Sample records for quantum beam science

  1. Two-beam pumped cascaded four-wave-mixing process for producing multiple-beam quantum correlation

    NASA Astrophysics Data System (ADS)

    Liu, Shengshuai; Wang, Hailong; Jing, Jietai

    2018-04-01

    We propose a two-beam pumped cascaded four-wave-mixing (CFWM) scheme with a double-Λ energy-level configuration in 85Rb vapor cell and experimentally observe the emission of up to 10 quantum correlated beams from such CFWM scheme. During this process, the seed beam is amplified; four new signal beams and five idler beams are generated. The 10 beams show strong quantum correlation which is characterized by the intensity-difference squeezing of about -6.7 ±0.3 dB. Then, by altering the angle between the two pump beams, we observe the notable transition of the number of the output beams from 10 to eight, and even to six. We find that both the number of the output quantum correlated beams and their degree of quantum correlation from such two-beam pumped CFWM scheme increase with the decrease of the angle between the two pump beams. Such system may find potential applications in quantum information and quantum metrology.

  2. Quantum teleportation from light beams to vibrational states of a macroscopic diamond

    PubMed Central

    Hou, P.-Y.; Huang, Y.-Y.; Yuan, X.-X.; Chang, X.-Y.; Zu, C.; He, L.; Duan, L.-M.

    2016-01-01

    With the recent development of optomechanics, the vibration in solids, involving collective motion of trillions of atoms, gradually enters into the realm of quantum control. Here, building on the recent remarkable progress in optical control of motional states of diamonds, we report an experimental demonstration of quantum teleportation from light beams to vibrational states of a macroscopic diamond under ambient conditions. Through quantum process tomography, we demonstrate average teleportation fidelity (90.6±1.0)%, clearly exceeding the classical limit of 2/3. The experiment pushes the target of quantum teleportation to the biggest object so far, with interesting implications for optomechanical quantum control and quantum information science. PMID:27240553

  3. Quantum Social Science

    NASA Astrophysics Data System (ADS)

    Haven, Emmanuel; Khrennikov, Andrei

    2013-01-01

    Preface; Part I. Physics Concepts in Social Science? A Discussion: 1. Classical, statistical and quantum mechanics: all in one; 2. Econophysics: statistical physics and social science; 3. Quantum social science: a non-mathematical motivation; Part II. Mathematics and Physics Preliminaries: 4. Vector calculus and other mathematical preliminaries; 5. Basic elements of quantum mechanics; 6. Basic elements of Bohmian mechanics; Part III. Quantum Probabilistic Effects in Psychology: Basic Questions and Answers: 7. A brief overview; 8. Interference effects in psychology - an introduction; 9. A quantum-like model of decision making; Part IV. Other Quantum Probabilistic Effects in Economics, Finance and Brain Sciences: 10. Financial/economic theory in crisis; 11. Bohmian mechanics in finance and economics; 12. The Bohm-Vigier Model and path simulation; 13. Other applications to economic/financial theory; 14. The neurophysiological sources of quantum-like processing in the brain; Conclusion; Glossary; Index.

  4. Propagation-invariant beams with quantum pendulum spectra: from Bessel beams to Gaussian beam-beams.

    PubMed

    Dennis, Mark R; Ring, James D

    2013-09-01

    We describe a new class of propagation-invariant light beams with Fourier transform given by an eigenfunction of the quantum mechanical pendulum. These beams, whose spectra (restricted to a circle) are doubly periodic Mathieu functions in azimuth, depend on a field strength parameter. When the parameter is zero, pendulum beams are Bessel beams, and as the parameter approaches infinity, they resemble transversely propagating one-dimensional Gaussian wave packets (Gaussian beam-beams). Pendulum beams are the eigenfunctions of an operator that interpolates between the squared angular momentum operator and the linear momentum operator. The analysis reveals connections with Mathieu beams, and insight into the paraxial approximation.

  5. (Proceedings) 18th Advanced ICFA Beam Dynamics Workshop on Quantum Aspects of Beam Physics (QABP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Pisin

    2002-10-25

    The 18th Advanced ICFA Beam Dynamics Workshop on ''Quantum Aspects of Beam Physics'' was held from October 15 to 20, 2000, in Capri, Italy. This was the second workshop under the same title. The first one was held in Monterey, California, in January, 1998. Following the footstep of the first meeting, the second one in Capri was again a tremendous success, both scientifically and socially. About 70 colleagues from astrophysics, atomic physics, beam physics, condensed matter physics, particle physics, and general relativity gathered to update and further explore the topics covered in the Monterey workshop. Namely, the following topics weremore » actively discussed: (1) Quantum Fluctuations in Beam Dynamics; (2) Photon-Electron Interaction in Beam handling; (3) Physics of Condensed Beams; (4) Beam Phenomena under Strong Fields; (5) Quantum Methodologies in Beam Physics. In addition, there was a newly introduced subject on Astro-Beam Physics and Laboratory Astrophysics.« less

  6. Quantum optics of lossy asymmetric beam splitters.

    PubMed

    Uppu, Ravitej; Wolterink, Tom A W; Tentrup, Tristan B H; Pinkse, Pepijn W H

    2016-07-25

    We theoretically investigate quantum interference of two single photons at a lossy asymmetric beam splitter, the most general passive 2×2 optical circuit. The losses in the circuit result in a non-unitary scattering matrix with a non-trivial set of constraints on the elements of the scattering matrix. Our analysis using the noise operator formalism shows that the loss allows tunability of quantum interference to an extent not possible with a lossless beam splitter. Our theoretical studies support the experimental demonstrations of programmable quantum interference in highly multimodal systems such as opaque scattering media and multimode fibers.

  7. Quantum Sensors at the Intersections of Fundamental Science, Quantum Information Science & Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chattopadhyay, Swapan; Falcone, Roger; Walsworth, Ronald

    Over the last twenty years, there has been a boom in quantum science - i.e., the development and exploitation of quantum systems to enable qualitatively and quantitatively new capabilities, with high-impact applications and fundamental insights that can range across all areas of science and technology.

  8. Superconducting resonators as beam splitters for linear-optics quantum computation.

    PubMed

    Chirolli, Luca; Burkard, Guido; Kumar, Shwetank; Divincenzo, David P

    2010-06-11

    We propose and analyze a technique for producing a beam-splitting quantum gate between two modes of a ring-resonator superconducting cavity. The cavity has two integrated superconducting quantum interference devices (SQUIDs) that are modulated by applying an external magnetic field. The gate is accomplished by applying a radio frequency pulse to one of the SQUIDs at the difference of the two mode frequencies. Departures from perfect beam splitting only arise from corrections to the rotating wave approximation; an exact calculation gives a fidelity of >0.9992. Our construction completes the toolkit for linear-optics quantum computing in circuit quantum electrodynamics.

  9. ASCR Workshop on Quantum Computing for Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aspuru-Guzik, Alan; Van Dam, Wim; Farhi, Edward

    This report details the findings of the DOE ASCR Workshop on Quantum Computing for Science that was organized to assess the viability of quantum computing technologies to meet the computational requirements of the DOE’s science and energy mission, and to identify the potential impact of quantum technologies. The workshop was held on February 17-18, 2015, in Bethesda, MD, to solicit input from members of the quantum computing community. The workshop considered models of quantum computation and programming environments, physical science applications relevant to DOE's science mission as well as quantum simulation, and applied mathematics topics including potential quantum algorithms formore » linear algebra, graph theory, and machine learning. This report summarizes these perspectives into an outlook on the opportunities for quantum computing to impact problems relevant to the DOE’s mission as well as the additional research required to bring quantum computing to the point where it can have such impact.« less

  10. Experimental observation of spatial quantum noise reduction below the standard quantum limit with bright twin beams of light

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Nunley, Hayden; Marino, Alberto

    2016-05-01

    Quantum noise reduction (QNR) below the standard quantum limit (SQL) has been a subject of interest for the past two to three decades due to its wide range of applications in quantum metrology and quantum information processing. To date, most of the attention has focused on the study of QNR in the temporal domain. However, many areas in quantum optics, specifically in quantum imaging, could benefit from QNR not only in the temporal domain but also in the spatial domain. With the use of a high quantum efficiency electron multiplier charge coupled device (EMCCD) camera, we have observed spatial QNR below the SQL in bright narrowband twin light beams generated through a four-wave mixing (FWM) process in hot rubidium atoms. Owing to momentum conservation in this process, the twin beams are momentum correlated. This leads to spatial quantum correlations and spatial QNR. Our preliminary results show a spatial QNR of over 2 dB with respect to the SQL. Unlike previous results on spatial QNR with faint and broadband photon pairs from parametric down conversion (PDC), we demonstrate spatial QNR with spectrally and spatially narrowband bright light beams. The results obtained will be useful for atom light interaction based quantum protocols and quantum imaging. Work supported by the W.M. Keck Foundation.

  11. Quantum polarization fluctuations of an Airy beam in turbulent atmosphere in a slant path.

    PubMed

    Yin, Xia; Zhang, Licheng

    2016-07-01

    Polarization of light has many applications in quantum information processing, including quantum teleportation and dense coding. In this paper, we investigate the polarization fluctuations of Airy beams propagating in a slant turbulent channel under the "few-photon" limit. Using the quantum Stokes parameters and the quantum degree of polarization, we demonstrate that the degree of polarization of Airy beams increases significantly with the large number of the detection photons, and a higher photon-number level can retain the stability of polarization. Numerical simulations show that the longer propagation distance and the stronger turbulence will lead to less oscillatory behaviors and a decrease in the polarization degree of Airy beams, but a bigger exponential truncation factor will cause an increase in the polarization degree of Airy beams. In contrast with Gaussian beams, the degree of polarization of Airy beams is less affected by atmospheric turbulence and propagation distance under the same conditions, which means that Airy beams possess a resilient ability against turbulence-induced perturbations. These results indicate that Airy beams have great potential for applications in long-distance free-space optical communications to improve the performance of a polarization-encoded free-space quantum communication system.

  12. Conditions for quantum interference in cognitive sciences.

    PubMed

    Yukalov, Vyacheslav I; Sornette, Didier

    2014-01-01

    We present a general classification of the conditions under which cognitive science, concerned, e.g. with decision making, requires the use of quantum theoretical notions. The analysis is done in the frame of the mathematical approach based on the theory of quantum measurements. We stress that quantum effects in cognition can arise only when decisions are made under uncertainty. Conditions for the appearance of quantum interference in cognitive sciences and the conditions when interference cannot arise are formulated. Copyright © 2013 Cognitive Science Society, Inc.

  13. Impact of Relativistic Electron Beam on Hole Acoustic Instability in Quantum Semiconductor Plasmas

    NASA Astrophysics Data System (ADS)

    Siddique, M.; Jamil, M.; Rasheed, A.; Areeb, F.; Javed, Asif; Sumera, P.

    2018-01-01

    We studied the influence of the classical relativistic beam of electrons on the hole acoustic wave (HAW) instability exciting in the semiconductor quantum plasmas. We conducted this study by using the quantum-hydrodynamic model of dense plasmas, incorporating the quantum effects of semiconductor plasma species which include degeneracy pressure, exchange-correlation potential and Bohm potential. Analysis of the quantum characteristics of semiconductor plasma species along with relativistic effect of beam electrons on the dispersion relation of the HAW is given in detail qualitatively and quantitatively by plotting them numerically. It is worth mentioning that the relativistic electron beam (REB) stabilises the HAWs exciting in semiconductor (GaAs) degenerate plasma.

  14. In situ electron-beam polymerization stabilized quantum dot micelles.

    PubMed

    Travert-Branger, Nathalie; Dubois, Fabien; Renault, Jean-Philippe; Pin, Serge; Mahler, Benoit; Gravel, Edmond; Dubertret, Benoit; Doris, Eric

    2011-04-19

    A polymerizable amphiphile polymer containing PEG was synthesized and used to encapsulate quantum dots in micelles. The quantum dot micelles were then polymerized using a "clean" electron beam process that did not require any post-irradiation purification. Fluorescence spectroscopy revealed that the polymerized micelles provided an organic coating that preserved the quantum dot fluorescence better than nonpolymerized micelles, even under harsh conditions. © 2011 American Chemical Society

  15. Electron-beam generated porous dextran gels: experimental and quantum chemical studies.

    PubMed

    Naumov, Sergej; Knolle, Wolfgang; Becher, Jana; Schnabelrauch, Matthias; Reichelt, Senta

    2014-06-01

    The aim of this work was to investigate the reaction mechanism of electron-beam generated macroporous dextran cryogels by quantum chemical calculation and electron paramagnetic resonance measurements. Electron-beam radiation was used to initiate the cross-linking reaction of methacrylated dextran in semifrozen aqueous solutions. The pore morphology of the resulting cryogels was visualized by scanning electron microscopy. Quantum chemical calculations and electron paramagnetic resonance studies provided information on the most probable reaction pathway and the chain growth radicals. The most probable reaction pathway was a ring opening reaction and the addition of a C-atom to the double-bond of the methacrylated dextran molecule. First detailed quantum chemical calculation on the reaction mechanism of electron-beam initiated cross-linking reaction of methacrylated dextran are presented.

  16. Experimental characterization of quantum correlated triple beams generated by cascaded four-wave mixing processes

    NASA Astrophysics Data System (ADS)

    Qin, Zhongzhong; Cao, Leiming; Jing, Jietai

    2015-05-01

    Quantum correlations and entanglement shared among multiple modes are fundamental ingredients of most continuous-variable quantum technologies. Recently, a method used to generate multiple quantum correlated beams using cascaded four-wave mixing (FWM) processes was theoretically proposed and experimentally realized by our group [Z. Qin et al., Phys. Rev. Lett. 113, 023602 (2014)]. Our study of triple-beam quantum correlation paves the way to showing the tripartite entanglement in our system. Our system also promises to find applications in quantum information and precision measurement such as the controlled quantum communications, the generation of multiple quantum correlated images, and the realization of a multiport nonlinear interferometer. For its applications, the degree of quantum correlation is a crucial figure of merit. In this letter, we experimentally study how various parameters, such as the cell temperatures, one-photon, and two-photon detunings, influence the degree of quantum correlation between the triple beams generated from the cascaded two-FWM configuration.

  17. Experimental characterization of quantum correlated triple beams generated by cascaded four-wave mixing processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Zhongzhong; Cao, Leiming; Jing, Jietai, E-mail: jtjing@phy.ecnu.edu.cn

    2015-05-25

    Quantum correlations and entanglement shared among multiple modes are fundamental ingredients of most continuous-variable quantum technologies. Recently, a method used to generate multiple quantum correlated beams using cascaded four-wave mixing (FWM) processes was theoretically proposed and experimentally realized by our group [Z. Qin et al., Phys. Rev. Lett. 113, 023602 (2014)]. Our study of triple-beam quantum correlation paves the way to showing the tripartite entanglement in our system. Our system also promises to find applications in quantum information and precision measurement such as the controlled quantum communications, the generation of multiple quantum correlated images, and the realization of a multiportmore » nonlinear interferometer. For its applications, the degree of quantum correlation is a crucial figure of merit. In this letter, we experimentally study how various parameters, such as the cell temperatures, one-photon, and two-photon detunings, influence the degree of quantum correlation between the triple beams generated from the cascaded two-FWM configuration.« less

  18. Nanosatellites for quantum science and technology

    NASA Astrophysics Data System (ADS)

    Oi, Daniel K. L.; Ling, Alex; Grieve, James A.; Jennewein, Thomas; Dinkelaker, Aline N.; Krutzik, Markus

    2017-01-01

    Bringing quantum science and technology to the space frontier offers exciting prospects for both fundamental physics and applications such as long-range secure communication and space-borne quantum probes for inertial sensing with enhanced accuracy and sensitivity. But despite important terrestrial pathfinding precursors on common microgravity platforms and promising proposals to exploit the significant advantages of space quantum missions, large-scale quantum test beds in space are yet to be realised due to the high costs and lead times of traditional 'Big Space' satellite development. But the 'small space' revolution, spearheaded by the rise of nanosatellites such as CubeSats, is an opportunity to greatly accelerate the progress of quantum space missions by providing easy and affordable access to space and encouraging agile development. We review space quantum science and technology, CubeSats and their rapidly developing capabilities and how they can be used to advance quantum satellite systems.

  19. Quantum Information Science: An Update

    NASA Astrophysics Data System (ADS)

    Kwek, L. C.; Zen, Freddy P.

    2016-08-01

    It is now roughly thirty years since the incipient ideas on quantum information science was concretely formalized. Over the last three decades, there has been much development in this field, and at least one technology, namely devices for quantum cryptography, is now commercialized. Yet, the holy grail of a workable quantum computing machine still lies faraway at the horizon. In any case, it took nearly several centuries before the vacuum tubes were invented after the first mechanical calculating were constructed, and several decades later, for the transistor to bring the current computer technology to fruition. In this review, we provide a short survey of the current development and progress in quantum information science. It clearly does not do justice to the amount of work in the past thirty years. Nevertheless, despite the modest attempt, this review hopes to induce younger researchers into this exciting field.

  20. Multipulse addressing of a Raman quantum memory: configurable beam splitting and efficient readout.

    PubMed

    Reim, K F; Nunn, J; Jin, X-M; Michelberger, P S; Champion, T F M; England, D G; Lee, K C; Kolthammer, W S; Langford, N K; Walmsley, I A

    2012-06-29

    Quantum memories are vital to the scalability of photonic quantum information processing (PQIP), since the storage of photons enables repeat-until-success strategies. On the other hand, the key element of all PQIP architectures is the beam splitter, which allows us to coherently couple optical modes. Here, we show how to combine these crucial functionalities by addressing a Raman quantum memory with multiple control pulses. The result is a coherent optical storage device with an extremely large time bandwidth product, that functions as an array of dynamically configurable beam splitters, and that can be read out with arbitrarily high efficiency. Networks of such devices would allow fully scalable PQIP, with applications in quantum computation, long distance quantum communications and quantum metrology.

  1. Single photon at a configurable quantum-memory-based beam splitter

    NASA Astrophysics Data System (ADS)

    Guo, Xianxin; Mei, Yefeng; Du, Shengwang

    2018-06-01

    We report the demonstration of a configurable coherent quantum-memory-based beam splitter (BS) for a single-photon wave packet making use of laser-cooled 85Rb atoms and electromagnetically induced transparency. The single-photon wave packet is converted (stored) into a collective atomic spin state and later retrieved (split) into two nearly opposing directions. The storage time, beam-splitting ratio, and relative phase are configurable and can be dynamically controlled. We experimentally confirm that such a BS preserves the quantum particle nature of the single photon and the coherence between the two split wave packets of the single photon.

  2. Stationary self-focusing of intense laser beam in cold quantum plasma using ramp density profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habibi, M.; Ghamari, F.

    2012-10-15

    By using a transient density profile, we have demonstrated stationary self-focusing of an electromagnetic Gaussian beam in cold quantum plasma. The paper is devoted to the prospects of using upward increasing ramp density profile of an inhomogeneous nonlinear medium with quantum effects in self-focusing mechanism of high intense laser beam. We have found that the upward ramp density profile in addition to quantum effects causes much higher oscillation and better focusing of laser beam in cold quantum plasma in comparison to that in the classical relativistic case. Our computational results reveal the importance and influence of formation of electron densitymore » profiles in enhancing laser self-focusing.« less

  3. Transverse-mode beam splitter of a light beam and its application to quantum cryptography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasada, Hiroyuki; Okamoto, Megumi

    2003-07-01

    We have theoretically and experimentally studied how a Mach-Zehnder interferometer with an additional mirror transforms a light beam composed of the second lowest transverse modes, HG{sub 10}, HG{sub 01}, LG{sub 01}, and LG{sub 0-1} (HG denotes Hermite-Gaussian mode; LG denotes Laguerre-Gaussian mode). In certain conditions, the interferometer divides the incident beam into the HG{sub 10} and HG{sub 01} components as a transverse-mode beam splitter. We propose a practical device involving the two interferometers for quantum cryptography, in which a photon carries two bits corresponding to the polarization and the transverse mode.

  4. Focusing metasurface quantum-cascade laser with a near diffraction-limited beam

    DOE PAGES

    Xu, Luyao; Chen, Daguan; Itoh, Tatsuo; ...

    2016-10-17

    A terahertz vertical-external-cavity surface-emitting-laser (VECSEL) is demonstrated using an active focusing reflectarray metasurface based on quantum-cascade gain material. The focusing effect enables a hemispherical cavity with flat optics, which exhibits higher geometric stability than a plano-plano cavity and a directive and circular near-diffraction limited Gaussian beam with M 2 beam parameter as low as 1.3 and brightness of 1.86 × 10 6 Wsr –1m –2. As a result, this work initiates the potential of leveraging inhomogeneous metasurface and reflectarray designs to achieve high-power and high-brightness terahertz quantum-cascade VECSELs.

  5. External-cavity beam combining of 4-channel quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Zhang, Jin-Chuan; Zhou, Yu-Hong; Jia, Zhi-Wei; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Liu, Feng-Qi; Wang, Zhan-Guo

    2017-09-01

    We demonstrate an external-cavity (EC) beam combining of 4-channel quantum cascade lasers (QCLs) with an output coupler which makes different QCL beams propagating coaxially. A beam combining efficiency of 35% (up to 75% near threshold) is obtained with a beam quality M2 of 5.5. A peak power of 0.64 W is achieved at a wavelength of 4.7 μm. The differences of spot characteristic between coupled and uncoupled are also showed in this letter. The QCLs in this EC system do not have heat crosstalk so that the system can be used for high power beam combining of QCLs.

  6. Experimental characterization of pairwise correlations from triple quantum correlated beams generated by cascaded four-wave mixing processes

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Cao, Leiming; Lou, Yanbo; Du, Jinjian; Jing, Jietai

    2018-01-01

    We theoretically and experimentally characterize the performance of the pairwise correlations from triple quantum correlated beams based on the cascaded four-wave mixing (FWM) processes. The pairwise correlations between any two of the beams are theoretically calculated and experimentally measured. The experimental and theoretical results are in good agreement. We find that two of the three pairwise correlations can be in the quantum regime. The other pairwise correlation is always in the classical regime. In addition, we also measure the triple-beam correlation which is always in the quantum regime. Such unbalanced and controllable pairwise correlation structures may be taken as advantages in practical quantum communications, for example, hierarchical quantum secret sharing. Our results also open the way for the classification and application of quantum states generated from the cascaded FWM processes.

  7. Influence of light absorption on relativistic self-focusing of Gaussian laser beam in cold quantum plasma

    NASA Astrophysics Data System (ADS)

    Patil, S. D.; Valkunde, A. T.; Vhanmore, B. D.; Urunkar, T. U.; Gavade, K. M.; Takale, M. V.

    2018-05-01

    When inter particle distance is comparable to the de Broglies wavelength of charged particles, quantum effects in plasmas are unavoidable. We have exploited an influence of light absorption on self-focusing of Gaussian laser beam in cold quantum plasma by considering relativistic nonlinearity. Nonlinear differential equation governing beam-width parameter has been established by using parabolic equation approach under paraxial and WKB approximations. The effect of light absorption on variation of beam-width parameter with dimensionless distance of propagation is presented graphically and discussed. It is found that light absorption plays vital role in weakening the relativistic self-focusing of laser beam during propagation in cold quantum plasma and gives reasonably interesting results.

  8. Quantum Error Correction with a Globally-Coupled Array of Neutral Atom Qubits

    DTIC Science & Technology

    2013-02-01

    magneto - optical trap ) located at the center of the science cell. Fluorescence...Bottle beam trap GBA Gaussian beam array EMCCD electron multiplying charge coupled device microsec. microsecond MOT Magneto - optical trap QEC quantum error correction qubit quantum bit ...developed and implemented an array of neutral atom qubits in optical traps for studies of quantum error correction. At the end of the three year

  9. Quantum radiation reaction in laser-electron-beam collisions.

    PubMed

    Blackburn, T G; Ridgers, C P; Kirk, J G; Bell, A R

    2014-01-10

    It is possible using current high-intensity laser facilities to reach the quantum radiation reaction regime for energetic electrons. An experiment using a wakefield accelerator to drive GeV electrons into a counterpropagating laser pulse would demonstrate the increase in the yield of high-energy photons caused by the stochastic nature of quantum synchrotron emission: we show that a beam of 10(9) 1 GeV electrons colliding with a 30 fs laser pulse of intensity 10(22)  W cm(-2) will emit 6300 photons with energy greater than 700 MeV, 60× the number predicted by classical theory.

  10. Relativistic self-focusing of ultra-high intensity X-ray laser beams in warm quantum plasma with upward density profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habibi, M., E-mail: habibi.physics@gmail.com; Ghamari, F.

    2014-05-15

    The results of a numerical study of high-intensity X-ray laser beam interaction with warm quantum plasma (WQP) are presented. By means of an upward ramp density profile combined with quantum factors specially the Fermi velocity, we have demonstrated significant relativistic self-focusing (RSF) of a Gaussian electromagnetic beam in the WQP where the Fermi temperature term in the dielectric function is important. For this purpose, we have considered the quantum hydrodynamics model that modifies refractive index of inhomogeneous WQPs with the inclusion of quantum correction through the quantum statistical and diffraction effects in the relativistic regime. Also, to better illustration ofmore » the physical difference between warm and cold quantum plasmas and their effect on the RSF, we have derived the envelope equation governing the spot size of X-ray laser beam in Q-plasmas. In addition to the upward ramp density profile, we have found that the quantum effects would be caused much higher oscillation and better focusing of X-ray laser beam in the WQP compared to that of cold quantum case. Our computational results reveal the importance of the use of electrons density profile and Fermi speed in enhancing self-focusing of laser beam.« less

  11. Undergraduate Research in Quantum Information Science

    ERIC Educational Resources Information Center

    Lyons, David W.

    2017-01-01

    Quantum Information Science (QIS) is an interdisciplinary field involving mathematics, computer science, and physics. Appealing aspects include an abundance of accessible open problems, active interest and support from government and industry, and an energetic, open, and collaborative international research culture. We describe our student-faculty…

  12. Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory.

    PubMed

    Parigi, Valentina; D'Ambrosio, Vincenzo; Arnold, Christophe; Marrucci, Lorenzo; Sciarrino, Fabio; Laurat, Julien

    2015-07-13

    The full structuration of light in the transverse plane, including intensity, phase and polarization, holds the promise of unprecedented capabilities for applications in classical optics as well as in quantum optics and information sciences. Harnessing special topologies can lead to enhanced focusing, data multiplexing or advanced sensing and metrology. Here we experimentally demonstrate the storage of such spatio-polarization-patterned beams into an optical memory. A set of vectorial vortex modes is generated via liquid crystal cell with topological charge in the optic axis distribution, and preservation of the phase and polarization singularities is demonstrated after retrieval, at the single-photon level. The realized multiple-degree-of-freedom memory can find applications in classical data processing but also in quantum network scenarios where structured states have been shown to provide promising attributes, such as rotational invariance.

  13. Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory

    PubMed Central

    Parigi, Valentina; D'Ambrosio, Vincenzo; Arnold, Christophe; Marrucci, Lorenzo; Sciarrino, Fabio; Laurat, Julien

    2015-01-01

    The full structuration of light in the transverse plane, including intensity, phase and polarization, holds the promise of unprecedented capabilities for applications in classical optics as well as in quantum optics and information sciences. Harnessing special topologies can lead to enhanced focusing, data multiplexing or advanced sensing and metrology. Here we experimentally demonstrate the storage of such spatio-polarization-patterned beams into an optical memory. A set of vectorial vortex modes is generated via liquid crystal cell with topological charge in the optic axis distribution, and preservation of the phase and polarization singularities is demonstrated after retrieval, at the single-photon level. The realized multiple-degree-of-freedom memory can find applications in classical data processing but also in quantum network scenarios where structured states have been shown to provide promising attributes, such as rotational invariance. PMID:26166257

  14. Experimental investigation of the intensity fluctuation joint probability and conditional distributions of the twin-beam quantum state.

    PubMed

    Zhang, Yun; Kasai, Katsuyuki; Watanabe, Masayoshi

    2003-01-13

    We give the intensity fluctuation joint probability of the twin-beam quantum state, which was generated with an optical parametric oscillator operating above threshold. Then we present what to our knowledge is the first measurement of the intensity fluctuation conditional probability distributions of twin beams. The measured inference variance of twin beams 0.62+/-0.02, which is less than the standard quantum limit of unity, indicates inference with a precision better than that of separable states. The measured photocurrent variance exhibits a quantum correlation of as much as -4.9+/-0.2 dB between the signal and the idler.

  15. Science with radioactive beams: the alchemist's dream

    NASA Astrophysics Data System (ADS)

    Gelletly, W.

    2001-05-01

    Nuclear science is being transformed by a new capacity to create beams of radioactive nuclei. Until now all of our knowledge of nuclear physics and the applications which flow from it has been derived from studies of radioactive decay and nuclear reactions induced by beams of the 283 stable or long-lived nuclear species we can find on Earth. Here we describe first how beams of radioactive nuclei can be created. The present status of nuclear physics is then reviewed before potential applications to nuclear physics, nuclear astrophysics, materials science, bio-medical, and environmental studies are described.

  16. Synthesis and characterization of graphene quantum dots and their size reduction using swift heavy ion beam

    NASA Astrophysics Data System (ADS)

    Mishra, Praveen; Bhat, Badekai Ramchandra

    2018-04-01

    Graphene quantum dots (GQDs) are nanosized fragments of graphene displaying quantum confinement effect. They have shown to be prepared from various methods which include ion beam etching of graphene. However, recently the modification of the GQDs has garnered tremendous attention owing to its suitability for various applications. Here, we have studied the effect of swift ion beam irradiation on the properties of GQDs. The ion beam treatment on the GQDs exhibited the change in observed photoluminescence of GQDs as they exhibited a blue luminescence on excitation with longwave UV (≈365 nm) due to the reduction in size and removal of the ethoxy (-C-O-C-) groups present on the quantum dots. This was confirmed by transmission electron microscopy, particle size analysis, and Fourier transform infrared spectroscopy.

  17. Optical beams with embedded vortices: building blocks for atom optics and quantum information

    NASA Astrophysics Data System (ADS)

    Chattrapiban, N.; Arakelyan, I.; Mitra, S.; Hill, W. T., III

    2006-05-01

    Laser beams with embedded vortices, Bessel or Laguerre-Gaussian modes, provide a unique opportunity for creating elements for atom optics, entangling photons and, potentially, mediating novel quantum interconnects between photons and matter. High-order Bessel modes, for example, contain intensity voids and propagate nearly diffraction-free for tens of meters. These vortices can be exploited to produce dark channels oriented longitudinally (hollow beams) or transversely to the laser propagation direction. Such channels are ideal for generating networks or circuits to guide and manipulate cold neutral atoms, an essential requirement for realizing future applications associated with atom interferometry, atom lithography and even some neutral atom-based quantum computing architectures. Recently, we divided a thermal cloud of neutral atoms moving within a blue-detuned beam into two clouds with two different momenta by crossing two hollow beams. In this presentation, we will describe these results and discuss the prospects for extending the process to coherent ensembles of matter.

  18. On-chip continuous-variable quantum entanglement

    NASA Astrophysics Data System (ADS)

    Masada, Genta; Furusawa, Akira

    2016-09-01

    Entanglement is an essential feature of quantum theory and the core of the majority of quantum information science and technologies. Quantum computing is one of the most important fruits of quantum entanglement and requires not only a bipartite entangled state but also more complicated multipartite entanglement. In previous experimental works to demonstrate various entanglement-based quantum information processing, light has been extensively used. Experiments utilizing such a complicated state need highly complex optical circuits to propagate optical beams and a high level of spatial interference between different light beams to generate quantum entanglement or to efficiently perform balanced homodyne measurement. Current experiments have been performed in conventional free-space optics with large numbers of optical components and a relatively large-sized optical setup. Therefore, they are limited in stability and scalability. Integrated photonics offer new tools and additional capabilities for manipulating light in quantum information technology. Owing to integrated waveguide circuits, it is possible to stabilize and miniaturize complex optical circuits and achieve high interference of light beams. The integrated circuits have been firstly developed for discrete-variable systems and then applied to continuous-variable systems. In this article, we review the currently developed scheme for generation and verification of continuous-variable quantum entanglement such as Einstein-Podolsky-Rosen beams using a photonic chip where waveguide circuits are integrated. This includes balanced homodyne measurement of a squeezed state of light. As a simple example, we also review an experiment for generating discrete-variable quantum entanglement using integrated waveguide circuits.

  19. Quantum Opportunities and Challenges for Fundamental Sciences in Space

    NASA Technical Reports Server (NTRS)

    Yu, Nan

    2012-01-01

    Space platforms offer unique environment for and measurements of quantum world and fundamental physics. Quantum technology and measurements enhance measurement capabilities in space and result in greater science returns.

  20. Electro-mechanical control of an on-chip optical beam splitter containing an embedded quantum emitter

    NASA Astrophysics Data System (ADS)

    Bishop, Z. K.; Foster, A. P.; Royall, B.; Bentham, C.; Clarke, E.; Skolnick, M. S.; Wilson, L. R.

    2018-05-01

    We demonstrate electro-mechanical control of an on-chip GaAs optical beam splitter containing a quantum dot single-photon source. The beam splitter consists of two nanobeam waveguides, which form a directional coupler (DC). The splitting ratio of the DC is controlled by varying the out-of-plane separation of the two waveguides using electro-mechanical actuation. We reversibly tune the beam splitter between an initial state, with emission into both output arms, and a final state with photons emitted into a single output arm. The device represents a compact and scalable tuning approach for use in III-V semiconductor integrated quantum optical circuits.

  1. Electro-mechanical control of an on-chip optical beam splitter containing an embedded quantum emitter.

    PubMed

    Bishop, Z K; Foster, A P; Royall, B; Bentham, C; Clarke, E; Skolnick, M S; Wilson, L R

    2018-05-01

    We demonstrate electro-mechanical control of an on-chip GaAs optical beam splitter containing a quantum dot single-photon source. The beam splitter consists of two nanobeam waveguides, which form a directional coupler (DC). The splitting ratio of the DC is controlled by varying the out-of-plane separation of the two waveguides using electromechanical actuation. We reversibly tune the beam splitter between an initial state, with emission into both output arms, and a final state with photons emitted into a single output arm. The device represents a compact and scalable tuning approach for use in III-V semiconductor integrated quantum optical circuits.

  2. EDITORIAL: Quantum science and technology at the nanoscale Quantum science and technology at the nanoscale

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2010-07-01

    The development of quantum theory was an archetypal scientific revolution in early twentieth-century physics. In many ways, the probabilities and uncertainties that replaced the ubiquitous application of classical mechanics may have seemed a violent assault on logic and reason. 'Something unknown is doing we don't know what-that is what our theory amounts to,' Sir Arthur Eddington famously remarked, adding, 'It does not sound a particularly illuminating theory. I have read something like it elsewhere: the slithy toves, did gyre and gimble in the wabe' [1]. Today, quantum mechanics no longer seems a dark art best confined to the boundaries of physics and philosophy. Scanning probe micrographs have captured actual images of quantum-mechanical interference patterns [2], and familiarity has made the claims of quantum theory more palatable. An understanding of quantum effects is essential for nanoscale science and technology research. This special issue on quantum science and technology at the nanoscale collates some of the latest research that is extending the boundaries of our knowledge and understanding in the field. Quantum phenomena have become particularly significant in attempts to further reduce the size of electronic devices, the trend widely referred to as Moore's law. In this issue, researchers in Switzerland report results from transport studies on graphene. The researchers investigate the conductance variance in systems with superconducting contacts [3]. Also in this issue, researchers in Germany calculate the effects of spin-orbit coupling in a molecular dimer and predict nonlinear transport. They also explain how ferromagnetic electrodes can be used to probe these interactions [4]. Our understanding of spin and the ability to manipulate it has advanced greatly since the notion of spin was first proposed. However, it remains the case that little is known about local coherent fluctuations of spin polarizations, the scale on which they occur, how they are

  3. A dissipative quantum mechanical beam-splitter.

    PubMed

    Ramakrishna, S A; Bandyopadhyay, A; Rai, J

    1998-01-19

    A dissipative beam-splitter (BS) has been analyzed by modeling the losses in the BS due to the excitation of optical phonons. The losses are obtained in terms of the BS medium properties. The model simplies the picture by treating the loss mechanism as a perturbation on the photon modes in a linear, non-lossy medium in the limit of small losses, instead of using the full field quantization in lossy, dispersive media. The model uses second order perturbation in the Markoff approximation and yields the Beer's law for absorption in the first approximation, thus providing a microscopic description of the absorption coecient. It is shown that the fluctuations in the modes get increased because of the losses. We show the existence of quantum interferences due to phase correlations between the input beams and it is shown that these correlations can result in loss quenching. Hence in spite of having such a dissipative medium, it is possible to design a lossless 50-50 BS at normal incidence which may have potential applications in laser optics and dielectric-coated mirrors.

  4. Polarized electron beams elastically scattered by atoms as a tool for testing fundamental predictions of quantum mechanics.

    PubMed

    Dapor, Maurizio

    2018-03-29

    Quantum information theory deals with quantum noise in order to protect physical quantum bits (qubits) from its effects. A single electron is an emblematic example of a qubit, and today it is possible to experimentally produce polarized ensembles of electrons. In this paper, the theory of the polarization of electron beams elastically scattered by atoms is briefly summarized. Then the POLARe program suite, a set of computer programs aimed at the calculation of the spin-polarization parameters of electron beams elastically interacting with atomic targets, is described. Selected results of the program concerning Ar, Kr, and Xe atoms are presented together with the comparison with experimental data about the Sherman function for low kinetic energy of the incident electrons (1.5eV-350eV). It is demonstrated that the quantum-relativistic theory of the polarization of electron beams elastically scattered by atoms is in good agreement with experimental data down to energies smaller than a few eV.

  5. Quantum coherent tractor beam effect for atoms trapped near a nanowaveguide

    PubMed Central

    Sadgrove, Mark; Wimberger, Sandro; Nic Chormaic, Síle

    2016-01-01

    We propose several schemes to realize a tractor beam effect for ultracold atoms in the vicinity of a few-mode nanowaveguide. Atoms trapped near the waveguide are transported in a direction opposite to the guided mode propagation direction. We analyse three specific examples for ultracold 23Na atoms trapped near a specific nanowaveguide (i.e. an optical nanofibre): (i) a conveyor belt-type tractor beam effect, (ii) an accelerator tractor beam effect, and (iii) a quantum coherent tractor beam effect, all of which can effectively pull atoms along the nanofibre toward the light source. This technique provides a new tool for controlling the motion of particles near nanowaveguides with potential applications in the study of particle transport and binding as well as atom interferometry. PMID:27440516

  6. Beam shaping in high-power broad-area quantum cascade lasers using optical feedback.

    PubMed

    Ferré, Simon; Jumpertz, Louise; Carras, Mathieu; Ferreira, Robson; Grillot, Frédéric

    2017-03-13

    Broad-area quantum cascade lasers with high output powers are highly desirable sources for various applications including infrared countermeasures. However, such structures suffer from strongly deteriorated beam quality due to multimode behavior, diffraction of light and self-focusing. Quantum cascade lasers presenting high performances in terms of power and heat-load dissipation are reported and their response to a nonlinear control based on optical feedback is studied. Applying optical feedback enables to efficiently tailor its near-field beam profile. The different cavity modes are sequentially excited by shifting the feedback mirror angle. Further control of the near-field profile is demonstrated using spatial filtering. The impact of an inhomogeneous gain as well as the influence of the cavity width are investigated. Compared to existing technologies, that are complex and costly, beam shaping with optical feedback is a more flexible solution to obtain high-quality mid-infrared sources.

  7. Beam shaping in high-power broad-area quantum cascade lasers using optical feedback

    PubMed Central

    Ferré, Simon; Jumpertz, Louise; Carras, Mathieu; Ferreira, Robson; Grillot, Frédéric

    2017-01-01

    Broad-area quantum cascade lasers with high output powers are highly desirable sources for various applications including infrared countermeasures. However, such structures suffer from strongly deteriorated beam quality due to multimode behavior, diffraction of light and self-focusing. Quantum cascade lasers presenting high performances in terms of power and heat-load dissipation are reported and their response to a nonlinear control based on optical feedback is studied. Applying optical feedback enables to efficiently tailor its near-field beam profile. The different cavity modes are sequentially excited by shifting the feedback mirror angle. Further control of the near-field profile is demonstrated using spatial filtering. The impact of an inhomogeneous gain as well as the influence of the cavity width are investigated. Compared to existing technologies, that are complex and costly, beam shaping with optical feedback is a more flexible solution to obtain high-quality mid-infrared sources. PMID:28287175

  8. Proof-of-principle experiment of measurement-device-independent quantum key distribution with vector vortex beams

    NASA Astrophysics Data System (ADS)

    Dong, Chen; Zhao, Shang-Hong; Li, Wei; Yang, Jian

    2018-03-01

    In this paper, by combining measurement-device-independent quantum key distribution (MDI-QKD) scheme with entangled photon sources, we present a modified MDI-QKD scheme with pairs of vector vortex(VV) beams, which shows a structure of hybrid entangled entanglement corresponding to intrasystem entanglement and intersystem entanglement. The former entanglement, which is entangled between polarization and orbit angular momentum within each VV beam, is adopted to overcome the polarization misalignment associated with random rotations in quantum key distribution. The latter entanglement, which is entangled between the two VV beams, is used to perform entangled-based MDI-QKD protocol with pair of VV beams to inherit the merit of long distance. The numerical simulations show that our modified scheme can tolerate 97dB with practical detectors. Furthermore, our modified protocol only needs to insert q-plates in practical experiment.

  9. Unique Properties and Prospects: Quantum Theory of the Orbital Angular Momentum of Ince-Gauss Beams

    NASA Astrophysics Data System (ADS)

    Plick, William; Krenn, Mario; Fickler, Robert; Ramelow, Sven; Zeilinger, Anton

    2012-02-01

    The Ince-Gauss modes represent a new addition to the standard solutions to the paraxial wave equation. Parametrized by the ellipticity of the beam, they span the solution space between the Hermite-Gauss and the Laguerre-Gauss modes. These beams may be decomposed in either basis, and single photons in the Ince-Gauss modes exist naturally as superpositions of either Laguerre-Gauss or Hermite-Gauss modes. We present the fully quantum theory of the orbital angular momentum of these beams. Interesting features that arise are: stable beams with fractional orbital angular momentum, non-monotonic behavior of the OAM with respect to ellipticity, and the possibility of orthogonal modes possessing the same OAM. We believe that these modes may open up a fully new parameter space for quantum informatics and communication, and thus are worthy of thorough study.

  10. Anti-coalescence of bosons on a lossy beam splitter.

    PubMed

    Vest, Benjamin; Dheur, Marie-Christine; Devaux, Éloïse; Baron, Alexandre; Rousseau, Emmanuel; Hugonin, Jean-Paul; Greffet, Jean-Jacques; Messin, Gaétan; Marquier, François

    2017-06-30

    Two-boson interference, a fundamentally quantum effect, has been extensively studied with photons through the Hong-Ou-Mandel effect and observed with guided plasmons. Using two freely propagating surface plasmon polaritons (SPPs) interfering on a lossy beam splitter, we show that the presence of loss enables us to modify the reflection and transmission factors of the beam splitter, thus revealing quantum interference paths that do not exist in a lossless configuration. We investigate the two-plasmon interference on beam splitters with different sets of reflection and transmission factors. Through coincidence-detection measurements, we observe either coalescence or anti-coalescence of SPPs. The results show that losses can be viewed as a degree of freedom to control quantum processes. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  11. Deterministic Integration of Quantum Dots into on-Chip Multimode Interference Beamsplitters Using in Situ Electron Beam Lithography.

    PubMed

    Schnauber, Peter; Schall, Johannes; Bounouar, Samir; Höhne, Theresa; Park, Suk-In; Ryu, Geun-Hwan; Heindel, Tobias; Burger, Sven; Song, Jin-Dong; Rodt, Sven; Reitzenstein, Stephan

    2018-04-11

    The development of multinode quantum optical circuits has attracted great attention in recent years. In particular, interfacing quantum-light sources, gates, and detectors on a single chip is highly desirable for the realization of large networks. In this context, fabrication techniques that enable the deterministic integration of preselected quantum-light emitters into nanophotonic elements play a key role when moving forward to circuits containing multiple emitters. Here, we present the deterministic integration of an InAs quantum dot into a 50/50 multimode interference beamsplitter via in situ electron beam lithography. We demonstrate the combined emitter-gate interface functionality by measuring triggered single-photon emission on-chip with g (2) (0) = 0.13 ± 0.02. Due to its high patterning resolution as well as spectral and spatial control, in situ electron beam lithography allows for integration of preselected quantum emitters into complex photonic systems. Being a scalable single-step approach, it paves the way toward multinode, fully integrated quantum photonic chips.

  12. Deterministic Integration of Quantum Dots into on-Chip Multimode Interference Beamsplitters Using in Situ Electron Beam Lithography

    NASA Astrophysics Data System (ADS)

    Schnauber, Peter; Schall, Johannes; Bounouar, Samir; Höhne, Theresa; Park, Suk-In; Ryu, Geun-Hwan; Heindel, Tobias; Burger, Sven; Song, Jin-Dong; Rodt, Sven; Reitzenstein, Stephan

    2018-04-01

    The development of multi-node quantum optical circuits has attracted great attention in recent years. In particular, interfacing quantum-light sources, gates and detectors on a single chip is highly desirable for the realization of large networks. In this context, fabrication techniques that enable the deterministic integration of pre-selected quantum-light emitters into nanophotonic elements play a key role when moving forward to circuits containing multiple emitters. Here, we present the deterministic integration of an InAs quantum dot into a 50/50 multi-mode interference beamsplitter via in-situ electron beam lithography. We demonstrate the combined emitter-gate interface functionality by measuring triggered single-photon emission on-chip with $g^{(2)}(0) = 0.13\\pm 0.02$. Due to its high patterning resolution as well as spectral and spatial control, in-situ electron beam lithography allows for integration of pre-selected quantum emitters into complex photonic systems. Being a scalable single-step approach, it paves the way towards multi-node, fully integrated quantum photonic chips.

  13. Feedback stabilization of quantum cascade laser beams for stand-off applications

    NASA Astrophysics Data System (ADS)

    Müller, Reik; Kendziora, Christopher A.; Furstenberg, Robert

    2017-05-01

    Techniques which apply tunable quantum cascade lasers (QCLs) for target illumination suffer from fluctuations of the laser beam direction. This manuscript describes a method to stabilize the beam direction by using an active feedback loop. This approach corrects and stabilizes the laser pointing direction using the signal from a 4-element photo sensor as input to control an active 2 dimensional Galvo mirror system. Results are presented for measurements using known perturbations as well as actual mode hops intrinsic to external cavity QCL during wavelength tuning.

  14. Asymmetric chemical reactions by polarized quantum beams

    NASA Astrophysics Data System (ADS)

    Takahashi, Jun-Ichi; Kobayashi, Kensei

    One of the most attractive hypothesis for the origin of homochirality in terrestrial bio-organic compounds (L-amino acid and D-sugar dominant) is nominated as "Cosmic Scenario"; a chiral impulse from asymmetric excitation sources in space triggered asymmetric reactions on the surfaces of such space materials as meteorites or interstellar dusts prior to the existence of terrestrial life. 1) Effective asymmetric excitation sources in space are proposed as polarized quantum beams, such as circularly polarized light and spin polarized electrons. Circularly polarized light is emitted as synchrotron radiation from tightly captured electrons by intense magnetic field around neutron stars. In this case, either left-or right-handed polarized light can be observed depending on the direction of observation. On the other hand, spin polarized electrons is emitted as beta-ray in beta decay from radioactive nuclei or neutron fireballs in supernova explosion. 2) The spin of beta-ray electrons is longitudinally polarized due to parity non-conservation in the weak interaction. The helicity (the the projection of the spin onto the direction of kinetic momentum) of beta-ray electrons is universally negative (left-handed). For the purpose of verifying the asymmetric structure emergence in bio-organic compounds by polarized quantum beams, we are now carrying out laboratory simulations using circularly polarized light from synchrotron radiation facility or spin polarized electron beam from beta-ray radiation source. 3,4) The target samples are solid film or aqueous solution of racemic amino acids. 1) K.Kobayashi, K.Kaneko, J.Takahashi, Y.Takano, in Astrobiology: from simple molecules to primitive life; Ed. V.Basiuk; American Scientific Publisher: Valencia, 2008. 2) G.A.Gusev, T.Saito, V.A.Tsarev, A.V.Uryson, Origins Life Evol. Biosphere. 37, 259 (2007). 3) J.Takahashi, H.Shinojima, M.Seyama, Y.Ueno, T.Kaneko, K.Kobayashi, H.Mita, M.Adachi, M.Hosaka, M.Katoh, Int. J. Mol. Sci. 10, 3044

  15. Quantum correlations from a room-temperature optomechanical cavity.

    PubMed

    Purdy, T P; Grutter, K E; Srinivasan, K; Taylor, J M

    2017-06-23

    The act of position measurement alters the motion of an object being measured. This quantum measurement backaction is typically much smaller than the thermal motion of a room-temperature object and thus difficult to observe. By shining laser light through a nanomechanical beam, we measure the beam's thermally driven vibrations and perturb its motion with optical force fluctuations at a level dictated by the Heisenberg measurement-disturbance uncertainty relation. We demonstrate a cross-correlation technique to distinguish optically driven motion from thermally driven motion, observing this quantum backaction signature up to room temperature. We use the scale of the quantum correlations, which is determined by fundamental constants, to gauge the size of thermal motion, demonstrating a path toward absolute thermometry with quantum mechanically calibrated ticks. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  16. The quantum computer game: citizen science

    NASA Astrophysics Data System (ADS)

    Damgaard, Sidse; Mølmer, Klaus; Sherson, Jacob

    2013-05-01

    Progress in the field of quantum computation is hampered by daunting technical challenges. Here we present an alternative approach to solving these by enlisting the aid of computer players around the world. We have previously examined a quantum computation architecture involving ultracold atoms in optical lattices and strongly focused tweezers of light. In The Quantum Computer Game (see http://www.scienceathome.org/), we have encapsulated the time-dependent Schrödinger equation for the problem in a graphical user interface allowing for easy user input. Players can then search the parameter space with real-time graphical feedback in a game context with a global high-score that rewards short gate times and robustness to experimental errors. The game which is still in a demo version has so far been tried by several hundred players. Extensions of the approach to other models such as Gross-Pitaevskii and Bose-Hubbard are currently under development. The game has also been incorporated into science education at high-school and university level as an alternative method for teaching quantum mechanics. Initial quantitative evaluation results are very positive. AU Ideas Center for Community Driven Research, CODER.

  17. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope.

    PubMed

    Feist, Armin; Echternkamp, Katharina E; Schauss, Jakob; Yalunin, Sergey V; Schäfer, Sascha; Ropers, Claus

    2015-05-14

    Coherent manipulation of quantum systems with light is expected to be a cornerstone of future information and communication technology, including quantum computation and cryptography. The transfer of an optical phase onto a quantum wavefunction is a defining aspect of coherent interactions and forms the basis of quantum state preparation, synchronization and metrology. Light-phase-modulated electron states near atoms and molecules are essential for the techniques of attosecond science, including the generation of extreme-ultraviolet pulses and orbital tomography. In contrast, the quantum-coherent phase-modulation of energetic free-electron beams has not been demonstrated, although it promises direct access to ultrafast imaging and spectroscopy with tailored electron pulses on the attosecond scale. Here we demonstrate the coherent quantum state manipulation of free-electron populations in an electron microscope beam. We employ the interaction of ultrashort electron pulses with optical near-fields to induce Rabi oscillations in the populations of electron momentum states, observed as a function of the optical driving field. Excellent agreement with the scaling of an equal-Rabi multilevel quantum ladder is obtained, representing the observation of a light-driven 'quantum walk' coherently reshaping electron density in momentum space. We note that, after the interaction, the optically generated superposition of momentum states evolves into a train of attosecond electron pulses. Our results reveal the potential of quantum control for the precision structuring of electron densities, with possible applications ranging from ultrafast electron spectroscopy and microscopy to accelerator science and free-electron lasers.

  18. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Feist, Armin; Echternkamp, Katharina E.; Schauss, Jakob; Yalunin, Sergey V.; Schäfer, Sascha; Ropers, Claus

    2015-05-01

    Coherent manipulation of quantum systems with light is expected to be a cornerstone of future information and communication technology, including quantum computation and cryptography. The transfer of an optical phase onto a quantum wavefunction is a defining aspect of coherent interactions and forms the basis of quantum state preparation, synchronization and metrology. Light-phase-modulated electron states near atoms and molecules are essential for the techniques of attosecond science, including the generation of extreme-ultraviolet pulses and orbital tomography. In contrast, the quantum-coherent phase-modulation of energetic free-electron beams has not been demonstrated, although it promises direct access to ultrafast imaging and spectroscopy with tailored electron pulses on the attosecond scale. Here we demonstrate the coherent quantum state manipulation of free-electron populations in an electron microscope beam. We employ the interaction of ultrashort electron pulses with optical near-fields to induce Rabi oscillations in the populations of electron momentum states, observed as a function of the optical driving field. Excellent agreement with the scaling of an equal-Rabi multilevel quantum ladder is obtained, representing the observation of a light-driven `quantum walk' coherently reshaping electron density in momentum space. We note that, after the interaction, the optically generated superposition of momentum states evolves into a train of attosecond electron pulses. Our results reveal the potential of quantum control for the precision structuring of electron densities, with possible applications ranging from ultrafast electron spectroscopy and microscopy to accelerator science and free-electron lasers.

  19. Security of subcarrier wave quantum key distribution against the collective beam-splitting attack.

    PubMed

    Miroshnichenko, G P; Kozubov, A V; Gaidash, A A; Gleim, A V; Horoshko, D B

    2018-04-30

    We consider a subcarrier wave quantum key distribution (QKD) system, where quantum encoding is carried out at weak sidebands generated around a coherent optical beam as a result of electro-optical phase modulation. We study security of two protocols, B92 and BB84, against one of the most powerful attacks for this class of systems, the collective beam-splitting attack. Our analysis includes the case of high modulation index, where the sidebands are essentially multimode. We demonstrate numerically and experimentally that a subcarrier wave QKD system with realistic parameters is capable of distributing cryptographic keys over large distances in presence of collective attacks. We also show that BB84 protocol modification with discrimination of only one state in each basis performs not worse than the original BB84 protocol in this class of QKD systems, thus significantly simplifying the development of cryptographic networks using the considered QKD technique.

  20. Ultracold-atom quantum simulator for attosecond science

    NASA Astrophysics Data System (ADS)

    Sala, Simon; Förster, Johann; Saenz, Alejandro

    2017-01-01

    A quantum simulator based on ultracold optically trapped atoms for simulating the physics of atoms and molecules in ultrashort intense laser fields is introduced. The slowing down by about 13 orders of magnitude allows one to watch in slow motion the tunneling and recollision processes that form the heart of attosecond science. The extreme flexibility of the simulator promises a deeper understanding of strong-field physics, especially for many-body systems beyond the reach of classical computers. The quantum simulator can experimentally straightforwardly be realized and is shown to recover the ionization characteristics of atoms in the different regimes of laser-matter interaction.

  1. Quantum physics and the beam splitter mystery

    NASA Astrophysics Data System (ADS)

    Hénault, François

    2015-09-01

    Optical lossless beam splitters are frequently encountered in fundamental physics experiments regarding the nature of light, including "which-way" determination or the EPR paradox and their measurement apparatus. Although they look as common optical components at first glance, their behaviour remains somewhat mysterious since they apparently exhibit stand-alone particle-like features, and then wave-like characteristics when inserted into a Mach-Zehnder interferometer. In this communication are examined and discussed some basic properties of these beamssplitters, both from a classical optics and quantum physics point of view. Herein the most evident convergences and contradictions are highlighted, and the results of a few emblematic experiments demonstrating photon existence are discussed. Alternative empirical models are also proposed in order to shed light on some remaining issues.

  2. Strong quantum squeezing near the pull-in instability of a nonlinear beam

    DOE PAGES

    Passian, Ali; Siopsis, George

    2016-08-04

    Microscopic silicon-based suspended mechanical oscillators, constituting an extremely sensitive force probe, transducer, and actuator, are being increasingly employed in many developing microscopies, spectroscopies, and emerging optomechanical and chem-bio sensors. Here, we predict a significant squeezing in the quantum state of motion of an oscillator constrained as a beam and subject to an electrically induced nonlinearity. When we take into account the quantum noise, the underlying nonlinear dynamics is investigated in both the transient and stationary regimes of the driving force leading to the finding that strongly squeezed states are accessible in the vicinity of the pull-in instability of the oscillator.more » We discuss a possible application of this strong quantum squeezing as an optomechanical method for detecting broad-spectrum single or low-count photons, and further suggest other novel sensing actions.« less

  3. Fabrication of carbon quantum dots with nano-defined position and pattern in one step via sugar-electron-beam writing.

    PubMed

    Weng, Yuyan; Li, Zhiyun; Peng, Lun; Zhang, Weidong; Chen, Gaojian

    2017-12-14

    Quantum dots (QDs) are promising materials in nanophotonics, biological imaging, and even quantum computing. Precise positioning and patterning of QDs is a prerequisite for realizing their actual applications. Contrary to the traditional two discrete steps of fabricating and positioning QDs, herein, a novel sugar-electron-beam writing (SEW) method is reported for producing QDs via electron-beam lithography (EBL) that uses a carefully chosen synthetic resist, poly(2-(methacrylamido)glucopyranose) (PMAG). Carbon QDs (CQDs) could be fabricated in situ through electron beam exposure, and the nanoscale position and luminescence intensity of the produced CQDs could be precisely controlled without the assistance of any other fluorescent matter. We have demonstrated that upon combining an electron beam with a glycopolymer, in situ production of CQDs occurs at the electron beam spot center with nanoscale precision at any place and with any patterns, an advancement that we believe will stimulate innovations in future applications.

  4. Research progress on quantum informatics and quantum computation

    NASA Astrophysics Data System (ADS)

    Zhao, Yusheng

    2018-03-01

    Quantum informatics is an emerging interdisciplinary subject developed by the combination of quantum mechanics, information science, and computer science in the 1980s. The birth and development of quantum information science has far-reaching significance in science and technology. At present, the application of quantum information technology has become the direction of people’s efforts. The preparation, storage, purification and regulation, transmission, quantum coding and decoding of quantum state have become the hotspot of scientists and technicians, which have a profound impact on the national economy and the people’s livelihood, technology and defense technology. This paper first summarizes the background of quantum information science and quantum computer and the current situation of domestic and foreign research, and then introduces the basic knowledge and basic concepts of quantum computing. Finally, several quantum algorithms are introduced in detail, including Quantum Fourier transform, Deutsch-Jozsa algorithm, Shor’s quantum algorithm, quantum phase estimation.

  5. Giant nonlinear interaction between two optical beams via a quantum dot embedded in a photonic wire

    NASA Astrophysics Data System (ADS)

    Nguyen, H. A.; Grange, T.; Reznychenko, B.; Yeo, I.; de Assis, P.-L.; Tumanov, D.; Fratini, F.; Malik, N. S.; Dupuy, E.; Gregersen, N.; Auffèves, A.; Gérard, J.-M.; Claudon, J.; Poizat, J.-Ph.

    2018-05-01

    Optical nonlinearities usually appear for large intensities, but discrete transitions allow for giant nonlinearities operating at the single-photon level. This has been demonstrated in the last decade for a single optical mode with cold atomic gases, or single two-level systems coupled to light via a tailored photonic environment. Here, we demonstrate a two-mode giant nonlinearity with a single semiconductor quantum dot (QD) embedded in a photonic wire antenna. We exploit two detuned optical transitions associated with the exciton-biexciton QD level scheme. Owing to the broadband waveguide antenna, the two transitions are efficiently interfaced with two free-space laser beams. The reflection of one laser beam is then controlled by the other beam, with a threshold power as low as 10 photons per exciton lifetime (1.6 nW ). Such a two-color nonlinearity opens appealing perspectives for the realization of ultralow-power logical gates and optical quantum gates, and could also be implemented in an integrated photonic circuit based on planar waveguides.

