Electrical and thermal conductance quantization in nanostructures
NASA Astrophysics Data System (ADS)
Nawrocki, Waldemar
2008-10-01
In the paper problems of electron transport in mesoscopic structures and nanostructures are considered. The electrical conductance of nanowires was measured in a simple experimental system. Investigations have been performed in air at room temperature measuring the conductance between two vibrating metal wires with standard oscilloscope. Conductance quantization in units of G0 = 2e2/h = (12.9 kΩ)-1 up to five quanta of conductance has been observed for nanowires formed in many metals. The explanation of this universal phenomena is the formation of a nanometer-sized wire (nanowire) between macroscopic metallic contacts which induced, due to theory proposed by Landauer, the quantization of conductance. Thermal problems in nanowires are also discussed in the paper.
Quantum Computing and Second Quantization
Makaruk, Hanna Ewa
2017-02-10
Quantum computers are by their nature many particle quantum systems. Both the many-particle arrangement and being quantum are necessary for the existence of the entangled states, which are responsible for the parallelism of the quantum computers. Second quantization is a very important approximate method of describing such systems. This lecture will present the general idea of the second quantization, and discuss shortly some of the most important formulations of second quantization.
Quantum Computing and Second Quantization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makaruk, Hanna Ewa
Quantum computers are by their nature many particle quantum systems. Both the many-particle arrangement and being quantum are necessary for the existence of the entangled states, which are responsible for the parallelism of the quantum computers. Second quantization is a very important approximate method of describing such systems. This lecture will present the general idea of the second quantization, and discuss shortly some of the most important formulations of second quantization.
There are many ways to spin a photon: Half-quantization of a total optical angular momentum
Ballantine, Kyle E.; Donegan, John F.; Eastham, Paul R.
2016-01-01
The angular momentum of light plays an important role in many areas, from optical trapping to quantum information. In the usual three-dimensional setting, the angular momentum quantum numbers of the photon are integers, in units of the Planck constant ħ. We show that, in reduced dimensions, photons can have a half-integer total angular momentum. We identify a new form of total angular momentum, carried by beams of light, comprising an unequal mixture of spin and orbital contributions. We demonstrate the half-integer quantization of this total angular momentum using noise measurements. We conclude that for light, as is known for electrons, reduced dimensionality allows new forms of quantization. PMID:28861467
NASA Astrophysics Data System (ADS)
Pokatilov, E. P.; Nika, D. L.; Askerov, A. S.; Zincenco, N. D.; Balandin, A. A.
2007-12-01
nanometer scale thickness by taking into account multiple quantized electron subbands and the confined optical phonon dispersion. It was shown that the inter-subband electronic transitions play an important role in limiting the electron mobility in the heterostructures when the energy separation between one of the size-quantized excited electron subbands and the Fermi energy becomes comparable to the optical phonon energy. The latter leads to the oscillatory dependence of the electron mobility on the thickness of the heterostructure conduction channel layer. This effect is observable at room temperature and over a wide range of the carrier densities. The developed formalism and calculation procedure are readily applicable to other material systems. The described effect can be used for fine-tuning the confined electron and phonon states in the nanoscale heterostructures in order to achieve performance enhancement of the nanoscale electronic and optoelectronic devices.
Landau quantization of Dirac fermions in graphene and its multilayers
NASA Astrophysics Data System (ADS)
Yin, Long-Jing; Bai, Ke-Ke; Wang, Wen-Xiao; Li, Si-Yu; Zhang, Yu; He, Lin
2017-08-01
When electrons are confined in a two-dimensional (2D) system, typical quantum-mechanical phenomena such as Landau quantization can be detected. Graphene systems, including the single atomic layer and few-layer stacked crystals, are ideal 2D materials for studying a variety of quantum-mechanical problems. In this article, we review the experimental progress in the unusual Landau quantized behaviors of Dirac fermions in monolayer and multilayer graphene by using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). Through STS measurement of the strong magnetic fields, distinct Landau-level spectra and rich level-splitting phenomena are observed in different graphene layers. These unique properties provide an effective method for identifying the number of layers, as well as the stacking orders, and investigating the fundamentally physical phenomena of graphene. Moreover, in the presence of a strain and charged defects, the Landau quantization of graphene can be significantly modified, leading to unusual spectroscopic and electronic properties.
Controlling charge quantization with quantum fluctuations.
Jezouin, S; Iftikhar, Z; Anthore, A; Parmentier, F D; Gennser, U; Cavanna, A; Ouerghi, A; Levkivskyi, I P; Idrisov, E; Sukhorukov, E V; Glazman, L I; Pierre, F
2016-08-04
In 1909, Millikan showed that the charge of electrically isolated systems is quantized in units of the elementary electron charge e. Today, the persistence of charge quantization in small, weakly connected conductors allows for circuits in which single electrons are manipulated, with applications in, for example, metrology, detectors and thermometry. However, as the connection strength is increased, the discreteness of charge is progressively reduced by quantum fluctuations. Here we report the full quantum control and characterization of charge quantization. By using semiconductor-based tunable elemental conduction channels to connect a micrometre-scale metallic island to a circuit, we explore the complete evolution of charge quantization while scanning the entire range of connection strengths, from a very weak (tunnel) to a perfect (ballistic) contact. We observe, when approaching the ballistic limit, that charge quantization is destroyed by quantum fluctuations, and scales as the square root of the residual probability for an electron to be reflected across the quantum channel; this scaling also applies beyond the different regimes of connection strength currently accessible to theory. At increased temperatures, the thermal fluctuations result in an exponential suppression of charge quantization and in a universal square-root scaling, valid for all connection strengths, in agreement with expectations. Besides being pertinent for the improvement of single-electron circuits and their applications, and for the metal-semiconductor hybrids relevant to topological quantum computing, knowledge of the quantum laws of electricity will be essential for the quantum engineering of future nanoelectronic devices.
Spectroscopic signatures of localization with interacting photons in superconducting qubits
NASA Astrophysics Data System (ADS)
Roushan, P.; Neill, C.; Tangpanitanon, J.; Bastidas, V. M.; Megrant, A.; Barends, R.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Fowler, A.; Foxen, B.; Giustina, M.; Jeffrey, E.; Kelly, J.; Lucero, E.; Mutus, J.; Neeley, M.; Quintana, C.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T.; Neven, H.; Angelakis, D. G.; Martinis, J.
2017-12-01
Quantized eigenenergies and their associated wave functions provide extensive information for predicting the physics of quantum many-body systems. Using a chain of nine superconducting qubits, we implement a technique for resolving the energy levels of interacting photons. We benchmark this method by capturing the main features of the intricate energy spectrum predicted for two-dimensional electrons in a magnetic field—the Hofstadter butterfly. We introduce disorder to study the statistics of the energy levels of the system as it undergoes the transition from a thermalized to a localized phase. Our work introduces a many-body spectroscopy technique to study quantum phases of matter.
The uniform quantized electron gas revisited
NASA Astrophysics Data System (ADS)
Lomba, Enrique; Høye, Johan S.
2017-11-01
In this article we continue and extend our recent work on the correlation energy of the quantized electron gas of uniform density at temperature T=0 . As before, we utilize the methods, properties, and results obtained by means of classical statistical mechanics. These were extended to quantized systems via the Feynman path integral formalism. The latter translates the quantum problem into a classical polymer problem in four dimensions. Again, the well known RPA (random phase approximation) is recovered as a basic result which we then modify and improve upon. Here we analyze the condition of thermodynamic self-consistency. Our numerical calculations exhibit a remarkable agreement with well known results of a standard parameterization of Monte Carlo correlation energies.
Quantum transport in graphene Hall bars: Effects of side gates
NASA Astrophysics Data System (ADS)
Petrović, M. D.; Peeters, F. M.
2017-05-01
Quantum electron transport in side-gated graphene Hall bars is investigated in the presence of quantizing external magnetic fields. The asymmetric potential of four side-gates distorts the otherwise flat bands of the relativistic Landau levels, and creates new propagating states in the Landau spectrum (i.e. snake states). The existence of these new states leads to an interesting modification of the bend and Hall resistances, with new quantizing plateaus appearing in close proximity of the Landau levels. The electron guiding in this system can be understood by studying the current density profiles of the incoming and outgoing modes. From the fact that guided electrons fully transmit without any backscattering (similarly to edge states), we are able to analytically predict the values of the quantized resistances, and they match the resistance data we obtain with our numerical (tight-binding) method. These insights in the electron guiding will be useful in predicting the resistances for other side-gate configurations, and possibly in other system geometries, as long as there is no backscattering of the guided states.
NASA Astrophysics Data System (ADS)
Villa, Carlos; Kumavor, Patrick; Donkor, Eric
2008-04-01
Photonics Analog-to-Digital Converters (ADCs) utilize a train of optical pulses to sample an electrical input waveform applied to an electrooptic modulator or a reverse biased photodiode. In the former, the resulting train of amplitude-modulated optical pulses is detected (converter to electrical) and quantized using a conversional electronics ADC- as at present there are no practical, cost-effective optical quantizers available with performance that rival electronic quantizers. In the latter, the electrical samples are directly quantized by the electronics ADC. In both cases however, the sampling rate is limited by the speed with which the electronics ADC can quantize the electrical samples. One way to increase the sampling rate by a factor N is by using the time-interleaved technique which consists of a parallel array of N electrical ADC converters, which have the same sampling rate but different sampling phase. Each operating at a quantization rate of fs/N where fs is the aggregated sampling rate. In a system with no real-time operation, the N channels digital outputs are stored in memory, and then aggregated (multiplexed) to obtain the digital representation of the analog input waveform. Alternatively, for real-time operation systems the reduction of storing time in the multiplexing process is desired to improve the time response of the ADC. The complete elimination of memories come expenses of concurrent timing and synchronization in the aggregation of the digital signal that became critical for a good digital representation of the analog signal waveform. In this paper we propose and demonstrate a novel optically synchronized encoder and multiplexer scheme for interleaved photonics ADCs that utilize the N optical signals used to sample different phases of an analog input signal to synchronize the multiplexing of the resulting N digital output channels in a single digital output port. As a proof of concept, four 320 Megasamples/sec 12-bit of resolution digital signals were multiplexed to form an aggregated 1.28 Gigasamples/sec single digital output signal.
NASA Astrophysics Data System (ADS)
Bonilla, L. L.; Carretero, M.; Segura, A.
2017-12-01
When quantized, traces of classically chaotic single-particle systems include eigenvalue statistics and scars in eigenfuntions. Since 2001, many theoretical and experimental works have argued that classically chaotic single-electron dynamics influences and controls collective electron transport. For transport in semiconductor superlattices under tilted magnetic and electric fields, these theories rely on a reduction to a one-dimensional self-consistent drift model. A two-dimensional theory based on self-consistent Boltzmann transport does not support that single-electron chaos influences collective transport. This theory agrees with existing experimental evidence of current self-oscillations, predicts spontaneous collective chaos via a period doubling scenario, and could be tested unambiguously by measuring the electric potential inside the superlattice under a tilted magnetic field.
Bonilla, L L; Carretero, M; Segura, A
2017-12-01
When quantized, traces of classically chaotic single-particle systems include eigenvalue statistics and scars in eigenfuntions. Since 2001, many theoretical and experimental works have argued that classically chaotic single-electron dynamics influences and controls collective electron transport. For transport in semiconductor superlattices under tilted magnetic and electric fields, these theories rely on a reduction to a one-dimensional self-consistent drift model. A two-dimensional theory based on self-consistent Boltzmann transport does not support that single-electron chaos influences collective transport. This theory agrees with existing experimental evidence of current self-oscillations, predicts spontaneous collective chaos via a period doubling scenario, and could be tested unambiguously by measuring the electric potential inside the superlattice under a tilted magnetic field.
Berggren, K.-F.; Pepper, M.
2010-01-01
In this article, we present a summary of the current status of the study of the transport of electrons confined to one dimension in very low disorder GaAs–AlGaAs heterostructures. By means of suitably located gates and application of a voltage to ‘electrostatically squeeze’ the electronic wave functions, it is possible to produce a controllable size quantization and a transition from two-dimensional transport. If the length of the electron channel is sufficiently short, then transport is ballistic and the quantized subbands each have a conductance equal to the fundamental quantum value 2e2/h, where the factor of 2 arises from the spin degeneracy. This mode of conduction is discussed, and it is shown that a number of many-body effects can be observed. These effects are discussed as in the spin-incoherent regime, which is entered when the separation of the electrons is increased and the exchange energy is less than kT. Finally, results are presented in the regime where the confinement potential is decreased and the electron configuration relaxes to minimize the electron–electron repulsion to move towards a two-dimensional array. It is shown that the ground state is no longer a line determined by the size quantization alone, but becomes two distinct rows arising from minimization of the electrostatic energy and is the precursor of a two-dimensional Wigner lattice. PMID:20123751
Correlated Light-Matter Interactions in Cavity QED
NASA Astrophysics Data System (ADS)
Flick, Johannes; Pellegrini, Camilla; Ruggenthaler, Michael; Appel, Heiko; Tokatly, Ilya; Rubio, Angel
2015-03-01
In the last decade, time-dependent density functional theory (TDDFT) has been successfully applied to a large variety of problems, such as calculations of absorption spectra, excitation energies, or dynamics in strong laser fields. Recently, we have generalized TDDFT to also describe electron-photon systems (QED-TDDFT). Here, matter and light are treated on an equal quantized footing. In this work, we present the first numerical calculations in the framework of QED-TDDFT. We show exact solutions for fully quantized prototype systems consisting of atoms or molecules placed in optical high-Q cavities and coupled to quantized electromagnetic modes. We focus on the electron-photon exchange-correlation (xc) contribution by calculating exact Kohn-Sham potentials using fixed-point inversions and present the performance of the first approximated xc-potential based on an optimized effective potential (OEP) approach. Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, and Fritz-Haber-Institut der MPG, Berlin
Uniform quantized electron gas
NASA Astrophysics Data System (ADS)
Høye, Johan S.; Lomba, Enrique
2016-10-01
In this work we study the correlation energy of the quantized electron gas of uniform density at temperature T = 0. To do so we utilize methods from classical statistical mechanics. The basis for this is the Feynman path integral for the partition function of quantized systems. With this representation the quantum mechanical problem can be interpreted as, and is equivalent to, a classical polymer problem in four dimensions where the fourth dimension is imaginary time. Thus methods, results, and properties obtained in the statistical mechanics of classical fluids can be utilized. From this viewpoint we recover the well known RPA (random phase approximation). Then to improve it we modify the RPA by requiring the corresponding correlation function to be such that electrons with equal spins can not be on the same position. Numerical evaluations are compared with well known results of a standard parameterization of Monte Carlo correlation energies.
Electron Transport In Nanowires - An Engineer'S View
NASA Astrophysics Data System (ADS)
Nawrocki, W.
In the paper technological problems connected to electron transport in mesoscopic- and nanostructures are considered. The electrical conductance of nanowires formed by metallic contacts in an experimental setup proposed by Costa-Kramer et al. The investigation has been performed in air at room temperature measuring the conductance between two vibrating metal wires with standard oscilloscope. Conductance quantization in units of G o = 2e /h = (12.9 kΩ)-1 up to five quanta of conductance has been observed for nanowires formed in many metals. The explanation of this universal phenomena is the formation of a nanometer-sized wire (nanowire) between macroscopic metallic contacts which induced, due to theory proposed by Landauer, the quantization of conductance. Thermal problems in nanowirese are also discussed in the paper.
Hadron Spectra, Decays and Scattering Properties Within Basis Light Front Quantization
NASA Astrophysics Data System (ADS)
Vary, James P.; Adhikari, Lekha; Chen, Guangyao; Jia, Shaoyang; Li, Meijian; Li, Yang; Maris, Pieter; Qian, Wenyang; Spence, John R.; Tang, Shuo; Tuchin, Kirill; Yu, Anji; Zhao, Xingbo
2018-07-01
We survey recent progress in calculating properties of the electron and hadrons within the basis light front quantization (BLFQ) approach. We include applications to electromagnetic and strong scattering processes in relativistic heavy ion collisions. We present an initial investigation into the glueball states by applying BLFQ with multigluon sectors, introducing future research possibilities on multi-quark and multi-gluon systems.
An incompressible state of a photo-excited electron gas
Chepelianskii, Alexei D.; Watanabe, Masamitsu; Nasyedkin, Kostyantyn; Kono, Kimitoshi; Konstantinov, Denis
2015-01-01
Two-dimensional electrons in a magnetic field can form new states of matter characterized by topological properties and strong electronic correlations as displayed in the integer and fractional quantum Hall states. In these states, the electron liquid displays several spectacular characteristics, which manifest themselves in transport experiments with the quantization of the Hall resistance and a vanishing longitudinal conductivity or in thermodynamic equilibrium when the electron fluid becomes incompressible. Several experiments have reported that dissipationless transport can be achieved even at weak, non-quantizing magnetic fields when the electrons absorb photons at specific energies related to their cyclotron frequency. Here we perform compressibility measurements on electrons on liquid helium demonstrating the formation of an incompressible electronic state under these resonant excitation conditions. This new state provides a striking example of irradiation-induced self-organization in a quantum system. PMID:26007282
Quantized impedance dealing with the damping behavior of the one-dimensional oscillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jinghao; Zhang, Jing; Li, Yuan
2015-11-15
A quantized impedance is proposed to theoretically establish the relationship between the atomic eigenfrequency and the intrinsic frequency of the one-dimensional oscillator in this paper. The classical oscillator is modified by the idea that the electron transition is treated as a charge-discharge process of a suggested capacitor with the capacitive energy equal to the energy level difference of the jumping electron. The quantized capacitance of the impedance interacting with the jumping electron can lead the resonant frequency of the oscillator to the same as the atomic eigenfrequency. The quantized resistance reflects that the damping coefficient of the oscillator is themore » mean collision frequency of the transition electron. In addition, the first and third order electric susceptibilities based on the oscillator are accordingly quantized. Our simulation of the hydrogen atom emission spectrum based on the proposed method agrees well with the experimental one. Our results exhibits that the one-dimensional oscillator with the quantized impedance may become useful in the estimations of the refractive index and one- or multi-photon absorption coefficients of some nonmagnetic media composed of hydrogen-like atoms.« less
Quantized impedance dealing with the damping behavior of the one-dimensional oscillator
NASA Astrophysics Data System (ADS)
Zhu, Jinghao; Zhang, Jing; Li, Yuan; Zhang, Yong; Fang, Zhengji; Zhao, Peide; Li, Erping
2015-11-01
A quantized impedance is proposed to theoretically establish the relationship between the atomic eigenfrequency and the intrinsic frequency of the one-dimensional oscillator in this paper. The classical oscillator is modified by the idea that the electron transition is treated as a charge-discharge process of a suggested capacitor with the capacitive energy equal to the energy level difference of the jumping electron. The quantized capacitance of the impedance interacting with the jumping electron can lead the resonant frequency of the oscillator to the same as the atomic eigenfrequency. The quantized resistance reflects that the damping coefficient of the oscillator is the mean collision frequency of the transition electron. In addition, the first and third order electric susceptibilities based on the oscillator are accordingly quantized. Our simulation of the hydrogen atom emission spectrum based on the proposed method agrees well with the experimental one. Our results exhibits that the one-dimensional oscillator with the quantized impedance may become useful in the estimations of the refractive index and one- or multi-photon absorption coefficients of some nonmagnetic media composed of hydrogen-like atoms.
NASA Astrophysics Data System (ADS)
Mezey, Paul G.
2017-11-01
Two strongly related theorems on non-degenerate ground state electron densities serve as the basis of "Molecular Informatics". The Hohenberg-Kohn theorem is a statement on global molecular information, ensuring that the complete electron density contains the complete molecular information. However, the Holographic Electron Density Theorem states more: the local information present in each and every positive volume density fragment is already complete: the information in the fragment is equivalent to the complete molecular information. In other words, the complete molecular information provided by the Hohenberg-Kohn Theorem is already provided, in full, by any positive volume, otherwise arbitrarily small electron density fragment. In this contribution some of the consequences of the Holographic Electron Density Theorem are discussed within the framework of the "Nuclear Charge Space" and the Universal Molecule Model. In the Nuclear Charge Space" the nuclear charges are regarded as continuous variables, and in the more general Universal Molecule Model some other quantized parameteres are also allowed to become "de-quantized and then re-quantized, leading to interrelations among real molecules through abstract molecules. Here the specific role of the Holographic Electron Density Theorem is discussed within the above context.
Landau quantization effects on hole-acoustic instability in semiconductor plasmas
NASA Astrophysics Data System (ADS)
Sumera, P.; Rasheed, A.; Jamil, M.; Siddique, M.; Areeb, F.
2017-12-01
The growth rate of the hole acoustic waves (HAWs) exciting in magnetized semiconductor quantum plasma pumped by the electron beam has been investigated. The instability of the waves contains quantum effects including the exchange and correlation potential, Bohm potential, Fermi-degenerate pressure, and the magnetic quantization of semiconductor plasma species. The effects of various plasma parameters, which include relative concentration of plasma particles, beam electron temperature, beam speed, plasma temperature (temperature of electrons/holes), and Landau electron orbital magnetic quantization parameter η, on the growth rate of HAWs, have been discussed. The numerical study of our model of acoustic waves has been applied, as an example, to the GaAs semiconductor exposed to electron beam in the magnetic field environment. An increment in either the concentration of the semiconductor electrons or the speed of beam electrons, in the presence of magnetic quantization of fermion orbital motion, enhances remarkably the growth rate of the HAWs. Although the growth rate of the waves reduces with a rise in the thermal temperature of plasma species, at a particular temperature, we receive a higher instability due to the contribution of magnetic quantization of fermions to it.
Can one ADM quantize relativistic bosonicstrings and membranes?
NASA Astrophysics Data System (ADS)
Moncrief, Vincent
2006-04-01
The standard methods for quantizing relativistic strings diverge significantly from the Dirac-Wheeler-DeWitt program for quantization of generally covariant systems and one wonders whether the latter could be successfully implemented as an alternative to the former. As a first step in this direction, we consider the possibility of quantizing strings (and also relativistic membranes) via a partially gauge-fixed ADM (Arnowitt, Deser and Misner) formulation of the reduced field equations for these systems. By exploiting some (Euclidean signature) Hamilton-Jacobi techniques that Mike Ryan and I had developed previously for the quantization of Bianchi IX cosmological models, I show how to construct Diff( S 1)-invariant (or Diff(Σ)-invariant in the case of membranes) ground state wave functionals for the cases of co-dimension one strings and membranes embedded in Minkowski spacetime. I also show that the reduced Hamiltonian density operators for these systems weakly commute when applied to physical (i.e. Diff( S 1) or Diff(Σ)-invariant) states. While many open questions remain, these preliminary results seem to encourage further research along the same lines.
Modeling and analysis of energy quantization effects on single electron inverter performance
NASA Astrophysics Data System (ADS)
Dan, Surya Shankar; Mahapatra, Santanu
2009-08-01
In this paper, for the first time, the effects of energy quantization on single electron transistor (SET) inverter performance are analyzed through analytical modeling and Monte Carlo simulations. It is shown that energy quantization mainly changes the Coulomb blockade region and drain current of SET devices and thus affects the noise margin, power dissipation, and the propagation delay of SET inverter. A new analytical model for the noise margin of SET inverter is proposed which includes the energy quantization effects. Using the noise margin as a metric, the robustness of SET inverter is studied against the effects of energy quantization. A compact expression is developed for a novel parameter quantization threshold which is introduced for the first time in this paper. Quantization threshold explicitly defines the maximum energy quantization that an SET inverter logic circuit can withstand before its noise margin falls below a specified tolerance level. It is found that SET inverter designed with CT:CG=1/3 (where CT and CG are tunnel junction and gate capacitances, respectively) offers maximum robustness against energy quantization.
Lattices for fractional Chern insulators
NASA Astrophysics Data System (ADS)
Repellin, Cécile; Regnault, Nicolas
2018-04-01
Individual electrons are elementary particles, but in some solid-state systems, electrons can act collectively as though they had a fraction of an electron's charge. This emergent behavior is spectacularly observed in two-dimensional (2D) electron gases as the fractional quantum Hall (FQH) effect in the form of a fractional quantized transverse (or Hall) conductivity and in shot-noise experiments. These experiments require low temperatures and very large magnetic fields in order to create strong electron interactions. This latter condition now appears not to be as essential as originally thought. On page 62 of this issue, Spanton et al. (1) report on an experimental platform based on bilayer graphene that forms a moiré pattern with an encapsulating hexagonal boron nitride layer. They observed incompressible phases with a fractional filling of the band structure with a nonzero Chern number (it has quantized properties robust to local perturbations, or topologically invariant). Some of which have no analog in traditional FQH systems (see the figure).
FAST TRACK COMMUNICATION: Quantization over boson operator spaces
NASA Astrophysics Data System (ADS)
Prosen, Tomaž; Seligman, Thomas H.
2010-10-01
The framework of third quantization—canonical quantization in the Liouville space—is developed for open many-body bosonic systems. We show how to diagonalize the quantum Liouvillean for an arbitrary quadratic n-boson Hamiltonian with arbitrary linear Lindblad couplings to the baths and, as an example, explicitly work out a general case of a single boson.
The electronic structure of Au25 clusters: between discrete and continuous
NASA Astrophysics Data System (ADS)
Katsiev, Khabiboulakh; Lozova, Nataliya; Wang, Lu; Sai Krishna, Katla; Li, Ruipeng; Mei, Wai-Ning; Skrabalak, Sara E.; Kumar, Challa S. S. R.; Losovyj, Yaroslav
2016-08-01
Here, an approach based on synchrotron resonant photoemission is employed to explore the transition between quantization and hybridization of the electronic structure in atomically precise ligand-stabilized nanoparticles. While the presence of ligands maintains quantization in Au25 clusters, their removal renders increased hybridization of the electronic states in the vicinity of the Fermi level. These observations are supported by DFT studies.Here, an approach based on synchrotron resonant photoemission is employed to explore the transition between quantization and hybridization of the electronic structure in atomically precise ligand-stabilized nanoparticles. While the presence of ligands maintains quantization in Au25 clusters, their removal renders increased hybridization of the electronic states in the vicinity of the Fermi level. These observations are supported by DFT studies. Electronic supplementary information (ESI) available: Experimental details including chemicals, sample preparation, and characterization methods. Computation techniques, SV-AUC, GIWAXS, XPS, UPS, MALDI-TOF, ESI data of Au25 clusters. See DOI: 10.1039/c6nr02374f
Low-rate image coding using vector quantization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makur, A.
1990-01-01
This thesis deals with the development and analysis of a computationally simple vector quantization image compression system for coding monochrome images at low bit rate. Vector quantization has been known to be an effective compression scheme when a low bit rate is desirable, but the intensive computation required in a vector quantization encoder has been a handicap in using it for low rate image coding. The present work shows that, without substantially increasing the coder complexity, it is indeed possible to achieve acceptable picture quality while attaining a high compression ratio. Several modifications to the conventional vector quantization coder aremore » proposed in the thesis. These modifications are shown to offer better subjective quality when compared to the basic coder. Distributed blocks are used instead of spatial blocks to construct the input vectors. A class of input-dependent weighted distortion functions is used to incorporate psychovisual characteristics in the distortion measure. Computationally simple filtering techniques are applied to further improve the decoded image quality. Finally, unique designs of the vector quantization coder using electronic neural networks are described, so that the coding delay is reduced considerably.« less
A Algebraic Approach to the Quantization of Constrained Systems: Finite Dimensional Examples.
NASA Astrophysics Data System (ADS)
Tate, Ranjeet Shekhar
1992-01-01
General relativity has two features in particular, which make it difficult to apply to it existing schemes for the quantization of constrained systems. First, there is no background structure in the theory, which could be used, e.g., to regularize constraint operators, to identify a "time" or to define an inner product on physical states. Second, in the Ashtekar formulation of general relativity, which is a promising avenue to quantum gravity, the natural variables for quantization are not canonical; and, classically, there are algebraic identities between them. Existing schemes are usually not concerned with such identities. Thus, from the point of view of canonical quantum gravity, it has become imperative to find a framework for quantization which provides a general prescription to find the physical inner product, and is flexible enough to accommodate non -canonical variables. In this dissertation I present an algebraic formulation of the Dirac approach to the quantization of constrained systems. The Dirac quantization program is augmented by a general principle to find the inner product on physical states. Essentially, the Hermiticity conditions on physical operators determine this inner product. I also clarify the role in quantum theory of possible algebraic identities between the elementary variables. I use this approach to quantize various finite dimensional systems. Some of these models test the new aspects of the algebraic framework. Others bear qualitative similarities to general relativity, and may give some insight into the pitfalls lurking in quantum gravity. The previous quantizations of one such model had many surprising features. When this model is quantized using the algebraic program, there is no longer any unexpected behaviour. I also construct the complete quantum theory for a previously unsolved relativistic cosmology. All these models indicate that the algebraic formulation provides powerful new tools for quantization. In (spatially compact) general relativity, the Hamiltonian is constrained to vanish. I present various approaches one can take to obtain an interpretation of the quantum theory of such "dynamically constrained" systems. I apply some of these ideas to the Bianchi I cosmology, and analyze the issue of the initial singularity in quantum theory.
Symmetrical Windowing for Quantum States in Quasi-Classical Trajectory Simulations
NASA Astrophysics Data System (ADS)
Cotton, Stephen Joshua
An approach has been developed for extracting approximate quantum state-to-state information from classical trajectory simulations which "quantizes" symmetrically both the initial and final classical actions associated with the degrees of freedom of interest using quantum number bins (or "window functions") which are significantly narrower than unit-width. This approach thus imposes a more stringent quantization condition on classical trajectory simulations than has been traditionally employed, while doing so in a manner that is time-symmetric and microscopically reversible. To demonstrate this "symmetric quasi-classical" (SQC) approach for a simple real system, collinear H + H2 reactive scattering calculations were performed [S.J. Cotton and W.H. Miller, J. Phys. Chem. A 117, 7190 (2013)] with SQC-quantization applied to the H 2 vibrational degree of freedom (DOF). It was seen that the use of window functions of approximately 1/2-unit width led to calculated reaction probabilities in very good agreement with quantum mechanical results over the threshold energy region, representing a significant improvement over what is obtained using the traditional quasi-classical procedure. The SQC approach was then applied [S.J. Cotton and W.H. Miller, J. Chem. Phys. 139, 234112 (2013)] to the much more interesting and challenging problem of incorporating non-adiabatic effects into what would otherwise be standard classical trajectory simulations. To do this, the classical Meyer-Miller (MM) Hamiltonian was used to model the electronic DOFs, with SQC-quantization applied to the classical "electronic" actions of the MM model---representing the occupations of the electronic states---in order to extract the electronic state population dynamics. It was demonstrated that if one ties the zero-point energy (ZPE) of the electronic DOFs to the SQC windowing function's width parameter this very simple SQC/MM approach is capable of quantitatively reproducing quantum mechanical results for a range of standard benchmark models of electronically non-adiabatic processes, including applications where "quantum" coherence effects are significant. Notably, among these benchmarks was the well-studied "spin-boson" model of condensed phase non-adiabatic dynamics, in both its symmetric and asymmetric forms---the latter of which many classical approaches fail to treat successfully. The SQC/MM approach to the treatment of non-adiabatic dynamics was next applied [S.J. Cotton, K. Igumenshchev, and W.H. Miller, J. Chem. Phys., 141, 084104 (2014)] to several recently proposed models of condensed phase electron transfer (ET) processes. For these problems, a flux-side correlation function framework modified for consistency with the SQC approach was developed for the calculation of thermal ET rate constants, and excellent accuracy was seen over wide ranges of non-adiabatic coupling strength and energetic bias/exothermicity. Significantly, the "inverted regime" in thermal rate constants (with increasing bias) known from Marcus Theory was reproduced quantitatively for these models---representing the successful treatment of another regime that classical approaches generally have difficulty in correctly describing. Relatedly, a model of photoinduced proton coupled electron transfer (PCET) was also addressed, and it was shown that the SQC/MM approach could reasonably model the explicit population dynamics of the photoexcited electron donor and acceptor states over the four parameter regimes considered. The potential utility of the SQC/MM technique lies in its stunning simplicity and the ease by which it may readily be incorporated into "ordinary" molecular dynamics (MD) simulations. In short, a typical MD simulation may be augmented to take non-adiabatic effects into account simply by introducing an auxiliary pair of classical "electronic" action-angle variables for each energetically viable Born-Oppenheimer surface, and time-evolving these auxiliary variables via Hamilton's equations (using the MM electronic Hamiltonian) in the same manner that the other classical variables---i.e., the coordinates of all the nuclei---are evolved forward in time. In a complex molecular system involving many hundreds or thousands of nuclear DOFs, the propagation of these extra "electronic" variables represents a modest increase in computational effort, and yet, the examples presented herein suggest that in many instances the SQC/MM approach will describe the true non-adiabatic quantum dynamics to a reasonable and useful degree of quantitative accuracy.
Dimensional quantization effects in the thermodynamics of conductive filaments
NASA Astrophysics Data System (ADS)
Niraula, D.; Grice, C. R.; Karpov, V. G.
2018-06-01
We consider the physical effects of dimensional quantization in conductive filaments that underlie operations of some modern electronic devices. We show that, as a result of quantization, a sufficiently thin filament acquires a positive charge. Several applications of this finding include the host material polarization, the stability of filament constrictions, the equilibrium filament radius, polarity in device switching, and quantization of conductance.
Dimensional quantization effects in the thermodynamics of conductive filaments.
Niraula, D; Grice, C R; Karpov, V G
2018-06-29
We consider the physical effects of dimensional quantization in conductive filaments that underlie operations of some modern electronic devices. We show that, as a result of quantization, a sufficiently thin filament acquires a positive charge. Several applications of this finding include the host material polarization, the stability of filament constrictions, the equilibrium filament radius, polarity in device switching, and quantization of conductance.
Annual Progress Report for July 1, 1978 through June 30, 1979,
1979-08-01
Alexandrou , D. Gibbons, J. A. Pietras, J. V. Altshuler, D. Gilbert, P. Rathbun, L. C. Au, S. H. Goodman, B. A. Reed, D. A. Avramovic, B. R. Govindaraj...January 1979, pp. 54-61. H. V. Poor and D. Alexandrou , "A General Relationship Between Two Quantizer Design Criteria," IEEE Trans. on Information Theory...Electronic Systems, Vol. AES-14, November 1978, pp. 241-253. Meeting Papers D. Alexandrou and H. V. Poor, "Data Quantization in Stochastic- Signal Detection
Experimental researches on quantum transport in semiconductor two-dimensional electron systems
Kawaji, Shinji
2008-01-01
The author reviews contribution of Gakushuin University group to the progress of the quantum transport in semiconductor two-dimensional electron systems (2DES) for forty years from the birth of the 2DES in middle of the 1960s till the finding of temperature dependent collapse of the quantized Hall resistance in the beginning of this century. PMID:18941299
Compact universal logic gates realized using quantization of current in nanodevices.
Zhang, Wancheng; Wu, Nan-Jian; Yang, Fuhua
2007-12-12
This paper proposes novel universal logic gates using the current quantization characteristics of nanodevices. In nanodevices like the electron waveguide (EW) and single-electron (SE) turnstile, the channel current is a staircase quantized function of its control voltage. We use this unique characteristic to compactly realize Boolean functions. First we present the concept of the periodic-threshold threshold logic gate (PTTG), and we build a compact PTTG using EW and SE turnstiles. We show that an arbitrary three-input Boolean function can be realized with a single PTTG, and an arbitrary four-input Boolean function can be realized by using two PTTGs. We then use one PTTG to build a universal programmable two-input logic gate which can be used to realize all two-input Boolean functions. We also build a programmable three-input logic gate by using one PTTG. Compared with linear threshold logic gates, with the PTTG one can build digital circuits more compactly. The proposed PTTGs are promising for future smart nanoscale digital system use.
NASA Astrophysics Data System (ADS)
Entin, M. V.; Magarill, L. I.
2010-02-01
The stationary current induced by a strong running potential wave in one-dimensional system is studied. Such a wave can result from illumination of a straight quantum wire with special grating or spiral quantum wire by circular-polarized light. The wave drags electrons in the direction correlated with the direction of the system symmetry and polarization of light. In a pure system the wave induces minibands in the accompanied system of reference. We study the effect in the presence of impurity scattering. The current is an interplay between the wave drag and impurity braking. It was found that the drag current is quantized when the Fermi level gets into energy gaps.
Duszenko, Nikolas
2017-01-01
ABSTRACT Many, but not all, organisms use quinones to conserve energy in their electron transport chains. Fermentative bacteria and methane-producing archaea (methanogens) do not produce quinones but have devised other ways to generate ATP. Methanophenazine (MPh) is a unique membrane electron carrier found in Methanosarcina species that plays the same role as quinones in the electron transport chain. To extend the analogy between quinones and MPh, we compared the MPh pool sizes between two well-studied Methanosarcina species, Methanosarcina acetivorans C2A and Methanosarcina barkeri Fusaro, to the quinone pool size in the bacterium Escherichia coli. We found the quantity of MPh per cell increases as cultures transition from exponential growth to stationary phase, and absolute quantities of MPh were 3-fold higher in M. acetivorans than in M. barkeri. The concentration of MPh suggests the cell membrane of M. acetivorans, but not of M. barkeri, is electrically quantized as if it were a single conductive metal sheet and near optimal for rate of electron transport. Similarly, stationary (but not exponentially growing) E. coli cells also have electrically quantized membranes on the basis of quinone content. Consistent with our hypothesis, we demonstrated that the exogenous addition of phenazine increases the growth rate of M. barkeri three times that of M. acetivorans. Our work suggests electron flux through MPh is naturally higher in M. acetivorans than in M. barkeri and that hydrogen cycling is less efficient at conserving energy than scalar proton translocation using MPh. IMPORTANCE Can we grow more from less? The ability to optimize and manipulate metabolic efficiency in cells is the difference between commercially viable and nonviable renewable technologies. Much can be learned from methane-producing archaea (methanogens) which evolved a successful metabolic lifestyle under extreme thermodynamic constraints. Methanogens use highly efficient electron transport systems and supramolecular complexes to optimize electron and carbon flow to control biomass synthesis and the production of methane. Worldwide, methanogens are used to generate renewable methane for heat, electricity, and transportation. Our observations suggest Methanosarcina acetivorans, but not Methanosarcina barkeri, has electrically quantized membranes. Escherichia coli, a model facultative anaerobe, has optimal electron transport at the stationary phase but not during exponential growth. This study also suggests the metabolic efficiency of bacteria and archaea can be improved using exogenously supplied lipophilic electron carriers. The enhancement of methanogen electron transport through methanophenazine has the potential to increase renewable methane production at an industrial scale. PMID:28710268
Duszenko, Nikolas; Buan, Nicole R
2017-09-15
Many, but not all, organisms use quinones to conserve energy in their electron transport chains. Fermentative bacteria and methane-producing archaea (methanogens) do not produce quinones but have devised other ways to generate ATP. Methanophenazine (MPh) is a unique membrane electron carrier found in Methanosarcina species that plays the same role as quinones in the electron transport chain. To extend the analogy between quinones and MPh, we compared the MPh pool sizes between two well-studied Methanosarcina species, Methanosarcina acetivorans C2A and Methanosarcina barkeri Fusaro, to the quinone pool size in the bacterium Escherichia coli We found the quantity of MPh per cell increases as cultures transition from exponential growth to stationary phase, and absolute quantities of MPh were 3-fold higher in M. acetivorans than in M. barkeri The concentration of MPh suggests the cell membrane of M. acetivorans , but not of M. barkeri , is electrically quantized as if it were a single conductive metal sheet and near optimal for rate of electron transport. Similarly, stationary (but not exponentially growing) E. coli cells also have electrically quantized membranes on the basis of quinone content. Consistent with our hypothesis, we demonstrated that the exogenous addition of phenazine increases the growth rate of M. barkeri three times that of M. acetivorans Our work suggests electron flux through MPh is naturally higher in M. acetivorans than in M. barkeri and that hydrogen cycling is less efficient at conserving energy than scalar proton translocation using MPh. IMPORTANCE Can we grow more from less? The ability to optimize and manipulate metabolic efficiency in cells is the difference between commercially viable and nonviable renewable technologies. Much can be learned from methane-producing archaea (methanogens) which evolved a successful metabolic lifestyle under extreme thermodynamic constraints. Methanogens use highly efficient electron transport systems and supramolecular complexes to optimize electron and carbon flow to control biomass synthesis and the production of methane. Worldwide, methanogens are used to generate renewable methane for heat, electricity, and transportation. Our observations suggest Methanosarcina acetivorans , but not Methanosarcina barkeri , has electrically quantized membranes. Escherichia coli , a model facultative anaerobe, has optimal electron transport at the stationary phase but not during exponential growth. This study also suggests the metabolic efficiency of bacteria and archaea can be improved using exogenously supplied lipophilic electron carriers. The enhancement of methanogen electron transport through methanophenazine has the potential to increase renewable methane production at an industrial scale. Copyright © 2017 American Society for Microbiology.
Fast large-scale object retrieval with binary quantization
NASA Astrophysics Data System (ADS)
Zhou, Shifu; Zeng, Dan; Shen, Wei; Zhang, Zhijiang; Tian, Qi
2015-11-01
The objective of large-scale object retrieval systems is to search for images that contain the target object in an image database. Where state-of-the-art approaches rely on global image representations to conduct searches, we consider many boxes per image as candidates to search locally in a picture. In this paper, a feature quantization algorithm called binary quantization is proposed. In binary quantization, a scale-invariant feature transform (SIFT) feature is quantized into a descriptive and discriminative bit-vector, which allows itself to adapt to the classic inverted file structure for box indexing. The inverted file, which stores the bit-vector and box ID where the SIFT feature is located inside, is compact and can be loaded into the main memory for efficient box indexing. We evaluate our approach on available object retrieval datasets. Experimental results demonstrate that the proposed approach is fast and achieves excellent search quality. Therefore, the proposed approach is an improvement over state-of-the-art approaches for object retrieval.
Mean-trajectory approximation for electronic and vibrational-electronic nonlinear spectroscopy
NASA Astrophysics Data System (ADS)
Loring, Roger F.
2017-04-01
Mean-trajectory approximations permit the calculation of nonlinear vibrational spectra from semiclassically quantized trajectories on a single electronically adiabatic potential surface. By describing electronic degrees of freedom with classical phase-space variables and subjecting these to semiclassical quantization, mean-trajectory approximations may be extended to compute both nonlinear electronic spectra and vibrational-electronic spectra. A general mean-trajectory approximation for both electronic and nuclear degrees of freedom is presented, and the results for purely electronic and for vibrational-electronic four-wave mixing experiments are quantitatively assessed for harmonic surfaces with linear electronic-nuclear coupling.
The electronic structure of Au25 clusters: between discrete and continuous.
Katsiev, Khabiboulakh; Lozova, Nataliya; Wang, Lu; Sai Krishna, Katla; Li, Ruipeng; Mei, Wai-Ning; Skrabalak, Sara E; Kumar, Challa S S R; Losovyj, Yaroslav
2016-08-21
Here, an approach based on synchrotron resonant photoemission is employed to explore the transition between quantization and hybridization of the electronic structure in atomically precise ligand-stabilized nanoparticles. While the presence of ligands maintains quantization in Au25 clusters, their removal renders increased hybridization of the electronic states in the vicinity of the Fermi level. These observations are supported by DFT studies.
Pbte Nanostructures for Spin Filtering and Detecting
NASA Astrophysics Data System (ADS)
Grabecki, G.
2005-08-01
An uniqueness of lead telluride PbTe relies on combination of excellent semiconducting properties, like high electron mobility and tunable carrier concentration, with paraelectric behavior leading to huge dielectric constant at low temperatures. The present article is a review of our experimental works performed on PbTe nanostructures. The main result is observation of one-dimensional quantization of the electron motion at much impure conditions than in any other system studied so far. We explain this in terms of dielectric screening of Coulomb potentials produced by charged defects. Furthermore, in an external magnetic field, the conductance quantization steps show very pronounced spin splitting, already visible at several kilogauss. This indicates that PbTe nanostructures have a potential as local spin filtering devices.
Electrically pumped graphene-based Landau-level laser
NASA Astrophysics Data System (ADS)
Brem, Samuel; Wendler, Florian; Winnerl, Stephan; Malic, Ermin
2018-03-01
Graphene exhibits a nonequidistant Landau quantization with tunable Landau-level (LL) transitions in the technologically desired terahertz spectral range. Here, we present a strategy for an electrically driven terahertz laser based on Landau-quantized graphene as the gain medium. Performing microscopic modeling of the coupled electron, phonon, and photon dynamics in such a laser, we reveal that an inter-LL population inversion can be achieved resulting in the emission of coherent terahertz radiation. The presented paper provides a concrete recipe for the experimental realization of tunable graphene-based terahertz laser systems.
Calculation of the conductance of two dimensional narrow wires
NASA Astrophysics Data System (ADS)
Kander, Ilan
1989-05-01
There is an interest in the quantum transport of electrons in systems where the sample dimensions are less than a phase coherence length L(sub phi) which is the distance across which the electrons lose phase memory (typically by inelastic scattering). The two-contact conductance is examined of 2-D systems (strips) as functions of Fermi energy system dimensions as is the amount of disorder at zero temperature. Under these conditions all scattering processes are elastic. The term channel is used in order to describe a quantum state with a given transverse quantum number and the appropriate longitudinal momentum. A channel is considered conducting if its longitudinal momentum is real, and decaying if its longitudinal momentum is imaginary. The calculation of the conductance is done in two ways. Transfer matrix for very long systems and Green's function for relatively short ones. The conductance curve in an ordered system is quantized and in a disordered system it is smeared. Interesting changes in the conductance near the thresholds for changes in the quantized value of the conductance are observed.
Quantum entanglement of a harmonic oscillator with an electromagnetic field.
Makarov, Dmitry N
2018-05-29
At present, there are many methods for obtaining quantum entanglement of particles with an electromagnetic field. Most methods have a low probability of quantum entanglement and not an exact theoretical apparatus based on an approximate solution of the Schrodinger equation. There is a need for new methods for obtaining quantum-entangled particles and mathematically accurate studies of such methods. In this paper, a quantum harmonic oscillator (for example, an electron in a magnetic field) interacting with a quantized electromagnetic field is considered. Based on the exact solution of the Schrodinger equation for this system, it is shown that for certain parameters there can be a large quantum entanglement between the electron and the electromagnetic field. Quantum entanglement is analyzed on the basis of a mathematically exact expression for the Schmidt modes and the Von Neumann entropy.
Quantized Majorana conductance
NASA Astrophysics Data System (ADS)
Zhang, Hao; Liu, Chun-Xiao; Gazibegovic, Sasa; Xu, Di; Logan, John A.; Wang, Guanzhong; van Loo, Nick; Bommer, Jouri D. S.; de Moor, Michiel W. A.; Car, Diana; Op Het Veld, Roy L. M.; van Veldhoven, Petrus J.; Koelling, Sebastian; Verheijen, Marcel A.; Pendharkar, Mihir; Pennachio, Daniel J.; Shojaei, Borzoyeh; Lee, Joon Sue; Palmstrøm, Chris J.; Bakkers, Erik P. A. M.; Sarma, S. Das; Kouwenhoven, Leo P.
2018-04-01
Majorana zero-modes—a type of localized quasiparticle—hold great promise for topological quantum computing. Tunnelling spectroscopy in electrical transport is the primary tool for identifying the presence of Majorana zero-modes, for instance as a zero-bias peak in differential conductance. The height of the Majorana zero-bias peak is predicted to be quantized at the universal conductance value of 2e2/h at zero temperature (where e is the charge of an electron and h is the Planck constant), as a direct consequence of the famous Majorana symmetry in which a particle is its own antiparticle. The Majorana symmetry protects the quantization against disorder, interactions and variations in the tunnel coupling. Previous experiments, however, have mostly shown zero-bias peaks much smaller than 2e2/h, with a recent observation of a peak height close to 2e2/h. Here we report a quantized conductance plateau at 2e2/h in the zero-bias conductance measured in indium antimonide semiconductor nanowires covered with an aluminium superconducting shell. The height of our zero-bias peak remains constant despite changing parameters such as the magnetic field and tunnel coupling, indicating that it is a quantized conductance plateau. We distinguish this quantized Majorana peak from possible non-Majorana origins by investigating its robustness to electric and magnetic fields as well as its temperature dependence. The observation of a quantized conductance plateau strongly supports the existence of Majorana zero-modes in the system, consequently paving the way for future braiding experiments that could lead to topological quantum computing.
Quantized Majorana conductance.
Zhang, Hao; Liu, Chun-Xiao; Gazibegovic, Sasa; Xu, Di; Logan, John A; Wang, Guanzhong; van Loo, Nick; Bommer, Jouri D S; de Moor, Michiel W A; Car, Diana; Op Het Veld, Roy L M; van Veldhoven, Petrus J; Koelling, Sebastian; Verheijen, Marcel A; Pendharkar, Mihir; Pennachio, Daniel J; Shojaei, Borzoyeh; Lee, Joon Sue; Palmstrøm, Chris J; Bakkers, Erik P A M; Sarma, S Das; Kouwenhoven, Leo P
2018-04-05
Majorana zero-modes-a type of localized quasiparticle-hold great promise for topological quantum computing. Tunnelling spectroscopy in electrical transport is the primary tool for identifying the presence of Majorana zero-modes, for instance as a zero-bias peak in differential conductance. The height of the Majorana zero-bias peak is predicted to be quantized at the universal conductance value of 2e 2 /h at zero temperature (where e is the charge of an electron and h is the Planck constant), as a direct consequence of the famous Majorana symmetry in which a particle is its own antiparticle. The Majorana symmetry protects the quantization against disorder, interactions and variations in the tunnel coupling. Previous experiments, however, have mostly shown zero-bias peaks much smaller than 2e 2 /h, with a recent observation of a peak height close to 2e 2 /h. Here we report a quantized conductance plateau at 2e 2 /h in the zero-bias conductance measured in indium antimonide semiconductor nanowires covered with an aluminium superconducting shell. The height of our zero-bias peak remains constant despite changing parameters such as the magnetic field and tunnel coupling, indicating that it is a quantized conductance plateau. We distinguish this quantized Majorana peak from possible non-Majorana origins by investigating its robustness to electric and magnetic fields as well as its temperature dependence. The observation of a quantized conductance plateau strongly supports the existence of Majorana zero-modes in the system, consequently paving the way for future braiding experiments that could lead to topological quantum computing.
Quantized magnetoresistance in atomic-size contacts.
Sokolov, Andrei; Zhang, Chunjuan; Tsymbal, Evgeny Y; Redepenning, Jody; Doudin, Bernard
2007-03-01
When the dimensions of a metallic conductor are reduced so that they become comparable to the de Broglie wavelengths of the conduction electrons, the absence of scattering results in ballistic electron transport and the conductance becomes quantized. In ferromagnetic metals, the spin angular momentum of the electrons results in spin-dependent conductance quantization and various unusual magnetoresistive phenomena. Theorists have predicted a related phenomenon known as ballistic anisotropic magnetoresistance (BAMR). Here we report the first experimental evidence for BAMR by observing a stepwise variation in the ballistic conductance of cobalt nanocontacts as the direction of an applied magnetic field is varied. Our results show that BAMR can be positive and negative, and exhibits symmetric and asymmetric angular dependences, consistent with theoretical predictions.
Theory of free electron vortices
Schattschneider, P.; Verbeeck, J.
2011-01-01
The recent creation of electron vortex beams and their first practical application motivates a better understanding of their properties. Here, we develop the theory of free electron vortices with quantized angular momentum, based on solutions of the Schrödinger equation for cylindrical boundary conditions. The principle of transformation of a plane wave into vortices with quantized angular momentum, their paraxial propagation through round magnetic lenses, and the effect of partial coherence are discussed. PMID:21930017
Perceptual Optimization of DCT Color Quantization Matrices
NASA Technical Reports Server (NTRS)
Watson, Andrew B.; Statler, Irving C. (Technical Monitor)
1994-01-01
Many image compression schemes employ a block Discrete Cosine Transform (DCT) and uniform quantization. Acceptable rate/distortion performance depends upon proper design of the quantization matrix. In previous work, we showed how to use a model of the visibility of DCT basis functions to design quantization matrices for arbitrary display resolutions and color spaces. Subsequently, we showed how to optimize greyscale quantization matrices for individual images, for optimal rate/perceptual distortion performance. Here we describe extensions of this optimization algorithm to color images.
Diverse magnetic quantization in bilayer silicene
NASA Astrophysics Data System (ADS)
Do, Thi-Nga; Shih, Po-Hsin; Gumbs, Godfrey; Huang, Danhong; Chiu, Chih-Wei; Lin, Ming-Fa
2018-03-01
The generalized tight-binding model is developed to investigate the rich and unique electronic properties of A B -bt (bottom-top) bilayer silicene under uniform perpendicular electric and magnetic fields. The first pair of conduction and valence bands, with an observable energy gap, displays unusual energy dispersions. Each group of conduction/valence Landau levels (LLs) is further classified into four subgroups, i.e., the sublattice- and spin-dominated LL subgroups. The magnetic-field-dependent LL energy spectra exhibit irregular behavior corresponding to the critical points of the band structure. Moreover, the electric field can induce many LL anticrossings. The main features of the LLs are uncovered with many van Hove singularities in the density-of-states and nonuniform delta-function-like peaks in the magnetoabsorption spectra. The feature-rich magnetic quantization directly reflects the geometric symmetries, intralayer and interlayer atomic interactions, spin-orbital couplings, and field effects. The results of this work can be applied to novel designs of Si-based nanoelectronics and nanodevices with enhanced mobilities.
NASA Astrophysics Data System (ADS)
Jacak, Janusz E.
2018-01-01
We demonstrate an original development of path-integral quantization in the case of a multiply connected configuration space of indistinguishable charged particles on a 2D manifold and exposed to a strong perpendicular magnetic field. The system occurs to be exceptionally homotopy-rich and the structure of the homotopy essentially depends on the magnetic field strength resulting in multiloop trajectories at specific conditions. We have proved, by a generalization of the Bohr-Sommerfeld quantization rule, that the size of a magnetic field flux quantum grows for multiloop orbits like (2 k +1 ) h/c with the number of loops k . Utilizing this property for electrons on the 2D substrate jellium, we have derived upon the path integration a complete FQHE hierarchy in excellent consistence with experiments. The path integral has been next developed to a sum over configurations, displaying various patterns of trajectory homotopies (topological configurations), which in the nonstationary case of quantum kinetics, reproduces some unclear formerly details in the longitudinal resistivity observed in experiments.
Analytic model of a multi-electron atom
NASA Astrophysics Data System (ADS)
Skoromnik, O. D.; Feranchuk, I. D.; Leonau, A. U.; Keitel, C. H.
2017-12-01
A fully analytical approximation for the observable characteristics of many-electron atoms is developed via a complete and orthonormal hydrogen-like basis with a single-effective charge parameter for all electrons of a given atom. The basis completeness allows us to employ the secondary-quantized representation for the construction of regular perturbation theory, which includes in a natural way correlation effects, converges fast and enables an effective calculation of the subsequent corrections. The hydrogen-like basis set provides a possibility to perform all summations over intermediate states in closed form, including both the discrete and continuous spectra. This is achieved with the help of the decomposition of the multi-particle Green function in a convolution of single-electronic Coulomb Green functions. We demonstrate that our fully analytical zeroth-order approximation describes the whole spectrum of the system, provides accuracy, which is independent of the number of electrons and is important for applications where the Thomas-Fermi model is still utilized. In addition already in second-order perturbation theory our results become comparable with those via a multi-configuration Hartree-Fock approach.
Quantum-Classical Connection for Hydrogen Atom-Like Systems
ERIC Educational Resources Information Center
Syam, Debapriyo; Roy, Arup
2011-01-01
The Bohr-Sommerfeld quantum theory specifies the rules of quantization for circular and elliptical orbits for a one-electron hydrogen atom-like system. This article illustrates how a formula connecting the principal quantum number "n" and the length of the major axis of an elliptical orbit may be arrived at starting from the quantum…
Single-ion adsorption and switching in carbon nanotubes
Bushmaker, Adam W.; Oklejas, Vanessa; Walker, Don; ...
2016-01-25
Single-ion detection has, for many years, been the domain of large devices such as the Geiger counter, and studies on interactions of ionized gasses with materials have been limited to large systems. To date, there have been no reports on single gaseous ion interaction with microelectronic devices, and single neutral atom detection techniques have shown only small, barely detectable responses. Here we report the observation of single gaseous ion adsorption on individual carbon nanotubes (CNTs), which, because of the severely restricted one-dimensional current path, experience discrete, quantized resistance increases of over two orders of magnitude. Only positive ions cause changes,more » by the mechanism of ion potentialinduced carrier depletion, which is supported by density functional and Landauer transport theory. Lastly, our observations reveal a new single-ion/CNT heterostructure with novel electronic properties, and demonstrate that as electronics are ultimately scaled towards the one-dimensional limit, atomic-scale effects become increasingly important.« less
The fundamental role of quantized vibrations in coherent light harvesting by cryptophyte algae
NASA Astrophysics Data System (ADS)
Kolli, Avinash; O'Reilly, Edward J.; Scholes, Gregory D.; Olaya-Castro, Alexandra
2012-11-01
The influence of fast vibrations on energy transfer and conversion in natural molecular aggregates is an issue of central interest. This article shows the important role of high-energy quantized vibrations and their non-equilibrium dynamics for energy transfer in photosynthetic systems with highly localized excitonic states. We consider the cryptophyte antennae protein phycoerythrin 545 and show that coupling to quantized vibrations, which are quasi-resonant with excitonic transitions is fundamental for biological function as it generates non-cascaded transport with rapid and wider spatial distribution of excitation energy. Our work also indicates that the non-equilibrium dynamics of such vibrations can manifest itself in ultrafast beating of both excitonic populations and coherences at room temperature, with time scales in agreement with those reported in experiments. Moreover, we show that mechanisms supporting coherent excitonic dynamics assist coupling to selected modes that channel energy to preferential sites in the complex. We therefore argue that, in the presence of strong coupling between electronic excitations and quantized vibrations, a concrete and important advantage of quantum coherent dynamics is precisely to tune resonances that promote fast and effective energy distribution.
Universal Relation among the Many-Body Chern Number, Rotation Symmetry, and Filling
NASA Astrophysics Data System (ADS)
Matsugatani, Akishi; Ishiguro, Yuri; Shiozaki, Ken; Watanabe, Haruki
2018-03-01
Understanding the interplay between the topological nature and the symmetry property of interacting systems has been a central matter of condensed matter physics in recent years. In this Letter, we establish nonperturbative constraints on the quantized Hall conductance of many-body systems with arbitrary interactions. Our results allow one to readily determine the many-body Chern number modulo a certain integer without performing any integrations, solely based on the rotation eigenvalues and the average particle density of the many-body ground state.
Photonic topological boundary pumping as a probe of 4D quantum Hall physics
NASA Astrophysics Data System (ADS)
Zilberberg, Oded; Huang, Sheng; Guglielmon, Jonathan; Wang, Mohan; Chen, Kevin P.; Kraus, Yaacov E.; Rechtsman, Mikael C.
2018-01-01
When a two-dimensional (2D) electron gas is placed in a perpendicular magnetic field, its in-plane transverse conductance becomes quantized; this is known as the quantum Hall effect. It arises from the non-trivial topology of the electronic band structure of the system, where an integer topological invariant (the first Chern number) leads to quantized Hall conductance. It has been shown theoretically that the quantum Hall effect can be generalized to four spatial dimensions, but so far this has not been realized experimentally because experimental systems are limited to three spatial dimensions. Here we use tunable 2D arrays of photonic waveguides to realize a dynamically generated four-dimensional (4D) quantum Hall system experimentally. The inter-waveguide separation in the array is constructed in such a way that the propagation of light through the device samples over momenta in two additional synthetic dimensions, thus realizing a 2D topological pump. As a result, the band structure has 4D topological invariants (known as second Chern numbers) that support a quantized bulk Hall response with 4D symmetry. In a finite-sized system, the 4D topological bulk response is carried by localized edge modes that cross the sample when the synthetic momenta are modulated. We observe this crossing directly through photon pumping of our system from edge to edge and corner to corner. These crossings are equivalent to charge pumping across a 4D system from one three-dimensional hypersurface to the spatially opposite one and from one 2D hyperedge to another. Our results provide a platform for the study of higher-dimensional topological physics.
Photonic topological boundary pumping as a probe of 4D quantum Hall physics.
Zilberberg, Oded; Huang, Sheng; Guglielmon, Jonathan; Wang, Mohan; Chen, Kevin P; Kraus, Yaacov E; Rechtsman, Mikael C
2018-01-03
When a two-dimensional (2D) electron gas is placed in a perpendicular magnetic field, its in-plane transverse conductance becomes quantized; this is known as the quantum Hall effect. It arises from the non-trivial topology of the electronic band structure of the system, where an integer topological invariant (the first Chern number) leads to quantized Hall conductance. It has been shown theoretically that the quantum Hall effect can be generalized to four spatial dimensions, but so far this has not been realized experimentally because experimental systems are limited to three spatial dimensions. Here we use tunable 2D arrays of photonic waveguides to realize a dynamically generated four-dimensional (4D) quantum Hall system experimentally. The inter-waveguide separation in the array is constructed in such a way that the propagation of light through the device samples over momenta in two additional synthetic dimensions, thus realizing a 2D topological pump. As a result, the band structure has 4D topological invariants (known as second Chern numbers) that support a quantized bulk Hall response with 4D symmetry. In a finite-sized system, the 4D topological bulk response is carried by localized edge modes that cross the sample when the synthetic momenta are modulated. We observe this crossing directly through photon pumping of our system from edge to edge and corner to corner. These crossings are equivalent to charge pumping across a 4D system from one three-dimensional hypersurface to the spatially opposite one and from one 2D hyperedge to another. Our results provide a platform for the study of higher-dimensional topological physics.
