for quantum field theory are considered. Later, the quaternionic quantization principle is transferred to canonical quantum gravity. Within quantum geometrodynamics as well as the Ashtekar formalism, the generalized algebraic properties of the operators describing the gravitational observables and the corresponding quantum constraints implied by the generalized representations of these operators are determined. The generalized algebra also induces commutation relations of the several components of the quantized variables with each other. Finally, the quaternionic quantization procedure is also transferred to 𝒩 = 1 supergravity. Accordingly, the quantization principle has to be generalized to be compatible with Dirac brackets, which appear in canonical quantum supergravity.

  12. Flow field interactions between two tandem cyclists

    NASA Astrophysics Data System (ADS)

    Barry, Nathan; Burton, David; Sheridan, John; Thompson, Mark; Brown, Nicholas A. T.

    2016-12-01

    Aerodynamic drag is the primary resistive force acting on cyclists at racing speeds. Many events involve cyclists travelling in very close proximity. Previous studies have shown that interactions result in significant drag reductions for inline cyclists. However, the interaction between cyclist leg position (pedalling) and the vortical flow structures that contribute significantly to the drag on an isolated cyclist has not previously been quantified or described for tandem cyclists of varying separation. To this end, scale model cyclists were constructed for testing in a water channel for inline tandem configurations. Particle image velocimetry was used to capture time-averaged velocity fields around two tandem cyclists. Perhaps surprisingly, the wake of a trailing cyclist maintains strong similarity to the characteristic wake of a single cyclist despite a significant disturbance to the upstream flow. Together with streamwise velocity measurements through the wake and upstream of the trailing cyclist, this work supports previous findings, which showed that the trailing cyclist drag reduction is primarily due to upstream sheltering effects reducing the stagnation pressure on forward-facing surfaces.

  13. Quantization Of Temperature

    NASA Astrophysics Data System (ADS)

    O'Brien, Paul

    2017-01-01

    Max Plank did not quantize temperature. I will show that the Plank temperature violates the Plank scale. Plank stated that the Plank scale was Natures scale and independent of human construct. Also stating that even aliens would derive the same values. He made a huge mistake, because temperature is based on the Kelvin scale, which is man-made just like the meter and kilogram. He did not discover natures scale for the quantization of temperature. His formula is flawed, and his value is incorrect. Plank's calculation is Tp = c2Mp/Kb. The general form of this equation is T = E/Kb Why is this wrong? The temperature for a fixed amount of energy is dependent upon the volume it occupies. Using the correct formula involves specifying the radius of the volume in the form of (RE). This leads to an inequality and a limit that is equivalent to the Bekenstein Bound, but using temperature instead of entropy. Rewriting this equation as a limit defines both the maximum temperature and Boltzmann's constant. This will saturate any space-time boundary with maximum temperature and information density, also the minimum radius and entropy. The general form of the equation then becomes a limit in BH thermodynamics T <= (RE)/(λKb) .

  14. Quantization on Curves

    NASA Astrophysics Data System (ADS)

    Frønsdal, Christian; Kontsevich, Maxim

    2007-02-01

    Deformation quantization on varieties with singularities offers perspectives that are not found on manifolds. The Harrison component of Hochschild cohomology, vanishing on smooth manifolds, reflects information about singularities. The Harrison 2-cochains are symmetric and are interpreted in terms of abelian *-products. This paper begins a study of abelian quantization on plane curves over mathbb{C}, being algebraic varieties of the form {mathbb{C}}^2/R, where R is a polynomial in two variables; that is, abelian deformations of the coordinate algebra mathbb{C}[x,y]/(R). To understand the connection between the singularities of a variety and cohomology we determine the algebraic Hochschild (co)homology and its Barr Gerstenhaber Schack decomposition. Homology is the same for all plane curves mathbb{C}[x,y]/R, but the cohomology depends on the local algebra of the singularity of R at the origin. The Appendix, by Maxim Kontsevich, explains in modern mathematical language a way to calculate Hochschild and Harrison cohomology groups for algebras of functions on singular planar curves etc. based on Koszul resolutions.

  15. Covariant quantization of the CBS superparticle

    NASA Astrophysics Data System (ADS)

    Grassi, P. A.; Policastro, G.; Porrati, M.

    2001-07-01

    The quantization of the Casalbuoni-Brink-Schwarz superparticle is performed in an explicitly covariant way using the antibracket formalism. Since an infinite number of ghost fields are required, within a suitable off-shell twistor-like formalism, we are able to fix the gauge of each ghost sector without modifying the physical content of the theory. The computation reveals that the antibracket cohomology contains only the physical degrees of freedom.

  16. Analysis of the quantum bouncer using polymer quantization

    NASA Astrophysics Data System (ADS)

    Martín-Ruiz, A.; Frank, A.; Urrutia, L. F.

    2015-08-01

    Polymer quantization (PQ) is a background independent quantization scheme that arises in loop quantum gravity. This framework leads to a new short-distance (discretized) structure characterized by a fundamental length. In this paper we use PQ to analyze the problem of a particle bouncing on a perfectly reflecting surface under the influence of Earth's gravitational field. In this scenario, deviations from the usual quantum effects are induced by the spatial discreteness, but not by a new short-range gravitational interaction. We solve the polymer Schrödinger equation in an analytical fashion, and we evaluate numerically the corresponding energy levels. We find that the polymer energy spectrum exhibits a negative shift compared to the one obtained for the quantum bouncer. The comparison of our results with those obtained in the GRANIT experiment leads to an upper bound for the fundamental length scale, namely λ ≪0.6 Å . We find polymer corrections to the transition probability between levels, induced by small vibrations, together with the probability of spontaneous emission in the quadrupole approximation.

  17. Halo nuclei interactions using effective field theory

    NASA Astrophysics Data System (ADS)

    Fernando, Nippalage Lakma Kaushalya

    Effective field theory (EFT) provides a framework to exploit separation of scales in the physical system in order to perform systematic model-independent calculations. There has been significant interest in applying the methods of EFT to halo nuclei. Using halo effective field theory, I provide a model-independent calculation of the radiative neutron capture on lithium-7 over an energy range where the contribution from the 3+ resonance becomes important. This reaction initiate the sequence in the carbon-nitrogen-oxygen (CNO) cycle in the inhomogeneous BBN models, and determine the amount of heavy element production from its reaction rate. One finds that a satisfactory description of the capture reaction, in the present single-particle approximation, suggests the use of a resonance width about three times larger than the experimental value. Power counting arguments that establish a hierarchy for the electromagnetic one- and two-body currents is also presented. The neutron capture of Lithium7 calculation has direct impact on the proton capture on beryllium7 which plays an important role in the neutrino experiments studying physics beyond the Standard Model of particle physics. As a further study of halo nuclei interactions, the cross section of radiative capture of a neutron by carbon-14 is calculated by considering the dominant contribution from electric dipole transition. This is also a part of the CNO cycle and as the slowest reaction in the chain it limits the flow of the production of heavier nuclei A > 14. The cross section is expressed in terms of the elastic scattering parameters of an effective range expansion. Contributions from both the resonant and non-resonant interactions are calculated. Significant interferences between these leads to a capture contribution that deviates from a simple Breit-Wigner resonance form. Using EFT, I present electromagnetic form factors of several halo nuclei. The magnetic dipole moment and the charge radii of carbon-15

  18. Second quantization in bit-string physics

    NASA Technical Reports Server (NTRS)

    Noyes, H. Pierre

    1993-01-01

    Using a new fundamental theory based on bit-strings, a finite and discrete version of the solutions of the free one particle Dirac equation as segmented trajectories with steps of length h/mc along the forward and backward light cones executed at velocity +/- c are derived. Interpreting the statistical fluctuations which cause the bends in these segmented trajectories as emission and absorption of radiation, these solutions are analogous to a fermion propagator in a second quantized theory. This allows us to interpret the mass parameter in the step length as the physical mass of the free particle. The radiation in interaction with it has the usual harmonic oscillator structure of a second quantized theory. How these free particle masses can be generated gravitationally using the combinatorial hierarchy sequence (3,10,137,2(sup 127) + 136), and some of the predictive consequences are sketched.

  19. Remarks on the geometric quantization of Landau levels

    NASA Astrophysics Data System (ADS)

    Galasso, Andrea; Spera, Mauro

    2016-08-01

    In this note, we resume the geometric quantization approach to the motion of a charged particle on a plane, subject to a constant magnetic field perpendicular to the latter, by showing directly that it gives rise to a completely integrable system to which we may apply holomorphic geometric quantization. In addition, we present a variant employing a suitable vertical polarization and we also make contact with Bott’s quantization, enforcing the property “quantization commutes with reduction”, which is known to hold under quite general conditions. We also provide an interpretation of translational symmetry breaking in terms of coherent states and index theory. Finally, we give a representation theoretic description of the lowest Landau level via the use of an S1-equivariant Dirac operator.

  20. Cosmology with three interacting spin-2 fields

    NASA Astrophysics Data System (ADS)

    Lüben, Marvin; Akrami, Yashar; Amendola, Luca; Solomon, Adam R.

    2016-08-01

    Theories of massive gravity with one or two dynamical metrics generically lack stable and observationally viable cosmological solutions that are distinguishable from Λ cold dark matter (CDM). We consider an extension to trimetric gravity, with three interacting spin-2 fields which are not plagued by the Boulware-Deser ghost. We systematically explore every combination with two free parameters in search of background cosmologies that are competitive with Λ CDM . For each case we determine whether the expansion history satisfies viability criteria, and whether or not it contains beyond-Λ CDM phenomenology. Among the many models we consider, there are only three cases that seem to be both viable and distinguishable from standard cosmology. One of the models has only one free parameter and displays a crossing from above to below the phantom divide. The other two provide scaling behavior, although they contain future singularities that need to be studied in more detail. These models possess interesting features that make them compelling targets for a full comparison to observations of both cosmological expansion history and structure formation.

  1. Generalized Bergman kernels and geometric quantization

    NASA Astrophysics Data System (ADS)

    Tuynman, G. M.

    1987-03-01

    In geometric quantization it is well known that, if f is an observable and F a polarization on a symplectic manifold (M,ω), then the condition ``Xf leaves F invariant'' (where Xf denotes the Hamiltonian vector field associated to f ) is sufficient to guarantee that one does not have to compute the BKS kernel explicitly in order to know the corresponding quantum operator. It is shown in this paper that this condition on f can be weakened to ``Xf leaves F+F° invariant''and the corresponding quantum operator is then given implicitly by formula (4.8); in particular when F is a (positive) Kähler polarization, all observables can be quantized ``directly'' and moreover, an ``explicit'' formula for the corresponding quantum operator is derived (Theorem 5.8). Applying this to the phase space R2n one obtains a quantization prescription which ressembles the normal ordering of operators in quantum field theory. When we translate this prescription to the usual position representation of quantum mechanics, the result is (a.o) that the operator associated to a classical potential is multiplication by a function which is essentially the convolution of the potential function with a Gaussian function of width ℏ, instead of multiplication by the potential itself.

  2. The effects of damping on the approximate teleportation and nonclassical properties in the atom-field interaction

    NASA Astrophysics Data System (ADS)

    Daneshmand, R.; Tavassoly, M. K.

    2016-04-01

    Based on the Jaynes-Cummings interaction model of a Ξ-type three-level atom with a single-mode quantized field, the effect of damping on teleportation is studied. To achieve this purpose, we have taken into account the decay rates of the two upper atomic levels. The influences of such atomic damping on the teleportation of atomic as well as field states are evaluated. It is shown that, by increasing the damping parameter the fidelity and success probability is decreased. Finally, beside our main motivation of the paper, we end it with some marginal, however, of interest purposes like the analyzing the dynamics of a few interesting physical properties such as entanglement, Mandel parameter and quadrature squeezing in the presence of damping.

  3. Effective interactions from q-deformed quark fields

    SciTech Connect

    Timoteo, V. S.; Lima, C. L.

    2007-02-12

    From the mass term for q-deformed quark fields, we obtain effective contact interactions of the NJL type. The parameters of the model that maps a system of non-interacting deformed fields into quarks interacting via NJL contact terms is discussed.

  4. Theory of the Knight Shift and Flux Quantization in Superconductors

    DOE R&D Accomplishments Database

    Cooper, L. N.; Lee, H. J.; Schwartz, B. B.; Silvert, W.

    1962-05-01

    Consequences of a generalization of the theory of superconductivity that yields a finite Knight shift are presented. In this theory, by introducing an electron-electron interaction that is not spatially invariant, the pairing of electrons with varying total momentum is made possible. An expression for Xs (the spin susceptibility in the superconducting state) is derived. In general Xs is smaller than Xn, but is not necessarily zero. The precise magnitude of Xs will vary from sample to sample and will depend on the nonuniformity of the samples. There should be no marked size dependence and no marked dependence on the strength of the magnetic field; this is in accord with observation. The basic superconducting properties are retained, but there are modifications in the various electromagnetic and thermal properties since the electrons paired are not time sequences of this generalized theory on flux quantization arguments are presented.(auth)

  5. The Hamiltonian structure of Dirac's equation in tensor form and its Fermi quantization

    NASA Technical Reports Server (NTRS)

    Reifler, Frank; Morris, Randall

    1992-01-01

    Currently, there is some interest in studying the tensor forms of the Dirac equation to elucidate the possibility of the constrained tensor fields admitting Fermi quantization. We demonstrate that the bispinor and tensor Hamiltonian systems have equivalent Fermi quantizations. Although the tensor Hamiltonian system is noncanonical, representing the tensor Poisson brackets as commutators for the Heisenberg operators directly leads to Fermi quantization without the use of bispinors.

  6. Visibility of wavelet quantization noise

    NASA Technical Reports Server (NTRS)

    Watson, A. B.; Yang, G. Y.; Solomon, J. A.; Villasenor, J.

    1997-01-01

    The discrete wavelet transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that we call DWT uniform quantization noise; it is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2-lambda, where r is display visual resolution in pixels/degree, and lambda is the wavelet level. Thresholds increase rapidly with wavelet spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from lowpass to horizontal/vertical to diagonal. We construct a mathematical model for DWT noise detection thresholds that is a function of level, orientation, and display visual resolution. This allows calculation of a "perceptually lossless" quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.

  7. Visibility of Wavelet Quantization Noise

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Yang, Gloria Y.; Solomon, Joshua A.; Villasenor, John; Null, Cynthia H. (Technical Monitor)

    1995-01-01

    The Discrete Wavelet Transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter, which we call DWT uniform quantization noise. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2(exp)-L , where r is display visual resolution in pixels/degree, and L is the wavelet level. Amplitude thresholds increase rapidly with spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from low-pass to horizontal/vertical to diagonal. We describe a mathematical model to predict DWT noise detection thresholds as a function of level, orientation, and display visual resolution. This allows calculation of a "perceptually lossless" quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.

  8. Phase control of optical bistability and multistability in closed-type Landau-quantized graphene

    NASA Astrophysics Data System (ADS)

    Zhang, Duo; Yu, Rong; Ding, Chunling; Huang, Hailin; Sun, Zhaoyu; Yang, Xiaoxue

    2016-12-01

    We investigate the dynamic characteristics of a Landau-quantized graphene monolayer system interacting with three infrared laser probe fields in a monodirectional ring cavity, and analyse the input-output properties of the infrared laser probe field under a steady-state condition. The results show that we can effectively control the appearance or disappearance of optical bistability (OB) or optical multistability (OM) by adjusting the relative phase of three coherent fields, the coupling field intensity, as well as the frequency detunings of the probe field and the control field. In addition, we discuss in detail the influences of the left-hand and right-hand circularly polarized component intensity of the control field on the behaviors of OB and OM. Our investigation may be used to build more efficient logic-gate devices to realize an all-optic switching process.

  9. Short-range +/-J interaction Ising spin glass in a transverse field on a Bethe lattice: a quantum-spherical approach

    NASA Astrophysics Data System (ADS)

    Kope, T. K.; Usadel, K. D.

    2006-02-01

    We consider the short-range interaction disordered quantum Ising model with symmetric binary +/-J bond distribution on the Bethe lattice (with coordination number z). The system exhibits quantum phase transition separating the spin glass and disordered phases where the quantum effect are regulated by a param- eter describing the transverse field. By introducing a mapping of the quantum Hamiltonian of the model onto a soft-spin action we consider it truncated version in a form of the solvable quantized spherical model. Quantum dynamics is examined via various correlation functions on the infinite tree which are evaluated in a closed form.

  10. Dancing in the thresholds: Exploring the interactive field

    NASA Astrophysics Data System (ADS)

    Rodriguez, Constance S.

    This dissertation is an attempt to investigate the nature of the interactive field to deepen as well as broaden its scope as it applies to depth psychology and its praxis. With a phenomenological eye toward field dynamics from other paradigms, this exploration demonstrates an additional theoretical framework within the interactive field. It opens other possibilities creating a neither/nor position from which to contain our work with an alchemical/metaphorical position and allows for the liberation of the imaginal realm through which ``the Other'' may be of service, and in fact, may ask us to be in service to it. The literature review not only surveys the three primary schools in psychology-the psychoanalytical, the classical, and archetypal as the genesis of the interactive field, but also investigates shamanic realms as a backdrop from which to see field theory. Field theory is also explored in the world of quantum physics where the universal field is examined from paradigms situated in varied consciousness models. The somatic unconscious, an intrinsic part of the interactive field in mutual engagement with two or more persons, is also woven into the fabric of this study as an intersection between the universal field and the psychodynamic field. This study, as a psychological gnosis, initiates subtle body awareness from Eastern cosmologies from a depth perspective in the psychodynamics of the interactive field. Synchronistic encounters are integrated into field theory as a threshold where universal fields engage the somatic unconscious, initiating numinous and sometimes transformative change into one's life.

  11. Semiclassical Quantization of the Electron-Dipole System.

    ERIC Educational Resources Information Center

    Turner, J. E.

    1979-01-01

    This paper presents a derivation of the number given by Fermi in 1925, in his semiclassical treatment of the motion of an electron in the field of two stationary positive charges, for Bohr quantization of the electron orbits when the stationary charges are positive, and applies it to an electron moving in the field of a stationary dipole.…

  12. Resonant Strong Field Nonlinear Optical Interactions

    NASA Astrophysics Data System (ADS)

    Coppeta, David Anthony

    This work considers the steady state nonlinear response of a medium subjected to electromagnetic fields which are resonant and/or strong. In this regime, pertubation expansions in the field amplitude(s) diverge and non-pertubative techniques are required. Two general cases are considered. In the first case, radiative renormalization is applied to Four Wave Mixing (FWM) in a four level system with three resonant driving fields. The absorption and generation of a weak FWM signal are considered. Several variants including coherent anti-Stokes Raman scattering are considered. The second case is a two level atom subject to excitation by an arbitrarily amplitude modulated field. The domain of solution is extended to non-equal damping rates with zero detuning from resonance. As an example, the steady state response to step function amplitude modulation is treated.

  13. Divergent Integrals of QED in Krein Space Quantization

    SciTech Connect

    Payandeh, F.

    2010-06-15

    The usual quantum field theory leads to an ultraviolet divergence in the vacuum energies and an infrared divergence in the two-point functions. It has been shown that the presence of unphysical negative-frequency states (Krein space quantization) plays the role of an automatic renormalization tool for the theory of quantized fields. In the standard QED, the divergent quantities are found in the self-energy, vacuum polarization, and vertex graphs. It seems as if evaluating divergent integrals of QED in Krein space leads to convergent values.

  14. The cosmology of interacting spin-2 fields

    SciTech Connect

    Tamanini, Nicola; Saridakis, Emmanuel N.; Koivisto, Tomi S. E-mail: Emmanuel_Saridakis@baylor.edu

    2014-02-01

    We investigate the cosmology of interacting spin-2 particles, formulating the multi-gravitational theory in terms of vierbeins and without imposing any Deser-van Nieuwen-huizen-like constraint. The resulting multi-vierbein theory represents a wider class of gravitational theories if compared to the corresponding multi-metric models. Moreover, as opposed to its metric counterpart which in general seems to contain ghosts, it has already been proved to be ghost-free. We outline a discussion about the possible matter couplings and we focus on the study of cosmological scenarios in the case of three and four interacting vierbeins. We find rich behavior, including de Sitter solutions with an effective cosmological constant arising from the multi-vierbein interaction, dark-energy solutions and nonsingular bouncing behavior.

  15. Self-interacting complex scalar field as dark matter

    SciTech Connect

    Briscese, F.

    2011-10-14

    We study the viability of a a complex scalar field {chi} with self-interacting potential V = m{sub 0}{sup {chi}/}2|{chi}|{sup 2}+h|{chi}|{sup 4} as dark matter. Due to the self interaction, the scalar field forms a Bose-Einstein condensate at early times that represents dark matter. The self interaction is also responsible of quantum corrections to the scalar field mass that naturally give the dark matter domination at late times without any fine tuning on the energy density of the scalar field at early times. Finally the properties of the spherically symmetric dark matter halos are also discussed.

  16. Electron Anomalous Magnetic Moment in Basis Light-Front Quantization Approach

    SciTech Connect

    Zhao, Xingbo; Honkanen, Heli; Maris, Pieter; Vary, James P.; Brodsky, Stanley J.; /SLAC

    2012-02-17

    We apply the Basis Light-Front Quantization (BLFQ) approach to the Hamiltonian field theory of Quantum Electrodynamics (QED) in free space. We solve for the mass eigenstates corresponding to an electron interacting with a single photon in light-front gauge. Based on the resulting non-perturbative ground state light-front amplitude we evaluate the electron anomalous magnetic moment. The numerical results from extrapolating to the infinite basis limit reproduce the perturbative Schwinger result with relative deviation less than 1.2%. We report significant improvements over previous works including the development of analytic methods for evaluating the vertex matrix elements of QED.

  17. Topology, Magnetic Field, and Strongly Interacting Matter

    DOE PAGES

    Kharzeev, Dmitri E.

    2015-06-05

    Gauge theories with compact symmetry groups possess topologically nontrivial configurations of gauge field. This characteristic has dramatic implications for the vacuum structure of quantum chromodynamics (QCD) and for the behavior of QCD plasma, as well as for condensed matter systems with chiral quasi-particles. Here, I review the current status of this problem with an emphasis both on the interplay between chirality and a background magnetic field and on the observable manifestations of topology in heavy-ion collisions, Dirac semimetals, neutron stars, and the early Universe.

  18. Is Planck's quantization constant unique?

    NASA Astrophysics Data System (ADS)

    Livadiotis, George

    2016-07-01

    A cornerstone of Quantum Mechanics is the existence of a non-zero least action, the Planck constant. However, the basic concepts and theoretical developments of Quantum Mechanics are independent of its specific numerical value. A different constant h _{*}, similar to the Planck constant h, but ˜12 orders of magnitude larger, characterizes plasmas. The study of >50 different geophysical, space, and laboratory plasmas, provided the first evidence for the universality and the quantum nature of h _{*}, revealing that it is a new quantization constant. The recent results show the diagnostics for determining whether plasmas are characterized by the Planck or the new quantization constant, compounding the challenge to reconcile both quantization constants in quantum mechanics.

  19. On supersymmetric Lifshitz field theories

    NASA Astrophysics Data System (ADS)

    Chapman, Shira; Oz, Yaron; Raviv-Moshe, Avia

    2015-10-01

    We consider field theories that exhibit a supersymmetric Lifshitz scaling with two real supercharges. The theories can be formulated in the language of stochastic quan-tization. We construct the free field supersymmetry algebra with rotation singlet fermions for an even dynamical exponent z = 2 k in an arbitrary dimension. We analyze the classical and quantum z = 2 supersymmetric interactions in 2 + 1 and 3 + 1 spacetime dimensions and reveal a supersymmetry preserving quantum diagrammatic cancellation. Stochastic quantization indicates that Lifshitz scale invariance is broken in the (3 + 1)-dimensional quantum theory.

  20. Interaction mechanisms and biological effects of static magnetic fields

    SciTech Connect

    Tenforde, T.S.

    1994-06-01

    Mechanisms through which static magnetic fields interact with living systems are described and illustrated by selected experimental observations. These mechanisms include electrodynamic interactions with moving, ionic charges (blood flow and nerve impulse conduction), magnetomechanical interactions (orientation and translation of molecules structures and magnetic particles), and interactions with electronic spin states in charge transfer reactions (photo-induced electron transfer in photosynthesis). A general summary is also presented of the biological effects of static magnetic fields. There is convincing experimental evidence for magnetoreception mechanisms in several classes of lower organisms, including bacteria and marine organisms. However, in more highly evolved species of animals, there is no evidence that the interactions of static magnetic fields with flux densities up to 2 Tesla (1 Tesla [T] = 10{sup 4} Gauss) produce either behavioral or physiolocical alterations. These results, based on controlled studies with laboratory animals, are consistent with the outcome of recent epidemiological surveys on human populations exposed occupationally to static magnetic fields.

  1. Color Quantization by Multiresolution Analysis

    NASA Astrophysics Data System (ADS)

    Ramella, Giuliana; di Baja, Gabriella Sanniti

    A color quantization method is presented, which is based on the analysis of the histogram at different resolutions computed on a Gaussian pyramid of the input image. Criteria based on persistence and dominance of peaks and pits of the histograms are introduced to detect the modes in the histogram of the input image and to define the reduced colormap. Important features of the method are, besides its limited computational cost, the possibility to obtain quantized images with a variable number of colors, depending on the user’s need, and that the number of colors in the resulting image does not need to be a priori fixed.

  2. EZW coding using nonuniform quantization

    NASA Astrophysics Data System (ADS)

    Yin, Che-Yi; Derin, Haluk

    1999-10-01

    This paper presents an image coder that modifies the EZW coder and provides an improvement in its performance. The subband EZW image coder uses a uniform quantizer with a threshold (deadzone). Whereas, we know that the distribution/histogram of the wavelet tree subband coefficients, all except the lowest subband, tend to be Laplacian. To accommodate for this, we modify the refining procedure in EZW and use a non-uniform quantizer on the coefficients that better fits their distribution. The experimental results show that the new image coder performs better than EZW.

  3. Cold atom simulation of interacting relativistic quantum field theories.

    PubMed

    Cirac, J Ignacio; Maraner, Paolo; Pachos, Jiannis K

    2010-11-05

    We demonstrate that Dirac fermions self-interacting or coupled to dynamic scalar fields can emerge in the low energy sector of designed bosonic and fermionic cold atom systems. We illustrate this with two examples defined in two spacetime dimensions. The first one is the self-interacting Thirring model. The second one is a model of Dirac fermions coupled to a dynamic scalar field that gives rise to the Gross-Neveu model. The proposed cold atom experiments can be used to probe spectral or correlation properties of interacting quantum field theories thereby presenting an alternative to lattice gauge theory simulations.

  4. Canonical quantization of four- and five-dimensional U(1) gauge theories

    NASA Astrophysics Data System (ADS)

    Shnerb, N.; Horwitz, L. P.

    1993-12-01

    We discuss the canonical quantization of an interacting massless U(1) gauge field using a bosonic gauge-fixing method. We present a way to make the transformation between the Lorentz and the Coulomb gauge of such theories, without using an explicit representation of the fields in terms of creation-annihilation operators. We demonstrate this method in the case of Maxwell photons interacting with Schrödinger electrons and then we treat, with the same methods, a system of higher-dimensional equations appearing in the framework of a manifestly covariant relativistic quantum theory. The nonrelativistic limit of the Coulomb term for such a theory is discussed and compared to the Fokker action appearing in the Wheeler-Feynman action-at-a-distance theory for electromagnetic interactions.

  5. Probabilistic distance-based quantizer design for distributed estimation

    NASA Astrophysics Data System (ADS)

    Kim, Yoon Hak

    2016-12-01

    We consider an iterative design of independently operating local quantizers at nodes that should cooperate without interaction to achieve application objectives for distributed estimation systems. We suggest as a new cost function a probabilistic distance between the posterior distribution and its quantized one expressed as the Kullback Leibler (KL) divergence. We first present the analysis that minimizing the KL divergence in the cyclic generalized Lloyd design framework is equivalent to maximizing the logarithmic quantized posterior distribution on the average which can be further computationally reduced in our iterative design. We propose an iterative design algorithm that seeks to maximize the simplified version of the posterior quantized distribution and discuss that our algorithm converges to a global optimum due to the convexity of the cost function and generates the most informative quantized measurements. We also provide an independent encoding technique that enables minimization of the cost function and can be efficiently simplified for a practical use of power-constrained nodes. We finally demonstrate through extensive experiments an obvious advantage of improved estimation performance as compared with the typical designs and the novel design techniques previously published.

  6. Decoherence in an interacting quantum field theory: The vacuum case

    SciTech Connect

    Koksma, Jurjen F.; Prokopec, Tomislav; Schmidt, Michael G.

    2010-03-15

    We apply the decoherence formalism to an interacting scalar field theory. In the spirit of the decoherence literature, we consider a 'system field' and an 'environment field' that interact via a cubic coupling. We solve for the propagator of the system field, where we include the self-energy corrections due to the interaction with the environment field. In this paper, we consider an environment in the vacuum state (T=0). We show that neglecting inaccessible non-Gaussian correlators increases the entropy of the system as perceived by the observer. Moreover, we consider the effect of a changing mass of the system field in the adiabatic regime, and we find that at late times no additional entropy has been generated.

  7. Second quantization techniques in the scattering of nonidentical composite bodies

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Townsend, L. W.; Deutchman, P. A.

    1986-01-01

    Second quantization techniques for describing elastic and inelastic interactions between nonidentical composite bodies are presented and are applied to nucleus-nucleus collisions involving ground-state and one-particle-one-hole excitations. Evaluations of the resultant collision matrix elements are made through use of Wick's theorem.

  8. Compact and extended objects from self-interacting phantom fields

    NASA Astrophysics Data System (ADS)

    Dzhunushaliev, Vladimir; Folomeev, Vladimir; Makhmudov, Arislan; Urazalina, Ainur; Singleton, Douglas; Scott, John

    2016-07-01

    In this work, we investigate localized and extended objects for gravitating, self-interacting phantom fields. The phantom fields come from two scalar fields with a "wrong-sign" (negative) kinetic energy term in the Lagrangian. This study covers several solutions supported by these phantom fields: phantom balls, traversable wormholes, phantom cosmic strings, and "phantom" domain walls. These four systems are solved numerically, and we try to draw out general, interesting features in each case.

  9. Deformation Quantization and the Baum-Connes Conjecture

    NASA Astrophysics Data System (ADS)

    Landsman, N. P.

    Alternative titles of this paper would have been `Index theory without index' or `The Baum-Connes conjecture without Baum.' In 1989, Rieffel introduced an analytic version of deformation quantization based on the use of continuous fields of C*-algebras. We review how a wide variety of examples of such quantizations can be understood on the basis of a single lemma involving amenable groupoids. These include Weyl-Moyal quantization on manifolds, C*-algebras of Lie groups and Lie groupoids, and the E-theoretic version of the Baum-Connes conjecture for smooth groupoids as described by Connes in his book Noncommutative Geometry. Concerning the latter, we use a different semidirect product construction from Connes. This enables one to formulate the Baum-Connes conjecture in terms of twisted Weyl-Moyal quantization. The underlying mechanical system is a noncommutative desingularization of a stratified Poisson space, and the Baum-Connes conjecture actually suggests a strategy for quantizing such singular spaces.

  10. Analysis of magnetic field plasma interactions using microparticles as probes

    NASA Astrophysics Data System (ADS)

    Dropmann, Michael; Laufer, Rene; Herdrich, Georg; Matthews, Lorin S.; Hyde, Truell W.

    2015-08-01

    The interaction between a magnetic field and plasma close to a nonconductive surface is of interest for both science and technology. In space, crustal magnetic fields on celestial bodies without atmosphere can interact with the solar wind. In advanced technologies such as those used in fusion or spaceflight, magnetic fields can be used to either control a plasma or protect surfaces exposed to the high heat loads produced by plasma. In this paper, a method will be discussed for investigating magnetic field plasma interactions close to a nonconductive surface inside a Gaseous Electronics Conference reference cell employing dust particles as probes. To accomplish this, a magnet covered by a glass plate was exposed to a low power argon plasma. The magnetic field was strong enough to magnetize the electrons, while not directly impacting the dynamics of the ions or the dust particles used for diagnostics. In order to investigate the interaction of the plasma with the magnetic field and the nonconductive surface, micron-sized dust particles were introduced into the plasma and their trajectories were recorded with a high-speed camera. Based on the resulting particle trajectories, the accelerations of the dust particles were determined and acceleration maps over the field of view were generated which are representative of the forces acting on the particles. The results show that the magnetic field is responsible for the development of strong electric fields in the plasma, in both horizontal and vertical directions, leading to complex motion of the dust particles.

  11. Strong-Field THz Interactions with Wavepackets

    NASA Astrophysics Data System (ADS)

    Bucksbaum, Philip H.

    1998-03-01

    Intense THz radiation from photoconducting antennas are particularly useful for manipulating the structure and dynamics of atomic and molecular Rydberg states. We have used sub-picosecond ``half-cycle'' field pulses to follow both the radial(C. Raman, C.W.S. Conover, C.I. Sukenik, and P. H. Bucksbaum, Physical Review Letters 76), 2436 (1996). and angular motion(C.S. Raman, T.C. Weinacht, and P.H. Bucksbaum, Physical Review A 55), R3995-8 (1997). of wavepackets. The impulse imparted to an atomic electron by these pulses can also be used to produce or alter wavepacket motion. The THz radiation can be shaped by modulating optical radiation which photo-excites the antenna.(A. S. Weling et al., Appl. Phys. Lett. 64), 137, 1994. In this way we have produced intense tunable narrow-band THz radiation, which was employed to study population transfer in strongly driven Rydberg systems.(C. Raman, M. F. DeCamp and P. H. Bucksbaum, Optics Express 1) 186 (1997). The same techniques is used to arbitrarily adjust the intensity envelope of the THz pulse, alter its central frequency over a wide range, and to produce and control dispersion. When combined with active pulse-shaping and adaptive feedback techniques, wavepacket shapes and dispersion properties can be controlled.

  12. Seating Position and Interaction in Triads: A Field Study

    ERIC Educational Resources Information Center

    Silverstein, C. Harris; Stang, David J.

    1976-01-01

    Relationships between seating position, length of acquaintance between subjects, observer bias toward the experimental outcome, and interaction rates are examined in a field study. Subjects with greatest visual centrality spoke most often. Length of acquaintance between subjects was unrelated to interaction rates. (Author/DEP)

  13. Deformation of second and third quantization

    NASA Astrophysics Data System (ADS)

    Faizal, Mir

    2015-03-01

    In this paper, we will deform the second and third quantized theories by deforming the canonical commutation relations in such a way that they become consistent with the generalized uncertainty principle. Thus, we will first deform the second quantized commutator and obtain a deformed version of the Wheeler-DeWitt equation. Then we will further deform the third quantized theory by deforming the third quantized canonical commutation relation. This way we will obtain a deformed version of the third quantized theory for the multiverse.

  14. Applications of Basis Light-Front Quantization to QED

    NASA Astrophysics Data System (ADS)

    Vary, James P.; Zhao, Xingbo; Ilderton, Anton; Honkanen, Heli; Maris, Pieter; Brodsky, Stanley J.

    2014-06-01

    Hamiltonian light-front quantum field theory provides a framework for calculating both static and dynamic properties of strongly interacting relativistic systems. Invariant masses, correlated parton amplitudes and time-dependent scattering amplitudes, possibly with strong external time-dependent fields, represent a few of the important applications. By choosing the light-front gauge and adopting an orthonormal basis function representation, we obtain a large, sparse, Hamiltonian matrix eigenvalue problem for mass eigenstates that we solve by adapting ab initio no-core methods of nuclear many-body theory. In the continuum limit, the infinite matrix limit, we recover full covariance. Guided by the symmetries of light-front quantized theory, we adopt a two-dimensional harmonic oscillator basis for transverse modes that corresponds with eigensolutions of the soft-wall anti-de Sitter/quantum chromodynamics (AdS/QCD) model obtained from light-front holography. We outline our approach and present results for non-linear Compton scattering, evaluated non-perturbatively, where a strong and time-dependent laser field accelerates the electron and produces states of higher invariant mass i.e. final states with photon emission.

  15. On the macroscopic quantization in mesoscopic rings and single-electron devices

    NASA Astrophysics Data System (ADS)

    Semenov, Andrew G.

    2016-05-01

    In this letter we investigate the phenomenon of macroscopic quantization and consider particle on the ring interacting with the dissipative bath as an example. We demonstrate that even in presence of environment, there is macroscopically quantized observable which can take only integer values in the zero temperature limit. This fact follows from the total angular momentum conservation combined with momentum quantization for bare particle on the ring. The nontrivial thing is that the model under consideration, including the notion of quantized observable, can be mapped onto the Ambegaokar-Eckern-Schon model of the single-electron box (SEB). We evaluate SEB observable, originating after mapping, and reveal new physics, which follows from the macroscopic quantization phenomenon and the existence of additional conservation law. Some generalizations of the obtained results are also presented.

  16. Magnetic quantization of s p3 bonding in monolayer gray tin

    NASA Astrophysics Data System (ADS)

    Chen, Szu-Chao; Wu, Chung-Lin; Wu, Jhao-Ying; Lin, Ming-Fa

    2016-07-01

    A generalized tight-binding model, which is based on the subenvelope functions of the different sublattices, is developed to explore the novel magnetic quantization in monolayer gray tin (tinene). The effects due to the s p3 bonding, the spin-orbital coupling, the magnetic field, and the electric field are simultaneously taken into consideration. The unique magnetoelectronic properties lie in two groups of low-lying Landau levels, with different orbital components, localization centers, state degeneracy, spin configurations, and magnetic- and electric-field dependencies. The first and second groups mainly come from the 5 pz and (5 px,5 py ) orbitals, respectively. Their Landau-level splittings are, respectively, induced by the electric field and spin-orbital interactions. The intragroup anticrossings are only revealed in the former. The unique tinene Landau levels are absent in graphene, silicene, and germanene.

  17. Width dependent transition of quantized spin-wave modes in Ni{sub 80}Fe{sub 20} square nanorings

    SciTech Connect

    Banerjee, Chandrima; Saha, Susmita; Barman, Saswati; Barman, Anjan; Rousseau, Olivier; Otani, YoshiChika

    2014-10-28

    We investigated optically induced ultrafast magnetization dynamics in square shaped Ni{sub 80}Fe{sub 20} nanorings with varying ring width. Rich spin-wave spectra are observed whose frequencies showed a strong dependence on the ring width. Micromagnetic simulations showed different types of spin-wave modes, which are quantized upto very high quantization number. In the case of widest ring, the spin-wave mode spectrum shows quantized modes along the applied field direction, which is similar to the mode spectrum of an antidot array. As the ring width decreases, additional quantization in the azimuthal direction appears causing mixed modes. In the narrowest ring, the spin-waves exhibit quantization solely in azimuthal direction. The different quantization is attributed to the variation in the internal field distribution for different ring width as obtained from micromagnetic analysis and supported by magnetic force microscopy.

  18. Effects of an electric field on interaction of aromatic systems.

    PubMed

    Youn, Il Seung; Cho, Woo Jong; Kim, Kwang S

    2016-04-30

    The effect of uniform external electric field on the interactions between small aromatic compounds and an argon atom is investigated using post-HF (MP2, SCS-MP2, and CCSD(T)) and density functional (PBE0-D3, PBE0-TS, and vdW-DF2) methods. The electric field effect is quantified by the difference of interaction energy calculated in the presence and absence of the electric field. All the post-HF methods describe electric field effects accurately although the interaction energy itself is overestimated by MP2. The electric field effect is explained by classical electrostatic models, where the permanent dipole moment from mutual polarization mainly determines its sign. The size of π-conjugated system does not have significant effect on the electric field dependence. We found out that PBE0-based methods give reasonable interaction energies and electric field response in every case, while vdW-DF2 sometimes shows spurious artifact owing to its sensitivity toward the real space electron density.

