Integrated Broadband Quantum Cascade Laser
NASA Technical Reports Server (NTRS)
Mansour, Kamjou (Inventor); Soibel, Alexander (Inventor)
2016-01-01
A broadband, integrated quantum cascade laser is disclosed, comprising ridge waveguide quantum cascade lasers formed by applying standard semiconductor process techniques to a monolithic structure of alternating layers of claddings and active region layers. The resulting ridge waveguide quantum cascade lasers may be individually controlled by independent voltage potentials, resulting in control of the overall spectrum of the integrated quantum cascade laser source. Other embodiments are described and claimed.
Strain-free Ge/GeSiSn Quantum Cascade Lasers Based on L-Valley Intersubband Transitions
2007-01-01
found in III-V quantum cascade lasers QCLs. Various groups have obtained electroluminescence from Si-rich Si/SiGe quantum cascade structures,2–4 but...Ge/GeSiSn quantum cascade lasers based on L-valley intersubband transitions 5c. PROGRAM ELEMENT NUMBER 612305 6. AUTHOR(S) 5d. PROJECT NUMBER...ABSTRACT The authors propose a Ge/Ge0.76Si0.19Sn0.05 quantum cascade laser using intersubband transitions at L valleys of the conduction band
Mid-Infrared Quantum-Dot Quantum Cascade Laser: A Theoretical Feasibility Study
Michael, Stephan; Chow, Weng; Schneider, Hans
2016-05-01
In the framework of a microscopic model for intersubband gain from electrically pumped quantum-dot structures we investigate electrically pumped quantum-dots as active material for a mid-infrared quantum cascade laser. Our previous calculations have indicated that these structures could operate with reduced threshold current densities while also achieving a modal gain comparable to that of quantum well active materials. We study the influence of two important quantum-dot material parameters, here, namely inhomogeneous broadening and quantum-dot sheet density, on the performance of a proposed quantum cascade laser design. In terms of achieving a positive modal net gain, a high quantum-dot density canmore » compensate for moderately high inhomogeneous broadening, but at a cost of increased threshold current density. By minimizing quantum-dot density with presently achievable inhomogeneous broadening and total losses, significantly lower threshold densities than those reported in quantum-well quantum-cascade lasers are predicted by our theory.« less
Enhancement of optical Kerr effect in quantum-cascade lasers with multiple resonance levels.
Bai, Jing; Citrin, D S
2008-08-18
In this paper, we investigated the optical Kerr lensing effect in quantum-cascade lasers with multiple resonance levels. The Kerr refractive index n2 is obtained through the third-order susceptibility at the fundamental frequency chi(3)( omega; omega, omega,-omega). Resonant two-photon processes are found to have almost equal contributions to chi(3)( omega; omega, omega,-omega) as the single-photon processes, which result in the predicted enhancement of the positive nonlinear (Kerr) refractive index, and thus may enhance mode-locking of quantum-cascade lasers. Moreover, we also demonstrate an isospectral optimization strategy for further improving n2 through the band-structure design, in order to boost the multimode performance of quantum-cascade lasers. Simulation results show that the optimized stepwise multiple-quantum-well structure has n2 approximately 10-8 cm2/W, a twofold enhancement over the original flat quantum-well structure. This leads to a refractive-index change (delta)n of about 0.01, which is at the upper bound of those reported for typical Kerr medium. This stronger Kerr refractive index may be important for quantum-cascade lasers ultimately to demonstrate self-mode-locking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael, Stephan; Chow, Weng; Schneider, Hans
In the framework of a microscopic model for intersubband gain from electrically pumped quantum-dot structures we investigate electrically pumped quantum-dots as active material for a mid-infrared quantum cascade laser. Our previous calculations have indicated that these structures could operate with reduced threshold current densities while also achieving a modal gain comparable to that of quantum well active materials. We study the influence of two important quantum-dot material parameters, here, namely inhomogeneous broadening and quantum-dot sheet density, on the performance of a proposed quantum cascade laser design. In terms of achieving a positive modal net gain, a high quantum-dot density canmore » compensate for moderately high inhomogeneous broadening, but at a cost of increased threshold current density. By minimizing quantum-dot density with presently achievable inhomogeneous broadening and total losses, significantly lower threshold densities than those reported in quantum-well quantum-cascade lasers are predicted by our theory.« less
Modeling techniques for quantum cascade lasers
NASA Astrophysics Data System (ADS)
Jirauschek, Christian; Kubis, Tillmann
2014-03-01
Quantum cascade lasers are unipolar semiconductor lasers covering a wide range of the infrared and terahertz spectrum. Lasing action is achieved by using optical intersubband transitions between quantized states in specifically designed multiple-quantum-well heterostructures. A systematic improvement of quantum cascade lasers with respect to operating temperature, efficiency, and spectral range requires detailed modeling of the underlying physical processes in these structures. Moreover, the quantum cascade laser constitutes a versatile model device for the development and improvement of simulation techniques in nano- and optoelectronics. This review provides a comprehensive survey and discussion of the modeling techniques used for the simulation of quantum cascade lasers. The main focus is on the modeling of carrier transport in the nanostructured gain medium, while the simulation of the optical cavity is covered at a more basic level. Specifically, the transfer matrix and finite difference methods for solving the one-dimensional Schrödinger equation and Schrödinger-Poisson system are discussed, providing the quantized states in the multiple-quantum-well active region. The modeling of the optical cavity is covered with a focus on basic waveguide resonator structures. Furthermore, various carrier transport simulation methods are discussed, ranging from basic empirical approaches to advanced self-consistent techniques. The methods include empirical rate equation and related Maxwell-Bloch equation approaches, self-consistent rate equation and ensemble Monte Carlo methods, as well as quantum transport approaches, in particular the density matrix and non-equilibrium Green's function formalism. The derived scattering rates and self-energies are generally valid for n-type devices based on one-dimensional quantum confinement, such as quantum well structures.
Modeling techniques for quantum cascade lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jirauschek, Christian; Kubis, Tillmann
2014-03-15
Quantum cascade lasers are unipolar semiconductor lasers covering a wide range of the infrared and terahertz spectrum. Lasing action is achieved by using optical intersubband transitions between quantized states in specifically designed multiple-quantum-well heterostructures. A systematic improvement of quantum cascade lasers with respect to operating temperature, efficiency, and spectral range requires detailed modeling of the underlying physical processes in these structures. Moreover, the quantum cascade laser constitutes a versatile model device for the development and improvement of simulation techniques in nano- and optoelectronics. This review provides a comprehensive survey and discussion of the modeling techniques used for the simulation ofmore » quantum cascade lasers. The main focus is on the modeling of carrier transport in the nanostructured gain medium, while the simulation of the optical cavity is covered at a more basic level. Specifically, the transfer matrix and finite difference methods for solving the one-dimensional Schrödinger equation and Schrödinger-Poisson system are discussed, providing the quantized states in the multiple-quantum-well active region. The modeling of the optical cavity is covered with a focus on basic waveguide resonator structures. Furthermore, various carrier transport simulation methods are discussed, ranging from basic empirical approaches to advanced self-consistent techniques. The methods include empirical rate equation and related Maxwell-Bloch equation approaches, self-consistent rate equation and ensemble Monte Carlo methods, as well as quantum transport approaches, in particular the density matrix and non-equilibrium Green's function formalism. The derived scattering rates and self-energies are generally valid for n-type devices based on one-dimensional quantum confinement, such as quantum well structures.« less
Multilayer heterostructures for quantum-cascade lasers operating in the terahertz frequency range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhukov, A. E., E-mail: Zhukale@gmail.com; Cirlin, G. E.; Reznik, R. R.
2016-05-15
The results obtained in a study of the structural and optical properties of GaAs/AlGaAs heterostructures with 228 quantum cascades, grown by molecular-beam epitaxy, and in a simulation of interband optical transitions and transitions between the energy levels of a cascade are presented.
Semiconductor Terahertz Technology
2009-06-15
is found in IJI-V quantum cascade lasers (QCLs). 1.I Brief overview of 5i-based QCL development Various groups have obtained electroluminescence from...sources and detectors of far-IR radiation in the range of 12-30 flm. These devices, especially quantum cascade lasers (QCLs) require efficient ...elements and their alloys that can be developed on Si substrates. The design work focused on the structure of the so-called quantum cascade laser
Electrically Tunable Terahertz Quantum-Cascade Lasers
NASA Technical Reports Server (NTRS)
Gunapala, Sarath; Soidel, Alexander; Mansour, Kamjou
2006-01-01
Improved quantum-cascade lasers (QCLs) are being developed as electrically tunable sources of radiation in the far infrared spectral region, especially in the frequency range of 2 to 5 THz. The structures of QCLs and the processes used to fabricate them have much in common with those of multiple- quantum-well infrared photodetectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeltik, Aydan; Guzelturk, Burak; Akhavan, Shahab
2013-12-23
We report enhanced sensitization of silicon through nonradiative energy transfer (NRET) of the excitons in an energy-gradient structure composed of a cascaded bilayer of green- and red-emitting CdTe quantum dots (QDs) on bulk silicon. Here NRET dynamics were systematically investigated comparatively for the cascaded energy-gradient and mono-dispersed QD structures at room temperature. We show experimentally that NRET from the QD layer into silicon is enhanced by 40% in the case of an energy-gradient cascaded structure as compared to the mono-dispersed structures, which is in agreement with the theoretical analysis based on the excited state population-depopulation dynamics of the QDs.
Electrically driven nanopillars for THz quantum cascade lasers.
Amanti, M I; Bismuto, A; Beck, M; Isa, L; Kumar, K; Reimhult, E; Faist, J
2013-05-06
In this work we present a rapid and parallel process for the fabrication of large scale arrays of electrically driven nanopillars for THz quantum cascade active media. We demonstrate electrical injection of pillars of 200 nm diameter and 2 µm height, over a surface of 1 mm(2). THz electroluminescence from the nanopillars is reported. This result is a promising step toward the realization of zero-dimensional structure for terahertz quantum cascade lasers.
Dhar, R S; Ban, D
2013-07-01
The distribution of charge carriers inside the active region of a terahertz (THz) quantum cascade laser (QCL) has been measured with scanning spreading resistance microscopy (SSRM) and scanning capacitance microscopy (SCM). Individual quantum well-barrier modules with a 35.7-nm single module thickness in the active region of the device have been resolved for the first time using high-resolution SSRM and SCM techniques at room temperature. SSRM and SCM measurements on the quantum well-barrier structure were calibrated utilizing known GaAs dopant staircase samples. Doping concentrations derived from SSRM and SCM measurements were found to be in quantitative agreement with the designed average doping values of the n-type active region in the terahertz quantum cascade laser. The secondary ion mass spectroscopy provides a partial picture of internal device parameters, and we have demonstrated with our results the efficacy of uniting calibrated SSRM and SCM to delineate quantitatively the transverse cross-sectional structure of complex two-dimensional terahertz quantum cascade laser devices. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
Multimode analysis of highly tunable, quantum cascade powered, circular graphene spaser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayasekara, Charith, E-mail: charith.jayasekara@monash.edu; Premaratne, Malin; Stockman, Mark I.
2015-11-07
We carried out a detailed analysis of a circular graphene spaser made of a circular graphene flake and a quantum cascade well structure. Owing to unique properties of graphene and quantum cascade well structure, the proposed design shows high mechanical and thermal stability and low optical losses. Additionally, operation characteristics of the model are analysed and tunability of the device is demonstrated. Some advantages of the proposed design include compact size, lower power operation, and the ability to set the operating wavelength over a wide range from Mid-IR to Near-IR. Thus, it can have wide spread applications including designing ofmore » ultracompact and ultrafast devices, nanoscopy and biomedical applications.« less
Molecular-beam epitaxy of 7-8 μm range quantum-cascade laser heterostructures
NASA Astrophysics Data System (ADS)
Babichev, A. V.; Denisov, D. V.; Filimonov, A. V.; Nevedomsky, V. N.; Kurochkin, A. S.; Gladyshev, A. G.; Karachinsky, L. Ya; Sokolovskii, G. S.; Novikov, I. I.; Bousseksou, A.; Egorov, A. Yu
2017-11-01
The method of molecular beam epitaxy demonstrates the possibility to create high quality heterostructures of quantum cascade lasers in a spectral range of 7-8 μm containing 50 quantum cascades in an active region. Design based on the principle of two-phonon resonant scattering is used. X-ray diffraction and transmission electron microscopy experiments confirm high structural properties of the created heterostructures, e.g. the identity of the composition and thickness of epitaxial layers in all 50 cascades. Edge-emitting lasers based on the grown heterostructure demonstrate lasing with threshold current density of 2.8 kA/cm2 at a temperature of 78 K.
Room-temperature operation of quantum cascade lasers at a wavelength of 5.8 μm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babichev, A. V.; Bousseksou, A.; Pikhtin, N. A.
2016-10-15
The room-temperature generation of multiperiod quantum-cascade lasers (QCL) at a wavelength of 5.8 μm in the pulsed mode is demonstrated. The heterostructure of a quantum-cascade laser based on a heterojunction of InGaAs/InAlAs alloys is grown by molecular-beam epitaxy and incorporates 60 identical cascades. The threshold current density of the stripe laser 1.4 mm long and 22 μm wide is ~4.8 kA/cm{sup 2} at a temperature of 303 K. The maximum power of the optical-radiation output from one QCL face, recorded by a detector, is 88 mW. The actual optical-power output from one QCL face is no less than 150 mW.more » The results obtained and possible ways of optimizing the structure of the developed quantum-cascade lasers are discussed.« less
Long-range energy transfer in self-assembled quantum dot-DNA cascades
NASA Astrophysics Data System (ADS)
Goodman, Samuel M.; Siu, Albert; Singh, Vivek; Nagpal, Prashant
2015-11-01
The size-dependent energy bandgaps of semiconductor nanocrystals or quantum dots (QDs) can be utilized in converting broadband incident radiation efficiently into electric current by cascade energy transfer (ET) between layers of different sized quantum dots, followed by charge dissociation and transport in the bottom layer. Self-assembling such cascade structures with angstrom-scale spatial precision is important for building realistic devices, and DNA-based QD self-assembly can provide an important alternative. Here we show long-range Dexter energy transfer in QD-DNA self-assembled single constructs and ensemble devices. Using photoluminescence, scanning tunneling spectroscopy, current-sensing AFM measurements in single QD-DNA cascade constructs, and temperature-dependent ensemble devices using TiO2 nanotubes, we show that Dexter energy transfer, likely mediated by the exciton-shelves formed in these QD-DNA self-assembled structures, can be used for efficient transport of energy across QD-DNA thin films.The size-dependent energy bandgaps of semiconductor nanocrystals or quantum dots (QDs) can be utilized in converting broadband incident radiation efficiently into electric current by cascade energy transfer (ET) between layers of different sized quantum dots, followed by charge dissociation and transport in the bottom layer. Self-assembling such cascade structures with angstrom-scale spatial precision is important for building realistic devices, and DNA-based QD self-assembly can provide an important alternative. Here we show long-range Dexter energy transfer in QD-DNA self-assembled single constructs and ensemble devices. Using photoluminescence, scanning tunneling spectroscopy, current-sensing AFM measurements in single QD-DNA cascade constructs, and temperature-dependent ensemble devices using TiO2 nanotubes, we show that Dexter energy transfer, likely mediated by the exciton-shelves formed in these QD-DNA self-assembled structures, can be used for efficient transport of energy across QD-DNA thin films. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04778a
Experimental investigation of terahertz quantum cascade laser with variable barrier heights
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Aiting; Vijayraghavan, Karun; Belkin, Mikhail A., E-mail: mbelkin@ece.utexas.edu
2014-04-28
We report an experimental study of terahertz quantum cascade lasers with variable barrier heights based on the Al{sub x}Ga{sub 1–x}As/GaAs material system. Two new designs are developed based on semiclassical ensemble Monte Carlo simulations using state-of-the-art Al{sub 0.15}Ga{sub 0.85}As/GaAs three-quantum-well resonant phonon depopulation active region design as a reference. The new designs achieved maximum lasing temperatures of 188 K and 172 K, as compared to the maximum lasing temperature of 191 K for the reference structure. These results demonstrate that terahertz quantum cascade laser designs with variable barrier heights provide a viable alternative to the traditional active region designs with fixed barrier composition.more » Additional design space offered by using variable barriers may lead to future improvements in the terahertz quantum cascade laser performance.« less
NASA Astrophysics Data System (ADS)
Wang, Wei; Cao, Leiming; Lou, Yanbo; Du, Jinjian; Jing, Jietai
2018-01-01
We theoretically and experimentally characterize the performance of the pairwise correlations from triple quantum correlated beams based on the cascaded four-wave mixing (FWM) processes. The pairwise correlations between any two of the beams are theoretically calculated and experimentally measured. The experimental and theoretical results are in good agreement. We find that two of the three pairwise correlations can be in the quantum regime. The other pairwise correlation is always in the classical regime. In addition, we also measure the triple-beam correlation which is always in the quantum regime. Such unbalanced and controllable pairwise correlation structures may be taken as advantages in practical quantum communications, for example, hierarchical quantum secret sharing. Our results also open the way for the classification and application of quantum states generated from the cascaded FWM processes.