Quantization selection in the high-throughput H.264/AVC encoder based on the RD
NASA Astrophysics Data System (ADS)
Pastuszak, Grzegorz
2013-10-01
In the hardware video encoder, the quantization is responsible for quality losses. On the other hand, it allows the reduction of bit rates to the target one. If the mode selection is based on the rate-distortion criterion, the quantization can also be adjusted to obtain better compression efficiency. Particularly, the use of Lagrangian function with a given multiplier enables the encoder to select the most suitable quantization step determined by the quantization parameter QP. Moreover, the quantization offset added before discarding the fraction value after quantization can be adjusted. In order to select the best quantization parameter and offset in real time, the HD/SD encoder should be implemented in the hardware. In particular, the hardware architecture should embed the transformation and quantization modules able to process the same residuals many times. In this work, such an architecture is used. Experimental results show what improvements in terms of compression efficiency are achievable for Intra coding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gavrilenko, V. I.; Krishtopenko, S. S., E-mail: ds_a-teens@mail.ru; Goiran, M.
2011-01-15
The effect of electron-electron interaction on the spectrum of two-dimensional electron states in InAs/AlSb (001) heterostructures with a GaSb cap layer with one filled size-quantization subband. The energy spectrum of two-dimensional electrons is calculated in the Hartree and Hartree-Fock approximations. It is shown that the exchange interaction decreasing the electron energy in subbands increases the energy gap between subbands and the spin-orbit splitting of the spectrum in the entire region of electron concentrations, at which only the lower size-quantization band is filled. The nonlinear dependence of the Rashba splitting constant at the Fermi wave vector on the concentration of two-dimensionalmore » electrons is demonstrated.« less
Sn nanothreads in GaAs: experiment and simulation
NASA Astrophysics Data System (ADS)
Semenikhin, I.; Vyurkov, V.; Bugaev, A.; Khabibullin, R.; Ponomarev, D.; Yachmenev, A.; Maltsev, P.; Ryzhii, M.; Otsuji, T.; Ryzhii, V.
2016-12-01
The gated GaAs structures like the field-effect transistor with the array of the Sn nanothreads was fabricated via delta-doping of vicinal GaAs surface by Sn atoms with a subsequent regrowth. That results in the formation of the chains of Sn atoms at the terrace edges. Two device models were developed. The quantum model accounts for the quantization of the electron energy spectrum in the self-consistent two-dimensional electric potential, herewith the electron density distribution in nanothread arrays for different gate voltages is calculated. The classical model ignores the quantization and electrons are distributed in space according to 3D density of states and Fermi-Dirac statistics. It turned out that qualitatively both models demonstrate similar behavior, nevertheless, the classical one is in better quantitative agreement with experimental data. Plausibly, the quantization could be ignored because Sn atoms are randomly placed along the thread axis. The terahertz hot-electron bolometers (HEBs) could be based on the structure under consideration.
Electronic quantization in dielectric nanolaminates
NASA Astrophysics Data System (ADS)
Willemsen, T.; Geerke, P.; Jupé, M.; Gallais, L.; Ristau, D.
2016-12-01
The scientific background in the field of the laser induced damage processes in optical coatings has been significantly extended during the last decades. Especially for the ultra-short pulse regime a clear correlation between the electronic material parameters and the laser damage threshold could be demonstrated. In the present study, the quantization in nanolaminates is investigated to gain a deeper insight into the behavior of the blue shift of the bandgap in specific coating materials as well as to find approximations for the effective mass of the electrons. The theoretical predictions are correlated to the measurements.
Measurement analysis and quantum gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albers, Mark; Kiefer, Claus; Reginatto, Marcel
2008-09-15
We consider the question of whether consistency arguments based on measurement theory show that the gravitational field must be quantized. Motivated by the argument of Eppley and Hannah, we apply a DeWitt-type measurement analysis to a coupled system that consists of a gravitational wave interacting with a mass cube. We also review the arguments of Eppley and Hannah and of DeWitt, and investigate a second model in which a gravitational wave interacts with a quantized scalar field. We argue that one cannot conclude from the existing gedanken experiments that gravity has to be quantized. Despite the many physical arguments whichmore » speak in favor of a quantum theory of gravity, it appears that the justification for such a theory must be based on empirical tests and does not follow from logical arguments alone.« less
Slightly anharmonic systems in quantum optics
NASA Technical Reports Server (NTRS)
Klimov, Andrey B.; Chumakov, Sergey M.
1995-01-01
We consider an arbitrary atomic system (n-level atom or many such atoms) interacting with a strong resonant quantum field. The approximate evolution operator for a quantum field case can be produced from the atomic evolution operator in an external classical field by a 'quantization prescription', passing the operator arguments to Wigner D-functions. Many important phenomena arising from the quantum nature of the field can be described by such a way.
Validation of a quantized-current source with 0.2 ppm uncertainty
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stein, Friederike; Fricke, Lukas, E-mail: lukas.fricke@ptb.de; Scherer, Hansjörg
2015-09-07
We report on high-accuracy measurements of quantized current, sourced by a tunable-barrier single-electron pump at frequencies f up to 1 GHz. The measurements were performed with an ultrastable picoammeter instrument, traceable to the Josephson and quantum Hall effects. Current quantization according to I = ef with e being the elementary charge was confirmed at f = 545 MHz with a total relative uncertainty of 0.2 ppm, improving the state of the art by about a factor of 5. The accuracy of a possible future quantum current standard based on single-electron transport was experimentally validated to be better than the best (indirect) realization of the ampere within themore » present SI.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liakh, Dmitry I
While the formalism of multiresolution analysis (MRA), based on wavelets and adaptive integral representations of operators, is actively progressing in electronic structure theory (mostly on the independent-particle level and, recently, second-order perturbation theory), the concepts of multiresolution and adaptivity can also be utilized within the traditional formulation of correlated (many-particle) theory which is based on second quantization and the corresponding (generally nonorthogonal) tensor algebra. In this paper, we present a formalism called scale-adaptive tensor algebra (SATA) which exploits an adaptive representation of tensors of many-body operators via the local adjustment of the basis set quality. Given a series of locallymore » supported fragment bases of a progressively lower quality, we formulate the explicit rules for tensor algebra operations dealing with adaptively resolved tensor operands. The formalism suggested is expected to enhance the applicability and reliability of local correlated many-body methods of electronic structure theory, especially those directly based on atomic orbitals (or any other localized basis functions).« less
High-temperature quantum oscillations caused by recurring Bloch states in graphene superlattices
NASA Astrophysics Data System (ADS)
Krishna Kumar, R.; Chen, X.; Auton, G. H.; Mishchenko, A.; Bandurin, D. A.; Morozov, S. V.; Cao, Y.; Khestanova, E.; Ben Shalom, M.; Kretinin, A. V.; Novoselov, K. S.; Eaves, L.; Grigorieva, I. V.; Ponomarenko, L. A.; Fal'ko, V. I.; Geim, A. K.
2017-07-01
Cyclotron motion of charge carriers in metals and semiconductors leads to Landau quantization and magneto-oscillatory behavior in their properties. Cryogenic temperatures are usually required to observe these oscillations. We show that graphene superlattices support a different type of quantum oscillation that does not rely on Landau quantization. The oscillations are extremely robust and persist well above room temperature in magnetic fields of only a few tesla. We attribute this phenomenon to repetitive changes in the electronic structure of superlattices such that charge carriers experience effectively no magnetic field at simple fractions of the flux quantum per superlattice unit cell. Our work hints at unexplored physics in Hofstadter butterfly systems at high temperatures.
Quantized transport and steady states of Floquet topological insulators
NASA Astrophysics Data System (ADS)
Esin, Iliya; Rudner, Mark S.; Refael, Gil; Lindner, Netanel H.
2018-06-01
Robust electronic edge or surface modes play key roles in the fascinating quantized responses exhibited by topological materials. Even in trivial materials, topological bands and edge states can be induced dynamically by a time-periodic drive. Such Floquet topological insulators (FTIs) inherently exist out of equilibrium; the extent to which they can host quantized transport, which depends on the steady-state population of their dynamically induced edge states, remains a crucial question. In this work, we obtain the steady states of two-dimensional FTIs in the presence of the natural dissipation mechanisms present in solid state systems. We give conditions under which the steady-state distribution resembles that of a topological insulator in the Floquet basis. In this state, the distribution in the Floquet edge modes exhibits a sharp feature akin to a Fermi level, while the bulk hosts a small density of excitations. We determine the regimes where topological edge-state transport persists and can be observed in FTIs.
NASA Astrophysics Data System (ADS)
Chernyak, Vladimir Y.; Klein, John R.; Sinitsyn, Nikolai A.
2012-04-01
This article studies Markovian stochastic motion of a particle on a graph with finite number of nodes and periodically time-dependent transition rates that satisfy the detailed balance condition at any time. We show that under general conditions, the currents in the system on average become quantized or fractionally quantized for adiabatic driving at sufficiently low temperature. We develop the quantitative theory of this quantization and interpret it in terms of topological invariants. By implementing the celebrated Kirchhoff theorem we derive a general and explicit formula for the average generated current that plays a role of an efficient tool for treating the current quantization effects.
Carbon nanotube-clamped metal atomic chain
Tang, Dai-Ming; Yin, Li-Chang; Li, Feng; Liu, Chang; Yu, Wan-Jing; Hou, Peng-Xiang; Wu, Bo; Lee, Young-Hee; Ma, Xiu-Liang; Cheng, Hui-Ming
2010-01-01
Metal atomic chain (MAC) is an ultimate one-dimensional structure with unique physical properties, such as quantized conductance, colossal magnetic anisotropy, and quantized magnetoresistance. Therefore, MACs show great potential as possible components of nanoscale electronic and spintronic devices. However, MACs are usually suspended between two macroscale metallic electrodes; hence obvious technical barriers exist in the interconnection and integration of MACs. Here we report a carbon nanotube (CNT)-clamped MAC, where CNTs play the roles of both nanoconnector and electrodes. This nanostructure is prepared by in situ machining a metal-filled CNT, including peeling off carbon shells by spatially and elementally selective electron beam irradiation and further elongating the exposed metal nanorod. The microstructure and formation process of this CNT-clamped MAC are explored by both transmission electron microscopy observations and theoretical simulations. First-principles calculations indicate that strong covalent bonds are formed between the CNT and MAC. The electrical transport property of the CNT-clamped MAC was experimentally measured, and quantized conductance was observed. PMID:20427743
Confrontation Between a Quantized Periods of Some Exo-planetary Systems and Observations
NASA Astrophysics Data System (ADS)
El Fady Morcos, Abd
2012-07-01
Confrontation Between a Quantized Periods of Some Exo-planetary Systems and Observations A.B. Morcos Corot and Kepler were designed to detect Earth-like extra solar planets. The orbital elements and periods of these planets will contain some uncertainties. Many theoretical treatments depend on the idea of quantization were done aiming to find orbital elements of these exoplenets. In the present work, as an extension of previous works, the periods of some extoplanetary systems are calculated by using a simple derived formula. The orbital velocities of some of them are predicted . A comparison between the calculated and observed data is done References 1-J.M. Barnothy , the stability of the Solar System and of small Stellar Systems . (Y.Kazai edn,IAU,1974). 2-L.Nottale,Fractal Space-Time and Microphysics,Towards a Theory of Scale Relativity,( World Scientific, London,1994). 3-L. Nottale, A&A Lett. 315, L9 (1996). 4-L. Nottale, G. Schumacher and J. Gay, A&A , 322, 1018 , (1997). 5-L. Nottale, A&A , 361, 379 (2000). 6-A.G. Agnese and R.Festa, arXiv:astro-ph/9807186v1, (1998). 7-A.G. Agnese and R.Festa, arXiv:astro-ph/9910534v2. (1999). 8- A.B.Morcos, MG 12 , France (2009). 9- A.B.Morcs, Cospar 38 , Bremen , Germany (2010)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serwer, Philip, E-mail: serwer@uthscsa.edu; Wright, Elena T.; Liu, Zheng
DNA packaging of phages phi29, T3 and T7 sometimes produces incompletely packaged DNA with quantized lengths, based on gel electrophoretic band formation. We discover here a packaging ATPase-free, in vitro model for packaged DNA length quantization. We use directed evolution to isolate a five-site T3 point mutant that hyper-produces tail-free capsids with mature DNA (heads). Three tail gene mutations, but no head gene mutations, are present. A variable-length DNA segment leaks from some mutant heads, based on DNase I-protection assay and electron microscopy. The protected DNA segment has quantized lengths, based on restriction endonuclease analysis: six sharp bands of DNAmore » missing 3.7–12.3% of the last end packaged. Native gel electrophoresis confirms quantized DNA expulsion and, after removal of external DNA, provides evidence that capsid radius is the quantization-ruler. Capsid-based DNA length quantization possibly evolved via selection for stalling that provides time for feedback control during DNA packaging and injection. - Graphical abstract: Highlights: • We implement directed evolution- and DNA-sequencing-based phage assembly genetics. • We purify stable, mutant phage heads with a partially leaked mature DNA molecule. • Native gels and DNase-protection show leaked DNA segments to have quantized lengths. • Native gels after DNase I-removal of leaked DNA reveal the capsids to vary in radius. • Thus, we hypothesize leaked DNA quantization via variably quantized capsid radius.« less
Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
Kanemitsu, Yoshihiko
2013-06-18
Semiconducting nanomaterials such as single-walled carbon nanotubes (SWCNTs) and nanocrystals (NCs) exhibit unique size-dependent quantum properties. They have therefore attracted considerable attention from the viewpoints of fundamental physics and functional device applications. SWCNTs and NCs also provide an excellent new stage for experimental studies of many-body effects of electrons and excitons on optical processes in nanomaterials. In this Account, we discuss multiple exciton generation and recombination in SWCNTs and NCs for next-generation photovoltaics. Strongly correlated ensembles of conduction-band electrons and valence-band holes in semiconductors are complex quantum systems that exhibit unique optical phenomena. In bulk crystals, the carrier recombination dynamics can be described by a simple model, which includes the nonradiative single-carrier trapping rate, the radiative two-carrier recombination rate, and the nonradiative three-carrier Auger recombination rate. The nonradiative Auger recombination rate determines the carrier recombination dynamics at high carrier density and depends on the spatial localization of carriers in two-dimensional quantum wells. The Auger recombination and multiple exciton generation rates can be advantageously manipulated by nanomaterials with designated energy structures. In addition, SWCNTs and NCs show quantized recombination dynamics of multiple excitons and carriers. In one-dimensional SWCNTs, excitons have large binding energies and are very stable at room temperature. The extremely rapid Auger recombination between excitons determines the photoluminescence (PL) intensity, the PL linewidth, and the PL lifetime. SWCNTs can undergo multiple exciton generation, while strong exciton-exciton interactions and complicated exciton structures affect the quantized Auger rate and the multiple exciton generation efficiency. Interestingly, in zero-dimensional NC quantum dots, quantized Auger recombination causes unique optical phenomena. The breakdown of the k-conversion rule and strong Coulomb interactions between carriers in NCs enhance Auger recombination rate and decrease the energy threshold for multiple exciton generation. We discuss this impact of the k-conservation rule on two-carrier radiative recombination and the three-carrier Auger recombination processes in indirect-gap semiconductor Si NCs. In NCs and SWCNTs, multiple exciton generation competes with Auger recombination, surface trapping of excitons, and cooling of hot electrons or excitons. In addition, we explore heterostructured NCs and impurity-doped NCs in the context of the optimization of charge carrier extraction from excitons in NCs.
Simultaneous fault detection and control design for switched systems with two quantized signals.
Li, Jian; Park, Ju H; Ye, Dan
2017-01-01
The problem of simultaneous fault detection and control design for switched systems with two quantized signals is presented in this paper. Dynamic quantizers are employed, respectively, before the output is passed to fault detector, and before the control input is transmitted to the switched system. Taking the quantized errors into account, the robust performance for this kind of system is given. Furthermore, sufficient conditions for the existence of fault detector/controller are presented in the framework of linear matrix inequalities, and fault detector/controller gains and the supremum of quantizer range are derived by a convex optimized method. Finally, two illustrative examples demonstrate the effectiveness of the proposed method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Seligman, Thomas H.; Prosen, Tomaž
2010-12-01
The basic ideas of second quantization and Fock space are extended to density operator states, used in treatments of open many-body systems. This can be done for fermions and bosons. While the former only requires the use of a non-orthogonal basis, the latter requires the introduction of a dual set of spaces. In both cases an operator algebra closely resembling the canonical one is developed and used to define the dual sets of bases. We here concentrated on the bosonic case where the unboundedness of the operators requires the definitions of dual spaces to support the pair of bases. Some applications, mainly to non-equilibrium steady states, will be mentioned.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seligman, Thomas H.; Centro Internacional de Ciencias, Cuernavaca, Morelos; Prosen, Tomaz
2010-12-23
The basic ideas of second quantization and Fock space are extended to density operator states, used in treatments of open many-body systems. This can be done for fermions and bosons. While the former only requires the use of a non-orthogonal basis, the latter requires the introduction of a dual set of spaces. In both cases an operator algebra closely resembling the canonical one is developed and used to define the dual sets of bases. We here concentrated on the bosonic case where the unboundedness of the operators requires the definitions of dual spaces to support the pair of bases. Somemore » applications, mainly to non-equilibrium steady states, will be mentioned.« less
Kelvin-Helmholtz instability in a single-component atomic superfluid
NASA Astrophysics Data System (ADS)
Baggaley, A. W.; Parker, N. G.
2018-05-01
We demonstrate an experimentally feasible method for generating the classical Kelvin-Helmholtz instability in a single-component atomic Bose-Einstein condensate. By progressively reducing a potential barrier between two counterflowing channels, we seed a line of quantized vortices, which precede to form progressively larger clusters, mimicking the classical roll-up behavior of the Kelvin-Helmholtz instability. This cluster formation leads to an effective superfluid shear layer, formed through the collective motion of many quantized vortices. From this we demonstrate a straightforward method to measure the effective viscosity of a turbulent quantum fluid in a system with a moderate number of vortices, within the range of current experimental capabilities.
Theory of electron-phonon-dislon interacting system—toward a quantized theory of dislocations
NASA Astrophysics Data System (ADS)
Li, Mingda; Tsurimaki, Yoichiro; Meng, Qingping; Andrejevic, Nina; Zhu, Yimei; Mahan, Gerald D.; Chen, Gang
2018-02-01
We provide a comprehensive theoretical framework to study how crystal dislocations influence the functional properties of materials, based on the idea of a quantized dislocation, namely a ‘dislon’. In contrast to previous work on dislons which focused on exotic phenomenology, here we focus on their theoretical structure and computational power. We first provide a pedagogical introduction that explains the necessity and benefits of taking the dislon approach and why the dislon Hamiltonian takes its current form. Then, we study the electron-dislocation and phonon-dislocation scattering problems using the dislon formalism. Both the effective electron and phonon theories are derived, from which the role of dislocations on electronic and phononic transport properties is computed. Compared with traditional dislocation scattering studies, which are intrinsically single-particle, low-order perturbation and classical quenched defect in nature, the dislon theory not only allows easy incorporation of quantum many-body effects such as electron correlation, electron-phonon interaction, and higher-order scattering events, but also allows proper consideration of the dislocation’s long-range strain field and dynamic aspects on equal footing for arbitrary types of straight-line dislocations. This means that instead of developing individual models for specific dislocation scattering problems, the dislon theory allows for the calculation of electronic structure and electrical transport, thermal transport, optical and superconducting properties, etc, under one unified theory. Furthermore, the dislon theory has another advantage over empirical models in that it requires no fitting parameters. The dislon theory could serve as a major computational tool to understand the role of dislocations on multiple materials’ functional properties at an unprecedented level of clarity, and may have wide applications in dislocated energy materials.
Performance of customized DCT quantization tables on scientific data
NASA Technical Reports Server (NTRS)
Ratnakar, Viresh; Livny, Miron
1994-01-01
We show that it is desirable to use data-specific or customized quantization tables for scaling the spatial frequency coefficients obtained using the Discrete Cosine Transform (DCT). DCT is widely used for image and video compression (MP89, PM93) but applications typically use default quantization matrices. Using actual scientific data gathered from divers sources such as spacecrafts and electron-microscopes, we show that the default compression/quality tradeoffs can be significantly improved upon by using customized tables. We also show that significant improvements are possible for the standard test images Lena and Baboon. This work is part of an effort to develop a practical scheme for optimizing quantization matrices for any given image or video stream, under any given quality or compression constraints.
NASA Technical Reports Server (NTRS)
Gneses, M. I.; Berg, D. S.
1981-01-01
Specifications for the pointing stabilization system of the large space telescope were used in an investigation of the feasibility of reducing ring laser gyro output quantization to the sub-arc-second level by the use of phase locked loops and associated electronics. Systems analysis procedures are discussed and a multioscillator laser gyro model is presented along with data on the oscillator noise. It is shown that a second order closed loop can meet the measurement noise requirements when the loop gain and time constant of the loop filter are appropriately chosen. The preliminary electrical design is discussed from the standpoint of circuit tradeoff considerations. Analog, digital, and hybrid designs are given and their applicability to the high resolution sensor is examined. the electrical design choice of a system configuration is detailed. The design and operation of the various modules is considered and system block diagrams are included. Phase 1 and 2 test results using the multioscillator laser gyro are included.
Electronic and magnetic properties of magnetoelectric compound Ca2CoSi2O7: An ab initio study
NASA Astrophysics Data System (ADS)
Chakraborty, Jayita
2018-05-01
The detailed first principle density functional theory calculations are carried out to investigate the electronic and magnetic properties of magnetoelectric compound Ca2CoSi2O7. The magnetic properties of this system are analyzed by calculating various hopping integrals as well as exchange interactions and deriving the relevant spin Hamiltonian. The dominant exchange path is visualized with Wannier functions plotting. Only intra planer nearest neighbor exchange interaction is strong in this system. The magnetocrystalline anisotropy is calculated for this system, and the results of the calculation reveal that the spin quantization axis lies in the ab plane.
Dynamic State Estimation of Power Systems With Quantization Effects: A Recursive Filter Approach.
Hu, Liang; Wang, Zidong; Liu, Xiaohui
2016-08-01
In this paper, a recursive filter algorithm is developed to deal with the state estimation problem for power systems with quantized nonlinear measurements. The measurements from both the remote terminal units and the phasor measurement unit are subject to quantizations described by a logarithmic quantizer. Attention is focused on the design of a recursive filter such that, in the simultaneous presence of nonlinear measurements and quantization effects, an upper bound for the estimation error covariance is guaranteed and subsequently minimized. Instead of using the traditional approximation methods in nonlinear estimation that simply ignore the linearization errors, we treat both the linearization and quantization errors as norm-bounded uncertainties in the algorithm development so as to improve the performance of the estimator. For the power system with such kind of introduced uncertainties, a filter is designed in the framework of robust recursive estimation, and the developed filter algorithm is tested on the IEEE benchmark power system to demonstrate its effectiveness.
Generalized radiation-field quantization method and the Petermann excess-noise factor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Y.-J.; Siegman, A.E.; E.L. Ginzton Laboratory, Stanford University, Stanford, California 94305
2003-10-01
We propose a generalized radiation-field quantization formalism, where quantization does not have to be referenced to a set of power-orthogonal eigenmodes as conventionally required. This formalism can be used to directly quantize the true system eigenmodes, which can be non-power-orthogonal due to the open nature of the system or the gain/loss medium involved in the system. We apply this generalized field quantization to the laser linewidth problem, in particular, lasers with non-power-orthogonal oscillation modes, and derive the excess-noise factor in a fully quantum-mechanical framework. We also show that, despite the excess-noise factor for oscillating modes, the total spatially averaged decaymore » rate for the laser atoms remains unchanged.« less
Quantized Rabi oscillations and circular dichroism in quantum Hall systems
NASA Astrophysics Data System (ADS)
Tran, D. T.; Cooper, N. R.; Goldman, N.
2018-06-01
The dissipative response of a quantum system upon periodic driving can be exploited as a probe of its topological properties. Here we explore the implications of such phenomena in two-dimensional gases subjected to a uniform magnetic field. It is shown that a filled Landau level exhibits a quantized circular dichroism, which can be traced back to its underlying nontrivial topology. Based on selection rules, we find that this quantized effect can be suitably described in terms of Rabi oscillations, whose frequencies satisfy simple quantization laws. We discuss how quantized dissipative responses can be probed locally, both in the bulk and at the boundaries of the system. This work suggests alternative forms of topological probes based on circular dichroism.
Educational Information Quantization for Improving Content Quality in Learning Management Systems
ERIC Educational Resources Information Center
Rybanov, Alexander Aleksandrovich
2014-01-01
The article offers the educational information quantization method for improving content quality in Learning Management Systems. The paper considers questions concerning analysis of quality of quantized presentation of educational information, based on quantitative text parameters: average frequencies of parts of speech, used in the text; formal…
NASA Astrophysics Data System (ADS)
Tavousi, Alireza; Mansouri-Birjandi, Mohammad Ali; Saffari, Mehdi
2016-09-01
Implementing of photonic sampling and quantizing analog-to-digital converters (ADCs) enable us to extract a single binary word from optical signals without need for extra electronic assisting parts. This would enormously increase the sampling and quantizing time as well as decreasing the consumed power. To this end, based on the concept of successive approximation method, a 4-bit full-optical ADC that operates using the intensity-dependent Kerr-like nonlinearity in a two dimensional photonic crystal (2DPhC) platform is proposed. The Silicon (Si) nanocrystal is chosen because of the suitable nonlinear material characteristic. An optical limiter is used for the clamping and quantization of each successive levels that represent the ADC bits. In the proposal, an energy efficient optical ADC circuit is implemented by controlling the system parameters such as ring-to-waveguide coupling coefficients, the ring's nonlinear refractive index, and the ring's length. The performance of the ADC structure is verified by the simulation using finite difference time domain (FDTD) method.
Macroscopic Quantum Phase-Locking Model for the Quantum Hall = Effect
NASA Astrophysics Data System (ADS)
Wang, Te-Chun; Gou, Yih-Shun
1997-08-01
A macroscopic model of nonlinear dissipative phase-locking between a Josephson-like frequency and a macroscopic electron wave frequency is proposed to explain the Quantum Hall Effect. It is well known that a r.f-biased Josephson junction displays a collective phase-locking behavior which can be described by a non-autonomous second order equation or an equivalent 2+1-dimensional dynamical system. Making a direct analogy between the QHE and the Josephson system, this report proposes a computer-solving nonlinear dynamical model for the quantization of the Hall resistance. In this model, the Hall voltage is assumed to be proportional to a Josephson-like frequency and the Hall current is assumed related to a coherent electron wave frequency. The Hall resistance is shown to be quantized in units of the fine structure constant as the ratio of these two frequencies are locked into a rational winding number. To explain the sample-width dependence of the critical current, the 2DEG under large applied current is further assumed to develop a Josephson-like junction array in which all Josephson-like frequencies are synchronized. Other remarkable features of the QHE such as the resistance fluctuation and the even-denominator states are also discussed within this picture.
Non-commutative Chern numbers for generic aperiodic discrete systems
NASA Astrophysics Data System (ADS)
Bourne, Chris; Prodan, Emil
2018-06-01
The search for strong topological phases in generic aperiodic materials and meta-materials is now vigorously pursued by the condensed matter physics community. In this work, we first introduce the concept of patterned resonators as a unifying theoretical framework for topological electronic, photonic, phononic etc (aperiodic) systems. We then discuss, in physical terms, the philosophy behind an operator theoretic analysis used to systematize such systems. A model calculation of the Hall conductance of a 2-dimensional amorphous lattice is given, where we present numerical evidence of its quantization in the mobility gap regime. Motivated by such facts, we then present the main result of our work, which is the extension of the Chern number formulas to Hamiltonians associated to lattices without a canonical labeling of the sites, together with index theorems that assure the quantization and stability of these Chern numbers in the mobility gap regime. Our results cover a broad range of applications, in particular, those involving quasi-crystalline, amorphous as well as synthetic (i.e. algorithmically generated) lattices.
Song, Can-Li; Wang, Lili; He, Ke; Ji, Shuai-Hua; Chen, Xi; Ma, Xu-Cun; Xue, Qi-Kun
2015-05-01
Scanning tunneling microscopy and spectroscopy have been used to investigate the femtosecond dynamics of Dirac fermions in the topological insulator Bi2Se3 ultrathin films. At the two-dimensional limit, bulk electrons become quantized and the quantization can be controlled by the film thickness at a single quintuple layer level. By studying the spatial decay of standing waves (quasiparticle interference patterns) off steps, we measure directly the energy and film thickness dependence of the phase relaxation length lϕ and inelastic scattering lifetime τ of topological surface-state electrons. We find that τ exhibits a remarkable (E - EF)(-2) energy dependence and increases with film thickness. We show that the features revealed are typical for electron-electron scattering between surface and bulk states.
NASA Astrophysics Data System (ADS)
Gareev, F. A.; Zhidkova, I. E.
2007-03-01
We come to the conclusion that all atomic models based on either the Newton equation and the Kepler laws, or the Maxwell equations, or the Schrodinger and Dirac equations are in reasonable agreement with experimental data. We can only suspect that these equations are grounded on the same fundamental principle(s) which is (are) not known or these equations can be transformed into each other. We proposed a new mechanism of LENR: cooperative processes in the whole system nuclei + atoms + condensed matter - nuclear reactions in plasma - can occur at smaller threshold energies than the corresponding ones on free constituents. We were able to quantize phenomenologically the first time the differences between atomic and nuclear rest masses by the formula: δδM =n1/n2 X 0.0076294 (in MeV/ c^2), ni=1,2,3,.... Note that this quantization rule is justified for atoms and nuclei with different A, N and Z and the nuclei and atoms represent a coherent synchronized systems - a complex of coupled oscillators (resonators). The cooperative resonance synchronization mechanisms can explain how electron volt (atomic-) scale processes can induce and control nuclear MeV (nuclear-) scale processes and reactions., F.A. Gareev, I.E. Zhidkova, E-print arXiv Nucl-th/ 0610002 2006.
Quantized charge transport in chiral Majorana edge modes
NASA Astrophysics Data System (ADS)
Rachel, Stephan; Mascot, Eric; Cocklin, Sagen; Vojta, Matthias; Morr, Dirk K.
2017-11-01
Majorana fermions can be realized as quasiparticles in topological superconductors, with potential applications in topological quantum computing. Recently, lattices of magnetic adatoms deposited on the surface of s -wave superconductors—Shiba lattices—have been proposed as a new platform for topological superconductivity. These systems possess the great advantage that they are accessible via scanning-probe techniques and thus enable the local manipulation and detection of Majorana modes. Using a nonequilibrium Green's function technique we demonstrate that the topological Majorana edge modes of nanoscopic Shiba islands display universal electronic and transport properties. Most remarkably, these Majorana modes possess a quantized charge conductance that is proportional to the topological Chern number, C , and carry a supercurrent whose chirality reflects the sign of C . These results establish nanoscopic Shiba islands as promising components in future topology-based devices.
Quantum games of opinion formation based on the Marinatto-Weber quantum game scheme
NASA Astrophysics Data System (ADS)
Deng, Xinyang; Deng, Yong; Liu, Qi; Shi, Lei; Wang, Zhen
2016-06-01
Quantization has become a new way to investigate classical game theory since quantum strategies and quantum games were proposed. In the existing studies, many typical game models, such as the prisoner's dilemma, battle of the sexes, Hawk-Dove game, have been extensively explored by using quantization approach. Along a similar method, here several game models of opinion formations will be quantized on the basis of the Marinatto-Weber quantum game scheme, a frequently used scheme of converting classical games to quantum versions. Our results show that the quantization can fascinatingly change the properties of some classical opinion formation game models so as to generate win-win outcomes.
NASA Astrophysics Data System (ADS)
Schüler, M.; Berakdar, J.; Pavlyukh, Y.
2016-02-01
Recent experiments access the time-resolved photoelectron signal originating from plasmon satellites in correlated materials and address their buildup and decay in real time. Motivated by these developments, we present the Kadanoff-Baym formalism for the nonequilibrium time evolution of interacting fermions and bosons. In contrast to the fermionic case, the bosons are described by second-order differential equations. Solution of the bosonic Kadanoff-Baym equations—which is the central ingredient of this work—requires substantial modification of the usual two-times electronic propagation scheme. The solution is quite general and can be applied to a number of problems, such as the interaction of electrons with quantized photons, phonons, and other bosonic excitations. Here the formalism is applied to the photoemission from a deep core hole accompanied by plasmon excitation. We compute the time-resolved photoelectron spectra and discuss the effects of intrinsic and extrinsic electron energy losses and their interference.
Electron and hole relaxation pathways in semiconductor quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klimov, V.I.; McBranch, D.W.; Leatherdale, C.A.
1999-11-01
Femtosecond (fs) broad-band transient absorption (TA) is used to study the intraband relaxation and depopulation dynamics of electron and hole quantized states in CdSe nanocrystals (NC{close_quote}s) with a range of surface properties. Instead of the drastic reduction in the energy relaxation rate expected due to a {open_quotes}phonon bottleneck,{close_quotes} we observe a fast subpicosecond 1P-to-1S electron relaxation, with the rate exceeding that due to phonon emission in bulk semiconductors. The energy relaxation is enhanced with reducing the NC{close_quote}s radius, and does not show any dependence on the NC surface properties (quality of the surface passivation). These data indicate that electron energymore » relaxation occurs by neither multiphonon emission nor by coupling to surface defects, but is likely meditated by Auger-type electron-hole energy transfer. We use fs infrared TA to probe electron and hole intraband transitions, which allows us to distinguish between electron and hole relaxation pathways leading to the depopulation of NC quantized states. In contrast to the electron relaxation, which is controlled by NC surface passivation, the depopulation of hole quantized states is extremely fast (sub-ps-to-ps time scales) in all types of samples, independent of NC surface treatment (including NC{close_quote}s overcoated with a ZnS layer). Our results indicate that ultrafast hole dynamics are not due to trapping at localized surface defects such as a vacancy, but rather arise from relaxation into intrinsic NC states or intrinsically unpassivated interface states. {copyright} {ital 1999} {ital The American Physical Society}« less
In quest of a systematic framework for unifying and defining nanoscience
2009-01-01
This article proposes a systematic framework for unifying and defining nanoscience based on historic first principles and step logic that led to a “central paradigm” (i.e., unifying framework) for traditional elemental/small-molecule chemistry. As such, a Nanomaterials classification roadmap is proposed, which divides all nanomatter into Category I: discrete, well-defined and Category II: statistical, undefined nanoparticles. We consider only Category I, well-defined nanoparticles which are >90% monodisperse as a function of Critical Nanoscale Design Parameters (CNDPs) defined according to: (a) size, (b) shape, (c) surface chemistry, (d) flexibility, and (e) elemental composition. Classified as either hard (H) (i.e., inorganic-based) or soft (S) (i.e., organic-based) categories, these nanoparticles were found to manifest pervasive atom mimicry features that included: (1) a dominance of zero-dimensional (0D) core–shell nanoarchitectures, (2) the ability to self-assemble or chemically bond as discrete, quantized nanounits, and (3) exhibited well-defined nanoscale valencies and stoichiometries reminiscent of atom-based elements. These discrete nanoparticle categories are referred to as hard or soft particle nanoelements. Many examples describing chemical bonding/assembly of these nanoelements have been reported in the literature. We refer to these hard:hard (H-n:H-n), soft:soft (S-n:S-n), or hard:soft (H-n:S-n) nanoelement combinations as nanocompounds. Due to their quantized features, many nanoelement and nanocompound categories are reported to exhibit well-defined nanoperiodic property patterns. These periodic property patterns are dependent on their quantized nanofeatures (CNDPs) and dramatically influence intrinsic physicochemical properties (i.e., melting points, reactivity/self-assembly, sterics, and nanoencapsulation), as well as important functional/performance properties (i.e., magnetic, photonic, electronic, and toxicologic properties). We propose this perspective as a modest first step toward more clearly defining synthetic nanochemistry as well as providing a systematic framework for unifying nanoscience. With further progress, one should anticipate the evolution of future nanoperiodic table(s) suitable for predicting important risk/benefit boundaries in the field of nanoscience. Electronic supplementary material The online version of this article (doi:10.1007/s11051-009-9632-z) contains supplementary material, which is available to authorized users. PMID:21170133
NASA Astrophysics Data System (ADS)
Sabeeh, Kashif
This thesis presents theoretical studies of dielectric response properties of parabolically-confined nanostructures in a magnetic field. We have determined the retarded Schrodinger Green's function for an electron in such a parabolically confined system in the presence of a time dependent electric field and an ambient magnetic field. Following an operator equation of motion approach developed by Schwinger, we calculate the result in closed form in terms of elementary functions in direct-time representation. From the retarded Schrodinger Green's function we construct the closed-form thermodynamic Green's function for a parabolically confined quantum-dot in a magnetic field to determine its plasmon spectrum. Due to confinement and Landau quantization this system is fully quantized, with an infinite number of collective modes. The RPA integral equation for the inverse dielectric function is solved using Fredholm theory in the nondegenerate and quantum limit to determine the frequencies with which the plasmons participate in response to excitation by an external potential. We exhibit results for the variation of plasmon frequency as a function of magnetic field strength and of confinement frequency. A calculation of the van der Waals interaction energy between two harmonically confined quantum dots is discussed in terms of the dipole-dipole correlation function. The results are presented as a function of confinement strength and distance between the dots. We also rederive a result of Fertig & Halperin [32] for the tunneling-scattering of an electron through a saddle potential which is also known as a quantum point contact (QPC), in the presence of a magnetic field. Using the retarded Green's function we confirm the result for the transmission coefficient and analyze it.
Electronically decoupled stacking fault tetrahedra embedded in Au(111) films
Schouteden, Koen; Amin-Ahmadi, Behnam; Li, Zhe; Muzychenko, Dmitry; Schryvers, Dominique; Van Haesendonck, Chris
2016-01-01
Stacking faults are known as defective structures in crystalline materials that typically lower the structural quality of the material. Here, we show that a particular type of defect, that is, stacking fault tetrahedra (SFTs), exhibits pronounced quantized electronic behaviour, revealing a potential synthetic route to decoupled nanoparticles in metal films. We report on the electronic properties of SFTs that exist in Au(111) films, as evidenced by scanning tunnelling microscopy and confirmed by transmission electron microscopy. We find that the SFTs reveal a remarkable decoupling from their metal surroundings, leading to pronounced energy level quantization effects within the SFTs. The electronic behaviour of the SFTs can be described well by the particle-in-a-box model. Our findings demonstrate that controlled preparation of SFTs may offer an alternative way to achieve well-decoupled nanoparticles of high crystalline quality in metal thin films without the need of thin insulating layers. PMID:28008910
Electronically decoupled stacking fault tetrahedra embedded in Au(111) films.
Schouteden, Koen; Amin-Ahmadi, Behnam; Li, Zhe; Muzychenko, Dmitry; Schryvers, Dominique; Van Haesendonck, Chris
2016-12-23
Stacking faults are known as defective structures in crystalline materials that typically lower the structural quality of the material. Here, we show that a particular type of defect, that is, stacking fault tetrahedra (SFTs), exhibits pronounced quantized electronic behaviour, revealing a potential synthetic route to decoupled nanoparticles in metal films. We report on the electronic properties of SFTs that exist in Au(111) films, as evidenced by scanning tunnelling microscopy and confirmed by transmission electron microscopy. We find that the SFTs reveal a remarkable decoupling from their metal surroundings, leading to pronounced energy level quantization effects within the SFTs. The electronic behaviour of the SFTs can be described well by the particle-in-a-box model. Our findings demonstrate that controlled preparation of SFTs may offer an alternative way to achieve well-decoupled nanoparticles of high crystalline quality in metal thin films without the need of thin insulating layers.
Observation of the quantum Hall effect in δ-doped SrTiO3
Matsubara, Y.; Takahashi, K. S.; Bahramy, M. S.; Kozuka, Y.; Maryenko, D.; Falson, J.; Tsukazaki, A.; Tokura, Y.; Kawasaki, M.
2016-01-01
The quantum Hall effect is a macroscopic quantum phenomenon in a two-dimensional electron system. The two-dimensional electron system in SrTiO3 has sparked a great deal of interest, mainly because of the strong electron correlation effects expected from the 3d orbitals. Here we report the observation of the quantum Hall effect in a dilute La-doped SrTiO3-two-dimensional electron system, fabricated by metal organic molecular-beam epitaxy. The quantized Hall plateaus are found to be solely stemming from the low Landau levels with even integer-filling factors, ν=4 and 6 without any contribution from odd ν's. For ν=4, the corresponding plateau disappears on decreasing the carrier density. Such peculiar behaviours are proposed to be due to the crossing between the Landau levels originating from the two subbands composed of d orbitals with different effective masses. Our findings pave a way to explore unprecedented quantum phenomena in d-electron systems. PMID:27228903
NASA Astrophysics Data System (ADS)
Wang, Wan-Sheng; Xiang, Yuan-Yuan; Wang, Qiang-Hua; Wang, Fa; Yang, Fan; Lee, Dung-Hai
2012-01-01
We study the electronic instabilities of near 1/4 electron doped graphene using the singular-mode functional renormalization group, with a self-adaptive k mesh to improve the treatment of the van Hove singularities, and variational Monte Carlo method. At 1/4 doping the system is a chiral spin-density wave state exhibiting the anomalous quantized Hall effect. When the doping deviates from 1/4, the dx2-y2+idxy Cooper pairing becomes the leading instability. Our results suggest that near 1/4 electron or hole doping (away from the neutral point) the graphene is either a Chern insulator or a topoligical superconductor.
Quantization improves stabilization of dynamical systems with delayed feedback
NASA Astrophysics Data System (ADS)
Stepan, Gabor; Milton, John G.; Insperger, Tamas
2017-11-01
We show that an unstable scalar dynamical system with time-delayed feedback can be stabilized by quantizing the feedback. The discrete time model corresponds to a previously unrecognized case of the microchaotic map in which the fixed point is both locally and globally repelling. In the continuous-time model, stabilization by quantization is possible when the fixed point in the absence of feedback is an unstable node, and in the presence of feedback, it is an unstable focus (spiral). The results are illustrated with numerical simulation of the unstable Hayes equation. The solutions of the quantized Hayes equation take the form of oscillations in which the amplitude is a function of the size of the quantization step. If the quantization step is sufficiently small, the amplitude of the oscillations can be small enough to practically approximate the dynamics around a stable fixed point.
On Correspondence of BRST-BFV, Dirac, and Refined Algebraic Quantizations of Constrained Systems
NASA Astrophysics Data System (ADS)
Shvedov, O. Yu.
2002-11-01
The correspondence between BRST-BFV, Dirac, and refined algebraic (group averaging, projection operator) approaches to quantizing constrained systems is analyzed. For the closed-algebra case, it is shown that the component of the BFV wave function corresponding to maximal (minimal) value of number of ghosts and antighosts in the Schrodinger representation may be viewed as a wave function in the refined algebraic (Dirac) quantization approach. The Giulini-Marolf group averaging formula for the inner product in the refined algebraic quantization approach is obtained from the Batalin-Marnelius prescription for the BRST-BFV inner product, which should be generally modified due to topological problems. The considered prescription for the correspondence of states is observed to be applicable to the open-algebra case. The refined algebraic quantization approach is generalized then to the case of nontrivial structure functions. A simple example is discussed. The correspondence of observables for different quantization methods is also investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Múnera, Héctor A., E-mail: hmunera@hotmail.com; Retired professor, Department of Physics, Universidad Nacional de Colombia, Bogotá, Colombia, South America
2016-07-07
It is postulated that there exists a fundamental energy-like fluid, which occupies the flat three-dimensional Euclidean space that contains our universe, and obeys the two basic laws of classical physics: conservation of linear momentum, and conservation of total energy; the fluid is described by the classical wave equation (CWE), which was Schrödinger’s first candidate to develop his quantum theory. Novel solutions for the CWE discovered twenty years ago are nonharmonic, inherently quantized, and universal in the sense of scale invariance, thus leading to quantization at all scales of the universe, from galactic clusters to the sub-quark world, and yielding amore » unified Lorentz-invariant quantum theory ab initio. Quingal solutions are isomorphic under both neo-Galilean and Lorentz transformations, and exhibit nother remarkable property: intrinsic unstability for large values of ℓ (a quantum number), thus limiting the size of each system at a given scale. Unstability and scale-invariance together lead to nested structures observed in our solar system; unstability may explain the small number of rows in the chemical periodic table, and nuclear unstability of nuclides beyond lead and bismuth. Quingal functions lend mathematical basis for Boscovich’s unified force (which is compatible with many pieces of evidence collected over the past century), and also yield a simple geometrical solution for the classical three-body problem, which is a useful model for electronic orbits in simple diatomic molecules. A testable prediction for the helicoidal-type force is suggested.« less
General properties of quantum optical systems in a strong field limit
NASA Technical Reports Server (NTRS)
Chumakov, S. M.; Klimov, Andrei B.
1994-01-01
We investigate the dynamics of an arbitrary atomic system (n-level atoms or many n-level atoms) interacting with a resonant quantized mode of an em field. If the initial field state is a coherent state with a large photon number then the system dynamics possesses some general features, independently of the particular structure of the atomic system. Namely, trapping states, factorization of the wave function, collapses and revivals of the atomic energy oscillations are discussed.
Deformation quantization of fermi fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galaviz, I.; Garcia-Compean, H.; Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del IPN, P.O. Box 14-740, 07000 Mexico, D.F.
2008-04-15
Deformation quantization for any Grassmann scalar free field is described via the Weyl-Wigner-Moyal formalism. The Stratonovich-Weyl quantizer, the Moyal *-product and the Wigner functional are obtained by extending the formalism proposed recently in [I. Galaviz, H. Garcia-Compean, M. Przanowski, F.J. Turrubiates, Weyl-Wigner-Moyal Formalism for Fermi Classical Systems, arXiv:hep-th/0612245] to the fermionic systems of infinite number of degrees of freedom. In particular, this formalism is applied to quantize the Dirac free field. It is observed that the use of suitable oscillator variables facilitates considerably the procedure. The Stratonovich-Weyl quantizer, the Moyal *-product, the Wigner functional, the normal ordering operator, and finally,more » the Dirac propagator have been found with the use of these variables.« less
Quantizing and sampling considerations in digital phased-locked loops
NASA Technical Reports Server (NTRS)
Hurst, G. T.; Gupta, S. C.
1974-01-01
The quantizer problem is first considered. The conditions under which the uniform white sequence model for the quantizer error is valid are established independent of the sampling rate. An equivalent spectral density is defined for the quantizer error resulting in an effective SNR value. This effective SNR may be used to determine quantized performance from infinitely fine quantized results. Attention is given to sampling rate considerations. Sampling rate characteristics of the digital phase-locked loop (DPLL) structure are investigated for the infinitely fine quantized system. The predicted phase error variance equation is examined as a function of the sampling rate. Simulation results are presented and a method is described which enables the minimum required sampling rate to be determined from the predicted phase error variance equations.
Quantization of Non-Lagrangian Systems
NASA Astrophysics Data System (ADS)
Kochan, Denis
A novel method for quantization of non-Lagrangian (open) systems is proposed. It is argued that the essential object, which provides both classical and quantum evolution, is a certain canonical two-form defined in extended velocity space. In this setting classical dynamics is recovered from the stringy-type variational principle, which employs umbilical surfaces instead of histories of the system. Quantization is then accomplished in accordance with the introduced variational principle. The path integral for the transition probability amplitude (propagator) is rearranged to a surface functional integral. In the standard case of closed (Lagrangian) systems the presented method reduces to the standard Feynman's approach. The inverse problem of the calculus of variation, the problem of quantization ambiguity and the quantum mechanics in the presence of friction are analyzed in detail.
Hao, Li-Ying; Park, Ju H; Ye, Dan
2017-09-01
In this paper, a new robust fault-tolerant compensation control method for uncertain linear systems over networks is proposed, where only quantized signals are assumed to be available. This approach is based on the integral sliding mode (ISM) method where two kinds of integral sliding surfaces are constructed. One is the continuous-state-dependent surface with the aim of sliding mode stability analysis and the other is the quantization-state-dependent surface, which is used for ISM controller design. A scheme that combines the adaptive ISM controller and quantization parameter adjustment strategy is then proposed. Through utilizing H ∞ control analytical technique, once the system is in the sliding mode, the nature of performing disturbance attenuation and fault tolerance from the initial time can be found without requiring any fault information. Finally, the effectiveness of our proposed ISM control fault-tolerant schemes against quantization errors is demonstrated in the simulation.
Anti-resonance scattering at defect levels in the quantum conductance of a one-dimensional system
NASA Astrophysics Data System (ADS)
Sun, Z. Z.; Wang, Y. P.; Wang, X. R.
2002-03-01
For the ballistic quantum transport, the conductance of one channel is quantized to a value of 2e^2/h described by the Landauer formula. In the presence of defects, electrons will be scattered by these defects. Thus the conductance will deviate from the values of the quantized conductance. We show that an anti-resonance scattering can occur when an extra defect level is introduced into a conduction band. At the anti-resonance scattering, exact one quantum conductance is destroyed. The conductance takes a non-zero value when the Fermi energy is away from the anti-resonance scattering. The result is consistent with recent numerical calculations given by H. J. Choi et al. (Phys. Rev. Lett. 84, 2917(2000)) and P. L. McEuen et al. (Phys. Rev. Lett. 83, 5098(1999)).
Probing the Topology of Density Matrices
NASA Astrophysics Data System (ADS)
Bardyn, Charles-Edouard; Wawer, Lukas; Altland, Alexander; Fleischhauer, Michael; Diehl, Sebastian
2018-01-01
The mixedness of a quantum state is usually seen as an adversary to topological quantization of observables. For example, exact quantization of the charge transported in a so-called Thouless adiabatic pump is lifted at any finite temperature in symmetry-protected topological insulators. Here, we show that certain directly observable many-body correlators preserve the integrity of topological invariants for mixed Gaussian quantum states in one dimension. Our approach relies on the expectation value of the many-body momentum-translation operator and leads to a physical observable—the "ensemble geometric phase" (EGP)—which represents a bona fide geometric phase for mixed quantum states, in the thermodynamic limit. In cyclic protocols, the EGP provides a topologically quantized observable that detects encircled spectral singularities ("purity-gap" closing points) of density matrices. While we identify the many-body nature of the EGP as a key ingredient, we propose a conceptually simple, interferometric setup to directly measure the latter in experiments with mesoscopic ensembles of ultracold atoms.
Response of two-band systems to a single-mode quantized field
NASA Astrophysics Data System (ADS)
Shi, Z. C.; Shen, H. Z.; Wang, W.; Yi, X. X.
2016-03-01
The response of topological insulators (TIs) to an external weakly classical field can be expressed in terms of Kubo formula, which predicts quantized Hall conductivity of the quantum Hall family. The response of TIs to a single-mode quantized field, however, remains unexplored. In this work, we take the quantum nature of the external field into account and define a Hall conductance to characterize the linear response of a two-band system to the quantized field. The theory is then applied to topological insulators. Comparisons with the traditional Hall conductance are presented and discussed.
Coupling an Ensemble of Electrons on Superfluid Helium to a Superconducting Circuit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ge; Fragner, A.; Koolstra, G.
2016-03-01
The quantized lateral motional states and the spin states of electrons trapped on the surface of superfluid helium have been proposed as basic building blocks of a scalable quantum computer. Circuit quantum electrodynamics allows strong dipole coupling between electrons and a high-Q superconducting microwave resonator, enabling such sensitive detection and manipulation of electron degrees of freedom. Here, we present the first realization of a hybrid circuit in which a large number of electrons are trapped on the surface of superfluid helium inside a coplanar waveguide resonator. The high finesse of the resonator allows us to observe large dispersive shifts thatmore » are many times the linewidth and make fast and sensitive measurements on the collective vibrational modes of the electron ensemble, as well as the superfluid helium film underneath. Furthermore, a large ensemble coupling is observed in the dispersive regime during experiment, and it shows excellent agreement with our numeric model. The coupling strength of the ensemble to the cavity is found to be approximate to 1 MHz per electron, indicating the feasibility of achieving single electron strong coupling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovchavtsev, A. P., E-mail: kap@isp.nsc.ru; Tsarenko, A. V.; Guzev, A. A.
The influence of electron energy quantization in a space-charge region on the accumulation capacitance of the InAs-based metal-oxide-semiconductor capacitors (MOSCAPs) has been investigated by modeling and comparison with the experimental data from Au/anodic layer(4-20 nm)/n-InAs(111)A MOSCAPs. The accumulation capacitance for MOSCAPs has been calculated by the solution of Poisson equation with different assumptions and the self-consistent solution of Schrödinger and Poisson equations with quantization taken into account. It was shown that the quantization during the MOSCAPs accumulation capacitance calculations should be taken into consideration for the correct interface states density determination by Terman method and the evaluation of gate dielectric thicknessmore » from capacitance-voltage measurements.« less
Sheng, Duo; Lai, Hsiu-Fan; Chan, Sheng-Min; Hong, Min-Rong
2015-02-13
An all-digital on-chip delay sensor (OCDS) circuit with high delay-measurement resolution and low supply-voltage sensitivity for efficient detection and diagnosis in high-performance electronic system applications is presented. Based on the proposed delay measurement scheme, the quantization resolution of the proposed OCDS can be reduced to several picoseconds. Additionally, the proposed cascade-stage delay measurement circuit can enhance immunity to supply-voltage variations of the delay measurement resolution without extra self-biasing or calibration circuits. Simulation results show that the delay measurement resolution can be improved to 1.2 ps; the average delay resolution variation is 0.55% with supply-voltage variations of ±10%. Moreover, the proposed delay sensor can be implemented in an all-digital manner, making it very suitable for high-performance electronic system applications as well as system-level integration.
Electronic Master Monitor and Advisory Display System, Human Engineering Summary Report.
1981-06-01
Communications, Sensors Instrumentation Division IS. NUMBER OF PAGES Fort Monmouth, NJ 0770M 226 14. MONITORING AGENCY NAME & ADORESS{I1 differel from...quantized each indication according to electrical signal, sensor type, display type, operating ranges, etc. The HFE evaluation sought to categorize the...was based on: " Frequency of the suggestion across crews * Relative potential for reducing workload " The need for sophisticated sensors for
Theory of the Knight Shift and Flux Quantization in Superconductors
DOE R&D Accomplishments Database
Cooper, L. N.; Lee, H. J.; Schwartz, B. B.; Silvert, W.
1962-05-01
Consequences of a generalization of the theory of superconductivity that yields a finite Knight shift are presented. In this theory, by introducing an electron-electron interaction that is not spatially invariant, the pairing of electrons with varying total momentum is made possible. An expression for Xs (the spin susceptibility in the superconducting state) is derived. In general Xs is smaller than Xn, but is not necessarily zero. The precise magnitude of Xs will vary from sample to sample and will depend on the nonuniformity of the samples. There should be no marked size dependence and no marked dependence on the strength of the magnetic field; this is in accord with observation. The basic superconducting properties are retained, but there are modifications in the various electromagnetic and thermal properties since the electrons paired are not time sequences of this generalized theory on flux quantization arguments are presented.(auth)
Electron-nuclear corellations for photoinduced dynamics in molecular dimers
NASA Astrophysics Data System (ADS)
Kilin, Dmitri S.; Pereversev, Yuryi V.; Prezhdo, Oleg V.
2003-03-01
Ultrafast photoinduced dynamics of electronic excitation in molecular dimers is drastically affected by dynamic reorganization of of inter- and intra- molecular nuclear configuration modelled by quantized nuclear degree of freedom [1]. The dynamics of the electronic population and nuclear coherence is analyzed with help of both numerical solution of the chain of coupled differential equations for mean coordinate, population inversion, electronic-vibrational correlation etc.[2] and by propagating the Gaussian wavepackets in relevant adiabatic potentials. Intriguing results were obtained in the approximation of small energy difference and small change of nuclear equilibrium configuration for excited electronic states. In the limiting case of resonance between electronic states energy difference and frequency of the nuclear mode these results have been justified by comparison to exactly solvable Jaynes-Cummings model. It has been found that the photoinduced processes in dimer are arranged according to their time scales:(i) fast scale of nuclear motion,(ii) intermediate scale of dynamical redistribution of electronic population between excited states as well as growth and dynamics of electronic -nuclear correlation,(iii) slow scale of electronic population approaching to the quasiequilibrium distribution, decay of electronic-nuclear correlation, and diminishing the amplitude of mean coordinate oscillations, accompanied by essential growth of the nuclear coordinate dispersion associated with the overall nuclear wavepacket width. Demonstrated quantum-relaxational features of photoinduced vibronic dinamical processess in molecular dimers are obtained by simple method, applicable to large biological systems with many degrees of freedom. [1] J. A. Cina, D. S. Kilin, T. S. Humble, J. Chem. Phys. (2003) in press. [2] O. V. Prezhdo, J. Chem. Phys. 117, 2995 (2002).
Instabilities caused by floating-point arithmetic quantization.
NASA Technical Reports Server (NTRS)
Phillips, C. L.
1972-01-01
It is shown that an otherwise stable digital control system can be made unstable by signal quantization when the controller operates on floating-point arithmetic. Sufficient conditions of instability are determined, and an example of loss of stability is treated when only one quantizer is operated.
Direct comparison of fractional and integer quantized Hall resistance
NASA Astrophysics Data System (ADS)
Ahlers, Franz J.; Götz, Martin; Pierz, Klaus
2017-08-01
We present precision measurements of the fractional quantized Hall effect, where the quantized resistance {{R}≤ft[ 1/3 \\right]} in the fractional quantum Hall state at filling factor 1/3 was compared with a quantized resistance {{R}[2]} , represented by an integer quantum Hall state at filling factor 2. A cryogenic current comparator bridge capable of currents down to the nanoampere range was used to directly compare two resistance values of two GaAs-based devices located in two cryostats. A value of 1-(5.3 ± 6.3) 10-8 (95% confidence level) was obtained for the ratio ({{R}≤ft[ 1/3 \\right]}/6{{R}[2]} ). This constitutes the most precise comparison of integer resistance quantization (in terms of h/e 2) in single-particle systems and of fractional quantization in fractionally charged quasi-particle systems. While not relevant for practical metrology, such a test of the validity of the underlying physics is of significance in the context of the upcoming revision of the SI.
Origins and demonstrations of electrons with orbital angular momentum
Agrawal, Amit; Ercius, Peter A.; Grillo, Vincenzo; Herzing, Andrew A.; Harvey, Tyler R.; Linck, Martin; Pierce, Jordan S.
2017-01-01
The surprising message of Allen et al. (Allen et al. 1992 Phys. Rev. A 45, 8185 (doi:10.1103/PhysRevA.45.8185)) was that photons could possess orbital angular momentum in free space, which subsequently launched advancements in optical manipulation, microscopy, quantum optics, communications, many more fields. It has recently been shown that this result also applies to quantum mechanical wave functions describing massive particles (matter waves). This article discusses how electron wave functions can be imprinted with quantized phase vortices in analogous ways to twisted light, demonstrating that charged particles with non-zero rest mass can possess orbital angular momentum in free space. With Allen et al. as a bridge, connections are made between this recent work in electron vortex wave functions and much earlier works, extending a 175 year old tradition in matter wave vortices. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069765
Theory of electron–phonon–dislon interacting system—toward a quantized theory of dislocations
Li, Mingda; Tsurimaki, Yoichiro; Meng, Qingping; ...
2018-02-05
In this paper, we provide a comprehensive theoretical framework to study how crystal dislocations influence the functional properties of materials, based on the idea of a quantized dislocation, namely a 'dislon'. In contrast to previous work on dislons which focused on exotic phenomenology, here we focus on their theoretical structure and computational power. We first provide a pedagogical introduction that explains the necessity and benefits of taking the dislon approach and why the dislon Hamiltonian takes its current form. Then, we study the electron–dislocation and phonon–dislocation scattering problems using the dislon formalism. Both the effective electron and phonon theories aremore » derived, from which the role of dislocations on electronic and phononic transport properties is computed. Compared with traditional dislocation scattering studies, which are intrinsically single-particle, low-order perturbation and classical quenched defect in nature, the dislon theory not only allows easy incorporation of quantum many-body effects such as electron correlation, electron–phonon interaction, and higher-order scattering events, but also allows proper consideration of the dislocation's long-range strain field and dynamic aspects on equal footing for arbitrary types of straight-line dislocations. This means that instead of developing individual models for specific dislocation scattering problems, the dislon theory allows for the calculation of electronic structure and electrical transport, thermal transport, optical and superconducting properties, etc, under one unified theory. Furthermore, the dislon theory has another advantage over empirical models in that it requires no fitting parameters. The dislon theory could serve as a major computational tool to understand the role of dislocations on multiple materials' functional properties at an unprecedented level of clarity, and may have wide applications in dislocated energy materials.« less
Theory of electron–phonon–dislon interacting system—toward a quantized theory of dislocations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Mingda; Tsurimaki, Yoichiro; Meng, Qingping
In this paper, we provide a comprehensive theoretical framework to study how crystal dislocations influence the functional properties of materials, based on the idea of a quantized dislocation, namely a 'dislon'. In contrast to previous work on dislons which focused on exotic phenomenology, here we focus on their theoretical structure and computational power. We first provide a pedagogical introduction that explains the necessity and benefits of taking the dislon approach and why the dislon Hamiltonian takes its current form. Then, we study the electron–dislocation and phonon–dislocation scattering problems using the dislon formalism. Both the effective electron and phonon theories aremore » derived, from which the role of dislocations on electronic and phononic transport properties is computed. Compared with traditional dislocation scattering studies, which are intrinsically single-particle, low-order perturbation and classical quenched defect in nature, the dislon theory not only allows easy incorporation of quantum many-body effects such as electron correlation, electron–phonon interaction, and higher-order scattering events, but also allows proper consideration of the dislocation's long-range strain field and dynamic aspects on equal footing for arbitrary types of straight-line dislocations. This means that instead of developing individual models for specific dislocation scattering problems, the dislon theory allows for the calculation of electronic structure and electrical transport, thermal transport, optical and superconducting properties, etc, under one unified theory. Furthermore, the dislon theory has another advantage over empirical models in that it requires no fitting parameters. The dislon theory could serve as a major computational tool to understand the role of dislocations on multiple materials' functional properties at an unprecedented level of clarity, and may have wide applications in dislocated energy materials.« less
Robust vector quantization for noisy channels
NASA Technical Reports Server (NTRS)
Demarca, J. R. B.; Farvardin, N.; Jayant, N. S.; Shoham, Y.