  19. Cellular studies and interaction mechanisms of extremely low frequency fields

    NASA Astrophysics Data System (ADS)

    Liburdy, Robert P.

    1995-01-01

    Worldwide interest in the biological effects of ELF (extremely low frequency, <1 kHz) electromagnetic fields has grown significantly. Health professionals and government administrators and regulators, scientists and engineers, and, importantly, an increasing number of individuals in the general public are interested in this health issue. The goal of research at the cellular level is to identify cellular responses to ELF fields, to develop a dose threshold for such interactions, and with such information to formulate and test appropriate interaction mechanisms. This review is selective and will discuss the most recent cellular studies directed at these goals which relate to power line, sinusoidal ELF fields. In these studies an interaction site at the cell membrane is by consensus a likely candidate, since changes in ion transport, ligand-receptor events such as antibody binding, and G protein activation have been reported. These changes strongly indicate that signal transduction (ST) can be influenced. Also, ELF fields are reported to influence enzyme activation, gene expression, protein synthesis, and cell proliferation, which are triggered by earlier ST events at the cell membrane. The concept of ELF fields altering early cell membrane events and thereby influencing intracellular cell function via the ST cascade is perhaps the most plausible biological framework currently being investigated for understanding ELF effects on cells. For example, the consequence of an increase due to ELF fields in mitogenesis, the final endpoint of the ST cascade, is an overall increase in the probability of mutagenesis and consequently cancer, according to the Ames epigenetic model of carcinogenesis. Consistent with this epigenetic mechanism and the ST pathway to carcinogenesis is recent evidence that ELF fields can alter breast cancer cell proliferation and can act as a copromoter in vitro. The most important dosimetric question being addressed currently is whether the electric (E

  20. Plasma-satellite interaction driven magnetic field perturbations

    SciTech Connect

    Saeed-ur-Rehman; Marchand, Richard

    2014-09-15

    We report the first fully kinetic quantitative estimate of magnetic field perturbations caused by the interaction of a spacecraft with space environment. Such perturbations could affect measurements of geophysical magnetic fields made with very sensitive magnetometers on-board satellites. Our approach is illustrated with a calculation of perturbed magnetic fields near the recently launched Swarm satellites. In this case, magnetic field perturbations do not exceed 20 pT, and they are below the sensitivity threshold of the on-board magnetometers. Anticipating future missions in which satellites and instruments would be subject to more intense solar UV radiation, however, it appears that magnetic field perturbations associated with satellite interaction with space environment, might approach or exceed instruments' sensitivity thresholds.

  1. The influence of atomic dipole-dipole interaction on the dynamics of the population inversion and entanglement of two atoms interacting non-resonantly with two coupled modes field

    NASA Astrophysics Data System (ADS)

    Faraji, Elham; Baghshahi, Hamid Reza; Tavassoly, Mohammad Kazem

    2017-02-01

    In this paper, the non-resonant interaction of two two-level atoms with two quantized cavity fields is studied by considering the dipole-dipole interaction between the two atoms. The correlation between the fields has been taken into account and the parametric down conversion is considered. Under certain initial conditions which is determined for the atoms and the fields, the analytical solution for the time-dependent Schrödinger equation is obtained. Employing this solution, we are able to discuss about some physical properties such as atomic population inversion and entanglement between various subsystems, i.e. “atoms-fields” and “atom-atom” by using respectively von Neumann entropy and negativity. It is deduced from the numerical results that, the mentioned quantities can be controlled by the atomic dipole-dipole interaction and detuning parameter, appropriately. The results show that the degree of entanglement between the two atoms is increased due to the presence of dipole-dipole coupling of the atoms at the beginning of atom-field interaction. Furthermore, it is found that, in the non-resonance condition, the so-called entanglement sudden death occurs in the presence of dipole-dipole interaction.

  2. Quantization of Multiply Connected Manifolds

    NASA Astrophysics Data System (ADS)

    Hawkins, Eli

    2005-04-01

    The standard (Berezin-Toeplitz) geometric quantization of a compact Kähler manifold is restricted by integrality conditions. These restrictions can be circumvented by passing to the universal covering space, provided that the lift of the symplectic form is exact. I relate this construction to the Baum-Connes assembly map and prove that it gives a strict quantization of the original manifold. I also propose a further generalization, classify the required structure, and provide a means of computing the resulting algebras. These constructions involve twisted group C*-algebras of the fundamental group which are determined by a group cocycle constructed from the cohomology class of the symplectic form. This provides an algebraic counterpart to the Morita equivalence of a symplectic manifold with its fundamental group.

  3. Field theories and exact stochastic equations for interacting particle systems

    SciTech Connect

    Andreanov, Alexei; Lefevre, Alexandre; Biroli, Giulio; Bouchaud, Jean-Philippe

    2006-09-15

    We consider the dynamics of interacting particles with reaction and diffusion. Starting from the underlying discrete stochastic jump process we derive a general field theory describing the dynamics of the density field, which we relate to an exact stochastic equation on the density field. We show how our field theory maps onto the original Doi-Peliti formalism, allowing us to clarify further the issue of the 'imaginary' Langevin noise that appears in the context of reaction-diffusion processes. Our procedure applies to a wide class of problems and is related to large deviation functional techniques developed recently to describe fluctuations of nonequilibrium systems in the hydrodynamic limit.

  4. Quantum Monte Carlo calculations with chiral effective field theory interactions.

    PubMed

    Gezerlis, A; Tews, I; Epelbaum, E; Gandolfi, S; Hebeler, K; Nogga, A; Schwenk, A

    2013-07-19

    We present the first quantum Monte Carlo (QMC) calculations with chiral effective field theory (EFT) interactions. To achieve this, we remove all sources of nonlocality, which hamper the inclusion in QMC calculations, in nuclear forces to next-to-next-to-leading order. We perform auxiliary-field diffusion Monte Carlo (AFDMC) calculations for the neutron matter energy up to saturation density based on local leading-order, next-to-leading order, and next-to-next-to-leading order nucleon-nucleon interactions. Our results exhibit a systematic order-by-order convergence in chiral EFT and provide nonperturbative benchmarks with theoretical uncertainties. For the softer interactions, perturbative calculations are in excellent agreement with the AFDMC results. This work paves the way for QMC calculations with systematic chiral EFT interactions for nuclei and nuclear matter, for testing the perturbativeness of different orders, and allows for matching to lattice QCD results by varying the pion mass.

  5. Finite- to zero-range relativistic mean-field interactions

    SciTech Connect

    Niksic, T.; Vretenar, D.; Lalazissis, G. A.; Ring, P.

    2008-03-15

    We study the relation between the finite-range (meson-exchange) and zero-range (point-coupling) representations of effective nuclear interactions in the relativistic mean-field framework. Starting from the phenomenological interaction DD-ME2 with density-dependent meson-nucleon couplings, we construct a family of point-coupling effective interactions for different values of the strength parameter of the isoscalar-scalar derivative term. In the meson-exchange picture this corresponds to different values of the {sigma}-meson mass. The parameters of the isoscalar-scalar and isovector-vector channels of the point-coupling interactions are adjusted to nuclear matter and ground-state properties of finite nuclei. By comparing results for infinite and semi-infinite nuclear matter, ground-state masses, charge radii, and collective excitations, we discuss constraints on the parameters of phenomenological point-coupling relativistic effective interaction.

  6. Quantized-"Gray-Scale" Electronic Synapses

    NASA Technical Reports Server (NTRS)

    Lamb, James L.; Daud, Taher; Thakoor, Anilkumar P.

    1990-01-01

    Proposed array of programmable synaptic connections for electronic neural network applications offers multiple quantized levels of connection strength using only simple, two-terminal, binary microswitch devices. Subgrids in fine grid of programmable resistive connections connected externally in parallel to form coarser synaptic grid. By selection of pattern of connections in each subgrid, connection strength of synaptic node represented by that subgrid set at quantized "gray level". Device structures promise implementations of quantized-"gray-scale" synaptic arrays with very high density.

  7. Exact quantization conditions for cluster integrable systems

    NASA Astrophysics Data System (ADS)

    Franco, Sebastián; Hatsuda, Yasuyuki; Mariño, Marcos

    2016-06-01

    We propose exact quantization conditions for the quantum integrable systems of Goncharov and Kenyon, based on the enumerative geometry of the corresponding toric Calabi-Yau manifolds. Our conjecture builds upon recent results on the quantization of mirror curves, and generalizes a previous proposal for the quantization of the relativistic Toda lattice. We present explicit tests of our conjecture for the integrable systems associated to the resolved {{{C}}3}/{{{Z}}5} and {{{C}}3}/{{{Z}}6} orbifolds.

  8. Vector Quantization With Emergent Codebook Structure

    NASA Technical Reports Server (NTRS)

    Ahalt, Stanley C.; Krishnamurthy, Ashok

    1993-01-01

    Proposed scheme under development for transmission of vector-quantized digital video images, vector quantizer codebook updated to adapt quantizer to changing signal statistics. Intended to be realized with electronic neural network. Codebook, which consists of patterns constituting video images, will undergo training during operation and scheme will develop codebooks ordered during training. System enables coding more compact, more immune to noise, and supports variable rate compression.

  9. Lattice radial quantization: 3D Ising

    NASA Astrophysics Data System (ADS)

    Brower, R. C.; Fleming, G. T.; Neuberger, H.

    2013-04-01

    Lattice radial quantization is introduced as a nonperturbative method intended to numerically solve Euclidean conformal field theories that can be realized as fixed points of known Lagrangians. As an example, we employ a lattice shaped as a cylinder with a 2D Icosahedral cross-section to discretize dilatations in the 3D Ising model. Using the integer spacing of the anomalous dimensions of the first two descendants (l = 1, 2), we obtain an estimate for η = 0.034 (10). We also observed small deviations from integer spacing for the 3rd descendant, which suggests that a further improvement of our radial lattice action will be required to guarantee conformal symmetry at the Wilson-Fisher fixed point in the continuum limit.

  10. Adaptive scalar quantization without side information.

    PubMed

    Ortega, A; Vetterli, M

    1997-01-01

    In this paper, we introduce a novel technique for adaptive scalar quantization. Adaptivity is useful in applications, including image compression, where the statistics of the source are either not known a priori or will change over time. Our algorithm uses previously quantized samples to estimate the distribution of the source, and does not require that side information be sent in order to adapt to changing source statistics. Our quantization scheme is thus backward adaptive. We propose that an adaptive quantizer can be separated into two building blocks, namely, model estimation and quantizer design. The model estimation produces an estimate of the changing source probability density function, which is then used to redesign the quantizer using standard techniques. We introduce nonparametric estimation techniques that only assume smoothness of the input distribution. We discuss the various sources of error in our estimation and argue that, for a wide class of sources with a smooth probability density function (pdf), we provide a good approximation to a "universal" quantizer, with the approximation becoming better as the rate increases. We study the performance of our scheme and show how the loss due to adaptivity is minimal in typical scenarios. In particular, we provide examples and show how our technique can achieve signal-to-noise ratios within 0.05 dB of the optimal Lloyd-Max quantizer for a memoryless source, while achieving over 1.5 dB gain over a fixed quantizer for a bimodal source.

  11. Berezin-Toeplitz Quantization and Berezin Transform

    NASA Astrophysics Data System (ADS)

    Schlichenmaier, Martin

    2001-04-01

    In this lecture results on the Berezin-Toeplitz quantization of arbitrary compact quantizable Kähler manifolds are presented. These results are obtained in joint work with M. Bordemann and E. Meinrenken. The existence of the Berezin-Toeplitz deformation quantization is also covered. Recent results obtained in joint work with A. Karabegov on the asymptotic expansion of the Berezin transform for arbitrary quantizable compact Kähler manifolds are explained. As an application the asymptotic expansion of the Fubini-Study fundamental form under the coherent state embedding is considered. Some comments on the dynamics of the quantum operators are given.

  12. Can one ADM quantize relativistic bosonicstrings and membranes?

    NASA Astrophysics Data System (ADS)

    Moncrief, Vincent

    2006-04-01

    The standard methods for quantizing relativistic strings diverge significantly from the Dirac-Wheeler-DeWitt program for quantization of generally covariant systems and one wonders whether the latter could be successfully implemented as an alternative to the former. As a first step in this direction, we consider the possibility of quantizing strings (and also relativistic membranes) via a partially gauge-fixed ADM (Arnowitt, Deser and Misner) formulation of the reduced field equations for these systems. By exploiting some (Euclidean signature) Hamilton-Jacobi techniques that Mike Ryan and I had developed previously for the quantization of Bianchi IX cosmological models, I show how to construct Diff( S 1)-invariant (or Diff(Σ)-invariant in the case of membranes) ground state wave functionals for the cases of co-dimension one strings and membranes embedded in Minkowski spacetime. I also show that the reduced Hamiltonian density operators for these systems weakly commute when applied to physical (i.e. Diff( S 1) or Diff(Σ)-invariant) states. While many open questions remain, these preliminary results seem to encourage further research along the same lines.

  13. Strongly interacting photons in a synthetic magnetic field

    NASA Astrophysics Data System (ADS)

    Roushan, Pedram; Neill, C.; Megrant, A.; Chen, Y.; Barends, R.; Cambell, B.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Fowler, A.; Jeffrey, E.; Kelly, J.; Lucero, E.; Mutus, J.; O'Malley, P.; Neeley, M.; Quintana, C.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T.; Kapit, E.; Martinis, J.

    Interacting electrons in the presence of magnetic fields exhibit some of the most fascinating phases in condensed matter systems. Realizing these phases in an engineered platform could provide deeper insight into their. Using three superconducting qubits, we synthesize artificial magnetic fields by modulating the inter-qubit coupling. In the closed loop formed by the qubits, we observe the directional circulation of a microwave photon as well as chiral groundstate currents, the signatures of broken time-reversal symmetry. The existence of strong interactions in our system is seen via the creation of photon vacancies, or ''holes'', which circulate in the opposite direction from the photons. Our work demonstrates an experimental approach for engineering quantum phases of strongly interacting bosons.

  14. Plasma effects in electromagnetic field interaction with biological tissue

    NASA Astrophysics Data System (ADS)

    Sharma, R. P.; Batra, Karuna; Excell, Peter S.

    2011-02-01

    Theoretical analysis is presented of the nonlinear behavior of charge carriers in biological tissue under the influence of varying low-intensity electromagnetic (EM) field. The interaction occurs because of the nonlinear force arising due to the gradient of the EM field intensity acting on free electrons in the conduction band of proteins in metabolically active biological cell membrane receptors leading to a redistribution of charge carriers. Field dependence of the resulting dielectric constant is investigated by a suitable modification to include an additional electronic contribution term to the three-term Debye model. The exogenous EM field propagating in this nonlinear cellular medium satisfies the nonlinear Schrödinger equation and can be affected significantly. Resulting field effect can be substantially augmented and effective rectification/demodulation can occur. Possible implications of this modification on biological processes in white and grey matter are discussed.

  15. Pomeron-Odderon interactions in a Reggeon field theory

    NASA Astrophysics Data System (ADS)

    Bartels, Jochen; Contreras, Carlos; Vacca, Gian Paolo

    2017-01-01

    In this paper we extend our recent nonperturbative functional renormalization group analysis of Reggeon field theory to the interactions of Pomeron and Odderon fields. We establish the existence of a fixed point and its universal properties, which exhibits a novel symmetry structure in the space of Odderon-Pomeron interactions. As in our previous analysis, this part of our program aims at the investigation of the IR limit of Reggeon field theory (the limit of high energies and large transverse distances). It should be seen in the broader context of trying to connect the nonperturbative infrared region (large transverse distances) with the UV region of small transverse distances where the high energy limit of perturbative QCD applies. We briefly discuss the implications of our findings for the existence of an Odderon in high energy scattering.

  16. `Third' Quantization of Vacuum Einstein Gravity and Free Yang-Mills Theories

    NASA Astrophysics Data System (ADS)

    Raptis, Ioannis

    2007-05-01

    Certain pivotal results from various applications of Abstract Differential Geometry (ADG) to gravity and gauge theories are presently collected and used to argue that we already possess a geometrically (pre)quantized, second quantized and manifestly background spacetime manifold independent vacuum Einstein gravitational field dynamics. The arguments carry also mutatis mutandis to the case of free Yang-Mills theories, since from the ADG-theoretic perspective gravity is regarded as another gauge field theory. The powerful algebraico-categorical, sheaf cohomological conceptual and technical machinery of ADG is then employed, based on the fundamental ADG-theoretic conception of a field as a pair ({mathcal{E}},{mathcal{D}}) consisting of a vector sheaf {mathcal{E}} and an algebraic connection {mathcal{D}} acting categorically as a sheaf morphism on {mathcal{E}}'s local sections, to introduce a ‘universal’, because expressly functorial, field quantization scenario coined third quantization. Although third quantization is fully covariant, on intuitive and heuristic grounds alone it formally appears to follow a canonical route; albeit, in a purely algebraic and, in contradistinction to geometric (pre)quantization and (canonical) second quantization, manifestly background geometrical spacetime manifold independent fashion, as befits ADG. All in all, from the ADG-theoretic vantage, vacuum Einstein gravity and free Yang-Mills theories are regarded as external spacetime manifold unconstrained, third quantized, pure gauge field theories. The paper abounds with philosophical smatterings and speculative remarks about the potential import and significance of our results to current and future Quantum Gravity research. A postscript gives a brief account of this author's personal encounters with Rafael Sorkin and his work.

  17. Vector quantization for volume rendering

    NASA Technical Reports Server (NTRS)

    Ning, Paul; Hesselink, Lambertus

    1992-01-01

    Volume rendering techniques typically process volumetric data in raw, uncompressed form. As algorithmic and architectural advances improve rendering speeds, however, larger data sets will be evaluated requiring consideration of data storage and transmission issues. In this paper, we analyze the data compression requirements for volume rendering applications and present a solution based on vector quantization. The proposed system compresses volumetric data and then renders images directly from the new data format. Tests on a fluid flow data set demonstrate that good image quality may be achieved at a compression ratio of 17:1 with only a 5 percent cost in additional rendering time.

  18. HBT Pion Interferometry with Phenomenological Mean Field Interaction

    NASA Astrophysics Data System (ADS)

    Hattori, K.

    2010-11-01

    To extract information on hadron production dynamics in the ultrarelativistic heavy ion collision, the space-time structure of the hadron source has been measured using Hanbury Brown and Twiss interferometry. We study the distortion of the source images due to the effect of a final state interaction. We describe the interaction, taking place during penetrating through a cloud formed by evaporating particles, in terms of a one-body mean field potential localized in the vicinity of the source region. By adopting the semiclassical method, the modification of the propagation of an emitted particle is examined. In analogy to the optical model applied to nuclear reactions, our phenomenological model has an imaginary part of the potential, which describes the absorption in the cloud. In this work, we focus on the pion interferometry and mean field interaction obtained using a phenomenological pipi forward scattering amplitude in the elastic channels. The p-wave scattering wit h rho meson resonance leads to an attractive mean field interaction, and the presence of the absorptive part is mainly attributed to the formation of this resonance. We also incorporate a simple time dependence of the potential reflecting the dynamics of the evaporating source. Using the obtained potential, we examine how and to what extent the so-called HBT Gaussian radius is varied by the modification of the propagation.

  19. Suppressing photochemical reactions with quantized light fields

    NASA Astrophysics Data System (ADS)

    Galego, Javier; Garcia-Vidal, Francisco J.; Feist, Johannes

    2016-12-01

    Photoisomerization, that is, a photochemical reaction leading to a change of molecular structure after absorption of a photon, can have detrimental effects such as leading to DNA damage under solar irradiation, or as a limiting factor for the efficiency of solar cells. Here, we show that strong coupling of organic molecules to a confined light mode can be used to strongly suppress photoisomerization, as well as other photochemical reactions, and thus convert molecules that normally show fast photodegradation into photostable forms. We find this to be especially efficient in the case of collective strong coupling, where the distribution of a single excitation over many molecules and the light mode leads to a collective protection effect that almost completely suppresses the photochemical reaction.

  20. Suppressing photochemical reactions with quantized light fields

    PubMed Central

    Galego, Javier; Garcia-Vidal, Francisco J.; Feist, Johannes

    2016-01-01

    Photoisomerization, that is, a photochemical reaction leading to a change of molecular structure after absorption of a photon, can have detrimental effects such as leading to DNA damage under solar irradiation, or as a limiting factor for the efficiency of solar cells. Here, we show that strong coupling of organic molecules to a confined light mode can be used to strongly suppress photoisomerization, as well as other photochemical reactions, and thus convert molecules that normally show fast photodegradation into photostable forms. We find this to be especially efficient in the case of collective strong coupling, where the distribution of a single excitation over many molecules and the light mode leads to a collective protection effect that almost completely suppresses the photochemical reaction. PMID:27941754

  1. Dynamic near-field optical interaction between oscillating nanomechanical structures

    SciTech Connect

    Ahn, Phillip; Chen, Xiang; Zhang, Zhen; Ford, Matthew; Rosenmann, Daniel; Jung, II Woong; Sun, Cheng; Balogun, Oluwaseyi

    2015-05-27

    Near-field optical techniques exploit light-matter interactions at small length scales for mechanical sensing and actuation of nanomechanical structures. Here, we study the optical interaction between two mechanical oscillators—a plasmonic nanofocusing probe-tip supported by a low frequency cantilever, and a high frequency nanomechanical resonator—and leverage their interaction for local detection of mechanical vibrations. The plasmonic nanofocusing probe provides a confined optical source to enhance the interaction between the two oscillators. Dynamic perturbation of the optical cavity between the probe-tip and the resonator leads to nonlinear modulation of the scattered light intensity at the sum and difference of their frequencies. This double-frequency demodulation scheme is explored to suppress unwanted background and to detect mechanical vibrations with a minimum detectable displacement sensitivity of 0.45pm/Hz1/2, which is limited by shot noise and electrical noise. We explore the demodulation scheme for imaging the bending vibration mode shape of the resonator with a lateral spatial resolution of 20nm. We also demonstrate the time-resolved aspect of the local optical interaction by recording the ring-down vibrations of the resonator at frequencies of up to 129MHz. The near-field optical technique is promising for studying dynamic mechanical processes in individual nanostructures.

  2. Dynamic near-field optical interaction between oscillating nanomechanical structures

    DOE PAGES

    Ahn, Phillip; Chen, Xiang; Zhang, Zhen; ...

    2015-05-27

    Near-field optical techniques exploit light-matter interactions at small length scales for mechanical sensing and actuation of nanomechanical structures. Here, we study the optical interaction between two mechanical oscillators—a plasmonic nanofocusing probe-tip supported by a low frequency cantilever, and a high frequency nanomechanical resonator—and leverage their interaction for local detection of mechanical vibrations. The plasmonic nanofocusing probe provides a confined optical source to enhance the interaction between the two oscillators. Dynamic perturbation of the optical cavity between the probe-tip and the resonator leads to nonlinear modulation of the scattered light intensity at the sum and difference of their frequencies. This double-frequencymore » demodulation scheme is explored to suppress unwanted background and to detect mechanical vibrations with a minimum detectable displacement sensitivity of 0.45pm/Hz1/2, which is limited by shot noise and electrical noise. We explore the demodulation scheme for imaging the bending vibration mode shape of the resonator with a lateral spatial resolution of 20nm. We also demonstrate the time-resolved aspect of the local optical interaction by recording the ring-down vibrations of the resonator at frequencies of up to 129MHz. The near-field optical technique is promising for studying dynamic mechanical processes in individual nanostructures.« less

  3. Dynamic near-field optical interaction between oscillating nanomechanical structures

    PubMed Central

    Ahn, Phillip; Chen, Xiang; Zhang, Zhen; Ford, Matthew; Rosenmann, Daniel; Jung, II Woong; Sun, Cheng; Balogun, Oluwaseyi

    2015-01-01

    Near-field optical techniques exploit light-matter interactions at small length scales for mechanical sensing and actuation of nanomechanical structures. Here, we study the optical interaction between two mechanical oscillators—a plasmonic nanofocusing probe-tip supported by a low frequency cantilever, and a high frequency nanomechanical resonator—and leverage their interaction for local detection of mechanical vibrations. The plasmonic nanofocusing probe provides a confined optical source to enhance the interaction between the two oscillators. Dynamic perturbation of the optical cavity between the probe-tip and the resonator leads to nonlinear modulation of the scattered light intensity at the sum and difference of their frequencies. This double-frequency demodulation scheme is explored to suppress unwanted background and to detect mechanical vibrations with a minimum detectable displacement sensitivity of 0.45 pm/Hz1/2, which is limited by shot noise and electrical noise. We explore the demodulation scheme for imaging the bending vibration mode shape of the resonator with a lateral spatial resolution of 20 nm. We also demonstrate the time-resolved aspect of the local optical interaction by recording the ring-down vibrations of the resonator at frequencies of up to 129 MHz. The near-field optical technique is promising for studying dynamic mechanical processes in individual nanostructures. PMID:26014599

  4. Simulating electric field interactions with polar molecules using spectroscopic databases

    NASA Astrophysics Data System (ADS)

    Owens, Alec; Zak, Emil J.; Chubb, Katy L.; Yurchenko, Sergei N.; Tennyson, Jonathan; Yachmenev, Andrey

    2017-03-01

    Ro-vibrational Stark-associated phenomena of small polyatomic molecules are modelled using extensive spectroscopic data generated as part of the ExoMol project. The external field Hamiltonian is built from the computed ro-vibrational line list of the molecule in question. The Hamiltonian we propose is general and suitable for any polar molecule in the presence of an electric field. By exploiting precomputed data, the often prohibitively expensive computations associated with high accuracy simulations of molecule-field interactions are avoided. Applications to strong terahertz field-induced ro-vibrational dynamics of PH3 and NH3, and spontaneous emission data for optoelectrical Sisyphus cooling of H2CO and CH3Cl are discussed.

  5. Simulating electric field interactions with polar molecules using spectroscopic databases

    PubMed Central

    Owens, Alec; Zak, Emil J.; Chubb, Katy L.; Yurchenko, Sergei N.; Tennyson, Jonathan; Yachmenev, Andrey

    2017-01-01

    Ro-vibrational Stark-associated phenomena of small polyatomic molecules are modelled using extensive spectroscopic data generated as part of the ExoMol project. The external field Hamiltonian is built from the computed ro-vibrational line list of the molecule in question. The Hamiltonian we propose is general and suitable for any polar molecule in the presence of an electric field. By exploiting precomputed data, the often prohibitively expensive computations associated with high accuracy simulations of molecule-field interactions are avoided. Applications to strong terahertz field-induced ro-vibrational dynamics of PH3 and NH3, and spontaneous emission data for optoelectrical Sisyphus cooling of H2CO and CH3Cl are discussed. PMID:28338042

  6. Differentiation of optical isomers through enhanced weak-field interactions

    NASA Technical Reports Server (NTRS)

    Aronowitz, S.

    1980-01-01

    The influence of weak field interaction terms due to the cooperative effects which arise from a macroscopic assemblage of interacting sites is studied. Differential adsorption of optical isomers onto an achiral surface is predicted to occur if the surface was continuous and sufficiently large. However, the quantity of discontinuous crystal surfaces did not enhance the percentage of differentiation and thus the procedure of using large quantities of small particles was not a viable technique for obtaining a detectable differentiation of optical isomers on an achiral surface.

  7. Experimental evidence for a two-dimensional quantized Hall insulator

    NASA Astrophysics Data System (ADS)

    Hilke, M.; Shahar, D.; Song, S. H.; Tsui, D. C.; Xie, Y. H.; Monroe, Don

    1998-10-01

    The general theoretical definition of an insulator is a material in which the conductivity vanishes at the absolute zero of temperature. In classical insulators, such as materials with a band gap, vanishing conductivities lead to diverging resistivities. But other insulators can show more complex behaviour, particularly in the presence of a high magnetic field, where different components of the resistivity tensor can display different behaviours: the magnetoresistance diverges as the temperature approaches absolute zero, but the transverse (Hall) resistance remains finite. Such a system is known as a Hall insulator. Here we report experimental evidence for a quantized Hall insulator in a two-dimensional electron system-confined in a semiconductor quantum well. The Hall resistance is quantized in the quantum unit of resistance h/e2, where h is Planck's constant and e the electronic charge. At low fields, the sample reverts to being a normal Hall insulator.

  8. The method of Ostrogradsky, quantization, and a move toward a ghost-free future

    SciTech Connect

    Nucci, M C; Leach, P G L

    2009-11-15

    The method of Ostrogradsky has been used to construct a first-order Lagrangian, hence Hamiltonian, for the fourth-order field-theoretical model of Pais-Uhlenbeck with unfortunate results when quantization is undertaken since states with negative norm, commonly called ''ghosts,'' appear. We propose an alternative route based on the preservation of symmetry and this leads to a ghost-free quantization.

  9. Microwave magnetoelectric fields and their role in the matter-field interaction.

    PubMed

    Kamenetskii, E O; Joffe, R; Shavit, R

    2013-02-01

    We show that in a source-free subwavelength region of microwave fields, there can exist field structures with a local coupling between the time-varying electric and magnetic fields differing from the electric-magnetic coupling in regular-propagating free-space electromagnetic waves. To distinguish such field structures from regular electromagnetic (EM) field structures, we term them as magnetoelectric (ME) fields. We study a structure and conservation laws of microwave ME near fields. We show that there exist sources of microwave ME near fields-the ME particles. These particles are represented by small quasi-two-dimensional ferrite disks with magnetic-dipolar-oscillation spectra. The near fields originating from such particles are characterized by topologically distinctive power-flow vortices, nonzero helicity, and a torsion degree of freedom. The paper consists of two main parts. In the first one, we give a theoretical background of properties of the electric and magnetic fields inside and outside of a ferrite particle with magnetic-dipolar-oscillation spectra resulting in the appearance of microwave ME near fields. In the second main part, we represent numerical and experimental studies of the microwave ME near fields and their interactions with matter. Based on the obtained properties of the ME near fields, we discuss possibilities for effective microwave sensing of natural and artificial chiral structures.

  10. Weak associativity and deformation quantization

    NASA Astrophysics Data System (ADS)

    Kupriyanov, V. G.

    2016-09-01

    Non-commutativity and non-associativity are quite natural in string theory. For open strings it appears due to the presence of non-vanishing background two-form in the world volume of Dirichlet brane, while in closed string theory the flux compactifications with non-vanishing three-form also lead to non-geometric backgrounds. In this paper, working in the framework of deformation quantization, we study the violation of associativity imposing the condition that the associator of three elements should vanish whenever each two of them are equal. The corresponding star products are called alternative and satisfy important for physical applications properties like the Moufang identities, alternative identities, Artin's theorem, etc. The condition of alternativity is invariant under the gauge transformations, just like it happens in the associative case. The price to pay is the restriction on the non-associative algebra which can be represented by the alternative star product, it should satisfy the Malcev identity. The example of nontrivial Malcev algebra is the algebra of imaginary octonions. For this case we construct an explicit expression of the non-associative and alternative star product. We also discuss the quantization of Malcev-Poisson algebras of general form, study its properties and provide the lower order expression for the alternative star product. To conclude we define the integration on the algebra of the alternative star products and show that the integrated associator vanishes.

  11. Weighted Bergman Kernels and Quantization}

    NASA Astrophysics Data System (ADS)

    Engliš, Miroslav

    Let Ω be a bounded pseudoconvex domain in CN, φ, ψ two positive functions on Ω such that - log ψ, - log φ are plurisubharmonic, and z∈Ω a point at which - log φ is smooth and strictly plurisubharmonic. We show that as k-->∞, the Bergman kernels with respect to the weights φkψ have an asymptotic expansion for x,y near z, where φ(x,y) is an almost-analytic extension of &\\phi(x)=φ(x,x) and similarly for ψ. Further, . If in addition Ω is of finite type, φ,ψ behave reasonably at the boundary, and - log φ, - log ψ are strictly plurisubharmonic on Ω, we obtain also an analogous asymptotic expansion for the Berezin transform and give applications to the Berezin quantization. Finally, for Ω smoothly bounded and strictly pseudoconvex and φ a smooth strictly plurisubharmonic defining function for Ω, we also obtain results on the Berezin-Toeplitz quantization.

  12. Integral quantizations with two basic examples

    SciTech Connect

    Bergeron, H.; Gazeau, J.P.

    2014-05-15

    The paper concerns integral quantization, a procedure based on operator-valued measure and resolution of the identity. We insist on covariance properties in the important case where group representation theory is involved. We also insist on the inherent probabilistic aspects of this classical–quantum map. The approach includes and generalizes coherent state quantization. Two applications based on group representation are carried out. The first one concerns the Weyl–Heisenberg group and the euclidean plane viewed as the corresponding phase space. We show that a world of quantizations exist, which yield the canonical commutation rule and the usual quantum spectrum of the harmonic oscillator. The second one concerns the affine group of the real line and gives rise to an interesting regularization of the dilation origin in the half-plane viewed as the corresponding phase space. -- Highlights: •Original approach to quantization based on (positive) operator-valued measures. •Includes Berezin–Klauder–Toeplitz and Weyl–Wigner quantizations. •Infinitely many such quantizations produce canonical commutation rule. •Set of objects to be quantized is enlarged in order to include singular functions or distributions. •Are given illuminating examples like quantum angle and affine or wavelet quantization.

  13. Causal Poisson bracket via deformation quantization

    NASA Astrophysics Data System (ADS)

    Berra-Montiel, Jasel; Molgado, Alberto; Palacios-García, César D.

    2016-06-01

    Starting with the well-defined product of quantum fields at two spacetime points, we explore an associated Poisson structure for classical field theories within the deformation quantization formalism. We realize that the induced star-product is naturally related to the standard Moyal product through an appropriate causal Green’s functions connecting points in the space of classical solutions to the equations of motion. Our results resemble the Peierls-DeWitt bracket that has been analyzed in the multisymplectic context. Once our star-product is defined, we are able to apply the Wigner-Weyl map in order to introduce a generalized version of Wick’s theorem. Finally, we include some examples to explicitly test our method: the real scalar field, the bosonic string and a physically motivated nonlinear particle model. For the field theoretic models, we have encountered causal generalizations of the creation/annihilation relations, and also a causal generalization of the Virasoro algebra for the bosonic string. For the nonlinear particle case, we use the approximate solution in terms of the Green’s function, in order to construct a well-behaved causal bracket.

  14. Background independent noncommutative gravity from Fedosov quantization of endomorphism bundle

    NASA Astrophysics Data System (ADS)

    Dobrski, Michał

    2017-04-01

    A model of noncommutative gravity is constructed by means of Fedosov deformation quantization of an endomorphism bundle. The fields describing noncommutativity—symplectic form and symplectic connection—are dynamical, and the resulting theory is coordinate covariant and background independent. Its interpretation in terms of a Seiberg–Witten map is provided. Also, a new action for ordinary (commutative) general relativity is given, which in the present context appears as a commutative limit of noncommutative theory.

  15. Interaction of extremely-low-frequency electromagnetic fields with humans

    SciTech Connect

    Tenforde, T.S.

    1991-07-01

    At a macroscopic level, the effects of extremely low frequency (ELF) electromagnetic fields on humans are well understood based on fundamental physical principles, but far less is known about the nature of the interactions at a cellular or molecular level. Current evidence suggests the effects of ELF on cellular biochemistry are due to interactions with the cell membrane. Elucidation of the mechanism that underlies this transmembrane signaling is critical for a molecular-level understanding of ELF field effects. Further research is also required to clarify a possible link between ELF exposure and increased cancer risk, since estimated ELF exposure in occupational or residential settings is much lower that the levels used in laboratory studies. There is a clear need for additional epidemiological research in which qualitative dosimetry is used to characterize ELF exposure and careful attention is given to possible effects of confounding variables. 24 refs.

  16. Percolation of optical excitation mediated by near-field interactions

    NASA Astrophysics Data System (ADS)

    Naruse, Makoto; Kim, Song-Ju; Takahashi, Taiki; Aono, Masashi; Akahane, Kouichi; D'Acunto, Mario; Hori, Hirokazu; Thylén, Lars; Katori, Makoto; Ohtsu, Motoichi

    2017-04-01

    Optical excitation transfer in nanostructured matter has been intensively studied in various material systems for versatile applications. Herein, we theoretically and numerically discuss the percolation of optical excitations in randomly organized nanostructures caused by optical near-field interactions governed by Yukawa potential in a two-dimensional stochastic model. The model results demonstrate the appearance of two phases of percolation of optical excitation as a function of the localization degree of near-field interaction. Moreover, it indicates sublinear scaling with percolation distances when the light localization is strong. Furthermore, such a character is maximized at a particular size of environments. The results provide fundamental insights into optical excitation transfer and will facilitate the design and analysis of nanoscale signal-transfer characteristics.

  17. Interaction field modeling of mini-UAV swarm

    NASA Astrophysics Data System (ADS)

    Liou, William W.; Ro, Kapseong; Szu, Harold

    2006-05-01

    A behavior-based, simple interaction model inspired by molecular interaction field depicted by the Lennard-Jones function is examined for the averaged interaction in swarming. The modeled kinematic equation of motion contains only one variable, instead of a multiple state variable dependence a more complete dynamics entails. The model assumes a spatial distribution of the potential associate with the swarm. The model has been applied to examine the formation of swarm and the results are reported. The modeling can be reflected in an equilibrium theory for the operation of a swarm of mini-UAVs pioneered by Szu, where every member serves the mission while exploiting other's loss, resulting in a zero-sum game among the team members.

  18. Long-range interactions in lattice field theory

    SciTech Connect

    Rabin, J.M.

    1981-06-01

    Lattice quantum field theories containing fermions can be formulated in a chirally invariant way provided long-range interactions are introduced. It is established that in weak-coupling perturbation theory such a lattice theory is renormalizable when the corresponding continuum theory is, and that the continuum theory is indeed recovered in the perturbative continuum limit. In the strong-coupling limit of these theories one is led to study an effective Hamiltonian describing a Heisenberg antiferromagnet with long-range interactions. Block-spin renormalization group methods are used to find a critical rate of falloff of the interactions, approximately as inverse distance squared, which separates a nearest-neighbor-antiferromagnetic phase from a phase displaying identifiable long-range effects. A duality-type symmetry is present in some block-spin calculations.

  19. Role of magnetic field tangency points in ICRF sheath interactions

    SciTech Connect

    Myra, J. R.; D'Ippolito, D. A.; Kohno, H.

    2014-02-12

    ICRF waves can sometimes interact with plasma-facing surfaces in tokamak fusion experiments causing degradation of core heating efficiency, impurity injection and even component damage. While presently available low dimensionality rf sheath models are useful in understanding many features of these interactions, more quantitative modeling will require attention to realistic geometrical details of the boundary plasma and surfaces. In this paper, we explore the situation in which there exists a tangency point of the background magnetic field with a surface. We find that the rf interactions are strongly influenced by the generation and propagation of sheath-plasma waves (SPW) along the surface. It is found that these waves preferentially propagate towards, and accumulate at, a convex tangency point. An analytical theory of SPW propagation is developed to understand these features.

  20. Near-threshold quantization for potentials with inverse-cube tails

    SciTech Connect

    Mueller, Tim-Oliver; Friedrich, Harald

    2011-02-15

    For potential wells with long-range attractive tails proportional to -1/r{sup 3}, as occur in the resonant dipole-dipole interaction in homonuclear alkali-metal dimers, we present a highly accurate analytical expression for the tail contribution to the quantization function F(E). This quantization function determines the near-threshold bound-state energies via the quantization rule n{sub th}-n=F(E{sub n}). The performance of the quantization function derived in this paper is demonstrated by applying it to a model Lennard-Jones potential and to vibrational bound-state spectra of sodium dimers (Na{sub 2}). These results are compared with those obtained via the semiclassical LeRoy-Bernstein formula which neglects quantum effects that are important in the near-threshold regime.