Transmission electron microscopy of AlGaAs/GaAs quantum cascade laser structures.
Walther, T; Krysa, A B
2017-12-01
Quantum cascade lasers can be efficient infrared radiation sources and consist of several hundreds of very thin layers arranged in stacks that are repeated periodically. Both the thicknesses of the individual layers as well as the period lengths need to be monitored to high precision. Different transmission electron microscopy methods have been combined to analyse AlGaAs/GaAs quantum cascade laser structures in cross-section. We found a small parabolic variation of the growth rate during deposition, affecting the stack periodicity and a reduced aluminium content of the AlGaAs barriers, whereas their widths as well as those of the GaAs quantum wells agreed with the nominal values within one atomic layer. Growth on an offcut substrate led to facets and steps at the interfaces. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
InAs based terahertz quantum cascade lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandstetter, Martin, E-mail: martin.brandstetter@tuwien.ac.at; Kainz, Martin A.; Krall, Michael
2016-01-04
We demonstrate terahertz lasing emission from a quantum cascade structure, realized with InAs/AlAs{sub 0.16}Sb{sub 0.84} heterostructures. Due to the lower effective electron mass, InAs based active regions are expected to provide a higher optical gain compared to structures consisting of GaAs or InGaAs. The growth by molecular beam epitaxy enabled the fabrication of monolayer-thick barriers, required for the active region, which is based on a 3-well resonant phonon depletion design. Devices were processed in a double-metal waveguide geometry to ensure high mode confinement and low optical losses. Lasing emission at 3.8 THz was observed at liquid helium temperatures by applyingmore » a magnetic field perpendicular to the layered structure in order to suppress parasitic scattering channels. These results demonstrate the feasibility of InAs based active regions for terahertz quantum cascade lasers, potentially enabling higher operating temperatures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jumpertz, L., E-mail: louise.jumpertz@telecom-paristech.fr; Alcatel Thales III-V Lab, Campus de Polytechnique, 1 avenue Augustin Fresnel, 91767 Palaiseau; Carras, M.
2014-09-29
External optical feedback is studied experimentally in mid-infrared quantum cascade lasers. These structures exhibit a dynamical response close to that observed in interband lasers, with threshold reduction and optical power enhancement when increasing the feedback ratio. The study of the optical spectrum proves that the laser undergoes five distinct regimes depending on the phase and amplitude of the reinjected field. These regimes are mapped in the plane of external cavity length and feedback strength, revealing unstable behavior only for a very narrow range of operation, making quantum cascade lasers much more stable than their interband counterparts.
NASA Astrophysics Data System (ADS)
Yasuda, H.; Kubis, T.; Hosako, I.; Hirakawa, K.
2012-04-01
We theoretically investigated GaN-based resonant phonon terahertz-quantum cascade laser (QCL) structures for possible high-temperature operation by using the non-equilibrium Green's function method. It was found that the GaN-based THz-QCL structures do not necessarily have a gain sufficient for lasing, even though the thermal backfilling and the thermally activated phonon scattering are effectively suppressed. The main reason for this is the broadening of the subband levels caused by a very strong interaction between electrons and longitudinal optical (LO) phonons in GaN.
Single mode terahertz quantum cascade amplifier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Y., E-mail: yr235@cam.ac.uk; Wallis, R.; Shah, Y. D.
2014-10-06
A terahertz (THz) optical amplifier based on a 2.9 THz quantum cascade laser (QCL) structure has been demonstrated. By depositing an antireflective coating on the QCL facet, the laser mirror losses are enhanced to fully suppress the lasing action, creating a THz quantum cascade (QC) amplifier. Terahertz radiation amplification has been obtained, by coupling a separate multi-mode THz QCL of the same active region design to the QC amplifier. A bare cavity gain is achieved and shows excellent agreement with the lasing spectrum from the original QCL without the antireflective coating. Furthermore, a maximum optical gain of ∼30 dB with single-modemore » radiation output is demonstrated.« less
Ultra-broad gain quantum cascade lasers tunable from 6.5 to 10.4 μm.
Xie, Feng; Caneau, C; Leblanc, H; Ho, M-T; Zah, C
2015-09-01
We present a quantum cascade laser structure with an ultra-broad gain profile that covers the wavelength range from 6.5 to 10.4 μm. In a grating-tuned external cavity, we demonstrated continuous tuning from 1027 cm(-1) to 1492 cm(-1) with this broad gain laser chip. We also fabricated distributed feedback quantum cascade laser arrays with this active region design and varied grating periods. We demonstrated single wavelength lasing from 962 (10.4) to 1542 cm(-1) (6.5 μm). The frequency coverage (580 cm(-1)) is about 46% of center frequency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tzimis, A.; Savvidis, P. G.; Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, 71110 Heraklion, Crete
2015-09-07
We report observation of strong light-matter coupling in an AlGaAs microcavity (MC) with an embedded single parabolic quantum well. The parabolic potential is achieved by varying aluminum concentration along the growth direction providing equally spaced energy levels, as confirmed by Brewster angle reflectivity from a reference sample without MC. It acts as an active region of the structure which potentially allows cascaded emission of terahertz (THz) light. Spectrally and time resolved pump-probe spectroscopy reveals characteristic quantum beats whose frequencies range from 0.9 to 4.5 THz, corresponding to energy separation between relevant excitonic levels. The structure exhibits strong stimulated nonlinear emissionmore » with simultaneous transition to weak coupling regime. The present study highlights the potential of such devices for creating cascaded relaxation of bosons, which could be utilized for THz emission.« less
Quantum Cascade Lasers Modulation and Applications
NASA Astrophysics Data System (ADS)
Luzhansky, Edward
The mid-wave IR (MWIR) spectral band, extending from 3 to 5 microns, is considered to be a low loss atmospheric window. There are several spectral sub-bands with relatively low atmospheric attenuation in this region making it popular for various commercial and military applications. Relatively low thermal and solar background emissions, effective penetration through the natural and anthropogenic obscurants and eye safety add to the long list of advantages of MWIR wavelengths. Quantum Cascade Lasers are compact semiconductor devices capable of operating in MWIR spectrum. They are based on inter-subband transitions in a multiple-quantum-well (QW) hetero-structure, designed by means of band-structure engineering. The inter-subband nature of the optical transition has several key advantages. First, the emission wavelength is primarily a function of the QW thickness. This characteristic allows choosing well-understood and reliable semiconductors for the generation of light in a wavelength range of interest. Second, a cascade process in which tens of photons are generated per injected electron. This cascading process is behind the intrinsic high-power capabilities of QCLs. This dissertation is focused on modulation properties of Quantum Cascade Lasers. Both amplitude and phase/frequency modulations were studied including modulation bandwidth, modulation efficiency and chirp linearity. Research was consisted of the two major parts. In the first part we describe the theory of frequency modulation (FM) response of Distributed Feedback Quantum Cascade Lasers (DFB QCL). It includes cascading effect on the QCL's maximum modulation frequency. The "gain levering" effect for the maximum FM response of the two section QCLs was studied as well. In the second part of research we concentrated on the Pulse Position Amplitude Modulation of a single section QCL. The low complexity, low size, weight and power Mid-Wavelength Infra-Red optical communications transceiver concept is introduced. The concept was realized and tested in the laboratory environment. The resilience to atmospheric impairments are analyzed with simulated turbulence. The performance compared to typical telecom based Short Wavelength Infra-Red transceiver.
Quantum structures for recombination control in the light-emitting transistor
NASA Astrophysics Data System (ADS)
Chen, Kanuo; Hsiao, Fu-Chen; Joy, Brittany; Dallesasse, John M.
2017-02-01
Recombination of carriers in the direct-bandgap base of a transistor-injected quantum cascade laser (TI-QCL) is shown to be controllable through the field applied across the quantum cascade region located in the transistor's base-collector junction. The influence of the electric field on the quantum states in the cascade region's superlattice allows free flow of electrons out of the transistor base only for field values near the design field that provides optimal QCL gain. Quantum modulation of base recombination in the light-emitting transistor is therefore observed. In a GaAs-based light-emitting transistor, a periodic superlattice is grown between the p-type base and the n-type collector. Under different base-collector biasing conditions the distribution of quantum states, and as a consequence transition probabilities through the wells and barriers forming the cascade region, leads to strong field-dependent mobility for electrons in transit through the base-collector junction. The radiative base recombination, which is influenced by minority carrier transition lifetime, can be modulated through the quantum states alignment in the superlattice. A GaAs-based transistor-injected quantum cascade laser with AlGaAs/GaAs superlattice is designed and fabricated. Radiative base recombination is measured under both common-emitter and common-base configuration. In both configurations the optical output from the base is proportional to the emitter injection. When the quantum states in the superlattice are aligned the optical output in the base is reduced as electrons encounter less impedance entering the collector; when the quantum states are misaligned electrons have longer lifetime in the base and the radiative base recombination process is enhanced.
Probing scattering mechanisms with symmetric quantum cascade lasers.
Deutsch, Christoph; Detz, Hermann; Zederbauer, Tobias; Andrews, Aaron M; Klang, Pavel; Kubis, Tillmann; Klimeck, Gerhard; Schuster, Manfred E; Schrenk, Werner; Strasser, Gottfried; Unterrainer, Karl
2013-03-25
A characteristic feature of quantum cascade lasers is their unipolar carrier transport. We exploit this feature and realize nominally symmetric active regions for terahertz quantum cascade lasers, which should yield equal performance with either bias polarity. However, symmetric devices exhibit a strongly bias polarity dependent performance due to growth direction asymmetries, making them an ideal tool to study the related scattering mechanisms. In the case of an InGaAs/GaAsSb heterostructure, the pronounced interface asymmetry leads to a significantly better performance with negative bias polarity and can even lead to unidirectionally working devices, although the nominal band structure is symmetric. The results are a direct experimental proof that interface roughness scattering has a major impact on transport/lasing performance.
Electronic transport in a long wavelength infrared quantum cascade detector under dark condition
NASA Astrophysics Data System (ADS)
Li, L.; Zhou, X. H.; Lin, T.; Li, N.; Zhu, Z. Q.; Liu, F. Q.
2016-09-01
We present a joint experimental and theoretical investigation on a long wavelength infrared quantum cascade detector to reveal its dark current paths. The temperature dependence of the dark current is measured. It is shown that there are two different transport mechanisms, namely resonant tunneling at low temperatures and thermal excitation at higher temperature, dominate the carrier flow, respectively. Moreover, the experimental intersubband transition energies obtained by the magneto-transport measurements matches the theoretical predictions well. With the aid of the calculated band structures, we can explain the observed oscillation phenomena of the dark current under the magnetic field very well. The obtained results provide insight into the transport properties of quantum cascade detectors thus providing a useful tool for device optimization.
Interferometric modulation of quantum cascade interactions
NASA Astrophysics Data System (ADS)
Cusumano, Stefano; Mari, Andrea; Giovannetti, Vittorio
2018-05-01
We consider many-body quantum systems dissipatively coupled by a cascade network, i.e., a setup in which interactions are mediated by unidirectional environmental modes propagating through a linear optical interferometer. In particular we are interested in the possibility of inducing different effective interactions by properly engineering an external dissipative network of beam splitters and phase shifters. In this work we first derive the general structure of the master equation for a symmetric class of translation-invariant cascade networks. Then we show how, by tuning the parameters of the interferometer, one can exploit interference effects to tailor a large variety of many-body interactions.
Monolithically Integrated Mid-Infrared Quantum Cascade Laser and Detector
Schwarz, Benedikt; Reininger, Peter; Detz, Hermann; Zederbauer, Tobias; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried
2013-01-01
We demonstrate the monolithic integration of a mid-infrared laser and detector utilizing a bi-functional quantum cascade active region. When biased, this active region provides optical gain, while it can be used as a detector at zero bias. With our novel approach we can measure the light intensity of the laser on the same chip without the need of external lenses or detectors. Based on a bound-to-continuum design, the bi-functional active region has an inherent broad electro-luminescence spectrum of 200 cm−1, which indicate sits use for single mode laser arrays. We have measured a peak signal of 191.5 mV at theon-chip detector, without any amplification. The room-temperature pulsed emission with an averaged power consumption of 4 mW and the high-speed detection makes these devices ideal for low-power sensors. The combination of the on-chip detection functionality, the broad emission spectrum and the low average power consumption indicates the potential of our bi-functional quantum cascade structures to build a mid-infrared lab-on-a-chip based on quantum cascade laser technology. PMID:23389348
Dual-lasing channel quantum cascade laser based on scattering-assisted injection design.
Wen, Boyu; Xu, Chao; Wang, Siyi; Wang, Kaixi; Tam, Man Chun; Wasilewski, Zbig; Ban, Dayan
2018-04-02
A dual lasing channel Terahertz Quantum Cascade laser (THz QCL) based on GaAs/Al 0.17 Ga 0.83 As material system is demonstrated. The device shows the lowest reported threshold current density (550A/cm 2 at 50K) of GaAs/Al x Ga 1-x As material system based scattering-assisted (SA) structures and operates up to a maximum lasing temperature of 144K. Dual lasing channel operation is investigated theoretically and experimentally. The combination of low frequency emission, dual lasing channel operation, low lasing threshold current density and high temperature performance make such devices ideal candidates for low frequency applications, and initiates the design strategy for achieving high-temperature performance terahertz quantum cascade laser with wide frequency coverage at low frequency.
V/III ratio effects on high quality InAlAs for quantum cascade laser structures
NASA Astrophysics Data System (ADS)
Demir, Ilkay; Elagoz, Sezai
2017-04-01
In this study we report the V/III ratio effects on growth, structural, optical and doping characteristics of low growth rate (∼1 Å/s) heteroepitaxial Metal Organic Chemical Vapor Deposition (MOCVD) grown InxAl1-xAs layers, a part of Quantum Cascade Laser (QCL) structures, on InP substrate. Especially photoluminescence (PL) properties of InAlAs-InP interface show strong dependence on AsH3 overpressure. We have shown that the V/III ratio with fixed metalorganic precursor flow is a crucial parameter on InxAl1-xAs layers to have a good material quality in terms of crystallinity, optical and electrical characteristics with and without doping.
Analytical coupled-wave model for photonic crystal surface-emitting quantum cascade lasers.
Wang, Zhixin; Liang, Yong; Yin, Xuefan; Peng, Chao; Hu, Weiwei; Faist, Jérôme
2017-05-15
An analytical coupled-wave model is developed for surface-emitting photonic-crystal quantum cascade lasers (PhC-QCLs). This model provides an accurate and efficient analysis of full three-dimensional device structure with large-area cavity size. Various laser properties of interest including the band structure, mode frequency, cavity loss, mode intensity profile, and far field pattern (FFP), as well as their dependence on PhC structures and cavity size, are investigated. Comparison with numerical simulations confirms the accuracy and validity of our model. The calculated FFP and polarization profile well explain the previously reported experimental results. In particular, we reveal the possibility of switching the lasing modes and generating single-lobed FFP by properly tuning PhC structures.
Sieger, Markus; Haas, Julian; Jetter, Michael; Michler, Peter; Godejohann, Matthias; Mizaikoff, Boris
2016-03-01
The performance and versatility of GaAs/AlGaAs thin-film waveguide technology in combination with quantum cascade lasers for mid-infrared spectroscopy in comparison to conventional FTIR spectroscopy is presented. Infrared radiation is provided by a quantum cascade laser (QCL) spectrometer comprising four tunable QCLs providing a wavelength range of 5-11 μm (1925-885 cm(-1)) within a single collimated beam. Epitaxially grown GaAs slab waveguides serve as optical transducer for tailored evanescent field absorption analysis. A modular waveguide mounting accessory specifically designed for on-chip thin-film GaAs waveguides is presented serving as a flexible analytical platform in lieu of conventional attenuated total reflection (ATR) crystals uniquely facilitating macroscopic handling and alignment of such microscopic waveguide structures in real-world application scenarios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jumpertz, L., E-mail: louise.jumpertz@telecom-paristech.fr; MirSense, 8 avenue de la Vauve, F-91120 Palaiseau; Michel, F.
2016-01-15
Precise knowledge of the linewidth enhancement factor of a semiconductor laser under actual operating conditions is of prime importance since this parameter dictates various phenomena such as linewidth broadening or optical nonlinearities enhancement. The above-threshold linewidth enhancement factor of a mid-infrared quantum cascade laser structure operated at 10{sup ∘}C is determined experimentally using two different methods based on optical feedback. Both Fabry-Perot and distributed feedback quantum cascade lasers based on the same active area design are studied, the former by following the wavelength shift as a function of the feedback strength and the latter by self-mixing interferometry. The results aremore » consistent and unveil a clear pump current dependence of the linewidth enhancement factor, with values ranging from 0.8 to about 3.« less
Resonant metamaterial detectors based on THz quantum-cascade structures
Benz, A.; Krall, M.; Schwarz, S.; Dietze, D.; Detz, H.; Andrews, A. M.; Schrenk, W.; Strasser, G.; Unterrainer, K.