  6. Quantum Bio-Informatics II From Quantum Information to Bio-Informatics

    NASA Astrophysics Data System (ADS)

    Accardi, L.; Freudenberg, Wolfgang; Ohya, Masanori

    2009-02-01

    The problem of quantum-like representation in economy cognitive science, and genetics / L. Accardi, A. Khrennikov and M. Ohya -- Chaotic behavior observed in linea dynamics / M. Asano, T. Yamamoto and Y. Togawa -- Complete m-level quantum teleportation based on Kossakowski-Ohya scheme / M. Asano, M. Ohya and Y. Tanaka -- Towards quantum cybernetics: optimal feedback control in quantum bio informatics / V. P. Belavkin -- Quantum entanglement and circulant states / D. Chruściński -- The compound Fock space and its application in brain models / K. -H. Fichtner and W. Freudenberg -- Characterisation of beam splitters / L. Fichtner and M. Gäbler -- Application of entropic chaos degree to a combined quantum baker's map / K. Inoue, M. Ohya and I. V. Volovich -- On quantum algorithm for multiple alignment of amino acid sequences / S. Iriyama and M. Ohya --Quantum-like models for decision making in psychology and cognitive science / A. Khrennikov -- On completely positive non-Markovian evolution of a d-level system / A. Kossakowski and R. Rebolledo -- Measures of entanglement - a Hilbert space approach / W. A. Majewski -- Some characterizations of PPT states and their relation / T. Matsuoka -- On the dynamics of entanglement and characterization ofentangling properties of quantum evolutions / M. Michalski -- Perspective from micro-macro duality - towards non-perturbative renormalization scheme / I. Ojima -- A simple symmetric algorithm using a likeness with Introns behavior in RNA sequences / M. Regoli -- Some aspects of quadratic generalized white noise functionals / Si Si and T. Hida -- Analysis of several social mobility data using measure of departure from symmetry / K. Tahata ... [et al.] -- Time in physics and life science / I. V. Volovich -- Note on entropies in quantum processes / N. Watanabe -- Basics of molecular simulation and its application to biomolecules / T. Ando and I. Yamato -- Theory of proton-induced superionic conduction in hydrogen-bonded systems

  7. Discriminating quantum-optical beam-splitter channels with number-diagonal signal states: Applications to quantum reading and target detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nair, Ranjith

    2011-09-15

    We consider the problem of distinguishing, with minimum probability of error, two optical beam-splitter channels with unequal complex-valued reflectivities using general quantum probe states entangled over M signal and M' idler mode pairs of which the signal modes are bounced off the beam splitter while the idler modes are retained losslessly. We obtain a lower bound on the output state fidelity valid for any pure input state. We define number-diagonal signal (NDS) states to be input states whose density operator in the signal modes is diagonal in the multimode number basis. For such input states, we derive series formulas formore » the optimal error probability, the output state fidelity, and the Chernoff-type upper bounds on the error probability. For the special cases of quantum reading of a classical digital memory and target detection (for which the reflectivities are real valued), we show that for a given input signal photon probability distribution, the fidelity is minimized by the NDS states with that distribution and that for a given average total signal energy N{sub s}, the fidelity is minimized by any multimode Fock state with N{sub s} total signal photons. For reading of an ideal memory, it is shown that Fock state inputs minimize the Chernoff bound. For target detection under high-loss conditions, a no-go result showing the lack of appreciable quantum advantage over coherent state transmitters is derived. A comparison of the error probability performance for quantum reading of number state and two-mode squeezed vacuum state (or EPR state) transmitters relative to coherent state transmitters is presented for various values of the reflectances. While the nonclassical states in general perform better than the coherent state, the quantitative performance gains differ depending on the values of the reflectances. The experimental outlook for realizing nonclassical gains from number state transmitters with current technology at moderate to high values of

  8. Molecular-beam epitaxy of 7-8 μm range quantum-cascade laser heterostructures

    NASA Astrophysics Data System (ADS)

    Babichev, A. V.; Denisov, D. V.; Filimonov, A. V.; Nevedomsky, V. N.; Kurochkin, A. S.; Gladyshev, A. G.; Karachinsky, L. Ya; Sokolovskii, G. S.; Novikov, I. I.; Bousseksou, A.; Egorov, A. Yu

    2017-11-01

    The method of molecular beam epitaxy demonstrates the possibility to create high quality heterostructures of quantum cascade lasers in a spectral range of 7-8 μm containing 50 quantum cascades in an active region. Design based on the principle of two-phonon resonant scattering is used. X-ray diffraction and transmission electron microscopy experiments confirm high structural properties of the created heterostructures, e.g. the identity of the composition and thickness of epitaxial layers in all 50 cascades. Edge-emitting lasers based on the grown heterostructure demonstrate lasing with threshold current density of 2.8 kA/cm2 at a temperature of 78 K.

  9. Quantum Computer Science

    NASA Astrophysics Data System (ADS)

    Mermin, N. David

    2007-08-01

    Preface; 1. Cbits and Qbits; 2. General features and some simple examples; 3. Breaking RSA encryption with a quantum computer; 4. Searching with a quantum computer; 5. Quantum error correction; 6. Protocols that use just a few Qbits; Appendices; Index.

  10. Quantum-Like Models for Decision Making in Psychology and Cognitive Science

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei.

    2009-02-01

    We show that (in contrast to rather common opinion) the domain of applications of the mathematical formalism of quantum mechanics is not restricted to physics. This formalism can be applied to the description of various quantum-like (QL) information processing. In particular, the calculus of quantum (and more general QL) probabilities can be used to explain some paradoxical statistical data which was collected in psychology and cognitive science. The main lesson of our study is that one should sharply distinguish the mathematical apparatus of QM from QM as a physical theory. The domain of application of the mathematical apparatus is essentially wider than quantum physics. Quantum-like representation algorithm, formula of total probability, interference of probabilities, psychology, cognition, decision making.

  11. An optical system to transform the output beam of a quantum cascade laser to be uniform

    NASA Astrophysics Data System (ADS)

    Jacobson, Jordan M.

    Quantum cascade lasers (QCLs) are a candidate for calibration sources in space-based remote sensing applications. However, the output beam from a QCL has some characteris- tics that are undesirable in a calibration source. The output beam from a QCL is polarized, both temporally and spatially coherent, and has a non-uniform bivariate Gaussian prole. These characteristics need to be mitigated before QCLs can be used as calibration sources. This study presents the design and implementation of an optical system that manipulates the output beam from a QCL so that it is spatially and angularly uniform with reduced coherence and polarization. (85 pages).

  12. Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hong-Wei; Zhengzhou Information Science and Technology Institute, Zhengzhou, 450004; Wang, Shuang

    2011-12-15

    It is well known that the unconditional security of quantum-key distribution (QKD) can be guaranteed by quantum mechanics. However, practical QKD systems have some imperfections, which can be controlled by the eavesdropper to attack the secret key. With current experimental technology, a realistic beam splitter, made by fused biconical technology, has a wavelength-dependent property. Based on this fatal security loophole, we propose a wavelength-dependent attacking protocol, which can be applied to all practical QKD systems with passive state modulation. Moreover, we experimentally attack a practical polarization encoding QKD system to obtain all the secret key information at the cost ofmore » only increasing the quantum bit error rate from 1.3 to 1.4%.« less

  13. PREFACE: Advanced Science Research Symposium 2009 Positron, Muon and other exotic particle beams for materials and atomic/molecular sciences (ASR2009)

    NASA Astrophysics Data System (ADS)

    Higemoto, Wataru; Kawasuso, Atsuo

    2010-05-01

    It is our great pleasure to deliver the proceedings of ASR2009, the Advanced Science Research International Symposium 2009. ASR2009 is part of a series of symposia which is hosted by the Japan Atomic Energy Agency, Advanced Science Research Center (JAEA-ASRC), and held every year with different scientific topics. ASR2009 was held at Tokai in Japan from 10-12 November 2009. In total, 102 participants, including 29 overseas scientists, made 44 oral presentations and 64 poster presentations. In ASR2009 we have focused on material and atomic/molecular science research using positrons, muons and other exotic particle beams. The symposium covered all the fields of materials science which use such exotic particle beams. Positrons, muons and other beams have similar and different features. For example, although positrons and muons are both leptons having charge and spin, they give quite different information about materials. A muon mainly detects the local magnetic state of the solid, while a positron detects crystal imperfections and electron momenta in solids. Other exotic particle beams also provide useful information about materials which is not able to be obtained with muons or positrons. Therefore, the complementary use of particle beams, coupled with an understanding of their relative advantages, leads to greater excellence in materials research. This symposium crossed the fields of muon science, positron science, unstable-nuclei science, and other exotic particle-beam science. We therefore believe that ASR2009 became an especially important meeting for finding new science with exotic particle beams. Finally, we would like to extend our appreciation to all the participants, committee members, and support staff for their great efforts to make ASR2009 a fruitful symposium. ASR2009 Chairs Wataru Higemoto and Atsuo Kawasuso Advanced Science Research Center, Japan Atomic Energy Agency Organizing committee Y Hatano, JAEA (Director of ASRC) M Fujinami, Chiba Univ. R H

  14. Response to "Comment on 'Stationary self-focusing of Gaussian laser beam in relativistic thermal quantum plasma'" [Phys. Plasmas 21, 064701 (2014)

    NASA Astrophysics Data System (ADS)

    Patil, S. D.; Takale, M. V.

    2014-06-01

    Habibi and Ghamari have presented a Comment on our paper [Phys. Plasmas 20, 072703 (2013)] by examining quantum dielectric response in thermal quantum plasma. They have modeled the relativistic self-focusing of Gaussian laser beam in cold and warm quantum plasmas and reported that self-focusing length does not change in both situations. In this response, we have reached the following important conclusions about the comment itself.

  15. Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures

    PubMed Central

    Schröder, Tim; Trusheim, Matthew E.; Walsh, Michael; Li, Luozhou; Zheng, Jiabao; Schukraft, Marco; Sipahigil, Alp; Evans, Ruffin E.; Sukachev, Denis D.; Nguyen, Christian T.; Pacheco, Jose L.; Camacho, Ryan M.; Bielejec, Edward S.; Lukin, Mikhail D.; Englund, Dirk

    2017-01-01

    The controlled creation of defect centre—nanocavity systems is one of the outstanding challenges for efficiently interfacing spin quantum memories with photons for photon-based entanglement operations in a quantum network. Here we demonstrate direct, maskless creation of atom-like single silicon vacancy (SiV) centres in diamond nanostructures via focused ion beam implantation with ∼32 nm lateral precision and <50 nm positioning accuracy relative to a nanocavity. We determine the Si+ ion to SiV centre conversion yield to be ∼2.5% and observe a 10-fold conversion yield increase by additional electron irradiation. Low-temperature spectroscopy reveals inhomogeneously broadened ensemble emission linewidths of ∼51 GHz and close to lifetime-limited single-emitter transition linewidths down to 126±13 MHz corresponding to ∼1.4 times the natural linewidth. This method for the targeted generation of nearly transform-limited quantum emitters should facilitate the development of scalable solid-state quantum information processors. PMID:28548097

  16. Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures

    DOE PAGES

    Schroder, Tim; Trusheim, Matthew E.; Walsh, Michael; ...

    2017-05-26

    The controlled creation of defect centre—nanocavity systems is one of the outstanding challenges for efficiently interfacing spin quantum memories with photons for photon-based entanglement operations in a quantum network. Here we demonstrate direct, maskless creation of atom-like single silicon vacancy (SiV) centres in diamond nanostructures via focused ion beam implantation with ~32 nm lateral precision and <50 nm positioning accuracy relative to a nanocavity. We determine the Si+ ion to SiV centre conversion yield to be ~2.5% and observe a 10-fold conversion yield increase by additional electron irradiation. Low-temperature spectroscopy reveals inhomogeneously broadened ensemble emission linewidths of ~51 GHz andmore » close to lifetime-limited single-emitter transition linewidths down to 126±13 MHz corresponding to ~1.4 times the natural linewidth. Furthermore, this method for the targeted generation of nearly transform-limited quantum emitters should facilitate the development of scalable solid-state quantum information processors.« less

  17. Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroder, Tim; Trusheim, Matthew E.; Walsh, Michael

    The controlled creation of defect centre—nanocavity systems is one of the outstanding challenges for efficiently interfacing spin quantum memories with photons for photon-based entanglement operations in a quantum network. Here we demonstrate direct, maskless creation of atom-like single silicon vacancy (SiV) centres in diamond nanostructures via focused ion beam implantation with ~32 nm lateral precision and <50 nm positioning accuracy relative to a nanocavity. We determine the Si+ ion to SiV centre conversion yield to be ~2.5% and observe a 10-fold conversion yield increase by additional electron irradiation. Low-temperature spectroscopy reveals inhomogeneously broadened ensemble emission linewidths of ~51 GHz andmore » close to lifetime-limited single-emitter transition linewidths down to 126±13 MHz corresponding to ~1.4 times the natural linewidth. Furthermore, this method for the targeted generation of nearly transform-limited quantum emitters should facilitate the development of scalable solid-state quantum information processors.« less

  18. Quantum Steganography and Quantum Error-Correction

    ERIC Educational Resources Information Center

    Shaw, Bilal A.

    2010-01-01

    Quantum error-correcting codes have been the cornerstone of research in quantum information science (QIS) for more than a decade. Without their conception, quantum computers would be a footnote in the history of science. When researchers embraced the idea that we live in a world where the effects of a noisy environment cannot completely be…

  19. Quantum information. Unconditional quantum teleportation between distant solid-state quantum bits.

    PubMed

    Pfaff, W; Hensen, B J; Bernien, H; van Dam, S B; Blok, M S; Taminiau, T H; Tiggelman, M J; Schouten, R N; Markham, M; Twitchen, D J; Hanson, R

    2014-08-01

    Realizing robust quantum information transfer between long-lived qubit registers is a key challenge for quantum information science and technology. Here we demonstrate unconditional teleportation of arbitrary quantum states between diamond spin qubits separated by 3 meters. We prepare the teleporter through photon-mediated heralded entanglement between two distant electron spins and subsequently encode the source qubit in a single nuclear spin. By realizing a fully deterministic Bell-state measurement combined with real-time feed-forward, quantum teleportation is achieved upon each attempt with an average state fidelity exceeding the classical limit. These results establish diamond spin qubits as a prime candidate for the realization of quantum networks for quantum communication and network-based quantum computing. Copyright © 2014, American Association for the Advancement of Science.

  20. Demonstration of a terahertz pure vector beam by tailoring geometric phase.

    PubMed

    Wakayama, Toshitaka; Higashiguchi, Takeshi; Sakaue, Kazuyuki; Washio, Masakazu; Otani, Yukitoshi

    2018-06-06

    We demonstrate the creation of a vector beam by tailoring geometric phase of left- and right- circularly polarized beams. Such a vector beam with a uniform phase has not been demonstrated before because a vortex phase remains in the beam. We focus on vortex phase cancellation to generate vector beams in terahertz regions, and measure the geometric phase of the beam and its spatial distribution of polarization. We conduct proof-of-principle experiments for producing a vector beam with radial polarization and uniform phase at 0.36 THz. We determine the vortex phase of the vector beam to be below 4%, thus highlighting the extendibility and availability of the proposed concept to the super broadband spectral region from ultraviolet to terahertz. The extended range of our proposed techniques could lead to breakthroughs in the fields of microscopy, chiral nano-materials, and quantum information science.

  1. Comment on “Stationary self-focusing of Gaussian laser beam in relativistic thermal quantum plasma” [Phys. Plasmas 20, 072703 (2013)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habibi, M., E-mail: habibi.physics@gmail.com; Ghamari, F.

    2014-06-15

    Patil and Takale in their recent article [Phys. Plasmas 20, 072703 (2013)], by evaluating the quantum dielectric response in thermal quantum plasma, have modeled the relativistic self-focusing of Gaussian laser beam in a plasma. We have found that there are some important shortcomings and fundamental mistakes in Patil and Takale [Phys. Plasmas 20, 072703 (2013)] that we give a brief description about them and refer readers to important misconception about the use of the Fermi temperature in quantum plasmas, appearing in Patil and Takale [Phys. Plasmas 20, 072703 (2013)].

  2. Traceable quantum sensing and metrology relied up a quantum electrical triangle principle

    NASA Astrophysics Data System (ADS)

    Fang, Yan; Wang, Hengliang; Yang, Xinju; Wei, Jingsong

    2016-11-01

    Hybrid quantum state engineering in quantum communication and imaging1-2 needs traceable quantum sensing and metrology, which are especially critical to quantum internet3 and precision measurements4 that are important across all fields of science and technology-. We aim to set up a mode of traceable quantum sensing and metrology. We developed a method by specially transforming an atomic force microscopy (AFM) and a scanning tunneling microscopy (STM) into a conducting atomic force microscopy (C-AFM) with a feedback control loop, wherein quantum entanglement enabling higher precision was relied upon a set-point, a visible light laser beam-controlled an interferometer with a surface standard at z axis, diffractometers with lateral standards at x-y axes, four-quadrant photodiode detectors, a scanner and its image software, a phase-locked pre-amplifier, a cantilever with a kHz Pt/Au conducting tip, a double barrier tunneling junction model, a STM circuit by frequency modulation and a quantum electrical triangle principle involving single electron tunneling effect, quantum Hall effect and Josephson effect5. The average and standard deviation result of repeated measurements on a 1 nm height local micro-region of nanomedicine crystal hybrid quantum state engineering surface and its differential pA level current and voltage (dI/dV) in time domains by using C-AFM was converted into an international system of units: Siemens (S), an indicated value 0.86×10-12 S (n=6) of a relative standard uncertainty was superior over a relative standard uncertainty reference value 2.3×10-10 S of 2012 CODADA quantized conductance6. It is concluded that traceable quantum sensing and metrology is emerging.

  3. Trapped atomic ions for quantum-limited metrology

    NASA Astrophysics Data System (ADS)

    Wineland, David

    2017-04-01

    Laser-beam-manipulated trapped ions are a candidate for large-scale quantum information processing and quantum simulation but the basic techniques used can also be applied to quantum-limited metrology and sensing. Some examples being explored at NIST are: 1) As charged harmonic oscillators, trapped ions can be used to sense electric fields; this can be used to characterize the electrode-surface-based noisy electric fields that compromise logic-gate fidelities and may eventually be used as a tool in surface science. 2) Since typical qubit logic gates depend on state-dependent forces, we can adapt the gate dynamics to sensitively detect additional forces. 3) We can use extensions of Bell inequality measurements to further restrict the degree of local realism possessed by Bell states. 4) We also briefly describe experiments for creation of Bell states using Hilbert space engineering. This work is a joint effort including the Ion-Storage group, the Quantum processing group, and the Computing and Communications Theory group at NIST, Boulder. Supported by IARPA, ONR, and the NIST Quantum Information Program.

  4. Probabilistic direct counterfactual quantum communication

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng

    2017-02-01

    It is striking that the quantum Zeno effect can be used to launch a direct counterfactual communication between two spatially separated parties, Alice and Bob. So far, existing protocols of this type only provide a deterministic counterfactual communication service. However, this counterfactuality should be payed at a price. Firstly, the transmission time is much longer than a classical transmission costs. Secondly, the chained-cycle structure makes them more sensitive to channel noises. Here, we extend the idea of counterfactual communication, and present a probabilistic-counterfactual quantum communication protocol, which is proved to have advantages over the deterministic ones. Moreover, the presented protocol could evolve to a deterministic one solely by adjusting the parameters of the beam splitters. Project supported by the National Natural Science Foundation of China (Grant No. 61300203).

  5. Growth of analog Al(x)Ga(1-x)As/GaAs parabolic quantum wells by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wang, S. M.; Treideris, G.; Chen, W. Q.; Andersson, T. G.

    1993-01-01

    Parabolic Al(x)Ga(1-x)As/GaAs quantum wells have been grown by molecular beam epitaxy with linear ramping of the Al effusion cell temperature, where the ramping rate was carefully analyzed to avoid a flux lag. The calculated potential profile from the temperature variation was very close to the parabolic one. Low-temperature photoluminescence showed clear interband transitions up to the n = 3 sublevels. The equal energy spacing between adjacent transitions involving heavy-hole states confirmed the parabolic shape of the quantum well.

  6. Dual beam photoacoustic infrared spectroscopy of solids using an external cavity quantum cascade laser.

    PubMed

    Dehghany, M; Michaelian, K H

    2012-06-01

    Quantum cascade laser-based instrumentation for dual beam photoacoustic (PA) spectroscopy is described in this article. Experimental equipment includes a 4.55 μm (2141-2265 cm(-1)) continuous wave external cavity quantum cascade laser (EC-QCL), two gas-microphone PA cells, and two lock-in amplifiers. Correction for the time and wavenumber dependence of the laser output is effected through real-time division of the PA signals derived from the sample and reference channels. Source-compensated mid-infrared absorption spectra of carbon black powder and aromatic hydrocarbon solids were obtained to confirm the reliability of the method. Absorption maxima in the EC-QCL PA spectra of hydrocarbons are better defined than those in Fourier transform infrared spectra acquired under similar conditions, enabling the detection of several previously unknown bands.

  7. A variable partially polarizing beam splitter.

    PubMed

    Flórez, Jefferson; Carlson, Nathan J; Nacke, Codey H; Giner, Lambert; Lundeen, Jeff S

    2018-02-01

    We present designs for variably polarizing beam splitters. These are beam splitters allowing the complete and independent control of the horizontal and vertical polarization splitting ratios. They have quantum optics and quantum information applications, such as quantum logic gates for quantum computing and non-local measurements for quantum state estimation. At the heart of each design is an interferometer. We experimentally demonstrate one particular implementation, a displaced Sagnac interferometer configuration, that provides an inherent instability to air currents and vibrations. Furthermore, this design does not require any custom-made optics but only common components which can be easily found in an optics laboratory.

  8. A variable partially polarizing beam splitter

    NASA Astrophysics Data System (ADS)

    Flórez, Jefferson; Carlson, Nathan J.; Nacke, Codey H.; Giner, Lambert; Lundeen, Jeff S.

    2018-02-01

    We present designs for variably polarizing beam splitters. These are beam splitters allowing the complete and independent control of the horizontal and vertical polarization splitting ratios. They have quantum optics and quantum information applications, such as quantum logic gates for quantum computing and non-local measurements for quantum state estimation. At the heart of each design is an interferometer. We experimentally demonstrate one particular implementation, a displaced Sagnac interferometer configuration, that provides an inherent instability to air currents and vibrations. Furthermore, this design does not require any custom-made optics but only common components which can be easily found in an optics laboratory.

  9. Arthur L. Schawlow Prize in Laser Science Talk: Trapped Ion Quantum Networks with Light

    NASA Astrophysics Data System (ADS)

    Monroe, Christopher

    2015-05-01

    Laser-cooled atomic ions are standards for quantum information science, acting as qubit memories with unsurpassed levels of quantum coherence while also allowing near-perfect measurement. When qubit state-dependent optical dipole forces are applied to a collection of trapped ions, their Coulomb interaction is modulated in a way that allows the entanglement of the qubits through quantum gates that can form the basis of a quantum computer. Similar optical forces allow the simulation of quantum many-body physics, where recent experiments are approaching a level of complexity that cannot be modelled with conventional computers. Scaling to much larger numbers of qubits can be accomplished by coupling trapped ion qubits through optical photons, where entanglement over remote distances can be used for quantum communication and large-scale distributed quantum computers. Laser sources and quantum optical techniques are the workhorse for such quantum networks, and will continue to lead the way as future quantum hardware is developed. This work is supported by the ARO with funding from the IARPA MQCO program, the DARPA Quiness Program, the ARO MURI on Hybrid Quantum Circuits, the AFOSR MURIs on Quantum Transduction and Quantum Verification, and the NSF Physics Frontier Center at JQI.

  10. Response to “Comment on ‘Stationary self-focusing of Gaussian laser beam in relativistic thermal quantum plasma’” [Phys. Plasmas 21, 064701 (2014)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patil, S. D., E-mail: sdpatil-phy@rediffmail.com; Takale, M. V.

    2014-06-15

    Habibi and Ghamari have presented a Comment on our paper [Phys. Plasmas 20, 072703 (2013)] by examining quantum dielectric response in thermal quantum plasma. They have modeled the relativistic self-focusing of Gaussian laser beam in cold and warm quantum plasmas and reported that self-focusing length does not change in both situations. In this response, we have reached the following important conclusions about the comment itself.

  11. A Guided Tour of Light Beams; From lasers to optical knots

    NASA Astrophysics Data System (ADS)

    Simon, David S.

    2016-11-01

    From science fiction death rays to supermarket scanners, lasers have become deeply embedded in our daily lives and our culture. But in recent decades the standard laser beam has evolved into an array of more specialized light beams with a variety of strange and counterintuitive properties. Some of them have the ability to reconstruct themselves after disruption by an obstacle, while others can bend in complicated shapes or rotate like a corkscrew. These unusual optical effects open new and exciting possibilities for science and technology. For example, they make possible microscopic tractor beams that pull objects toward the source of the light, and they allow the trapping and manipulation of individual molecules to construct specially-tailored nanostructures for engineering or medical use. It has even been found that beams of light can produce lines of darkness that can be tied in knots. This book is an introductory survey of these specialized light beams and their scientific applications, at a level suitable for undergraduates with a basic knowledge of optics and quantum mechanics. It provides a unified treatment of the subject, collecting together in textbook form for the first time many topics currently found only in the original research literature.

  12. Teaching Quantum Uncertainty

    ERIC Educational Resources Information Center

    Hobson, Art

    2011-01-01

    An earlier paper introduces quantum physics by means of four experiments: Youngs double-slit interference experiment using (1) a light beam, (2) a low-intensity light beam with time-lapse photography, (3) an electron beam, and (4) a low-intensity electron beam with time-lapse photography. It's ironic that, although these experiments demonstrate…

  13. Wavefront measurement of single-mode quantum cascade laser beam for seed application in laser-produced plasma extreme ultraviolet system.

    PubMed

    Nowak, Krzysztof M; Ohta, Takeshi; Suganuma, Takashi; Yokotsuka, Toshio; Fujimoto, Junichi; Mizoguchi, Hakaru

    2012-12-01

    Quantum cascade laser (QCL) is a very attractive seed source for a multikilowatt pulsed CO2 lasers applied for driving extreme ultraviolet emitting plasmas. In this Letter, we investigate output beam properties of a QCL designed to address P18 and P20 lines of 10.6 micron band of CO2 molecule. In particular, output beam quality and stability are investigated for the first time. A well-defined linear polarization and a single-mode operation enabled a use of phase retrieval method for full description of QCL output beam. A direct, multi-image numerical phase retrieval technique was developed and successfully applied to the measured intensity patterns of a QCL beam. Very good agreement between the measured and reconstructed beam profiles was observed at distances ranging from QCL aperture to infinity, proving a good understanding of the beam propagation. The results also confirm a high spatial coherence and high stability of the beam parameters, the features expected from an excellent seed source.

  14. A modified gradient approach for the growth of low-density InAs quantum dot molecules by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Sharma, Nandlal; Reuter, Dirk

    2017-11-01

    Two vertically stacked quantum dots that are electronically coupled, so called quantum dot molecules, are of great interest for the realization of solid state building blocks for quantum communication networks. We present a modified gradient approach to realize InAs quantum dot molecules with a low areal density so that single quantum dot molecules can be optically addressed. The individual quantum dot layers were prepared by solid source molecular beam epitaxy depositing InAs on GaAs(100). The bottom quantum dot layer has been grown without substrate rotation resulting in an In-gradient across the surface, which translated into a density gradient with low quantum dot density in a certain region of the wafer. For the top quantum dot layer, separated from the bottom quantum dot layer by a 6 nm thick GaAs barrier, various InAs amounts were deposited without an In-gradient. In spite of the absence of an In-gradient, a pronounced density gradient is observed for the top quantum dots. Even for an In-amount slightly below the critical thickness for a single dot layer, a density gradient in the top quantum dot layer, which seems to reproduce the density gradient in the bottom layer, is observed. For more or less In, respectively, deviations from this behavior occur. We suggest that the obvious influence of the bottom quantum dot layer on the growth of the top quantum dots is due to the strain field induced by the buried dots.

  15. Theoretical investigation of confocal microscopy using an elliptically polarized cylindrical vector laser beam: Visualization of quantum emitters near interfaces

    NASA Astrophysics Data System (ADS)

    Boichenko, Stepan

    2018-04-01

    We theoretically study laser-scanning confocal fluorescence microscopy using elliptically polarized cylindrical vector excitation light as a tool for visualization of arbitrarily oriented single quantum dipole emitters located (1) near planar surfaces enhancing fluorescence, (2) in a thin supported polymer film, (3) in a freestanding polymer film, and (4) in a dielectric planar microcavity. It is shown analytically that by using a tightly focused azimuthally polarized beam, it is possible to exclude completely the orientational dependence of the image intensity maximum of a quantum emitter that absorbs light as a pair of incoherent independent linear dipoles. For linear dipole quantum emitters, the orientational independence degree higher than 0.9 can normally be achieved (this quantity equal to 1 corresponds to completely excluded orientational dependence) if the collection efficiency of the microscope objective and the emitter's total quantum yield are not strongly orientationally dependent. Thus, the visualization of arbitrarily oriented single quantum emitters by means of the studied technique can be performed quite efficiently.

  16. Quantum random number generator based on quantum nature of vacuum fluctuations

    NASA Astrophysics Data System (ADS)

    Ivanova, A. E.; Chivilikhin, S. A.; Gleim, A. V.

    2017-11-01

    Quantum random number generator (QRNG) allows obtaining true random bit sequences. In QRNG based on quantum nature of vacuum, optical beam splitter with two inputs and two outputs is normally used. We compare mathematical descriptions of spatial beam splitter and fiber Y-splitter in the quantum model for QRNG, based on homodyne detection. These descriptions were identical, that allows to use fiber Y-splitters in practical QRNG schemes, simplifying the setup. Also we receive relations between the input radiation and the resulting differential current in homodyne detector. We experimentally demonstrate possibility of true random bits generation by using QRNG based on homodyne detection with Y-splitter.

  17. Noise reduction in optically controlled quantum memory

    NASA Astrophysics Data System (ADS)

    Ma, Lijun; Slattery, Oliver; Tang, Xiao

    2018-05-01

    Quantum memory is an essential tool for quantum communications systems and quantum computers. An important category of quantum memory, called optically controlled quantum memory, uses a strong classical beam to control the storage and re-emission of a single-photon signal through an atomic ensemble. In this type of memory, the residual light from the strong classical control beam can cause severe noise and degrade the system performance significantly. Efficiently suppressing this noise is a requirement for the successful implementation of optically controlled quantum memories. In this paper, we briefly introduce the latest and most common approaches to quantum memory and review the various noise-reduction techniques used in implementing them.

  18. Adapting High Brightness Relativistic Electron Beams for Ultrafast Science

    NASA Astrophysics Data System (ADS)

    Scoby, Cheyne Matthew

    This thesis explores the use of ultrashort bunches generated by a radiofrequency electron photoinjector driven by a femtosecond laser. Rf photoinjector technology has been developed to generate ultra high brightness beams for advanced accelerators and to drive advanced light source applications. The extremely good quality of the beams generated by this source has played a key role in the development of 4th generation light sources such as the Linac Coherent Light Source, thus opening the way to studies of materials science and biological systems with high temporal and spatial resolution. At the Pegasus Photoinjector Lab, we have developed the application of a BNL/SLAC/UCLA 1.6-cell rf photoinjector as a tool for ultrafast science in its own right. It is the aim of this work to explore the generation of ultrashort electron bunches, give descriptions of the novel ultrafast diagnostics developed to be able to characterize the electron bunch and synchronize it with a pump laser, and share some of the scientific results that were obtained with this technology at the UCLA Pegasus laboratory. This dissertation explains the requirements of the drive laser source and describes the principles of rf photoinjector design and operation necessary to produce electron bunches with an rms longitudinal length < 100 femtoseconds containing 107 - 108 electrons per bunch. In this condition, when the laser intensity is sufficiently high, multiphoton photoemission is demonstrated to be more efficient in terms of charge yield than single photon photoemission. When a short laser pulse hits the cathode the resulting beam dynamics are dominated by a strong space charge driven longitudinal expansion which leads to the creation of a nearly ideal uniformly filled ellipsoidal distribution. These beam distributions are characterized by linear space charge forces and hence by high peak brightness and small transverse emittances. This regime of operation of the RF photoinjector is also termed the

  19. Gaussian entanglement generation from coherence using beam-splitters

    PubMed Central

    Wang, Zhong-Xiao; Wang, Shuhao; Ma, Teng; Wang, Tie-Jun; Wang, Chuan

    2016-01-01

    The generation and quantification of quantum entanglement is crucial for quantum information processing. Here we study the transition of Gaussian correlation under the effect of linear optical beam-splitters. We find the single-mode Gaussian coherence acts as the resource in generating Gaussian entanglement for two squeezed states as the input states. With the help of consecutive beam-splitters, single-mode coherence and quantum entanglement can be converted to each other. Our results reveal that by using finite number of beam-splitters, it is possible to extract all the entanglement from the single-mode coherence even if the entanglement is wiped out before each beam-splitter. PMID:27892537

  20. Quantum Machine Learning

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak

    2018-01-01

    Quantum computing promises an unprecedented ability to solve intractable problems by harnessing quantum mechanical effects such as tunneling, superposition, and entanglement. The Quantum Artificial Intelligence Laboratory (QuAIL) at NASA Ames Research Center is the space agency's primary facility for conducting research and development in quantum information sciences. QuAIL conducts fundamental research in quantum physics but also explores how best to exploit and apply this disruptive technology to enable NASA missions in aeronautics, Earth and space sciences, and space exploration. At the same time, machine learning has become a major focus in computer science and captured the imagination of the public as a panacea to myriad big data problems. In this talk, we will discuss how classical machine learning can take advantage of quantum computing to significantly improve its effectiveness. Although we illustrate this concept on a quantum annealer, other quantum platforms could be used as well. If explored fully and implemented efficiently, quantum machine learning could greatly accelerate a wide range of tasks leading to new technologies and discoveries that will significantly change the way we solve real-world problems.

  1. Verification of quantum entanglement of two-mode squeezed light source towards quantum radar and imaging

    NASA Astrophysics Data System (ADS)

    Masada, Genta

    2017-08-01

    Two-mode squeezed light is an effective resource for quantum entanglement and shows a non-classical correlation between each optical mode. We are developing a two-mode squeezed light source to explore the possibility of quantum radar based on the quantum illumination theory. It is expected that the error probability for discrimination of target presence or absence is improved even in a lossy and noisy environment. We are also expecting to apply two-mode squeezed light source to quantum imaging. In this work we generated two-mode squeezed light and verify its quantum entanglement property towards quantum radar and imaging. Firstly we generated two independent single-mode squeezed light beams utilizing two sub-threshold optical parametric oscillators which include periodically-polled potassium titanyl phosphate crystals for the second order nonlinear interaction. Two single-mode squeezed light beams are combined using a half mirror with the relative optical phase of 90° between each optical field. Then entangled two-mode squeezed light beams can be generated. We observes correlation variances between quadrature phase amplitudes in entangled two-mode fields by balanced homodyne measurement. Finally we verified quantum entanglement property of two-mode squeezed light source based on Duan's and Simon's inseparability criterion.

  2. Nanoheterostructures with CdTe/ZnMgSeTe Quantum Dots for Single-Photon Emitters Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Sorokin, S. V.; Sedova, I. V.; Belyaev, K. G.; Rakhlin, M. V.; Yagovkina, M. A.; Toropov, A. A.; Ivanov, S. V.

    2018-03-01

    Data on the molecular beam epitaxy (MBE) technology, design, and luminescent properties of heterostructures with CdTe/Zn(Mg)(Se)Te quantum dots on InAs(001) substrates are presented. X-ray diffraction has been used to study short-period ZnTe/MgTe/MgSe superlattices used as wide-bandgap barriers in structures with CdTe/ZnTe quantum dots for the effective confinement of holes. It is shown that the design of these superlattices must take into account the replacement of Te atoms by selenium on MgSe/ZnTe and MgTe/MgSe heterointerfaces. Heterostructures with CdTe/Zn(Mg)(Se)Te quantum dots exhibit photoluminescence at temperatures up to 300 K. The spectra of microphotoluminescence at T = 10 K display a set of emission lines from separate CdTe/ZnTe quantum dots, the surface density of which is estimated at 1010 cm-2.

  3. A high-speed tunable beam splitter for feed-forward photonic quantum information processing.

    PubMed

    Ma, Xiao-Song; Zotter, Stefan; Tetik, Nuray; Qarry, Angie; Jennewein, Thomas; Zeilinger, Anton

    2011-11-07

    We realize quantum gates for path qubits with a high-speed, polarization-independent and tunable beam splitter. Two electro-optical modulators act in a Mach-Zehnder interferometer as high-speed phase shifters and rapidly tune its splitting ratio. We test its performance with heralded single photons, observing a polarization-independent interference contrast above 95%. The switching time is about 5.6 ns, and a maximal repetition rate is 2.5 MHz. We demonstrate tunable feed-forward operations of a single-qubit gate of path-encoded qubits and a two-qubit gate via measurement-induced interaction between two photons.

  4. Quantum optics, cavity QED, and quantum optomechanics

    NASA Astrophysics Data System (ADS)

    Meystre, Pierre

    2013-05-01

    Quantum optomechanics provides a universal tool to achieve the quantum control of mechanical motion. It does that in devices spanning a vast range of parameters, with mechanical frequencies from a few Hertz to GHz, and with masses from 10-20 g to several kilos. Its underlying ideas can be traced back to the study of gravitational wave antennas, quantum optics, cavity QED and laser cooling which, when combined with the recent availability of advanced micromechanical and nanomechanical devices, opens a path to the realization of macroscopic mechanical systems that operate deep in the quantum regime. At the fundamental level this development paves the way to experiments that will lead to a more profound understanding of quantum mechanics; and from the point of view of applications, quantum optomechanical techniques will provide motion and force sensing near the fundamental limit imposed by quantum mechanics (quantum metrology) and significantly expand the toolbox of quantum information science. After a brief summary of key historical developments, the talk will give a broad overview of the current state of the art of quantum optomechanics, and comment on future prospects both in applied and in fundamental science. Work supported by NSF, ARO and the DARPA QuASAR and ORCHID programs.

  5. Laser-driven electron beam and radiation sources for basic, medical and industrial sciences

    PubMed Central

    NAKAJIMA, Kazuhisa

    2015-01-01

    To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker’s review article on “Laser Acceleration and its future” [Toshiki Tajima, (2010)],1) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated. PMID:26062737

  6. Laser-driven electron beam and radiation sources for basic, medical and industrial sciences.

    PubMed

    Nakajima, Kazuhisa

    2015-01-01

    To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker's review article on "Laser Acceleration and its future" [Toshiki Tajima, (2010)],(1)) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated.

  7. Two-Dimensional Si-Nanodisk Array Fabricated Using Bio-Nano-Process and Neutral Beam Etching for Realistic Quantum Effect Devices

    NASA Astrophysics Data System (ADS)

    Huang, Chi-Hsien; Igarashi, Makoto; Woné, Michel; Uraoka, Yukiharu; Fuyuki, Takashi; Takeguchi, Masaki; Yamashita, Ichiro; Samukawa, Seiji

    2009-04-01

    A high-density, large-area, and uniform two-dimensional (2D) Si-nanodisk array was successfully fabricated using the bio-nano-process, advanced etching techniques, including a treatment using nitrogen trifluoride and hydrogen radical (NF3 treatment) and a damage-free chlorine neutral beam (NB). By using the surface oxide formed by neutral beam oxidation (NBO) for the preparation of a 2D nanometer-sized iron core array as an etching mask, a well-ordered 2D Si-nanodisk array was obtained owing to the dangling bonds of the surface oxide. By changing the NF3 treatment time without changing the quantum effect of each nanodisk, we could control the gap between adjacent nanodisks. A device with two electrodes was fabricated to investigate the electron transport in a 2D Si-nanodisk array. Current fluctuation and time-dependent currents were clearly observed owing to the charging-discharging of the nanodisks adjacent to the current percolation path. The new structure may have great potential for future novel quantum effect devices.

  8. Quantum light in coupled interferometers for quantum gravity tests.

    PubMed

    Ruo Berchera, I; Degiovanni, I P; Olivares, S; Genovese, M

    2013-05-24

    In recent years quantum correlations have received a lot of attention as a key ingredient in advanced quantum metrology protocols. In this Letter we show that they provide even larger advantages when considering multiple-interferometer setups. In particular, we demonstrate that the use of quantum correlated light beams in coupled interferometers leads to substantial advantages with respect to classical light, up to a noise-free scenario for the ideal lossless case. On the one hand, our results prompt the possibility of testing quantum gravity in experimental configurations affordable in current quantum optics laboratories and strongly improve the precision in "larger size experiments" such as the Fermilab holometer; on the other hand, they pave the way for future applications to high precision measurements and quantum metrology.

  9. Quantum steering in cascaded four-wave mixing processes.

    PubMed

    Wang, Li; Lv, Shuchao; Jing, Jietai

    2017-07-24

    Quantum steering is used to describe the "spooky action-at-a-distance" nonlocality raised in the Einstein-Podolsky-Rosen (EPR) paradox, which is important for understanding entanglement distribution and constructing quantum networks. Here, in this paper, we study an experimentally feasible scheme for generating quantum steering based on cascaded four-wave-mixing (FWM) processes in hot rubidium (Rb) vapor. Quantum steering, including bipartite steering and genuine tripartite steering among the output light fields, is theoretically analyzed. We find the corresponding gain regions in which the bipartite and tripartite steering exist. The results of bipartite steering can be used to establish a hierarchical steering model in which one beam can steer the other two beams in the whole gain region; however, the other two beams cannot steer the first beam simultaneously. Moreover, the other two beams cannot steer with each other in the whole gain region. More importantly, we investigate the gain dependence of the existence of the genuine tripartite steering and we find that the genuine tripartite steering exists in most of the whole gain region in the ideal case. Also we discuss the effect of losses on the genuine tripartite steering. Our results pave the way to experimental demonstration of quantum steering in cascaded FWM process.

  10. Radial carpet beams: A class of nondiffracting, accelerating, and self-healing beams

    NASA Astrophysics Data System (ADS)

    Rasouli, Saifollah; Khazaei, Ali Mohammad; Hebri, Davud

    2018-03-01

    Self-accelerating shape-invariant beams are attracting major attention, presenting applications in many areas such as laser manipulation and patterning, light-sheet microscopy, and plasma channels. Moreover, optical lattices are offering many applications, including quantum computation, quantum phase transition, spin-exchange interaction, and realization of magnetic fields. We report observation of a class of accelerating and self-healing beams which covers the features required by all the aforementioned applications. These beams are accelerating, shape invariant, and self-healing for more than several tens of meters, have numerous phase anomalies and unprecedented patterns, and can be feasibly tuned. Diffraction of a plane wave from radial phase gratings generates such beams, and due to their beauty and structural complexity we have called them "carpet" beams. By tuning the value of phase variations over the grating, the resulting carpet patterns are converted into two-dimensional optical lattices with polar symmetry. Furthermore, the number of spokes in the radial grating, phase variation amplitude, and wavelength of the impinging light beam can also be adjusted to obtain additional features. We believe that radial carpet beams and lattices might find more applications in optical micromanipulation, optical lithography, super-resolution imaging, lighting design, optical communication through atmosphere, etc.

  11. Experimental test of state-independent quantum contextuality of an indivisible quantum system

    NASA Astrophysics Data System (ADS)

    Li, Meng; Huang, Yun-Feng; Cao, Dong-Yang; Zhang, Chao; Zhang, Yong-Sheng; Liu, Bi-Heng; Li, Chuan-Feng; Guo, Guang-Can

    2014-05-01

    Since the quantum mechanics was born, quantum mechanics was argued among scientists because the differences between quantum mechanics and the classical physics. Because of this, some people give hidden variable theory. One of the hidden variable theory is non-contextual hidden variable theory, and KS inequalities are famous in non-contextual hidden variable theory. But the original KS inequalities have 117 directions to measure, so it is almost impossible to test the KS inequalities in experiment. However bout two years ago, Sixia Yu and C.H. Oh point out that for a single qutrit, we only need to measure 13 directions, then we can test the KS inequalities. This makes it possible to test the KS inequalities in experiment. We use the polarization and the path of single photon to construct a qutrit, and we use the half-wave plates, the beam displacers and polar beam splitters to prepare the quantum state and finish the measurement. And the result prove that quantum mechanics is right and non-contextual hidden variable theory is wrong.

  12. Selective Isobar Suppression for Accelerator Mass Spectrometry and Radioactive Ion Beam Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galindo-Uribarri, Alfredo; Havener, Charles C; Lewis, Thomas L.

    2010-01-01

    Several applications of AMS will benefit from pushing further the detection limits of AMS isotopes. A new method of selective isobar suppression by photodetachment in a radio-frequency quadrupole ion cooler is being developed at HRIBF with a two-fold purpose: (1) increasing the AMS sensitivity for certain isotopes of interest and (2) purifying radioactive ion beams for nuclear science. The potential of suppressing the 36S contaminants in a 36Cl beam using this method has been explored with stable S- and Cl- ions and a Nd:YLF laser. In the study, the laser beam was directed along the experiment's beam line and throughmore » a RF quadrupole ion cooler. Negative 32S and 35Cl ions produced by a Cs sputter ion source were focused into the ion cooler where they were slowed by collisions with He buffer gas; this increased the interaction time between the negative ion beam and the laser beam. As a result, suppression of S- by a factor of 3000 was obtained with about 2.5 W average laser power in the cooler while no reduction in Cl- current was observed.« less

  13. Quantum field theory and coalgebraic logic in theoretical computer science.

    PubMed

    Basti, Gianfranco; Capolupo, Antonio; Vitiello, Giuseppe

    2017-11-01

    We suggest that in the framework of the Category Theory it is possible to demonstrate the mathematical and logical dual equivalence between the category of the q-deformed Hopf Coalgebras and the category of the q-deformed Hopf Algebras in quantum field theory (QFT), interpreted as a thermal field theory. Each pair algebra-coalgebra characterizes a QFT system and its mirroring thermal bath, respectively, so to model dissipative quantum systems in far-from-equilibrium conditions, with an evident significance also for biological sciences. Our study is in fact inspired by applications to neuroscience where the brain memory capacity, for instance, has been modeled by using the QFT unitarily inequivalent representations. The q-deformed Hopf Coalgebras and the q-deformed Hopf Algebras constitute two dual categories because characterized by the same functor T, related with the Bogoliubov transform, and by its contravariant application T op , respectively. The q-deformation parameter is related to the Bogoliubov angle, and it is effectively a thermal parameter. Therefore, the different values of q identify univocally, and label the vacua appearing in the foliation process of the quantum vacuum. This means that, in the framework of Universal Coalgebra, as general theory of dynamic and computing systems ("labelled state-transition systems"), the so labelled infinitely many quantum vacua can be interpreted as the Final Coalgebra of an "Infinite State Black-Box Machine". All this opens the way to the possibility of designing a new class of universal quantum computing architectures based on this coalgebraic QFT formulation, as its ability of naturally generating a Fibonacci progression demonstrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Enhanced Hole Mobility and Density in GaSb Quantum Wells

    DTIC Science & Technology

    2013-01-01

    Keywords: Molecular beam epitaxy Quantum wells Semiconducting III–V materials Field-effect transistors GaSb a b s t r a c t Modulation-doped quantum wells...QWs) of GaSb clad by AlAsSb were grown by molecular beam epitaxy on InP substrates. By virtue of quantum confinement and compressive strain of the...heterostructures studied here are grown by molecular beam epitaxy (MBE) on semi-insulating (001) InP substrates using a Riber Compact 21T MBE system. A cross

  15. The Quantum Engineering Conundrum

    NASA Astrophysics Data System (ADS)

    Monroe, Christopher

    2017-04-01

    There is newfound rush and excitement in Quantum Information Science, as this field seems to be moving toward an industrial/engineering phase. However, this evolution will require that quantum science, long the domain of academics and other researchers, make the leap to sustained engineering efforts in order to fabricate practical devices. I will address the conundrum, that full-blooded engineering does not generally happen on campuses, while many in the professional engineering and computer science community do not believe in quantum physics!

  16. Pseudomorphic In(y)Ga(1-y)As/GaAs/Al(x)Ga(1-x)As single quantum well surface-emitting lasers with integrated 45 deg beam deflectors

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Hoon; Larsson, Anders; Lee, Luke P.

    1991-01-01

    The paper reports on the first demonstration of pseudomorphic InGaAs single quantum well surface-emitting lasers (SELs), with etched vertical mirrors and integrated 45-deg beam deflectors fabricated by ion beam etching. 100-micron-wide broad-area SELs exhibited a threshold current of 320 mA, a total power of 126 mW, and a total external differential quantum efficiency of 0.09 W/A for a 500-micron-long cavity. The perpendicular far-field pattern of broad-area SELs showed a full width at half maximum of about 20 deg. Lasers with various types of cavities fabricated from the same wafer were compared. Broad-area edge-emitting lasers had a threshold current of 200 mA, a total power of 700 mW, and a total external differential quantum efficiency of 0.52 W/A.

  17. Absolute detector calibration using twin beams.

    PubMed

    Peřina, Jan; Haderka, Ondřej; Michálek, Václav; Hamar, Martin

    2012-07-01

    A method for the determination of absolute quantum detection efficiency is suggested based on the measurement of photocount statistics of twin beams. The measured histograms of joint signal-idler photocount statistics allow us to eliminate an additional noise superimposed on an ideal calibration field composed of only photon pairs. This makes the method superior above other approaches presently used. Twin beams are described using a paired variant of quantum superposition of signal and noise.

  18. Short wavelength (visible) GaAs quantum well lasers grown by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodbridge, K.; Blood, P.; Fletcher, E.D.

    1984-07-01

    GaAs-AlGaAs multiple quantum well (MQW) injection lasers with well widths from 55 to 13 A have been grown by molecular beam epitaxy and operated at room temperature, showing emission at wavelengths down to 704 nm, the shortest reported for a MQW injection laser with GaAs wells. In a device with 25-A wells some evidence of coupling was apparent when barrier widths were reduced to 40 A. For devices with 80-A barriers there is a difference of about 20 nm between the calculated n = 1 (e--hh) transition wavelength and the lasing wavelength, whereas the calculation agrees with photovoltage absorption measurementsmore » on the same structures.« less

  19. Simulation of quantum dynamics with integrated photonics

    NASA Astrophysics Data System (ADS)

    Sansoni, Linda; Sciarrino, Fabio; Mataloni, Paolo; Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto

    2012-12-01

    In recent years, quantum walks have been proposed as promising resources for the simulation of physical quantum systems. In fact it is widely adopted to simulate quantum dynamics. Up to now single particle quantum walks have been experimentally demonstrated by different approaches, while only few experiments involving many-particle quantum walks have been realized. Here we simulate the 2-particle dynamics on a discrete time quantum walk, built on an array of integrated waveguide beam splitters. The polarization independence of the quantum walk circuit allowed us to exploit the polarization entanglement to encode the symmetry of the two-photon wavefunction, thus the bunching-antibunching behavior of non interacting bosons and fermions has been simulated. We have also characterized the possible distinguishability and decoherence effects arising in such a structure. This study is necessary in view of the realization of a quantum simulator based on an integrated optical array built on a large number of beam splitters.

  20. Materials science education: ion beam modification and analysis of materials

    NASA Astrophysics Data System (ADS)

    Zimmerman, Robert; Muntele, Claudiu; Ila, Daryush

    2012-08-01

    The Center for Irradiation of Materials (CIM) at Alabama A&M University (http://cim.aamu.edu) was established in 1990 to serve the University in its research, education and services to the need of the local community and industry. CIM irradiation capabilities are oriented around two tandem-type ion accelerators with seven beam lines providing high-resolution Rutherford backscattering spectrometry, MeV focus ion beam, high-energy ion implantation and irradiation damage studies, particle-induced X-ray emission, particle-induced gamma emission and ion-induced nuclear reaction analysis in addition to fully automated ion channeling. One of the two tandem ion accelerators is designed to produce high-flux ion beam for MeV ion implantation and ion irradiation damage studies. The facility is well equipped with a variety of surface analysis systems, such as SEM, ESCA, as well as scanning micro-Raman analysis, UV-VIS Spectrometry, luminescence spectroscopy, thermal conductivity, electrical conductivity, IV/CV systems, mechanical test systems, AFM, FTIR, voltammetry analysis as well as low-energy implanters, ion beam-assisted deposition and MBE systems. In this presentation, we will demonstrate how the facility is used in material science education, as well as providing services to university, government and industry researches.

  1. High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lang, J. R.; Neufeld, C. J.; Hurni, C. A.; Cruz, S. C.; Matioli, E.; Mishra, U. K.; Speck, J. S.

    2011-03-01

    High external quantum efficiency (EQE) p-i-n heterojunction solar cells grown by NH3-based molecular beam epitaxy are presented. EQE values including optical losses are greater than 50% with fill-factors over 72% when illuminated with a 1 sun AM0 spectrum. Optical absorption measurements in conjunction with EQE measurements indicate an internal quantum efficiency greater than 90% for the InGaN absorbing layer. By adjusting the thickness of the top p-type GaN window contact layer, it is shown that the short-wavelength (<365 nm) quantum efficiency is limited by the minority carrier diffusion length in highly Mg-doped p-GaN.

  2. Beams-becoming enthusiastic about math and science - A Department of Energy research laboratory/school district partnership program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strozak, K.; Gagnon, S.

    1994-12-31

    BEAMS immerses fifth and sixth grade classes in CEBAF`s environment for a week of school. By exposing students and teachers to science`s excitement, challenges, and opportunities, BEAMS motivates students, enhances teachers, and involves parents, with the goal of improving scientific literacy and work force readiness. CEBAF and its school partners are extending BEAMS into a multi-year program, integrating educational partnerships active in the region. The planned focus emphasizes grades four through ten. A long-term evaluation model, incorporating measures of students attitudes, achievement, and academic course choices is being implemented. Three years of data on student attitudinal changes, referenced against controls,more » have been analyzed.« less

  3. Increasing complexity with quantum physics.

    PubMed

    Anders, Janet; Wiesner, Karoline

    2011-09-01

    We argue that complex systems science and the rules of quantum physics are intricately related. We discuss a range of quantum phenomena, such as cryptography, computation and quantum phases, and the rules responsible for their complexity. We identify correlations as a central concept connecting quantum information and complex systems science. We present two examples for the power of correlations: using quantum resources to simulate the correlations of a stochastic process and to implement a classically impossible computational task.

  4. A universal quantum information processor for scalable quantum communication and networks

    PubMed Central

    Yang, Xihua; Xue, Bolin; Zhang, Junxiang; Zhu, Shiyao

    2014-01-01

    Entanglement provides an essential resource for quantum computation, quantum communication, and quantum networks. How to conveniently and efficiently realize the generation, distribution, storage, retrieval, and control of multipartite entanglement is the basic requirement for realistic quantum information processing. Here, we present a theoretical proposal to efficiently and conveniently achieve a universal quantum information processor (QIP) via atomic coherence in an atomic ensemble. The atomic coherence, produced through electromagnetically induced transparency (EIT) in the Λ-type configuration, acts as the QIP and has full functions of quantum beam splitter, quantum frequency converter, quantum entangler, and quantum repeater. By employing EIT-based nondegenerate four-wave mixing processes, the generation, exchange, distribution, and manipulation of light-light, atom-light, and atom-atom multipartite entanglement can be efficiently and flexibly achieved in a deterministic way with only coherent light fields. This method greatly facilitates the operations in quantum information processing, and holds promising applications in realistic scalable quantum communication and quantum networks. PMID:25316514

  5. Quantum Optical Implementations of Quantum Computing and Quantum Informatics Protocols

    DTIC Science & Technology

    2007-11-20

    4, 2005. ) 14. M. 0. Scully, "The EPR Paradox Revisted", AMO Physics Seminar, TAMU Jan. 18, 2005. 15. M. S. Zubairy, "Quantum computing: Cavity QED...the EPR dispersion relation and the average photon number. We have shown that atomic coherence is the key to the development of such a laser. In...PRISM-TAMU Symposium on Quantum Material Science, Princeton University, February 21-22, 2005. ) 21. M. 0. Scully, "From EPR to quantum eraser: The Role

  6. Coherent control of diamond defects for quantum information science and quantum sensing

    NASA Astrophysics Data System (ADS)

    Maurer, Peter

    Quantum mechanics, arguably one of the greatest achievements of modern physics, has not only fundamentally changed our understanding of nature but is also taking an ever increasing role in engineering. Today, the control of quantum systems has already had a far-reaching impact on time and frequency metrology. By gaining further control over a large variety of different quantum systems, many potential applications are emerging. Those applications range from the development of quantum sensors and new quantum metrological approaches to the realization of quantum information processors and quantum networks. Unfortunately most quantum systems are very fragile objects that require tremendous experimental effort to avoid dephasing. Being able to control the interaction between a quantum system with its local environment embodies therefore an important aspect for application and hence is at the focus of this thesis. Nitrogen Vacancy (NV) color centers in diamond have recently attracted attention as a room temperature solid state spin system that expresses long coherence times. The electronic spin associated with NV centers can be efficiently manipulated, initialized and readout using microwave and optical techniques. Inspired by these extraordinary properties, much effort has been dedicated to use NV centers as a building block for scalable room temperature quantum information processing and quantum communication as well as a quantum sensing. In the first part of this thesis we demonstrate that by decoupling the spin from the local environment the coherence time of a NV quantum register can be extended by three order of magnitudes. Employing a novel dissipative mechanism in combination with dynamical decoupling, memory times exceeding one second are observed. The second part shows that, based on quantum control, NV centers in nano-diamonds provide a nanoscale temperature sensor with unprecedented accuracy enabling local temperature measurements in living biological cells

  7. Quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation.

    PubMed

    D'Ariano, G M; Lo Presti, P

    2001-05-07

    Quantum operations describe any state change allowed in quantum mechanics, including the evolution of an open system or the state change due to a measurement. We present a general method based on quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation. As input the method needs only a single entangled state. The feasibility of the technique for the electromagnetic field is shown, and the experimental setup is illustrated based on homodyne tomography of a twin beam.

  8. Effect of growth interruption in 1.55 μm InAs/InAlGaAs quantum dots on InP grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Jung, Daehwan; Ironside, Daniel J.; Bank, Seth R.; Gossard, Arthur C.; Bowers, John E.

    2018-05-01

    We report the effect of growth interruptions on the structural and optical properties of InAs/InAlGaAs/InP quantum dots using molecular beam epitaxy. We find that the surface quantum dots experience an unintended ripening process during the sample cooling stage, which reshapes the uncapped InAs nanostructures. To prevent this, we performed a partial capping experiment to effectively inhibit structural reconfiguration of surface InAs nanostructures during the cooling stage, revealing that InAs nanostructures first form quantum dashes and then transform into quantum dots via a ripening process. Our result suggests that the appearance of buried InAs/InAlGaAs nanostructures can be easily misunderstood by surface analysis.

  9. Photoluminescence of ZnTe/ZnMgTe multiple quantum well structures grown on ZnTe substrates by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Tanaka, Tooru; Ohshita, Hiroshi; Saito, Katsuhiko; Guo, Qixin

    2018-02-01

    Photoluminescence (PL) properties of ZnTe/ZnMgTe quantum well (QW) structures grown by molecular beam epitaxy (MBE) were investigated systematically with respect to well widths and Mg contents. Observed PL peak energies were consistent well with the calculated emission energies of the QWs considering a lattice distortion in the ZnTe well. From the temperature dependence of PL intensity, it was found that a suppression of a carrier escape from QW is crucial to obtain a PL at higher temperature in the ZnTe/ZnMgTe QW. Based on the results, multiple quantum well structures were designed and fabricated, which exhibited a green PL at room temperature.

  10. 8-beam local oscillator array at 4.7 THz generated by a phase grating and a quantum cascade laser.