  1. Interaction Forces Between Multiple Bodies in a Magnetic Field

    NASA Technical Reports Server (NTRS)

    Joffe, Benjamin

    1996-01-01

    Some of the results from experiments to determine the interaction forces between multiple bodies in a magnetic field are presented in this paper. It is shown how the force values and the force directions depend on the configuration of the bodies, their relative positions to each other, and the vector of the primary magnetic field. A number of efficient new automatic loading and assembly machines, as well as manipulators and robots, have been created based on the relationship between bodies and magnetic fields. A few of these patented magnetic devices are presented. The concepts involved open a new way to design universal grippers for robot and other kinds of mechanisms for the manipulation of objects. Some of these concepts can be used for space applications.

  2. Interaction of magnetic resonators studied by the magnetic field enhancement

    SciTech Connect

    Hou, Yumin

    2013-12-15

    It is the first time that the magnetic field enhancement (MFE) is used to study the interaction of magnetic resonators (MRs), which is more sensitive than previous parameters–shift and damping of resonance frequency. To avoid the coherence of lattice and the effect of Bloch wave, the interaction is simulated between two MRs with same primary phase when the distance is changed in the range of several resonance wavelengths, which is also compared with periodic structure. The calculated MFE oscillating and decaying with distance with the period equal to resonance wavelength directly shows the retardation effect. Simulation also shows that the interaction at normal incidence is sensitive to the phase correlation which is related with retardation effect and is ultra-long-distance interaction when the two MRs are strongly localized. When the distance is very short, the amplitude of magnetic resonance is oppressed by the strong interaction and thus the MFE can be much lower than that of single MR. This study provides the design rules of metamaterials for engineering resonant properties of MRs.

  3. Quantized ionic conductance in nanopores

    SciTech Connect

    Zwolak, Michael; Lagerqvist, Johan; Di Ventra, Massimilliano

    2009-01-01

    Ionic transport in nanopores is a fundamentally and technologically important problem in view of its ubiquitous occurrence in biological processes and its impact on DNA sequencing applications. Using microscopic calculations, we show that ion transport may exhibit strong non-liDearities as a function of the pore radius reminiscent of the conductance quantization steps as a function of the transverse cross section of quantum point contacts. In the present case, however, conductance steps originate from the break up of the hydration layers that form around ions in aqueous solution. Once in the pore, the water molecules form wavelike structures due to multiple scattering at the surface of the pore walls and interference with the radial waves around the ion. We discuss these effects as well as the conditions under which the step-like features in the ionic conductance should be experimentally observable.

  4. Colloidal interactions in field-directed self-assembly

    NASA Astrophysics Data System (ADS)

    Lele, Pushkar P.

    This thesis discusses: (1) the fabrication of an experimental tool, namely holographic optical tweezers for simultaneously manipulating spatial locations of multiple particles, (2) development of a framework for interpreting hydrodynamic interactions between multiple particles close to a no-slip surface and comparisons of experimental data with predictive modeling results (Stokesian dynamics simulations) (3) investigations of colloidal particle interactions under external AC fields and the intriguing spontaneous pattern formations in the suspension and, (4) the use of an unconventional assemble-stretch technique for creating novel 2D and 3D crystalline arrays of anisotropically shaped particles, from spherical particle templates. By blinking holographic optical traps, we investigate the hydrodynamic interactions in multi-particle ensembles, influenced by a no-slip surface. The measurements are carried out by screening out electrostatic interactions in the suspension. We observe that with increasing proximity with the surface, the effect of particle-particle hydrodynamic interactions on the short-time self-diffusivities is screened. We use the Stokeslet representation of particles and combine it with the method of images to understand the correlated motion of particles within the ensembles. Analysis of the resultant ensemble eigen-modes reveals that even in dilute suspensions, the effective diffusivities decay as the inverse of the separations, over the range of particle-particle separations we experimented with. The relative modes exhibit dominant contributions from close neighboring particles and the collective modes incorporate long-range contributions from all particles in the ensemble. Our analysis also confirms that for larger number of particles in the ensemble, the contributions from particle-particle interactions increase and in concentrated suspensions they over-ride the strong hydrodynamic screening by the wall. We investigate the microstructure of

  5. Cosmology Quantized in Cosmic Time

    SciTech Connect

    Weinstein, M

    2004-06-03

    This paper discusses the problem of inflation in the context of Friedmann-Robertson-Walker Cosmology. We show how, after a simple change of variables, to quantize the problem in a way which parallels the classical discussion. The result is that two of the Einstein equations arise as exact equations of motion and one of the usual Einstein equations (suitably quantized) survives as a constraint equation to be imposed on the space of physical states. However, the Friedmann equation, which is also a constraint equation and which is the basis of the Wheeler-deWitt equation, acquires a welcome quantum correction that becomes significant for small scale factors. We discuss the extension of this result to a full quantum mechanical derivation of the anisotropy ({delta} {rho}/{rho}) in the cosmic microwave background radiation, and the possibility that the extra term in the Friedmann equation could have observable consequences. To clarify the general formalism and explicitly show why we choose to weaken the statement of the Wheeler-deWitt equation, we apply the general formalism to de Sitter space. After exactly solving the relevant Heisenberg equations of motion we give a detailed discussion of the subtleties associated with defining physical states and the emergence of the classical theory. This computation provides the striking result that quantum corrections to this long wavelength limit of gravity eliminate the problem of the big crunch. We also show that the same corrections lead to possibly measurable effects on the CMB radiation. For the sake of completeness, we discuss the special case, {lambda} = 0, and its relation to Minkowski space. Finally, we suggest interesting ways in which these techniques can be generalized to cast light on the question of chaotic or eternal inflation. In particular, we suggest one can put an experimental lower bound on the distance to a universe with a scale factor very different from our own, by looking at its effects on our CMB

  6. Lunar Swirls: Plasma Magnetic Field Interaction and Dust Transport

    NASA Astrophysics Data System (ADS)

    Dropmann, Michael; Laufer, Rene; Herdrich, Georg; Matthews, Lorin; Hyde, Truell

    2013-10-01

    In close collaboration between the Center for Astrophysics, Space Physics and Engineering Research (CASPER) at Baylor University, Texas, and the Institute of Space Systems (IRS) at the University of Stuttgart, Germany, two plasma facilities have been established using the Inductively heated Plasma Generator 6 (IPG6), based on proven IRS designs. A wide range of applications is currently under consideration for both test and research facilities. Basic investigations in the area of plasma radiation and catalysis, simulation of certain parameters of fusion divertors and space applications are planned. In this paper, the facility at Baylor University (IPG6-B) will be used for simulation of mini-magnetospheres on the Moon. The interaction of the solar wind with magnetic fields leads to the formation of electric fields, which can influence the incoming solar wind ion flux and affect dust transport processes on the lunar surface. Both effects may be partially responsible for the occurrence of lunar swirls. Interactions of the solar wind with such mini-magnetospheres will be simulated in the IPG6-B by observing the interaction between a plasma jet and a permanent magnet. The resulting data should lead to better models of dust transport processes and solar wind deflection on the moon.

  7. Coupling fluid-structure interaction with phase-field fracture

    NASA Astrophysics Data System (ADS)

    Wick, Thomas

    2016-12-01

    In this work, a concept for coupling fluid-structure interaction with brittle fracture in elasticity is proposed. The fluid-structure interaction problem is modeled in terms of the arbitrary Lagrangian-Eulerian technique and couples the isothermal, incompressible Navier-Stokes equations with nonlinear elastodynamics using the Saint-Venant Kirchhoff solid model. The brittle fracture model is based on a phase-field approach for cracks in elasticity and pressurized elastic solids. In order to derive a common framework, the phase-field approach is re-formulated in Lagrangian coordinates to combine it with fluid-structure interaction. A crack irreversibility condition, that is mathematically characterized as an inequality constraint in time, is enforced with the help of an augmented Lagrangian iteration. The resulting problem is highly nonlinear and solved with a modified Newton method (e.g., error-oriented) that specifically allows for a temporary increase of the residuals. The proposed framework is substantiated with several numerical tests. In these examples, computational stability in space and time is shown for several goal functionals, which demonstrates reliability of numerical modeling and algorithmic techniques. But also current limitations such as the necessity of using solid damping are addressed.

  8. Weibel magnetic field competes with Biermann fields in laser-solid interactions

    NASA Astrophysics Data System (ADS)

    Shukla, Nitin; Schoeffler, Kevin; Vieira, Jorge; Fonseca, Ricardo; Silva, Luis

    2016-10-01

    Biermann battery induced magnetic fields caused by non-parallel density and temperature gradients, first investigated experimentally, continue to be measured in many current experiments. A detailed study of Biermann generated magnetic fields in collisionless systems has been carried out, showing that for large system sizes (L /de >= 100) , where de is the electron inertial length, the Weibel instability dominates as the major source of magnetic field. In this work, we demonstrate the possibility of experimentally generating this strong Weibel magnetic field. We model, using ab initio PIC simulations, the interaction of a short (ps) high intensity (a0 >= 1) laser pulse, with a target of sufficiently large gradient scale length, L. The expanding hot energetic electron population generated by the laser produces an anisotropy in the velocity distribution. This anisotropy provides the free energy that drives the Weibel instability that appears on the surfaces of the target and dominates over the Biermann battery field.

  9. Matching Contact Interactions in QED-NRQED Effective Field Theory

    NASA Astrophysics Data System (ADS)

    Dye, Steven; Gonderinger, Matthew; Paz, Gil

    2017-01-01

    In 2010 the proton charge radius was first extracted from muonic hydrogen and was found to have a value five standard deviations away from the regular hydrogen value. An effective field theory analysis using Non-Relativistic Quantum Electrodynamics (NRQED) indicates that the muonic hydrogen result can be interpreted as a large, compared to some model estimates, muon-proton spin-independent contact interaction. One of the most promising avenues to resolve this puzzle is by muon-proton scattering. Such an experiment, called MUSE, is planned at the Paul Scherrer Institute in Switzerland. The typical momenta of the muons in this experiment are of the order of the muon mass. In this energy regime the muons are relativistic but the protons are still non-relativistic. The interaction between them can be described by a QED-NRQED effective field theory. Here we present elements of this effective field theory. In particular, we look at O (Zα) scattering up to power m2 /M2 , where m (M) is the muon (proton) mass, and O (Z2α2) scattering at leading power. We also take a brief look at O (Z2α2) at subleading power.

  10. Modeling of interactions of electromagnetic fields with human bodies

    NASA Astrophysics Data System (ADS)

    Caputa, Krzysztof

    Interactions of electromagnetic fields with the human body have been a subject of scientific interest and public concern. In recent years, issues in power line field effects and those of wireless telephones have been in the forefront of research. Engineering research compliments biological investigations by quantifying the induced fields in biological bodies due to exposure to external fields. The research presented in this thesis aims at providing reliable tools, and addressing some of the unresolved issues related to interactions with the human body of power line fields and fields produced by handheld wireless telephones. The research comprises two areas, namely development of versatile models of the human body and their visualisation, and verification and application of numerical codes to solve selected problems of interest. The models of the human body, which are based on the magnetic resonance scans of the body, are unique and differ considerably from other models currently available. With the aid of computer software developed, the models can be arranged to different postures, and medical devices can be accurately placed inside them. A previously developed code for modeling interactions of power line fields with biological bodies has been verified by rigorous, quantitative inter-laboratory comparison for two human body models. This code has been employed to model electromagnetic interference (EMI) of the magnetic field with implanted cardiac pacemakers. In this case, the correct placement and representation of the pacemaker leads are critical, as simplified computations have been shown to result in significant errors. In modeling interactions of wireless communication devices, the finite difference time domain technique (FDTD) has become a de facto standard. The previously developed code has been verified by comparison with the analytical solution for a conductive sphere. While previously researchers limited their verifications to principal axes of the sphere

  11. Quantized vortices around wavefront nodes, 2

    NASA Technical Reports Server (NTRS)

    Hirschfelder, J. O.; Goebel, C. J.; Bruch, L. W.

    1974-01-01

    Quantized vortices can occur around nodal points in wavefunctions. The derivation depends only on the wavefunction being single valued, continuous, and having continuous first derivatives. Since the derivation does not depend upon the dynamical equations, the quantized vortices are expected to occur for many types of waves such as electromagnetic and acoustic. Such vortices have appeared in the calculations of the H + H2 molecular collisions and play a role in the chemical kinetics. In a companion paper, it is shown that quantized vortices occur when optical waves are internally reflected from the face of a prism or particle beams are reflected from potential energy barriers.

  12. Robust vector quantization for noisy channels

    NASA Technical Reports Server (NTRS)

    Demarca, J. R. B.; Farvardin, N.; Jayant, N. S.; Shoham, Y.

    1988-01-01

    The paper briefly discusses techniques for making vector quantizers more tolerant to tranmsission errors. Two algorithms are presented for obtaining an efficient binary word assignment to the vector quantizer codewords without increasing the transmission rate. It is shown that about 4.5 dB gain over random assignment can be achieved with these algorithms. It is also proposed to reduce the effects of error propagation in vector-predictive quantizers by appropriately constraining the response of the predictive loop. The constrained system is shown to have about 4 dB of SNR gain over an unconstrained system in a noisy channel, with a small loss of clean-channel performance.

  13. Magnetic Oscillations and Landau Quantization in Decoupled Epitaxial Graphene Multilayers*

    NASA Astrophysics Data System (ADS)

    Stroscio, Joseph A.

    2009-03-01

    A fundamental challenge to the development of a new electronics based on single atomic sheets of carbon, known as graphene, is to realize a large-area production platform that can produce a carbon system with the same intrinsic properties as a single sheet of graphene. Multi-layer epitaxial graphene (MEG) grown on SiC substrates has been proposed as a possible platform to this end [1]. The central question is, Can MEG behave as single layer graphene with the same intrinsic electrical characteristics? In this talk we show that MEG graphene on SiC exhibits single layer graphene properties through new tunneling magnetic measurements. The circular motion of electrons in a magnetic field has historically been a powerful probe of the Fermi surface properties of materials. Oscillations in many measureable properties, such as magnetization, thermal conductivity, and resistance, all reflect the Landau quantization of the electron energy levels. In this talk we show the ability to observe tunneling magneto-conductance oscillations (TMCOs) in the tunneling differential conductance as a function of both magnetic field and electron energy. The TMCO arise from intense Dirac quantization of the 2-dimensional Dirac electron and hole quasiparticles in MEG grown on SiC substrates. Spatial profiles of the Landau quantization demonstrate the high quality of MEG on SiC with carrier concentrations that vary less than 10% over hundreds of nm. The single layer quantization observed in these multi-layer samples is attributed to observed rotational stacking domains that effectively decouple the carbon layers in MEG on SiC, thereby yielding single layer graphene properties in a large area carbon production method. *In collaboration with Lee Miller, Kevin Kubista, Gregory M. Rutter, Ming Ruan, Mike Sprinkle, Claire Berger, Walt A. de Heer, and Phillip N. First, Georgia Institute of Technology [1] W.A. de Heer et. al., Solid State Comm. 143, 92 (2007).

  14. Interactions of massless higher spin fields from string theory

    SciTech Connect

    Polyakov, Dimitri

    2010-09-15

    We construct vertex operators for massless higher spin fields in Ramond-Neveu-Schwarz superstring theory and compute some of their three-point correlators, describing gauge-invariant cubic interactions of the massless higher spins. The Fierz-Pauli on-shell conditions for the higher spins (including tracelessness and vanishing divergence) follow from the Becchi-Rouet-Stora-Tyutin-invariance conditions for the vertex operators constructed in this paper. The gauge symmetries of the massless higher spins emerge as a result of the Becchi-Rouet-Stora-Tyutin-nontriviality conditions for these operators, being equivalent to transformations with the traceless gauge parameter in the Fronsdal's approach. The gauge invariance of the interaction terms of the higher spins is therefore ensured automatically by that of the vertex operators in string theory. We develop a general algorithm to compute the cubic interactions of the massless higher spins and use it to explicitly describe the gauge-invariant interaction of two s=3 and one s=4 massless particles.

  15. Quantized Conductance and Large g-Factor Anisotropy in InSb Quantum Point Contacts.

    PubMed

    Qu, Fanming; van Veen, Jasper; de Vries, Folkert K; Beukman, Arjan J A; Wimmer, Michael; Yi, Wei; Kiselev, Andrey A; Nguyen, Binh-Minh; Sokolich, Marko; Manfra, Michael J; Nichele, Fabrizio; Marcus, Charles M; Kouwenhoven, Leo P

    2016-12-14

    Because of a strong spin-orbit interaction and a large Landé g-factor, InSb plays an important role in research on Majorana fermions. To further explore novel properties of Majorana fermions, hybrid devices based on quantum wells are conceived as an alternative approach to nanowires. In this work, we report a pronounced conductance quantization of quantum point contact devices in InSb/InAlSb quantum wells. Using a rotating magnetic field, we observe a large in-plane (|g1| = 26) and out-of-plane (|g1| = 52) g-factor anisotropy. Additionally, we investigate crossings of subbands with opposite spins and extract the electron effective mass from magnetic depopulation of one-dimensional subbands.

  16. Mean Field Evolution of Fermions with Coulomb Interaction

    NASA Astrophysics Data System (ADS)

    Porta, Marcello; Rademacher, Simone; Saffirio, Chiara; Schlein, Benjamin

    2017-03-01

    We study the many body Schrödinger evolution of weakly coupled fermions interacting through a Coulomb potential. We are interested in a joint mean field and semiclassical scaling, that emerges naturally for initially confined particles. For initial data describing approximate Slater determinants, we prove convergence of the many-body evolution towards Hartree-Fock dynamics. Our result holds under a condition on the solution of the Hartree-Fock equation, that we can only show in a very special situation (translation invariant data, whose Hartree-Fock evolution is trivial), but that we expect to hold more generally.

  17. Wavelength Dependent Strong Field Interactions with Atoms and Molecules

    NASA Astrophysics Data System (ADS)

    Szafruga, Urszula Bozena

    In the regime of strong-field physics the electric field of a laser begins to strongly rival the binding potential of an atomic or molecular species. During these interactions an ionized electron can be driven away and then back towards its parent ion by the strong laser field and undergo rescattering before being detected. The amount of energy an electron can acquire during propagation is proportional to the laser intensity and the square of the wavelength. Recent improvements in laser technology have allowed us to push strong-field studies from visible/near-infrared wavelengths to the mid-infrared regime and thereby greatly increase the electron's maximum recollision energy. These high energy scattering events imprint target dependent structural information on the electron angular distribution from which we can extract atomic and molecular specific properties. Further, Keldysh invariance suggests that we can control the dominant ionization mechanism (multiphoton absorption versus tunneling through the field modified potential) by choosing an appropriate laser wavelength, laser intensity and target atom. Exploratory investigations in strong-field physics have produced many fascinating results which have led to production of attosecond duration laser pulses and atomic/molecular imaging techniques. As technological improvements continue we are able to gain further insights into these interesting physical phenomena. In this work we examine photoelectron spectra and ion yields in order to gain a deeper understanding of the fundamental processes that underlie atomic and molecular strong field interactions. Alkali metal atoms at mid-infrared wavelengths possess similar Keldysh parameter values as noble gas atoms at near-infrared wavelengths, which have received much more investigative attention. Therefore, by examining alkali metal atoms at longer wavelengths we hope to expand on our understanding of the global, Keldysh invariant, and atom specific ionization features

  18. Topologies on quantum topoi induced by quantization

    SciTech Connect

    Nakayama, Kunji

    2013-07-15

    In the present paper, we consider effects of quantization in a topos approach of quantum theory. A quantum system is assumed to be coded in a quantum topos, by which we mean the topos of presheaves on the context category of commutative subalgebras of a von Neumann algebra of bounded operators on a Hilbert space. A classical system is modeled by a Lie algebra of classical observables. It is shown that a quantization map from the classical observables to self-adjoint operators on the Hilbert space naturally induces geometric morphisms from presheaf topoi related to the classical system to the quantum topos. By means of the geometric morphisms, we give Lawvere-Tierney topologies on the quantum topos (and their equivalent Grothendieck topologies on the context category). We show that, among them, there exists a canonical one which we call a quantization topology. We furthermore give an explicit expression of a sheafification functor associated with the quantization topology.

  19. Loop quantization of Schwarzschild interior revisited

    NASA Astrophysics Data System (ADS)

    Singh, Parampreet; Corichi, Alejandro

    2016-03-01

    Several studies of different inequivalent loop quantizations have shown, that there exists no fully satisfactory quantum theory for the Schwarzschild interior. Existing quantizations fail either on dependence on the fiducial structure or on the lack of the classical limit. Here we put forward a novel viewpoint to construct the quantum theory that overcomes all of the known problems of the existing quantizations. It is shown that the quantum gravitational constraint is well defined past the singularity and that its effective dynamics possesses a bounce into an expanding regime. The classical singularity is avoided, and a semiclassical spacetime satisfying vacuum Einstein's equations is recovered on the ``other side'' of the bounce. We argue that such metric represents the interior region of a white-hole spacetime, but for which the corresponding ``white-hole mass'' differs from the original black hole mass. We compare the differences in physical implications with other quantizations.

  20. Self-interaction correction and contact hyperfine field

    NASA Astrophysics Data System (ADS)

    Novák, P.; Kuneš, J.; Pickett, W. E.; Ku, Wei; Wagner, F. R.

    2003-04-01

    The hyperfine field is a precise and essential probe of the magnetic state of a solid, and of the quality of theoretical core wave functions, but it’s accurate evaluation has proven challenging from first principles. In this work, the self-interaction free potential, suggested recently by Lundin and Eriksson, is applied to the core states in the calculation of the hyperfine field for 3d transition metal ferromagnets Fe, Co, and Ni, and for three Fe compounds. Compared to the local spin density approximation and to its conventional self-interaction corrected form, the new potential functional is found to increase substantially the core contribution to the Fermi contact term, leading to good agreement with measurements for Fe and Co, and significantly better results for iron compounds. Our results strongly suggest that the new functional is more suitable for generating realistic core wave functions to high accuracy for a wide range of materials. The subtle effects resulting from the change of potential functional are also addressed.

  1. Field Guide for Designing Human Interaction with Intelligent Systems

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Thronesbery, Carroll G.

    1998-01-01

    The characteristics of this Field Guide approach address the problems of designing innovative software to support user tasks. The requirements for novel software are difficult to specify a priori, because there is not sufficient understanding of how the users' tasks should be supported, and there are not obvious pre-existing design solutions. When the design team is in unfamiliar territory, care must be taken to avoid rushing into detailed design, requirements specification, or implementation of the wrong product. The challenge is to get the right design and requirements in an efficient, cost-effective manner. This document's purpose is to describe the methods we are using to design human interactions with intelligent systems which support Space Shuttle flight controllers in the Mission Control Center at NASA/Johnson Space Center. Although these software systems usually have some intelligent features, the design challenges arise primarily from the innovation needed in the software design. While these methods are tailored to our specific context, they should be extensible, and helpful to designers of human interaction with other types of automated systems. We review the unique features of this context so that you can determine how to apply these methods to your project Throughout this Field Guide, goals of the design methods are discussed. This should help designers understand how a specific method might need to be adapted to the project at hand.

  2. Quantized hard-x-ray phase vortices nucleated by aberrated nanolenses

    SciTech Connect

    Pavlov, Konstantin M.; Paganin, David M.; Vine, David J.; Schmalz, Jelena A.; Suzuki, Yoshio; Uesugi, Kentaro; Takeuchi, Akihisa; Yagi, Naoto; Jakubek, Jan; Altissimo, Matteo; Clark, Jesse N.

    2011-01-15

    Quantized x-ray phase vortices, namely, screw-type topological defects in the wave fronts of a coherent monochromatic scalar x-ray wave field, may be spontaneously nucleated by x-ray lenses. Phase retrieval is used to reconstruct the phase and amplitude of the complex disturbance created by aberrated gold nanolenses illuminated with hard x rays. A nanoscale quantized x-ray vortex-antivortex dipole is observed, manifest both as a pair of opposite-helicity branch points in the Riemann sheets of the multivalued x-ray phase map of the complex x-ray field and in the vorticity of the associated Poynting vector field.

  3. Color quantization and processing by Fibonacci lattices.

    PubMed

    Mojsilovic, A; Soljanin, E

    2001-01-01

    Color quantization is sampling of three-dimensional (3-D) color spaces (such as RGB or Lab) which results in a discrete subset of colors known as a color codebook or palette. It is extensively used for display, transfer, and storage of natural images in Internet-based applications, computer graphics, and animation. We propose a sampling scheme which provides a uniform quantization of the Lab space. The idea is based on several results from number theory and phyllotaxy. The sampling algorithm is very much systematic and allows easy design of universal (image-independent) color codebooks for a given set of parameters. The codebook structure allows fast quantization and ordered dither of color images. The display quality of images quantized by the proposed color codebooks is comparable with that of image-dependent quantizers. Most importantly, the quantized images are more amenable to the type of processing used for grayscale ones. Methods for processing grayscale images cannot be simply extended to color images because they rely on the fact that each gray-level is described by a single number and the fact that a relation of full order can be easily established on the set of those numbers. Color spaces (such as RGB or Lab) are, on the other hand, 3-D. The proposed color quantization, i.e., color space sampling and numbering of sampled points, makes methods for processing grayscale images extendible to color images. We illustrate possible processing of color images by first introducing the basic average and difference operations and then implementing edge detection and compression of color quantized images.

  4. Observation of quantized conductance in neutral matter

    NASA Astrophysics Data System (ADS)

    Husmann, Dominik; Krinner, Sebastian; Lebrat, Martin; Grenier, Charles; Nakajima, Shuta; Häusler, Samuel; Brantut, Jean-Philippe; Esslinger, Tilman

    2015-05-01

    In transport experiments, the quantum nature of matter becomes directly evident when changes in conductance occur only in discrete steps, with a size determined solely by Planck's constant h. Here we report the observation of quantized conductance in the transport of neutral atoms driven by a chemical potential bias. We use high-resolution lithography to shape light potentials that realize either a quantum point contact or a quantum wire for atoms. These constrictions are imprinted on a quasi-two-dimensional ballistic channel connecting the reservoirs. By varying either a gate potential or the transverse confinement of the constrictions, we observe distinct plateaux in the atom conductance. The conductance in the first plateau is found to be equal to the universal conductance quantum, 1/h. We use Landauer's formula to model our results and find good agreement for low gate potentials, with all parameters determined a priori. We eventually explore the behavior of a strongly interacting Fermi gas in the same configuration, and the consequences of the emergence of superfluidity.

  5. Covariant quantization of C P T -violating photons

    NASA Astrophysics Data System (ADS)

    Colladay, D.; McDonald, P.; Noordmans, J. P.; Potting, R.

    2017-01-01

    We perform the covariant canonical quantization of the C P T - and Lorentz-symmetry-violating photon sector of the minimal Standard-Model Extension, which contains a general (timelike, lightlike, or spacelike) fixed background tensor kAF μ. Well-known stability issues, arising from complex-valued energy states, are solved by introducing a small photon mass, orders of magnitude below current experimental bounds. We explicitly construct a covariant basis of polarization vectors, in which the photon field can be expanded. We proceed to derive the Feynman propagator and show that the theory is microcausal. Despite the occurrence of negative energies and vacuum-Cherenkov radiation, we do not find any runaway stability issues, because the energy remains bounded from below. An important observation is that the ordering of the roots of the dispersion relations is the same in any observer frame, which allows for a frame-independent condition that selects the correct branch of the dispersion relation. This turns out to be critical for the consistency of the quantization. To our knowledge, this is the first system for which quantization has consistently been performed, in spite of the fact that the theory contains negative energies in some observer frames.

  6. Predicting drug pharmacokinetic properties using molecular interaction fields and SIMCA

    NASA Astrophysics Data System (ADS)

    Wolohan, Philippa R. N.; Clark, Robert D.

    2003-01-01

    We have developed a method that combines molecular interaction fields with soft independent modeling of class analogy (SIMCA) Wold:1977 to predict pharmacokinetic drug properties. Several additional considerations to those made in traditional QSAR are required in order to develop a successful QSPR strategy that is capable of accommodating the many complex factors that contribute to key pharmacokinetic properties such as ADME (absorption, distribution, metabolism, and excretion) and toxicology. An accurate prediction of oral bioavailability, for example, requires that absorption and first-pass hepatic elimination both be taken into consideration. To accomplish this, general properties of molecules must be related to their solubility and ability to penetrate biological membranes, and specific features must be related to their particular metabolic and toxicological profiles. Here we describe a method, which is applicable to structurally diverse data sets while utilizing as much detailed structural information as possible. We address the issue of the molecular alignment of a structurally diverse set of compounds using idiotropic field orientation (IFO), a generalization of inertial field orientation Clark:1998. We have developed a second flavor of this method, which directly incorporates electrostatics into the molecular alignment. Both variations of IFO produce a characteristic orientation for each structure and the corresponding molecular fields can then be analyzed using SIMCA. Models are presented for human intestinal absorption, blood-brain barrier penetration and bioavailability to demonstrate ways in which this tool can be used early in the drug development process to identify leads likely to exhibit poor pharmacokinetic behavior in pre-clinical studies, and we have explored the influence of conformation and molecular field type on the statistical properties of the models obtained.

  7. Quantization by cochain twists and nonassociative differentials

    SciTech Connect

    Beggs, E. J.; Majid, S.

    2010-05-15

    We show that several standard associative quantizations in mathematical physics can be expressed as cochain module-algebra twists in the spirit of Moyal products at least to O(({Dirac_h}/2{pi}){sup 3}), but to achieve this we twist not by a 2-cocycle but by a 2-cochain. This implies a hidden nonassociativity not visible in the algebra itself but present in its deeper noncommutative differential geometry, a phenomenon first seen in our previous work on semiclassicalization of differential structures. The quantizations are induced by a classical group covariance and include enveloping algebras U(g) as quantizations of g*, a Fedosov-type quantization of the sphere S{sup 2} under a Lorentz group covariance, the Mackey quantization of homogeneous spaces, and the standard quantum groups C{sub q}[G]. We also consider the differential quantization of R{sup n} for a given symplectic connection as part of our semiclassical analysis and we outline a proposal for the Dirac operator.

  8. A recursive technique for adaptive vector quantization

    NASA Technical Reports Server (NTRS)

    Lindsay, Robert A.

    1989-01-01

    Vector Quantization (VQ) is fast becoming an accepted, if not preferred method for image compression. The VQ performs well when compressing all types of imagery including Video, Electro-Optical (EO), Infrared (IR), Synthetic Aperture Radar (SAR), Multi-Spectral (MS), and digital map data. The only requirement is to change the codebook to switch the compressor from one image sensor to another. There are several approaches for designing codebooks for a vector quantizer. Adaptive Vector Quantization is a procedure that simultaneously designs codebooks as the data is being encoded or quantized. This is done by computing the centroid as a recursive moving average where the centroids move after every vector is encoded. When computing the centroid of a fixed set of vectors the resultant centroid is identical to the previous centroid calculation. This method of centroid calculation can be easily combined with VQ encoding techniques. The defined quantizer changes after every encoded vector by recursively updating the centroid of minimum distance which is the selected by the encoder. Since the quantizer is changing definition or states after every encoded vector, the decoder must now receive updates to the codebook. This is done as side information by multiplexing bits into the compressed source data.

  9. Controlling charge quantization with quantum fluctuations

    NASA Astrophysics Data System (ADS)

    Jezouin, S.; Iftikhar, Z.; Anthore, A.; Parmentier, F. D.; Gennser, U.; Cavanna, A.; Ouerghi, A.; Levkivskyi, I. P.; Idrisov, E.; Sukhorukov, E. V.; Glazman, L. I.; Pierre, F.

    2016-08-01

    In 1909, Millikan showed that the charge of electrically isolated systems is quantized in units of the elementary electron charge e. Today, the persistence of charge quantization in small, weakly connected conductors allows for circuits in which single electrons are manipulated, with applications in, for example, metrology, detectors and thermometry. However, as the connection strength is increased, the discreteness of charge is progressively reduced by quantum fluctuations. Here we report the full quantum control and characterization of charge quantization. By using semiconductor-based tunable elemental conduction channels to connect a micrometre-scale metallic island to a circuit, we explore the complete evolution of charge quantization while scanning the entire range of connection strengths, from a very weak (tunnel) to a perfect (ballistic) contact. We observe, when approaching the ballistic limit, that charge quantization is destroyed by quantum fluctuations, and scales as the square root of the residual probability for an electron to be reflected across the quantum channel; this scaling also applies beyond the different regimes of connection strength currently accessible to theory. At increased temperatures, the thermal fluctuations result in an exponential suppression of charge quantization and in a universal square-root scaling, valid for all connection strengths, in agreement with expectations. Besides being pertinent for the improvement of single-electron circuits and their applications, and for the metal-semiconductor hybrids relevant to topological quantum computing, knowledge of the quantum laws of electricity will be essential for the quantum engineering of future nanoelectronic devices.

  10. Controlling charge quantization with quantum fluctuations.

    PubMed

    Jezouin, S; Iftikhar, Z; Anthore, A; Parmentier, F D; Gennser, U; Cavanna, A; Ouerghi, A; Levkivskyi, I P; Idrisov, E; Sukhorukov, E V; Glazman, L I; Pierre, F

    2016-08-04

    In 1909, Millikan showed that the charge of electrically isolated systems is quantized in units of the elementary electron charge e. Today, the persistence of charge quantization in small, weakly connected conductors allows for circuits in which single electrons are manipulated, with applications in, for example, metrology, detectors and thermometry. However, as the connection strength is increased, the discreteness of charge is progressively reduced by quantum fluctuations. Here we report the full quantum control and characterization of charge quantization. By using semiconductor-based tunable elemental conduction channels to connect a micrometre-scale metallic island to a circuit, we explore the complete evolution of charge quantization while scanning the entire range of connection strengths, from a very weak (tunnel) to a perfect (ballistic) contact. We observe, when approaching the ballistic limit, that charge quantization is destroyed by quantum fluctuations, and scales as the square root of the residual probability for an electron to be reflected across the quantum channel; this scaling also applies beyond the different regimes of connection strength currently accessible to theory. At increased temperatures, the thermal fluctuations result in an exponential suppression of charge quantization and in a universal square-root scaling, valid for all connection strengths, in agreement with expectations. Besides being pertinent for the improvement of single-electron circuits and their applications, and for the metal-semiconductor hybrids relevant to topological quantum computing, knowledge of the quantum laws of electricity will be essential for the quantum engineering of future nanoelectronic devices.

  11. An Interactive Web System for Field Data Sharing and Collaboration

    NASA Astrophysics Data System (ADS)

    Weng, Y.; Sun, F.; Grigsby, J. D.

    2010-12-01

    A Web 2.0 system is designed and developed to facilitate data collection for the field studies in the Geological Sciences department at Ball State University. The system provides a student-centered learning platform that enables the users to first upload their collected data in various formats, interact and collaborate dynamically online, and ultimately create a shared digital repository of field experiences. The data types considered for the system and their corresponding format and requirements are listed in the table below. The system has six main functionalities as follows. (1) Only the registered users can access the system with confidential identification and password. (2) Each user can upload/revise/delete data in various formats such as image, audio, video, and text files to the system. (3) Interested users are allowed to co-edit the contents and join the collaboration whiteboard for further discussion. (4) The system integrates with Google, Yahoo, or Flickr to search for similar photos with same tags. (5) Users can search the web system according to the specific key words. (6) Photos with recorded GPS readings can be mashed and mapped to Google Maps/Earth for visualization. Application of the system to geology field trips at Ball State University will be demonstrated to assess the usability of the system.Data Requirements

  12. Theoretical analysis of magnetic field interactions with aortic blood flow

    SciTech Connect

    Kinouchi, Y.; Yamaguchi, H.; Tenforde, T.S.

    1996-04-01

    The flow of blood in the presence of a magnetic field gives rise to induced voltages in the major arteries of the central circulatory system. Under certain simplifying conditions, such as the assumption that the length of major arteries (e.g., the aorta) is infinite and that the vessel walls are not electrically conductive, the distribution of induced voltages and currents within these blood vessels can be calculated with reasonable precision. However, the propagation of magnetically induced voltages and currents from the aorta into neighboring tissue structures such as the sinuatrial node of the heart has not been previously determined by any experimental or theoretical technique. In the analysis presented in this paper, a solution of the complete Navier-Stokes equation was obtained by the finite element technique for blood flow through the ascending and descending aortic vessels in the presence of a uniform static magnetic field. Spatial distributions of the magnetically induced voltage and current were obtained for the aortic vessel and surrounding tissues under the assumption that the wall of the aorta is electrically conductive. Results are presented for the calculated values of magnetically induced voltages and current densities in the aorta and surrounding tissue structures, including the sinuatrial node, and for their field-strength dependence. In addition, an analysis is presented of magnetohydrodynamic interactions that lead to a small reduction of blood volume flow at high field levels above approximately 10 tesla (T). Quantitative results are presented on the offsetting effects of oppositely directed blood flows in the ascending and descending aortic segments, and a quantitative estimate is made of the effects of assuming an infinite vs. a finite length of the aortic vessel in calculating the magnetically induced voltage and current density distribution in tissue.

  13. Finite amplitude nonlinear drift waves in a spatially inhomogeneous degenerate plasma with Landau quantization and electron temperature corrections

    NASA Astrophysics Data System (ADS)

    Shaukat, Muzzamal I.; Masood, W.; Shah, H. A.; Iqbal, M. J.; Mirza, Arshad M.

    2016-10-01

    In the present investigation, linear and nonlinear electrostatic drift waves in the presence of trapped electrons with quantizing magnetic field and finite electron temperature effects in dense plasmas have been studied. The linear dispersion relation of the ion drift wave has been derived and it has been found that the Landau quantization and finite temperature effects significantly alter the linear propagation characteristics of the wave under consideration. Employing the Sagdeev potential approach, the formation of finite amplitude drift solitary structures has been investigated in the presence of a quantizing magnetic field for both fully and partially degenerate plasmas. Both compressive and rarefactive drift solitary structures have been obtained for different values of quantizing magnetic field and finite electron temperature effects. The theoretical results obtained have been analyzed numerically for the parameters typically found in white dwarfs.

  14. A quantum mechanical polarizable force field for biomolecular interactions

    PubMed Central

    Donchev, A. G.; Ozrin, V. D.; Subbotin, M. V.; Tarasov, O. V.; Tarasov, V. I.

    2005-01-01

    We introduce a quantum mechanical polarizable force field (QMPFF) fitted solely to QM data at the MP2/aTZ(-hp) level. Atomic charge density is modeled by point-charge nuclei and floating exponentially shaped electron clouds. The functional form of interaction energy parallels quantum mechanics by including electrostatic, exchange, induction, and dispersion terms. Separate fitting of each term to the counterpart calculated from high-quality QM data ensures high transferability of QMPFF parameters to different molecular environments, as well as accurate fit to a broad range of experimental data in both gas and liquid phases. QMPFF, which is much more efficient than ab initio QM, is optimized for the accurate simulation of biomolecular systems and the design of drugs. PMID:15911753

  15. Atoms and Ions Interacting with Particles and Fields: Final Report

    SciTech Connect

    Robicheaux, Francis

    2014-09-18

    This grant supported research in basic atomic, molecular and optical physics related to the interactions of atoms with particles and fields. The duration of the grant was the 10 year period from 8/2003 to 8/2013. All of the support from the grant was used to pay salaries of the PI, postdocs, graduate students, and undergraduates and travel to conferences and meetings. The results were in the form of publications in peer reviewed journals. There were 65 peer reviewed publications over these 10 years with 8 of the publications in Physical Review Letters; all of the other articles were in respected peer reviewed journals (Physical Review A, New Journal of Physics, Journal of Physics B, ...). I will disuss the results for the periods of time relevant for each grant period.

  16. Imaging of quantized magnetostatic modes using spatially resolved ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Tamaru, S.; Bain, J. A.; van de Veerdonk, R. J. M.; Crawford, T. M.; Covington, M.; Kryder, M. H.