1988-01-01
The paper briefly discusses techniques for making vector quantizers more tolerant to tranmsission errors. Two algorithms are presented for obtaining an efficient binary word assignment to the vector quantizer codewords without increasing the transmission rate. It is shown that about 4.5 dB gain over random assignment can be achieved with these algorithms. It is also proposed to reduce the effects of error propagation in vector-predictive quantizers by appropriately constraining the response of the predictive loop. The constrained system is shown to have about 4 dB of SNR gain over an unconstrained system in a noisy channel, with a small loss of clean-channel performance.
Hao, Li-Ying; Yang, Guang-Hong
2013-09-01
This paper is concerned with the problem of robust fault-tolerant compensation control problem for uncertain linear systems subject to both state and input signal quantization. By incorporating novel matrix full-rank factorization technique with sliding surface design successfully, the total failure of certain actuators can be coped with, under a special actuator redundancy assumption. In order to compensate for quantization errors, an adjustment range of quantization sensitivity for a dynamic uniform quantizer is given through the flexible choices of design parameters. Comparing with the existing results, the derived inequality condition leads to the fault tolerance ability stronger and much wider scope of applicability. With a static adjustment policy of quantization sensitivity, an adaptive sliding mode controller is then designed to maintain the sliding mode, where the gain of the nonlinear unit vector term is updated automatically to compensate for the effects of actuator faults, quantization errors, exogenous disturbances and parameter uncertainties without the need for a fault detection and isolation (FDI) mechanism. Finally, the effectiveness of the proposed design method is illustrated via a model of a rocket fairing structural-acoustic. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Hydrodynamic Electron Flow and Hall Viscosity
NASA Astrophysics Data System (ADS)
Scaffidi, Thomas; Moll, Philip; Kushwaha, Pallavi; Nandi, Nabhanila; Schmidt, Burkhard; MacKenzie, Andrew; Moore, Joel
In metallic samples of small enough size and sufficiently strong electron-electron scattering, the viscosity of the electron gas can become the dominant process governing transport. In this regime, momentum is a long-lived quantity whose evolution is described by an emergent hydrodynamical theory for which bounds on diffusion were conjectured based on an holographic correspondence. Furthermore, breaking time-reversal symmetry can lead to the appearance of an odd component to the viscosity called the Hall viscosity which has attracted a lot of attention recently due to its quantized nature in gapped systems but still eludes experimental confirmation. Based on microscopic calculations, we discuss how to measure the effects of both the even and odd components of the viscosity using hydrodynamic electronic transport in mesoscopic samples under applied magnetic fields. Gordon and Betty Moore Foundation.
Topologies on quantum topoi induced by quantization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakayama, Kunji
2013-07-15
In the present paper, we consider effects of quantization in a topos approach of quantum theory. A quantum system is assumed to be coded in a quantum topos, by which we mean the topos of presheaves on the context category of commutative subalgebras of a von Neumann algebra of bounded operators on a Hilbert space. A classical system is modeled by a Lie algebra of classical observables. It is shown that a quantization map from the classical observables to self-adjoint operators on the Hilbert space naturally induces geometric morphisms from presheaf topoi related to the classical system to the quantummore » topos. By means of the geometric morphisms, we give Lawvere-Tierney topologies on the quantum topos (and their equivalent Grothendieck topologies on the context category). We show that, among them, there exists a canonical one which we call a quantization topology. We furthermore give an explicit expression of a sheafification functor associated with the quantization topology.« less
Hydrodynamic Electron Flow and Hall Viscosity
NASA Astrophysics Data System (ADS)
Scaffidi, Thomas; Nandi, Nabhanila; Schmidt, Burkhard; Mackenzie, Andrew P.; Moore, Joel E.
2017-06-01
In metallic samples of small enough size and sufficiently strong momentum-conserving scattering, the viscosity of the electron gas can become the dominant process governing transport. In this regime, momentum is a long-lived quantity whose evolution is described by an emergent hydrodynamical theory. Furthermore, breaking time-reversal symmetry leads to the appearance of an odd component to the viscosity called the Hall viscosity, which has attracted considerable attention recently due to its quantized nature in gapped systems but still eludes experimental confirmation. Based on microscopic calculations, we discuss how to measure the effects of both the even and odd components of the viscosity using hydrodynamic electronic transport in mesoscopic samples under applied magnetic fields.
Hydrodynamic Electron Flow and Hall Viscosity.
Scaffidi, Thomas; Nandi, Nabhanila; Schmidt, Burkhard; Mackenzie, Andrew P; Moore, Joel E
2017-06-02
In metallic samples of small enough size and sufficiently strong momentum-conserving scattering, the viscosity of the electron gas can become the dominant process governing transport. In this regime, momentum is a long-lived quantity whose evolution is described by an emergent hydrodynamical theory. Furthermore, breaking time-reversal symmetry leads to the appearance of an odd component to the viscosity called the Hall viscosity, which has attracted considerable attention recently due to its quantized nature in gapped systems but still eludes experimental confirmation. Based on microscopic calculations, we discuss how to measure the effects of both the even and odd components of the viscosity using hydrodynamic electronic transport in mesoscopic samples under applied magnetic fields.
Floating-point system quantization errors in digital control systems
NASA Technical Reports Server (NTRS)
Phillips, C. L.
1973-01-01
The results are reported of research into the effects on system operation of signal quantization in a digital control system. The investigation considered digital controllers (filters) operating in floating-point arithmetic in either open-loop or closed-loop systems. An error analysis technique is developed, and is implemented by a digital computer program that is based on a digital simulation of the system. As an output the program gives the programing form required for minimum system quantization errors (either maximum of rms errors), and the maximum and rms errors that appear in the system output for a given bit configuration. The program can be integrated into existing digital simulations of a system.
Dissipationless conductance in a topological coaxial cable
NASA Astrophysics Data System (ADS)
Schuster, Thomas; Iadecola, Thomas; Chamon, Claudio; Jackiw, Roman; Pi, So-Young
2016-09-01
We present a dynamical mechanism leading to dissipationless conductance, whose quantized value is controllable in a (3+1)-dimensional electronic system. The mechanism is exemplified by a theory of Weyl fermions coupled to a Higgs field, also known as an axion insulator. We show that the insertion of an axial gauge flux can induce vortex lines in the Higgs field, similar to the development of vortices in a superconductor upon the insertion of magnetic flux. We further show that the necessary axial gauge flux can be generated using Rashba spin-orbit coupling or a magnetic field. Vortex lines in the Higgs field are known to bind chiral fermionic modes, each of which serves as a one-way channel for electric charge with conductance e2/h . Combining these elements, we present a physical picture, the "topological coaxial cable," illustrating how the value of the quantized conductance could be controlled in such an axion insulator.
Luminescence studies of HgCdTe- and InAsSb-based quantum-well structures
NASA Astrophysics Data System (ADS)
Izhnin, I. I.; Izhnin, A. I.; Fitsych, O. I.; Voitsekhovskii, A. V.; Gorn, D. I.; Semakova, A. A.; Bazhenov, N. L.; Mynbaev, K. D.; Zegrya, G. G.
2018-04-01
Results of photoluminescence studies of single-quantum-well HgCdTe-based structures and electroluminescence studies of multiple-quantum-well InAsSb-based structures are reported. HgCdTe structures were grown with molecular beam epitaxy on GaAs substrates. InAsSb-based structures were grown with metal-organic chemical vapor deposition on InAs substrates. The common feature of luminescence spectra of all the structures was the presence of peaks with the energy much larger than that of calculated optical transitions between the first quantization levels for electrons and heavy holes. Possibility of observation of optical transitions between the quantization levels of electrons and first and/or second heavy and light hole levels is discussed in the paper in relation to the specifics of the electronic structure of the materials under consideration.
Obliquely propagating ion acoustic solitary structures in the presence of quantized magnetic field
NASA Astrophysics Data System (ADS)
Iqbal Shaukat, Muzzamal
2017-10-01
The effect of linear and nonlinear propagation of electrostatic waves have been studied in degenerate magnetoplasma taking into account the effect of electron trapping and finite temperature with quantizing magnetic field. The formation of solitary structures has been investigated by employing the small amplitude approximation both for fully and partially degenerate quantum plasma. It is observed that the inclusion of quantizing magnetic field significantly affects the propagation characteristics of the solitary wave. Importantly, the Zakharov-Kuznetsov equation under consideration has been found to allow the formation of compressive solitary structures only. The present investigation may be beneficial to understand the propagation of nonlinear electrostatic structures in dense astrophysical environments such as those found in white dwarfs.
Zhang, Lu; Pang, Xiaodan; Ozolins, Oskars; Udalcovs, Aleksejs; Popov, Sergei; Xiao, Shilin; Hu, Weisheng; Chen, Jiajia
2018-04-01
We propose a spectrally efficient digitized radio-over-fiber (D-RoF) system by grouping highly correlated neighboring samples of the analog signals into multidimensional vectors, where the k-means clustering algorithm is adopted for adaptive quantization. A 30 Gbit/s D-RoF system is experimentally demonstrated to validate the proposed scheme, reporting a carrier aggregation of up to 40 100 MHz orthogonal frequency division multiplexing (OFDM) channels with quadrate amplitude modulation (QAM) order of 4 and an aggregation of 10 100 MHz OFDM channels with a QAM order of 16384. The equivalent common public radio interface rates from 37 to 150 Gbit/s are supported. Besides, the error vector magnitude (EVM) of 8% is achieved with the number of quantization bits of 4, and the EVM can be further reduced to 1% by increasing the number of quantization bits to 7. Compared with conventional pulse coding modulation-based D-RoF systems, the proposed D-RoF system improves the signal-to-noise-ratio up to ∼9 dB and greatly reduces the EVM, given the same number of quantization bits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Subrata; Vijay, Amrendra, E-mail: avijay@iitm.ac.in
Using a second-quantized many-electron Hamiltonian, we obtain (a) an effective Hamiltonian suitable for materials whose electronic properties are governed by a set of strongly correlated bands in a narrow energy range and (b) an effective spin-only Hamiltonian for magnetic materials. The present Hamiltonians faithfully include phonon and spin-related interactions as well as the external fields to study the electromagnetic response properties of complex materials and they, in appropriate limits, reduce to the model Hamiltonians due to Hubbard and Heisenberg. With the Hamiltonian for narrow-band strongly correlated materials, we show that the spin-orbit interaction provides a mechanism for metal-insulator transition, whichmore » is distinct from the Mott-Hubbard (driven by the electron correlation) and the Anderson mechanism (driven by the disorder). Next, with the spin-only Hamiltonian, we demonstrate the spin-orbit interaction to be a reason for the existence of antiferromagnetic phase in materials which are characterized by a positive isotropic spin-exchange energy. This is distinct from the Néel-VanVleck-Anderson paradigm which posits a negative spin-exchange for the existence of antiferromagnetism. We also find that the Néel temperature increases as the absolute value of the spin-orbit coupling increases.« less
Model predictive control of non-linear systems over networks with data quantization and packet loss.
Yu, Jimin; Nan, Liangsheng; Tang, Xiaoming; Wang, Ping
2015-11-01
This paper studies the approach of model predictive control (MPC) for the non-linear systems under networked environment where both data quantization and packet loss may occur. The non-linear controlled plant in the networked control system (NCS) is represented by a Tagaki-Sugeno (T-S) model. The sensed data and control signal are quantized in both links and described as sector bound uncertainties by applying sector bound approach. Then, the quantized data are transmitted in the communication networks and may suffer from the effect of packet losses, which are modeled as Bernoulli process. A fuzzy predictive controller which guarantees the stability of the closed-loop system is obtained by solving a set of linear matrix inequalities (LMIs). A numerical example is given to illustrate the effectiveness of the proposed method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Ao, Wei; Song, Yongdong; Wen, Changyun
2017-05-01
In this paper, we investigate the adaptive control problem for a class of nonlinear uncertain MIMO systems with actuator faults and quantization effects. Under some mild conditions, an adaptive robust fault-tolerant control is developed to compensate the affects of uncertainties, actuator failures and errors caused by quantization, and a range of the parameters for these quantizers is established. Furthermore, a Lyapunov-like approach is adopted to demonstrate that the ultimately uniformly bounded output tracking error is guaranteed by the controller, and the signals of the closed-loop system are ensured to be bounded, even in the presence of at most m-q actuators stuck or outage. Finally, numerical simulations are provided to verify and illustrate the effectiveness of the proposed adaptive schemes. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Digital television system design study
NASA Technical Reports Server (NTRS)
Huth, G. K.
1976-01-01
The use of digital techniques for transmission of pictorial data is discussed for multi-frame images (television). Video signals are processed in a manner which includes quantization and coding such that they are separable from the noise introduced into the channel. The performance of digital television systems is determined by the nature of the processing techniques (i.e., whether the video signal itself or, instead, something related to the video signal is quantized and coded) and to the quantization and coding schemes employed.
Observation of Conductance Quantization in InSb Nanowire Networks
2017-01-01
Majorana zero modes (MZMs) are prime candidates for robust topological quantum bits, holding a great promise for quantum computing. Semiconducting nanowires with strong spin orbit coupling offer a promising platform to harness one-dimensional electron transport for Majorana physics. Demonstrating the topological nature of MZMs relies on braiding, accomplished by moving MZMs around each other in a certain sequence. Most of the proposed Majorana braiding circuits require nanowire networks with minimal disorder. Here, the electronic transport across a junction between two merged InSb nanowires is studied to investigate how disordered these nanowire networks are. Conductance quantization plateaus are observed in most of the contact pairs of the epitaxial InSb nanowire networks: the hallmark of ballistic transport behavior. PMID:28665621
Floating-point system quantization errors in digital control systems
NASA Technical Reports Server (NTRS)
Phillips, C. L.; Vallely, D. P.
1978-01-01
This paper considers digital controllers (filters) operating in floating-point arithmetic in either open-loop or closed-loop systems. A quantization error analysis technique is developed, and is implemented by a digital computer program that is based on a digital simulation of the system. The program can be integrated into existing digital simulations of a system.
Quantized edge modes in atomic-scale point contacts in graphene
NASA Astrophysics Data System (ADS)
Kinikar, Amogh; Phanindra Sai, T.; Bhattacharyya, Semonti; Agarwala, Adhip; Biswas, Tathagata; Sarker, Sanjoy K.; Krishnamurthy, H. R.; Jain, Manish; Shenoy, Vijay B.; Ghosh, Arindam
2017-07-01
The zigzag edges of single- or few-layer graphene are perfect one-dimensional conductors owing to a set of gapless states that are topologically protected against backscattering. Direct experimental evidence of these states has been limited so far to their local thermodynamic and magnetic properties, determined by the competing effects of edge topology and electron-electron interaction. However, experimental signatures of edge-bound electrical conduction have remained elusive, primarily due to the lack of graphitic nanostructures with low structural and/or chemical edge disorder. Here, we report the experimental detection of edge-mode electrical transport in suspended atomic-scale constrictions of single and multilayer graphene created during nanomechanical exfoliation of highly oriented pyrolytic graphite. The edge-mode transport leads to the observed quantization of conductance close to multiples of G0 = 2e2/h. At the same time, conductance plateaux at G0/2 and a split zero-bias anomaly in non-equilibrium transport suggest conduction via spin-polarized states in the presence of an electron-electron interaction.
Quantized edge modes in atomic-scale point contacts in graphene.
Kinikar, Amogh; Phanindra Sai, T; Bhattacharyya, Semonti; Agarwala, Adhip; Biswas, Tathagata; Sarker, Sanjoy K; Krishnamurthy, H R; Jain, Manish; Shenoy, Vijay B; Ghosh, Arindam
2017-07-01
The zigzag edges of single- or few-layer graphene are perfect one-dimensional conductors owing to a set of gapless states that are topologically protected against backscattering. Direct experimental evidence of these states has been limited so far to their local thermodynamic and magnetic properties, determined by the competing effects of edge topology and electron-electron interaction. However, experimental signatures of edge-bound electrical conduction have remained elusive, primarily due to the lack of graphitic nanostructures with low structural and/or chemical edge disorder. Here, we report the experimental detection of edge-mode electrical transport in suspended atomic-scale constrictions of single and multilayer graphene created during nanomechanical exfoliation of highly oriented pyrolytic graphite. The edge-mode transport leads to the observed quantization of conductance close to multiples of G 0 = 2e 2 /h. At the same time, conductance plateaux at G 0 /2 and a split zero-bias anomaly in non-equilibrium transport suggest conduction via spin-polarized states in the presence of an electron-electron interaction.
Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field
Piazza, L.; Lummen, T. T. A.; Quiñonez, E.; ...
2015-03-02
Surface plasmon polaritons can confine electromagnetic fields in subwavelength spaces and are of interest for photonics, optical data storage devices and biosensing applications. In analogy to photons, they exhibit wave–particle duality, whose different aspects have recently been observed in separate tailored experiments. Here we demonstrate the ability of ultrafast transmission electron microscopy to simultaneously image both the spatial interference and the quantization of such confined plasmonic fields. Our experiments are accomplished by spatiotemporally overlapping electron and light pulses on a single nanowire suspended on a graphene film. The resulting energy exchange between single electrons and the quanta of the photoinducedmore » near-field is imaged synchronously with its spatial interference pattern. In conclusion, this methodology enables the control and visualization of plasmonic fields at the nanoscale, providing a promising tool for understanding the fundamental properties of confined electromagnetic fields and the development of advanced photonic circuits.« less
Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field
Piazza, L; Lummen, T.T.A.; Quiñonez, E; Murooka, Y; Reed, B.W.; Barwick, B; Carbone, F
2015-01-01
Surface plasmon polaritons can confine electromagnetic fields in subwavelength spaces and are of interest for photonics, optical data storage devices and biosensing applications. In analogy to photons, they exhibit wave–particle duality, whose different aspects have recently been observed in separate tailored experiments. Here we demonstrate the ability of ultrafast transmission electron microscopy to simultaneously image both the spatial interference and the quantization of such confined plasmonic fields. Our experiments are accomplished by spatiotemporally overlapping electron and light pulses on a single nanowire suspended on a graphene film. The resulting energy exchange between single electrons and the quanta of the photoinduced near-field is imaged synchronously with its spatial interference pattern. This methodology enables the control and visualization of plasmonic fields at the nanoscale, providing a promising tool for understanding the fundamental properties of confined electromagnetic fields and the development of advanced photonic circuits. PMID:25728197
Controlling resonance energy transfer in nanostructure emitters by positioning near a mirror
NASA Astrophysics Data System (ADS)
Weeraddana, Dilusha; Premaratne, Malin; Gunapala, Sarath D.; Andrews, David L.
2017-08-01
The ability to control light-matter interactions in quantum objects opens up many avenues for new applications. We look at this issue within a fully quantized framework using a fundamental theory to describe mirror-assisted resonance energy transfer (RET) in nanostructures. The process of RET communicates electronic excitation between suitably disposed donor and acceptor particles in close proximity, activated by the initial excitation of the donor. Here, we demonstrate that the energy transfer rate can be significantly controlled by careful positioning of the RET emitters near a mirror. The results deliver equations that elicit new insights into the associated modification of virtual photon behavior, based on the quantum nature of light. In particular, our results indicate that energy transfer efficiency in nanostructures can be explicitly expedited or suppressed by a suitably positioned neighboring mirror, depending on the relative spacing and the dimensionality of the nanostructure. Interestingly, the resonance energy transfer between emitters is observed to "switch off" abruptly under suitable conditions of the RET system. This allows one to quantitatively control RET systems in a new way.
NASA Astrophysics Data System (ADS)
Song, Haiyu; Yu, Li; Zhang, Dan; Zhang, Wen-An
2012-12-01
This paper is concerned with the finite-time quantized H∞ control problem for a class of discrete-time switched time-delay systems with time-varying exogenous disturbances. By using the sector bound approach and the average dwell time method, sufficient conditions are derived for the switched system to be finite-time bounded and ensure a prescribed H∞ disturbance attenuation level, and a mode-dependent quantized state feedback controller is designed by solving an optimization problem. Two illustrative examples are provided to demonstrate the effectiveness of the proposed theoretical results.
Skydan, Oleksandr A; Lilley, Francis; Lalor, Michael J; Burton, David R
2003-09-10
We present an investigation into the phase errors that occur in fringe pattern analysis that are caused by quantization effects. When acquisition devices with a limited value of camera bit depth are used, there are a limited number of quantization levels available to record the signal. This may adversely affect the recorded signal and adds a potential source of instrumental error to the measurement system. Quantization effects also determine the accuracy that may be achieved by acquisition devices in a measurement system. We used the Fourier fringe analysis measurement technique. However, the principles can be applied equally well for other phase measuring techniques to yield a phase error distribution that is caused by the camera bit depth.
Nonadiabatic Molecular Dynamics and Orthogonality Constrained Density Functional Theory
NASA Astrophysics Data System (ADS)
Shushkov, Philip Georgiev
The exact quantum dynamics of realistic, multidimensional systems remains a formidable computational challenge. In many chemical processes, however, quantum effects such as tunneling, zero-point energy quantization, and nonadiabatic transitions play an important role. Therefore, approximate approaches that improve on the classical mechanical framework are of special practical interest. We propose a novel ring polymer surface hopping method for the calculation of chemical rate constants. The method blends two approaches, namely ring polymer molecular dynamics that accounts for tunneling and zero-point energy quantization, and surface hopping that incorporates nonadiabatic transitions. We test the method against exact quantum mechanical calculations for a one-dimensional, two-state model system. The method reproduces quite accurately the tunneling contribution to the rate and the distribution of reactants between the electronic states for this model system. Semiclassical instanton theory, an approach related to ring polymer molecular dynamics, accounts for tunneling by the use of periodic classical trajectories on the inverted potential energy surface. We study a model of electron transfer in solution, a chemical process where nonadiabatic events are prominent. By representing the tunneling electron with a ring polymer, we derive Marcus theory of electron transfer from semiclassical instanton theory after a careful analysis of the tunneling mode. We demonstrate that semiclassical instanton theory can recover the limit of Fermi's Golden Rule rate in a low-temperature, deep-tunneling regime. Mixed quantum-classical dynamics treats a few important degrees of freedom quantum mechanically, while classical mechanics describes affordably the rest of the system. But the interface of quantum and classical description is a challenging theoretical problem, especially for low-energy chemical processes. We therefore focus on the semiclassical limit of the coupled nuclear-electronic dynamics. We show that the time-dependent Schrodinger equation for the electrons employed in the widely used fewest switches surface hopping method is applicable only in the limit of nearly identical classical trajectories on the different potential energy surfaces. We propose a short-time decoupling algorithm that restricts the use of the Schrodinger equation only to the interaction regions. We test the short-time approximation on three model systems against exact quantum-mechanical calculations. The approximation improves the performance of the surface hopping approach. Nonadiabatic molecular dynamics simulations require the efficient and accurate computation of ground and excited state potential energy surfaces. Unlike the ground state calculations where standard methods exist, the computation of excited state properties is a challenging task. We employ time-independent density functional theory, in which the excited state energy is represented as a functional of the total density. We suggest an adiabatic-like approximation that simplifies the excited state exchange-correlation functional. We also derive a set of minimal conditions to impose exactly the orthogonality of the excited state Kohn-Sham determinant to the ground state determinant. This leads to an efficient, variational algorithm for the self-consistent optimization of the excited state energy. Finally, we assess the quality of the excitation energies obtained by the new method on a set of 28 organic molecules. The new approach provides results of similar accuracy to time-dependent density functional theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parry, W.E.
1973-01-01
An introduction is given to techniques used in the many-body problem, and a reference book is given for those techniques. Sevcral different formulations of the techniques, and their interrelations, are discussed, to prepare the reader for the published literature. Examples are taken mostly from the physics of solids, fluids and plasmas. Second quantization, perturbation theory, Green functions and correlation functions, examples in the use of diagrammatic perturbation theory, the equation of motion method, magnetism (the drone-fermion representation), linear response and transport processes, niany- body systems at zero temperature, the variational principle and pair-wave approximation. (UK)
Control of single-electron charging of metallic nanoparticles onto amorphous silicon surface.
Weis, Martin; Gmucová, Katarína; Nádazdy, Vojtech; Capek, Ignác; Satka, Alexander; Kopáni, Martin; Cirák, Július; Majková, Eva
2008-11-01
Sequential single-electron charging of iron oxide nanoparticles encapsulated in oleic acid/oleyl amine envelope and deposited by the Langmuir-Blodgett technique onto Pt electrode covered with undoped hydrogenated amorphous silicon film is reported. Single-electron charging (so-called quantized double-layer charging) of nanoparticles is detected by cyclic voltammetry as current peaks and the charging effect can be switched on/off by the electric field in the surface region induced by the excess of negative/positive charged defect states in the amorphous silicon layer. The particular charge states in amorphous silicon are created by the simultaneous application of a suitable bias voltage and illumination before the measurement. The influence of charged states on the electric field in the surface region is evaluated by the finite element method. The single-electron charging is analyzed by the standard quantized double layer model as well as two weak-link junctions model. Both approaches are in accordance with experiment and confirm single-electron charging by tunnelling process at room temperature. This experiment illustrates the possibility of the creation of a voltage-controlled capacitor for nanotechnology.
Theory of electron g-tensor in bulk and quantum-well semiconductors
NASA Astrophysics Data System (ADS)
Lau, Wayne H.; Flatte', Michael E.
2004-03-01
We present quantitative calculations for the electron g-tensors in bulk and quantum-well semiconductors based on a generalized P.p envelope function theory solved in a fourteen-band restricted basis set. The dependences of g-tensor on structure, magnetic field, carrier density, temperature, and spin polarization have been explored and will be described. It is found that at temperatures of a few Kelvin and fields of a few Tesla, the g-tensors for bulk semiconductors develop quasi-steplike dependences on carrier density or magnetic field due to magnetic quantization, and this effect is even more pronounced in quantum-well semiconductors due to the additional electric quantization along the growth direction. The influence of quantum confinement on the electron g-tensors in QWs is studied by examining the dependence of electron g-tensors on well width. Excellent agreement between these calculated electron g-tensors and measurements [1-2] is found for GaAs/AlGaAs QWs. This work was supported by DARPA/ARO. [1] A. Malinowski and R. T. Harley, Phys. Rev. B 62, 2051 (2000);[2] Le Jeune et al., Semicond. Sci. Technol. 12, 380 (1997).
interdisciplinary fields of photoelectrochemistry, semiconductor-molecule interfaces, quantum size effects, electron photoelectrochemistry (hot carrier effects, size quantization effects, superlattice electrodes, quantum dot solar cells
Augmenting Phase Space Quantization to Introduce Additional Physical Effects
NASA Astrophysics Data System (ADS)
Robbins, Matthew P. G.
Quantum mechanics can be done using classical phase space functions and a star product. The state of the system is described by a quasi-probability distribution. A classical system can be quantized in phase space in different ways with different quasi-probability distributions and star products. A transition differential operator relates different phase space quantizations. The objective of this thesis is to introduce additional physical effects into the process of quantization by using the transition operator. As prototypical examples, we first look at the coarse-graining of the Wigner function and the damped simple harmonic oscillator. By generalizing the transition operator and star product to also be functions of the position and momentum, we show that additional physical features beyond damping and coarse-graining can be introduced into a quantum system, including the generalized uncertainty principle of quantum gravity phenomenology, driving forces, and decoherence.
Wang, Chenliang; Wen, Changyun; Hu, Qinglei; Wang, Wei; Zhang, Xiuyu
2018-06-01
This paper is devoted to distributed adaptive containment control for a class of nonlinear multiagent systems with input quantization. By employing a matrix factorization and a novel matrix normalization technique, some assumptions involving control gain matrices in existing results are relaxed. By fusing the techniques of sliding mode control and backstepping control, a two-step design method is proposed to construct controllers and, with the aid of neural networks, all system nonlinearities are allowed to be unknown. Moreover, a linear time-varying model and a similarity transformation are introduced to circumvent the obstacle brought by quantization, and the controllers need no information about the quantizer parameters. The proposed scheme is able to ensure the boundedness of all closed-loop signals and steer the containment errors into an arbitrarily small residual set. The simulation results illustrate the effectiveness of the scheme.
Manipulating topological-insulator properties using quantum confinement
NASA Astrophysics Data System (ADS)
Kotulla, M.; Zülicke, U.
2017-07-01
Recent discoveries have spurred the theoretical prediction and experimental realization of novel materials that have topological properties arising from band inversion. Such topological insulators are insulating in the bulk but have conductive surface or edge states. Topological materials show various unusual physical properties and are surmised to enable the creation of exotic Majorana-fermion quasiparticles. How the signatures of topological behavior evolve when the system size is reduced is interesting from both a fundamental and an application-oriented point of view, as such understanding may form the basis for tailoring systems to be in specific topological phases. This work considers the specific case of quantum-well confinement defining two-dimensional layers. Based on the effective-Hamiltonian description of bulk topological insulators, and using a harmonic-oscillator potential as an example for a softer-than-hard-wall confinement, we have studied the interplay of band inversion and size quantization. Our model system provides a useful platform for systematic study of the transition between the normal and topological phases, including the development of band inversion and the formation of massless-Dirac-fermion surface states. The effects of bare size quantization, two-dimensional-subband mixing, and electron-hole asymmetry are disentangled and their respective physical consequences elucidated.
Master equation for open two-band systems and its applications to Hall conductance
NASA Astrophysics Data System (ADS)
Shen, H. Z.; Zhang, S. S.; Dai, C. M.; Yi, X. X.
2018-02-01
Hall conductivity in the presence of a dephasing environment has recently been investigated with a dissipative term introduced phenomenologically. In this paper, we study the dissipative topological insulator (TI) and its topological transition in the presence of quantized electromagnetic environments. A Lindblad-type equation is derived to determine the dynamics of a two-band system. When the two-band model describes TIs, the environment may be the fluctuations of radiation that surround the TIs. We find the dependence of decay rates in the master equation on Bloch vectors in the two-band system, which leads to a mixing of the band occupations. Hence the environment-induced current is in general not perfectly topological in the presence of coupling to the environment, although deviations are small in the weak limit. As an illustration, we apply the Bloch-vector-dependent master equation to TIs and calculate the Hall conductance of tight-binding electrons in a two-dimensional lattice. The influence of environments on the Hall conductance is presented and discussed. The calculations show that the phase transition points of the TIs are robust against the quantized electromagnetic environment. The results might bridge the gap between quantum optics and topological photonic materials.
Bulk-edge correspondence in topological transport and pumping
NASA Astrophysics Data System (ADS)
Imura, Ken-Ichiro; Yoshimura, Yukinori; Fukui, Takahiro; Hatsugai, Yasuhiro
2018-03-01
The bulk-edge correspondence (BEC) refers to a one-to-one relation between the bulk and edge properties ubiquitous in topologically nontrivial systems. Depending on the setup, BEC manifests in different forms and govern the spectral and transport properties of topological insulators and semimetals. Although the topological pump is theoretically old, BEC in the pump has been established just recently [1] motivated by the state-of-the-art experiments using cold atoms [2, 3]. The center of mass (CM) of a system with boundaries shows a sequence of quantized jumps in the adiabatic limit associated with the edge states. Despite that the bulk is adiabatic, the edge is inevitably non-adiabatic in the experimental setup or in any numerical simulations. Still the pumped charge is quantized and carried by the bulk. Its quantization is guaranteed by a compensation between the bulk and edges. We show that in the presence of disorder the pumped charge continues to be quantized despite the appearance of non-quantized jumps.
Highly-ordered wide bandgap materials for quantized anomalous Hall and magnetoelectric effects
NASA Astrophysics Data System (ADS)
Otrokov, M. M.; Menshchikova, T. V.; Vergniory, M. G.; Rusinov, I. P.; Vyazovskaya, A. Yu; Koroteev, Yu M.; Bihlmayer, G.; Ernst, A.; Echenique, P. M.; Arnau, A.; Chulkov, E. V.
2017-06-01
An interplay of spin-orbit coupling and intrinsic magnetism is known to give rise to the quantum anomalous Hall and topological magnetoelectric effects under certain conditions. Their realization could open access to low power consumption electronics as well as many fundamental phenomena like image magnetic monopoles, Majorana fermions and others. Unfortunately, being realized very recently, these effects are only accessible at extremely low temperatures and the lack of appropriate materials that would enable the temperature increase is a most severe challenge. Here, we propose a novel material platform with unique combination of properties making it perfectly suitable for the realization of both effects at elevated temperatures. The key element of the computational material design is an extension of a topological insulator (TI) surface by a thin film of ferromagnetic insulator, which is both structurally and compositionally compatible with the TI. Following this proposal we suggest a variety of specific systems and discuss their numerous advantages, in particular wide band gaps with the Fermi level located in the gap.
Perceptual compression of magnitude-detected synthetic aperture radar imagery
NASA Technical Reports Server (NTRS)
Gorman, John D.; Werness, Susan A.
1994-01-01
A perceptually-based approach for compressing synthetic aperture radar (SAR) imagery is presented. Key components of the approach are a multiresolution wavelet transform, a bit allocation mask based on an empirical human visual system (HVS) model, and hybrid scalar/vector quantization. Specifically, wavelet shrinkage techniques are used to segregate wavelet transform coefficients into three components: local means, edges, and texture. Each of these three components is then quantized separately according to a perceptually-based bit allocation scheme. Wavelet coefficients associated with local means and edges are quantized using high-rate scalar quantization while texture information is quantized using low-rate vector quantization. The impact of the perceptually-based multiresolution compression algorithm on visual image quality, impulse response, and texture properties is assessed for fine-resolution magnitude-detected SAR imagery; excellent image quality is found at bit rates at or above 1 bpp along with graceful performance degradation at rates below 1 bpp.
Sarkar, Sujit
2018-04-12
An attempt is made to study and understand the behavior of quantization of geometric phase of a quantum Ising chain with long range interaction. We show the existence of integer and fractional topological characterization for this model Hamiltonian with different quantization condition and also the different quantized value of geometric phase. The quantum critical lines behave differently from the perspective of topological characterization. The results of duality and its relation to the topological quantization is presented here. The symmetry study for this model Hamiltonian is also presented. Our results indicate that the Zak phase is not the proper physical parameter to describe the topological characterization of system with long range interaction. We also present quite a few exact solutions with physical explanation. Finally we present the relation between duality, symmetry and topological characterization. Our work provides a new perspective on topological quantization.
Calculation of the figure of merit for carbon nanotubes based devices
NASA Astrophysics Data System (ADS)
Vaseashta, Ashok
2004-03-01
The dimensionality of a system has a profound influence on its physical behavior. With advances in technology over the past few decades, it has become possible to fabricate and study reduced-dimensional systems in which electrons are strongly confined in one or more dimensions. In the case of 1-D electron systems, most of the results, such as conductance quantization, have been explained in terms of non-interacting electrons. In contrast to the cases of 2D and 3D systems, the question of what roles electron-electron interactions play in real 1-D systems has been difficult to address, because of the difficulty in obtaining long, relatively disorder free 1-D wires. Since their first discovery and fabrication in 1991, carbon nanotubes (CNTs) have received considerable attention because of the prospect of new fundamental science and many potential applications. Hence, it has been possible to conduct studies of the electrons in 1-D. Carbon nanotubes are of considerable technological importance due to their excellent mechanical, electrical, and chemical characteristics. The potential technological applications include electronics, opto-electronics and biomedical sensors. The applications of carbon nanotubes include quantum wire interconnects, diodes and transistors for computing, capacitors, data storage devices, field emitters, flat panel displays and terahertz oscillators. One of the most remarkable characteristics is the possibility of bandgap engineering by controlling the microstructure. Hence, a pentagon-heptagon defect in the hexagonal network can connect a metallic to a semiconductor nanotube, providing an Angstrom-scale hetero-junction with a device density approximately 10^4 times greater than present day microelectronics. Also, successfully contacted carbon nanotubes have exhibited a large number of useful quantum electronic and low dimensional transport phenomena, such as true quantum wire behaviors, room temperature field effect transistors, room temperature single electron transistors, Luttinger-liquid behavior, the Aharonov Bohm effect, and Fabry-Perot interference effects. Hence it is evident that CNT can be used for a variety of applications. To use CNT based devices, it is critical to know the relative advantage of using CNTs over other known electronic materials. The figure of merit for CNT based devices is not reported so far. It is the objective of this investigation to calculate the figure of merit and present such results. Such calculations will enable researchers to focus their research for specific device designs where CNT based devices show a marked improvement over conventional semiconductor devices.
BFV approach to geometric quantization
NASA Astrophysics Data System (ADS)
Fradkin, E. S.; Linetsky, V. Ya.
1994-12-01
A gauge-invariant approach to geometric quantization is developed. It yields a complete quantum description for dynamical systems with non-trivial geometry and topology of the phase space. The method is a global version of the gauge-invariant approach to quantization of second-class constraints developed by Batalin, Fradkin and Fradkina (BFF). Physical quantum states and quantum observables are respectively described by covariantly constant sections of the Fock bundle and the bundle of hermitian operators over the phase space with a flat connection defined by the nilpotent BVF-BRST operator. Perturbative calculation of the first non-trivial quantum correction to the Poisson brackets leads to the Chevalley cocycle known in deformation quantization. Consistency conditions lead to a topological quantization condition with metaplectic anomaly.
On the quantization of the massless Bateman system
NASA Astrophysics Data System (ADS)
Takahashi, K.
2018-03-01
The so-called Bateman system for the damped harmonic oscillator is reduced to a genuine dual dissipation system (DDS) by setting the mass to zero. We explore herein the condition under which the canonical quantization of the DDS is consistently performed. The roles of the observable and auxiliary coordinates are discriminated. The results show that the complete and orthogonal Fock space of states can be constructed on the stable vacuum if an anti-Hermite representation of the canonical Hamiltonian is adopted. The amplitude of the one-particle wavefunction is consistent with the classical solution. The fields can be quantized as bosonic or fermionic. For bosonic systems, the quantum fluctuation of the field is directly associated with the dissipation rate.
NASA Astrophysics Data System (ADS)
Korgel, Brian Allan
1997-11-01
Phosphatidylcholine vesicles provide reaction compartments for synthesis of size-quantized CdS nanocrystals of dimension predicted to within ±2 A based on initial encapsulated CdClsb2 concentration and vesicle diameter. Vesicle formation by detergent dialysis of phosphatidylcholine/hexylglucoside mixed micelles yields highly monodisperse lipid capsules within which monodisperse CdS nanoparticles are precipitated with sulfide. Size-quantized CdS nanocrystals, with diameters ranging from 20 to 60 A, have been produced with typical standard deviations about the mean diameter of ±8% as measured by transmission electron microscopy. By including ZnClsb2 or HgClsb2 in the dialyzate prior to vesicle formation, quantum-sized Znsb{y}Cdsb{1-y}S or Hgsb{y}Cdsb{1-y}S nanocrystal alloys with controlled stoichiometry are generated. Spectrophotometric and spectrofluorimetric measurements are consistent with highly crystalline, monodisperse particles with few core or surface defects. The alloyed nanocrystal spectra shift consistently with composition indicating a high degree of compositional control. Measured exciton energies for CdS show excellent agreement with data in the literature. The empirical pseudopotential model presented by Ramakrishna and Friesner for a cubic CdS lattice, correcting for experimentally measured lattice contractions, best fits the data. Size-quantized CdS nanocrystals serve as photocatalysts for nitrate reduction at neutral pH under conditions that mimic illumination by sunlight with overall product quantum yields of up to 4% for {˜}20 A, amine-terminated particles. Due to the effects of quantum confinement on electron and hole redox potentials, photocatalyzed nitrate reduction rates depend strongly on the particle size, and the fastest reduction rates are observed with the smallest nanocrystals. Using a Tafel plot and the empirical pseudopotential model to estimate electron redox potentials, the apparent electron transfer coefficient and the apparent standard rate constant is estimated at 0.23 and 4.0× 10sp{-12} cm/sec, respectively, for amine-terminated particles. Nitrate adsorption is important in this system and the effect on photoreduction rates is described well by a Langmuir-Hinschelwood expression. Nitrate reduction rates are reduced two-fold or more on negatively charged, carboxy-terminated nanocrystals that electrostatically repel nitrate. Reaction rates are additionally influenced by competetive chloride adsorption and surface charge modification due to solution pH.
Two dimensional topological insulator in quantizing magnetic fields
NASA Astrophysics Data System (ADS)
Olshanetsky, E. B.; Kvon, Z. D.; Gusev, G. M.; Mikhailov, N. N.; Dvoretsky, S. A.
2018-05-01
The effect of quantizing magnetic field on the electron transport is investigated in a two dimensional topological insulator (2D TI) based on a 8 nm (013) HgTe quantum well (QW). The local resistance behavior is indicative of a metal-insulator transition at B ≈ 6 T. On the whole the experimental data agrees with the theory according to which the helical edge states transport in a 2D TI persists from zero up to a critical magnetic field Bc after which a gap opens up in the 2D TI spectrum.
2013-01-01
Confined states of a positronium (Ps) in the spherical and circular quantum dots (QDs) are theoretically investigated in two size quantization regimes: strong and weak. Two-band approximation of Kane’s dispersion law and parabolic dispersion law of charge carriers are considered. It is shown that electron-positron pair instability is a consequence of dimensionality reduction, not of the size quantization. The binding energies for the Ps in circular and spherical QDs are calculated. The Ps formation dependence on the QD radius is studied. PMID:23826867
Local Gate Control of a Carbon Nanotube Double Quantum Dot
2016-04-04
Nanotube Double Quantum Dot N. Mason,*† M. J. Biercuk,* C. M. Marcus† We have measured carbon nanotube quantum dots with multiple electro- static gates and...computation. Carbon nanotubes have been considered lead- ing candidates for nanoscale electronic applica- tions (1, 2). Previous measurements of nano- tube...electronics have shown electron confine- ment (quantum dot) effects such as single- electron charging and energy-level quantization (3–5). Nanotube
NASA Astrophysics Data System (ADS)
de Melo, Pedro Miguel M. C.; Marini, Andrea
2016-04-01
We present a full ab initio description of the coupled out-of-equilibrium dynamics of photons, phonons, and electrons. In the present approach, the quantized nature of the electromagnetic field as well as of the nuclear oscillations is fully taken into account. The result is a set of integrodifferential equations, written on the Keldysh contour, for the Green's functions of electrons, phonons, and photons where the different kinds of interactions are merged together. We then concentrate on the electronic dynamics in order to reduce the problem to a computationally feasible approach. By using the generalized Baym-Kadanoff ansatz and the completed collision approximation, we introduce a series of efficient but controllable approximations. In this way, we reduce all equations to a set of decoupled equations for the density matrix that describe all kinds of static and dynamical correlations. The final result is a coherent, general, and inclusive scheme to calculate several physical quantities: carrier dynamics, transient photoabsorption, and light emission, all of which include, at the same time, electron-electron, electron-phonon, and electron-photon interactions. We further discuss how all these observables can be easily calculated within the present scheme using a fully atomistic ab initio approach.
Pascal Liquid Phase in Electronic Waveguides
NASA Astrophysics Data System (ADS)
Tomczyk, M.; Briggeman, M.; Tylan-Tyler, A.; Huang, M.; Tian, B.; Pekker, D.; Lee, J.-W.; Lee, H.; Eom, C.-B.; Levy, J.
Clean one-dimensional electron transport has been observed in very few material systems. The development of exceptionally clean electron waveguides formed at the interface between complex oxides LaAlO3 and SrTiO3 enables low-dimensional transport to be explored with newfound flexibility. This material system not only supports ballistic 1D transport, but possesses a rich phase diagram and strong attractive electron-electron interactions which are not present in other solid-state systems. Here we report an unusual phenomenon in which quantized conductance increases by steps that themselves increase sequentially in multiples of e2 / h . The overall conductance exhibits a Pascal-like sequence: 1, 3, 6, 10... e2 / h , which we ascribe to ballistic transport of 1, 2, 3, 4 ... bunches of electrons. We will discuss how subband degeneracies can occur in non-interacting models that have carefully tuned parameters. Strong attractive interactions are required, however, for these subbands to lock together. This Pascal liquid phase provides a striking example of the consequences of strong attractive interactions in low-dimensional environments. We gratefully acknowledge financial support from AFOSR (FA9550-12-1- 0057 (JL) and FA9550-12-1-0342 (CBE)), ONR N00014-15-1-2847 (JL), and NSF DMR-1234096 (CBE).
Quantum Hall signatures of dipolar Mahan excitons
NASA Astrophysics Data System (ADS)
Schinner, G. J.; Repp, J.; Kowalik-Seidl, K.; Schubert, E.; Stallhofer, M. P.; Rai, A. K.; Reuter, D.; Wieck, A. D.; Govorov, A. O.; Holleitner, A. W.; Kotthaus, J. P.
2013-01-01
We explore the photoluminescence of spatially indirect, dipolar Mahan excitons in a gated double quantum well diode containing a mesoscopic electrostatic trap for neutral dipolar excitons at low temperatures down to 250 mK and in quantizing magnetic fields. Mahan excitons in the surrounding of the trap, consisting of individual holes interacting with a degenerate two-dimensional electron system confined in one of the quantum wells, exhibit strong quantum Hall signatures at integer filling factors and related anomalies around filling factor ν=(2)/(3),(3)/(5), and (1)/(2), reflecting the formation of composite fermions. Interactions across the trap perimeter are found to influence the energy of the confined neutral dipolar excitons by the presence of the quantum Hall effects in the two-dimensional electron system surrounding the trap.
Hao, Tian
2017-02-22
The Hall effects, especially the integer, fractional and anomalous quantum Hall effects, have been addressed using Eyring's rate process theory and free volume concept. The basic assumptions are that the conduction process is a common rate controlled "reaction" process that can be described with Eyring's absolute rate process theory; the mobility of electrons should be dependent on the free volume available for conduction electrons. The obtained Hall conductivity is clearly quantized as with prefactors related to both the magnetic flux quantum number and the magnetic quantum number via the azimuthal quantum number, with and without an externally applied magnetic field. This article focuses on two dimensional (2D) systems, but the approaches developed in this article can be extended to 3D systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tkach, N. V., E-mail: ktf@chnu.edu.ua; Seti, Ju. A.; Grynyshyn, Yu. B.
2015-04-15
The theory of electron tunneling through an open nanostructure as an active element of a quantum cascade detector is developed, which takes into account the interaction of electrons with confined and interface phonons. Using the method of finite-temperature Green’s functions and the electron-phonon Hamiltonian in the representation of second quantization over all system variables, the temperature shifts and electron-level widths are calculated and the contributions of different electron-phonon-interaction mechanisms to renormalization of the spectral parameters are analyzed depending on the geometrical configuration of the nanosystem. Due to weak electron-phonon coupling in a GaAs/Al{sub 0.34}Ga{sub 0.66}As-based resonant tunneling nanostructure, the temperaturemore » shift and rf field absorption peak width are not very sensitive to the electron-phonon interaction and result from a decrease in potential barrier heights caused by a difference in the temperature dependences of the well and barrier band gaps.« less
Argyres-Douglas theories, chiral algebras and wild Hitchin characters
NASA Astrophysics Data System (ADS)
Fredrickson, Laura; Pei, Du; Yan, Wenbin; Ye, Ke
2018-01-01
We use Coulomb branch indices of Argyres-Douglas theories on S 1 × L( k, 1) to quantize moduli spaces M_H of wild/irregular Hitchin systems. In particular, we obtain formulae for the "wild Hitchin characters" — the graded dimensions of the Hilbert spaces from quantization — for four infinite families of M_H , giving access to many interesting geometric and topological data of these moduli spaces. We observe that the wild Hitchin characters can always be written as a sum over fixed points in M_H under the U(1) Hitchin action, and a limit of them can be identified with matrix elements of the modular transform ST k S in certain two-dimensional chiral algebras. Although naturally fitting into the geometric Langlands program, the appearance of chiral algebras, which was known previously to be associated with Schur operators but not Coulomb branch operators, is somewhat surprising.
Dielectric properties of classical and quantized ionic fluids.
Høye, Johan S
2010-06-01
We study time-dependent correlation functions of classical and quantum gases using methods of equilibrium statistical mechanics for systems of uniform as well as nonuniform densities. The basis for our approach is the path integral formalism of quantum mechanical systems. With this approach the statistical mechanics of a quantum mechanical system becomes the equivalent of a classical polymer problem in four dimensions where imaginary time is the fourth dimension. Several nontrivial results for quantum systems have been obtained earlier by this analogy. Here, we will focus upon the presence of a time-dependent electromagnetic pair interaction where the electromagnetic vector potential that depends upon currents, will be present. Thus both density and current correlations are needed to evaluate the influence of this interaction. Then we utilize that densities and currents can be expressed by polarizations by which the ionic fluid can be regarded as a dielectric one for which a nonlocal susceptibility is found. This nonlocality has as a consequence that we find no contribution from a possible transverse electric zero-frequency mode for the Casimir force between metallic plates. Further, we establish expressions for a leading correction to ab initio calculations for the energies of the quantized electrons of molecules where now retardation effects also are taken into account.
Structure variation of the index of refraction of GaAs-AlAs superlattices and multiple quantum wells
NASA Technical Reports Server (NTRS)
Kahen, K. B.; Leburton, J. P.
1985-01-01
A detailed calculation of the index refraction of various GaAs-AlAs superlattices is presented for the first time. The calculation is performed by using a hybrid approach which combines the k-p method with the pseudopotential technique. Appropriate quantization conditions account for the influence of the superstructures on the electronic properties of the systems. The results of the model are in very good agreement with the experimental data. In comparison with the index of refraction of the corresponding AlGaAs alloy, characterized by the same average mole fraction of Al, the results indicate that the superlattice index of refraction values attain maxima at the various quantized transition energies. For certain structures the difference can be as large as 2 percent. These results suggest that the waveguiding and dispersion relation properties of optoelectronic devices can be tailored to design for specific optical application by an appropriate choice of the superlattice structure parameters.
Resonant Tunneling Analog-To-Digital Converter
NASA Technical Reports Server (NTRS)
Broekaert, T. P. E.; Seabaugh, A. C.; Hellums, J.; Taddiken, A.; Tang, H.; Teng, J.; vanderWagt, J. P. A.
1995-01-01
As sampling rates continue to increase, current analog-to-digital converter (ADC) device technologies will soon reach a practical resolution limit. This limit will most profoundly effect satellite and military systems used, for example, for electronic countermeasures, electronic and signal intelligence, and phased array radar. New device and circuit concepts will be essential for continued progress. We describe a novel, folded architecture ADC which could enable a technological discontinuity in ADC performance. The converter technology is based on the integration of multiple resonant tunneling diodes (RTD) and hetero-junction transistors on an indium phosphide substrate. The RTD consists of a layered semiconductor hetero-structure AlAs/InGaAs/AlAs(2/4/2 nm) clad on either side by heavily doped InGaAs contact layers. Compact quantizers based around the RTD offer a reduction in the number of components and a reduction in the input capacitance Because the component count and capacitance scale with the number of bits N, rather than by 2 (exp n) as in the flash ADC, speed can be significantly increased, A 4-bit 2-GSps quantizer circuit is under development to evaluate the performance potential. Circuit designs for ADC conversion with a resolution of 6-bits at 25GSps may be enabled by the resonant tunneling approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonçalves, L.A.; Olavo, L.S.F., E-mail: olavolsf@gmail.com
Dissipation in Quantum Mechanics took some time to become a robust field of investigation after the birth of the field. The main issue hindering developments in the field is that the Quantization process was always tightly connected to the Hamiltonian formulation of Classical Mechanics. In this paper we present a quantization process that does not depend upon the Hamiltonian formulation of Classical Mechanics (although still departs from Classical Mechanics) and thus overcome the problem of finding, from first principles, a completely general Schrödinger equation encompassing dissipation. This generalized process of quantization is shown to be nothing but an extension ofmore » a more restricted version that is shown to produce the Schrödinger equation for Hamiltonian systems from first principles (even for Hamiltonian velocity dependent potential). - Highlights: • A Quantization process independent of the Hamiltonian formulation of quantum Mechanics is proposed. • This quantization method is applied to dissipative or absorptive systems. • A Dissipative Schrödinger equation is derived from first principles.« less
NASA Astrophysics Data System (ADS)
Rabinovich, B. I.
2007-10-01
This paper continues the series of papers [1 5] and generalizes the previous results to a proto-ring of magnetized plasma whose density decreases in the radial direction. The problem of quantization of the sector and orbital velocities, and of the radii and periods of revolution of elite plasma rings is considered. A new concept of super-elite rings is introduced. Their isomorphism with the orbits of the planets and planetary satellites in the Solar System is proved. This isomorphism also extends to the orbits of electrons in the Bohr’s model of the hydrogen atom.
Thermopower and the Fractional Quantized Hall Effect in the N=1 Landau Level
NASA Astrophysics Data System (ADS)
Chickering, W. E.; Eisenstein, J. P.; Pfeiffer, L. N.; West, K. W.
2012-02-01
Having recently eliminated an issue involving long thermal time constants [1], we are now able to resolve diffusion thermopower deep into the fractional quantized Hall effect (FQHE) regime. In this talk we report measurements of thermopower in the first excited (N=1) Landau level as a continuous function of magnetic field down to temperatures as low as 30mK. Above 50mK we can clearly resolve the ν = 5/2 as well as ν = 7/3, 8/3, and 14/5 FQHEs in both the electrical and thermoelectrical transport. Below 50mK a prominent feature of the electrical transport in the first excited Landau level is the Re-entrant Integer Quantized Hall Effect (RIQHE) which is associated with insulating collective phases [2]. In this temperature regime the thermopower exhibits a series of intriguing sign reversals that are as yet not fully understood. We will conclude with a brief discussion of the connection between thermopower and the entropy of the 2D electron system. This connection is invoked by a recent prediction [3] of the thermopower at ν = 5/2, which assumes the ground state is the non-Abelian Moore-Read paired composite fermion state.[4pt] [1] Chickering, Phys. Rev. B 81, 245319 (2010)[0pt] [2] Eisenstein, Phys. Rev. Lett. 88, 076801 (2002)[0pt] [3] Yang, Phys. Rev. B 79, 115317 (2009)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Liang; Yang, Yi; Harley, Ronald Gordon
A system is for a plurality of different electric load types. The system includes a plurality of sensors structured to sense a voltage signal and a current signal for each of the different electric loads; and a processor. The processor acquires a voltage and current waveform from the sensors for a corresponding one of the different electric load types; calculates a power or current RMS profile of the waveform; quantizes the power or current RMS profile into a set of quantized state-values; evaluates a state-duration for each of the quantized state-values; evaluates a plurality of state-types based on the powermore » or current RMS profile and the quantized state-values; generates a state-sequence that describes a corresponding finite state machine model of a generalized load start-up or transient profile for the corresponding electric load type; and identifies the corresponding electric load type.« less
Image compression system and method having optimized quantization tables
NASA Technical Reports Server (NTRS)
Ratnakar, Viresh (Inventor); Livny, Miron (Inventor)
1998-01-01
A digital image compression preprocessor for use in a discrete cosine transform-based digital image compression device is provided. The preprocessor includes a gathering mechanism for determining discrete cosine transform statistics from input digital image data. A computing mechanism is operatively coupled to the gathering mechanism to calculate a image distortion array and a rate of image compression array based upon the discrete cosine transform statistics for each possible quantization value. A dynamic programming mechanism is operatively coupled to the computing mechanism to optimize the rate of image compression array against the image distortion array such that a rate-distortion-optimal quantization table is derived. In addition, a discrete cosine transform-based digital image compression device and a discrete cosine transform-based digital image compression and decompression system are provided. Also, a method for generating a rate-distortion-optimal quantization table, using discrete cosine transform-based digital image compression, and operating a discrete cosine transform-based digital image compression and decompression system are provided.
Prior-Based Quantization Bin Matching for Cloud Storage of JPEG Images.
Liu, Xianming; Cheung, Gene; Lin, Chia-Wen; Zhao, Debin; Gao, Wen
2018-07-01
Millions of user-generated images are uploaded to social media sites like Facebook daily, which translate to a large storage cost. However, there exists an asymmetry in upload and download data: only a fraction of the uploaded images are subsequently retrieved for viewing. In this paper, we propose a cloud storage system that reduces the storage cost of all uploaded JPEG photos, at the expense of a controlled increase in computation mainly during download of requested image subset. Specifically, the system first selectively re-encodes code blocks of uploaded JPEG images using coarser quantization parameters for smaller storage sizes. Then during download, the system exploits known signal priors-sparsity prior and graph-signal smoothness prior-for reverse mapping to recover original fine quantization bin indices, with either deterministic guarantee (lossless mode) or statistical guarantee (near-lossless mode). For fast reverse mapping, we use small dictionaries and sparse graphs that are tailored for specific clusters of similar blocks, which are classified via tree-structured vector quantizer. During image upload, cluster indices identifying the appropriate dictionaries and graphs for the re-quantized blocks are encoded as side information using a differential distributed source coding scheme to facilitate reverse mapping during image download. Experimental results show that our system can reap significant storage savings (up to 12.05%) at roughly the same image PSNR (within 0.18 dB).
A simplified Integer Cosine Transform and its application in image compression
NASA Technical Reports Server (NTRS)
Costa, M.; Tong, K.
1994-01-01
A simplified version of the integer cosine transform (ICT) is described. For practical reasons, the transform is considered jointly with the quantization of its coefficients. It differs from conventional ICT algorithms in that the combined factors for normalization and quantization are approximated by powers of two. In conventional algorithms, the normalization/quantization stage typically requires as many integer divisions as the number of transform coefficients. By restricting the factors to powers of two, these divisions can be performed by variable shifts in the binary representation of the coefficients, with speed and cost advantages to the hardware implementation of the algorithm. The error introduced by the factor approximations is compensated for in the inverse ICT operation, executed with floating point precision. The simplified ICT algorithm has potential applications in image-compression systems with disparate cost and speed requirements in the encoder and decoder ends. For example, in deep space image telemetry, the image processors on board the spacecraft could take advantage of the simplified, faster encoding operation, which would be adjusted on the ground, with high-precision arithmetic. A dual application is found in compressed video broadcasting. Here, a fast, high-performance processor at the transmitter would precompensate for the factor approximations in the inverse ICT operation, to be performed in real time, at a large number of low-cost receivers.
Deriving the exact nonadiabatic quantum propagator in the mapping variable representation.
Hele, Timothy J H; Ananth, Nandini
2016-12-22
We derive an exact quantum propagator for nonadiabatic dynamics in multi-state systems using the mapping variable representation, where classical-like Cartesian variables are used to represent both continuous nuclear degrees of freedom and discrete electronic states. The resulting Liouvillian is a Moyal series that, when suitably approximated, can allow for the use of classical dynamics to efficiently model large systems. We demonstrate that different truncations of the exact Liouvillian lead to existing approximate semiclassical and mixed quantum-classical methods and we derive an associated error term for each method. Furthermore, by combining the imaginary-time path-integral representation of the Boltzmann operator with the exact Liouvillian, we obtain an analytic expression for thermal quantum real-time correlation functions. These results provide a rigorous theoretical foundation for the development of accurate and efficient classical-like dynamics to compute observables such as electron transfer reaction rates in complex quantized systems.
Symmetries of relativistic world lines
NASA Astrophysics Data System (ADS)
Koch, Benjamin; Muñoz, Enrique; Reyes, Ignacio A.
2017-10-01
Symmetries are essential for a consistent formulation of many quantum systems. In this paper we discuss a fundamental symmetry, which is present for any Lagrangian term that involves x˙2. As a basic model that incorporates the fundamental symmetries of quantum gravity and string theory, we consider the Lagrangian action of the relativistic point particle. A path integral quantization for this seemingly simple system has long presented notorious problems. Here we show that those problems are overcome by taking into account the additional symmetry, leading directly to the exact Klein-Gordon propagator.
Fine structure constant and quantized optical transparency of plasmonic nanoarrays.
Kravets, V G; Schedin, F; Grigorenko, A N
2012-01-24
Optics is renowned for displaying quantum phenomena. Indeed, studies of emission and absorption lines, the photoelectric effect and blackbody radiation helped to build the foundations of quantum mechanics. Nevertheless, it came as a surprise that the visible transparency of suspended graphene is determined solely by the fine structure constant, as this kind of universality had been previously reserved only for quantized resistance and flux quanta in superconductors. Here we describe a plasmonic system in which relative optical transparency is determined solely by the fine structure constant. The system consists of a regular array of gold nanoparticles fabricated on a thin metallic sublayer. We show that its relative transparency can be quantized in the near-infrared, which we attribute to the quantized contact resistance between the nanoparticles and the metallic sublayer. Our results open new possibilities in the exploration of universal dynamic conductance in plasmonic nanooptics.
Can The Periods of Some Extra-Solar Planetary Systems be Quantized?