    PubMed

    Mirzaei, B; Silva, J R G; Hayton, D; Groppi, C; Kao, T Y; Hu, Q; Reno, J L; Gao, J R

    2017-11-27

    We present an 8-beam local oscillator (LO) for the astronomically significant [OI] line at 4.7 THz. The beams are generated using a quantum cascade laser (QCL) in combination with a Fourier phase grating. The grating is fully characterized using a third order distributed feedback (DFB) QCL with a single mode emission at 4.7 THz as the input. The measured diffraction efficiency of 74.3% is in an excellent agreement with the calculated result of 75.4% using a 3D simulation. We show that the power distribution among the diffracted beams is uniform enough for pumping an array receiver. To validate the grating bandwidth, we apply a far-infrared (FIR) gas laser emission at 5.3 THz as the input and find a very similar performance in terms of efficiency, power distribution, and spatial configuration of the diffracted beams. Both results represent the highest operating frequencies of THz phase gratings reported in the literature. By injecting one of the eight diffracted 4.7 THz beams into a superconducting hot electron bolometer (HEB) mixer, we find that the coupled power, taking the optical loss into account, is in consistency with the QCL power value.

  11. 8-beam local oscillator array at 47 THz generated by a phase grating and a quantum cascade laser

    DOE PAGES

    Mirzaei, B.; Silva, J. R. G.; Hayton, D.; ...

    2017-11-13

    We present an 8-beam local oscillator (LO) for the astronomically significant [OI] line at 4.7 THz. The beams are generated using a quantum cascade laser (QCL) in combination with a Fourier phase grating. The grating is fully characterized using a third order distributed feedback (DFB) QCL with a single mode emission at 4.7 THz as the input. The measured diffraction efficiency of 74.3% is in an excellent agreement with the calculated result of 75.4% using a 3D simulation. We show that the power distribution among the diffracted beams is uniform enough for pumping an array receiver. To validate the gratingmore » bandwidth, we apply a far-infrared (FIR) gas laser emission at 5.3 THz as the input and find a very similar performance in terms of efficiency, power distribution, and spatial configuration of the diffracted beams. Both results represent the highest operating frequencies of THz phase gratings reported in the literature. By injecting one of the eight diffracted 4.7 THz beams into a superconducting hot electron bolometer (HEB) mixer, we find that the coupled power, taking the optical loss into account, is in consistency with the QCL power value.« less

  12. Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Priebe, Katharina E.; Rathje, Christopher; Yalunin, Sergey V.; Hohage, Thorsten; Feist, Armin; Schäfer, Sascha; Ropers, Claus

    2017-12-01

    Ultrafast electron and X-ray imaging and spectroscopy are the basis for an ongoing revolution in the understanding of dynamical atomic-scale processes in matter. The underlying technology relies heavily on laser science for the generation and characterization of ever shorter pulses. Recent findings suggest that ultrafast electron microscopy with attosecond-structured wavefunctions may be feasible. However, such future technologies call for means to both prepare and fully analyse the corresponding free-electron quantum states. Here, we introduce a framework for the preparation, coherent manipulation and characterization of free-electron quantum states, experimentally demonstrating attosecond electron pulse trains. Phase-locked optical fields coherently control the electron wavefunction along the beam direction. We establish a new variant of quantum state tomography—`SQUIRRELS'—for free-electron ensembles. The ability to tailor and quantitatively map electron quantum states will promote the nanoscale study of electron-matter entanglement and new forms of ultrafast electron microscopy down to the attosecond regime.

  13. Detecting photons in the dark region of Laguerre-Gauss beams.

    PubMed

    Klimov, Vasily; Bloch, Daniel; Ducloy, Martial; Rios Leite, Jose R

    2009-06-08

    We show that a photon detector, sensitive to the magnetic field or to the gradient of electric field, can help to characterize the quantum properties of spatially-dependent optical fields. We discuss the excitation of an atom through magnetic dipole or electric quadrupole transitions with the photons of a Bessel beam or a Laguerre-Gauss (LG) beams. These spiral beams are shown to be not true hollow beams, due to the presence of magnetic fields and gradients of electric fields on beam axis. This approach paves the way to an analysis at the quantum level of the propagating light beams having a complicated spatial structure.

  14. Optical properties of a-plane (Al, Ga)N/GaN multiple quantum wells grown on strain engineered Zn1-xMgxO layers by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Xia, Y.; Brault, J.; Nemoz, M.; Teisseire, M.; Vinter, B.; Leroux, M.; Chauveau, J.-M.

    2011-12-01

    Nonpolar (112¯0) Al0.2Ga0.8N/GaN multiple quantum wells (MQWs) have been grown by molecular beam epitaxy on (112¯0) Zn0.74Mg0.26O templates on r-plane sapphire substrates. The quantum wells exhibit well-resolved photoluminescence peaks in the ultra-violet region, and no sign of quantum confined Stark effect is observed in the complete multiple quantum well series. The results agree well with flat band quantum well calculations. Furthermore, we show that the MQW structures are strongly polarized along the [0001] direction. The origin of the polarization is discussed in terms of the strain anisotropy dependence of the exciton optical oscillator strengths.

  15. A Model of the Creative Process Based on Quantum Physics and Vedic Science.

    ERIC Educational Resources Information Center

    Rose, Laura Hall

    1988-01-01

    Using tenets from Vedic science and quantum physics, this model of the creative process suggests that the unified field of creation is pure consciousness, and that the development of the creative process within individuals mirrors the creative process within the universe. Rational and supra-rational creative thinking techniques are also described.…

  16. PREFACE: International Conference on Quantum Optics and Quantum Information (icQoQi) 2013

    NASA Astrophysics Data System (ADS)

    2014-11-01

    Quantum Information can be understood as being naturally derived from a new understanding of information theory when quantum systems become information carriers and quantum effects become non negligible. Experiments and the realization of various interesting phenomena in quantum information within the established field of quantum optics have been reported, which has provided a very convenient framework for the former. Together, quantum optics and quantum information are among the most exciting areas of interdisciplinary research in modern day science which cover a broad spectrum of topics, from the foundations of quantum mechanics and quantum information science to the introduction of new types of quantum technologies and metrology. The International Conference on Quantum Optics and Quantum Information (icQoQi) 2013 was organized by the Faculty of Science, International Islamic University Malaysia with the objective of bringing together leading academic scientists, researchers and scholars in the domain of interest from around the world to share their experiences and research results about all aspects of quantum optics and quantum information. While the event was organized on a somewhat modest scale, it was in fact a rather fruitful meeting for established researchers and students as well, especially for the local scene where the field is relatively new. We would therefore, like to thank the organizing committee, our advisors and all parties for having made this event successful and last but not least would extend our sincerest gratitude to IOP for publishing these selected papers from icQoQi2013 in Journal of Physics: Conference Series.

  17. Quantum Space Charge Waves in a Waveguide Filled with Fermi-Dirac Plasmas Including Relativistic Wake Field and Quantum Statistical Pressure Effects

    NASA Astrophysics Data System (ADS)

    Hong, Woo-Pyo; Jung, Young-Dae

    2018-03-01

    The effects of quantum statistical degeneracy pressure on the propagation of the quantum space charge wave are investigated in a cylindrically bounded plasma waveguide filled with relativistically degenerate quantum Fermi-Dirac plasmas and the relativistic ion wake field. The results show that the domain of the degenerate parameter for the resonant beam instability significantly increases with an increase of the scaled beam velocity. It is found that the instability domain of the wave number increases with an increase of the degenerate parameter. It is also found that the growth rate for the resonant beam instability decreases with an increase of the degenerate parameter. In addition, it is shown that the lowest harmonic mode provides the maximum value of the growth rates. Moreover, it is shown that the instability domain of the wave number decreases with an increase of the beam velocity.

  18. Optical Implementation of the Optimal Universal and Phase-Covariant Quantum Cloning Machines

    NASA Astrophysics Data System (ADS)

    Ye, Liu; Song, Xue-Ke; Yang, Jie; Yang, Qun; Ma, Yang-Cheng

    Quantum cloning relates to the security of quantum computation and quantum communication. In this paper, firstly we propose a feasible unified scheme to implement optimal 1 → 2 universal, 1 → 2 asymmetric and symmetric phase-covariant cloning, and 1 → 2 economical phase-covariant quantum cloning machines only via a beam splitter. Then 1 → 3 economical phase-covariant quantum cloning machines also can be realized by adding another beam splitter in context of linear optics. The scheme is based on the interference of two photons on a beam splitter with different splitting ratios for vertical and horizontal polarization components. It is shown that under certain condition, the scheme is feasible by current experimental technology.

  19. Integrated System Technologies for Modular Trapped Ion Quantum Information Processing

    NASA Astrophysics Data System (ADS)

    Crain, Stephen G.

    Although trapped ion technology is well-suited for quantum information science, scalability of the system remains one of the main challenges. One of the challenges associated with scaling the ion trap quantum computer is the ability to individually manipulate the increasing number of qubits. Using micro-mirrors fabricated with micro-electromechanical systems (MEMS) technology, laser beams are focused on individual ions in a linear chain and steer the focal point in two dimensions. Multiple single qubit gates are demonstrated on trapped 171Yb+ qubits and the gate performance is characterized using quantum state tomography. The system features negligible crosstalk to neighboring ions (< 3e-4), and switching speeds comparable to typical single qubit gate times (< 2 mus). In a separate experiment, photons scattered from the 171Yb+ ion are coupled into an optical fiber with 63% efficiency using a high numerical aperture lens (0.6 NA). The coupled photons are directed to superconducting nanowire single photon detectors (SNSPD), which provide a higher detector efficiency (69%) compared to traditional photomultiplier tubes (35%). The total system photon collection efficiency is increased from 2.2% to 3.4%, which allows for fast state detection of the qubit. For a detection beam intensity of 11 mW/cm 2, the average detection time is 23.7 mus with 99.885(7)% detection fidelity. The technologies demonstrated in this thesis can be integrated to form a single quantum register with all of the necessary resources to perform local gates as well as high fidelity readout and provide a photon link to other systems.

  20. Periodic scarred States in open quantum dots as evidence of quantum Darwinism.

    PubMed

    Burke, A M; Akis, R; Day, T E; Speyer, Gil; Ferry, D K; Bennett, B R

    2010-04-30

    Scanning gate microscopy (SGM) is used to image scar structures in an open quantum dot, which is created in an InAs quantum well by electron-beam lithography and wet etching. The scanned images demonstrate periodicities in magnetic field that correlate to those found in the conductance fluctuations. Simulations have shown that these magnetic transform images bear a strong resemblance to actual scars found in the dot that replicate through the modes in direct agreement with quantum Darwinism.

  1. Periodic Scarred States in Open Quantum Dots as Evidence of Quantum Darwinism

    NASA Astrophysics Data System (ADS)

    Burke, A. M.; Akis, R.; Day, T. E.; Speyer, Gil; Ferry, D. K.; Bennett, B. R.

    2010-04-01

    Scanning gate microscopy (SGM) is used to image scar structures in an open quantum dot, which is created in an InAs quantum well by electron-beam lithography and wet etching. The scanned images demonstrate periodicities in magnetic field that correlate to those found in the conductance fluctuations. Simulations have shown that these magnetic transform images bear a strong resemblance to actual scars found in the dot that replicate through the modes in direct agreement with quantum Darwinism.

  2. Quantum dot formation by molecular beam epitaxy of Ge on Si(100)

    NASA Astrophysics Data System (ADS)

    Chaparro, Sergio Arturo

    1999-11-01

    A new technique for producing electron systems with quantum confinement in three dimensions, quantum dots, has been studied. These quantum dots are coherent islands spontaneously formed at the early stages of Ge/Si(100) epitaxy due to the misfit of the system. Our goal is to gain understanding and control of the growth process so uniform quantum dot ensembles can be created for possible use in optoelectronic devices. A UHV Molecular Beam Epitaxy (MBE) growth system was built and calibrated to grow our samples. The samples were prepared by depositing Ge onto a Si(100) surface cleaned by flash desorption of the native oxides. Varying the growth rates from 0.6 ML/min to 4.0 ML/min, the substrate temperature from 450°C to 600°C, and the coverage from 3.5 ML to 14 ML produces different sample morphologies. After growth, the samples were analyzed both in situ and ex situ. The in situ analysis consisted of Auger electron spectroscopy for elemental analysis and reflection high energy electron diffraction, for surface structure analysis. The ex situ analysis included atomic force microscopy (AFM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM). Many digital images were obtained from the microscope analysis. A novel, computer based, analysis was developed to extract the islands parameters from the microscope images. This data, which includes island area and average height for each island on every image, was used for a statistical analysis. Also from the data, island size distributions (histograms of island size) were generated. These measurements confirm that islands form after growth of a 3 ML wetting layer and that islands evolve as they grow. As more Ge is deposited these islands grow and as they grow they evolve from huts, square based pyramids, to domes, truncated pyramids, to dislocated domes. Our results show that the substrate temperature, deposition rate, and amount of deposited material are factors that affect the growth

  3. Analysis of quantum information processors using quantum metrology

    NASA Astrophysics Data System (ADS)

    Kandula, Mark J.; Kok, Pieter

    2018-06-01

    Physical implementations of quantum information processing devices are generally not unique, and we are faced with the problem of choosing the best implementation. Here, we consider the sensitivity of quantum devices to variations in their different components. To measure this, we adopt a quantum metrological approach and find that the sensitivity of a device to variations in a component has a particularly simple general form. We use the concept of cost functions to establish a general practical criterion to decide between two different physical implementations of the same quantum device consisting of a variety of components. We give two practical examples of sensitivities of quantum devices to variations in beam splitter transmittivities: the Knill-Laflamme-Milburn (KLM) and reverse nonlinear sign gates for linear optical quantum computing with photonic qubits, and the enhanced optical Bell detectors by Grice and Ewert and van Loock. We briefly compare the sensitivity to the diamond distance and find that the latter is less suited for studying the behavior of components embedded within the larger quantum device.

  4. Quantum hacking on quantum key distribution using homodyne detection

    NASA Astrophysics Data System (ADS)

    Huang, Jing-Zheng; Kunz-Jacques, Sébastien; Jouguet, Paul; Weedbrook, Christian; Yin, Zhen-Qiang; Wang, Shuang; Chen, Wei; Guo, Guang-Can; Han, Zheng-Fu

    2014-03-01

    Imperfect devices in commercial quantum key distribution systems open security loopholes that an eavesdropper may exploit. An example of one such imperfection is the wavelength-dependent coupling ratio of the fiber beam splitter. Utilizing this loophole, the eavesdropper can vary the transmittances of the fiber beam splitter at the receiver's side by inserting lights with wavelengths different from what is normally used. Here, we propose a wavelength attack on a practical continuous-variable quantum key distribution system using homodyne detection. By inserting light pulses at different wavelengths, this attack allows the eavesdropper to bias the shot-noise estimation even if it is done in real time. Based on experimental data, we discuss the feasibility of this attack and suggest a prevention scheme by improving the previously proposed countermeasures.

  5. Transnational Quantum: Quantum Physics in India through the Lens of Satyendranath Bose

    NASA Astrophysics Data System (ADS)

    Banerjee, Somaditya

    2016-08-01

    This paper traces the social and cultural dimensions of quantum physics in colonial India where Satyendranath Bose worked. By focusing on Bose's approach towards the quantum and his collaboration with Albert Einstein, I argue that his physics displayed both the localities of doing science in early twentieth century India as well as a cosmopolitan dimension. He transformed the fundamental new concept of the light quantum developed by Einstein in 1905 within the social and political context of colonial India. This cross-pollination of the local with the global is termed here as the locally rooted cosmopolitan nature of Bose's science. The production of new knowledge through quantum statistics by Bose show the co-constructed nature of physics and the transnational nature of the quantum.

  6. Long distance quantum teleportation in a quantum relay configuration.

    PubMed

    de Riedmatten, H; Marcikic, I; Tittel, W; Zbinden, H; Collins, D; Gisin, N

    2004-01-30

    A long distance quantum teleportation experiment with a fiber-delayed Bell state measurement (BSM) is reported. The source creating the qubits to be teleported and the source creating the necessary entangled state are connected to the beam splitter realizing the BSM by two 2 km long optical fibers. In addition, the teleported qubits are analyzed after 2.2 km of optical fiber, in another laboratory separated by 55 m. Time-bin qubits carried by photons at 1310 nm are teleported onto photons at 1550 nm. The fidelity is of 77%, above the maximal value obtainable without entanglement. This is the first realization of an elementary quantum relay over significant distances, which will allow an increase in the range of quantum communication and quantum key distribution.

  7. Photonic quantum information: science and technology

    PubMed Central

    TAKEUCHI, Shigeki

    2016-01-01

    Recent technological progress in the generation, manipulation and detection of individual single photons has opened a new scientific field of photonic quantum information. This progress includes the realization of single photon switches, photonic quantum circuits with specific functions, and the application of novel photonic states to novel optical metrology beyond the limits of standard optics. In this review article, the recent developments and current status of photonic quantum information technology are overviewed based on the author’s past and recent works. PMID:26755398

  8. Photonic quantum information: science and technology.

    PubMed

    Takeuchi, Shigeki

    2016-01-01

    Recent technological progress in the generation, manipulation and detection of individual single photons has opened a new scientific field of photonic quantum information. This progress includes the realization of single photon switches, photonic quantum circuits with specific functions, and the application of novel photonic states to novel optical metrology beyond the limits of standard optics. In this review article, the recent developments and current status of photonic quantum information technology are overviewed based on the author's past and recent works.

  9. Long distance quantum teleportation

    NASA Astrophysics Data System (ADS)

    Xia, Xiu-Xiu; Sun, Qi-Chao; Zhang, Qiang; Pan, Jian-Wei

    2018-01-01

    Quantum teleportation is a core protocol in quantum information science. Besides revealing the fascinating feature of quantum entanglement, quantum teleportation provides an ultimate way to distribute quantum state over extremely long distance, which is crucial for global quantum communication and future quantum networks. In this review, we focus on the long distance quantum teleportation experiments, especially those employing photonic qubits. From the viewpoint of real-world application, both the technical advantages and disadvantages of these experiments are discussed.

  10. Quantum orbital angular momentum of elliptically symmetric light

    NASA Astrophysics Data System (ADS)

    Plick, William N.; Krenn, Mario; Fickler, Robert; Ramelow, Sven; Zeilinger, Anton

    2013-03-01

    We present a quantum-mechanical analysis of the orbital angular momentum of a class of recently discovered elliptically symmetric stable light fields—the so-called Ince-Gauss modes. We study, in a fully quantum formalism, how the orbital angular momentum of these beams varies with their ellipticity, and we discover several compelling features, including nonmonotonic behavior, stable beams with real continuous (noninteger) orbital angular momenta, and orthogonal modes with the same orbital angular momenta. We explore, and explain in detail, the reasons for this behavior. These features may have applications in quantum key distribution, atom trapping, and quantum informatics in general—as the ellipticity opens up an alternative way of navigating the spatial photonic Hilbert space.

  11. On the Meaning of Element in the Science of Italic Tradition, the Question of Physical Objectivity (and/or Physical Meaning) and Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Boscarino, Giuseppe

    2006-06-01

    It is questioned: Is quantum mechanics a new science or a new (or rather old) philosophy of physical science? It is shown that Einstein's attempt in his article of 1935 to bring the concept of "element" from the classical (we call it Italic) philosophical-epistemological tradition, which goes under the names of Pythagoras Parmenides, Democritus, and Newton, into quantum mechanical theory is unclear, inadequate and contradictory.

  12. Quantum Computation

    NASA Astrophysics Data System (ADS)

    Aharonov, Dorit

    In the last few years, theoretical study of quantum systems serving as computational devices has achieved tremendous progress. We now have strong theoretical evidence that quantum computers, if built, might be used as a dramatically powerful computational tool, capable of performing tasks which seem intractable for classical computers. This review is about to tell the story of theoretical quantum computation. I l out the developing topic of experimental realizations of the model, and neglected other closely related topics which are quantum information and quantum communication. As a result of narrowing the scope of this paper, I hope it has gained the benefit of being an almost self contained introduction to the exciting field of quantum computation. The review begins with background on theoretical computer science, Turing machines and Boolean circuits. In light of these models, I define quantum computers, and discuss the issue of universal quantum gates. Quantum algorithms, including Shor's factorization algorithm and Grover's algorithm for searching databases, are explained. I will devote much attention to understanding what the origins of the quantum computational power are, and what the limits of this power are. Finally, I describe the recent theoretical results which show that quantum computers maintain their complexity power even in the presence of noise, inaccuracies and finite precision. This question cannot be separated from that of quantum complexity because any realistic model will inevitably be subjected to such inaccuracies. I tried to put all results in their context, asking what the implications to other issues in computer science and physics are. In the end of this review, I make these connections explicit by discussing the possible implications of quantum computation on fundamental physical questions such as the transition from quantum to classical physics.

  13. Toward real-time quantum imaging with a single pixel camera

    DOE PAGES

    Lawrie, B. J.; Pooser, R. C.

    2013-03-19

    In this paper, we present a workbench for the study of real-time quantum imaging by measuring the frame-by-frame quantum noise reduction of multi-spatial-mode twin beams generated by four wave mixing in Rb vapor. Exploiting the multiple spatial modes of this squeezed light source, we utilize spatial light modulators to selectively pass macropixels of quantum correlated modes from each of the twin beams to a high quantum efficiency balanced detector. Finally, in low-light-level imaging applications, the ability to measure the quantum correlations between individual spatial modes and macropixels of spatial modes with a single pixel camera will facilitate compressive quantum imagingmore » with sensitivity below the photon shot noise limit.« less

  14. Hybrid Methods in Quantum Information

    NASA Astrophysics Data System (ADS)

    Marshall, Kevin

    Today, the potential power of quantum information processing comes as no surprise to physicist or science-fiction writer alike. However, the grand promises of this field remain unrealized, despite significant strides forward, due to the inherent difficulties of manipulating quantum systems. Simply put, it turns out that it is incredibly difficult to interact, in a controllable way, with the quantum realm when we seem to live our day to day lives in a classical world. In an effort to solve this challenge, people are exploring a variety of different physical platforms, each with their strengths and weaknesses, in hopes of developing new experimental methods that one day might allow us to control a quantum system. One path forward rests in combining different quantum systems in novel ways to exploit the benefits of different systems while circumventing their respective weaknesses. In particular, quantum systems come in two different flavours: either discrete-variable systems or continuous-variable ones. The field of hybrid quantum information seeks to combine these systems, in clever ways, to help overcome the challenges blocking the path between what is theoretically possible and what is achievable in a laboratory. In this thesis we explore four topics in the context of hybrid methods in quantum information, in an effort to contribute to the resolution of existing challenges and to stimulate new avenues of research. First, we explore the manipulation of a continuous-variable quantum system consisting of phonons in a linear chain of trapped ions where we use the discretized internal levels to mediate interactions. Using our proposed interaction we are able to implement, for example, the acoustic equivalent of a beam splitter with modest experimental resources. Next we propose an experimentally feasible implementation of the cubic phase gate, a primitive non-Gaussian gate required for universal continuous-variable quantum computation, based off sequential photon

  15. Toward quantum plasmonic networks

    DOE PAGES

    Holtfrerich, M. W.; Dowran, M.; Davidson, R.; ...

    2016-08-30

    Here, we demonstrate the transduction of macroscopic quantum entanglement by independent, distant plasmonic structures embedded in separate thin silver films. In particular, we show that the plasmon-mediated transmission through each film conserves spatially dependent, entangled quantum images, opening the door for the implementation of parallel quantum protocols, super-resolution imaging, and quantum plasmonic sensing geometries at the nanoscale level. The conservation of quantum information by the transduction process shows that continuous variable multi-mode entanglement is momentarily transferred from entangled beams of light to the space-like separated, completely independent plasmonic structures, thus providing a first important step toward establishing a multichannel quantummore » network across separate solid-state substrates.« less

  16. Generation of electron Airy beams.

    PubMed

    Voloch-Bloch, Noa; Lereah, Yossi; Lilach, Yigal; Gover, Avraham; Arie, Ady

    2013-02-21

    Within the framework of quantum mechanics, a unique particle wave packet exists in the form of the Airy function. Its counterintuitive properties are revealed as it propagates in time or space: the quantum probability wave packet preserves its shape despite dispersion or diffraction and propagates along a parabolic caustic trajectory, even though no force is applied. This does not contradict Newton's laws of motion, because the wave packet centroid propagates along a straight line. Nearly 30 years later, this wave packet, known as an accelerating Airy beam, was realized in the optical domain; later it was generalized to an orthogonal and complete family of beams that propagate along parabolic trajectories, as well as to beams that propagate along arbitrary convex trajectories. Here we report the experimental generation and observation of the Airy beams of free electrons. These electron Airy beams were generated by diffraction of electrons through a nanoscale hologram, which imprinted on the electrons' wavefunction a cubic phase modulation in the transverse plane. The highest-intensity lobes of the generated beams indeed followed parabolic trajectories. We directly observed a non-spreading electron wavefunction that self-heals, restoring its original shape after passing an obstacle. This holographic generation of electron Airy beams opens up new avenues for steering electronic wave packets like their photonic counterparts, because the wave packets can be imprinted with arbitrary shapes or trajectories.

  17. Luminescent N-polar (In,Ga)N/GaN quantum wells achieved by plasma-assisted molecular beam epitaxy at temperatures exceeding 700 °C

    NASA Astrophysics Data System (ADS)

    Chèze, C.; Feix, F.; Lähnemann, J.; Flissikowski, T.; Kryśko, M.; Wolny, P.; Turski, H.; Skierbiszewski, C.; Brandt, O.

    2018-01-01

    Previously, we found that N-polar (In,Ga)N/GaN quantum wells prepared on freestanding GaN substrates by plasma-assisted molecular beam epitaxy at conventional growth temperatures of about 650 °C do not exhibit any detectable luminescence even at 10 K. In the present work, we investigate (In,Ga)N/GaN quantum wells grown on Ga- and N-polar GaN substrates at a constant temperature of 730 °C . This exceptionally high temperature results in a vanishing In incorporation for the Ga-polar sample. In contrast, quantum wells with an In content of 20% and abrupt interfaces are formed on N-polar GaN. Moreover, these quantum wells exhibit a spatially uniform green luminescence band up to room temperature, but the intensity of this band is observed to strongly quench with temperature. Temperature-dependent photoluminescence transients show that this thermal quenching is related to a high density of nonradiative Shockley-Read-Hall centers with large capture coefficients for electrons and holes.

  18. Filamentation instability in a quantum magnetized plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bret, A.; and Instituto de Investigaciones Energeticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real

    2008-02-15

    The filamentation instability occurring when a nonrelativistic electron beam passes through a quantum magnetized plasma is investigated by means of a cold quantum magnetohydrodynamic model. It is proved that the instability can be completely suppressed by quantum effects if and only if a finite magnetic field is present. A dimensionless parameter is identified that measures the strength of quantum effects. Strong quantum effects allow for a much smaller magnetic field to suppress the instability than in the classical regime.

  19. Comment on "Propagation of a TE surface mode in a relativistic electron beam-quantum plasma system" [Phys. Lett. A 376 (2012) 169

    NASA Astrophysics Data System (ADS)

    Moradi, Afshin

    2016-07-01

    In a recent paper Abdel Aziz [Phys. Lett. A 376 (2012) 169] obtained the dispersion properties of TE surface modes propagating at the interface between a magnetized quantum plasma and vacuum in the Faraday configuration, where these TE surface waves are excited during the interaction of relativistic electron beam with magnetized quantum plasma. The present Comment points out that in the Faraday configuration the surface waves acquire both TM and TE components due to the cyclotron motion of electrons. Therefore, the TE surface waves cannot propagate on surface of the present system and the general dispersion relations for surface waves, derived by Abdel Aziz are incorrect.

  20. Avoiding disentanglement of multipartite entangled optical beams with a correlated noisy channel

    PubMed Central

    Deng, Xiaowei; Tian, Caixing; Su, Xiaolong; Xie, Changde

    2017-01-01

    A quantum communication network can be constructed by distributing a multipartite entangled state to space-separated nodes. Entangled optical beams with highest flying speed and measurable brightness can be used as carriers to convey information in quantum communication networks. Losses and noises existing in real communication channels will reduce or even totally destroy entanglement. The phenomenon of disentanglement will result in the complete failure of quantum communication. Here, we present the experimental demonstrations on the disentanglement and the entanglement revival of tripartite entangled optical beams used in a quantum network. We experimentally demonstrate that symmetric tripartite entangled optical beams are robust in pure lossy but noiseless channels. In a noisy channel, the excess noise will lead to the disentanglement and the destroyed entanglement can be revived by the use of a correlated noisy channel (non-Markovian environment). The presented results provide useful technical references for establishing quantum networks. PMID:28295024

  1. Quasi-one-dimensional quantum anomalous Hall systems as new platforms for scalable topological quantum computation

    NASA Astrophysics Data System (ADS)

    Chen, Chui-Zhen; Xie, Ying-Ming; Liu, Jie; Lee, Patrick A.; Law, K. T.

    2018-03-01

    Quantum anomalous Hall insulator/superconductor heterostructures emerged as a competitive platform to realize topological superconductors with chiral Majorana edge states as shown in recent experiments [He et al. Science 357, 294 (2017), 10.1126/science.aag2792]. However, chiral Majorana modes, being extended, cannot be used for topological quantum computation. In this work, we show that quasi-one-dimensional quantum anomalous Hall structures exhibit a large topological regime (much larger than the two-dimensional case) which supports localized Majorana zero energy modes. The non-Abelian properties of a cross-shaped quantum anomalous Hall junction is shown explicitly by time-dependent calculations. We believe that the proposed quasi-one-dimensional quantum anomalous Hall structures can be easily fabricated for scalable topological quantum computation.

  2. Quantum-Dot Single-Photon Sources for Entanglement Enhanced Interferometry.

    PubMed

    Müller, M; Vural, H; Schneider, C; Rastelli, A; Schmidt, O G; Höfling, S; Michler, P

    2017-06-23

    Multiphoton entangled states such as "N00N states" have attracted a lot of attention because of their possible application in high-precision, quantum enhanced phase determination. So far, N00N states have been generated in spontaneous parametric down-conversion processes and by mixing quantum and classical light on a beam splitter. Here, in contrast, we demonstrate superresolving phase measurements based on two-photon N00N states generated by quantum dot single-photon sources making use of the Hong-Ou-Mandel effect on a beam splitter. By means of pulsed resonance fluorescence of a charged exciton state, we achieve, in postselection, a quantum enhanced improvement of the precision in phase uncertainty, higher than prescribed by the standard quantum limit. An analytical description of the measurement scheme is provided, reflecting requirements, capability, and restraints of single-photon emitters in optical quantum metrology. Our results point toward the realization of a real-world quantum sensor in the near future.

  3. Matrix Results and Techniques in Quantum Information Science and Related Topics

    NASA Astrophysics Data System (ADS)

    Pelejo, Diane Christine

    In this dissertation, we present several matrix-related problems and results motivated by quantum information theory. Some background material of quantum information science will be discussed in chapter 1, while chapter 7 gives a summary of results and concluding remarks. In chapter 2, we look at 2n x 2 n unitary matrices, which describe operations on a closed n-qubit system. We define a set of simple quantum gates, called controlled single qubit gates, and their associated operational cost. We then present a recurrence scheme to decompose a general 2n x 2n unitary matrix to the product of no more than 2n-12n-1 single qubit gates with small number of controls. In chapter 3, we address the problem of finding a specific element phi among a given set of quantum channels S that will produce the optimal value of a scalar function D(rho 1,phi(rho2)), on two fixed quantum states rho 1 and rho2. Some of the functions we considered for D(·,·) are the trace distance, quantum fidelity and quantum relative entropy. We discuss the optimal solution when S is the set of unitary quantum channels, the set of mixed unitary channels, the set of unital quantum channels, and the set of all quantum channels. In chapter 4, we focus on the spectral properties of qubit-qudit bipartite states with a maximally mixed qudit subsystem. More specifically, given positive numbers a1 ≥ ... ≥ a 2n ≥ 0, we want to determine if there exist a 2n x 2n density matrix rho having eigenvalues a1,..., a2n and satisfying tr 1(rho)=1/n In. This problem is a special case of the more general quantum marginal problem. We give the minimal necessary and sufficient conditions on a1,..., a2n for n ≤ 6 and state some observations on general values of n.. In chapter 5, we discuss the numerical method of alternating projections and illustrate its usefulness in: (a) constructing a quantum channel, if it exists, such that phi(rho(1))=sigma(1),...,phi(rho (k))=sigma(k) for given rho (1),...,rho(k) ∈ Dn and

  4. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siemann, R.H.; /SLAC

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  5. Quantum Poetics: Science and Spirit in Twentieth Century American Poetry

    NASA Astrophysics Data System (ADS)

    Monaghan, Mary Patricia

    Concepts from quantum physics illuminate ways in which five 20th century American poets struggle with the expression of nonlinear, nontemporal experiences in linear, temporal language. An "experience of spirit"- -an experience of cosmic unity which occurs in a timeless moment and involves a paradoxical sensuality--is expressed by poets Wallace Stevens, Albert Goldbarth, Nancy Willard, Linda Gregg and Marilyn Waniek. Contemporary science similarly seeks ways to express nonlinear realities in linear language. The English language is found to guide users to linear, time-bounded expression through the noun (leading to nominalization), the verb (demanding experience be limited to past, present or future), adverb and adjective (which separate senses from each other and divide attributes from essence). English presents structural difficulties to those who wish to express experiences of spirit--difficulties also articulated by quantum theorists struggling to express unvisualizable concepts. Wallace Stevens devoted the first half of his poetic career to questions of order, which find reflections within the works of quantum physicists who theorize an "implicate order" within the subatomic universe. During his later years, Stevens turned to the question of chaos, an interest paralleled by recent developments in dynamical systems theory. Albert Goldbarth and Nancy Willard alter narrative form in three ways to convey nonlinear possibilities. The "parabolic" narrative uses story to exemplify a moral or philosophical message. The "midrashic" illuminates the meaning of one story by the telling of another. Finally, the "coyotic" begins with one, apparently ordinary, story which is then altered to introduce fantastical realities. These narratives form a "relative time," similar to that which Einstein defined in his special theory of relativity. The works of Marilyn Waniek and Linda Gregg are examined in terms of the language of paradoxical sensuality, which calls into question the

  6. Quantum illumination with Gaussian states.

    PubMed

    Tan, Si-Hui; Erkmen, Baris I; Giovannetti, Vittorio; Guha, Saikat; Lloyd, Seth; Maccone, Lorenzo; Pirandola, Stefano; Shapiro, Jeffrey H

    2008-12-19

    An optical transmitter irradiates a target region containing a bright thermal-noise bath in which a low-reflectivity object might be embedded. The light received from this region is used to decide whether the object is present or absent. The performance achieved using a coherent-state transmitter is compared with that of a quantum-illumination transmitter, i.e., one that employs the signal beam obtained from spontaneous parametric down-conversion. By making the optimum joint measurement on the light received from the target region together with the retained spontaneous parametric down-conversion idler beam, the quantum-illumination system realizes a 6 dB advantage in the error-probability exponent over the optimum reception coherent-state system. This advantage accrues despite there being no entanglement between the light collected from the target region and the retained idler beam.

  7. Quantum plasmonic sensing

    DOE PAGES

    Fan, Wenjiang; Lawrie, Benjamin J.; Pooser, Raphael C.

    2015-11-04

    Surface plasmon resonance (SPR) sensors can reach the quantum noise limit of the optical readout field in various configurations. We demonstrate that two-mode intensity squeezed states produce a further enhancement in sensitivity compared with a classical optical readout when the quantum noise is used to transduce an SPR sensor signal in the Kretschmann configuration. The quantum noise reduction between the twin beams when incident at an angle away from the plasmonic resonance, combined with quantum noise resulting from quantum anticorrelations when on resonance, results in an effective SPR-mediated modulation that yields a measured sensitivity 5 dB better than that withmore » a classical optical readout in this configuration. Furthermore, the theoretical potential of this technique points to resolving particle concentrations with more accuracy than is possible via classical approaches to optical transduction.« less

  8. Laser location and manipulation of a single quantum tunneling channel in an InAs quantum dot.

    PubMed

    Makarovsky, O; Vdovin, E E; Patané, A; Eaves, L; Makhonin, M N; Tartakovskii, A I; Hopkinson, M

    2012-03-16

    We use a femtowatt focused laser beam to locate and manipulate a single quantum tunneling channel associated with an individual InAs quantum dot within an ensemble of dots. The intensity of the directed laser beam tunes the tunneling current through the targeted dot with an effective optical gain of 10(7) and modifies the curvature of the dot's confining potential and the spatial extent of its ground state electron eigenfunction. These observations are explained by the effect of photocreated hole charges which become bound close to the targeted dot, thus acting as an optically induced gate electrode.

  9. Philosophy and Quantum Mechanics in Science Teaching

    NASA Astrophysics Data System (ADS)

    Pospiech, Gesche

    Research in physics has its impact on world view; physics influences the image of nature. On the other hand philosophy thinks about nature and the role of man. The insight that philosophy might indicate the frontiers of human possibilities of thought makes it highly desirable to teach these aspects in physics education. One of the most exciting examples is quantum theory which v. Weizsäcker called a fundamental philosophical advance. I give some hints to implementing philosophical aspects into a course on quantum theory. For this purpose I designed a dialogue between three philosophers - from the Antique, the Enlightenment and a quantum philosopher - discussing results of quantum theory on the background of important philosophical terms. Especially the views of Aristotle are reviewed. This idea has been carried out in a supplementary course on quantum theory for interested teacher students and for in-service training of teachers.

  10. Quantum physics meets biology

    PubMed Central

    Arndt, Markus; Juffmann, Thomas; Vedral, Vlatko

    2009-01-01

    Quantum physics and biology have long been regarded as unrelated disciplines, describing nature at the inanimate microlevel on the one hand and living species on the other hand. Over the past decades the life sciences have succeeded in providing ever more and refined explanations of macroscopic phenomena that were based on an improved understanding of molecular structures and mechanisms. Simultaneously, quantum physics, originally rooted in a world-view of quantum coherences, entanglement, and other nonclassical effects, has been heading toward systems of increasing complexity. The present perspective article shall serve as a “pedestrian guide” to the growing interconnections between the two fields. We recapitulate the generic and sometimes unintuitive characteristics of quantum physics and point to a number of applications in the life sciences. We discuss our criteria for a future “quantum biology,” its current status, recent experimental progress, and also the restrictions that nature imposes on bold extrapolations of quantum theory to macroscopic phenomena. PMID:20234806

  11. Quantum physics meets biology.

    PubMed

    Arndt, Markus; Juffmann, Thomas; Vedral, Vlatko

    2009-12-01

    Quantum physics and biology have long been regarded as unrelated disciplines, describing nature at the inanimate microlevel on the one hand and living species on the other hand. Over the past decades the life sciences have succeeded in providing ever more and refined explanations of macroscopic phenomena that were based on an improved understanding of molecular structures and mechanisms. Simultaneously, quantum physics, originally rooted in a world-view of quantum coherences, entanglement, and other nonclassical effects, has been heading toward systems of increasing complexity. The present perspective article shall serve as a "pedestrian guide" to the growing interconnections between the two fields. We recapitulate the generic and sometimes unintuitive characteristics of quantum physics and point to a number of applications in the life sciences. We discuss our criteria for a future "quantum biology," its current status, recent experimental progress, and also the restrictions that nature imposes on bold extrapolations of quantum theory to macroscopic phenomena.

  12. Quantum cascade light emitting diodes based on type-2 quantum wells

    NASA Technical Reports Server (NTRS)

    Lin, C. H.; Yang, R. Q.; Zhang, D.; Murry, S. J.; Pei, S. S.; Allerman, A. A.; Kurtz, S. R.

    1997-01-01

    The authors have demonstrated room-temperature CW operation of type-2 quantum cascade (QC) light emitting diodes at 4.2 (micro)m using InAs/InGaSb/InAlSb type-2 quantum wells. The type-2 QC configuration utilizes sequential multiple photon emissions in a staircase of coupled type-2 quantum wells. The device was grown by molecular beam epitaxy on a p-type GaSb substrate and was compared of 20 periods of active regions separated by digitally graded quantum well injection regions. The maximum average output power is about 250 (micro)W at 80 K, and 140 (micro)W at 300 K at a repetition rate of 1 kHz with a duty cycle of 50%.

  13. Quantum walks in brain microtubules--a biomolecular basis for quantum cognition?

    PubMed

    Hameroff, Stuart

    2014-01-01

    Cognitive decisions are best described by quantum mathematics. Do quantum information devices operate in the brain? What would they look like? Fuss and Navarro () describe quantum lattice registers in which quantum superpositioned pathways interact (compute/integrate) as 'quantum walks' akin to Feynman's path integral in a lattice (e.g. the 'Feynman quantum chessboard'). Simultaneous alternate pathways eventually reduce (collapse), selecting one particular pathway in a cognitive decision, or choice. This paper describes how quantum walks in a Feynman chessboard are conceptually identical to 'topological qubits' in brain neuronal microtubules, as described in the Penrose-Hameroff 'Orch OR' theory of consciousness. Copyright © 2013 Cognitive Science Society, Inc.

  14. Quantum computation for solving linear systems

    NASA Astrophysics Data System (ADS)

    Cao, Yudong

    Quantum computation is a subject born out of the combination between physics and computer science. It studies how the laws of quantum mechanics can be exploited to perform computations much more efficiently than current computers (termed classical computers as oppose to quantum computers). The thesis starts by introducing ideas from quantum physics and theoretical computer science and based on these ideas, introducing the basic concepts in quantum computing. These introductory discussions are intended for non-specialists to obtain the essential knowledge needed for understanding the new results presented in the subsequent chapters. After introducing the basics of quantum computing, we focus on the recently proposed quantum algorithm for linear systems. The new results include i) special instances of quantum circuits that can be implemented using current experimental resources; ii) detailed quantum algorithms that are suitable for a broader class of linear systems. We show that for some particular problems the quantum algorithm is able to achieve exponential speedup over their classical counterparts.

  15. Electronic properties of single Ge/Si quantum dot grown by ion beam sputtering deposition.

    PubMed

    Wang, C; Ke, S Y; Yang, J; Hu, W D; Qiu, F; Wang, R F; Yang, Y

    2015-03-13

    The dependence of the electronic properties of a single Ge/Si quantum dot (QD) grown by the ion-beam sputtering deposition technique on growth temperature and QD diameter is investigated by conductive atomic force microscopy (CAFM). The Si-Ge intermixing effect is demonstrated to be important for the current distribution of single QDs. The current staircase induced by the Coulomb blockade effect is observed at higher growth temperatures (>700 °C) due to the formation of an additional barrier between dislocated QDs and Si substrate for the resonant tunneling of holes. According to the proposed single-hole-tunneling model, the fact that the intermixing effect is observed to increase as the incoherent QD size decreases may explain the increase in the starting voltage of the current staircase and the decrease in the current step width.

  16. Quantum Mechanics in Insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aeppli, G.; Department of Physics and Astronomy, University College of London, London

    Atomic physics is undergoing a large revival because of the possibility of trapping and cooling ions and atoms both for individual quantum control as well as collective quantum states, such as Bose-Einstein condensates. The present lectures start from the 'atomic' physics of isolated atoms in semiconductors and insulators and proceed to coupling them together to yield magnets undergoing quantum phase transitions as well as displaying novel quantum states with no classical analogs. The lectures are based on: G.-Y. Xu et al., Science 317, 1049-1052 (2007); G. Aeppli, P. Warburton, C. Renner, BT Technology Journal, 24, 163-169 (2006); H. M. Ronnowmore » et al., Science 308, 392-395 (2005) and N. Q. Vinh et al., PNAS 105, 10649-10653 (2008).« less

  17. The Conditional Entropy Power Inequality for Bosonic Quantum Systems

    NASA Astrophysics Data System (ADS)

    De Palma, Giacomo; Trevisan, Dario

    2018-06-01

    We prove the conditional Entropy Power Inequality for Gaussian quantum systems. This fundamental inequality determines the minimum quantum conditional von Neumann entropy of the output of the beam-splitter or of the squeezing among all the input states where the two inputs are conditionally independent given the memory and have given quantum conditional entropies. We also prove that, for any couple of values of the quantum conditional entropies of the two inputs, the minimum of the quantum conditional entropy of the output given by the conditional Entropy Power Inequality is asymptotically achieved by a suitable sequence of quantum Gaussian input states. Our proof of the conditional Entropy Power Inequality is based on a new Stam inequality for the quantum conditional Fisher information and on the determination of the universal asymptotic behaviour of the quantum conditional entropy under the heat semigroup evolution. The beam-splitter and the squeezing are the central elements of quantum optics, and can model the attenuation, the amplification and the noise of electromagnetic signals. This conditional Entropy Power Inequality will have a strong impact in quantum information and quantum cryptography. Among its many possible applications there is the proof of a new uncertainty relation for the conditional Wehrl entropy.

  18. The Conditional Entropy Power Inequality for Bosonic Quantum Systems

    NASA Astrophysics Data System (ADS)

    De Palma, Giacomo; Trevisan, Dario

    2018-01-01

    We prove the conditional Entropy Power Inequality for Gaussian quantum systems. This fundamental inequality determines the minimum quantum conditional von Neumann entropy of the output of the beam-splitter or of the squeezing among all the input states where the two inputs are conditionally independent given the memory and have given quantum conditional entropies. We also prove that, for any couple of values of the quantum conditional entropies of the two inputs, the minimum of the quantum conditional entropy of the output given by the conditional Entropy Power Inequality is asymptotically achieved by a suitable sequence of quantum Gaussian input states. Our proof of the conditional Entropy Power Inequality is based on a new Stam inequality for the quantum conditional Fisher information and on the determination of the universal asymptotic behaviour of the quantum conditional entropy under the heat semigroup evolution. The beam-splitter and the squeezing are the central elements of quantum optics, and can model the attenuation, the amplification and the noise of electromagnetic signals. This conditional Entropy Power Inequality will have a strong impact in quantum information and quantum cryptography. Among its many possible applications there is the proof of a new uncertainty relation for the conditional Wehrl entropy.

  19. Quantum computing. Defining and detecting quantum speedup.

    PubMed

    Rønnow, Troels F; Wang, Zhihui; Job, Joshua; Boixo, Sergio; Isakov, Sergei V; Wecker, David; Martinis, John M; Lidar, Daniel A; Troyer, Matthias

    2014-07-25

    The development of small-scale quantum devices raises the question of how to fairly assess and detect quantum speedup. Here, we show how to define and measure quantum speedup and how to avoid pitfalls that might mask or fake such a speedup. We illustrate our discussion with data from tests run on a D-Wave Two device with up to 503 qubits. By using random spin glass instances as a benchmark, we found no evidence of quantum speedup when the entire data set is considered and obtained inconclusive results when comparing subsets of instances on an instance-by-instance basis. Our results do not rule out the possibility of speedup for other classes of problems and illustrate the subtle nature of the quantum speedup question. Copyright © 2014, American Association for the Advancement of Science.

  20. Quantum scattering beyond the plane-wave approximation

    NASA Astrophysics Data System (ADS)

    Karlovets, Dmitry

    2017-12-01

    While a plane-wave approximation in high-energy physics works well in a majority of practical cases, it becomes inapplicable for scattering of the vortex particles carrying orbital angular momentum, of Airy beams, of the so-called Schrödinger cat states, and their generalizations. Such quantum states of photons, electrons and neutrons have been generated experimentally in recent years, opening up new perspectives in quantum optics, electron microscopy, particle physics, and so forth. Here we discuss the non-plane-wave effects in scattering brought about by the novel quantum numbers of these wave packets. For the well-focused electrons of intermediate energies, already available at electron microscopes, the corresponding contribution can surpass that of the radiative corrections. Moreover, collisions of the cat-like superpositions of such focused beams with atoms allow one to probe effects of the quantum interference, which have never played any role in particle scattering.

  1. Electron transport in unipolar InGaN/GaN multiple quantum well structures grown by NH 3 molecular beam epitaxy

    DOE PAGES

    Browne, David A.; Wu, Yuh -Renn; Speck, James S.; ...

    2015-05-08

    Unipolar-light emitting diode like structures were grown by NH 3 molecular beam epitaxy on c plane (0001) GaN on sapphire templates. Studies were performed to experimentally examine the effect of random alloy fluctuations on electron transport through quantum well active regions. These unipolar structures served as a test vehicle to test our 2D model of the effect of compositional fluctuations on polarization-induced barriers. Variables that were systematically studied included varying quantum well number from 0 to 5, well thickness of 1.5 nm, 3 nm, and 4.5 nm, and well compositions of In 0.14Ga 0.86N and In 0.19Ga 0.81N. Diode-like currentmore » voltage behavior was clearly observed due to the polarization-induced conduction band barrier in the quantum well region. Increasing quantum well width and number were shown to have a significant impact on increasing the turn-on voltage of each device. Temperature dependent IV measurements clearly revealed the dominant effect of thermionic behavior for temperatures from room temperature and above. Atom probe tomography was used to directly analyze parameters of the alloy fluctuations in the quantum wells including amplitude and length scale of compositional variation. Furthermore, a drift diffusion Schrodinger Poisson method accounting for two dimensional indium fluctuations (both in the growth direction and within the wells) was used to correctly model the turn-on voltages of the devices as compared to traditional 1D simulation models.« less

  2. Robust and adjustable C-shaped electron vortex beams

    NASA Astrophysics Data System (ADS)

    Mousley, M.; Thirunavukkarasu, G.; Babiker, M.; Yuan, J.

    2017-06-01

    Wavefront engineering is an important quantum technology, often applied to the production of states carrying orbital angular momentum (OAM). Here, we demonstrate the design and production of robust C-shaped beam states carrying OAM, in which the usual doughnut-shaped transverse intensity structure of the vortex beam contains an adjustable gap. We find that the presence of the vortex lines in the core of the beam is crucial for maintaining the stability of the C-shape structure during beam propagation. The topological charge of the vortex core controls mainly the size of the C-shape, while its opening angle is related to the presence of vortex-anti-vortex loops. We demonstrate the generation and characterisation of C-shaped electron vortex beams, although the result is equally applicable to other quantum waves. C-shaped electron vortex beams have potential applications in nanoscale fabrication of planar split-ring structures and three-dimensional chiral structures as well as depth sensing and magnetic field determination through rotation of the gap in the C-shape.

  3. Quantum Locality in Game Strategy

    NASA Astrophysics Data System (ADS)

    Melo-Luna, Carlos A.; Susa, Cristian E.; Ducuara, Andrés F.; Barreiro, Astrid; Reina, John H.

    2017-03-01

    Game theory is a well established branch of mathematics whose formalism has a vast range of applications from the social sciences, biology, to economics. Motivated by quantum information science, there has been a leap in the formulation of novel game strategies that lead to new (quantum Nash) equilibrium points whereby players in some classical games are always outperformed if sharing and processing joint information ruled by the laws of quantum physics is allowed. We show that, for a bipartite non zero-sum game, input local quantum correlations, and separable states in particular, suffice to achieve an advantage over any strategy that uses classical resources, thus dispensing with quantum nonlocality, entanglement, or even discord between the players’ input states. This highlights the remarkable key role played by pure quantum coherence at powering some protocols. Finally, we propose an experiment that uses separable states and basic photon interferometry to demonstrate the locally-correlated quantum advantage.

  4. Quantum Locality in Game Strategy

    PubMed Central

    Melo-Luna, Carlos A.; Susa, Cristian E.; Ducuara, Andrés F.; Barreiro, Astrid; Reina, John H.

    2017-01-01

    Game theory is a well established branch of mathematics whose formalism has a vast range of applications from the social sciences, biology, to economics. Motivated by quantum information science, there has been a leap in the formulation of novel game strategies that lead to new (quantum Nash) equilibrium points whereby players in some classical games are always outperformed if sharing and processing joint information ruled by the laws of quantum physics is allowed. We show that, for a bipartite non zero-sum game, input local quantum correlations, and separable states in particular, suffice to achieve an advantage over any strategy that uses classical resources, thus dispensing with quantum nonlocality, entanglement, or even discord between the players’ input states. This highlights the remarkable key role played by pure quantum coherence at powering some protocols. Finally, we propose an experiment that uses separable states and basic photon interferometry to demonstrate the locally-correlated quantum advantage. PMID:28327567

  5. Controllable growth of GeSi nanostructures by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Ma, Yingjie; Zhou, Tong; Zhong, Zhenyang; Jiang, Zuimin

    2018-06-01

    We present an overview on the recent progress achieved on the controllable growth of diverse GeSi alloy nanostructures by molecular beam epitaxy. Prevailing theories for controlled growth of Ge nanostructures on patterned as well as inclined Si surfaces are outlined firstly, followed by reviews on the preferential growth of Ge nanoislands on patterned Si substrates, Ge nanowires and high density nanoislands grown on inclined Si surfaces, and the readily tunable Ge nanostructures on Si nanopillars. Ge nanostructures with controlled geometries, spatial distributions and densities, including two-dimensional ordered nanoislands, three-dimensional ordered quantum dot crystals, ordered nanorings, coupled quantum dot molecules, ordered nanowires and nanopillar alloys, are discussed in detail. A single Ge quantum dot-photonic crystal microcavity coupled optical emission device demonstration fabricated by using the preferentially grown Ge nanoisland technique is also introduced. Finally, we summarize the current technology status with a look at the future development trends and application challenges for controllable growth of Ge nanostructures. Project supports by the Natural Science Foundation of China (Nos. 61605232, 61674039) and the Open Research Project of State Key Laboratory of Surface Physics from Fudan University (Nos. KF2016_15s, KF2017_05).

  6. On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom.

    PubMed

    Feng, Lan-Tian; Zhang, Ming; Zhou, Zhi-Yuan; Li, Ming; Xiong, Xiao; Yu, Le; Shi, Bao-Sen; Guo, Guo-Ping; Dai, Dao-Xin; Ren, Xi-Feng; Guo, Guang-Can

    2016-06-20

    In the quantum world, a single particle can have various degrees of freedom to encode quantum information. Controlling multiple degrees of freedom simultaneously is necessary to describe a particle fully and, therefore, to use it more efficiently. Here we introduce the transverse waveguide-mode degree of freedom to quantum photonic integrated circuits, and demonstrate the coherent conversion of a photonic quantum state between path, polarization and transverse waveguide-mode degrees of freedom on a single chip. The preservation of quantum coherence in these conversion processes is proven by single-photon and two-photon quantum interference using a fibre beam splitter or on-chip beam splitters. These results provide us with the ability to control and convert multiple degrees of freedom of photons for quantum photonic integrated circuit-based quantum information process.

  7. On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom

    PubMed Central

    Feng, Lan-Tian; Zhang, Ming; Zhou, Zhi-Yuan; Li, Ming; Xiong, Xiao; Yu, Le; Shi, Bao-Sen; Guo, Guo-Ping; Dai, Dao-Xin; Ren, Xi-Feng; Guo, Guang-Can

    2016-01-01

    In the quantum world, a single particle can have various degrees of freedom to encode quantum information. Controlling multiple degrees of freedom simultaneously is necessary to describe a particle fully and, therefore, to use it more efficiently. Here we introduce the transverse waveguide-mode degree of freedom to quantum photonic integrated circuits, and demonstrate the coherent conversion of a photonic quantum state between path, polarization and transverse waveguide-mode degrees of freedom on a single chip. The preservation of quantum coherence in these conversion processes is proven by single-photon and two-photon quantum interference using a fibre beam splitter or on-chip beam splitters. These results provide us with the ability to control and convert multiple degrees of freedom of photons for quantum photonic integrated circuit-based quantum information process. PMID:27321821

  8. Hole-cyclotron instability in semiconductor quantum plasmas

    NASA Astrophysics Data System (ADS)

    Areeb, F.; Rasheed, A.; Jamil, M.; Siddique, M.; Sumera, P.

    2018-01-01

    The excitation of electrostatic hole-cyclotron waves generated by an externally injected electron beam in semiconductor plasmas is examined using a quantum hydrodynamic model. The quantum effects such as tunneling potential, Fermi degenerate pressure, and exchange-correlation potential are taken care of. The growth rate of the wave is analyzed on varying the parameters normalized by hole-plasma frequency, like the angle θ between propagation vector and B0∥z ̂ , speed of the externally injected electron beam v0∥k , thermal temperature of the electron beam τ, external magnetic field B0∥z ̂ that modifies the hole-cyclotron frequency, and finally, the semiconductor electron number density. The instability of the hole-cyclotron wave seeks its applications in semiconductor devices.

  9. Parallel Transport Quantum Logic Gates with Trapped Ions.

    PubMed

    de Clercq, Ludwig E; Lo, Hsiang-Yu; Marinelli, Matteo; Nadlinger, David; Oswald, Robin; Negnevitsky, Vlad; Kienzler, Daniel; Keitch, Ben; Home, Jonathan P

    2016-02-26

    We demonstrate single-qubit operations by transporting a beryllium ion with a controlled velocity through a stationary laser beam. We use these to perform coherent sequences of quantum operations, and to perform parallel quantum logic gates on two ions in different processing zones of a multiplexed ion trap chip using a single recycled laser beam. For the latter, we demonstrate individually addressed single-qubit gates by local control of the speed of each ion. The fidelities we observe are consistent with operations performed using standard methods involving static ions and pulsed laser fields. This work therefore provides a path to scalable ion trap quantum computing with reduced requirements on the optical control complexity.

  10. Plasmonic Control of Radiation and Absorption Processes in Semiconductor Quantum Dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paiella, Roberto; Moustakas, Theodore D.

    This document reviews a research program funded by the DOE Office of Science, which has been focused on the control of radiation and absorption processes in semiconductor photonic materials (including III-nitride quantum wells and quantum dots), through the use of specially designed metallic nanoparticles (NPs). By virtue of their strongly confined plasmonic resonances (i.e., collective oscillations of the electron gas), these nanostructures can concentrate incident radiation into sub-wavelength “hot spots” of highly enhanced field intensity, thereby increasing optical absorption by suitably positioned absorbers. By reciprocity, the same NPs can also dramatically increase the spontaneous emission rate of radiating dipoles locatedmore » within their hot spots. The NPs can therefore be used as optical antennas to enhance the radiation output of the underlying active material and at the same time control the far-field pattern of the emitted light. The key accomplishments of the project include the demonstration of highly enhanced light emission efficiency as well as plasmonic collimation and beaming along geometrically tunable directions, using a variety of plasmonic excitations. Initial results showing the reverse functionality (i.e., plasmonic unidirectional absorption and photodetection) have also been generated with similar systems. Furthermore, a new paradigm for the near-field control of light emission has been introduced through rigorous theoretical studies, based on the use of gradient metasurfaces (i.e., optical nanoantenna arrays with spatially varying shape, size, and/or orientation). These activities have been complemented by materials development efforts aimed at the synthesis of suitable light-emitting samples by molecular beam epitaxy. In the course of these efforts, a novel technique for the growth of III-nitride quantum dots has also been developed (droplet heteroepitaxy), with several potential advantages in terms of compositional and

  11. Photon mirror acceleration in the quantum regime

    NASA Astrophysics Data System (ADS)

    Mendonça, J. T.; Fedele, R.

    2014-12-01

    Reflection of an electron beam by an intense laser pulse is considered. This is the so-called photon mirror configuration for laser acceleration in vacuum, where the energy of the incident electron beam is nearly double-Doppler shifted due to reflection on the laser pulse front. A wave-electron optical description for electron reflection and resonant backscattering, due to both linear electric field force and quadratic ponderomotive force, is provided beyond the paraxial approximation. This is done by assuming that the single electron of the beam is spin-less and therefore its motion can be described by a quantum scalar field whose spatiotemporal evolution is governed by the Klein-Gordon equation (Klein-Gordon field). Our present model, not only confirms the classical results but also shows the occurrence of purely quantum effects, such as partial reflection of the incident electron beam and enhanced backscattering due to Bragg resonance.