    2002-05-01

    We present a measurement technique for performing spatially resolved ferromagnetic resonance and directly imaging quantized magnetostatic modes in magnetic samples that undergo high frequency magnetic drive fields (up to 8 GHz). The dynamic response of a 50×50 μm2 permalloy structure (100 nm thick) under a 7.04 GHz highly nonuniform drive field was measured as a function of the dc bias field using this technique. The magnetization variation observed indicates that quantized magnetostatic mode waves appear at certain bias fields, with the number of nodes decreasing with an increase in the bias field. We tentatively assign the indices of each mode using the Damon-Eshbach (DE) model. Similar modes have been observed for a similar sample geometry using an inductive measurement and they showed good agreement with the DE model. However, the result measured using this technique showed some discrepancy with the DE model and the spatial patterns observed are more complicated than simple one-dimensional standing waves. This complexity suggests that analysis beyond that of the DE model is required to explain the observations.

  17. Field evaluation of an acid rain-drought stress interaction.

    PubMed

    Banwart, W L

    1988-01-01

    Various methods have been proposed to simulate natural field conditions for growing agricultural crops while controlling conditions to study specific environmental effects. This report briefly describes the use of moveable rain exclusion shelters (10.4 x 40.9 m) to study the results of the interaction of acid rain and drought stress on corn and soybean yields. The rain exclusion shelters are constructed of galvanized pipe framing and covered with polyethylene film. Movement is automated by a rain switch to protect crops from ambient rainfall and to treat them with simulated acid rain The facility simulates a real environment with respect to variables such as solar exposure, wind movement, dew formation, and insect exposure, while allowing careful control of moisture regimes. Soybeans and corn were treated with average rainfall amounts, and with one-half and one-quarter of these rainfall amounts (drought stress) at two levels of rainfall acidity, pH 5.6 and 3.0. While drought stress resulted in considerable yield reduction for Amsoy and Williams soybeans, no additional reduction in yield was observed with rainfall of pH 3.0, as compared to rainfall of approximately pH 5.6. Similar results were observed for one corn cultivar, Pioneer 3377. For one year of the study however, yield of B73 x Mo17 (corn) was reduced 3139 kg ha(-1) by the most severe drought, and an additional 1883 kg ha(-1) by acid rain of pH 3.0, as compared to the control (pH 5.6). Yield reduction from acidic rain was considerably less at full water rates, resulting in a significant pH by drought stress interaction. However, during the second year of the experiment, no pH effect or drought by pH interaction was observed for this cultivar. The reason for the difference in the two years was not identified.

  18. Optical field enhancement by strong plasmon interaction in graphene nanostructures.

    PubMed

    Thongrattanasiri, Sukosin; García de Abajo, F Javier

    2013-05-03

    The ability of plasmons to enhance the electromagnetic field intensity in the gap between metallic nanoparticles derives from their strong optical confinement relative to the light wavelength. The spatial extension of plasmons in doped graphene has recently been shown to be boldly reduced with respect to conventional plasmonic metals. Here, we show that graphene nanostructures are capable of capitalizing such strong confinement to yield unprecedented levels of field enhancement, well beyond what is found in noble metals of similar dimensions (~ tens of nanometers). We perform realistic, quantum-mechanical calculations of the optical response of graphene dimers formed by nanodisks and nanotriangles, showing a strong sensitivity of the level of enhancement to the type of carbon edges near the gap region, with armchair edges favoring stronger interactions than zigzag edges. Our quantum-mechanical description automatically incorporates nonlocal effects that are absent in classical electromagnetic theory, leading to over an order of magnitude higher enhancement in armchair structures. The classical limit is recovered for large structures. We predict giant levels of light concentration for dimers ~200 nm, leading to infrared-absorption enhancement factors ~10(8). This extreme light enhancement and confinement in nanostructured graphene has great potential for optical sensing and nonlinear devices.

  19. Properties of solitary ion acoustic waves in a quantized degenerate magnetoplasma with trapped electrons

    SciTech Connect

    Tsintsadze, N. L.; Tagviashvili, M. N.; Shah, H. A.; Qureshi, M. N. S.

    2015-02-15

    We have undertaken the investigation of ion acoustic solitary waves in both weakly and strongly quantized degenerate magnetoplasmas. It is seen that a singular point clearly demarcates the regions of weak and strong quantization due to the ambient magnetic field. The effect of the magnetic field is taken into account via the parameter  η{sub 0}=ℏω{sub ce}/ε{sub Fe} and the Mach number, and their effect on the formation of solitary structures is investigated in both cases and some results are presented graphically.

  20. Exact Quantization of Einstein-Rosen Waves Coupled to Massless Scalar Matter

    NASA Astrophysics Data System (ADS)

    Barbero G., J. Fernando; Garay, Iñaki; Villaseñor, Eduardo J.

    2005-07-01

    We show in this Letter that gravity coupled to a massless scalar field with full cylindrical symmetry can be exactly quantized by an extension of the techniques used in the quantization of Einstein-Rosen waves. This system provides a useful test bed to discuss a number of issues in quantum general relativity, such as the emergence of the classical metric, microcausality, and large quantum gravity effects. It may also provide an appropriate framework to study gravitational critical phenomena from a quantum point of view, issues related to black hole evaporation, and the consistent definition of test fields and particles in quantum gravity.

  1. A novel solution procedure for a three-level atom interacting with one-mode cavity field via modified homotopy analysis method

    NASA Astrophysics Data System (ADS)

    Abdel Wahab, N. H.; Salah, Ahmed

    2015-05-01

    In this paper, the interaction of a three-level -configration atom and a one-mode quantized electromagnetic cavity field has been studied. The detuning parameters, the Kerr nonlinearity and the arbitrary form of both the field and intensity-dependent atom-field coupling have been taken into account. The wave function when the atom and the field are initially prepared in the excited state and coherent state, respectively, by using the Schrödinger equation has been given. The analytical approximation solution of this model has been obtained by using the modified homotopy analysis method (MHAM). The homotopy analysis method is mentioned summarily. MHAM can be obtained from the homotopy analysis method (HAM) applied to Laplace, inverse Laplace transform and Pade approximate. MHAM is used to increase the accuracy and accelerate the convergence rate of truncated series solution obtained by the HAM. The time-dependent parameters of the anti-bunching of photons, the amplitude-squared squeezing and the coherent properties have been calculated. The influence of the detuning parameters, Kerr nonlinearity and photon number operator on the temporal behavior of these phenomena have been analyzed. We noticed that the considered system is sensitive to variations in the presence of these parameters.

  2. Perturbation theory in light-cone quantization

    SciTech Connect

    Langnau, A.

    1992-01-01

    A thorough investigation of light-cone properties which are characteristic for higher dimensions is very important. The easiest way of addressing these issues is by analyzing the perturbative structure of light-cone field theories first. Perturbative studies cannot be substituted for an analysis of problems related to a nonperturbative approach. However, in order to lay down groundwork for upcoming nonperturbative studies, it is indispensable to validate the renormalization methods at the perturbative level, i.e., to gain control over the perturbative treatment first. A clear understanding of divergences in perturbation theory, as well as their numerical treatment, is a necessary first step towards formulating such a program. The first objective of this dissertation is to clarify this issue, at least in second and fourth-order in perturbation theory. The work in this dissertation can provide guidance for the choice of counterterms in Discrete Light-Cone Quantization or the Tamm-Dancoff approach. A second objective of this work is the study of light-cone perturbation theory as a competitive tool for conducting perturbative Feynman diagram calculations. Feynman perturbation theory has become the most practical tool for computing cross sections in high energy physics and other physical properties of field theory. Although this standard covariant method has been applied to a great range of problems, computations beyond one-loop corrections are very difficult. Because of the algebraic complexity of the Feynman calculations in higher-order perturbation theory, it is desirable to automatize Feynman diagram calculations so that algebraic manipulation programs can carry out almost the entire calculation. This thesis presents a step in this direction. The technique we are elaborating on here is known as light-cone perturbation theory.

  3. Tribology of the lubricant quantized sliding state.

    PubMed

    Castelli, Ivano Eligio; Capozza, Rosario; Vanossi, Andrea; Santoro, Giuseppe E; Manini, Nicola; Tosatti, Erio

    2009-11-07

    In the framework of Langevin dynamics, we demonstrate clear evidence of the peculiar quantized sliding state, previously found in a simple one-dimensional boundary lubricated model [A. Vanossi et al., Phys. Rev. Lett. 97, 056101 (2006)], for a substantially less idealized two-dimensional description of a confined multilayer solid lubricant under shear. This dynamical state, marked by a nontrivial "quantized" ratio of the averaged lubricant center-of-mass velocity to the externally imposed sliding speed, is recovered, and shown to be robust against the effects of thermal fluctuations, quenched disorder in the confining substrates, and over a wide range of loading forces. The lubricant softness, setting the width of the propagating solitonic structures, is found to play a major role in promoting in-registry commensurate regions beneficial to this quantized sliding. By evaluating the force instantaneously exerted on the top plate, we find that this quantized sliding represents a dynamical "pinned" state, characterized by significantly low values of the kinetic friction. While the quantized sliding occurs due to solitons being driven gently, the transition to ordinary unpinned sliding regimes can involve lubricant melting due to large shear-induced Joule heating, for example at large speed.

  4. Interaction of the Barbero-Immirzi field with matter and pseudoscalar perturbations

    NASA Astrophysics Data System (ADS)

    Mercuri, Simone; Taveras, Victor

    2009-11-01

    In loop quantum gravity the classical point of departure is the Einstein-Hilbert action modified by the addition of the so-called Holst term. Classically, this term does not affect the equations of motion, but it induces a well-known quantization ambiguity in the quantum theory, parametrized by the Barbero-Immirzi parameter. Recently, it has been suggested to promote the Barbero-Immirzi parameter to a field. The resulting theory, obtainable starting from the usual Holst action, is general relativity coupled to a pseudoscalar field. However, this theory turns out to have an unconventional kinetic term for the Barbero-Immirzi field and a rather unnatural coupling with fermions. The main goal of this work is twofold: First, to propose a further generalization of the Holst action, which yields a theory of gravity and matter with a more natural coupling to the Barbero-Immirzi field; second, to study the possible implications for cosmology correlated to the existence of this new pseudoscalar field.

  5. Comparison of different quantization strategies for subband coding of medical images

    NASA Astrophysics Data System (ADS)

    Castagno, Roberto; Lancini, Rosa C.; Egger, Olivier

    1996-04-01

    In this paper different methods for the quantization of wavelet transform coefficients are compared in view of medical imaging applications. The goal is to provide users with a comprehensive and application-oriented review of these techniques. The performance of four quantization methods (namely standard scalar quantization, embedded zerotree, variable dimension vector quantization and pyramid vector quantization) are compared with regard to their application in the field of medical imaging. In addition to the standard rate-distortion criterion, we took into account the possibility of bitrate control, the feasibility of real-time implementation, the genericity (for use in non-dedicated multimedia environments) of each approach. In addition, the diagnostical reliability of the decompressed images has been assessed during a viewing session and with the help of a specialist. Classical scalar quantization methods are briefly reviewed. As a result, it is shown that despite the relatively simple design of the optimum quantizers, their performance in terms of rate-distortion tradeoff are quite poor. For high quality subband coding, it is of major importance to exploit the existing zero-correlation across subbands as proposed with the embedded zerotree wavelet (EZW) algorithm. In this paper an improved EZW-algorithm is used which is termed embedded zerotree lossless (EZL) algorithm -- due to the importance of lossless compression in medical imaging applications -- having the additional possibility of producing an embedded lossless bitstream. VQ based methods take advantage of statistical properties of a block or a vector of data values, yielding good quality results of reconstructed images at the same bitrates. In this paper, we take in account two classes of VQ methods, random quantizers (VQ) and geometric quantizers (PVQ). Algorithms belonging to the first group (the most widely known being that developed by Linde-Buzo-Gray) suffer from the common drawback of requiring a

  6. Canonical Functional Quantization of Pseudo-Photons in Planar Systems

    SciTech Connect

    Ferreira, P. Castelo

    2008-06-25

    Extended U{sub e}(1)xU{sub g}(1) electromagnetism containing both a photon and a pseudo-photon is introduced at the variational level and is justified by the violation of the Bianchi identities in conceptual systems, either in the presence of magnetic monopoles or non-regular external fields, not being accounted for by the standard Maxwell Lagrangian. A dimensional reduction is carried out that yields a U{sub e}(1)xU{sub g}(1) Maxwell-BF type theory and a canonical functional quantization in planar systems is considered which may be relevant in Hall systems.

  7. Nucleation of Quantized Vortices from Rotating Superfluid Drops

    NASA Technical Reports Server (NTRS)

    Donnelly, Russell J.

    2001-01-01

    The long-term goal of this project is to study the nucleation of quantized vortices in helium II by investigating the behavior of rotating droplets of helium II in a reduced gravity environment. The objective of this ground-based research grant was to develop new experimental techniques to aid in accomplishing that goal. The development of an electrostatic levitator for superfluid helium, described below, and the successful suspension of charged superfluid drops in modest electric fields was the primary focus of this work. Other key technologies of general low temperature use were developed and are also discussed.

  8. Temporal evolutional absorption behaviors of graphene under Landau quantization

    NASA Astrophysics Data System (ADS)

    Hamedi, H. R.; Sahrai, M.

    2017-02-01

    We investigate the evolutional absorption behaviors of Landau-quantized graphene structure based on the transient solution to the density matrix equations of the motion. The impact of various system parameters on temporal evolution of probe absorption is studied. In addition, the required times for switching the high-absorption case to the zero-absorption (transparency) of a probe field is discussed. Due to unusual optical and electronic characteristics of graphene resulting from linear, massless dispersion of electrons near the Dirac point and the chiral character of electron states, our study may have potential applications in telecommunication, biomedicine, and optical information processing and may cause significant impact on technological applications.

  9. Quantization of spin waves in oval-shaped nanorings

    NASA Astrophysics Data System (ADS)

    Tan, C. G.; Lim, H. S.; Wang, Z. K.; Ng, S. C.; Kuok, M. H.; Goolaup, S.; Adeyeye, A. O.; Singh, N.

    Regular arrays of oval-shaped permalloy nanorings have been fabricated using deep ultraviolet lithography and their spin dynamics measured by Brillouin light scattering with the magnetic field applied along long (easy) axes of the rings. The dispersionless behavior of the spin wave modes observed reveals their standing wave nature. Two-dimensional simulations and analytical calculations have been performed for a single isolated nanoring. Results reveal that the observed modes can be interpreted in terms of quantized Damon-Eshbach modes due to lateral confinement in the finite size rings.

  10. Canonical quantization of general relativity in discrete space-times.

    PubMed

    Gambini, Rodolfo; Pullin, Jorge

    2003-01-17

    It has long been recognized that lattice gauge theory formulations, when applied to general relativity, conflict with the invariance of the theory under diffeomorphisms. We analyze discrete lattice general relativity and develop a canonical formalism that allows one to treat constrained theories in Lorentzian signature space-times. The presence of the lattice introduces a "dynamical gauge" fixing that makes the quantization of the theories conceptually clear, albeit computationally involved. The problem of a consistent algebra of constraints is automatically solved in our approach. The approach works successfully in other field theories as well, including topological theories. A simple cosmological application exhibits quantum elimination of the singularity at the big bang.

  11. Gravitational surface Hamiltonian and entropy quantization

    NASA Astrophysics Data System (ADS)

    Bakshi, Ashish; Majhi, Bibhas Ranjan; Samanta, Saurav

    2017-02-01

    The surface Hamiltonian corresponding to the surface part of a gravitational action has xp structure where p is conjugate momentum of x. Moreover, it leads to TS on the horizon of a black hole. Here T and S are temperature and entropy of the horizon. Imposing the hermiticity condition we quantize this Hamiltonian. This leads to an equidistant spectrum of its eigenvalues. Using this we show that the entropy of the horizon is quantized. This analysis holds for any order of Lanczos-Lovelock gravity. For general relativity, the area spectrum is consistent with Bekenstein's observation. This provides a more robust confirmation of this earlier result as the calculation is based on the direct quantization of the Hamiltonian in the sense of usual quantum mechanics.

  12. The totally constrained model: three quantization approaches

    NASA Astrophysics Data System (ADS)

    Gambini, Rodolfo; Olmedo, Javier

    2014-08-01

    We provide a detailed comparison of the different approaches available for the quantization of a totally constrained system with a constraint algebra generating the non-compact group. In particular, we consider three schemes: the Refined Algebraic Quantization, the Master Constraint Programme and the Uniform Discretizations approach. For the latter, we provide a quantum description where we identify semiclassical sectors of the kinematical Hilbert space. We study the quantum dynamics of the system in order to show that it is compatible with the classical continuum evolution. Among these quantization approaches, the Uniform Discretizations provides the simpler description in agreement with the classical theory of this particular model, and it is expected to give new insights about the quantum dynamics of more realistic totally constrained models such as canonical general relativity.

  13. Universal behavior after a quantum quench in interacting field theories

    NASA Astrophysics Data System (ADS)

    Mitra, Aditi

    The dynamics of an isolated quantum system represented by a field theory with O(N) symmetry, and in d>2 spatial dimensions, is investigated after a quantum quench from a disordered initial state to the critical point. A perturbative renormalization-group approach involving an expansion around d=4 is employed to study the time-evolution, and is supplemented by an exact solution of the Hartree-Fock equations in the large-N limit. The results show that the dynamics is characterized by a prethermal regime controlled by elastic dephasing where excitations propagate ballistically, and a light cone emerges in correlation functions in real space. The memory of the initial state, together with the absence of time-scales at the critical point, gives rise to universal power-law aging which is characterized by a new non-equilibrium short-time exponent. The dynamics of the entanglement following a quench is also explored, and reveals that while the time evolution of the entanglement entropy itself is not much different between a free bosonic theory and an interacting bosonic theory, the low-energy entanglement spectrum on the other hand shows clear signature of the non-equilibrium short-time exponent related to aging. This work was done in collaboration with Y. Lemonik (NYU), M. Tavora (NYU), A. Chiocchetta (SISSA), A. Maraga (SISSA), and A. Gambassi (SISSA). Supported by NSF-DMR 1303177.

  14. Subband Image Coding with Jointly Optimized Quantizers

    NASA Technical Reports Server (NTRS)

    Kossentini, Faouzi; Chung, Wilson C.; Smith Mark J. T.

    1995-01-01

    An iterative design algorithm for the joint design of complexity- and entropy-constrained subband quantizers and associated entropy coders is proposed. Unlike conventional subband design algorithms, the proposed algorithm does not require the use of various bit allocation algorithms. Multistage residual quantizers are employed here because they provide greater control of the complexity-performance tradeoffs, and also because they allow efficient and effective high-order statistical modeling. The resulting subband coder exploits statistical dependencies within subbands, across subbands, and across stages, mainly through complexity-constrained high-order entropy coding. Experimental results demonstrate that the complexity-rate-distortion performance of the new subband coder is exceptional.

  15. Minimal representations, geometric quantization, and unitarity.

    PubMed Central

    Brylinski, R; Kostant, B

    1994-01-01

    In the framework of geometric quantization we explicitly construct, in a uniform fashion, a unitary minimal representation pio of every simply-connected real Lie group Go such that the maximal compact subgroup of Go has finite center and Go admits some minimal representation. We obtain algebraic and analytic results about pio. We give several results on the algebraic and symplectic geometry of the minimal nilpotent orbits and then "quantize" these results to obtain the corresponding representations. We assume (Lie Go)C is simple. PMID:11607478

  16. Image Coding Based on Address Vector Quantization.

    NASA Astrophysics Data System (ADS)

    Feng, Yushu

    Image coding is finding increased application in teleconferencing, archiving, and remote sensing. This thesis investigates the potential of Vector Quantization (VQ), a relatively new source coding technique, for compression of monochromatic and color images. Extensions of the Vector Quantization technique to the Address Vector Quantization method have been investigated. In Vector Quantization, the image data to be encoded are first processed to yield a set of vectors. A codeword from the codebook which best matches the input image vector is then selected. Compression is achieved by replacing the image vector with the index of the code-word which produced the best match, the index is sent to the channel. Reconstruction of the image is done by using a table lookup technique, where the label is simply used as an address for a table containing the representative vectors. A code-book of representative vectors (codewords) is generated using an iterative clustering algorithm such as K-means, or the generalized Lloyd algorithm. A review of different Vector Quantization techniques are given in chapter 1. Chapter 2 gives an overview of codebook design methods including the Kohonen neural network to design codebook. During the encoding process, the correlation of the address is considered and Address Vector Quantization is developed for color image and monochrome image coding. Address VQ which includes static and dynamic processes is introduced in chapter 3. In order to overcome the problems in Hierarchical VQ, Multi-layer Address Vector Quantization is proposed in chapter 4. This approach gives the same performance as that of the normal VQ scheme but the bit rate is about 1/2 to 1/3 as that of the normal VQ method. In chapter 5, a Dynamic Finite State VQ based on a probability transition matrix to select the best subcodebook to encode the image is developed. In chapter 6, a new adaptive vector quantization scheme, suitable for color video coding, called "A Self -Organizing

  17. Constraints on operator ordering from third quantization

    SciTech Connect

    Ohkuwa, Yoshiaki; Faizal, Mir; Ezawa, Yasuo

    2016-02-15

    In this paper, we analyse the Wheeler–DeWitt equation in the third quantized formalism. We will demonstrate that for certain operator ordering, the early stages of the universe are dominated by quantum fluctuations, and the universe becomes classical at later stages during the cosmic expansion. This is physically expected, if the universe is formed from quantum fluctuations in the third quantized formalism. So, we will argue that this physical requirement can be used to constrain the form of the operator ordering chosen. We will explicitly demonstrate this to be the case for two different cosmological models.

  18. Quantized impedance dealing with the damping behavior of the one-dimensional oscillator

    SciTech Connect

    Zhu, Jinghao; Zhang, Jing; Li, Yuan; Zhang, Yong; Fang, Zhengji; Zhao, Peide E-mail: pdzhao@hebut.edu.cn; Li, Erping

    2015-11-15

    A quantized impedance is proposed to theoretically establish the relationship between the atomic eigenfrequency and the intrinsic frequency of the one-dimensional oscillator in this paper. The classical oscillator is modified by the idea that the electron transition is treated as a charge-discharge process of a suggested capacitor with the capacitive energy equal to the energy level difference of the jumping electron. The quantized capacitance of the impedance interacting with the jumping electron can lead the resonant frequency of the oscillator to the same as the atomic eigenfrequency. The quantized resistance reflects that the damping coefficient of the oscillator is the mean collision frequency of the transition electron. In addition, the first and third order electric susceptibilities based on the oscillator are accordingly quantized. Our simulation of the hydrogen atom emission spectrum based on the proposed method agrees well with the experimental one. Our results exhibits that the one-dimensional oscillator with the quantized impedance may become useful in the estimations of the refractive index and one- or multi-photon absorption coefficients of some nonmagnetic media composed of hydrogen-like atoms.

  19. Stability of the quantized circulation of an attractive Bose-Einstein condensate in a rotating torus

    SciTech Connect

    Kanamoto, Rina; Saito, Hiroki; Ueda, Masahito

    2003-10-01

    We investigate rotational properties of a system of attractive bosons confined in a one-dimensional torus. Two kinds of ground states, uniform-density and bright soliton, are obtained analytically as functions of the strength of interaction and of the rotational frequency of the torus. The quantization of circulation appears in the uniform-density state, but disappears upon formation of the soliton. By comparing the results of exact diagonalization with those predicted by the Bogoliubov theory, we show that the Bogoliubov theory is valid at absolute zero over a wide range of parameters. At finite temperatures we employ the exact diagonalization method to examine how thermal fluctuations smear the plateaus of the quantized circulation. Finally, by rotating the system with an axisymmetry-breaking potential, we clarify the process by which the quantized circulation becomes thermodynamically stabilized.

  20. Education and Education Research: Moribund Fields or Dynamic Interacting Systems?

    ERIC Educational Resources Information Center

    Reddy, C.

    2011-01-01

    The complex field of education is often depicted as a static field governed by technocratic approaches to activities that characterise the field. Education change is equally viewed in such limited and positivistic ways and linear means-end processes (Hoban 2002). In such orientations to the field, educational research therefore, is about finding…

  1. The Multiphoton Interaction of Lambda Model Atom and Two-Mode Fields

    NASA Technical Reports Server (NTRS)

    Liu, Tang-Kun

    1996-01-01

    The system of two-mode fields interacting with atom by means of multiphotons is addressed, and the non-classical statistic quality of two-mode fields with interaction is discussed. Through mathematical calculation, some new rules of non-classical effects of two-mode fields which evolue with time, are established.

  2. Observation and suppression of quantized spin waves in microfabricated permalloy elements

    NASA Astrophysics Data System (ADS)

    Yamamoto, Tatsuya; Seki, Takeshi; Ono, Shimpei; Takanashi, Koki

    2014-01-01

    We report the observation and suppression of quantized spin wave modes in a microfabricated rectangular permalloy (Py) element. The Py element was located on a coplanar waveguide and was connected to a Cu wire. The quantized Damon-Eshbach spin wave and the perpendicular standing spin wave modes appeared in the resonance spectra for the Py elements. Those non-uniform magnetization dynamics were suppressed when the non-uniformity of the radio frequency magnetic field for the excitation was reduced by changing the design of the device structure.

  3. A multiple-source consecutive localization algorithm based on quantized measurement for wireless sensor network

    NASA Astrophysics Data System (ADS)

    Chu, Hao; Wu, Chengdong

    2016-10-01

    The source localization base on wireless sensor network has attracted considerable attention in recent years. However, most of the previous works focus on the accurate measurement or single source localization. The multiple-source localization has extensive application prospect in many fields. The quantized measurement is a low-cost and low energy consumption solution for wireless sensor network. In this paper, we present a novel multiple-source consecutive localization algorithm using the quantized measurement. We first introduce the multiple acoustic sources model and quantized measurement method. Then the maximum likelihood method is used to establish the localization function and the particle swarm optimization is employed to estimate the initial position of the source. Finally the Kalman filter is used to mitigate the random processing noise. Simulation results show that the proposed method owns high localization accuracy.

  4. On Quantization of Quadratic Poisson Structures

    NASA Astrophysics Data System (ADS)

    Manchon, D.; Masmoudi, M.; Roux, A.

    Any classical r-matrix on the Lie algebra of linear operators on a real vector space V gives rise to a quadratic Poisson structure on V which admits a deformation quantization stemming from the construction of V. Drinfel'd [Dr], [Gr]. We exhibit in this article an example of quadratic Poisson structure which does not arise this way.

  5. Deformation quantization and boundary value problems

    NASA Astrophysics Data System (ADS)

    Tarkhanov, Nikolai

    2016-11-01

    We describe a natural construction of deformation quantization on a compact symplectic manifold with boundary. On the algebra of quantum observables a trace functional is defined which as usual annihilates the commutators. This gives rise to an index as the trace of the unity element. We formulate the index theorem as a conjecture and examine it by the classical harmonic oscillator.

  6. Bolometric Device Based on Fluxoid Quantization

    NASA Technical Reports Server (NTRS)

    Bonetti, Joseph A.; Kenyon, Matthew E.; Leduc, Henry G.; Day, Peter K.

    2010-01-01

    The temperature dependence of fluxoid quantization in a superconducting loop. The sensitivity of the device is expected to surpass that of other superconducting- based bolometric devices, such as superconducting transition-edge sensors and superconducting nanowire devices. Just as important, the proposed device has advantages in sample fabrication.

  7. Visual data mining for quantized spatial data

    NASA Technical Reports Server (NTRS)

    Braverman, Amy; Kahn, Brian

    2004-01-01

    In previous papers we've shown how a well known data compression algorithm called Entropy-constrained Vector Quantization ( can be modified to reduce the size and complexity of very large, satellite data sets. In this paper, we descuss how to visualize and understand the content of such reduced data sets.

  8. Multiverse in the Third Quantized Formalism

    NASA Astrophysics Data System (ADS)

    Mir, Faizal

    2014-11-01

    In this paper we will analyze the third quantization of gravity in path integral formalism. We will use the time-dependent version of Wheeler—DeWitt equation to analyze the multiverse in this formalism. We will propose a mechanism for baryogenesis to occur in the multiverse, without violating the baryon number conservation.

  9. Image compression using address-vector quantization

    NASA Astrophysics Data System (ADS)

    Nasrabadi, Nasser M.; Feng, Yushu

    1990-12-01

    A novel vector quantization scheme, the address-vector quantizer (A-VQ), is proposed which exploits the interblock correlation by encoding a group of blocks together using an address-codebook (AC). The AC is a set of address-codevectors (ACVs), each representing a combination of addresses or indices. Each element of the ACV is an address of an entry in the LBG-codebook, representing a vector-quantized block. The AC consists of an active (addressable) region and an inactive (nonaddressable) region. During encoding the ACVs in the AC are reordered adaptively to bring the most probable ACVs into the active region. When encoding an ACV, the active region is checked, and if such an address combination exists, its index is transmitted to the receiver. Otherwise, the address of each block is transmitted individually. The SNR of the images encoded by the A-VQ method is the same as that of a memoryless vector quantizer, but the bit rate is by a factor of approximately two.

  10. Vacuum Energy in Two Dimensional Box Through the Krein Quantization

    NASA Astrophysics Data System (ADS)

    Ghaffari, Ali; Karimaghaee, Sanaz; Tanhayi, M. R.

    2017-03-01

    In this work we reexamine the Casimir effect in which the vacuum expectation value of quantum fields is calculated over a so-called Krein space. This method has already been successfully applied to study Casimir effect on non-trivial topologies and also the covariance problem in the massless minimally coupled scalar field in de Sitter space-time. It is shown that within this method, no infinite term appears in the computation of the vacuum expectation value of energy-momentum tensor. We investigate the behavior of the Krein quantization for a scalar field in a box satisfying the Dirichlet boundary condition. We show that one can recover the usual theory with the exception that the vacuum energy of the free theory is zero.

  11. Four-Wave Mixing in Landau-Quantized Graphene.

    PubMed

    König-Otto, Jacob C; Wang, Yongrui; Belyanin, Alexey; Berger, Claire; de Heer, Walter A; Orlita, Milan; Pashkin, Alexej; Schneider, Harald; Helm, Manfred; Winnerl, Stephan

    2017-04-12

    For Landau-quantized graphene, featuring an energy spectrum consisting of nonequidistant Landau levels, theory predicts a giant resonantly enhanced optical nonlinearity. We verify the nonlinearity in a time-integrated degenerate four-wave mixing (FWM) experiment in the mid-infrared spectral range, involving the Landau levels LL-1, LL0 and LL1. A rapid dephasing of the optically induced microscopic polarization on a time scale shorter than the pulse duration (∼4 ps) is observed, while a complementary pump-probe experiment under the same experimental conditions reveals a much longer lifetime of the induced population. The FWM signal shows the expected field dependence with respect to lowest order perturbation theory for low fields. Saturation sets in for fields above ∼6 kV/cm. Furthermore, the resonant behavior and the order of magnitude of the third-order susceptibility are in agreement with our theoretical calculations.

  12. Vacuum Energy in Two Dimensional Box Through the Krein Quantization

    NASA Astrophysics Data System (ADS)

    Ghaffari, Ali; Karimaghaee, Sanaz; Tanhayi, M. R.

    2016-12-01

    In this work we reexamine the Casimir effect in which the vacuum expectation value of quantum fields is calculated over a so-called Krein space. This method has already been successfully applied to study Casimir effect on non-trivial topologies and also the covariance problem in the massless minimally coupled scalar field in de Sitter space-time. It is shown that within this method, no infinite term appears in the computation of the vacuum expectation value of energy-momentum tensor. We investigate the behavior of the Krein quantization for a scalar field in a box satisfying the Dirichlet boundary condition. We show that one can recover the usual theory with the exception that the vacuum energy of the free theory is zero.

  13. Solar Wind Interaction with Lunar Crustal Magnetic Fields: Relation to Albedo Swirls

    NASA Technical Reports Server (NTRS)

    Mitchell, D. L.; Lin, R. P.; Harrison, L.; Halekas, J. S.; Hood, L. L.; Acuna, M. H.; Binder, A. B.

    2000-01-01

    The Magnetometer/Electron Reflectometer onboard Lunar Prospector has observed the solar wind interaction with remanent crustal magnetic fields at altitudes from 20 to 120 km. This interaction may be responsible for the formation of albedo swirls.

  14. Aerodynamic sound generation due to vortex-aerofoil interaction. Part 2: Analysis of the acoustic field

    NASA Technical Reports Server (NTRS)

    Parasarathy, R.; Karamcheti, K.

    1972-01-01

    The Lighthill method was the basic procedure used to analyze the sound field associated with a vortex of modified strength interacting with an airfoil. A free vortex interacting with an airfoil in uniform motion was modeled in order to determine the sound field due to all the acoustic sources, not only on the airfoil surfaces (dipoles), but also the ones distributed on the perturbed flow field (quadrupoles) due to the vortex-airfoil interaction. Because inviscid flow is assumed in the study of the interaction, the quadrupoles considered in the perturbed flow field are entirely due to an unsteady flow field. The effects of airfoil thickness on the second radiation are examined by using a symmetric Joukowski airfoil for the vortex-airfoil interaction. Sound radiation in a plane, far field simplification, and computation of the sound field are discussed.

  15. Creation of quantized particles, gravitons, and scalar perturbations by the expanding universe

    NASA Astrophysics Data System (ADS)

    Parker, Leonard

    2015-04-01

    Quantum creation processes during the very rapid early expansion of the universe are believed to give rise to temperature anisotropies and polarization patterns in the CMB radiation. These have been observed by satellites such as COBE, WMAP, and PLANCK, and by bolometric instruments placed near the South Pole by the BICEP collaborations. The expected temperature anisotropies are well-confirmed. The B-mode polarization patterns in the CMB are currently under measurement jointly by the PLANCK and BICEP groups to determine the extent to which the B-modes can be attributed to gravitational waves from the creation of gravitons in the earliest universe. As the original discoverer of the quantum phenomenon of particle creation from vacuum by the expansion of the universe, I will explain how the discovery came about and how it relates to the current observations. The first system that I considered when I started my Ph.D. thesis in 1962 was the quantized minimally-coupled scalar field in an expanding FLRW (Friedmann, Lemaitré, Robertson, Walker) universe having a general continuous scale factor a(t) with continuous time derivatives. I also considered quantized fermion fields of spin-1/2 and the spin-1 massless photon field, as well as the quantized conformally-invariant field equations of arbitrary integer and half-integer spins that had been written down in the classical context for general gravitational metrics by Penrose. It was during 1962 that I proved that quanta of the minimally-coupled scalar field were created by the general expanding FLRW universe. This was relevant also to the creation of quantized perturbations of the gravitational field, since these perturbations satisfied linear field equations that could be quantized in the same way as the minimally-coupled scalar field equation. In fact, in 1946, E.M. Lifshitz had considered the classical Einstein gravitational field in FLRW expanding universes and had shown that the classical linearized Einstein field

  16. Bianchi type I Universe and interacting ghost scalar fields models of dark energy

    NASA Astrophysics Data System (ADS)

    Hossienkhani, H.

    2016-04-01

    We suggest a correspondence between interacting ghost dark energy model with the quintessence, tachyon and K-essence scalar field in a non-isotropic universe. This correspondence allows to reconstruct the potential and the dynamics for the scalar field of the interacting ghost dark energy model, which describe accelerated expansion of the universe. Our numerical result show the effects of the interaction and anisotropic on the evolutionary behavior the ghost scalar field models.

  17. Video data compression using artificial neural network differential vector quantization

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, Ashok K.; Bibyk, Steven B.; Ahalt, Stanley C.

    1991-01-01

    An artificial neural network vector quantizer is developed for use in data compression applications such as Digital Video. Differential Vector Quantization is used to preserve edge features, and a new adaptive algorithm, known as Frequency-Sensitive Competitive Learning, is used to develop the vector quantizer codebook. To develop real time performance, a custom Very Large Scale Integration Application Specific Integrated Circuit (VLSI ASIC) is being developed to realize the associative memory functions needed in the vector quantization algorithm. By using vector quantization, the need for Huffman coding can be eliminated, resulting in superior performance against channel bit errors than methods that use variable length codes.

  18. Quantization of non-Hamiltonian and dissipative systems

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2001-09-01

    A generalization of canonical quantization which maps a dynamical operator to a dynamical superoperator is suggested. Weyl quantization of dynamical operator, which cannot be represented as Poisson bracket with some function, is considered. The usual Weyl quantization of observables is a specific case of suggested quantization. This approach allows to define consistent quantization procedure for non-Hamiltonian and dissipative systems. Examples of the harmonic oscillator with friction (generalized Lorenz-Rossler-Leipnik-Newton equation), the Fokker-Planck-type system and Lorenz-type system are considered.

  19. The Angular Momentum Dilemma and Born-Jordan Quantization

    NASA Astrophysics Data System (ADS)

    de Gosson, Maurice A.

    2017-01-01

    The rigorous equivalence of the Schrödinger and Heisenberg pictures requires that one uses Born-Jordan quantization in place of Weyl quantization. We confirm this by showing that the much discussed " angular momentum dilemma" disappears if one uses Born-Jordan quantization. We argue that the latter is the only physically correct quantization procedure. We also briefly discuss a possible redefinition of phase space quantum mechanics, where the usual Wigner distribution has to be replaced with a new quasi-distribution associated with Born-Jordan quantization, and which has proven to be successful in time-frequency analysis.

  20. Near-field optics: The nightmare of the photon

    NASA Astrophysics Data System (ADS)

    Keller, Ole

    2000-05-01

    A first-quantized theory describing the birth process of a single photon in the near-field zone of a pointlike particle (atom, molecule, etc.) is established. The space-time description of the photon energy wave function embryo is shown to be useful for the understanding of the role played by (unborn) photons in near-field interactions where the spatial confinement of light plays a crucial role.

  1. Influence of strong field vacuum polarization on gravitational-electromagnetic wave interaction

    SciTech Connect

    Forsberg, M.; Brodin, G.; Papadopoulos, D.

    2010-07-15

    The interaction between gravitational and electromagnetic waves in the presence of a static magnetic field is studied. The field strength of the static field is allowed to surpass the Schwinger critical field, such that the QED effects of vacuum polarization and magnetization are significant. Equations governing the interaction are derived and analyzed. It turns out that the energy conversion from gravitational to electromagnetic waves can be significantly altered due to the QED effects. The consequences of our results are discussed.

  2. A short course on quantum mechanics and methods of quantization

    NASA Astrophysics Data System (ADS)

    Ercolessi, Elisa

    2015-07-01

    These notes collect the lectures given by the author to the "XXIII International Workshop on Geometry and Physics" held in Granada (Spain) in September 2014. The first part of this paper aims at introducing a mathematical oriented reader to the realm of Quantum Mechanics (QM) and then to present the geometric structures that underline the mathematical formalism of QM which, contrary to what is usually done in Classical Mechanics (CM), are usually not taught in introductory courses. The mathematics related to Hilbert spaces and Differential Geometry are assumed to be known by the reader. In the second part, we concentrate on some quantization procedures, that are founded on the geometric structures of QM — as we have described them in the first part — and represent the ones that are more operatively used in modern theoretical physics. We will discuss first the so-called Coherent State Approach which, mainly complemented by "Feynman Path Integral Technique", is the method which is most widely used in quantum field theory. Finally, we will describe the "Weyl Quantization Approach" which is at the origin of modern tomographic techniques, originally used in optics and now in quantum information theory.

  3. Charge quantization in the CP(1) nonlinear σ-model

    NASA Astrophysics Data System (ADS)

    Hellerman, Simeon; Kehayias, John; Yanagida, Tsutomu T.