NASA Astrophysics Data System (ADS)
El Fady Morcos, Abd
A simple formula was derived before by Morcos (2013 ), to relate the quantum numbers of planetary systems and their periods. This formula is applicable perfectly for the solar system planets, and some extra-solar planets , of stars of approximately the same masses like the Sun. This formula has been used to estimate the periods of some extra-solar planet of known quantum numbers. The used quantum numbers were calculated previously by other authors. A comparison between the observed and estimated periods, from the given formula has been done. The differences between the observed and calculated periods for the extra-solar systems have been calculated and tabulated. It is found that there is an error of the range of 10% The same formula has been also used to find the quantum numbers, of some known periods, exo-planet. Keywords: Quantization; Periods; Extra-Planetary; Extra-Solar Planet REFERENCES [1] Agnese, A. G. and Festa, R. “Discretization on the Cosmic Scale Inspirred from the Old Quantum Mechanics,” 1998. http://arxiv.org/abs/astro-ph/9807186 [2] Agnese, A. G. and Festa, R. “Discretizing ups-Andro- medae Planetary System,” 1999. http://arxiv.org/abs/astro-ph/9910534. [3] Barnothy, J. M. “The Stability of the Solar Systemand of Small Stellar Systems,” Proceedings of the IAU Sympo-sium 62, Warsaw, 5-8 September 1973, pp. 23-31. [4] Morcos, A.B. , “Confrontation between Quantized Periods of Some Extra-Solar Planetary Systems and Observations”, International Journal of Astronomy and Astrophysics, 2013, 3, 28-32. [5] Nottale, L. “Fractal Space-Time and Microphysics, To-wards a Theory of Scale Relativity,” World Scientific, London, 1994. [6] Nottale , L., “Scale-Relativity and Quantization of Extra- Solar Planetary Systems,” Astronomy & Astrophysics, Vol. 315, 1996, pp. L9-L12 [7] Nottale, L., Schumacher, G. and Gay, J. “Scale-Relativity and Quantization of the Solar Systems,” Astronomy & Astrophysics letters, Vol. 322, 1997, pp. 1018-10 [8]Nottale, L. “Scale-Relativity and Quantization of Exo- planet Orbital Semi-Major Axes,” Astronomy & Astro- physics, Vol. 361, 2000, pp. 379-387.
Shot noise generated by graphene p–n junctions in the quantum Hall effect regime
Kumada, N.; Parmentier, F. D.; Hibino, H.; Glattli, D. C.; Roulleau, P.
2015-01-01
Graphene offers a unique system to investigate transport of Dirac Fermions at p–n junctions. In a magnetic field, combination of quantum Hall physics and the characteristic transport across p–n junctions leads to a fractionally quantized conductance associated with the mixing of electron-like and hole-like modes and their subsequent partitioning. The mixing and partitioning suggest that a p–n junction could be used as an electronic beam splitter. Here we report the shot noise study of the mode-mixing process and demonstrate the crucial role of the p–n junction length. For short p–n junctions, the amplitude of the noise is consistent with an electronic beam-splitter behaviour, whereas, for longer p–n junctions, it is reduced by the energy relaxation. Remarkably, the relaxation length is much larger than typical size of mesoscopic devices, encouraging using graphene for electron quantum optics and quantum information processing. PMID:26337067
Anisotropic two-dimensional electron gas at SrTiO3(110)
Wang, Zhiming; Zhong, Zhicheng; Hao, Xianfeng; Gerhold, Stefan; Stöger, Bernhard; Schmid, Michael; Sánchez-Barriga, Jaime; Varykhalov, Andrei; Franchini, Cesare; Held, Karsten; Diebold, Ulrike
2014-01-01
Two-dimensional electron gases (2DEGs) at oxide heterostructures are attracting considerable attention, as these might one day substitute conventional semiconductors at least for some functionalities. Here we present a minimal setup for such a 2DEG––the SrTiO3(110)-(4 × 1) surface, natively terminated with one monolayer of tetrahedrally coordinated titania. Oxygen vacancies induced by synchrotron radiation migrate underneath this overlayer; this leads to a confining potential and electron doping such that a 2DEG develops. Our angle-resolved photoemission spectroscopy and theoretical results show that confinement along (110) is strikingly different from the (001) crystal orientation. In particular, the quantized subbands show a surprising “semiheavy” band, in contrast with the analog in the bulk, and a high electronic anisotropy. This anisotropy and even the effective mass of the (110) 2DEG is tunable by doping, offering a high flexibility to engineer the properties of this system. PMID:24591596
Optimized universal color palette design for error diffusion
NASA Astrophysics Data System (ADS)
Kolpatzik, Bernd W.; Bouman, Charles A.
1995-04-01
Currently, many low-cost computers can only simultaneously display a palette of 256 color. However, this palette is usually selectable from a very large gamut of available colors. For many applications, this limited palette size imposes a significant constraint on the achievable image quality. We propose a method for designing an optimized universal color palette for use with halftoning methods such as error diffusion. The advantage of a universal color palette is that it is fixed and therefore allows multiple images to be displayed simultaneously. To design the palette, we employ a new vector quantization method known as sequential scalar quantization (SSQ) to allocate the colors in a visually uniform color space. The SSQ method achieves near-optimal allocation, but may be efficiently implemented using a series of lookup tables. When used with error diffusion, SSQ adds little computational overhead and may be used to minimize the visual error in an opponent color coordinate system. We compare the performance of the optimized algorithm to standard error diffusion by evaluating a visually weighted mean-squared-error measure. Our metric is based on the color difference in CIE L*AL*B*, but also accounts for the lowpass characteristic of human contrast sensitivity.
NASA Astrophysics Data System (ADS)
Bishop, Kevin P.; Roy, Pierre-Nicholas
2018-03-01
Free energy calculations are a crucial part of understanding chemical systems but are often computationally expensive for all but the simplest of systems. Various enhanced sampling techniques have been developed to improve the efficiency of these calculations in numerical simulations. However, the majority of these approaches have been applied using classical molecular dynamics. There are many situations where nuclear quantum effects impact the system of interest and a classical description fails to capture these details. In this work, path integral molecular dynamics has been used in conjunction with umbrella sampling, and it has been observed that correct results are only obtained when the umbrella sampling potential is applied to a single path integral bead post quantization. This method has been validated against a Lennard-Jones benchmark system before being applied to the more complicated water dimer system over a broad range of temperatures. Free energy profiles are obtained, and these are utilized in the calculation of the second virial coefficient as well as the change in free energy from the separated water monomers to the dimer. Comparisons to experimental and ground state calculation values from the literature are made for the second virial coefficient at higher temperature and the dissociation energy of the dimer in the ground state.
Bishop, Kevin P; Roy, Pierre-Nicholas
2018-03-14
Free energy calculations are a crucial part of understanding chemical systems but are often computationally expensive for all but the simplest of systems. Various enhanced sampling techniques have been developed to improve the efficiency of these calculations in numerical simulations. However, the majority of these approaches have been applied using classical molecular dynamics. There are many situations where nuclear quantum effects impact the system of interest and a classical description fails to capture these details. In this work, path integral molecular dynamics has been used in conjunction with umbrella sampling, and it has been observed that correct results are only obtained when the umbrella sampling potential is applied to a single path integral bead post quantization. This method has been validated against a Lennard-Jones benchmark system before being applied to the more complicated water dimer system over a broad range of temperatures. Free energy profiles are obtained, and these are utilized in the calculation of the second virial coefficient as well as the change in free energy from the separated water monomers to the dimer. Comparisons to experimental and ground state calculation values from the literature are made for the second virial coefficient at higher temperature and the dissociation energy of the dimer in the ground state.
Quantum no-singularity theorem from geometric flows
NASA Astrophysics Data System (ADS)
Alsaleh, Salwa; Alasfar, Lina; Faizal, Mir; Ali, Ahmed Farag
2018-04-01
In this paper, we analyze the classical geometric flow as a dynamical system. We obtain an action for this system, such that its equation of motion is the Raychaudhuri equation. This action will be used to quantize this system. As the Raychaudhuri equation is the basis for deriving the singularity theorems, we will be able to understand the effects and such a quantization will have on the classical singularity theorems. Thus, quantizing the geometric flow, we can demonstrate that a quantum space-time is complete (nonsingular). This is because the existence of a conjugate point is a necessary condition for the occurrence of singularities, and we will be able to demonstrate that such conjugate points cannot occur due to such quantum effects.
A consistent covariant quantization of the Brink-Schwarz superparticle
NASA Astrophysics Data System (ADS)
Eisenberg, Yeshayahu
1992-02-01
We perform the covariant quantization of the ten-dimensional Brink-Schwarz superparticle by reducing it to a system whose constraints are all first class, covariant and have only two levels of reducibility. Research supported by the Rothschild Fellowship.
Practical Quantum Realization of the Ampere from the Elementary Charge
NASA Astrophysics Data System (ADS)
Brun-Picard, J.; Djordjevic, S.; Leprat, D.; Schopfer, F.; Poirier, W.
2016-10-01
One major change of the future revision of the International System of Units is a new definition of the ampere based on the elementary charge e . Replacing the former definition based on Ampère's force law will allow one to fully benefit from quantum physics to realize the ampere. However, a quantum realization of the ampere from e , accurate to within 10-8 in relative value and fulfilling traceability needs, is still missing despite the many efforts made for the development of single-electron tunneling devices. Starting again with Ohm's law, applied here in a quantum circuit combining the quantum Hall resistance and Josephson voltage standards with a superconducting cryogenic amplifier, we report on a practical and universal programmable quantum current generator. We demonstrate that currents generated in the milliampere range are accurately quantized in terms of e fJ (fJ is the Josephson frequency) with measurement uncertainty of 10-8. This new quantum current source, which is able to deliver such accurate currents down to the microampere range, can greatly improve the current measurement traceability, as demonstrated with the calibrations of digital ammeters. In addition, it opens the way to further developments in metrology and in fundamental physics, such as a quantum multimeter or new accurate comparisons to single-electron pumps.
Quantum Entanglement in Double Quantum Systems and Jaynes-Cummings Model.
Jakubczyk, Paweł; Majchrowski, Klaudiusz; Tralle, Igor
2017-12-01
In the paper, we proposed a new approach to producing the qubits in electron transport in low-dimensional structures such as double quantum wells or double quantum wires (DQW). The qubit could arise as a result of quantum entanglement of two specific states of electrons in DQW structure. These two specific states are the symmetric and antisymmetric (with respect to inversion symmetry) states arising due to tunneling across the structure, while entanglement could be produced and controlled by means of the source of nonclassical light. We examined the possibility to produce quantum entanglement in the framework of Jaynes-Cummings model and have shown that at least in principle, the entanglement can be achieved due to series of "revivals" and "collapses" in the population inversion due to the interaction of a quantized single-mode EM field with a two-level system.
NASA Astrophysics Data System (ADS)
Dietrich, Scott
Heterostructures made of semiconductor materials may be one of most versatile environments for the study of the physics of electron transport in two dimensions. These systems are highly customizable and demonstrate a wide range of interesting physical phenomena. In response to both microwave radiation and DC excitations, strongly nonlinear transport that gives rise to non-equilibrium electron states has been reported and investigated. We have studied GaAs quantum wells with a high density of high mobility two-dimensional electrons placed in a quantizing magnetic field. This study presents the observation of several nonlinear transport mechanisms produced by the quantum nature of these materials. The quantum scattering rate, 1tau/q, is an important parameter in these systems, defining the width of the quantized energy levels. Traditional methods of extracting 1tau/q involve studying the amplitude of Shubnikov-de Haas oscillations. We analyze the quantum positive magnetoresistance due to the cyclotron motion of electrons in a magnetic field. This method gives 1tau/q and has the additional benefit of providing access to the strength of electron-electron interactions, which is not possible by conventional techniques. The temperature dependence of the quantum scattering rate is found to be proportional to the square of the temperature and is in very good agreement with theory that considers electron-electron interactions in 2D systems. In quantum wells with a small scattering rate - which corresponds to well-defined Landau levels - quantum oscillations of nonlinear resistance that are independent of magnetic field strength have been observed. These oscillations are periodic in applied bias current and are connected to quantum oscillations of resistance at zero bias: either Shubnikov-de Haas oscillations for single subband systems or magnetointersubband oscillations for two subband systems. The bias-induced oscillations can be explained by a spatial variation of electron density across the sample. The theoretical model predicts the period of these oscillations to depend on the total electron density, which has been confirmed by controlling the density through a voltage top-gate on the sample. The peculiar nonlinear mechanism of quantal heating has garned much attention recently. This bulk phenomenon is a quantum manifestation of Joule heating where an applied bias current causes selective flattening in the electron distribution function but conserves overall broadening. This produces a highly non-equilibrium distribution of electrons that drastically effects the transport properties of the system. Recent studies have proposed contributions from edge states and/or skipping orbitals. We have shown that these contributions are minimal by studying the transition to the zero differential conductance state and comparing results between Hall and Corbino geometries. This demonstrated quantal heating as the dominant nonlinear mechanism in these systems. To study the dynamics of quantal heating, we applied microwave radiation simultaneously from two sources at frequencies ƒ1 and ƒ2 and measured the response of the system at the difference frequency, ƒ=|ƒ 1-ƒ2|. This provides direct access to the rate of inelastic scattering processes, 1tau/in, that tend to bring the electron distribution back to thermal equilibrium. While conventional measurements of the temperature dependence indicate that 1tau/in is proportional to temperature, recent DC investigations and our new dynamic measurements show either T2 or T3 dependence in different magnetic fields. Our microwave experiment is the first direct access to the inelastic relaxation rate and confirms the non-linear temperature dependence.
Probing DNA in nanopores via tunneling: from sequencing to ``quantum'' analogies
NASA Astrophysics Data System (ADS)
di Ventra, Massimiliano
2012-02-01
Fast and low-cost DNA sequencing methods would revolutionize medicine: a person could have his/her full genome sequenced so that drugs could be tailored to his/her specific illnesses; doctors could know in advance patients' likelihood to develop a given ailment; cures to major diseases could be found faster [1]. However, this goal of ``personalized medicine'' is hampered today by the high cost and slow speed of DNA sequencing methods. In this talk, I will discuss the sequencing protocol we suggest which requires the measurement of the distributions of transverse currents during the translocation of single-stranded DNA into nanopores [2-5]. I will support our conclusions with a combination of molecular dynamics simulations coupled to quantum mechanical calculations of electrical current in experimentally realizable systems [2-5]. I will also discuss recent experiments that support these theoretical predictions. In addition, I will show how this relatively unexplored area of research at the interface between solids, liquids, and biomolecules at the nanometer length scale is a fertile ground to study quantum phenomena that have a classical counterpart, such as ionic quasi-particles, ionic ``quantized'' conductance [6,7] and Coulomb blockade [8]. Work supported in part by NIH. [4pt] [1] M. Zwolak, M. Di Ventra, Physical Approaches to DNA Sequencing and Detection, Rev. Mod. Phys. 80, 141 (2008).[0pt] [2] M. Zwolak and M. Di Ventra, Electronic signature of DNA nucleotides via transverse transport, Nano Lett. 5, 421 (2005).[0pt] [3] J. Lagerqvist, M. Zwolak, and M. Di Ventra, Fast DNA sequencing via transverse electronic transport, Nano Lett. 6, 779 (2006).[0pt] [4] J. Lagerqvist, M. Zwolak, and M. Di Ventra, Influence of the environment and probes on rapid DNA sequencing via transverse electronic transport, Biophys. J. 93, 2384 (2007).[0pt] [5] M. Krems, M. Zwolak, Y.V. Pershin, and M. Di Ventra, Effect of noise on DNA sequencing via transverse electronic transport, Biophys. J. 97, 1990, (2009).[0pt] [6] M. Zwolak, J. Lagerqvist, and M. Di Ventra, Ionic conductance quantization in nanopores, Phys. Rev.Lett. 103, 128102 (2009).[0pt] [7] M. Zwolak, J. Wilson, and M. Di Ventra, Dehydration and ionic conductance quantization in nanopores, J. Phys. Cond. Matt. 22 454126 (2011). [0pt] [8] M. Krems and M. Di Ventra, Ionic Coulomb blockade in nanopores arXiv:1103.2749.
NASA Astrophysics Data System (ADS)
Abramov, G. V.; Emeljanov, A. E.; Ivashin, A. L.
Theoretical bases for modeling a digital control system with information transfer via the channel of plural access and a regular quantization cycle are submitted. The theory of dynamic systems with random changes of the structure including elements of the Markov random processes theory is used for a mathematical description of a network control system. The characteristics of similar control systems are received. Experimental research of the given control systems is carried out.
Irrational Charge from Topological Order
NASA Astrophysics Data System (ADS)
Moessner, R.; Sondhi, S. L.
2010-10-01
Topological or deconfined phases of matter exhibit emergent gauge fields and quasiparticles that carry a corresponding gauge charge. In systems with an intrinsic conserved U(1) charge, such as all electronic systems where the Coulombic charge plays this role, these quasiparticles are also characterized by their intrinsic charge. We show that one can take advantage of the topological order fairly generally to produce periodic Hamiltonians which endow the quasiparticles with continuously variable, generically irrational, intrinsic charges. Examples include various topologically ordered lattice models, the three-dimensional resonating valence bond liquid on bipartite lattices as well as water and spin ice. By contrast, the gauge charges of the quasiparticles retain their quantized values.
Probabilistic distance-based quantizer design for distributed estimation
NASA Astrophysics Data System (ADS)
Kim, Yoon Hak
2016-12-01
We consider an iterative design of independently operating local quantizers at nodes that should cooperate without interaction to achieve application objectives for distributed estimation systems. We suggest as a new cost function a probabilistic distance between the posterior distribution and its quantized one expressed as the Kullback Leibler (KL) divergence. We first present the analysis that minimizing the KL divergence in the cyclic generalized Lloyd design framework is equivalent to maximizing the logarithmic quantized posterior distribution on the average which can be further computationally reduced in our iterative design. We propose an iterative design algorithm that seeks to maximize the simplified version of the posterior quantized distribution and discuss that our algorithm converges to a global optimum due to the convexity of the cost function and generates the most informative quantized measurements. We also provide an independent encoding technique that enables minimization of the cost function and can be efficiently simplified for a practical use of power-constrained nodes. We finally demonstrate through extensive experiments an obvious advantage of improved estimation performance as compared with the typical designs and the novel design techniques previously published.
Quantization and Superselection Sectors I:. Transformation Group C*-ALGEBRAS
NASA Astrophysics Data System (ADS)
Landsman, N. P.
Quantization is defined as the act of assigning an appropriate C*-algebra { A} to a given configuration space Q, along with a prescription mapping self-adjoint elements of { A} into physically interpretable observables. This procedure is adopted to solve the problem of quantizing a particle moving on a homogeneous locally compact configuration space Q=G/H. Here { A} is chosen to be the transformation group C*-algebra corresponding to the canonical action of G on Q. The structure of these algebras and their representations are examined in some detail. Inequivalent quantizations are identified with inequivalent irreducible representations of the C*-algebra corresponding to the system, hence with its superselection sectors. Introducing the concept of a pre-Hamiltonian, we construct a large class of G-invariant time-evolutions on these algebras, and find the Hamiltonians implementing these time-evolutions in each irreducible representation of { A}. “Topological” terms in the Hamiltonian (or the corresponding action) turn out to be representation-dependent, and are automatically induced by the quantization procedure. Known “topological” charge quantization or periodicity conditions are then identically satisfied as a consequence of the representation theory of { A}.
Microwave spectroscopic observation of distinct electron solid phases in wide quantum wells
NASA Astrophysics Data System (ADS)
Hatke, A. T.; Liu, Yang; Magill, B. A.; Moon, B. H.; Engel, L. W.; Shayegan, M.; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.
2014-06-01
In high magnetic fields, two-dimensional electron systems can form a number of phases in which interelectron repulsion plays the central role, since the kinetic energy is frozen out by Landau quantization. These phases include the well-known liquids of the fractional quantum Hall effect, as well as solid phases with broken spatial symmetry and crystalline order. Solids can occur at the low Landau-filling termination of the fractional quantum Hall effect series but also within integer quantum Hall effects. Here we present microwave spectroscopy studies of wide quantum wells that clearly reveal two distinct solid phases, hidden within what in d.c. transport would be the zero diagonal conductivity of an integer quantum-Hall-effect state. Explanation of these solids is not possible with the simple picture of a Wigner solid of ordinary (quasi) electrons or holes.
Fractional-calculus diffusion equation
2010-01-01
Background Sequel to the work on the quantization of nonconservative systems using fractional calculus and quantization of a system with Brownian motion, which aims to consider the dissipation effects in quantum-mechanical description of microscale systems. Results The canonical quantization of a system represented classically by one-dimensional Fick's law, and the diffusion equation is carried out according to the Dirac method. A suitable Lagrangian, and Hamiltonian, describing the diffusive system, are constructed and the Hamiltonian is transformed to Schrodinger's equation which is solved. An application regarding implementation of the developed mathematical method to the analysis of diffusion, osmosis, which is a biological application of the diffusion process, is carried out. Schrödinger's equation is solved. Conclusions The plot of the probability function represents clearly the dissipative and drift forces and hence the osmosis, which agrees totally with the macro-scale view, or the classical-version osmosis. PMID:20492677
Quantization of simple parametrized systems
NASA Astrophysics Data System (ADS)
Ruffini, G.
2005-11-01
I study the canonical formulation and quantization of some simple parametrized systems, including the non-relativistic parametrized particle and the relativistic parametrized particle. Using Dirac's formalism I construct for each case the classical reduced phase space and study the dependence on the gauge fixing used. Two separate features of these systems can make this construction difficult: the actions are not invariant at the boundaries, and the constraints may have disconnected solution spaces. The relativistic particle is affected by both, while the non-relativistic particle displays only by the first. Analyzing the role of canonical transformations in the reduced phase space, I show that a change of gauge fixing is equivalent to a canonical transformation. In the relativistic case, quantization of one branch of the constraint at the time is applied and I analyze the electromagenetic backgrounds in which it is possible to quantize simultaneously both branches and still obtain a covariant unitary quantum theory. To preserve unitarity and space-time covariance, second quantization is needed unless there is no electric field. I motivate a definition of the inner product in all these cases and derive the Klein-Gordon inner product for the relativistic case. I construct phase space path integral representations for amplitudes for the BFV and the Faddeev path integrals, from which the path integrals in coordinate space (Faddeev-Popov and geometric path integrals) are derived.
Kjaergaard, M; Nichele, F; Suominen, H J; Nowak, M P; Wimmer, M; Akhmerov, A R; Folk, J A; Flensberg, K; Shabani, J; Palmstrøm, C J; Marcus, C M
2016-09-29
Coupling a two-dimensional (2D) semiconductor heterostructure to a superconductor opens new research and technology opportunities, including fundamental problems in mesoscopic superconductivity, scalable superconducting electronics, and new topological states of matter. One route towards topological matter is by coupling a 2D electron gas with strong spin-orbit interaction to an s-wave superconductor. Previous efforts along these lines have been adversely affected by interface disorder and unstable gating. Here we show measurements on a gateable InGaAs/InAs 2DEG with patterned epitaxial Al, yielding devices with atomically pristine interfaces between semiconductor and superconductor. Using surface gates to form a quantum point contact (QPC), we find a hard superconducting gap in the tunnelling regime. When the QPC is in the open regime, we observe a first conductance plateau at 4e 2 /h, consistent with theory. The hard-gap semiconductor-superconductor system demonstrated here is amenable to top-down processing and provides a new avenue towards low-dissipation electronics and topological quantum systems.
Kjaergaard, M.; Nichele, F.; Suominen, H. J.; Nowak, M. P.; Wimmer, M.; Akhmerov, A. R.; Folk, J. A.; Flensberg, K.; Shabani, J.; Palmstrøm, C. J.; Marcus, C. M.
2016-01-01
Coupling a two-dimensional (2D) semiconductor heterostructure to a superconductor opens new research and technology opportunities, including fundamental problems in mesoscopic superconductivity, scalable superconducting electronics, and new topological states of matter. One route towards topological matter is by coupling a 2D electron gas with strong spin–orbit interaction to an s-wave superconductor. Previous efforts along these lines have been adversely affected by interface disorder and unstable gating. Here we show measurements on a gateable InGaAs/InAs 2DEG with patterned epitaxial Al, yielding devices with atomically pristine interfaces between semiconductor and superconductor. Using surface gates to form a quantum point contact (QPC), we find a hard superconducting gap in the tunnelling regime. When the QPC is in the open regime, we observe a first conductance plateau at 4e2/h, consistent with theory. The hard-gap semiconductor–superconductor system demonstrated here is amenable to top-down processing and provides a new avenue towards low-dissipation electronics and topological quantum systems. PMID:27682268
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulmer, W
Purpose: During the past decade the quantization of coupled/forced electromagnetic circuits with or without Ohm’s resistance has gained the subject of some fundamental studies, since even problems of quantum electrodynamics can be solved in an elegant manner, e.g. the creation of quantized electromagnetic fields. In this communication, we shall use these principles to describe optimization procedures in the design of klystrons, synchrotron irradiation and high energy bremsstrahlung. Methods: The base is the Hamiltonian of an electromagnetic circuit and the extension to coupled circuits, which allow the study of symmetries and perturbed symmetries in a very apparent way (SU2, SU3, SU4).more » The introduction resistance and forced oscillators for the emission and absorption in such coupled systems provides characteristic resonance conditions, and atomic orbitals can be described by that. The extension to virtual orbitals leads to creation of bremsstrahlung, if the incident electron (velocity v nearly c) is described by a current, which is associated with its inductivitance and the virtual orbital to the charge distribution (capacitance). Coupled systems with forced oscillators can be used to amplify drastically the resonance frequencies to describe klystrons and synchrotron radiation. Results: The cross-section formula for bremsstrahlung given by the propagator method of Feynman can readily be derived. The design of klystrons and synchrotrons inclusive the radiation outcome can be described and optimized by the determination of the mutual magnetic couplings between the oscillators induced by the currents. Conclusions: The presented methods of quantization of circuits inclusive resistance provide rather a straightforward way to understand complex technical processes such as creation of bremsstrahlung or creation of radiation by klystrons and synchrotrons. They can either be used for optimization procedures and, last but not least, for pedagogical purposes with regard to a qualified understanding of radiation physics for students.« less
Dopant-controlled single-electron pumping through a metallic island
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenz, Tobias, E-mail: tobias.wenz@ptb.de; Hohls, Frank, E-mail: frank.hohls@ptb.de; Jehl, Xavier
We investigate a hybrid metallic island/single dopant electron pump based on fully depleted silicon-on-insulator technology. Electron transfer between the central metallic island and the leads is controlled by resonant tunneling through single phosphorus dopants in the barriers. Top gates above the barriers are used to control the resonance conditions. Applying radio frequency signals to the gates, non-adiabatic quantized electron pumping is achieved. A simple deterministic model is presented and confirmed by comparing measurements with simulations.
TBA-like integral equations from quantized mirror curves
NASA Astrophysics Data System (ADS)
Okuyama, Kazumi; Zakany, Szabolcs
2016-03-01
Quantizing the mirror curve of certain toric Calabi-Yau (CY) three-folds leads to a family of trace class operators. The resolvent function of these operators is known to encode topological data of the CY. In this paper, we show that in certain cases, this resolvent function satisfies a system of non-linear integral equations whose structure is very similar to the Thermodynamic Bethe Ansatz (TBA) systems. This can be used to compute spectral traces, both exactly and as a semiclassical expansion. As a main example, we consider the system related to the quantized mirror curve of local P2. According to a recent proposal, the traces of this operator are determined by the refined BPS indices of the underlying CY. We use our non-linear integral equations to test that proposal.
Quantization with maximally degenerate Poisson brackets: the harmonic oscillator!
NASA Astrophysics Data System (ADS)
Nutku, Yavuz
2003-07-01
Nambu's construction of multi-linear brackets for super-integrable systems can be thought of as degenerate Poisson brackets with a maximal set of Casimirs in their kernel. By introducing privileged coordinates in phase space these degenerate Poisson brackets are brought to the form of Heisenberg's equations. We propose a definition for constructing quantum operators for classical functions, which enables us to turn the maximally degenerate Poisson brackets into operators. They pose a set of eigenvalue problems for a new state vector. The requirement of the single-valuedness of this eigenfunction leads to quantization. The example of the harmonic oscillator is used to illustrate this general procedure for quantizing a class of maximally super-integrable systems.
NASA Astrophysics Data System (ADS)
Cho, Hyunjin; Kim, Whi Dong; Lee, Kangha; Lee, Seokwon; Kang, Gil-Seong; Joh, Han-Ik; Lee, Doh C.
2018-01-01
We investigate the product selectivity of CO2 reduction using NiO photocathodes decorated with CdSe quantum dots (QDs) of varying size in a photoelectrochemical (PEC) cell. Size-tunable and quantized energy states of conduction band in CdSe QDs enable systematic control of electron transfer kinetics from CdSe QDs to NiO. It turns out that different size of CdSe QDs results in variation in product selectivity for CO2 reduction. The energy gap between conduction band edge and redox potential of each reduction product (e.g., CO and CH4) correlates with their production rate. The size dependence of the electron transfer rate estimated from the energy gap is in agreement with the selectivity of CO2 reduction products for all reduction products but CO. The deviation in the case of CO is attributed to sequential conversion of CO into CH4 with CO adsorbed on electrode surface. Based on a premise that the CdSe QDs would exhibit similar surface configuration regardless of QD size, it is concluded that the electron transfer kinetics proves to alter the selectivity of CO2 reduction.
NASA Astrophysics Data System (ADS)
Kovchavtsev, A. P.; Aksenov, M. S.; Tsarenko, A. V.; Nastovjak, A. E.; Pogosov, A. G.; Pokhabov, D. A.; Tereshchenko, O. E.; Valisheva, N. A.
2018-05-01
The accumulation capacitance oscillations behavior in the n-InAs metal-oxide-semiconductor structures with different densities of the built-in charge (Dbc) and the interface traps (Dit) at temperature 4.2 K in the magnetic field (B) 2-10 T, directed perpendicular to the semiconductor-dielectric interface, is studied. A decrease in the oscillation frequency and an increase in the capacitance oscillation amplitude are observed with the increase in B. At the same time, for a certain surface accumulation band bending, the influence of the Rashba effect, which is expressed in the oscillations decay and breakdown, is traced. The experimental capacitance-voltage curves are in a good agreement with the numeric simulation results of the self-consistent solution of Schrödinger and Poisson equations in the magnetic field, taking into account the quantization, nonparabolicity of dispersion law, and Fermi-Dirac electron statistics, with the allowance for the Rashba effect. The Landau quantum level broadening in a two-dimensional electron gas (Lorentzian-shaped density of states), due to the electron scattering mechanism, linearly depends on the magnetic field. The correlation between the interface electronic properties and the characteristic scattering times was established.
Coulomb excitations for a short linear chain of metallic shells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhemchuzhna, Liubov, E-mail: lzhemchuzhna@unm.edu; Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106; Gumbs, Godfrey
2015-03-15
A self-consistent-field theory is given for the electronic collective modes of a chain containing a finite number, N, of Coulomb-coupled spherical two-dimensional electron gases arranged with their centers along a straight line, for simulating electromagnetic response of a narrow-ribbon of metallic shells. The separation between nearest-neighbor shells is arbitrary and because of the quantization of the electron energy levels due to their confinement to the spherical surface, all angular momenta L of the Coulomb excitations, as well as their projections M on the quantization axis, are coupled. However, for incoming light with a given polarization, only one angular momentum quantummore » number is usually required. Therefore, the electromagnetic response of the narrow-ribbon of metallic shells is expected to be controlled externally by selecting different polarizations for incident light. We show that, when N = 3, the next-nearest-neighbor Coulomb coupling is larger than its value if they are located at opposite ends of a right-angle triangle forming the triad. Additionally, the frequencies of the plasma excitations are found to depend on the orientation of the line joining them with respect to the axis of quantization since the magnetic field generated from the induced oscillating electric dipole moment on one sphere can couple to the induced magnetic dipole moment on another. Although the transverse inter-shell electromagnetic coupling can be modeled by an effective dynamic medium, the longitudinal inter-shell Coulomb coupling, on the other hand, can still significantly modify the electromagnetic property of this effective medium between shells.« less
Observation of conductance doubling in an Andreev quantum point contact
NASA Astrophysics Data System (ADS)
Kjaergaard, M.; Nichele, F.; Suominen, H.; Nowak, M.; Wimmer, M.; Akhmerov, A.; Folk, J.; Flensberg, K.; Shabani, J.; Palmstrom, C.; Marcus, C.
One route to study the non-Abelian nature of excitations in topological superconductors is to realise gateable two dimensional (2D) semiconducting systems, with spin-orbit coupling in proximity to an s-wave superconductor. Previous work on coupling 2D electron gases (2DEG) with superconductors has been hindered by a non-ideal interface and unstable gateability. We report measurements on a gateable 2DEG coupled to superconductors through a pristine interface, and use aluminum grown in situ epitaxially on an InGaAs/InAs electron gas. We demonstrate quantization in units of 4e2 / h in a quantum point contact (QPC) in such hybrid systems. Operating the QPC as a tunnel probe, we observe a hard superconducting gap, overcoming the soft-gap problem in 2D superconductor/semiconductor systems. Our work paves way for a new and highly scalable system in which to pursue topological quantum information processing. Research supported by Microsoft Project Q and the Danish National Research Foundation.
Modulated error diffusion CGHs for neural nets
NASA Astrophysics Data System (ADS)
Vermeulen, Pieter J. E.; Casasent, David P.
1990-05-01
New modulated error diffusion CGHs (computer generated holograms) for optical computing are considered. Specific attention is given to their use in optical matrix-vector, associative processor, neural net and optical interconnection architectures. We consider lensless CGH systems (many CGHs use an external Fourier transform (FT) lens), the Fresnel sampling requirements, the effects of finite CGH apertures (sample and hold inputs), dot size correction (for laser recorders), and new applications for this novel encoding method (that devotes attention to quantization noise effects).
Current quantization and fractal hierarchy in a driven repulsive lattice gas.
Rotondo, Pietro; Sellerio, Alessandro Luigi; Glorioso, Pietro; Caracciolo, Sergio; Cosentino Lagomarsino, Marco; Gherardi, Marco
2017-11-01
Driven lattice gases are widely regarded as the paradigm of collective phenomena out of equilibrium. While such models are usually studied with nearest-neighbor interactions, many empirical driven systems are dominated by slowly decaying interactions such as dipole-dipole and Van der Waals forces. Motivated by this gap, we study the nonequilibrium stationary state of a driven lattice gas with slow-decayed repulsive interactions at zero temperature. By numerical and analytical calculations of the particle current as a function of the density and of the driving field, we identify (i) an abrupt breakdown transition between insulating and conducting states, (ii) current quantization into discrete phases where a finite current flows with infinite differential resistivity, and (iii) a fractal hierarchy of excitations, related to the Farey sequences of number theory. We argue that the origin of these effects is the competition between scales, which also causes the counterintuitive phenomenon that crystalline states can melt by increasing the density.
Current quantization and fractal hierarchy in a driven repulsive lattice gas
NASA Astrophysics Data System (ADS)
Rotondo, Pietro; Sellerio, Alessandro Luigi; Glorioso, Pietro; Caracciolo, Sergio; Cosentino Lagomarsino, Marco; Gherardi, Marco
2017-11-01
Driven lattice gases are widely regarded as the paradigm of collective phenomena out of equilibrium. While such models are usually studied with nearest-neighbor interactions, many empirical driven systems are dominated by slowly decaying interactions such as dipole-dipole and Van der Waals forces. Motivated by this gap, we study the nonequilibrium stationary state of a driven lattice gas with slow-decayed repulsive interactions at zero temperature. By numerical and analytical calculations of the particle current as a function of the density and of the driving field, we identify (i) an abrupt breakdown transition between insulating and conducting states, (ii) current quantization into discrete phases where a finite current flows with infinite differential resistivity, and (iii) a fractal hierarchy of excitations, related to the Farey sequences of number theory. We argue that the origin of these effects is the competition between scales, which also causes the counterintuitive phenomenon that crystalline states can melt by increasing the density.
Dissipation and quantization for composite systems
NASA Astrophysics Data System (ADS)
Blasone, Massimo; Jizba, Petr; Scardigli, Fabio; Vitiello, Giuseppe
2009-11-01
In the framework of 't Hooft's quantization proposal, we show how to obtain from the composite system of two classical Bateman's oscillators a quantum isotonic oscillator. In a specific range of parameters, such a system can be interpreted as a particle in an effective magnetic field, interacting through a spin-orbit interaction term. In the limit of a large separation from the interaction region one can describe the system in terms of two irreducible elementary subsystems which correspond to two independent quantum harmonic oscillators.
't Hooft Quantization for Interacting Systems
NASA Astrophysics Data System (ADS)
Jizba, Petr; Scardigli, Fabio; Blasone, Massimo; Vitiello, Giuseppe
2012-02-01
In the framework of 't Hooft's "deterministic quantization" proposal, we show how to obtain from a composite system of two classical Bateman's oscillators a quantum isotonic oscillator. In a specific range of parameters, such a system can be also interpreted as a particle in an effective magnetic field, interacting through a spin-orbit interaction term. In the limit of a large separation from the interaction region, the system can be described in terms of two irreducible elementary subsystems, corresponding to two independent quantum harmonic oscillators.
Quenching of the Quantum Hall Effect in Graphene with Scrolled Edges
NASA Astrophysics Data System (ADS)
Cresti, Alessandro; Fogler, Michael M.; Guinea, Francisco; Castro Neto, A. H.; Roche, Stephan
2012-04-01
Edge nanoscrolls are shown to strongly influence transport properties of suspended graphene in the quantum Hall regime. The relatively long arclength of the scrolls in combination with their compact transverse size results in formation of many nonchiral transport channels in the scrolls. They short circuit the bulk current paths and inhibit the observation of the quantized two-terminal resistance. Unlike competing theoretical proposals, this mechanism of disrupting the Hall quantization in suspended graphene is not caused by ill-chosen placement of the contacts, singular elastic strains, or a small sample size.
Kang, Zhe; Yuan, Jinhui; Zhang, Xianting; Wu, Qiang; Sang, Xinzhu; Farrell, Gerald; Yu, Chongxiu; Li, Feng; Tam, Hwa Yaw; Wai, P. K. A.
2014-01-01
All-optical analog-to-digital converters based on the third-order nonlinear effects in silicon waveguide are a promising candidate to overcome the limitation of electronic devices and are suitable for photonic integration. In this paper, a 2-bit optical spectral quantization scheme for on-chip all-optical analog-to-digital conversion is proposed. The proposed scheme is realized by filtering the broadened and split spectrum induced by the self-phase modulation effect in a silicon horizontal slot waveguide filled with silicon-nanocrystal. Nonlinear coefficient as high as 8708 W−1/m is obtained because of the tight mode confinement of the horizontal slot waveguide and the high nonlinear refractive index of the silicon-nanocrystal, which provides the enhanced nonlinear interaction and accordingly low power threshold. The results show that a required input peak power level less than 0.4 W can be achieved, along with the 1.98-bit effective-number-of-bit and Gray code output. The proposed scheme can find important applications in on-chip all-optical digital signal processing systems. PMID:25417847
Kang, Zhe; Yuan, Jinhui; Zhang, Xianting; Wu, Qiang; Sang, Xinzhu; Farrell, Gerald; Yu, Chongxiu; Li, Feng; Tam, Hwa Yaw; Wai, P K A
2014-11-24
All-optical analog-to-digital converters based on the third-order nonlinear effects in silicon waveguide are a promising candidate to overcome the limitation of electronic devices and are suitable for photonic integration. In this paper, a 2-bit optical spectral quantization scheme for on-chip all-optical analog-to-digital conversion is proposed. The proposed scheme is realized by filtering the broadened and split spectrum induced by the self-phase modulation effect in a silicon horizontal slot waveguide filled with silicon-nanocrystal. Nonlinear coefficient as high as 8708 W(-1)/m is obtained because of the tight mode confinement of the horizontal slot waveguide and the high nonlinear refractive index of the silicon-nanocrystal, which provides the enhanced nonlinear interaction and accordingly low power threshold. The results show that a required input peak power level less than 0.4 W can be achieved, along with the 1.98-bit effective-number-of-bit and Gray code output. The proposed scheme can find important applications in on-chip all-optical digital signal processing systems.
Fabrication of Subnanometer-Precision Nanopores in Hexagonal Boron Nitride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, S. Matt; Dunn, Gabriel; Azizi, Amin
Here, we demonstrate the fabrication of individual nanopores in hexagonal boron nitride (h-BN) with atomically precise control of the pore shape and size. Previous methods of pore production in other 2D materials typically create pores with irregular geometry and imprecise diameters. In contrast, other studies have shown that with careful control of electron irradiation, defects in h-BN grow with pristine zig-zag edges at quantized triangular sizes, but they have failed to demonstrate production and control of isolated defects. In this work, we combine these techniques to yield a method in which we can create individual size-quantized triangular nanopores through anmore » h-BN sheet. The pores are created using the electron beam of a conventional transmission electron microscope; which can strip away multiple layers of h-BN exposing single-layer regions, introduce single vacancies, and preferentially grow vacancies only in the single-layer region. We further demonstrate how the geometry of these pores can be altered beyond triangular by changing beam conditions. Precisely size- and geometry-tuned nanopores could find application in molecular sensing, DNA sequencing, water desalination, and molecular separation.« less
Fabrication of Subnanometer-Precision Nanopores in Hexagonal Boron Nitride
Gilbert, S. Matt; Dunn, Gabriel; Azizi, Amin; ...
2017-11-08
Here, we demonstrate the fabrication of individual nanopores in hexagonal boron nitride (h-BN) with atomically precise control of the pore shape and size. Previous methods of pore production in other 2D materials typically create pores with irregular geometry and imprecise diameters. In contrast, other studies have shown that with careful control of electron irradiation, defects in h-BN grow with pristine zig-zag edges at quantized triangular sizes, but they have failed to demonstrate production and control of isolated defects. In this work, we combine these techniques to yield a method in which we can create individual size-quantized triangular nanopores through anmore » h-BN sheet. The pores are created using the electron beam of a conventional transmission electron microscope; which can strip away multiple layers of h-BN exposing single-layer regions, introduce single vacancies, and preferentially grow vacancies only in the single-layer region. We further demonstrate how the geometry of these pores can be altered beyond triangular by changing beam conditions. Precisely size- and geometry-tuned nanopores could find application in molecular sensing, DNA sequencing, water desalination, and molecular separation.« less
Atomic-scale epitaxial aluminum film on GaAs substrate
NASA Astrophysics Data System (ADS)
Fan, Yen-Ting; Lo, Ming-Cheng; Wu, Chu-Chun; Chen, Peng-Yu; Wu, Jenq-Shinn; Liang, Chi-Te; Lin, Sheng-Di
2017-07-01
Atomic-scale metal films exhibit intriguing size-dependent film stability, electrical conductivity, superconductivity, and chemical reactivity. With advancing methods for preparing ultra-thin and atomically smooth metal films, clear evidences of the quantum size effect have been experimentally collected in the past two decades. However, with the problems of small-area fabrication, film oxidation in air, and highly-sensitive interfaces between the metal, substrate, and capping layer, the uses of the quantized metallic films for further ex-situ investigations and applications have been seriously limited. To this end, we develop a large-area fabrication method for continuous atomic-scale aluminum film. The self-limited oxidation of aluminum protects and quantizes the metallic film and enables ex-situ characterizations and device processing in air. Structure analysis and electrical measurements on the prepared films imply the quantum size effect in the atomic-scale aluminum film. Our work opens the way for further physics studies and device applications using the quantized electronic states in metals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nascimento, Daniel R.; DePrince, A. Eugene, E-mail: deprince@chem.fsu.edu
2015-12-07
We present a combined cavity quantum electrodynamics/ab initio electronic structure approach for simulating plasmon-molecule interactions in the time domain. The simple Jaynes-Cummings-type model Hamiltonian typically utilized in such simulations is replaced with one in which the molecular component of the coupled system is treated in a fully ab initio way, resulting in a computationally efficient description of general plasmon-molecule interactions. Mutual polarization effects are easily incorporated within a standard ground-state Hartree-Fock computation, and time-dependent simulations carry the same formal computational scaling as real-time time-dependent Hartree-Fock theory. As a proof of principle, we apply this generalized method to the emergence ofmore » a Fano-like resonance in coupled molecule-plasmon systems; this feature is quite sensitive to the nanoparticle-molecule separation and the orientation of the molecule relative to the polarization of the external electric field.« less
Magnetofermionic condensate in two dimensions
Kulik, L. V.; Zhuravlev, A. S.; Dickmann, S.; Gorbunov, A. V.; Timofeev, V. B.; Kukushkin, I. V.; Schmult, S.
2016-01-01
Coherent condensate states of particles obeying either Bose or Fermi statistics are in the focus of interest in modern physics. Here we report on condensation of collective excitations with Bose statistics, cyclotron magnetoexcitons, in a high-mobility two-dimensional electron system in a magnetic field. At low temperatures, the dense non-equilibrium ensemble of long-lived triplet magnetoexcitons exhibits both a drastic reduction in the viscosity and a steep enhancement in the response to the external electromagnetic field. The observed effects are related to formation of a super-absorbing state interacting coherently with the electromagnetic field. Simultaneously, the electrons below the Fermi level form a super-emitting state. The effects are explicable from the viewpoint of a coherent condensate phase in a non-equilibrium system of two-dimensional fermions with a fully quantized energy spectrum. The condensation occurs in the space of vectors of magnetic translations, a property providing a completely new landscape for future physical investigations. PMID:27848969
Gauge fixing and BFV quantization
NASA Astrophysics Data System (ADS)
Rogers, Alice
2000-01-01
Non-singularity conditions are established for the Batalin-Fradkin-Vilkovisky (BFV) gauge-fixing fermion which are sufficient for it to lead to the correct path integral for a theory with constraints canonically quantized in the BFV approach. The conditions ensure that the anticommutator of this fermion with the BRST charge regularizes the path integral by regularizing the trace over non-physical states in each ghost sector. The results are applied to the quantization of a system which has a Gribov problem, using a non-standard form of the gauge-fixing fermion.
Group theoretical quantization of isotropic loop cosmology
NASA Astrophysics Data System (ADS)
Livine, Etera R.; Martín-Benito, Mercedes
2012-06-01
We achieve a group theoretical quantization of the flat Friedmann-Robertson-Walker model coupled to a massless scalar field adopting the improved dynamics of loop quantum cosmology. Deparemetrizing the system using the scalar field as internal time, we first identify a complete set of phase space observables whose Poisson algebra is isomorphic to the su(1,1) Lie algebra. It is generated by the volume observable and the Hamiltonian. These observables describe faithfully the regularized phase space underlying the loop quantization: they account for the polymerization of the variable conjugate to the volume and for the existence of a kinematical nonvanishing minimum volume. Since the Hamiltonian is an element in the su(1,1) Lie algebra, the dynamics is now implemented as SU(1, 1) transformations. At the quantum level, the system is quantized as a timelike irreducible representation of the group SU(1, 1). These representations are labeled by a half-integer spin, which gives the minimal volume. They provide superselection sectors without quantization anomalies and no factor ordering ambiguity arises when representing the Hamiltonian. We then explicitly construct SU(1, 1) coherent states to study the quantum evolution. They not only provide semiclassical states but truly dynamical coherent states. Their use further clarifies the nature of the bounce that resolves the big bang singularity.
Magnetic resonance image compression using scalar-vector quantization
NASA Astrophysics Data System (ADS)
Mohsenian, Nader; Shahri, Homayoun
1995-12-01
A new coding scheme based on the scalar-vector quantizer (SVQ) is developed for compression of medical images. SVQ is a fixed-rate encoder and its rate-distortion performance is close to that of optimal entropy-constrained scalar quantizers (ECSQs) for memoryless sources. The use of a fixed-rate quantizer is expected to eliminate some of the complexity issues of using variable-length scalar quantizers. When transmission of images over noisy channels is considered, our coding scheme does not suffer from error propagation which is typical of coding schemes which use variable-length codes. For a set of magnetic resonance (MR) images, coding results obtained from SVQ and ECSQ at low bit-rates are indistinguishable. Furthermore, our encoded images are perceptually indistinguishable from the original, when displayed on a monitor. This makes our SVQ based coder an attractive compression scheme for picture archiving and communication systems (PACS), currently under consideration for an all digital radiology environment in hospitals, where reliable transmission, storage, and high fidelity reconstruction of images are desired.
2-Step scalar deadzone quantization for bitplane image coding.
Auli-Llinas, Francesc
2013-12-01
Modern lossy image coding systems generate a quality progressive codestream that, truncated at increasing rates, produces an image with decreasing distortion. Quality progressivity is commonly provided by an embedded quantizer that employs uniform scalar deadzone quantization (USDQ) together with a bitplane coding strategy. This paper introduces a 2-step scalar deadzone quantization (2SDQ) scheme that achieves same coding performance as that of USDQ while reducing the coding passes and the emitted symbols of the bitplane coding engine. This serves to reduce the computational costs of the codec and/or to code high dynamic range images. The main insights behind 2SDQ are the use of two quantization step sizes that approximate wavelet coefficients with more or less precision depending on their density, and a rate-distortion optimization technique that adjusts the distortion decreases produced when coding 2SDQ indexes. The integration of 2SDQ in current codecs is straightforward. The applicability and efficiency of 2SDQ are demonstrated within the framework of JPEG2000.
Strain effects on the electronic properties in δ-doped oxide superlattices
NASA Astrophysics Data System (ADS)
You, Jeong Ho; Lee, Jun Hee; Okamoto, Satoshi; Cooper, Valentino; Lee, Ho Nyung
2015-03-01
Strain effects on the electronic properties of (LaTiO3)1/(SrTiO3)N superlattices were investigated using density functional theory. Under biaxial in-plane strain within the range of -5% ≤ ɛ// ≤ 5%, the dxy orbital electrons are highly localized at the interfaces whereas the dyz and dxz orbital electrons are more distributed in the SrTiO3 (STO) spacer layers. For STO thickness N ≥ 3 unit cells (u.c.), the dxy orbital electrons form two-dimensional (2D) electron gases (2DEGs). The quantized energy levels of the 2DEG are insensitive to the STO spacer thickness, but are strongly dependent on the applied biaxial in-plane strain. As the in-plane strain changes from compressive to tensile, the quantized energy levels of the dxy orbitals decrease thereby creating more states with 2D character. In contrast to the dxy orbital, the dyz and dxz orbitals always have three-dimensional (3D) transport characteristics and their energy levels increase as the strain changes from compressive to tensile. Since the charge densities in the dxy orbital and the dyz and dxz orbitals respond to biaxial in-plane strain in an opposite way, the transport dimensionality of the majority carriers can be controlled between 2D and 3D by applying biaxial in-plane strain.
Competing Phases of 2D Electrons at ν = 5/2 and 7/3
NASA Astrophysics Data System (ADS)
Xia, Jing
2011-03-01
The N=1 Landau level (LL) exhibits collective electronic phenomena characteristic of both fractional quantum Hall (FQHE) states seen in the lowest LL and anisotropic nematic states in the higher LLs. A modest in-plane magnetic field B| | is sufficient to destroy the fractional quantized Hall states at ν = 5 / 2 (and 7/2) and replace them with anisotropic compressible nematic phases, revealing the close competition between the two. We find that at larger B| | these anisotropic phases ν = 5 / 2 can themselves be replaced by a new isotropic state, dubbed re-entrant isotropic compressible (RIC) phase. We present strong evidence that this transition is a consequence of the mixing of Landau levels from different electric subbands in the confinement potential. In addition, we find that with B| | , the normally isotropic ν = 7 / 3 FQHE state can transform into an anisotropic phase with an accurately quantized Hall plateau but an anisotropic longitudinal resistivities. As temperature is lowered towards zero, ρxx diminishes while ρyy tends to diverge, reminiscent of the anisotropic nematic states, while surprisingly ρxy and ρyx remain quantized at 3 h / 7e2 , indicating a completely new quantum phase. This work represents a collaboration with J.P. Eisenstein (Caltech) and L.N. Pfeiffer and K.W West (Princeton), and is supported by Microsoft Project Q.
NASA Astrophysics Data System (ADS)
Wuthrich, Christian
My dissertation studies the foundations of loop quantum gravity (LQG), a candidate for a quantum theory of gravity based on classical general relativity. At the outset, I discuss two---and I claim separate---questions: first, do we need a quantum theory of gravity at all; and second, if we do, does it follow that gravity should or even must be quantized? My evaluation of different arguments either way suggests that while no argument can be considered conclusive, there are strong indications that gravity should be quantized. LQG attempts a canonical quantization of general relativity and thereby provokes a foundational interest as it must take a stance on many technical issues tightly linked to the interpretation of general relativity. Most importantly, it codifies general relativity's main innovation, the so-called background independence, in a formalism suitable for quantization. This codification pulls asunder what has been joined together in general relativity: space and time. It is thus a central issue whether or not general relativity's four-dimensional structure can be retrieved in the alternative formalism and how it fares through the quantization process. I argue that the rightful four-dimensional spacetime structure can only be partially retrieved at the classical level. What happens at the quantum level is an entirely open issue. Known examples of classically singular behaviour which gets regularized by quantization evoke an admittedly pious hope that the singularities which notoriously plague the classical theory may be washed away by quantization. This work scrutinizes pronouncements claiming that the initial singularity of classical cosmological models vanishes in quantum cosmology based on LQG and concludes that these claims must be severely qualified. In particular, I explicate why casting the quantum cosmological models in terms of a deterministic temporal evolution fails to capture the concepts at work adequately. Finally, a scheme is developed of how the re-emergence of the smooth spacetime from the underlying discrete quantum structure could be understood.
NASA Astrophysics Data System (ADS)
Paredes-Gutiérrez, H.; Pérez-Merchancano, S. T.; Beltran-Rios, C. L.
2017-12-01
In this work, we study the quantum electron transport through a Quantum Dots Structure (QDs), with different geometries, embedded in a Quantum Well (QW). The behaviour of the current through the nanostructure (dot and well) is studied considering the orbital spin coupling of the electrons and the Rashba effect, by means of the second quantization theory and the standard model of Green’s functions. Our results show the behaviour of the current in the quantum system as a function of the electric field, presenting resonant states for specific values of both the external field and the spin polarization. Similarly, the behaviour of the current on the nanostructure changes when the geometry of the QD and the size of the same are modified as a function of the polarization of the electron spin and the potential of quantum confinement.
Particle localization, spinor two-valuedness, and Fermi quantization of tensor systems
NASA Technical Reports Server (NTRS)
Reifler, Frank; Morris, Randall
1994-01-01
Recent studies of particle localization shows that square-integrable positive energy bispinor fields in a Minkowski space-time cannot be physically distinguished from constrained tensor fields. In this paper we generalize this result by characterizing all classical tensor systems, which admit Fermi quantization, as those having unitary Lie-Poisson brackets. Examples include Euler's tensor equation for a rigid body and Dirac's equation in tensor form.
Scalets, wavelets and (complex) turning point quantization
NASA Astrophysics Data System (ADS)
Handy, C. R.; Brooks, H. A.
2001-05-01
Despite the many successes of wavelet analysis in image and signal processing, the incorporation of continuous wavelet transform theory within quantum mechanics has lacked a compelling, first principles, motivating analytical framework, until now. For arbitrary one-dimensional rational fraction Hamiltonians, we develop a simple, unified formalism, which clearly underscores the complementary, and mutually interdependent, role played by moment quantization theory (i.e. via scalets, as defined herein) and wavelets. This analysis involves no approximation of the Hamiltonian within the (equivalent) wavelet space, and emphasizes the importance of (complex) multiple turning point contributions in the quantization process. We apply the method to three illustrative examples. These include the (double-well) quartic anharmonic oscillator potential problem, V(x) = Z2x2 + gx4, the quartic potential, V(x) = x4, and the very interesting and significant non-Hermitian potential V(x) = -(ix)3, recently studied by Bender and Boettcher.
NASA Astrophysics Data System (ADS)
Kanai, Toshiaki; Guo, Wei; Tsubota, Makoto
2018-01-01
It is a common view that rotational motion in a superfluid can exist only in the presence of topological defects, i.e., quantized vortices. However, in our numerical studies on the merging of two concentric Bose-Einstein condensates with axial symmetry in two-dimensional space, we observe the emergence of a spiral dark soliton when one condensate has a nonzero initial angular momentum. This spiral dark soliton enables the transfer of angular momentum between the condensates and allows the merged condensate to rotate even in the absence of quantized vortices. Our examination of the flow field around the soliton strikingly reveals that its sharp endpoint can induce flow like a vortex point but with a fraction of a quantized circulation. This interesting nontopological "phase defect" may generate broad interest since rotational motion is essential in many quantum transport processes.
SAR data compression: Application, requirements, and designs
NASA Technical Reports Server (NTRS)
Curlander, John C.; Chang, C. Y.
1991-01-01
The feasibility of reducing data volume and data rate is evaluated for the Earth Observing System (EOS) Synthetic Aperture Radar (SAR). All elements of data stream from the sensor downlink data stream to electronic delivery of browse data products are explored. The factors influencing design of a data compression system are analyzed, including the signal data characteristics, the image quality requirements, and the throughput requirements. The conclusion is that little or no reduction can be achieved in the raw signal data using traditional data compression techniques (e.g., vector quantization, adaptive discrete cosine transform) due to the induced phase errors in the output image. However, after image formation, a number of techniques are effective for data compression.
Quantization and Quantum-Like Phenomena: A Number Amplitude Approach
NASA Astrophysics Data System (ADS)
Robinson, T. R.; Haven, E.
2015-12-01
Historically, quantization has meant turning the dynamical variables of classical mechanics that are represented by numbers into their corresponding operators. Thus the relationships between classical variables determine the relationships between the corresponding quantum mechanical operators. Here, we take a radically different approach to this conventional quantization procedure. Our approach does not rely on any relations based on classical Hamiltonian or Lagrangian mechanics nor on any canonical quantization relations, nor even on any preconceptions of particle trajectories in space and time. Instead we examine the symmetry properties of certain Hermitian operators with respect to phase changes. This introduces harmonic operators that can be identified with a variety of cyclic systems, from clocks to quantum fields. These operators are shown to have the characteristics of creation and annihilation operators that constitute the primitive fields of quantum field theory. Such an approach not only allows us to recover the Hamiltonian equations of classical mechanics and the Schrödinger wave equation from the fundamental quantization relations, but also, by freeing the quantum formalism from any physical connotation, makes it more directly applicable to non-physical, so-called quantum-like systems. Over the past decade or so, there has been a rapid growth of interest in such applications. These include, the use of the Schrödinger equation in finance, second quantization and the number operator in social interactions, population dynamics and financial trading, and quantum probability models in cognitive processes and decision-making. In this paper we try to look beyond physical analogies to provide a foundational underpinning of such applications.
Quantization of Simple Parametrized Systems
NASA Astrophysics Data System (ADS)
Ruffini, Giulio
1995-01-01
I study the canonical formulation and quantization of some simple parametrized systems using Dirac's formalism and the Becchi-Rouet-Stora-Tyutin (BRST) extended phase space method. These systems include the parametrized particle and minisuperspace. Using Dirac's formalism I first analyze for each case the construction of the classical reduced phase space. There are two separate features of these systems that may make this construction difficult: (a) Because of the boundary conditions used, the actions are not gauge invariant at the boundaries. (b) The constraints may have a disconnected solution space. The relativistic particle and minisuperspace have such complicated constraints, while the non-relativistic particle displays only the first feature. I first show that a change of gauge fixing is equivalent to a canonical transformation in the reduced phase space, thus resolving the problems associated with the first feature above. Then I consider the quantization of these systems using several approaches: Dirac's method, Dirac-Fock quantization, and the BRST formalism. In the cases of the relativistic particle and minisuperspace I consider first the quantization of one branch of the constraint at the time and then discuss the backgrounds in which it is possible to quantize simultaneously both branches. I motivate and define the inner product, and obtain, for example, the Klein-Gordon inner product for the relativistic case. Then I show how to construct phase space path integral representations for amplitudes in these approaches--the Batalin-Fradkin-Vilkovisky (BFV) and the Faddeev path integrals --from which one can then derive the path integrals in coordinate space--the Faddeev-Popov path integral and the geometric path integral. In particular I establish the connection between the Hilbert space representation and the range of the lapse in the path integrals. I also examine the class of paths that contribute in the path integrals and how they affect space-time covariance, concluding that it is consistent to take paths that move forward in time only when there is no electric field. The key elements in this analysis are the space-like paths and the behavior of the action under the non-trivial ( Z_2) element of the reparametrization group.
Compression of digital images over local area networks. Appendix 1: Item 3. M.S. Thesis
NASA Technical Reports Server (NTRS)
Gorjala, Bhargavi
1991-01-01
Differential Pulse Code Modulation (DPCM) has been used with speech for many years. It has not been as successful for images because of poor edge performance. The only corruption in DPC is quantizer error but this corruption becomes quite large in the region of an edge because of the abrupt changes in the statistics of the signal. We introduce two improved DPCM schemes; Edge correcting DPCM and Edge Preservation Differential Coding. These two coding schemes will detect the edges and take action to correct them. In an Edge Correcting scheme, the quantizer error for an edge is encoded using a recursive quantizer with entropy coding and sent to the receiver as side information. In an Edge Preserving scheme, when the quantizer input falls in the overload region, the quantizer error is encoded and sent to the receiver repeatedly until the quantizer input falls in the inner levels. Therefore these coding schemes increase the bit rate in the region of an edge and require variable rate channels. We implement these two variable rate coding schemes on a token wing network. Timed token protocol supports two classes of messages; asynchronous and synchronous. The synchronous class provides a pre-allocated bandwidth and guaranteed response time. The remaining bandwidth is dynamically allocated to the asynchronous class. The Edge Correcting DPCM is simulated by considering the edge information under the asynchronous class. For the simulation of the Edge Preserving scheme, the amount of information sent each time is fixed, but the length of the packet or the bit rate for that packet is chosen depending on the availability capacity. The performance of the network, and the performance of the image coding algorithms, is studied.
NASA Astrophysics Data System (ADS)
Gabovich, A. M.; Il'chenko, L. G.; Pashitskii, E. A.; Romanov, Yu. A.
1980-04-01
Using the Poisson equation Green function for a self-consistent field in a spatially inhomogeneous system, expressions for the electrostatic energy and screened charge interaction near the surface of a semi-infinite metal and a thin quantizing film are derived. It is shown that the decrease law and Friedel oscillation amplitude of adsorbed atom indirect interaction are determined by the electron spectrum character and the Fermi surface shape. The results obtained enable us to explain, in particular, the submonolayer adsorbed film structure on the W and Mo surfaces.