  12. Magnetic-film atom chip with 10 μm period lattices of microtraps for quantum information science with Rydberg atoms.

    PubMed

    Leung, V Y F; Pijn, D R M; Schlatter, H; Torralbo-Campo, L; La Rooij, A L; Mulder, G B; Naber, J; Soudijn, M L; Tauschinsky, A; Abarbanel, C; Hadad, B; Golan, E; Folman, R; Spreeuw, R J C

    2014-05-01

    We describe the fabrication and construction of a setup for creating lattices of magnetic microtraps for ultracold atoms on an atom chip. The lattice is defined by lithographic patterning of a permanent magnetic film. Patterned magnetic-film atom chips enable a large variety of trapping geometries over a wide range of length scales. We demonstrate an atom chip with a lattice constant of 10 μm, suitable for experiments in quantum information science employing the interaction between atoms in highly excited Rydberg energy levels. The active trapping region contains lattice regions with square and hexagonal symmetry, with the two regions joined at an interface. A structure of macroscopic wires, cutout of a silver foil, was mounted under the atom chip in order to load ultracold (87)Rb atoms into the microtraps. We demonstrate loading of atoms into the square and hexagonal lattice sections simultaneously and show resolved imaging of individual lattice sites. Magnetic-film lattices on atom chips provide a versatile platform for experiments with ultracold atoms, in particular for quantum information science and quantum simulation.

  13. Magnetic-film atom chip with 10 μm period lattices of microtraps for quantum information science with Rydberg atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung, V. Y. F.; Complex Photonic Systems; Pijn, D. R. M.

    2014-05-15

    We describe the fabrication and construction of a setup for creating lattices of magnetic microtraps for ultracold atoms on an atom chip. The lattice is defined by lithographic patterning of a permanent magnetic film. Patterned magnetic-film atom chips enable a large variety of trapping geometries over a wide range of length scales. We demonstrate an atom chip with a lattice constant of 10 μm, suitable for experiments in quantum information science employing the interaction between atoms in highly excited Rydberg energy levels. The active trapping region contains lattice regions with square and hexagonal symmetry, with the two regions joined atmore » an interface. A structure of macroscopic wires, cutout of a silver foil, was mounted under the atom chip in order to load ultracold {sup 87}Rb atoms into the microtraps. We demonstrate loading of atoms into the square and hexagonal lattice sections simultaneously and show resolved imaging of individual lattice sites. Magnetic-film lattices on atom chips provide a versatile platform for experiments with ultracold atoms, in particular for quantum information science and quantum simulation.« less

  14. Electron-Beam-Induced Current | Materials Science | NREL

    Science.gov Websites

    Electron-Beam-Induced Current Electron-Beam-Induced Current Photo of a GaAsP-on-Si solar cell. EBIC measure electron-beam-induced current (EBIC). In presence of an electrostatic field (p-n junction

  15. Size dependent bandgap of molecular beam epitaxy grown InN quantum dots measured by scanning tunneling spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Mahesh; Roul, Basanta; Central Research Laboratory, Bharat Electronics, Bangalore-560013

    InN quantum dots (QDs) were grown on Si (111) by epitaxial Stranski-Krastanow growth mode using plasma-assisted molecular beam epitaxy. Single-crystalline wurtzite structure of InN QDs was verified by the x-ray diffraction and transmission electron microscopy. Scanning tunneling microscopy has been used to probe the structural aspects of QDs. A surface bandgap of InN QDs was estimated from scanning tunneling spectroscopy (STS) I-V curves and found that it is strongly dependent on the size of QDs. The observed size-dependent STS bandgap energy shifts with diameter and height were theoretical explained based on an effective mass approximation with finite-depth square-well potential model.

  16. Growth of a delta-doped silicon layer by molecular beam epitaxy on a charge-coupled device for reflection-limited ultraviolet quantum efficiency

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E.; Grunthaner, Paula J.; Grunthaner, Frank J.; Terhune, R. W.; Fattahi, Masoud; Tseng, Hsin-Fu

    1992-01-01

    Low-temperature silicon molecular beam epitaxy is used to grow a delta-doped silicon layer on a fully processed charge-coupled device (CCD). The measured quantum efficiency of the delta-doped backside-thinned CCD is in agreement with the reflection limit for light incident on the back surface in the spectral range of 260-600 nm. The 2.5 nm silicon layer, grown at 450 C, contained a boron delta-layer with surface density of about 2 x 10 exp 14/sq cm. Passivation of the surface was done by steam oxidation of a nominally undoped 1.5 nm Si cap layer. The UV quantum efficiency was found to be uniform and stable with respect to thermal cycling and illumination conditions.

  17. Silicon Quantum Dots with Counted Antimony Donor Implants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Meenakshi; Pacheco, Jose L.; Perry, Daniel Lee

    2015-10-01

    Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. A focused ion beam is used to implant close to quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of ions implanted can be counted to a precision of a single ion. Regular coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization, are observed in devices with counted implants.

  18. Focal-Plane Arrays of Quantum-Dot Infrared Photodetectors

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath; Wilson, Daniel; Hill, Cory; Liu, John; Bandara, Sumith; Ting, David

    2007-01-01

    Focal-plane arrays of semiconductor quantum-dot infrared photodetectors (QDIPs) are being developed as superior alternatives to prior infrared imagers, including imagers based on HgCdTe devices and, especially, those based on quantum-well infrared photodetectors (QWIPs). HgCdTe devices and arrays thereof are difficult to fabricate and operate, and they exhibit large nonunformities and high 1/f (where f signifies frequency) noise. QWIPs are easier to fabricate and operate, can be made nearly uniform, and exhibit lower 1/f noise, but they exhibit larger dark currents, and their quantization only along the growth direction prevents them from absorbing photons at normal incidence, thereby limiting their quantum efficiencies. Like QWIPs, QDIPs offer the advantages of greater ease of operation, greater uniformity, and lower 1/f noise, but without the disadvantages: QDIPs exhibit lower dark currents, and quantum efficiencies of QDIPs are greater because the three-dimensional quantization of QDIPs is favorable to the absorption of photons at normal or oblique incidence. Moreover, QDIPs can be operated at higher temperatures (around 200 K) than are required for operation of QWIPs. The main problem in the development of QDIP imagers is to fabricate quantum dots with the requisite uniformity of size and spacing. A promising approach to be tested soon involves the use of electron-beam lithography to define the locations and sizes of quantum dots. A photoresist-covered GaAs substrate would be exposed to the beam generated by an advanced, high-precision electron beam apparatus. The exposure pattern would consist of spots typically having a diameter of 4 nm and typically spaced 20 nm apart. The exposed photoresist would be developed by either a high-contrast or a low-contrast method. In the high-contrast method, the spots would be etched in such a way as to form steep-wall holes all the way down to the substrate. The holes would be wider than the electron beam spots perhaps as

  19. Applications of quantum measurement techniques: Counterfactual quantum computation, spin hall effect of light, and atomic-vapor-based photon detectors

    NASA Astrophysics Data System (ADS)

    Hosten, Onur

    This dissertation investigates several physical phenomena in atomic and optical physics, and quantum information science, by utilizing various types and techniques of quantum measurements. It is the deeper concepts of these measurements, and the way they are integrated into the seemingly unrelated topics investigated, which binds together the research presented here. The research comprises three different topics: Counterfactual quantum computation, the spin Hall effect of light, and ultra-high-efficiency photon detectors based on atomic vapors. Counterfactual computation entails obtaining answers from a quantum computer without actually running it, and is accomplished by preparing the computer as a whole into a superposition of being activated and not activated. The first experimental demonstration is presented, including the best performing implementation of Grover's quantum search algorithm to date. In addition, we develop new counterfactual computation protocols that enable unconditional and completely deterministic operation. These methods stimulated a debate in the literature, on the meaning of counterfactuality in quantum processes, which we also discuss. The spin Hall effect of light entails tiny spin-dependent displacements, unsuspected until 2004, of a beam of light when it changes propagation direction. The first experimental demonstration of the effect during refraction at an air-glass interface is presented, together with a novel enabling metrological tool relying on the concepts of quantum weak measurements. Extensions of the effect to smoothly varying media are also presented, along with utilization of a time-varying version of the weak measurement techniques. Our approach to ultra-high-efficiency photon detection develops and extends a recent novel non-solid-state scheme for photo-detection based on atomic vapors. This approach is in principle capable of resolving the number of photons in a pulse, can be extended to non-destructive detection of

  20. Improving interferometers by quantum light: toward testing quantum gravity on an optical bench

    NASA Astrophysics Data System (ADS)

    Ruo-Berchera, Ivano; Degiovanni, Ivo P.; Olivares, Stefano; Traina, Paolo; Samantaray, Nigam; Genovese, M.

    2016-09-01

    We analyze in detail a system of two interferometers aimed at the detection of extremely faint phase fluctuations. The idea behind is that a correlated phase-signal like the one predicted by some phenomenological theory of Quantum Gravity (QG) could emerge by correlating the output ports of the interferometers, even when in the single interferometer it confounds with the background. We demonstrated that injecting quantum light in the free ports of the interferometers can reduce the photon noise of the system beyond the shot-noise, enhancing the resolution in the phase-correlation estimation. Our results confirm the benefit of using squeezed beams together with strong coherent beams in interferometry, even in this correlated case. On the other hand, our results concerning the possible use of photon number entanglement in twin beam state pave the way to interesting and probably unexplored areas of application of bipartite entanglement and, in particular, the possibility of reaching surprising uncertainty reduction exploiting new interferometric configurations, as in the case of the system described here.

  1. Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers.

    PubMed

    Arbabi, Amir; Briggs, Ryan M; Horie, Yu; Bagheri, Mahmood; Faraon, Andrei

    2015-12-28

    Light emitted from single-mode semiconductor lasers generally has large divergence angles, and high numerical aperture lenses are required for beam collimation. Visible and near infrared lasers are collimated using aspheric glass or plastic lenses, yet collimation of mid-infrared quantum cascade lasers typically requires more costly aspheric lenses made of germanium, chalcogenide compounds, or other infrared-transparent materials. Here we report mid-infrared dielectric metasurface flat lenses that efficiently collimate the output beam of single-mode quantum cascade lasers. The metasurface lenses are composed of amorphous silicon posts on a flat sapphire substrate and can be fabricated at low cost using a single step conventional UV binary lithography. Mid-infrared radiation from a 4.8 μm distributed-feedback quantum cascade laser is collimated using a polarization insensitive metasurface lens with 0.86 numerical aperture and 79% transmission efficiency. The collimated beam has a half divergence angle of 0.36° and beam quality factor of M2=1.02.

  2. Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers

    DOE PAGES

    Arbabi, Amir; Briggs, Ryan M.; Horie, Yu; ...

    2015-01-01

    Light emitted from single-mode semiconductor lasers generally has large divergence angles, and high numerical aperture lenses are required for beam collimation. Visible and near infrared lasers are collimated using aspheric glass or plastic lenses, yet collimation of mid-infrared quantum cascade lasers typically requires more costly aspheric lenses made of germanium, chalcogenide compounds, or other infrared-transparent materials. We report mid-infrared dielectric metasurface flat lenses that efficiently collimate the output beam of single-mode quantum cascade lasers. The metasurface lenses are composed of amorphous silicon posts on a flat sapphire substrate and can be fabricated at low cost using a single step conventionalmore » UV binary lithography. Mid-infrared radiation from a 4.8 μm distributed-feedback quantum cascade laser is collimated using a polarization insensitive metasurface lens with 0.86 numerical aperture and 79% transmission efficiency. The collimated beam has a half divergence angle of 0.36° and beam quality factor of M² =1.02.« less

  3. Quantum Approach to Informatics

    NASA Astrophysics Data System (ADS)

    Stenholm, Stig; Suominen, Kalle-Antti

    2005-08-01

    An essential overview of quantum information Information, whether inscribed as a mark on a stone tablet or encoded as a magnetic domain on a hard drive, must be stored in a physical object and thus made subject to the laws of physics. Traditionally, information processing such as computation occurred in a framework governed by laws of classical physics. However, information can also be stored and processed using the states of matter described by non-classical quantum theory. Understanding this quantum information, a fundamentally different type of information, has been a major project of physicists and information theorists in recent years, and recent experimental research has started to yield promising results. Quantum Approach to Informatics fills the need for a concise introduction to this burgeoning new field, offering an intuitive approach for readers in both the physics and information science communities, as well as in related fields. Only a basic background in quantum theory is required, and the text keeps the focus on bringing this theory to bear on contemporary informatics. Instead of proofs and other highly formal structures, detailed examples present the material, making this a uniquely accessible introduction to quantum informatics. Topics covered include: * An introduction to quantum information and the qubit * Concepts and methods of quantum theory important for informatics * The application of information concepts to quantum physics * Quantum information processing and computing * Quantum gates * Error correction using quantum-based methods * Physical realizations of quantum computing circuits A helpful and economical resource for understanding this exciting new application of quantum theory to informatics, Quantum Approach to Informatics provides students and researchers in physics and information science, as well as other interested readers with some scientific background, with an essential overview of the field.

  4. Emerging Connections: Quantum & Classical Optics Incubator Program Book

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesky, Marcia

    The Emerging Connections: Quantum & Classical Optics Incubator was a scientific meeting held in Washington, DC on 6-8 November 2016. This Incubator provided unique and focused experiences and valuable opportunities to discuss advances, challenges and opportunities regarding this important area of research. Quantum optics and classical optics have coexisted for nearly a century as two distinct, but consistent descriptions of light in their respective domains. Recently, a number of detailed examinations of the structure of classical light beams have revealed that effects widely thought to be solely quantum in origin also have a place in classical optics. These new quantum-classicalmore » connections are informing classical optics in meaningful ways specifically by expanding understanding of optical coherence. Simultaneously, relationships discovered with classical light beams now also serve as a vehicle to illuminate concepts that no longer solely belong to the quantum realm. Interference, polarization, coherence, complementarity and entanglement are a partial list of elementary notions that now appear to belong to both quantum and classical optics. The goal of this meeting was to bring emerging quantum-classical links into wider view and to indicate directions in which forthcoming and future work would promote discussion and lead to a more unified understanding of optics.« less

  5. The Heisenberg Microscope: A Powerful Instructional Tool for Promoting Meta-Cognitive and Meta-Scientific Thinking on Quantum Mechanics and the "Nature of Science"

    ERIC Educational Resources Information Center

    Hadzidaki, Pandora

    2008-01-01

    In this paper, we present a multi-dimensional study concerning Heisenberg's "gamma ray microscope", a thought experiment, which is intimately connected with the historical development of quantum mechanics (QM), and also with the most disputed interpretations of quantum theory. In this study: (a) we investigate how philosophers of science read and…

  6. Continuous all-optical deceleration of molecular beams and demonstration with Rb atoms

    NASA Astrophysics Data System (ADS)

    Long, Xueping; Jayich, Andrew; Campbell, Wesley

    2017-04-01

    Ultracold samples of molecules are desirable for a variety of applications, such as many-body physics, precision measurement and quantum information science. However, the pursuit of ultracold molecules has achieved limited success: spontaneous emission into many different dark states makes it hard to optically decelerate molecules to trappable speed. We propose to address this problem with a general optical deceleration technique that exploits a pump-dump pulse pair from a mode-locked laser. A molecular beam is first excited by a counter-propagating ``pump'' pulse. The molecular beam is then driven back to the initial ground state by a co-propagating ``dump'' pulse via stimulated emission. The delay between the pump and dump pulse is set to be shorter than the excited state lifetimes in order to limit decays to dark states. We report progress benchmarking this stimulated force by accelerating a cold sample of neutral Rb atoms.

  7. Spot-scanning beam delivery with laterally- and longitudinally-mixed spot size pencil beams in heavy ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Yan, Yuan-Lin; Liu, Xin-Guo; Dai, Zhong-Ying; Ma, Yuan-Yuan; He, Peng-Bo; Shen, Guo-Sheng; Ji, Teng-Fei; Zhang, Hui; Li, Qiang

    2017-09-01

    The three-dimensional (3D) spot-scanning method is one of the most commonly used irradiation methods in charged particle beam radiotherapy. Generally, spot-scanning beam delivery utilizes the same size pencil beam to irradiate the tumor targets. Here we propose a spot-scanning beam delivery method with laterally- and longitudinally-mixed size pencil beams for heavy ion radiotherapy. This uses pencil beams with a bigger spot size in the lateral direction and wider mini spread-out Bragg peak (mini-SOBP) to irradiate the inner part of a target volume, and pencil beams with a smaller spot size in the lateral direction and narrower mini-SOBP to irradiate the peripheral part of the target volume. Instead of being controlled by the accelerator, the lateral size of the pencil beam was adjusted by inserting Ta scatterers in the beam delivery line. The longitudinal size of the pencil beam (i.e. the width of the mini-SOBP) was adjusted by tilting mini ridge filters along the beam direction. The new spot-scanning beam delivery using carbon ions was investigated theoretically and compared with traditional spot-scanning beam delivery. Our results show that the new spot-scanning beam delivery has smaller lateral penumbra, steeper distal dose fall-off and the dose homogeneity (1-standard deviation/mean) in the target volume is better than 95%. Supported by Key Project of National Natural Science Foundation of China (U1232207), National Key Technology Support Program of the Ministry of Science and Technology of China (2015BAI01B11), National Key Research and Development Program of the Ministry of Science and Technology of China (2016YFC0904602) and National Natural Science Foundation of China (11075191, 11205217, 11475231, 11505249)

  8. Revisiting the Quantum Brain Hypothesis: Toward Quantum (Neuro)biology?

    PubMed Central

    Jedlicka, Peter

    2017-01-01

    The nervous system is a non-linear dynamical complex system with many feedback loops. A conventional wisdom is that in the brain the quantum fluctuations are self-averaging and thus functionally negligible. However, this intuition might be misleading in the case of non-linear complex systems. Because of an extreme sensitivity to initial conditions, in complex systems the microscopic fluctuations may be amplified and thereby affect the system’s behavior. In this way quantum dynamics might influence neuronal computations. Accumulating evidence in non-neuronal systems indicates that biological evolution is able to exploit quantum stochasticity. The recent rise of quantum biology as an emerging field at the border between quantum physics and the life sciences suggests that quantum events could play a non-trivial role also in neuronal cells. Direct experimental evidence for this is still missing but future research should address the possibility that quantum events contribute to an extremely high complexity, variability and computational power of neuronal dynamics. PMID:29163041

  9. Revisiting the Quantum Brain Hypothesis: Toward Quantum (Neuro)biology?

    PubMed

    Jedlicka, Peter

    2017-01-01

    The nervous system is a non-linear dynamical complex system with many feedback loops. A conventional wisdom is that in the brain the quantum fluctuations are self-averaging and thus functionally negligible. However, this intuition might be misleading in the case of non-linear complex systems. Because of an extreme sensitivity to initial conditions, in complex systems the microscopic fluctuations may be amplified and thereby affect the system's behavior. In this way quantum dynamics might influence neuronal computations. Accumulating evidence in non-neuronal systems indicates that biological evolution is able to exploit quantum stochasticity. The recent rise of quantum biology as an emerging field at the border between quantum physics and the life sciences suggests that quantum events could play a non-trivial role also in neuronal cells. Direct experimental evidence for this is still missing but future research should address the possibility that quantum events contribute to an extremely high complexity, variability and computational power of neuronal dynamics.

  10. Computer Simulations of Quantum Theory of Hydrogen Atom for Natural Science Education Students in a Virtual Lab

    ERIC Educational Resources Information Center

    Singh, Gurmukh

    2012-01-01

    The present article is primarily targeted for the advanced college/university undergraduate students of chemistry/physics education, computational physics/chemistry, and computer science. The most recent software system such as MS Visual Studio .NET version 2010 is employed to perform computer simulations for modeling Bohr's quantum theory of…

  11. OpenFlow Extensions for Programmable Quantum Networks

    DTIC Science & Technology

    2017-06-19

    Extensions for Programmable Quantum Networks by Venkat Dasari, Nikolai Snow, and Billy Geerhart Computational and Information Sciences Directorate...distribution is unlimited. 1 1. Introduction Quantum networks and quantum computing have been receiving a surge of interest recently.1–3 However, there has...communicate using entangled particles and perform calculations using quantum logic gates. Additionally, quantum computing uses a quantum bit (qubit

  12. Generalized Hofmann quantum process fidelity bounds for quantum filters

    NASA Astrophysics Data System (ADS)

    Sedlák, Michal; Fiurášek, Jaromír

    2016-04-01

    We propose and investigate bounds on the quantum process fidelity of quantum filters, i.e., probabilistic quantum operations represented by a single Kraus operator K . These bounds generalize the Hofmann bounds on the quantum process fidelity of unitary operations [H. F. Hofmann, Phys. Rev. Lett. 94, 160504 (2005), 10.1103/PhysRevLett.94.160504] and are based on probing the quantum filter with pure states forming two mutually unbiased bases. Determination of these bounds therefore requires far fewer measurements than full quantum process tomography. We find that it is particularly suitable to construct one of the probe bases from the right eigenstates of K , because in this case the bounds are tight in the sense that if the actual filter coincides with the ideal one, then both the lower and the upper bounds are equal to 1. We theoretically investigate the application of these bounds to a two-qubit optical quantum filter formed by the interference of two photons on a partially polarizing beam splitter. For an experimentally convenient choice of factorized input states and measurements we study the tightness of the bounds. We show that more stringent bounds can be obtained by more sophisticated processing of the data using convex optimization and we compare our methods for different choices of the input probe states.

  13. The nonequilibrium quantum many-body problem as a paradigm for extreme data science

    NASA Astrophysics Data System (ADS)

    Freericks, J. K.; Nikolić, B. K.; Frieder, O.

    2014-12-01

    Generating big data pervades much of physics. But some problems, which we call extreme data problems, are too large to be treated within big data science. The nonequilibrium quantum many-body problem on a lattice is just such a problem, where the Hilbert space grows exponentially with system size and rapidly becomes too large to fit on any computer (and can be effectively thought of as an infinite-sized data set). Nevertheless, much progress has been made with computational methods on this problem, which serve as a paradigm for how one can approach and attack extreme data problems. In addition, viewing these physics problems from a computer-science perspective leads to new approaches that can be tried to solve more accurately and for longer times. We review a number of these different ideas here.

  14. Quantum optics, what next?

    NASA Astrophysics Data System (ADS)

    Cirac, J. Ignacio; Kimble, H. Jeff

    2017-01-01

    Quantum optics is a well-established field that spans from fundamental physics to quantum information science. In the coming decade, areas including computation, communication and metrology are all likely to experience scientific and technological advances supported by this far-reaching research field.

  15. Optical properties and carrier dynamics of GaAs/GaInAs multiple-quantum-well shell grown on GaAs nanowire by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Kwangwook; Ravindran, Sooraj; Ju, Gun Wu

    GaAs/GaInAs multiple-quantum-well (MQW) shells having different GaInAs shell width formed on the surface of self-catalyzed GaAs core nanowires (NWs) are grown on (100) Si substrate using molecular beam epitaxy. The photoluminescence emission from GaAs/GaInAs MQW shells and the carrier lifetime could be varied by changing the width of GaInAs shell. Time-resolved photoluminescence measurements showed that the carrier lifetime had a fast and slow decay owing to the mixing of wurtzite and zinc-blende structures of the NWs. Furthermore, strain relaxation caused the carrier lifetime to decrease beyond a certain thickness of GaInAs quantum well shells.

  16. SeaQuaKE: Sea-Optimized Quantum Key Exchange

    DTIC Science & Technology

    2014-08-01

    which is led by Applied Communications Sciences under the ONR Free Space Optical Quantum Key Distribution Special Notice (13-SN-0004 under ONRBAA13...aerosol model scenarios. 15. SUBJECT TERMS Quantum communications, free - space optical communications 16. SECURITY CLASSIFICATION OF: 17...SeaQuaKE) project, which is led by Applied Communications Sciences under the ONR Free Space Optical Quantum Key Distribution Special Notice (13-SN

  17. Quantum interference experiments with large molecules

    NASA Astrophysics Data System (ADS)

    Nairz, Olaf; Arndt, Markus; Zeilinger, Anton

    2003-04-01

    Wave-particle duality is frequently the first topic students encounter in elementary quantum physics. Although this phenomenon has been demonstrated with photons, electrons, neutrons, and atoms, the dual quantum character of the famous double-slit experiment can be best explained with the largest and most classical objects, which are currently the fullerene molecules. The soccer-ball-shaped carbon cages C60 are large, massive, and appealing objects for which it is clear that they must behave like particles under ordinary circumstances. We present the results of a multislit diffraction experiment with such objects to demonstrate their wave nature. The experiment serves as the basis for a discussion of several quantum concepts such as coherence, randomness, complementarity, and wave-particle duality. In particular, the effect of longitudinal (spectral) coherence can be demonstrated by a direct comparison of interferograms obtained with a thermal beam and a velocity selected beam in close analogy to the usual two-slit experiments using light.

  18. Quantum walks on the chimera graph and its variants

    NASA Astrophysics Data System (ADS)

    Sanders, Barry; Sun, Xiangxiang; Xu, Shu; Wu, Jizhou; Zhang, Wei-Wei; Arshed, Nigum

    We study quantum walks on the chimera graph, which is an important graph for performing quantum annealing, and we explore the nature of quantum walks on variants of the chimera graph. Features of these quantum walks provide profound insights into the nature of the chimera graph, including effects of greater and lesser connectivity, strong differences between quantum and classical random walks, isotropic spreading and localization only in the quantum case, and random graphs. We analyze finite-size effects due to limited width and length of the graph, and we explore the effect of different boundary conditions such as periodic and reflecting. Effects are explained via spectral analysis and the properties of stationary states, and spectral analysis enables us to characterize asymptotic behavior of the quantum walker in the long-time limit. Supported by China 1000 Talent Plan, National Science Foundation of China, Hefei National Laboratory for Physical Sciences at Microscale Fellowship, and the Chinese Academy of Sciences President's International Fellowship Initiative.

  19. Operating Spin Echo in the Quantum Regime for an Atomic-Ensemble Quantum Memory

    NASA Astrophysics Data System (ADS)

    Rui, Jun; Jiang, Yan; Yang, Sheng-Jun; Zhao, Bo; Bao, Xiao-Hui; Pan, Jian-Wei

    2015-09-01

    Spin echo is a powerful technique to extend atomic or nuclear coherence times by overcoming the dephasing due to inhomogeneous broadenings. However, there are disputes about the feasibility of applying this technique to an ensemble-based quantum memory at the single-quanta level. In this experimental study, we find that noise due to imperfections of the rephasing pulses has both intense superradiant and weak isotropic parts. By properly arranging the beam directions and optimizing the pulse fidelities, we successfully manage to operate the spin echo technique in the quantum regime by observing nonclassical photon-photon correlations as well as the quantum behavior of retrieved photons. Our work for the first time demonstrates the feasibility of harnessing the spin echo method to extend the lifetime of ensemble-based quantum memories at the single-quanta level.

  20. Achieving the Heisenberg limit in quantum metrology using quantum error correction.

    PubMed

    Zhou, Sisi; Zhang, Mengzhen; Preskill, John; Jiang, Liang

    2018-01-08

    Quantum metrology has many important applications in science and technology, ranging from frequency spectroscopy to gravitational wave detection. Quantum mechanics imposes a fundamental limit on measurement precision, called the Heisenberg limit, which can be achieved for noiseless quantum systems, but is not achievable in general for systems subject to noise. Here we study how measurement precision can be enhanced through quantum error correction, a general method for protecting a quantum system from the damaging effects of noise. We find a necessary and sufficient condition for achieving the Heisenberg limit using quantum probes subject to Markovian noise, assuming that noiseless ancilla systems are available, and that fast, accurate quantum processing can be performed. When the sufficient condition is satisfied, a quantum error-correcting code can be constructed that suppresses the noise without obscuring the signal; the optimal code, achieving the best possible precision, can be found by solving a semidefinite program.

  1. A Quasiparticle Detector for Imaging Quantum Turbulence in Superfluid He-B

    NASA Astrophysics Data System (ADS)

    Ahlstrom, S. L.; Bradley, D. I.; Fisher, S. N.; Guénault, A. M.; Guise, E. A.; Haley, R. P.; Holt, S.; Kolosov, O.; McClintock, P. V. E.; Pickett, G. R.; Poole, M.; Schanen, R.; Tsepelin, V.; Woods, A. J.

    2014-06-01

    We describe the development of a two-dimensional quasiparticle detector for use in visualising quantum turbulence in superfluid He-B at ultra-low temperatures. The detector consists of a matrix of pixels, each a 1 mm diameter hole in a copper block containing a miniature quartz tuning fork. The damping on each fork provides a measure of the local quasiparticle flux. The detector is illuminated by a beam of ballistic quasiparticles generated from a nearby black-body radiator. A comparison of the damping on the different forks provides a measure of the cross-sectional profile of the beam. Further, we generate a tangle of vortices (quantum turbulence) in the path of the beam using a vibrating wire resonator. The vortices cast a shadow onto the face of the detector due to the Andreev reflection of quasiparticles in the beam. This allows us to image the vortices and to investigate their dynamics. Here we give details of the design and construction of the detector and show some preliminary results for one row of pixels which demonstrates its successful application to measuring quasiparticle beams and quantum turbulence.

  2. Structured electron beams from nano-engineered cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lueangaramwong, A.; Mihalcea, D.; Andonian, G.

    The ability to engineer cathodes at the nano-scale have open new possibilities such as enhancing quantum eciency via surface-plasmon excitation, forming ultra-low-emittance beams, or producing structured electron beams. In this paper we present numerical investigations of the beam dynamics associated to this class of cathode in the weak- and strong-field regimes.We finally discuss the possible applications of some of the achievable cathode patterns when coupled with other phase space manipulations.

  3. Quantum leadership: the implication for Iranian nursing leaders.

    PubMed

    Dargahi, Hossein

    2013-07-13

    Quantum organizations are referred where stakeholders know how to access the infinite potential of the quantum field. Viewing healthcare organizations from perspective of quantum theory suggest new approaches into management techniques for effective and efficient delivery of healthcare services. This research is aimed to determine the quantum skills, quantum leadership characteristics and functions of Tehran University of Medical Sciences hospitals' nursing administrators. A cross-sectional, descriptive and analytical study was conducted among 25 nursing administrators of Tehran University of Medical Sciences (TUMS) hospitals, Tehran, Iran. The research tool for data collection was a self-constructed questionnaire that measured the quantum skills, quantum leadership characteristics and functions of TUMS hospitals' nursing administrators. The validity of questionnaire was confirmed by 5 management science experts and its reliability was performed by using test-retest method yielded a Cronbach's alpha coefficient of 0.90. Data were collected and analyzed by SPSS software and t-test statistical methods. The results of this research showed that all respondents had desired quantum skills (75.71±5.98), quantum leadership characteristics (82.01±6.77), and quantum leadership functions (78.57±6.28) and total quantum leadership (78.76±4.50). Also, passing management training courses of the respondents was significantly correlated with their quantum leadership. Iranian healthcare organizations require quantum leadership that provides an important resource to advance Iranian nursing leadership to the organizational excellence. We hope Iranian hospitals' nursing leaders who have quantum skills potentially, present a highly developed sense of self and the ability to improve nursing care outcomes in these hospitals.

  4. Use of a Gafchromic film HD-V2 for the profile measurement of energetic ion beams

    NASA Astrophysics Data System (ADS)

    Yuri, Yosuke; Ishizaka, Tomohisa; Agematsu, Takashi; Yuyama, Takahiro; Seito, Hajime; Okumura, Susumu

    2017-09-01

    The coloration response of a radiochromic film, Gafchromic HD-V2, to ion beams was investigated to apply the film to measuring the transverse intensity distribution of large-area ion beams. HD-V2 films were, therefore, irradiated with proton (10 MeV) and several heavy-ion (4.1-27 MeV/u) beams in a wide fluence range at the azimuthally-varying-field cyclotron facility in National Institutes for Quantum and Radiological Science and Technology, and read with an image scanner to analyze changes in the optical density. It was shown that the available fluence range (106-1011 ions/cm2) of HD-V2 depends strongly on ion species, i.e., linear energy transfer (LET). In addition, the reduction of the sensitivity to dose was shown over a wide LET range. The transverse intensity distribution of a large-area ion beam was measured using a response function determined from the measured data. We have demonstrated that the Gafchromic film HD-V2 is useful for measuring the intensity distribution at a low fluence and thus evaluating the characteristics of various ion beams.

  5. Procedural Quantum Programming

    NASA Astrophysics Data System (ADS)

    Ömer, Bernhard

    2002-09-01

    While classical computing science has developed a variety of methods and programming languages around the concept of the universal computer, the typical description of quantum algorithms still uses a purely mathematical, non-constructive formalism which makes no difference between a hydrogen atom and a quantum computer. This paper investigates, how the concept of procedural programming languages, the most widely used classical formalism for describing and implementing algorithms, can be adopted to the field of quantum computing, and how non-classical features like the reversibility of unitary transformations, the non-observability of quantum states or the lack of copy and erase operations can be reflected semantically. It introduces the key concepts of procedural quantum programming (hybrid target architecture, operator hierarchy, quantum data types, memory management, etc.) and presents the experimental language QCL, which implements these principles.

  6. Quantum Sensing for High Energy Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Bibber, Karl; Boshier, Malcolm; Demarteau, Marcel

    The Coordinating Panel for Advanced Detectors (CPAD) of the APS Division of Particles and Fields organized a first workshop on Quantum Sensing for High Energy Physics (HEP) in early December 2017 at Argonne National Laboratory. Participants from universities and national labs were drawn from the intersecting fields of Quantum Information Science (QIS), high energy physics, atomic, molecular and optical physics, condensed matter physics, nuclear physics and materials science. Quantum-enabled science and technology has seen rapid technical advances and growing national interest and investments over the last few years. The goal of the workshop was to bring the various communities togethermore » to investigate pathways to integrate the expertise of these two disciplines to accelerate the mutual advancement of scientific progress.« less

  7. Designs for a quantum electron microscope.

    PubMed

    Kruit, P; Hobbs, R G; Kim, C-S; Yang, Y; Manfrinato, V R; Hammer, J; Thomas, S; Weber, P; Klopfer, B; Kohstall, C; Juffmann, T; Kasevich, M A; Hommelhoff, P; Berggren, K K

    2016-05-01

    One of the astounding consequences of quantum mechanics is that it allows the detection of a target using an incident probe, with only a low probability of interaction of the probe and the target. This 'quantum weirdness' could be applied in the field of electron microscopy to generate images of beam-sensitive specimens with substantially reduced damage to the specimen. A reduction of beam-induced damage to specimens is especially of great importance if it can enable imaging of biological specimens with atomic resolution. Following a recent suggestion that interaction-free measurements are possible with electrons, we now analyze the difficulties of actually building an atomic resolution interaction-free electron microscope, or "quantum electron microscope". A quantum electron microscope would require a number of unique components not found in conventional transmission electron microscopes. These components include a coherent electron beam-splitter or two-state-coupler, and a resonator structure to allow each electron to interrogate the specimen multiple times, thus supporting high success probabilities for interaction-free detection of the specimen. Different system designs are presented here, which are based on four different choices of two-state-couplers: a thin crystal, a grating mirror, a standing light wave and an electro-dynamical pseudopotential. Challenges for the detailed electron optical design are identified as future directions for development. While it is concluded that it should be possible to build an atomic resolution quantum electron microscope, we have also identified a number of hurdles to the development of such a microscope and further theoretical investigations that will be required to enable a complete interpretation of the images produced by such a microscope. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Surface science analysis of GaAs photocathodes following sustained electron beam delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlos Hernandez-Garcia, Fay Hannon, Marcy Stutzman, V. Shutthanandan, Z. Zhu, M. Nandasri, S. V. Kuchibhatla, S. Thevuthasan, W. P. Hess

    2012-06-01

    Degradation of the photocathode materials employed in photoinjectors represents a challenge for sustained operation of nuclear physics accelerators and high power Free Electron Lasers (FEL). Photocathode quantum efficiency (QE) degradation is due to residual gasses in the electron source vacuum system being ionized and accelerated back to the photocathode. These investigations are a first attempt to characterize the nature of the photocathode degradation, and employ multiple surface and bulk analysis techniques to investigate damage mechanisms including sputtering of the Cs-oxidant surface monolayer, other surface chemistry effects, and ion implantation. Surface and bulk analysis studies were conducted on two GaAs photocathodes,more » which were removed from the JLab FEL DC photoemission gun after delivering electron beam, and two control samples. The analysis techniques include Helium Ion Microscopy (HIM), Rutherford Backscattering Spectrometry (RBS), Atomic Force Microscopy (AFM) and Secondary Ion Mass Spectrometry (SIMS). In addition, two high-polarization strained superlattice GaAs photocathode samples, one removed from the Continuous Electron Beam Accelerator Facility (CEBAF) photoinjector and one unused, were also analyzed using Transmission Electron Microscopy (TEM) and SIMS. It was found that heat cleaning the FEL GaAs wafer introduces surface roughness, which seems to be reduced by prolonged use. The bulk GaAs samples retained a fairly well organized crystalline structure after delivering beam but shows evidence of Cs depletion on the surface. Within the precision of the SIMS and RBS measurements the data showed no indication of hydrogen implantation or lattice damage from ion back bombardment in the bulk GaAs wafers. In contrast, SIMS and TEM measurements of the strained superlattice photocathode show clear crystal damage in the wafer from ion back bombardment.« less

  9. Questioning quantum mechanics

    NASA Astrophysics Data System (ADS)

    Frappier, Mélanie

    2018-03-01

    A century after its inception, quantum mechanics continues to puzzle us with dead-and-alive cats, waves "collapsing" into particles, and "spooky action at a distance." In his first book, What Is Real?, science writer and astrophysicist Adam Becker sets out to explore why the physics community is still arguing today about quantum mechanics's true meaning.

  10. Coupling quantum dots to optical fiber: Low pump threshold laser in the red with a near top hat beam profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, H., E-mail: harvey6117@gmail.com; Laboratory for Optical Physics and Engineering, Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801; Mironov, A. E.

    2015-02-23

    Direct coupling of the optical field in a ∼244 nm thick, CdSe/ZnS quantum dot film to an optical fiber has yielded lasing in the red (λ ∼ 644 nm) with a threshold pump energy density < 2.6 mJ cm{sup −2}. Comprising 28–31 layers of ∼8 nm diameter quantum dots deposited onto the exterior surface of a 125 μm diameter coreless silica fiber, this free-running oscillator produces 134 nJ in 3.6 ns FWHM pulses which correspond to 37 W of peak power from an estimated gain volume of ∼4.5 × 10{sup −7} cm{sup 3}. Lasing was confirmed by narrowing of the output optical radiation in both the spectral and temporal domains, and the lasermore » beam intensity profile approximates a top hat.« less

  11. Efficient Quantum Pseudorandomness.

    PubMed

    Brandão, Fernando G S L; Harrow, Aram W; Horodecki, Michał

    2016-04-29

    Randomness is both a useful way to model natural systems and a useful tool for engineered systems, e.g., in computation, communication, and control. Fully random transformations require exponential time for either classical or quantum systems, but in many cases pseudorandom operations can emulate certain properties of truly random ones. Indeed, in the classical realm there is by now a well-developed theory regarding such pseudorandom operations. However, the construction of such objects turns out to be much harder in the quantum case. Here, we show that random quantum unitary time evolutions ("circuits") are a powerful source of quantum pseudorandomness. This gives for the first time a polynomial-time construction of quantum unitary designs, which can replace fully random operations in most applications, and shows that generic quantum dynamics cannot be distinguished from truly random processes. We discuss applications of our result to quantum information science, cryptography, and understanding the self-equilibration of closed quantum dynamics.

  12. Two-mode squeezed light source for quantum illumination and quantum imaging

    NASA Astrophysics Data System (ADS)

    Masada, Genta

    2015-09-01

    We started to research quantum illumination radar and quantum imaging by utilizing high quality continuous-wave two-mode squeezed light source as a quantum entanglement resource. Two-mode squeezed light is a macroscopic quantum entangled state of the electro-magnetic field and shows strong correlation between quadrature phase amplitudes of each optical field. One of the most effective methods to generate two-mode squeezed light is combining two independent single-mode squeezed lights by using a beam splitter with relative phase of 90 degrees between each optical field. As a first stage of our work we are developing two-mode squeezed light source for exploring the possibility of quantum illumination radar and quantum imaging. In this article we introduce current development of experimental investigation of single-mode squeezed light. We utilize a sub-threshold optical parametric oscillator with bow-tie configuration which includes a periodically-polled potassium titanyl phosphate crystal as a nonlinear optical medium. We observed the noise level of squeezed quadrature -3.08+/-0.13 dB and anti-squeezed quadrature at 9.29+/-0.13 dB, respectively. We also demonstrated the remote tuning of squeezing level of the light source which leads to the technology for tuning the quantum entanglement in order to adapt to the actual environmental condition.

  13. The scalable implementation of quantum walks using classical light

    NASA Astrophysics Data System (ADS)

    Goyal, Sandeep K.; Roux, F. S.; Forbes, Andrew; Konrad, Thomas

    2014-02-01

    A quantum walk is the quantum analog of the classical random walks. Despite their simple structure they form a universal platform to implement any algorithm of quantum computation. However, it is very hard to realize quantum walks with a sufficient number of iterations in quantum systems due to their sensitivity to environmental influences and subsequent loss of coherence. Here we present a scalable implementation scheme for one-dimensional quantum walks for arbitrary number of steps using the orbital angular momentum modes of classical light beams. Furthermore, we show that using the same setup with a minor adjustment we can also realize electric quantum walks.

  14. Fast synchrotron and FEL beam monitors based on single-crystal diamond detectors and InGaAs/InAlAs quantum well devices

    NASA Astrophysics Data System (ADS)

    Antonelli, M.; Di Fraia, M.; Carrato, S.; Cautero, G.; Menk, R. H.; Jark, W. H.; Ganbold, T.; Biasiol, G.; Callegari, C.; Coreno, M.; De Sio, A.; Pace, E.

    2013-12-01

    Simultaneous photon-beam position and intensity monitoring is becoming of increasing importance for new-generation synchrotron radiation sources and free-electron lasers (FEL). Thus, novel concepts of beam diagnostics are required in order to keep such beams under control. From this perspective diamond is a promising material for the production of semitransparent in situ photon beam monitors, which can withstand the high dose rates occurring in such radiation facilities. Here, we report on the development of freestanding, single-crystal chemical-vapor-deposited diamond detectors with segmented electrodes. Due to their direct, low-energy band gap, InGaAs quantum well devices operated at room temperature may also be used as fast detectors for photons ranging from visible to X-ray. These features are valuable in low-energy and time-resolved FEL applications. In particular, a novel segmented InGaAs/InAlAs device has been developed and will be discussed. Dedicated measurements carried out on both these devices at the Elettra Synchrotron show their capability to monitor the position and the intensity of the photon beam with bunch-by-bunch temporal performances. Furthermore, preliminary tests have been performed on diamond detectors at the Fermi FEL, extracting quantitative intensity and position information for 100-fs-wide FEL pulses with a photon energy of 28.8 eV.

  15. A cross-disciplinary introduction to quantum annealing-based algorithms

    NASA Astrophysics Data System (ADS)

    Venegas-Andraca, Salvador E.; Cruz-Santos, William; McGeoch, Catherine; Lanzagorta, Marco

    2018-04-01

    A central goal in quantum computing is the development of quantum hardware and quantum algorithms in order to analyse challenging scientific and engineering problems. Research in quantum computation involves contributions from both physics and computer science; hence this article presents a concise introduction to basic concepts from both fields that are used in annealing-based quantum computation, an alternative to the more familiar quantum gate model. We introduce some concepts from computer science required to define difficult computational problems and to realise the potential relevance of quantum algorithms to find novel solutions to those problems. We introduce the structure of quantum annealing-based algorithms as well as two examples of this kind of algorithms for solving instances of the max-SAT and Minimum Multicut problems. An overview of the quantum annealing systems manufactured by D-Wave Systems is also presented.

  16. Timelike Momenta In Quantum Electrodynamics

    DOE R&D Accomplishments Database

    Brodsky, S. J.; Ting, S. C. C.

    1965-12-01

    In this note we discuss the possibility of studying the quantum electrodynamics of timelike photon propagators in muon or electron pair production by incident high energy muon or electron beams from presently available proton or electron accelerators.

  17. Quantum information processing by weaving quantum Talbot carpets

    NASA Astrophysics Data System (ADS)

    Farías, Osvaldo Jiménez; de Melo, Fernando; Milman, Pérola; Walborn, Stephen P.

    2015-06-01

    Single-photon interference due to passage through a periodic grating is considered in a novel proposal for processing D -dimensional quantum systems (quDits) encoded in the spatial degrees of freedom of light. We show that free-space propagation naturally implements basic single-quDit gates by means of the Talbot effect: an intricate time-space carpet of light in the near-field diffraction regime. By adding a diagonal phase gate, we show that a complete set of single-quDit gates can be implemented. We then introduce a spatially dependent beam splitter that allows for projective measurements in the computational basis and can be used for the implementation of controlled operations between two quDits. Universal quantum information processing can then be implemented with linear optics and ancilla photons via postselection and feed-forward following the original proposal of Knill-Laflamme and Milburn. Although we consider photons, our scheme should be directly applicable to a number of other physical systems. Interpretation of the Talbot effect as a quantum logic operation provides a beautiful and interesting way to visualize quantum computation through wave propagation and interference.

  18. Nanophotonic enhanced quantum emitters

    NASA Astrophysics Data System (ADS)

    Li, Xin; Zhou, Zhang-Kai; Yu, Ying; Gather, Malte; Di Falco, Andrea

    2017-08-01

    Quantum dots are excellent solid-state quantum sources, because of their stability, their narrow spectral linewidth, and radiative lifetime in the range of 1ns. Most importantly, they can be integrated into more complex nanophononics devices, to realize high quality quantum emitters of single photons or entangled photon sources. Recent progress in nanotechnology materials and devices has opened a number of opportunities to increase, optimize and ultimately control the emission property of single quantum dot. In this work, we present an approach that combines the properties of quantum dots with the flexibility of light control offered by nanoplasmonics and metamaterials structuring. Specifically, we show the nanophotonic enhancement of two types of quantum dots devices. The quantum dots are inserted into optical-positioned micropillar cavities, or decorated on the facets of core-shell GaAs/AlGaAs nanowires, fabricated with a bottom-up approach. In both cases, the metallic nanofeatures, which are designed to control the emission and the polarization state of the emitted light, are realized via direct electron-beam-induced deposition. This approach permits to create three-dimensional features with nanometric resolution and positional accuracy, and does not require wet lithographic steps and previous knowledge of the exact spatial arrangement of the quantum devices.

  19. Quantum Logic Networks for Probabilistic and Controlled Teleportation of Unknown Quantum States

    NASA Astrophysics Data System (ADS)

    Gao, Ting

    2004-08-01

    We present simplification schemes for probabilistic and controlled teleportation of the unknown quantum states of both one particle and two particles and construct efficient quantum logic networks for implementing the new schemes by means of the primitive operations consisting of single-qubit gates, two-qubit controlled-not gates, Von Neumann measurement, and classically controlled operations. In these schemes the teleportation are not always successful but with certain probability. The project supported by National Natural Science Foundation of China under Grant No. 10271081 and the Natural Science Foundation of Hebei Province of China under Grant No. A2004000141

  20. Optimum performance of electron beam pumped GaAs and GaN

    NASA Astrophysics Data System (ADS)

    Afify, M. S.; Moslem, W. M.; Hassouba, M. A.; Abu-El Hassan, A.

    2018-05-01

    This paper introduces a physical solution in order to overcome the damage to semiconductors, due to increasing temperature during the pumping process. For this purpose, we use quantum hydrodynamic fluid equations, including different quantum effects. This study concludes that nonlinear acoustic waves, in the form of soliton and shock-like (double layer) pulses, can propagate depending on the electron beam temperature and the streaming speed. Therefore, one can precisely tune the beam parameters in order to avoid such unfavorable noises that may lead to defects in semiconductors.

  1. Strained GaSb/AlAsSb Quantum Wells for p-Channel Field-Effect Transistors

    DTIC Science & Technology

    2008-01-01

    Available online 18 October 2008 PACS: 72.80.Ey 73.61.Ey 81.05.Ea 85.30.Tv Keywords: A3. Molecular beam epitaxy A3. Quantum wells B2. Semiconducting III–V...were grown by molecular beam epitaxy on GaAs substrates. The buffer layer and barrier layers consisted of relaxed AlAsxSb1x. The composition of the...composition in order to control the strain in the GaSb quantum well. The heterostructures studied here are grown by molecular beam epitaxy (MBE) on semi

  2. Terahertz Quantum Cascade Laser With Efficient Coupling and Beam Profile

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Kawamura, Jonathan H.; Lin, Robert H.; Williams, Benjamin

    2012-01-01

    Quantum cascade lasers (QCLs) are unipolar semiconductor lasers, where the wavelength of emitted radiation is determined by the engineering of quantum states within the conduction band in coupled multiple-quantum-well heterostructures to have the desired energy separation. The recent development of terahertz QCLs has provided a new generation of solid-state sources for radiation in the terahertz frequency range. Terahertz QCLs have been demonstrated from 0.84 to 5.0 THz both in pulsed mode and continuous wave mode (CW mode). The approach employs a resonant-phonon depopulation concept. The metal-metal (MM) waveguide fabrication is performed using Cu-Cu thermo-compression bonding to bond the GaAs/AlGaAs epitaxial layer to a GaAs receptor wafer.

  3. A Generic Simulation Framework for Non-Entangled based Experimental Quantum Cryptography and Communication: Quantum Cryptography and Communication Simulator (QuCCs)

    NASA Astrophysics Data System (ADS)

    Buhari, Abudhahir; Zukarnain, Zuriati Ahmad; Khalid, Roszelinda; Zakir Dato', Wira Jaafar Ahmad

    2016-11-01

    The applications of quantum information science move towards bigger and better heights for the next generation technology. Especially, in the field of quantum cryptography and quantum computation, the world already witnessed various ground-breaking tangible product and promising results. Quantum cryptography is one of the mature field from quantum mechanics and already available in the markets. The current state of quantum cryptography is still under various researches in order to reach the heights of digital cryptography. The complexity of quantum cryptography is higher due to combination of hardware and software. The lack of effective simulation tool to design and analyze the quantum cryptography experiments delays the reaching distance of the success. In this paper, we propose a framework to achieve an effective non-entanglement based quantum cryptography simulation tool. We applied hybrid simulation technique i.e. discrete event, continuous event and system dynamics. We also highlight the limitations of a commercial photonic simulation tool based experiments. Finally, we discuss ideas for achieving one-stop simulation package for quantum based secure key distribution experiments. All the modules of simulation framework are viewed from the computer science perspective.

  4. Real-time imaging of quantum entanglement.

    PubMed

    Fickler, Robert; Krenn, Mario; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton

    2013-01-01

    Quantum Entanglement is widely regarded as one of the most prominent features of quantum mechanics and quantum information science. Although, photonic entanglement is routinely studied in many experiments nowadays, its signature has been out of the grasp for real-time imaging. Here we show that modern technology, namely triggered intensified charge coupled device (ICCD) cameras are fast and sensitive enough to image in real-time the effect of the measurement of one photon on its entangled partner. To quantitatively verify the non-classicality of the measurements we determine the detected photon number and error margin from the registered intensity image within a certain region. Additionally, the use of the ICCD camera allows us to demonstrate the high flexibility of the setup in creating any desired spatial-mode entanglement, which suggests as well that visual imaging in quantum optics not only provides a better intuitive understanding of entanglement but will improve applications of quantum science.

  5. Real-Time Imaging of Quantum Entanglement

    PubMed Central

    Fickler, Robert; Krenn, Mario; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton

    2013-01-01

    Quantum Entanglement is widely regarded as one of the most prominent features of quantum mechanics and quantum information science. Although, photonic entanglement is routinely studied in many experiments nowadays, its signature has been out of the grasp for real-time imaging. Here we show that modern technology, namely triggered intensified charge coupled device (ICCD) cameras are fast and sensitive enough to image in real-time the effect of the measurement of one photon on its entangled partner. To quantitatively verify the non-classicality of the measurements we determine the detected photon number and error margin from the registered intensity image within a certain region. Additionally, the use of the ICCD camera allows us to demonstrate the high flexibility of the setup in creating any desired spatial-mode entanglement, which suggests as well that visual imaging in quantum optics not only provides a better intuitive understanding of entanglement but will improve applications of quantum science. PMID:23715056

  6. The potential of using quantum theory to build models of cognition.

    PubMed

    Wang, Zheng; Busemeyer, Jerome R; Atmanspacher, Harald; Pothos, Emmanuel M

    2013-10-01

    Quantum cognition research applies abstract, mathematical principles of quantum theory to inquiries in cognitive science. It differs fundamentally from alternative speculations about quantum brain processes. This topic presents new developments within this research program. In the introduction to this topic, we try to answer three questions: Why apply quantum concepts to human cognition? How is quantum cognitive modeling different from traditional cognitive modeling? What cognitive processes have been modeled using a quantum account? In addition, a brief introduction to quantum probability theory and a concrete example is provided to illustrate how a quantum cognitive model can be developed to explain paradoxical empirical findings in psychological literature. © 2013 Cognitive Science Society, Inc.

  7. Quantum teleportation and Birman-Murakami-Wenzl algebra

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Zhang, Yong

    2017-02-01

    In this paper, we investigate the relationship of quantum teleportation in quantum information science and the Birman-Murakami-Wenzl (BMW) algebra in low-dimensional topology. For simplicity, we focus on the two spin-1/2 representation of the BMW algebra, which is generated by both the Temperley-Lieb projector and the Yang-Baxter gate. We describe quantum teleportation using the Temperley-Lieb projector and the Yang-Baxter gate, respectively, and study teleportation-based quantum computation using the Yang-Baxter gate. On the other hand, we exploit the extended Temperley-Lieb diagrammatical approach to clearly show that the tangle relations of the BMW algebra have a natural interpretation of quantum teleportation. Inspired by this interpretation, we construct a general representation of the tangle relations of the BMW algebra and obtain interesting representations of the BMW algebra. Therefore, our research sheds a light on a link between quantum information science and low-dimensional topology.

  8. Quantum information processing with trapped ions

    NASA Astrophysics Data System (ADS)

    Gaebler, John

    2013-03-01

    Trapped ions are one promising architecture for scalable quantum information processing. Ion qubits are held in multizone traps created from segmented arrays of electrodes and transported between trap zones using time varying electric potentials applied to the electrodes. Quantum information is stored in the ions' internal hyperfine states and quantum gates to manipulate the internal states and create entanglement are performed with laser beams and microwaves. Recently we have made progress in speeding up the ion transport and cooling processes that were the limiting tasks for the operation speed in previous experiments. We are also exploring improved two-qubit gates and new methods for creating ion entanglement. This work was supported by IARPA, ARO contract No. EAO139840, ONR and the NIST Quantum Information Program

  9. Intracavity vortex beam generation

    NASA Astrophysics Data System (ADS)

    Naidoo, Darryl; Aït-Ameur, Kamel; Forbes, Andrew

    2011-10-01

    In this paper we explore vortex beams and in particular the generation of single LG0l modes and superpositions thereof. Vortex beams carry orbital angular momentum (OAM) and this intrinsic property makes them prevalent in transferring this OAM to matter and to be used in quantum information processing. We explore an extra-cavity and intra-cavity approach in LG0l mode generation respectively. The outputs of a Porro-prism resonator are represented by "petals" and we show that through a full modal decomposition, the "petal" fields are a superposition of two LG0l modes.

  10. Experimental generation of tripartite polarization entangled states of bright optical beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Liang; Liu, Yanhong; Deng, Ruijie

    The multipartite polarization entangled states of bright optical beams directly associating with the spin states of atomic ensembles are one of the essential resources in the future quantum information networks, which can be conveniently utilized to transfer and convert quantum states across a network composed of many atomic nodes. In this letter, we present the experimental demonstration of tripartite polarization entanglement described by Stokes operators of optical field. The tripartite entangled states of light at the frequency resonant with D1 line of Rubidium atoms are transformed into the continuous variable polarization entanglement among three bright optical beams via an opticalmore » beam splitter network. The obtained entanglement is confirmed by the extended criterion for polarization entanglement of multipartite quantized optical modes.« less

  11. Distribution of continuous variable quantum entanglement at a telecommunication wavelength over 20  km of optical fiber.

    PubMed

    Feng, Jinxia; Wan, Zhenju; Li, Yuanji; Zhang, Kuanshou

    2017-09-01

    The distribution of continuous variable (CV) Einstein-Podolsky-Rosen (EPR)-entangled beams at a telecommunication wavelength of 1550 nm over single-mode fibers is investigated. EPR-entangled beams with quantum entanglement of 8.3 dB are generated using a single nondegenerate optical parametric amplifier based on a type-II periodically poled KTiOPO 4 crystal. When one beam of the generated EPR-entangled beams is distributed over 20 km of single-mode fiber, 1.02 dB quantum entanglement can still be measured. The degradation of CV quantum entanglement in a noisy fiber channel is theoretically analyzed considering the effect of depolarized guided acoustic wave Brillouin scattering in optical fibers. The theoretical prediction is in good agreement with the experimental results.

  12. Experimental quantum information processing with the Talbot effect

    NASA Astrophysics Data System (ADS)

    Sawada, K.; Walborn, S. P.

    2018-07-01

    We report a proof of concept experiment illustrating the implementation of several simple quantum logic gates on D-level quantum systems (quDits) using the Talbot effect. A number of QuDit states are encoded into the transverse profile of a paraxial laser beam using a spatial light modulator. These states are transformed through a diagonal phase element and then free-propagation via the fractional Talbot effect, demonstrating the realization of some well-known single quDit gates in quantum computation. Our classical optics experiment allows us to identify several important technical details, and serves as a first experimental step in performing D-dimensional quantum operations with single photons or other quantum systems using this scheme.

  13. Consciousness and values in the quantum universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stapp, H.P.

    1985-01-01

    Application of quantum mechanical description to neurophysiological processes appears to provide for a natural unification of the physical and humanistic sciences. The categories of thought used to represent physical and psychical processes become united, and the mechanical conception of man created by classical physics is replaced by a profoundly different quantum conception. This revised image of man allows human values to be rooted in contemporary science.

  14. Rhenium ion beam for implantation into semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulevoy, T. V.; Seleznev, D. N.; Alyoshin, M. E.

    2012-02-15

    At the ion source test bench in Institute for Theoretical and Experimental Physics the program of ion source development for semiconductor industry is in progress. In framework of the program the Metal Vapor Vacuum Arc ion source for germanium and rhenium ion beam generation was developed and investigated. It was shown that at special conditions of ion beam implantation it is possible to fabricate not only homogenous layers of rhenium silicides solid solutions but also clusters of this compound with properties of quantum dots. At the present moment the compound is very interesting for semiconductor industry, especially for nanoelectronics andmore » nanophotonics, but there is no very developed technology for production of nanostructures (for example quantum sized structures) with required parameters. The results of materials synthesis and exploration are presented.« less

  15. Quantum memory Quantum memory

    NASA Astrophysics Data System (ADS)

    Le Gouët, Jean-Louis; Moiseev, Sergey

    2012-06-01

    Interaction of quantum radiation with multi-particle ensembles has sparked off intense research efforts during the past decade. Emblematic of this field is the quantum memory scheme, where a quantum state of light is mapped onto an ensemble of atoms and then recovered in its original shape. While opening new access to the basics of light-atom interaction, quantum memory also appears as a key element for information processing applications, such as linear optics quantum computation and long-distance quantum communication via quantum repeaters. Not surprisingly, it is far from trivial to practically recover a stored quantum state of light and, although impressive progress has already been accomplished, researchers are still struggling to reach this ambitious objective. This special issue provides an account of the state-of-the-art in a fast-moving research area that makes physicists, engineers and chemists work together at the forefront of their discipline, involving quantum fields and atoms in different media, magnetic resonance techniques and material science. Various strategies have been considered to store and retrieve quantum light. The explored designs belong to three main—while still overlapping—classes. In architectures derived from photon echo, information is mapped over the spectral components of inhomogeneously broadened absorption bands, such as those encountered in rare earth ion doped crystals and atomic gases in external gradient magnetic field. Protocols based on electromagnetic induced transparency also rely on resonant excitation and are ideally suited to the homogeneous absorption lines offered by laser cooled atomic clouds or ion Coulomb crystals. Finally off-resonance approaches are illustrated by Faraday and Raman processes. Coupling with an optical cavity may enhance the storage process, even for negligibly small atom number. Multiple scattering is also proposed as a way to enlarge the quantum interaction distance of light with matter. The

  16. Quantum-like Probabilistic Models Outside Physics

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei

    We present a quantum-like (QL) model in that contexts (complexes of e.g. mental, social, biological, economic or even political conditions) are represented by complex probability amplitudes. This approach gives the possibility to apply the mathematical quantum formalism to probabilities induced in any domain of science. In our model quantum randomness appears not as irreducible randomness (as it is commonly accepted in conventional quantum mechanics, e.g. by von Neumann and Dirac), but as a consequence of obtaining incomplete information about a system. We pay main attention to the QL description of processing of incomplete information. Our QL model can be useful in cognitive, social and political sciences as well as economics and artificial intelligence. In this paper we consider in a more detail one special application — QL modeling of brain's functioning. The brain is modeled as a QL-computer.