    2014-01-01

    We investigate the consistency conditions for matter fields coupled to the four-dimensional (N=1 supersymmetric) CP(1) nonlinear sigma model (the coset space SU(2/U(1). We find that consistency requires that the U(1 charge of the matter be quantized, in units of half of the U(1 charge of the Nambu-Goldstone (NG) boson, if the matter has a nonsingular kinetic term and the dynamics respect the full group SU(2. We can then take the linearly realized group U(1 to comprise the weak hypercharge group U(1 of the Standard Model. Thus we have charge quantization without a Grand Unified Theory (GUT), completely avoiding problems like proton decay, doublet-triplet splitting, and magnetic monopoles. We briefly investigate the phenomenological implications of this model-building framework. The NG boson is fractionally charged and completely stable. It can be naturally light, avoiding constraints while being a component of dark matter or having applications in nuclear physics. We also comment on the extension to other NLSMs on coset spaces, which will be explored more fully in a followup paper.

  4. Size quantization of Dirac fermions in graphene constrictions

    PubMed Central

    Terrés, B.; Chizhova, L. A.; Libisch, F.; Peiro, J.; Jörger, D.; Engels, S.; Girschik, A.; Watanabe, K.; Taniguchi, T.; Rotkin, S. V.; Burgdörfer, J.; Stampfer, C.

    2016-01-01

    Quantum point contacts are cornerstones of mesoscopic physics and central building blocks for quantum electronics. Although the Fermi wavelength in high-quality bulk graphene can be tuned up to hundreds of nanometres, the observation of quantum confinement of Dirac electrons in nanostructured graphene has proven surprisingly challenging. Here we show ballistic transport and quantized conductance of size-confined Dirac fermions in lithographically defined graphene constrictions. At high carrier densities, the observed conductance agrees excellently with the Landauer theory of ballistic transport without any adjustable parameter. Experimental data and simulations for the evolution of the conductance with magnetic field unambiguously confirm the identification of size quantization in the constriction. Close to the charge neutrality point, bias voltage spectroscopy reveals a renormalized Fermi velocity of ∼1.5 × 106 m s−1 in our constrictions. Moreover, at low carrier density transport measurements allow probing the density of localized states at edges, thus offering a unique handle on edge physics in graphene devices. PMID:27198961

  5. Deformation Quantization and Superconformal Symmetry in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Beem, Christopher; Peelaers, Wolfger; Rastelli, Leonardo

    2017-02-01

    We investigate the structure of certain protected operator algebras that arise in three-dimensional N=4 superconformal field theories. We find that these algebras can be understood as a quantization of (either of) the half-BPS chiral ring(s). An important feature of this quantization is that it has a preferred basis in which the structure constants of the quantum algebra are equal to the OPE coefficients of the underlying superconformal theory. We identify several nontrivial conditions that the quantum algebra must satisfy in this basis. We consider examples of theories for which the moduli space of vacua is either the minimal nilpotent orbit of a simple Lie algebra or a Kleinian singularity. For minimal nilpotent orbits, the quantum algebras (and their preferred bases) can be uniquely determined. These algebras are related to higher spin algebras. For Kleinian singularities the algebras can be characterized abstractly—they are spherical subalgebras of symplectic reflection algebras—but the preferred basis is not easily determined. We find evidence in these examples that for a given choice of quantum algebra (defined up to a certain gauge equivalence), there is at most one choice of canonical basis. We conjecture that this is the case for general N=4 SCFTs.

  6. Size quantization of Dirac fermions in graphene constrictions.

    PubMed

    Terrés, B; Chizhova, L A; Libisch, F; Peiro, J; Jörger, D; Engels, S; Girschik, A; Watanabe, K; Taniguchi, T; Rotkin, S V; Burgdörfer, J; Stampfer, C

    2016-05-20

    Quantum point contacts are cornerstones of mesoscopic physics and central building blocks for quantum electronics. Although the Fermi wavelength in high-quality bulk graphene can be tuned up to hundreds of nanometres, the observation of quantum confinement of Dirac electrons in nanostructured graphene has proven surprisingly challenging. Here we show ballistic transport and quantized conductance of size-confined Dirac fermions in lithographically defined graphene constrictions. At high carrier densities, the observed conductance agrees excellently with the Landauer theory of ballistic transport without any adjustable parameter. Experimental data and simulations for the evolution of the conductance with magnetic field unambiguously confirm the identification of size quantization in the constriction. Close to the charge neutrality point, bias voltage spectroscopy reveals a renormalized Fermi velocity of ∼1.5 × 10(6) m s(-1) in our constrictions. Moreover, at low carrier density transport measurements allow probing the density of localized states at edges, thus offering a unique handle on edge physics in graphene devices.

  7. Oscillating magnetocaloric effect in size-quantized diamagnetic film

    SciTech Connect

    Alisultanov, Z. Z.

    2014-03-21

    We investigate the oscillating magnetocaloric effect on a size-quantized diamagnetic film in a transverse magnetic field. We obtain the analytical expression for the thermodynamic potential in case of the arbitrary spectrum of carriers. The entropy change is shown to be the oscillating function of the magnetic field and the film thickness. The nature of this effect is the same as for the de Haas–van Alphen effect. The magnetic part of entropy has a maximal value at some temperature. Such behavior of the entropy is not observed in magneto-ordered materials. We discuss the nature of unusual behavior of the magnetic entropy. We compare our results with the data obtained for 2D and 3D cases.

  8. Quantized fluctuational electrodynamics for three-dimensional plasmonic structures

    NASA Astrophysics Data System (ADS)

    Partanen, Mikko; Häyrynen, Teppo; Tulkki, Jukka; Oksanen, Jani

    2017-01-01

    We recently introduced a quantized fluctuational electrodynamics (QFED) formalism that provides a physically insightful definition of an effective position-dependent photon-number operator and the associated ladder operators. However, this far the formalism has been applicable only for the normal incidence of the electromagnetic field in planar structures. In this work, we overcome the main limitation of the one-dimensional QFED formalism by extending the model to three dimensions, allowing us to use the QFED method to study, e.g., plasmonic structures. To demonstrate the benefits of the developed formalism, we apply it to study the local steady-state photon numbers and field temperatures in a light-emitting near-surface InGaN quantum-well structure with a metallic coating supporting surface plasmons.

  9. Paul Weiss and the genesis of canonical quantization

    NASA Astrophysics Data System (ADS)

    Rickles, Dean; Blum, Alexander

    2015-12-01

    This paper describes the life and work of a figure who, we argue, was of primary importance during the early years of field quantisation and (albeit more indirectly) quantum gravity. A student of Dirac and Born, he was interned in Canada during the second world war as an enemy alien and after his release never seemed to regain a good foothold in physics, identifying thereafter as a mathematician. He developed a general method of quantizing (linear and non-linear) field theories based on the parameters labelling an arbitrary hypersurface. This method (the `parameter formalism' often attributed to Dirac), though later discarded, was employed (and viewed at the time as an extremely important tool) by the leading figures associated with canonical quantum gravity: Dirac, Pirani and Schild, Bergmann, DeWitt, and others. We argue that he deserves wider recognition for this and other innovations.

  10. Flux quantization on quasicrystalline networks

    SciTech Connect

    Behrooz, A.; Burns, M.J.; Deckman, H.; Levine, D.; Whitehead, B.; Chaikin, P.M.

    1986-07-21

    We have measured the superconducting transition temperature T-italic/sub c-italic/(H) as a function of magnetic field for a network of thin aluminum wires arranged in two quasicrystalline arrays, a Fibonacci sequence and the eightfold-symmetric version of a Penrose tiling. The quasicrystals have two periods whose ratio sigma is irrational and are constructed of two tiles with irrationally related areas. We find a series of dips in deltaT-italic/sub c-italic/(H) corresponding to favorable arrangements of the flux lattice on the quasicrystalline substrate. The largest dips are found at sigma/sup n-italic/ and the dips approach the zero-field transition temperature as n-italic increases.

  11. Precise Quantization of Anomalous Hall Effect

    NASA Astrophysics Data System (ADS)

    Bestwick, Andrew

    In the quantum anomalous Hall effect, electron transport in a magnetically-doped topological insulator takes place through chiral, dissipationless edge channels. In this talk, we discuss the behavior of a nearly ideal implementations of the effect in which the Hall resistance is within a part per 10,000 of its quantized value and the longitudinal resistivity can reach below 1 Ω per square. Nearly all Cr-doped topological insulator samples demonstrate extreme temperature dependence that is well-modeled by a small effective gap, allowing control over quantization with an unexpected magnetocaloric effect. We also discuss measurements of new device geometries and non-local resistances that identify the sources of dissipation that limit the effect. (Now at Rigetti Computing).

  12. Neural net approach to predictive vector quantization

    NASA Astrophysics Data System (ADS)

    Mohsenian, Nader; Nasrabadi, Nasser M.

    1992-11-01

    A new predictive vector quantization (PVQ) technique, capable of exploring the nonlinear dependencies in addition to the linear dependencies that exist between adjacent blocks of pixels, is introduced. Two different classes of neural nets form the components of the PVQ scheme. A multi-layer perceptron is embedded in the predictive component of the compression system. This neural network, using the non-linearity condition associated with its processing units, can perform as a non-linear vector predictor. The second component of the PVQ scheme vector quantizes (VQ) the residual vector that is formed by subtracting the output of the perceptron from the original wave-pattern. Kohonen Self-Organizing Feature Map (KSOFM) was utilized as a neural network clustering algorithm to design the codebook for the VQ technique. Coding results are presented for monochrome 'still' images.

  13. Critical behavior in black hole scalar field interaction

    NASA Astrophysics Data System (ADS)

    Crespo, J. A.; de Oliveira, H. P.

    2015-09-01

    We study the critical behavior at the threshold of black hole formation in a model consisting of a scalar field incident to a reflector barrier enclosing a Schwarzschild black hole. Weak incident scalar field waves disturb slightly the black hole spacetime and are completely radiated by the reflector, like water waves striking against the wall of a dam. Strong incident waves produce the formation of an apparent horizon outside the barrier. In this case, a fraction of scalar field crosses the horizon together with the barrier, whereas another fraction escapes to infinity. We have integrated the field equations using a Galerkin collocation code that allowed the necessary accuracy to investigate the behavior of the black hole masses for a broad range of scalar field initial amplitude. We have shown that a scaling law describes the black hole masses for amplitudes very close to the critical value. In the limit of very strong scalar fields, the black hole masses either scale linearly with the initial amplitude or saturate depending on the existence of the initial monopole moment.

  14. Quantization, group contraction and zero point energy

    NASA Astrophysics Data System (ADS)

    Blasone, M.; Celeghini, E.; Jizba, P.; Vitiello, G.

    2003-04-01

    We study algebraic structures underlying 't Hooft's construction relating classical systems with the quantum harmonic oscillator. The role of group contraction is discussed. We propose the use of SU(1,1) for two reasons: because of the isomorphism between its representation Hilbert space and that of the harmonic oscillator and because zero point energy is implied by the representation structure. Finally, we also comment on the relation between dissipation and quantization.

  15. Single Abrikosov vortices as quantized information bits

    PubMed Central

    Golod, T.; Iovan, A.; Krasnov, V. M.

    2015-01-01

    Superconducting digital devices can be advantageously used in future supercomputers because they can greatly reduce the dissipation power and increase the speed of operation. Non-volatile quantized states are ideal for the realization of classical Boolean logics. A quantized Abrikosov vortex represents the most compact magnetic object in superconductors, which can be utilized for creation of high-density digital cryoelectronics. In this work we provide a proof of concept for Abrikosov-vortex-based random access memory cell, in which a single vortex is used as an information bit. We demonstrate high-endurance write operation and two different ways of read-out using a spin valve or a Josephson junction. These memory cells are characterized by an infinite magnetoresistance between 0 and 1 states, a short access time, a scalability to nm sizes and an extremely low write energy. Non-volatility and perfect reproducibility are inherent for such a device due to the quantized nature of the vortex. PMID:26456592

  16. Conductance Quantization in Resistive Random Access Memory

    NASA Astrophysics Data System (ADS)

    Li, Yang; Long, Shibing; Liu, Yang; Hu, Chen; Teng, Jiao; Liu, Qi; Lv, Hangbing; Suñé, Jordi; Liu, Ming

    2015-10-01

    The intrinsic scaling-down ability, simple metal-insulator-metal (MIM) sandwich structure, excellent performances, and complementary metal-oxide-semiconductor (CMOS) technology-compatible fabrication processes make resistive random access memory (RRAM) one of the most promising candidates for the next-generation memory. The RRAM device also exhibits rich electrical, thermal, magnetic, and optical effects, in close correlation with the abundant resistive switching (RS) materials, metal-oxide interface, and multiple RS mechanisms including the formation/rupture of nanoscale to atomic-sized conductive filament (CF) incorporated in RS layer. Conductance quantization effect has been observed in the atomic-sized CF in RRAM, which provides a good opportunity to deeply investigate the RS mechanism in mesoscopic dimension. In this review paper, the operating principles of RRAM are introduced first, followed by the summarization of the basic conductance quantization phenomenon in RRAM and the related RS mechanisms, device structures, and material system. Then, we discuss the theory and modeling of quantum transport in RRAM. Finally, we present the opportunities and challenges in quantized RRAM devices and our views on the future prospects.

  17. Spin-one matter fields

    NASA Astrophysics Data System (ADS)

    Napsuciale, M.; Rodríguez, S.; Ferro-Hernández, Rodolfo; Gómez-Ávila, Selim

    2016-04-01

    Spin-one matter fields are relevant both for the description of hadronic states and as potential extensions of the Standard Model. In this work we present a formalism for the description of massive spin-one fields transforming in the (1 ,0 )⊕(0 ,1 ) representation of the Lorentz group, based on the covariant projection onto parity eigenspaces and Poincaré orbits. The formalism yields a constrained dynamics. We solve the constraints and perform the canonical quantization accordingly. This formulation uses the recent construction of a parity-based covariant basis for matrix operators acting on the (j ,0 )⊕(0 ,j ) representations. The algebraic properties of the covariant basis play an important role in solving the constraints and allowing the canonical quantization of the theory. We study the chiral structure of the theory and conclude that it is not chirally symmetric in the massless limit, hence it is not possible to have chiral gauge interactions. However, spin-one matter fields can have vector gauge interactions. Also, the dimension of the field makes self-interactions naively renormalizable. Using the covariant basis, we classify all possible self-interaction terms.

  18. Stochastic quantization and holographic Wilsonian renormalization group of scalar theories with arbitrary mass

    NASA Astrophysics Data System (ADS)

    Oh, Jae-Hyuk

    2016-11-01

    We explore the mathematical relation between stochastic quantization (SQ) and the holographic Wilsonian renormalization group (HWRG) of a massive scalar field defined in asymptotically anti-de Sitter space. We compute the stochastic two-point correlation function by quantizing the boundary on-shell action (it is identified with the Euclidean action in our stochastic frame) of the scalar field, requiring the initial value of the stochastic field Dirichlet boundary condition, and study its relationship with the double-trace deformation in HWRG computation. It turns out that the stochastic two-point function precisely corresponds to the double-trace deformation through the relation proposed in [J. High Energy Phys. 11 (2012) 144] even in the case that the scalar field mass is arbitrary. In our stochastic framework, the Euclidean action constituting the Langevin equation is not the same as that in the original stochastic theory; in fact, it contains the stochastic time "t -dependent" kernel in it. A justification for the exotic Euclidean action is provided by proving that it transforms to the usual form of the Euclidean action in a new stochastic frame by an appropriate rescaling of both the stochastic fields and time. We also apply the Neumann boundary condition to the stochastic fields to study the relation between SQ and the HWRG when alternative quantization is allowed. It turns out that the application of the Neumann boundary condition to the stochastic fields generates the radial evolution of the single-trace operator as well as the double-trace term.

  19. Interaction of MRI field gradients with the human body.

    PubMed

    Glover, P M

    2009-11-07

    In this review, the effects of low-frequency electromagnetic fields encountered specifically during magnetic resonance imaging (MRI) are examined. The primary biological effect at frequencies of between 100 and 5000 Hz (typical of MRI magnetic field gradient switching) is peripheral nerve stimulation, the result of which can be a mild tingling and muscle twitching to a sensation of pain. The models for nerve stimulation and how they are related to the rate of change of magnetic field are examined. The experimental measurements, and analytic and computational modelling work in this area are reviewed. The review concludes with a discussion of current regulation in this area and current practice as both are applied to MRI.

  20. Particle localization, spinor two-valuedness, and Fermi quantization of tensor systems

    NASA Technical Reports Server (NTRS)

    Reifler, Frank; Morris, Randall

    1994-01-01

    Recent studies of particle localization shows that square-integrable positive energy bispinor fields in a Minkowski space-time cannot be physically distinguished from constrained tensor fields. In this paper we generalize this result by characterizing all classical tensor systems, which admit Fermi quantization, as those having unitary Lie-Poisson brackets. Examples include Euler's tensor equation for a rigid body and Dirac's equation in tensor form.

  1. Solar wind interaction effects on the magnetic fields around Mars: Consequences for interplanetary and crustal field measurements

    NASA Astrophysics Data System (ADS)

    Luhmann, J. G.; Ma, Y.-J.; Brain, D. A.; Ulusen, D.; Lillis, R. J.; Halekas, J. S.; Espley, J. R.

    2015-11-01

    The first unambiguous detections of the crustal remanent magnetic fields of Mars were obtained by Mars Global Surveyor (MGS) during its initial orbits around Mars, which probed altitudes to within ∼110 km of the surface. However, the majority of its measurements were carried out around 400 km altitude, fixed 2 a.m. to 2 p.m. local time, mapping orbit. While the general character and planetary origins of the localized crustal fields were clearly revealed by the mapping survey data, their effects on the solar wind interaction could not be investigated in much detail because of the limited mapping orbit sampling. Previous analyses (Brain et al., 2006) of the field measurements on the dayside nevertheless provided an idea of the extent to which the interaction of the solar wind and planetary fields leads to non-ideal field draping at the mapping altitude. In this study we use numerical simulations of the global solar wind interaction with Mars as an aid to interpreting that observed non-ideal behavior. In addition, motivated by models for different interplanetary field orientations, we investigate the effects of induced and reconnected (planetary and external) fields on the Martian field's properties derived at the MGS mapping orbit altitude. The results suggest that inference of the planetary low order moments is compromised by their influence. In particular, the intrinsic dipole contribution may differ from that in the current models because the induced component is so dominant.

  2. Cosmological model with fermion and tachyon fields interacting via Yukawa-type potential

    NASA Astrophysics Data System (ADS)

    Ribas, Marlos O.; Devecchi, Fernando P.; Kremer, Gilberto M.

    2016-02-01

    A model for the universe with tachyonic and fermionic fields interacting through a Yukawa-type potential is investigated. It is shown that the tachyonic field answers for the initial accelerated regime and for the subsequent decelerated regime so that it behaves as an inflaton at early times and as a matter field at intermediate times, while the fermionic field has the role of a dark energy constituent, since it leads to an accelerated regime at later times. The interaction between the fields via a Yukawa-type potential controls the duration of the decelerated era, since a stronger coupling makes a shorter decelerated period.

  3. Master equation for collective spontaneous emission with quantized atomic motion

    NASA Astrophysics Data System (ADS)

    Damanet, François; Braun, Daniel; Martin, John

    2016-02-01

    We derive a Markovian master equation for the internal dynamics of an ensemble of two-level atoms including all effects related to the quantization of their motion. Our equation provides a unifying picture of the consequences of recoil and indistinguishability of atoms beyond the Lamb-Dicke regime on both their dissipative and conservative dynamics, and applies equally well to distinguishable and indistinguishable atoms. We give general expressions for the decay rates and the dipole-dipole shifts for any motional states, and we find closed-form formulas for a number of relevant states (Gaussian states, Fock states, and thermal states). In particular, we show that dipole-dipole interactions and cooperative photon emission can be modulated through the external state of motion.

  4. Interactive Tooth Separation from Dental Model Using Segmentation Field

    PubMed Central

    2016-01-01

    Tooth segmentation on dental model is an essential step of computer-aided-design systems for orthodontic virtual treatment planning. However, fast and accurate identifying cutting boundary to separate teeth from dental model still remains a challenge, due to various geometrical shapes of teeth, complex tooth arrangements, different dental model qualities, and varying degrees of crowding problems. Most segmentation approaches presented before are not able to achieve a balance between fine segmentation results and simple operating procedures with less time consumption. In this article, we present a novel, effective and efficient framework that achieves tooth segmentation based on a segmentation field, which is solved by a linear system defined by a discrete Laplace-Beltrami operator with Dirichlet boundary conditions. A set of contour lines are sampled from the smooth scalar field, and candidate cutting boundaries can be detected from concave regions with large variations of field data. The sensitivity to concave seams of the segmentation field facilitates effective tooth partition, as well as avoids obtaining appropriate curvature threshold value, which is unreliable in some case. Our tooth segmentation algorithm is robust to dental models with low quality, as well as is effective to dental models with different levels of crowding problems. The experiments, including segmentation tests of varying dental models with different complexity, experiments on dental meshes with different modeling resolutions and surface noises and comparison between our method and the morphologic skeleton segmentation method are conducted, thus demonstrating the effectiveness of our method. PMID:27532266

  5. The Beginner's Guide to Interactive Virtual Field Trips

    ERIC Educational Resources Information Center

    Zanetis, Jan

    2010-01-01

    For students, field trips can be the best of both worlds: a welcome and exciting break from day-to-day classroom activities and a memorable, real-world experience that will solidify the curriculum in their minds. Unfortunately, the most desirable trips--those to far-away, enticing destinations--have long been inaccessible to all but a select few,…

  6. Remote Laboratory and Animal Behaviour: An Interactive Open Field System

    ERIC Educational Resources Information Center

    Fiore, Lorenzo; Ratti, Giovannino

    2007-01-01

    Remote laboratories can provide distant learners with practical acquisitions which would otherwise remain precluded. Our proposal here is a remote laboratory on a behavioural test (open field test), with the aim of introducing learners to the observation and analysis of stereotyped behaviour in animals. A real-time video of a mouse in an…

  7. Distributed Consensus Optimization in Multiagent Networks With Time-Varying Directed Topologies and Quantized Communication.

    PubMed

    Li, Huaqing; Huang, Chicheng; Chen, Guo; Liao, Xiaofeng; Huang, Tingwen

    2017-03-31

    This paper considers solving a class of optimization problems which are modeled as the sum of all agents' convex cost functions and each agent is only accessible to its individual function. Communication between agents in multiagent networks is assumed to be limited: each agent can only interact information with its neighbors by using time-varying communication channels with limited capacities. A technique which overcomes the limitation is to implement a quantization process to the interacted information. The quantized information is first encoded as a binary sequence at the side of each agent before sending. After the binary sequence is received by the neighboring agent, corresponding decoding scheme is utilized to resume the original information with a certain degree of error which is caused by the quantization process. With the availability of each agent's encoding states (associated with its out-channels) and decoding states (associated with its in-channels), we devise a set of distributed optimization algorithms that generate two iterative sequences, one of which converges to the optimal solution and the other of which reaches to the optimal value. We prove that if the parameters satisfy some mild conditions, the quantization errors are bounded and the consensus optimization can be achieved. How to minimize the number of quantization level of each connected communication channel in fixed networks is also explored thoroughly. It is found that, by properly choosing system parameters, one bit information exchange suffices to ensure consensus optimization. Finally, we present two numerical simulation experiments to illustrate the efficacy of the algorithms as well as to validate the theoretical findings.

  8. Interaction of Two Differently Sized Bubbles in a Free Field

    NASA Astrophysics Data System (ADS)

    Chew, Lup Wai; Khoo, Boo Cheong; Klaseboer, Evert; Ohl, Siew-Wan

    The interaction between two different sized (spark created, non-equilibrium) bubbles is studied by using high speed photography. The bubble size ranges from 2 to 7 mm. The experimental results are compared to that of the similar sized bubbles reported in the literature. Interestingly, all the four major behaviors of bubble-bubble interactions (i.e. 'bubble-collapsed' induced liquid jets directed away from each other, liquid jets directed towards each other, bubble coalescence and the 'catapult' effect) are observed which bear much similarity to that found for similar sized bubbles' interaction. The main parameters studied/varied are the size of the bubbles, the dimensionless separation distance and the phase difference between the two bubbles. The results obtained are consistent with the cases of similar sized bubbles reported in the literature, with each type of behavior occupying a distinct region in the graphical plot. This indicates that the results for the (special) similar sized bubbles can be generalized to cases with different sized bubbles. Many of the real life applications such as cavitations corrosions often involve bubbles with significant size difference, thus the present findings are useful in predicting the behavior of multiple bubbles in many situations.

  9. Analysis and Design of Logarithmic-type Dynamic Quantizer

    NASA Astrophysics Data System (ADS)

    Sugie, Toshiharu; Okamoto, Tetsuro

    This paper is concerned with quantized feedback control in the case where logarithmic-type dynamic quantizers are adopted instead of conventional static (memoryless) ones. First, when the plant and the state feedback controller are given, the admissible coarsest quantization density which guarantees quadratic stability of the closed loop system is given in a closed form, which does not depend on the choice of controller in contrast to the static quantizer case. Second, when the plant, the state feedback controller and the coarseness of the quantization density are given, we provide a design method of the dynamic quantizers via convex optimization. Third, these results are extended to the case of output feedback control systems. Finally, some numerical examples are given to demonstrate the effectiveness of the proposed method.

  10. A visual detection model for DCT coefficient quantization

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.; Peterson, Heidi A.

    1993-01-01

    The discrete cosine transform (DCT) is widely used in image compression, and is part of the JPEG and MPEG compression standards. The degree of compression, and the amount of distortion in the decompressed image are determined by the quantization of the transform coefficients. The standards do not specify how the DCT coefficients should be quantized. Our approach is to set the quantization level for each coefficient so that the quantization error is at the threshold of visibility. Here we combine results from our previous work to form our current best detection model for DCT coefficient quantization noise. This model predicts sensitivity as a function of display parameters, enabling quantization matrices to be designed for display situations varying in luminance, veiling light, and spatial frequency related conditions (pixel size, viewing distance, and aspect ratio). It also allows arbitrary color space directions for the representation of color.

  11. A constrained joint source/channel coder design and vector quantization of nonstationary sources

    NASA Technical Reports Server (NTRS)

    Sayood, Khalid; Chen, Y. C.; Nori, S.; Araj, A.

    1993-01-01

    The emergence of broadband ISDN as the network for the future brings with it the promise of integration of all proposed services in a flexible environment. In order to achieve this flexibility, asynchronous transfer mode (ATM) has been proposed as the transfer technique. During this period a study was conducted on the bridging of network transmission performance and video coding. The successful transmission of variable bit rate video over ATM networks relies on the interaction between the video coding algorithm and the ATM networks. Two aspects of networks that determine the efficiency of video transmission are the resource allocation algorithm and the congestion control algorithm. These are explained in this report. Vector quantization (VQ) is one of the more popular compression techniques to appear in the last twenty years. Numerous compression techniques, which incorporate VQ, have been proposed. While the LBG VQ provides excellent compression, there are also several drawbacks to the use of the LBG quantizers including search complexity and memory requirements, and a mismatch between the codebook and the inputs. The latter mainly stems from the fact that the VQ is generally designed for a specific rate and a specific class of inputs. In this work, an adaptive technique is proposed for vector quantization of images and video sequences. This technique is an extension of the recursively indexed scalar quantization (RISQ) algorithm.

  12. Nonlinear Optical Systems Interacting with Amplitude-Modulated Optical Fields

    DTIC Science & Technology

    1990-07-01

    We start with the rate equations for the excited-state population of the laser transition p, d ( ltp = - (I + I + I,)P + -LI, (C.1) and the equation...spectroscopy; lasers ; parametric resonances ABSTRACT (Continue on reverse if necessary and identify by block number) Please see Abstract on Pages v-vi. I...he conducted research in the fields of modulation spectroscopy and laser instability under the guidance of Professor Carlos R. Stroud, Jr. While at

  13. Loop quantum cosmology: confronting the hybrid quantization approach with observations

    NASA Astrophysics Data System (ADS)

    Olmedo, Javier; Martin de Blas, Daniel

    2017-01-01

    In loop quantum cosmology there are several approaches for the confrontation of the theory with observations. Here, we focus on the hybrid quantization approach. We provide an exhaustive analysis including scalar and tensor perturbations on effective (quantum-mechanically corrected) homogeneous and isotropic cosmologies coupled to a massive scalar field. We compute the primordial power spectrum of the perturbations at the end of inflation for a set of initial vacuum states defined at the deep quantum regime of the cosmological model. We then analyze the tensor-to-scalar ratio and the consistency relation between this quantity and the spectral index of the tensor power spectrum. Eventually, we compute the temperature-temperature, electric-electric, temperature-electric and magnetic-magnetic correlation functions predicted by this approach and compare them with present observations.

  14. Quantized levitation states of superconducting multiple-ring systems

    SciTech Connect

    Haley, S.B.; Fink, H.J.

    1996-02-01

    The quantized levitation, trapped, and suspension states of a magnetic microsphere held in equilibrium by two fixed superconducting (SC) microrings are calculated by minimizing the free energy of the system. Each state is a discrete function of two independent fluxoid quantum numbers of the rings. When the radii of the SC rings are of the same order as the Ginzburg-Landau coherence length {xi}({ital T}), the system exhibits a small set of gravity and temperature-dependent levels. The levels of a weakly magnetized particle are sensitive functions of the gravitational field, indicating potential application as an accelerometer, and for trapping small magnetic particles in outer space or on Earth. The equilibrium states of a SC ring levitated by another SC ring are also calculated. {copyright} {ital 1996 The American Physical Society.}

  15. Second-quantized Landau-Zener theory for dynamical instabilities

    SciTech Connect

    Anglin, J.R.

    2003-05-01

    State engineering in nonlinear quantum dynamics sometimes may demand driving the system through a sequence of dynamically unstable intermediate states. This very general scenario is especially relevant to the dilute Bose-Einstein condensates, for which ambitious control schemes have been based on the powerful Gross-Pitaevskii mean-field theory. Since this theory breaks down on logarithmically short time scales in the presence of dynamical instabilities, an interval of instabilities introduces quantum corrections, which may possibly derail a control scheme. To provide a widely applicable theory for such quantum corrections, this paper solves a general problem of time-dependent quantum-mechanical dynamical instability, by modeling it as a second-quantized analog of a Landau-Zener avoided crossing: a 'twisted crossing'.

  16. On Quantization in Light-cone Variables Compatible with Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Altaisky, M. V.; Kaputkina, N. E.

    2016-06-01

    Canonical quantization of quantum field theory models is inherently related to the Lorentz invariant partition of classical fields into the positive and the negative frequency parts u( x) = u +( x) + u -( x), performed with the help of Fourier transform in Minkowski space. That is the commutation relations are being established between nonlocalized solutions of field equations. At the same time the construction of divergence free physical theory requires the separation of the contributions of different space-time scales. In present paper, using the light-cone variables, we propose a quantization procedure which is compatible with separation of scales using continuous wavelet transform, as described in our previous paper (Altaisky, M.V., Kaputkina, N.E.: Phys. Rev. D 88, 025015 2013).

  17. Interactive grid generation for turbomachinery flow field simulations

    NASA Technical Reports Server (NTRS)

    Choo, Yung K.; Reno, Charles; Eiseman, Peter R.

    1988-01-01

    The control point form of algebraic grid generation presented provides the means that are needed to generate well structured grids of turbomachinery flow simulations. It uses a sparse collection of control points distributed over the flow domain. The shape and position of coordinate curves can be adjusted from these control points while the grid conforms precisely to all boundaries. An interactive program called TURBO, which uses the control point form, is being developed. Basic features of the code are discussed and sample grids are presented. A finite volume LU implicit scheme is used to simulate flow in a turbine cascade on the grid generated by the program.

  18. Large-scale quantization from local correlations in space plasmas

    NASA Astrophysics Data System (ADS)

    Livadiotis, George; McComas, David J.

    2014-05-01

    This study examines the large-scale quantization that can characterize the phase space of certain physical systems. Plasmas are such systems where large-scale quantization, ħ*, is caused by Debye shielding that structures correlations between particles. The value of ħ* is constant—some 12 orders of magnitude larger than the Planck constant—across a wide range of space plasmas, from the solar wind in the inner heliosphere to the distant plasma in the inner heliosheath and the local interstellar medium. This paper develops the foundation and advances the understanding of the concept of plasma quantization; in particular, we (i) show the analogy of plasma to Planck quantization, (ii) show the key points of plasma quantization, (iii) construct some basic quantum mechanical concepts for the large-scale plasma quantization, (iv) investigate the correlation between plasma parameters that implies plasma quantization, when it is approximated by a relation between the magnetosonic energy and the plasma frequency, (v) analyze typical space plasmas throughout the heliosphere and show the constancy of plasma quantization over many orders of magnitude in plasma parameters, (vi) analyze Advanced Composition Explorer (ACE) solar wind measurements to develop another measurement of the value of ħ*, and (vii) apply plasma quantization to derive unknown plasma parameters when some key observable is missing.

  19. Semiclassical quantization of nonadiabatic systems with hopping periodic orbits

    SciTech Connect

    Fujii, Mikiya Yamashita, Koichi

    2015-02-21

    We present a semiclassical quantization condition, i.e., quantum–classical correspondence, for steady states of nonadiabatic systems consisting of fast and slow degrees of freedom (DOFs) by extending Gutzwiller’s trace formula to a nonadiabatic form. The quantum–classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow DOF, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels. In addition to the semiclassical quantization condition, we also discuss chaotic dynamics involved in the classical limit of nonadiabatic dynamics.

  20. Topological Quantization in Units of the Fine Structure Constant

    SciTech Connect

    Maciejko, Joseph; Qi, Xiao-Liang; Drew, H.Dennis; Zhang, Shou-Cheng; /Stanford U., Phys. Dept. /Stanford U., Materials Sci. Dept. /SLAC

    2011-11-11

    Fundamental topological phenomena in condensed matter physics are associated with a quantized electromagnetic response in units of fundamental constants. Recently, it has been predicted theoretically that the time-reversal invariant topological insulator in three dimensions exhibits a topological magnetoelectric effect quantized in units of the fine structure constant {alpha} = e{sup 2}/{h_bar}c. In this Letter, we propose an optical experiment to directly measure this topological quantization phenomenon, independent of material details. Our proposal also provides a way to measure the half-quantized Hall conductances on the two surfaces of the topological insulator independently of each other.

  1. Separable quantizations of Stäckel systems

    NASA Astrophysics Data System (ADS)

    Błaszak, Maciej; Marciniak, Krzysztof; Domański, Ziemowit

    2016-08-01

    In this article we prove that many Hamiltonian systems that cannot be separably quantized in the classical approach of Robertson and Eisenhart can be separably quantized if we extend the class of admissible quantizations through a suitable choice of Riemann space adapted to the Poisson geometry of the system. Actually, in this article we prove that for every quadratic in momenta Stäckel system (defined on 2 n dimensional Poisson manifold) for which Stäckel matrix consists of monomials in position coordinates there exist infinitely many quantizations-parametrized by n arbitrary functions-that turn this system into a quantum separable Stäckel system.

  2. Perceptually optimized quantization tables for H.264/AVC

    NASA Astrophysics Data System (ADS)

    Chen, Heng; Braeckman, Geert; Barbarien, Joeri; Munteanu, Adrian; Schelkens, Peter

    2010-08-01

    The H.264/AVC video coding standard currently represents the state-of-the-art in video compression technology. The initial version of the standard only supported a single quantization step size for all the coefficients in a transformed block. Later, support for custom quantization tables was added, which allows to independently specify the quantization step size for each coefficient in a transformed block. In this way, different quantization can be applied to the highfrequency and low-frequency coefficients, reflecting the human visual system's different sensitivity to high-frequency and low-frequency spatial variations in the signal. In this paper, we design custom quantization tables taking into account the properties of the human visual system as well as the viewing conditions. Our proposed design is based on a model for the human visual system's contrast sensitivity function, which specifies the contrast sensitivity in function of the spatial frequency of the signal. By calculating the spatial frequencies corresponding to each of the transform's basis functions, taking into account viewing distance and dot pitch of the screen, the sensitivity of the human visual system to variations in the transform coefficient corresponding to each basis function can be determined and used to define the corresponding quantization step size. Experimental results, whereby the video quality is measured using VQM, show that the designed quantization tables yield improved performance compared to uniform quantization and to the default quantization tables provided as a part of the reference encoder.

  3. Synthetic Dimensions with Magnetic Fields and Local Interactions in Photonic Lattices.

    PubMed

    Ozawa, Tomoki; Carusotto, Iacopo

    2017-01-06

    We discuss how one can realize a photonic device that combines synthetic dimensions and synthetic magnetic fields with spatially local interactions. Using an array of ring cavities, the angular coordinate around each cavity spans the synthetic dimension. The synthetic magnetic field arises as the intercavity photon hopping is associated with a change of angular momentum. Photon-photon interactions are local in the periodic angular coordinate around each cavity. Experimentally observable consequences of the synthetic magnetic field and of the local interactions are pointed out.

  4. Rashba spin orbit interaction effect on nonlinear optical properties of quantum dot with magnetic field

    NASA Astrophysics Data System (ADS)

    Jha, Pradip Kumar; Kumar, Manoj; Lahon, Siddhartha; Gumber, Sukirti; Mohan, Man

    2014-01-01

    Here we have investigated the influence of external magnetic field on the optical absorption and refractive index changes of a parabolically confined quantum dot in the presence of Rashba spin orbit interaction. We have used density matrix formulation for obtaining optical properties within the effective mass approximation. The results are presented as a function of quantum confinement potential, magnetic field, Rashba spin orbit interaction strength and photon energy. Our results indicate the important influence of magnetic field on the peak positions of absorption coefficient and refractive index changes. The role of confinement strength and spin orbit interaction strength as control parameters on the linear and nonlinear properties have been demonstrated.

  5. Mass Charge Interactions for Visualizing the Quantum Field

    NASA Astrophysics Data System (ADS)

    Baer, Wolfgang

    Our goal is to integrate the objective and subjective aspects of our personal experience into a single complete theory of reality. To further this endeavor we replace elementary particles with elementary events as the building blocks of an event oriented description of that reality. The simplest event in such a conception is an adaptation of A. Wheeler's primitive explanatory--measurement cycle between internal observations experienced by an observer and their assumed physical causes. We will show how internal forces between charge and mass are required to complete the cyclic sequence of activity. This new formulation of internal material is easier to visualize and map to cognitive experiences than current formulations of sub-atomic physics. In our formulation, called Cognitive Action Theory, such internal forces balance the external forces of gravity-inertia and electricity-magnetism. They thereby accommodate outside influences by adjusting the internal structure of material from which all things are composed. Such accommodation is interpreted as the physical implementation of a model of the external physical world in the brain of a cognitive being or alternatively the response mechanism to external influences in the material of inanimate objects. We adopt the deBroglie-Bohm causal interpretation of QT to show that the nature of space in our model is mathematically equivalent to a field of clocks. Within this field small oscillations form deBroglie waves. This interpretation allows us to visualize the underlying structure of empty space with a charge-mass separation field in equilibrium, and objects appearing in space with quantum wave disturbances to that equilibrium occurring inside material. Space is thereby associated with the internal structure of material and quantum mechanics is shown to be, paraphrasing Heisenberg, the physics of the material that knows the world.

  6. ELF (extremely-low-frequency) field interactions at the animal, tissue and cellular levels

    SciTech Connect

    Tenforde, T.S.

    1990-10-01

    A description is given of the fundamental physical properties of extremely-low-frequency (ELF) electromagnetic fields, and the mechanisms through which these fields interact with the human body at a macroscopic level. Biological responses to ELF fields at the tissue, cellular and molecular levels are summarized, including new evidence that ELF field exposure produces alterations in gene expression and the cytoplasmic concentrations of specific proteins.