Topological Valley Currents in Gapped Dirac Materials
NASA Astrophysics Data System (ADS)
Lensky, Yuri D.; Song, Justin C. W.; Samutpraphoot, Polnop; Levitov, Leonid S.
2015-06-01
Gapped 2D Dirac materials, in which inversion symmetry is broken by a gap-opening perturbation, feature a unique valley transport regime. Topological valley currents in such materials are dominated by bulk currents produced by electronic states just beneath the gap rather than by edge modes. The system ground state hosts dissipationless persistent valley currents existing even when topologically protected edge modes are absent. Valley currents induced by an external bias are characterized by a quantized half-integer valley Hall conductivity. The undergap currents dominate magnetization and the charge Hall effect in a light-induced valley-polarized state.
Cotton, Stephen J.; Miller, William H.
2016-10-14
Previous work has shown how a symmetrical quasi-classical (SQC) windowing procedure can be used to quantize the initial and final electronic degrees of freedom in the Meyer-Miller (MM) classical vibronic (i.e, nuclear + electronic) Hamiltonian, and that the approach provides a very good description of electronically non-adiabatic processes within a standard classical molecular dynamics framework for a number of benchmark problems. This study explores application of the SQC/MM approach to the case of very weak non-adiabatic coupling between the electronic states, showing (as anticipated) how the standard SQC/MM approach used to date fails in this limit, and then devises amore » new SQC windowing scheme to deal with it. Finally, application of this new SQC model to a variety of realistic benchmark systems shows that the new model not only treats the weak coupling case extremely well, but it is also seen to describe the “normal” regime (of electronic transition probabilities ≳ 0.1) even more accurately than the previous “standard” model.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cotton, Stephen J.; Miller, William H.
Previous work has shown how a symmetrical quasi-classical (SQC) windowing procedure can be used to quantize the initial and final electronic degrees of freedom in the Meyer-Miller (MM) classical vibronic (i.e, nuclear + electronic) Hamiltonian, and that the approach provides a very good description of electronically non-adiabatic processes within a standard classical molecular dynamics framework for a number of benchmark problems. This study explores application of the SQC/MM approach to the case of very weak non-adiabatic coupling between the electronic states, showing (as anticipated) how the standard SQC/MM approach used to date fails in this limit, and then devises amore » new SQC windowing scheme to deal with it. Finally, application of this new SQC model to a variety of realistic benchmark systems shows that the new model not only treats the weak coupling case extremely well, but it is also seen to describe the “normal” regime (of electronic transition probabilities ≳ 0.1) even more accurately than the previous “standard” model.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plyushchay, Mikhail S., E-mail: mikhail.plyushchay@usach.cl
A canonical quantization scheme applied to a classical supersymmetric system with quadratic in momentum supercharges gives rise to a quantum anomaly problem described by a specific term to be quadratic in Planck constant. We reveal a close relationship between the anomaly and the Schwarzian derivative, and specify a quantization prescription which generates the anomaly-free supersymmetric quantum system with second order supercharges. We also discuss the phenomenon of a coupling-constant metamorphosis that associates quantum systems with the first-order supersymmetry to the systems with the second-order supercharges.
-X Mixing in T- and V-Shaped Quantum Wires
NASA Astrophysics Data System (ADS)
di Carlo, A.; Pescetelli, S.; Kavokin, A.; Vladimirova, M.; Lugli, P.
1997-11-01
We have applied both tight-binding (TB) and multivalley envelope function (MEF) techniques to calculate the electronic states in T- and V-shaped realistic quantum wires taking into account -X mixing in the conduction band. Strong reduction of the electron quantization energy due to the off-resonant -X mixing has been found in all types of quantum wires. This effect appears to be tied to the localization of the electron wave function and to its overlap with atomic layers next to interfaces.
Single-Electron and Single-Photon Sensitivity with a Silicon Skipper CCD
Tiffenberg, Javier; Sofo-Haro, Miguel; Drlica-Wagner, Alex; ...
2017-09-26
Here, we have developed ultralow-noise electronics in combination with repetitive, nondestructive readout of a thick, fully depleted charge-coupled device (CCD) to achieve an unprecedented noise level of 0.068 e - rms/pixel. This is the first time that discrete subelectron readout noise has been achieved reproducible over millions of pixels on a stable, large-area detector. This enables the contemporaneous, discrete, and quantized measurement of charge in pixels, irrespective of whether they contain zero electrons or thousands of electrons. Thus, the resulting CCD detector is an ultra-sensitive calorimeter. It is also capable of counting single photons in the optical and near-infrared regime.more » Implementing this innovative non-destructive readout system has a negligible impact on CCD design and fabrication, and there are nearly immediate scientific applications. As a particle detector, this CCD will have unprecedented sensitivity to low-mass dark matter particles and coherent neutrino-nucleus scattering, while future astronomical applications may include direct imaging and spectroscopy of exoplanets.« less
Single-Electron and Single-Photon Sensitivity with a Silicon Skipper CCD
NASA Astrophysics Data System (ADS)
Tiffenberg, Javier; Sofo-Haro, Miguel; Drlica-Wagner, Alex; Essig, Rouven; Guardincerri, Yann; Holland, Steve; Volansky, Tomer; Yu, Tien-Tien
2017-09-01
We have developed ultralow-noise electronics in combination with repetitive, nondestructive readout of a thick, fully depleted charge-coupled device (CCD) to achieve an unprecedented noise level of 0.068 e- rms /pixel . This is the first time that discrete subelectron readout noise has been achieved reproducible over millions of pixels on a stable, large-area detector. This enables the contemporaneous, discrete, and quantized measurement of charge in pixels, irrespective of whether they contain zero electrons or thousands of electrons. Thus, the resulting CCD detector is an ultra-sensitive calorimeter. It is also capable of counting single photons in the optical and near-infrared regime. Implementing this innovative non-destructive readout system has a negligible impact on CCD design and fabrication, and there are nearly immediate scientific applications. As a particle detector, this CCD will have unprecedented sensitivity to low-mass dark matter particles and coherent neutrino-nucleus scattering, while future astronomical applications may include direct imaging and spectroscopy of exoplanets.
Single-Electron and Single-Photon Sensitivity with a Silicon Skipper CCD.
Tiffenberg, Javier; Sofo-Haro, Miguel; Drlica-Wagner, Alex; Essig, Rouven; Guardincerri, Yann; Holland, Steve; Volansky, Tomer; Yu, Tien-Tien
2017-09-29
We have developed ultralow-noise electronics in combination with repetitive, nondestructive readout of a thick, fully depleted charge-coupled device (CCD) to achieve an unprecedented noise level of 0.068 e^{-} rms/pixel. This is the first time that discrete subelectron readout noise has been achieved reproducible over millions of pixels on a stable, large-area detector. This enables the contemporaneous, discrete, and quantized measurement of charge in pixels, irrespective of whether they contain zero electrons or thousands of electrons. Thus, the resulting CCD detector is an ultra-sensitive calorimeter. It is also capable of counting single photons in the optical and near-infrared regime. Implementing this innovative non-destructive readout system has a negligible impact on CCD design and fabrication, and there are nearly immediate scientific applications. As a particle detector, this CCD will have unprecedented sensitivity to low-mass dark matter particles and coherent neutrino-nucleus scattering, while future astronomical applications may include direct imaging and spectroscopy of exoplanets.
NASA Astrophysics Data System (ADS)
Znidarsic, F.; Robertson, G. A.
In this paper, the flow of energy in materials is presented as mechanical waves with a distinct velocity or speed of transition. This speed of transition came about through the observations of cold fusion experiments, i.e., Low Energy Nuclear Reactions (LENR) and superconductor gravity experiments, both assumed speculative by mainstream science. In consideration of superconductor junctions, the LENR experiments have a similar speed of transition, which seems to imply that the reactions in the LENR experiment are discrete quantized reactions (energy - burst vs. continuous). Here an attempt is made to quantify this new condition as it applies to electrons; toward the progression of quantized energy flows (discrete energy burst) as a new source of clean energy and force mechanisms (i.e, propulsion).
Hamiltonian description and quantization of dissipative systems
NASA Astrophysics Data System (ADS)
Enz, Charles P.
1994-09-01
Dissipative systems are described by a Hamiltonian, combined with a “dynamical matrix” which generalizes the simplectic form of the equations of motion. Criteria for dissipation are given and the examples of a particle with friction and of the Lotka-Volterra model are presented. Quantization is first introduced by translating generalized Poisson brackets into commutators and anticommutators. Then a generalized Schrödinger equation expressed by a dynamical matrix is constructed and discussed.
Survey of adaptive image coding techniques
NASA Technical Reports Server (NTRS)
Habibi, A.
1977-01-01
The general problem of image data compression is discussed briefly with attention given to the use of Karhunen-Loeve transforms, suboptimal systems, and block quantization. A survey is then conducted encompassing the four categories of adaptive systems: (1) adaptive transform coding (adaptive sampling, adaptive quantization, etc.), (2) adaptive predictive coding (adaptive delta modulation, adaptive DPCM encoding, etc.), (3) adaptive cluster coding (blob algorithms and the multispectral cluster coding technique), and (4) adaptive entropy coding.
Holographic anyonic superfluidity
NASA Astrophysics Data System (ADS)
Jokela, Niko; Lifschytz, Gilad; Lippert, Matthew
2013-10-01
Starting with a holographic construction for a fractional quantum Hall state based on the D3-D7' system, we explore alternative quantization conditions for the bulk gauge fields. This gives a description of a quantum Hall state with various filling fractions. For a particular alternative quantization of the bulk gauge fields, we obtain a holographic anyon fluid in a vanishing background magnetic field. We show that this system is a superfluid, exhibiting the relevant gapless excitation.
Quantized Chiral Magnetic Current from Reconnections of Magnetic Flux.
Hirono, Yuji; Kharzeev, Dmitri E; Yin, Yi
2016-10-21
We introduce a new mechanism for the chiral magnetic effect that does not require an initial chirality imbalance. The chiral magnetic current is generated by reconnections of magnetic flux that change the magnetic helicity of the system. The resulting current is entirely determined by the change of magnetic helicity, and it is quantized.
Quantized Chiral Magnetic Current from Reconnections of Magnetic Flux
Hirono, Yuji; Kharzeev, Dmitri E.; Yin, Yi
2016-10-20
We introduce a new mechanism for the chiral magnetic e ect that does not require an initial chirality imbalance. The chiral magnetic current is generated by reconnections of magnetic ux that change the magnetic helicity of the system. The resulting current is entirely determined by the change of magnetic helicity, and it is quantized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guedes, Carlos; Oriti, Daniele; Raasakka, Matti
The phase space given by the cotangent bundle of a Lie group appears in the context of several models for physical systems. A representation for the quantum system in terms of non-commutative functions on the (dual) Lie algebra, and a generalized notion of (non-commutative) Fourier transform, different from standard harmonic analysis, has been recently developed, and found several applications, especially in the quantum gravity literature. We show that this algebra representation can be defined on the sole basis of a quantization map of the classical Poisson algebra, and identify the conditions for its existence. In particular, the corresponding non-commutative star-productmore » carried by this representation is obtained directly from the quantization map via deformation quantization. We then clarify under which conditions a unitary intertwiner between such algebra representation and the usual group representation can be constructed giving rise to the non-commutative plane waves and consequently, the non-commutative Fourier transform. The compact groups U(1) and SU(2) are considered for different choices of quantization maps, such as the symmetric and the Duflo map, and we exhibit the corresponding star-products, algebra representations, and non-commutative plane waves.« less
Particle on a torus knot: Constrained dynamics and semi-classical quantization in a magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Praloy, E-mail: praloydasdurgapur@gmail.com; Pramanik, Souvik, E-mail: souvick.in@gmail.com; Ghosh, Subir, E-mail: subirghosh20@gmail.com
2016-11-15
Kinematics and dynamics of a particle moving on a torus knot poses an interesting problem as a constrained system. In the first part of the paper we have derived the modified symplectic structure or Dirac brackets of the above model in Dirac’s Hamiltonian framework, both in toroidal and Cartesian coordinate systems. This algebra has been used to study the dynamics, in particular small fluctuations in motion around a specific torus. The spatial symmetries of the system have also been studied. In the second part of the paper we have considered the quantum theory of a charge moving in a torusmore » knot in the presence of a uniform magnetic field along the axis of the torus in a semiclassical quantization framework. We exploit the Einstein–Brillouin–Keller (EBK) scheme of quantization that is appropriate for multidimensional systems. Embedding of the knot on a specific torus is inherently two dimensional that gives rise to two quantization conditions. This shows that although the system, after imposing the knot condition reduces to a one dimensional system, even then it has manifested non-planar features which shows up again in the study of fractional angular momentum. Finally we compare the results obtained from EBK (multi-dimensional) and Bohr–Sommerfeld (single dimensional) schemes. The energy levels and fractional spin depend on the torus knot parameters that specifies its non-planar features. Interestingly, we show that there can be non-planar corrections to the planar anyon-like fractional spin.« less
Hierarchically clustered adaptive quantization CMAC and its learning convergence.
Teddy, S D; Lai, E M K; Quek, C
2007-11-01
The cerebellar model articulation controller (CMAC) neural network (NN) is a well-established computational model of the human cerebellum. Nevertheless, there are two major drawbacks associated with the uniform quantization scheme of the CMAC network. They are the following: (1) a constant output resolution associated with the entire input space and (2) the generalization-accuracy dilemma. Moreover, the size of the CMAC network is an exponential function of the number of inputs. Depending on the characteristics of the training data, only a small percentage of the entire set of CMAC memory cells is utilized. Therefore, the efficient utilization of the CMAC memory is a crucial issue. One approach is to quantize the input space nonuniformly. For existing nonuniformly quantized CMAC systems, there is a tradeoff between memory efficiency and computational complexity. Inspired by the underlying organizational mechanism of the human brain, this paper presents a novel CMAC architecture named hierarchically clustered adaptive quantization CMAC (HCAQ-CMAC). HCAQ-CMAC employs hierarchical clustering for the nonuniform quantization of the input space to identify significant input segments and subsequently allocating more memory cells to these regions. The stability of the HCAQ-CMAC network is theoretically guaranteed by the proof of its learning convergence. The performance of the proposed network is subsequently benchmarked against the original CMAC network, as well as two other existing CMAC variants on two real-life applications, namely, automated control of car maneuver and modeling of the human blood glucose dynamics. The experimental results have demonstrated that the HCAQ-CMAC network offers an efficient memory allocation scheme and improves the generalization and accuracy of the network output to achieve better or comparable performances with smaller memory usages. Index Terms-Cerebellar model articulation controller (CMAC), hierarchical clustering, hierarchically clustered adaptive quantization CMAC (HCAQ-CMAC), learning convergence, nonuniform quantization.
Chern-Simons Term: Theory and Applications.
NASA Astrophysics Data System (ADS)
Gupta, Kumar Sankar
1992-01-01
We investigate the quantization and applications of Chern-Simons theories to several systems of interest. Elementary canonical methods are employed for the quantization of abelian and nonabelian Chern-Simons actions using ideas from gauge theories and quantum gravity. When the spatial slice is a disc, it yields quantum states at the edge of the disc carrying a representation of the Kac-Moody algebra. We next include sources in this model and their quantum states are shown to be those of a conformal family. Vertex operators for both abelian and nonabelian sources are constructed. The regularized abelian Wilson line is proved to be a vertex operator. The spin-statistics theorem is established for Chern-Simons dynamics using purely geometrical techniques. Chern-Simons action is associated with exotic spin and statistics in 2 + 1 dimensions. We study several systems in which the Chern-Simons action affects the spin and statistics. The first class of systems we study consist of G/H models. The solitons of these models are shown to obey anyonic statistics in the presence of a Chern-Simons term. The second system deals with the effect of the Chern -Simons term in a model for high temperature superconductivity. The coefficient of the Chern-Simons term is shown to be quantized, one of its possible values giving fermionic statistics to the solitons of this model. Finally, we study a system of spinning particles interacting with 2 + 1 gravity, the latter being described by an ISO(2,1) Chern-Simons term. An effective action for the particles is obtained by integrating out the gauge fields. Next we construct operators which exchange the particles. They are shown to satisfy the braid relations. There are ambiguities in the quantization of this system which can be exploited to give anyonic statistics to the particles. We also point out that at the level of the first quantized theory, the usual spin-statistics relation need not apply to these particles.
NASA Astrophysics Data System (ADS)
Mazzucchi, Gabriel; Kozlowski, Wojciech; Caballero-Benitez, Santiago F.; Elliott, Thomas J.; Mekhov, Igor B.
2016-02-01
Trapping ultracold atoms in optical lattices enabled numerous breakthroughs uniting several disciplines. Coupling these systems to quantized light leads to a plethora of new phenomena and has opened up a new field of study. Here we introduce an unusual additional source of competition in a many-body strongly correlated system: We prove that quantum backaction of global measurement is able to efficiently compete with intrinsic short-range dynamics of an atomic system. The competition becomes possible due to the ability to change the spatial profile of a global measurement at a microscopic scale comparable to the lattice period without the need of single site addressing. In coherence with a general physical concept, where new competitions typically lead to new phenomena, we demonstrate nontrivial dynamical effects such as large-scale multimode oscillations, long-range entanglement, and correlated tunneling, as well as selective suppression and enhancement of dynamical processes beyond the projective limit of the quantum Zeno effect. We demonstrate both the breakup and protection of strongly interacting fermion pairs by measurement. Such a quantum optical approach introduces into many-body physics novel processes, objects, and methods of quantum engineering, including the design of many-body entangled environments for open systems.
Quantum State Reduction by Matter-Phase-Related Measurements in Optical Lattices.
Kozlowski, Wojciech; Caballero-Benitez, Santiago F; Mekhov, Igor B
2017-02-22
A many-body atomic system coupled to quantized light is subject to weak measurement. Instead of coupling light to the on-site density, we consider the quantum backaction due to the measurement of matter-phase-related variables such as global phase coherence. We show how this unconventional approach opens up new opportunities to affect system evolution. We demonstrate how this can lead to a new class of final states different from those possible with dissipative state preparation or conventional projective measurements. These states are characterised by a combination of Hamiltonian and measurement properties thus extending the measurement postulate for the case of strong competition with the system's own evolution.
Qiang-Dong proper quantization rule and its applications to exactly solvable quantum systems
NASA Astrophysics Data System (ADS)
Serrano, F. A.; Gu, Xiao-Yan; Dong, Shi-Hai
2010-08-01
We propose proper quantization rule, ∫x_Ax_B k(x)dx-∫x0Ax0Bk0(x)dx=nπ, where k(x )=√2M[E -V(x)] /ℏ. The xA and xB are two turning points determined by E =V(x), and n is the number of the nodes of wave function ψ(x ). We carry out the exact solutions of solvable quantum systems by this rule and find that the energy spectra of solvable systems can be determined only from its ground state energy. The previous complicated and tedious integral calculations involved in exact quantization rule are greatly simplified. The beauty and simplicity of the rule come from its meaning—whenever the number of the nodes of ϕ(x ) or the number of the nodes of the wave function ψ(x ) increases by 1, the momentum integral ∫xAxBk(x )dx will increase by π. We apply this proper quantization rule to carry out solvable quantum systems such as the one-dimensional harmonic oscillator, the Morse potential and its generalization, the Hulthén potential, the Scarf II potential, the asymmetric trigonometric Rosen-Morse potential, the Pöschl-Teller type potentials, the Rosen-Morse potential, the Eckart potential, the harmonic oscillator in three dimensions, the hydrogen atom, and the Manning-Rosen potential in D dimensions.
Strain effects on the electronic properties in δ -doped oxide superlattices
You, Jeong Ho; Lee, Jun Hee; Okamoto, Satoshi; ...
2015-02-07
We investigated strain effects on the electronic properties of (LaTiO 3) 1/(SrTiO 3)N superlattices using density functional theory. Under biaxial in-plane strain within the range of -5% ≤ ε// ≤ 5%, the d xy orbital electrons are highly localized at the interfaces whereas the d yz and d xz orbital electrons are more distributed in the SrTiO 3 (STO) spacer layers. For STO thickness N ≥ 3 unit cells (u.c.), the d xy orbital electrons form two-dimensional (2D) electron gases (2DEGs). The quantized energy levels of the 2DEG are insensitive to the STO spacer thickness, but are strongly dependent onmore » the applied biaxial in-plane strain. As the in-plane strain changes from compressive to tensile, the quantized energy levels of the dxy orbitals decrease thereby creating more states with 2D character. In contrast to the d xy orbital, the d yz and dxz orbitals always have three-dimensional (3D) transport characteristics and their energy levels increase as the strain changes from compressive to tensile. In conclusion, since the charge densities in the d xy orbital and the d yz and d xz orbitals respond to biaxial in-plane strain in an opposite way, the transport dimensionality of the majority carriers can be controlled between 2D and 3D by applying biaxial in-plane strain.« less
Silicon Metal-oxide-semiconductor Quantum Dots for Single-electron Pumping
Rossi, Alessandro; Tanttu, Tuomo; Hudson, Fay E.; Sun, Yuxin; Möttönen, Mikko; Dzurak, Andrew S.
2015-01-01
As mass-produced silicon transistors have reached the nano-scale, their behavior and performances are increasingly affected, and often deteriorated, by quantum mechanical effects such as tunneling through single dopants, scattering via interface defects, and discrete trap charge states. However, progress in silicon technology has shown that these phenomena can be harnessed and exploited for a new class of quantum-based electronics. Among others, multi-layer-gated silicon metal-oxide-semiconductor (MOS) technology can be used to control single charge or spin confined in electrostatically-defined quantum dots (QD). These QD-based devices are an excellent platform for quantum computing applications and, recently, it has been demonstrated that they can also be used as single-electron pumps, which are accurate sources of quantized current for metrological purposes. Here, we discuss in detail the fabrication protocol for silicon MOS QDs which is relevant to both quantum computing and quantum metrology applications. Moreover, we describe characterization methods to test the integrity of the devices after fabrication. Finally, we give a brief description of the measurement set-up used for charge pumping experiments and show representative results of electric current quantization. PMID:26067215
Phase-Quantized Block Noncoherent Communication
2013-07-01
2828 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 7, JULY 2013 Phase-Quantized Block Noncoherent Communication Jaspreet Singh and Upamanyu...in a carrier asynchronous system. Specifically, we consider transmission over the block noncoherent additive white Gaussian noise channel, and...block noncoherent channel. Several results, based on the symmetry inherent in the channel model, are provided to characterize this transition density
Heat Exchange Between Electrons and Phonons in Nanosystems at Sub-Kelvin Temperatures
NASA Astrophysics Data System (ADS)
Anghel, Dragoş-Victor; Cojocaru, Sergiu
2018-02-01
Ultra-sensitive nanoscopic detectors for electromagnetic radiation consist of thin metallic films deposited on dielectric membranes. The metallic films, of thickness d of the order of 10 nm, form the thermal sensing element (TSE), which absorbs the incident radiation and measures its power flux or the energies of individual photons. To achieve the sensitivity required for astronomical observations, the TSE works at temperatures of the order of 0.1 K. The dielectric membranes are used as support and for thermal insulation of the TSE and are of thickness L - d of the order of 100 nm (L being the total thickness of the system). In such conditions, the phonon gas in the detector assumes a quasi-two-dimensional distribution, whereas quantization of the electrons wavenumbers in the direction perpendicular to the film surfaces leads to the formation of quasi two-dimensional electronic sub-bands. The heat exchange between electrons and phonons has an important contribution to the performance of the device and is dominated by the interaction between the electrons and the antisymmetric acoustic phonons.
Classical analogous of quantum cosmological perfect fluid models
NASA Astrophysics Data System (ADS)
Batista, A. B.; Fabris, J. C.; Gonçalves, S. V. B.; Tossa, J.
2001-05-01
Quantization in the minisuperspace of a gravity system coupled to a perfect fluid, leads to a solvable model which implies singularity free solutions through the construction of a superposition of the wavefunctions. We show that such models are equivalent to a classical system where, besides the perfect fluid, a repulsive fluid with an equation of state pQ= ρQ is present. This leads to speculate on the true nature of this quantization procedure. A perturbative analysis of the classical system reveals the condition for the stability of the classical system in terms of the existence of an anti-gravity phase.
Theory of quantized systems: formal basis for DEVS/HLA distributed simulation environment
NASA Astrophysics Data System (ADS)
Zeigler, Bernard P.; Lee, J. S.
1998-08-01
In the context of a DARPA ASTT project, we are developing an HLA-compliant distributed simulation environment based on the DEVS formalism. This environment will provide a user- friendly, high-level tool-set for developing interoperable discrete and continuous simulation models. One application is the study of contract-based predictive filtering. This paper presents a new approach to predictive filtering based on a process called 'quantization' to reduce state update transmission. Quantization, which generates state updates only at quantum level crossings, abstracts a sender model into a DEVS representation. This affords an alternative, efficient approach to embedding continuous models within distributed discrete event simulations. Applications of quantization to message traffic reduction are discussed. The theory has been validated by DEVSJAVA simulations of test cases. It will be subject to further test in actual distributed simulations using the DEVS/HLA modeling and simulation environment.
Rakkiyappan, R; Maheswari, K; Velmurugan, G; Park, Ju H
2018-05-17
This paper investigates H ∞ state estimation problem for a class of semi-Markovian jumping discrete-time neural networks model with event-triggered scheme and quantization. First, a new event-triggered communication scheme is introduced to determine whether or not the current sampled sensor data should be broad-casted and transmitted to the quantizer, which can save the limited communication resource. Second, a novel communication framework is employed by the logarithmic quantizer that quantifies and reduces the data transmission rate in the network, which apparently improves the communication efficiency of networks. Third, a stabilization criterion is derived based on the sufficient condition which guarantees a prescribed H ∞ performance level in the estimation error system in terms of the linear matrix inequalities. Finally, numerical simulations are given to illustrate the correctness of the proposed scheme. Copyright © 2018 Elsevier Ltd. All rights reserved.
Exact quantization of Einstein-Rosen waves coupled to massless scalar matter.
Barbero G, J Fernando; Garay, Iñaki; Villaseñor, Eduardo J S
2005-07-29
We show in this Letter that gravity coupled to a massless scalar field with full cylindrical symmetry can be exactly quantized by an extension of the techniques used in the quantization of Einstein-Rosen waves. This system provides a useful test bed to discuss a number of issues in quantum general relativity, such as the emergence of the classical metric, microcausality, and large quantum gravity effects. It may also provide an appropriate framework to study gravitational critical phenomena from a quantum point of view, issues related to black hole evaporation, and the consistent definition of test fields and particles in quantum gravity.
NASA Astrophysics Data System (ADS)
Babbush, Ryan; Berry, Dominic W.; Sanders, Yuval R.; Kivlichan, Ian D.; Scherer, Artur; Wei, Annie Y.; Love, Peter J.; Aspuru-Guzik, Alán
2018-01-01
We present a quantum algorithm for the simulation of molecular systems that is asymptotically more efficient than all previous algorithms in the literature in terms of the main problem parameters. As in Babbush et al (2016 New Journal of Physics 18, 033032), we employ a recently developed technique for simulating Hamiltonian evolution using a truncated Taylor series to obtain logarithmic scaling with the inverse of the desired precision. The algorithm of this paper involves simulation under an oracle for the sparse, first-quantized representation of the molecular Hamiltonian known as the configuration interaction (CI) matrix. We construct and query the CI matrix oracle to allow for on-the-fly computation of molecular integrals in a way that is exponentially more efficient than classical numerical methods. Whereas second-quantized representations of the wavefunction require \\widetilde{{ O }}(N) qubits, where N is the number of single-particle spin-orbitals, the CI matrix representation requires \\widetilde{{ O }}(η ) qubits, where η \\ll N is the number of electrons in the molecule of interest. We show that the gate count of our algorithm scales at most as \\widetilde{{ O }}({η }2{N}3t).
NASA Astrophysics Data System (ADS)
Schumann, Timo; Galletti, Luca; Kealhofer, David A.; Kim, Honggyu; Goyal, Manik; Stemmer, Susanne
2018-01-01
The magnetotransport properties of epitaxial films of Cd3 As2 , a paradigm three-dimensional Dirac semimetal, are investigated. We show that an energy gap opens in the bulk electronic states of sufficiently thin films and, at low temperatures, carriers residing in surface states dominate the electrical transport. The carriers in these states are sufficiently mobile to give rise to a quantized Hall effect. The sharp quantization demonstrates surface transport that is virtually free of parasitic bulk conduction and paves the way for novel quantum transport studies in this class of topological materials. Our results also demonstrate that heterostructuring approaches can be used to study and engineer quantum states in topological semimetals.
FAST TRACK COMMUNICATION: Quantum anomalies and linear response theory
NASA Astrophysics Data System (ADS)
Sela, Itamar; Aisenberg, James; Kottos, Tsampikos; Cohen, Doron
2010-08-01
The analysis of diffusive energy spreading in quantized chaotic driven systems leads to a universal paradigm for the emergence of a quantum anomaly. In the classical approximation, a driven chaotic system exhibits stochastic-like diffusion in energy space with a coefficient D that is proportional to the intensity ɛ2 of the driving. In the corresponding quantized problem the coherent transitions are characterized by a generalized Wigner time tɛ, and a self-generated (intrinsic) dephasing process leads to nonlinear dependence of D on ɛ2.
Theory of the Quantized Hall Conductance in Periodic Systems: a Topological Analysis.
NASA Astrophysics Data System (ADS)
Czerwinski, Michael Joseph
The integral quantization of the Hall conductance in two-dimensional periodic systems is investigated from a topological point of view. Attention is focused on the contributions from the electronic sub-bands which arise from perturbed Landau levels. After reviewing the theoretical work leading to the identification of the Hall conductance as a topological quantum number, both a determination and interpretation of these quantized values for the sub-band conductances is made. It is shown that the Hall conductance of each sub-band can be regarded as the sum of two terms which will be referred to as classical and nonclassical. Although each of these contributions individually leads to a fractional conductance, the sum of these two contributions does indeed yield an integer. These integral conductances are found to be given by the solution of a simple Diophantine equation which depends on the periodic perturbation. A connection between the quantized value of the Hall conductance and the covering of real space by the zeroes of the sub-band wavefunctions allows for a determination of these conductances under more general potentials. A method is described for obtaining the conductance values from only those states bordering the Brillouin zone, and not the states in its interior. This method is demonstrated to give Hall conductances in agreement with those obtained from the Diophantine equation for the sinusoidal potential case explored earlier. Generalizing a simple gauge invariance argument from real space to k-space, a k-space 'vector potential' is introduced. This allows for a explicit identification of the Hall conductance with the phase winding number of the sub-band wavefunction around the Brillouin zone. The previously described division of the Hall conductance into classical and nonclassical contributions is in this way made more rigorous; based on periodicity considerations alone, these terms are identified as the winding numbers associated with (i) the basis states and (ii) the coefficients of these basis states, respectively. In this way a general Diophantine equation, independent of the periodic potential, is obtained. Finally, the use of the 'parallel transport' of state vectors in the determination of an overall phase convention for these states is described. This is seen to lead to a simple and straightforward method for determining the Hall conductance. This method is based on the states directly, without reference to the particular component wavefunctions of these states. Mention is made of the generality of calculations of this type, within the context of the geometric (or Berry) phases acquired by systems under an adiabatic modification of their environment.
Fractional Quantization of the Hall Effect
DOE R&D Accomplishments Database
Laughlin, R. B.
1984-02-27
The Fractional Quantum Hall Effect is caused by the condensation of a two-dimensional electron gas in a strong magnetic field into a new type of macroscopic ground state, the elementary excitations of which are fermions of charge 1/m, where m is an odd integer. A mathematical description is presented.
Quantization and instability of the damped harmonic oscillator subject to a time-dependent force
NASA Astrophysics Data System (ADS)
Majima, H.; Suzuki, A.
2011-12-01
We consider the one-dimensional motion of a particle immersed in a potential field U(x) under the influence of a frictional (dissipative) force linear in velocity ( -γẋ) and a time-dependent external force ( K(t)). The dissipative system subject to these forces is discussed by introducing the extended Bateman's system, which is described by the Lagrangian: ℒ=mẋẏ-U(x+{1}/{2}y)+U(x-{1}/{2}y)+{γ}/{2}(xẏ-yẋ)-xK(t)+yK(t), which leads to the familiar classical equations of motion for the dissipative (open) system. The equation for a variable y is the time-reversed of the x motion. We discuss the extended Bateman dual Lagrangian and Hamiltonian by setting U(x±y/2)={1}/{2}k( specifically for a dual extended damped-amplified harmonic oscillator subject to the time-dependent external force. We show the method of quantizing such dissipative systems, namely the canonical quantization of the extended Bateman's Hamiltonian ℋ. The Heisenberg equations of motion utilizing the quantized Hamiltonian ℋ̂ surely lead to the equations of motion for the dissipative dynamical quantum systems, which are the quantum analog of the corresponding classical systems. To discuss the stability of the quantum dissipative system due to the influence of an external force K(t) and the dissipative force, we derived a formula for transition amplitudes of the dissipative system with the help of the perturbation analysis. The formula is specifically applied for a damped-amplified harmonic oscillator subject to the impulsive force. This formula is used to study the influence of dissipation such as the instability due to the dissipative force and/or the applied impulsive force.
Quantized Self-Assembly of Discotic Rings in a Liquid Crystal Confined in Nanopores
NASA Astrophysics Data System (ADS)
Sentker, Kathrin; Zantop, Arne W.; Lippmann, Milena; Hofmann, Tommy; Seeck, Oliver H.; Kityk, Andriy V.; Yildirim, Arda; Schönhals, Andreas; Mazza, Marco G.; Huber, Patrick
2018-02-01
Disklike molecules with aromatic cores spontaneously stack up in linear columns with high, one-dimensional charge carrier mobilities along the columnar axes, making them prominent model systems for functional, self-organized matter. We show by high-resolution optical birefringence and synchrotron-based x-ray diffraction that confining a thermotropic discotic liquid crystal in cylindrical nanopores induces a quantized formation of annular layers consisting of concentric circular bent columns, unknown in the bulk state. Starting from the walls this ring self-assembly propagates layer by layer towards the pore center in the supercooled domain of the bulk isotropic-columnar transition and thus allows one to switch on and off reversibly single, nanosized rings through small temperature variations. By establishing a Gibbs free energy phase diagram we trace the phase transition quantization to the discreteness of the layers' excess bend deformation energies in comparison to the thermal energy, even for this near room-temperature system. Monte Carlo simulations yielding spatially resolved nematic order parameters, density maps, and bond-orientational order parameters corroborate the universality and robustness of the confinement-induced columnar ring formation as well as its quantized nature.
Memory-efficient decoding of LDPC codes
NASA Technical Reports Server (NTRS)
Kwok-San Lee, Jason; Thorpe, Jeremy; Hawkins, Jon
2005-01-01
We present a low-complexity quantization scheme for the implementation of regular (3,6) LDPC codes. The quantization parameters are optimized to maximize the mutual information between the source and the quantized messages. Using this non-uniform quantized belief propagation algorithm, we have simulated that an optimized 3-bit quantizer operates with 0.2dB implementation loss relative to a floating point decoder, and an optimized 4-bit quantizer operates less than 0.1dB quantization loss.
Linear time relational prototype based learning.
Gisbrecht, Andrej; Mokbel, Bassam; Schleif, Frank-Michael; Zhu, Xibin; Hammer, Barbara
2012-10-01
Prototype based learning offers an intuitive interface to inspect large quantities of electronic data in supervised or unsupervised settings. Recently, many techniques have been extended to data described by general dissimilarities rather than Euclidean vectors, so-called relational data settings. Unlike the Euclidean counterparts, the techniques have quadratic time complexity due to the underlying quadratic dissimilarity matrix. Thus, they are infeasible already for medium sized data sets. The contribution of this article is twofold: On the one hand we propose a novel supervised prototype based classification technique for dissimilarity data based on popular learning vector quantization (LVQ), on the other hand we transfer a linear time approximation technique, the Nyström approximation, to this algorithm and an unsupervised counterpart, the relational generative topographic mapping (GTM). This way, linear time and space methods result. We evaluate the techniques on three examples from the biomedical domain.
NASA Astrophysics Data System (ADS)
Reilly, Anthony M.; Tkatchenko, Alexandre
2014-08-01
Aspirin has been used and studied for over a century but has only recently been shown to have an additional polymorphic form, known as form II. Since the two observed solid forms of aspirin are degenerate in terms of lattice energy, kinetic effects have been suggested to determine the metastability of the less abundant form II. Here, first-principles calculations provide an alternative explanation based on free-energy differences at room temperature. The explicit consideration of many-body van der Waals interactions in the free energy demonstrates that the stability of the most abundant form of aspirin is due to a subtle coupling between collective electronic fluctuations and quantized lattice vibrations. In addition, a systematic analysis of the elastic properties of the two forms of aspirin rules out mechanical instability of form II as making it metastable.
Classical molecular dynamics simulation of electronically non-adiabatic processes.
Miller, William H; Cotton, Stephen J
2016-12-22
Both classical and quantum mechanics (as well as hybrids thereof, i.e., semiclassical approaches) find widespread use in simulating dynamical processes in molecular systems. For large chemical systems, however, which involve potential energy surfaces (PES) of general/arbitrary form, it is usually the case that only classical molecular dynamics (MD) approaches are feasible, and their use is thus ubiquitous nowadays, at least for chemical processes involving dynamics on a single PES (i.e., within a single Born-Oppenheimer electronic state). This paper reviews recent developments in an approach which extends standard classical MD methods to the treatment of electronically non-adiabatic processes, i.e., those that involve transitions between different electronic states. The approach treats nuclear and electronic degrees of freedom (DOF) equivalently (i.e., by classical mechanics, thereby retaining the simplicity of standard MD), and provides "quantization" of the electronic states through a symmetrical quasi-classical (SQC) windowing model. The approach is seen to be capable of treating extreme regimes of strong and weak coupling between the electronic states, as well as accurately describing coherence effects in the electronic DOF (including the de-coherence of such effects caused by coupling to the nuclear DOF). A survey of recent applications is presented to illustrate the performance of the approach. Also described is a newly developed variation on the original SQC model (found universally superior to the original) and a general extension of the SQC model to obtain the full electronic density matrix (at no additional cost/complexity).
A Ratiometric Method for Johnson Noise Thermometry Using a Quantized Voltage Noise Source
NASA Astrophysics Data System (ADS)
Nam, S. W.; Benz, S. P.; Martinis, J. M.; Dresselhaus, P.; Tew, W. L.; White, D. R.
2003-09-01
Johnson Noise Thermometry (JNT) involves the measurement of the statistical variance of a fluctuating voltage across a resistor in thermal equilibrium. Modern digital techniques make it now possible to perform many functions required for JNT in highly efficient and predictable ways. We describe the operational characteristics of a prototype JNT system which uses digital signal processing for filtering, real-time spectral cross-correlation for noise power measurement, and a digitally synthesized Quantized Voltage Noise Source (QVNS) as an AC voltage reference. The QVNS emulates noise with a constant spectral density that is stable, programmable, and calculable in terms of known parameters using digital synthesis techniques. Changes in analog gain are accounted for by alternating the inputs between the Johnson noise sensor and the QVNS. The Johnson noise power at a known temperature is first balanced with a synthesized noise power from the QVNS. The process is then repeated by balancing the noise power from the same resistor at an unknown temperature. When the two noise power ratios are combined, a thermodynamic temperature is derived using the ratio of the two QVNS spectral densities. We present preliminary results where the ratio between the gallium triple point and the water triple point is used to demonstrate the accuracy of the measurement system with a standard uncertainty of 0.04 %.
NASA Astrophysics Data System (ADS)
Lychkovskiy, Oleg; Gamayun, Oleksandr; Cheianov, Vadim
2018-02-01
The quantum adiabatic theorem states that a driven system can be kept arbitrarily close to the instantaneous eigenstate of its Hamiltonian if the latter varies in time slowly enough. When it comes to applying the adiabatic theorem in practice, the key question to be answered is how slow slowly enough is. This question can be an intricate one, especially for many-body systems, where the limits of slow driving and large system size may not commute. Recently we have shown how the quantum adiabaticity in many-body systems is related to the generalized orthogonality catastrophe [arXiv 1611.00663, to appear in Phys. Rev. Lett.]. We have proven a rigorous inequality relating these two phenomena and applied it to establish conditions for the quantized transport in the topological Thouless pump. In the present contribution we (i) review these developments and (ii) apply the inequality to establish the conditions for adiabaticity in a one-dimensional system consisting of a quantum fluid and an impurity particle pulled through the fluid by an external force. The latter analysis is vital for the correct quantitative description of the phenomenon of quasi-Bloch oscillations in a one-dimensional translation invariant impurity-fluid system.
NASA Astrophysics Data System (ADS)
Ivanov, K. A.; Nikolaev, V. V.; Gubaydullin, A. R.; Kaliteevski, M. A.
2017-10-01
Based on the scattering matrix formalism, we have developed a method of quantization of an electromagnetic field in two-dimensional photonic nanostructures ( S-quantization in the two-dimensional case). In this method, the fields at the boundaries of the quantization box are expanded into a Fourier series and are related with each other by the scattering matrix of the system, which is the product of matrices describing the propagation of plane waves in empty regions of the quantization box and the scattering matrix of the photonic structure (or an arbitrary inhomogeneity). The quantization condition (similarly to the onedimensional case) is formulated as follows: the eigenvalues of the scattering matrix are equal to unity, which corresponds to the fact that the set of waves that are incident on the structure (components of the expansion into the Fourier series) is equal to the set of waves that travel away from the structure (outgoing waves). The coefficients of the matrix of scattering through the inhomogeneous structure have been calculated using the following procedure: the structure is divided into parallel layers such that the permittivity in each layer varies only along the axis that is perpendicular to the layers. Using the Fourier transform, the Maxwell equations have been written in the form of a matrix that relates the Fourier components of the electric field at the boundaries of neighboring layers. The product of these matrices is the transfer matrix in the basis of the Fourier components of the electric field. Represented in a block form, it is composed by matrices that contain the reflection and transmission coefficients for the Fourier components of the field, which, in turn, constitute the scattering matrix. The developed method considerably simplifies the calculation scheme for the analysis of the behavior of the electromagnetic field in structures with a two-dimensional inhomogeneity. In addition, this method makes it possible to obviate difficulties that arise in the analysis of the Purcell effect because of the divergence of the integral describing the effective volume of the mode in open systems.
The behavior of quantization spectra as a function of signal-to-noise ratio
NASA Technical Reports Server (NTRS)
Flanagan, M. J.
1991-01-01
An expression for the spectrum of quantization error in a discrete-time system whose input is a sinusoid plus white Gaussian noise is derived. This quantization spectrum consists of two components: a white-noise floor and spurious harmonics. The dithering effect of the input Gaussian noise in both components of the spectrum is considered. Quantitative results in a discrete Fourier transform (DFT) example show the behavior of spurious harmonics as a function of the signal-to-noise ratio (SNR). These results have strong implications for digital reception and signal analysis systems. At low SNRs, spurious harmonics decay exponentially on a log-log scale, and the resulting spectrum is white. As the SNR increases, the spurious harmonics figure prominently in the output spectrum. A useful expression is given that roughly bounds the magnitude of a spurious harmonic as a function of the SNR.
NASA Astrophysics Data System (ADS)
Raichev, O. E.
2015-06-01
The response of two-dimensional electron gas to a temperature gradient in perpendicular magnetic field under steady-state microwave irradiation is studied theoretically. The electric currents induced by the temperature gradient and the thermopower coefficients are calculated taking into account both diffusive and phonon-drag mechanisms. The modification of thermopower by microwaves takes place because of Landau quantization of the electron energy spectrum and is governed by the microscopic mechanisms which are similar to those responsible for microwave-induced oscillations of electrical resistivity. The magnetic-field dependence of microwave-induced corrections to phonon-drag thermopower is determined by mixing of phonon resonance frequencies with radiation frequency, which leads to interference oscillations. The transverse thermopower is modified by microwave irradiation much stronger than the longitudinal one. Apart from showing prominent microwave-induced oscillations as a function of magnetic field, the transverse thermopower appears to be highly sensitive to the direction of linear polarization of microwave radiation.
Canonical methods in classical and quantum gravity: An invitation to canonical LQG
NASA Astrophysics Data System (ADS)
Reyes, Juan D.
2018-04-01
Loop Quantum Gravity (LQG) is a candidate quantum theory of gravity still under construction. LQG was originally conceived as a background independent canonical quantization of Einstein’s general relativity theory. This contribution provides some physical motivations and an overview of some mathematical tools employed in canonical Loop Quantum Gravity. First, Hamiltonian classical methods are reviewed from a geometric perspective. Canonical Dirac quantization of general gauge systems is sketched next. The Hamiltonian formultation of gravity in geometric ADM and connection-triad variables is then presented to finally lay down the canonical loop quantization program. The presentation is geared toward advanced undergradute or graduate students in physics and/or non-specialists curious about LQG.
Accelerating Families of Fuzzy K-Means Algorithms for Vector Quantization Codebook Design
Mata, Edson; Bandeira, Silvio; de Mattos Neto, Paulo; Lopes, Waslon; Madeiro, Francisco
2016-01-01
The performance of signal processing systems based on vector quantization depends on codebook design. In the image compression scenario, the quality of the reconstructed images depends on the codebooks used. In this paper, alternatives are proposed for accelerating families of fuzzy K-means algorithms for codebook design. The acceleration is obtained by reducing the number of iterations of the algorithms and applying efficient nearest neighbor search techniques. Simulation results concerning image vector quantization have shown that the acceleration obtained so far does not decrease the quality of the reconstructed images. Codebook design time savings up to about 40% are obtained by the accelerated versions with respect to the original versions of the algorithms. PMID:27886061
Accelerating Families of Fuzzy K-Means Algorithms for Vector Quantization Codebook Design.
Mata, Edson; Bandeira, Silvio; de Mattos Neto, Paulo; Lopes, Waslon; Madeiro, Francisco
2016-11-23
The performance of signal processing systems based on vector quantization depends on codebook design. In the image compression scenario, the quality of the reconstructed images depends on the codebooks used. In this paper, alternatives are proposed for accelerating families of fuzzy K-means algorithms for codebook design. The acceleration is obtained by reducing the number of iterations of the algorithms and applying efficient nearest neighbor search techniques. Simulation results concerning image vector quantization have shown that the acceleration obtained so far does not decrease the quality of the reconstructed images. Codebook design time savings up to about 40% are obtained by the accelerated versions with respect to the original versions of the algorithms.
MPEG-1 low-cost encoder solution
NASA Astrophysics Data System (ADS)
Grueger, Klaus; Schirrmeister, Frank; Filor, Lutz; von Reventlow, Christian; Schneider, Ulrich; Mueller, Gerriet; Sefzik, Nicolai; Fiedrich, Sven
1995-02-01
A solution for real-time compression of digital YCRCB video data to an MPEG-1 video data stream has been developed. As an additional option, motion JPEG and video telephone streams (H.261) can be generated. For MPEG-1, up to two bidirectional predicted images are supported. The required computational power for motion estimation and DCT/IDCT, memory size and memory bandwidth have been the main challenges. The design uses fast-page-mode memory accesses and requires only one single 80 ns EDO-DRAM with 256 X 16 organization for video encoding. This can be achieved only by using adequate access and coding strategies. The architecture consists of an input processing and filter unit, a memory interface, a motion estimation unit, a motion compensation unit, a DCT unit, a quantization control, a VLC unit and a bus interface. For using the available memory bandwidth by the processing tasks, a fixed schedule for memory accesses has been applied, that can be interrupted for asynchronous events. The motion estimation unit implements a highly sophisticated hierarchical search strategy based on block matching. The DCT unit uses a separated fast-DCT flowgraph realized by a switchable hardware unit for both DCT and IDCT operation. By appropriate multiplexing, only one multiplier is required for: DCT, quantization, inverse quantization, and IDCT. The VLC unit generates the video-stream up to the video sequence layer and is directly coupled with an intelligent bus-interface. Thus, the assembly of video, audio and system data can easily be performed by the host computer. Having a relatively low complexity and only small requirements for DRAM circuits, the developed solution can be applied to low-cost encoding products for consumer electronics.
Modified InGaN/GaN quantum wells with dual-wavelength green-yellow emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Z. L., E-mail: zhilaifang@hotmail.com; Li, Q. F.; Shen, X. Y.
2014-01-28
Energy band engineering by indium pretreatment of the bottom GaN barriers and control of the growth temperature profile for the InGaN active layers were employed to improve the green-yellow emitting InGaN/GaN quantum well (QW). The modified InGaN/GaN QWs were investigated by various characterization techniques and demonstrated to be of good interface abruptness and well-defined indium concentration profile, composed of 0.52 nm In{sub 0.35}Ga{sub 0.65}N “wetting layer,” 1.56 nm In{sub 0.35-0.22}Ga{sub 0.65-0.78}N graded layers, and 1.56 nm In{sub 0.22}Ga{sub 0.78}N layer along the growth direction. Broad-band dual-wavelength green-yellow emission at about 497 and 568 nm was observed and attributed to the major contribution of enhancedmore » interband transitions from the first and second quantized electron states “e1” and “e2” to the first quantized hole state “h1.” With the modified QW structure, electron overflow loss would be suppressed by filling of the excited electron state with electrons at high carrier injection density and reduction in polarization-induced band bending. APSYS simulation shows efficiency and droop improvements due to the enhanced overlapping of electron and hole wave functions inside the modified InGaN active layers, and the enhanced interband transitions involving the excited electron state.« less
Oliver E. Buckley Condensed Matter Prize: Emergent gravity from interacting Majorana modes
NASA Astrophysics Data System (ADS)
Kitaev, Alexei
I will describe a concrete many-body Hamiltonian that exhibits some features of a quantum black hole. The Sachdev-Ye-Kitaev model is a system of N >> 1 Majorana modes that are all coupled by random 4-th order terms. The problem admits an approximate dynamic mean field solution. At low temperatures, there is a fluctuating collective mode that corresponds to reparametrization of time. The effective action for this mode is equivalent to dilaton gravity in two space-time dimensions. Some important questions are how to quantize the reparametrization mode in Lorentzian time, include dissipative effects, and understand this system from the quantum information perspective. Supported by the Simons Foundation, Award Number 376205.
Quantum State Reduction by Matter-Phase-Related Measurements in Optical Lattices
Kozlowski, Wojciech; Caballero-Benitez, Santiago F.; Mekhov, Igor B.
2017-01-01
A many-body atomic system coupled to quantized light is subject to weak measurement. Instead of coupling light to the on-site density, we consider the quantum backaction due to the measurement of matter-phase-related variables such as global phase coherence. We show how this unconventional approach opens up new opportunities to affect system evolution. We demonstrate how this can lead to a new class of final states different from those possible with dissipative state preparation or conventional projective measurements. These states are characterised by a combination of Hamiltonian and measurement properties thus extending the measurement postulate for the case of strong competition with the system’s own evolution. PMID:28225012
NASA Astrophysics Data System (ADS)
Chen, Zhenhua; Chen, Xun; Wu, Wei
2013-04-01
In this series, the n-body reduced density matrix (n-RDM) approach for nonorthogonal orbitals and their applications to ab initio valence bond (VB) methods are presented. As the first paper of this series, Hamiltonian matrix elements between internally contracted VB wave functions are explicitly provided by means of nonorthogonal orbital based RDM approach. To this end, a more generalized Wick's theorem, called enhanced Wick's theorem, is presented both in arithmetical and in graphical forms, by which the deduction of expressions for the matrix elements between internally contracted VB wave functions is dramatically simplified, and the matrix elements are finally expressed in terms of tensor contractions of electronic integrals and n-RDMs of the reference VB self-consistent field wave function. A string-based algorithm is developed for the purpose of evaluating n-RDMs in an efficient way. Using the techniques presented in this paper, one is able to develop new methods and efficient algorithms for nonorthogonal orbital based many-electron theory much easier than by use of the first quantized formulism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirata, So
2003-11-20
We develop a symbolic manipulation program and program generator (Tensor Contraction Engine or TCE) that automatically derives the working equations of a well-defined model of second-quantized many-electron theories and synthesizes efficient parallel computer programs on the basis of these equations. Provided an ansatz of a many-electron theory model, TCE performs valid contractions of creation and annihilation operators according to Wick's theorem, consolidates identical terms, and reduces the expressions into the form of multiple tensor contractions acted by permutation operators. Subsequently, it determines the binary contraction order for each multiple tensor contraction with the minimal operation and memory cost, factorizes commonmore » binary contractions (defines intermediate tensors), and identifies reusable intermediates. The resulting ordered list of binary tensor contractions, additions, and index permutations is translated into an optimized program that is combined with the NWChem and UTChem computational chemistry software packages. The programs synthesized by TCE take advantage of spin symmetry, Abelian point-group symmetry, and index permutation symmetry at every stage of calculations to minimize the number of arithmetic operations and storage requirement, adjust the peak local memory usage by index range tiling, and support parallel I/O interfaces and dynamic load balancing for parallel executions. We demonstrate the utility of TCE through automatic derivation and implementation of parallel programs for various models of configuration-interaction theory (CISD, CISDT, CISDTQ), many-body perturbation theory [MBPT(2), MBPT(3), MBPT(4)], and coupled-cluster theory (LCCD, CCD, LCCSD, CCSD, QCISD, CCSDT, and CCSDTQ).« less
D'Suze, Gina; Sandoval, Moisés; Sevcik, Carlos
2015-12-15
A characteristic of venom elution patterns, shared with many other complex systems, is that many their features cannot be properly described with statistical or euclidean concepts. The understanding of such systems became possible with Mandelbrot's fractal analysis. Venom elution patterns were produced using the reversed phase high performance liquid chromatography (HPLC) with 1 mg of venom. One reason for the lack of quantitative analyses of the sources of venom variability is parametrizing the venom chromatograms' complexity. We quantize this complexity by means of an algorithm which estimates the contortedness (Q) of a waveform. Fractal analysis was used to compare venoms and to measure inter- and intra-specific venom variability. We studied variations in venom complexity derived from gender, seasonal and environmental factors, duration of captivity in the laboratory, technique used to milk venom. Copyright © 2015 Elsevier Ltd. All rights reserved.
Quantum Hall resistance standard in graphene devices under relaxed experimental conditions
NASA Astrophysics Data System (ADS)
Ribeiro-Palau, R.; Lafont, F.; Brun-Picard, J.; Kazazis, D.; Michon, A.; Cheynis, F.; Couturaud, O.; Consejo, C.; Jouault, B.; Poirier, W.; Schopfer, F.
2015-11-01
The quantum Hall effect provides a universal standard for electrical resistance that is theoretically based on only the Planck constant h and the electron charge e. Currently, this standard is implemented in GaAs/AlGaAs, but graphene's electronic properties have given hope for a more practical device. Here, we demonstrate that the experimental conditions necessary for the operation of devices made of high-quality graphene grown by chemical vapour deposition on silicon carbide can be extended and significantly relaxed compared with those for state-of-the-art GaAs/AlGaAs devices. In particular, the Hall resistance can be accurately quantized to within 1 × 10-9 over a 10 T wide range of magnetic flux density, down to 3.5 T, at a temperature of up to 10 K or with a current of up to 0.5 mA. This experimental simplification highlights the great potential of graphene in the development of user-friendly and versatile quantum standards that are compatible with broader industrial uses beyond those in national metrology institutes. Furthermore, the measured agreement of the quantized Hall resistance in graphene and GaAs/AlGaAs, with an ultimate uncertainty of 8.2 × 10-11, supports the universality of the quantum Hall effect. This also provides evidence of the relation of the quantized Hall resistance with h and e, which is crucial for the new Système International d'unités to be based on fixing such fundamental constants of nature.
Quantization of Poisson Manifolds from the Integrability of the Modular Function
NASA Astrophysics Data System (ADS)
Bonechi, F.; Ciccoli, N.; Qiu, J.; Tarlini, M.
2014-10-01
We discuss a framework for quantizing a Poisson manifold via the quantization of its symplectic groupoid, combining the tools of geometric quantization with the results of Renault's theory of groupoid C*-algebras. This setting allows very singular polarizations. In particular, we consider the case when the modular function is multiplicatively integrable, i.e., when the space of leaves of the polarization inherits a groupoid structure. If suitable regularity conditions are satisfied, then one can define the quantum algebra as the convolution algebra of the subgroupoid of leaves satisfying the Bohr-Sommerfeld conditions. We apply this procedure to the case of a family of Poisson structures on , seen as Poisson homogeneous spaces of the standard Poisson-Lie group SU( n + 1). We show that a bihamiltonian system on defines a multiplicative integrable model on the symplectic groupoid; we compute the Bohr-Sommerfeld groupoid and show that it satisfies the needed properties for applying Renault theory. We recover and extend Sheu's description of quantum homogeneous spaces as groupoid C*-algebras.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Qing Lin; Pan, Lei; Stern, Alexander L.
Majorana fermion is a hypothetical particle that is its own antiparticle. We report transport measurements that suggest the existence of one-dimensional chiral Majorana fermion modes in the hybrid system of a quantum anomalous Hall insulator thin film coupled with a superconductor. As the external magnetic field is swept, half-integer quantized conductance plateaus are observed at the locations of magnetization reversals, giving a distinct signature of the Majorana fermion modes. This transport signature is reproducible over many magnetic field sweeps and appears at different temperatures. This finding may open up an avenue to control Majorana fermions for implementing robust topological quantummore » computing.« less
Interpretation of thermal conductance of the ν =5 /2 edge
NASA Astrophysics Data System (ADS)
Simon, Steven H.
2018-03-01
Recent experiments [Banerjee et al., arXiv:1710.00492] have measured thermal conductance of the ν =5 /2 edge in a GaAs electron gas and found it to be quantized as K ≈5 /2 (in appropriate dimensionless units). This result is unexpected, as prior numerical work predicts that the ν =5 /2 state should be the anti-Pfaffian phase of matter, which should have quantized K =3 /2 . The purpose of this Rapid Communication is to propose a possible solution to this conflict: If the Majorana edge mode of the anti-Pfaffian does not thermally equilibrate with the other edge modes, then K =5 /2 is expected. I briefly discuss a possible reason for this nonequilibration and what should be examined further to determine if this is the case.
Quantized conductance observed during sintering of silver nanoparticles by intense terahertz pulses
NASA Astrophysics Data System (ADS)
Takano, Keisuke; Harada, Hirofumi; Yoshimura, Masashi; Nakajima, Makoto
2018-04-01
We show that silver nanoparticles, which are deposited on a terahertz-receiving antenna, can be sintered by intense terahertz pulse irradiation. The conductance of the silver nanoparticles between the antenna electrodes is measured under the terahertz pulse irradiation. The dispersant materials surrounding the nanoparticles are peeled off, and conduction paths are created. We reveal that, during sintering, quantum point contacts are formed, leading to quantized conductance between the electrodes with the conductance quantum, which reflects the formation of atomically thin wires. The terahertz electric pulses are sufficiently intense to activate electromigration, i.e., transfer of kinetic energy from the electrons to the silver atoms. The silver atoms move and atomically thin wires form under the intense terahertz pulse irradiation. These findings may inspire nanoscale structural processing by terahertz pulse irradiation.
ERIC Educational Resources Information Center
Huggins, Elisha
2011-01-01
The behavior of smoke rings, tornados, and quantized vortex rings in superfluid helium has many features in common. These features can be described by the same mathematics we use when introducing Ampere's law in an introductory physics course. We discuss these common features. (Contains 7 figures.)
NASA Astrophysics Data System (ADS)
Kidwell, Nathanael M.; Mehta, Deepali N.; Zwier, Timothy S.; Reilly, Neil J.; Kokkin, Damian L.; McCarthy, Michael C.
2012-06-01
Combustion processes involve a myriad of complex reaction pathways which connect smaller precursors to larger polyaromatic hydrocarbons, many of which are still unknown. In particular, benzyl-type radicals play an important role in combustible fuels due to their intrinsic resonance stabilization and consequent increase in relative concentration. Here, we present a study of the vibronic spectroscopy of α-Methylbenzyl radical (α-MeBz), in which the orientation of the methyl group adjacent to the radical site responds to the electronic interaction extending from the conjugated π-system. Probing the isolated radical, produced in an electrical discharge under jet-cooled conditions, the two-color resonant two-photon ionization, fluorescence excitation, and dispersed fluorescence spectra were obtained in order to determine the ground and excited state barriers to internal rotation and the angular change associated with electronic excitation. Resonant ion-dip infrared spectroscopy (RIDIRS) has also been implemented to elucidate the infrared signatures in the alkyl and aromatic CH stretch regions in order to probe in a complementary way the state-dependent conformational preferences of α-MeBz. We will show that the D0- and D1-RIDIR spectra report sensitively on the strong coupling between the CH stretch vibrations and the C_α-C_β torsional geometry. Furthermore, photoionization efficiency scans were carried out to reveal the adiabatic ionization threshold of α-MeBz and the quantized levels present in the radical cation state.
Low bit rate coding of Earth science images
NASA Technical Reports Server (NTRS)
Kossentini, Faouzi; Chung, Wilson C.; Smith, Mark J. T.
1993-01-01
In this paper, the authors discuss compression based on some new ideas in vector quantization and their incorporation in a sub-band coding framework. Several variations are considered, which collectively address many of the individual compression needs within the earth science community. The approach taken in this work is based on some recent advances in the area of variable rate residual vector quantization (RVQ). This new RVQ method is considered separately and in conjunction with sub-band image decomposition. Very good results are achieved in coding a variety of earth science images. The last section of the paper provides some comparisons that illustrate the improvement in performance attributable to this approach relative the the JPEG coding standard.