2014-01-01
We present the design, fabrication and characterisation of an intersubband detector employing a resonant metamaterial coupling structure. The semiconductor heterostructure relies on a conventional THz quantum-cascade laser design and is operated at zero bias for the detector operation. The same active region can be used to generate or detect light depending on the bias conditions and the vertical confinement. The metamaterial is processed directly into the top metal contact and is used to couple normal incidence radiation resonantly to the intersubband transitions. The device is capable of detecting light below and above the reststrahlenband of gallium-arsenide corresponding to the mid-infrared and THz spectral region. PMID:24608677
Active polarisation control of a quantum cascade laser using tuneable birefringence in waveguides.
Dhirhe, D; Slight, T J; Holmes, B M; Ironside, C N
2013-10-07
We discuss the design, modelling, fabrication and characterisation of an integrated tuneable birefringent waveguide for quantum cascade lasers. We have fabricated quantum cascade lasers operating at wavelengths around 4450 nm that include polarisation mode converters and a differential phase shift section. We employed below laser threshold electroluminescence to investigate the single pass operation of the integrated device. We use a theory based on the electro-optic properties of birefringence in quantum cascade laser waveguides combined with a Jones matrix based description to gain an understanding of the electroluminescence results. With the quantum cascade lasers operating above threshold we demonstrated polarisation control of the output.
Beam shaping in high-power broad-area quantum cascade lasers using optical feedback
Ferré, Simon; Jumpertz, Louise; Carras, Mathieu; Ferreira, Robson; Grillot, Frédéric
2017-01-01
Broad-area quantum cascade lasers with high output powers are highly desirable sources for various applications including infrared countermeasures. However, such structures suffer from strongly deteriorated beam quality due to multimode behavior, diffraction of light and self-focusing. Quantum cascade lasers presenting high performances in terms of power and heat-load dissipation are reported and their response to a nonlinear control based on optical feedback is studied. Applying optical feedback enables to efficiently tailor its near-field beam profile. The different cavity modes are sequentially excited by shifting the feedback mirror angle. Further control of the near-field profile is demonstrated using spatial filtering. The impact of an inhomogeneous gain as well as the influence of the cavity width are investigated. Compared to existing technologies, that are complex and costly, beam shaping with optical feedback is a more flexible solution to obtain high-quality mid-infrared sources. PMID:28287175
Beam shaping in high-power broad-area quantum cascade lasers using optical feedback.
Ferré, Simon; Jumpertz, Louise; Carras, Mathieu; Ferreira, Robson; Grillot, Frédéric
2017-03-13
Broad-area quantum cascade lasers with high output powers are highly desirable sources for various applications including infrared countermeasures. However, such structures suffer from strongly deteriorated beam quality due to multimode behavior, diffraction of light and self-focusing. Quantum cascade lasers presenting high performances in terms of power and heat-load dissipation are reported and their response to a nonlinear control based on optical feedback is studied. Applying optical feedback enables to efficiently tailor its near-field beam profile. The different cavity modes are sequentially excited by shifting the feedback mirror angle. Further control of the near-field profile is demonstrated using spatial filtering. The impact of an inhomogeneous gain as well as the influence of the cavity width are investigated. Compared to existing technologies, that are complex and costly, beam shaping with optical feedback is a more flexible solution to obtain high-quality mid-infrared sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khabibullin, R. A., E-mail: khabibullin@isvch.ru; Shchavruk, N. V.; Klochkov, A. N.
The dependences of the electronic-level positions and transition oscillator strengths on an applied electric field are studied for a terahertz quantum-cascade laser (THz QCL) with the resonant-phonon depopulation scheme, based on a cascade consisting of three quantum wells. The electric-field strengths for two characteristic states of the THz QCL under study are calculated: (i) “parasitic” current flow in the structure when the lasing threshold has not yet been reached; (ii) the lasing threshold is reached. Heat-transfer processes in the THz QCL under study are simulated to determine the optimum supply and cooling conditions. The conditions of thermocompression bonding of themore » laser ridge stripe with an n{sup +}-GaAs conductive substrate based on Au–Au are selected to produce a mechanically stronger contact with a higher thermal conductivity.« less
Complex delay dynamics of high power quantum cascade oscillators
NASA Astrophysics Data System (ADS)
Grillot, F.; Newell, T. C.; Gavrielides, A.; Carras, M.
2017-08-01
Quantum cascade lasers (QCL) have become the most suitable laser sources from the mid-infrared to the THz range. This work examines the effects of external feedback in different high power mid infrared QCL structures and shows that different conditions of the feedback wave can produce complex dynamics hence stabilization, destabilization into strong mode-competition or undamping nonlinear oscillations. As a dynamical system, reinjection of light back into the cavity also can also provoke apparition of chaotic oscillations, which must be avoided for a stable operation both at mid-infrared and THz wavelengths.
Terahertz imaging through self-mixing in a quantum cascade laser.
Dean, Paul; Lim, Yah Leng; Valavanis, Alex; Kliese, Russell; Nikolić, Milan; Khanna, Suraj P; Lachab, Mohammad; Indjin, Dragan; Ikonić, Zoran; Harrison, Paul; Rakić, Aleksandar D; Linfield, Edmund H; Davies, A Giles
2011-07-01
We demonstrate terahertz (THz) frequency imaging using a single quantum cascade laser (QCL) device for both generation and sensing of THz radiation. Detection is achieved by utilizing the effect of self-mixing in the THz QCL, and, specifically, by monitoring perturbations to the voltage across the QCL, induced by light reflected from an external object back into the laser cavity. Self-mixing imaging offers high sensitivity, a potentially fast response, and a simple, compact optical design, and we show that it can be used to obtain high-resolution reflection images of exemplar structures.
Mid-infrared InAs/AlGaSb superlattice quantum-cascade lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohtani, K.; Fujita, K.; Ohno, H.
2005-11-21
We report on the demonstration of mid-infrared InAs/AlGaSb superlattice quantum-cascade lasers operating at 10 {mu}m. The laser structures are grown on n-InAs (100) substrate by solid-source molecular-beam epitaxy. An InAs/AlGaSb chirped superlattice structure providing a large oscillator strength and fast carrier depopulation is employed as the active part. The observed minimum threshold current density at 80 K is 0.7 kA/cm{sup 2}, and the maximum operation temperature in pulse mode is 270 K. The waveguide loss of an InAs plasmon waveguide is estimated, and the factors that determine the operation temperature are discussed.
Frequency dependence of the maximum operating temperature for quantum-cascade lasers up to 5.4 THz
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wienold, M.; Humboldt Universität zu Berlin, Institut für Physik, Newtonstr. 15, 12489 Berlin; Deutsches Zentrum für Luft und Raumfahrt, Rutherfordstr. 2, 12489 Berlin
2015-11-16
We report on the observation of an approximately linear reduction in the maximum operating temperature with an increasing emission frequency for terahertz quantum-cascade lasers between 4.2 and 5.4 THz. These lasers are based on the same design type, but vary in period length and barrier height for the cascade structure. The sample emitting at the highest frequency around 5.4 THz can be operated in pulsed mode up to 56 K. We identify an additional relaxation channel for electrons by longitudinal optical phonon scattering from the upper to the lower laser level and increasing optical losses toward higher frequencies as major processes,more » leading to the observed temperature behavior.« less
Frequency Stabilization of a Single Mode Terahertz Quantum Cascade Laser to the Kilohertz Level
2009-04-27
analog locking circuit was shown to stabilize the beat signal between a 2.408 THz quantum cascade laser and a CH2DOH THz CO2 optically pumped...codes: (140.5965) Semiconductor lasers , quantum cascade; (140.3425) Laser stabilization; (300.3700) Linewidth; (040.2840) Heterodyne . References...Reno, “Frequency and phase - lock control of a 3 THz quantum cascade laser ,” Opt. Lett. 30, 1837-1839 (2005). 10. D. Rabanus, U. U. Graf, M. Philipp
2017-02-01
MOVPE Growth of LWIR AlInAs/GaInAs/InP Quantum Cascade Lasers: Impact of Growth and Material Quality on Laser Performance (Invited paper) Christine A...epitaxial layers in quantum cascade lasers (QCLs) has a primary impact on QCL operation, and establishing correlations between epitaxial growth and materials...QCLs emitting in this range. Index terms – Quantum cascade lasers, semiconductor growth, semiconductor epitaxial layers, infrared emitters. I
NASA Astrophysics Data System (ADS)
Chen, Kanuo; Hsiao, Fu-Chen; Joy, Brittany; Dallesasse, John M.
2018-07-01
The concept of the quantum cascade light-emitting transistor (QCLET) is proposed by incorporating periodic stages of quantum wells and barriers in the completely depleted base-collector junction of a heterojunction bipolar transistor. The radiative band-to-band base recombination in the QCLET is shown to be controllable using the base-collector voltage bias for a given emitter-base biasing condition. A self-consistent Schrödinger-Poisson Equation model is built to validate the idea of the QCLET. A GaAs-based QCLET is designed and fabricated. Control of radiative band-to-band base recombination is observed and characterized. By changing the voltage across the quantum cascade region in the QCLET, the alignment of quantum states in the cascade region creates a tunable barrier for electrons that allows or suppresses emitter-injected electron flow from the p-type base through the quantum cascade region into the collector. The field-dependent electron barrier in the base-collector junction manipulates the effective minority carrier lifetime in the base and controls the radiative base recombination process. Under different quantum cascade region biasing conditions, the radiative base recombination is measured and analyzed.
Coherent emission from integrated Talbot-cavity quantum cascade lasers.
Meng, Bo; Qiang, Bo; Rodriguez, Etienne; Hu, Xiao Nan; Liang, Guozhen; Wang, Qi Jie
2017-02-20
We report experimental realization of phase-locked quantum cascade laser (QCL) array using a monolithically integrated Talbot cavity. An array with six laser elements at a wavelength of ~4.8 μm shows a maximum peak power of ~4 W which is more than 5 times higher than that of a single ridge laser element and a slope efficiency of 1 W/A at room temperature. Operation of in-phase coherent supermode has been achieved over the whole dynamic range of the Talbot-cavity QCL. The structure was analysed using a straightforward theoretical model, showing quantitatively good agreement with the experimental results. The reduced thermal resistance makes the structure an attractive approach to achieve high beam quality continuous wave QCLs.
Normal-incidence quantum cascade detector coupled by nanopore structure
NASA Astrophysics Data System (ADS)
Liu, Jianqi; Wang, Fengjiao; Zhai, Shenqiang; Zhang, Jinchuan; Liu, Shuman; Liu, Junqi; Wang, Lijun; Liu, Fengqi; Wang, Zhanguo
2018-04-01
A normal-incidence quantum cascade detector coupled by a nanopore array structure (NPS) is demonstrated. The NPS is fabricated on top of an In0.53Ga0.47As contact layer by inductively coupled plasma etching using anodic aluminum oxide as a mask. Because of the nonuniform volume fraction at different areas of the device mesa, the NPS acts as subwavelength random gratings. Normal-incidence light can be scattered into random oblique directions for inter-sub-band transition absorption. With normal incidence, the responsivities of the device reach 24 mA/W at 77 K and 15.7 mA/W at 300 K, which are enhanced 2.23 and 1.96 times, respectively, compared with that of the 45°-edge device.
Terahertz quantum cascade laser as local oscillator in a heterodyne receiver.
Hübers, Heinz-Wilhelm; Pavlov, S; Semenov, A; Köhler, R; Mahler, L; Tredicucci, A; Beere, H; Ritchie, D; Linfield, E
2005-07-25
Terahertz quantum cascade lasers have been investigated with respect to their performance as a local oscillator in a heterodyne receiver. The beam profile has been measured and transformed in to a close to Gaussian profile resulting in a good matching between the field patterns of the quantum cascade laser and the antenna of a superconducting hot electron bolometric mixer. Noise temperature measurements with the hot electron bolometer and a 2.5 THz quantum cascade laser yielded the same result as with a gas laser as local oscillator.
NASA Technical Reports Server (NTRS)
Hu, Qing (Inventor); Williams, Benjamin S. (Inventor)
2007-01-01
The present invention provides quantum cascade lasers and amplifier that operate in a frequency range of about 1 Terahertz to about 10 Terahertz. In one aspect, a quantum cascade laser of the invention includes a semiconductor heterostructure that provides a plurality of lasing modules connected in series. Each lasing module includes a plurality of quantum well structure that collectively generate at least an upper lasing state, a lower lasing state, and a relaxation state such that the upper and the lower lasing states are separated by an energy corresponding to an optical frequency in a range of about 1 to about 10 Terahertz. The lower lasing state is selectively depopulated via resonant LO-phonon scattering of electrons into the relaxation state.
NASA Technical Reports Server (NTRS)
Williams, Benjamin S. (Inventor); Hu, Qing (Inventor)
2009-01-01
The present invention provides quantum cascade lasers and amplifier that operate in a frequency range of about 1 Terahertz to about 10 Terahertz. In one aspect, a quantum cascade laser of the invention includes a semiconductor heterostructure that provides a plurality of lasing modules connected in series. Each lasing module includes a plurality of quantum well structure that collectively generate at least an upper lasing state, a lower lasing state, and a relaxation state such that the upper and the lower lasing states are separated by an energy corresponding to an optical frequency in a range of about 1 to about 10 Terahertz. The lower lasing state is selectively depopulated via resonant LO-phonon scattering of electrons into the relaxation state.
Schumacher, Stefan; Förstner, Jens; Zrenner, Artur; Florian, Matthias; Gies, Christopher; Gartner, Paul; Jahnke, Frank
2012-02-27
We study the quantum properties and statistics of photons emitted by a quantum-dot biexciton inside a cavity. In the biexciton-exciton cascade, fine-structure splitting between exciton levels degrades polarization-entanglement for the emitted pair of photons. However, here we show that the polarization-entanglement can be preserved in such a system through simultaneous emission of two degenerate photons into cavity modes tuned to half the biexciton energy. Based on detailed theoretical calculations for realistic quantum-dot and cavity parameters, we quantify the degree of achievable entanglement.
Integration of a terahertz quantum cascade laser with a hollow waveguide
Wanke, Michael C [Albuquerque, NM; Nordquist, Christopher D [Albuquerque, NM
2012-07-03
The present invention is directed to the integration of a quantum cascade laser with a hollow waveguide on a chip to improve both the beam pattern and manufacturability. By coupling the QCL output into a single-mode rectangular waveguide the radiation mode structure can be known and the propagation, manipulation, and broadcast of the QCL radiation can then be entirely controlled by well-established rectangular waveguide techniques. By controlling the impedance of the interface, enhanced functions, such as creating amplifiers, efficient coupling to external cavities, and increasing power output from metal-metal THz QCLs, are also enabled.
NASA Astrophysics Data System (ADS)
Chiu, YenTing
This dissertation examines two types of III-V semiconductor quantum well systems: two-dimensional holes in GaAs, and mid-infrared Quantum Cascade lasers. GaAs holes have a much reduced hyperfine interaction with the nuclei due to the p-like orbital, resulting in a longer hole spin coherence time comparing to the electron spin coherence time. Therefore, holes' spins are promising candidates for quantum computing qubits, but the effective mass and the Lande g-factor, whose product determines the spin-susceptibility of holes, are not well known. In this thesis, we measure the effective hole mass through analyzing the temperature dependence of Shubnikov-de Haas oscillations in a relatively strong interacting two-dimensional hole systems confined to a 20 nm-wide, (311)A GaAs quantum well. The holes in this system occupy two nearly-degenerate spin subbands whose effective mass we measure to be ˜ 0.2 me. We then apply a sufficiently strong parallel magnetic field to fully depopulate one of the spin subbands, and the spin susceptibility of the two-dimensional hole system is deduced from the depopulation field. We also confine holes in closely spaced bilayer GaAs quantum wells to study the interlayer tunneling spectrum as a function of interlayer bias and in-plane magnetic field, in hope of probing the hole's Fermi contour. Quantum Cascade lasers are one of the major mid-infrared light sources well suited for applications in health and environmental sensing. One of the important factors that affect Quantum Cascade laser performance is the quality of the interfaces between the epitaxial layers. What has long been neglected is that interface roughness causes intersubband scattering, and thus affecting the relation between the lifetimes of the upper and lower laser states, which determines if population inversion is possible. We first utilize strategically added interface roughness in the laser design to engineer the intersubband scattering lifetimes. We further experimentally prove the importance of interface roughness on intersubband scattering by measuring the electron transit time of different quantum cascade lasers and comparing them to the calculated upper laser level lifetimes with and without taking into account interface roughness induced intersubband scattering. A significantly better correlation is found between the experimental results and the calculation when the interface roughness scattering is included. Lastly, we study the effect of growth asymmetry on scattering mechanisms in mid-infrared Quantum Cascade lasers. Due to the dopant migration of around 10 nm along the growth direction of InGaAs/InAlAs Quantum Cascade laser structures, ionized impurity scattering is found to have a non-negligible influence on the lifetime of the upper laser level when the laser is biased in the polarity that electrons flow along the growth direction, in sharp contrast to the situation for the opposite polarity.