  17. EDITORIAL: Quantum phenomena in Nanotechnology Quantum phenomena in Nanotechnology

    NASA Astrophysics Data System (ADS)

    Loss, Daniel

    2009-10-01

    Twenty years ago the Institute of Physics launched the journal Nanotechnology from its publishing house based in the home town of Paul Dirac, a legendary figure in the development of quantum mechanics at the turn of the last century. At the beginning of the 20th century, the adoption of quantum mechanical descriptions of events transformed the existing deterministic world view. But in many ways it also revolutionised the progress of research itself. For the first time since the 17th century when Francis Bacon established inductive reasoning as the means of advancing science from fact to axiom to law, theory was progressing ahead of experiments instead of providing explanations for observations that had already been made. Dirac's postulation of antimatter through purely theoretical investigation before its observation is the archetypal example of theory leading the way for experiment. The progress of nanotechnology and the development of tools and techniques that enabled the investigation of systems at the nanoscale brought with them many fascinating observations of phenomena that could only be explained through quantum mechanics, first theoretically deduced decades previously. At the nanoscale, quantum confinement effects dominate the electrical and optical properties of systems. They also render new opportunities for manipulating the response of systems. For example, a better understanding of these systems has enabled the rapid development of quantum dots with precisely determined properties, which can be exploited in a range of applications from medical imaging and photovoltaic solar cells to quantum computation, a radically new information technology being currently developed in many labs worldwide. As the first ever academic journal in nanotechnology, {\\it Nanotechnology} has been the forum for papers detailing progress of the science through extremely exciting times. In the early years of the journal, the investigation of electron spin led to the formulation

  18. Quantum optical measurement with tripartite entangled photons generated by triple parametric down-conversion

    NASA Astrophysics Data System (ADS)

    Cho, Minhaeng

    2018-05-01

    Parametric down-conversion is a second-order nonlinear optical process annihilating a pump photon and creating a pair of photons in the signal and idler modes. Then, by using two parametric down-converters and introducing a path indistinguishability for the two generated idler modes, a quantum coherence between two conjugate signal beams can be induced. Such a double spontaneous or stimulated parametric down-conversion scheme has been used to demonstrate quantum spectroscopy and imaging with undetected idler photons via measuring one-photon interference between their correlated signal beams. Recently, we considered another quantum optical measurement scheme utilizing W-type tripartite entangled signal photons that can be generated by employing three spontaneous parametric down-conversion crystals and by inducing coherences or path-indistinguishabilities between their correlated idler beams and between quantum vacuum fields. Here, we consider an extended triple stimulated parametric down-conversion scheme for quantum optical measurement of sample properties with undetected idler and photons. Noting the real effect of vacuum field indistinguishability on the fringe visibility as well as the role of zero-point field energy in the interferometry, we show that this scheme is an ideal and efficient way to create a coherent state of W-type entangled signal photons. We anticipate that this scheme would be of critical use in further developing quantum optical measurements in spectroscopy and microscopy with undetected photons.

  19. Quantum optical measurement with tripartite entangled photons generated by triple parametric down-conversion.

    PubMed

    Cho, Minhaeng

    2018-05-14

    Parametric down-conversion is a second-order nonlinear optical process annihilating a pump photon and creating a pair of photons in the signal and idler modes. Then, by using two parametric down-converters and introducing a path indistinguishability for the two generated idler modes, a quantum coherence between two conjugate signal beams can be induced. Such a double spontaneous or stimulated parametric down-conversion scheme has been used to demonstrate quantum spectroscopy and imaging with undetected idler photons via measuring one-photon interference between their correlated signal beams. Recently, we considered another quantum optical measurement scheme utilizing W-type tripartite entangled signal photons that can be generated by employing three spontaneous parametric down-conversion crystals and by inducing coherences or path-indistinguishabilities between their correlated idler beams and between quantum vacuum fields. Here, we consider an extended triple stimulated parametric down-conversion scheme for quantum optical measurement of sample properties with undetected idler and photons. Noting the real effect of vacuum field indistinguishability on the fringe visibility as well as the role of zero-point field energy in the interferometry, we show that this scheme is an ideal and efficient way to create a coherent state of W-type entangled signal photons. We anticipate that this scheme would be of critical use in further developing quantum optical measurements in spectroscopy and microscopy with undetected photons.

  20. Consistent Quantum Theory

    NASA Astrophysics Data System (ADS)

    Griffiths, Robert B.

    2001-11-01

    Quantum mechanics is one of the most fundamental yet difficult subjects in physics. Nonrelativistic quantum theory is presented here in a clear and systematic fashion, integrating Born's probabilistic interpretation with Schrödinger dynamics. Basic quantum principles are illustrated with simple examples requiring no mathematics beyond linear algebra and elementary probability theory. The quantum measurement process is consistently analyzed using fundamental quantum principles without referring to measurement. These same principles are used to resolve several of the paradoxes that have long perplexed physicists, including the double slit and Schrödinger's cat. The consistent histories formalism used here was first introduced by the author, and extended by M. Gell-Mann, J. Hartle and R. Omnès. Essential for researchers yet accessible to advanced undergraduate students in physics, chemistry, mathematics, and computer science, this book is supplementary to standard textbooks. It will also be of interest to physicists and philosophers working on the foundations of quantum mechanics. Comprehensive account Written by one of the main figures in the field Paperback edition of successful work on philosophy of quantum mechanics

  1. Quantum correlation measurements in interferometric gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Martynov, D. V.; Frolov, V. V.; Kandhasamy, S.; Izumi, K.; Miao, H.; Mavalvala, N.; Hall, E. D.; Lanza, R.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Adams, C.; Adhikari, R. X.; Anderson, S. B.; Ananyeva, A.; Appert, S.; Arai, K.; Aston, S. M.; Ballmer, S. W.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Bartos, I.; Batch, J. C.; Bell, A. S.; Betzwieser, J.; Billingsley, G.; Birch, J.; Biscans, S.; Biwer, C.; Blair, C. D.; Bork, R.; Brooks, A. F.; Ciani, G.; Clara, F.; Countryman, S. T.; Cowart, M. J.; Coyne, D. C.; Cumming, A.; Cunningham, L.; Danzmann, K.; Da Silva Costa, C. F.; Daw, E. J.; DeBra, D.; DeRosa, R. T.; DeSalvo, R.; Dooley, K. L.; Doravari, S.; Driggers, J. C.; Dwyer, S. E.; Effler, A.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fair, H.; Fernández Galiana, A.; Fisher, R. P.; Fritschel, P.; Fulda, P.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Goetz, E.; Goetz, R.; Gras, S.; Gray, C.; Grote, H.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hammond, G.; Hanks, J.; Hanson, J.; Hardwick, T.; Harry, G. M.; Heintze, M. C.; Heptonstall, A. W.; Hough, J.; Jones, R.; Karki, S.; Kasprzack, M.; Kaufer, S.; Kawabe, K.; Kijbunchoo, N.; King, E. J.; King, P. J.; Kissel, J. S.; Korth, W. Z.; Kuehn, G.; Landry, M.; Lantz, B.; Lockerbie, N. A.; Lormand, M.; Lundgren, A. P.; MacInnis, M.; Macleod, D. M.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martin, I. W.; Mason, K.; Massinger, T. J.; Matichard, F.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McIntyre, G.; McIver, J.; Mendell, G.; Merilh, E. L.; Meyers, P. M.; Miller, J.; Mittleman, R.; Moreno, G.; Mueller, G.; Mullavey, A.; Munch, J.; Nuttall, L. K.; Oberling, J.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ottaway, D. J.; Overmier, H.; Palamos, J. R.; Paris, H. R.; Parker, W.; Pele, A.; Penn, S.; Phelps, M.; Pierro, V.; Pinto, I.; Principe, M.; Prokhorov, L. G.; Puncken, O.; Quetschke, V.; Quintero, E. A.; Raab, F. J.; Radkins, H.; Raffai, P.; Reid, S.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Roma, V. J.; Romie, J. H.; Rowan, S.; Ryan, K.; Sadecki, T.; Sanchez, E. J.; Sandberg, V.; Savage, R. L.; Schofield, R. M. S.; Sellers, D.; Shaddock, D. A.; Shaffer, T. J.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sigg, D.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Sorazu, B.; Staley, A.; Strain, K. A.; Tanner, D. B.; Taylor, R.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Torrie, C. I.; Traylor, G.; Vajente, G.; Valdes, G.; van Veggel, A. A.; Vecchio, A.; Veitch, P. J.; Venkateswara, K.; Vo, T.; Vorvick, C.; Walker, M.; Ward, R. L.; Warner, J.; Weaver, B.; Weiss, R.; Weßels, P.; Willke, B.; Wipf, C. C.; Worden, J.; Wu, G.; Yamamoto, H.; Yancey, C. C.; Yu, Hang; Yu, Haocun; Zhang, L.; Zucker, M. E.; Zweizig, J.; LSC Instrument Authors

    2017-04-01

    Quantum fluctuations in the phase and amplitude quadratures of light set limitations on the sensitivity of modern optical instruments. The sensitivity of the interferometric gravitational-wave detectors, such as the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO), is limited by quantum shot noise, quantum radiation pressure noise, and a set of classical noises. We show how the quantum properties of light can be used to distinguish these noises using correlation techniques. Particularly, in the first part of the paper we show estimations of the coating thermal noise and gas phase noise, hidden below the quantum shot noise in the Advanced LIGO sensitivity curve. We also make projections on the observatory sensitivity during the next science runs. In the second part of the paper we discuss the correlation technique that reveals the quantum radiation pressure noise from the background of classical noises and shot noise. We apply this technique to the Advanced LIGO data, collected during the first science run, and experimentally estimate the quantum correlations and quantum radiation pressure noise in the interferometer.

  2. Underlying Information Technology Tailored Quantum Error Correction

    DTIC Science & Technology

    2006-07-28

    typically constructed by using an optical beam splitter . • We used a decoherence-free-subspace encoding to reduce the sensitivity of an optical Deutsch...simplification of design constraints in solid state QC (incl. quantum dots and superconducting qubits), hybrid quantum error correction and prevention methods...process tomography on one- and two-photon polarisation states, from full and partial data "• Accomplished complete two-photon QPT. "• Discovered surprising

  3. Beam current sensor

    DOEpatents

    Kuchnir, M.; Mills, F.E.

    1984-09-28

    A current sensor for measuring the dc component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivities in the nano-ampere range.

  4. Beam current sensor

    DOEpatents

    Kuchnir, Moyses; Mills, Frederick E.

    1987-01-01

    A current sensor for measuring the DC component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivites in the nano-ampere range.

  5. Generalized optical angular momentum sorter and its application to high-dimensional quantum cryptography.

    PubMed

    Larocque, Hugo; Gagnon-Bischoff, Jérémie; Mortimer, Dominic; Zhang, Yingwen; Bouchard, Frédéric; Upham, Jeremy; Grillo, Vincenzo; Boyd, Robert W; Karimi, Ebrahim

    2017-08-21

    The orbital angular momentum (OAM) carried by optical beams is a useful quantity for encoding information. This form of encoding has been incorporated into various works ranging from telecommunications to quantum cryptography, most of which require methods that can rapidly process the OAM content of a beam. Among current state-of-the-art schemes that can readily acquire this information are so-called OAM sorters, which consist of devices that spatially separate the OAM components of a beam. Such devices have found numerous applications in optical communications, a field that is in constant demand for additional degrees of freedom, such as polarization and wavelength, into which information can also be encoded. Here, we report the implementation of a device capable of sorting a beam based on its OAM and polarization content, which could be of use in works employing both of these degrees of freedom as information channels. After characterizing our fabricated device, we demonstrate how it can be used for quantum communications via a quantum key distribution protocol.

  6. Radiation response of multi-quantum well solar cells: Electron-beam-induced current analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maximenko, S. I., E-mail: sergey.maximenko@nrl.navy.mil; Scheiman, D. A.; Jenkins, P. P.

    Solar cells utilizing multi-quantum well (MQW) structures are considered promising candidate materials for space applications. An open question is how well these structures can resist the impact of particle irradiation. The aim of this work is to provide feedback about the radiation response of In{sub 0.01}Ga{sub 0.99}As solar cells grown on Ge with MQWs incorporated within the i-region of the device. In particular, the local electronic transport properties of the MQW i-regions of solar cells subjected to electron and proton irradiation were evaluated experimentally using the electron beam induced current (EBIC) technique. The change in carrier collection distribution across themore » MQW i-region was analyzed using a 2D EBIC diffusion model in conjunction with numerical modeling of the electrical field distribution. Both experimental and simulated findings show carrier removal and type conversion from n- to p-type in MQW i-region at a displacement damage dose as low as ∼6.06–9.88 × 10{sup 9} MeV/g. This leads to a redistribution of the electric field and significant degradation in charge carrier collection.« less

  7. Enhanced Photoluminescence from Long Wavelength InAs Quantum Dots Embedded in a Graded (In,Ga)As Quantum Well

    DTIC Science & Technology

    2002-01-01

    emitting lasers operating from 1.0 to 1.3 gim with very low threshold currents have been reported [2,3,9]; in addition, vertical - cavity surface - emitting ...grown by solid source molecular beam epitaxy ( MBE ). By modifying Indium composition profile within quantum well (QW) region, it’s found the... lasers ( VCSELs ) have also been successfully demonstrated [4]. There are currently several approaches to grow 1.3 jim (In,Ga)As quantum dots by MBE

  8. Electrostatically defined silicon quantum dots with counted antimony donor implants

    NASA Astrophysics Data System (ADS)

    Singh, M.; Pacheco, J. L.; Perry, D.; Garratt, E.; Ten Eyck, G.; Bishop, N. C.; Wendt, J. R.; Manginell, R. P.; Dominguez, J.; Pluym, T.; Luhman, D. R.; Bielejec, E.; Lilly, M. P.; Carroll, M. S.

    2016-02-01

    Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. In this work, a focused ion beam is used to implant antimony donors in 100 nm × 150 nm windows straddling quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of donors implanted can be counted to a precision of a single ion. In low-temperature transport measurements, regular Coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization are also observed in devices with counted donor implants.

  9. Quantum filtering for multiple diffusive and Poissonian measurements

    NASA Astrophysics Data System (ADS)

    Emzir, Muhammad F.; Woolley, Matthew J.; Petersen, Ian R.

    2015-09-01

    We provide a rigorous derivation of a quantum filter for the case of multiple measurements being made on a quantum system. We consider a class of measurement processes which are functions of bosonic field operators, including combinations of diffusive and Poissonian processes. This covers the standard cases from quantum optics, where homodyne detection may be described as a diffusive process and photon counting may be described as a Poissonian process. We obtain a necessary and sufficient condition for any pair of such measurements taken at different output channels to satisfy a commutation relationship. Then, we derive a general, multiple-measurement quantum filter as an extension of a single-measurement quantum filter. As an application we explicitly obtain the quantum filter corresponding to homodyne detection and photon counting at the output ports of a beam splitter.

  10. Finite-time quantum entanglement in propagating squeezed microwaves.

    PubMed

    Fedorov, K G; Pogorzalek, S; Las Heras, U; Sanz, M; Yard, P; Eder, P; Fischer, M; Goetz, J; Xie, E; Inomata, K; Nakamura, Y; Di Candia, R; Solano, E; Marx, A; Deppe, F; Gross, R

    2018-04-23

    Two-mode squeezing is a fascinating example of quantum entanglement manifested in cross-correlations of non-commuting observables between two subsystems. At the same time, these subsystems themselves may contain no quantum signatures in their self-correlations. These properties make two-mode squeezed (TMS) states an ideal resource for applications in quantum communication. Here, we generate propagating microwave TMS states by a beam splitter distributing single mode squeezing emitted from distinct Josephson parametric amplifiers along two output paths. We experimentally study the fundamental dephasing process of quantum cross-correlations in continuous-variable propagating TMS microwave states and accurately describe it with a theory model. In this way, we gain the insight into finite-time entanglement limits and predict high fidelities for benchmark quantum communication protocols such as remote state preparation and quantum teleportation.

  11. Experimental realization of quantum teleportation from a photon to the vibration modes of a millimeter-sized diamond

    NASA Astrophysics Data System (ADS)

    Huang, Yuanyuan; Hou, Panyu; Yuan, Xinxing; Chang, Xiuying; Zu, Chong; He, Li; Duan, Luming; CenterQuantum Information, IIIS, Tsinghua University, Beijing 100084, PR China Team; Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA Team

    2016-05-01

    Quantum teleportation is of great importance to various quantum technologies, and has been realized between light beams, trapped atoms, superconducting qubits, and defect spins in solids. Here we report an experimental demonstration of quantum teleportation from light beams to vibrational states of a macroscopic diamond under ambient conditions. In our experiment, the ultrafast laser technology provides the key tool for fast processing and detection of quantum states within its short life time in macroscopic objects consisting of many strongly interacting atoms that are coupled to the environment, and finally we demonstrate an average teleportation fidelity (90 . 6 +/- 1 . 0) % , clearly exceeding the classical limit of 2/3. Quantum control of the optomechanical coupling may provide efficient ways for realization of transduction of quantum signals, processing of quantum information, and sensing of small mechanical vibrations. Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, PR China.

  12. Quantum Dynamics of Multi Harmonic Oscillators Described by Time Variant Conic Hamiltonian and their Use in Contemporary Sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demiralp, Metin

    This work focuses on the dynamics of a system of quantum multi harmonic oscillators whose Hamiltonian is conic in positions and momenta with time variant coefficients. While it is simple, this system is useful for modeling the dynamics of a number of systems in contemporary sciences where the equations governing spatial or temporal changes are described by sets of ODEs. The dynamical causal models used readily in neuroscience can be indirectly described by these systems. In this work, we want to show that it is possible to describe these systems using quantum wave function type entities and expectations if themore » dynamic of the system is related to a set of ODEs.« less

  13. Quantum steganography and quantum error-correction

    NASA Astrophysics Data System (ADS)

    Shaw, Bilal A.

    Quantum error-correcting codes have been the cornerstone of research in quantum information science (QIS) for more than a decade. Without their conception, quantum computers would be a footnote in the history of science. When researchers embraced the idea that we live in a world where the effects of a noisy environment cannot completely be stripped away from the operations of a quantum computer, the natural way forward was to think about importing classical coding theory into the quantum arena to give birth to quantum error-correcting codes which could help in mitigating the debilitating effects of decoherence on quantum data. We first talk about the six-qubit quantum error-correcting code and show its connections to entanglement-assisted error-correcting coding theory and then to subsystem codes. This code bridges the gap between the five-qubit (perfect) and Steane codes. We discuss two methods to encode one qubit into six physical qubits. Each of the two examples corrects an arbitrary single-qubit error. The first example is a degenerate six-qubit quantum error-correcting code. We explicitly provide the stabilizer generators, encoding circuits, codewords, logical Pauli operators, and logical CNOT operator for this code. We also show how to convert this code into a non-trivial subsystem code that saturates the subsystem Singleton bound. We then prove that a six-qubit code without entanglement assistance cannot simultaneously possess a Calderbank-Shor-Steane (CSS) stabilizer and correct an arbitrary single-qubit error. A corollary of this result is that the Steane seven-qubit code is the smallest single-error correcting CSS code. Our second example is the construction of a non-degenerate six-qubit CSS entanglement-assisted code. This code uses one bit of entanglement (an ebit) shared between the sender (Alice) and the receiver (Bob) and corrects an arbitrary single-qubit error. The code we obtain is globally equivalent to the Steane seven-qubit code and thus

  14. Topics in linear optical quantum computation

    NASA Astrophysics Data System (ADS)

    Glancy, Scott Charles

    This thesis covers several topics in optical quantum computation. A quantum computer is a computational device which is able to manipulate information by performing unitary operations on some physical system whose state can be described as a vector (or mixture of vectors) in a Hilbert space. The basic unit of information, called the qubit, is considered to be a system with two orthogonal states, which are assigned logical values of 0 and 1. Photons make excellent candidates to serve as qubits. They have little interactions with the environment. Many operations can be performed using very simple linear optical devices such as beam splitters and phase shifters. Photons can easily be processed through circuit-like networks. Operations can be performed in very short times. Photons are ideally suited for the long-distance communication of quantum information. The great difficulty in constructing an optical quantum computer is that photons naturally interact weakly with one another. This thesis first gives a brief review of two early approaches to optical quantum computation. It will describe how any discrete unitary operation can be performed using a single photon and a network of beam splitters, and how the Kerr effect can be used to construct a two photon logic gate. Second, this work provides a thorough introduction to the linear optical quantum computer developed by Knill, Laflamme, and Milburn. It then presents this author's results on the reliability of this scheme when implemented using imperfect photon detectors. This author finds that quantum computers of this sort cannot be built using current technology. Third, this dissertation describes a method for constructing a linear optical quantum computer using nearly orthogonal coherent states of light as the qubits. It shows how a universal set of logic operations can be performed, including calculations of the fidelity with which these operations may be accomplished. It discusses methods for reducing and

  15. Tampering detection system using quantum-mechanical systems

    DOEpatents

    Humble, Travis S [Knoxville, TN; Bennink, Ryan S [Knoxville, TN; Grice, Warren P [Oak Ridge, TN

    2011-12-13

    The use of quantum-mechanically entangled photons for monitoring the integrity of a physical border or a communication link is described. The no-cloning principle of quantum information science is used as protection against an intruder's ability to spoof a sensor receiver using a `classical` intercept-resend attack. Correlated measurement outcomes from polarization-entangled photons are used to protect against quantum intercept-resend attacks, i.e., attacks using quantum teleportation.

  16. GaN-based light emitting diodes using p-type trench structure for improving internal quantum efficiency

    NASA Astrophysics Data System (ADS)

    Kim, Garam; Sun, Min-Chul; Kim, Jang Hyun; Park, Euyhwan; Park, Byung-Gook

    2017-01-01

    In order to improve the internal quantum efficiency of GaN-based LEDs, a LED structure featuring a p-type trench in the multi-quantum well (MQW) is proposed. This structure has effects on spreading holes into the MQW and reducing the quantum-confined stark effect (QCSE). In addition, two simple fabrication methods using electron-beam (e-beam) lithography or selective wet etching for manufacturing the p-type structure are also proposed. From the measurement results of the manufactured GaN-based LEDs, it is confirmed that the proposed structure using e-beam lithography or selective wet etching shows improved light output power compared to the conventional structure because of more uniform hole distribution. It is also confirmed that the proposed structure formed by e-beam lithography has a significant effect on strain relaxation and reduction in the QCSE from the electro-luminescence measurement.

  17. Stable topological insulators achieved using high energy electron beams

    PubMed Central

    Zhao, Lukas; Konczykowski, Marcin; Deng, Haiming; Korzhovska, Inna; Begliarbekov, Milan; Chen, Zhiyi; Papalazarou, Evangelos; Marsi, Marino; Perfetti, Luca; Hruban, Andrzej; Wołoś, Agnieszka; Krusin-Elbaum, Lia

    2016-01-01

    Topological insulators are potentially transformative quantum solids with metallic surface states which have Dirac band structure and are immune to disorder. Ubiquitous charged bulk defects, however, pull the Fermi energy into the bulk bands, denying access to surface charge transport. Here we demonstrate that irradiation with swift (∼2.5 MeV energy) electron beams allows to compensate these defects, bring the Fermi level back into the bulk gap and reach the charge neutrality point (CNP). Controlling the beam fluence, we tune bulk conductivity from p- (hole-like) to n-type (electron-like), crossing the Dirac point and back, while preserving the Dirac energy dispersion. The CNP conductance has a two-dimensional character on the order of ten conductance quanta and reveals, both in Bi2Te3 and Bi2Se3, the presence of only two quantum channels corresponding to two topological surfaces. The intrinsic quantum transport of the topological states is accessible disregarding the bulk size. PMID:26961901

  18. Quantum-enhanced absorption refrigerators

    PubMed Central

    Correa, Luis A.; Palao, José P.; Alonso, Daniel; Adesso, Gerardo

    2014-01-01

    Thermodynamics is a branch of science blessed by an unparalleled combination of generality of scope and formal simplicity. Based on few natural assumptions together with the four laws, it sets the boundaries between possible and impossible in macroscopic aggregates of matter. This triggered groundbreaking achievements in physics, chemistry and engineering over the last two centuries. Close analogues of those fundamental laws are now being established at the level of individual quantum systems, thus placing limits on the operation of quantum-mechanical devices. Here we study quantum absorption refrigerators, which are driven by heat rather than external work. We establish thermodynamic performance bounds for these machines and investigate their quantum origin. We also show how those bounds may be pushed beyond what is classically achievable, by suitably tailoring the environmental fluctuations via quantum reservoir engineering techniques. Such superefficient quantum-enhanced cooling realises a promising step towards the technological exploitation of autonomous quantum refrigerators. PMID:24492860

  19. Bunch Compression of Flat Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavanau, A.; Piot, P.; Edstrom Jr., D.

    Flat beams can be produced via a linear manipulation of canonical-angular-momentum (CAM) dominated beams using a set of skew-quadrupole magnets. Recently, such beams were produced at Fermilab Accelerator Science and Technology (FAST) facility 1. In this paper we report the results of flat beam compression study in a magnetic chicane at an energy E ~ 32 MeV. Additionally, we investigate the effect of energy chirp in the round-to-flat beam transform. The experimental results are compared with numerical simulations.

  20. Capacitive beam position monitors for the low-β beam of the Chinese ADS proton linac

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Wu, Jun-Xia; Zhu, Guang-Yu; Jia, Huan; Xue, Zong-Heng; Zheng, Hai; Xie, Hong-Ming; Kang, Xin-Cai; He, Yuan; Li, Lin; Denard, Jean Claude

    2016-02-01

    Beam Position Monitors (BPMs) for the low-β beam of the Chinese Accelerator Driven Subcritical system (CADS) Proton linac are of the capacitive pick-up type. They provide higher output signals than that of the inductive type. This paper will describe the design and tests of the capacitive BPM system for the low-β proton linac, including the pick-ups, the test bench and the read-out electronics. The tests done with an actual proton beam show a good agreement between the measurements and the simulations in the time domain. Supported by National Natural Science Foundation of China (11405240) and “Western Light” Talents Training Program of Chinese Academy of Sciences

  1. Quantum channel for the transmission of information

    DOEpatents

    Dress, William B.; Kisner, Roger A.; Richards, Roger K.

    2004-01-13

    Systems and methods are described for a quantum channel for the transmission of information. A method includes: down converting a beam of coherent energy to provide a beam of multi-color entangled photons; converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; changing a phase of at least a portion of the converged multi-color entangled photon beam to generate a first interferometric multi-color entangled photon beam; combining the first interferometric multi-color entangled photon beam with a second interferometric multi-color entangled photon beam within a single beam splitter; wherein combining includes erasing energy and momentum characteristics from both the first interferometric multi-color entangled photon beam and the second interferometric multi-color entangled photon beam; splitting the first interferometric multi-color entangled photon beam and the second interferometric multi-color entangled photon beam within the single beam splitter, wherein splitting yields a first output beam of multi-color entangled photons and a second output beam of multi-color entangled photons; and modulating the first output beam of multi-color entangled photons.

  2. The Heisenberg Microscope: A Powerful Instructional Tool for Promoting Meta-Cognitive and Meta-Scientific Thinking on Quantum Mechanics and the ‚Nature of Science'

    NASA Astrophysics Data System (ADS)

    Hadzidaki, Pandora

    2008-06-01

    In this paper, we present a multi-dimensional study concerning Heisenberg’s ‚gamma ray microscope’, a thought experiment, which is intimately connected with the historical development of quantum mechanics (QM), and also with the most disputed interpretations of quantum theory. In this study: (a) we investigate how philosophers of science read and explicate the function of thought experimentation in physical science; (b) in the light of relevant philosophical theories, we examine the complicated epistemological questions raised by the ‚gamma-ray microscope’ during the birth-process of QM and the contribution of this thought experiment to the clarification of the physical meaning of Heisenberg’s indeterminacy relations; (c) on the basis of the preceding analysis, we propose an instructional intervention, which aims at leading learners not only to an essential understanding of QM worldview, but to a deep insight into the Nature of Science as well.

  3. Atmospheric Quantum Channels with Weak and Strong Turbulence.

    PubMed

    Vasylyev, D; Semenov, A A; Vogel, W

    2016-08-26

    The free-space transfer of high-fidelity optical signals between remote locations has many applications, including both classical and quantum communication, precision navigation, clock synchronization, etc. The physical processes that contribute to signal fading and loss need to be carefully analyzed in the theory of light propagation through the atmospheric turbulence. Here we derive the probability distribution for the atmospheric transmittance including beam wandering, beam shape deformation, and beam-broadening effects. Our model, referred to as the elliptic beam approximation, applies to weak, weak-to-moderate, and strong turbulence and hence to the most important regimes in atmospheric communication scenarios.

  4. Science Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1990

    1990-01-01

    Presented are 27 science activities for secondary school science instruction. Topic areas include microbiology, botany, biochemistry, genetics, safety, earthquakes, problem solving, electricity, heat, solutions, mechanics, quantum mechanics, flame tests, and molecular structure. (CW)

  5. Beam dynamics simulations of post low energy beam transport section in RAON heavy ion accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Hyunchang, E-mail: hcjin@ibs.re.kr; Jang, Ji-Ho; Jang, Hyojae

    RAON (Rare isotope Accelerator Of Newness) heavy ion accelerator of the rare isotope science project in Daejeon, Korea, has been designed to accelerate multiple-charge-state beams to be used for various science programs. In the RAON accelerator, the rare isotope beams which are generated by an isotope separation on-line system with a wide range of nuclei and charges will be transported through the post Low Energy Beam Transport (LEBT) section to the Radio Frequency Quadrupole (RFQ). In order to transport many kinds of rare isotope beams stably to the RFQ, the post LEBT should be devised to satisfy the requirement ofmore » the RFQ at the end of post LEBT, simultaneously with the twiss parameters small. We will present the recent lattice design of the post LEBT in the RAON accelerator and the results of the beam dynamics simulations from it. In addition, the error analysis and correction in the post LEBT will be also described.« less

  6. Quantum light in novel systems

    NASA Astrophysics Data System (ADS)

    Rai, Amit

    2011-12-01

    In this thesis we have focused on the study of various systems which are presently widely studied in different areas of quantum optics and quantum information sciences. These, for example, include the coupled system of photonic waveguides which are known to be highly efficient in manipulating the flow of light. The Hamiltonian describing the evolution of field mode in coupled waveguides is effectively identical to the well-known tight binding Hamiltonian used in solid state physics. The advantage of waveguide system is the possibility to control various interactions by design and their low decoherence rate. The excellent stability offered by coupled waveguides has led to the observation of many key coherent effects such as quantum walk, Bloch oscillation, and discrete Talbot effect. For example, Bloch oscillations have been investigated in coupled waveguides using coherent beam of light. We wanted to inquire whether coherent phenomena such as Bloch oscillations can be possible with incoherent single photon sources. We discovered that Bloch oscillations are indeed possible with single photons provided we prepare single photons in a W state. Moreover, coupled waveguides also find applications in the field of quantum information processing. Since entanglement plays a prominent role in all these applications, it is important to understand the entanglement dynamics in these structures. We considered the case of squeezed input in one of the waveguide and showed that one can generate entanglement between the waveguide modes. We further continued our work on the entanglement generation in coupled waveguides by incorporating the effect of loss in the waveguide structure for the squeezed and photon number input states. We considered relevant experimental parameters and showed that waveguide structures are reasonably robust against the effect of loss. Another system which has attracted a great deal of interest is the optomechanical system. We consider an optomechanical system

  7. Coherent and Tunable Terahertz Radiation from Graphene Surface Plasmon Polarirons Excited by Cyclotron Electron Beam

    PubMed Central

    Zhao, Tao; Gong, Sen; Hu, Min; Zhong, Renbin; Liu, Diwei; Chen, Xiaoxing; Zhang, Ping; Wang, Xinran; Zhang, Chao; Wu, Peiheng; Liu, Shenggang

    2015-01-01

    Terahertz (THz) radiation can revolutionize modern science and technology. To this date, it remains big challenges to develop intense, coherent and tunable THz radiation sources that can cover the whole THz frequency region either by means of only electronics (both vacuum electronics and semiconductor electronics) or of only photonics (lasers, for example, quantum cascade laser). Here we present a mechanism which can overcome these difficulties in THz radiation generation. Due to the natural periodicity of 2π of both the circular cylindrical graphene structure and cyclotron electron beam (CEB), the surface plasmon polaritions (SPPs) dispersion can cross the light line of dielectric, making transformation of SPPs into radiation immediately possible. The dual natural periodicity also brings significant excellences to the excitation and the transformation. The fundamental and hybrid SPPs modes can be excited and transformed into radiation. The excited SPPs propagate along the cyclotron trajectory together with the beam and gain energy from the beam continuously. The radiation density is enhanced over 300 times, up to 105 W/cm2. The radiation frequency can be widely tuned by adjusting the beam energy or chemical potential. This mechanism opens a way for developing desired THz radiation sources to cover the whole THz frequency regime. PMID:26525516

  8. Experimental Satellite Quantum Communications

    NASA Astrophysics Data System (ADS)

    Vallone, Giuseppe; Bacco, Davide; Dequal, Daniele; Gaiarin, Simone; Luceri, Vincenza; Bianco, Giuseppe; Villoresi, Paolo

    2015-07-01

    Quantum communication (QC), namely, the faithful transmission of generic quantum states, is a key ingredient of quantum information science. Here we demonstrate QC with polarization encoding from space to ground by exploiting satellite corner cube retroreflectors as quantum transmitters in orbit and the Matera Laser Ranging Observatory of the Italian Space Agency in Matera, Italy, as a quantum receiver. The quantum bit error ratio (QBER) has been kept steadily low to a level suitable for several quantum information protocols, as the violation of Bell inequalities or quantum key distribution (QKD). Indeed, by taking data from different satellites, we demonstrate an average value of QBER =4.6 % for a total link duration of 85 s. The mean photon number per pulse μsat leaving the satellites was estimated to be of the order of one. In addition, we propose a fully operational satellite QKD system by exploiting our communication scheme with orbiting retroreflectors equipped with a modulator, a very compact payload. Our scheme paves the way toward the implementation of a QC worldwide network leveraging existing receivers.

  9. Science Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1990

    1990-01-01

    Presented are 29 science activities for secondary school science instruction. Topic areas include botany, genetics, biochemistry, anatomy, entomology, molecular structure, spreadsheets, chemistry, mechanics, astronomy, relativity, aeronautics, instrumentation, electrostatics, quantum mechanics, and laboratory interfacing. (CW)

  10. Number-unconstrained quantum sensing

    NASA Astrophysics Data System (ADS)

    Mitchell, Morgan W.

    2017-12-01

    Quantum sensing is commonly described as a constrained optimization problem: maximize the information gained about an unknown quantity using a limited number of particles. Important sensors including gravitational wave interferometers and some atomic sensors do not appear to fit this description, because there is no external constraint on particle number. Here, we develop the theory of particle-number-unconstrained quantum sensing, and describe how optimal particle numbers emerge from the competition of particle-environment and particle-particle interactions. We apply the theory to optical probing of an atomic medium modeled as a resonant, saturable absorber, and observe the emergence of well-defined finite optima without external constraints. The results contradict some expectations from number-constrained quantum sensing and show that probing with squeezed beams can give a large sensitivity advantage over classical strategies when each is optimized for particle number.

  11. In-situ laser nano-patterning for ordered InAs/GaAs(001) quantum dot growth

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Shi, Zhenwu; Huo, Dayun; Guo, Xiaoxiang; Zhang, Feng; Chen, Linsen; Wang, Qinhua; Zhang, Baoshun; Peng, Changsi

    2018-04-01

    A study of in-situ laser interference nano-patterning on InGaAs wetting layers was carried out during InAs/GaAs (001) quantum dot molecular beam epitaxy growth. Periodic nano-islands with heights of a few atomic layers were obtained via four-beam laser interference irradiation on the InGaAs wetting layer at an InAs coverage of 0.9 monolayer. The quantum dots nucleated preferentially at edges of nano-islands upon subsequent deposition of InAs on the patterned surface. When the nano-islands are sufficiently small, the patterned substrate could be spontaneously re-flattened and an ordered quantum dot array could be produced on the smooth surface. This letter discusses the mechanisms of nano-patterning and ordered quantum dot nucleation in detail. This study provides a potential technique leading to site-controlled, high-quality quantum dot fabrication.

  12. From quantum foundations to applications and back.

    PubMed

    Gisin, Nicolas; Fröwis, Florian

    2018-07-13

    Quantum non-locality has been an extremely fruitful subject of research, leading the scientific revolution towards quantum information science, in particular, to device-independent quantum information processing. We argue that the time is ripe to work on another basic problem in the foundations of quantum physics, the quantum measurement problem, which should produce good physics in theoretical, mathematical, experimental and applied physics. We briefly review how quantum non-locality contributed to physics (including some outstanding open problems) and suggest ways in which questions around macroscopic quantumness could equally contribute to all aspects of physics.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  13. Quantum rendering

    NASA Astrophysics Data System (ADS)

    Lanzagorta, Marco O.; Gomez, Richard B.; Uhlmann, Jeffrey K.

    2003-08-01

    In recent years, computer graphics has emerged as a critical component of the scientific and engineering process, and it is recognized as an important computer science research area. Computer graphics are extensively used for a variety of aerospace and defense training systems and by Hollywood's special effects companies. All these applications require the computer graphics systems to produce high quality renderings of extremely large data sets in short periods of time. Much research has been done in "classical computing" toward the development of efficient methods and techniques to reduce the rendering time required for large datasets. Quantum Computing's unique algorithmic features offer the possibility of speeding up some of the known rendering algorithms currently used in computer graphics. In this paper we discuss possible implementations of quantum rendering algorithms. In particular, we concentrate on the implementation of Grover's quantum search algorithm for Z-buffering, ray-tracing, radiosity, and scene management techniques. We also compare the theoretical performance between the classical and quantum versions of the algorithms.

  14. Mode Locking of Quantum Cascade Lasers

    DTIC Science & Technology

    2007-11-09

    E. Siegman , Lasers , University Science Books, Mill Valley, CA (1986). [2] A. Yariv, Quantum Electronics, 3rd edition, John Wiley and Sons, New...REPORT Mode Locking of Quantum Cascade Lasers 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: A theoretical and experimental study of multimode operation...regimes in quantum cascade lasers (QCLs) is presented. It is shown that the fast gain recovery of QCLs promotes two multimode regimes in QCLs: One is

  15. Electrostatically defined silicon quantum dots with counted antimony donor implants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, M., E-mail: msingh@sandia.gov; Luhman, D. R.; Lilly, M. P.

    2016-02-08

    Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. In this work, a focused ion beam is used to implant antimony donors in 100 nm × 150 nm windows straddling quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of donors implanted can be counted to a precision of a single ion. In low-temperature transport measurements, regular Coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization are also observed in devices with counted donor implants.

  16. Anomalous Quantum Correlations of Squeezed Light

    NASA Astrophysics Data System (ADS)

    Kühn, B.; Vogel, W.; Mraz, M.; Köhnke, S.; Hage, B.

    2017-04-01

    Three different noise moments of field strength, intensity, and their correlations are simultaneously measured. For this purpose a homodyne cross-correlation measurement [1] is implemented by superimposing the signal field and a weak local oscillator on an unbalanced beam splitter. The relevant information is obtained via the intensity noise correlation of the output modes. Detection details like quantum efficiencies or uncorrelated dark noise are meaningless for our technique. Yet unknown insight in the quantumness of a squeezed signal field is retrieved from the anomalous moment, correlating field strength with intensity noise. A classical inequality including this moment is violated for almost all signal phases. Precognition on quantum theory is superfluous, as our analysis is solely based on classical physics.

  17. China demonstrates intercontinental quantum key distribution

    NASA Astrophysics Data System (ADS)

    Johnston, Hamish

    2017-11-01

    A quantum cryptography key has been shared between Beijing and Vienna using a satellite - allowing the presidents of the Chinese Academy of Sciences and Austrian Academy of Sciences to communicate via a secure video link.

  18. On-chip interference of single photons from an embedded quantum dot and an external laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prtljaga, N., E-mail: n.prtljaga@sheffield.ac.uk; Bentham, C.; O'Hara, J.

    2016-06-20

    In this work, we demonstrate the on-chip two-photon interference between single photons emitted by a single self-assembled InGaAs quantum dot and an external laser. The quantum dot is embedded within one arm of an air-clad directional coupler which acts as a beam-splitter for incoming light. Photons originating from an attenuated external laser are coupled to the second arm of the beam-splitter and then combined with the quantum dot photons, giving rise to two-photon quantum interference between dissimilar sources. We verify the occurrence of on-chip Hong-Ou-Mandel interference by cross-correlating the optical signal from the separate output ports of the directional coupler.more » This experimental approach allows us to use a classical light source (laser) to assess in a single step the overall device performance in the quantum regime and probe quantum dot photon indistinguishability on application realistic time scales.« less

  19. Filamentation instability in a quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bret, A.

    2007-08-15

    The growth rate of the filamentation instability triggered when a diluted cold electron beam passes through a cold plasma is evaluated using the quantum hydrodynamic equations. Compared with a cold fluid model, quantum effects reduce both the unstable wave vector domain and the maximum growth rate. Stabilization of large wave vector modes is always achieved, but significant reduction of the maximum growth rate depends on a dimensionless parameter that is provided. Although calculations are extended to the relativistic regime, they are mostly relevant to the nonrelativistic one.

  20. Silica-on-silicon waveguide quantum circuits.

    PubMed

    Politi, Alberto; Cryan, Martin J; Rarity, John G; Yu, Siyuan; O'Brien, Jeremy L

    2008-05-02

    Quantum technologies based on photons will likely require an integrated optics architecture for improved performance, miniaturization, and scalability. We demonstrate high-fidelity silica-on-silicon integrated optical realizations of key quantum photonic circuits, including two-photon quantum interference with a visibility of 94.8 +/- 0.5%; a controlled-NOT gate with an average logical basis fidelity of 94.3 +/- 0.2%; and a path-entangled state of two photons with fidelity of >92%. These results show that it is possible to directly "write" sophisticated photonic quantum circuits onto a silicon chip, which will be of benefit to future quantum technologies based on photons, including information processing, communication, metrology, and lithography, as well as the fundamental science of quantum optics.

  1. Quantum memory in warm rubidium vapor with buffer gas.

    PubMed

    Bashkansky, Mark; Fatemi, Fredrik K; Vurgaftman, Igor

    2012-01-15

    The realization of quantum memory using warm atomic vapor cells is appealing because of their commercial availability and the perceived reduction in experimental complexity. In spite of the ambiguous results reported in the literature, we demonstrate that quantum memory can be implemented in a single cell with buffer gas using the geometry where the write and read beams are nearly copropagating. The emitted Stokes and anti-Stokes photons display cross-correlation values greater than 2, characteristic of quantum states, for delay times up to 4 μs.

  2. Electron beam cooling in intense focussed laser pulses

    NASA Astrophysics Data System (ADS)

    Yoffe, Samuel R.; Noble, Adam; Macleod, Alexander J.; Jaroszynski, Dino A.

    2017-05-01

    In the coming years, a new generation of high-power laser facilities (such as the Extreme Light Infrastructure) will become operational, for which it is important to understand how the interaction with intense laser pulses affects the bulk properties of relativistic electron bunches. At such high field intensities, we expect both radiation reaction and quantum effects to have a dominant role to play in determining the dynamics. The reduction in relative energy spread (beam cooling) at the expense of mean beam energy predicted by classical theories of radiation reaction has been shown to occur equally in the longitudinal and transverse directions, whereas this symmetry is broken when the theory is extended to approximate certain quantum effects. The reduction in longitudinal cooling suggests that the effects of radiation reaction could be better observed in measurements of the transverse distribution, which for real-world laser pulses motivates the investigation of the angular dependence of the interaction. Using a stochastic single-photon emission model with a (Gaussian beam) focussed pulse, we find strong angular dependence of the stochastic heating.

  3. Integrated devices for quantum information and quantum simulation with polarization encoded qubits

    NASA Astrophysics Data System (ADS)

    Sansoni, Linda; Sciarrino, Fabio; Mataloni, Paolo; Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto

    2012-06-01

    The ability to manipulate quantum states of light by integrated devices may open new perspectives both for fundamental tests of quantum mechanics and for novel technological applications. The technology for handling polarization-encoded qubits, the most commonly adopted approach, was still missing in quantum optical circuits until the ultrafast laser writing (ULW) technique was adopted for the first time to realize integrated devices able to support and manipulate polarization encoded qubits.1 Thanks to this method, polarization dependent and independent devices can be realized. In particular the maintenance of polarization entanglement was demonstrated in a balanced polarization independent integrated beam splitter1 and an integrated CNOT gate for polarization qubits was realized and carachterized.2 We also exploited integrated optics for quantum simulation tasks: by adopting the ULW technique an integrated quantum walk circuit was realized3 and, for the first time, we investigate how the particle statistics, either bosonic or fermionic, influences a two-particle discrete quantum walk. Such experiment has been realized by adopting two-photon entangled states and an array of integrated symmetric directional couplers. The polarization entanglement was exploited to simulate the bunching-antibunching feature of non interacting bosons and fermions. To this scope a novel three-dimensional geometry for the waveguide circuit is introduced, which allows accurate polarization independent behaviour, maintaining a remarkable control on both phase and balancement of the directional couplers.

  4. Tunable Emission Wavelength Stacked InAs/GaAs Quantum Dots by Chemical Beam Epitaxy for Optical Coherence Tomography

    PubMed Central

    Ilahi, Bouraoui; Zribi, Jihene; Guillotte, Maxime; Arès, Richard; Aimez, Vincent; Morris, Denis

    2016-01-01

    We report on Chemical Beam Epitaxy (CBE) growth of wavelength tunable InAs/GaAs quantum dots (QD) based superluminescent diode’s active layer suitable for Optical Coherence Tomography (OCT). The In-flush technique has been employed to fabricate QD with controllable heights, from 5 nm down to 2 nm, allowing a tunable emission band over 160 nm. The emission wavelength blueshift has been ensured by reducing both dots’ height and composition. A structure containing four vertically stacked height-engineered QDs have been fabricated, showing a room temperature broad emission band centered at 1.1 µm. The buried QD layers remain insensitive to the In-flush process of the subsequent layers, testifying the reliability of the process for broadband light sources required for high axial resolution OCT imaging. PMID:28773633

  5. Beam splitter phase shifts: Wave optics approach

    NASA Astrophysics Data System (ADS)

    Agnesi, Antonio; Degiorgio, Vittorio

    2017-10-01

    We investigate the phase relationships between transmitted and reflected waves in a lossless beam splitter having a multilayer structure, using the matrix approach as outlined in classical optics books. Contrarily to the case of the quantum optics formalism generally employed to describe beam splitters, these matrices are not unitary. In this note we point out the existence of general relations among the elements of the transfer matrix that describes the multilayer beam splitter. Such relations, which are independent of the detailed structure of the beam splitter, fix the phase shifts between reflected and transmitted waves. It is instructive to see how the results obtained by Zeilinger by using spinor algebra and Pauli matrices can be easily derived from our general relations.

  6. On quantum models of the human mind.

    PubMed

    Wang, Hongbin; Sun, Yanlong

    2014-01-01

    Recent years have witnessed rapidly increasing interests in developing quantum theoretical models of human cognition. Quantum mechanisms have been taken seriously to describe how the mind reasons and decides. Papers in this special issue report the newest results in the field. Here we discuss why the two levels of commitment, treating the human brain as a quantum computer and merely adopting abstract quantum probability principles to model human cognition, should be integrated. We speculate that quantum cognition models gain greater modeling power due to a richer representation scheme. Copyright © 2013 Cognitive Science Society, Inc.

  7. Quantum Hall Ferroelectrics and Nematics in Multivalley Systems

    NASA Astrophysics Data System (ADS)

    Sodemann, Inti; Zhu, Zheng; Fu, Liang

    2017-10-01

    We study broken symmetry states at integer Landau-level fillings in multivalley quantum Hall systems whose low-energy dispersions are anisotropic. When the Fermi surface of individual pockets lacks twofold rotational symmetry, like in bismuth (111) [Feldman et al. , Observation of a Nematic Quantum Hall Liquid on the Surface of Bismuth, Science 354, 316 (2016), 10.1126/science.aag1715] and in Sn1 -xPbxSe (001) [Dziawa et al., Topological Crystalline Insulator States in Pb1 -xSnxSe , Nat. Mater. 11, 1023 (2012), 10.1038/nmat3449] surfaces, interactions tend to drive the formation of quantum Hall ferroelectric states. We demonstrate that the dipole moment in these states has an intimate relation to the Fermi surface geometry of the parent metal. In quantum Hall nematic states, like those arising in AlAs quantum wells, we demonstrate the existence of unusually robust Skyrmion quasiparticles.

  8. Optical Signatures of Coupled Quantum Dots

    DTIC Science & Technology

    2006-02-03

    Optical Signatures of Coupled Quantum Dots E. A. Stinaff,1 M. Scheibner,1 A. S . Bracker,1 I. V. Ponomarev,1 V. L. Korenev ,2 M. E. Ware,1 M. F. Doty,1...possibility of optically coupling quantum dots for application in quantum information processing. S emiconductor approaches to quantum information can...REPORTS 3 FEBRUARY 2006 VOL 311 SCIENCE www.sciencemag.org636 o n A ug us t 1 4, 2 00 7 w w w . s ci en ce m ag .o rg D ow nl oa de d fr om Report

  9. Molecular beam epitaxy growth of high electron mobility InAs/AlSb deep quantum well structure

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Wang, Guo-Wei; Xu, Ying-Qiang; Xing, Jun-Liang; Xiang, Wei; Tang, Bao; Zhu, Yan; Ren, Zheng-Wei; He, Zhen-Hong; Niu, Zhi-Chuan

    2013-07-01

    InAs/AlSb deep quantum well (QW) structures with high electron mobility were grown by molecular beam epitaxy (MBE) on semi-insulating GaAs substrates. AlSb and Al0.75Ga0.25Sb buffer layers were grown to accommodate the lattice mismatch (7%) between the InAs/AlSb QW active region and GaAs substrate. Transmission electron microscopy shows abrupt interface and atomic force microscopy measurements display smooth surface morphology. Growth conditions of AlSb and Al0.75Ga0.25Sb buffer were optimized. Al0.75Ga0.25Sb is better than AlSb as a buffer layer as indicated. The sample with optimal Al0.75Ga0.25Sb buffer layer shows a smooth surface morphology with root-mean-square roughness of 6.67 Å. The electron mobility has reached as high as 27 000 cm2/Vs with a sheet density of 4.54 × 1011/cm2 at room temperature.

  10. Geometric metasurface enabling polarization independent beam splitting.

    PubMed

    Yoon, Gwanho; Lee, Dasol; Nam, Ki Tae; Rho, Junsuk

    2018-06-21

    A polarization independent holographic beam splitter that generates equal-intensity beams based on geometric metasurface is demonstrated. Although conventional geometric metasurfaces have the advantages of working over a broad frequency range and having intuitive design principles, geometric metasurfaces have the limitation that they only work for circular polarization. In this work, Fourier holography is used to overcome this limitation. A perfect overlap resulting from the origin-symmetry of the encoded image enables polarization independent operation of geometric metasurfaces. The designed metasurface beam splitter is experimentally demonstrated by using hydrogenated amorphous silicon, and the device performs consistent beam splitting regardless of incident polarizations as well as wavelengths. Our device can be applied to generate equal-intensity beams for entangled photon light sources in quantum optics, and the design approach provides a way to develop ultra-thin broadband polarization independent components for modern optics.

  11. A High Power, Frequency Tunable Colloidal Quantum Dot (CdSe/ZnS) Laser

    PubMed Central

    Prasad, Saradh; Saleh AlHesseny, Hanan; AlSalhi, Mohamad S.; Devaraj, Durairaj; Masilamai, Vadivel

    2017-01-01

    Tunable lasers are essential for medical, engineering and basic science research studies. Most conventional solid-state lasers are capable of producing a few million laser shots, but limited to specific wavelengths, which are bulky and very expensive. Dye lasers are continuously tunable, but exhibit very poor chemical stability. As new tunable, efficient lasers are always in demand, one such laser is designed with various sized CdSe/ZnS quantum dots. They were used as a colloid in tetrahydrofuran to produce a fluorescent broadband emission from 520 nm to 630 nm. The second (532 nm) and/or third harmonic (355 nm) of the Nd:YAG laser (10 ns, 10 Hz) were used together as the pump source. In this study, different sized quantum dots were independently optically pumped to produce amplified spontaneous emission (ASE) with 4 nm to 7 nm of full width at half-maximum (FWHM), when the pump power and focusing were carefully optimized. The beam was directional with a 7 mrad divergence. Subsequently, these quantum dots were combined together, and the solution was placed in a resonator cavity to obtain a laser with a spectral width of 1 nm and tunable from 510 to 630 nm, with a conversion efficiency of about 0.1%. PMID:28336863

  12. A High Power, Frequency Tunable Colloidal Quantum Dot (CdSe/ZnS) Laser.

    PubMed

    Prasad, Saradh; AlHesseny, Hanan Saleh; AlSalhi, Mohamad S; Devaraj, Durairaj; Masilamai, Vadivel

    2017-01-30

    Tunable lasers are essential for medical, engineering and basic science research studies. Most conventional solid-state lasers are capable of producing a few million laser shots, but limited to specific wavelengths, which are bulky and very expensive. Dye lasers are continuously tunable, but exhibit very poor chemical stability. As new tunable, efficient lasers are always in demand, one such laser is designed with various sized CdSe/ZnS quantum dots. They were used as a colloid in tetrahydrofuran to produce a fluorescent broadband emission from 520 nm to 630 nm. The second (532 nm) and/or third harmonic (355 nm) of the Nd:YAG laser (10 ns, 10 Hz) were used together as the pump source. In this study, different sized quantum dots were independently optically pumped to produce amplified spontaneous emission (ASE) with 4 nm to 7 nm of full width at half-maximum (FWHM), when the pump power and focusing were carefully optimized. The beam was directional with a 7 mrad divergence. Subsequently, these quantum dots were combined together, and the solution was placed in a resonator cavity to obtain a laser with a spectral width of 1 nm and tunable from 510 to 630 nm, with a conversion efficiency of about 0.1%.

  13. Stacking InAs quantum dots over ErAs semimetal nanoparticles on GaAs (0 0 1) using molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanchang; Eyink, Kurt G.; Grazulis, Lawrence; Hill, Madelyn; Peoples, Joseph; Mahalingam, Krishnamurthy

    2017-11-01

    Hybrid nanostructures are known to elicit an enhanced optical response. We study the directed alignment of ErAs metal nanoparticle (NP) and InAs quantum dot (QD) using molecular beam eptaxy (MBE) in a GaAs matrix. Due to high surface free energy caused by the crystal structure difference, overgrowth of an ErAs NP with GaAs forms a depression that condenses subsequent InAs adatoms to form an inverted QD self-aligned to the underlying ErAs NP. The ErAs NP growth, GaAs overgrowth, and InAs QD deposition were carefully controlled and studied with transmission electron microscopy (TEM) and atomic force microscopy (AFM) to investigate their effects on the QD-NP alignment.

  14. Single-laser, one beam, tetrahedral magneto-optical trap.

    PubMed

    Vangeleyn, Matthieu; Griffin, Paul F; Riis, Erling; Arnold, Aidan S

    2009-08-03

    We have realized a 4-beam pyramidal magneto-optical trap ideally suited for future microfabrication. Three mirrors split and steer a single incoming beam into a tripod of reflected beams, allowing trapping in the four-beam overlap volume. We discuss the influence of mirror angle on cooling and trapping, finding optimum efficiency in a tetrahedral configuration. We demonstrate the technique using an ex-vacuo mirror system to illustrate the previously inaccessible supra-plane pyramid MOT configuration. Unlike standard pyramidal MOTs both the pyramid apex and its mirror angle are non-critical and our MOT offers improved molasses free from atomic shadows in the laser beams. The MOT scheme naturally extends to a 2-beam refractive version with high optical access. For quantum gas experiments, the mirror system could also be used for a stable 3D tetrahedral optical lattice.

  15. Integrated photonic quantum gates for polarization qubits.

    PubMed

    Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto; Sansoni, Linda; Bongioanni, Irene; Sciarrino, Fabio; Vallone, Giuseppe; Mataloni, Paolo

    2011-11-29

    The ability to manipulate quantum states of light by integrated devices may open new perspectives both for fundamental tests of quantum mechanics and for novel technological applications. However, the technology for handling polarization-encoded qubits, the most commonly adopted approach, is still missing in quantum optical circuits. Here we demonstrate the first integrated photonic controlled-NOT (CNOT) gate for polarization-encoded qubits. This result has been enabled by the integration, based on femtosecond laser waveguide writing, of partially polarizing beam splitters on a glass chip. We characterize the logical truth table of the quantum gate demonstrating its high fidelity to the expected one. In addition, we show the ability of this gate to transform separable states into entangled ones and vice versa. Finally, the full accessibility of our device is exploited to carry out a complete characterization of the CNOT gate through a quantum process tomography.

  16. High performance quantum cascade lasers: Loss, beam stability, and gain engineering

    NASA Astrophysics Data System (ADS)

    Bouzi, Pierre Michel

    Quantum Cascade (QC) lasers are semiconductor devices emitting in the mid-infrared (3-30 micron) and terahertz (30-300 micron) regions of the electromagnetic spectrum. Since their first demonstration by Jerome Faist et. al. in 1994, they have evolved very quickly into high performance devices and given rise to many applications such as trace-gas sensing, medical diagnosis, free-space communication, and light detection and ranging (LIDAR). In this thesis, we investigate a further increase of the performance of QC devices and, through meticulous device modeling and characterizations, gain a deeper understanding of several of their unique characteristics, especially their carrier transport and lifetime, their characteristic temperature, their waveguide loss and modal gain, their leakage current, and their transverse mode profile. First, in our quest to achieve higher performance, we investigate the effect of growth asymmetries on device transport characteristics. This investigation stems from recent studies on the role of interface roughness on intersubband scattering and device performance. Through a symmetric active core design, we find that interface roughness and ionized impurity scattering induced by dopant migration play a significant role in carrier transport through the device. Understanding how interface roughness affects intersubband scattering, in turn, we engineer the gain in QC devices by placing monolayer barriers at specific locations within the device band structure. These strategically placed additional thin barrier layers introduce roughness scattering into the device active region, thereby selectively decreasing the lower laser state lifetime and increasing population inversion necessary for laser action. Preliminary measurement results from modified devices reveal a 50% decrease in the emission broadening compared to the control structures, which should lead to a two-fold increase in gain. A special class of so-called "strong coupling" QC lasers

  17. Asymptotic quantum elastic generalized Lorenz Mie theory

    NASA Astrophysics Data System (ADS)

    Gouesbet, G.

    2006-10-01

    The (electromagnetic) generalized Lorenz-Mie theory describes the interaction between an electromagnetic arbitrary shaped beam and a homogeneous sphere. It is a generalization of the Lorenz-Mie theory which deals with the simpler case of a plane-wave illumination. In a recent paper, we established that, if we restrict ourselves to the study of cross-sections, both for elastic and inelastic scatterings, a macroscopic sphere in Lorenz-Mie theory is formally equivalent to a quantum-like radial potential. To generalize this result, a prerequisite is to possess an asymptotic quantum generalized Lorenz-Mie theory expressing cross-sections in the case of a quantum radial potential interacting with a sub-class of quantum arbitrary wave-packets. Such a theory, restricted however to elastic scattering, is presented in this paper.