  7. Basics of quantum field theory of electromagnetic interaction processes in single-layer graphene

    NASA Astrophysics Data System (ADS)

    Hieu Nguyen, Van

    2016-09-01

    The content of this work is the study of electromagnetic interaction in single-layer graphene by means of the perturbation theory. The interaction of electromagnetic field with Dirac fermions in single-layer graphene has a peculiarity: Dirac fermions in graphene interact not only with the electromagnetic wave propagating within the graphene sheet, but also with electromagnetic field propagating from a location outside the graphene sheet and illuminating this sheet. The interaction Hamiltonian of the system comprising electromagnetic field and Dirac fermions fields contains the limits at graphene plane of electromagnetic field vector and scalar potentials which can be shortly called boundary electromagnetic field. The study of S-matrix requires knowing the limits at graphene plane of 2-point Green functions of electromagnetic field which also can be shortly called boundary 2-point Green functions of electromagnetic field. As the first example of the application of perturbation theory, the second order terms in the perturbative expansions of boundary 2-point Green functions of electromagnetic field as well as of 2-point Green functions of Dirac fermion fields are explicitly derived. Further extension of the application of perturbation theory is also discussed.

  8. Application of the Stoner-Wohlfarth model with interaction for the determination of the saturation magnetisation, anisotropy field, and mean field interaction in bulk amorphous ferromagnets

    NASA Astrophysics Data System (ADS)

    Collocott, S. J.

    2011-08-01

    Magnetic hysteresis curves of bulk amorphous ferromagnet alloys of composition Nd 60Fe 30Al 10, Nd 60Fe 20Co 10Al 10 and Pr 58Fe 24Al 18 have been measured in applied magnetic fields up to 9 T at temperatures in the range 10-350 K. The behaviour of the demagnetisation curve in the first quadrant is interpreted using a mean field interaction model as proposed by Callen et al. [Phys. Rev. B 16 (1977) 263], which extends the Stoner-Wohlfarth model [Philos. Trans. Roy. Soc. A 240 (1948) 599] for a random distribution of non-interacting uniaxial grains. Application of the mean field interaction model enables the determination of the saturation magnetisation Ms, anisotropy field Ha, and interaction parameter d, and from these other magnetic parameters, such as the anisotropy constant, K, are deduced. For the three alloys, the temperature dependent behaviour of Ms, Ha, d and K over the range 20-350 K are found to be qualitatively similar, though there are quantitative differences. In all cases Ms increases with decreasing temperature, both Ha and K increase with decreasing temperature, reaching a peak in the range 75-120 K, and then decreasing, and d decreases approximately linearly as the temperature decreases. The physical mechanisms responsible for coercivity in these materials are discussed in the context of random anisotropy and a strong pinning model of domain walls.

  9. Long-lived resonances supported by a contact interaction in crossed magnetic and electric fields

    SciTech Connect

    Krajewska, K. Kaminski, J.Z.; Potvliege, R.M.

    2008-11-15

    The lifetime of the resonance states of an electron interacting with a zero-range potential in the presence of crossed magnetic and electric fields is studied for the case where the electron is confined in the direction of the magnetic field by a parabolic quantum well. It is shown that long-lived electric field-induced resonances exist in this system even when the zero-range potential does not support any field-free bound state. The relationship of these resonances with the Landau states localized near the point interaction is discussed.

  10. Far-field measurements of vortex beams interacting with nanoholes

    PubMed Central

    Zambrana-Puyalto, Xavier; Vidal, Xavier; Fernandez-Corbaton, Ivan; Molina-Terriza, Gabriel

    2016-01-01

    We measure the far-field intensity of vortex beams going through nanoholes. The process is analyzed in terms of helicity and total angular momentum. It is seen that the total angular momentum is preserved in the process, and helicity is not. We compute the ratio between the two transmitted helicity components, γm,p. We observe that this ratio is highly dependent on the helicity (p) and the angular momentum (m) of the incident vortex beam in consideration. Due to the mirror symmetry of the nanoholes, we are able to relate the transmission properties of vortex beams with a certain helicity and angular momentum, with the ones with opposite helicity and angular momentum. Interestingly, vortex beams enhance the γm,p ratio as compared to those obtained by Gaussian beams. PMID:26911547

  11. Quantum mechanics, gravity and modified quantization relations.

    PubMed

    Calmet, Xavier

    2015-08-06

    In this paper, we investigate a possible energy scale dependence of the quantization rules and, in particular, from a phenomenological point of view, an energy scale dependence of an effective [Formula: see text] (reduced Planck's constant). We set a bound on the deviation of the value of [Formula: see text] at the muon scale from its usual value using measurements of the anomalous magnetic moment of the muon. Assuming that inflation has taken place, we can conclude that nature is described by a quantum theory at least up to an energy scale of about 10(16) GeV.

  12. Automatic threshold selection using histogram quantization

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Adali, Tulay; Lo, Shih-Chung B.

    1997-04-01

    An automatic threshold selection method is proposed for biomedical image analysis based on a histogram coding scheme. The threshold values can be determined based on the well-known Lloyd-Max scalar quantization rule, which is optimal in the sense of achieving minimum mean-square-error distortion. An iterative self-organizing learning rule is derived to determine the threshold levels. The rule does not require any prior information about the histogram, hence is fully automatic. Experimental results show that this new approach is easy to implement yet is highly efficient, robust with respect to noise, and yields reliable estimates of the threshold levels.

  13. Quantized adiabatic transport in momentum space.

    PubMed

    Ho, Derek Y H; Gong, Jiangbin

    2012-07-06

    Though topological aspects of energy bands are known to play a key role in quantum transport in solid-state systems, the implications of Floquet band topology for transport in momentum space (i.e., acceleration) have not been explored so far. Using a ratchet accelerator model inspired by existing cold-atom experiments, here we characterize a class of extended Floquet bands of one-dimensional driven quantum systems by Chern numbers, reveal topological phase transitions therein, and theoretically predict the quantization of adiabatic transport in momentum space. Numerical results confirm our theory and indicate the feasibility of experimental studies.

  14. Conductance quantization in strongly disordered graphene ribbons

    NASA Astrophysics Data System (ADS)

    Ihnatsenka, S.; Kirczenow, G.

    2009-11-01

    We present numerical studies of conduction in graphene nanoribbons with different types of disorder. We find that even when defect scattering depresses the conductance to values two orders of magnitude lower than 2e2/h , equally spaced conductance plateaus occur at moderately low temperatures due to enhanced electron backscattering near subband edge energies if bulk vacancies are present in the ribbon. This work accounts quantitatively for the surprising conductance quantization observed by Lin [Phys. Rev. B 78, 161409(R) (2008)] in ribbons with such low conductances.

  15. Black-box superconducting circuit quantization.

    PubMed

    Nigg, Simon E; Paik, Hanhee; Vlastakis, Brian; Kirchmair, Gerhard; Shankar, S; Frunzio, Luigi; Devoret, M H; Schoelkopf, R J; Girvin, S M

    2012-06-15

    We present a semiclassical method for determining the effective low-energy quantum Hamiltonian of weakly anharmonic superconducting circuits containing mesoscopic Josephson junctions coupled to electromagnetic environments made of an arbitrary combination of distributed and lumped elements. A convenient basis, capturing the multimode physics, is given by the quantized eigenmodes of the linearized circuit and is fully determined by a classical linear response function. The method is used to calculate numerically the low-energy spectrum of a 3D transmon system, and quantitative agreement with measurements is found.

  16. Quantization of conductance minimum and index theorem

    NASA Astrophysics Data System (ADS)

    Ikegaya, Satoshi; Suzuki, Shu-Ichiro; Tanaka, Yukio; Asano, Yasuhiro

    2016-08-01

    We discuss the minimum value of the zero-bias differential conductance Gmin in a junction consisting of a normal metal and a nodal superconductor preserving time-reversal symmetry. Using the quasiclassical Green function method, we show that Gmin is quantized at (4 e2/h ) NZES in the limit of strong impurity scatterings in the normal metal at the zero temperature. The integer NZES represents the number of perfect transmission channels through the junction. An analysis of the chiral symmetry of the Hamiltonian indicates that NZES corresponds to the Atiyah-Singer index in mathematics.

  17. Fréchet-algebraic deformation quantizations

    NASA Astrophysics Data System (ADS)

    Waldmann, S.

    2014-09-01

    In this review I present some recent results on the convergence properties of formal star products. Based on a general construction of a Fréchet topology for an algebra with countable vector space basis I discuss several examples from deformation quantization: the Wick star product on the flat phase space m2n gives a first example of a Fréchet algebraic framework for the canonical commutation relations. More interesting, the star product on the Poincare disk can be treated along the same lines, leading to a non-trivial example of a convergent star product on a curved Kahler manifold.

  18. Quantization of soluble classical constrained systems

    SciTech Connect

    Belhadi, Z.; Menas, F.; Bérard, A.; Mohrbach, H.

    2014-12-15

    The derivation of the brackets among coordinates and momenta for classical constrained systems is a necessary step toward their quantization. Here we present a new approach for the determination of the classical brackets which does neither require Dirac’s formalism nor the symplectic method of Faddeev and Jackiw. This approach is based on the computation of the brackets between the constants of integration of the exact solutions of the equations of motion. From them all brackets of the dynamical variables of the system can be deduced in a straightforward way.

  19. Path integral quantization of generalized quantum electrodynamics

    SciTech Connect

    Bufalo, R.; Pimentel, B. M.; Zambrano, G. E. R.

    2011-02-15

    In this paper, a complete covariant quantization of generalized electrodynamics is shown through the path integral approach. To this goal, we first studied the Hamiltonian structure of the system following Dirac's methodology and, then, we followed the Faddeev-Senjanovic procedure to obtain the transition amplitude. The complete propagators (Schwinger-Dyson-Fradkin equations) of the correct gauge fixation and the generalized Ward-Fradkin-Takahashi identities are also obtained. Afterwards, an explicit calculation of one-loop approximations of all Green's functions and a discussion about the obtained results are presented.

  20. Size quantization in Cu2Se nanocrystals

    NASA Astrophysics Data System (ADS)

    Govindraju, S.; Kalenga, M. P.; Airo, M.; Moloto, M. J.; Sikhwivhilu, L. M.; Moloto, N.

    2014-12-01

    Herein we report on the synthesis of size quantized copper selenide nanocrystals via the colloidal method. Different colours of the sample were obtained at different time intervals indicative of the sizes of the nanocrystals. The absorption band edges were blue-shifted from bulk indicative of quantum confinement. This was corroborated by the TEM results that showed very small particles ranging from 2 nm to 7 nm. This work therefore shows a phenomenon readily observed in cadmium chalcogenide nanocrystals but has never been reported for copper based chalcogenides.

  1. Toward loop quantization of plane gravitational waves

    NASA Astrophysics Data System (ADS)

    Hinterleitner, Franz; Major, Seth

    2012-03-01

    The polarized Gowdy model in terms of Ashtekar-Barbero variables is reduced with an additional constraint derived from the Killing equations for plane gravitational waves with parallel rays. The new constraint is formulated in a diffeomorphism invariant manner and, when it is included in the model, the resulting constraint algebra is first class, in contrast to the prior work done in special coordinates. Using an earlier work by Banerjee and Date, the constraints are expressed in terms of classical quantities that have an operator equivalent in loop quantum gravity, making these plane gravitational wave spacetimes accessible to loop quantization techniques.

  2. Semiclassical Quantization of the Bogoliubov Spectrum

    SciTech Connect

    Kolovsky, Andrey R.

    2007-07-13

    We analyze the Bogoliubov spectrum of the three-site Bose-Hubbard model with a finite number of Bose particles by using a semiclassical approach. The Bogoliubov spectrum is shown to be associated with the low-energy regular component of the classical Hubbard model. We identify the full set of the integrals of motion of this regular component and, quantizing them, obtain the energy levels of the quantum system. The critical values of the energy, above which the regular Bogoliubov spectrum evolves into a chaotic spectrum, is indicated as well.

  3. Quantization of inductively shunted superconducting circuits

    NASA Astrophysics Data System (ADS)

    Smith, W. C.; Kou, A.; Vool, U.; Pop, I. M.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H.

    2016-10-01

    We present a method for calculating the energy levels of superconducting circuits that contain highly anharmonic, inductively shunted modes with arbitrarily strong coupling. Our method starts by calculating the normal modes of the linearized circuit and proceeds with numerical diagonalization in this basis. As an example, we analyze the Hamiltonian of a fluxonium qubit inductively coupled to a readout resonator. While elementary, this simple example is nontrivial because it cannot be efficiently treated by the method known as "black-box quantization," numerical diagonalization in the bare harmonic oscillator basis, or perturbation theory. Calculated spectra are compared to measured spectroscopy data, demonstrating excellent quantitative agreement between theory and experiment.

  4. Experimental investigations of the interaction between the ELF Earth electromagnetic fields and astrophysical processes

    NASA Astrophysics Data System (ADS)

    Grunskaya, L. V.; Efimov, V. A.; Isakevich, V. V.; Zakirov, A. A.

    2010-01-01

    Investigations of the moon and solar tides, and their interaction with the electric field of the atmospheric boundary layer are possible both by means of using big data files and by using a method of spaced reception.

  5. Physics of Three-Dimensional Bosonic Topological Insulators: Surface-Deconfined Criticality and Quantized Magnetoelectric Effect

    NASA Astrophysics Data System (ADS)

    Vishwanath, Ashvin; Senthil, T.

    2013-01-01

    We discuss physical properties of “integer” topological phases of bosons in D=3+1 dimensions, protected by internal symmetries like time reversal and/or charge conservation. These phases invoke interactions in a fundamental way but do not possess topological order; they are bosonic analogs of free-fermion topological insulators and superconductors. While a formal cohomology-based classification of such states was recently discovered, their physical properties remain mysterious. Here, we develop a field-theoretic description of several of these states and show that they possess unusual surface states, which, if gapped, must either break the underlying symmetry or develop topological order. In the latter case, symmetries are implemented in a way that is forbidden in a strictly two-dimensional theory. While these phases are the usual fate of the surface states, exotic gapless states can also be realized. For example, tuning parameters can naturally lead to a deconfined quantum critical point or, in other situations, to a fully symmetric vortex metal phase. We discuss cases where the topological phases are characterized by a quantized magnetoelectric response θ, which, somewhat surprisingly, is an odd multiple of 2π. Two different surface theories are shown to capture these phenomena: The first is a nonlinear sigma model with a topological term. The second invokes vortices on the surface that transform under a projective representation of the symmetry group. We identify a bulk-field theory consistent with these properties, which is a multicomponent background-field theory supplemented, crucially, with a topological term. We also provide bulk sigma-model field theories of these phases and discuss a possible topological phase characterized by the thermal analog of the magnetoelectric effect.

  6. A visual detection model for DCT coefficient quantization

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.; Watson, Andrew B.

    1994-01-01

    The discrete cosine transform (DCT) is widely used in image compression and is part of the JPEG and MPEG compression standards. The degree of compression and the amount of distortion in the decompressed image are controlled by the quantization of the transform coefficients. The standards do not specify how the DCT coefficients should be quantized. One approach is to set the quantization level for each coefficient so that the quantization error is near the threshold of visibility. Results from previous work are combined to form the current best detection model for DCT coefficient quantization noise. This model predicts sensitivity as a function of display parameters, enabling quantization matrices to be designed for display situations varying in luminance, veiling light, and spatial frequency related conditions (pixel size, viewing distance, and aspect ratio). It also allows arbitrary color space directions for the representation of color. A model-based method of optimizing the quantization matrix for an individual image was developed. The model described above provides visual thresholds for each DCT frequency. These thresholds are adjusted within each block for visual light adaptation and contrast masking. For given quantization matrix, the DCT quantization errors are scaled by the adjusted thresholds to yield perceptual errors. These errors are pooled nonlinearly over the image to yield total perceptual error. With this model one may estimate the quantization matrix for a particular image that yields minimum bit rate for a given total perceptual error, or minimum perceptual error for a given bit rate. Custom matrices for a number of images show clear improvement over image-independent matrices. Custom matrices are compatible with the JPEG standard, which requires transmission of the quantization matrix.

  7. Interacting double dark resonances in a hot atomic vapor of helium

    SciTech Connect

    Kumar, S.; Ghosh, R.; Laupretre, T.; Bretenaker, F.; Goldfarb, F.

    2011-08-15

    We experimentally and theoretically study two different tripod configurations using metastable helium ({sup 4}He*), with the probe field polarization perpendicular and parallel to the quantization axis, defined by an applied weak magnetic field. In the first case, the two dark resonances interact incoherently and merge together into a single electromagnetically induced transparency peak with increasing coupling power. In the second case, we observe destructive interference between the two dark resonances inducing an extra absorption peak at the line center.

  8. Interaction of moving branes with background massless and tachyon fields in superstring theory

    SciTech Connect

    Rezaei, Z. Kamani, D.

    2012-02-15

    Using the boundary state formalism, we study a moving Dp-brane in a partially compact space-time in the presence of background fields: the Kalb-Ramond field B{sub {mu}{nu}}, a U(1) gauge field A{sub {alpha}}, and the tachyon field. The boundary state enables us to obtain the interaction amplitude of two branes with the above back-ground fields. The branes are parallel or perpendicular to each other. Because of the presence of background fields, compactification of some space-time directions, motion of the branes, and the arbitrariness of the dimensions of the branes, the system is rather general. Due to the tachyon fields and velocities of the branes, the behavior of the interaction amplitude reveals obvious differences from the conventional behavior.

  9. Quasi-particles and effective mean field in strongly interacting matter

    NASA Astrophysics Data System (ADS)

    Lévai, P.; Ko, C. M.

    2010-03-01

    We introduce a quasi-particle model of strongly interacting quark-gluon matter and explore the possible connection to an effective field theoretical description consisting of a scalar σ field by introducing a dynamically generated mass, M(σ), and a self-consistently determined interaction term, B(σ). We display a possible connection between the two types of effective description, using the Friedberg-Lee model.

  10. Quadrupole-dipole transform based on optical near-field interactions in engineered nanostructures.

    PubMed

    Tate, Naoya; Sugiyama, Hiroki; Naruse, Makoto; Nomura, Wataru; Yatsui, Takashi; Kawazoe, Tadashi; Ohtsu, Motoichi

    2009-06-22

    Nanophotonics has the potential to provide novel devices and systems with unique functions based on optical near-field interactions. Here we experimentally demonstrate, for the first time, what we call a quadrupole-dipole transform achieved by optical near-field interactions between engineered nanostructures. We describe its principles, the nanostructure design, fabrication of one- and two-layer gold nanostructures, an experimental demonstration, and optical characterization and analysis.

  11. Reducing and filtering point clouds with enhanced vector quantization.

    PubMed

    Ferrari, Stefano; Ferrigno, Giancarlo; Piuri, Vincenzo; Borghese, N Alberto

    2007-01-01

    Modern scanners are able to deliver huge quantities of three-dimensional (3-D) data points sampled on an object's surface, in a short time. These data have to be filtered and their cardinality reduced to come up with a mesh manageable at interactive rates. We introduce here a novel procedure to accomplish these two tasks, which is based on an optimized version of soft vector quantization (VQ). The resulting technique has been termed enhanced vector quantization (EVQ) since it introduces several improvements with respect to the classical soft VQ approaches. These are based on computationally expensive iterative optimization; local computation is introduced here, by means of an adequate partitioning of the data space called hyperbox (HB), to reduce the computational time so as to be linear in the number of data points N, saving more than 80% of time in real applications. Moreover, the algorithm can be fully parallelized, thus leading to an implementation that is sublinear in N. The voxel side and the other parameters are automatically determined from data distribution on the basis of the Zador's criterion. This makes the algorithm completely automatic. Because the only parameter to be specified is the compression rate, the procedure is suitable even for nontrained users. Results obtained in reconstructing faces of both humans and puppets as well as artifacts from point clouds publicly available on the web are reported and discussed, in comparison with other methods available in the literature. EVQ has been conceived as a general procedure, suited for VQ applications with large data sets whose data space has relatively low dimensionality.

  12. Interactions of Field Independence and General Reasoning with Inductive Instruction in Mathematics.

    ERIC Educational Resources Information Center

    McLeod, Douglas B.; Briggs, John T.

    1980-01-01

    The interaction of two aptitude variables, field independence and general reasoning, with treatments that differed in sequence of instruction, was investigated using either an inductive or deductive appraoch to the learning of properties of equivalence relations. Significant interactions were found. (Author/MK)

  13. Quantized topological magnetoelectric effect of the zero-plateau quantum anomalous Hall state

    DOE PAGES

    Wang, Jing; Lian, Biao; Qi, Xiao-Liang; ...

    2015-08-10

    The topological magnetoelectric effect in a three-dimensional topological insulator is a novel phenomenon, where an electric field induces a magnetic field in the same direction, with a universal coefficient of proportionality quantized in units of $e²/2h$. Here in this paper, we propose that the topological magnetoelectric effect can be realized in the zero-plateau quantum anomalous Hall state of magnetic topological insulators or a ferromagnet-topological insulator heterostructure. The finite-size effect is also studied numerically, where the magnetoelectric coefficient is shown to converge to a quantized value when the thickness of the topological insulator film increases. We further propose a device setupmore » to eliminate nontopological contributions from the side surface.« less

  14. Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator.

    PubMed

    Wu, Liang; Salehi, M; Koirala, N; Moon, J; Oh, S; Armitage, N P

    2016-12-02

    Topological insulators have been proposed to be best characterized as bulk magnetoelectric materials that show response functions quantized in terms of fundamental physical constants. Here, we lower the chemical potential of three-dimensional (3D) Bi2Se3 films to ~30 meV above the Dirac point and probe their low-energy electrodynamic response in the presence of magnetic fields with high-precision time-domain terahertz polarimetry. For fields higher than 5 tesla, we observed quantized Faraday and Kerr rotations, whereas the dc transport is still semiclassical. A nontrivial Berry's phase offset to these values gives evidence for axion electrodynamics and the topological magnetoelectric effect. The time structure used in these measurements allows a direct measure of the fine-structure constant based on a topological invariant of a solid-state system.

  15. Quantized topological magnetoelectric effect of the zero-plateau quantum anomalous Hall state

    SciTech Connect

    Wang, Jing; Lian, Biao; Qi, Xiao-Liang; Zhang, Shou-Cheng

    2015-08-10

    The topological magnetoelectric effect in a three-dimensional topological insulator is a novel phenomenon, where an electric field induces a magnetic field in the same direction, with a universal coefficient of proportionality quantized in units of $e²/2h$. Here in this paper, we propose that the topological magnetoelectric effect can be realized in the zero-plateau quantum anomalous Hall state of magnetic topological insulators or a ferromagnet-topological insulator heterostructure. The finite-size effect is also studied numerically, where the magnetoelectric coefficient is shown to converge to a quantized value when the thickness of the topological insulator film increases. We further propose a device setup to eliminate nontopological contributions from the side surface.

  16. Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator

    NASA Astrophysics Data System (ADS)

    Wu, Liang; Salehi, M.; Koirala, N.; Moon, J.; Oh, S.; Armitage, N. P.

    2016-12-01

    Topological insulators have been proposed to be best characterized as bulk magnetoelectric materials that show response functions quantized in terms of fundamental physical constants. Here, we lower the chemical potential of three-dimensional (3D) Bi2Se3 films to ~30 meV above the Dirac point and probe their low-energy electrodynamic response in the presence of magnetic fields with high-precision time-domain terahertz polarimetry. For fields higher than 5 tesla, we observed quantized Faraday and Kerr rotations, whereas the dc transport is still semiclassical. A nontrivial Berry’s phase offset to these values gives evidence for axion electrodynamics and the topological magnetoelectric effect. The time structure used in these measurements allows a direct measure of the fine-structure constant based on a topological invariant of a solid-state system.

  17. A nonlinear model of cell interaction with an acoustic field.

    PubMed

    Miller, A D; Subramanian, A; Viljoen, H J

    2017-03-14

    A theoretical and experimental nonlinear analysis of cellular response/displacement to ultrasound excitations is presented. Linear cell models can predict the resonant frequency (fR∼5MHz), but only a nonlinear analysis can reveal the amount of mechanical energy that couples into the cell and the bifurcation behavior of the cell when it is excited near resonance. The cell dynamics is described by the nonlinear viscoelastic constitutive behavior of the cytoplasm, nucleus and their respective membranes, in the presence of a fluid with an oscillating pressure field. The method of multiple scales is used to derive the amplitude of oscillation of the cytoplasm and nucleus as a function of frequency. A major finding is the existence of multiple solutions for a range of sub-resonant frequencies. At positive detuning (f>fR), the mechanical energy that couples into the cell is small, it is higher at resonance but significantly higher at sub-resonant frequencies in the multiplicity range. Experimentally it was shown when 3.5MHz is approached sub- and supra-resonance and 6.5MHz is approached sub-resonance, gene expression was statistically higher than that when stimulated directly. Thus, there exists an optimal range of frequencies for ultrasound treatment - in the region of multiplicity where deformation and thus mechanical energy coupling is maximized. The ultrasound protocol must be designed to operate at the solution associated with the higher mechanical energy - thus the start-up conditions should be in the domain of attraction of the high energy solution.

  18. General properties of quantum optical systems in a strong field limit

    NASA Technical Reports Server (NTRS)

    Chumakov, S. M.; Klimov, Andrei B.

    1994-01-01

    We investigate the dynamics of an arbitrary atomic system (n-level atoms or many n-level atoms) interacting with a resonant quantized mode of an em field. If the initial field state is a coherent state with a large photon number then the system dynamics possesses some general features, independently of the particular structure of the atomic system. Namely, trapping states, factorization of the wave function, collapses and revivals of the atomic energy oscillations are discussed.

  19. Loop quantization of the Schwarzschild interior revisited

    NASA Astrophysics Data System (ADS)

    Corichi, Alejandro; Singh, Parampreet

    2016-03-01

    The loop quantization of the Schwarzschild interior region, as described by a homogeneous anisotropic Kantowski-Sachs model, is re-examined. As several studies of different—inequivalent—loop quantizations have shown, to date there exists no fully satisfactory quantum theory for this model. This fact poses challenges to the validity of some scenarios to address the black hole information problem. Here we put forward a novel viewpoint to construct the quantum theory that builds from some of the models available in the literature. The final picture is a quantum theory that is both independent of any auxiliary structure and possesses a correct low curvature limit. It represents a subtle but non-trivial modification of the original prescription given by Ashtekar and Bojowald. It is shown that the quantum gravitational constraint is well defined past the singularity and that its effective dynamics possesses a bounce into an expanding regime. The classical singularity is avoided, and a semiclassical spacetime satisfying vacuum Einstein’s equations is recovered on the ‘other side’ of the bounce. We argue that such a metric represents the interior region of a white-hole spacetime, but for which the corresponding ‘white hole mass’ differs from the original black hole mass. Furthermore, we find that the value of the white hole mass is proportional to the third power of the starting black hole mass.

  20. Quantizations on the circle and coherent states

    NASA Astrophysics Data System (ADS)

    Chadzitaskos, G.; Luft, P.; Tolar, J.

    2012-06-01

    We present a possible construction of coherent states on the unit circle as configuration space. Our approach is based on Borel quantizations on S1 including the Aharonov-Bohm-type quantum description. Coherent states are constructed by Perelomov’s method as group-related coherent states generated by Weyl operators on the quantum phase space {Z} \\times S^{1}. Because of the duality of canonical coordinates and momenta, i.e. the angular variable and the integers, this formulation can also be interpreted as coherent states over an infinite periodic chain. For the construction, we use the analogy with our quantization and coherent states over a finite periodic chain where the quantum phase space was {Z}_{M} \\times {Z}_{M}. The coherent states constructed in this work are shown to satisfy the resolution of unity. To compare them with canonical coherent states, some of their further properties are also studied demonstrating similarities as well as substantial differences. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’.

  1. Second-quantized formulation of geometric phases

    SciTech Connect

    Deguchi, Shinichi; Fujikawa, Kazuo

    2005-07-15

    The level crossing problem and associated geometric terms are neatly formulated by the second-quantized formulation. This formulation exhibits a hidden local gauge symmetry related to the arbitrariness of the phase choice of the complete orthonormal basis set. By using this second-quantized formulation, which does not assume adiabatic approximation, a convenient exact formula for the geometric terms including off-diagonal geometric terms is derived. The analysis of geometric phases is then reduced to a simple diagonalization of the Hamiltonian, and it is analyzed both in the operator and path-integral formulations. If one diagonalizes the geometric terms in the infinitesimal neighborhood of level crossing, the geometric phases become trivial (and thus no monopole singularity) for arbitrarily large but finite time interval T. The integrability of Schroedinger equation and the appearance of the seemingly nonintegrable phases are thus consistent. The topological proof of the Longuet-Higgins' phase-change rule, for example, fails in the practical Born-Oppenheimer approximation where a large but finite ratio of two time scales is involved and T is identified with the period of the slower system. The difference and similarity between the geometric phases associated with level crossing and the exact topological object such as the Aharonov-Bohm phase become clear in the present formulation. A crucial difference between the quantum anomaly and the geometric phases is also noted.

  2. Instabilities caused by floating-point arithmetic quantization.

    NASA Technical Reports Server (NTRS)

    Phillips, C. L.

    1972-01-01

    It is shown that an otherwise stable digital control system can be made unstable by signal quantization when the controller operates on floating-point arithmetic. Sufficient conditions of instability are determined, and an example of loss of stability is treated when only one quantizer is operated.

  3. Image Compression on a VLSI Neural-Based Vector Quantizer.

    ERIC Educational Resources Information Center

    Chen, Oscal T.-C.; And Others

    1992-01-01

    Describes a modified frequency-sensitive self-organization (FSO) algorithm for image data compression and the associated VLSI architecture. Topics discussed include vector quantization; VLSI neural processor architecture; detailed circuit implementation; and a neural network vector quantization prototype chip. Examples of images using the FSO…

  4. The origin of quantum fluctuations in microcanonical quantization

    NASA Astrophysics Data System (ADS)

    Kanenaga, Masahiko

    2004-04-01

    For the harmonic oscillator, we show that the important postulate of microcanonical quantization which yields quantum fluctuations can be derived from the random dynamics of stochastic electrodynamics, here chosen to be the ( D+1)-dimensional classical dynamics in the microcanonical quantization formalism.

  5. On the quantization of the charge-mass ratio

    NASA Astrophysics Data System (ADS)

    Ulhoa, S. C.

    2017-01-01

    The paper deals with the problem of describing fundamental particles. The Einstein-Rosen approach was revisited to explain the charge-mass ratio quantization. Such a result is obtained once a quantization prescription is applied to the expression of gravitational energy defined in the realm of teleparallel gravity.

  6. Playing the (Sexual) Field: The Interactional Basis of Systems of Sexual Stratification

    ERIC Educational Resources Information Center

    Green, Adam Isaiah

    2011-01-01

    Recently, scholars have used a Bourdieusian theory of practice to analyze systems of sexual stratification, including an examination of sexual fields and sexual (or erotic) capital. While the broad structural features of the sexual field have been a point of focus in this latter research, a systematic analysis of the interactional processes that…

  7. Computational model of interacting suspensions at low Reynolds number in the presence of external fields

    NASA Astrophysics Data System (ADS)

    Wang, Zhou Joseph

    2001-08-01

    This dissertation concentrates on developing and implementing models to predict the motion of rigid suspensions immersed in a viscous fluid. The spheres are subjected to prescribed forces, torques or an imposed linear shear flow. Hydrodynamic as well as electrostatic interactions between the suspensions is investigated. Analytical models are developed for binary interactions in an N-body simulation. Green's functions of Stokes equation, integrated over the surface of the spheres and the boundary patches are utilized to derive these binary interactions. The method accurately accounts for both near-field lubrication and multi-body interactions. A method of boundary effects in sheared concentrated suspensions is implemented to simulate the suspension of spheres confined between two plane walls that translate relative to one another. Periodic boundary conditions are imposed in the stream-wise direction to simulate an infinite suspension. Using linear superposition of forces, it is then possible to derive the net force acting on each particle due to its interaction with all other particles in the suspension via hydrodynamic forces propagated through the fluid medium, and the interaction with the boundaries. The electrostatic effects are added to the hydrodynamic effects to produce a more faithful simulation of electro- rheological effects. In order to consider multipole and multi-body effects of electro-rheological interactions, a method is implemented that relates the charge and dipole moments of the particles to their potentials and the applied electric field. This method includes both the multi-body far-field and near-field particle interactions and properly accounts for the long-range interactions. Coupled with multi-body hydrodynamics interactions of the particles, the dynamics of the microstructure and its rheological properties can be determined. A series of simulations are conducted to understand the effect of water, concentration of suspensions, electric field

  8. Batalin-Tyutin quantization of the self-dual massive theory in three dimensions

    SciTech Connect

    Kim, Y.; Park, Y.; Kim, K.Y.; Kim, Y. )

    1995-03-15

    We quantize the self-dual massive theory by using the Batalin-Tyutin Hamiltonian method, which systematically embeds a second class constraint system into a first class one in extended phase space by introducing new fields. Through this analysis we obtain simultaneously the Stueckelberg scalar term related to the explicit gauge-breaking effect and a new type of Wess-Zumino action related to the Chern-Simons term.

  9. Photon-neutrino interaction in θ-exact covariant noncommutative field theory

    NASA Astrophysics Data System (ADS)

    Horvat, R.; Kekez, D.; Schupp, P.; Trampetić, J.; You, J.

    2011-08-01

    Photon-neutrino interactions arise quite naturally in noncommutative field theories. Such couplings are absent in ordinary field theory and imply experimental lower bounds on the energy scale ΛNC˜|θ|-2 of noncommutativity. Using nonperturbative methods and a Seiberg-Witten map based covariant approach to noncommutative gauge theory, we obtain θ-exact expressions for the interactions, thereby eliminating previous restrictions to low-energy phenomena. We discuss implications for plasmon decay, neutrino charge radii, big bang nucleosynthesis, and ultrahigh energy cosmic rays. Our results behave reasonably throughout all interaction energy scales, thus facilitating further phenomenological applications.

  10. Magnetic field effect on the Coulomb interaction of acceptors in semimagnetic quantum dot

    SciTech Connect

    Kalpana, P.; Merwyn, A.; Nithiananthi, P.; Jayakumar, K.; Reuben, Jasper D.

    2015-06-24

    The Coulomb interaction of holes in a Semimagnetic Cd{sub 1-x}Mn{sub x}Te / CdTe Spherical and Cubical Quantum Dot (SMQD) in a magnetic field is studied using variational approach in the effective mass approximation. Since these holes in QD show a pronounced collective behavior, while distinct single particle phenomena is suppressed, their interaction in confined potential becomes very significant. It has been observed that acceptor-acceptor interaction is more in cubical QD than in spherical QD which can be controlled by the magnetic field. The results are presented and discussed.

  11. Mixed Symmetry-Tipe (k,1) Massless Tensor Fields. Consistent Interactions Of Dual Linearized Gravity

    NASA Astrophysics Data System (ADS)

    Bizdadea, C.; Saliu, S. O.; Toma, M.

    2012-12-01

    A particular case of interactions of a single massless tensor field with the mixed symmetry corresponding to a two-column Young diagram (k,1) with k=4, dual to linearized gravity in D=7, is considered in the context of: self-couplings, cross-interactions with a Pauli-Fierz field, cross-couplings to purely matter theories, and interactions with an Abelian 1-form. The general approach relies on the deformation of the solution to the master equation from the antifield-BRST formalism by means of the local cohomology of the BRST differential.

  12. Electromagnetic field interactions with the human body: Observed effects and theories

    NASA Technical Reports Server (NTRS)

    Raines, J. K.

    1981-01-01

    The effects of nonionizing electromagnetic (EM) field interactions with the human body were reported and human related studies were collected. Nonionizing EM fields are linked to cancer in humans in three different ways: cause, means of detection, and effective treatment. Bad and benign effects are expected from nonionizing EM fields and much more knowledge is necessary to properly categorize and qualify EM field characteristics. It is concluded that knowledge of the boundary between categories, largely dependent on field intensity, is vital to proper future use of EM radiation for any purpose and the protection of the individual from hazard.

  13. Generation of strong magnetic fields in dense quark matter driven by the electroweak interaction of quarks

    NASA Astrophysics Data System (ADS)

    Dvornikov, Maxim

    2016-12-01

    We study the generation of strong large scale magnetic fields in dense quark matter. The magnetic field growth is owing to the magnetic field instability driven by the electroweak interaction of quarks. We discuss the situation when the chiral symmetry is unbroken in the degenerate quark matter. In this case we predict the amplification of the seed magnetic field 1012G to the strengths (1014 -1015)G. In our analysis we use the typical parameters of the quark matter in the core of a hybrid star or in a quark star. We also discuss the application of the obtained results to describe the magnetic fields generation in magnetars.

  14. Weighted MinMax Algorithm for Color Image Quantization

    NASA Technical Reports Server (NTRS)

    Reitan, Paula J.

    1999-01-01

    The maximum intercluster distance and the maximum quantization error that are minimized by the MinMax algorithm are shown to be inappropriate error measures for color image quantization. A fast and effective (improves image quality) method for generalizing activity weighting to any histogram-based color quantization algorithm is presented. A new non-hierarchical color quantization technique called weighted MinMax that is a hybrid between the MinMax and Linde-Buzo-Gray (LBG) algorithms is also described. The weighted MinMax algorithm incorporates activity weighting and seeks to minimize WRMSE, whereby obtaining high quality quantized images with significantly less visual distortion than the MinMax algorithm.

  15. Modeling quantization matrices for perceptual image / video encoding

    NASA Astrophysics Data System (ADS)

    Zhang, Huipin; Cote, Guy

    2008-01-01

    Quantization matrix is an important encoding tool for discrete cosine transform (DCT) based perceptual image / video encoding in that DCT coefficients can be quantized according to the sensitivity of the human visual system to the coefficients' corresponding spatial frequencies. A quadratic model is introduced to parameterize the quantization matrices. This model is then used to optimize quantization matrices for a specific bitrate or bitrate range by maximizing the expected encoding quality via a trial based multidimensional numerical search method. The model is simple yet it characterizes the slope and the convexity of the quantization matrices along the horizontal, the vertical and the diagonal directions. The advantage of the model for improving perceptual video encoding quality is demonstrated with simulations using H.264 / AVC video encoding.

  16. Venus internal magnetic field and its interaction with the interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Knudsen, W. C.

    1992-01-01

    In a previous study, Knudsen et al. suggested that Venus has a weak internal magnetic dipole field of the order of 7 x 10 + 20 G cm(exp -3) that is manifested in the form of magnetic flux tubes threading the ionospheric holes in the Venus nightside ionosphere. They pointed out that any internal field of Venus, dipole or multipole, would be weakened in the subsolar region and concentrated in the antisolar region of the planet by the supersonic transterminator convection of the dayside ionosphere into the nightside hemisphere. The inferred magnitude of the dipole field does not violate the upper limit for an internal magnetic field established by the Pioneer Venus magnetometer experiment. The most compelling objection to the model suggested by Knudsen et al. has been the fact that it does not explain the observed interplanetary magnetic field (IMF) control of the polarity of the ionospheric hole flux tubes. In this presentation I suggest that a magnetic reconnection process analogous to that occurring at earth is occurring at Venus between the IMF and a weak internal dipole field. At Venus in the subsolar region, the reconnection occurs within the ionosphere. At Earth it occurs at the magnetopause. Reconnection will occur only when the IMF has an appropriate orientation relative to that of the weak internal field. Thus, reconnection provides a process for the IMF to control the flux tube polarity. The reconnection in the subsolar region takes place in the ionosphere as the barrier magnetic field is transported downward into the lower ionosphere by downward convection of ionospheric plasma and approaches the oppositely directed internal magnetic field that is diffusing upward. The reconnected flux tubes are then transported anti-Sunward by the anti-Sunward convecting ionospheric plasma as well as by the anti-Sunward-flowing solar wind. Reconnection will also occur in the Venus magnetic tail region, somewhat analogously to the reconnection that occurs in the

  17. Controlling the interactions between cold Rydberg atoms by a time-varying electric field

    NASA Astrophysics Data System (ADS)

    Ryabtsev, I. I.; Tretyakov, D. B.; Entin, V. M.; Beterov, I. I.; Yakshina, E. A.; Andreeva, C.