Terahertz Quantum Cascade Structures Using Step Wells And Longitudinal Optical-Phonon Scattering
2009-06-01
emit many photons, which allows for differential quantum efficiencies greater than unity and hence higher power output. QCLs have been successfully...maintained. The step in the well allows for high injection efficiency due to the spatial separation of the wavefunctions. A step quantum well, in which at...III.D.34), the photon density is determined to be ( )thiphotonphoton IILeAn − Γ = ητ (III.D.35) where the internal quantum efficiency
Mode Locking of Quantum Cascade Lasers
2007-11-09
E. Siegman , Lasers , University Science Books, Mill Valley, CA (1986). [2] A. Yariv, Quantum Electronics, 3rd edition, John Wiley and Sons, New...REPORT Mode Locking of Quantum Cascade Lasers 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: A theoretical and experimental study of multimode operation...regimes in quantum cascade lasers (QCLs) is presented. It is shown that the fast gain recovery of QCLs promotes two multimode regimes in QCLs: One is
Quantum cascade lasers with an integrated polarization mode converter.
Dhirhe, D; Slight, T J; Holmes, B M; Hutchings, D C; Ironside, C N
2012-11-05
We discuss the design, fabrication and characterization of waveguide polarization mode converters for quantum cascade lasers operating at 4.6 μm. We have fabricated a quantum cascade laser with integrated polarization mode converter that emits light of 69% Transverse Electrical (TE) polarization from one facet and 100% Transverse Magnetic (TM) polarization from the other facet.
NASA Astrophysics Data System (ADS)
Dyksik, Mateusz; Motyka, Marcin; Kurka, Marcin; Ryczko, Krzysztof; Misiewicz, Jan; Schade, Anne; Kamp, Martin; Höfling, Sven; Sęk, Grzegorz
2017-11-01
Two designs of active region for an interband cascade laser, based on double or triple GaInSb/InAs type II quantum wells (QWs), were compared with respect to passive mode-locked operation in the mid-infrared range around 4 µm. The layer structure and electron and hole wavefunctions under external electric field were engineered to allow controlling the optical transition oscillator strength and the resulting lifetimes. As a result, the investigated structures can mimic absorber-like and gain-like sections of a mode-locked device when properly polarized with opposite bias. A significantly larger oscillator strength tuning range for triple QWs was experimentally verified by Fourier-transform photoreflectance.
6.2-GHz modulated terahertz light detection using fast terahertz quantum well photodetectors.
Li, Hua; Wan, Wen-Jian; Tan, Zhi-Yong; Fu, Zhang-Long; Wang, Hai-Xia; Zhou, Tao; Li, Zi-Ping; Wang, Chang; Guo, Xu-Guang; Cao, Jun-Cheng
2017-06-14
The fast detection of terahertz radiation is of great importance for various applications such as fast imaging, high speed communications, and spectroscopy. Most commercial products capable of sensitively responding the terahertz radiation are thermal detectors, i.e., pyroelectric sensors and bolometers. This class of terahertz detectors is normally characterized by low modulation frequency (dozens or hundreds of Hz). Here we demonstrate the first fast semiconductor-based terahertz quantum well photodetectors by carefully designing the device structure and microwave transmission line for high frequency signal extraction. Modulation response bandwidth of gigahertz level is obtained. As an example, the 6.2-GHz modulated terahertz light emitted from a Fabry-Pérot terahertz quantum cascade laser is successfully detected using the fast terahertz quantum well photodetector. In addition to the fast terahertz detection, the technique presented in this work can also be used for optically characterizing the frequency stability of terahertz quantum cascade lasers, heterodyne detections and photomixing applications.
Thermal Management of Quantum Cascade Lasers in an individually Addressable Array Architecture
2016-02-08
Thermal Management of Quantum Cascade Lasers in an Individually Addressable Monolithic Array Architecture Leo Missaggia, Christine Wang, Michael...power laser systems in the mid-to-long-infrared wavelength range. By virtue of their demonstrated watt-level performance and wavelength diversity...quantum cascade laser (QCL) and amplifier devices are an excellent choice of emitter for those applications. To realize the power levels of interest
2012-01-18
sidewall interband cascade lasers with single-mode midwave-infrared emission at room tempera- ture,” Appl. Phys. Lett. 95, 231103 (2009). 5. J. V. Li...R. Q. Yang, C. J. Hill, and S. L. Chuang, “ Interband cascade detectors with room temperature photo- voltaic operation,” Appl. Phys. Lett. 86, 101102... interband cascade lasers,” J. Appl. Phys. 96, 1866–1879 (2004). 13. S. Mou, J. V. Li, and S. L. Chuang, “Quantum efficiency analysis of InAs-GaSb type
Mid-infrared surface transmitting and detecting quantum cascade device for gas-sensing
Harrer, Andreas; Szedlak, Rolf; Schwarz, Benedikt; Moser, Harald; Zederbauer, Tobias; MacFarland, Donald; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Lendl, Bernhard; Strasser, Gottfried
2016-01-01
We present a bi-functional surface emitting and surface detecting mid-infrared device applicable for gas-sensing. A distributed feedback ring quantum cascade laser is monolithically integrated with a detector structured from a bi-functional material for same frequency lasing and detection. The emitted single mode radiation is collimated, back reflected by a flat mirror and detected by the detector element of the sensor. The surface operation mode combined with the low divergence emission of the ring quantum cascade laser enables for long analyte interaction regions spatially separated from the sample surface. The device enables for sensing of gaseous analytes which requires a relatively long interaction region. Our design is suitable for 2D array integration with multiple emission and detection frequencies. Proof of principle measurements with isobutane (2-methylpropane) and propane as gaseous analytes were conducted. Detectable concentration values of 0–70% for propane and 0–90% for isobutane were reached at a laser operation wavelength of 6.5 μm utilizing a 10 cm gas cell in double pass configuration. PMID:26887891
Quantum-cascade lasers in the 7-8 μm spectral range with full top metallization
NASA Astrophysics Data System (ADS)
Kurochkin, A. S.; Babichev, A. V.; Denisov, D. V.; Karachinsky, L. Ya; Novikov, I. I.; Sofronov, A. N.; Firsov, D. A.; Vorobjev, L. E.; Bousseksou, A.; Egorov, A. Yu
2018-03-01
The paper demonstrates the generation of multistage quantum-cascade lasers (QCL) in the 7-8 μm spectral range in the pulse generation mode. The active region structure we used is based on a two-phonon resonance scheme. The QCL heterostructure based on a heteropair of In0.53Ga0.47As/Al0.48In0.52As solid alloys was grown by molecular beam epitaxy and includes 50 identical stages. A waveguide geometry with top cladding with full top metallization (surface- plasmon quantum-cascade lasers) has been used. The developed QCLs have demonstrated multimodal generation in the 7-8 μm spectral range in the pulse mode in the 78-250 K temperature range. The threshold current density for a 1.6 mm long laser and a 20 μm ridge width amounted to ˜ 2.8 kA/cm2 at a temperature of 78 К. A temperature increase to 250 K causes a long-wave shift of the wavelength from 7.6 to 7.9 μm and a jth increase to 5.0 kA/cm2.
Mode structure of a quantum cascade laser
NASA Astrophysics Data System (ADS)
Bogdanov, A. A.; Suris, R. A.
2011-03-01
We analyze the mode structure of a quantum cascade laser (QCL) cavity considering the surface plasmon-polariton modes and familiar modes of hollow resonator jointly, within a single model. We present a comprehensive mode structure analysis of the laser cavity, varying its geometric parameters and free electron concentration inside cavity layers within a wide range. Our analysis covers, in particular, the cases of metal-insulator-metal and insulator-metal-insulator waveguides. We discuss the phenomenon of negative dispersion for eigenmodes in detail and explain the nature of this phenomenon. We specify a waveguide parameters domain in which negative dispersion exists. The mode structure of QCL cavity is considered in the case of the anisotropic electrical properties of the waveguide materials. We show that anisotropy of the waveguide core results in propagation of Langmuir modes that are degenerated in the case of the isotropic core. Comparative analysis of optical losses due to free carrier absorption is presented for different modes within the frequency range from terahertz to ultraviolet frequencies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nong, Hanond, E-mail: Nong.Hanond@rub.de; Markmann, Sergej; Hekmat, Negar
2014-09-15
A periodically poled lithium niobate (PPLN) crystal with multiple poling periods is used to generate tunable narrow-bandwidth THz pulses for injection seeding a quantum cascade laser (QCL). We demonstrate that longitudinal modes of the quantum cascade laser close to the gain maximum can be selected or suppressed according to the seed spectrum. The QCL emission spectra obtained by electro-optic sampling from the quantum cascade laser, in the most favorable case, shows high selectivity and amplification of the longitudinal modes that overlap the frequency of the narrow-band seed. Proper selection of the narrow-band THz seed from the PPLN crystal discretely tunesmore » the longitudinal mode emission of the quantum cascade laser. Moreover, the THz wave build-up within the laser cavity is studied as a function of the round-trip time. When the seed frequency is outside the maximum of the gain spectrum the laser emission shifts to the preferential longitudinal mode.« less
Novel High Power Type-I Quantum Well Cascade Diode Lasers
2017-08-30
Novel High Power Type-I Quantum Well Cascade Diode Lasers The views, opinions and/or findings contained in this report are those of the author(s...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6... High Power Type-I Quantum Well Cascade Diode Lasers Report Term: 0-Other Email: leon.shterengas@stonybrook.edu Distribution Statement: 1-Approved
Quantum Cascade Laser Tuning by Digital Micromirror Array-controlled External Cavity
2014-01-01
P. Vujkovic-Cvijin, B. Gregor, A. C. Samuels, E. S. Roese, Quantum cascade laser tuning by digital micromirror array-controlled external cavity...REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Quantum cascade laser tuning by digital micromirror array-controlled...dimensional digital micromirror array (DMA) is described. The laser is tuned by modulating the reflectivity of DMA micromirror pixels under computer
Watt-Level Continuous-Wave Emission from a Bi-Functional Quantum Cascade Laser/Detector
2017-04-18
facet continuous wave emission at 15◦C. Apart from the general performance benets, this enables sensing techiques which rely on continuous wave...record achieved with strained material at this wavelength. Keywords quantum cascade laser, quantum cascade detector, lab- on -a-chip, monolithic integrated...materials, which makes their integration on Si particularly dicult. Heterogeneous integration using transfer techniques allows both single device and wafer
Coupled ridge waveguide distributed feedback quantum cascade laser arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ying-Hui; Zhang, Jin-Chuan, E-mail: zhangjinchuan@semi.ac.cn; Yan, Fang-Liang
2015-04-06
A coupled ridge waveguide quantum cascade laser (QCL) array consisting of fifteen elements with parallel integration was presented. In-phase fundamental mode operation in each element is secured by both the index-guided nature of the ridge and delicate loss management by properly designed geometries of the ridges and interspaces. Single-lobe lateral far-field with a nearly diffraction limited beam pattern was obtained. By incorporating a one-dimensional buried distributed feedback grating, the in-phase-operating coupled ridge waveguide QCL design provides an efficient solution to obtaining high output power and stable single longitudinal mode emission. The simplicity of this structure and fabrication process makes thismore » approach attractive to many practical applications.« less
Broad-gain (Δλ/λ0~0.4), temperature-insensitive (T<0~510K) quantum cascade lasers.
Fujita, Kazuue; Furuta, Shinichi; Dougakiuchi, Tatsuo; Sugiyama, Atsushi; Edamura, Tadataka; Yamanishi, Masamichi
2011-01-31
Broad-gain operation of λ~8.7 μm quantum cascade lasers based on dual-upper-state to multiple-lower-state transition design is reported. The devices exhibit surprisingly wide (~500 cm(-1)) electroluminescence spectra which are very insensitive to voltage and temperature changes above room temperature. With recourse to the temperature-insensitivity of electroluminescence spectra, the lasers demonstrate an extremely-weak temperature-dependence of laser performances: T0-value of 510 K, associated with a room temperature threshold current density of 2.6 kA/cm2. In addition, despite such wide gain spectra, room temperature, continuous wave operation of the laser with buried hetero structure is achieved.
Wang, Lei; Zhai, Shen-Qiang; Wang, Feng-Jiao; Liu, Jun-Qi; Liu, Shu-Man; Zhuo, Ning; Zhang, Chuan-Jin; Wang, Li-Jun; Liu, Feng-Qi; Wang, Zhan-Guo
2016-12-01
The design, fabrication, and characterization of a polarization-dependent normal incident quantum cascade detector coupled via complementary split-ring metamaterial resonators in the infrared regime are presented. The metamaterial structure is designed through three-dimensional finite-difference time-domain method and fabricated on the top metal contact, which forms a double-metal waveguide together with the metallic ground plane. With normal incidence, significant enhancements of photocurrent response are obtained at the metamaterial resonances compared with the 45° polished edge coupling device. The photocurrent response enhancements exhibit clearly polarization dependence, and the largest response enhancement factor of 165% is gained for the incident light polarized parallel to the split-ring gap.
Linewidth and tuning characteristics of terahertz quantum cascade lasers.
Barkan, A; Tittel, F K; Mittleman, D M; Dengler, R; Siegel, P H; Scalari, G; Ajili, L; Faist, J; Beere, H E; Linfield, E H; Davies, A G; Ritchie, D A
2004-03-15
We have measured the spectral linewidths of three continuous-wave quantum cascade lasers operating at terahertz frequencies by heterodyning the free-running quantum cascade laser with two far-infrared gas lasers. Beat notes are detected with a GaAs diode mixer and a microwave spectrum analyzer, permitting very precise frequency measurements and giving instantaneous linewidths of less than -30 kHz. Characteristics are also reported for frequency tuning as the injection current is varied.
Integration of Quantum Cascade Lasers and Passive Waveguides
2015-06-01
Optics, 2005. (CLEO). Conference on , Vol. 2 (2005) pp. 863–865. 2J. Montoya , A. Sanchez-Rubio, R. Hatch, and H . Payson, Appl. Opt. 53, 7551 (2014...Integration of Quantum Cascade Lasers and Passive Waveguidesa) Juan Montoya ,1, b) Christine Wang,1 Anish Goyal,1 Kevin Creedon,1 Michael Connors,1...active sec- tion quantum cascade laser material is biased to achieve gain. Proton ( H +) implantation reduces the free-carrier con- centration and
Schwaighofer, Andreas; Montemurro, Milagros; Freitag, Stephan; Kristament, Christian; Culzoni, María J; Lendl, Bernhard
2018-05-24
In this work, we present a setup for mid-IR measurements of the protein amide I and amide II bands in aqueous solution. Employing a latest generation external cavity-quantum cascade laser (EC-QCL) at room temperature in pulsed operation mode allowed implementing a high optical path length of 31 μm that ensures robust sample handling. By application of a data processing routine, which removes occasionally deviating EC-QCL scans, the noise level could be lowered by a factor of 4. The thereby accomplished signal-to-noise ratio is better by a factor of approximately 2 compared to research-grade Fourier transform infrared (FT-IR) spectrometers at equal acquisition times. Employing this setup, characteristic spectral features of three representative proteins with different secondary structures could be measured at concentrations as low as 1 mg mL -1 . Mathematical evaluation of the spectral overlap confirms excellent agreement of the quantum cascade laser infrared spectroscropy (QCL-IR) transmission measurements with protein spectra acquired by FT-IR spectroscopy. The presented setup combines performance surpassing FT-IR spectroscopy with large applicable optical paths and coverage of the relevant spectral range for protein analysis. This holds high potential for future EC-QCL-based protein studies, including the investigation of dynamic secondary structure changes and chemometrics-based protein quantification in complex matrices.
Suppressing recombination in polymer photovoltaic devices via energy-level cascades.