  18. An Introduction to Quantum Communications Networks; Or, how shall we communicate in the quantum era?

    NASA Astrophysics Data System (ADS)

    Razavi, Mohsen

    2018-05-01

    This book fills a gap between experts and non-experts in the field by providing readers with the basic tools to understand the latest developments in quantum communications and its future directions. With the fast pace of developments in quantum technologies, it is more necessary than ever to make the new generation of students in science/engineering familiar with the key ideas behind such disruptive systems. This book describes key applications for quantum networks; local, metropolitan, and global networks; and the industrial outlook for the field.

  19. Beam debunching due to ISR-induced energy diffusion

    DOE PAGES

    Yampolsky, Nikolai A.; Carlsten, Bruce E.

    2017-06-20

    One of the options for increasing longitudinal coherency of X-ray free electron lasers (XFELs) is seeding with a microbunched electron beam. Several schemes leading to significant amplitude of the beam bunching at X-ray wavelengths were recently proposed. All these schemes rely on beam optics having several magnetic dipoles. While the beam passes through a dipole, its energy spread increases due to quantum effects of synchrotron radiation. As a result, the bunching factor at small wavelengths reduces since electrons having different energies follow different trajectories in the bend. We rigorously calculate the reduction in the bunching factor due to incoherent synchrotronmore » the radiation while the beam travels in an arbitrary beamline. Lastly, we apply general results to estimate reduction of harmonic current in common schemes proposed for XFEL seeding.« less

  20. Towards photonic quantum simulation of ground states of frustrated Heisenberg spin systems

    PubMed Central

    Ma, Xiao-song; Dakić, Borivoje; Kropatschek, Sebastian; Naylor, William; Chan, Yang-hao; Gong, Zhe-xuan; Duan, Lu-ming; Zeilinger, Anton; Walther, Philip

    2014-01-01

    Photonic quantum simulators are promising candidates for providing insight into other small- to medium-sized quantum systems. Recent experiments have shown that photonic quantum systems have the advantage to exploit quantum interference for the quantum simulation of the ground state of Heisenberg spin systems. Here we experimentally characterize this quantum interference at a tuneable beam splitter and further investigate the measurement-induced interactions of a simulated four-spin system by comparing the entanglement dynamics using pairwise concurrence. We also study theoretically a four-site square lattice with next-nearest neighbor interactions and a six-site checkerboard lattice, which might be in reach of current technology. PMID:24394808

  1. Deterministic Placement of Quantum-Size Controlled Quantum Dots for Seamless Top-Down Integration

    DOE PAGES

    Fischer, Arthur J.; Anderson, P. Duke; Koleske, Daniel D.; ...

    2017-08-18

    We demonstrate a new route toward the integration and deterministic placement of quantum dots (QDs) within prepatterned nanostructures. Using standard electron-beam lithography (EBL) and inductively coupled plasma reactive-ion etching (ICP-RIE), we fabricate arrays of nanowires on a III-nitride platform. Next, we integrate QDs of controlled size within the prepatterned nanowires using a bandgap-selective, wet-etching technique: quantum-size-controlled photoelectrochemical (QSC-PEC) etching. Low-temperature microphotoluminescence (μ-PL) measurements of individual nanowires reveal sharp spectral signatures, indicative of QD formation. Further, internal quantum efficiency (IQE) measurements reveal a near order of magnitude improvement in emitter efficiency following QSC-PEC etching. Finally, second-order cross-correlation (g(2)(0)) measurements of individualmore » QDs directly confirm nonclassical, antibunching behavior. Lastly, our results illustrate an exciting approach toward the top-down integration of nonclassical light sources within nanophotonic platforms.« less

  2. Deterministic Placement of Quantum-Size Controlled Quantum Dots for Seamless Top-Down Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Arthur J.; Anderson, P. Duke; Koleske, Daniel D.

    We demonstrate a new route toward the integration and deterministic placement of quantum dots (QDs) within prepatterned nanostructures. Using standard electron-beam lithography (EBL) and inductively coupled plasma reactive-ion etching (ICP-RIE), we fabricate arrays of nanowires on a III-nitride platform. Next, we integrate QDs of controlled size within the prepatterned nanowires using a bandgap-selective, wet-etching technique: quantum-size-controlled photoelectrochemical (QSC-PEC) etching. Low-temperature microphotoluminescence (μ-PL) measurements of individual nanowires reveal sharp spectral signatures, indicative of QD formation. Further, internal quantum efficiency (IQE) measurements reveal a near order of magnitude improvement in emitter efficiency following QSC-PEC etching. Finally, second-order cross-correlation (g(2)(0)) measurements of individualmore » QDs directly confirm nonclassical, antibunching behavior. Lastly, our results illustrate an exciting approach toward the top-down integration of nonclassical light sources within nanophotonic platforms.« less

  3. Technology study of quantum remote sensing imaging

    NASA Astrophysics Data System (ADS)

    Bi, Siwen; Lin, Xuling; Yang, Song; Wu, Zhiqiang

    2016-02-01

    According to remote sensing science and technology development and application requirements, quantum remote sensing is proposed. First on the background of quantum remote sensing, quantum remote sensing theory, information mechanism, imaging experiments and prototype principle prototype research situation, related research at home and abroad are briefly introduced. Then we expounds compress operator of the quantum remote sensing radiation field and the basic principles of single-mode compression operator, quantum quantum light field of remote sensing image compression experiment preparation and optical imaging, the quantum remote sensing imaging principle prototype, Quantum remote sensing spaceborne active imaging technology is brought forward, mainly including quantum remote sensing spaceborne active imaging system composition and working principle, preparation and injection compression light active imaging device and quantum noise amplification device. Finally, the summary of quantum remote sensing research in the past 15 years work and future development are introduced.

  4. Bell’s measure and implementing quantum Fourier transform with orbital angular momentum of classical light

    PubMed Central

    Song, Xinbing; Sun, Yifan; Li, Pengyun; Qin, Hongwei; Zhang, Xiangdong

    2015-01-01

    We perform Bell’s measurement for the non-separable correlation between polarization and orbital angular momentum from the same classical vortex beam. The violation of Bell’s inequality for such a non-separable classical correlation has been demonstrated experimentally. Based on the classical vortex beam and non-quantum entanglement between the polarization and the orbital angular momentum, the Hadamard gates and conditional phase gates have been designed. Furthermore, a quantum Fourier transform has been implemented experimentally. PMID:26369424

  5. Characterization of Quantum Efficiency and Robustness of Cesium-Based Photocathodes

    DTIC Science & Technology

    2010-01-01

    photocathodes produce picosecond-pulsed, high- current electron beams for photoinjection applications like free electron lasers . In photoinjectors, a...pulsed drive laser incident on the photocathode causes photoemission of short, dense bunches of electrons, which are then accelerated into a...relativistic, high quality beam. Future free electron lasers demand reliable photocathodes with long-lived quantum efficiency at suitable drive laser

  6. EDITORIAL: The 15th Central European Workshop on Quantum Optics The 15th Central European Workshop on Quantum Optics

    NASA Astrophysics Data System (ADS)

    Bozic, Mirjana; Man'ko, Margarita; Arsenovic, Dusan

    2009-07-01

    The development of quantum optics was part and parcel of the formation of modern physics following the fundamental work of Max Planck and Albert Einstein, which gave rise to quantum mechanics. The possibility of working with pure quantum objects, like single atoms and single photons, has turned quantum optics into the main tool for testing the fundamentals of quantum physics. Thus, despite a long history, quantum optics nowadays remains an extremely important branch of physics. It represents a natural base for the development of advanced technologies, like quantum information processing and quantum computing. Previous Central European Workshops on Quantum Optics (CEWQO) took place in Palermo (2007), Vienna (2006), Ankara (2005), Trieste (2004), Rostock (2003), Szeged (2002), Prague (2001), Balatonfüred (2000), Olomouc (1999), Prague (1997), Budmerice (1995, 1996), Budapest (1994) and Bratislava (1993). Those meetings offered excellent opportunities for the exchange of knowledge and ideas between leading scientists and young researchers in quantum optics, foundations of quantum mechanics, cavity quantum electrodynamics, photonics, atom optics, condensed matter optics, and quantum informatics, etc. The collaborative spirit and tradition of CEWQO were a great inspiration and help to the Institute of Physics, Belgrade, and the Serbian Academy of Sciences and Arts, as the organizers of CEWQO 2008. The 16th CEWQO will take place in 2009 in Turku, Finland, and the 17th CEWQO will be organized in 2010 in St Andrews, United Kingdom. The 15th CEWQO was organized under the auspices and support of the Ministry of Science of the Republic of Serbia, the Serbian Physical Society, the European Physical Society with sponsorship from the University of Belgrade, the Central European Initiative, the FP6 Program of the European Commission under INCO project QUPOM No 026322, the FP7 Program of the European Commission under project NANOCHARM, Europhysics Letters (EPL), The European

  7. Quantum correlations from a room-temperature optomechanical cavity

    NASA Astrophysics Data System (ADS)

    Purdy, T. P.; Grutter, K. E.; Srinivasan, K.; Taylor, J. M.

    2017-06-01

    The act of position measurement alters the motion of an object being measured. This quantum measurement backaction is typically much smaller than the thermal motion of a room-temperature object and thus difficult to observe. By shining laser light through a nanomechanical beam, we measure the beam’s thermally driven vibrations and perturb its motion with optical force fluctuations at a level dictated by the Heisenberg measurement-disturbance uncertainty relation. We demonstrate a cross-correlation technique to distinguish optically driven motion from thermally driven motion, observing this quantum backaction signature up to room temperature. We use the scale of the quantum correlations, which is determined by fundamental constants, to gauge the size of thermal motion, demonstrating a path toward absolute thermometry with quantum mechanically calibrated ticks.

  8. Quantum Change Point

    NASA Astrophysics Data System (ADS)

    Sentís, Gael; Bagan, Emilio; Calsamiglia, John; Chiribella, Giulio; Muñoz-Tapia, Ramon

    2016-10-01

    Sudden changes are ubiquitous in nature. Identifying them is crucial for a number of applications in biology, medicine, and social sciences. Here we take the problem of detecting sudden changes to the quantum domain. We consider a source that emits quantum particles in a default state, until a point where a mutation occurs that causes the source to switch to another state. The problem is then to find out where the change occurred. We determine the maximum probability of correctly identifying the change point, allowing for collective measurements on the whole sequence of particles emitted by the source. Then, we devise online strategies where the particles are measured individually and an answer is provided as soon as a new particle is received. We show that these online strategies substantially underperform the optimal quantum measurement, indicating that quantum sudden changes, although happening locally, are better detected globally.

  9. Quantum Machine Learning over Infinite Dimensions

    DOE PAGES

    Lau, Hoi-Kwan; Pooser, Raphael; Siopsis, George; ...

    2017-02-21

    Machine learning is a fascinating and exciting eld within computer science. Recently, this ex- citement has been transferred to the quantum information realm. Currently, all proposals for the quantum version of machine learning utilize the nite-dimensional substrate of discrete variables. Here we generalize quantum machine learning to the more complex, but still remarkably practi- cal, in nite-dimensional systems. We present the critical subroutines of quantum machine learning algorithms for an all-photonic continuous-variable quantum computer that achieve an exponential speedup compared to their equivalent classical counterparts. Finally, we also map out an experi- mental implementation which can be used as amore » blueprint for future photonic demonstrations.« less

  10. Biocompatible Quantum Dots for Biological Applications

    PubMed Central

    Rosenthal, Sandra J.; Chang, Jerry C.; Kovtun, Oleg; McBride, James R.; Tomlinson, Ian D.

    2011-01-01

    Semiconductor quantum dots are quickly becoming a critical diagnostic tool for discerning cellular function at the molecular level. Their high brightness, long-lasting, sizetunable, and narrow luminescence set them apart from conventional fluorescence dyes. Quantum dots are being developed for a variety of biologically oriented applications, including fluorescent assays for drug discovery, disease detection, single protein tracking, and intracellular reporting. This review introduces the science behind quantum dots and describes how they are made biologically compatible. Several applications are also included, illustrating strategies toward target specificity, and are followed by a discussion on the limitations of quantum dot approaches. The article is concluded with a look at the future direction of quantum dots. PMID:21276935

  11. Quantum Machine Learning over Infinite Dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, Hoi-Kwan; Pooser, Raphael; Siopsis, George

    Machine learning is a fascinating and exciting eld within computer science. Recently, this ex- citement has been transferred to the quantum information realm. Currently, all proposals for the quantum version of machine learning utilize the nite-dimensional substrate of discrete variables. Here we generalize quantum machine learning to the more complex, but still remarkably practi- cal, in nite-dimensional systems. We present the critical subroutines of quantum machine learning algorithms for an all-photonic continuous-variable quantum computer that achieve an exponential speedup compared to their equivalent classical counterparts. Finally, we also map out an experi- mental implementation which can be used as amore » blueprint for future photonic demonstrations.« less

  12. Trapping photons on the line: controllable dynamics of a quantum walk

    NASA Astrophysics Data System (ADS)

    Xue, Peng; Qin, Hao; Tang, Bao

    2014-04-01

    Optical interferometers comprising birefringent-crystal beam displacers, wave plates, and phase shifters serve as stable devices for simulating quantum information processes such as heralded coined quantum walks. Quantum walks are important for quantum algorithms, universal quantum computing circuits, quantum transport in complex systems, and demonstrating intriguing nonlinear dynamical quantum phenomena. We introduce fully controllable polarization-independent phase shifters in optical pathes in order to realize site-dependent phase defects. The effectiveness of our interferometer is demonstrated through realizing single-photon quantum-walk dynamics in one dimension. By applying site-dependent phase defects, the translational symmetry of an ideal standard quantum walk is broken resulting in localization effect in a quantum walk architecture. The walk is realized for different site-dependent phase defects and coin settings, indicating the strength of localization signature depends on the level of phase due to site-dependent phase defects and coin settings and opening the way for the implementation of a quantum-walk-based algorithm.

  13. Material platforms for spin-based photonic quantum technologies

    NASA Astrophysics Data System (ADS)

    Atatüre, Mete; Englund, Dirk; Vamivakas, Nick; Lee, Sang-Yun; Wrachtrup, Joerg

    2018-05-01

    A central goal in quantum optics and quantum information science is the development of quantum networks to generate entanglement between distributed quantum memories. Experimental progress relies on the quality and efficiency of the light-matter quantum interface connecting the quantum states of photons to internal states of quantum emitters. Quantum emitters in solids, which have properties resembling those of atoms and ions, offer an opportunity for realizing light-matter quantum interfaces in scalable and compact hardware. These quantum emitters require a material platform that enables stable spin and optical properties, as well as a robust manufacturing of quantum photonic circuits. Because no emitter system is yet perfect and different applications may require different properties, several light-matter quantum interfaces are being developed in various platforms. This Review highlights the progress in three leading material platforms: diamond, silicon carbide and atomically thin semiconductors.

  14. Photon-number-resolving detectors and their role in quantifying quantum correlations

    NASA Astrophysics Data System (ADS)

    Tan, Si-Hui; Krivitsky, Leonid A.; Englert, Berthold-Georg

    2016-09-01

    Harnessing entanglement as a resource is the main workhorse of many quantum protocols, and establishing the degree of quantum correlations of quantum states is an important certification process that has to take place prior to any implementations of these quantum protocols. The emergence of photodetectors known as photon-number-resolving detectors (PNRDs) that allow for accounting of photon numbers simultaneously arriving at the detectors has led to the need for modeling accurately and applying them for use in the certification process. Here we study the variance of difference of photocounts (VDP) of two PNRDs, which is one measure of quantum correlations, under the effects of loss and saturation. We found that it would be possible to distinguish between the classical correlation of a two-mode coherent state and the quantum correlation of a twin-beam state within some photo count regime of the detector. We compare the behavior of two such PNRDs. The first for which the photocount statistics follow a binomial distribution accounting for losses, and the second is that of Agarwal, Vogel, and Sperling for which the incident beam is first split and then separately measured by ON/OFF detectors. In our calculations, analytical expressions are derived for the variance of difference where possible. In these cases, Gauss' hypergeometric function appears regularly, giving an insight to the type of quantum statistics the photon counting gives in these PNRDs. The different mechanisms of the two types of PNRDs leads to quantitative differences in their VDP.

  15. Asymptotic quantum inelastic generalized Lorenz Mie theory

    NASA Astrophysics Data System (ADS)

    Gouesbet, G.

    2007-10-01

    The (electromagnetic) generalized Lorenz-Mie theory describes the interaction between an electromagnetic arbitrary shaped beam and a homogeneous sphere. It is a generalization of the Lorenz-Mie theory which deals with the simpler case of a plane wave illumination. In a recent paper, we consider (i) elastic cross-sections in electromagnetic generalized Lorenz-Mie theory and (ii) elastic cross-sections in an associated quantum generalized Lorenz-Mie theory. We demonstrated that the electromagnetic problem is equivalent to a superposition of two effective quantum problems. We now intend to generalize this result from elastic cross-sections to inelastic cross-sections. A prerequisite is to build an asymptotic quantum inelastic generalized Lorenz-Mie theory, which is presented in this paper.

  16. Path Entanglement of Continuous-Variable Quantum Microwaves

    NASA Astrophysics Data System (ADS)

    Menzel, E. P.; Deppe, F.; Eder, P.; Zhong, L.; Haeberlein, M.; Baust, A.; Hoffmann, E.; Marx, A.; Gross, R.; di Candia, R.; Solano, E.; Ballester, D.; Ihmig, M.; Inomata, K.; Yamamoto, T.; Nakamura, Y.

    2013-03-01

    Entanglement is a quantum mechanical phenomenon playing a key role in quantum communication and information processing protocols. Here, we report on frequency-degenerate entanglement between continuous-variable quantum microwaves propagating along two separated paths. In our experiment, we combine a squeezed and a vacuum state via a beam splitter. Overcoming the challenges imposed by the low photon energies in the microwave regime, we reconstruct the squeezed state and, independently from this, detect and quantify the produced entanglement via correlation measurements (E. P. Menzel et al., arXiv:1210.4413). Our work paves the way towards quantum communication and teleportation with continuous variables in the microwave regime. This work is supported by SFB 631, German Excellence Initiative via NIM, EU projects SOLID, CCQED and PROMISCE, MEXT Kakenhi ``Quantum Cybernetics'', JSPS FIRST Program, the NICT Commissioned Research, EPSRC EP/H050434/1, Basque Government IT472-10, and Spanish MICINN FIS2009-12773-C02-01.

  17. Recent progress of quantum cascade laser research from 3 to 12  μm at the Center for Quantum Devices [Invited].

    PubMed

    Razeghi, Manijeh; Zhou, Wenjia; Slivken, Steven; Lu, Quan-Yong; Wu, Donghai; McClintock, Ryan

    2017-11-01

    The quantum cascade laser (QCL) is becoming the leading laser source in the mid-infrared (mid-IR) range, which contains two atmospheric transmission windows and many molecular fingerprint absorption features. Since its first demonstration in 1994, the QCL has undergone tremendous development in terms of the output power, wall plug efficiency, wavelength coverage, tunability and beam quality. At the Center for Quantum Devices, we have demonstrated high-power continuous wave operation of QCLs covering a wide wavelength range from 3 to 12 μm, with power output up to 5.1 W at room temperature. Recent research has resulted in power scaling in pulsed mode with up to 203 W output, electrically tunable QCLs based on monolithic sampled grating design, heterogeneous QCLs with a broad spectral gain, broadly tunable on-chip beam-combined QCLs, QCL-based mid-IR frequency combs, and fundamental mode surface emitting quantum cascade ring lasers. The developed QCLs will be the basis for a number of next-generation spectroscopy and sensing systems.

  18. Non-Gaussian quantum states generation and robust quantum non-Gaussianity via squeezing field

    NASA Astrophysics Data System (ADS)

    Tang, Xu-Bing; Gao, Fang; Wang, Yao-Xiong; Kuang, Sen; Shuang, Feng

    2015-03-01

    Recent studies show that quantum non-Gaussian states or using non-Gaussian operations can improve entanglement distillation, quantum swapping, teleportation, and cloning. In this work, employing a strategy of non-Gaussian operations (namely subtracting and adding a single photon), we propose a scheme to generate non-Gaussian quantum states named single-photon-added and -subtracted coherent (SPASC) superposition states by implementing Bell measurements, and then investigate the corresponding nonclassical features. By squeezed the input field, we demonstrate that robustness of non-Gaussianity can be improved. Controllable phase space distribution offers the possibility to approximately generate a displaced coherent superposition states (DCSS). The fidelity can reach up to F ≥ 0.98 and F ≥ 0.90 for size of amplitude z = 1.53 and 2.36, respectively. Project supported by the National Natural Science Foundation of China (Grant Nos. 61203061 and 61074052), the Outstanding Young Talent Foundation of Anhui Province, China (Grant No. 2012SQRL040), and the Natural Science Foundation of Anhui Province, China (Grant No. KJ2012Z035).

  19. Room-temperature lasing operation of a quantum-dot vertical-cavity surface-emitting laser

    NASA Astrophysics Data System (ADS)

    Saito, Hideaki; Nishi, Kenichi; Ogura, Ichiro; Sugou, Shigeo; Sugimoto, Yoshimasa

    1996-11-01

    Self-assembled growth of quantum dots by molecular-beam epitaxy is used to form the active region of a vertical-cavity surface-emitting laser (VCSEL). Ten layers of InGaAs quantum dots are stacked in order to increase the gain. This quantum-dot VCSEL has a continuous-wave operating current of 32 mA at room temperature. Emission spectra at various current injections demonstrate that the lasing action is associated with a higher-order transition in the quantum dots.

  20. DOE pushes for useful quantum computing

    NASA Astrophysics Data System (ADS)

    Cho, Adrian

    2018-01-01

    The U.S. Department of Energy (DOE) is joining the quest to develop quantum computers, devices that would exploit quantum mechanics to crack problems that overwhelm conventional computers. The initiative comes as Google and other companies race to build a quantum computer that can demonstrate "quantum supremacy" by beating classical computers on a test problem. But reaching that milestone will not mean practical uses are at hand, and the new $40 million DOE effort is intended to spur the development of useful quantum computing algorithms for its work in chemistry, materials science, nuclear physics, and particle physics. With the resources at its 17 national laboratories, DOE could play a key role in developing the machines, researchers say, although finding problems with which quantum computers can help isn't so easy.

  1. Eugene Wigner - A Gedanken Pioneer of the Second Quantum Revolution

    NASA Astrophysics Data System (ADS)

    Zeilinger, Anton

    2014-09-01

    Eugene Wigner pointed out very interesting consequences of quantum physics in elegant gedanken experiments. As a result of technical progress, these gedanken experiments have become real experiments and contribute to the development of novel concepts in quantum information science, often called the second quantum revolution.

  2. Properties and applications of quantum dot heterostructures grown by molecular beam epitaxy

    PubMed Central

    2006-01-01

    One of the main directions of contemporary semiconductor physics is the production and study of structures with a dimension less than two: quantum wires and quantum dots, in order to realize novel devices that make use of low-dimensional confinement effects. One of the promising fabrication methods is to use self-organized three-dimensional (3D) structures, such as 3D coherent islands, which are often formed during the initial stage of heteroepitaxial growth in lattice-mismatched systems. This article is intended to convey the flavour of the subject by focussing on the structural, optical and electronic properties and device applications of self-assembled quantum dots and to give an elementary introduction to some of the essential characteristics.

  3. Frequency doubling of an InGaAs multiple quantum wells semiconductor disk laser

    NASA Astrophysics Data System (ADS)

    Lidan, Jiang; Renjiang, Zhu; Maohua, Jiang; Dingke, Zhang; Yuting, Cui; Peng, Zhang; Yanrong, Song

    2018-01-01

    We demonstrate a good beam quality 483 nm blue coherent radiation from a frequency doubled InGaAs multiple quantum wells semiconductor disk laser. The gain chip is consisted of 6 repeats of strain uncompensated InGaAs/GaAs quantum wells and 25 pairs of GaAs/AlAs distributed Bragg reflector. A 4 × 4 × 7 mm3 type I phase-matched BBO nonlinear crystal is used in a V-shaped laser cavity for the second harmonic generation, and 210 mW blue output power is obtained when the absorbed pump power is 3.5 W. The M2 factors of the laser beam in x and y directions are about 1.04 and 1.01, respectively. The output power of the blue laser is limited by the relatively small number of the multiple quantum wells, and higher power can be expected by increasing the number of the multiple quantum wells and improving the heat management of the laser.

  4. Generation of vector beams using a double-wedge depolarizer: Non-quantum entanglement

    NASA Astrophysics Data System (ADS)

    Samlan, C. T.; Viswanathan, Nirmal K.

    2016-07-01

    Propagation of horizontally polarized Gaussian beam through a double-wedge depolarizer generates vector beams with spatially varying state of polarization. Jones calculus is used to show that such beams are maximally nonseparable on the basis of even (Gaussian)-odd (Hermite-Gaussian) mode parity and horizontal-vertical polarization state. The maximum nonseparability in the two degrees of freedom of the vector beam at the double wedge depolarizer output is verified experimentally using a modified Sagnac interferometer and linear analyser projected interferograms to measure the concurrence 0.94±0.002 and violation of Clauser-Horne-Shimony-Holt form of Bell-like inequality 2.704±0.024. The investigation is carried out in the context of the use of vector beams for metrological applications.

  5. Strained-layer InGaAs/GaAs/AlGaAs single quantum well lasers with high internal quantum efficiency

    NASA Technical Reports Server (NTRS)

    Larsson, Anders; Cody, Jeffrey; Lang, Robert J.

    1989-01-01

    Low threshold current density strained-layer In(0.2)Ga(0.8)As/GaAs/AlGaAs single quantum well lasers, emitting at 980 nm, have been grown by molecular beam epitaxy. Contrary to what has been reported for broad-area lasers with pseudomorphic InGaAs active layers grown by metalorganic chemical vapor deposition, these layers exhibit a high internal quantum efficiency (about 90 percent). The maximum external differential quantum efficiency is 70 percent, limited by an anomalously high internal loss possibly caused by a large lateral spreading of the optical mode. In addition, experimental results supporting the theoretically predicted strain-induced reduction of the valence-band nonparabolicity and density of states are presented.

  6. Status of the SPES project, a new tool for fundamental and apply science studies with exotic ion beams at LNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napoli, D. R., E-mail: napoli@lnl.infn.it; Andrighetto, A.; Antonini, P.

    SPES, a new accelerator facility for both the production of exotic ion beams and radio-pharmaceuticals, is presently being installed at the Laboratori Nazionali di Legnaro in Italy (LNL). The new cyclotron, which will provide high intensity proton beams for the production of the rare isotopes, has been installed and is now in the commissioning phase. We present here the status of the part of the project devoted to the production and acceleration of fission fragments created in the interaction of an intense proton beam on a production target of UCx. The expected SPES radioactive beams intensities, their quality and theirmore » maximum energies (up to 11 MeV/A for A=130) will permit to perform forefront research in nuclear structure and nuclear dynamics far from the stability valley. Another low energy section of the facility is foreseen for new and challenging research, both in the nuclear physics and in the material science frameworks.« less

  7. Tomographic measurement of joint photon statistics of the twin-beam quantum state

    PubMed

    Vasilyev; Choi; Kumar; D'Ariano

    2000-03-13

    We report the first measurement of the joint photon-number probability distribution for a two-mode quantum state created by a nondegenerate optical parametric amplifier. The measured distributions exhibit up to 1.9 dB of quantum correlation between the signal and idler photon numbers, whereas the marginal distributions are thermal as expected for parametric fluorescence.

  8. Uncertain for a century: quantum mechanics and the dilemma of interpretation.

    PubMed

    Frank, Adam

    2015-12-01

    Quantum mechanics, the physical theory describing the microworld, is one of science's greatest triumphs. Remarkably, however, after more than 100 years it is still unclear what quantum mechanics means in terms of basic philosophical questions about the nature of reality. While there are many interpretations of the mathematical machinery of quantum physics, there remain no experimental means to distinguish between most of them. In this contribution, I wish to consider the ways in which the enduring lack of an agreed-upon interpretation of quantum physics influences a number of critical philosophical debates about physics and reality. I briefly review two problems affected by quantum interpretations: the meaning of the term universe and the nature of consciousness. © 2015 New York Academy of Sciences.

  9. Monogamy relations of quantum entanglement for partially coherently superposed states

    NASA Astrophysics Data System (ADS)

    Shi, Xian

    2017-12-01

    Not Available Project partially supported by the National Key Research and Development Program of China (Grant No. 2016YFB1000902), the National Natural Science Foundation of China (Grant Nos. 61232015, 61472412, and 61621003), the Beijing Science and Technology Project (2016), Tsinghua-Tencent-AMSS-Joint Project (2016), and the Key Laboratory of Mathematics Mechanization Project: Quantum Computing and Quantum Information Processing.

  10. ICFA Beam Dynamics Newsletter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben-Zvi I.; Kuczewski A.; Altinbas, Z.

    2012-07-01

    The Collider-Accelerator Department at Brookhaven National Laboratory is building a high-brightness 500 mA capable Energy Recovery Linac (ERL) as one of its main R&D thrusts towards eRHIC, the polarized electron - hadron collider as an upgrade of the operating RHIC facility. The ERL is in final assembly stages, with injection commisioning starting in October 2012. The objective of this ERL is to serve as a platform for R&D into high current ERL, in particular issues of halo generation and control, Higher-Order Mode (HOM) issues, coherent emissions for the beam and high-brightness, high-power beam generation and preservation. The R&D ERL featuresmore » a superconducting laser-photocathode RF gun with a high quantum efficiency photoccathode served with a load-lock cathode delivery system, a highly damped 5-cell accelerating cavity, a highly flexible single-pass loop and a comprehensive system of beam instrumentation. In this ICFA Beam Dynamics Newsletter article we will describe the ERL in a degree of detail that is not usually found in regular publications. We will discuss the various systems of the ERL, following the electrons from the photocathode to the beam dump, cover the control system, machine protection etc and summarize with the status of the ERL systems.« less

  11. Controlling neutron orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Clark, Charles W.; Barankov, Roman; Huber, Michael G.; Arif, Muhammad; Cory, David G.; Pushin, Dmitry A.

    2015-09-01

    The quantized orbital angular momentum (OAM) of photons offers an additional degree of freedom and topological protection from noise. Photonic OAM states have therefore been exploited in various applications ranging from studies of quantum entanglement and quantum information science to imaging. The OAM states of electron beams have been shown to be similarly useful, for example in rotating nanoparticles and determining the chirality of crystals. However, although neutrons--as massive, penetrating and neutral particles--are important in materials characterization, quantum information and studies of the foundations of quantum mechanics, OAM control of neutrons has yet to be achieved. Here, we demonstrate OAM control of neutrons using macroscopic spiral phase plates that apply a `twist' to an input neutron beam. The twisted neutron beams are analysed with neutron interferometry. Our techniques, applied to spatially incoherent beams, demonstrate both the addition of quantum angular momenta along the direction of propagation, effected by multiple spiral phase plates, and the conservation of topological charge with respect to uniform phase fluctuations. Neutron-based studies of quantum information science, the foundations of quantum mechanics, and scattering and imaging of magnetic, superconducting and chiral materials have until now been limited to three degrees of freedom: spin, path and energy. The optimization of OAM control, leading to well defined values of OAM, would provide an additional quantized degree of freedom for such studies.

  12. Quantum Correlations in Nonlocal Boson Sampling.

    PubMed

    Shahandeh, Farid; Lund, Austin P; Ralph, Timothy C

    2017-09-22

    Determination of the quantum nature of correlations between two spatially separated systems plays a crucial role in quantum information science. Of particular interest is the questions of if and how these correlations enable quantum information protocols to be more powerful. Here, we report on a distributed quantum computation protocol in which the input and output quantum states are considered to be classically correlated in quantum informatics. Nevertheless, we show that the correlations between the outcomes of the measurements on the output state cannot be efficiently simulated using classical algorithms. Crucially, at the same time, local measurement outcomes can be efficiently simulated on classical computers. We show that the only known classicality criterion violated by the input and output states in our protocol is the one used in quantum optics, namely, phase-space nonclassicality. As a result, we argue that the global phase-space nonclassicality inherent within the output state of our protocol represents true quantum correlations.

  13. A note on the roles of quantum and mechanical models in social biophysics.

    PubMed

    Takahashi, Taiki; Kim, Song-Ju; Naruse, Makoto

    2017-11-01

    Recent advances in the applications of quantum models into various disciplines such as cognitive science, social sciences, economics, and biology witnessed enormous achievements and possible future progress. In this paper, we propose one of the most promising directions in the applications of quantum models: the combination of quantum and mechanical models in social biophysics. The possible resulting discipline may be called as experimental quantum social biophysics and could foster our understandings of the relationships between the society and individuals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Quantum teleportation between light and matter.

    PubMed

    Sherson, Jacob F; Krauter, Hanna; Olsson, Rasmus K; Julsgaard, Brian; Hammerer, Klemens; Cirac, Ignacio; Polzik, Eugene S

    2006-10-05

    Quantum teleportation is an important ingredient in distributed quantum networks, and can also serve as an elementary operation in quantum computers. Teleportation was first demonstrated as a transfer of a quantum state of light onto another light beam; later developments used optical relays and demonstrated entanglement swapping for continuous variables. The teleportation of a quantum state between two single material particles (trapped ions) has now also been achieved. Here we demonstrate teleportation between objects of a different nature--light and matter, which respectively represent 'flying' and 'stationary' media. A quantum state encoded in a light pulse is teleported onto a macroscopic object (an atomic ensemble containing 10 caesium atoms). Deterministic teleportation is achieved for sets of coherent states with mean photon number (n) up to a few hundred. The fidelities are 0.58 +/- 0.02 for n = 20 and 0.60 +/- 0.02 for n = 5--higher than any classical state transfer can possibly achieve. Besides being of fundamental interest, teleportation using a macroscopic atomic ensemble is relevant for the practical implementation of a quantum repeater. An important factor for the implementation of quantum networks is the teleportation distance between transmitter and receiver; this is 0.5 metres in the present experiment. As our experiment uses propagating light to achieve the entanglement of light and atoms required for teleportation, the present approach should be scalable to longer distances.

  15. Artificially Structured Semiconductors to Model Novel Quantum Phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinczuk, Aron; Wind, Shalom J.

    Award Period: September 1st, 2013 through February 15th, 2017 Submitted to the USDOE Office of Basic Energy Sciences By Aron Pinczuk and Shalom J. Wind Department of Applied Physics and Applied Mathematics Columbia University New York, NY 10027 January 2017 Award # DE-SC0010695 ABSTRACT Research in this project seeks to design, create and study a class of tunable artificial quantum structures in order to extend the range and scope of new and exciting physical phenomena and to explore the potential for new applications. Advanced nanofabrication was used to create an external potential landscape that acts as a lattice of confinementmore » sites for electrons (and/or holes) in a two-dimensional electron gas in a high perfection semiconductor in such a manner that quantum interactions between different sites dictate the significant physics. Our current focus is on ‘artificial graphene’ (AG) in which a set of quantum dots (or sites) are patterned in a honeycomb lattice. The combination of leading edge nanofabrication with ultra-pure semiconductor materials in this project extends the frontier for small period, low-disorder AG systems, enabling the exploration of graphene physics in a semiconductor platform. TECHNICAL DESCRIPTION Contemporary condensed matter science has entered an era of discovery of new low-dimensional materials, such as graphene and other atomically thin materials, that exhibit exciting new physical phenomena that were previously inaccessible. Concurrent with the discovery and development of these new materials are impressive advancements in nanofabrication, which offer an ever-expanding toolbox for creating a myriad of high quality patterns at nanoscale dimensions. This project started about four years ago. Among its major achievements are the realizations of very small period artificial lattices with honeycomb topology in GaAs quantum wells. In our most recent work the periods of the ‘artificial graphene’ (AG) lattices extend down to 40 nm

  16. On-chip quantum tomography of mechanical nanoscale oscillators with guided Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Sanz-Mora, A.; Wüster, S.; Rost, J.-M.

    2017-07-01

    Nanomechanical oscillators as well as Rydberg-atomic waveguides hosted on microfabricated chip surfaces hold promise to become pillars of future quantum technologies. In a hybrid platform with both, we show that beams of Rydberg atoms in waveguides can quantum coherently interrogate and manipulate nanomechanical elements, allowing full quantum state tomography. Central to the tomography are quantum nondemolition measurements using the Rydberg atoms as probes. Quantum coherent displacement of the oscillator is also made possible by driving the atoms with external fields while they interact with the oscillator. We numerically demonstrate the feasibility of this fully integrated on-chip control and read-out suite for quantum nanomechanics, taking into account noise and error sources.

  17. Optical simulation of quantum algorithms using programmable liquid-crystal displays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puentes, Graciana; La Mela, Cecilia; Ledesma, Silvia

    2004-04-01

    We present a scheme to perform an all optical simulation of quantum algorithms and maps. The main components are lenses to efficiently implement the Fourier transform and programmable liquid-crystal displays to introduce space dependent phase changes on a classical optical beam. We show how to simulate Deutsch-Jozsa and Grover's quantum algorithms using essentially the same optical array programmed in two different ways.

  18. Self-organized formation of GaSb/GaAs quantum rings.

    PubMed

    Timm, R; Eisele, H; Lenz, A; Ivanova, L; Balakrishnan, G; Huffaker, D L; Dähne, M

    2008-12-19

    Ring-shaped GaSb/GaAs quantum dots, grown by molecular beam epitaxy, were studied using cross-sectional scanning tunneling microscopy. These quantum rings have an outer shape of a truncated pyramid with baselengths around 15 nm and heights of about 2 nm but are characterized by a clear central opening extending over about 40% of the outer baselength. They form spontaneously during the growth and subsequent continuous capping of GaSb/GaAs quantum dots due to the large strain and substantial As-for-Sb exchange reactions leading to strong Sb segregation.

  19. On beam models and their paraxial approximation

    NASA Astrophysics Data System (ADS)

    Waters, W. J.; King, B.

    2018-01-01

    We derive focused laser pulse solutions to the electromagnetic wave equation in vacuum. After reproducing beam and pulse expressions for the well-known paraxial Gaussian and axicon cases, we apply the method to analyse a laser beam with Lorentzian transverse momentum distribution. Whilst a paraxial approach has some success close to the focal axis and within a Rayleigh range of the focal spot, we find that it incorrectly predicts the transverse fall-off typical of a Lorentzian. Our vector-potential approach is particularly relevant to calculation of quantum electrodynamical processes in weak laser pulse backgrounds.

  20. Photonic qubits for remote quantum information processing

    NASA Astrophysics Data System (ADS)

    Maunz, P.; Olmschenk, S.; Hayes, D.; Matsukevich, D. N.; Duan, L.-M.; Monroe, C.

    2009-05-01

    Quantum information processing between remote quantum memories relies on a fast and faithful quantum channel. Recent experiments employed both, the photonic polarization and frequency qubits, in order to entangle remote atoms [1, 2], to teleport quantum information [3] and to operate a quantum gate between distant atoms. Here, we compare the dierent schemes used in these experiments and analyze the advantages of the dierent choices of atomic and photonic qubits and their coherence properties. [4pt] [1] D. L. Moehring et al. Nature 449, 68 (2007).[0pt] [2] D. N. Matsukevich et al. Phys. Rev. Lett. 100, 150404 2008).[0pt] [3] S. Olmschenk et al. Science, 323, 486 (2009).

  1. Broad area quantum cascade lasers operating in pulsed mode above 100 °C λ ∼4.7 μm

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Yan, Fangliang; Zhang, Jinchuan; Liu, Fengqi; Zhuo, Ning; Liu, Junqi; Wang, Lijun; Wang, Zhanguo

    2017-07-01

    We demonstrate a broad area (400 μm) high power quantum cascade laser (QCL). A total peak power of 62 W operating at room temperature is achieved at λ ∼4.7 μm. The temperature dependence of the peak power characteristic is given in the experiment, and also the temperature of the active zone is simulated by a finite-element-method (FEM). We find that the interface roughness of the active core has a great effect on the temperature of the active zone and can be enormously improved using the solid source molecular beam epitaxy (MBE) growth system. Project supported by the National Basic Research Program of China (No. 2013CB632801), the National Key Research and Development Program (No. 2016YFB0402303), the National Natural Science Foundation of China (Nos. 61435014, 61627822, 61574136, 61306058, 61404131), the Key Projects of Chinese Academy of Sciences (No. ZDRW-XH-20164), and the Beijing Natural Science Foundation (No. 4162060).

  2. Quantum entanglement of angular momentum states with quantum numbers up to 10,010

    PubMed Central

    Fickler, Robert; Campbell, Geoff; Buchler, Ben; Lam, Ping Koy; Zeilinger, Anton

    2016-01-01

    Photons with a twisted phase front carry a quantized amount of orbital angular momentum (OAM) and have become important in various fields of optics, such as quantum and classical information science or optical tweezers. Because no upper limit on the OAM content per photon is known, they are also interesting systems to experimentally challenge quantum mechanical prediction for high quantum numbers. Here, we take advantage of a recently developed technique to imprint unprecedented high values of OAM, namely spiral phase mirrors, to generate photons with more than 10,000 quanta of OAM. Moreover, we demonstrate quantum entanglement between these large OAM quanta of one photon and the polarization of its partner photon. To our knowledge, this corresponds to entanglement with the largest quantum number that has been demonstrated in an experiment. The results may also open novel ways to couple single photons to massive objects, enhance angular resolution, and highlight OAM as a promising way to increase the information capacity of a single photon. PMID:27856742

  3. Quantum entanglement of angular momentum states with quantum numbers up to 10,010

    NASA Astrophysics Data System (ADS)

    Fickler, Robert; Campbell, Geoff; Buchler, Ben; Lam, Ping Koy; Zeilinger, Anton

    2016-11-01

    Photons with a twisted phase front carry a quantized amount of orbital angular momentum (OAM) and have become important in various fields of optics, such as quantum and classical information science or optical tweezers. Because no upper limit on the OAM content per photon is known, they are also interesting systems to experimentally challenge quantum mechanical prediction for high quantum numbers. Here, we take advantage of a recently developed technique to imprint unprecedented high values of OAM, namely spiral phase mirrors, to generate photons with more than 10,000 quanta of OAM. Moreover, we demonstrate quantum entanglement between these large OAM quanta of one photon and the polarization of its partner photon. To our knowledge, this corresponds to entanglement with the largest quantum number that has been demonstrated in an experiment. The results may also open novel ways to couple single photons to massive objects, enhance angular resolution, and highlight OAM as a promising way to increase the information capacity of a single photon.

  4. Quantum entanglement of angular momentum states with quantum numbers up to 10,010.

    PubMed

    Fickler, Robert; Campbell, Geoff; Buchler, Ben; Lam, Ping Koy; Zeilinger, Anton

    2016-11-29

    Photons with a twisted phase front carry a quantized amount of orbital angular momentum (OAM) and have become important in various fields of optics, such as quantum and classical information science or optical tweezers. Because no upper limit on the OAM content per photon is known, they are also interesting systems to experimentally challenge quantum mechanical prediction for high quantum numbers. Here, we take advantage of a recently developed technique to imprint unprecedented high values of OAM, namely spiral phase mirrors, to generate photons with more than 10,000 quanta of OAM. Moreover, we demonstrate quantum entanglement between these large OAM quanta of one photon and the polarization of its partner photon. To our knowledge, this corresponds to entanglement with the largest quantum number that has been demonstrated in an experiment. The results may also open novel ways to couple single photons to massive objects, enhance angular resolution, and highlight OAM as a promising way to increase the information capacity of a single photon.

  5. Preserving photon qubits in an unknown quantum state with Knill Dynamical Decoupling - Towards an all optical quantum memory

    NASA Astrophysics Data System (ADS)

    Gupta, Manish K.; Navarro, Erik J.; Moulder, Todd A.; Mueller, Jason D.; Balouchi, Ashkan; Brown, Katherine L.; Lee, Hwang; Dowling, Jonathan P.

    2015-05-01

    The storage of quantum states and its distribution over long distances is essential for emerging quantum technologies such as quantum networks and long distance quantum cryptography. The implementation of polarization-based quantum communication is limited by signal loss and decoherence caused by the birefringence of a single-mode fiber. We investigate the Knill dynamical decoupling scheme, implemented using half-wave plates in a single mode fiber, to minimize decoherence of polarization qubit and show that a fidelity greater than 99 % can be achieved in absence of rotation error and fidelity greater than 96 % can be achieved in presence of rotation error. Such a scheme can be used to preserve any quantum state with high fidelity and has potential application for constructing all optical quantum memory, quantum delay line, and quantum repeater. The authors would like to acknowledge the support from the Air Force office of Scientific Research, the Army Research office, and the National Science Foundation.

  6. Ground-to-satellite quantum teleportation.

    PubMed

    Ren, Ji-Gang; Xu, Ping; Yong, Hai-Lin; Zhang, Liang; Liao, Sheng-Kai; Yin, Juan; Liu, Wei-Yue; Cai, Wen-Qi; Yang, Meng; Li, Li; Yang, Kui-Xing; Han, Xuan; Yao, Yong-Qiang; Li, Ji; Wu, Hai-Yan; Wan, Song; Liu, Lei; Liu, Ding-Quan; Kuang, Yao-Wu; He, Zhi-Ping; Shang, Peng; Guo, Cheng; Zheng, Ru-Hua; Tian, Kai; Zhu, Zhen-Cai; Liu, Nai-Le; Lu, Chao-Yang; Shu, Rong; Chen, Yu-Ao; Peng, Cheng-Zhi; Wang, Jian-Yu; Pan, Jian-Wei

    2017-09-07

    An arbitrary unknown quantum state cannot be measured precisely or replicated perfectly. However, quantum teleportation enables unknown quantum states to be transferred reliably from one object to another over long distances, without physical travelling of the object itself. Long-distance teleportation is a fundamental element of protocols such as large-scale quantum networks and distributed quantum computation. But the distances over which transmission was achieved in previous teleportation experiments, which used optical fibres and terrestrial free-space channels, were limited to about 100 kilometres, owing to the photon loss of these channels. To realize a global-scale 'quantum internet' the range of quantum teleportation needs to be greatly extended. A promising way of doing so involves using satellite platforms and space-based links, which can connect two remote points on Earth with greatly reduced channel loss because most of the propagation path of the photons is in empty space. Here we report quantum teleportation of independent single-photon qubits from a ground observatory to a low-Earth-orbit satellite, through an uplink channel, over distances of up to 1,400 kilometres. To optimize the efficiency of the link and to counter the atmospheric turbulence in the uplink, we use a compact ultra-bright source of entangled photons, a narrow beam divergence and high-bandwidth and high-accuracy acquiring, pointing and tracking. We demonstrate successful quantum teleportation of six input states in mutually unbiased bases with an average fidelity of 0.80 ± 0.01, well above the optimal state-estimation fidelity on a single copy of a qubit (the classical limit). Our demonstration of a ground-to-satellite uplink for reliable and ultra-long-distance quantum teleportation is an essential step towards a global-scale quantum internet.

  7. Ground-to-satellite quantum teleportation

    NASA Astrophysics Data System (ADS)

    Ren, Ji-Gang; Xu, Ping; Yong, Hai-Lin; Zhang, Liang; Liao, Sheng-Kai; Yin, Juan; Liu, Wei-Yue; Cai, Wen-Qi; Yang, Meng; Li, Li; Yang, Kui-Xing; Han, Xuan; Yao, Yong-Qiang; Li, Ji; Wu, Hai-Yan; Wan, Song; Liu, Lei; Liu, Ding-Quan; Kuang, Yao-Wu; He, Zhi-Ping; Shang, Peng; Guo, Cheng; Zheng, Ru-Hua; Tian, Kai; Zhu, Zhen-Cai; Liu, Nai-Le; Lu, Chao-Yang; Shu, Rong; Chen, Yu-Ao; Peng, Cheng-Zhi; Wang, Jian-Yu; Pan, Jian-Wei

    2017-09-01

    An arbitrary unknown quantum state cannot be measured precisely or replicated perfectly. However, quantum teleportation enables unknown quantum states to be transferred reliably from one object to another over long distances, without physical travelling of the object itself. Long-distance teleportation is a fundamental element of protocols such as large-scale quantum networks and distributed quantum computation. But the distances over which transmission was achieved in previous teleportation experiments, which used optical fibres and terrestrial free-space channels, were limited to about 100 kilometres, owing to the photon loss of these channels. To realize a global-scale ‘quantum internet’ the range of quantum teleportation needs to be greatly extended. A promising way of doing so involves using satellite platforms and space-based links, which can connect two remote points on Earth with greatly reduced channel loss because most of the propagation path of the photons is in empty space. Here we report quantum teleportation of independent single-photon qubits from a ground observatory to a low-Earth-orbit satellite, through an uplink channel, over distances of up to 1,400 kilometres. To optimize the efficiency of the link and to counter the atmospheric turbulence in the uplink, we use a compact ultra-bright source of entangled photons, a narrow beam divergence and high-bandwidth and high-accuracy acquiring, pointing and tracking. We demonstrate successful quantum teleportation of six input states in mutually unbiased bases with an average fidelity of 0.80 ± 0.01, well above the optimal state-estimation fidelity on a single copy of a qubit (the classical limit). Our demonstration of a ground-to-satellite uplink for reliable and ultra-long-distance quantum teleportation is an essential step towards a global-scale quantum internet.

  8. A topological quantum optics interface.

    PubMed

    Barik, Sabyasachi; Karasahin, Aziz; Flower, Christopher; Cai, Tao; Miyake, Hirokazu; DeGottardi, Wade; Hafezi, Mohammad; Waks, Edo

    2018-02-09

    The application of topology in optics has led to a new paradigm in developing photonic devices with robust properties against disorder. Although considerable progress on topological phenomena has been achieved in the classical domain, the realization of strong light-matter coupling in the quantum domain remains unexplored. We demonstrate a strong interface between single quantum emitters and topological photonic states. Our approach creates robust counterpropagating edge states at the boundary of two distinct topological photonic crystals. We demonstrate the chiral emission of a quantum emitter into these modes and establish their robustness against sharp bends. This approach may enable the development of quantum optics devices with built-in protection, with potential applications in quantum simulation and sensing. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  9. Unforgeable Noise-Tolerant Quantum Tokens

    NASA Astrophysics Data System (ADS)

    Yao, Norman; Pastawski, Fernando; Jiang, Liang; Lukin, Mikhail; Cirac, Ignacio

    2012-06-01

    The realization of devices which harness the laws of quantum mechanics represents an exciting challenge at the interface of modern technology and fundamental science. An exemplary paragon of the power of such quantum primitives is the concept of ``quantum money.'' A dishonest holder of a quantum bank-note will invariably fail in any forging attempts; indeed, under assumptions of ideal measurements and decoherence-free memories such security is guaranteed by the no-cloning theorem. In any practical situation, however, noise, decoherence and operational imperfections abound. Thus, the development of secure ``quantum money''-type primitives capable of tolerating realistic infidelities is of both practical and fundamental importance. Here, we propose a novel class of such protocols and demonstrate their tolerance to noise; moreover, we prove their rigorous security by determining tight fidelity thresholds. Our proposed protocols require only the ability to prepare, store and measure single qubit quantum memories, making their experimental realization accessible with current technologies.

  10. Roadmap on quantum optical systems

    NASA Astrophysics Data System (ADS)

    Dumke, Rainer; Lu, Zehuang; Close, John; Robins, Nick; Weis, Antoine; Mukherjee, Manas; Birkl, Gerhard; Hufnagel, Christoph; Amico, Luigi; Boshier, Malcolm G.; Dieckmann, Kai; Li, Wenhui; Killian, Thomas C.

    2016-09-01

    This roadmap bundles fast developing topics in experimental optical quantum sciences, addressing current challenges as well as potential advances in future research. We have focused on three main areas: quantum assisted high precision measurements, quantum information/simulation, and quantum gases. Quantum assisted high precision measurements are discussed in the first three sections, which review optical clocks, atom interferometry, and optical magnetometry. These fields are already successfully utilized in various applied areas. We will discuss approaches to extend this impact even further. In the quantum information/simulation section, we start with the traditionally successful employed systems based on neutral atoms and ions. In addition the marvelous demonstrations of systems suitable for quantum information is not progressing, unsolved challenges remain and will be discussed. We will also review, as an alternative approach, the utilization of hybrid quantum systems based on superconducting quantum devices and ultracold atoms. Novel developments in atomtronics promise unique access in exploring solid-state systems with ultracold gases and are investigated in depth. The sections discussing the continuously fast-developing quantum gases include a review on dipolar heteronuclear diatomic gases, Rydberg gases, and ultracold plasma. Overall, we have accomplished a roadmap of selected areas undergoing rapid progress in quantum optics, highlighting current advances and future challenges. These exciting developments and vast advances will shape the field of quantum optics in the future.

  11. The Quantum Logical Challenge: Peter Mittelstaedt's Contributions to Logic and Philosophy of Science

    NASA Astrophysics Data System (ADS)

    Beltrametti, E.; Dalla Chiara, M. L.; Giuntini, R.

    2017-12-01

    Peter Mittelstaedt's contributions to quantum logic and to the foundational problems of quantum theory have significantly realized the most authentic spirit of the International Quantum Structures Association: an original research about hard technical problems, which are often "entangled" with the emergence of important changes in our general world-conceptions. During a time where both the logical and the physical community often showed a skeptical attitude towards Birkhoff and von Neumann's quantum logic, Mittelstaedt brought into light the deeply innovating features of a quantum logical thinking that allows us to overcome some strong and unrealistic assumptions of classical logical arguments. Later on his intense research on the unsharp approach to quantum theory and to the measurement problem stimulated the increasing interest for unsharp forms of quantum logic, creating a fruitful interaction between the work of quantum logicians and of many-valued logicians. Mittelstaedt's general views about quantum logic and quantum theory seem to be inspired by a conjecture that is today more and more confirmed: there is something universal in the quantum theoretic formalism that goes beyond the limits of microphysics, giving rise to interesting applications to a number of different fields.

  12. A quantum framework for likelihood ratios

    NASA Astrophysics Data System (ADS)

    Bond, Rachael L.; He, Yang-Hui; Ormerod, Thomas C.

    The ability to calculate precise likelihood ratios is fundamental to science, from Quantum Information Theory through to Quantum State Estimation. However, there is no assumption-free statistical methodology to achieve this. For instance, in the absence of data relating to covariate overlap, the widely used Bayes’ theorem either defaults to the marginal probability driven “naive Bayes’ classifier”, or requires the use of compensatory expectation-maximization techniques. This paper takes an information-theoretic approach in developing a new statistical formula for the calculation of likelihood ratios based on the principles of quantum entanglement, and demonstrates that Bayes’ theorem is a special case of a more general quantum mechanical expression.

  13. BEAM-FORMING ERRORS IN MURCHISON WIDEFIELD ARRAY PHASED ARRAY ANTENNAS AND THEIR EFFECTS ON EPOCH OF REIONIZATION SCIENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neben, Abraham R.; Hewitt, Jacqueline N.; Dillon, Joshua S.

    2016-03-20

    Accurate antenna beam models are critical for radio observations aiming to isolate the redshifted 21 cm spectral line emission from the Dark Ages and the Epoch of Reionization (EOR) and unlock the scientific potential of 21 cm cosmology. Past work has focused on characterizing mean antenna beam models using either satellite signals or astronomical sources as calibrators, but antenna-to-antenna variation due to imperfect instrumentation has remained unexplored. We characterize this variation for the Murchison Widefield Array (MWA) through laboratory measurements and simulations, finding typical deviations of the order of ±10%–20% near the edges of the main lobe and in themore » sidelobes. We consider the ramifications of these results for image- and power spectrum-based science. In particular, we simulate visibilities measured by a 100 m baseline and find that using an otherwise perfect foreground model, unmodeled beam-forming errors severely limit foreground subtraction accuracy within the region of Fourier space contaminated by foreground emission (the “wedge”). This region likely contains much of the cosmological signal, and accessing it will require measurement of per-antenna beam patterns. However, unmodeled beam-forming errors do not contaminate the Fourier space region expected to be free of foreground contamination (the “EOR window”), showing that foreground avoidance remains a viable strategy.« less

  14. SeaQuaKE: Sea-optimized Quantum Key Exchange

    DTIC Science & Technology

    2014-06-01

    is led by Applied Communications Sciences under the ONR Free Space Optical Quantum Key Distribution Special Notice (13-SN-0004 under ONRBAA13-001...In addition, we discuss our initial progress towards the free - space quantum channel model and planning for the experimental validation effort. 15...SUBJECT TERMS Quantum communications, free - space optical communications 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as

  15. Quantum decoherence of phonons in Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Howl, Richard; Sabín, Carlos; Hackermüller, Lucia; Fuentes, Ivette

    2018-01-01

    We apply modern techniques from quantum optics and quantum information science to Bose-Einstein condensates (BECs) in order to study, for the first time, the quantum decoherence of phonons of isolated BECs. In the last few years, major advances in the manipulation and control of phonons have highlighted their potential as carriers of quantum information in quantum technologies, particularly in quantum processing and quantum communication. Although most of these studies have focused on trapped ion and crystalline systems, another promising system that has remained relatively unexplored is BECs. The potential benefits in using this system have been emphasized recently with proposals of relativistic quantum devices that exploit quantum states of phonons in BECs to achieve, in principle, superior performance over standard non-relativistic devices. Quantum decoherence is often the limiting factor in the practical realization of quantum technologies, but here we show that quantum decoherence of phonons is not expected to heavily constrain the performance of these proposed relativistic quantum devices.

  16. A Terahertz VRT spectrometer employing quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Cole, William T. S.; Hlavacek, Nik C.; Lee, Alan W. M.; Kao, Tsung-Yu; Hu, Qing; Reno, John L.; Saykally, Richard J.

    2015-10-01

    The first application of a commercial Terahertz quantum cascade laser (QCL) system for high resolution spectroscopy of supersonic beams is presented. The QCLs exhibited continuous linear voltage tuning over a 2 GHz range about a center frequency of 3.762 THz with ∼1 ppm resolution. A sensitivity of ∼1 ppm fractional absorption was measured with a single pass optical system. Multipass operation at the quantum noise limit of the stressed photoconductor detector would produce a 100-fold improvement.

  17. Quantum Tomography Protocols with Positivity are Compressed Sensing Protocols (Open Access)

    DTIC Science & Technology

    2015-12-08

    ARTICLE OPEN Quantum tomography protocols with positivity are compressed sensing protocols Amir Kalev1, Robert L Kosut2 and Ivan H Deutsch1...Characterising complex quantum systems is a vital task in quantum information science. Quantum tomography, the standard tool used for this purpose, uses a well...designed measurement record to reconstruct quantum states and processes. It is, however, notoriously inefficient. Recently, the classical signal

  18. Quantum Counterfactual Information Transmission Without a Weak Trace

    NASA Astrophysics Data System (ADS)

    Arvidsson Shukur, David; Barnes, Crispin

    The classical theories of communication rely on the assumption that there has to be a flow of particles from Bob to Alice in order for him to send a message to her. We have developed a quantum protocol that allows Alice to perceive Bob's message ``counterfactually''. That is, without Alice receiving any particles that have interacted with Bob. By utilising a setup built on results from interaction-free measurements and the quantum Zeno effect, we outline a communication protocol in which the information travels in the opposite direction of the emitted particles. In comparison to previous attempts on such protocols, this one is such that a weak measurement at the message source would not leave a weak trace that could be detected by Alice's receiver. Whilst some interaction-free schemes require a large number of carefully aligned beam-splitters, our protocol is realisable with two or more beam-splitters. Furthermore, we outline how Alice's obtained classical Fisher information between a weak variable at Bob's laboratory is negligible in our scheme. We demonstrate this protocol by numerically solving the time-dependent Schrödinger Equation (TDSE) for a Hamiltonian that implements this quantum counterfactual phenomenon.