A fingerprint key binding algorithm based on vector quantization and error correction
NASA Astrophysics Data System (ADS)
Li, Liang; Wang, Qian; Lv, Ke; He, Ning
2012-04-01
In recent years, researches on seamless combination cryptosystem with biometric technologies, e.g. fingerprint recognition, are conducted by many researchers. In this paper, we propose a binding algorithm of fingerprint template and cryptographic key to protect and access the key by fingerprint verification. In order to avoid the intrinsic fuzziness of variant fingerprints, vector quantization and error correction technique are introduced to transform fingerprint template and then bind with key, after a process of fingerprint registration and extracting global ridge pattern of fingerprint. The key itself is secure because only hash value is stored and it is released only when fingerprint verification succeeds. Experimental results demonstrate the effectiveness of our ideas.
Time-dependent nonlinear Jaynes-Cummings dynamics of a trapped ion
NASA Astrophysics Data System (ADS)
Krumm, F.; Vogel, W.
2018-04-01
In quantum interaction problems with explicitly time-dependent interaction Hamiltonians, the time ordering plays a crucial role for describing the quantum evolution of the system under consideration. In such complex scenarios, exact solutions of the dynamics are rarely available. Here we study the nonlinear vibronic dynamics of a trapped ion, driven in the resolved sideband regime with some small frequency mismatch. By describing the pump field in a quantized manner, we are able to derive exact solutions for the dynamics of the system. This eventually allows us to provide analytical solutions for various types of time-dependent quantities. In particular, we study in some detail the electronic and the motional quantum dynamics of the ion, as well as the time evolution of the nonclassicality of the motional quantum state.
Information preserving coding for multispectral data
NASA Technical Reports Server (NTRS)
Duan, J. R.; Wintz, P. A.
1973-01-01
A general formulation of the data compression system is presented. A method of instantaneous expansion of quantization levels by reserving two codewords in the codebook to perform a folding over in quantization is implemented for error free coding of data with incomplete knowledge of the probability density function. Results for simple DPCM with folding and an adaptive transform coding technique followed by a DPCM technique are compared using ERTS-1 data.
Field quantization and squeezed states generation in resonators with time-dependent parameters
NASA Technical Reports Server (NTRS)
Dodonov, V. V.; Klimov, A. B.; Nikonov, D. E.
1992-01-01
The problem of electromagnetic field quantization is usually considered in textbooks under the assumption that the field occupies some empty box. The case when a nonuniform time-dependent dielectric medium is confined in some space region with time-dependent boundaries is studied. The basis of the subsequent consideration is the system of Maxwell's equations in linear passive time-dependent dielectric and magnetic medium without sources.
Fedosov Deformation Quantization as a BRST Theory
NASA Astrophysics Data System (ADS)
Grigoriev, M. A.; Lyakhovich, S. L.
The relationship is established between the Fedosov deformation quantization of a general symplectic manifold and the BFV-BRST quantization of constrained dynamical systems. The original symplectic manifold M is presented as a second class constrained surface in the fibre bundle ?*ρM which is a certain modification of a usual cotangent bundle equipped with a natural symplectic structure. The second class system is converted into the first class one by continuation of the constraints into the extended manifold, being a direct sum of ?*ρM and the tangent bundle TM. This extended manifold is equipped with a nontrivial Poisson bracket which naturally involves two basic ingredients of Fedosov geometry: the symplectic structure and the symplectic connection. The constructed first class constrained theory, being equivalent to the original symplectic manifold, is quantized through the BFV-BRST procedure. The existence theorem is proven for the quantum BRST charge and the quantum BRST invariant observables. The adjoint action of the quantum BRST charge is identified with the Abelian Fedosov connection while any observable, being proven to be a unique BRST invariant continuation for the values defined in the original symplectic manifold, is identified with the Fedosov flat section of the Weyl bundle. The Fedosov fibrewise star multiplication is thus recognized as a conventional product of the quantum BRST invariant observables.
NASA Astrophysics Data System (ADS)
Huang, Yingyi; Setiawan, F.; Sau, Jay D.
2018-03-01
A weak superconducting proximity effect in the vicinity of the topological transition of a quantum anomalous Hall system has been proposed as a venue to realize a topological superconductor (TSC) with chiral Majorana edge modes (CMEMs). A recent experiment [Science 357, 294 (2017), 10.1126/science.aag2792] claimed to have observed such CMEMs in the form of a half-integer quantized conductance plateau in the two-terminal transport measurement of a quantum anomalous Hall-superconductor junction. Although the presence of a superconducting proximity effect generically splits the quantum Hall transition into two phase transitions with a gapped TSC in between, in this Rapid Communication we propose that a nearly flat conductance plateau, similar to that expected from CMEMs, can also arise from the percolation of quantum Hall edges well before the onset of the TSC or at temperatures much above the TSC gap. Our Rapid Communication, therefore, suggests that, in order to confirm the TSC, it is necessary to supplement the observation of the half-quantized conductance plateau with a hard superconducting gap (which is unlikely for a disordered system) from the conductance measurements or the heat transport measurement of the transport gap. Alternatively, the half-quantized thermal conductance would also serve as a smoking-gun signature of the TSC.
Interframe vector wavelet coding technique
NASA Astrophysics Data System (ADS)
Wus, John P.; Li, Weiping
1997-01-01
Wavelet coding is often used to divide an image into multi- resolution wavelet coefficients which are quantized and coded. By 'vectorizing' scalar wavelet coding and combining this with vector quantization (VQ), vector wavelet coding (VWC) can be implemented. Using a finite number of states, finite-state vector quantization (FSVQ) takes advantage of the similarity between frames by incorporating memory into the video coding system. Lattice VQ eliminates the potential mismatch that could occur using pre-trained VQ codebooks. It also eliminates the need for codebook storage in the VQ process, thereby creating a more robust coding system. Therefore, by using the VWC coding method in conjunction with the FSVQ system and lattice VQ, the formulation of a high quality very low bit rate coding systems is proposed. A coding system using a simple FSVQ system where the current state is determined by the previous channel symbol only is developed. To achieve a higher degree of compression, a tree-like FSVQ system is implemented. The groupings are done in this tree-like structure from the lower subbands to the higher subbands in order to exploit the nature of subband analysis in terms of the parent-child relationship. Class A and Class B video sequences from the MPEG-IV testing evaluations are used in the evaluation of this coding method.
Zero-resistance states induced by electromagnetic-wave excitation in GaAs/AlGaAs heterostructures.
Mani, Ramesh G; Smet, Jürgen H; von Klitzing, Klaus; Narayanamurti, Venkatesh; Johnson, William B; Umansky, Vladimir
2002-12-12
The observation of vanishing electrical resistance in condensed matter has led to the discovery of new phenomena such as, for example, superconductivity, where a zero-resistance state can be detected in a metal below a transition temperature T(c) (ref. 1). More recently, quantum Hall effects were discovered from investigations of zero-resistance states at low temperatures and high magnetic fields in two-dimensional electron systems (2DESs). In quantum Hall systems and superconductors, zero-resistance states often coincide with the appearance of a gap in the energy spectrum. Here we report the observation of zero-resistance states and energy gaps in a surprising setting: ultrahigh-mobility GaAs/AlGaAs heterostructures that contain a 2DES exhibit vanishing diagonal resistance without Hall resistance quantization at low temperatures and low magnetic fields when the specimen is subjected to electromagnetic wave excitation. Zero-resistance-states occur about magnetic fields B = 4/5 Bf and B = 4/9 Bf, where Bf = 2pifm*/e,m* is the electron mass, e is the electron charge, and f is the electromagnetic-wave frequency. Activated transport measurements on the resistance minima also indicate an energy gap at the Fermi level. The results suggest an unexpected radiation-induced, electronic-state-transition in the GaAs/AlGaAs 2DES.
BRST quantization of cosmological perturbations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armendariz-Picon, Cristian; Şengör, Gizem
2016-11-08
BRST quantization is an elegant and powerful method to quantize theories with local symmetries. In this article we study the Hamiltonian BRST quantization of cosmological perturbations in a universe dominated by a scalar field, along with the closely related quantization method of Dirac. We describe how both formalisms apply to perturbations in a time-dependent background, and how expectation values of gauge-invariant operators can be calculated in the in-in formalism. Our analysis focuses mostly on the free theory. By appropriate canonical transformations we simplify and diagonalize the free Hamiltonian. BRST quantization in derivative gauges allows us to dramatically simplify the structuremore » of the propagators, whereas Dirac quantization, which amounts to quantization in synchronous gauge, dispenses with the need to introduce ghosts and preserves the locality of the gauge-fixed action.« less
Cascade Error Projection with Low Bit Weight Quantization for High Order Correlation Data
NASA Technical Reports Server (NTRS)
Duong, Tuan A.; Daud, Taher
1998-01-01
In this paper, we reinvestigate the solution for chaotic time series prediction problem using neural network approach. The nature of this problem is such that the data sequences are never repeated, but they are rather in chaotic region. However, these data sequences are correlated between past, present, and future data in high order. We use Cascade Error Projection (CEP) learning algorithm to capture the high order correlation between past and present data to predict a future data using limited weight quantization constraints. This will help to predict a future information that will provide us better estimation in time for intelligent control system. In our earlier work, it has been shown that CEP can sufficiently learn 5-8 bit parity problem with 4- or more bits, and color segmentation problem with 7- or more bits of weight quantization. In this paper, we demonstrate that chaotic time series can be learned and generalized well with as low as 4-bit weight quantization using round-off and truncation techniques. The results show that generalization feature will suffer less as more bit weight quantization is available and error surfaces with the round-off technique are more symmetric around zero than error surfaces with the truncation technique. This study suggests that CEP is an implementable learning technique for hardware consideration.
Kang, Zhe; Yuan, Jinhui; Zhang, Xianting; Sang, Xinzhu; Wang, Kuiru; Wu, Qiang; Yan, Binbin; Li, Feng; Zhou, Xian; Zhong, Kangping; Zhou, Guiyao; Yu, Chongxiu; Farrell, Gerald; Lu, Chao; Yaw Tam, Hwa; Wai, P. K. A.
2016-01-01
High performance all-optical quantizer based on silicon waveguide is believed to have significant applications in photonic integratable optical communication links, optical interconnection networks, and real-time signal processing systems. In this paper, we propose an integratable all-optical quantizer for on-chip and low power consumption all-optical analog-to-digital converters. The quantization is realized by the strong cross-phase modulation and interference in a silicon-organic hybrid (SOH) slot waveguide based Mach-Zehnder interferometer. By carefully designing the dimension of the SOH waveguide, large nonlinear coefficients up to 16,000 and 18,069 W−1/m for the pump and probe signals can be obtained respectively, along with a low pulse walk-off parameter of 66.7 fs/mm, and all-normal dispersion in the wavelength regime considered. Simulation results show that the phase shift of the probe signal can reach 8π at a low pump pulse peak power of 206 mW and propagation length of 5 mm such that a 4-bit all-optical quantizer can be realized. The corresponding signal-to-noise ratio is 23.42 dB and effective number of bit is 3.89-bit. PMID:26777054
Functional integral for non-Lagrangian systems
NASA Astrophysics Data System (ADS)
Kochan, Denis
2010-02-01
A functional integral formulation of quantum mechanics for non-Lagrangian systems is presented. The approach, which we call “stringy quantization,” is based solely on classical equations of motion and is free of any ambiguity arising from Lagrangian and/or Hamiltonian formulation of the theory. The functionality of the proposed method is demonstrated on several examples. Special attention is paid to the stringy quantization of systems with a general A-power friction force -κq˙A. Results for A=1 are compared with those obtained in the approaches by Caldirola-Kanai, Bateman, and Kostin. Relations to the Caldeira-Leggett model and to the Feynman-Vernon approach are discussed as well.
Spectroscopy of metal "superatom" nanoclusters and high-Tc superconducting pairing
NASA Astrophysics Data System (ADS)
Halder, Avik; Kresin, Vitaly V.
2015-12-01
A unique property of metal nanoclusters is the "superatom" shell structure of their delocalized electrons. The electronic shell levels are highly degenerate and therefore represent sharp peaks in the density of states. This can enable exceptionally strong electron pairing in certain clusters composed of tens to hundreds of atoms. In a finite system, such as a free nanocluster or a nucleus, pairing is observed most clearly via its effect on the energy spectrum of the constituent fermions. Accordingly, we performed a photoionization spectroscopy study of size-resolved aluminum nanoclusters and observed a rapid rise in the near-threshold density of states of several clusters (A l37 ,44 ,66 ,68 ) with decreasing temperature. The characteristics of this behavior are consistent with compression of the density of states by a pairing transition into a high-temperature superconducting state with Tc≳100 K. This value exceeds that of bulk aluminum by two orders of magnitude. These results highlight the potential of novel pairing effects in size-quantized systems and the possibility to attain even higher critical temperatures by optimizing the particles' size and composition. As a new class of high-temperature superconductors, such metal nanocluster particles are promising building blocks for high-Tc materials, devices, and networks.
Deformation of second and third quantization
NASA Astrophysics Data System (ADS)
Faizal, Mir
2015-03-01
In this paper, we will deform the second and third quantized theories by deforming the canonical commutation relations in such a way that they become consistent with the generalized uncertainty principle. Thus, we will first deform the second quantized commutator and obtain a deformed version of the Wheeler-DeWitt equation. Then we will further deform the third quantized theory by deforming the third quantized canonical commutation relation. This way we will obtain a deformed version of the third quantized theory for the multiverse.
ERIC Educational Resources Information Center
Wolf, Walter A., Ed.
1980-01-01
Presents three reports: a description for an upper-level course in protein chemistry; a technique for generating many unique unknowns for the determination of molecular weight by viscosity; and an analogy for quantization of energy levels in which molecules are considered as books in a library. (CS)
Reilly, Anthony M; Tkatchenko, Alexandre
2014-08-01
Aspirin has been used and studied for over a century but has only recently been shown to have an additional polymorphic form, known as form II. Since the two observed solid forms of aspirin are degenerate in terms of lattice energy, kinetic effects have been suggested to determine the metastability of the less abundant form II. Here, first-principles calculations provide an alternative explanation based on free-energy differences at room temperature. The explicit consideration of many-body van der Waals interactions in the free energy demonstrates that the stability of the most abundant form of aspirin is due to a subtle coupling between collective electronic fluctuations and quantized lattice vibrations. In addition, a systematic analysis of the elastic properties of the two forms of aspirin rules out mechanical instability of form II as making it metastable.
Kinetic theory for strongly coupled Coulomb systems
NASA Astrophysics Data System (ADS)
Dufty, James; Wrighton, Jeffrey
2018-01-01
The calculation of dynamical properties for matter under extreme conditions is a challenging task. The popular Kubo-Greenwood model exploits elements from equilibrium density-functional theory (DFT) that allow a detailed treatment of electron correlations, but its origin is largely phenomenological; traditional kinetic theories have a more secure foundation but are limited to weak ion-electron interactions. The objective here is to show how a combination of the two evolves naturally from the short-time limit for the generator of the effective single-electron dynamics governing time correlation functions without such limitations. This provides a theoretical context for the current DFT-related approach, the Kubo-Greenwood model, while showing the nature of its corrections. The method is to calculate the short-time dynamics in the single-electron subspace for a given configuration of the ions. This differs from the usual kinetic theory approach in which an average over the ions is performed as well. In this way the effective ion-electron interaction includes strong Coulomb coupling and is shown to be determined from DFT. The correlation functions have the form of the random-phase approximation for an inhomogeneous system but with renormalized ion-electron and electron-electron potentials. The dynamic structure function, density response function, and electrical conductivity are calculated as examples. The static local field corrections in the dielectric function are identified in this way. The current analysis is limited to semiclassical electrons (quantum statistical potentials), so important quantum conditions are excluded. However, a quantization of the kinetic theory is identified for broader application while awaiting its detailed derivation.
Perceptual Image Compression in Telemedicine
NASA Technical Reports Server (NTRS)
Watson, Andrew B.; Ahumada, Albert J., Jr.; Eckstein, Miguel; Null, Cynthia H. (Technical Monitor)
1996-01-01
The next era of space exploration, especially the "Mission to Planet Earth" will generate immense quantities of image data. For example, the Earth Observing System (EOS) is expected to generate in excess of one terabyte/day. NASA confronts a major technical challenge in managing this great flow of imagery: in collection, pre-processing, transmission to earth, archiving, and distribution to scientists at remote locations. Expected requirements in most of these areas clearly exceed current technology. Part of the solution to this problem lies in efficient image compression techniques. For much of this imagery, the ultimate consumer is the human eye. In this case image compression should be designed to match the visual capacities of the human observer. We have developed three techniques for optimizing image compression for the human viewer. The first consists of a formula, developed jointly with IBM and based on psychophysical measurements, that computes a DCT quantization matrix for any specified combination of viewing distance, display resolution, and display brightness. This DCT quantization matrix is used in most recent standards for digital image compression (JPEG, MPEG, CCITT H.261). The second technique optimizes the DCT quantization matrix for each individual image, based on the contents of the image. This is accomplished by means of a model of visual sensitivity to compression artifacts. The third technique extends the first two techniques to the realm of wavelet compression. Together these two techniques will allow systematic perceptual optimization of image compression in NASA imaging systems. Many of the image management challenges faced by NASA are mirrored in the field of telemedicine. Here too there are severe demands for transmission and archiving of large image databases, and the imagery is ultimately used primarily by human observers, such as radiologists. In this presentation I will describe some of our preliminary explorations of the applications of our technology to the special problems of telemedicine.
Tailoring Superconductivity with Quantum Dislocations.
Li, Mingda; Song, Qichen; Liu, Te-Huan; Meroueh, Laureen; Mahan, Gerald D; Dresselhaus, Mildred S; Chen, Gang
2017-08-09
Despite the established knowledge that crystal dislocations can affect a material's superconducting properties, the exact mechanism of the electron-dislocation interaction in a dislocated superconductor has long been missing. Being a type of defect, dislocations are expected to decrease a material's superconducting transition temperature (T c ) by breaking the coherence. Yet experimentally, even in isotropic type I superconductors, dislocations can either decrease, increase, or have little influence on T c . These experimental findings have yet to be understood. Although the anisotropic pairing in dirty superconductors has explained impurity-induced T c reduction, no quantitative agreement has been reached in the case a dislocation given its complexity. In this study, by generalizing the one-dimensional quantized dislocation field to three dimensions, we reveal that there are indeed two distinct types of electron-dislocation interactions. Besides the usual electron-dislocation potential scattering, there is another interaction driving an effective attraction between electrons that is caused by dislons, which are quantized modes of a dislocation. The role of dislocations to superconductivity is thus clarified as the competition between the classical and quantum effects, showing excellent agreement with existing experimental data. In particular, the existence of both classical and quantum effects provides a plausible explanation for the illusive origin of dislocation-induced superconductivity in semiconducting PbS/PbTe superlattice nanostructures. A quantitative criterion has been derived, in which a dislocated superconductor with low elastic moduli and small electron effective mass and in a confined environment is inclined to enhance T c . This provides a new pathway for engineering a material's superconducting properties by using dislocations as an additional degree of freedom.
Full Spectrum Conversion Using Traveling Pulse Wave Quantization
2017-03-01
Full Spectrum Conversion Using Traveling Pulse Wave Quantization Michael S. Kappes Mikko E. Waltari IQ-Analog Corporation San Diego, California...temporal-domain quantization technique called Traveling Pulse Wave Quantization (TPWQ). Full spectrum conversion is defined as the complete...pulse width measurements that are continuously generated hence the name “traveling” pulse wave quantization. Our TPWQ-based ADC is composed of a
The Casalbuoni-Brink-Schwarz superparticle with covariant, reducible constraints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dayi, O.F.
1992-04-30
This paper discusses the fermionic constraints of the massless Casalbuoni-Brink-Schwarz superparticle in d = 10 which are separated covariantly as first- and second-class constraints which are infinitely reducible. Although the reducibility conditions of the second-class constraints include the first-class ones a consistent quantization is possible. The ghost structure of the system for quantizing it in terms of the BFV-BRST methods is given and unitarity is shown.
NASA Technical Reports Server (NTRS)
King, J. C.
1975-01-01
The general orbit-coverage problem in a simplified physical model is investigated by application of numerical approaches derived from basic number theory. A system of basic and general properties is defined by which idealized periodic coverage patterns may be characterized, classified, and delineated. The principal common features of these coverage patterns are their longitudinal quantization, determined by the revolution number R, and their overall symmetry.
Generalized noise terms for the quantized fluctuational electrodynamics
NASA Astrophysics Data System (ADS)
Partanen, Mikko; Häyrynen, Teppo; Tulkki, Jukka; Oksanen, Jani
2017-03-01
The quantization of optical fields in vacuum has been known for decades, but extending the field quantization to lossy and dispersive media in nonequilibrium conditions has proven to be complicated due to the position-dependent electric and magnetic responses of the media. In fact, consistent position-dependent quantum models for the photon number in resonant structures have only been formulated very recently and only for dielectric media. Here we present a general position-dependent quantized fluctuational electrodynamics (QFED) formalism that extends the consistent field quantization to describe the photon number also in the presence of magnetic field-matter interactions. It is shown that the magnetic fluctuations provide an additional degree of freedom in media where the magnetic coupling to the field is prominent. Therefore, the field quantization requires an additional independent noise operator that is commuting with the conventional bosonic noise operator describing the polarization current fluctuations in dielectric media. In addition to allowing the detailed description of field fluctuations, our methods provide practical tools for modeling optical energy transfer and the formation of thermal balance in general dielectric and magnetic nanodevices. We use QFED to investigate the magnetic properties of microcavity systems to demonstrate an example geometry in which it is possible to probe fields arising from the electric and magnetic source terms. We show that, as a consequence of the magnetic Purcell effect, the tuning of the position of an emitter layer placed inside a vacuum cavity can make the emissivity of a magnetic emitter to exceed the emissivity of a corresponding electric emitter.
On the Problem of Bandwidth Partitioning in FDD Block-Fading Single-User MISO/SIMO Systems
NASA Astrophysics Data System (ADS)
Ivrlač, Michel T.; Nossek, Josef A.
2008-12-01
We report on our research activity on the problem of how to optimally partition the available bandwidth of frequency division duplex, multi-input single-output communication systems, into subbands for the uplink, the downlink, and the feedback. In the downlink, the transmitter applies coherent beamforming based on quantized channel information which is obtained by feedback from the receiver. As feedback takes away resources from the uplink, which could otherwise be used to transfer payload data, it is highly desirable to reserve the "right" amount of uplink resources for the feedback. Under the assumption of random vector quantization, and a frequency flat, independent and identically distributed block-fading channel, we derive closed-form expressions for both the feedback quantization and bandwidth partitioning which jointly maximize the sum of the average payload data rates of the downlink and the uplink. While we do introduce some approximations to facilitate mathematical tractability, the analytical solution is asymptotically exact as the number of antennas approaches infinity, while for systems with few antennas, it turns out to be a fairly accurate approximation. In this way, the obtained results are meaningful for practical communication systems, which usually can only employ a few antennas.
Integrability, Quantization and Moduli Spaces of Curves
NASA Astrophysics Data System (ADS)
Rossi, Paolo
2017-07-01
This paper has the purpose of presenting in an organic way a new approach to integrable (1+1)-dimensional field systems and their systematic quantization emerging from intersection theory of the moduli space of stable algebraic curves and, in particular, cohomological field theories, Hodge classes and double ramification cycles. This methods are alternative to the traditional Witten-Kontsevich framework and its generalizations by Dubrovin and Zhang and, among other advantages, have the merit of encompassing quantum integrable systems. Most of this material originates from an ongoing collaboration with A. Buryak, B. Dubrovin and J. Guéré.
Form factors and generalized parton distributions in basis light-front quantization
NASA Astrophysics Data System (ADS)
Adhikari, Lekha; Li, Yang; Zhao, Xingbo; Maris, Pieter; Vary, James P.; El-Hady, Alaa Abd
2016-05-01
We calculate the elastic form factors and the generalized parton distributions (GPDs) for four low-lying bound states of a demonstration fermion-antifermion system, strong-coupling positronium (e e ¯ ), using basis light-front quantization (BLFQ). By using this approach, we also calculate the impact-parameter-dependent GPDs q (x ,b⃗⊥) to visualize the fermion density in the transverse plane (b⃗⊥). We compare selected results with corresponding quantities in the nonrelativistic limit to reveal relativistic effects. Our results establish the foundation within BLFQ for investigating the form factors and the GPDs for hadronic systems.
Optical evidence of quantum rotor orbital excitations in orthorhombic manganites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovaleva, N. N., E-mail: nkovaleva@sci.lebedev.ru; Kugel, K. I.; Potůček, Z.
2016-05-15
In magnetic compounds with Jahn–Teller (JT) ions (such as Mn{sup 3+} or Cu{sup 2+}), the ordering of the electron or hole orbitals is associated with cooperative lattice distortions. There the role of JT effect, although widely recognized, is still elusive in the ground state properties. Here we discovered that, in these materials, there exist excitations whose energy spectrum is described in terms of the total angular momentum eigenstates and is quantized as in quantum rotors found in JT centers. We observed features originating from these excitations in the optical spectra of a model compound LaMnO{sub 3} using ellipsometry technique. Theymore » appear clearly as narrow sidebands accompanying the electron transition between the JT split orbitals at neighboring Mn{sup 3+} ions, displaying anomalous temperature behavior around the Néel temperature T{sub N} ≈ 140 K. We present these results together with new experimental data on photoluminescence found in LaMnO{sub 3}, which lend additional support to the ellipsometry implying the electronic-vibrational origin of the quantum rotor orbital excitations. We note that the discovered orbital excitations of quantum rotors may play an important role in many unusual properties observed in these materials upon doping, such as high-temperature superconductivity and colossal magnetoresistance.« less
Digital halftoning methods for selectively partitioning error into achromatic and chromatic channels
NASA Technical Reports Server (NTRS)
Mulligan, Jeffrey B.
1990-01-01
A method is described for reducing the visibility of artifacts arising in the display of quantized color images on CRT displays. The method is based on the differential spatial sensitivity of the human visual system to chromatic and achromatic modulations. Because the visual system has the highest spatial and temporal acuity for the luminance component of an image, a technique which will reduce luminance artifacts at the expense of introducing high-frequency chromatic errors is sought. A method based on controlling the correlations between the quantization errors in the individual phosphor images is explored. The luminance component is greatest when the phosphor errors are positively correlated, and is minimized when the phosphor errors are negatively correlated. The greatest effect of the correlation is obtained when the intensity quantization step sizes of the individual phosphors have equal luminances. For the ordered dither algorithm, a version of the method can be implemented by simply inverting the matrix of thresholds for one of the color components.
Quantization-Based Adaptive Actor-Critic Tracking Control With Tracking Error Constraints.
Fan, Quan-Yong; Yang, Guang-Hong; Ye, Dan
2018-04-01
In this paper, the problem of adaptive actor-critic (AC) tracking control is investigated for a class of continuous-time nonlinear systems with unknown nonlinearities and quantized inputs. Different from the existing results based on reinforcement learning, the tracking error constraints are considered and new critic functions are constructed to improve the performance further. To ensure that the tracking errors keep within the predefined time-varying boundaries, a tracking error transformation technique is used to constitute an augmented error system. Specific critic functions, rather than the long-term cost function, are introduced to supervise the tracking performance and tune the weights of the AC neural networks (NNs). A novel adaptive controller with a special structure is designed to reduce the effect of the NN reconstruction errors, input quantization, and disturbances. Based on the Lyapunov stability theory, the boundedness of the closed-loop signals and the desired tracking performance can be guaranteed. Finally, simulations on two connected inverted pendulums are given to illustrate the effectiveness of the proposed method.
Methods and apparatuses for self-generating fault-tolerant keys in spread-spectrum systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moradi, Hussein; Farhang, Behrouz; Subramanian, Vijayarangam
Self-generating fault-tolerant keys for use in spread-spectrum systems are disclosed. At a communication device, beacon signals are received from another communication device and impulse responses are determined from the beacon signals. The impulse responses are circularly shifted to place a largest sample at a predefined position. The impulse responses are converted to a set of frequency responses in a frequency domain. The frequency responses are shuffled with a predetermined shuffle scheme to develop a set of shuffled frequency responses. A set of phase differences is determined as a difference between an angle of the frequency response and an angle ofmore » the shuffled frequency response at each element of the corresponding sets. Each phase difference is quantized to develop a set of secret-key quantized phases and a set of spreading codes is developed wherein each spreading code includes a corresponding phase of the set of secret-key quantized phases.« less
Unique Fock quantization of scalar cosmological perturbations
NASA Astrophysics Data System (ADS)
Fernández-Méndez, Mikel; Mena Marugán, Guillermo A.; Olmedo, Javier; Velhinho, José M.
2012-05-01
We investigate the ambiguities in the Fock quantization of the scalar perturbations of a Friedmann-Lemaître-Robertson-Walker model with a massive scalar field as matter content. We consider the case of compact spatial sections (thus avoiding infrared divergences), with the topology of a three-sphere. After expanding the perturbations in series of eigenfunctions of the Laplace-Beltrami operator, the Hamiltonian of the system is written up to quadratic order in them. We fix the gauge of the local degrees of freedom in two different ways, reaching in both cases the same qualitative results. A canonical transformation, which includes the scaling of the matter-field perturbations by the scale factor of the geometry, is performed in order to arrive at a convenient formulation of the system. We then study the quantization of these perturbations in the classical background determined by the homogeneous variables. Based on previous work, we introduce a Fock representation for the perturbations in which: (a) the complex structure is invariant under the isometries of the spatial sections and (b) the field dynamics is implemented as a unitary operator. These two properties select not only a unique unitary equivalence class of representations, but also a preferred field description, picking up a canonical pair of field variables among all those that can be obtained by means of a time-dependent scaling of the matter field (completed into a linear canonical transformation). Finally, we present an equivalent quantization constructed in terms of gauge-invariant quantities. We prove that this quantization can be attained by a mode-by-mode time-dependent linear canonical transformation which admits a unitary implementation, so that it is also uniquely determined.
Gate-Defined Quantum Confinement in InSe-based van der Waals Heterostructures.
Hamer, Matthew J; Tóvári, Endre; Zhu, Mengjian; Thompson, Michael Dermot; Mayorov, Alexander S; Prance, Jonathan; Lee, Yongjin; Haley, Richard; Kudrynskyi, Zakhar R; Patanè, Amalia; Terry, Daniel; Kovalyuk, Zakhar D; Ensslin, Klaus; Kretinin, Andrey V; Geim, Andre K; Gorbachev, Roman Vladislavovich
2018-05-15
Indium selenide, a post-transition metal chalcogenide, is a novel two-dimensional (2D) semiconductor with interesting electronic properties. Its tunable band gap and high electron mobility have already attracted considerable research interest. Here we demonstrate strong quantum confinement and manipulation of single electrons in devices made from few-layer crystals of InSe using electrostatic gating. We report on gate-controlled quantum dots in the Coulomb blockade regime as well as one-dimensional quantization in point contacts, revealing multiple plateaus. The work represents an important milestone in the development of quality devices based on 2D materials and makes InSe a prime candidate for relevant electronic and optoelectronic applications.
Visible-light-induced two-electron-transfer photoreductions on CdS: Effects of morphology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiragami, Tsutomu; Pac, Chyongjin; Yanagida, Shozo
1990-01-25
Freshly prepared CdS suspensions (CdS-O) consisting of quantized particles and their loose aggregation catalyze photoreductions of aromatic ketones and olefins in methanol under visible light irradiation using triethylamine as sacrificial electron donor, yielding alcohols and dihydro compounds, respectively, which are more selective than photocatalysis of commercially available crystalline CdS (Aldrich) (CdS-Ald). Deuterium incorporation experiments in photolysis of dimethyl maleate in methanol-O-D revealed that CdS-O catalyzes sequential two-electron-transfer photoreduction, affording dideuterated dimethyl succinate, while CdS-Ald induces both photoreduction and photoisomerization through disproportionation between one-electron-transfer-reduction intermediates, yielding much trideuterated dimethyl succinate and monodeuterated dimethyl fumarate and maleate.
NASA Astrophysics Data System (ADS)
Myrheim, J.
Contents 1 Introduction 1.1 The concept of particle statistics 1.2 Statistical mechanics and the many-body problem 1.3 Experimental physics in two dimensions 1.4 The algebraic approach: Heisenberg quantization 1.5 More general quantizations 2 The configuration space 2.1 The Euclidean relative space for two particles 2.2 Dimensions d=1,2,3 2.3 Homotopy 2.4 The braid group 3 Schroedinger quantization in one dimension 4 Heisenberg quantization in one dimension 4.1 The coordinate representation 5 Schroedinger quantization in dimension d ≥ 2 5.1 Scalar wave functions 5.2 Homotopy 5.3 Interchange phases 5.4 The statistics vector potential 5.5 The N-particle case 5.6 Chern-Simons theory 6 The Feynman path integral for anyons 6.1 Eigenstates for position and momentum 6.2 The path integral 6.3 Conjugation classes in SN 6.4 The non-interacting case 6.5 Duality of Feynman and Schroedinger quantization 7 The harmonic oscillator 7.1 The two-dimensional harmonic oscillator 7.2 Two anyons in a harmonic oscillator potential 7.3 More than two anyons 7.4 The three-anyon problem 8 The anyon gas 8.1 The cluster and virial expansions 8.2 First and second order perturbative results 8.3 Regularization by periodic boundary conditions 8.4 Regularization by a harmonic oscillator potential 8.5 Bosons and fermions 8.6 Two anyons 8.7 Three anyons 8.8 The Monte Carlo method 8.9 The path integral representation of the coefficients GP 8.10 Exact and approximate polynomials 8.11 The fourth virial coefficient of anyons 8.12 Two polynomial theorems 9 Charged particles in a constant magnetic field 9.1 One particle in a magnetic field 9.2 Two anyons in a magnetic field 9.3 The anyon gas in a magnetic field 10 Interchange phases and geometric phases 10.1 Introduction to geometric phases 10.2 One particle in a magnetic field 10.3 Two particles in a magnetic field 10.4 Interchange of two anyons in potential wells 10.5 Laughlin's theory of the fractional quantum Hall effect
NASA Astrophysics Data System (ADS)
Thakur, Anil; Kashyap, Rajinder
2018-05-01
Single nanowire electrode devices have their application in variety of fields which vary from information technology to solar energy. Silver nanowires, made in an aqueous chemical reduction process, can be reacted with gold salt to create bimetallic nanowires. Silver nanowire can be used as electrodes in batteries and have many other applications. In this paper we investigated structural and electronic transport properties of Ag nanowire using density functional theory (DFT) with SIESTA code. Electronic transport properties of Ag nanowire have been studied theoretically. First of all an optimized geometry for Ag nanowire is obtained using DFT calculations, and then the transport relations are obtained using NEGF approach. SIESTA and TranSIESTA simulation codes are used in the calculations respectively. The electrodes are chosen to be the same as the central region where transport is studied, eliminating current quantization effects due to contacts and focusing the electronic transport study to the intrinsic structure of the material. By varying chemical potential in the electrode regions, an I-V curve is traced which is in agreement with the predicted behavior. Bulk properties of Ag are in agreement with experimental values which make the study of electronic and transport properties in silver nanowires interesting because they are promising materials as bridging pieces in nanoelectronics. Transmission coefficient and V-I characteristic of Ag nano wire reveals that silver nanowire can be used as an electrode device.
Image-adaptive and robust digital wavelet-domain watermarking for images
NASA Astrophysics Data System (ADS)
Zhao, Yi; Zhang, Liping
2018-03-01
We propose a new frequency domain wavelet based watermarking technique. The key idea of our scheme is twofold: multi-tier solution representation of image and odd-even quantization embedding/extracting watermark. Because many complementary watermarks need to be hidden, the watermark image designed is image-adaptive. The meaningful and complementary watermark images was embedded into the original image (host image) by odd-even quantization modifying coefficients, which was selected from the detail wavelet coefficients of the original image, if their magnitudes are larger than their corresponding Just Noticeable Difference thresholds. The tests show good robustness against best-known attacks such as noise addition, image compression, median filtering, clipping as well as geometric transforms. Further research may improve the performance by refining JND thresholds.
JND measurements of the speech formants parameters and its implication in the LPC pole quantization
NASA Astrophysics Data System (ADS)
Orgad, Yaakov
1988-08-01
The inherent sensitivity of auditory perception is explicitly used with the objective of designing an efficient speech encoder. Speech can be modelled by a filter representing the vocal tract shape that is driven by an excitation signal representing glottal air flow. This work concentrates on the filter encoding problem, assuming that excitation signal encoding is optimal. Linear predictive coding (LPC) techniques were used to model a short speech segment by an all-pole filter; each pole was directly related to the speech formants. Measurements were made of the auditory just noticeable difference (JND) corresponding to the natural speech formants, with the LPC filter poles as the best candidates to represent the speech spectral envelope. The JND is the maximum precision required in speech quantization; it was defined on the basis of the shift of one pole parameter of a single frame of a speech segment, necessary to induce subjective perception of the distortion, with .75 probability. The average JND in LPC filter poles in natural speech was found to increase with increasing pole bandwidth and, to a lesser extent, frequency. The JND measurements showed a large spread of the residuals around the average values, indicating that inter-formant coupling and, perhaps, other, not yet fully understood, factors were not taken into account at this stage of the research. A future treatment should consider these factors. The average JNDs obtained in this work were used to design pole quantization tables for speech coding and provided a better bit-rate than the standard quantizer of reflection coefficient; a 30-bits-per-frame pole quantizer yielded a speech quality similar to that obtained with a standard 41-bits-per-frame reflection coefficient quantizer. Owing to the complexity of the numerical root extraction system, the practical implementation of the pole quantization approach remains to be proved.
Conductance Quantization in Resistive Random Access Memory
NASA Astrophysics Data System (ADS)
Li, Yang; Long, Shibing; Liu, Yang; Hu, Chen; Teng, Jiao; Liu, Qi; Lv, Hangbing; Suñé, Jordi; Liu, Ming
2015-10-01
The intrinsic scaling-down ability, simple metal-insulator-metal (MIM) sandwich structure, excellent performances, and complementary metal-oxide-semiconductor (CMOS) technology-compatible fabrication processes make resistive random access memory (RRAM) one of the most promising candidates for the next-generation memory. The RRAM device also exhibits rich electrical, thermal, magnetic, and optical effects, in close correlation with the abundant resistive switching (RS) materials, metal-oxide interface, and multiple RS mechanisms including the formation/rupture of nanoscale to atomic-sized conductive filament (CF) incorporated in RS layer. Conductance quantization effect has been observed in the atomic-sized CF in RRAM, which provides a good opportunity to deeply investigate the RS mechanism in mesoscopic dimension. In this review paper, the operating principles of RRAM are introduced first, followed by the summarization of the basic conductance quantization phenomenon in RRAM and the related RS mechanisms, device structures, and material system. Then, we discuss the theory and modeling of quantum transport in RRAM. Finally, we present the opportunities and challenges in quantized RRAM devices and our views on the future prospects.
Conductance Quantization in Resistive Random Access Memory.
Li, Yang; Long, Shibing; Liu, Yang; Hu, Chen; Teng, Jiao; Liu, Qi; Lv, Hangbing; Suñé, Jordi; Liu, Ming
2015-12-01
The intrinsic scaling-down ability, simple metal-insulator-metal (MIM) sandwich structure, excellent performances, and complementary metal-oxide-semiconductor (CMOS) technology-compatible fabrication processes make resistive random access memory (RRAM) one of the most promising candidates for the next-generation memory. The RRAM device also exhibits rich electrical, thermal, magnetic, and optical effects, in close correlation with the abundant resistive switching (RS) materials, metal-oxide interface, and multiple RS mechanisms including the formation/rupture of nanoscale to atomic-sized conductive filament (CF) incorporated in RS layer. Conductance quantization effect has been observed in the atomic-sized CF in RRAM, which provides a good opportunity to deeply investigate the RS mechanism in mesoscopic dimension. In this review paper, the operating principles of RRAM are introduced first, followed by the summarization of the basic conductance quantization phenomenon in RRAM and the related RS mechanisms, device structures, and material system. Then, we discuss the theory and modeling of quantum transport in RRAM. Finally, we present the opportunities and challenges in quantized RRAM devices and our views on the future prospects.
Treatment of constraints in the stochastic quantization method and covariantized Langevin equation
NASA Astrophysics Data System (ADS)
Ikegami, Kenji; Kimura, Tadahiko; Mochizuki, Riuji
1993-04-01
We study the treatment of the constraints in the stochastic quantization method. We improve the treatment of the stochastic consistency condition proposed by Namiki et al. by suitably taking into account the Ito calculus. Then we obtain an improved Langevi equation and the Fokker-Planck equation which naturally leads to the correct path integral quantization of the constrained system as the stochastic equilibrium state. This treatment is applied to an O( N) non-linear α model and it is shown that singular terms appearing in the improved Langevin equation cancel out the σ n(O) divergences in one loop order. We also ascertain that the above Langevin equation, rewritten in terms of idependent variables, is actually equivalent to the one in the general-coordinate transformation covariant and vielbein-rotation invariant formalish.
Berezin-Toeplitz quantization and naturally defined star products for Kähler manifolds
NASA Astrophysics Data System (ADS)
Schlichenmaier, Martin
2018-04-01
For compact quantizable Kähler manifolds the Berezin-Toeplitz quantization schemes, both operator and deformation quantization (star product) are reviewed. The treatment includes Berezin's covariant symbols and the Berezin transform. The general compact quantizable case was done by Bordemann-Meinrenken-Schlichenmaier, Schlichenmaier, and Karabegov-Schlichenmaier. For star products on Kähler manifolds, separation of variables, or equivalently star product of (anti-) Wick type, is a crucial property. As canonically defined star products the Berezin-Toeplitz, Berezin, and the geometric quantization are treated. It turns out that all three are equivalent, but different.
NASA Astrophysics Data System (ADS)
Nielsen, N. K.; Quaade, U. J.
1995-07-01
The physical phase space of the relativistic top, as defined by Hansson and Regge, is expressed in terms of canonical coordinates of the Poincaré group manifold. The system is described in the Hamiltonian formalism by the mass-shell condition and constraints that reduce the number of spin degrees of freedom. The constraints are second class and are modified into a set of first class constraints by adding combinations of gauge-fixing functions. The Batalin-Fradkin-Vilkovisky method is then applied to quantize the system in the path integral formalism in Hamiltonian form. It is finally shown that different gauge choices produce different equivalent forms of the constraints.
BRST theory without Hamiltonian and Lagrangian
NASA Astrophysics Data System (ADS)
Lyakhovich, S. L.; Sharapov, A. A.
2005-03-01
We consider a generic gauge system, whose physical degrees of freedom are obtained by restriction on a constraint surface followed by factorization with respect to the action of gauge transformations; in so doing, no Hamiltonian structure or action principle is supposed to exist. For such a generic gauge system we construct a consistent BRST formulation, which includes the conventional BV Lagrangian and BFV Hamiltonian schemes as particular cases. If the original manifold carries a weak Poisson structure (a bivector field giving rise to a Poisson bracket on the space of physical observables) the generic gauge system is shown to admit deformation quantization by means of the Kontsevich formality theorem. A sigma-model interpretation of this quantization algorithm is briefly discussed.
Quantization of the Szekeres system
NASA Astrophysics Data System (ADS)
Paliathanasis, A.; Zampeli, Adamantia; Christodoulakis, T.; Mustafa, M. T.
2018-06-01
We study the quantum corrections on the Szekeres system in the context of canonical quantization in the presence of symmetries. We start from an effective point-like Lagrangian with two integrals of motion, one corresponding to the Hamiltonian and the other to a second rank killing tensor. Imposing their quantum version on the wave function results to a solution which is then interpreted in the context of Bohmian mechanics. In this semiclassical approach, it is shown that there is no quantum corrections, thus the classical trajectories of the Szekeres system are not affected at this level. Finally, we define a probability function which shows that a stationary surface of the probability corresponds to a classical exact solution.
Application of a VLSI vector quantization processor to real-time speech coding
NASA Technical Reports Server (NTRS)
Davidson, G.; Gersho, A.
1986-01-01
Attention is given to a working vector quantization processor for speech coding that is based on a first-generation VLSI chip which efficiently performs the pattern-matching operation needed for the codebook search process (CPS). Using this chip, the CPS architecture has been successfully incorporated into a compact, single-board Vector PCM implementation operating at 7-18 kbits/sec. A real time Adaptive Vector Predictive Coder system using the CPS has also been implemented.
Weyl Exceptional Rings in a Three-Dimensional Dissipative Cold Atomic Gas (Author’s Manuscript)
2017-01-27
Weyl Exceptional Rings in a Three-Dimensional Dissipative Cold Atomic Gas Yong Xu,∗ Sheng-Tao Wang, and L.-M. Duan Department of Physics, University...atomic gas trapped in an optical lattice. Recently, condensed matter systems have proven to be a powerful platform to study low energy gapless...possess a nonzero quantized Chern number. This leads to a natural question of whether there exists a topological ring exhibiting both a quantized Chern
A visual detection model for DCT coefficient quantization
NASA Technical Reports Server (NTRS)
Ahumada, Albert J., Jr.; Watson, Andrew B.
1994-01-01
The discrete cosine transform (DCT) is widely used in image compression and is part of the JPEG and MPEG compression standards. The degree of compression and the amount of distortion in the decompressed image are controlled by the quantization of the transform coefficients. The standards do not specify how the DCT coefficients should be quantized. One approach is to set the quantization level for each coefficient so that the quantization error is near the threshold of visibility. Results from previous work are combined to form the current best detection model for DCT coefficient quantization noise. This model predicts sensitivity as a function of display parameters, enabling quantization matrices to be designed for display situations varying in luminance, veiling light, and spatial frequency related conditions (pixel size, viewing distance, and aspect ratio). It also allows arbitrary color space directions for the representation of color. A model-based method of optimizing the quantization matrix for an individual image was developed. The model described above provides visual thresholds for each DCT frequency. These thresholds are adjusted within each block for visual light adaptation and contrast masking. For given quantization matrix, the DCT quantization errors are scaled by the adjusted thresholds to yield perceptual errors. These errors are pooled nonlinearly over the image to yield total perceptual error. With this model one may estimate the quantization matrix for a particular image that yields minimum bit rate for a given total perceptual error, or minimum perceptual error for a given bit rate. Custom matrices for a number of images show clear improvement over image-independent matrices. Custom matrices are compatible with the JPEG standard, which requires transmission of the quantization matrix.
Vasseur, Guillaume; Fagot-Revurat, Yannick; Sicot, Muriel; ...
2016-01-04
We study the electronic structure of an ordered array of poly(para-phenylene) chains produced by surface-catalyzed dehalogenative polymerization of 1,4-dibromobenzene on copper (110). The quantization of unoccupied molecular states is measured as a function of oligomer length by scanning tunnelling spectroscopy, with Fermi level crossings observed for chains longer than ten phenyl rings. Angle-resolved photoelectron spectroscopy reveals a quasi-one-dimensional valence band as well as a direct gap of 1.15 eV, as the conduction band is partially filled through adsorption on the surface. Tight-binding modelling and ab initio density functional theory calculations lead to a full description of the organic band-structure, includingmore » the k-dispersion, the gap size and electron charge transfer mechanisms, highlighting a strong substrate-molecule interaction that drives the system into a metallic behaviour. In summary, we have fully characterized the band structure of a carbon-based conducting wire. This model system may be considered as a fingerprint of -conjugation of surface organic frameworks.« less
Heat transport through atomic contacts.
Mosso, Nico; Drechsler, Ute; Menges, Fabian; Nirmalraj, Peter; Karg, Siegfried; Riel, Heike; Gotsmann, Bernd
2017-05-01
Heat transport and dissipation at the nanoscale severely limit the scaling of high-performance electronic devices and circuits. Metallic atomic junctions serve as model systems to probe electrical and thermal transport down to the atomic level as well as quantum effects that occur in one-dimensional (1D) systems. Whereas charge transport in atomic junctions has been studied intensively in the past two decades, heat transport remains poorly characterized because it requires the combination of a high sensitivity to small heat fluxes and the formation of stable atomic contacts. Here we report heat-transfer measurements through atomic junctions and analyse the thermal conductance of single-atom gold contacts at room temperature. Simultaneous measurements of charge and heat transport reveal the proportionality of electrical and thermal conductance, quantized with the respective conductance quanta. This constitutes a verification of the Wiedemann-Franz law at the atomic scale.
Systematic effects in the HfF+-ion experiment to search for the electron electric dipole moment
NASA Astrophysics Data System (ADS)
Petrov, A. N.
2018-05-01
The energy splittings for J =1 , F =3 /2 , | mF|=3 /2 hyperfine levels of the 3Δ1 electronic state of 180Hf+19F ion are calculated as functions of the external variable electric and magnetic fields within two approaches. In the first one, the transition to the rotating frame is performed, whereas in the second approach, the quantization of rotating electromagnetic field is performed. Calculations are required for understanding possible systematic errors in the experiment to search for the electron electric dipole moment (e EDM ) with the 180Hf+19F ion.
Miller, William H.; Cotton, Stephen J.
2016-08-28
It is pointed out that the classical phase space distribution in action-angle (a-a) variables obtained from a Wigner function depends on how the calculation is carried out: if one computes the standard Wigner function in Cartesian variables (p, x), and then replaces p and x by their expressions in terms of a-a variables, one obtains a different result than if the Wigner function is computed directly in terms of the a-a variables. Furthermore, the latter procedure gives a result more consistent with classical and semiclassical theory - e.g., by incorporating the Bohr-Sommerfeld quantization condition (quantum states defined by integer valuesmore » of the action variable) as well as the Heisenberg correspondence principle for matrix elements of an operator between such states - and has also been shown to be more accurate when applied to electronically non-adiabatic applications as implemented within the recently developed symmetrical quasi-classical (SQC) Meyer-Miller (MM) approach. Moreover, use of the Wigner function (obtained directly) in a-a variables shows how our standard SQC/MM approach can be used to obtain off-diagonal elements of the electronic density matrix by processing in a different way the same set of trajectories already used (in the SQC/MM methodology) to obtain the diagonal elements.« less
Miller, William H; Cotton, Stephen J
2016-08-28
It is pointed out that the classical phase space distribution in action-angle (a-a) variables obtained from a Wigner function depends on how the calculation is carried out: if one computes the standard Wigner function in Cartesian variables (p, x), and then replaces p and x by their expressions in terms of a-a variables, one obtains a different result than if the Wigner function is computed directly in terms of the a-a variables. Furthermore, the latter procedure gives a result more consistent with classical and semiclassical theory-e.g., by incorporating the Bohr-Sommerfeld quantization condition (quantum states defined by integer values of the action variable) as well as the Heisenberg correspondence principle for matrix elements of an operator between such states-and has also been shown to be more accurate when applied to electronically non-adiabatic applications as implemented within the recently developed symmetrical quasi-classical (SQC) Meyer-Miller (MM) approach. Moreover, use of the Wigner function (obtained directly) in a-a variables shows how our standard SQC/MM approach can be used to obtain off-diagonal elements of the electronic density matrix by processing in a different way the same set of trajectories already used (in the SQC/MM methodology) to obtain the diagonal elements.
A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups.
Gittins, D I; Bethell, D; Schiffrin, D J; Nichols, R J
2000-11-02
So-called bottom-up fabrication methods aim to assemble and integrate molecular components exhibiting specific functions into electronic devices that are orders of magnitude smaller than can be fabricated by lithographic techniques. Fundamental to the success of the bottom-up approach is the ability to control electron transport across molecular components. Organic molecules containing redox centres-chemical species whose oxidation number, and hence electronic structure, can be changed reversibly-support resonant tunnelling and display promising functional behaviour when sandwiched as molecular layers between electrical contacts, but their integration into more complex assemblies remains challenging. For this reason, functionalized metal nanoparticles have attracted much interest: they exhibit single-electron characteristics (such as quantized capacitance charging) and can be organized through simple self-assembly methods into well ordered structures, with the nanoparticles at controlled locations. Here we report scanning tunnelling microscopy measurements showing that organic molecules containing redox centres can be used to attach metal nanoparticles to electrode surfaces and so control the electron transport between them. Our system consists of gold nanoclusters a few nanometres across and functionalized with polymethylene chains that carry a central, reversibly reducible bipyridinium moiety. We expect that the ability to electronically contact metal nanoparticles via redox-active molecules, and to alter profoundly their tunnelling properties by charge injection into these molecules, can form the basis for a range of nanoscale electronic switches.
ERIC Educational Resources Information Center
deSouza, Romualdo T.; Iyengar, Srinivasan S.
2013-01-01
A first-year undergraduate course that introduces students to chemistry through a conceptually detailed description of quantum mechanics is outlined. Quantization as arising from the confinement of a particle is presented and these ideas are used to introduce the reasons behind resonance, molecular orbital theory, degeneracy of electronic states,…
Video data compression using artificial neural network differential vector quantization
NASA Technical Reports Server (NTRS)
Krishnamurthy, Ashok K.; Bibyk, Steven B.; Ahalt, Stanley C.
1991-01-01
An artificial neural network vector quantizer is developed for use in data compression applications such as Digital Video. Differential Vector Quantization is used to preserve edge features, and a new adaptive algorithm, known as Frequency-Sensitive Competitive Learning, is used to develop the vector quantizer codebook. To develop real time performance, a custom Very Large Scale Integration Application Specific Integrated Circuit (VLSI ASIC) is being developed to realize the associative memory functions needed in the vector quantization algorithm. By using vector quantization, the need for Huffman coding can be eliminated, resulting in superior performance against channel bit errors than methods that use variable length codes.
Davidović, A; Huntington, E H; Frater, M R
2009-07-01
For some nonlinear systems the performance can improve with an increasing noise level. Such noise-induced improvement in static nonlinearities is of great interest for practical applications since many systems can be modeled in that way (e.g., sensors, quantizers, limiters, etc.). We present experimental evidence that noise-induced performance improvement occurs in those systems as a consequence of discretization in time with the achievable signal-to-noise ratio (SNR) gain increasing with decreasing ratio of input noise bandwidth and total measurement bandwidth. By modifying the input noise bandwidth, noise-induced improvement with SNR gain larger than unity is demonstrated in a system where it was not previously thought possible. Our experimental results bring closer two different theoretical models for the same class of nonlinearities and shed light on the behavior of static nonlinear discrete-time systems.
Effect of magnetic quantization on ion acoustic waves ultra-relativistic dense plasma
NASA Astrophysics Data System (ADS)
Javed, Asif; Rasheed, A.; Jamil, M.; Siddique, M.; Tsintsadze, N. L.
2017-11-01
In this paper, we have studied the influence of magnetic quantization of orbital motion of the electrons on the profile of linear and nonlinear ion-acoustic waves, which are propagating in the ultra-relativistic dense magneto quantum plasmas. We have employed both Thomas Fermi and Quantum Magneto Hydrodynamic models (along with the Poisson equation) of quantum plasmas. To investigate the large amplitude nonlinear structure of the acoustic wave, Sagdeev-Pseudo-Potential approach has been adopted. The numerical analysis of the linear dispersion relation and the nonlinear acoustic waves has been presented by drawing their graphs that highlight the effects of plasma parameters on these waves in both the linear and the nonlinear regimes. It has been noticed that only supersonic ion acoustic solitary waves can be excited in the above mentioned quantum plasma even when the value of the critical Mach number is less than unity. Both width and depth of Sagdeev potential reduces on increasing the magnetic quantization parameter η. Whereas the amplitude of the ion acoustic soliton reduces on increasing η, its width appears to be directly proportional to η. The present work would be helpful to understand the excitation of nonlinear ion-acoustic waves in the dense astrophysical environments such as magnetars and in intense-laser plasma interactions.
A quantized microwave quadrupole insulator with topologically protected corner states
NASA Astrophysics Data System (ADS)
Peterson, Christopher W.; Benalcazar, Wladimir A.; Hughes, Taylor L.; Bahl, Gaurav
2018-03-01
The theory of electric polarization in crystals defines the dipole moment of an insulator in terms of a Berry phase (geometric phase) associated with its electronic ground state. This concept not only solves the long-standing puzzle of how to calculate dipole moments in crystals, but also explains topological band structures in insulators and superconductors, including the quantum anomalous Hall insulator and the quantum spin Hall insulator, as well as quantized adiabatic pumping processes. A recent theoretical study has extended the Berry phase framework to also account for higher electric multipole moments, revealing the existence of higher-order topological phases that have not previously been observed. Here we demonstrate experimentally a member of this predicted class of materials—a quantized quadrupole topological insulator—produced using a gigahertz-frequency reconfigurable microwave circuit. We confirm the non-trivial topological phase using spectroscopic measurements and by identifying corner states that result from the bulk topology. In addition, we test the critical prediction that these corner states are protected by the topology of the bulk, and are not due to surface artefacts, by deforming the edges of the crystal lattice from the topological to the trivial regime. Our results provide conclusive evidence of a unique form of robustness against disorder and deformation, which is characteristic of higher-order topological insulators.
Measuring the orbital angular momentum spectrum of an electron beam
Grillo, Vincenzo; Tavabi, Amir H.; Venturi, Federico; Larocque, Hugo; Balboni, Roberto; Gazzadi, Gian Carlo; Frabboni, Stefano; Lu, Peng-Han; Mafakheri, Erfan; Bouchard, Frédéric; Dunin-Borkowski, Rafal E.; Boyd, Robert W.; Lavery, Martin P. J.; Padgett, Miles J.; Karimi, Ebrahim
2017-01-01
Electron waves that carry orbital angular momentum (OAM) are characterized by a quantized and unbounded magnetic dipole moment parallel to their propagation direction. When interacting with magnetic materials, the wavefunctions of such electrons are inherently modified. Such variations therefore motivate the need to analyse electron wavefunctions, especially their wavefronts, to obtain information regarding the material's structure. Here, we propose, design and demonstrate the performance of a device based on nanoscale holograms for measuring an electron's OAM components by spatially separating them. We sort pure and superposed OAM states of electrons with OAM values of between −10 and 10. We employ the device to analyse the OAM spectrum of electrons that have been affected by a micron-scale magnetic dipole, thus establishing that our sorter can be an instrument for nanoscale magnetic spectroscopy. PMID:28537248
ERIC Educational Resources Information Center
Zou, Xueli; Dietz, Eric; McGuire, Trevor; Fox, Louise; Norris, Tiara; Diamond, Brendan; Chavez, Ricardo; Cheng, Stephen
2008-01-01
Since Robert Millikan discovered the quantization of electric charge and measured its fundamental value over 90 years ago, his oil-drop experiment has become essential in physics laboratory classes at both the high school and college level. As physics instructors, however, many of us have used the traditional setup and experienced the tedium of…
Coding and Quantization in Communications and Microeconomics
ERIC Educational Resources Information Center
Xu, Yun
2013-01-01
Since information theory was developed by Claude E. Shannon, in addition to its primary role in communications and networking, it has broadened to find applications in many other areas of science and technology, such as microeconomics, statistics, and neuroscience. This thesis investigates the application of information theoretic viewpoints to two…
Flick, Johannes; Ruggenthaler, Michael; Appel, Heiko; Rubio, Angel
2015-12-15
The density-functional approach to quantum electrodynamics extends traditional density-functional theory and opens the possibility to describe electron-photon interactions in terms of effective Kohn-Sham potentials. In this work, we numerically construct the exact electron-photon Kohn-Sham potentials for a prototype system that consists of a trapped electron coupled to a quantized electromagnetic mode in an optical high-Q cavity. Although the effective current that acts on the photons is known explicitly, the exact effective potential that describes the forces exerted by the photons on the electrons is obtained from a fixed-point inversion scheme. This procedure allows us to uncover important beyond-mean-field features of the effective potential that mark the breakdown of classical light-matter interactions. We observe peak and step structures in the effective potentials, which can be attributed solely to the quantum nature of light; i.e., they are real-space signatures of the photons. Our findings show how the ubiquitous dipole interaction with a classical electromagnetic field has to be modified in real space to take the quantum nature of the electromagnetic field fully into account.
Gigahertz single-electron pumping in silicon with an accuracy better than 9.2 parts in 10{sup 7}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamahata, Gento, E-mail: yamahata.gento@lab.ntt.co.jp; Karasawa, Takeshi; Fujiwara, Akira
2016-07-04
High-speed and high-accuracy pumping of a single electron is crucial for realizing an accurate current source, which is a promising candidate for a quantum current standard. Here, using a high-accuracy measurement system traceable to primary standards, we evaluate the accuracy of a Si tunable-barrier single-electron pump driven by a single sinusoidal signal. The pump operates at frequencies up to 6.5 GHz, producing a current of more than 1 nA. At 1 GHz, the current plateau with a level of about 160 pA is found to be accurate to better than 0.92 ppm (parts per million), which is a record value for 1-GHz operation. At 2 GHz,more » the current plateau offset from 1ef (∼320 pA) by 20 ppm is observed. The current quantization accuracy is improved by applying a magnetic field of 14 T, and we observe a current level of 1ef with an accuracy of a few ppm. The presented gigahertz single-electron pumping with a high accuracy is an important step towards a metrological current standard.« less
Zhang, Senlin; Chen, Huayan; Liu, Meiqin; Zhang, Qunfei
2017-11-07
Target tracking is one of the broad applications of underwater wireless sensor networks (UWSNs). However, as a result of the temporal and spatial variability of acoustic channels, underwater acoustic communications suffer from an extremely limited bandwidth. In order to reduce network congestion, it is important to shorten the length of the data transmitted from local sensors to the fusion center by quantization. Although quantization can reduce bandwidth cost, it also brings about bad tracking performance as a result of information loss after quantization. To solve this problem, this paper proposes an optimal quantization-based target tracking scheme. It improves the tracking performance of low-bit quantized measurements by minimizing the additional covariance caused by quantization. The simulation demonstrates that our scheme performs much better than the conventional uniform quantization-based target tracking scheme and the increment of the data length affects our scheme only a little. Its tracking performance improves by only 4.4% from 2- to 3-bit, which means our scheme weakly depends on the number of data bits. Moreover, our scheme also weakly depends on the number of participate sensors, and it can work well in sparse sensor networks. In a 6 × 6 × 6 sensor network, compared with 4 × 4 × 4 sensor networks, the number of participant sensors increases by 334.92%, while the tracking accuracy using 1-bit quantized measurements improves by only 50.77%. Overall, our optimal quantization-based target tracking scheme can achieve the pursuit of data-efficiency, which fits the requirements of low-bandwidth UWSNs.