Tan, Zhi-Kuang; Johnson, Kerr; Vaynzof, Yana; Bakulin, Artem A; Chua, Lay-Lay; Ho, Peter K H; Friend, Richard H
2013-08-14
An energy cascading structure is designed in a polymer photovoltaic device to suppress recombination and improve quantum yields. By the insertion of a thin polymer interlayer with intermediate energy levels, electrons and holes can effectively shuttle away from each other while being spatially separated from recombination. An increase in open-circuit voltage and short-circuit current are observed in modified devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Characterization of Terahertz Bi-Material Sensors with Integrated Metamaterial Absorbers
2013-09-01
Kumar, Qing Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320x240 microbolometer focal-plane array ,” IEEE...responsivity, the speed of operation and the minimum detected incident power were measured using a quantum cascade laser (QCL), operating at 3.8 THz...of operation and the minimum detected incident power were measured using a quantum cascade laser (QCL), operating at 3.8 THz. The measured
Terahertz Sideband-tuned Quantum Cascade Laser Radiation
2008-03-31
resolution of 2 MHz in CW regime was observed. ©2008 Optical Society of America OCIS codes: (140.5965) Semiconductor lasers , quantum cascade...diode,” Opt. Lett. 29, 1632 (2004). 6. A. Baryshev, et.al., “ Phase locking and spectral linewidth of a two-mode terahertz quantum cascade laser ,” Appl... optically pumped gas laser . With further improvements in power and spatial mode quality, it should be possible to lock a TQCL to the harmonic of an ultra
Two-well terahertz quantum cascade lasers with suppressed carrier leakage
Albo, Asaf; Flores, Yuri V.; Hu, Qing; ...
2017-09-11
The mechanisms that limit the temperature performance of diagonal GaAs/Al 0.15GaAs 0.85-based terahertz quantum cascade lasers (THz-QCLs) have been identified as thermally activated leakage of charge carriers through excited states into the continuum. THz-QCLs with energetically higher-laying excited states supported by sufficiently high barriers aim to eliminate these leakage mechanisms and lead to improved temperature performance. Although suppression of thermally activated carrier leakage was realized in a three-well THz-QCL based on a resonant-phonon scheme, no improvement in the temperature performance was reported thus far. Here, we report a major improvement in the temperature performance of a two-quantum-well direct-phonon THz-QCL structure.more » We show that the improved laser performance is due to the suppression of the thermally activated carrier leakage into the continuum with the increase in the injection barrier height. Furthermore, we demonstrate that high-barrier two-well structures can support a clean three-level laser system at elevated temperatures, which opens the opportunity to achieve temperature performance beyond the state-of-the-art.« less
Two-well terahertz quantum cascade lasers with suppressed carrier leakage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albo, Asaf; Flores, Yuri V.; Hu, Qing
The mechanisms that limit the temperature performance of diagonal GaAs/Al 0.15GaAs 0.85-based terahertz quantum cascade lasers (THz-QCLs) have been identified as thermally activated leakage of charge carriers through excited states into the continuum. THz-QCLs with energetically higher-laying excited states supported by sufficiently high barriers aim to eliminate these leakage mechanisms and lead to improved temperature performance. Although suppression of thermally activated carrier leakage was realized in a three-well THz-QCL based on a resonant-phonon scheme, no improvement in the temperature performance was reported thus far. Here, we report a major improvement in the temperature performance of a two-quantum-well direct-phonon THz-QCL structure.more » We show that the improved laser performance is due to the suppression of the thermally activated carrier leakage into the continuum with the increase in the injection barrier height. Furthermore, we demonstrate that high-barrier two-well structures can support a clean three-level laser system at elevated temperatures, which opens the opportunity to achieve temperature performance beyond the state-of-the-art.« less
Two-well terahertz quantum cascade lasers with suppressed carrier leakage
NASA Astrophysics Data System (ADS)
Albo, Asaf; Flores, Yuri V.; Hu, Qing; Reno, John L.
2017-09-01
The mechanisms that limit the temperature performance of diagonal GaAs/Al0.15GaAs0.85-based terahertz quantum cascade lasers (THz-QCLs) have been identified as thermally activated leakage of charge carriers through excited states into the continuum. THz-QCLs with energetically higher-laying excited states supported by sufficiently high barriers aim to eliminate these leakage mechanisms and lead to improved temperature performance. Although suppression of thermally activated carrier leakage was realized in a three-well THz-QCL based on a resonant-phonon scheme, no improvement in the temperature performance was reported thus far. Here, we report a major improvement in the temperature performance of a two-quantum-well direct-phonon THz-QCL structure. We show that the improved laser performance is due to the suppression of the thermally activated carrier leakage into the continuum with the increase in the injection barrier height. Moreover, we demonstrate that high-barrier two-well structures can support a clean three-level laser system at elevated temperatures, which opens the opportunity to achieve temperature performance beyond the state-of-the-art.
Li, Hongzhi; Zhong, Ziyan; Li, Lin; Gao, Rui; Cui, Jingxia; Gao, Ting; Hu, Li Hong; Lu, Yinghua; Su, Zhong-Min; Li, Hui
2015-05-30
A cascaded model is proposed to establish the quantitative structure-activity relationship (QSAR) between the overall power conversion efficiency (PCE) and quantum chemical molecular descriptors of all-organic dye sensitizers. The cascaded model is a two-level network in which the outputs of the first level (JSC, VOC, and FF) are the inputs of the second level, and the ultimate end-point is the overall PCE of dye-sensitized solar cells (DSSCs). The model combines quantum chemical methods and machine learning methods, further including quantum chemical calculations, data division, feature selection, regression, and validation steps. To improve the efficiency of the model and reduce the redundancy and noise of the molecular descriptors, six feature selection methods (multiple linear regression, genetic algorithms, mean impact value, forward selection, backward elimination, and +n-m algorithm) are used with the support vector machine. The best established cascaded model predicts the PCE values of DSSCs with a MAE of 0.57 (%), which is about 10% of the mean value PCE (5.62%). The validation parameters according to the OECD principles are R(2) (0.75), Q(2) (0.77), and Qcv2 (0.76), which demonstrate the great goodness-of-fit, predictivity, and robustness of the model. Additionally, the applicability domain of the cascaded QSAR model is defined for further application. This study demonstrates that the established cascaded model is able to effectively predict the PCE for organic dye sensitizers with very low cost and relatively high accuracy, providing a useful tool for the design of dye sensitizers with high PCE. © 2015 Wiley Periodicals, Inc.
Planar integrated metasurfaces for highly-collimated terahertz quantum cascade lasers
Liang, Guozhen; Dupont, Emmanuel; Fathololoumi, Saeed; Wasilewski, Zbigniew R.; Ban, Dayan; Liang, Hou Kun; Zhang, Ying; Yu, Siu Fung; Li, Lianhe H.; Davies, Alexander Giles; Linfield, Edmund H.; Liu, Hui Chun; Wang, Qi Jie
2014-01-01
We report planar integration of tapered terahertz (THz) frequency quantum cascade lasers (QCLs) with metasurface waveguides that are designed to be spoof surface plasmon (SSP) out-couplers by introducing periodically arranged SSP scatterers. The resulting surface-emitting THz beam profile is highly collimated with a divergence as narrow as ~4° × 10°, which indicates a good waveguiding property of the metasurface waveguide. In addition, the low background THz power implies a high coupling efficiency for the THz radiation from the laser cavity to the metasurface structure. Furthermore, since all the structures are in-plane, this scheme provides a promising platform where well-established surface plasmon/metasurface techniques can be employed to engineer the emitted beam of THz QCLs controllably and flexibly. More importantly, an integrated active THz photonic circuit for sensing and communication applications could be constructed by incorporating other optoelectronic devices such as Schottky diode THz mixers, and graphene modulators and photodetectors. PMID:25403796
Shortwave quantum cascade laser frequency comb for multi-heterodyne spectroscopy
NASA Astrophysics Data System (ADS)
Lu, Q. Y.; Manna, S.; Wu, D. H.; Slivken, S.; Razeghi, M.
2018-04-01
Quantum cascade lasers (QCLs) are versatile light sources with tailorable emitting wavelengths covering the mid-infrared and terahertz spectral ranges. When the dispersion is minimized, frequency combs can be directly emitted from quantum cascade lasers via four-wave mixing. To date, most of the mid-infrared quantum cascade laser combs are operational in a narrow wavelength range wherein the QCL dispersion is minimal. In this work, we address the issue of very high dispersion for shortwave QCLs and demonstrate 1-W dispersion compensated shortwave QCL frequency combs at λ ˜ 5.0 μm, spanning a spectral range of 100 cm-1. The multi-heterodyne spectrum exhibits 95 equally spaced frequency comb lines, indicating that the shortwave QCL combs are ideal candidates for high-speed high-resolution spectroscopy.
NASA Astrophysics Data System (ADS)
Qin, Zhongzhong; Cao, Leiming; Jing, Jietai
2015-05-01
Quantum correlations and entanglement shared among multiple modes are fundamental ingredients of most continuous-variable quantum technologies. Recently, a method used to generate multiple quantum correlated beams using cascaded four-wave mixing (FWM) processes was theoretically proposed and experimentally realized by our group [Z. Qin et al., Phys. Rev. Lett. 113, 023602 (2014)]. Our study of triple-beam quantum correlation paves the way to showing the tripartite entanglement in our system. Our system also promises to find applications in quantum information and precision measurement such as the controlled quantum communications, the generation of multiple quantum correlated images, and the realization of a multiport nonlinear interferometer. For its applications, the degree of quantum correlation is a crucial figure of merit. In this letter, we experimentally study how various parameters, such as the cell temperatures, one-photon, and two-photon detunings, influence the degree of quantum correlation between the triple beams generated from the cascaded two-FWM configuration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Zhongzhong; Cao, Leiming; Jing, Jietai, E-mail: jtjing@phy.ecnu.edu.cn
2015-05-25
Quantum correlations and entanglement shared among multiple modes are fundamental ingredients of most continuous-variable quantum technologies. Recently, a method used to generate multiple quantum correlated beams using cascaded four-wave mixing (FWM) processes was theoretically proposed and experimentally realized by our group [Z. Qin et al., Phys. Rev. Lett. 113, 023602 (2014)]. Our study of triple-beam quantum correlation paves the way to showing the tripartite entanglement in our system. Our system also promises to find applications in quantum information and precision measurement such as the controlled quantum communications, the generation of multiple quantum correlated images, and the realization of a multiportmore » nonlinear interferometer. For its applications, the degree of quantum correlation is a crucial figure of merit. In this letter, we experimentally study how various parameters, such as the cell temperatures, one-photon, and two-photon detunings, influence the degree of quantum correlation between the triple beams generated from the cascaded two-FWM configuration.« less
Multimode Regimes in Quantum Cascade Lasers: From Coherent Instabilities to Spatial Hole Burning
2009-02-10
from which absorption can take place; and although not very significant, there is always bulk n2 of the material. 1 A. E. Siegman , Lasers ...2007 4. TI11.E AND SUBTITI..E 5a. CONTRACT NUMBER Multimode regimes in quantum cascade lasers : from coherent W91INF-04-I-0253 instabilities to spatial...quantum cascade lasers (QCLs). In narrow devices it is found that above a second threshold the laser spectrwn dramatically broadens showing multimode
Ghali, Mohsen; Ohtani, Keita; Ohno, Yuzo; Ohno, Hideo
2012-02-07
Semiconductor quantum dots are potential sources for generating polarization-entangled photons efficiently. The main prerequisite for such generation based on biexciton-exciton cascaded emission is to control the exciton fine-structure splitting. Among various techniques investigated for this purpose, an electric field is a promising means to facilitate the integration into optoelectronic devices. Here we demonstrate the generation of polarization-entangled photons from single GaAs quantum dots by an electric field. In contrast to previous studies, which were limited to In(Ga)As quantum dots, GaAs island quantum dots formed by a thickness fluctuation were used because they exhibit a larger oscillator strength and emit light with a shorter wavelength. A forward voltage was applied to a Schottky diode to control the fine-structure splitting. We observed a decrease and suppression in the fine-structure splitting of the studied single quantum dot with the field, which enabled us to generate polarization-entangled photons with a high fidelity of 0.72 ± 0.05.
Schwaighofer, Andreas; Alcaráz, Mirta R.; Araman, Can; Goicoechea, Héctor; Lendl, Bernhard
2016-01-01
Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopy are analytical techniques employed for the analysis of protein secondary structure. The use of CD spectroscopy is limited to low protein concentrations (<2 mg ml−1), while FTIR spectroscopy is commonly used in a higher concentration range (>5 mg ml−1). Here we introduce a quantum cascade laser (QCL)-based IR transmission setup for analysis of protein and polypeptide secondary structure at concentrations as low as 0.25 mg ml−1 in deuterated buffer solution. We present dynamic QCL-IR spectra of the temperature-induced α-helix to β-sheet transition of poly-L-lysine. The concentration dependence of the α-β transition temperature between 0.25 and 10 mg ml−1 was investigated by QCL-IR, FTIR and CD spectroscopy. By using QCL-IR spectroscopy it is possible to perform IR spectroscopic analysis in the same concentration range as CD spectroscopy, thus enabling a combined analysis of biomolecules secondary structure by CD and IR spectroscopy. PMID:27633337
Schwaighofer, Andreas; Alcaráz, Mirta R; Araman, Can; Goicoechea, Héctor; Lendl, Bernhard
2016-09-16
Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopy are analytical techniques employed for the analysis of protein secondary structure. The use of CD spectroscopy is limited to low protein concentrations (<2 mg ml(-1)), while FTIR spectroscopy is commonly used in a higher concentration range (>5 mg ml(-1)). Here we introduce a quantum cascade laser (QCL)-based IR transmission setup for analysis of protein and polypeptide secondary structure at concentrations as low as 0.25 mg ml(-1) in deuterated buffer solution. We present dynamic QCL-IR spectra of the temperature-induced α-helix to β-sheet transition of poly-L-lysine. The concentration dependence of the α-β transition temperature between 0.25 and 10 mg ml(-1) was investigated by QCL-IR, FTIR and CD spectroscopy. By using QCL-IR spectroscopy it is possible to perform IR spectroscopic analysis in the same concentration range as CD spectroscopy, thus enabling a combined analysis of biomolecules secondary structure by CD and IR spectroscopy.
Quantum-engineered interband cascade photovoltaic devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Razeghi, Manijeh; Tournié, Eric; Brown, Gail J.
2013-12-18
Quantum-engineered multiple stage photovoltaic (PV) devices are explored based on InAs/GaSb/AlSb interband cascade (IC) structures. These ICPV devices employ multiple discrete absorbers that are connected in series by widebandgap unipolar barriers using type-II heterostructure interfaces for facilitating carrier transport between cascade stages similar to IC lasers. The discrete architecture is beneficial for improving the collection efficiency and for spectral splitting by utilizing absorbers with different bandgaps. As such, the photo-voltages from each individual cascade stage in an ICPV device add together, creating a high overall open-circuit voltage, similar to conventional multi-junction tandem solar cells. Furthermore, photo-generated carriers can be collectedmore » with nearly 100% efficiency in each stage. This is because the carriers travel over only a single cascade stage, designed to be shorter than a typical diffusion length. The approach is of significant importance for operation at high temperatures where the diffusion length is reduced. Here, we will present our recent progress in the study of ICPV devices, which includes the demonstration of ICPV devices at room temperature and above with narrow bandgaps (e.g. 0.23 eV) and high open-circuit voltages. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.« less
Heterostructures for quantum-cascade lasers of the wavelength range of 7-8 μm
NASA Astrophysics Data System (ADS)
Babichev, A. V.; Gladyshev, A. G.; Filimonov, A. V.; Nevedomskii, V. N.; Kurochkin, A. S.; Kolodeznyi, E. S.; Sokolovskii, G. S.; Bugrov, V. E.; Karachinsky, L. Ya.; Novikov, I. I.; Bousseksou, A.; Egorov, A. Yu.
2017-07-01
It is shown that molecular-beam-epitaxy technology can be used to fabricate heterostructures for quantum-cascade lasers of the wavelength range of 7-8 μm with an active region comprising 50 cascades based on a heterojunction of In0.53Ga0.47As/Al0.48In0.52As solid solutions. The optical emission is obtained using a quantum-cascade design operating on the principle of two-phonon resonance scattering. The properties of heterostructures were studied by the methods of X-ray diffraction and transmission electron microscopy, which showed their high quality with respect to the identical compositions and thicknesses of all 50 cascades. Stripe-geometry lasers made of these heterostructures exhibited lasing with a threshold current density below 1.6 kA/cm2 at a temperature of 78 K.
Coupling strategies for coherent operation of quantum cascade ring laser arrays
NASA Astrophysics Data System (ADS)
Schwarzer, Clemens; Yao, Y.; Mujagić, E.; Ahn, S.; Schrenk, W.; Chen, J.; Gmachl, C.; Strasser, G.
2011-12-01
We report the design, fabrication and operation of coherently coupled ring cavity surface emitting quantum cascade lasers, emitting at wavelength around 8 μm. Special emphasis is placed on the evaluation of optimal coupling approaches and corresponding parameters. Evanescent field coupling as well as direct coupling where both devices are physically connected is presented. Furthermore, exploiting the Vernier-effect was used to obtain enhanced mode selectivity and robust coherent coupling of two ring-type quantum cascade lasers. Investigations were performed at pulsed room-temperature operation.
Gain and losses in THz quantum cascade laser with metal-metal waveguide.