  19. Continuous time quantum random walks in free space

    NASA Astrophysics Data System (ADS)

    Eichelkraut, Toni; Vetter, Christian; Perez-Leija, Armando; Christodoulides, Demetrios; Szameit, Alexander

    2014-05-01

    We show theoretically and experimentally that two-dimensional continuous time coherent random walks are possible in free space, that is, in the absence of any external potential, by properly tailoring the associated initial wave function. These effects are experimentally demonstrated using classical paraxial light. Evidently, the usage of classical beams to explore the dynamics of point-like quantum particles is possible since both phenomena are mathematically equivalent. This in turn makes our approach suitable for the realization of random walks using different quantum particles, including electrons and photons. To study the spatial evolution of a wavefunction theoretically, we consider the one-dimensional paraxial wave equation (i∂z +1/2 ∂x2) Ψ = 0 . Starting with the initially localized wavefunction Ψ (x , 0) = exp [ -x2 / 2σ2 ] J0 (αx) , one can show that the evolution of such Gaussian-apodized Bessel envelopes within a region of validity resembles the probability pattern of a quantum walker traversing a uniform lattice. In order to generate the desired input-field in our experimental setting we shape the amplitude and phase of a collimated light beam originating from a classical HeNe-Laser (633 nm) utilizing a spatial light modulator.

  20. Trapping of quantum particles and light beams by switchable potential wells

    NASA Astrophysics Data System (ADS)

    Sonkin, Eduard; Malomed, Boris A.; Granot, Er'El; Marchewka, Avi

    2010-09-01

    We consider basic dynamical effects in settings based on a pair of local potential traps that may be effectively switched on and off, or suddenly displaced, by means of appropriate control mechanisms, such as scanning tunneling microscopy or photo-switchable quantum dots. The same models, based on the linear Schrödinger equation with time-dependent trapping potentials, apply to the description of optical planar systems designed for the switching of trapped light beams. The analysis is carried out in the analytical form, using exact solutions of the Schrödinger equation. The first dynamical problem considered in this work is the retention of a particle released from a trap which was suddenly turned off, while another local trap was switched on at a distance—immediately or with a delay. In this case, we demonstrate that the maximum of the retention rate is achieved at a specific finite value of the strength of the new trap, and at a finite value of the temporal delay, depending on the distance between the two traps. Another problem is retrapping of the bound particle when the addition of the second trap transforms the single-well setting into a double-well potential (DWP). In that case, we find probabilities for the retrapping into the ground or first excited state of the DWP. We also analyze effects entailed by the application of a kick to a bound particle, the most interesting one being a kick-induced transition between the DWP’s ground and excited states. In the latter case, the largest transition probability is achieved at a particular strength of the kick.

  1. A review on quantum search algorithms

    NASA Astrophysics Data System (ADS)

    Giri, Pulak Ranjan; Korepin, Vladimir E.

    2017-12-01

    The use of superposition of states in quantum computation, known as quantum parallelism, has significant advantage in terms of speed over the classical computation. It is evident from the early invented quantum algorithms such as Deutsch's algorithm, Deutsch-Jozsa algorithm and its variation as Bernstein-Vazirani algorithm, Simon algorithm, Shor's algorithms, etc. Quantum parallelism also significantly speeds up the database search algorithm, which is important in computer science because it comes as a subroutine in many important algorithms. Quantum database search of Grover achieves the task of finding the target element in an unsorted database in a time quadratically faster than the classical computer. We review Grover's quantum search algorithms for a singe and multiple target elements in a database. The partial search algorithm of Grover and Radhakrishnan and its optimization by Korepin called GRK algorithm are also discussed.

  2. Quantum engineering. Confining the state of light to a quantum manifold by engineered two-photon loss.

    PubMed

    Leghtas, Z; Touzard, S; Pop, I M; Kou, A; Vlastakis, B; Petrenko, A; Sliwa, K M; Narla, A; Shankar, S; Hatridge, M J; Reagor, M; Frunzio, L; Schoelkopf, R J; Mirrahimi, M; Devoret, M H

    2015-02-20

    Physical systems usually exhibit quantum behavior, such as superpositions and entanglement, only when they are sufficiently decoupled from a lossy environment. Paradoxically, a specially engineered interaction with the environment can become a resource for the generation and protection of quantum states. This notion can be generalized to the confinement of a system into a manifold of quantum states, consisting of all coherent superpositions of multiple stable steady states. We have confined the state of a superconducting resonator to the quantum manifold spanned by two coherent states of opposite phases and have observed a Schrödinger cat state spontaneously squeeze out of vacuum before decaying into a classical mixture. This experiment points toward robustly encoding quantum information in multidimensional steady-state manifolds. Copyright © 2015, American Association for the Advancement of Science.

  3. Physical realization of quantum teleportation for a nonmaximal entangled state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Yoshiharu; Asano, Masanari; Ohya, Masanori

    2010-08-15

    Recently, Kossakowski and Ohya (K-O) proposed a new teleportation scheme which enables perfect teleportation even for a nonmaximal entangled state [A. Kossakowski and M. Ohya, Infinite Dimensional Analysis Quantum Probability and Related Topics 10, 411 (2007)]. To discuss a physical realization of the K-O scheme, we propose a model based on quantum optics. In our model, we take a superposition of Schroedinger's cat states as an input state being sent from Alice to Bob, and their entangled state is generated by a photon number state through a beam splitter. When the average photon number for our input states is equalmore » to half the number of photons into the beam splitter, our model has high fidelity.« less

  4. Terahertz quantum cascade laser as local oscillator in a heterodyne receiver.

    PubMed

    Hübers, Heinz-Wilhelm; Pavlov, S; Semenov, A; Köhler, R; Mahler, L; Tredicucci, A; Beere, H; Ritchie, D; Linfield, E

    2005-07-25

    Terahertz quantum cascade lasers have been investigated with respect to their performance as a local oscillator in a heterodyne receiver. The beam profile has been measured and transformed in to a close to Gaussian profile resulting in a good matching between the field patterns of the quantum cascade laser and the antenna of a superconducting hot electron bolometric mixer. Noise temperature measurements with the hot electron bolometer and a 2.5 THz quantum cascade laser yielded the same result as with a gas laser as local oscillator.

  5. Quantum counterfactual communication without a weak trace

    NASA Astrophysics Data System (ADS)

    Arvidsson-Shukur, D. R. M.; Barnes, C. H. W.

    2016-12-01

    The classical theories of communication rely on the assumption that there has to be a flow of particles from Bob to Alice in order for him to send a message to her. We develop a quantum protocol that allows Alice to perceive Bob's message "counterfactually"; that is, without Alice receiving any particles that have interacted with Bob. By utilizing a setup built on results from interaction-free measurements, we outline a communication protocol whereby the information travels in the opposite direction of the emitted particles. In comparison to previous attempts on such protocols, this one is such that a weak measurement at the message source would not leave a weak trace that could be detected by Alice's receiver. While some interaction-free schemes require a large number of carefully aligned beam splitters, our protocol is realizable with two or more beam splitters. We demonstrate this protocol by numerically solving the time-dependent Schrödinger equation for a Hamiltonian that implements this quantum counterfactual phenomenon.

  6. Relative and absolute level populations in beam-foil-excited neutral helium

    NASA Technical Reports Server (NTRS)

    Davidson, J.

    1975-01-01

    Relative and absolute populations of 19 levels in beam-foil-excited neutral helium at 0.275 MeV have been measured. The singlet angular-momentum sequences show dependences on principal quantum number consistent with n to the -3rd power, but the triplet sequences do not. Singlet and triplet angular-momentum sequences show similar dependences on level excitation energy. Excitation functions for six representative levels were measured in the range from 0.160 to 0.500 MeV. The absolute level populations increase with energy, whereas the neutral fraction of the beam decreases with energy. Further, the P angular-momentum levels are found to be overpopulated with respect to the S and D levels. The overpopulation decreases with increasing principal quantum number.

  7. Non-Abelian Bosonization and Fractional Quantum Hall Transitions

    NASA Astrophysics Data System (ADS)

    Hui, Aaron; Mulligan, Michael; Kim, Eun-Ah

    A fully satisfying theoretical description for the quantum phase transition between fractional quantum Hall plateaus remains an outstanding problem. Experiments indicate scaling exponents that are not readily obtained in conventional theories. Using insights from duality, we describe a class of quantum critical effective theories that produce qualitatively realistic scaling exponents for the transition. We discuss the implications of our results for the physically-relevant interactions controlling this broad class of quantum critical behavior. Supported by National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1650441.

  8. Single photon emission from charged excitons in CdTe/ZnTe quantum dots

    NASA Astrophysics Data System (ADS)

    Belyaev, K. G.; Rakhlin, M. V.; Sorokin, S. V.; Klimko, G. V.; Gronin, S. V.; Sedova, I. V.; Mukhin, I. S.; Ivanov, S. V.; Toropov, A. A.

    2017-11-01

    We report on micro-photoluminescence studies of individual self-organized CdTe/ZnTe quantum dots intended for single-photon-source applications in a visible spectral range. The quantum dots surface density below 1010 per cm2 was achieved by using a thermally activated regime of molecular beam epitaxy that allowed fabrication of etched mesa-structures containing only a few emitting quantum dots. The single photon emission with the autocorrelation function g(2)(0)<0.2 was detected and identified as recombination of charged excitons in the individual quantum dot.

  9. Generation of Nonclassical Biphoton States through Cascaded Quantum Walks on a Nonlinear Chip

    NASA Astrophysics Data System (ADS)

    Solntsev, Alexander S.; Setzpfandt, Frank; Clark, Alex S.; Wu, Che Wen; Collins, Matthew J.; Xiong, Chunle; Schreiber, Andreas; Katzschmann, Fabian; Eilenberger, Falk; Schiek, Roland; Sohler, Wolfgang; Mitchell, Arnan; Silberhorn, Christine; Eggleton, Benjamin J.; Pertsch, Thomas; Sukhorukov, Andrey A.; Neshev, Dragomir N.; Kivshar, Yuri S.

    2014-07-01

    We demonstrate a nonlinear optical chip that generates photons with reconfigurable nonclassical spatial correlations. We employ a quadratic nonlinear waveguide array, where photon pairs are generated through spontaneous parametric down-conversion and simultaneously spread through quantum walks between the waveguides. Because of the quantum interference of these cascaded quantum walks, the emerging photons can become entangled over multiple waveguide positions. We experimentally observe highly nonclassical photon-pair correlations, confirming the high fidelity of on-chip quantum interference. Furthermore, we demonstrate biphoton-state tunability by spatial shaping and frequency tuning of the classical pump beam.

  10. Long-distance quantum communication with atomic ensembles and linear optics.

    PubMed

    Duan, L M; Lukin, M D; Cirac, J I; Zoller, P

    2001-11-22

    Quantum communication holds promise for absolutely secure transmission of secret messages and the faithful transfer of unknown quantum states. Photonic channels appear to be very attractive for the physical implementation of quantum communication. However, owing to losses and decoherence in the channel, the communication fidelity decreases exponentially with the channel length. Here we describe a scheme that allows the implementation of robust quantum communication over long lossy channels. The scheme involves laser manipulation of atomic ensembles, beam splitters, and single-photon detectors with moderate efficiencies, and is therefore compatible with current experimental technology. We show that the communication efficiency scales polynomially with the channel length, and hence the scheme should be operable over very long distances.

  11. Designing, programming, and optimizing a (small) quantum computer

    NASA Astrophysics Data System (ADS)

    Svore, Krysta

    In 1982, Richard Feynman proposed to use a computer founded on the laws of quantum physics to simulate physical systems. In the more than thirty years since, quantum computers have shown promise to solve problems in number theory, chemistry, and materials science that would otherwise take longer than the lifetime of the universe to solve on an exascale classical machine. The practical realization of a quantum computer requires understanding and manipulating subtle quantum states while experimentally controlling quantum interference. It also requires an end-to-end software architecture for programming, optimizing, and implementing a quantum algorithm on the quantum device hardware. In this talk, we will introduce recent advances in connecting abstract theory to present-day real-world applications through software. We will highlight recent advancement of quantum algorithms and the challenges in ultimately performing a scalable solution on a quantum device.

  12. Femtosecond Beam Sources and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uesaka, Mitsuru

    2004-12-07

    Short particle beam science has been promoted by electron linac and radiation chemistry up to picoseconds. Recently, table-top TW laser enables several kinds of short particle beams and pump-and-probe analyses. 4th generation SR sources aim to generation and application of about 100 fs X-ray. Thus, femtosecond beam science has become one of the important field in advanced accelerator concepts. By using electron linac with photoinjector, about 200 fs single bunch and 3 fs multi-bunches are available. Tens femtoseconds monoenergetic electron bunch is expected by laser plasma cathode. Concerning the electron bunch diagnosis, we have seen remarkable progress in streak camera,more » coherent radiation spectroscopy, fluctuation method and E/O crystal method. Picosecond time-resolved pump-and-probe analysis by synchronizing electron linac and laser is now possible, but the timing jitter and drift due to several fluctuations in electronic devices and environment are still in picoseconds. On the other hand, the synchronization between laser and secondary beam is done passively by an optical beam-splitter in the system based on one TW laser. Therefore, the timing jitter and drift do not intrinsically exist there. The author believes that the femtosecond time-resolved pump-and-probe analysis must be initiated by the laser plasma beam sources. As to the applications, picosecond time-resolved system by electron photoinjector/linac and femtosecond laser are operating in more than 5 facilities for radiation chemistry in the world. Ti:Sapphire-laser-based repetitive pump-and-probe analysis started by time-resolved X-ray diffraction to visualize the atomic motion. Nd:Glass-laser-based single-shot analysis was performed to visualize the laser ablation via the single-shot ion imaging. The author expects that protein dynamics and ultrafast nuclear physics would be the next interesting targets. Monograph titled 'Femtosecond Beam Science' is published by Imperial College Press

  13. Enhancing the photon-extraction efficiency of site-controlled quantum dots by deterministically fabricated microlenses

    NASA Astrophysics Data System (ADS)

    Kaganskiy, Arsenty; Fischbach, Sarah; Strittmatter, André; Rodt, Sven; Heindel, Tobias; Reitzenstein, Stephan

    2018-04-01

    We report on the realization of scalable single-photon sources (SPSs) based on single site-controlled quantum dots (SCQDs) and deterministically fabricated microlenses. The fabrication process comprises the buried-stressor growth technique complemented with low-temperature in-situ electron-beam lithography for the integration of SCQDs into microlens structures with high yield and high alignment accuracy. The microlens-approach leads to a broadband enhancement of the photon-extraction efficiency of up to (21 ± 2)% and a high suppression of multi-photon events with g (2)(τ = 0) < 0.06 without background subtraction. The demonstrated combination of site-controlled growth of QDs and in-situ electron-beam lithography is relevant for arrays of efficient SPSs which, can be applied in photonic quantum circuits and advanced quantum computation schemes.

  14. Gaussian private quantum channel with squeezed coherent states.

    PubMed

    Jeong, Kabgyun; Kim, Jaewan; Lee, Su-Yong

    2015-09-14

    While the objective of conventional quantum key distribution (QKD) is to secretly generate and share the classical bits concealed in the form of maximally mixed quantum states, that of private quantum channel (PQC) is to secretly transmit individual quantum states concealed in the form of maximally mixed states using shared one-time pad and it is called Gaussian private quantum channel (GPQC) when the scheme is in the regime of continuous variables. We propose a GPQC enhanced with squeezed coherent states (GPQCwSC), which is a generalization of GPQC with coherent states only (GPQCo) [Phys. Rev. A 72, 042313 (2005)]. We show that GPQCwSC beats the GPQCo for the upper bound on accessible information. As a subsidiary example, it is shown that the squeezed states take an advantage over the coherent states against a beam splitting attack in a continuous variable QKD. It is also shown that a squeezing operation can be approximated as a superposition of two different displacement operations in the small squeezing regime.

  15. Quantum Logic: Approach a Child's Environment from "Inside."

    ERIC Educational Resources Information Center

    Rhodes, William C.

    1987-01-01

    With the advent of quantum mechanics, physics has merged with psychology, and cognitive science has been revolutionized. Quantum logic supports the notion of influencing the environment by increasing the child's capacity for cognitive processing. This special educational approach is theoretically more effective than social and political…

  16. Complex systems and health behavior change: insights from cognitive science.

    PubMed

    Orr, Mark G; Plaut, David C

    2014-05-01

    To provide proof-of-concept that quantum health behavior can be instantiated as a computational model that is informed by cognitive science, the Theory of Reasoned Action, and quantum health behavior theory. We conducted a synthetic review of the intersection of quantum health behavior change and cognitive science. We conducted simulations, using a computational model of quantum health behavior (a constraint satisfaction artificial neural network) and tested whether the model exhibited quantum-like behavior. The model exhibited clear signs of quantum-like behavior. Quantum health behavior can be conceptualized as constraint satisfaction: a mitigation between current behavioral state and the social contexts in which it operates. We outlined implications for moving forward with computational models of both quantum health behavior and health behavior in general.

  17. Demonstration and implications when 50% beam combiners can behave as 0% or 100% reflector/transmitter inside some interferometers

    NASA Astrophysics Data System (ADS)

    Roychoudhuri, ChandraSekhar

    2017-08-01

    The purpose of this paper is to embolden students to raise basic questions regarding the feasibility of "indivisible single photon interference". We do this by presenting experimental results of well-known classical Mach-Zehnder interferometer (MZI) under two different conditions of beam alignment. We routinely do such experiments in our laboratories. In the first case, we align the light beams on the beam combiner (BC) with their Poynting vectors as perfectly collinear. The 50% dielectric boundary can now transmit 100% of the energy of both the beams into either one of the two MZI output ports, depending upon the relative phase between the two beams combined on the BC from the opposite directions. The dielectric boundary layer actively re-directs the energy from one beam to the other. This is pure classical superposition effect. In the second case, we combine the two beams on the BC with a small intersecting angle. Now the BC functions as a 50% beam splitter to both the beams. One can see spatial fringes as the relative phase varies with spatial distance by placing a photo detector array after the BC. At very low intensity, the quantum properties of the photo detector will become apparent because the photo electrons are discrete and are always bound quantum mechanically to its host molecular assembly; and not because light is definitely quantized. Students can learn to distinguish the pedagogical difference between the Superposition Principle (linear sum of wave amplitudes) and the Superposition Effect (square modulus of the sum of all the wave-induced stimulations) as observable intensity variations due to interaction with materials, classical or quantum.

  18. Intrinsic retrieval efficiency for quantum memories: A three-dimensional theory of light interaction with an atomic ensemble

    NASA Astrophysics Data System (ADS)

    Gujarati, Tanvi P.; Wu, Yukai; Duan, Luming

    2018-03-01

    Duan-Lukin-Cirac-Zoller quantum repeater protocol, which was proposed to realize long distance quantum communication, requires usage of quantum memories. Atomic ensembles interacting with optical beams based on off-resonant Raman scattering serve as convenient on-demand quantum memories. Here, a complete free space, three-dimensional theory of the associated read and write process for this quantum memory is worked out with the aim of understanding intrinsic retrieval efficiency. We develop a formalism to calculate the transverse mode structure for the signal and the idler photons and use the formalism to study the intrinsic retrieval efficiency under various configurations. The effects of atomic density fluctuations and atomic motion are incorporated by numerically simulating this system for a range of realistic experimental parameters. We obtain results that describe the variation in the intrinsic retrieval efficiency as a function of the memory storage time for skewed beam configuration at a finite temperature, which provides valuable information for optimization of the retrieval efficiency in experiments.

  19. Connection between the two branches of the quantum two-stream instability across the k space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bret, A.; Haas, F.

    2010-05-15

    The stability of two quantum counterstreaming electron beams is investigated within the quantum plasma fluid equations for arbitrarily oriented wave vectors k. The analysis reveals that the two quantum two-stream unstable branches are indeed connected by a continuum of unstable modes with oblique wave vectors. Using the longitudinal approximation, the stability domain for any k is analytically explained, together with the growth rate.

  20. Remote quantum entanglement between two micromechanical oscillators.

    PubMed

    Riedinger, Ralf; Wallucks, Andreas; Marinković, Igor; Löschnauer, Clemens; Aspelmeyer, Markus; Hong, Sungkun; Gröblacher, Simon

    2018-04-01

    Entanglement, an essential feature of quantum theory that allows for inseparable quantum correlations to be shared between distant parties, is a crucial resource for quantum networks 1 . Of particular importance is the ability to distribute entanglement between remote objects that can also serve as quantum memories. This has been previously realized using systems such as warm 2,3 and cold atomic vapours 4,5 , individual atoms 6 and ions 7,8 , and defects in solid-state systems 9-11 . Practical communication applications require a combination of several advantageous features, such as a particular operating wavelength, high bandwidth and long memory lifetimes. Here we introduce a purely micromachined solid-state platform in the form of chip-based optomechanical resonators made of nanostructured silicon beams. We create and demonstrate entanglement between two micromechanical oscillators across two chips that are separated by 20 centimetres . The entangled quantum state is distributed by an optical field at a designed wavelength near 1,550 nanometres. Therefore, our system can be directly incorporated in a realistic fibre-optic quantum network operating in the conventional optical telecommunication band. Our results are an important step towards the development of large-area quantum networks based on silicon photonics.

  1. Cold molecules: Progress in quantum engineering of chemistry and quantum matter

    NASA Astrophysics Data System (ADS)

    Bohn, John L.; Rey, Ana Maria; Ye, Jun

    2017-09-01

    Cooling atoms to ultralow temperatures has produced a wealth of opportunities in fundamental physics, precision metrology, and quantum science. The more recent application of sophisticated cooling techniques to molecules, which has been more challenging to implement owing to the complexity of molecular structures, has now opened the door to the longstanding goal of precisely controlling molecular internal and external degrees of freedom and the resulting interaction processes. This line of research can leverage fundamental insights into how molecules interact and evolve to enable the control of reaction chemistry and the design and realization of a range of advanced quantum materials.

  2. Quantum walks and wavepacket dynamics on a lattice with twisted photons.

    PubMed

    Cardano, Filippo; Massa, Francesco; Qassim, Hammam; Karimi, Ebrahim; Slussarenko, Sergei; Paparo, Domenico; de Lisio, Corrado; Sciarrino, Fabio; Santamato, Enrico; Boyd, Robert W; Marrucci, Lorenzo

    2015-03-01

    The "quantum walk" has emerged recently as a paradigmatic process for the dynamic simulation of complex quantum systems, entanglement production and quantum computation. Hitherto, photonic implementations of quantum walks have mainly been based on multipath interferometric schemes in real space. We report the experimental realization of a discrete quantum walk taking place in the orbital angular momentum space of light, both for a single photon and for two simultaneous photons. In contrast to previous implementations, the whole process develops in a single light beam, with no need of interferometers; it requires optical resources scaling linearly with the number of steps; and it allows flexible control of input and output superposition states. Exploiting the latter property, we explored the system band structure in momentum space and the associated spin-orbit topological features by simulating the quantum dynamics of Gaussian wavepackets. Our demonstration introduces a novel versatile photonic platform for quantum simulations.

  3. Coherent Spin Amplification Using a Beam Splitter

    NASA Astrophysics Data System (ADS)

    Yan, Chengyu; Kumar, Sanjeev; Thomas, Kalarikad; See, Patrick; Farrer, Ian; Ritchie, David; Griffiths, Jonathan; Jones, Geraint; Pepper, Michael

    2018-03-01

    We report spin amplification using a capacitive beam splitter in n -type GaAs where the spin polarization is monitored via a transverse electron focusing measurement. It is shown that partially spin-polarized current injected by the emitter can be precisely controlled, and the spin polarization associated with it can be amplified by the beam splitter, such that a considerably high spin polarization of around 50% can be obtained. Additionally, the spin remains coherent as shown by the observation of quantum interference. Our results illustrate that spin-polarization amplification can be achieved in materials without strong spin-orbit interaction.

  4. Quantum point contacts for electrons on H-Si(111) surfaces using a Ga focused-ion beam for direct-write implant lithography

    NASA Astrophysics Data System (ADS)

    Robertson, Luke D.; Kane, B. E.

    Quantum point contacts (QPCs) realized in materials with anisotropic electron mass, such as Si, may exhibit valley filter phenomena leading to extreme sensitivity to single donor occupancy, and thus are of interest to measurement schemes for donor-based quantum information processing. To this end, we have developed ambipolar devices on a H-Si(111):Si(100)/SiO2 flip-chip assembly which utilize in-plane, degenerately doped n+ (P) and p+ (B) contacts to probe transport in a 2D electron system (2DES). In addition to providing electrostatic isolation of carriers, these p-type contacts can be used as lateral depletion gates to modulate the 2DES conductance, and if extended to the nanoscale can lead to 1D confinement and quantized conductance of the 2DES. In this talk, I will describe our efforts to use a Ga focused-ion beam for direct-write implant lithography to pattern QPCs and Ga nanowires on H-Si(111) surfaces. I will present low temperature (4.2K) conductance data collected on 30nm Ga nanowires to demonstrate their effectiveness as lateral depletion gates, and discuss on going measurements to confine and modulate the conductance of the 2DES using Ga QPCs.

  5. Towards a Quantum Memory assisted MDI-QKD node

    NASA Astrophysics Data System (ADS)

    Namazi, Mehdi; Vallone, Giuseppe; Jordaan, Bertus; Goham, Connor; Shahrokhshahi, Reihaneh; Villoresi, Paolo; Figueroa, Eden

    2017-04-01

    The creation of large quantum network that permits the communication of quantum states and the secure distribution of cryptographic keys requires multiple operational quantum memories. In this work we present our progress towards building a prototypical quantum network that performs the memory-assisted measurement device independent QKD protocol. Currently our network combines the quantum part of the BB84 protocol with room-temperature quantum memory operation, while still maintaining relevant quantum bit error rates for single-photon level operation. We will also discuss our efforts to use a network of two room temperature quantum memories, receiving, storing and transforming randomly polarized photons in order to realize Bell state measurements. The work was supported by the US-Navy Office of Naval Research, Grant Number N00141410801, the National Science Foundation, Grant Number PHY-1404398 and the Simons Foundation, Grant Number SBF241180.

  6. QUANTUM MECHANICS. Quantum squeezing of motion in a mechanical resonator.

    PubMed

    Wollman, E E; Lei, C U; Weinstein, A J; Suh, J; Kronwald, A; Marquardt, F; Clerk, A A; Schwab, K C

    2015-08-28

    According to quantum mechanics, a harmonic oscillator can never be completely at rest. Even in the ground state, its position will always have fluctuations, called the zero-point motion. Although the zero-point fluctuations are unavoidable, they can be manipulated. Using microwave frequency radiation pressure, we have manipulated the thermal fluctuations of a micrometer-scale mechanical resonator to produce a stationary quadrature-squeezed state with a minimum variance of 0.80 times that of the ground state. We also performed phase-sensitive, back-action evading measurements of a thermal state squeezed to 1.09 times the zero-point level. Our results are relevant to the quantum engineering of states of matter at large length scales, the study of decoherence of large quantum systems, and for the realization of ultrasensitive sensing of force and motion. Copyright © 2015, American Association for the Advancement of Science.

  7. Unforgeable noise-tolerant quantum tokens

    PubMed Central

    Pastawski, Fernando; Yao, Norman Y.; Jiang, Liang; Lukin, Mikhail D.; Cirac, J. Ignacio

    2012-01-01

    The realization of devices that harness the laws of quantum mechanics represents an exciting challenge at the interface of modern technology and fundamental science. An exemplary paragon of the power of such quantum primitives is the concept of “quantum money” [Wiesner S (1983) ACM SIGACT News 15:78–88]. A dishonest holder of a quantum bank note will invariably fail in any counterfeiting attempts; indeed, under assumptions of ideal measurements and decoherence-free memories such security is guaranteed by the no-cloning theorem. In any practical situation, however, noise, decoherence, and operational imperfections abound. Thus, the development of secure “quantum money”-type primitives capable of tolerating realistic infidelities is of both practical and fundamental importance. Here, we propose a novel class of such protocols and demonstrate their tolerance to noise; moreover, we prove their rigorous security by determining tight fidelity thresholds. Our proposed protocols require only the ability to prepare, store, and measure single quantum bit memories, making their experimental realization accessible with current technologies.

  8. Quantum Computing

    DTIC Science & Technology

    1998-04-01

    information representation and processing technology, although faster than the wheels and gears of the Charles Babbage computation machine, is still in...the same computational complexity class as the Babbage machine, with bits of information represented by entities which obey classical (non-quantum...nuclear double resonances Charles M Bowden and Jonathan P. Dowling Weapons Sciences Directorate, AMSMI-RD-WS-ST Missile Research, Development, and

  9. Growth and optical characteristics of InAs quantum dot structures with tunnel injection quantum wells for 1.55 μ m high-speed lasers

    NASA Astrophysics Data System (ADS)

    Bauer, Sven; Sichkovskyi, Vitalii; Reithmaier, Johann Peter

    2018-06-01

    InP based lattice matched tunnel injection structures consisting of a InGaAs quantum well, InAlGaAs barrier and InAs quantum dots designed to emit at 1.55 μ m were grown by molecular beam epitaxy and investigated by photoluminescence spectroscopy and atomic force microscopy. The strong influence of quantum well and barrier thicknesses on the samples emission properties at low and room temperatures was investigated. The phenomenon of a decreased photoluminescence linewidth of tunnel injection structures compared to a reference InAs quantum dots sample could be explained by the selection of the emitting dots through the tunneling process. Morphological investigations have not revealed any effect of the injector well on the dot formation and their size distribution. The optimum TI structure design could be defined.

  10. Long-term stable coherent beam combination of independent femtosecond Yb-fiber lasers.

    PubMed

    Tian, Haochen; Song, Youjian; Meng, Fei; Fang, Zhanjun; Hu, Minglie; Wang, Chingyue

    2016-11-15

    We demonstrate coherent beam combination between independent femtosecond Yb-fiber lasers by using the active phase locking of relative pulse timing and the carrier envelope phase based on a balanced optical cross-correlator and extracavity acoustic optical frequency shifter, respectively. The broadband quantum noise of femtosecond fiber lasers is suppressed via precise cavity dispersion control, instead of complicated high-bandwidth phase-locked loop design. Because of reduced quantum noise and a simplified phase-locked loop, stable phase locking that lasts for 1 hour has been obtained, as verified via both spectral interferometry and far-field beam interferometry. The approach can be applied to coherent pulse synthesis, as well as to remote frequency comb connection, allowing a practical all-fiber configuration.

  11. Reliability assessment of multiple quantum well avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Yun, Ilgu; Menkara, Hicham M.; Wang, Yang; Oguzman, Isamil H.; Kolnik, Jan; Brennan, Kevin F.; May, Gray S.; Wagner, Brent K.; Summers, Christopher J.

    1995-01-01

    The reliability of doped-barrier AlGaAs/GsAs multi-quantum well avalanche photodiodes fabricated by molecular beam epitaxy is investigated via accelerated life tests. Dark current and breakdown voltage were the parameters monitored. The activation energy of the degradation mechanism and median device lifetime were determined. Device failure probability as a function of time was computed using the lognormal model. Analysis using the electron beam induced current method revealed the degradation to be caused by ionic impurities or contamination in the passivation layer.

  12. Compressed Sensing Quantum Process Tomography for Superconducting Quantum Gates

    NASA Astrophysics Data System (ADS)

    Rodionov, Andrey

    An important challenge in quantum information science and quantum computing is the experimental realization of high-fidelity quantum operations on multi-qubit systems. Quantum process tomography (QPT) is a procedure devised to fully characterize a quantum operation. We first present the results of the estimation of the process matrix for superconducting multi-qubit quantum gates using the full data set employing various methods: linear inversion, maximum likelihood, and least-squares. To alleviate the problem of exponential resource scaling needed to characterize a multi-qubit system, we next investigate a compressed sensing (CS) method for QPT of two-qubit and three-qubit quantum gates. Using experimental data for two-qubit controlled-Z gates, taken with both Xmon and superconducting phase qubits, we obtain estimates for the process matrices with reasonably high fidelities compared to full QPT, despite using significantly reduced sets of initial states and measurement configurations. We show that the CS method still works when the amount of data is so small that the standard QPT would have an underdetermined system of equations. We also apply the CS method to the analysis of the three-qubit Toffoli gate with simulated noise, and similarly show that the method works well for a substantially reduced set of data. For the CS calculations we use two different bases in which the process matrix is approximately sparse (the Pauli-error basis and the singular value decomposition basis), and show that the resulting estimates of the process matrices match with reasonably high fidelity. For both two-qubit and three-qubit gates, we characterize the quantum process by its process matrix and average state fidelity, as well as by the corresponding standard deviation defined via the variation of the state fidelity for different initial states. We calculate the standard deviation of the average state fidelity both analytically and numerically, using a Monte Carlo method. Overall

  13. Highly sensitive beam steering with plasmonic antenna

    PubMed Central

    Rui, Guanghao; Zhan, Qiwen

    2014-01-01

    In this work, we design and study a highly sensitive beam steering device that integrates a spiral plasmonic antenna with a subwavelength metallic waveguide. The short effective wavelength of the surface plasmon polaritons (SPPs) mode supported by the metallic waveguide is exploited to dramatically miniaturize the device and improve the sensitivity of the beam steering. Through introducing a tiny displacement of feed point with respect to the geometrical center of the spiral plasmonic antenna, the direction of the radiation can be steered at considerably high angles. Simulation results show that steering angles of 8°, 17° and 34° are obtainable for a displacement of 50 nm, 100 nm and 200 nm, respectively. Benefiting from the reduced device size and the shorter SPP wavelength, the beam steering sensitivity of the beam steering is improved by 10-fold compared with the case reported previously. This miniature plasmonic beam steering device may find many potential applications in quantum optical information processing and integrated photonic circuits. PMID:25091405

  14. Coherence and measurement in quantum thermodynamics

    PubMed Central

    Kammerlander, P.; Anders, J.

    2016-01-01

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed. PMID:26916503

  15. Coherence and measurement in quantum thermodynamics.

    PubMed

    Kammerlander, P; Anders, J

    2016-02-26

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed.

  16. Coherence and measurement in quantum thermodynamics

    NASA Astrophysics Data System (ADS)

    Kammerlander, P.; Anders, J.

    2016-02-01

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed.

  17. Satellite-Relayed Intercontinental Quantum Network.

    PubMed

    Liao, Sheng-Kai; Cai, Wen-Qi; Handsteiner, Johannes; Liu, Bo; Yin, Juan; Zhang, Liang; Rauch, Dominik; Fink, Matthias; Ren, Ji-Gang; Liu, Wei-Yue; Li, Yang; Shen, Qi; Cao, Yuan; Li, Feng-Zhi; Wang, Jian-Feng; Huang, Yong-Mei; Deng, Lei; Xi, Tao; Ma, Lu; Hu, Tai; Li, Li; Liu, Nai-Le; Koidl, Franz; Wang, Peiyuan; Chen, Yu-Ao; Wang, Xiang-Bin; Steindorfer, Michael; Kirchner, Georg; Lu, Chao-Yang; Shu, Rong; Ursin, Rupert; Scheidl, Thomas; Peng, Cheng-Zhi; Wang, Jian-Yu; Zeilinger, Anton; Pan, Jian-Wei

    2018-01-19

    We perform decoy-state quantum key distribution between a low-Earth-orbit satellite and multiple ground stations located in Xinglong, Nanshan, and Graz, which establish satellite-to-ground secure keys with ∼kHz rate per passage of the satellite Micius over a ground station. The satellite thus establishes a secure key between itself and, say, Xinglong, and another key between itself and, say, Graz. Then, upon request from the ground command, Micius acts as a trusted relay. It performs bitwise exclusive or operations between the two keys and relays the result to one of the ground stations. That way, a secret key is created between China and Europe at locations separated by 7600 km on Earth. These keys are then used for intercontinental quantum-secured communication. This was, on the one hand, the transmission of images in a one-time pad configuration from China to Austria as well as from Austria to China. Also, a video conference was performed between the Austrian Academy of Sciences and the Chinese Academy of Sciences, which also included a 280 km optical ground connection between Xinglong and Beijing. Our work clearly confirms the Micius satellite as a robust platform for quantum key distribution with different ground stations on Earth, and points towards an efficient solution for an ultralong-distance global quantum network.

  18. Satellite-Relayed Intercontinental Quantum Network

    NASA Astrophysics Data System (ADS)

    Liao, Sheng-Kai; Cai, Wen-Qi; Handsteiner, Johannes; Liu, Bo; Yin, Juan; Zhang, Liang; Rauch, Dominik; Fink, Matthias; Ren, Ji-Gang; Liu, Wei-Yue; Li, Yang; Shen, Qi; Cao, Yuan; Li, Feng-Zhi; Wang, Jian-Feng; Huang, Yong-Mei; Deng, Lei; Xi, Tao; Ma, Lu; Hu, Tai; Li, Li; Liu, Nai-Le; Koidl, Franz; Wang, Peiyuan; Chen, Yu-Ao; Wang, Xiang-Bin; Steindorfer, Michael; Kirchner, Georg; Lu, Chao-Yang; Shu, Rong; Ursin, Rupert; Scheidl, Thomas; Peng, Cheng-Zhi; Wang, Jian-Yu; Zeilinger, Anton; Pan, Jian-Wei

    2018-01-01

    We perform decoy-state quantum key distribution between a low-Earth-orbit satellite and multiple ground stations located in Xinglong, Nanshan, and Graz, which establish satellite-to-ground secure keys with ˜kHz rate per passage of the satellite Micius over a ground station. The satellite thus establishes a secure key between itself and, say, Xinglong, and another key between itself and, say, Graz. Then, upon request from the ground command, Micius acts as a trusted relay. It performs bitwise exclusive or operations between the two keys and relays the result to one of the ground stations. That way, a secret key is created between China and Europe at locations separated by 7600 km on Earth. These keys are then used for intercontinental quantum-secured communication. This was, on the one hand, the transmission of images in a one-time pad configuration from China to Austria as well as from Austria to China. Also, a video conference was performed between the Austrian Academy of Sciences and the Chinese Academy of Sciences, which also included a 280 km optical ground connection between Xinglong and Beijing. Our work clearly confirms the Micius satellite as a robust platform for quantum key distribution with different ground stations on Earth, and points towards an efficient solution for an ultralong-distance global quantum network.

  19. Photon-number statistics of twin beams: Self-consistent measurement, reconstruction, and properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peřina, Jan Jr.; Haderka, Ondřej; Michálek, Václav

    2014-12-04

    A method for the determination of photon-number statistics of twin beams using the joint signal-idler photocount statistics obtained by an iCCD camera is described. It also provides absolute quantum detection efficiency of the camera. Using the measured photocount statistics, quasi-distributions of integrated intensities are obtained. They attain negative values occurring in characteristic strips an a consequence of pairing of photons in twin beams.

  20. Quantum walks and wavepacket dynamics on a lattice with twisted photons

    PubMed Central

    Cardano, Filippo; Massa, Francesco; Qassim, Hammam; Karimi, Ebrahim; Slussarenko, Sergei; Paparo, Domenico; de Lisio, Corrado; Sciarrino, Fabio; Santamato, Enrico; Boyd, Robert W.; Marrucci, Lorenzo

    2015-01-01

    The “quantum walk” has emerged recently as a paradigmatic process for the dynamic simulation of complex quantum systems, entanglement production and quantum computation. Hitherto, photonic implementations of quantum walks have mainly been based on multipath interferometric schemes in real space. We report the experimental realization of a discrete quantum walk taking place in the orbital angular momentum space of light, both for a single photon and for two simultaneous photons. In contrast to previous implementations, the whole process develops in a single light beam, with no need of interferometers; it requires optical resources scaling linearly with the number of steps; and it allows flexible control of input and output superposition states. Exploiting the latter property, we explored the system band structure in momentum space and the associated spin-orbit topological features by simulating the quantum dynamics of Gaussian wavepackets. Our demonstration introduces a novel versatile photonic platform for quantum simulations. PMID:26601157

  1. Quantum entanglement of high angular momenta.

    PubMed

    Fickler, Robert; Lapkiewicz, Radek; Plick, William N; Krenn, Mario; Schaeff, Christoph; Ramelow, Sven; Zeilinger, Anton

    2012-11-02

    Single photons with helical phase structures may carry a quantized amount of orbital angular momentum (OAM), and their entanglement is important for quantum information science and fundamental tests of quantum theory. Because there is no theoretical upper limit on how many quanta of OAM a single photon can carry, it is possible to create entanglement between two particles with an arbitrarily high difference in quantum number. By transferring polarization entanglement to OAM with an interferometric scheme, we generate and verify entanglement between two photons differing by 600 in quantum number. The only restrictive factors toward higher numbers are current technical limitations. We also experimentally demonstrate that the entanglement of very high OAM can improve the sensitivity of angular resolution in remote sensing.

  2. Low frequency waves in streaming quantum dusty plasmas

    NASA Astrophysics Data System (ADS)

    Rozina, Ch.; Jamil, M.; Khan, Arroj A.; Zeba, I.; Saman, J.

    2017-09-01

    The influence of quantum effects on the excitation of two instabilities, namely quantum dust-acoustic and quantum dust-lower-hybrid waves due to the free streaming of ion/dust particles in uniformly magnetized dusty plasmas has been investigated using a quantum hydrodynamic model. We have obtained dispersion relations under some particular conditions applied on streaming ions and two contrastreaming dust particle beams at equilibrium and have analyzed the growth rates graphically. We have shown that with the increase of both the electron number density and the streaming speed of ion there is enhancement in the instability due to the fact that the dense plasma particle system with more energetic species having a high speed results in the increase of the growth rate in the electrostatic mode. The application of this work has been pointed out for laboratory as well as for space dusty plasmas.

  3. Comparison of blue-green response between transmission-mode GaAsP- and GaAs-based photocathodes grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Gang-Cheng, Jiao; Zheng-Tang, Liu; Hui, Guo; Yi-Jun, Zhang

    2016-04-01

    In order to develop the photodetector for effective blue-green response, the 18-mm-diameter vacuum image tube combined with the transmission-mode Al0.7Ga0.3As0.9 P 0.1/GaAs0.9 P 0.1 photocathode grown by molecular beam epitaxy is tentatively fabricated. A comparison of photoelectric property, spectral characteristic and performance parameter between the transmission-mode GaAsP-based and blue-extended GaAs-based photocathodes shows that the GaAsP-based photocathode possesses better absorption and higher quantum efficiency in the blue-green waveband, combined with a larger surface electron escape probability. Especially, the quantum efficiency at 532 nm for the GaAsP-based photocathode achieves as high as 59%, nearly twice that for the blue-extended GaAs-based one, which would be more conducive to the underwater range-gated imaging based on laser illumination. Moreover, the simulation results show that the favorable blue-green response can be achieved by optimizing the emission-layer thickness in a range of 0.4 μm-0.6 μm. Project supported by the National Natural Science Foundation of China (Grant No. 61301023) and the Science and Technology on Low-Light-Level Night Vision Laboratory Foundation, China (Grant No. BJ2014001).

  4. Noise-tolerant parity learning with one quantum bit

    NASA Astrophysics Data System (ADS)

    Park, Daniel K.; Rhee, June-Koo K.; Lee, Soonchil

    2018-03-01

    Demonstrating quantum advantage with less powerful but more realistic devices is of great importance in modern quantum information science. Recently, a significant quantum speedup was achieved in the problem of learning a hidden parity function with noise. However, if all data qubits at the query output are completely depolarized, the algorithm fails. In this work, we present a quantum parity learning algorithm that exhibits quantum advantage as long as one qubit is provided with nonzero polarization in each query. In this scenario, the quantum parity learning naturally becomes deterministic quantum computation with one qubit. Then the hidden parity function can be revealed by performing a set of operations that can be interpreted as measuring nonlocal observables on the auxiliary result qubit having nonzero polarization and each data qubit. We also discuss the source of the quantum advantage in our algorithm from the resource-theoretic point of view.

  5. Amplification of radar and lidar signatures using quantum sensors

    NASA Astrophysics Data System (ADS)

    Lanzagorta, Marco

    2013-05-01

    One of the major scientific thrusts from recent years has been to try to harness quantum phenomena to dramat­ ically increase the performance of a wide variety of classical devices. These advances in quantum information science have had a considerable impact on the development of photonic-based quantum sensors. Even though quantum radar and quantum lidar remain theoretical proposals, preliminary results suggest that these sensors have the potential of becoming disruptive technologies able to revolutionize reconnaissance systems. In this paper we will discuss how quantum entanglement can be exploited to increase the radar and lidar signature of rectangular targets. In particular, we will show how the effective visibility of the target is increased if observed with an entangled multi-photon quantum sensor.

  6. Logarithmic singularities and quantum oscillations in magnetically doped topological insulators

    NASA Astrophysics Data System (ADS)

    Nandi, D.; Sodemann, Inti; Shain, K.; Lee, G. H.; Huang, K.-F.; Chang, Cui-Zu; Ou, Yunbo; Lee, S. P.; Ward, J.; Moodera, J. S.; Kim, P.; Yacoby, A.

    2018-02-01

    We report magnetotransport measurements on magnetically doped (Bi,Sb ) 2Te3 films grown by molecular beam epitaxy. In Hall bar devices, we observe logarithmic dependence of transport coefficients in temperature and bias voltage which can be understood to arise from electron-electron interaction corrections to the conductivity and self-heating. Submicron scale devices exhibit intriguing quantum oscillations at high magnetic fields with dependence on bias voltage. The observed quantum oscillations can be attributed to bulk and surface transport.

  7. Non-blinking quantum dot with a plasmonic nanoshell resonator

    NASA Astrophysics Data System (ADS)

    Ji, Botao; Giovanelli, Emerson; Habert, Benjamin; Spinicelli, Piernicola; Nasilowski, Michel; Xu, Xiangzhen; Lequeux, Nicolas; Hugonin, Jean-Paul; Marquier, Francois; Greffet, Jean-Jacques; Dubertret, Benoit

    2015-02-01

    Colloidal semiconductor quantum dots are fluorescent nanocrystals exhibiting exceptional optical properties, but their emission intensity strongly depends on their charging state and local environment. This leads to blinking at the single-particle level or even complete fluorescence quenching, and limits the applications of quantum dots as fluorescent particles. Here, we show that a single quantum dot encapsulated in a silica shell coated with a continuous gold nanoshell provides a system with a stable and Poissonian emission at room temperature that is preserved regardless of drastic changes in the local environment. This novel hybrid quantum dot/silica/gold structure behaves as a plasmonic resonator with a strong Purcell factor, in very good agreement with simulations. The gold nanoshell also acts as a shield that protects the quantum dot fluorescence and enhances its resistance to high-power photoexcitation or high-energy electron beams. This plasmonic fluorescent resonator opens the way to a new family of plasmonic nanoemitters with robust optical properties.

  8. Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control.

    PubMed

    Sinclair, Neil; Saglamyurek, Erhan; Mallahzadeh, Hassan; Slater, Joshua A; George, Mathew; Ricken, Raimund; Hedges, Morgan P; Oblak, Daniel; Simon, Christoph; Sohler, Wolfgang; Tittel, Wolfgang

    2014-08-01

    Future multiphoton applications of quantum optics and quantum information science require quantum memories that simultaneously store many photon states, each encoded into a different optical mode, and enable one to select the mapping between any input and a specific retrieved mode during storage. Here we show, with the example of a quantum repeater, how to employ spectrally multiplexed states and memories with fixed storage times that allow such mapping between spectral modes. Furthermore, using a Ti:Tm:LiNbO_{3} waveguide cooled to 3 K, a phase modulator, and a spectral filter, we demonstrate storage followed by the required feed-forward-controlled frequency manipulation with time-bin qubits encoded into up to 26 multiplexed spectral modes and 97% fidelity.

  9. Compact beam splitters in coupled waveguides using shortcuts to adiabaticity

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Wen, Rui-Dan; Shi, Jie-Long; Tseng, Shuo-Yen

    2018-04-01

    There are various works on adiabatic (three) waveguide coupler devices but most are focused on the quantum optical analogies and the physics itself. We successfully apply shortcuts to adiabaticity techniques to the coupled waveguide system with a suitable length for integrated optics devices. Especially, the counter-diabatic driving protocol followed by unitary transformation overcomes the previously unrealistic implemention, and is used to design feasible and robust 1 × 2 and 1 × 3 beam splitters for symmetric and asymmetric three waveguide couplers. Numerical simulations with the beam propagation method demonstrate that these shortcut designs for beam splitters are shorter than the adiabatic ones, and also have a better tolerance than parallel waveguides resonant beam splitters with respect to spacing errors and wavelength variation.

  10. Experimental verification of multidimensional quantum steering

    NASA Astrophysics Data System (ADS)

    Li, Che-Ming; Lo, Hsin-Pin; Chen, Liang-Yu; Yabushita, Atsushi

    2018-03-01

    Quantum steering enables one party to communicate with another remote party even if the sender is untrusted. Such characteristics of quantum systems not only provide direct applications to quantum information science, but are also conceptually important for distinguishing between quantum and classical resources. While concrete illustrations of steering have been shown in several experiments, quantum steering has not been certified for higher dimensional systems. Here, we introduce a simple method to experimentally certify two different kinds of quantum steering: Einstein-Podolsky-Rosen (EPR) steering and single-system (SS) steering (i.e., temporal steering), for dimensionality (d) up to d = 16. The former reveals the steerability among bipartite systems, whereas the latter manifests itself in single quantum objects. We use multidimensional steering witnesses to verify EPR steering of polarization-entangled pairs and SS steering of single photons. The ratios between the measured witnesses and the maximum values achieved by classical mimicries are observed to increase with d for both EPR and SS steering. The designed scenario offers a new method to study further the genuine multipartite steering of large dimensionality and potential uses in quantum information processing.

  11. Some Thoughts Regarding Practical Quantum Computing

    NASA Astrophysics Data System (ADS)

    Ghoshal, Debabrata; Gomez, Richard; Lanzagorta, Marco; Uhlmann, Jeffrey

    2006-03-01

    Quantum computing has become an important area of research in computer science because of its potential to provide more efficient algorithmic solutions to certain problems than are possible with classical computing. The ability of performing parallel operations over an exponentially large computational space has proved to be the main advantage of the quantum computing model. In this regard, we are particularly interested in the potential applications of quantum computers to enhance real software systems of interest to the defense, industrial, scientific and financial communities. However, while much has been written in popular and scientific literature about the benefits of the quantum computational model, several of the problems associated to the practical implementation of real-life complex software systems in quantum computers are often ignored. In this presentation we will argue that practical quantum computation is not as straightforward as commonly advertised, even if the technological problems associated to the manufacturing and engineering of large-scale quantum registers were solved overnight. We will discuss some of the frequently overlooked difficulties that plague quantum computing in the areas of memories, I/O, addressing schemes, compilers, oracles, approximate information copying, logical debugging, error correction and fault-tolerant computing protocols.

  12. Should Science Educators Deal with the Science/Religion Issue?

    ERIC Educational Resources Information Center

    Reiss, Michael J.

    2008-01-01

    I begin by examining the natures of science and religion before looking at the ways in which they relate to one another. I then look at a number of case studies that centre on the relationships between science and religion, including attempts to find mechanisms for divine action in quantum theory and chaos theory, creationism, genetic engineering…

  13. Simulation and understanding of atomic and molecular quantum crystals

    NASA Astrophysics Data System (ADS)

    Cazorla, Claudio; Boronat, Jordi

    2017-07-01

    Quantum crystals abound in the whole range of solid-state species. Below a certain threshold temperature the physical behavior of rare gases (He 4 and Ne), molecular solids (H2 and CH4 ), and some ionic (LiH), covalent (graphite), and metallic (Li) crystals can be explained only in terms of quantum nuclear effects (QNE). A detailed comprehension of the nature of quantum solids is critical for achieving progress in a number of fundamental and applied scientific fields such as planetary sciences, hydrogen storage, nuclear energy, quantum computing, and nanoelectronics. This review describes the current physical understanding of quantum crystals formed by atoms and small molecules, as well as the wide palette of simulation techniques that are used to investigate them. Relevant aspects in these materials such as phase transformations, structural properties, elasticity, crystalline defects, and the effects of reduced dimensionality are discussed thoroughly. An introduction to quantum Monte Carlo techniques, which in the present context are the simulation methods of choice, and other quantum simulation approaches (e.g., path-integral molecular dynamics and quantum thermal baths) is provided. The overarching objective of this article is twofold: first, to clarify in which crystals and physical situations the disregard of QNE may incur in important bias and erroneous interpretations. And second, to promote the study and appreciation of QNE, a topic that traditionally has been treated in the context of condensed matter physics, within the broad and interdisciplinary areas of materials science.

  14. PREFACE: Quantum information processing

    NASA Astrophysics Data System (ADS)

    Briggs, Andrew; Ferry, David; Stoneham, Marshall

    2006-05-01

    Microelectronics and the classical information technologies transformed the physics of semiconductors. Photonics has given optical materials a new direction. Quantum information technologies, we believe, will have immense impact on condensed matter physics. The novel systems of quantum information processing need to be designed and made. Their behaviours must be manipulated in ways that are intrinsically quantal and generally nanoscale. Both in this special issue and in previous issues (see e.g., Spiller T P and Munro W J 2006 J. Phys.: Condens. Matter 18 V1-10) we see the emergence of new ideas that link the fundamentals of science to the pragmatism of market-led industry. We hope these papers will be followed by many others on quantum information processing in the Journal of Physics: Condensed Matter.

  15. Exploring quantum thermodynamics in continuous measurement of superconducting qubits

    NASA Astrophysics Data System (ADS)

    Murch, Kater

    The extension of thermodynamics into the realm of quantum mechanics, where quantum fluctuations dominate and systems need not occupy definite states, poses unique challenges. Superconducting quantum circuits offer exquisite control over the environment of simple quantum systems allowing the exploration of thermodynamics at the quantum level through measurement and feedback control. We use a superconducting transmon qubit that is resonantly coupled to a waveguide cavity as an effectively one-dimensional quantum emitter. By driving the emitter and detecting the fluorescence with a near-quantum-limited Josephson parametric amplifier, we track the evolution of the quantum state and characterize the work and heat along single quantum trajectories. By using quantum feedback control to compensate for heat exchanged with the emitter's environment we are able to extract the work statistics associated with the quantum evolution and examine fundamental fluctuation theorems in non-equilibrium thermodynamics. This work was supported by the Alfred P. Sloan Foundation, the National Science Foundation, and the Office of Naval Research.

  16. Growth and properties of semi-metallic and semiconducting phases of MoTe2 monolayer by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Chen, Jinglei; Wang, Guanyong; Tang, Yanan; Xu, Jinpeng; Dai, Xianqi; Jia, Jinfeng; Ho, Wingkin; Xie, Maohai

    Hexagonal (2H) and distorted octahedral (1T') phases are the two common structures of monolayer MoTe2 showing, respectively, semiconducting and semi-metallic properties. The formation energies between the two structures of MoTe2 are almost equal, so there is a high chance to tune the structures of MoTe2 and to bring in new applications such as phase-change electronics. In this work, we report growth of both 2H and 1T' MoTe2 ML by molecular-beam epitaxy (MBE) and demonstrate the tunability of the structural phases by changing the growth conditions of MBE. We present experimental and theoretical evidences showing the important role of Te surface adsorption in promoting and stabilizing the otherwise metastable 1T'-MoTe2 during MBE. By scanning tunneling microscopy and spectroscopy, we also reveal quantum dot states and quantum inter-valley interference patterns in the 2H and 1T' domains, respectively. RGC(HKU9/CRF/13G), the Ministry of Science and Technology of China(2013CB921902), NSFC (11521404, 11227404), NSFC (11504334 and U1404109).

  17. Evolution of beams in a plasma channel due to beam break up

    NASA Astrophysics Data System (ADS)

    Penn, Gregory; Lehe, Remi; Vay, Jean-Luc; Schroeder, Carl; Esarey, Eric

    2016-10-01

    We study the dynamics of beam break-up (BBU) of an accelerated electron beam in a plasma channel. Particle-in-cell simulations using the codes WARP and FBPIC are presented and interpreted in terms of theoretical calculations for the plasma-induced fields and the evolution of the instability. We focus on cylindrical channels for simplicity, and other geometries are considered to better understand the impact of BBU on electron beams undergoing laser-plasma wake field acceleration. We compare our findings with other published results. This work was supported by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  18. Imaging and characterization of primary and secondary radiation in ion beam therapy

    NASA Astrophysics Data System (ADS)

    Granja, Carlos; Martisikova, Maria; Jakubek, Jan; Opalka, Lukas; Gwosch, Klaus

    2016-07-01

    Imaging in ion beam therapy is an essential and increasingly significant tool for treatment planning and radiation and dose deposition verification. Efforts aim at providing precise radiation field characterization and online monitoring of radiation dose distribution. A review is given of the research and methodology of quantum-imaging, composition, spectral and directional characterization of the mixed-radiation fields in proton and light ion beam therapy developed by the IEAP CTU Prague and HIT Heidelberg group. Results include non-invasive imaging of dose deposition and primary beam online monitoring.

  19. Surface modification using low energy ground state ion beams

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1990-01-01

    A method of effecting modifications at the surfaces of materials using low energy ion beams of known quantum state, purity, flux, and energy is presented. The ion beam is obtained by bombarding ion-generating molecules with electrons which are also at low energy. The electrons used to bombard the ion generating molecules are separated from the ions thus obtained and the ion beam is directed at the material surface to be modified. Depending on the type of ion generating molecules used, different ions can be obtained for different types of surface modifications such as oxidation and diamond film formation. One area of application is in the manufacture of semiconductor devices from semiconductor wafers.

  20. Relativistic quantum information

    NASA Astrophysics Data System (ADS)

    Mann, R. B.; Ralph, T. C.

    2012-11-01

    Over the past few years, a new field of high research intensity has emerged that blends together concepts from gravitational physics and quantum computing. Known as relativistic quantum information, or RQI, the field aims to understand the relationship between special and general relativity and quantum information. Since the original discoveries of Hawking radiation and the Unruh effect, it has been known that incorporating the concepts of quantum theory into relativistic settings can produce new and surprising effects. However it is only in recent years that it has become appreciated that the basic concepts involved in quantum information science undergo significant revision in relativistic settings, and that new phenomena arise when quantum entanglement is combined with relativity. A number of examples illustrate that point. Quantum teleportation fidelity is affected between observers in uniform relative acceleration. Entanglement is an observer-dependent property that is degraded from the perspective of accelerated observers moving in flat spacetime. Entanglement can also be extracted from the vacuum of relativistic quantum field theories, and used to distinguish peculiar motion from cosmological expansion. The new quantum information-theoretic framework of quantum channels in terms of completely positive maps and operator algebras now provides powerful tools for studying matters of causality and information flow in quantum field theory in curved spacetimes. This focus issue provides a sample of the state of the art in research in RQI. Some of the articles in this issue review the subject while others provide interesting new results that will stimulate further research. What makes the subject all the more exciting is that it is beginning to enter the stage at which actual experiments can be contemplated, and some of the articles appearing in this issue discuss some of these exciting new developments. The subject of RQI pulls together concepts and ideas from

  1. 1D array of dark spot traps formed by counter-propagating nested Gaussian laser beams for trapping and moving atomic qubits

    NASA Astrophysics Data System (ADS)

    Gillen-Christandl, Katharina; Frazer, Travis D.

    2017-04-01

    The standing wave of two identical counter-propagating Gaussian laser beams constitutes a 1D array of bright spots that can serve as traps for single neutral atoms for quantum information operations. Detuning the frequency of one of the beams causes the array to start moving, effectively forming a conveyor belt for the qubits. Using a pair of nested Gaussian laser beams with different beam waists, however, forms a standing wave with a 1D array of dark spot traps confined in all dimensions. We have computationally explored the trap properties and limitations of this configuration and, trading off trap depth and frequencies with the number of traps and trap photon scattering rates, we determined the laser powers and beam waists needed for useful 1D arrays of dark spot traps for trapping and transporting atomic qubits in neutral atom quantum computing platforms.

  2. Bell-like inequality for the spin-orbit separability of a laser beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borges, C. V. S.; Hor-Meyll, M.; Khoury, A. Z.