    2017-01-01

    Long-range interactions between cold Rydberg atoms are being investigated for neutral-atom quantum computing, quantum simulations, phase transitions in cold Rydberg gases and other applications. Fine tuning of the interaction strength can be implemented using Förster resonances between Rydberg atoms controlled by an electric field. The observation of the Stark-tuned Förster resonances between Rydberg atoms excited by narrowband cw laser radiation requires usage of a Stark-switching technique in order to excite the atoms first in a fixed electric field and then to induce the interactions in a varied electric field, which is scanned across the Förster resonance. The application of the radio-frequency field causes additional Förster resonances between collective states, whose line shape depends on the interaction strengths and time. Spatial averaging over the atom positions in a single interaction volume yields a cusped line shape of the Förster resonance. We present a detailed experimental and theoretical analysis of the line shape and time dynamics of the Stark-tuned Förster resonances Rb(nP 3/2) + Rb(nP 3/2) → Rb(nS 1/2) + Rb([n + 1]S 1/2) for two Rb Rydberg atoms interacting in a time-varying electric field.

  18. Static magnetic susceptibility, crystal field and exchange interactions in rare earth titanate pyrochlores.

    PubMed

    Malkin, B Z; Lummen, T T A; van Loosdrecht, P H M; Dhalenne, G; Zakirov, A R

    2010-07-14

    The experimental temperature dependence (T = 2-300 K) of single crystal bulk and site susceptibilities of rare earth titanate pyrochlores R(2)Ti(2)O(7) (R = Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) is analyzed in the framework of crystal field theory and a mean field approximation. Analytical expressions for the site and bulk susceptibilities of the pyrochlore lattice are derived taking into account long range dipole-dipole interactions and anisotropic exchange interactions between the nearest neighbor rare earth ions. The sets of crystal field parameters and anisotropic exchange coupling constants have been determined and their variations along the lanthanide series are discussed.

  19. Electronic dynamics under effect of a nonlinear Morse interaction and a static electric field

    NASA Astrophysics Data System (ADS)

    Ranciaro Neto, A.; de Moura, F. A. B. F.

    2016-11-01

    Considering non-interacting electrons in a one-dimension alloy in which atoms are coupled by a Morse potential, we study the system dynamics in the presence of a static electric field. Calculations are performed assuming a quantum mechanical treatment for the electronic transport and a classical Hamiltonian model for the lattice vibrations. We report numerical evidence of the existence of a soliton-electron pair, even when the electric field is turned on, and we offer a description of how the existence of such a phase depends on the magnitude of the electric field and the electron-phonon interaction.

  20. Chiral ground-state currents of interacting photons in a synthetic magnetic field

    NASA Astrophysics Data System (ADS)

    Roushan, P.; Neill, C.; Megrant, A.; Chen, Y.; Babbush, R.; Barends, R.; Campbell, B.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Fowler, A.; Jeffrey, E.; Kelly, J.; Lucero, E.; Mutus, J.; O’Malley, P. J. J.; Neeley, M.; Quintana, C.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T.; Kapit, E.; Neven, H.; Martinis, J.

    2016-10-01

    The intriguing many-body phases of quantum matter arise from the interplay of particle interactions, spatial symmetries, and external fields. Generating these phases in an engineered system could provide deeper insight into their nature. Using superconducting qubits, we simultaneously realize synthetic magnetic fields and strong particle interactions, which are among the essential elements for studying quantum magnetism and fractional quantum Hall phenomena. The artificial magnetic fields are synthesized by sinusoidally modulating the qubit couplings. In a closed loop formed by the three qubits, we observe the directional circulation of photons, a signature of broken time-reversal symmetry. We demonstrate strong interactions through the creation of photon vacancies, or `holes’, which circulate in the opposite direction. The combination of these key elements results in chiral ground-state currents. Our work introduces an experimental platform for engineering quantum phases of strongly interacting photons.

  1. Tissue interactions with nonionizing electromagnetic fields. Final report, March 1979-February 1986

    SciTech Connect

    Adey, W.R.; Bawin, S.M.; Byus, C.V.; Cain, C.D.; Lin-Liu, S.; Luben, R.A.; Lyle, D.B.; Sagan, P.M.; Sheppard, A.R.; Stell, M.A.

    1986-08-01

    This report provides an overview of this research program focused on basic research in nervous system responses to electric fields at 60 Hz. The emphasis in this project was to determine the fundamental mechanisms underlying some phenomena of electric field interactions in neural systems. The five studies of the initial program were tests of behavioral responses in the rat based upon the hypothesis that electric field detection might follow psychophysical rules known from prior research with light, sound and other stimuli; tests of electrophysiological responses to ''normal'' forms of stimulation in rat brain tissue exposed in vitro to electric fields, based on the hypothesis that the excitability of brain tissue might be affected by fields in the extracellular environment; tests of electrophysiological responses of spontaneously active pacemaker neurons of the Aplysia abdominal ganglion, based on the hypothesis that electric field interactions at the cell membrane might affect the balance among the several membrane-related processes that govern pacemaker activity; studies of mechanisms of low frequency electromagnetic field interactions with bone cells in the context of field therapy of ununited fractures; and manipulation of cell surface receptor proteins in studies of their mobility during EM field exposure.

  2. Equation of State of the Strong Interaction Matter in an External Magnetic Field

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Liu, Yu-Xin

    2015-10-01

    We investigate the equation of state of the strong interaction matter in a background magnetic field via the two flavor Nambu-Jona-Lasinio model. Starting from the mean-field thermodynamical potential density Ω, we calculate the pressure density p, the entropy density s, the energy density ɛ, and the interaction measure (ɛ - 3p)/T4 of the strong interaction matter at finite temperature and finite magnetic field. The results manifest that the chiral phase transition is just a crossover but not a low order phase transition. Moreover there may exist magnetic catalysis effect, and its mechanism is just the effective dimension reduction induced by the magnetic field. Supported by the National Natural Science Foundation of China under Grant Nos. 10935001, 11175004 and 11435001, and the National Key Basic Research Program of China under Grant Nos. G2013CB834400 and 2015CB856900

  3. Renormalization of interactions of ultracold atoms in simulated Rashba gauge fields

    SciTech Connect

    Ozawa, Tomoki; Baym, Gordon

    2011-10-15

    Interactions of ultracold atoms with Rashba spin-orbit coupling, currently being studied with simulated (artificial) gauge fields, have nontrivial ultraviolet and infrared behavior. Examining the ultrastructure of the Bethe-Salpeter equation, we show that the linear ultraviolet divergence in the bare interaction can be renormalized as usual in terms of low-energy scattering lengths, and that for both bosons and fermions ultraviolet logarithmic divergences are absent. Calculating the leading order effective interaction with full dependence on the spin-orbit coupling strength and the center-of-mass momentum of the colliding pair, we elucidate the relation between mean-field interactions and physical three-dimensional scattering lengths. As a consequence of infrared logarithmic divergences in the two-particle propagator, the effective interaction vanishes as the center-of-mass momentum approaches zero.

  4. Metamaterial bricks and quantization of meta-surfaces

    NASA Astrophysics Data System (ADS)

    Memoli, Gianluca; Caleap, Mihai; Asakawa, Michihiro; Sahoo, Deepak R.; Drinkwater, Bruce W.; Subramanian, Sriram

    2017-02-01

    Controlling acoustic fields is crucial in diverse applications such as loudspeaker design, ultrasound imaging and therapy or acoustic particle manipulation. The current approaches use fixed lenses or expensive phased arrays. Here, using a process of analogue-to-digital conversion and wavelet decomposition, we develop the notion of quantal meta-surfaces. The quanta here are small, pre-manufactured three-dimensional units--which we call metamaterial bricks--each encoding a specific phase delay. These bricks can be assembled into meta-surfaces to generate any diffraction-limited acoustic field. We apply this methodology to show experimental examples of acoustic focusing, steering and, after stacking single meta-surfaces into layers, the more complex field of an acoustic tractor beam. We demonstrate experimentally single-sided air-borne acoustic levitation using meta-layers at various bit-rates: from a 4-bit uniform to 3-bit non-uniform quantization in phase. This powerful methodology dramatically simplifies the design of acoustic devices and provides a key-step towards realizing spatial sound modulators.

  5. Metamaterial bricks and quantization of meta-surfaces.

    PubMed

    Memoli, Gianluca; Caleap, Mihai; Asakawa, Michihiro; Sahoo, Deepak R; Drinkwater, Bruce W; Subramanian, Sriram

    2017-02-27

    Controlling acoustic fields is crucial in diverse applications such as loudspeaker design, ultrasound imaging and therapy or acoustic particle manipulation. The current approaches use fixed lenses or expensive phased arrays. Here, using a process of analogue-to-digital conversion and wavelet decomposition, we develop the notion of quantal meta-surfaces. The quanta here are small, pre-manufactured three-dimensional units-which we call metamaterial bricks-each encoding a specific phase delay. These bricks can be assembled into meta-surfaces to generate any diffraction-limited acoustic field. We apply this methodology to show experimental examples of acoustic focusing, steering and, after stacking single meta-surfaces into layers, the more complex field of an acoustic tractor beam. We demonstrate experimentally single-sided air-borne acoustic levitation using meta-layers at various bit-rates: from a 4-bit uniform to 3-bit non-uniform quantization in phase. This powerful methodology dramatically simplifies the design of acoustic devices and provides a key-step towards realizing spatial sound modulators.

  6. Metamaterial bricks and quantization of meta-surfaces

    PubMed Central

    Memoli, Gianluca; Caleap, Mihai; Asakawa, Michihiro; Sahoo, Deepak R.; Drinkwater, Bruce W.; Subramanian, Sriram

    2017-01-01

    Controlling acoustic fields is crucial in diverse applications such as loudspeaker design, ultrasound imaging and therapy or acoustic particle manipulation. The current approaches use fixed lenses or expensive phased arrays. Here, using a process of analogue-to-digital conversion and wavelet decomposition, we develop the notion of quantal meta-surfaces. The quanta here are small, pre-manufactured three-dimensional units—which we call metamaterial bricks—each encoding a specific phase delay. These bricks can be assembled into meta-surfaces to generate any diffraction-limited acoustic field. We apply this methodology to show experimental examples of acoustic focusing, steering and, after stacking single meta-surfaces into layers, the more complex field of an acoustic tractor beam. We demonstrate experimentally single-sided air-borne acoustic levitation using meta-layers at various bit-rates: from a 4-bit uniform to 3-bit non-uniform quantization in phase. This powerful methodology dramatically simplifies the design of acoustic devices and provides a key-step towards realizing spatial sound modulators. PMID:28240283

  7. Fractional field equations for highly improbable events

    NASA Astrophysics Data System (ADS)

    Kleinert, H.

    2013-06-01

    Free and weakly interacting particles perform approximately Gaussian random walks with collisions. They follow a second-quantized nonlinear Schrödinger equation, or relativistic versions of it. By contrast, the fields of strongly interacting particles extremize more involved effective actions obeying fractional wave equations with anomalous dimensions. Their particle orbits perform universal Lévy walks with heavy tails, in which rare events are much more frequent than in Gaussian random walks. Such rare events are observed in exceptionally strong windgusts, monster or rogue waves, earthquakes, and financial crashes. While earthquakes may destroy entire cities, the latter have the potential of devastating entire economies.

  8. Uniqueness of the Fock quantization of the Gowdy T{sup 3} model

    SciTech Connect

    Cortez, Jeronimo; Marugan, Guillermo A. Mena; Velhinho, Jose M.

    2007-04-15

    After its reduction by a gauge-fixing procedure, the family of linearly polarized Gowdy T{sup 3} cosmologies admits a scalar field description whose evolution is governed by a Klein-Gordon type equation in a flat background in 1+1 dimensions with the spatial topology of S{sup 1}, though in the presence of a time-dependent potential. The model is still subject to a homogeneous constraint, which generates S{sup 1}-translations. Recently, a Fock quantization of this scalar field was introduced and shown to be unique under the requirements of unitarity of the dynamics and invariance under the gauge group of S{sup 1}-translations. In this work, we extend and complete this uniqueness result by considering other possible scalar field descriptions, resulting from reasonable field reparametrizations of the induced metric of the reduced model. In the reduced phase space, these alternate descriptions can be obtained by means of a time-dependent scaling of the field, the inverse scaling of its canonical momentum, and the possible addition of a time-dependent, linear contribution of the field to this momentum. Demanding again unitarity of the field dynamics and invariance under the gauge group, we prove that the alternate canonical pairs of fieldlike variables admit a Fock representation if and only if the scaling of the field is constant in time. In this case, there exists essentially a unique Fock representation, provided by the quantization constructed by Corichi, Cortez, and Mena Marugan. In particular, our analysis shows that the scalar field description proposed by Pierri does not admit a Fock quantization with the above unitarity and invariance properties.

  9. Static magnetic fields: A summary of biological interactions, potential health effects, and exposure guidelines

    SciTech Connect

    Tenforde, T.S.

    1992-05-01

    Interest in the mechanisms of interaction and the biological effects of static magnetic fields has increased significantly during the past two decades as a result of the growing number of applications of these fields in research, industry and medicine. A major stimulus for research on the bioeffects of static magnetic fields has been the effort to develop new technologies for energy production and storage that utilize intense magnetic fields (e.g., thermonuclear fusion reactors and superconducting magnet energy storage devices). Interest in the possible biological interactions and health effects of static magnetic fields has also been increased as a result of recent developments in magnetic levitation as a mode of public transportation. In addition, the rapid emergence of magnetic resonance imaging as a new clinical diagnostic procedure has, in recent years, provided a strong rationale for defining the possible biological effects of magnetic fields with high flux densities. In this review, the principal interaction mechanisms of static magnetic fields will be described, and a summary will be given of the present state of knowledge of the biological, environmental, and human health effects of these fields.

  10. Interaction of biological systems with static and ELF electric and magnetic fields

    SciTech Connect

    Anderson, L.E.; Kelman, B.J.; Weigel, R.J.

    1987-01-01

    Although background levels of atmospheric electric and geomagnetic field levels are extremely low, over the past several decades, human beings and other life forms on this planet have been subjected to a dramatically changing electromagnetic milieu. An exponential increase in exposure to electromagnetic fields has occurred, largely because of such technological advances as the growth of electrical power generation and transmission systems, the increased use of wireless communications, and the use of radar. In addition, electromagnetic field generating devices have proliferated in industrial plants, office buildings, homes, public transportation systems, and elsewhere. Although significant increases have occurred in electromagnetic field strenghths spanning all frequency ranges, this symposium addresses only the impact of these fields at static and extremely low frequencies (ELF), primarily 50 and 60 Hz. This volume contains the proceedings of the symposium entitled /open quotes/Interaction of biological systems with static and ELF electric and magnetic fields/close quotes/. The purpose of the symposium was to provide a forum for discussions of all aspects of research on the interaction of static and ELF electromagnetic fields with biological systems. These systems include simple biophysical models, cell and organ preparations, whole animals, and man. Dosimetry, exposure system design, and artifacts in ELF bioeffects research were also addressed, along with current investigations that examine fundamental mechanisms of interactions between the fields and biological processes. Papers are indexed separately.

  11. Quantizing polaritons in inhomogeneous dissipative systems

    NASA Astrophysics Data System (ADS)

    Drezet, Aurélien

    2017-02-01

    In this article we provide a general analysis of canonical quantization for polaritons in dispersive and dissipative electromagnetic inhomogeneous media. We compare several approaches based either on the Huttner-Barnett model [B. Huttner and S. M. Barnett, Phys. Rev. A 46, 4306 (1992), 10.1103/PhysRevA.46.4306] or the Green function, Langevin-noise method [T. Gruner and D.-G. Welsch, Phys. Rev. A 53, 1818 (1996), 10.1103/PhysRevA.53.1818] which includes only material oscillators as fundamental variables. We show that in order to preserve unitarity, causality, and time symmetry, one must necessarily include with an equal footing both electromagnetic modes and material fluctuations in the evolution equations. This becomes particularly relevant for all nanophotonics and plasmonics problems involving spatially localized antennas or devices.

  12. Charge dynamics and "in plane" magnetic field I: Rashba-Dresselhauss interaction, Majorana fermions and Aharonov-Casher theorems

    NASA Astrophysics Data System (ADS)

    Cirilo-Lombardo, Diego Julio

    2015-06-01

    The two-dimensional charge transport with parallel (in plane) magnetic field is considered from the physical and mathematical point of view. To this end, we start with the magnetic field parallel to the plane of charge transport, in sharp contrast to the configuration described by the theorems of Aharonov and Casher where the magnetic field is perpendicular. We explicitly show that the specific form of the arising equation enforces the respective field solution to fulfill the Majorana condition. Consequently, as soon any physical system is represented by this equation, the rise of fields with Majorana type behavior is immediately explained and predicted. In addition, there exists a quantized particular phase that removes the action of the vector potential producing interesting effects. Such new effects are able to explain due to the geometrical framework introduced, several phenomenological results recently obtained in the area of spintronics and quantum electronic devices. The quantum ring as spin filter is worked out in this framework and also the case of the quantum Hall effect.

  13. Mean Field Limit of Interacting Filaments and Vector Valued Non-linear PDEs

    NASA Astrophysics Data System (ADS)

    Bessaih, Hakima; Coghi, Michele; Flandoli, Franco

    2017-01-01

    Families of N interacting curves are considered, with long range, mean field type, interaction. They generalize models based on classical interacting point particles to models based on curves. In this new set-up, a mean field result is proven, as N→ ∞. The limit PDE is vector valued and, in the limit, each curve interacts with a mean field solution of the PDE. This target is reached by a careful formulation of curves and weak solutions of the PDE which makes use of 1-currents and their topologies. The main results are based on the analysis of a nonlinear Lagrangian-type flow equation. Most of the results are deterministic; as a by-product, when the initial conditions are given by families of independent random curves, we prove a propagation of chaos result. The results are local in time for general interaction kernel, global in time under some additional restriction. Our main motivation is the approximation of 3D-inviscid flow dynamics by the interacting dynamics of a large number of vortex filaments, as observed in certain turbulent fluids; in this respect, the present paper is restricted to smoothed interaction kernels, instead of the true Biot-Savart kernel.

  14. Mean Field Limit of Interacting Filaments and Vector Valued Non-linear PDEs

    NASA Astrophysics Data System (ADS)

    Bessaih, Hakima; Coghi, Michele; Flandoli, Franco

    2017-03-01

    Families of N interacting curves are considered, with long range, mean field type, interaction. They generalize models based on classical interacting point particles to models based on curves. In this new set-up, a mean field result is proven, as N→ ∞. The limit PDE is vector valued and, in the limit, each curve interacts with a mean field solution of the PDE. This target is reached by a careful formulation of curves and weak solutions of the PDE which makes use of 1-currents and their topologies. The main results are based on the analysis of a nonlinear Lagrangian-type flow equation. Most of the results are deterministic; as a by-product, when the initial conditions are given by families of independent random curves, we prove a propagation of chaos result. The results are local in time for general interaction kernel, global in time under some additional restriction. Our main motivation is the approximation of 3D-inviscid flow dynamics by the interacting dynamics of a large number of vortex filaments, as observed in certain turbulent fluids; in this respect, the present paper is restricted to smoothed interaction kernels, instead of the true Biot-Savart kernel.

  15. Cosmological evolution of a complex scalar field with repulsive or attractive self-interaction

    NASA Astrophysics Data System (ADS)

    Suárez, Abril; Chavanis, Pierre-Henri

    2017-03-01

    We study the cosmological evolution of a complex scalar field with a self-interaction potential V (|φ |2) , possibly describing self-gravitating Bose-Einstein condensates, using a fully general relativistic treatment. We generalize the hydrodynamic representation of the Klein-Gordon-Einstein equations in the weak field approximation developed in our previous paper [A. Suárez and P.-H. Chavanis, Phys. Rev. D 92, 023510 (2015), 10.1103/PhysRevD.92.023510]. We establish the general equations governing the evolution of a spatially homogeneous complex scalar field in an expanding background. We show how they can be simplified in the fast oscillation regime (equivalent to the Thomas-Fermi, or semiclassical, approximation) and derive the equation of state of the scalar field in parametric form for an arbitrary potential V (|φ |2) . We explicitly consider the case of a quartic potential with repulsive or attractive self-interaction. For repulsive self-interaction, the scalar field undergoes a stiff matter era followed by a pressureless dark matter era in the weakly self-interacting regime and a stiff matter era followed by a radiationlike era and a pressureless dark matter era in the strongly self-interacting regime. For attractive self-interaction, the scalar field undergoes an inflation era followed by a stiff matter era and a pressureless dark matter era in the weakly self-interacting regime and an inflation era followed by a cosmic stringlike era and a pressureless dark matter era in the strongly self-interacting regime (the inflation era is suggested, not demonstrated). We also find a peculiar branch on which the scalar field emerges suddenly at a nonzero scale factor with a finite energy density. At early times, it behaves as a gas of cosmic strings. At later times, it behaves as dark energy with an almost constant energy density giving rise to a de Sitter evolution. This is due to spintessence. We derive the effective cosmological constant produced by the scalar

  16. Titan's ``Memory'' of Saturn's Field as a Factor in its Plasma Interaction Features

    NASA Astrophysics Data System (ADS)

    Ulusen, D.; Luhmann, J. G.; Ma, Y.; Mandt, K.; Waite, J. H.; Dougherty, M. K.; Russell, C. T.; Wei, H.; Ledvina, S. A.

    2010-12-01

    Recent papers by Bertucci et al. (2009), Rymer et al. (2009) and Simon et al. (2010) suggest the significant variability of conditions in Saturn’s magnetosphere at the orbit of Titan. Because of this variability, it was expected that models would generally have a difficult time regularly comparing to data from the Titan flybys (e.g. Simon et al. 2010). However, we find that in contrast to this expectation, it appears that there is underlying organization of the interaction features roughly above the exobase by the average external field due to Saturn’s dipole moment. Because this is the field that Titan itself is exposed to over long periods of time, it likely sets the boundary condition at the body itself. This produces interaction features observed in the magnetic field that are in basic agreement with a purely southward external field interaction with absorbing inner boundary conditions. Thus the basic features inferred from the Voyager 1 flyby seem to be generally present in spite of the ongoing external variations from SLT excursions, time variability and magnetospheric current systems as long as a significant southward external field component is present. Below the exobase, ionospheric effects and their associated currents complicate what is observed. Nevertheless, the basic impact of this result is that Titan is “preserving” in its interior the trace of Saturn’s’ dipole field which introduces order in the gross interaction appearance regardless of the external conditions variability.

  17. Interaction of extremely-low-frequency electromagnetic fields with living systems

    SciTech Connect

    Tenforde, T.S.

    1991-11-01

    The sources and physical properties of extremely-low-frequency (ELF) electromagnetic fields are described in this paper. Biological effects and mechanisms through which ELF fields interact with humans and other organisms are discussed, including several aspects of this subject that are presently under active laboratory investigation. Studies on the potential health effects of ELF fields present in the home and workplace are also summarized, including a critical evaluation of evidence for a possible linkage between exposure to ELF fields and cancer risk. 53 refs.

  18. Magnetic field sensor using tilted fiber grating interacting with magnetic fluid.

    PubMed

    Zheng, Jie; Dong, Xinyong; Zu, Peng; Shao, Li-Yang; Chan, Chi Chiu; Cui, Ying; Shum, Perry Ping

    2013-07-29

    A novel magnetic field sensor using tilted fiber Bragg grating (TFBG) interacting with magnetic fluid is proposed and experimentally demonstrated. The TFBG is surrounded by magnetic fluid whose complex refractive index changes with external magnetic field. The guiding properties of cladding modes excited by the TFBG are therefore modulated by the external magnetic field. As a result, the magnetic field strength measurement is successfully achieved within a range up to 196 Gauss by monitoring extinction ratio of cladding mode resonance. Furthermore, temperature variation can be obtained simultaneously from the wavelength shift of the TFBG transmission spectrum.

  19. Realization of optical bistability and multistability in Landau-quantized graphene

    NASA Astrophysics Data System (ADS)

    Hamedi, H. R.; Asadpour, S. H.

    2015-05-01

    The solution of input-output curves in an optical ring cavity containing Landau-quantized graphene is theoretically investigated taking the advantage of density-matrix method. It is found that under the action of strong magnetic and infrared laser fields, one can efficiently reduce the threshold of the onset of optical bistability (OB) at resonance condition. At non-resonance condition, we observed that graphene metamaterial can support the possibility to obtain optical multistability (OM), which is more practical in all-optical switching or coding elements. We present an analytical approach to elucidate our simulations. Due to very high infrared optical nonlinearity of graphene stemming from very unique and unusual properties of quantized Landau levels near the Dirac point, such controllability on OB and OM may provide new technological possibilities in solid state quantum information science.

  20. Realization of optical bistability and multistability in Landau-quantized graphene

    SciTech Connect

    Hamedi, H. R.; Asadpour, S. H.

    2015-05-14

    The solution of input-output curves in an optical ring cavity containing Landau-quantized graphene is theoretically investigated taking the advantage of density-matrix method. It is found that under the action of strong magnetic and infrared laser fields, one can efficiently reduce the threshold of the onset of optical bistability (OB) at resonance condition. At non-resonance condition, we observed that graphene metamaterial can support the possibility to obtain optical multistability (OM), which is more practical in all-optical switching or coding elements. We present an analytical approach to elucidate our simulations. Due to very high infrared optical nonlinearity of graphene stemming from very unique and unusual properties of quantized Landau levels near the Dirac point, such controllability on OB and OM may provide new technological possibilities in solid state quantum information science.

  1. Far-Field to Near-Field Coupling for Enhancing Light-Matter Interaction

    NASA Astrophysics Data System (ADS)

    Bonakdar, Alireza

    This thesis reports on theoretical, modeling, and experimental research within the framework of a key scientific question, which is enhancing the coupling between diffraction-limited far-field and sub-wavelength quantum emitter/absorber. A typical optoelectronic device delivers an optical process such as light detection (e.g. photodetector) or light intensity modulation (e.g. electro-absorptive modulator). In conventional devices, optical process is in the form of far-field or guided wave modes. The main aim of this thesis is to show that converting these modes into near-field domain can enhance the performance of the optoelectronic device. Light in the form of far-field can be converted into near-field domain by the optical antenna. Among different optoelectronic devices, this thesis focuses mainly on integrating the optical antenna with infrared photodetectors. The available semiconductors have weak infrared absorption that reduces light detection efficiency. Integration of the optical antenna with infrared absorber (such as quantum wells in quantum well infrared photodetector (QWIP)) increases the infrared absorption. Particularly this integration is favorable as the optical antenna has low metallic loss in infrared region. The author of this thesis believes that optical antenna has unique properties in confining light on the scale of deep sub-wavelength, enhancing electric field intensity and delivering optical energy to semiconductor absorbers. These properties are reaching into practical applications only if overall optical performance is low loss, parameter free (independent of optical parameters such a polarization and angle of incident) and broadband. In this thesis, the integration of optical antenna with infrared photodetectors and thermophotovoltaic are researched and developed which satisfy the aforementioned criteria. In addition, several different optical antennas have been designed, fabricated and characterized in order to analyze and demonstrate

  2. Interacting spin-2 fields in the Stückelberg picture

    SciTech Connect

    Noller, Johannes; Ferreira, Pedro G.; Scargill, James H.C. E-mail: james.scargill@physics.ox.ac.uk

    2014-02-01

    We revisit and extend the 'Effective field theory for massive gravitons' constructed by Arkani-Hamed, Georgi and Schwartz in the light of recent progress in constructing ghost-free theories with multiple interacting spin-2 fields. We show that there exist several dual ways of restoring gauge invariance in such multi-gravity theories, find a generalised Fierz-Pauli tuning condition relevant in this context and highlight subtleties in demixing tensor and scalar modes. The generic multi-gravity feature of scalar mixing and its consequences for higher order interactions are discussed. In particular we show how the decoupling limit is qualitatively changed in theories of interacting spin-2 fields. We relate this to dRGT (de Rham, Gabadadze, Tolley) massive gravity, Hassan-Rosen bigravity and the multi-gravity constructions by Hinterbichler and Rosen. As an additional application we show that EBI (Eddington-Born-Infeld) bigravity and higher order generalisations thereof possess ghost-like instabilities.

  3. Interacting spin-2 fields in the Stückelberg picture

    NASA Astrophysics Data System (ADS)

    Noller, Johannes; Scargill, James H. C.; Ferreira, Pedro G.

    2014-02-01

    We revisit and extend the `Effective field theory for massive gravitons' constructed by Arkani-Hamed, Georgi and Schwartz in the light of recent progress in constructing ghost-free theories with multiple interacting spin-2 fields. We show that there exist several dual ways of restoring gauge invariance in such multi-gravity theories, find a generalised Fierz-Pauli tuning condition relevant in this context and highlight subtleties in demixing tensor and scalar modes. The generic multi-gravity feature of scalar mixing and its consequences for higher order interactions are discussed. In particular we show how the decoupling limit is qualitatively changed in theories of interacting spin-2 fields. We relate this to dRGT (de Rham, Gabadadze, Tolley) massive gravity, Hassan-Rosen bigravity and the multi-gravity constructions by Hinterbichler and Rosen. As an additional application we show that EBI (Eddington-Born-Infeld) bigravity and higher order generalisations thereof possess ghost-like instabilities.

  4. Assembly of Reconfigurable Colloidal Structures by Multidirectional Field-Induced Interactions.

    PubMed

    Bharti, Bhuvnesh; Velev, Orlin D

    2015-07-28

    Field-directed colloidal assembly has shown remarkable recent progress in increasing the complexity, degree of control, and multiscale organization of the structures. This has largely been achieved by using particles of complex shapes and polarizabilites (Janus, patchy, shaped, and faceted). We review the fundamentals of the interactions leading to the directed assembly of such structures, the ways to simulate the dynamics of the process, and the effect of particle size, shape, and properties on the type of structure obtained. We discuss how directional polarization interactions induced by external electric and magnetic fields can be used to assemble complex particles or particle mixtures into lattices of tailored structure. Examples of such systems include isotropic and anisotropic shaped particles with surface patches, which form networks and crystals of unusual symmetry by dipolar, quadrupolar, and multipolar interactions in external fields. The emerging trends in making reconfigurable and dynamic structures are discussed.

  5. Impact of nonlinear effective interactions on group field theory quantum gravity condensates

    NASA Astrophysics Data System (ADS)

    Pithis, Andreas G. A.; Sakellariadou, Mairi; Tomov, Petar

    2016-09-01

    We present the numerical analysis of effectively interacting group field theory models in the context of the group field theory quantum gravity condensate analog of the Gross-Pitaevskii equation for real Bose-Einstein condensates including combinatorially local interaction terms. Thus, we go beyond the usually considered construction for free models. More precisely, considering such interactions in a weak regime, we find solutions for which the expectation value of the number operator N is finite, as in the free case. When tuning the interaction to the strongly nonlinear regime, however, we obtain solutions for which N grows and eventually blows up, which is reminiscent of what one observes for real Bose-Einstein condensates, where a strong interaction regime can only be realized at high density. This behavior suggests the breakdown of the Bogoliubov ansatz for quantum gravity condensates and the need for non-Fock representations to describe the system when the condensate constituents are strongly correlated. Furthermore, we study the expectation values of certain geometric operators imported from loop quantum gravity in the free and interacting cases. In particular, computing solutions around the nontrivial minima of the interaction potentials, one finds, already in the weakly interacting case, a nonvanishing condensate population for which the spectra are dominated by the lowest nontrivial configuration of the quantum geometry. This result indicates that the condensate may indeed consist of many smallest building blocks giving rise to an effectively continuous geometry, thus suggesting the interpretation of the condensate phase to correspond to a geometric phase.

  6. Neurophysiological and simulation studies of striate cortex receptive field maps: the role of intracortical interneuronal interactions.

    PubMed

    Lazareva, N A; Saltykov, K A; Shevelev, I A; Tikhomirov, A S; Novikova, R V; Tsutskiridze, D Yu

    2007-07-01

    Acute experiments on 27 adult anesthetized and immobilized cats investigated 101 on and off receptive fields in 67 neurons in visual cortex field 17 by mapping using single local stimuli presented sequentially at different parts of the visual field, as well as in combination with additional stimulation of the center of the receptive field. Both classical and combined mapping identified receptive fields with single receptive zones (63.4% and 29.3% respectively), along with fields consisting of several (2-5) excitatory and/or inhibitory zones (36.6% and 70.7%). We provide the first report of receptive fields with horseshoe, cross, and T shapes. Simulations of horizontal interneuronal interactions in the visual cortex responsible for the multiplicity of excitatory and inhibitory zones of receptive fields were performed. A role for cooperative interactions of neurons in this effect was demonstrated. The possible functional role of receptive fields of different types in extracting the features of visual images is discussed.

  7. Quantum Field Theory of Black-Swan Events

    NASA Astrophysics Data System (ADS)

    Kleinert, H.

    2014-05-01

    Free and weakly interacting particles are described by a second-quantized nonlinear Schrödinger equation, or relativistic versions of it. They describe Gaussian random walks with collisions. By contrast, the fields of strongly interacting particles are governed by effective actions, whose extremum yields fractional field equations. Their particle orbits perform universal Lévy walks with heavy tails, in which rare events are much more frequent than in Gaussian random walks. Such rare events are observed in exceptionally strong windgusts, monster or rogue waves, earthquakes, and financial crashes. While earthquakes may destroy entire cities, the latter have the potential of devastating entire economies.

  8. Effects of field interactions upon particle creation in Robertson-Walker universes

    NASA Technical Reports Server (NTRS)

    Birrell, N. D.; Davies, P. C. W.; Ford, L. H.

    1980-01-01

    Particle creation due to field interactions in an expanding Robertson-Walker universe is investigated. A model in which pseudoscalar mesons and photons are created as a result of their mutual interaction is considered, and the energy density of created particles is calculated in model universes which undergo a bounce at some maximum curvature. The free-field creation of non-conformally coupled scalar particles and of gravitons is calculated in the same space-times. It is found that if the bounce occurs at a sufficiently early time the interacting particle creation will dominate. This result may be traced to the fact that the model interaction chosen introduces a length scale which is much larger than the Planck length.

  9. Modified 8×8 quantization table and Huffman encoding steganography

    NASA Astrophysics Data System (ADS)

    Guo, Yongning; Sun, Shuliang

    2014-10-01

    A new secure steganography, which is based on Huffman encoding and modified quantized discrete cosine transform (DCT) coefficients, is provided in this paper. Firstly, the cover image is segmented into 8×8 blocks and modified DCT transformation is applied on each block. Huffman encoding is applied to code the secret image before embedding. DCT coefficients are quantized by modified quantization table. Inverse DCT(IDCT) is conducted on each block. All the blocks are combined together and the steg image is finally achieved. The experiment shows that the proposed method is better than DCT and Mahender Singh's in PSNR and Capacity.

  10. Universal features of quantized thermal conductance of carbon nanotubes.

    PubMed

    Yamamoto, Takahiro; Watanabe, Satoshi; Watanabe, Kazuyuki

    2004-02-20

    The universal features of quantized thermal conductance of carbon nanotubes (CNTs) are revealed through a theoretical analysis based on the Landauer theory of heat transport. The phonon-derived thermal conductance of semiconducting CNTs exhibits a universal quantization in the low-temperature limit, independent of the radius or atomic geometry. The temperature dependence follows a single curve given in terms of temperature scaled by the phonon energy gap. The thermal conductance of metallic CNTs has an additional contribution from electronic states, which also exhibits quantized behavior up to room temperature.

  11. Direct observation of Kelvin waves excited by quantized vortex reconnection

    PubMed Central

    Fonda, Enrico; Meichle, David P.; Ouellette, Nicholas T.; Hormoz, Sahand; Lathrop, Daniel P.

    2014-01-01

    Quantized vortices are key features of quantum fluids such as superfluid helium and Bose–Einstein condensates. The reconnection of quantized vortices and subsequent emission of Kelvin waves along the vortices are thought to be central to dissipation in such systems. By visualizing the motion of submicron particles dispersed in superfluid 4He, we have directly observed the emission of Kelvin waves from quantized vortex reconnection. We characterize one event in detail, using dimensionless similarity coordinates, and compare it with several theories. Finally, we give evidence for other examples of wavelike behavior in our system. PMID:24704878

  12. Singular Lagrangians. Classical dynamics and quantization. Lectures for young scientists

    NASA Astrophysics Data System (ADS)

    Nesterenko, V. V.; Chervyakov, A. M.

    The lectures are devoted to the classical and quantum dynamics of the systems described by singular (or degenerate) Lagrangians. The complete set of the Hamiltonian constraints is constructed in the framework of the Lagrangian formalism. The equations of motion in the phase space are derived by taking into account all the constraints in the theory. It is proved that the dynamic on the physical submanifold of the phase space has the Hamiltonian form. On lectures the second Noether theorem is widely used. On its basis the properties of the Poisson brackets of the primary constraints are investigated and the invariance of the Lagrangian constraints during evolution is proved. The setting of the Cauchy problem in the theories with singular Lagrangians is discussed. The quantization of the systems with constraints is carried out by the functional integration in the phase space. There is considered the most general case of the first class and the second class constraints with an explicit time dependence. The gauge conditions may be noninvoluntary and time dependent. The material is illustrated by some examples (relativistic point particle, relativistic string, electromagnetic field, and Yang-Mills fields).

  13. Finite energy quantization on a topology changing spacetime

    NASA Astrophysics Data System (ADS)

    Krasnikov, S.

    2016-08-01

    The "trousers" spacetime is a pair of flat two-dimensional cylinders ("legs") merging into a single one ("trunk"). In spite of its simplicity this spacetime has a few features (including, in particular, a naked singularity in the "crotch") each of which is presumably unphysical, but for none of which a mechanism is known able to prevent its occurrence. Therefore, it is interesting and important to study the behavior of the quantum fields in such a space. Anderson and DeWitt were the first to consider the free scalar field in the trousers spacetime. They argued that the crotch singularity produces an infinitely bright flash, which was interpreted as evidence that the topology of space is dynamically preserved. Similar divergencies were later discovered by Manogue, Copeland, and Dray who used a more exotic quantization scheme. Later yet the same result obtained within a somewhat different approach led Sorkin to the conclusion that the topological transition in question is suppressed in quantum gravity. In this paper I show that the Anderson-DeWitt divergence is an artifact of their choice of the Fock space. By choosing a different one-particle Hilbert space one gets a quantum state in which the components of the stress-energy tensor (SET) are bounded in the frame of a free-falling observer.

  14. Quantum aspects of a moving magnetic quadrupole moment interacting with an electric field

    SciTech Connect

    Fonseca, I. C.; Bakke, K.

    2015-06-15

    The quantum dynamics of a moving particle with a magnetic quadrupole moment that interacts with electric and magnetic fields is introduced. By dealing with the interaction between an electric field and the magnetic quadrupole moment, it is shown that an analogue of the Coulomb potential can be generated and bound state solutions can be obtained. Besides, the influence of the Coulomb-type potential on the harmonic oscillator is investigated, where bound state solutions to both repulsive and attractive Coulomb-type potentials are achieved and the arising of a quantum effect characterized by the dependence of the harmonic oscillator frequency on the quantum numbers of the system is discussed.

  15. Nonlinear Interaction of a Shock Wave with an Anisotropic Entropy Perturbation Field

    NASA Astrophysics Data System (ADS)

    Gorodnichev, K. E.; Kuratov, S. E.; Gorodnichev, E. E.