Martl, Michael; Darmo, Juraj; Deutsch, Christoph; Brandstetter, Martin; Andrews, Aaron Maxwell; Klang, Pavel; Strasser, Gottfried; Unterrainer, Karl
2011-01-17
Coupling of broadband terahertz pulses into metal-metal terahertz quantum cascade lasers is presented. Mode matched terahertz transients are generated on the quantum cascade laser facet of subwavelength dimension. This method provides a full overlap of optical mode and active laser medium. A longitudinal optical-phonon depletion based active region design is investigated in a coupled cavity configuration. Modulation experiments reveal spectral gain and (broadband) losses. The observed gain shows high dynamic behavior when switching from loss to gain around threshold and is clamped at total laser losses.
NASA Astrophysics Data System (ADS)
Rajeev, Ayushi; Sigler, Chris; Earles, Tom; Flores, Yuri V.; Mawst, Luke J.; Botez, Dan
2018-01-01
Quantum cascade lasers (QCLs) that employ metamorphic buffer layers as substrates of variable lattice constant have been designed for emission in the 3.0- to 3.5-μm wavelength range. Theoretical analysis of the active-region (AR) energy band structure, while using an 8-band k•p model, reveals that one can achieve both effective carrier-leakage suppression as well as fast carrier extraction in QCL structures of relatively low strain. Significantly lower indium-content quantum wells (QWs) can be employed for the AR compared to QWs employed for conventional short-wavelength QCL structures grown on InP, which, in turn, is expected to eliminate carrier leakage to indirect-gap valleys (X, L). An analysis of thermo-optical characteristics for the complete device design indicates that high-Al-content AlInAs cladding layers are more effective for both optical confinement and thermal dissipation than InGaP cladding layers. An electroluminescence-spectrum full-width half-maximum linewidth of 54.6 meV is estimated from interface roughness scattering and, by considering both inelastic and elastic scattering, the threshold-current density for 3.39-μm-emitting, 3-mm-long back-facet-coated QCLs is projected to be 1.40 kA/cm2.
Direct nanoscale imaging of evolving electric field domains in quantum structures.
Dhar, Rudra Sankar; Razavipour, Seyed Ghasem; Dupont, Emmanuel; Xu, Chao; Laframboise, Sylvain; Wasilewski, Zbig; Hu, Qing; Ban, Dayan
2014-11-28
The external performance of quantum optoelectronic devices is governed by the spatial profiles of electrons and potentials within the active regions of these devices. For example, in quantum cascade lasers (QCLs), the electric field domain (EFD) hypothesis posits that the potential distribution might be simultaneously spatially nonuniform and temporally unstable. Unfortunately, there exists no prior means of probing the inner potential profile directly. Here we report the nanoscale measured electric potential distribution inside operating QCLs by using scanning voltage microscopy at a cryogenic temperature. We prove that, per the EFD hypothesis, the multi-quantum-well active region is indeed divided into multiple sections having distinctly different electric fields. The electric field across these serially-stacked quantum cascade modules does not continuously increase in proportion to gradual increases in the applied device bias, but rather hops between discrete values that are related to tunneling resonances. We also report the evolution of EFDs, finding that an incremental change in device bias leads to a hopping-style shift in the EFD boundary--the higher electric field domain expands at least one module each step at the expense of the lower field domain within the active region.
Direct Nanoscale Imaging of Evolving Electric Field Domains in Quantum Structures
Dhar, Rudra Sankar; Razavipour, Seyed Ghasem; Dupont, Emmanuel; Xu, Chao; Laframboise, Sylvain; Wasilewski, Zbig; Hu, Qing; Ban, Dayan
2014-01-01
The external performance of quantum optoelectronic devices is governed by the spatial profiles of electrons and potentials within the active regions of these devices. For example, in quantum cascade lasers (QCLs), the electric field domain (EFD) hypothesis posits that the potential distribution might be simultaneously spatially nonuniform and temporally unstable. Unfortunately, there exists no prior means of probing the inner potential profile directly. Here we report the nanoscale measured electric potential distribution inside operating QCLs by using scanning voltage microscopy at a cryogenic temperature. We prove that, per the EFD hypothesis, the multi-quantum-well active region is indeed divided into multiple sections having distinctly different electric fields. The electric field across these serially-stacked quantum cascade modules does not continuously increase in proportion to gradual increases in the applied device bias, but rather hops between discrete values that are related to tunneling resonances. We also report the evolution of EFDs, finding that an incremental change in device bias leads to a hopping-style shift in the EFD boundary – the higher electric field domain expands at least one module each step at the expense of the lower field domain within the active region. PMID:25431158
Direct Nanoscale Imaging of Evolving Electric Field Domains in Quantum Structures
NASA Astrophysics Data System (ADS)
Dhar, Rudra Sankar; Razavipour, Seyed Ghasem; Dupont, Emmanuel; Xu, Chao; Laframboise, Sylvain; Wasilewski, Zbig; Hu, Qing; Ban, Dayan
2014-11-01
The external performance of quantum optoelectronic devices is governed by the spatial profiles of electrons and potentials within the active regions of these devices. For example, in quantum cascade lasers (QCLs), the electric field domain (EFD) hypothesis posits that the potential distribution might be simultaneously spatially nonuniform and temporally unstable. Unfortunately, there exists no prior means of probing the inner potential profile directly. Here we report the nanoscale measured electric potential distribution inside operating QCLs by using scanning voltage microscopy at a cryogenic temperature. We prove that, per the EFD hypothesis, the multi-quantum-well active region is indeed divided into multiple sections having distinctly different electric fields. The electric field across these serially-stacked quantum cascade modules does not continuously increase in proportion to gradual increases in the applied device bias, but rather hops between discrete values that are related to tunneling resonances. We also report the evolution of EFDs, finding that an incremental change in device bias leads to a hopping-style shift in the EFD boundary - the higher electric field domain expands at least one module each step at the expense of the lower field domain within the active region.
Lyakh, A.; Maulini, R.; Tsekoun, A.; Go, R.; Von der Porten, S.; Pflügl, C.; Diehl, L.; Capasso, Federico; Patel, C. Kumar N.
2010-01-01
A strain-balanced, AlInAs/InGaAs/InP quantum cascade laser structure, designed for light emission at 4.0 μm using nonresonant extraction design approach, was grown by molecular beam epitaxy. Laser devices were processed in buried heterostructure geometry. An air-cooled laser system incorporating a 10-mm × 11.5-μm laser with antireflection-coated front facet and high-reflection-coated back facet delivered over 2 W of single-ended optical power in a collimated beam. Maximum continuous-wave room temperature wall plug efficiency of 5.0% was demonstrated for a high-reflection-coated 3.65-mm × 8.7-μm laser mounted on an aluminum nitride submount.
High power frequency comb based on mid-infrared quantum cascade laser at λ ∼ 9 μm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Q. Y.; Razeghi, M., E-mail: razeghi@eecs.northwestern.edu; Slivken, S.
2015-02-02
We investigate a frequency comb source based on a mid-infrared quantum cascade laser at λ ∼ 9 μm with high power output. A broad flat-top gain with near-zero group velocity dispersion has been engineered using a dual-core active region structure. This favors the locking of the dispersed Fabry-Pérot modes into equally spaced frequency lines via four wave mixing. A current range with a narrow intermode beating linewidth of 3 kHz is identified with a fast detector and spectrum analyzer. This range corresponds to a broad spectral coverage of 65 cm{sup −1} and a high power output of 180 mW for ∼176 comb modes.
NASA Astrophysics Data System (ADS)
Cho, Gookbin; Kim, Jungho
2017-09-01
We theoretically investigate the effect of conduction band non-parabolicity (NPB) on the optical gain spectrum of quantum cascade lasers (QCLs) using the effective two-band finite difference method. Based on the effective two-band model to consider the NPB effect in the multiple quantum wells (QWs), the wave functions and confined energies of electron states are calculated in two different active-region structures, which correspond to three-QW single-phonon and four-QW double-phonon resonance designs. In addition, intersubband optical dipole moments and polar-optical-phonon scattering times are calculated and compared without and with the conduction band NPB effect. Finally, the calculation results of optical gain spectra are compared in the two QCL structures having the same peak gain wavelength of 8.55 μm. The gain peaks are greatly shifted to longer wavelengths and the overall gain magnitudes are slightly reduced when the NPB effect is considered. Compared with the three-QW active-region design, the redshift of the peak gain is more prominent in the four-QW active-region design, which makes use of higher electronic states for the lasing transition.
Quantum dot quantum cascade infrared photodetector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xue-Jiao; Zhai, Shen-Qiang; Zhuo, Ning
2014-04-28
We demonstrate an InAs quantum dot quantum cascade infrared photodetector operating at room temperature with a peak detection wavelength of 4.3 μm. The detector shows sensitive photoresponse for normal-incidence light, which is attributed to an intraband transition of the quantum dots and the following transfer of excited electrons on a cascade of quantum levels. The InAs quantum dots for the infrared absorption were formed by making use of self-assembled quantum dots in the Stranski–Krastanov growth mode and two-step strain-compensation design based on InAs/GaAs/InGaAs/InAlAs heterostructure, while the following extraction quantum stairs formed by LO-phonon energy are based on a strain-compensated InGaAs/InAlAs chirpedmore » superlattice. Johnson noise limited detectivities of 3.64 × 10{sup 11} and 4.83 × 10{sup 6} Jones at zero bias were obtained at 80 K and room temperature, respectively. Due to the low dark current and distinct photoresponse up to room temperature, this device can form high temperature imaging.« less
NASA Astrophysics Data System (ADS)
Ryczko, K.; Sek, G.; Misiewicz, J.
2013-12-01
Band structure properties of the type-II W-design AlSb/InAs/GaIn(As)Sb/InAs/AlSb quantum wells have been investigated theoretically in a systematic manner and with respect to their use in the active region of interband cascade laser for a broad range of emission in mid infrared between below 3 to beyond 10 μm. Eight-band k.p approach has been utilized to calculate the electronic subbands. The fundamental optical transition energy and the corresponding oscillator strength have been determined in function of the thickness of InAs and GaIn(As)Sb layers and the composition of the latter. There have been considered active structures on two types of relevant substrates, GaSb and InAs, introducing slightly modified strain conditions. Additionally, the effect of external electric field has been taken into account to simulate the conditions occurring in the operational devices. The results show that introducing arsenic as fourth element into the valence band well of the type-II W-design system, and then altering its composition, can efficiently enhance the transition oscillator strength and allow additionally increasing the emission wavelength, which makes this solution prospective for improved performance and long wavelength interband cascade lasers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryczko, K.; Sęk, G.; Misiewicz, J.
Band structure properties of the type-II W-design AlSb/InAs/GaIn(As)Sb/InAs/AlSb quantum wells have been investigated theoretically in a systematic manner and with respect to their use in the active region of interband cascade laser for a broad range of emission in mid infrared between below 3 to beyond 10 μm. Eight-band k·p approach has been utilized to calculate the electronic subbands. The fundamental optical transition energy and the corresponding oscillator strength have been determined in function of the thickness of InAs and GaIn(As)Sb layers and the composition of the latter. There have been considered active structures on two types of relevant substrates, GaSbmore » and InAs, introducing slightly modified strain conditions. Additionally, the effect of external electric field has been taken into account to simulate the conditions occurring in the operational devices. The results show that introducing arsenic as fourth element into the valence band well of the type-II W-design system, and then altering its composition, can efficiently enhance the transition oscillator strength and allow additionally increasing the emission wavelength, which makes this solution prospective for improved performance and long wavelength interband cascade lasers.« less
High-Power Growth-Robust InGaAs/InAlAs Terahertz Quantum Cascade Lasers
2017-01-01
We report on high-power terahertz quantum cascade lasers based on low effective electron mass InGaAs/InAlAs semiconductor heterostructures with excellent reproducibility. Growth-related asymmetries in the form of interface roughness and dopant migration play a crucial role in this material system. These bias polarity dependent phenomena are studied using a nominally symmetric active region resulting in a preferential electron transport in the growth direction. A structure based on a three-well optical phonon depletion scheme was optimized for this bias direction. Depending on the sheet doping density, the performance of this structure shows a trade-off between high maximum operating temperature and high output power. While the highest operating temperature of 155 K is observed for a moderate sheet doping density of 2 × 1010 cm–2, the highest peak output power of 151 mW is found for 7.3 × 1010 cm–2. Furthermore, by abutting a hyperhemispherical GaAs lens to a device with the highest doping level a record output power of 587 mW is achieved for double-metal waveguide structures. PMID:28470028
High-Power Growth-Robust InGaAs/InAlAs Terahertz Quantum Cascade Lasers.
Deutsch, Christoph; Kainz, Martin Alexander; Krall, Michael; Brandstetter, Martin; Bachmann, Dominic; Schönhuber, Sebastian; Detz, Hermann; Zederbauer, Tobias; MacFarland, Donald; Andrews, Aaron Maxwell; Schrenk, Werner; Beck, Mattias; Ohtani, Keita; Faist, Jérôme; Strasser, Gottfried; Unterrainer, Karl
2017-04-19
We report on high-power terahertz quantum cascade lasers based on low effective electron mass InGaAs/InAlAs semiconductor heterostructures with excellent reproducibility. Growth-related asymmetries in the form of interface roughness and dopant migration play a crucial role in this material system. These bias polarity dependent phenomena are studied using a nominally symmetric active region resulting in a preferential electron transport in the growth direction. A structure based on a three-well optical phonon depletion scheme was optimized for this bias direction. Depending on the sheet doping density, the performance of this structure shows a trade-off between high maximum operating temperature and high output power. While the highest operating temperature of 155 K is observed for a moderate sheet doping density of 2 × 10 10 cm -2 , the highest peak output power of 151 mW is found for 7.3 × 10 10 cm -2 . Furthermore, by abutting a hyperhemispherical GaAs lens to a device with the highest doping level a record output power of 587 mW is achieved for double-metal waveguide structures.
Rapid Swept-Wavelength External Cavity Quantum Cascade Laser for Open Path Sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brumfield, Brian E.; Phillips, Mark C.
2015-07-01
A rapidly tunable external cavity quantum cascade laser system is used for open path sensing. The system permits acquisition of transient absorption spectra over a 125 cm-1 tuning range in less than 0.01 s.
Quantum Cascade Laser Absorption Spectroscopy as a Plasma Diagnostic Tool: An Overview
Welzel, Stefan; Hempel, Frank; Hübner, Marko; Lang, Norbert; Davies, Paul B.; Röpcke, Jürgen
2010-01-01
The recent availability of thermoelectrically cooled pulsed and continuous wave quantum and inter-band cascade lasers in the mid-infrared spectral region has led to significant improvements and new developments in chemical sensing techniques using in-situ laser absorption spectroscopy for plasma diagnostic purposes. The aim of this article is therefore two-fold: (i) to summarize the challenges which arise in the application of quantum cascade lasers in such environments, and, (ii) to provide an overview of recent spectroscopic results (encompassing cavity enhanced methods) obtained in different kinds of plasma used in both research and industry. PMID:22163581
Quantum cascade laser absorption spectroscopy as a plasma diagnostic tool: an overview.
Welzel, Stefan; Hempel, Frank; Hübner, Marko; Lang, Norbert; Davies, Paul B; Röpcke, Jürgen
2010-01-01
The recent availability of thermoelectrically cooled pulsed and continuous wave quantum and inter-band cascade lasers in the mid-infrared spectral region has led to significant improvements and new developments in chemical sensing techniques using in-situ laser absorption spectroscopy for plasma diagnostic purposes. The aim of this article is therefore two-fold: (i) to summarize the challenges which arise in the application of quantum cascade lasers in such environments, and, (ii) to provide an overview of recent spectroscopic results (encompassing cavity enhanced methods) obtained in different kinds of plasma used in both research and industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egorov, A. Yu., E-mail: anton@beam.ioffe.ru; Babichev, A. V.; Karachinsky, L. Ya.
2015-11-15
The lasing of multiperiod quantum-cascade lasers in the spectral range of (5.6–5.8)-μm under current pumping are demonstrated. The quantum-cascade laser heterostructure is grown by molecular-beam epitaxy technique. Despite the relatively short laser cavity length and high level of external loss the laser shows the lasing in the temperature range of 80–220 K. The threshold current density below 4 kA/cm{sup 2} at 220 K with the characteristic temperature T{sub 0} = 123 K was demonstrated.
Room temperature negative differential resistance in terahertz quantum cascade laser structures
Albo, Asaf; Hu, Qing; Reno, John L.