    2010-09-15

    In analogy with Bell's inequality for two-qubit quantum states, we propose an inequality criterion for the nonseparability of the spin-orbit degrees of freedom of a laser beam. A definition of separable and nonseparable spin-orbit modes is used in consonance with the one presented in Phys. Rev. Lett. 99, 160401 (2007). As the usual Bell's inequality can be violated for entangled two-qubit quantum states, we show both theoretically and experimentally that the proposed spin-orbit inequality criterion can be violated for nonseparable modes. The inequality is discussed in both the classical and quantum domains.

  3. Non-Gaussian precision metrology via driving through quantum phase transitions

    NASA Astrophysics Data System (ADS)

    Huang, Jiahao; Zhuang, Min; Lee, Chaohong

    2018-03-01

    We propose a scheme to realize high-precision quantum interferometry with entangled non-Gaussian states by driving the system through quantum phase transitions. The beam splitting, in which an initial nondegenerate ground state evolves into a highly entangled state, is achieved by adiabatically driving the system from a nondegenerate regime to a degenerate one. Inversely, the beam recombination, in which the output state after interrogation becomes gradually disentangled, is accomplished by adiabatically driving the system from the degenerate regime to the nondegenerate one. The phase shift, which is accumulated in the interrogation process, can then be easily inferred via population measurement. We apply our scheme to Bose condensed atoms and trapped ions and find that Heisenberg-limited precision scalings can be approached. Our proposed scheme does not require single-particle resolved detection and is within the reach of current experiment techniques.

  4. Gaussian private quantum channel with squeezed coherent states

    PubMed Central

    Jeong, Kabgyun; Kim, Jaewan; Lee, Su-Yong

    2015-01-01

    While the objective of conventional quantum key distribution (QKD) is to secretly generate and share the classical bits concealed in the form of maximally mixed quantum states, that of private quantum channel (PQC) is to secretly transmit individual quantum states concealed in the form of maximally mixed states using shared one-time pad and it is called Gaussian private quantum channel (GPQC) when the scheme is in the regime of continuous variables. We propose a GPQC enhanced with squeezed coherent states (GPQCwSC), which is a generalization of GPQC with coherent states only (GPQCo) [Phys. Rev. A 72, 042313 (2005)]. We show that GPQCwSC beats the GPQCo for the upper bound on accessible information. As a subsidiary example, it is shown that the squeezed states take an advantage over the coherent states against a beam splitting attack in a continuous variable QKD. It is also shown that a squeezing operation can be approximated as a superposition of two different displacement operations in the small squeezing regime. PMID:26364893

  5. Measuring out-of-time-order correlations and multiple quantum spectra in a trapped-ion quantum magnet

    NASA Astrophysics Data System (ADS)

    Gärttner, Martin; Bohnet, Justin G.; Safavi-Naini, Arghavan; Wall, Michael L.; Bollinger, John J.; Rey, Ana Maria

    2017-08-01

    Controllable arrays of ions and ultracold atoms can simulate complex many-body phenomena and may provide insights into unsolved problems in modern science. To this end, experimentally feasible protocols for quantifying the buildup of quantum correlations and coherence are needed, as performing full state tomography does not scale favourably with the number of particles. Here we develop and experimentally demonstrate such a protocol, which uses time reversal of the many-body dynamics to measure out-of-time-order correlation functions (OTOCs) in a long-range Ising spin quantum simulator with more than 100 ions in a Penning trap. By measuring a family of OTOCs as a function of a tunable parameter we obtain fine-grained information about the state of the system encoded in the multiple quantum coherence spectrum, extract the quantum state purity, and demonstrate the buildup of up to 8-body correlations. Future applications of this protocol could enable studies of many-body localization, quantum phase transitions, and tests of the holographic duality between quantum and gravitational systems.

  6. Observation of quasiperiodic dynamics in a one-dimensional quantum walk of single photons in space

    NASA Astrophysics Data System (ADS)

    Xue, Peng; Qin, Hao; Tang, Bao; Sanders, Barry C.

    2014-05-01

    We realize the quasi-periodic dynamics of a quantum walker over 2.5 quasi-periods by realizing the walker as a single photon passing through a quantum-walk optical-interferometer network. We introduce fully controllable polarization-independent phase shifters in each optical path to realize arbitrary site-dependent phase shifts, and employ large clear-aperture beam displacers, while maintaining high-visibility interference, to enable 10 quantum-walk steps to be reached. By varying the half-wave-plate setting, we control the quantum-coin bias thereby observing a transition from quasi-periodic dynamics to ballistic diffusion.

  7. An Improved Quantum Information Hiding Protocol Based on Entanglement Swapping of χ-type Quantum States

    NASA Astrophysics Data System (ADS)

    Xu, Shu-Jiang; Chen, Xiu-Bo; Wang, Lian-Hai; Ding, Qing-Yan; Zhang, Shu-Hui

    2016-06-01

    In 2011, Qu et al. proposed a quantum information hiding protocol based on the entanglement swapping of χ-type quantum states. Because a χ-type state can be described by the 4-particle cat states which have good symmetry, the possible output results of the entanglement swapping between a given χ-type state and all of the 16 χ-type states are divided into 8 groups instead of 16 groups of different results when the global phase is not considered. So it is difficult to read out the secret messages since each result occurs twice in each line (column) of the secret messages encoding rule for the original protocol. In fact, a 3-bit instead of a 4-bit secret message can be encoded by performing two unitary transformations on 2 particles of a χ-type quantum state in the original protocol. To overcome this defect, we propose an improved quantum information hiding protocol based on the general term formulas of the entanglement swapping among χ-type states. Supported by the National Natural Science Foundation of China under Grant Nos. 61572297, 61303199, 61272514, and 61373131, the Shandong Provincial Natural Science Foundation of China under Grant Nos. ZR2013FM025, ZR2013FQ001, ZR2014FM003, and ZY2015YL018, the Shandong Provincial Outstanding Research Award Fund for Young Scientists of China under Grant Nos. BS2015DX006 and BS2014DX007, the National Development Foundation for Cryptological Research, China under Grant No. MMJJ201401012, the Priority Academic Program Development of Jiangsu Higher Education Institutions and Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology Funds, and the Shandong Academy of Sciences Youth Fund Project, China under Grant Nos. 2015QN003 and 2013QN007

  8. Dynamics of streaming instability with quantum correction

    NASA Astrophysics Data System (ADS)

    Goutam, H. P.; Karmakar, P. K.

    2017-05-01

    A modified quantum hydrodynamic model (m-QHD) is herein proposed on the basis of the Thomas-Fermi (TF) theory of many fermionic quantum systems to investigate the dynamics of electrostatic streaming instability modes in a complex (dusty) quantum plasma system. The newly formulated m-QHD, as an amelioration over the existing usual QHD, employs a dimensionality-dependent Bohmian quantum correction prefactor, γ = [(D-2)/3D], in the electron quantum dynamics, where D symbolizing the problem dimensionality under consideration. The normal mode analysis of the coupled structure equations reveals the excitation of two distinct streaming modes associated with the flowing ions (against electrons and dust) and the flowing dust particulates (against the electrons and ions). It is mainly shown that the γ-factor introduces a new source of stability and dispersive effects to the ion-streaming instability solely; but not to the dust counterparts. A non-trivial application of our investigation in electrostatic beam-plasma (flow-driven) coupled dynamics leading to the development of self-sustained intense electric current, and hence, of strong magnetic field in compact astrophysical objects (in dwarf-family stars) is summarily indicated.

  9. Shot noise generated by graphene p–n junctions in the quantum Hall effect regime

    PubMed Central

    Kumada, N.; Parmentier, F. D.; Hibino, H.; Glattli, D. C.; Roulleau, P.

    2015-01-01

    Graphene offers a unique system to investigate transport of Dirac Fermions at p–n junctions. In a magnetic field, combination of quantum Hall physics and the characteristic transport across p–n junctions leads to a fractionally quantized conductance associated with the mixing of electron-like and hole-like modes and their subsequent partitioning. The mixing and partitioning suggest that a p–n junction could be used as an electronic beam splitter. Here we report the shot noise study of the mode-mixing process and demonstrate the crucial role of the p–n junction length. For short p–n junctions, the amplitude of the noise is consistent with an electronic beam-splitter behaviour, whereas, for longer p–n junctions, it is reduced by the energy relaxation. Remarkably, the relaxation length is much larger than typical size of mesoscopic devices, encouraging using graphene for electron quantum optics and quantum information processing. PMID:26337067

  10. Counting statistics of many-particle quantum walks

    NASA Astrophysics Data System (ADS)

    Mayer, Klaus; Tichy, Malte C.; Mintert, Florian; Konrad, Thomas; Buchleitner, Andreas

    2011-06-01

    We study quantum walks of many noninteracting particles on a beam splitter array as a paradigmatic testing ground for the competition of single- and many-particle interference in a multimode system. We derive a general expression for multimode particle-number correlation functions, valid for bosons and fermions, and infer pronounced signatures of many-particle interferences in the counting statistics.

  11. Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network.

    PubMed

    Goto, Hayato

    2016-02-22

    The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.

  12. Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network

    PubMed Central

    Goto, Hayato

    2016-01-01

    The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence. PMID:26899997

  13. Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network

    NASA Astrophysics Data System (ADS)

    Goto, Hayato

    2016-02-01

    The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.

  14. Influencing factors on the size uniformity of self-assembled SiGe quantum rings grown by molecular beam epitaxy.

    PubMed

    Cui, J; Lv, Y; Yang, X J; Fan, Y L; Zhong, Z; Jiang, Z M

    2011-03-25

    The size uniformity of self-assembled SiGe quantum rings, which are formed by capping SiGe quantum dots with a thin Si layer, is found to be greatly influenced by the growth temperature and the areal density of SiGe quantum dots. Higher growth temperature benefits the size uniformity of quantum dots, but results in low Ge concentration as well as asymmetric Ge distribution in the dots, which induces the subsequently formed quantum rings to be asymmetric in shape or even broken somewhere in the ridge of rings. Low growth temperature degrades the size uniformity of quantum dots, and thus that of quantum rings. A high areal density results in the expansion and coalescence of neighboring quantum dots to form a chain, rather than quantum rings. Uniform quantum rings with a size dispersion of 4.6% and an areal density of 7.8×10(8) cm(-2) are obtained at the optimized growth temperature of 640°C.

  15. Quantum Hall ferroelectrics and nematics in multivalley systems

    NASA Astrophysics Data System (ADS)

    Sodemann, I.; Zhu, Zheng; Fu, Liang

    We study broken symmetry states in multivalley quantum Hall systems whose low energy dispersions are anisotropic. Interactions tend to select states that are maximally valley polarized and have nematic character. Interestingly, in certain systems like the recently studied Bismuth (111) surfaces, the formation of these nematic states can be accompanied by appearance of an spontaneous dipole moment, leading to formation of a quantum Hall ferroelectric state. We study these states combining mean field calculations with state of the art DMRG numerical approach, and demonstrate that skyrmion-type charged excitations are extremely robust to the presence of nematic anisotropy. Supported by DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering Award DE-SC0010526. IS. supported by Pappalardo Fellowship. We used Extreme Science and Engineering Discovery Environment (XSEDE) under NSF Grant ACI-1053575.

  16. Multidimensional quantum entanglement with large-scale integrated optics.

    PubMed

    Wang, Jianwei; Paesani, Stefano; Ding, Yunhong; Santagati, Raffaele; Skrzypczyk, Paul; Salavrakos, Alexia; Tura, Jordi; Augusiak, Remigiusz; Mančinska, Laura; Bacco, Davide; Bonneau, Damien; Silverstone, Joshua W; Gong, Qihuang; Acín, Antonio; Rottwitt, Karsten; Oxenløwe, Leif K; O'Brien, Jeremy L; Laing, Anthony; Thompson, Mark G

    2018-04-20

    The ability to control multidimensional quantum systems is central to the development of advanced quantum technologies. We demonstrate a multidimensional integrated quantum photonic platform able to generate, control, and analyze high-dimensional entanglement. A programmable bipartite entangled system is realized with dimensions up to 15 × 15 on a large-scale silicon photonics quantum circuit. The device integrates more than 550 photonic components on a single chip, including 16 identical photon-pair sources. We verify the high precision, generality, and controllability of our multidimensional technology, and further exploit these abilities to demonstrate previously unexplored quantum applications, such as quantum randomness expansion and self-testing on multidimensional states. Our work provides an experimental platform for the development of multidimensional quantum technologies. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  17. Teleportation of Two-Mode Quantum State of Continuous Variables

    NASA Astrophysics Data System (ADS)

    Song, Tong-Qiang

    2004-03-01

    Using two Einstein-Podolsky-Rosen pair eigenstates |η> as quantum channels, we study the teleportation of two-mode quantum state of continuous variables. The project supported by Natural Science Foundation of Zhejiang Province of China and Open Foundation of Laboratory of High-Intensity Optics, Shanghai Institute of Optics and Fine Mechanics

  18. Quantum-dot based nanothermometry in optical plasmonic recording media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maestro, Laura Martinez; Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122; Zhang, Qiming

    2014-11-03

    We report on the direct experimental determination of the temperature increment caused by laser irradiation in a optical recording media constituted by a polymeric film in which gold nanorods have been incorporated. The incorporation of CdSe quantum dots in the recording media allowed for single beam thermal reading of the on-focus temperature from a simple analysis of the two-photon excited fluorescence of quantum dots. Experimental results have been compared with numerical simulations revealing an excellent agreement and opening a promising avenue for further understanding and optimization of optical writing processes and media.

  19. Editorial . Quantum fluctuations and coherence in optical and atomic structures

    NASA Astrophysics Data System (ADS)

    Eschner, Jürgen; Gatti, Alessandra; Maître, Agnès; Morigi, Giovanna

    2003-03-01

    has been generated by the application of concepts from wave optics to matter waves. An example is the contribution by Franke-Arnold et al. The authors investigate the coherence properties of two trapped cold atoms using concepts developed in wave optics. Nevertheless, novel features appear in this system due to the quantum statistics - as atoms may be bosons or fermions - and due to interactions. Matter waves find a spectacular manifestation in Bose-Einstein condensates (BECs) of cold dilute atomic gases. Several concepts of wave optics, like the laser, have been discussed in relation to BECs, and the .eld of atom optics with BECs is rapidly developing. The similarity between the theoretical description of a weakly interacting BEC with that of a non-linear optical system has motivated a series of experiments that led to the observation of, e.g., solitons, vortices and vortex crystallization in matter waves. In this context, the paper by Josopait et al. describes the dynamics of a Bose-Einstein condensate containing a vortex. The vortex stability is discussed as a function of the interparticle interaction, which can be tuned using Feshbach resonances, and the dynamics of the BEC reflected by an atomic mirror is investigated. Non-linear optics merges with atomic physics also in a relatively new research area which aims at quantum non-linear optics with cold atomic gases. Labeyrie et al. use a dense, laser-cooled atomic gas as a non-linear medium for light propagation, and discuss the conditions for observing optical patterns in the transmitted beam. Pattern formation in non-linear optical media is one of the numerous forms of self-organization that these systems display, including also turbulence and optical solitons. With respects to other physical systems, where these phenomena are commonly observed, optical systems are however special: at optical frequencies thermal .uctuations are negligible and do not hide the presence of quantum .uctuations, even at room

  20. BOOK REVIEW: The Odd Quantum

    NASA Astrophysics Data System (ADS)

    Reynolds, Helen

    2000-03-01

    The Odd Quantum is aiming to be odd. Falling between being a quantum mechanics textbook and a `popular' science book, it aims to convey something of the substance of quantum mechanics without being overly technical or professional. It does not shy away from the mathematics of the subject or resort solely to analogy and metaphor, as so often is the case. Books aimed at the lay reader tend to take on a particular aspect of quantum mechanics, for example, wave-particle duality, and can do little more than hint at the complexity of the subject. This book is more than a textbook on quantum mechanics; it gives the reader a comprehensive account of history and an appreciation of the nature of quantum mechanics. The introductory chapters deal with the earlier part of the century and the thinking of that time. The approach is familiar, as are the stories that Treiman tells, but he also manages to convey the speed with which ideas changed and the excitement this brought to the physics community. Classical ideas of force and energy are dealt with succinctly but with sufficient depth to set up the reader for what is to come; Maxwell's equations and a brief glimpse at relativity are included. This is followed by a brief description of what the author terms the `old' quantum mechanics, in effect a highly readable tour around black body radiation and spectroscopy and the models of the atom that emerged from them. The `new' quantum mechanics begins about a third of the way through the book, and in a chapter entitled `Foundations' starts gently but rapidly moves into a detailed mathematical treatment. This section, of necessity, relapses into the style of a textbook and covers a lot of ground quickly. It is at this point that the non-specialist popular science readers for whom Treiman has written this book may become a little bemused. Concepts such as non-degeneracy and operators come thick and fast. It is difficult to imagine an educated non-physicist with little mathematical

  1. Ge quantum dot arrays grown by ultrahigh vacuum molecular-beam epitaxy on the Si(001) surface: nucleation, morphology, and CMOS compatibility

    PubMed Central

    2011-01-01

    Issues of morphology, nucleation, and growth of Ge cluster arrays deposited by ultrahigh vacuum molecular beam epitaxy on the Si(001) surface are considered. Difference in nucleation of quantum dots during Ge deposition at low (≲600°C) and high (≳600°C) temperatures is studied by high resolution scanning tunneling microscopy. The atomic models of growth of both species of Ge huts--pyramids and wedges-- are proposed. The growth cycle of Ge QD arrays at low temperatures is explored. A problem of lowering of the array formation temperature is discussed with the focus on CMOS compatibility of the entire process; a special attention is paid upon approaches to reduction of treatment temperature during the Si(001) surface pre-growth cleaning, which is at once a key and the highest-temperature phase of the Ge/Si(001) quantum dot dense array formation process. The temperature of the Si clean surface preparation, the final high-temperature step of which is, as a rule, carried out directly in the MBE chamber just before the structure deposition, determines the compatibility of formation process of Ge-QD-array based devices with the CMOS manufacturing cycle. Silicon surface hydrogenation at the final stage of its wet chemical etching during the preliminary cleaning is proposed as a possible way of efficient reduction of the Si wafer pre-growth annealing temperature. PMID:21892938

  2. Ge quantum dot arrays grown by ultrahigh vacuum molecular-beam epitaxy on the Si(001) surface: nucleation, morphology, and CMOS compatibility.

    PubMed

    Yuryev, Vladimir A; Arapkina, Larisa V

    2011-09-05

    Issues of morphology, nucleation, and growth of Ge cluster arrays deposited by ultrahigh vacuum molecular beam epitaxy on the Si(001) surface are considered. Difference in nucleation of quantum dots during Ge deposition at low (≲600°C) and high (≳600°C) temperatures is studied by high resolution scanning tunneling microscopy. The atomic models of growth of both species of Ge huts--pyramids and wedges-- are proposed. The growth cycle of Ge QD arrays at low temperatures is explored. A problem of lowering of the array formation temperature is discussed with the focus on CMOS compatibility of the entire process; a special attention is paid upon approaches to reduction of treatment temperature during the Si(001) surface pre-growth cleaning, which is at once a key and the highest-temperature phase of the Ge/Si(001) quantum dot dense array formation process. The temperature of the Si clean surface preparation, the final high-temperature step of which is, as a rule, carried out directly in the MBE chamber just before the structure deposition, determines the compatibility of formation process of Ge-QD-array based devices with the CMOS manufacturing cycle. Silicon surface hydrogenation at the final stage of its wet chemical etching during the preliminary cleaning is proposed as a possible way of efficient reduction of the Si wafer pre-growth annealing temperature.

  3. Here and now: the intersection of computational science, quantum-mechanical simulations, and materials science

    NASA Astrophysics Data System (ADS)

    Marzari, Nicola

    The last 30 years have seen the steady and exhilarating development of powerful quantum-simulation engines for extended systems, dedicated to the solution of the Kohn-Sham equations of density-functional theory, often augmented by density-functional perturbation theory, many-body perturbation theory, time-dependent density-functional theory, dynamical mean-field theory, and quantum Monte Carlo. Their implementation on massively parallel architectures, now leveraging also GPUs and accelerators, has started a massive effort in the prediction from first principles of many or of complex materials properties, leading the way to the exascale through the combination of HPC (high-performance computing) and HTC (high-throughput computing). Challenges and opportunities abound: complementing hardware and software investments and design; developing the materials' informatics infrastructure needed to encode knowledge into complex protocols and workflows of calculations; managing and curating data; resisting the complacency that we have already reached the predictive accuracy needed for materials design, or a robust level of verification of the different quantum engines. In this talk I will provide an overview of these challenges, with the ultimate prize being the computational understanding, prediction, and design of properties and performance for novel or complex materials and devices.

  4. Universal Three-Qubit Entanglement Generation Based on Linear Optical Elements and Quantum Non-Demolition Detectors

    NASA Astrophysics Data System (ADS)

    Liu, Xin-Chang

    2017-02-01

    Recently, entanglement plays an important role in quantum information science. Here we propose an efficient and applicable method which transforms arbitrary three-qubit unknown state to a maximally entangled Greenberger-Horne-Zeilinger state, and the proposed method could be further generalized to multi-qubit case. The proposed setup exploits only linear optical elements and quantum non-demolition detectors using cross-Kerr media. As the quantum non-demolition detection could reveal us the output state of the photons without destroying them. This property may make our proposed setup flexible and can be widely used in current quantum information science and technology.

  5. Implementing a quantum cloning machine in separate cavities via the optical coherent pulse as a quantum communication bus

    NASA Astrophysics Data System (ADS)

    Zhu, Meng-Zheng; Ye, Liu

    2015-04-01

    An efficient scheme is proposed to implement a quantum cloning machine in separate cavities based on a hybrid interaction between electron-spin systems placed in the cavities and an optical coherent pulse. The coefficient of the output state for the present cloning machine is just the direct product of two trigonometric functions, which ensures that different types of quantum cloning machine can be achieved readily in the same framework by appropriately adjusting the rotated angles. The present scheme can implement optimal one-to-two symmetric (asymmetric) universal quantum cloning, optimal symmetric (asymmetric) phase-covariant cloning, optimal symmetric (asymmetric) real-state cloning, optimal one-to-three symmetric economical real-state cloning, and optimal symmetric cloning of qubits given by an arbitrary axisymmetric distribution. In addition, photon loss of the qubus beams during the transmission and decoherence effects caused by such a photon loss are investigated.

  6. Optimal approach to quantum communication using dynamic programming.

    PubMed

    Jiang, Liang; Taylor, Jacob M; Khaneja, Navin; Lukin, Mikhail D

    2007-10-30

    Reliable preparation of entanglement between distant systems is an outstanding problem in quantum information science and quantum communication. In practice, this has to be accomplished by noisy channels (such as optical fibers) that generally result in exponential attenuation of quantum signals at large distances. A special class of quantum error correction protocols, quantum repeater protocols, can be used to overcome such losses. In this work, we introduce a method for systematically optimizing existing protocols and developing more efficient protocols. Our approach makes use of a dynamic programming-based searching algorithm, the complexity of which scales only polynomially with the communication distance, letting us efficiently determine near-optimal solutions. We find significant improvements in both the speed and the final-state fidelity for preparing long-distance entangled states.

  7. The generation of higher-order Laguerre-Gauss optical beams for high-precision interferometry.

    PubMed

    Carbone, Ludovico; Fulda, Paul; Bond, Charlotte; Brueckner, Frank; Brown, Daniel; Wang, Mengyao; Lodhia, Deepali; Palmer, Rebecca; Freise, Andreas

    2013-08-12

    Thermal noise in high-reflectivity mirrors is a major impediment for several types of high-precision interferometric experiments that aim to reach the standard quantum limit or to cool mechanical systems to their quantum ground state. This is for example the case of future gravitational wave observatories, whose sensitivity to gravitational wave signals is expected to be limited in the most sensitive frequency band, by atomic vibration of their mirror masses. One promising approach being pursued to overcome this limitation is to employ higher-order Laguerre-Gauss (LG) optical beams in place of the conventionally used fundamental mode. Owing to their more homogeneous light intensity distribution these beams average more effectively over the thermally driven fluctuations of the mirror surface, which in turn reduces the uncertainty in the mirror position sensed by the laser light. We demonstrate a promising method to generate higher-order LG beams by shaping a fundamental Gaussian beam with the help of diffractive optical elements. We show that with conventional sensing and control techniques that are known for stabilizing fundamental laser beams, higher-order LG modes can be purified and stabilized just as well at a comparably high level. A set of diagnostic tools allows us to control and tailor the properties of generated LG beams. This enabled us to produce an LG beam with the highest purity reported to date. The demonstrated compatibility of higher-order LG modes with standard interferometry techniques and with the use of standard spherical optics makes them an ideal candidate for application in a future generation of high-precision interferometry.

  8. Drag of ballistic electrons by an ion beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurevich, V. L.; Muradov, M. I., E-mail: mag.muradov@mail.ioffe.ru

    2015-12-15

    Drag of electrons of a one-dimensional ballistic nanowire by a nearby one-dimensional beam of ions is considered. We assume that the ion beam is represented by an ensemble of heavy ions of the same velocity V. The ratio of the drag current to the primary current carried by the ion beam is calculated. The drag current turns out to be a nonmonotonic function of velocity V. It has a sharp maximum for V near v{sub nF}/2, where n is the number of the uppermost electron miniband (channel) taking part in conduction and v{sub nF} is the corresponding Fermi velocity. Thismore » means that the phenomenon of ion beam drag can be used for investigation of the electron spectra of ballistic nanostructures. We note that whereas observation of the Coulomb drag between two parallel quantum wires may in general be complicated by phenomena such as tunneling and phonon drag, the Coulomb drag of electrons of a one-dimensional ballistic nanowire by an ion beam is free of such spurious effects.« less

  9. Entangling the Whole by Beam Splitting a Part.

    PubMed

    Croal, Callum; Peuntinger, Christian; Chille, Vanessa; Marquardt, Christoph; Leuchs, Gerd; Korolkova, Natalia; Mišta, Ladislav

    2015-11-06

    A beam splitter is a basic linear optical element appearing in many optics experiments and is frequently used as a continuous-variable entangler transforming a pair of input modes from a separable Gaussian state into an entangled state. However, a beam splitter is a passive operation that can create entanglement from Gaussian states only under certain conditions. One such condition is that the input light is suitably squeezed. We demonstrate, experimentally, that a beam splitter can create entanglement even from modes which do not possess such a squeezing provided that they are correlated to, but not entangled with, a third mode. Specifically, we show that a beam splitter can create three-mode entanglement by acting on two modes of a three-mode fully separable Gaussian state without entangling the two modes themselves. This beam splitter property is a key mechanism behind the performance of the protocol for entanglement distribution by separable states. Moreover, the property also finds application in collaborative quantum dense coding in which decoding of transmitted information is assisted by interference with a mode of the collaborating party.

  10. An argon ion beam milling process for native AlOx layers enabling coherent superconducting contacts

    NASA Astrophysics Data System (ADS)

    Grünhaupt, Lukas; von Lüpke, Uwe; Gusenkova, Daria; Skacel, Sebastian T.; Maleeva, Nataliya; Schlör, Steffen; Bilmes, Alexander; Rotzinger, Hannes; Ustinov, Alexey V.; Weides, Martin; Pop, Ioan M.

    2017-08-01

    We present an argon ion beam milling process to remove the native oxide layer forming on aluminum thin films due to their exposure to atmosphere in between lithographic steps. Our cleaning process is readily integrable with conventional fabrication of Josephson junction quantum circuits. From measurements of the internal quality factors of superconducting microwave resonators with and without contacts, we place an upper bound on the residual resistance of an ion beam milled contact of 50 mΩ μm2 at a frequency of 4.5 GHz. Resonators for which only 6% of the total foot-print was exposed to the ion beam milling, in areas of low electric and high magnetic fields, showed quality factors above 106 in the single photon regime, and no degradation compared to single layer samples. We believe these results will enable the development of increasingly complex superconducting circuits for quantum information processing.

  11. Quantum violation of an instrumental test

    NASA Astrophysics Data System (ADS)

    Chaves, Rafael; Carvacho, Gonzalo; Agresti, Iris; Di Giulio, Valerio; Aolita, Leandro; Giacomini, Sandro; Sciarrino, Fabio

    2018-03-01

    Inferring causal relations from experimental observations is of primal importance in science. Instrumental tests provide an essential tool for that aim, as they allow one to estimate causal dependencies even in the presence of unobserved common causes. In view of Bell's theorem, which implies that quantum mechanics is incompatible with our most basic notions of causality, it is of utmost importance to understand whether and how paradigmatic causal tools obtained in a classical setting can be carried over to the quantum realm. Here we show that quantum effects imply radically different predictions in the instrumental scenario. Among other results, we show that an instrumental test can be violated by entangled quantum states. Furthermore, we demonstrate such violation using a photonic set-up with active feed-forward of information, thus providing an experimental proof of this new form of non-classical behaviour. Our findings have fundamental implications in causal inference and may also lead to new applications of quantum technologies.

  12. Efficient Variational Quantum Simulator Incorporating Active Error Minimization

    NASA Astrophysics Data System (ADS)

    Li, Ying; Benjamin, Simon C.

    2017-04-01

    One of the key applications for quantum computers will be the simulation of other quantum systems that arise in chemistry, materials science, etc., in order to accelerate the process of discovery. It is important to ask the following question: Can this simulation be achieved using near-future quantum processors, of modest size and under imperfect control, or must it await the more distant era of large-scale fault-tolerant quantum computing? Here, we propose a variational method involving closely integrated classical and quantum coprocessors. We presume that all operations in the quantum coprocessor are prone to error. The impact of such errors is minimized by boosting them artificially and then extrapolating to the zero-error case. In comparison to a more conventional optimized Trotterization technique, we find that our protocol is efficient and appears to be fundamentally more robust against error accumulation.

  13. Time-bin entangled photons from a quantum dot

    PubMed Central

    Jayakumar, Harishankar; Predojević, Ana; Kauten, Thomas; Huber, Tobias; Solomon, Glenn S.; Weihs, Gregor

    2014-01-01

    Long distance quantum communication is one of the prime goals in the field of quantum information science. With information encoded in the quantum state of photons, existing telecommunication fibre networks can be effectively used as a transport medium. To achieve this goal, a source of robust entangled single photon pairs is required. Here, we report the realization of a source of time-bin entangled photon pairs utilizing the biexciton-exciton cascade in a III/V self-assembled quantum dot. We analyse the generated photon pairs by an inherently phase-stable interferometry technique, facilitating uninterrupted long integration times. We confirm the entanglement by performing quantum state tomography of the emitted photons, which yields a fidelity of 0.69(3) and a concurrence of 0.41(6) for our realization of time-energy entanglement from a single quantum emitter. PMID:24968024

  14. Time-bin entangled photons from a quantum dot.

    PubMed

    Jayakumar, Harishankar; Predojević, Ana; Kauten, Thomas; Huber, Tobias; Solomon, Glenn S; Weihs, Gregor

    2014-06-26

    Long-distance quantum communication is one of the prime goals in the field of quantum information science. With information encoded in the quantum state of photons, existing telecommunication fibre networks can be effectively used as a transport medium. To achieve this goal, a source of robust entangled single-photon pairs is required. Here we report the realization of a source of time-bin entangled photon pairs utilizing the biexciton-exciton cascade in a III/V self-assembled quantum dot. We analyse the generated photon pairs by an inherently phase-stable interferometry technique, facilitating uninterrupted long integration times. We confirm the entanglement by performing quantum state tomography of the emitted photons, which yields a fidelity of 0.69(3) and a concurrence of 0.41(6) for our realization of time-energy entanglement from a single quantum emitter.

  15. A Component Approach to Collaborative Scientific Software Development: Tools and Techniques Utilized by the Quantum Chemistry Science Application Partnership

    DOE PAGES

    Kenny, Joseph P.; Janssen, Curtis L.; Gordon, Mark S.; ...

    2008-01-01

    Cutting-edge scientific computing software is complex, increasingly involving the coupling of multiple packages to combine advanced algorithms or simulations at multiple physical scales. Component-based software engineering (CBSE) has been advanced as a technique for managing this complexity, and complex component applications have been created in the quantum chemistry domain, as well as several other simulation areas, using the component model advocated by the Common Component Architecture (CCA) Forum. While programming models do indeed enable sound software engineering practices, the selection of programming model is just one building block in a comprehensive approach to large-scale collaborative development which must also addressmore » interface and data standardization, and language and package interoperability. We provide an overview of the development approach utilized within the Quantum Chemistry Science Application Partnership, identifying design challenges, describing the techniques which we have adopted to address these challenges and highlighting the advantages which the CCA approach offers for collaborative development.« less

  16. Integrated photonics using colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Menon, Vinod M.; Husaini, Saima; Okoye, Nicky; Valappil, Nikesh V.

    2009-11-01

    Integrated photonic devices were realized using colloidal quantum dot composites such as flexible microcavity laser, microdisk emitters and integrated active-passive waveguides. The microcavity laser structure was realized using spin coating and consisted of an all-polymer distributed Bragg reflector with a poly-vinyl carbazole cavity layer embedded with InGaP/ZnS colloidal quantum dots. These microcavities can be peeled off the substrate yielding a flexible structure that can conform to any shape and whose emission spectra can be mechanically tuned. Planar photonic devices consisting of vertically coupled microring resonators, microdisk emitters, active-passive integrated waveguide structures and coupled active microdisk resonators were realized using soft lithography, photo-lithography, and electron beam lithography, respectively. The gain medium in all these devices was a composite consisting of quantum dots embedded in SU8 matrix. Finally, the effect of the host matrix on the optical properties of the quantum dots using results of steady-state and time-resolved luminescence measurements was determined. In addition to their specific functionalities, these novel device demonstrations and their development present a low-cost alternative to the traditional photonic device fabrication techniques.

  17. Quantum dots for GaAs-based surface emitting lasers at 1300 nm

    NASA Astrophysics Data System (ADS)

    Grundmann, M.; Ledentsov, N. N.; Hopfer, F.; Heinrichsdorff, F.; Guffarth, F.; Bimberg, D.; Ustinov, V. M.; Zhukov, A. E.; Kovsh, A. R.; Maximov, M. V.; Musikhin, Yu. G.; Alferov, Zh. I.; Lott, J. A.; Zhakharov, N. D.; Werner, P.

    InGaAs quantum dots (QD's) on GaAs substrate have been fabricated using metal-organic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE) for the use in vertical cavity surface emitting laser diodes. Similar recombination spectra are obtained by employing the two different approaches of seeding and overgrowth with a quantum well. Despite the shift to larger wavelengths a large separation (=80 meV) between excited states is maintained. The introduction of such QD's into a vertical cavity leads to strong narrowing of the emission spectrum. Lasing from a 1300 nm InGaAs quantum dot VCSEL is reported.

  18. Enhanced Emission of Quantum System in Si-Ge Nanolayer Structure.

    PubMed

    Huang, Zhong-Mei; Huang, Wei-Qi; Dong, Tai-Ge; Wang, Gang; Wu, Xue-Ke

    2016-12-01

    It is very interesting that the enhanced peaks near 1150 and 1550 nm are observed in the photoluminescence (PL) spectra in the quantum system of Si-Ge nanolayer structure, which have the emission characteristics of a three-level system with quantum dots (QDs) pumping and emission of quasi-direct-gap band, in our experiment. In the preparing process of Si-Ge nanolayer structure by using a pulsed laser deposition method, it is discovered that the nanocrystals of Si and Ge grow in the (100) and (111) directions after annealing or electron beam irradiation. The enhanced PL peaks with multi-longitudinal-mode are measured at room temperature in the super-lattice of Si-Ge nanolayer quantum system on SOI.

  19. Long-wavelength infrared (LWIR) quantum-dot infrared photodetector (QDIP) focal plane array

    NASA Astrophysics Data System (ADS)

    Gunapala, S. D.; Bandara, S. V.; Hill, C. J.; Ting, D. Z.; Liu, J. K.; Rafol, S. B.; Blazejewski, E. R.; Mumolo, J. M.; Keo, S. A.; Krishna, S.; Chang, Y. C.; Shott, C. A.

    2006-05-01

    We have exploited the artificial atomlike properties of epitaxially self-assembled quantum dots for the development of high operating temperature long wavelength infrared (LWIR) focal plane arrays. Quantum dots are nanometer-scale islands that form spontaneously on a semiconductor substrate due to lattice mismatch. QDIPs are expected to outperform quantum well infrared detectors (QWIPs) and are expected to offer significant advantages over II-VI material based focal plane arrays. QDIPs are fabricated using robust wide bandgap III-V materials which are well suited to the production of highly uniform LWIR arrays. We have used molecular beam epitaxy (MBE) technology to grow multi-layer LWIR quantum dot structures based on the InAs/InGaAs/GaAs material system. JPL is building on its significant QWIP experience and is basically building a Dot-in-the-Well (DWELL) device design by embedding InAs quantum dots in a QWIP structure. This hybrid quantum dot/quantum well device offers additional control in wavelength tuning via control of dot-size and/or quantum well sizes. In addition the quantum wells can trap electrons and aide in ground state refilling. Recent measurements have shown a 10 times higher photoconductive gain than the typical QWIP device, which indirectly confirms the lower relaxation rate of excited electrons (photon bottleneck) in QDIPs. Subsequent material and device improvements have demonstrated an absorption quantum efficiency (QE) of ~ 3%. Dot-in-the-well (DWELL) QDIPs were also experimentally shown to absorb both 45o and normally incident light. Thus we have employed a reflection grating structure to further enhance the quantum efficiency. JPL has demonstrated wavelength control by progressively growing material and fabricating devices structures that have continuously increased in LWIR response. The most recent devices exhibit peak responsivity out to 8.1 microns. Peak detectivity of the 8.1μm devices has reached ~ 1 x 1010 Jones at 77 K. Furthermore

  20. Long-Wavelength Infrared (LWIR) Quantum Dot Infrared Photodetector (QDIP) Focal Plane Array

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D.; Bandara, S. V.; Liu, J. K.; Hill, C. J.; Rafol, S. B.; Mumolo, J. M.; Shott, C. A.

    2006-01-01

    We have exploited the artificial atomlike properties of epitaxially self-assembled quantum dots for the development of high operating temperature long wavelength infrared (LWIR) focal plane arrays. Quantum dots are nanometer-scale islands that form spontaneously on a semiconductor substrate due to lattice mismatch. QDIPs are expected to outperform quantum well infrared detectors (QWIPs) and are expected to offer significant advantages over II-VI material based focal plane arrays. QDIPs are fabricated using robust wide bandgap III-V materials which are well suited to the production of highly uniform LWIR arrays. We have used molecular beam epitaxy (MBE) technology to grow multi-layer LWIR quantum dot structures based on the InAs/InGaAs/GaAs material system. JPL is building on its significant QWIP experience and is basically building a Dot-in-the-Well (DWELL) device design by embedding InAs quantum dots in a QWIP structure. This hybrid quantum dot/quantum well device offers additional control in wavelength tuning via control of dot-size and/or quantum well sizes. In addition the quantum wells can trap electrons and aide in ground state refilling. Recent measurements have shown a 10 times higher photoconductive gain than the typical QWIP device, which indirectly confirms the lower relaxation rate of excited electrons (photon bottleneck) in QDPs. Subsequent material and device improvements have demonstrated an absorption quantum efficiency (QE) of approx. 3%. Dot-in-the-well (DWELL) QDIPs were also experimentally shown to absorb both 45 deg. and normally incident light. Thus we have employed a reflection grating structure to further enhance the quantum efficiency. JPL has demonstrated wavelength control by progressively growing material and fabricating devices structures that have continuously increased in LWIR response. The most recent devices exhibit peak responsivity out to 8.1 microns. Peak detectivity of the 8.1 micrometer devices has reached approx. 1 x 10(exp 10

  1. Many-Agent Controlled Teleportation of Multi-qubit Quantum Information via Quantum Entanglement Swapping

    NASA Astrophysics Data System (ADS)

    Zhang, Zhan-Jun; Liu, Yi-Min; Man, Zhong-Xiao

    2005-11-01

    We present a method to teleport multi-qubit quantum information in an easy way from a sender to a receiver via the control of many agents in a network. Only when all the agents collaborate with the quantum information receiver can the unknown states in the sender's qubits be fully reconstructed in the receiver's qubits. In our method, agents's control parameters are obtained via quantum entanglement swapping. As the realization of the many-agent controlled teleportation is concerned, compared to the recent method [C.P. Yang, et al., Phys. Rev. A 70 (2004) 022329], our present method considerably reduces the preparation difficulty of initial states and the identification difficulty of entangled states, moreover, it does not need local Hadamard operations and it is more feasible in technology. The project supported by National Natural Science Foundation of China under Grant No. 10304022

  2. Complete Quantum Control of a Single Silicon-Vacancy Center in a Diamond Nanopillar

    NASA Astrophysics Data System (ADS)

    Zhang, Jingyuan Linda; Lagoudakis, Konstantinos G.; Tzeng, Yan-Kai; Dory, Constantin; Radulaski, Marina; Kelaita, Yousif; Shen, Zhi-Xun; Melosh, Nicholas A.; Chu, Steven; Vuckovic, Jelena

    Coherent quantum control of a quantum bit (qubit) is an important step towards its use in a quantum network. SiV- center in diamond offers excellent physical qualities such as low inhomogeneous broadening, fast photon emission, and a large Debye-Waller factor, while the fast spin manipulation and techniques to extend the spin coherence time are under active investigation. Here, we demonstrate full coherent control over the state of a single SiV- center in a diamond nanopillar using ultrafast optical pulses. The high quality of the chemical vapor deposition grown SiV- centers allows us to coherently manipulate and quasi-resonantly read out the state of the single SiV- center. Moreover, the SiV- centers being coherently controlled are integrated into diamond nanopillar arrays in a site-controlled, individually addressable manner with high yield, low strain, and high spectral stability, which paves the way for scalable on chip optically accessible quantum system in a quantum photonic network. Financial support is provided by the DOE Office of Basic Energy Sciences, Division of Materials Sciences through Stanford Institute for Materials and Energy Sciences (SIMES) under contract DE-AC02-76SF00515.

  3. Deterministic generation of multiparticle entanglement by quantum Zeno dynamics.

    PubMed

    Barontini, Giovanni; Hohmann, Leander; Haas, Florian; Estève, Jérôme; Reichel, Jakob

    2015-09-18

    Multiparticle entangled quantum states, a key resource in quantum-enhanced metrology and computing, are usually generated by coherent operations exclusively. However, unusual forms of quantum dynamics can be obtained when environment coupling is used as part of the state generation. In this work, we used quantum Zeno dynamics (QZD), based on nondestructive measurement with an optical microcavity, to deterministically generate different multiparticle entangled states in an ensemble of 36 qubit atoms in less than 5 microseconds. We characterized the resulting states by performing quantum tomography, yielding a time-resolved account of the entanglement generation. In addition, we studied the dependence of quantum states on measurement strength and quantified the depth of entanglement. Our results show that QZD is a versatile tool for fast and deterministic entanglement generation in quantum engineering applications. Copyright © 2015, American Association for the Advancement of Science.

  4. A method for optical ground station reduce alignment error in satellite-ground quantum experiments

    NASA Astrophysics Data System (ADS)

    He, Dong; Wang, Qiang; Zhou, Jian-Wei; Song, Zhi-Jun; Zhong, Dai-Jun; Jiang, Yu; Liu, Wan-Sheng; Huang, Yong-Mei

    2018-03-01

    A satellite dedicated for quantum science experiments, has been developed and successfully launched from Jiuquan, China, on August 16, 2016. Two new optical ground stations (OGSs) were built to cooperate with the satellite to complete satellite-ground quantum experiments. OGS corrected its pointing direction by satellite trajectory error to coarse tracking system and uplink beacon sight, therefore fine tracking CCD and uplink beacon optical axis alignment accuracy was to ensure that beacon could cover the quantum satellite in all time when it passed the OGSs. Unfortunately, when we tested specifications of the OGSs, due to the coarse tracking optical system was commercial telescopes, the change of position of the target in the coarse CCD was up to 600μrad along with the change of elevation angle. In this paper, a method of reduce alignment error between beacon beam and fine tracking CCD is proposed. Firstly, OGS fitted the curve of target positions in coarse CCD along with the change of elevation angle. Secondly, OGS fitted the curve of hexapod secondary mirror positions along with the change of elevation angle. Thirdly, when tracking satellite, the fine tracking error unloaded on the real-time zero point position of coarse CCD which computed by the firstly calibration data. Simultaneously the positions of the hexapod secondary mirror were adjusted by the secondly calibration data. Finally the experiment result is proposed. Results show that the alignment error is less than 50μrad.

  5. Authenticated multi-user quantum key distribution with single particles

    NASA Astrophysics Data System (ADS)

    Lin, Song; Wang, Hui; Guo, Gong-De; Ye, Guo-Hua; Du, Hong-Zhen; Liu, Xiao-Fen

    2016-03-01

    Quantum key distribution (QKD) has been growing rapidly in recent years and becomes one of the hottest issues in quantum information science. During the implementation of QKD on a network, identity authentication has been one main problem. In this paper, an efficient authenticated multi-user quantum key distribution (MQKD) protocol with single particles is proposed. In this protocol, any two users on a quantum network can perform mutual authentication and share a secure session key with the assistance of a semi-honest center. Meanwhile, the particles, which are used as quantum information carriers, are not required to be stored, therefore the proposed protocol is feasible with current technology. Finally, security analysis shows that this protocol is secure in theory.

  6. Numerical characteristics of quantum computer simulation

    NASA Astrophysics Data System (ADS)

    Chernyavskiy, A.; Khamitov, K.; Teplov, A.; Voevodin, V.; Voevodin, Vl.

    2016-12-01

    The simulation of quantum circuits is significantly important for the implementation of quantum information technologies. The main difficulty of such modeling is the exponential growth of dimensionality, thus the usage of modern high-performance parallel computations is relevant. As it is well known, arbitrary quantum computation in circuit model can be done by only single- and two-qubit gates, and we analyze the computational structure and properties of the simulation of such gates. We investigate the fact that the unique properties of quantum nature lead to the computational properties of the considered algorithms: the quantum parallelism make the simulation of quantum gates highly parallel, and on the other hand, quantum entanglement leads to the problem of computational locality during simulation. We use the methodology of the AlgoWiki project (algowiki-project.org) to analyze the algorithm. This methodology consists of theoretical (sequential and parallel complexity, macro structure, and visual informational graph) and experimental (locality and memory access, scalability and more specific dynamic characteristics) parts. Experimental part was made by using the petascale Lomonosov supercomputer (Moscow State University, Russia). We show that the simulation of quantum gates is a good base for the research and testing of the development methods for data intense parallel software, and considered methodology of the analysis can be successfully used for the improvement of the algorithms in quantum information science.

  7. Entanglement-enhanced quantum metrology in a noisy environment

    NASA Astrophysics Data System (ADS)

    Wang, Kunkun; Wang, Xiaoping; Zhan, Xiang; Bian, Zhihao; Li, Jian; Sanders, Barry C.; Xue, Peng

    2018-04-01

    Quantum metrology overcomes standard precision limits and plays a central role in science and technology. Practically, it is vulnerable to imperfections such as decoherence. Here we demonstrate quantum metrology for noisy channels such that entanglement with ancillary qubits enhances the quantum Fisher information for phase estimation but not otherwise. Our photonic experiment covers a range of noise for various types of channels, including for two randomly alternating channels such that assisted entanglement fails for each noisy channel individually. We simulate noisy channels by implementing space-multiplexed dual interferometers with quantum photonic inputs. We demonstrate the advantage of entanglement-assisted protocols in a phase estimation experiment run with either a single-probe or multiprobe approach. These results establish that entanglement with ancillae is a valuable approach for delivering quantum-enhanced metrology. Our approach to entanglement-assisted quantum metrology via a simple linear-optical interferometric network with easy-to-prepare photonic inputs provides a path towards practical quantum metrology.

  8. Review of the inverse scattering problem at fixed energy in quantum mechanics

    NASA Technical Reports Server (NTRS)

    Sabatier, P. C.

    1972-01-01

    Methods of solution of the inverse scattering problem at fixed energy in quantum mechanics are presented. Scattering experiments of a beam of particles at a nonrelativisitic energy by a target made up of particles are analyzed. The Schroedinger equation is used to develop the quantum mechanical description of the system and one of several functions depending on the relative distance of the particles. The inverse problem is the construction of the potentials from experimental measurements.

  9. On the nonlocal predictions of quantum optics

    NASA Technical Reports Server (NTRS)

    Marshall, Trevor W.; Santos, Emilio; Vidiella-Barranco, Antonio

    1994-01-01

    We give a definition of locality in quantum optics based upon Bell's work, and show that locality has been violated in no experiment performed up to now. We argue that the interpretation of the Wigner function as a probability density gives a very attractive local realistic picture of quantum optics provided that this function is nonnegative. We conjecture that this is the case for all states which can be realized in the laboratory. In particular, we believe that the usual representation of 'single photon states' by a Fock state of the Hilbert space is not correct and that a more physical, although less simple mathematically, representation involves density matrices. We study in some detail the experiment showing anticorrelation after a beam splitter and prove that it naturally involves a positive Wigner function. Our (quantum) predictions for this experiment disagree with the ones reported in the literature.

  10. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Hyojae, E-mail: lkcom@ibs.re.kr; Jin, Hyunchang; Jang, Ji-Ho

    2016-02-15

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, developmentmore » of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.« less

  11. Simultaneous deterministic control of distant qubits in two semiconductor quantum dots.

    PubMed

    Gamouras, A; Mathew, R; Freisem, S; Deppe, D G; Hall, K C

    2013-10-09

    In optimal quantum control (OQC), a target quantum state of matter is achieved by tailoring the phase and amplitude of the control Hamiltonian through femtosecond pulse-shaping techniques and powerful adaptive feedback algorithms. Motivated by recent applications of OQC in quantum information science as an approach to optimizing quantum gates in atomic and molecular systems, here we report the experimental implementation of OQC in a solid-state system consisting of distinguishable semiconductor quantum dots. We demonstrate simultaneous high-fidelity π and 2π single qubit gates in two different quantum dots using a single engineered infrared femtosecond pulse. These experiments enhance the scalability of semiconductor-based quantum hardware and lay the foundation for applications of pulse shaping to optimize quantum gates in other solid-state systems.

  12. Milestones toward Majorana-based quantum computing

    NASA Astrophysics Data System (ADS)

    Alicea, Jason

    Experiments on nanowire-based Majorana platforms now appear poised to move beyond the preliminary problem of zero-mode detection and towards loftier goals of realizing non-Abelian statistics and quantum information applications. Using an approach that synthesizes recent materials growth breakthroughs with tools long successfully deployed in quantum-dot research, I will outline a number of relatively modest milestones that progressively bridge the gap between the current state of the art and these grand longer-term challenges. The intermediate Majorana experiments surveyed in this talk should be broadly adaptable to other approaches as well. Supported by the National Science Foundation (DMR-1341822), Institute for Quantum Information and Matter, and Walter Burke Institute at Caltech.

  13. The Emergence of a Root Metaphor in Modern Physics: Max Planck's "Quantum" Metaphor.

    ERIC Educational Resources Information Center

    Johnson-Sheehan, Richard D.

    1997-01-01

    Uses metaphorical analysis to determine whether or not Max Planck invented the quantum postulate. Demonstrates how metaphorical analysis can be used to analyze the rhetoric of revolutionary texts in science. Concludes that, in his original 1900 quantum paper, Planck considered the quantum postulate to be important, but not revolutionary. (PA)

  14. Transfer of non-Gaussian quantum states of mechanical oscillator to light

    NASA Astrophysics Data System (ADS)

    Filip, Radim; Rakhubovsky, Andrey A.

    2015-11-01

    Non-Gaussian quantum states are key resources for quantum optics with continuous-variable oscillators. The non-Gaussian states can be deterministically prepared by a continuous evolution of the mechanical oscillator isolated in a nonlinear potential. We propose feasible and deterministic transfer of non-Gaussian quantum states of mechanical oscillators to a traveling light beam, using purely all-optical methods. The method relies on only basic feasible and high-quality elements of quantum optics: squeezed states of light, linear optics, homodyne detection, and electro-optical feedforward control of light. By this method, a wide range of novel non-Gaussian states of light can be produced in the future from the mechanical states of levitating particles in optical tweezers, including states necessary for the implementation of an important cubic phase gate.

  15. SU-E-T-526: On the Linearity, Stability and Beam Energy Dependence of CdSe Quantum Dots as Scintillating Probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delage, M-E; Centre Hospitalier Universityde Quebec, Quebec, QC; Lecavalier, M-E

    2014-06-01

    Purpose: Structure and energy transfer mechanisms confer colloidal quantum dots (cQDs) interesting properties, among them their potential as scintillators. CdSe multi-shell cQDs in powder were investigated under photons irradiation. The purpose of this work is to characterize signal to dose linearity, stability with time and to quantify the dependence of their light output with beam energy. Methods: The cQDs are placed at the extremity of a non-scintillating plastic collecting fiber, with the other extremity connected to an Apogee U2000C CCD camera. The CCD camera collects the fluorescence light from irradiated cQDs from which the delivered dose is extracted. This signalmore » is corrected for Cerenkov contamination at MV energies using the chromatic technique. The detector was irradiated with two devices: Xstrahl 200 orthovoltage unit for 120, 180 and 220 kVp and a Varian Clinac iX for 6 and 23 MV. Results: Linear output response with varying dose is observed for all beam energies with R2 factors > 0,999. Reproducibility measurements were performed at 120 kVp: the same set-up was irradiated at different time intervals (one week and three months). The results showed only a small relative decrease of light output of 3,2 % after a combine deposited dose of approximately 95 Gy. CdSe nanocrystals response has been studied as a function of beam energy. The output increases with decreasing energy from 120 kVp to 6 MV and increase again for 23 MV. This behavior could be explained in part by the cQDs high-Z composition. Conclusion: The fluorescence light output of CdSe cQDs was found to be linear as a function of dose. The results suggest stability of the scintillation output of cQDs over time. The specific composition of cQDs is the main cause of the observed energy dependence. We will further look into particle beam dependence of the cQDs. Bourse d'excellence aux etudes graduees du CRC (Centre de Recherche sur le Cancer, Universite Laval) Bourse d'excellence aux etudes

  16. Nanophotonic rare-earth quantum memory with optically controlled retrieval.

    PubMed

    Zhong, Tian; Kindem, Jonathan M; Bartholomew, John G; Rochman, Jake; Craiciu, Ioana; Miyazono, Evan; Bettinelli, Marco; Cavalli, Enrico; Verma, Varun; Nam, Sae Woo; Marsili, Francesco; Shaw, Matthew D; Beyer, Andrew D; Faraon, Andrei

    2017-09-29

    Optical quantum memories are essential elements in quantum networks for long-distance distribution of quantum entanglement. Scalable development of quantum network nodes requires on-chip qubit storage functionality with control of the readout time. We demonstrate a high-fidelity nanophotonic quantum memory based on a mesoscopic neodymium ensemble coupled to a photonic crystal cavity. The nanocavity enables >95% spin polarization for efficient initialization of the atomic frequency comb memory and time bin-selective readout through an enhanced optical Stark shift of the comb frequencies. Our solid-state memory is integrable with other chip-scale photon source and detector devices for multiplexed quantum and classical information processing at the network nodes. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  17. Non-perturbative measurement of low-intensity charged particle beams

    NASA Astrophysics Data System (ADS)

    Fernandes, M.; Geithner, R.; Golm, J.; Neubert, R.; Schwickert, M.; Stöhlker, T.; Tan, J.; Welsch, C. P.

    2017-01-01

    Non-perturbative measurements of low-intensity charged particle beams are particularly challenging to beam diagnostics due to the low amplitude of the induced electromagnetic fields. In the low-energy antiproton decelerator (AD) and the future extra low energy antiproton rings at CERN, an absolute measurement of the beam intensity is essential to monitor the operation efficiency. Superconducting quantum interference device (SQUID) based cryogenic current comparators (CCC) have been used for measuring slow charged beams in the nA range, showing a very good current resolution. But these were unable to measure fast bunched beams, due to the slew-rate limitation of SQUID devices and presented a strong susceptibility to external perturbations. Here, we present a CCC system developed for the AD machine, which was optimised in terms of its current resolution, system stability, ability to cope with short bunched beams, and immunity to mechanical vibrations. This paper presents the monitor design and the first results from measurements with a low energy antiproton beam obtained in the AD in 2015. These are the first CCC beam current measurements ever performed in a synchrotron machine with both coasting and short bunched beams. It is shown that the system is able to stably measure the AD beam throughout the entire cycle, with a current resolution of 30 {nA}.

  18. Emergence of Quantum Phase-Slip Behaviour in Superconducting NbN Nanowires: DC Electrical Transport and Fabrication Technologies.

    PubMed

    Constantino, Nicolas G N; Anwar, Muhammad Shahbaz; Kennedy, Oscar W; Dang, Manyu; Warburton, Paul A; Fenton, Jonathan C

    2018-06-16

    Superconducting nanowires undergoing quantum phase-slips have potential for impact in electronic devices, with a high-accuracy quantum current standard among a possible toolbox of novel components. A key element of developing such technologies is to understand the requirements for, and control the production of, superconducting nanowires that undergo coherent quantum phase-slips. We present three fabrication technologies, based on using electron-beam lithography or neon focussed ion-beam lithography, for defining narrow superconducting nanowires, and have used these to create nanowires in niobium nitride with widths in the range of 20⁻250 nm. We present characterisation of the nanowires using DC electrical transport at temperatures down to 300 mK. We demonstrate that a range of different behaviours may be obtained in different nanowires, including bulk-like superconducting properties with critical-current features, the observation of phase-slip centres and the observation of zero conductance below a critical voltage, characteristic of coherent quantum phase-slips. We observe critical voltages up to 5 mV, an order of magnitude larger than other reports to date. The different prominence of quantum phase-slip effects in the various nanowires may be understood as arising from the differing importance of quantum fluctuations. Control of the nanowire properties will pave the way for routine fabrication of coherent quantum phase-slip nanowire devices for technology applications.

  19. Entanglement distillation between solid-state quantum network nodes.

    PubMed

    Kalb, N; Reiserer, A A; Humphreys, P C; Bakermans, J J W; Kamerling, S J; Nickerson, N H; Benjamin, S C; Twitchen, D J; Markham, M; Hanson, R

    2017-06-02

    The impact of future quantum networks hinges on high-quality quantum entanglement shared between network nodes. Unavoidable imperfections necessitate a means to improve remote entanglement by local quantum operations. We realize entanglement distillation on a quantum network primitive of distant electron-nuclear two-qubit nodes. The heralded generation of two copies of a remote entangled state is demonstrated through single-photon-mediated entangling of the electrons and robust storage in the nuclear spins. After applying local two-qubit gates, single-shot measurements herald the distillation of an entangled state with increased fidelity that is available for further use. The key combination of generating, storing, and processing entangled states should enable the exploration of multiparticle entanglement on an extended quantum network. Copyright © 2017, American Association for the Advancement of Science.

  20. Driven superconducting quantum circuits

    NASA Astrophysics Data System (ADS)

    Nakamura, Yasunobu

    2014-03-01

    Driven nonlinear quantum systems show rich phenomena in various fields of physics. Among them, superconducting quantum circuits have very attractive features such as well-controlled quantum states with design flexibility, strong nonlinearity of Josephson junctions, strong coupling to electromagnetic driving fields, little internal dissipation, and tailored coupling to the electromagnetic environment. We have investigated properties and functionalities of driven superconducting quantum circuits. A transmon qubit coupled to a transmission line shows nearly perfect spatial mode matching between the incident and scattered microwave field in the 1D mode. Dressed states under a driving field are studied there and also in a semi-infinite 1D mode terminated by a resonator containing a flux qubit. An effective Λ-type three-level system is realized under an appropriate driving condition. It allows ``impedance-matched'' perfect absorption of incident probe photons and down conversion into another frequency mode. Finally, the weak signal from the qubit is read out using a Josephson parametric amplifier/oscillator which is another nonlinear circuit driven by a strong pump field. This work was partly supported by the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST), Project for Developing Innovation Systems of MEXT, MEXT KAKENHI ``Quantum Cybernetics,'' and the NICT Commissioned Research.