Electronic excitations in finite and infinite polyenes
NASA Astrophysics Data System (ADS)
Tavan, Paul; Schulten, Klaus
1987-09-01
We study electronic excitations in long polyenes, i.e., in one-dimensional strongly correlated electron systems which are neither infinite nor small. The excitations are described within Hubbard and Pariser-Parr-Pople (PPP) models by means of a multiple-reference double-excitation expansion [P. Tavan and K. Schulten, J. Chem. Phys. 85, 6602 (1986)]. We find that quantized ``transition'' momenta can be assigned to electronic excitations in finite chains. These momenta link excitation energies of finite chains to dispersion relations of infinite chains, i.e., they bridge the gap between finite and infinite systems. A key result is the following: Excitation energies E in polyenes with N carbon atoms are described very accurately by the formula Eβ=ΔEβ0+αβk(N)q, q=1,2,..., where β denotes the excitation class, ΔEβ0 the energy gap in the infinite system [αβk(N)>0], and k(N) the elementary transition momentum. The parameters ΔEβ0 and αβ are determined for covalent and ionic excitations in alternating and nonalternating polyenes. The covalent excitations are combinations of triplet excitations T, i.e., T, TT, TTT, . . . . The lowest singlet excitations in the infinite polyene, e.g., in polyacetylene or polydiacetylene, are TT states. Available evidence proves that these states can dissociate into separate triplets. The bond structure of TT states is that of a neutral soliton-antisoliton pair. The level density of TT states in long polyenes is high enough to allow dissociation into separate solitons.
La genèse du concept de champ quantique
NASA Astrophysics Data System (ADS)
Darrigol, O.
This is a historical study of the roots of a concept which has proved to be essential in modern particle physics : the concept of quantum field. The first steps were accomplished by two young theoreticians : Pascual Jordan quantized the free electromagnetic field in 1925 by means of the formal rules of the just discovered matrix mechanics, and Paul Dirac quantized the whole system charges + field in 1927. Using Dirac's equation for electrons (1928) and Jordan's idea of quantized matter waves (second quantization), Werner Heisenberg and Wolfgang Pauli provided in 1929-1930 an extension of Dirac's radiation theory and the proof of its relativistic invariance. Meanwhile Enrico Fermi discovered independently a more elegant and pedagogical formulation. To appreciate the degree of historical necessity of the quantization of fields, and the value of contemporaneous critics to this approach, it was necessary to investigate some of the history of the old radiation theory. We present the various arguments however provisional or naïve or wrong they could be in retrospect. So we hope to contribute to a more vivid picture of notions which, once deprived of their historical setting, might seem abstruse to the modern user. Nous présentons une étude historique des origines d'un concept devenu essentiel dans la physique moderne des particules : le concept de champ quantique. Deux jeunes théoriciens franchirent les premières étapes : Pascual Jordan quantifia le champ électromagnétique en 1925 grâce aux règles formelles de la mécanique des matrices naissante, et Paul Dirac quantifia le système complet charges + champ en 1927. Au moyen de l'équation de l'électron de Dirac (1928) et de l'idée de Jordan d'ondes de matière quantifiées (deuxième quantification), Werner Heisenberg et Wolfgang Pauli donnèrent en 1929-1930 une extension de la théorie du rayonnement de Dirac et la preuve de son invariance relativiste. Pendant ce temps Enrico Fermi découvrit indépendamment une formulation plus élégante et plus pédagogique. Pour apprécier le degré de nécessité historique de la quantification des champs et la valeur des critiques contemporaines à cette approche, nous avons dû analyser quelques points de l'histoire de l'ancienne théorie du rayonnement. Nous présentons les divers arguments quelque provisoires, naïfs ou faux qu'ils puissent sembler aujourd'hui. Ainsi nous espérons brosser un tableau plus vivant de notions menacées d'hermétisme si l'on oublie leurs fondements historiques.
Zhang, Wanli; Yang, Shiju; Li, Chuandong; Zhang, Wei; Yang, Xinsong
2018-08-01
This paper focuses on stochastic exponential synchronization of delayed memristive neural networks (MNNs) by the aid of systems with interval parameters which are established by using the concept of Filippov solution. New intermittent controller and adaptive controller with logarithmic quantization are structured to deal with the difficulties induced by time-varying delays, interval parameters as well as stochastic perturbations, simultaneously. Moreover, not only control cost can be reduced but also communication channels and bandwidth are saved by using these controllers. Based on novel Lyapunov functions and new analytical methods, several synchronization criteria are established to realize the exponential synchronization of MNNs with stochastic perturbations via intermittent control and adaptive control with or without logarithmic quantization. Finally, numerical simulations are offered to substantiate our theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.
Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator
NASA Astrophysics Data System (ADS)
Wu, Liang; Salehi, M.; Koirala, N.; Moon, J.; Oh, S.; Armitage, N. P.
2016-12-01
Topological insulators have been proposed to be best characterized as bulk magnetoelectric materials that show response functions quantized in terms of fundamental physical constants. Here, we lower the chemical potential of three-dimensional (3D) Bi2Se3 films to ~30 meV above the Dirac point and probe their low-energy electrodynamic response in the presence of magnetic fields with high-precision time-domain terahertz polarimetry. For fields higher than 5 tesla, we observed quantized Faraday and Kerr rotations, whereas the dc transport is still semiclassical. A nontrivial Berry’s phase offset to these values gives evidence for axion electrodynamics and the topological magnetoelectric effect. The time structure used in these measurements allows a direct measure of the fine-structure constant based on a topological invariant of a solid-state system.
Mass quantization of the Schwarzschild black hole
NASA Astrophysics Data System (ADS)
Vaz, Cenalo; Witten, Louis
1999-07-01
We examine the Wheeler-DeWitt equation for a static, eternal Schwarzschild black hole in Kuchař-Brown variables and obtain its energy eigenstates. Consistent solutions vanish in the exterior of the Kruskal manifold and are nonvanishing only in the interior. The system is reminiscent of a particle in a box. States of definite parity avoid the singular geometry by vanishing at the origin. These definite parity states admit a discrete energy spectrum, depending on one quantum number which determines the Arnowitt-Deser-Misner mass of the black hole according to a relation conjectured long ago by Bekenstein M~nMp. If attention is restricted only to these quantized energy states, a black hole is described not only by its mass but also by its parity. States of indefinite parity do not admit a quantized mass spectrum.
Experimental evidence of coherent transport.
Flores-Olmedo, E; Martínez-Argüello, A M; Martínez-Mares, M; Báez, G; Franco-Villafañe, J A; Méndez-Sánchez, R A
2016-04-28
Coherent transport phenomena are difficult to observe due to several sources of decoherence. For instance, in the electronic transport through quantum devices the thermal smearing and dephasing, the latter induced by inelastic scattering by phonons or impurities, destroy phase coherence. In other wave systems, the temperature and dephasing may not destroy the coherence and can then be used to observe the underlying wave behaviour of the coherent phenomena. Here, we observe coherent transmission of mechanical waves through a two-dimensional elastic Sinai billiard with two waveguides. The flexural-wave transmission, performed by non-contact means, shows the quantization when a new mode becomes open. These measurements agree with the theoretical predictions of the simplest model highlighting the universal character of the transmission fluctuations.
Experimental evidence of coherent transport
Flores-Olmedo, E.; Martínez-Argüello, A. M.; Martínez-Mares, M.; Báez, G.; Franco-Villafañe, J. A.; Méndez-Sánchez, R. A.
2016-01-01
Coherent transport phenomena are difficult to observe due to several sources of decoherence. For instance, in the electronic transport through quantum devices the thermal smearing and dephasing, the latter induced by inelastic scattering by phonons or impurities, destroy phase coherence. In other wave systems, the temperature and dephasing may not destroy the coherence and can then be used to observe the underlying wave behaviour of the coherent phenomena. Here, we observe coherent transmission of mechanical waves through a two-dimensional elastic Sinai billiard with two waveguides. The flexural-wave transmission, performed by non-contact means, shows the quantization when a new mode becomes open. These measurements agree with the theoretical predictions of the simplest model highlighting the universal character of the transmission fluctuations. PMID:27121226
Growth and characterization of (110) InAs quantum well metamorphic heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Podpirka, Adrian A., E-mail: adrian.podpirka.ctr@nrl.navy.mil; Katz, Michael B.; Twigg, Mark E.
An understanding of the growth of (110) quantum wells (QWs) is of great importance to spin systems due to the observed long spin relaxation times. In this article, we report on the metamorphic growth and characterization of high mobility undoped InAs (110) QWs on GaAs (110) substrates. A low-temperature nucleation layer reduces dislocation density, results in tilting of the subsequent buffer layer and increases the electron mobility of the QW structure. The mobility varies widely and systematically (4000–16 000 cm{sup 2}/Vs at room temperature) with deposition temperature and layer thicknesses. Low-temperature transport measurements exhibit Shubnikov de-Haas oscillations and quantized plateaus in themore » quantum Hall regime.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballesteros, Ángel, E-mail: angelb@ubu.es; Enciso, Alberto, E-mail: aenciso@icmat.es; Herranz, Francisco J., E-mail: fjherranz@ubu.es
In this paper we quantize the N-dimensional classical Hamiltonian system H=(|q|)/(2(η+|q|)) p{sup 2}−k/(η+|q|) , that can be regarded as a deformation of the Coulomb problem with coupling constant k, that it is smoothly recovered in the limit η→0. Moreover, the kinetic energy term in H is just the one corresponding to an N-dimensional Taub–NUT space, a fact that makes this system relevant from a geometric viewpoint. Since the Hamiltonian H is known to be maximally superintegrable, we propose a quantization prescription that preserves such superintegrability in the quantum mechanical setting. We show that, to this end, one must choose asmore » the kinetic part of the Hamiltonian the conformal Laplacian of the underlying Riemannian manifold, which combines the usual Laplace–Beltrami operator on the Taub–NUT manifold and a multiple of its scalar curvature. As a consequence, we obtain a novel exactly solvable deformation of the quantum Coulomb problem, whose spectrum is computed in closed form for positive values of η and k, and showing that the well-known maximal degeneracy of the flat system is preserved in the deformed case. Several interesting algebraic and physical features of this new exactly solvable quantum system are analyzed, and the quantization problem for negative values of η and/or k is also sketched.« less
NASA Astrophysics Data System (ADS)
Yahampath, Pradeepa
2017-12-01
Consider communicating a correlated Gaussian source over a Rayleigh fading channel with no knowledge of the channel signal-to-noise ratio (CSNR) at the transmitter. In this case, a digital system cannot be optimal for a range of CSNRs. Analog transmission however is optimal at all CSNRs, if the source and channel are memoryless and bandwidth matched. This paper presents new hybrid digital-analog (HDA) systems for sources with memory and channels with bandwidth expansion, which outperform both digital-only and analog-only systems over a wide range of CSNRs. The digital part is either a predictive quantizer or a transform code, used to achieve a coding gain. Analog part uses linear encoding to transmit the quantization error which improves the performance under CSNR variations. The hybrid encoder is optimized to achieve the minimum AMMSE (average minimum mean square error) over the CSNR distribution. To this end, analytical expressions are derived for the AMMSE of asymptotically optimal systems. It is shown that the outage CSNR of the channel code and the analog-digital power allocation must be jointly optimized to achieve the minimum AMMSE. In the case of HDA predictive quantization, a simple algorithm is presented to solve the optimization problem. Experimental results are presented for both Gauss-Markov sources and speech signals.
Optical angular momentum and atoms
2017-01-01
Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom’s angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light’s OAM, aiding our fundamental understanding of light–matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069766
A visual detection model for DCT coefficient quantization
NASA Technical Reports Server (NTRS)
Ahumada, Albert J., Jr.; Peterson, Heidi A.
1993-01-01
The discrete cosine transform (DCT) is widely used in image compression, and is part of the JPEG and MPEG compression standards. The degree of compression, and the amount of distortion in the decompressed image are determined by the quantization of the transform coefficients. The standards do not specify how the DCT coefficients should be quantized. Our approach is to set the quantization level for each coefficient so that the quantization error is at the threshold of visibility. Here we combine results from our previous work to form our current best detection model for DCT coefficient quantization noise. This model predicts sensitivity as a function of display parameters, enabling quantization matrices to be designed for display situations varying in luminance, veiling light, and spatial frequency related conditions (pixel size, viewing distance, and aspect ratio). It also allows arbitrary color space directions for the representation of color.
NASA Astrophysics Data System (ADS)
Huang, Wen-Min; Mou, Chung-Yu; Chang, Cheng-Hung
2010-02-01
While the scattering phase for several one-dimensional potentials can be exactly derived, less is known in multi-dimensional quantum systems. This work provides a method to extend the one-dimensional phase knowledge to multi-dimensional quantization rules. The extension is illustrated in the example of Bogomolny's transfer operator method applied in two quantum wells bounded by step potentials of different heights. This generalized semiclassical method accurately determines the energy spectrum of the systems, which indicates the substantial role of the proposed phase correction. Theoretically, the result can be extended to other semiclassical methods, such as Gutzwiller trace formula, dynamical zeta functions, and semiclassical Landauer-Büttiker formula. In practice, this recipe enhances the applicability of semiclassical methods to multi-dimensional quantum systems bounded by general soft potentials.
NASA Astrophysics Data System (ADS)
Mazzola, F.; Wells, J. W.; Pakpour-Tabrizi, A. C.; Jackman, R. B.; Thiagarajan, B.; Hofmann, Ph.; Miwa, J. A.
2018-01-01
We demonstrate simultaneous quantization of conduction band (CB) and valence band (VB) states in silicon using ultrashallow, high-density, phosphorus doping profiles (so-called Si:P δ layers). We show that, in addition to the well-known quantization of CB states within the dopant plane, the confinement of VB-derived states between the subsurface P dopant layer and the Si surface gives rise to a simultaneous quantization of VB states in this narrow region. We also show that the VB quantization can be explained using a simple particle-in-a-box model, and that the number and energy separation of the quantized VB states depend on the depth of the P dopant layer beneath the Si surface. Since the quantized CB states do not show a strong dependence on the dopant depth (but rather on the dopant density), it is straightforward to exhibit control over the properties of the quantized CB and VB states independently of each other by choosing the dopant density and depth accordingly, thus offering new possibilities for engineering quantum matter.
Superconductor Digital Electronics: -- Current Status, Future Prospects
NASA Astrophysics Data System (ADS)
Mukhanov, Oleg
2011-03-01
Two major applications of superconductor electronics: communications and supercomputing will be presented. These areas hold a significant promise of a large impact on electronics state-of-the-art for the defense and commercial markets stemming from the fundamental advantages of superconductivity: simultaneous high speed and low power, lossless interconnect, natural quantization, and high sensitivity. The availability of relatively small cryocoolers lowered the foremost market barrier for cryogenically-cooled superconductor electronic systems. These fundamental advantages enabled a novel Digital-RF architecture - a disruptive technological approach changing wireless communications, radar, and surveillance system architectures dramatically. Practical results were achieved for Digital-RF systems in which wide-band, multi-band radio frequency signals are directly digitized and digital domain is expanded throughout the entire system. Digital-RF systems combine digital and mixed signal integrated circuits based on Rapid Single Flux Quantum (RSFQ) technology, superconductor analog filter circuits, and semiconductor post-processing circuits. The demonstrated cryocooled Digital-RF systems are the world's first and fastest directly digitizing receivers operating with live satellite signals, enabling multi-net data links, and performing signal acquisition from HF to L-band with 30 GHz clock frequencies. In supercomputing, superconductivity leads to the highest energy efficiencies per operation. Superconductor technology based on manipulation and ballistic transfer of magnetic flux quanta provides a superior low-power alternative to CMOS and other charge-transfer based device technologies. The fundamental energy consumption in SFQ circuits defined by flux quanta energy 2 x 10-19 J. Recently, a novel energy-efficient zero-static-power SFQ technology, eSFQ/ERSFQ was invented, which retains all advantages of standard RSFQ circuits: high-speed, dc power, internal memory. The voltage bias regulation, determined by SFQ clock, enables the zero-power at zero-activity regimes, indispensable for sensor and quantum bit readout.
A BRST formulation for the conic constrained particle
NASA Astrophysics Data System (ADS)
Barbosa, Gabriel D.; Thibes, Ronaldo
2018-04-01
We describe the gauge invariant BRST formulation of a particle constrained to move in a general conic. The model considered constitutes an explicit example of an originally second-class system which can be quantized within the BRST framework. We initially impose the conic constraint by means of a Lagrange multiplier leading to a consistent second-class system which generalizes previous models studied in the literature. After calculating the constraint structure and the corresponding Dirac brackets, we introduce a suitable first-order Lagrangian, the resulting modified system is then shown to be gauge invariant. We proceed to the extended phase space introducing fermionic ghost variables, exhibiting the BRST symmetry transformations and writing the Green’s function generating functional for the BRST quantized model.
On the relationships between higher and lower bit-depth system measurements
NASA Astrophysics Data System (ADS)
Burks, Stephen D.; Haefner, David P.; Doe, Joshua M.
2018-04-01
The quality of an imaging system can be assessed through controlled laboratory objective measurements. Currently, all imaging measurements require some form of digitization in order to evaluate a metric. Depending on the device, the amount of bits available, relative to a fixed dynamic range, will exhibit quantization artifacts. From a measurement standpoint, measurements are desired to be performed at the highest possible bit-depth available. In this correspondence, we described the relationship between higher and lower bit-depth measurements. The limits to which quantization alters the observed measurements will be presented. Specifically, we address dynamic range, MTF, SiTF, and noise. Our results provide guidelines to how systems of lower bit-depth should be characterized and the corresponding experimental methods.
Line splitting and modified atomic decay of atoms coupled with N quantized cavity modes
NASA Astrophysics Data System (ADS)
Zhu, Yifu
1992-05-01
We study the interaction of a two-level atom with N non-degenerate quantized cavity modes including dissipations from atomic decay and cavity damps. In the strong coupling regime, the absorption or emission spectrum of weakly excited atom-cavity system possesses N + 1 spectral peaks whose linewidths are the weighted averages of atomic and cavity linewidths. The coupled system shows subnatural (supernatural) atomic decay behavior if the photon loss rates from the N cavity modes are smaller (larger) than the atomic decay rate. If N cavity modes are degenerate, they can be treated effectively as a single mode. In addition, we present numerical calculations for N = 2 to characterize the system evolution from the weak coupling to strong coupling limits.
Mao, Ling-Feng; Ning, Huan-Sheng; Wang, Jin-Yan
2015-01-01
Influence of the energy relaxation of the channel electrons on the performance of AlGaN/GaN high-electron mobility transistors (HEMTs) has been investigated using self-consistent solution to the coupled Schrödinger equation and Poisson equation. The first quantized energy level in the inversion layer rises and the average channel electron density decreases when the channel electric field increases from 20 kV/cm to 120 kV/cm. This research also demonstrates that the energy relaxation of the channel electrons can lead to current collapse and suggests that the energy relaxation should be considered in modeling the performance of AlGaN/GaN HEMTs such as, the gate leakage current, threshold voltage, source-drain current, capacitance-voltage curve, etc. PMID:26039589
Mao, Ling-Feng; Ning, Huan-Sheng; Wang, Jin-Yan
2015-01-01
Influence of the energy relaxation of the channel electrons on the performance of AlGaN/GaN high-electron mobility transistors (HEMTs) has been investigated using self-consistent solution to the coupled Schrödinger equation and Poisson equation. The first quantized energy level in the inversion layer rises and the average channel electron density decreases when the channel electric field increases from 20 kV/cm to 120 kV/cm. This research also demonstrates that the energy relaxation of the channel electrons can lead to current collapse and suggests that the energy relaxation should be considered in modeling the performance of AlGaN/GaN HEMTs such as, the gate leakage current, threshold voltage, source-drain current, capacitance-voltage curve, etc.
Strapdown system performance optimization test evaluations (SPOT), volume 1
NASA Technical Reports Server (NTRS)
Blaha, R. J.; Gilmore, J. P.
1973-01-01
A three axis inertial system was packaged in an Apollo gimbal fixture for fine grain evaluation of strapdown system performance in dynamic environments. These evaluations have provided information to assess the effectiveness of real-time compensation techniques and to study system performance tradeoffs to factors such as quantization and iteration rate. The strapdown performance and tradeoff studies conducted include: (1) Compensation models and techniques for the inertial instrument first-order error terms were developed and compensation effectivity was demonstrated in four basic environments; single and multi-axis slew, and single and multi-axis oscillatory. (2) The theoretical coning bandwidth for the first-order quaternion algorithm expansion was verified. (3) Gyro loop quantization was identified to affect proportionally the system attitude uncertainty. (4) Land navigation evaluations identified the requirement for accurate initialization alignment in order to pursue fine grain navigation evaluations.
Electronic transport in the quantum spin Hall state due to the presence of adatoms in graphene
NASA Astrophysics Data System (ADS)
Lima, Leandro; Lewenkopf, Caio
Heavy adatoms, even at low concentrations, are predicted to turn a graphene sheet into a topological insulator with substantial gap. The adatoms mediate the spin-orbit coupling that is fundamental to the quantum spin Hall effect. The adatoms act as local spin-orbit scatterer inducing hopping processes between distant carbon atoms giving origin to transverse spin currents. Although there are effective models that describe spectral properties of such systems with great detail, quantitative theoretical work for the transport counterpart is still lacking. We developed a multiprobe recursive Green's function technique with spin resolution to analyze the transport properties for large geometries. We use an effective tight-binding Hamiltonian to describe the problem of adatoms randomly placed at the center of the honeycomb hexagons, which is the case for most transition metals. Our choice of current and voltage probes is favorable to experiments since it filters the contribution of only one spin orientation, leading to a quantized spin Hall conductance of e2 / h . We also discuss the electronic propagation in the system by imaging the local density of states and the electronic current densities. The authors acknowledge the Brazilian agencies CNPq, CAPES, FAPERJ and INCT de Nanoestruturas de Carbono for financial support.
BFV-BRST quantization of two-dimensional supergravity
NASA Astrophysics Data System (ADS)
Fujiwara, T.; Igarashi, Y.; Kuriki, R.; Tabei, T.
1996-01-01
Two-dimensional supergravity theory is quantized as an anomalous gauge theory. In the Batalin-Fradkin (BF) formalism, the anomaly-canceling super-Liouville fields are introduced to identify the original second-class constrained system with a gauge-fixed version of a first-class system. The BFV-BRST quantization applies to formulate the theory in the most general class of gauges. A local effective action constructed in the configuration space contains two super-Liouville actions; one is a noncovariant but local functional written only in terms of two-dimensional supergravity fields, and the other contains the super-Liouville fields canceling the super-Weyl anomaly. Auxiliary fields for the Liouville and the gravity supermultiplets are introduced to make the BRST algebra close off-shell. Inclusion of them turns out to be essentially important especially in the super-light-cone gauge fixing, where the supercurvature equations (∂3-g++=∂2-χ++=0) are obtained as a result of BRST invariance of the theory. Our approach reveals the origin of the OSp(1,2) current algebra symmetry in a transparent manner.
Smolensky, Paul; Goldrick, Matthew; Mathis, Donald
2014-08-01
Mental representations have continuous as well as discrete, combinatorial properties. For example, while predominantly discrete, phonological representations also vary continuously; this is reflected by gradient effects in instrumental studies of speech production. Can an integrated theoretical framework address both aspects of structure? The framework we introduce here, Gradient Symbol Processing, characterizes the emergence of grammatical macrostructure from the Parallel Distributed Processing microstructure (McClelland, Rumelhart, & The PDP Research Group, 1986) of language processing. The mental representations that emerge, Distributed Symbol Systems, have both combinatorial and gradient structure. They are processed through Subsymbolic Optimization-Quantization, in which an optimization process favoring representations that satisfy well-formedness constraints operates in parallel with a distributed quantization process favoring discrete symbolic structures. We apply a particular instantiation of this framework, λ-Diffusion Theory, to phonological production. Simulations of the resulting model suggest that Gradient Symbol Processing offers a way to unify accounts of grammatical competence with both discrete and continuous patterns in language performance. Copyright © 2013 Cognitive Science Society, Inc.
Optimal block cosine transform image coding for noisy channels
NASA Technical Reports Server (NTRS)
Vaishampayan, V.; Farvardin, N.
1986-01-01
The two dimensional block transform coding scheme based on the discrete cosine transform was studied extensively for image coding applications. While this scheme has proven to be efficient in the absence of channel errors, its performance degrades rapidly over noisy channels. A method is presented for the joint source channel coding optimization of a scheme based on the 2-D block cosine transform when the output of the encoder is to be transmitted via a memoryless design of the quantizers used for encoding the transform coefficients. This algorithm produces a set of locally optimum quantizers and the corresponding binary code assignment for the assumed transform coefficient statistics. To determine the optimum bit assignment among the transform coefficients, an algorithm was used based on the steepest descent method, which under certain convexity conditions on the performance of the channel optimized quantizers, yields the optimal bit allocation. Comprehensive simulation results for the performance of this locally optimum system over noisy channels were obtained and appropriate comparisons against a reference system designed for no channel error were rendered.
NASA Astrophysics Data System (ADS)
Ng, Theam Foo; Pham, Tuan D.; Zhou, Xiaobo
2010-01-01
With the fast development of multi-dimensional data compression and pattern classification techniques, vector quantization (VQ) has become a system that allows large reduction of data storage and computational effort. One of the most recent VQ techniques that handle the poor estimation of vector centroids due to biased data from undersampling is to use fuzzy declustering-based vector quantization (FDVQ) technique. Therefore, in this paper, we are motivated to propose a justification of FDVQ based hidden Markov model (HMM) for investigating its effectiveness and efficiency in classification of genotype-image phenotypes. The performance evaluation and comparison of the recognition accuracy between a proposed FDVQ based HMM (FDVQ-HMM) and a well-known LBG (Linde, Buzo, Gray) vector quantization based HMM (LBG-HMM) will be carried out. The experimental results show that the performances of both FDVQ-HMM and LBG-HMM are almost similar. Finally, we have justified the competitiveness of FDVQ-HMM in classification of cellular phenotype image database by using hypotheses t-test. As a result, we have validated that the FDVQ algorithm is a robust and an efficient classification technique in the application of RNAi genome-wide screening image data.
Single-user MIMO versus multi-user MIMO in distributed antenna systems with limited feedback
NASA Astrophysics Data System (ADS)
Schwarz, Stefan; Heath, Robert W.; Rupp, Markus
2013-12-01
This article investigates the performance of cellular networks employing distributed antennas in addition to the central antennas of the base station. Distributed antennas are likely to be implemented using remote radio units, which is enabled by a low latency and high bandwidth dedicated link to the base station. This facilitates coherent transmission from potentially all available antennas at the same time. Such distributed antenna system (DAS) is an effective way to deal with path loss and large-scale fading in cellular systems. DAS can apply precoding across multiple transmission points to implement single-user MIMO (SU-MIMO) and multi-user MIMO (MU-MIMO) transmission. The throughput performance of various SU-MIMO and MU-MIMO transmission strategies is investigated in this article, employing a Long-Term evolution (LTE) standard compliant simulation framework. The previously theoretically established cell-capacity improvement of MU-MIMO in comparison to SU-MIMO in DASs is confirmed under the practical constraints imposed by the LTE standard, even under the assumption of imperfect channel state information (CSI) at the base station. Because practical systems will use quantized feedback, the performance of different CSI feedback algorithms for DASs is investigated. It is shown that significant gains in the CSI quantization accuracy and in the throughput of especially MU-MIMO systems can be achieved with relatively simple quantization codebook constructions that exploit the available temporal correlation and channel gain differences.
ERIC Educational Resources Information Center
Green, William P.; Trotochaud, Alan; Sherman, Julia; Kazerounian, Kazem; Faraclas, Elias W.
2009-01-01
The quantization of electronic energy levels in atoms is foundational to a mechanistic explanation of the periodicity of elemental properties and behavior. This paper presents a hands-on, guided inquiry approach to teaching this concept as part of a broader treatment of quantum mechanics, and as a foundation for an understanding of chemical…
Decoherence in quantum lossy systems: superoperator and matrix techniques
NASA Astrophysics Data System (ADS)
Yazdanpanah, Navid; Tavassoly, Mohammad Kazem; Moya-Cessa, Hector Manuel
2017-06-01
Due to the unavoidably dissipative interaction between quantum systems with their environments, the decoherence flows inevitably into the systems. Therefore, to achieve a better understanding on how decoherence affects on the damped systems, a fundamental investigation of master equation seems to be required. In this regard, finding out the missed information which has been lost due to irreversibly of the dissipative systems, is also of practical importance in quantum information science. Motivating by these facts, in this work we want to use superoperator and matrix techniques, by which we are able to illustrate two methods to obtain the explicit form of density operators corresponding to damped systems at arbitrary temperature T ≥ 0. To establish the potential abilities of the suggested methods, we apply them to deduce the density operator of some practical well-known quantum systems. Using the superoperator techniques, at first we obtain the density operator of a damped system which includes a qubit interacting with a single-mode quantized field within an optical cavity. As the second system, we study the decoherence of a quantized field within an optical damped cavity. We also use our proposed matrix method to study the decoherence of a system which includes two qubits in the interaction with each other via dipole-dipole interaction and at the same time with a quantized field in a lossy cavity. The influences of dissipation on the decoherence of dynamical properties of these systems are also numerically investigated. At last, the advantages of the proposed superoperator techniques in comparison with matrix method are explained.
An adaptive vector quantization scheme
NASA Technical Reports Server (NTRS)
Cheung, K.-M.
1990-01-01
Vector quantization is known to be an effective compression scheme to achieve a low bit rate so as to minimize communication channel bandwidth and also to reduce digital memory storage while maintaining the necessary fidelity of the data. However, the large number of computations required in vector quantizers has been a handicap in using vector quantization for low-rate source coding. An adaptive vector quantization algorithm is introduced that is inherently suitable for simple hardware implementation because it has a simple architecture. It allows fast encoding and decoding because it requires only addition and subtraction operations.
NASA Astrophysics Data System (ADS)
Mazzucchi, Gabriel; Caballero-Benitez, Santiago F.; Mekhov, Igor B.
2016-08-01
Ultracold atomic systems offer a unique tool for understanding behavior of matter in the quantum degenerate regime, promising studies of a vast range of phenomena covering many disciplines from condensed matter to quantum information and particle physics. Coupling these systems to quantized light fields opens further possibilities of observing delicate effects typical of quantum optics in the context of strongly correlated systems. Measurement backaction is one of the most funda- mental manifestations of quantum mechanics and it is at the core of many famous quantum optics experiments. Here we show that quantum backaction of weak measurement can be used for tailoring long-range correlations of ultracold fermions, realizing quantum states with spatial modulations of the density and magnetization, thus overcoming usual requirement for a strong interatomic interactions. We propose detection schemes for implementing antiferromagnetic states and density waves. We demonstrate that such long-range correlations cannot be realized with local addressing, and they are a consequence of the competition between global but spatially structured backaction of weak quantum measurement and unitary dynamics of fermions.
Electronic transport in armchair graphene nanoribbon under double magnetic barrier modulation
NASA Astrophysics Data System (ADS)
Wang, Haiyan; Wu, Chao; Xie, Fang; Zhang, Xiaojiao; Zhou, Guanghui
2018-03-01
We present a theoretical investigation of the transport properties and the magnetoresistance effect in armchair graphene nanoribbons (AGNRs) under modulation by two magnetic barriers. The energy levels are found to be degenerate for a metallic AGNR but are not degenerate for a semiconducting AGNR. However, the conductance characteristics show quantized plateaus in both the metallic and semiconducting cases. When the magnetization directions of the barriers change from parallel to antiparallel, the conductance plateau in the metallic AGNR shows a degenerate feature due to matching between the transport modes in different regions. As the barrier height increases, the conductance shows more oscillatory behavior with sharp peaks and troughs. Specifically, the initial position of nonzero conductance for the metallic AGNR system moves towards a higher energy regime, which indicates that an energy gap has been opened. In addition, the magnetoresistance ratio also shows plateau structures in certain specific energy regions. These results may be useful in the design of electron devices based on AGNR nanostructures.
Observation of nanoscale magnetic fields using twisted electron beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grillo, Vincenzo; Harvey, Tyler R.; Venturi, Federico
Electron waves give an unprecedented enhancement to the field of microscopy by providing higher resolving power compared to their optical counterpart. Further information about a specimen, such as electric and magnetic features, can be revealed in electron microscopy because electrons possess both a magnetic moment and charge. In-plane magnetic structures in materials can be studied experimentally using the effect of the Lorentz force. On the other hand, full mapping of the magnetic field has hitherto remained challenging. Here we measure a nanoscale out-of-plane magnetic field by interfering a highly twisted electron vortex beam with a reference wave. We implement amore » recently developed holographic technique to manipulate the electron wavefunction, which gives free electrons an additional unbounded quantized magnetic moment along their propagation direction. Our finding demonstrates that full reconstruction of all three components of nanoscale magnetic fields is possible without tilting the specimen.« less
Observation of nanoscale magnetic fields using twisted electron beams
Grillo, Vincenzo; Harvey, Tyler R.; Venturi, Federico; ...
2017-09-25
Electron waves give an unprecedented enhancement to the field of microscopy by providing higher resolving power compared to their optical counterpart. Further information about a specimen, such as electric and magnetic features, can be revealed in electron microscopy because electrons possess both a magnetic moment and charge. In-plane magnetic structures in materials can be studied experimentally using the effect of the Lorentz force. On the other hand, full mapping of the magnetic field has hitherto remained challenging. Here we measure a nanoscale out-of-plane magnetic field by interfering a highly twisted electron vortex beam with a reference wave. We implement amore » recently developed holographic technique to manipulate the electron wavefunction, which gives free electrons an additional unbounded quantized magnetic moment along their propagation direction. Our finding demonstrates that full reconstruction of all three components of nanoscale magnetic fields is possible without tilting the specimen.« less
Nine formulations of quantum mechanics
NASA Astrophysics Data System (ADS)
Styer, Daniel F.; Balkin, Miranda S.; Becker, Kathryn M.; Burns, Matthew R.; Dudley, Christopher E.; Forth, Scott T.; Gaumer, Jeremy S.; Kramer, Mark A.; Oertel, David C.; Park, Leonard H.; Rinkoski, Marie T.; Smith, Clait T.; Wotherspoon, Timothy D.
2002-03-01
Nine formulations of nonrelativistic quantum mechanics are reviewed. These are the wavefunction, matrix, path integral, phase space, density matrix, second quantization, variational, pilot wave, and Hamilton-Jacobi formulations. Also mentioned are the many-worlds and transactional interpretations. The various formulations differ dramatically in mathematical and conceptual overview, yet each one makes identical predictions for all experimental results.
The Lifshitz-Kosevich-Shoenberg theory of relativistic electronic gas in neutron stars
NASA Astrophysics Data System (ADS)
Wang, Zhaojun; Lü, Guoliang; Zhu, Chunhua
2014-10-01
Similar to the de Haas-van Alphen magnetic oscillatory in some normal metals when the Landau quantization is predominant, the magnetic oscillation can also occur in highly degenerate and relativistic electron gas in neutron stars. At large Landau quantum number (Landau quantum number r≥2), we generalize the Lifshitz-Kosevich-Shoenberg theory in non-relativistic electron gas to relativistic gas. At small Landau quantum number ( r<2), we expand the grand potential into Fourier series and get similar harmonic oscillatory formula of magnetization. These results indicate that magnetic phase transition similar as Condon transition observed in metals can appear in neutron stars when the differential susceptibility exceeds 1/4 π.
Nearly associative deformation quantization
NASA Astrophysics Data System (ADS)
Vassilevich, Dmitri; Oliveira, Fernando Martins Costa
2018-04-01
We study several classes of non-associative algebras as possible candidates for deformation quantization in the direction of a Poisson bracket that does not satisfy Jacobi identities. We show that in fact alternative deformation quantization algebras require the Jacobi identities on the Poisson bracket and, under very general assumptions, are associative. At the same time, flexible deformation quantization algebras exist for any Poisson bracket.
Vector Quantization Algorithm Based on Associative Memories
NASA Astrophysics Data System (ADS)
Guzmán, Enrique; Pogrebnyak, Oleksiy; Yáñez, Cornelio; Manrique, Pablo
This paper presents a vector quantization algorithm for image compression based on extended associative memories. The proposed algorithm is divided in two stages. First, an associative network is generated applying the learning phase of the extended associative memories between a codebook generated by the LBG algorithm and a training set. This associative network is named EAM-codebook and represents a new codebook which is used in the next stage. The EAM-codebook establishes a relation between training set and the LBG codebook. Second, the vector quantization process is performed by means of the recalling stage of EAM using as associative memory the EAM-codebook. This process generates a set of the class indices to which each input vector belongs. With respect to the LBG algorithm, the main advantages offered by the proposed algorithm is high processing speed and low demand of resources (system memory); results of image compression and quality are presented.
Quantized circular photogalvanic effect in Weyl semimetals
NASA Astrophysics Data System (ADS)
de Juan, Fernando; Grushin, Adolfo G.; Morimoto, Takahiro; Moore, Joel E.
The circular photogalvanic effect (CPGE) is the part of a photocurrent that switches depending on the sense of circular polarization of the incident light. It has been consistently observed in systems without inversion symmetry and depends on non-universal material details. We find that in a class of Weyl semimetals (e.g. SrSi2) and three-dimensional Rashba materials (e.g. doped Te) without inversion and mirror symmetries, the CPGE trace is effectively Quantized in terms of the combination of fundamental constants e3/h2 cɛ0 with no material-dependent parameters. This is so because the CPGE directly measures the topological charge of Weyl points near the Fermi surface, and non-quantized corrections from disorder and additional bands can be small over a significant range of incident frequencies. Moreover, the magnitude of the CPGE induced by a Weyl node is relatively large, which enables the direct detection of the monopole charge with current techniques.
Quantized circular photogalvanic effect in Weyl semimetals
NASA Astrophysics Data System (ADS)
de Juan, Fernando; Grushin, Adolfo G.; Morimoto, Takahiro; Moore, Joel E.
2017-07-01
The circular photogalvanic effect (CPGE) is the part of a photocurrent that switches depending on the sense of circular polarization of the incident light. It has been consistently observed in systems without inversion symmetry and depends on non-universal material details. Here we find that in a class of Weyl semimetals (for example, SrSi2) and three-dimensional Rashba materials (for example, doped Te) without inversion and mirror symmetries, the injection contribution to the CPGE trace is effectively quantized in terms of the fundamental constants e, h, c and with no material-dependent parameters. This is so because the CPGE directly measures the topological charge of Weyl points, and non-quantized corrections from disorder and additional bands can be small over a significant range of incident frequencies. Moreover, the magnitude of the CPGE induced by a Weyl node is relatively large, which enables the direct detection of the monopole charge with current techniques.
NASA Astrophysics Data System (ADS)
Sun, Liang; McKay, Matthew R.
2014-08-01
This paper studies the sum rate performance of a low complexity quantized CSI-based Tomlinson-Harashima (TH) precoding scheme for downlink multiuser MIMO tansmission, employing greedy user selection. The asymptotic distribution of the output signal to interference plus noise ratio of each selected user and the asymptotic sum rate as the number of users K grows large are derived by using extreme value theory. For fixed finite signal to noise ratios and a finite number of transmit antennas $n_T$, we prove that as K grows large, the proposed approach can achieve the optimal sum rate scaling of the MIMO broadcast channel. We also prove that, if we ignore the precoding loss, the average sum rate of this approach converges to the average sum capacity of the MIMO broadcast channel. Our results provide insights into the effect of multiuser interference caused by quantized CSI on the multiuser diversity gain.
NASA Technical Reports Server (NTRS)
Kelly, J. R.
1983-01-01
A simulator investigation was conducted to determine the effect of the lead-aircraft ground-speed quantization level on self-spacing performance using a Cockpit Display of Traffic Information (CDTI). The study utilized a simulator employing cathode-ray tubes for the primary flight and navigation displays and highly augmented flight control modes. The pilot's task was to follow, and self-space on, a lead aircraft which was performing an idle-thrust profile descent to an instrument landing system (ILS) approach and landing. The spacing requirement was specified in terms of both a minimum distance and a time interval. The results indicate that the ground-speed quantization level, lead-aircraft scenario, and pilot technique had a significant effect on self-spacing performance. However, the ground-speed quantization level only had a significant effect on the performance when the lead aircraft flew a fast final approach.
Quantization of charged fields in the presence of critical potential steps
NASA Astrophysics Data System (ADS)
Gavrilov, S. P.; Gitman, D. M.
2016-02-01
QED with strong external backgrounds that can create particles from the vacuum is well developed for the so-called t -electric potential steps, which are time-dependent external electric fields that are switched on and off at some time instants. However, there exist many physically interesting situations where external backgrounds do not switch off at the time infinity. E.g., these are time-independent nonuniform electric fields that are concentrated in restricted space areas. The latter backgrounds represent a kind of spatial x -electric potential steps for charged particles. They can also create particles from the vacuum, the Klein paradox being closely related to this process. Approaches elaborated for treating quantum effects in the t -electric potential steps are not directly applicable to the x -electric potential steps and their generalization for x -electric potential steps was not sufficiently developed. We believe that the present work represents a consistent solution of the latter problem. We have considered a canonical quantization of the Dirac and scalar fields with x -electric potential step and have found in- and out-creation and annihilation operators that allow one to have particle interpretation of the physical system under consideration. To identify in- and out-operators we have performed a detailed mathematical and physical analysis of solutions of the relativistic wave equations with an x -electric potential step with subsequent QFT analysis of correctness of such an identification. We elaborated a nonperturbative (in the external field) technique that allows one to calculate all characteristics of zero-order processes, such, for example, scattering, reflection, and electron-positron pair creation, without radiation corrections, and also to calculate Feynman diagrams that describe all characteristics of processes with interaction between the in-, out-particles and photons. These diagrams have formally the usual form, but contain special propagators. Expressions for these propagators in terms of in- and out-solutions are presented. We apply the elaborated approach to two popular exactly solvable cases of x -electric potential steps, namely, to the Sauter potential and to the Klein step.
Plasmons and Polaritons in Low Dimensional Systems
NASA Astrophysics Data System (ADS)
Sun, Zhiyuan
Nearly everything relies on the electromagnetic (EM) force to be in its current form. Therefore, light-matter interaction is both a fundamental and a practical subject in physics. Focusing on the electromagnetic field, the matter degrees of freedom can be encoded into its response to the EM field in the form of charge density and urrent. Reshaped by the EM response, the photons in condensed matter systems appear as various collective modes. In this doctoral dissertation, I present our investigation of the linear and nonlinear EM response theory especially in the hydrodynamic regime of electron systems. Electrons in pristine solids behave as a hydrodynamic fluid in a certain range of temperatures and frequencies. We show that the response of such a fluid to electromagnetic field is different from what is predicted by the usual kinetic theory. Certain aspects of this response are universal, for example, a direct relation between the linear and second-order nonlinear optical conductivities. Discovery of this relation enriches our understanding of the light-matter interaction in diverse electron systems and new materials such as graphene. Subsequently, I study the properties of the charged collective modes, the plasmons and demons in 2D Dirac fluids, e.g., the electron-hole system in graphene. Under non-equilibrium situation, the amplitudes of these collective modes could possibly grow due to an effect of adiabatic amplification. I also present our study of the hyperbolic polaritons, the EM modes in hyperbolic materials. When confined in cavities, they develop isolated eigen modes which could be efficiently predicted by applying semi-classical quantization rules to fictitious particles. We demonstrate this Hamiltonian Optics analytically for cavities of spheroidal shapes, and predict novel geometric patterns of the electric field distribution due to classical periodic orbits.
NASA Astrophysics Data System (ADS)
Abo-Kahla, D. A. M.; Abdel-Aty, M.; Farouk, A.
2018-05-01
An atom with only two energy eigenvalues is described by a two-dimensional state space spanned by the two energy eigenstates is called a two-level atom. We consider the interaction between a two-level atom system with a constant velocity. An analytic solution of the systems which interacts with a quantized field is provided. Furthermore, the significant effect of the temperature on the atomic inversion, the purity and the information entropy are discussed in case of the initial state either an exited state or a maximally mixed state. Additionally, the effect of the half wavelengths number of the field-mode is investigated.
NASA Technical Reports Server (NTRS)
Chang, Chi-Yung (Inventor); Fang, Wai-Chi (Inventor); Curlander, John C. (Inventor)
1995-01-01
A system for data compression utilizing systolic array architecture for Vector Quantization (VQ) is disclosed for both full-searched and tree-searched. For a tree-searched VQ, the special case of a Binary Tree-Search VQ (BTSVQ) is disclosed with identical Processing Elements (PE) in the array for both a Raw-Codebook VQ (RCVQ) and a Difference-Codebook VQ (DCVQ) algorithm. A fault tolerant system is disclosed which allows a PE that has developed a fault to be bypassed in the array and replaced by a spare at the end of the array, with codebook memory assignment shifted one PE past the faulty PE of the array.
Topological quantization in units of the fine structure constant.
Maciejko, Joseph; Qi, Xiao-Liang; Drew, H Dennis; Zhang, Shou-Cheng
2010-10-15
Fundamental topological phenomena in condensed matter physics are associated with a quantized electromagnetic response in units of fundamental constants. Recently, it has been predicted theoretically that the time-reversal invariant topological insulator in three dimensions exhibits a topological magnetoelectric effect quantized in units of the fine structure constant α=e²/ℏc. In this Letter, we propose an optical experiment to directly measure this topological quantization phenomenon, independent of material details. Our proposal also provides a way to measure the half-quantized Hall conductances on the two surfaces of the topological insulator independently of each other.
Chiral Majorana fermion modes in a quantum anomalous Hall insulator–superconductor structure
He, Qing Lin; Pan, Lei; Stern, Alexander L.; ...
2017-07-21
Majorana fermion is a hypothetical particle that is its own antiparticle. We report transport measurements that suggest the existence of one-dimensional chiral Majorana fermion modes in the hybrid system of a quantum anomalous Hall insulator thin film coupled with a superconductor. As the external magnetic field is swept, half-integer quantized conductance plateaus are observed at the locations of magnetization reversals, giving a distinct signature of the Majorana fermion modes. This transport signature is reproducible over many magnetic field sweeps and appears at different temperatures. This finding may open up an avenue to control Majorana fermions for implementing robust topological quantummore » computing.« less
Viterbi decoding for satellite and space communication.
NASA Technical Reports Server (NTRS)
Heller, J. A.; Jacobs, I. M.
1971-01-01
Convolutional coding and Viterbi decoding, along with binary phase-shift keyed modulation, is presented as an efficient system for reliable communication on power limited satellite and space channels. Performance results, obtained theoretically and through computer simulation, are given for optimum short constraint length codes for a range of code constraint lengths and code rates. System efficiency is compared for hard receiver quantization and 4 and 8 level soft quantization. The effects on performance of varying of certain parameters relevant to decoder complexity and cost are examined. Quantitative performance degradation due to imperfect carrier phase coherence is evaluated and compared to that of an uncoded system. As an example of decoder performance versus complexity, a recently implemented 2-Mbit/sec constraint length 7 Viterbi decoder is discussed. Finally a comparison is made between Viterbi and sequential decoding in terms of suitability to various system requirements.
A quantum extension to inspection game
NASA Astrophysics Data System (ADS)
Deng, Xinyang; Deng, Yong; Liu, Qi; Chang, Shuhua; Wang, Zhen
2016-06-01
Quantum game theory is a new interdisciplinary field between game theory and system engineering research. In this paper, we extend the classical inspection game into a quantum game version by quantizing the strategy space and importing entanglement between players. Our results show that the quantum inspection game has various Nash equilibria depending on the initial quantum state of the game. It is also shown that quantization can respectively help each player to increase his own payoff, yet fails to bring Pareto improvement for the collective payoff in the quantum inspection game.
NASA Technical Reports Server (NTRS)
Poulakidas, A.; Srinivasan, A.; Egecioglu, O.; Ibarra, O.; Yang, T.
1996-01-01
Wavelet transforms, when combined with quantization and a suitable encoding, can be used to compress images effectively. In order to use them for image library systems, a compact storage scheme for quantized coefficient wavelet data must be developed with a support for fast subregion retrieval. We have designed such a scheme and in this paper we provide experimental studies to demonstrate that it achieves good image compression ratios, while providing a natural indexing mechanism that facilitates fast retrieval of portions of the image at various resolutions.
Consensus Control of Complex and Multi-scale Networks with Network Uncertainty and Adversary
2015-09-02
Mu 0.80 Yang Wang 0.50 1.60 3 PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: National Academy Member George Yin 0.11 Le Yi Wang 0.11 0.22 2...0) Nicholas Baran (0) Lijian Xu (0.3) Zhixin Yang (0) 4 PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: Project Report... Jifeng Zhang, Asymptotically efficient identification of FIR systems with quantized observations and general quantized inputs, Automatica, Vol. 57, pp
Bit-wise arithmetic coding for data compression
NASA Technical Reports Server (NTRS)
Kiely, A. B.
1994-01-01
This article examines the problem of compressing a uniformly quantized independent and identically distributed (IID) source. We present a new compression technique, bit-wise arithmetic coding, that assigns fixed-length codewords to the quantizer output and uses arithmetic coding to compress the codewords, treating the codeword bits as independent. We examine the performance of this method and evaluate the overhead required when used block-adaptively. Simulation results are presented for Gaussian and Laplacian sources. This new technique could be used as the entropy coder in a transform or subband coding system.
On the Dequantization of Fedosov's Deformation Quantization
NASA Astrophysics Data System (ADS)
Karabegov, Alexander V.
2003-08-01
To each natural deformation quantization on a Poisson manifold M we associate a Poisson morphism from the formal neighborhood of the zero section of the cotangent bundle to M to the formal neighborhood of the diagonal of the product M x M~, where M~ is a copy of M with the opposite Poisson structure. We call it dequantization of the natural deformation quantization. Then we "dequantize" Fedosov's quantization.
Coherent transmutation of electrons into fractionalized anyons.
Barkeshli, Maissam; Berg, Erez; Kivelson, Steven
2014-11-07
Electrons have three quantized properties-charge, spin, and Fermi statistics-that are directly responsible for a vast array of phenomena. Here we show how these properties can be coherently and dynamically stripped from the electron as it enters a certain exotic state of matter known as a quantum spin liquid (QSL). In a QSL, electron spins collectively form a highly entangled quantum state that gives rise to the fractionalization of spin, charge, and statistics. We show that certain QSLs host distinct, topologically robust boundary types, some of which allow the electron to coherently enter the QSL as a fractionalized quasi-particle, leaving its spin, charge, or statistics behind. We use these ideas to propose a number of universal, conclusive experimental signatures that would establish fractionalization in QSLs. Copyright © 2014, American Association for the Advancement of Science.
Robust quantum optimizer with full connectivity.
Nigg, Simon E; Lörch, Niels; Tiwari, Rakesh P
2017-04-01
Quantum phenomena have the potential to speed up the solution of hard optimization problems. For example, quantum annealing, based on the quantum tunneling effect, has recently been shown to scale exponentially better with system size than classical simulated annealing. However, current realizations of quantum annealers with superconducting qubits face two major challenges. First, the connectivity between the qubits is limited, excluding many optimization problems from a direct implementation. Second, decoherence degrades the success probability of the optimization. We address both of these shortcomings and propose an architecture in which the qubits are robustly encoded in continuous variable degrees of freedom. By leveraging the phenomenon of flux quantization, all-to-all connectivity with sufficient tunability to implement many relevant optimization problems is obtained without overhead. Furthermore, we demonstrate the robustness of this architecture by simulating the optimal solution of a small instance of the nondeterministic polynomial-time hard (NP-hard) and fully connected number partitioning problem in the presence of dissipation.
Connecting dissipation and noncommutativity: A Bateman system case study
NASA Astrophysics Data System (ADS)
Pal, Sayan Kumar; Nandi, Partha; Chakraborty, Biswajit
2018-06-01
We present an approach to the problem of quantization of the damped harmonic oscillator. To start with, we adopt the standard method of doubling the degrees of freedom of the system (Bateman form) and then, by introducing some new parameters, we get a generalized coupled set of equations from the Bateman form. Using the corresponding time-independent Lagrangian, quantum effects on a pair of Bateman oscillators embedded in an ambient noncommutative space (Moyal plane) are analyzed by using both path integral and canonical quantization schemes within the framework of the Hilbert-Schmidt operator formulation. Our method is distinct from those existing in the literature and where the ambient space was taken to be commutative. Our quantization shows that we end up again with a Bateman system except that the damping factor undergoes renormalization. Strikingly, the corresponding expression shows that the renormalized damping factor can be nonzero even if "bare" one is zero to begin with. In other words, noncommutativity can act as a source of dissipation. Conversely, the noncommutative parameter θ , taken to be a free one now, can be fine tuned to get a vanishing renormalized damping factor. This indicates in some sense a "duality" between dissipation and noncommutativity. Our results match the existing results in the commutative limit.
Low-Bit Rate Feedback Strategies for Iterative IA-Precoded MIMO-OFDM-Based Systems
Teodoro, Sara; Silva, Adão; Dinis, Rui; Gameiro, Atílio
2014-01-01
Interference alignment (IA) is a promising technique that allows high-capacity gains in interference channels, but which requires the knowledge of the channel state information (CSI) for all the system links. We design low-complexity and low-bit rate feedback strategies where a quantized version of some CSI parameters is fed back from the user terminal (UT) to the base station (BS), which shares it with the other BSs through a limited-capacity backhaul network. This information is then used by BSs to perform the overall IA design. With the proposed strategies, we only need to send part of the CSI information, and this can even be sent only once for a set of data blocks transmitted over time-varying channels. These strategies are applied to iterative MMSE-based IA techniques for the downlink of broadband wireless OFDM systems with limited feedback. A new robust iterative IA technique, where channel quantization errors are taken into account in IA design, is also proposed and evaluated. With our proposed strategies, we need a small number of quantization bits to transmit and share the CSI, when comparing with the techniques used in previous works, while allowing performance close to the one obtained with perfect channel knowledge. PMID:24678274
Low-bit rate feedback strategies for iterative IA-precoded MIMO-OFDM-based systems.
Teodoro, Sara; Silva, Adão; Dinis, Rui; Gameiro, Atílio
2014-01-01
Interference alignment (IA) is a promising technique that allows high-capacity gains in interference channels, but which requires the knowledge of the channel state information (CSI) for all the system links. We design low-complexity and low-bit rate feedback strategies where a quantized version of some CSI parameters is fed back from the user terminal (UT) to the base station (BS), which shares it with the other BSs through a limited-capacity backhaul network. This information is then used by BSs to perform the overall IA design. With the proposed strategies, we only need to send part of the CSI information, and this can even be sent only once for a set of data blocks transmitted over time-varying channels. These strategies are applied to iterative MMSE-based IA techniques for the downlink of broadband wireless OFDM systems with limited feedback. A new robust iterative IA technique, where channel quantization errors are taken into account in IA design, is also proposed and evaluated. With our proposed strategies, we need a small number of quantization bits to transmit and share the CSI, when comparing with the techniques used in previous works, while allowing performance close to the one obtained with perfect channel knowledge.
Exploring 4D quantum Hall physics with a 2D topological charge pump
NASA Astrophysics Data System (ADS)
Lohse, Michael; Schweizer, Christian; Price, Hannah M.; Zilberberg, Oded; Bloch, Immanuel
2018-01-01
The discovery of topological states of matter has greatly improved our understanding of phase transitions in physical systems. Instead of being described by local order parameters, topological phases are described by global topological invariants and are therefore robust against perturbations. A prominent example is the two-dimensional (2D) integer quantum Hall effect: it is characterized by the first Chern number, which manifests in the quantized Hall response that is induced by an external electric field. Generalizing the quantum Hall effect to four-dimensional (4D) systems leads to the appearance of an additional quantized Hall response, but one that is nonlinear and described by a 4D topological invariant—the second Chern number. Here we report the observation of a bulk response with intrinsic 4D topology and demonstrate its quantization by measuring the associated second Chern number. By implementing a 2D topological charge pump using ultracold bosonic atoms in an angled optical superlattice, we realize a dynamical version of the 4D integer quantum Hall effect. Using a small cloud of atoms as a local probe, we fully characterize the nonlinear response of the system via in situ imaging and site-resolved band mapping. Our findings pave the way to experimentally probing higher-dimensional quantum Hall systems, in which additional strongly correlated topological phases, exotic collective excitations and boundary phenomena such as isolated Weyl fermions are predicted.
Exploring 4D quantum Hall physics with a 2D topological charge pump.
Lohse, Michael; Schweizer, Christian; Price, Hannah M; Zilberberg, Oded; Bloch, Immanuel
2018-01-03
The discovery of topological states of matter has greatly improved our understanding of phase transitions in physical systems. Instead of being described by local order parameters, topological phases are described by global topological invariants and are therefore robust against perturbations. A prominent example is the two-dimensional (2D) integer quantum Hall effect: it is characterized by the first Chern number, which manifests in the quantized Hall response that is induced by an external electric field. Generalizing the quantum Hall effect to four-dimensional (4D) systems leads to the appearance of an additional quantized Hall response, but one that is nonlinear and described by a 4D topological invariant-the second Chern number. Here we report the observation of a bulk response with intrinsic 4D topology and demonstrate its quantization by measuring the associated second Chern number. By implementing a 2D topological charge pump using ultracold bosonic atoms in an angled optical superlattice, we realize a dynamical version of the 4D integer quantum Hall effect. Using a small cloud of atoms as a local probe, we fully characterize the nonlinear response of the system via in situ imaging and site-resolved band mapping. Our findings pave the way to experimentally probing higher-dimensional quantum Hall systems, in which additional strongly correlated topological phases, exotic collective excitations and boundary phenomena such as isolated Weyl fermions are predicted.
NASA Astrophysics Data System (ADS)
Ohkubo, Makio
2016-06-01
In observed neutron resonances, long believed to be a form of quantum chaos, regular family structures are found in the s-wave resonances of many even-even nuclei in the tens keV to MeV region [M.Ohkubo, Phys. Rev. C 87, 014608(2013)]. Resonance reactions take place when the incident de Broglie wave synchronizes with the Poincaré cycle of the compound nucleus, which is composed of several normal modes with periods that are time quantized by inverse Fermi energy. Based on the breathing model of the compound nucleus, neutron resonance energies in family structures are written by simple arithmetic expressions using Sn and small integers. Family structures in observed resonances of 40Ca+n and 37Cl+n are described as simple cases. A model for time quantization is discussed.
Thermal-Error Regime in High-Accuracy Gigahertz Single-Electron Pumping
NASA Astrophysics Data System (ADS)
Zhao, R.; Rossi, A.; Giblin, S. P.; Fletcher, J. D.; Hudson, F. E.; Möttönen, M.; Kataoka, M.; Dzurak, A. S.
2017-10-01
Single-electron pumps based on semiconductor quantum dots are promising candidates for the emerging quantum standard of electrical current. They can transfer discrete charges with part-per-million (ppm) precision in nanosecond time scales. Here, we employ a metal-oxide-semiconductor silicon quantum dot to experimentally demonstrate high-accuracy gigahertz single-electron pumping in the regime where the number of electrons trapped in the dot is determined by the thermal distribution in the reservoir leads. In a measurement with traceability to primary voltage and resistance standards, the averaged pump current over the quantized plateau, driven by a 1-GHz sinusoidal wave in the absence of a magnetic field, is equal to the ideal value of e f within a measurement uncertainty as low as 0.27 ppm.
Mapping the Coulomb Environment in Interference-Quenched Ballistic Nanowires.
Gutstein, D; Lynall, D; Nair, S V; Savelyev, I; Blumin, M; Ercolani, D; Ruda, H E
2018-01-10
The conductance of semiconductor nanowires is strongly dependent on their electrostatic history because of the overwhelming influence of charged surface and interface states on electron confinement and scattering. We show that InAs nanowire field-effect transistor devices can be conditioned to suppress resonances that obscure quantized conduction thereby revealing as many as six sub-bands in the conductance spectra as the Fermi-level is swept across the sub-band energies. The energy level spectra extracted from conductance, coupled with detailed modeling shows the significance of the interface state charge distribution revealing the Coulomb landscape of the nanowire device. Inclusion of self-consistent Coulomb potentials, the measured geometrical shape of the nanowire, the gate geometry and nonparabolicity of the conduction band provide a quantitative and accurate description of the confinement potential and resulting energy level structure. Surfaces of the nanowire terminated by HfO 2 are shown to have their interface donor density reduced by a factor of 30 signifying the passivating role played by HfO 2 .
Van der Waals Interactions in Aspirin
NASA Astrophysics Data System (ADS)
Reilly, Anthony; Tkatchenko, Alexandre
2015-03-01
The ability of molecules to yield multiple solid forms, or polymorphs, has significance for diverse applications ranging from drug design and food chemistry to nonlinear optics and hydrogen storage. In particular, aspirin has been used and studied for over a century, but has only recently been shown to have an additional polymorphic form, known as form II. Since the two observed solid forms of aspirin are degenerate in terms of lattice energy, kinetic effects have been suggested to determine the metastability of the less abundant form II. Here, first-principles calculations provide an alternative explanation based on free-energy differences at room temperature. The explicit consideration of many-body van der Waals interactions in the free energy demonstrates that the stability of the most abundant form of aspirin is due to a subtle coupling between collective electronic fluctuations and quantized lattice vibrations. In addition, a systematic analysis of the elastic properties of the two forms of aspirin rules out mechanical instability of form II as making it metastable.
The key particle and quark energy equality E W + E Z = E top
NASA Astrophysics Data System (ADS)
Mac Gregor, Malcolm H.