2016-08-24
The mechanisms that limit the temperature performance of GaAs/Al 0.15GaAs-based terahertz quantum cascade lasers (THz-QCLs) have been identified as thermally activated LO-phonon scattering and leakage of charge carriers into the continuum. Consequently, the combination of highly diagonal optical transition and higher barriers should significantly reduce the adverse effects of both mechanisms and lead to improved temperature performance. Here, we study the temperature performance of highly diagonal THz-QCLs with high barriers. Our analysis uncovers an additional leakage channel which is the thermal excitation of carriers into bounded higher energy levels, rather than the escape into the continuum. Based on this understanding,more » we have designed a structure with an increased intersubband spacing between the upper lasing level and excited states in a highly diagonal THz-QCL, which exhibits negative differential resistance even at room temperature. Furthermore, this result is a strong evidence for the effective suppression of the aforementioned leakage channel.« less
Manfred, Katherine M; Kirkbride, James M R; Ciaffoni, Luca; Peverall, Robert; Ritchie, Grant A D
2014-12-15
The sensitivity of mid-IR quantum cascade laser (QCL) off-axis cavity-enhanced absorption spectroscopy (CEAS), often limited by cavity mode structure and diffraction losses, was enhanced by applying a broadband RF noise to the laser current. A pump-probe measurement demonstrated that the addition of bandwidth-limited white noise effectively increased the laser linewidth, thereby reducing mode structure associated with CEAS. The broadband noise source offers a more sensitive, more robust alternative to applying single-frequency noise to the laser. Analysis of CEAS measurements of a CO(2) absorption feature at 1890 cm(-1) averaged over 100 ms yielded a minimum detectable absorption of 5.5×10(-3) Hz(-1/2) in the presence of broadband RF perturbation, nearly a tenfold improvement over the unperturbed regime. The short acquisition time makes this technique suitable for breath applications requiring breath-by-breath gas concentration information.
Ghali, Mohsen; Ohtani, Keita; Ohno, Yuzo; Ohno, Hideo
2012-01-01
Semiconductor quantum dots are potential sources for generating polarization-entangled photons efficiently. The main prerequisite for such generation based on biexciton–exciton cascaded emission is to control the exciton fine-structure splitting. Among various techniques investigated for this purpose, an electric field is a promising means to facilitate the integration into optoelectronic devices. Here we demonstrate the generation of polarization-entangled photons from single GaAs quantum dots by an electric field. In contrast to previous studies, which were limited to In(Ga)As quantum dots, GaAs island quantum dots formed by a thickness fluctuation were used because they exhibit a larger oscillator strength and emit light with a shorter wavelength. A forward voltage was applied to a Schottky diode to control the fine-structure splitting. We observed a decrease and suppression in the fine-structure splitting of the studied single quantum dot with the field, which enabled us to generate polarization-entangled photons with a high fidelity of 0.72±0.05. PMID:22314357
Analysis of Trace Gas Mixtures Using an External Cavity Quantum Cascade Laser Sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, Mark C.; Taubman, Matthew S.; Brumfield, Brian E.
2015-07-01
We measure and analyze mixtures of trace gases at ppb-ppm levels using an external cavity quantum cascade laser sensor with a 1-second response time. Accurate spectral fits are obtained in the presence of overlapping spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamanishi, Masamichi, E-mail: masamiya@crl.hpk.co.jp; Hirohata, Tooru; Hayashi, Syohei
2014-11-14
Free running line-widths (>100 kHz), much broader than intrinsic line-widths ∼100 Hz, of existing quantum-cascade lasers are governed by strong flicker frequency-noise originating from electrical flicker noise. Understanding of microscopic origins of the electrical flicker noises in quantum-cascade lasers is crucially important for the reduction of strength of flicker frequency-noise without assistances of any type of feedback schemes. In this article, an ad hoc model that is based on fluctuating charge-dipoles induced by electron trappings and de-trappings at indispensable impurity states in injector super-lattices of a quantum-cascade laser is proposed, developing theoretical framework based on the model. The validity of the presentmore » model is evaluated by comparing theoretical voltage-noise power spectral densities based on the model with experimental ones obtained by using mid-infrared quantum-cascade lasers with designed impurity-positioning. The obtained experimental results on flicker noises, in comparison with the theoretical ones, shed light on physical mechanisms, such as the inherent one due to impurity states in their injectors and extrinsic ones due to surface states on the ridge-walls and due to residual deep traps, for electrical flicker-noise generation in existing mid-infrared quantum-cascade lasers. It is shown theoretically that quasi-delta doping of impurities in their injectors leads to strong suppression of electrical flicker noise by minimization of the dipole length at a certain temperature, for instance ∼300 K and, in turn, is expected to result in substantial narrowing of the free running line-width down below 10 kHz.« less
van Mastrigt, E; Reyes-Reyes, A; Brand, K; Bhattacharya, N; Urbach, H P; Stubbs, A P; de Jongste, J C; Pijnenburg, M W
2016-04-08
Exhaled breath analysis is a potential non-invasive tool for diagnosing and monitoring airway diseases. Gas chromatography-mass spectrometry and electrochemical sensor arrays are the main techniques to detect volatile organic compounds (VOC) in exhaled breath. We developed a broadband quantum cascade laser spectroscopy technique for VOC detection and identification. The objective of this study was to assess the repeatability of exhaled breath profiling with broadband quantum cascade laser-based spectroscopy and to explore the clinical applicability by comparing exhaled breath samples from healthy children with those from children with asthma or cystic fibrosis (CF). Healthy children and children with stable asthma or stable CF, aged 6-18 years, were included. Two to four exhaled breath samples were collected in Tedlar bags and analyzed by quantum cascade laser spectroscopy to detect VOCs with an absorption profile in the wavenumber region between 832 and 1262.55 cm(-1). We included 35 healthy children, 39 children with asthma and 15 with CF. Exhaled breath VOC profiles showed poor repeatability (Spearman's rho = 0.36 to 0.46) and agreement of the complete profiles. However, we were able to discriminate healthy children from children with stable asthma or stable CF and identified VOCs that were responsible for this discrimination. Broadband quantum cascade laser-based spectroscopy detected differences in VOC profiles in exhaled breath samples between healthy children and children with asthma or CF. The combination of a relatively easy and fast method and the possibility of molecule identification makes broadband quantum cascade laser-based spectroscopy attractive to investigate the diagnostic and prognostic potential of volatiles in exhaled breath.
Processing of AlGaAs/GaAs quantum-cascade structures for terahertz laser
NASA Astrophysics Data System (ADS)
Szerling, Anna; Kosiel, Kamil; Szymański, Michał; Wasilewski, Zbig; Gołaszewska, Krystyna; Łaszcz, Adam; Płuska, Mariusz; Trajnerowicz, Artur; Sakowicz, Maciej; Walczakowski, Michał; Pałka, Norbert; Jakieła, Rafał; Piotrowska, Anna
2015-01-01
We report research results with regard to AlGaAs/GaAs structure processing for THz quantum-cascade lasers (QCLs). We focus on the processes of Ti/Au cladding fabrication for metal-metal waveguides and wafer bonding with indium solder. Particular emphasis is placed on optimization of technological parameters for the said processes that result in working devices. A wide range of technological parameters was studied using test structures and the analysis of their electrical, optical, chemical, and mechanical properties performed by electron microscopic techniques, energy dispersive x-ray spectrometry, secondary ion mass spectroscopy, atomic force microscopy, Fourier-transform infrared spectroscopy, and circular transmission line method. On that basis, a set of technological parameters was selected for the fabrication of devices lasing at a maximum temperature of 130 K from AlGaAs/GaAs structures grown by means of molecular beam epitaxy. Their resulting threshold-current densities were on a level of 1.5 kA/cm2. Furthermore, initial stage research regarding fabrication of Cu-based claddings is reported as these are theoretically more promising than the Au-based ones with regard to low-loss waveguide fabrication for THz QCLs.
Terahertz Time Domain Spectroscopy of Phonon-Depopulation Based Quantum Cascade Lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rungsawang, R.; Dhillon, S. S.; Jukam, N.
2011-12-23
A 3.1 THz phonon depopulation-based quantum-cascade-laser is investigated using terahertz time domain spectroscopy. A gain of 25 cm{sup -1} and absorption features due to the lower laser level being populated from a parasitic electronic channel are highlighted.
Quantum Cascade Lasers in Biomedical Infrared Imaging.
Bird, Benjamin; Baker, Matthew J
2015-10-01
Technological advances, namely the integration of quantum cascade lasers (QCLs) within an infrared (IR) microscope, are enabling the development of valuable label-free biomedical-imaging tools capable of targeting and detecting salient chemical species within practical clinical timeframes. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, Mark C.; Craig, Ian M.
2013-11-03
We analyze the long-term performance and stability of a trace-gas sensor based on an external cavity quantum cascade laser using data collected over a one-year period in a building air monitoring application.
Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers.
Arbabi, Amir; Briggs, Ryan M; Horie, Yu; Bagheri, Mahmood; Faraon, Andrei
2015-12-28
Light emitted from single-mode semiconductor lasers generally has large divergence angles, and high numerical aperture lenses are required for beam collimation. Visible and near infrared lasers are collimated using aspheric glass or plastic lenses, yet collimation of mid-infrared quantum cascade lasers typically requires more costly aspheric lenses made of germanium, chalcogenide compounds, or other infrared-transparent materials. Here we report mid-infrared dielectric metasurface flat lenses that efficiently collimate the output beam of single-mode quantum cascade lasers. The metasurface lenses are composed of amorphous silicon posts on a flat sapphire substrate and can be fabricated at low cost using a single step conventional UV binary lithography. Mid-infrared radiation from a 4.8 μm distributed-feedback quantum cascade laser is collimated using a polarization insensitive metasurface lens with 0.86 numerical aperture and 79% transmission efficiency. The collimated beam has a half divergence angle of 0.36° and beam quality factor of M2=1.02.
Broadly tunable terahertz generation in mid-infrared quantum cascade lasers.
Vijayraghavan, Karun; Jiang, Yifan; Jang, Min; Jiang, Aiting; Choutagunta, Karthik; Vizbaras, Augustinas; Demmerle, Frederic; Boehm, Gerhard; Amann, Markus C; Belkin, Mikhail A
2013-01-01
Room temperature, broadly tunable, electrically pumped semiconductor sources in the terahertz spectral range, similar in operation simplicity to diode lasers, are highly desired for applications. An emerging technology in this area are sources based on intracavity difference-frequency generation in dual-wavelength mid-infrared quantum cascade lasers. Here we report terahertz quantum cascade laser sources based on an optimized non-collinear Cherenkov difference-frequency generation scheme that demonstrates dramatic improvements in performance. Devices emitting at 4 THz display a mid-infrared-to-terahertz conversion efficiency in excess of 0.6 mW W(-2) and provide nearly 0.12 mW of peak power output. Devices emitting at 2 and 3 THz fabricated on the same chip display 0.09 and 0.4 mW W(-2) conversion efficiencies at room temperature, respectively. High terahertz-generation efficiency and relaxed phase-matching conditions offered by the Cherenkov scheme allowed us to demonstrate, for the first time, an external-cavity terahertz quantum cascade laser source tunable between 1.70 and 5.25 THz.
Spectroscopic Study of Terahertz Generation in Mid-Infrared Quantum Cascade Lasers.
Jiang, Yifan; Vijayraghavan, Karun; Jung, Seungyong; Jiang, Aiting; Kim, Jae Hyun; Demmerle, Frederic; Boehm, Gerhard; Amann, Markus C; Belkin, Mikhail A
2016-02-16
Terahertz quantum cascade laser sources based on intra-cavity difference-frequency generation are currently the only room-temperature mass-producible diode-laser-like emitters of coherent 1-6 THz radiation. Device performance has improved dramatically over the past few years to reach milliwatt-level power output and broad tuning from 1.2 to 5.9 THz, all at room-temperature. Terahertz output in these sources originates from intersubband optical nonlinearity in the laser active region. Here we report the first comprehensive spectroscopic study of the optical nonlinearity and investigate its dependence on the mid-infrared pump frequencies. Our work shows that the terahertz generation efficiency can vary by a factor of 2 or greater depending on the spectral position of the mid-infrared pumps for a fixed THz difference-frequency. We have also measured for the first time the linewidth for transitions between the lower quantum cascade laser states, which is critical for determining terahertz nonlinearity and predicting optical loss in quantum cascade laser waveguides.
Magnetic-Field-Assisted Terahertz Quantum Cascade Laser Operating up to 225 K
NASA Technical Reports Server (NTRS)
Wade, A.; Fedorov, G.; Smirnov, D.; Kumar, S.; Williams, B. S.; Hu, Q.; Reno, J. L.
2008-01-01
Advances in semiconductor bandgap engineering have resulted in the recent development of the terahertz quantum cascade laser1. These compact optoelectronic devices now operate in the frequency range 1.2-5 THz, although cryogenic cooling is still required2.3. Further progress towards the realization of devices operating at higher temperatures and emitting at longer wavelengths (sub-terahertz quantum cascade lasers) is difficult because it requires maintaining a population inversion between closely spaced electronic sub-bands (1 THz approx. equals 4 meV). Here, we demonstrate a magnetic-field-assisted quantum cascade laser based on the resonant-phonon design. By applying appropriate electrical bias and strong magnetic fields above 16 T, it is possible to achieve laser emission from a single device over a wide range of frequencies (0.68-3.33 THz). Owing to the suppression of inter-landau-level non-radiative scattering, the device shows magnetic field assisted laser action at 1 THz at temperatures up to 215 K, and 3 THz lasing up to 225 K.
Terahertz multiheterodyne spectroscopy using laser frequency combs
Yang, Yang; Burghoff, David; Hayton, Darren J.; ...
2014-07-01
The terahertz region is of great importance for spectroscopy since many molecules have absorption fingerprints there. Frequency combs based on terahertz quantum cascade lasers feature broadband coverage and high output powers in a compact package, making them an attractive option for broadband spectroscopy. Here, we demonstrate the first multiheterodyne spectroscopy using two terahertz quantum cascade laser combs. Over a spectral range of 250 GHz, we achieve average signal-to-noise ratios of 34 dB using cryogenic detectors and 24 dB using room-temperature detectors, all in just 100 μs. As a proof of principle, we use these combs to measure the broadband transmissionmore » spectrum of etalon samples and show that, with proper signal processing, it is possible to extend the multiheterodyne spectroscopy to quantum cascade laser combs operating in pulsed mode. Here, this greatly expands the range of quantum cascade lasers that could be suitable for these techniques and allows for the creation of completely solid-state terahertz laser spectrometers.« less
Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers
Arbabi, Amir; Briggs, Ryan M.; Horie, Yu; ...
2015-01-01
Light emitted from single-mode semiconductor lasers generally has large divergence angles, and high numerical aperture lenses are required for beam collimation. Visible and near infrared lasers are collimated using aspheric glass or plastic lenses, yet collimation of mid-infrared quantum cascade lasers typically requires more costly aspheric lenses made of germanium, chalcogenide compounds, or other infrared-transparent materials. We report mid-infrared dielectric metasurface flat lenses that efficiently collimate the output beam of single-mode quantum cascade lasers. The metasurface lenses are composed of amorphous silicon posts on a flat sapphire substrate and can be fabricated at low cost using a single step conventionalmore » UV binary lithography. Mid-infrared radiation from a 4.8 μm distributed-feedback quantum cascade laser is collimated using a polarization insensitive metasurface lens with 0.86 numerical aperture and 79% transmission efficiency. The collimated beam has a half divergence angle of 0.36° and beam quality factor of M² =1.02.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Bo; Zeng, Yong Quan; Liang, Guozhen
2015-09-14
We report our progress in the development of broadly tunable single-mode slot waveguide quantum cascade lasers based on a continuum-to-continuum active region design. The electroluminescence spectrum of the continuum-to-continuum active region design has a full width at half maximum of 440 cm{sup −1} at center wavelength ∼10 μm at room temperature (300 K). Devices using the optimized slot waveguide structure and the continuum-to-continuum design can be tuned continuously with a lasing emission over 42 cm{sup −1}, from 9.74 to 10.16 μm, at room temperature by using only current tuning scheme, together with a side mode suppression ratio of above 15 dB within the whole tuning range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yasuda, H., E-mail: yasuda@nict.go.jp; Hosako, I.
2015-03-16
We investigate the performance of terahertz quantum cascade lasers (THz-QCLs) based on Al{sub x}Ga{sub 1−x}As/Al{sub y}Ga{sub 1−y}As and GaSb/AlGaSb material systems to realize higher-temperature operation. Calculations with the non-equilibrium Green's function method reveal that the AlGaAs-well-based THz-QCLs do not show improved performance, mainly because of alloy scattering in the ternary compound semiconductor. The GaSb-based THz-QCLs offer clear advantages over GaAs-based THz-QCLs. Weaker longitudinal optical phonon–electron interaction in GaSb produces higher peaks in the spectral functions of the lasing levels, which enables more electrons to be accumulated in the upper lasing level.
Focusing metasurface quantum-cascade laser with a near diffraction-limited beam
Xu, Luyao; Chen, Daguan; Itoh, Tatsuo; ...