    2017-01-01

    The problem of the interaction of a shock wave with an anisotropic entropy perturbation field has been solved including second-order corrections to hydrodynamic quantities. It has been shown that nonlinear interactions between acoustic waves result in the localization of acoustic perturbations behind the shock front. This effect is observed when sound attenuation is absent in the linear approximation. The problem of the propagation of the shock wave in an incident sample, where the spatially anisotropic density perturbation field initially exists, has been numerically solved in application to the collision of two plates. Numerical calculations confirm the results of the theoretical analysis.

  16. Domain wall interactions due to vacuum Dirac field fluctuations in 2 +1 dimensions

    NASA Astrophysics Data System (ADS)

    Fosco, C. D.; Mazzitelli, F. D.

    2016-07-01

    We evaluate quantum effects due to a two-component Dirac field in 2 +1 spacetime dimensions, coupled to domain-wall-like defects with a smooth shape. We show that these effects induce nontrivial contributions to the (shape-dependent) energy of the domain walls. For a single defect, we study the divergences in the corresponding self-energy, and also consider the role of the massless zero mode—corresponding to the Callan-Harvey mechanism—by coupling the Dirac field to an external gauge field. For two defects, we show that the Dirac field induces a nontrivial, Casimir-like effect between them, and we provide an exact expression for that interaction in the case of two straight-line parallel defects. As is the case for the Casimir interaction energy, the result is finite and unambiguous.

  17. Sakata-Taketani spin-0 theory with external field interactions - Lagrangian formalism and causal properties

    NASA Technical Reports Server (NTRS)

    Guertin, R. F.; Wilson, T. L.

    1977-01-01

    To illustrate that a relativistic field theory need not be manifestly covariant, Lorentz-invariant Lagrangian densities are constructed that yield the equation satisfied by an interacting (two-component) Sakata-Taketani spin-0 field. Six types of external field couplings are considered, two scalars, two vectors, an antisymmetric second-rank tensor, and a symmetric second-rank tensor, with the results specialized to electromagnetic interactions. For either of the two second-rank couplings, the equation is found to describe noncausal wave propagation, a property that is apparent from the dependence of the coefficients of the space derivatives on the external field; in contrast, the noncausality of the corresponding manifestly covariant Duffin-Kemmer-Petiau spin-0 equation is not so obvious. The possibilities for generalizing the results to higher spin theories involving only the essential 2(2J + 1) components for a particle with a definite spin J and mass m are discussed in considerable detail.

  18. Spin-wave propagation steered by electric field modulated exchange interaction

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Guan, Xiawei; Cheng, Xiaomin; Lian, Chen; Huang, Ting; Miao, Xiangshui

    2016-09-01

    Combined ab initio and micromagnetic simulations are carried out to demonstrate the feasibility on the electrical manipulation of spin-wave propagation in ultrathin Fe films. It is discovered that the exchange interaction can be substantially weakened under the influence of electric field applied perpendicular to the magnetic film surface. Furthermore, we demonstrate that the electric field modified exchange constant could effectively control the propagation of spin waves. To be specific, an external applied electric field of 5 V/nm can effectively weaken exchange interaction by 80% and is sufficient to induce nearly twofold change of the wavenumber. This discovery may open a door to energy-efficient local manipulation of the spin wave propagation utilizing electric fields, which is crucial for both fundamental research and spin wave based logic applications.

  19. Can a particle interacting with a scalar field reach the speed of light\\?

    NASA Astrophysics Data System (ADS)

    Vollick, Dan N.

    1995-09-01

    The motion of a particle interacting with a scalar field is examined. It is shown that the effective mass of the particle is a linear function of the scalar field and that the particle reaches the speed of light when its effective mass goes to zero if scalar field radiation is neglected. The equation of motion for the particle including radiation reaction has the same form as the Lorentz-Dirac equation. The radiation emitted diverges as the particle approaches the speed of light and prevents the particle from becoming luminal. The energy-momentum tensor for the particle and field is calculated and it is shown that there exists an interaction energy-momentum tensor which allows for violations of the weak energy condition.

  20. Spin-wave propagation steered by electric field modulated exchange interaction

    PubMed Central

    Wang, Sheng; Guan, Xiawei; Cheng, Xiaomin; Lian, Chen; Huang, Ting; Miao, Xiangshui

    2016-01-01

    Combined ab initio and micromagnetic simulations are carried out to demonstrate the feasibility on the electrical manipulation of spin-wave propagation in ultrathin Fe films. It is discovered that the exchange interaction can be substantially weakened under the influence of electric field applied perpendicular to the magnetic film surface. Furthermore, we demonstrate that the electric field modified exchange constant could effectively control the propagation of spin waves. To be specific, an external applied electric field of 5 V/nm can effectively weaken exchange interaction by 80% and is sufficient to induce nearly twofold change of the wavenumber. This discovery may open a door to energy-efficient local manipulation of the spin wave propagation utilizing electric fields, which is crucial for both fundamental research and spin wave based logic applications. PMID:27587083

  1. Interacting electrons in a two-dimensional disordered environment: effect of a zeeman magnetic field.

    PubMed

    Denteneer, P J H; Scalettar, R T

    2003-06-20

    The effect of a Zeeman magnetic field coupled to the spin of the electrons on the conducting properties of the disordered Hubbard model is studied. Using the determinant quantum Monte Carlo method, the temperature- and magnetic-field-dependent conductivity is calculated, as well as the degree of spin polarization. We find that the Zeeman magnetic field suppresses the metallic behavior present for certain values of interaction and disorder strength and is able to induce a metal-insulator transition at a critical field strength. It is argued that the qualitative features of magnetoconductance in this microscopic model containing both repulsive interactions and disorder are in agreement with experimental findings in two-dimensional electron and hole gases in semiconductor structures.

  2. GlyphSea: Interactive Exploration of Seismic Wave Fields Using Shaded Glyphs

    NASA Astrophysics Data System (ADS)

    McQuinn, E.; Chourasia, A.; Minster, J. H.; Schulze, J.

    2010-12-01

    Earthquake simulations produce large vector fields that raise challenging visualization issues. Prior visualization strategies have typically focused on slices and volumetric rendering of scalar fields, which limits the scope of observable phenomena. We present a new interactive glyph visualization application called "GlyphSea" that allows exploration of seismic velocity fields. This work draws from a large body of glyph rendering techniques to focus on time-dependent seismic vector fields. Glyphs are capable of encoding multivariate data into a concise visual representation, which can be interpreted easily. However, that they occupy a large amount of display space, a severe drawback when dealing with dense data sets. We demonstrate how shading and texturing glyphs can alleviate this issue and provide insight into the data. We show that proper shading, positioning, scaling, and context techniques reveal features of the wave fields which are not immediately noticeable through standard vector and scalar visualization approaches. Visualization is further enhanced by using screen space ambient occlusion, jitter, halos, and displacement. These techniques are flexibly interchanged with a realtime, fully interactive, cross platform software system that runs on workstations and laptops alike. Successful design decisions stemming from collaboration between domain experts in visualization and seismology highlight the substantial benefits of interactive displays. GlyphSea used to visualize a point source simulation. This result is created interactively and shows the full time series evolution with multiple glyph types and directional cues.

  3. Exploring Direct 3D Interaction for Full Horizontal Parallax Light Field Displays Using Leap Motion Controller

    PubMed Central

    Adhikarla, Vamsi Kiran; Sodnik, Jaka; Szolgay, Peter; Jakus, Grega

    2015-01-01

    This paper reports on the design and evaluation of direct 3D gesture interaction with a full horizontal parallax light field display. A light field display defines a visual scene using directional light beams emitted from multiple light sources as if they are emitted from scene points. Each scene point is rendered individually resulting in more realistic and accurate 3D visualization compared to other 3D displaying technologies. We propose an interaction setup combining the visualization of objects within the Field Of View (FOV) of a light field display and their selection through freehand gesture tracked by the Leap Motion Controller. The accuracy and usefulness of the proposed interaction setup was also evaluated in a user study with test subjects. The results of the study revealed high user preference for free hand interaction with light field display as well as relatively low cognitive demand of this technique. Further, our results also revealed some limitations and adjustments of the proposed setup to be addressed in future work. PMID:25875189

  4. Solar Magnetic Carpet II: Coronal Interactions of Small-Scale Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Meyer, K. A.; Mackay, D. H.; van Ballegooijen, A. A.

    2012-05-01

    This paper is the second in a series of studies working towards constructing a realistic, evolving, non-potential coronal model for the solar magnetic carpet. In the present study, the interaction of two magnetic elements is considered. Our objectives are to study magnetic energy build-up, storage and dissipation as a result of emergence, cancellation, and flyby of these magnetic elements. In the future these interactions will be the basic building blocks of more complicated simulations involving hundreds of elements. Each interaction is simulated in the presence of an overlying uniform magnetic field, which lies at various orientations with respect to the evolving magnetic elements. For these three small-scale interactions, the free energy stored in the field at the end of the simulation ranges from 0.2 - 2.1×1026 ergs, whilst the total energy dissipated ranges from 1.3 - 6.3×1026 ergs. For all cases, a stronger overlying field results in higher energy storage and dissipation. For the cancellation and emergence simulations, motion perpendicular to the overlying field results in the highest values. For the flyby simulations, motion parallel to the overlying field gives the highest values. In all cases, the free energy built up is sufficient to explain small-scale phenomena such as X-ray bright points or nanoflares. In addition, if scaled for the correct number of magnetic elements for the volume considered, the energy continually dissipated provides a significant fraction of the quiet Sun coronal heating budget.

  5. Applications, dosimetry and biological interactions of static and time-varying magnetic fields

    NASA Astrophysics Data System (ADS)

    Tenforde, T. S.

    1988-08-01

    The primary topics of this presentation include: (1) the applications of magnetic fields in research, industry, and medical technologies; (2) mechanisms of interaction of static and time-varying magnetic fields with living systems; (3) human health effects of exposure to static and time-varying magnetic fields in occupational, medical, and residential settings; and (4) recent advances in the dosimetry of extremely-low-frequency electromagnetic fields. The discussion of these topics is centered about two issues of considerable contemporary interest: (1) potential health effects of the fields used in magnetic resonance imaging and in vivo spectroscopy, and (2) the controversial issue of whether exposure to extremely-low-frequency (ELF) electromagnetic fields in the home and workplace leads to an elevated risk of cancer.

  6. Mechanisms of interaction and biological effects of extremely-low-frequency electromagnetic fields

    SciTech Connect

    Tenforde, T.S.

    1994-07-01

    Evidence is mounting, that environmental electric and magnetic fields in the extremely-low-frequency (ELF) band below 300 Hz can influence biological functions by mechanisms that are only poorly understood at the present time. The primary objectives of this paper are to review the physical properties of ELF fields, their interactions with living systems at the tissue, cellular, and subcellular levels, and the key role of cell membranes in the transduction of signals from imposed ELF fields. Topics of discussion include signal-to-noise ratios for single cells and cell aggregates, resonance phenomena involving a combination of static and ELF magnetic fields, and the possible influence of ELF fields on molecular signaling pathways that involve membrane receptors and cytoplasmic second messengers. The implications of these findings for promotion of tumor growth by ELF fields are also reviewed.

  7. Statistical properties of an ensemble of vortices interacting with a turbulent field

    SciTech Connect

    Spineanu, F.; Vlad, M.

    2005-11-15

    An analytical formalism is developed with the purpose to determine the statistical properties of a system consisting of an ensemble of vortices with random position in plane interacting with a turbulent field. The generating functional is calculated by path-integral methods. The function space is the statistical ensemble composed of two parts, the first one representing the vortices influenced by the turbulence and the second one the turbulent field scattered by the randomly placed vortices.

  8. Crystal field and magnetoelastic interactions in Tb2Ti2O7

    NASA Astrophysics Data System (ADS)

    Klekovkina, V. V.; Malkin, B. Z.

    2014-06-01

    In terms of a semiphenomenological exchange charge model, we have obtained estimates of parameters of the crystal field and parameters of the electron-deformation interaction in terbium titanate Tb2Ti2O7 with a pyrochlore structure. The obtained set of parameters has been refined based on the analysis of spectra of neutron inelastic scattering and Raman light scattering, field dependences of the forced magnetostriction, and temperature dependences of elastic constants.

  9. Mean-Field Approach with M3Y-TYPE Interaction

    NASA Astrophysics Data System (ADS)

    Nakada, H.

    2004-10-01

    M3Y-type interactions are developed and applied to mean-field calculations. By comparing results of an M3Y-type interaction on the uniform nuclear matter with those of the Skyrme and the Gogny interactions, we find a remarkable difference in the spin-isospin properties, to which the one-pion-exchange potential gives significant contribution. Correlating to variation of the shell structure, these spin-isospin properties play a certain role in the new magic numbers near drip lines such as N = 16 and N = 32.

  10. A broadband gyrotron backward-wave oscillator with tapered interaction structure and magnetic field

    SciTech Connect

    Li, G. D.; Chang, P. C.; Chiang, W. Y.; Lin, P. N.; Kao, S. H.; Lin, Y. N.; Huang, Y. J.; Barnett, L. R.; Chu, K. R.; Chen, H. Y.; Fan, C. T.

    2015-11-15

    The gyro-monotron and gyrotron backward-wave oscillator (gyro-BWO) are the two oscillator versions of gyrotrons. While serving different functions, they are also radically different in the RF field formation mechanisms. The gyro-monotron RF field profile is essentially fixed by the resonant interaction structure, while the gyro-BWO possesses an extra degree of freedom in that the axial RF field profile is self-determined by the beam-wave interaction in a waveguide structure. The present study examines ways to utilize the latter feature for bandwidth broadening with a tapered magnetic field, while also employing a tapered waveguide to enhance the interaction efficiency. We begin with a mode competition analysis, which suggests the theoretical feasibility of broadband frequency tuning in single-mode operation. It is then shown in theory that, by controlling the RF field profile with an up- or down-tapered magnetic field, the gyro-BWO is capable of efficient operation with a much improved tunable bandwidth.

  11. Quantized phase slips with hysteresis in rotating spin-orbit-coupled Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Zhang, Chuanyi

    2017-03-01

    Recently, hysteresis has been observed experimentally in a quantized superfluid circuit [S. Eckel, J. G. Lee, F. Jendrzejewski, N. Murray, C. W. Clark, C. J. Lobb, W. D. Phillips, M. Edwards, and G. K. Campbell, Nature (London) 506, 200 (2014), 10.1038/nature12958], which is a very important step for developing atomtronic devices. Here we find that quantized phase slips occur as the angular velocity rises, and the average angular momenta are quantized at special angular velocities, immune to the nonlinear interactions. When the spin and orbital angular momentum coupling is introduced, we find that two hysteresis loops could arise for each spin, and there exists a phase slip for spin up in one loop and spin down in the other loop. At the special angular velocities, a phase slip emerges for spin down in the lower state of the loop. Especially, multistability appears if the angular velocity is located in the hysteretic region. These results can promote experimental verification and pave the way for atomtronic devices.

  12. Fill-in binary loop pulse-torque quantizer

    NASA Technical Reports Server (NTRS)

    Lory, C. B.

    1975-01-01

    Fill-in binary (FIB) loop provides constant heating of torque generator, an advantage of binary current switching. At the same time, it avoids mode-related dead zone and data delay of binary, an advantage of ternary quantization.

  13. Predictive vector quantization using a neural network approach

    NASA Astrophysics Data System (ADS)

    Mohsenian, Nader; Rizvi, Syed A.; Nasrabadi, Nasser M.

    1993-07-01

    A new predictive vector quantization (PVQ) technique capable of exploring the nonlinear dependencies in addition to the linear dependencies that exist between adjacent blocks (vectors) of pixels is introduced. The two components of the PVQ scheme, the vector predictor and the vector quantizer, are implemented by two different classes of neural networks. A multilayer perceptron is used for the predictive component and Kohonen self- organizing feature maps are used to design the codebook for the vector quantizer. The multilayer perceptron uses the nonlinearity condition associated with its processing units to perform a nonlinear vector prediction. The second component of the PVQ scheme vector quantizers the residual vector that is formed by subtracting the output of the perceptron from the original input vector. The joint-optimization task of designing the two components of the PVQ scheme is also achieved. Simulation results are presented for still images with high visual quality.

  14. Rate-of-change limiter for quantized signals

    NASA Technical Reports Server (NTRS)

    Streuding, G. C.

    1977-01-01

    Analog circuit is employed to smooth change between levels of quantized voltage signal without adversely affecting its fidelity. Circuit is applicable to units requiring interface between digital and analog systems such as automated manufacturing systems or industrial robots.

  15. Minimum uncertainty and squeezing in diffusion processes and stochastic quantization

    NASA Technical Reports Server (NTRS)

    Demartino, S.; Desiena, S.; Illuminati, Fabrizo; Vitiello, Giuseppe

    1994-01-01

    We show that uncertainty relations, as well as minimum uncertainty coherent and squeezed states, are structural properties for diffusion processes. Through Nelson stochastic quantization we derive the stochastic image of the quantum mechanical coherent and squeezed states.

  16. Ultrafast electron radiography of magnetic fields in high-intensity laser-solid interactions.

    PubMed

    Schumaker, W; Nakanii, N; McGuffey, C; Zulick, C; Chyvkov, V; Dollar, F; Habara, H; Kalintchenko, G; Maksimchuk, A; Tanaka, K A; Thomas, A G R; Yanovsky, V; Krushelnick, K

    2013-01-04

    Using electron bunches generated by laser wakefield acceleration as a probe, the temporal evolution of magnetic fields generated by a 4 × 10(19) W/cm(2) ultrashort (30 fs) laser pulse focused on solid density targets is studied experimentally. Magnetic field strengths of order B(0) ~ 10(4) T are observed expanding at close to the speed of light from the interaction point of a high-contrast laser pulse with a 10-μm-thick aluminum foil to a maximum diameter of ~1 mm. The field dynamics are shown to agree with particle-in-cell simulations.

  17. Extreme field limits in the interaction of laser light with ultrarelativistic electrons

    SciTech Connect

    Bulanov, S. V.; Esirkepov, T. Zh.; Hayashi, Y.; Kando, M.; Kiriyama, H.; Koga, J.; Kondo, K.; Kotaki, H.; Pirozhkov, A.; Bulanov, S. S.; Zhidkov, A.; Chen, P.; Neely, D.; Kato, Y.; Narozhny, N. B.; Korn, G.

    2012-07-11

    The critical electric field of quantum electrodynamics is so strong that it produces electron-positron pairs from vacuum, converting the energy of light into matter. This field has become feasible through the construction of extremely high power lasers or/and with the sophisticated use of nonlinear processes in relativistic plasmas. A feasibility of the experiments on the collision of laser light and high intensity electromagnetic pulses, generated by relativistic flying mirrors, with relativistic electrons for the studying of extreme field limits in the nonlinear interaction of electromagnetic waves is discussed.

  18. An Analysis of Perturbed Quantization Steganography in the Spatial Domain

    DTIC Science & Technology

    2005-03-01

    steganography is also common with audio [KaP00]. Figure 1 depicts this form of steganography . Figure 1. Least Significant Bit Substitution 6...QUANTIZATION STEGANOGRAPHY IN THE SPATIAL DOMAIN THESIS Matthew D. Spisak AFIT/GIA/ENG/05-04DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY ORCE...ANALYSIS OF PERTURBED QUANTIZATION STEGANOGRAPHY IN THE SPATIAL DOMAIN THESIS Presented to the Faculty Department of Electrical and

  19. Poincare invariant algebra from instant to light-front quantization

    SciTech Connect

    Ji, Chueng-Ryong; Mitchell, Chad

    2001-10-15

    We present the Poincare algebra interpolating between instant and light-front time quantizations. The angular momentum operators satisfying SU(2) algebra are constructed in an arbitrary interpolation angle and shown to be identical to the ordinary angular momentum and Leutwyler-Stern angular momentum in the instant and light-front quantization limits, respectively. The exchange of the dynamical role between the transverse angular mometum and the boost operators is manifest in our newly constructed algebra.

  20. University Students' Explanatory Models of the Interactions between Electric Charges and Magnetic Fields

    ERIC Educational Resources Information Center

    Saglam, Murat

    2010-01-01

    This study aimed to investigate the models that co-existed in students' cognitive structure to explain the interactions between electric charges and uniform magnetic fields. The sample consisted of 129 first-year civil engineering, geology and geophysics students from a large state university in western Turkey. The students answered five…

  1. Magnetic Field of a Dipole and the Dipole-Dipole Interaction

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2007-01-01

    With a data-acquisition system and sensors commercially available, it is easy to determine magnetic fields produced by permanent magnets and to study the dipole-dipole interaction for different separations and angular positions of the magnets. For sufficiently large distances, the results confirm the 1/R[superscript 3] law for the magnetic field…

  2. Interaction between Gaming and Multistage Guiding Strategies on Students' Field Trip Mobile Learning Performance and Motivation

    ERIC Educational Resources Information Center

    Chen, Chih-Hung; Liu, Guan-Zhi; Hwang, Gwo-Jen

    2016-01-01

    In this study, an integrated gaming and multistage guiding approach was proposed for conducting in-field mobile learning activities. A mobile learning system was developed based on the proposed approach. To investigate the interaction between the gaming and guiding strategies on students' learning performance and motivation, a 2 × 2 experiment was…

  3. Effects of a perpendicular magnetic field in the dipolar Heisenberg model with dominant exchange interaction.

    PubMed

    Abu-Labdeh, A M; MacIsaac, A B; De'Bell, K

    2011-07-27

    The effects of a uniform magnetic field on the phase diagram of the dipolar Heisenberg model with a dominant antiferromagnetic exchange interaction have been investigated. The model consists of a square lattice of classical spin vectors, where the spins interact through an antiferromagnetic exchange interaction of strength J and a dipole-dipole interaction of strength g. The spins couple to a magnetic surface anisotropy of strength κ and to an applied external magnetic field of strength H. The external field is applied perpendicular to the plane of the lattice. From extensive Monte Carlo simulations, representative magnetic phase diagrams have been determined as a function of the ratios κ/g and T/g, where T is temperature, and at three different ratios of H/g (H/g = 10, 20, 27). These results are compared to the previously investigated case of H/g = 0 and to analytic calculations for the ground state energies. The nature of the equilibrium phases and order of the phase boundaries separating them are considered and changes due to the strength of the applied field are highlighted.

  4. Interaction of unsteady separated flow over multi-bodies moving relatively in the same flow field

    NASA Astrophysics Data System (ADS)

    Zhou, Sheng; Zheng, Xin-qian; Hou, An-ping; Lu, Ya-jun

    2005-12-01

    Unsteady separated flow is one of research frontiers in current aerodynamic. Great accomplishments have been acquired; however, most studies are on single body in a stream, such as studies on unsteady separated flows over airfoils. There are typical cases in the nature and engineering applications, in which several interacting bodies with relative motions are within the same flow field. These interacting unsteady separated flow fields not only are closely related to the phenomena of noise and flutter induced by flows, but also have strong influences on aerodynamic performances. With axial flow compressors as background, the present paper carried out studies on 'interaction of unsteady separated flow over multi-bodies moving relatively in the same flow field'. Experiment investigations carried out in the stationary annular cascade wind tunnel and the single-stage low-speed axial flow compressor experimental facility as well as relevant CFD simulations demonstrate that under properly organized interactions between all unsteady components, the time-space structure of unsteady separated flow field can be remarkably improved and the time-averaged aerodynamic performances be significantly enhanced accordingly. The maximum reduction of the loss coefficient reached 27.4% and 76.5% in the stationary annular cascade wind tunnel and the CFD simulation for single-stage axial flow compressor, respectively.

  5. Gamma ray bursts from comet neutron star magnetosphere interaction, field twisting and E sub parallel formation

    SciTech Connect

    Colgate, S.A.

    1990-01-01

    Consider the problem of a comet in a collision trajectory with a magnetized neutron star. The question addressed in this paper is whether the comet interacts strongly enough with a magnetic field such as to capture at a large radius or whether in general the comet will escape a magnetized neutron star. 6 refs., 4 figs.

  6. Landau quantization and Fermi velocity renormalization in twisted graphene bilayers

    NASA Astrophysics Data System (ADS)

    Yin, Long-Jing; Qiao, Jia-Bin; Wang, Wen-Xiao; Zuo, Wei-Jie; Yan, Wei; Xu, Rui; Dou, Rui-Fen; Nie, Jia-Cai; He, Lin

    2015-11-01

    Currently there is a lively discussion concerning Fermi velocity renormalization in twisted bilayers and several contradicted experimental results are reported. Here we study electronic structures of the twisted bilayers by scanning tunneling microscopy (STM) and spectroscopy (STS). The interlayer coupling strengths between the adjacent bilayers are measured according to energy separations of two pronounced low-energy van Hove singularities (VHSs) in the STS spectra. We demonstrate that there is a large range of values for the interlayer interaction not only in different twisted bilayers, but also in twisted bilayers with the same rotation angle. Below the VHSs, the observed Landau quantization in the twisted bilayers is identical to that of massless Dirac fermions in graphene monolayer, which allows us to measure the Fermi velocity directly. Our result indicates that the Fermi velocity of the twisted bilayers depends remarkably on both the twisted angles and the interlayer coupling strengths. This removes the discrepancy about the Fermi velocity renormalization in the twisted bilayers and provides a consistent interpretation of all current data.

  7. High Power Laser-Plasma Interaction under a Strong Magnetic Field

    NASA Astrophysics Data System (ADS)

    Sano, Takayoshi; Tanaka, Yuki; Yamaguchi, Tomohito; Murakami, Masakatsu; Iwata, Natsumi; Hata, Masayasu; Mima, Kunioki

    2016-10-01

    We investigate laser-plasma interactions under a strong magnetic field by one-dimensional Particle-in-Cell (PIC) simulations. A simple setup is considered in our analysis, in which a thin foil is irradiated by a right-handed circularly polarized laser. A uniform magnetic field is assumed in the direction of the laser propagation. Then the whistler wave can penetrate the overdense plasma when the external field is larger than the critical field strength Bc =meω0 / e . In this situation, key parameters of the system are the plasma density and the size of the external field. We performed various models in the density-field strength diagram, which is actually the so-called CMA diagram, to evaluate the efficiency of the energy conversion from the laser to plasma and the reflectivity and transmittance of the laser. It is found that there are two important processes in the interaction between the whistler wave and overdense plasma, which are the cyclotron resonance of relativistic electrons and the parametric (Brillouin) instability. Because of the high temperature of electrons, ions can be accelerated dramatically by a large sheath field at the target surface.

  8. The application of light-cone quantization to quantum chromodynamics in one-plus-one dimensions

    SciTech Connect

    Hornbostel, K.J.

    1988-12-01

    Formal and computational aspects of light cone quantization are studied by application to quantum chromodynamics (QCD) in one spatial plus one temporal dimension. This quantization scheme, which has been extensively applied to perturbative calculations, is shown to provide an intuitively appealing and numerically tractable approach to non-perturbative computations as well. In the initial section, a light-cone quantization procedure is developed which incorporates fields on the boundaries. This allows for the consistent treatment of massless fermions and the construction of explicitly conserved momentum and charge operators. The next section, which comprises the majority of this work, focuses on the numerical solution of the light-cone Schrodinger equation for bound states. The state space is constructed and the Hamiltonian is evaluated and diagonalized by computer for arbitrary number of colors, baryon number and coupling constant strength. As a result, the full spectrum of mesons and baryons and their associated wavefunctions are determined. These results are compared with those which exist from other approaches to test the reliability of the method. The program also provides a preliminary test for the feasibility of, and an opportunity to develop approximation schemes for, an attack on three-plus-one dimensional QCD. Finally, analytic results are presented which include a discussion of integral equations for wavefunctions and their endpoint behavior. Solutions for hadronic masses and wavefunctions in the limits of both large and small quark mass are discussed. 49 refs., 32 figs., 10 tabs.

  9. Minimum distortion quantizer for fixed-rate 64-subband video coding

    NASA Astrophysics Data System (ADS)

    Alparone, Luciano; Andreadis, Alessandro; Argenti, Fabrizio; Benelli, Giuliano; Garzelli, Andrea; Tarchi, A.

    1995-02-01

    A motion-compensated sub-band coding (SBC) scheme for video signals, featuring fixed-rate and optimum quantizer, is presented. Block matching algorithm provides a suitable inter-frame prediction, and a 64 sub-band decomposition allows a high decorrelation of the motion- compensated difference field. The main drawback is that sub-bands containing sparse data of different statistics are produced, thus requiring run-length (RL) and variable length coding (VLC) for best performance. However, most digital communication channels operate at constant bit-rate (BR); hence, fixed-rate video coding is the main goal, in order to reduce buffering delays. The approach followed in this work is modeling the subbands as independent memoryless sources with generalized Gaussian PDFs and designing optimum uniform quantizers with the goal of minimizing distortion after a BR value, also accounting for the entropy of the RLs of zero/nonzero coefficients, has been specified. The problem is stated in terms of entropy allocation among sub-bands minimizing the overall distortion, analogously to optimal distortion allocation when fixed quality is requested. The constrained minimum is found by means of Lagrange multipliers, once the parametric PDFs have been assessed from true TV sequences. This procedure provides the optimum step for uniform quantization of each sub-band, thus leading to discarding some of the least significant ones.

  10. Analytical solutions in rotating linear dilaton black holes: Resonant frequencies, quantization, greybody factor, and Hawking radiation

    NASA Astrophysics Data System (ADS)

    Sakalli, I.

    2016-10-01

    Charged massive scalar field perturbations are studied in the gravitational, electromagnetic, dilaton, and axion fields of rotating linear dilaton black holes. In this geometry, we separate the covariant Klein-Gordon equation into radial and angular parts and obtain the exact solutions of both the equations in terms of the confluent Heun functions. Using the radial solution, we study the problems of resonant frequencies, entropy/area quantization, and greybody factor. We also analyze the behavior of the wave solutions near the event horizon of the rotating linear dilaton black hole and derive its Hawking temperature via the Damour-Ruffini-Sannan method.

  11. Some statistical properties of the interaction between a two-level atom and three field modes

    NASA Astrophysics Data System (ADS)

    Sebawe Abdalla, M.; Ahmed, M. M. A.; S-F Obada, A.

    2015-06-01

    We consider the interaction between a two-level atom and a quantum system that consists of three electromagnetic fields. An analytic solution is provided for the wave function of a pairwise mutual interaction between a two-level atom and three modes using a frequency converter. SU(2) group generators are used to describe these field mode interactions. In addition, a canonical transformation is employed in order to convert the Hamiltonian model into a Jaynes-Cumming-like model, which is used to solve the Schrödinger equation. Statistical properties related to the atomic inversion, entanglement, and squeezing phenomena are discussed. Superstructure patterns and partial disentanglement, as well as squeezing swapping between quadratures, are displayed for selected parameters.

  12. Resonance tuning due to Coulomb interaction in strong near-field coupled metamaterials

    SciTech Connect

    Roy Chowdhury, Dibakar; Xu, Ningning; Zhang, Weili; Singh, Ranjan

    2015-07-14

    Coulomb's law is one of the most fundamental laws of physics that describes the electrostatic interaction between two like or unlike point charges. Here, we experimentally observe a strong effect of Coulomb interaction in tightly coupled terahertz metamaterials where the split-ring resonator dimers in a unit cell are coupled through their near fields across the capacitive split gaps. Using a simple analytical model, we evaluated the Coulomb parameter that switched its sign from negative to positive values indicating the transition in the nature of Coulomb force from being repulsive to attractive depending upon the near field coupling between the split ring resonators. Apart from showing interesting effects in the strong coupling regime between meta-atoms, Coulomb interaction also allows an additional degree of freedom to achieve frequency tunable dynamic metamaterials.

  13. Cellular and molecular pathways of extremely-low-frequency electromagnetic field interactions with living systems

    SciTech Connect

    Tenforde, T.S.

    1992-06-01

    There is growing evidence that environmental electric and magnetic fields in the extremely-low-frequency (ELF) band below 300 Hz can influence biological functions by mechanisms that are only poorly understood at the present time. The primary objectives of this paper are to review the physical properties of ELF fields, their interactions with living systems at the tissue, cellular, and subcellular levels, and the key role of cell membranes ;in the transduction of signals from imposed ELF fields. Topics of discussion include signal-to-noise ratios for single cells and cell aggregates, resonance phenomena involving a combination of static and ELF magnetic fields, and the possible influence of ELF fields on molecular signaling pathways that involve membrane receptors and cytoplasmic second messengers.

  14. A model for massless higher spin field interacting with a geometrical background

    NASA Astrophysics Data System (ADS)

    Bandelloni, Giuseppe

    2015-04-01

    We study a very general four-dimensional field theory model describing the dynamics of a massless higher spin N symmetric tensor field particle interacting with a geometrical background. This model is invariant under the action of an extended linear diffeomorphism. We investigate the consistency of the equations of motion, and the highest spin degrees of freedom are extracted by means of a set of covariant constraints. Moreover, the highest spin equations of motions (and in general all the highest spin field 1-PI irreducible Green functions) are invariant under a chain of transformations induced by a set of N - 2 Ward operators, while the auxiliary fields equations of motion spoil this symmetry. The first steps to a quantum extension of the model are discussed on the basis of the algebraic field theory. Technical aspects are reported in Appendices, in particular, one of them is devoted to illustrate the spin-2 case.

  15. Physics of Gravitational Interaction: Geometry of Space or Quantum Field in Space

    NASA Astrophysics Data System (ADS)

    Baryshev, Yurij

    2006-03-01

    Thirring-Feynman's tensor field approach to gravitation opens new understanding on the physics of gravitational interaction and stimulates novel experiments on the nature of gravity. According to Field Gravity, the universal gravity force is caused by exchange of gravitons - the quanta of gravity field. Energy of this field is well-defined and excludes the singularity. All classical relativistic effects are the same as in General Relativity. The intrinsic scalar (spin 0) part of gravity field corresponds to ``antigravity'' and only together with the pure tensor (spin 2) part gives the usual Newtonian force. Laboratory and astrophysical experiments which may test the predictions of FG, will be performed in near future. In particular, observations at gravity observatories with bar and interferometric detectors, like Explorer, Nautilus, LIGO and VIRGO, will check the predicted scalar gravitational waves from supernova explosions. New types of cosmological models in Minkowski space are possible too.

  16. Depth-tunable three-dimensional display with interactive light field control

    NASA Astrophysics Data System (ADS)

    Xie, Songlin; Wang, Peng; Sang, Xinzhu; Li, Chenyu; Dou, Wenhua; Xiao, Liquan

    2016-07-01

    A software-defined depth-tunable three-dimensional (3D) display with interactive 3D depth control is presented. With the proposed post-processing system, the disparity of the multi-view media can be freely adjusted. Benefiting from a wealth of information inherently contains in dense multi-view images captured with parallel arrangement camera array, the 3D light field is built and the light field structure is controlled to adjust the disparity without additional acquired depth information since the light field structure itself contains depth information. A statistical analysis based on the least square is carried out to extract the depth information inherently exists in the light field structure and the accurate depth information can be used to re-parameterize light fields for the autostereoscopic display, and a smooth motion parallax can be guaranteed. Experimental results show that the system is convenient and effective to adjust the 3D scene performance in the 3D display.

  17. Zonal Flow Magnetic Field Interaction in the Semi-Conducting Region of Giant Planets

    NASA Astrophysics Data System (ADS)

    Cao, Hao; Stevenson, David J.

    2016-10-01

    All four giant planets in the Solar System feature zonal flows on the order of 100 m/s in the cloud deck, and large-scale intrinsic magnetic fields on the order of 1 Gauss near the surface. The vertical structure of the zonal flows remains obscure. The end-member scenarios are shallow flows confined in the radiative atmosphere and deep flows throughout the planet with constant velocity along the direction of the spin-axis. The electrical conductivity increases smoothly as a function of depth inside Jupiter and Saturn, while a discontinuity of electrical conductivity inside Uranus and Neptune cannot be ruled out. Deep zonal flows will inevitably interact with the magnetic field, at depth with even modest electrical conductivity. Here we investigate the interaction between zonal flows and magnetic fields in the semi-conducting region of giant planets. Employing mean-field electrodynamics, we show that the interaction will generate detectable poloidal magnetic field perturbations spatially correlated with the deep zonal flows. Assuming the peak amplitude of the dynamo α-effect to be 0.1 mm/s, deep zonal flows on the order of 0.1 - 1 m/s in the semi-conducting region of Jupiter and Saturn would generate poloidal magnetic perturbations on the order of 0.01 % - 1 % of the background dipole field. These poloidal perturbations should be detectable with the in-situ magnetic field measurements from the upcoming Juno mission and the Cassini Grand Finale. This implies that magnetic field measurements can be employed to constrain the properties of deep zonal flows in the semi-conducting region of giant planets.

  18. Anomalous self-generated electrostatic fields in nanosecond laser-plasma interaction

    SciTech Connect

    Lancia, L.; Antici, P.; Grech, M.; Weber, S.; Marques, J.-R.; Romagnani, L.; Bourgeois, N.; Audebert, P.; Fuchs, J.; Nakatsutsumi, M.; Bellue, A.; Feugeas, J.-L.; Nicolaie, Ph.; Tikhonchuk, V. T.; Grismayer, T.; Lin, T.; Nkonga, B.; Kodama, R.

    2011-03-15

    Electrostatic (E) fields associated with the interaction of a well-controlled, high-power, nanosecond laser pulse with an underdense plasma are diagnosed by proton radiography. Using a current three-dimensional wave propagation code equipped with nonlinear and nonlocal hydrodynamics, we can model the measured E-fields that are driven by the laser ponderomotive force in the region where the laser undergoes filamentation. However, strong fields of up to 110 MV/m measured in the first millimeter of propagation cannot be reproduced in the simulations. This could point to the presence of unexpected strong thermal electron pressure gradients possibly linked to ion acoustic turbulence, thus emphasizing the need for the development of full kinetic collisional simulations in order to properly model laser-plasma interaction in these strongly nonlinear conditions.

  19. Nonlinear interaction of tearing modes: a comparison between the tokamak and the reversed field pinch configurations

    SciTech Connect

    Holmes, J.A.; Carreras, B.A.; Hender, T.C.; Hicks, H.R.; Lynch, V.E.; An, Z.G.; Diamond, P.H.

    1984-04-01

    The multiple helicity nonlinear interaction of resistive tearing modes is compared for the tokamak and reversed field pinch configurations using the magnetohydrodynamic equations. Unlike the case of the tokamak disruption, for which this interaction is destabilizing when islands overlap, the nonlinear coupling of the dominant helicities is shown to be a stabilizing influence in the reversed field pinch. The behavior of the coupled instabilities in the two configurations can be understood as a consequence of the stability properties of the nonlinearly driven modes. In the case of the tokamak disruption, quasi-linear effects linearly destabilize the dominant driven mode, which then feeds energy to the driving mode. For the reversed field pinch the driven modes remain stable, acting as a brake on the growth of the dominant instabilities than was observed in single helicity studies.

  20. Wheeler-DeWitt quantization and singularities

    NASA Astrophysics Data System (ADS)

    Falciano, F. T.; Pinto-Neto, N.; Struyve, W.

    2015-02-01

    We consider a Bohmian approach to the Wheeler-DeWitt quantization of the Friedmann-Lemaître-Robertson-Walker model and investigate the question of whether or not there are singularities, in the sense that the Universe reaches zero volume. We find that for generic wave functions (i.e., nonclassical wave functions), there is a nonzero probability for a trajectory to be nonsingular. This should be contrasted to the consistent histories approach for which it was recently shown by Craig and Singh that there is always a singularity. This result illustrates that the question of singularities depends much on which version of quantum theory one adopts. This was already pointed out by Pinto-Neto et al., albeit with a different Bohmian approach. Our current Bohmian approach agrees with the consistent histories approach by Craig and Singh for single-time histories, unlike the one studied earlier by Pinto-Neto et al. Although the trajectories are usually different in the two Bohmian approaches, their qualitative behavior is the same for generic wave functions.