2017-11-01
Precision Tevatron and Linear Hadron Collider measurements at Fermilab and CERN have revealed the numerically accurate mass equality W + Z = t. This equality between two gauge bosons ( gb) and the top quark t is only valid if reinterpreted as an energy equality, where E = mc 2, since energy is a shared property of particles and quarks. The experimental data indicate that the LHC particle excitation energy is quantized in the form of gauge boson energy packets E gb , which are created by factor-of-137 proton-quark energy increases denoted as α- boosts, where α 1/137 is the fine structure constant. These α-boosts occur during the rare head-on quark-quark collisions in the proton beams. The α-boost energy quantization mechanism also occurs in low-energy electron-positron boson and fermion particle production channels, where it generates E b and E f energy packets. These α-boost energy channels link together coherently, as demonstrated by the accurate top quark energy equation E top = (18/α2) E electron. Particle production energy equations are derived which combine to create an overall energy pattern that accurately reproduces the energies of the ( u, d), s, c, b, t fermion constituent quarks, the µ and τ leptons, and the proton.
Implementation of a quantum metamaterial using superconducting qubits.
Macha, Pascal; Oelsner, Gregor; Reiner, Jan-Michael; Marthaler, Michael; André, Stephan; Schön, Gerd; Hübner, Uwe; Meyer, Hans-Georg; Il'ichev, Evgeni; Ustinov, Alexey V
2014-10-14
The key issue for the implementation of a metamaterial is to demonstrate the existence of collective modes corresponding to coherent oscillations of the meta-atoms. Atoms of natural materials interact with electromagnetic fields as quantum two-level systems. Artificial quantum two-level systems can be made, for example, using superconducting nonlinear resonators cooled down to their ground state. Here we perform an experiment in which 20 of these quantum meta-atoms, so-called flux qubits, are embedded into a microwave resonator. We observe the dispersive shift of the resonator frequency imposed by the qubit metamaterial and the collective resonant coupling of eight qubits. The realized prototype represents a mesoscopic limit of naturally occurring spin ensembles and as such we demonstrate the AC-Zeeman shift of a resonant qubit ensemble. The studied system constitutes the implementation of a basic quantum metamaterial in the sense that many artificial atoms are coupled collectively to the quantized mode of a photon field.
BSIFT: toward data-independent codebook for large scale image search.
Zhou, Wengang; Li, Houqiang; Hong, Richang; Lu, Yijuan; Tian, Qi
2015-03-01
Bag-of-Words (BoWs) model based on Scale Invariant Feature Transform (SIFT) has been widely used in large-scale image retrieval applications. Feature quantization by vector quantization plays a crucial role in BoW model, which generates visual words from the high- dimensional SIFT features, so as to adapt to the inverted file structure for the scalable retrieval. Traditional feature quantization approaches suffer several issues, such as necessity of visual codebook training, limited reliability, and update inefficiency. To avoid the above problems, in this paper, a novel feature quantization scheme is proposed to efficiently quantize each SIFT descriptor to a descriptive and discriminative bit-vector, which is called binary SIFT (BSIFT). Our quantizer is independent of image collections. In addition, by taking the first 32 bits out from BSIFT as code word, the generated BSIFT naturally lends itself to adapt to the classic inverted file structure for image indexing. Moreover, the quantization error is reduced by feature filtering, code word expansion, and query sensitive mask shielding. Without any explicit codebook for quantization, our approach can be readily applied in image search in some resource-limited scenarios. We evaluate the proposed algorithm for large scale image search on two public image data sets. Experimental results demonstrate the index efficiency and retrieval accuracy of our approach.
Density-Dependent Quantized Least Squares Support Vector Machine for Large Data Sets.
Nan, Shengyu; Sun, Lei; Chen, Badong; Lin, Zhiping; Toh, Kar-Ann
2017-01-01
Based on the knowledge that input data distribution is important for learning, a data density-dependent quantization scheme (DQS) is proposed for sparse input data representation. The usefulness of the representation scheme is demonstrated by using it as a data preprocessing unit attached to the well-known least squares support vector machine (LS-SVM) for application on big data sets. Essentially, the proposed DQS adopts a single shrinkage threshold to obtain a simple quantization scheme, which adapts its outputs to input data density. With this quantization scheme, a large data set is quantized to a small subset where considerable sample size reduction is generally obtained. In particular, the sample size reduction can save significant computational cost when using the quantized subset for feature approximation via the Nyström method. Based on the quantized subset, the approximated features are incorporated into LS-SVM to develop a data density-dependent quantized LS-SVM (DQLS-SVM), where an analytic solution is obtained in the primal solution space. The developed DQLS-SVM is evaluated on synthetic and benchmark data with particular emphasis on large data sets. Extensive experimental results show that the learning machine incorporating DQS attains not only high computational efficiency but also good generalization performance.
NASA Technical Reports Server (NTRS)
Wrigley, Chris J.; Hancock, Bruce R.; Newton, Kenneth W.; Cunningham, Thomas J.
2013-01-01
Single-slope analog-to-digital converters (ADCs) are particularly useful for onchip digitization in focal plane arrays (FPAs) because of their inherent monotonicity, relative simplicity, and efficiency for column-parallel applications, but they are comparatively slow. Squareroot encoding can allow the number of code values to be reduced without loss of signal-to-noise ratio (SNR) by keeping the quantization noise just below the signal shot noise. This encoding can be implemented directly by using a quadratic ramp. The reduction in the number of code values can substantially increase the quantization speed. However, in an FPA, the fixed pattern noise (FPN) limits the use of small quantization steps at low signal levels. If the zero-point is adjusted so that the lowest column is onscale, the other columns, including those at the center of the distribution, will be pushed up the ramp where the quantization noise is higher. Additionally, the finite frequency response of the ramp buffer amplifier and the comparator distort the shape of the ramp, so that the effective ramp value at the time the comparator trips differs from the intended value, resulting in errors. Allowing increased settling time decreases the quantization speed, while increasing the bandwidth increases the noise. The FPN problem is solved by breaking the ramp into two portions, with some fraction of the available code values allocated to a linear ramp and the remainder to a quadratic ramp. To avoid large transients, both the value and the slope of the linear and quadratic portions should be equal where they join. The span of the linear portion must cover the minimum offset, but not necessarily the maximum, since the fraction of the pixels above the upper limit will still be correctly quantized, albeit with increased quantization noise. The required linear span, maximum signal and ratio of quantization noise to shot noise at high signal, along with the continuity requirement, determines the number of code values that must be allocated to each portion. The distortion problem is solved by using a lookup table to convert captured code values back to signal levels. The values in this table will be similar to the intended ramp value, but with a correction for the finite bandwidth effects. Continuous-time comparators are used, and their bandwidth is set below the step rate, which smoothes the ramp and reduces the noise. No settling time is needed, as would be the case for clocked comparators, but the low bandwidth enhances the distortion of the non-linear portion. This is corrected by use of a return lookup table, which differs from the one used to generate the ramp. The return lookup table is obtained by calibrating against a stepped precision DC reference. This results in a residual non-linearity well below the quantization noise. This method can also compensate for differential non-linearity (DNL) in the DAC used to generate the ramp. The use of a ramp with a combination of linear and quadratic portions for a single-slope ADC is novel. The number of steps is minimized by keeping the step size just below the photon shot noise. This in turn maximizes the speed of the conversion. High resolution is maintained by keeping small quantization steps at low signals, and noise is minimized by allowing the lowest analog bandwidth, all without increasing the quantization noise. A calibrated return lookup table allows the system to maintain excellent linearity.
Generalized Ehrenfest Relations, Deformation Quantization, and the Geometry of Inter-model Reduction
NASA Astrophysics Data System (ADS)
Rosaler, Joshua
2018-03-01
This study attempts to spell out more explicitly than has been done previously the connection between two types of formal correspondence that arise in the study of quantum-classical relations: one the one hand, deformation quantization and the associated continuity between quantum and classical algebras of observables in the limit \\hbar → 0, and, on the other, a certain generalization of Ehrenfest's Theorem and the result that expectation values of position and momentum evolve approximately classically for narrow wave packet states. While deformation quantization establishes a direct continuity between the abstract algebras of quantum and classical observables, the latter result makes in-eliminable reference to the quantum and classical state spaces on which these structures act—specifically, via restriction to narrow wave packet states. Here, we describe a certain geometrical re-formulation and extension of the result that expectation values evolve approximately classically for narrow wave packet states, which relies essentially on the postulates of deformation quantization, but describes a relationship between the actions of quantum and classical algebras and groups over their respective state spaces that is non-trivially distinct from deformation quantization. The goals of the discussion are partly pedagogical in that it aims to provide a clear, explicit synthesis of known results; however, the particular synthesis offered aspires to some novelty in its emphasis on a certain general type of mathematical and physical relationship between the state spaces of different models that represent the same physical system, and in the explicitness with which it details the above-mentioned connection between quantum and classical models.
Image-adapted visually weighted quantization matrices for digital image compression
NASA Technical Reports Server (NTRS)
Watson, Andrew B. (Inventor)
1994-01-01
A method for performing image compression that eliminates redundant and invisible image components is presented. The image compression uses a Discrete Cosine Transform (DCT) and each DCT coefficient yielded by the transform is quantized by an entry in a quantization matrix which determines the perceived image quality and the bit rate of the image being compressed. The present invention adapts or customizes the quantization matrix to the image being compressed. The quantization matrix comprises visual masking by luminance and contrast techniques and by an error pooling technique all resulting in a minimum perceptual error for any given bit rate, or minimum bit rate for a given perceptual error.
Adaptive variable-length coding for efficient compression of spacecraft television data.
NASA Technical Reports Server (NTRS)
Rice, R. F.; Plaunt, J. R.
1971-01-01
An adaptive variable length coding system is presented. Although developed primarily for the proposed Grand Tour missions, many features of this system clearly indicate a much wider applicability. Using sample to sample prediction, the coding system produces output rates within 0.25 bit/picture element (pixel) of the one-dimensional difference entropy for entropy values ranging from 0 to 8 bit/pixel. This is accomplished without the necessity of storing any code words. Performance improvements of 0.5 bit/pixel can be simply achieved by utilizing previous line correlation. A Basic Compressor, using concatenated codes, adapts to rapid changes in source statistics by automatically selecting one of three codes to use for each block of 21 pixels. The system adapts to less frequent, but more dramatic, changes in source statistics by adjusting the mode in which the Basic Compressor operates on a line-to-line basis. Furthermore, the compression system is independent of the quantization requirements of the pulse-code modulation system.
Generic absence of strong singularities in loop quantum Bianchi-IX spacetimes
NASA Astrophysics Data System (ADS)
Saini, Sahil; Singh, Parampreet
2018-03-01
We study the generic resolution of strong singularities in loop quantized effective Bianchi-IX spacetime in two different quantizations—the connection operator based ‘A’ quantization and the extrinsic curvature based ‘K’ quantization. We show that in the effective spacetime description with arbitrary matter content, it is necessary to include inverse triad corrections to resolve all the strong singularities in the ‘A’ quantization. Whereas in the ‘K’ quantization these results can be obtained without including inverse triad corrections. Under these conditions, the energy density, expansion and shear scalars for both of the quantization prescriptions are bounded. Notably, both the quantizations can result in potentially curvature divergent events if matter content allows divergences in the partial derivatives of the energy density with respect to the triad variables at a finite energy density. Such events are found to be weak curvature singularities beyond which geodesics can be extended in the effective spacetime. Our results show that all potential strong curvature singularities of the classical theory are forbidden in Bianchi-IX spacetime in loop quantum cosmology and geodesic evolution never breaks down for such events.
Effects of photon field on heat transport through a quantum wire attached to leads
NASA Astrophysics Data System (ADS)
Abdullah, Nzar Rauf; Tang, Chi-Shung; Manolescu, Andrei; Gudmundsson, Vidar
2018-01-01
We theoretically investigate photo-thermoelectric transport through a quantum wire in a photon cavity coupled to electron reservoirs with different temperatures. Our approach, based on a quantum master equation, allows us to investigate the influence of a quantized photon field on the heat current and thermoelectric transport in the system. We find that the heat current through the quantum wire is influenced by the photon field resulting in a negative heat current in certain cases. The characteristics of the transport are studied by tuning the ratio, ħωγ /kB ΔT, between the photon energy, ħωγ, and the thermal energy, kB ΔT. The thermoelectric transport is enhanced by the cavity photons when kB ΔT > ħωγ. By contrast, if kB ΔT < ħωγ, the photon field is dominant and a suppression in the thermoelectric transport can be found in the case when the cavity-photon field is close to a resonance with the two lowest one-electron states in the system. Our approach points to a new technique to amplify thermoelectric current in nano-devices.
Zhang, Yu; Wu, Jianxin; Cai, Jianfei
2016-05-01
In large-scale visual recognition and image retrieval tasks, feature vectors, such as Fisher vector (FV) or the vector of locally aggregated descriptors (VLAD), have achieved state-of-the-art results. However, the combination of the large numbers of examples and high-dimensional vectors necessitates dimensionality reduction, in order to reduce its storage and CPU costs to a reasonable range. In spite of the popularity of various feature compression methods, this paper shows that the feature (dimension) selection is a better choice for high-dimensional FV/VLAD than the feature (dimension) compression methods, e.g., product quantization. We show that strong correlation among the feature dimensions in the FV and the VLAD may not exist, which renders feature selection a natural choice. We also show that, many dimensions in FV/VLAD are noise. Throwing them away using feature selection is better than compressing them and useful dimensions altogether using feature compression methods. To choose features, we propose an efficient importance sorting algorithm considering both the supervised and unsupervised cases, for visual recognition and image retrieval, respectively. Combining with the 1-bit quantization, feature selection has achieved both higher accuracy and less computational cost than feature compression methods, such as product quantization, on the FV and the VLAD image representations.
Permutation modulation for quantization and information reconciliation in CV-QKD systems
NASA Astrophysics Data System (ADS)
Daneshgaran, Fred; Mondin, Marina; Olia, Khashayar
2017-08-01
This paper is focused on the problem of Information Reconciliation (IR) for continuous variable Quantum Key Distribution (QKD). The main problem is quantization and assignment of labels to the samples of the Gaussian variables observed at Alice and Bob. Trouble is that most of the samples, assuming that the Gaussian variable is zero mean which is de-facto the case, tend to have small magnitudes and are easily disturbed by noise. Transmission over longer and longer distances increases the losses corresponding to a lower effective Signal to Noise Ratio (SNR) exasperating the problem. Here we propose to use Permutation Modulation (PM) as a means of quantization of Gaussian vectors at Alice and Bob over a d-dimensional space with d ≫ 1. The goal is to achieve the necessary coding efficiency to extend the achievable range of continuous variable QKD by quantizing over larger and larger dimensions. Fractional bit rate per sample is easily achieved using PM at very reasonable computational cost. Ordered statistics is used extensively throughout the development from generation of the seed vector in PM to analysis of error rates associated with the signs of the Gaussian samples at Alice and Bob as a function of the magnitude of the observed samples at Bob.
Pseudo-Kähler Quantization on Flag Manifolds
NASA Astrophysics Data System (ADS)
Karabegov, Alexander V.
A unified approach to geometric, symbol and deformation quantizations on a generalized flag manifold endowed with an invariant pseudo-Kähler structure is proposed. In particular cases we arrive at Berezin's quantization via covariant and contravariant symbols.
Instant-Form and Light-Front Quantization of Field Theories
NASA Astrophysics Data System (ADS)
Kulshreshtha, Usha; Kulshreshtha, Daya Shankar; Vary, James
2018-05-01
In this work we consider the instant-form and light-front quantization of some field theories. As an example, we consider a class of gauged non-linear sigma models with different regularizations. In particular, we present the path integral quantization of the gauged non-linear sigma model in the Faddeevian regularization. We also make a comparision of the possible differences in the instant-form and light-front quantization at appropriate places.
Yang-Baxter maps, discrete integrable equations and quantum groups
NASA Astrophysics Data System (ADS)
Bazhanov, Vladimir V.; Sergeev, Sergey M.
2018-01-01
For every quantized Lie algebra there exists a map from the tensor square of the algebra to itself, which by construction satisfies the set-theoretic Yang-Baxter equation. This map allows one to define an integrable discrete quantum evolution system on quadrilateral lattices, where local degrees of freedom (dynamical variables) take values in a tensor power of the quantized Lie algebra. The corresponding equations of motion admit the zero curvature representation. The commuting Integrals of Motion are defined in the standard way via the Quantum Inverse Problem Method, utilizing Baxter's famous commuting transfer matrix approach. All elements of the above construction have a meaningful quasi-classical limit. As a result one obtains an integrable discrete Hamiltonian evolution system, where the local equation of motion are determined by a classical Yang-Baxter map and the action functional is determined by the quasi-classical asymptotics of the universal R-matrix of the underlying quantum algebra. In this paper we present detailed considerations of the above scheme on the example of the algebra Uq (sl (2)) leading to discrete Liouville equations, however the approach is rather general and can be applied to any quantized Lie algebra.
On the BRST Quantization of the Massless Bosonic Particle in Twistor-Like Formulation
NASA Astrophysics Data System (ADS)
Bandos, Igor; Maznytsia, Alexey; Rudychev, Igor; Sorokin, Dmitri
We study some features of bosonic-particle path-integral quantization in a twistor-like approach by the use of the BRST-BFV-quantization prescription. In the course of the Hamiltonian analysis we observe links between various formulations of the twistor-like particle by performing a conversion of the Hamiltonian constraints of one formulation to another. A particular feature of the conversion procedure applied to turn the second-class constraints into first-class constraints is that the simplest Lorentz-covariant way to do this is to convert a full mixed set of the initial first- and second-class constraints rather than explicitly extracting and converting only the second-class constraints. Another novel feature of the conversion procedure applied below is that in the case of the D = 4 and D = 6 twistor-like particle the number of new auxiliary Lorentz-covariant coordinates, which one introduces to get a system of first-class constraints in an extended phase space, exceeds the number of independent second-class constraints of the original dynamical system. We calculate the twistor-like particle propagator in D = 3,4,6 space-time dimensions and show that it coincides with that of a conventional massless bosonic particle.
BFV-BRST quantization of two-dimensional supergravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujiwara, T.; Igarashi, Y.; Kuriki, R.
1996-01-01
Two-dimensional supergravity theory is quantized as an anomalous gauge theory. In the Batalin-Fradkin (BF) formalism, the anomaly-canceling super-Liouville fields are introduced to identify the original second-class constrained system with a gauge-fixed version of a first-class system. The BFV-BRST quantization applies to formulate the theory in the most general class of gauges. A local effective action constructed in the configuration space contains two super-Liouville actions; one is a noncovariant but local functional written only in terms of two-dimensional supergravity fields, and the other contains the super-Liouville fields canceling the super-Weyl anomaly. Auxiliary fields for the Liouville and the gravity supermultiplets aremore » introduced to make the BRST algebra close off-shell. Inclusion of them turns out to be essentially important especially in the super-light-cone gauge fixing, where the supercurvature equations ({partial_derivative}{sup 3}{sub {minus}}{ital g}{sub +}{sub +}={partial_derivative}{sup 2}{sub {minus}}{chi}{sub +}{sub +}=0) are obtained as a result of BRST invariance of the theory. Our approach reveals the origin of the OSp(1,2) current algebra symmetry in a transparent manner. {copyright} {ital 1996 The American Physical Society.}« less
[Theoretical model study about the application risk of high risk medical equipment].
Shang, Changhao; Yang, Fenghui
2014-11-01
Research for establishing a risk monitoring theoretical model of high risk medical equipment at applying site. Regard the applying site as a system which contains some sub-systems. Every sub-system consists of some risk estimating indicators. After quantizing of each indicator, the quantized values are multiplied with corresponding weight and then the products are accumulated. Hence, the risk estimating value of each subsystem is attained. Follow the calculating method, the risk estimating values of each sub-system are multiplied with corresponding weights and then the product is accumulated. The cumulative sum is the status indicator of the high risk medical equipment at applying site. The status indicator reflects the applying risk of the medical equipment at applying site. Establish a risk monitoring theoretical model of high risk medical equipment at applying site. The model can monitor the applying risk of high risk medical equipment at applying site dynamically and specially.
A family of chaotic pure analog coding schemes based on baker's map function
NASA Astrophysics Data System (ADS)
Liu, Yang; Li, Jing; Lu, Xuanxuan; Yuen, Chau; Wu, Jun
2015-12-01
This paper considers a family of pure analog coding schemes constructed from dynamic systems which are governed by chaotic functions—baker's map function and its variants. Various decoding methods, including maximum likelihood (ML), minimum mean square error (MMSE), and mixed ML-MMSE decoding algorithms, have been developed for these novel encoding schemes. The proposed mirrored baker's and single-input baker's analog codes perform a balanced protection against the fold error (large distortion) and weak distortion and outperform the classical chaotic analog coding and analog joint source-channel coding schemes in literature. Compared to the conventional digital communication system, where quantization and digital error correction codes are used, the proposed analog coding system has graceful performance evolution, low decoding latency, and no quantization noise. Numerical results show that under the same bandwidth expansion, the proposed analog system outperforms the digital ones over a wide signal-to-noise (SNR) range.
Controlling Photons, Qubits and their Interactions in Superconducting Electronic Circuits
NASA Astrophysics Data System (ADS)
Wallraff, Andreas
2009-03-01
A combination of ideas from atomic physics, quantum optics and solid state physics allows us to investigate the fundamental interaction of matter and light on the level of single quanta in electronic circuits. In an approach known as circuit quantum electrodynamics, we coherently couple individual photons stored in a high quality microwave frequency resonator to a fully controllable superconducting two-level system (qubit) realized in a macroscopic electronic circuit [1]. In particular, we have recently observed the simultaneous interaction of one, two and three photons with a single qubit. In these experiments, we have probed the quantum nonlinearity of the qubit/light interaction governed by the Jaynes-Cummings hamiltonian, clearly demonstrating the quantization of the radiation field in the on-chip cavity. We have also performed quantum optics experiments with no photons at all. In this situation, i.e. in pure vacuum, we have resolved the renormalization of the qubit transition frequency - known as the Lamb shift - due to its non-resonant interaction with the cavity vacuum fluctuations [3].[4pt] [1] A. Wallraff et al., Nature (London) 431, 162 (2004)[0pt] [2] J. Fink et al., Nature (London) 454, 315 (2008)[0pt] [3] A. Fragner et al., Science 322, 1357 (2008)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karpov, V. Ya.; Shpatakovskaya, G. V., E-mail: shpagalya@yandex.ru
An expression for the binding energies of electrons in the ground state of an atom is derived on the basis of the Bohr–Sommerfeld quantization rule within the Thomas–Fermi model. The validity of this relation for all elements from neon to uranium is tested within a more perfect quantum-mechanical model with and without the inclusion of relativistic effects, as well as with experimental binding energies. As a result, the ordering of electronic levels in filled atomic shells is established, manifested in an approximate atomic-number similarity. It is proposed to use this scaling property to analytically estimate the binding energies of electronsmore » in an arbitrary atom.« less
Quantization of systems with temporally varying discretization. II. Local evolution moves
NASA Astrophysics Data System (ADS)
Höhn, Philipp A.
2014-10-01
Several quantum gravity approaches and field theory on an evolving lattice involve a discretization changing dynamics generated by evolution moves. Local evolution moves in variational discrete systems (1) are a generalization of the Pachner evolution moves of simplicial gravity models, (2) update only a small subset of the dynamical data, (3) change the number of kinematical and physical degrees of freedom, and (4) generate a dynamical (or canonical) coarse graining or refining of the underlying discretization. To systematically explore such local moves and their implications in the quantum theory, this article suitably expands the quantum formalism for global evolution moves, constructed in Paper I [P. A. Höhn, "Quantization of systems with temporally varying discretization. I. Evolving Hilbert spaces," J. Math. Phys. 55, 083508 (2014); e-print arXiv:1401.6062 [gr-qc
Noncommutative gerbes and deformation quantization
NASA Astrophysics Data System (ADS)
Aschieri, Paolo; Baković, Igor; Jurčo, Branislav; Schupp, Peter
2010-11-01
We define noncommutative gerbes using the language of star products. Quantized twisted Poisson structures are discussed as an explicit realization in the sense of deformation quantization. Our motivation is the noncommutative description of D-branes in the presence of topologically non-trivial background fields.
Quantized discrete space oscillators
NASA Technical Reports Server (NTRS)
Uzes, C. A.; Kapuscik, Edward
1993-01-01
A quasi-canonical sequence of finite dimensional quantizations was found which has canonical quantization as its limit. In order to demonstrate its practical utility and its numerical convergence, this formalism is applied to the eigenvalue and 'eigenfunction' problem of several harmonic and anharmonic oscillators.
NASA Astrophysics Data System (ADS)
Moskalenko, Sveatoslav A.; Podlesny, Igor V.; Dumanov, Evgheni V.; Liberman, Michael A.
2015-09-01
We consider the energy spectrum of the two-dimensional cavity polaritons under the influence of a strong magnetic and electric fields perpendicular to the surface of the GaAs-type quantum wells (QWs) with p-type valence band embedded into the resonators. As the first step in this direction the Landau quantization (LQ) of the electrons and heavy-holes (hh) was investigated taking into account the Rashba spin-orbit coupling (RSOC) with third-order chirality terms for hh and with nonparabolicity terms in their dispersion low including as well the Zeeman splitting (ZS) effects. The nonparabolicity term is proportional to the strength of the electric field and was introduced to avoid the collapse of the semiconductor energy gap under the influence of the third order chirality terms. The exact solutions for the eigenfunctions and eigenenergies were obtained using the Rashba method [E.I. Rashba, Fiz. Tverd. Tela 2, 1224 (1960) [Sov. Phys. Solid State 2, 1109 (1960)
Zero-field magnetic response functions in Landau levels
Gao, Yang; Niu, Qian
2017-01-01
We present a fresh perspective on the Landau level quantization rule; that is, by successively including zero-field magnetic response functions at zero temperature, such as zero-field magnetization and susceptibility, the Onsager’s rule can be corrected order by order. Such a perspective is further reinterpreted as a quantization of the semiclassical electron density in solids. Our theory not only reproduces Onsager’s rule at zeroth order and the Berry phase and magnetic moment correction at first order but also explains the nature of higher-order corrections in a universal way. In applications, those higher-order corrections are expected to curve the linear relation between the level index and the inverse of the magnetic field, as already observed in experiments. Our theory then provides a way to extract the correct value of Berry phase as well as the magnetic susceptibility at zero temperature from Landau level fan diagrams in experiments. Moreover, it can be used theoretically to calculate Landau levels up to second-order accuracy for realistic models. PMID:28655849
Time-dependent density functional theory with twist-averaged boundary conditions
NASA Astrophysics Data System (ADS)
Schuetrumpf, B.; Nazarewicz, W.; Reinhard, P.-G.
2016-05-01
Background: Time-dependent density functional theory is widely used to describe excitations of many-fermion systems. In its many applications, three-dimensional (3D) coordinate-space representation is used, and infinite-domain calculations are limited to a finite volume represented by a spatial box. For finite quantum systems (atoms, molecules, nuclei, hadrons), the commonly used periodic or reflecting boundary conditions introduce spurious quantization of the continuum states and artificial reflections from boundary; hence, an incorrect treatment of evaporated particles. Purpose: The finite-volume artifacts for finite systems can be practically cured by invoking an absorbing potential in a certain boundary region sufficiently far from the described system. However, such absorption cannot be applied in the calculations of infinite matter (crystal electrons, quantum fluids, neutron star crust), which suffer from unphysical effects stemming from a finite computational box used. Here, twist-averaged boundary conditions (TABC) have been used successfully to diminish the finite-volume effects. In this work, we extend TABC to time-dependent modes. Method: We use the 3D time-dependent density functional framework with the Skyrme energy density functional. The practical calculations are carried out for small- and large-amplitude electric dipole and quadrupole oscillations of 16O. We apply and compare three kinds of boundary conditions: periodic, absorbing, and twist-averaged. Results: Calculations employing absorbing boundary conditions (ABC) and TABC are superior to those based on periodic boundary conditions. For low-energy excitations, TABC and ABC variants yield very similar results. With only four twist phases per spatial direction in TABC, one obtains an excellent reduction of spurious fluctuations. In the nonlinear regime, one has to deal with evaporated particles. In TABC, the floating nucleon gas remains in the box; the amount of nucleons in the gas is found to be roughly the same as the number of absorbed particles in ABC. Conclusion: We demonstrate that by using TABC, one can reduce finite-volume effects drastically without adding any additional parameters associated with absorption at large distances. Moreover, TABC are an obvious choice for time-dependent calculations for infinite systems. Since TABC calculations for different twists can be performed independently, the method is trivially adapted to parallel computing.
Quantum Bath Refrigeration towards Absolute Zero: Challenging the Unattainability Principle
NASA Astrophysics Data System (ADS)
Kolář, M.; Gelbwaser-Klimovsky, D.; Alicki, R.; Kurizki, G.
2012-08-01
A minimal model of a quantum refrigerator, i.e., a periodically phase-flipped two-level system permanently coupled to a finite-capacity bath (cold bath) and an infinite heat dump (hot bath), is introduced and used to investigate the cooling of the cold bath towards absolute zero (T=0). Remarkably, the temperature scaling of the cold-bath cooling rate reveals that it does not vanish as T→0 for certain realistic quantized baths, e.g., phonons in strongly disordered media (fractons) or quantized spin waves in ferromagnets (magnons). This result challenges Nernst’s third-law formulation known as the unattainability principle.
Error floor behavior study of LDPC codes for concatenated codes design
NASA Astrophysics Data System (ADS)
Chen, Weigang; Yin, Liuguo; Lu, Jianhua
2007-11-01
Error floor behavior of low-density parity-check (LDPC) codes using quantized decoding algorithms is statistically studied with experimental results on a hardware evaluation platform. The results present the distribution of the residual errors after decoding failure and reveal that the number of residual error bits in a codeword is usually very small using quantized sum-product (SP) algorithm. Therefore, LDPC code may serve as the inner code in a concatenated coding system with a high code rate outer code and thus an ultra low error floor can be achieved. This conclusion is also verified by the experimental results.
Quantum bath refrigeration towards absolute zero: challenging the unattainability principle.
Kolář, M; Gelbwaser-Klimovsky, D; Alicki, R; Kurizki, G
2012-08-31
A minimal model of a quantum refrigerator, i.e., a periodically phase-flipped two-level system permanently coupled to a finite-capacity bath (cold bath) and an infinite heat dump (hot bath), is introduced and used to investigate the cooling of the cold bath towards absolute zero (T=0). Remarkably, the temperature scaling of the cold-bath cooling rate reveals that it does not vanish as T→0 for certain realistic quantized baths, e.g., phonons in strongly disordered media (fractons) or quantized spin waves in ferromagnets (magnons). This result challenges Nernst's third-law formulation known as the unattainability principle.
Resonant tunneling of spin-wave packets via quantized states in potential wells.
Hansen, Ulf-Hendrik; Gatzen, Marius; Demidov, Vladislav E; Demokritov, Sergej O
2007-09-21
We have studied the tunneling of spin-wave pulses through a system of two closely situated potential barriers. The barriers represent two areas of inhomogeneity of the static magnetic field, where the existence of spin waves is forbidden. We show that for certain values of the spin-wave frequency corresponding to the quantized spin-wave states existing in the well formed between the barriers, the tunneling has a resonant character. As a result, transmission of spin-wave packets through the double-barrier structure is much more efficient than the sequent tunneling through two single barriers.
Visibility of wavelet quantization noise
NASA Technical Reports Server (NTRS)
Watson, A. B.; Yang, G. Y.; Solomon, J. A.; Villasenor, J.
1997-01-01
The discrete wavelet transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that we call DWT uniform quantization noise; it is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2-lambda, where r is display visual resolution in pixels/degree, and lambda is the wavelet level. Thresholds increase rapidly with wavelet spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from lowpass to horizontal/vertical to diagonal. We construct a mathematical model for DWT noise detection thresholds that is a function of level, orientation, and display visual resolution. This allows calculation of a "perceptually lossless" quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.
A recursive technique for adaptive vector quantization
NASA Technical Reports Server (NTRS)
Lindsay, Robert A.
1989-01-01
Vector Quantization (VQ) is fast becoming an accepted, if not preferred method for image compression. The VQ performs well when compressing all types of imagery including Video, Electro-Optical (EO), Infrared (IR), Synthetic Aperture Radar (SAR), Multi-Spectral (MS), and digital map data. The only requirement is to change the codebook to switch the compressor from one image sensor to another. There are several approaches for designing codebooks for a vector quantizer. Adaptive Vector Quantization is a procedure that simultaneously designs codebooks as the data is being encoded or quantized. This is done by computing the centroid as a recursive moving average where the centroids move after every vector is encoded. When computing the centroid of a fixed set of vectors the resultant centroid is identical to the previous centroid calculation. This method of centroid calculation can be easily combined with VQ encoding techniques. The defined quantizer changes after every encoded vector by recursively updating the centroid of minimum distance which is the selected by the encoder. Since the quantizer is changing definition or states after every encoded vector, the decoder must now receive updates to the codebook. This is done as side information by multiplexing bits into the compressed source data.
How To Identify Plasmons from the Optical Response of Nanostructures
2017-01-01
A promising trend in plasmonics involves shrinking the size of plasmon-supporting structures down to a few nanometers, thus enabling control over light–matter interaction at extreme-subwavelength scales. In this limit, quantum mechanical effects, such as nonlocal screening and size quantization, strongly affect the plasmonic response, rendering it substantially different from classical predictions. For very small clusters and molecules, collective plasmonic modes are hard to distinguish from other excitations such as single-electron transitions. Using rigorous quantum mechanical computational techniques for a wide variety of physical systems, we describe how an optical resonance of a nanostructure can be classified as either plasmonic or nonplasmonic. More precisely, we define a universal metric for such classification, the generalized plasmonicity index (GPI), which can be straightforwardly implemented in any computational electronic-structure method or classical electromagnetic approach to discriminate plasmons from single-particle excitations and photonic modes. Using the GPI, we investigate the plasmonicity of optical resonances in a wide range of systems including: the emergence of plasmonic behavior in small jellium spheres as the size and the number of electrons increase; atomic-scale metallic clusters as a function of the number of atoms; and nanostructured graphene as a function of size and doping down to the molecular plasmons in polycyclic aromatic hydrocarbons. Our study provides a rigorous foundation for the further development of ultrasmall nanostructures based on molecular plasmonics. PMID:28651057
Wigner Functions for the Bateman System on Noncommutative Phase Space
NASA Astrophysics Data System (ADS)
Heng, Tai-Hua; Lin, Bing-Sheng; Jing, Si-Cong
2010-09-01
We study an important dissipation system, i.e. the Bateman model on noncommutative phase space. Using the method of deformation quantization, we calculate the Exp functions, and then derive the Wigner functions and the corresponding energy spectra.
Thermal field theory and generalized light front quantization
NASA Astrophysics Data System (ADS)
Weldon, H. Arthur
2003-04-01
The dependence of thermal field theory on the surface of quantization and on the velocity of the heat bath is investigated by working in general coordinates that are arbitrary linear combinations of the Minkowski coordinates. In the general coordinates the metric tensor gμν¯ is nondiagonal. The Kubo-Martin-Schwinger condition requires periodicity in thermal correlation functions when the temporal variable changes by an amount -i/(T(g00¯)). Light-front quantization fails since g00¯=0; however, various related quantizations are possible.
Electrical and Thermal Transport in Inhomogeneous Luttinger Liquids
DeGottardi, Wade; Matveev, K. A.
2015-06-12
In this paper, we study the transport properties of long quantum wires by generalizing the Luttinger liquid approach to allow for the finite lifetime of the bosonic excitations. Our theory accounts for long-range disorder and strong electron interactions, both of which are common features of experiments with quantum wires. We obtain the electrical and thermal resistances and thermoelectric properties of such quantum wires and find a strong deviation from perfect conductance quantization. Finally, we cast our results in terms of the thermal conductivity and bulk viscosity of the electron liquid and give the temperature scale above which the transport canmore » be described by classical hydrodynamics.« less
The BRST complex of homological Poisson reduction
NASA Astrophysics Data System (ADS)
Müller-Lennert, Martin
2017-02-01
BRST complexes are differential graded Poisson algebras. They are associated with a coisotropic ideal J of a Poisson algebra P and provide a description of the Poisson algebra (P/J)^J as their cohomology in degree zero. Using the notion of stable equivalence introduced in Felder and Kazhdan (Contemporary Mathematics 610, Perspectives in representation theory, 2014), we prove that any two BRST complexes associated with the same coisotropic ideal are quasi-isomorphic in the case P = R[V] where V is a finite-dimensional symplectic vector space and the bracket on P is induced by the symplectic structure on V. As a corollary, the cohomology of the BRST complexes is canonically associated with the coisotropic ideal J in the symplectic case. We do not require any regularity assumptions on the constraints generating the ideal J. We finally quantize the BRST complex rigorously in the presence of infinitely many ghost variables and discuss the uniqueness of the quantization procedure.
A short essay on quantum black holes and underlying noncommutative quantized space-time
NASA Astrophysics Data System (ADS)
Tanaka, Sho
2017-01-01
We emphasize the importance of noncommutative geometry or Lorenz-covariant quantized space-time towards the ultimate theory of quantum gravity and Planck scale physics. We focus our attention on the statistical and substantial understanding of the Bekenstein-Hawking area-entropy law of black holes in terms of the kinematical holographic relation (KHR). KHR manifestly holds in Yang’s quantized space-time as the result of kinematical reduction of spatial degrees of freedom caused by its own nature of noncommutative geometry, and plays an important role in our approach without any recourse to the familiar hypothesis, so-called holographic principle. In the present paper, we find a unified form of KHR applicable to the whole region ranging from macroscopic to microscopic scales in spatial dimension d = 3. We notice a possibility of nontrivial modification of area-entropy law of black holes which becomes most remarkable in the extremely microscopic system close to Planck scale.
Electron Mobilities and Effective Masses in InGaAs/InAlAs HEMT Structures with High In Content
NASA Astrophysics Data System (ADS)
Yuzeeva, N. A.; Sorokoumova, A. V.; Lunin, R. A.; Oveshnikov, L. N.; Galiev, G. B.; Klimov, E. A.; Lavruchin, D. V.; Kulbachinskii, V. A.
2016-12-01
InxGa_{1-{x}}As/InyAl_{1-{y}}As HEMT structures {δ}-doped by Si were grown by molecular beam epitaxy on InP substrate. We investigated the influence of the In content on the electron mobilities and effective masses in dimensionally quantized subbands. The electron effective masses were determined by the temperature dependence of the amplitude of the Shubnikov-de Haas effect at 1.6 and 4.2 K. We found that the more the In content in quantum well (QW), the less the electron effective masses. The mobilities are higher in HEMT structures with wider and deeper QW. The energy band diagrams were calculated by using Vegard's law for basic parameters. The calculated band diagrams are in a good agreement with the experimental data of photoluminescence spectra.
Polymer-Fourier quantization of the scalar field revisited
NASA Astrophysics Data System (ADS)
Garcia-Chung, Angel; Vergara, J. David
2016-10-01
The polymer quantization of the Fourier modes of the real scalar field is studied within algebraic scheme. We replace the positive linear functional of the standard Poincaré invariant quantization by a singular one. This singular positive linear functional is constructed as mimicking the singular limit of the complex structure of the Poincaré invariant Fock quantization. The resulting symmetry group of such polymer quantization is the subgroup SDiff(ℝ4) which is a subgroup of Diff(ℝ4) formed by spatial volume preserving diffeomorphisms. In consequence, this yields an entirely different irreducible representation of the canonical commutation relations, nonunitary equivalent to the standard Fock representation. We also compared the Poincaré invariant Fock vacuum with the polymer Fourier vacuum.
On the theory of quantum measurement
NASA Technical Reports Server (NTRS)
Haus, Hermann A.; Kaertner, Franz X.
1994-01-01
Many so called paradoxes of quantum mechanics are clarified when the measurement equipment is treated as a quantized system. Every measurement involves nonlinear processes. Self consistent formulations of nonlinear quantum optics are relatively simple. Hence optical measurements, such as the quantum nondemolition (QND) measurement of photon number, are particularly well suited for such a treatment. It shows that the so called 'collapse of the wave function' is not needed for the interpretation of the measurement process. Coherence of the density matrix of the signal is progressively reduced with increasing accuracy of the photon number determination. If the QND measurement is incorporated into the double slit experiment, the contrast ratio of the fringes is found to decrease with increasing information on the photon number in one of the two paths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Błaszak, Maciej, E-mail: blaszakm@amu.edu.pl; Domański, Ziemowit, E-mail: ziemowit@amu.edu.pl
In the paper is presented an invariant quantization procedure of classical mechanics on the phase space over flat configuration space. Then, the passage to an operator representation of quantum mechanics in a Hilbert space over configuration space is derived. An explicit form of position and momentum operators as well as their appropriate ordering in arbitrary curvilinear coordinates is demonstrated. Finally, the extension of presented formalism onto non-flat case and related ambiguities of the process of quantization are discussed. -- Highlights: •An invariant quantization procedure of classical mechanics on the phase space over flat configuration space is presented. •The passage tomore » an operator representation of quantum mechanics in a Hilbert space over configuration space is derived. •Explicit form of position and momentum operators and their appropriate ordering in curvilinear coordinates is shown. •The invariant form of Hamiltonian operators quadratic and cubic in momenta is derived. •The extension of presented formalism onto non-flat case and related ambiguities of the quantization process are discussed.« less
Quantization noise in digital speech. M.S. Thesis- Houston Univ.
NASA Technical Reports Server (NTRS)
Schmidt, O. L.
1972-01-01
The amount of quantization noise generated in a digital-to-analog converter is dependent on the number of bits or quantization levels used to digitize the analog signal in the analog-to-digital converter. The minimum number of quantization levels and the minimum sample rate were derived for a digital voice channel. A sample rate of 6000 samples per second and lowpass filters with a 3 db cutoff of 2400 Hz are required for 100 percent sentence intelligibility. Consonant sounds are the first speech components to be degraded by quantization noise. A compression amplifier can be used to increase the weighting of the consonant sound amplitudes in the analog-to-digital converter. An expansion network must be installed at the output of the digital-to-analog converter to restore the original weighting of the consonant sounds. This technique results in 100 percent sentence intelligibility for a sample rate of 5000 samples per second, eight quantization levels, and lowpass filters with a 3 db cutoff of 2000 Hz.
Quantized spin-momentum transfer in atom-sized magnetic systems
NASA Astrophysics Data System (ADS)
Loth, Sebastian
2010-03-01
Our ability to quickly access the vast amounts of information linked in the internet is owed to the miniaturization of magnetic data storage. In modern disk drives the tunnel magnetoresistance effect (TMR) serves as sensitive reading mechanism for the nanoscopic magnetic bits [1]. At its core lies the ability to control the flow of electrons with a material's magnetization. The inverse effect, spin transfer torque (STT), allows one to influence a magnetic layer by high current densities of spin-polarized electrons and carries high hopes for applications in non-volatile magnetic memory [2]. We show that equivalent processes are active in quantum spin systems. We use a scanning tunneling microscope (STM) operating at low temperature and high magnetic field to address individual magnetic structures and probe their spin excitations by inelastic electron tunneling [3]. As model system we investigate transition metal atoms adsorbed to a copper nitride layer grown on a Cu crystal. The magnetic atoms on the surface possess well-defined spin states [4]. Transfer of one magnetic atom to the STM tip's apex creates spin-polarization in the probe tip. The combination of functionalized tip and surface adsorbed atom resembles a TMR structure where the magnetic layers now consist of one magnetic atom each. Spin-polarized current emitted from the probe tip not only senses the magnetic orientation of the atomic spin system, it efficiently transfers spin angular momentum and pumps the quantum spin system between the different spin states. This enables further exploration of the microscopic mechanisms for spin-relaxation and stability of quantum spin systems. [4pt] [1] Zhu and Park, Mater. Today 9, 36 (2006).[0pt] [2] Huai, AAPPS Bulletin 18, 33 (2008).[0pt] [3] Heinrich et al., Science 306, 466 (2004).[0pt] [4] Hirjibehedin et al., Science 317, 1199 (2007).
Output MSE and PSNR prediction in DCT-based lossy compression of remote sensing images
NASA Astrophysics Data System (ADS)
Kozhemiakin, Ruslan A.; Abramov, Sergey K.; Lukin, Vladimir V.; Vozel, Benoit; Chehdi, Kacem
2017-10-01
Amount and size of remote sensing (RS) images acquired by modern systems are so large that data have to be compressed in order to transfer, save and disseminate them. Lossy compression becomes more popular for aforementioned situations. But lossy compression has to be applied carefully with providing acceptable level of introduced distortions not to lose valuable information contained in data. Then introduced losses have to be controlled and predicted and this is problematic for many coders. In this paper, we analyze possibilities of predicting mean square error or, equivalently, PSNR for coders based on discrete cosine transform (DCT) applied either for compressing singlechannel RS images or multichannel data in component-wise manner. The proposed approach is based on direct dependence between distortions introduced due to DCT coefficient quantization and losses in compressed data. One more innovation deals with possibility to employ a limited number (percentage) of blocks for which DCT-coefficients have to be calculated. This accelerates prediction and makes it considerably faster than compression itself. There are two other advantages of the proposed approach. First, it is applicable for both uniform and non-uniform quantization of DCT coefficients. Second, the approach is quite general since it works for several analyzed DCT-based coders. The simulation results are obtained for standard test images and then verified for real-life RS data.
Quantized Synchronization of Chaotic Neural Networks With Scheduled Output Feedback Control.
Wan, Ying; Cao, Jinde; Wen, Guanghui
In this paper, the synchronization problem of master-slave chaotic neural networks with remote sensors, quantization process, and communication time delays is investigated. The information communication channel between the master chaotic neural network and slave chaotic neural network consists of several remote sensors, with each sensor able to access only partial knowledge of output information of the master neural network. At each sampling instants, each sensor updates its own measurement and only one sensor is scheduled to transmit its latest information to the controller's side in order to update the control inputs for the slave neural network. Thus, such communication process and control strategy are much more energy-saving comparing with the traditional point-to-point scheme. Sufficient conditions for output feedback control gain matrix, allowable length of sampling intervals, and upper bound of network-induced delays are derived to ensure the quantized synchronization of master-slave chaotic neural networks. Lastly, Chua's circuit system and 4-D Hopfield neural network are simulated to validate the effectiveness of the main results.In this paper, the synchronization problem of master-slave chaotic neural networks with remote sensors, quantization process, and communication time delays is investigated. The information communication channel between the master chaotic neural network and slave chaotic neural network consists of several remote sensors, with each sensor able to access only partial knowledge of output information of the master neural network. At each sampling instants, each sensor updates its own measurement and only one sensor is scheduled to transmit its latest information to the controller's side in order to update the control inputs for the slave neural network. Thus, such communication process and control strategy are much more energy-saving comparing with the traditional point-to-point scheme. Sufficient conditions for output feedback control gain matrix, allowable length of sampling intervals, and upper bound of network-induced delays are derived to ensure the quantized synchronization of master-slave chaotic neural networks. Lastly, Chua's circuit system and 4-D Hopfield neural network are simulated to validate the effectiveness of the main results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benabbas, Abdelkrim; Salna, Bridget; Sage, J. Timothy
2015-03-21
Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical “gating” distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotopemore » effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working near room temperature. This expression also holds when a broad protein conformational distribution of D-A equilibrium distances dominates the spread of the D-A vibrational wavefunction.« less
Benabbas, Abdelkrim; Salna, Bridget; Sage, J Timothy; Champion, Paul M
2015-03-21
Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical "gating" distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working near room temperature. This expression also holds when a broad protein conformational distribution of D-A equilibrium distances dominates the spread of the D-A vibrational wavefunction.
Electron transport through magnetic quantum point contacts
NASA Astrophysics Data System (ADS)
Day, Timothy Ellis
Spin-based electronics, or spintronics, has generated a great deal of interest as a possible next-generation integrated circuit technology. Recent experimental and theoretical work has shown that these devices could exhibit increased processing speed, decreased power consumption, and increased integration densities as compared with conventional semiconductor devices. The spintronic device that was designed, fabricated, and tested throughout the course of this work aimed to study the generation of spin-polarized currents in semiconductors using magnetic fringe fields. The device scheme relied on the Zeeman effect in combination with a quantum mechanical barrier to generate spin-polarized currents. The Zeeman effect was used to break the degeneracy of spin-up and spin-down electrons and the quantum mechanical potential to transmit one while rejecting the other. The design was dictated by the drive to maximize the strength of the magnetic fringe field and in turn maximize the energy separation of the two spin species. The device was fabricated using advanced techniques in semiconductor processing including electron beam lithography and DC magnetron sputtering. Measurements were performed in a 3He cryostat equipped with a superconducting magnet at temperatures below 300 mK. Preliminary characterization of the device revealed magnetoconductance oscillations produced by the effect of the transverse confining potential on the density of states and the mobility. Evidence of the effect of the magnetic fringe fields on the transport properties of electrons in the device were observed in multiple device measurements. An abrupt washout of the quantized conductance steps was observed over a minute range of the applied magnetic field. The washout was again observed as electrons were shifted closer to the magnetic gates. In addition, bias spectroscopy demonstrated that the washout occurred despite stronger electron confinement, as compared to a non-magnetic split-gate. Thus, the measurements indicated that conductance quantization breaks down in a non-uniform magnetic field, possibly due to changes to the stationary Landau states. It was also demonstrated that non-integer conductance plateaus at high source-drain bias are not caused by a macroscopic asymmetry in the potential drop.
Coherent state quantization of quaternions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muraleetharan, B., E-mail: bbmuraleetharan@jfn.ac.lk, E-mail: santhar@gmail.com; Thirulogasanthar, K., E-mail: bbmuraleetharan@jfn.ac.lk, E-mail: santhar@gmail.com
Parallel to the quantization of the complex plane, using the canonical coherent states of a right quaternionic Hilbert space, quaternion field of quaternionic quantum mechanics is quantized. Associated upper symbols, lower symbols, and related quantities are analyzed. Quaternionic version of the harmonic oscillator and Weyl-Heisenberg algebra are also obtained.
Topological Frequency Conversion in Strongly Driven Quantum Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Ivar; Refael, Gil; Halperin, Bertrand
When a physical system is subjected to a strong external multi-frequency drive, its dynamics can be conveniently represented in the multi-dimensional Floquet lattice. The number of the Floquet lattice dimensions equals the number of irrationally-related drive frequencies, and the evolution occurs in response to a built-in effective \\electric" field, whose components are proportional to the corresponding drive frequencies. The mapping allows to engineer and study temporal analogs of many real-space phenomena. Here we focus on the specifc example of a two-level system under two-frequency drive that induces topologically nontrivial band structure in the 2D Floquet space. The observable consequence ofmore » such construction is quantized pumping of energy between the sources with frequencies w 1 and w 2. Finally, when the system is initialized into a Floquet band with the Chern number C, the pumping occurs at the rate P 12 = – P 21 = ( C/2π)hw 1w 2, an exact counterpart of the transverse current in a conventional topological insulator.« less
Topological Frequency Conversion in Strongly Driven Quantum Systems
Martin, Ivar; Refael, Gil; Halperin, Bertrand
2017-10-16
When a physical system is subjected to a strong external multi-frequency drive, its dynamics can be conveniently represented in the multi-dimensional Floquet lattice. The number of the Floquet lattice dimensions equals the number of irrationally-related drive frequencies, and the evolution occurs in response to a built-in effective \\electric" field, whose components are proportional to the corresponding drive frequencies. The mapping allows to engineer and study temporal analogs of many real-space phenomena. Here we focus on the specifc example of a two-level system under two-frequency drive that induces topologically nontrivial band structure in the 2D Floquet space. The observable consequence ofmore » such construction is quantized pumping of energy between the sources with frequencies w 1 and w 2. Finally, when the system is initialized into a Floquet band with the Chern number C, the pumping occurs at the rate P 12 = – P 21 = ( C/2π)hw 1w 2, an exact counterpart of the transverse current in a conventional topological insulator.« less
Quantized Lax Equations and Their Solutions
NASA Astrophysics Data System (ADS)
Jurčo, B.; Schlieker, M.
Integrable systems on quantum groups are investigated. The Heisenberg equations possessing the Lax form are solved in terms of the solution to the factorization problem on the corresponding quantum group.
A Heisenberg Algebra Bundle of a Vector Field in Three-Space and its Weyl Quantization
NASA Astrophysics Data System (ADS)
Binz, Ernst; Pods, Sonja
2006-01-01
In these notes we associate a natural Heisenberg group bundle Ha with a singularity free smooth vector field X = (id,a) on a submanifold M in a Euclidean three-space. This bundle yields naturally an infinite dimensional Heisenberg group HX∞. A representation of the C*-group algebra of HX∞ is a quantization. It causes a natural Weyl-deformation quantization of X. The influence of the topological structure of M on this quantization is encoded in the Chern class of a canonical complex line bundle inside Ha.
BFV quantization on hermitian symmetric spaces
NASA Astrophysics Data System (ADS)
Fradkin, E. S.; Linetsky, V. Ya.
1995-02-01
Gauge-invariant BFV approach to geometric quantization is applied to the case of hermitian symmetric spaces G/ H. In particular, gauge invariant quantization on the Lobachevski plane and sphere is carried out. Due to the presence of symmetry, master equations for the first-class constraints, quantum observables and physical quantum states are exactly solvable. BFV-BRST operator defines a flat G-connection in the Fock bundle over G/ H. Physical quantum states are covariantly constant sections with respect to this connection and are shown to coincide with the generalized coherent states for the group G. Vacuum expectation values of the quantum observables commuting with the quantum first-class constraints reduce to the covariant symbols of Berezin. The gauge-invariant approach to quantization on symplectic manifolds synthesizes geometric, deformation and Berezin quantization approaches.
Probing topology by "heating": Quantized circular dichroism in ultracold atoms.
Tran, Duc Thanh; Dauphin, Alexandre; Grushin, Adolfo G; Zoller, Peter; Goldman, Nathan
2017-08-01
We reveal an intriguing manifestation of topology, which appears in the depletion rate of topological states of matter in response to an external drive. This phenomenon is presented by analyzing the response of a generic two-dimensional (2D) Chern insulator subjected to a circular time-periodic perturbation. Because of the system's chiral nature, the depletion rate is shown to depend on the orientation of the circular shake; taking the difference between the rates obtained from two opposite orientations of the drive, and integrating over a proper drive-frequency range, provides a direct measure of the topological Chern number (ν) of the populated band: This "differential integrated rate" is directly related to the strength of the driving field through the quantized coefficient η 0 = ν/ ℏ 2 , where h = 2π ℏ is Planck's constant. Contrary to the integer quantum Hall effect, this quantized response is found to be nonlinear with respect to the strength of the driving field, and it explicitly involves interband transitions. We investigate the possibility of probing this phenomenon in ultracold gases and highlight the crucial role played by edge states in this effect. We extend our results to 3D lattices, establishing a link between depletion rates and the nonlinear photogalvanic effect predicted for Weyl semimetals. The quantized circular dichroism revealed in this work designates depletion rate measurements as a universal probe for topological order in quantum matter.
Phase-factor-dependent symmetries and quantum phases in a three-level cavity QED system.
Fan, Jingtao; Yu, Lixian; Chen, Gang; Jia, Suotang
2016-05-03
Unlike conventional two-level particles, three-level particles may support some unitary-invariant phase factors when they interact coherently with a single-mode quantized light field. To gain a better understanding of light-matter interaction, it is thus necessary to explore the phase-factor-dependent physics in such a system. In this report, we consider the collective interaction between degenerate V-type three-level particles and a single-mode quantized light field, whose different components are labeled by different phase factors. We mainly establish an important relation between the phase factors and the symmetry or symmetry-broken physics. Specifically, we find that the phase factors affect dramatically the system symmetry. When these symmetries are breaking separately, rich quantum phases emerge. Finally, we propose a possible scheme to experimentally probe the predicted physics of our model. Our work provides a way to explore phase-factor-induced nontrivial physics by introducing additional particle levels.
Quantized mode of a leaky cavity
NASA Astrophysics Data System (ADS)
Dutra, S. M.; Nienhuis, G.
2000-12-01
We use Thomson's classical concept of mode of a leaky cavity to develop a quantum theory of cavity damping. This theory generalizes the conventional system-reservoir theory of high-Q cavity damping to arbitrary Q. The small system now consists of damped oscillators corresponding to the natural modes of the leaky cavity rather than undamped oscillators associated with the normal modes of a fictitious perfect cavity. The formalism unifies semiclassical Fox-Li modes and the normal modes traditionally used for quantization. It also lays the foundations for a full quantum description of excess noise. The connection with Siegman's semiclassical work is straightforward. In a wider context, this theory constitutes a radical departure from present models of dissipation in quantum mechanics: unlike conventional models, system and reservoir operators no longer commute with each other. This noncommutability is an unavoidable consequence of having to use natural cavity modes rather than normal modes of a fictitious perfect cavity.
Briceño, Raúl A.; Hansen, Maxwell T.; Sharpe, Stephen R.
2017-04-18
Working in relativistic quantum field theory, we derive the quantization condition satisfied by coupled two- and three-particle systems of identical scalar particles confined to a cubic spatial volume with periodicitymore » $L$. This gives the relation between the finite-volume spectrum and the infinite-volume $$\\textbf 2 \\to \\textbf 2$$, $$\\textbf 2 \\to \\textbf 3$$ and $$\\textbf 3 \\to \\textbf 3$$ scattering amplitudes for such theories. The result holds for relativistic systems composed of scalar particles with nonzero mass $m$, whose center of mass energy lies below the four-particle threshold, and for which the two-particle K-matrix has no singularities below the three-particle threshold. Finally, the quantization condition is exact up to corrections of the order $$\\mathcal{O}(e^{-mL})$$ and holds for any choice of total momenta satisfying the boundary conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briceño, Raúl A.; Hansen, Maxwell T.; Sharpe, Stephen R.
Working in relativistic quantum field theory, we derive the quantization condition satisfied by coupled two- and three-particle systems of identical scalar particles confined to a cubic spatial volume with periodicitymore » $L$. This gives the relation between the finite-volume spectrum and the infinite-volume $$\\textbf 2 \\to \\textbf 2$$, $$\\textbf 2 \\to \\textbf 3$$ and $$\\textbf 3 \\to \\textbf 3$$ scattering amplitudes for such theories. The result holds for relativistic systems composed of scalar particles with nonzero mass $m$, whose center of mass energy lies below the four-particle threshold, and for which the two-particle K-matrix has no singularities below the three-particle threshold. Finally, the quantization condition is exact up to corrections of the order $$\\mathcal{O}(e^{-mL})$$ and holds for any choice of total momenta satisfying the boundary conditions.« less
NASA Astrophysics Data System (ADS)
Deng, Jinyu; Li, Huihui; Dong, Kaifeng; Li, Run-Wei; Peng, Yingguo; Ju, Ganping; Hu, Jiangfeng; Chow, Gan Moog; Chen, Jingsheng
2018-03-01
We find that the misfit strain may lead to the oscillatory size distributions of heteroepitaxial nanostructures. In heteroepitaxial FePt thin films grown on single-crystal MgO substrate, ⟨110 ⟩ -oriented mazelike and granular patterns with "quantized" feature sizes are realized in scanning-electron-microscope images. The physical mechanism responsible for the size oscillations is related to the oscillatory nature of the misfit strain energy in the domain-matching epitaxial FePt /MgO system, which is observed by transmission electron microscopy. Based on the experimental observations, a model is built and the results suggest that when the FePt island sizes are an integer times the misfit dislocation period, the misfit strain can be completely canceled by the misfit dislocations. With applying the mechanism, small and uniform grain is obtained on the TiN (200) polycrystalline underlayer, which is suitable for practical application. This finding may offer a way to synthesize nanostructured materials with well-controlled size and size distribution by tuning the lattice mismatch between the epitaxial-grown heterostructure.
From classical to quantum mechanics: ``How to translate physical ideas into mathematical language''
NASA Astrophysics Data System (ADS)
Bergeron, H.
2001-09-01
Following previous works by E. Prugovečki [Physica A 91A, 202 (1978) and Stochastic Quantum Mechanics and Quantum Space-time (Reidel, Dordrecht, 1986)] on common features of classical and quantum mechanics, we develop a unified mathematical framework for classical and quantum mechanics (based on L2-spaces over classical phase space), in order to investigate to what extent quantum mechanics can be obtained as a simple modification of classical mechanics (on both logical and analytical levels). To obtain this unified framework, we split quantum theory in two parts: (i) general quantum axiomatics (a system is described by a state in a Hilbert space, observables are self-adjoints operators, and so on) and (ii) quantum mechanics proper that specifies the Hilbert space as L2(Rn); the Heisenberg rule [pi,qj]=-iℏδij with p=-iℏ∇, the free Hamiltonian H=-ℏ2Δ/2m and so on. We show that general quantum axiomatics (up to a supplementary "axiom of classicity") can be used as a nonstandard mathematical ground to formulate physical ideas and equations of ordinary classical statistical mechanics. So, the question of a "true quantization" with "ℏ" must be seen as an independent physical problem not directly related with quantum formalism. At this stage, we show that this nonstandard formulation of classical mechanics exhibits a new kind of operation that has no classical counterpart: this operation is related to the "quantization process," and we show why quantization physically depends on group theory (the Galilei group). This analytical procedure of quantization replaces the "correspondence principle" (or canonical quantization) and allows us to map classical mechanics into quantum mechanics, giving all operators of quantum dynamics and the Schrödinger equation. The great advantage of this point of view is that quantization is based on concrete physical arguments and not derived from some "pure algebraic rule" (we exhibit also some limit of the correspondence principle). Moreover spins for particles are naturally generated, including an approximation of their interaction with magnetic fields. We also recover by this approach the semi-classical formalism developed by E. Prugovečki [Stochastic Quantum Mechanics and Quantum Space-time (Reidel, Dordrecht, 1986)].