2016-10-17
A terahertz vertical-external-cavity surface-emitting-laser (VECSEL) is demonstrated using an active focusing reflectarray metasurface based on quantum-cascade gain material. The focusing effect enables a hemispherical cavity with flat optics, which exhibits higher geometric stability than a plano-plano cavity and a directive and circular near-diffraction limited Gaussian beam with M 2 beam parameter as low as 1.3 and brightness of 1.86 × 10 6 Wsr –1m –2. As a result, this work initiates the potential of leveraging inhomogeneous metasurface and reflectarray designs to achieve high-power and high-brightness terahertz quantum-cascade VECSELs.
Applications of absorption spectroscopy using quantum cascade lasers.
Zhang, Lizhu; Tian, Guang; Li, Jingsong; Yu, Benli
2014-01-01
Infrared laser absorption spectroscopy (LAS) is a promising modern technique for sensing trace gases with high sensitivity, selectivity, and high time resolution. Mid-infrared quantum cascade lasers, operating in a pulsed or continuous wave mode, have potential as spectroscopic sources because of their narrow linewidths, single mode operation, tunability, high output power, reliability, low power consumption, and compactness. This paper reviews some important developments in modern laser absorption spectroscopy based on the use of quantum cascade laser (QCL) sources. Among the various laser spectroscopic methods, this review is focused on selected absorption spectroscopy applications of QCLs, with particular emphasis on molecular spectroscopy, industrial process control, combustion diagnostics, and medical breath analysis.
Tri-channel single-mode terahertz quantum cascade laser.
Wang, Tao; Liu, Jun-Qi; Liu, Feng-Qi; Wang, Li-Jun; Zhang, Jin-Chuan; Wang, Zhan-Guo
2014-12-01
We report on a compact THz quantum cascade laser source emitting at, individually controllable, three different wavelengths (92.6, 93.9, and 95.1 μm). This multiwavelength laser array can be used as a prototype of the emission source of THz wavelength division multiplex (WDM) wireless communication system. The source consists of three tapered single-mode distributed feedback (DFB) terahertz quantum cascade lasers fabricated monolithically on a single chip. All array elements feature longitudinal as well as lateral single-mode in the entire injection range. The peak output powers of individual lasers are 42, 73, and 37 mW at 10 K, respectively.
Design strategy for terahertz quantum dot cascade lasers.
Burnett, Benjamin A; Williams, Benjamin S
2016-10-31
The development of quantum dot cascade lasers has been proposed as a path to obtain terahertz semiconductor lasers that operate at room temperature. The expected benefit is due to the suppression of nonradiative electron-phonon scattering and reduced dephasing that accompanies discretization of the electronic energy spectrum. We present numerical modeling which predicts that simple scaling of conventional quantum well based designs to the quantum dot regime will likely fail due to electrical instability associated with high-field domain formation. A design strategy adapted for terahertz quantum dot cascade lasers is presented which avoids these problems. Counterintuitively, this involves the resonant depopulation of the laser's upper state with the LO-phonon energy. The strategy is tested theoretically using a density matrix model of transport and gain, which predicts sufficient gain for lasing at stable operating points. Finally, the effect of quantum dot size inhomogeneity on the optical lineshape is explored, suggesting that the design concept is robust to a moderate amount of statistical variation.
Single-photon frequency conversion via cascaded quadratic nonlinear processes
NASA Astrophysics Data System (ADS)
Xiang, Tong; Sun, Qi-Chao; Li, Yuanhua; Zheng, Yuanlin; Chen, Xianfeng
2018-06-01
Frequency conversion of single photons is an important technology for quantum interface and quantum communication networks. Here, single-photon frequency conversion in the telecommunication band is experimentally demonstrated via cascaded quadratic nonlinear processes. Using cascaded quasi-phase-matched sum and difference frequency generation in a periodically poled lithium niobate waveguide, the signal photon of a photon pair from spontaneous down-conversion is precisely shifted to identically match its counterpart, i.e., the idler photon, in frequency to manifest a clear nonclassical dip in the Hong-Ou-Mandel interference. Moreover, quantum entanglement between the photon pair is maintained after the frequency conversion, as is proved in time-energy entanglement measurement. The scheme is used to switch single photons between dense wavelength-division multiplexing channels, which holds great promise in applications in realistic quantum networks.
[Infrared spectroscopy based on quantum cascade lasers].
Wen, Zhong-Quan; Chen, Gang; Peng, Chen; Yuan, Wei-Qing
2013-04-01
Quantum cascade lasers (QCLs) are promising infrared coherent sources. Thanks to the quantum theory and band-gap engineering, QCL can access the wavelength in the range from 3 to 100 microm. Since the fingerprint spectrum of most gases are located in the mid-infrared range, mid-infrared quantum cascade laser based gas sensing technique has become the research focus world wide because of its high power, narrow linewidth and fast scanning. Recent progress in the QCL technology leads to a great improvement in laser output power and efficiency, which stimulates a fast development in the infrared laser spectroscopy. The present paper gives a broad review on the QCL based spectroscopy techniques according to their working principles. A discussion on their applications in gas sensing and explosive detecting is also given at the end of the paper.
Generation of Nonclassical Biphoton States through Cascaded Quantum Walks on a Nonlinear Chip
NASA Astrophysics Data System (ADS)
Solntsev, Alexander S.; Setzpfandt, Frank; Clark, Alex S.; Wu, Che Wen; Collins, Matthew J.; Xiong, Chunle; Schreiber, Andreas; Katzschmann, Fabian; Eilenberger, Falk; Schiek, Roland; Sohler, Wolfgang; Mitchell, Arnan; Silberhorn, Christine; Eggleton, Benjamin J.; Pertsch, Thomas; Sukhorukov, Andrey A.; Neshev, Dragomir N.; Kivshar, Yuri S.
2014-07-01
We demonstrate a nonlinear optical chip that generates photons with reconfigurable nonclassical spatial correlations. We employ a quadratic nonlinear waveguide array, where photon pairs are generated through spontaneous parametric down-conversion and simultaneously spread through quantum walks between the waveguides. Because of the quantum interference of these cascaded quantum walks, the emerging photons can become entangled over multiple waveguide positions. We experimentally observe highly nonclassical photon-pair correlations, confirming the high fidelity of on-chip quantum interference. Furthermore, we demonstrate biphoton-state tunability by spatial shaping and frequency tuning of the classical pump beam.
2008-12-01
evident from Figure 7 that, if the applied bias is not correct, it is very likely that electrons will not tunnel into their intended energy state...the theoretical laser contrasts sharply to that of semiconductor lasers. Semiconductor lasers rely on electron hole recombination or interband ...the active layer of a forward- biased pn junction [26]. In contrast to this, the QCL is a unipolar device that uses a quantum well (QW) structure
Gain competition in dual wavelength quantum cascade lasers.
Geiser, Markus; Pflügl, Christian; Belyanin, Alexey; Wang, Qi Jie; Yu, Nanfang; Edamura, Tadanaka; Yamanishi, Masamichi; Kan, Hirofumi; Fischer, Milan; Wittmann, Andreas; Faist, Jérôme; Capasso, Federico
2010-05-10
We investigated dual wavelength mid-infrared quantum cascade lasers based on heterogeneous cascades. We found that due to gain competition laser action tends to start in higher order lateral modes. The mid-infrared mode with the lower threshold current reduces population inversion for the second laser with the higher threshold current due to stimulated emission. We developed a rate equation model to quantitatively describe mode interactions due to mutual gain depletion. (c) 2010 Optical Society of America.
Quantum Cascade Laser Measurements of Stratospheric Methane (CHsub4) and Nitrous Oxide (NSub20)
NASA Technical Reports Server (NTRS)
Webster, C.; Flesch, G.; Scott, D.; Swanson, J.; May, R.; Gmachl, S.; Capasso, F.; Sivco, D.; Baillargeon, J.; Hutchinson, A.;
1999-01-01
A tunable Quantum-Cascade (QC) laser has been flown on NASA's ER-2 high-altitude aircraft to produce the first atmospheric gas mearsurements using this newly-invented device, an important milestone in the QC laser's much-anticipated future planetary, industrial, and commercial application.
Engineering Light: Quantum Cascade Lasers
Claire Gmachl
2017-12-09
Quantum cascade lasers are ideal for environmental sensing and medical diagnostic applications. Gmachl discusses how these lasers work, and their applications, including their use as chemical trace gas sensors. As examples of these applications, she briefly presents results from her field campaign at the Beijing Olympics, and ongoing campaigns in Texas, Maryland, and Ghana.
Above room temperature operation of InGaAs/AlGaAs/GaAs quantum cascade lasers
NASA Astrophysics Data System (ADS)
Pierścińska, D.; Gutowski, P.; Hałdaś, G.; Kolek, A.; Sankowska, I.; Grzonka, J.; Mizera, J.; Pierściński, K.; Bugajski, M.
2018-03-01
In this work we report on the performance of mid-infrared quantum cascade lasers (QCLs) based on strained InGaAs/AlGaAs grown by molecular beam epitaxy on GaAs substrate. Structures were grown with indium content from 1% to 6% in GaAs quantum wells (QW) and 45% of Al in AlGaAs barrier layers. The design results in strained heterostructure, however, no strain relaxation was observed as documented by x-ray diffraction measurements up to ∼3% of In content in QWs. The investigation of heterostructures and devices was performed, including structural measurements and electrooptical characterization of devices. Devices fabricated from epi wafers with 2.64% of In exhibited performance largely improved over GaAs/AlGaAs QCLs. Roughly two times reduction of the threshold current density was observed at lasing wavelength ∼9.45 μm. The lasers operated in pulsed mode up to T = 50 °C with characteristic temperature T 0 = 115 K. The decrease of the threshold current density has been mainly attributed to the reduction of interface roughness scattering and the increase of activation energy for the escape of carriers from the upper laser level to the 3D continuum. Further increase of In content in QWs resulted in the deterioration of device parameters.
Interband Cascade Photovoltaic Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Rui Q.; Santos, Michael B.; Johnson, Matthew B.
2014-09-24
In this project, we are performing basic and applied research to systematically investigate our newly proposed interband cascade (IC) photovoltaic (PV) cells [1]. These cells follow from the great success of infrared IC lasers [2-3] that pioneered the use of quantum-engineered IC structures. This quantum-engineered approach will enable PV cells to efficiently convert infrared radiation from the sun or other heat source, to electricity. Such cells will have important applications for more efficient use of solar energy, waste-heat recovery, and power beaming in combination with mid-infrared lasers. The objectives of our investigations are to: achieve extensive understanding of the fundamentalmore » aspects of the proposed PV structures, develop the necessary knowledge for making such IC PV cells, and demonstrate prototype working PV cells. This research will focus on IC PV structures and their segments for utilizing infrared radiation with wavelengths from 2 to 5 μm, a range well suited for emission by heat sources (1,000-2,000 K) that are widely available from combustion systems. The long-term goal of this project is to push PV technology to longer wavelengths, allowing for relatively low-temperature thermal sources. Our investigations address material quality, electrical and optical properties, and their interplay for the different regions of an IC PV structure. The tasks involve: design, modeling and optimization of IC PV structures, molecular beam epitaxial growth of PV structures and relevant segments, material characterization, prototype device fabrication and testing. At the end of this program, we expect to generate new cutting-edge knowledge in the design and understanding of quantum-engineered semiconductor structures, and demonstrate the concepts for IC PV devices with high conversion efficiencies.« less
Advancements in quantum cascade laser-based infrared microscopy of aqueous media.
Haase, K; Kröger-Lui, N; Pucci, A; Schönhals, A; Petrich, W
2016-06-23
The large mid-infrared absorption coefficient of water frequently hampers the rapid, label-free infrared microscopy of biological objects in their natural aqueous environment. However, the high spectral power density of quantum cascade lasers is shifting this limitation such that mid-infrared absorbance images can be acquired in situ within signal-to-noise ratios of up to 100. Even at sample thicknesses well above 50 μm, signal-to-noise ratios above 10 are readily achieved. The quantum cascade laser-based microspectroscopy of aqueous media is exemplified by imaging an aqueous yeast solution and quantifying glucose consumption, ethanol generation as well as the production of carbon dioxide gas during fermentation.
Enstrophy Cascade in Decaying Two-Dimensional Quantum Turbulence
NASA Astrophysics Data System (ADS)
Reeves, Matthew T.; Billam, Thomas P.; Yu, Xiaoquan; Bradley, Ashton S.
2017-11-01
We report evidence for an enstrophy cascade in large-scale point-vortex simulations of decaying two-dimensional quantum turbulence. Devising a method to generate quantum vortex configurations with kinetic energy narrowly localized near a single length scale, the dynamics are found to be well characterized by a superfluid Reynolds number Res that depends only on the number of vortices and the initial kinetic energy scale. Under free evolution the vortices exhibit features of a classical enstrophy cascade, including a k-3 power-law kinetic energy spectrum, and constant enstrophy flux associated with inertial transport to small scales. Clear signatures of the cascade emerge for N ≳500 vortices. Simulating up to very large Reynolds numbers (N =32 768 vortices), additional features of the classical theory are observed: the Kraichnan-Batchelor constant is found to converge to C'≈1.6 , and the width of the k-3 range scales as Res1 /2 .
Progress in high-power continuous-wave quantum cascade lasers [Invited].
Figueiredo, Pedro; Suttinger, Matthew; Go, Rowel; Tsvid, Eugene; Patel, C Kumar N; Lyakh, Arkadiy
2017-11-01
Multi-watt continuous-wave room temperature operation with efficiency exceeding 10% has been demonstrated for quantum cascade lasers essentially in the entire mid-wave and long-wave infrared spectral regions. Along with interband cascade lasers, these devices are the only room-temperature lasers that directly convert electrical power into mid- and long-infrared optical power. In this paper, we review the progress in high-power quantum cascade lasers made over the last 10 years. Specifically, an overview of the most important active region, waveguide, and thermal design techniques is presented, and various aspects of die packaging for high-power applications are discussed. Prospects of power scaling with lateral device dimensions for reaching optical power level in the range from 10 W to 20 W are also analyzed. Finally, coherent and spectral beam-combining techniques for very high-power infrared platforms are discussed.
A solid state source of photon triplets based on quantum dot molecules
Khoshnegar, Milad; Huber, Tobias; Predojević, Ana; Dalacu, Dan; Prilmüller, Maximilian; Lapointe, Jean; Wu, Xiaohua; Tamarat, Philippe; Lounis, Brahim; Poole, Philip; Weihs, Gregor; Majedi, Hamed
2017-01-01
Producing advanced quantum states of light is a priority in quantum information technologies. In this context, experimental realizations of multipartite photon states would enable improved tests of the foundations of quantum mechanics as well as implementations of complex quantum optical networks and protocols. It is favourable to directly generate these states using solid state systems, for simpler handling and the promise of reversible transfer of quantum information between stationary and flying qubits. Here we use the ground states of two optically active coupled quantum dots to directly produce photon triplets. The formation of a triexciton in these ground states leads to a triple cascade recombination and sequential emission of three photons with strong correlations. We record 65.62 photon triplets per minute under continuous-wave pumping, surpassing rates of earlier reported sources. Our structure and data pave the way towards implementing multipartite photon entanglement and multi-qubit readout schemes in solid state devices. PMID:28604705
High power, electrically tunable quantum cascade lasers
NASA Astrophysics Data System (ADS)
Slivken, Steven; Razeghi, Manijeh
2016-02-01
Mid-infrared laser sources (3-14 μm wavelengths) which have wide spectral coverage and high output power are attractive for many applications. This spectral range contains unique absorption fingerprints of most molecules, including toxins, explosives, and nerve agents. Infrared spectroscopy can also be used to detect important biomarkers, which can be used for medical diagnostics by means of breath analysis. The challenge is to produce a broadband midinfrared source which is small, lightweight, robust, and inexpensive. We are currently investigating monolithic solutions using quantum cascade lasers. A wide gain bandwidth is not sufficient to make an ideal spectroscopy source. Single mode output with rapid tuning is desirable. For dynamic wavelength selection, our group is developing multi-section laser geometries with wide electrical tuning (hundreds of cm-1). These devices are roughly the same size as a traditional quantum cascade lasers, but tuning is accomplished without any external optical components. When combined with suitable amplifiers, these lasers are capable of multi-Watt single mode output powers. This manuscript will describe our current research efforts and the potential for high performance, broadband electrical tuning with the quantum cascade laser.
Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation.
Wan, W J; Li, H; Zhou, T; Cao, J C
2017-03-08
Homogeneous broadband and electrically pumped semiconductor radiation sources emitting in the terahertz regime are highly desirable for various applications, including spectroscopy, chemical sensing, and gas identification. In the frequency range between 1 and 5 THz, unipolar quantum cascade lasers employing electron inter-subband transitions in multiple-quantum-well structures are the most powerful semiconductor light sources. However, these devices are normally characterized by either a narrow emission spectrum due to the narrow gain bandwidth of the inter-subband optical transitions or an inhomogeneous broad terahertz spectrum from lasers with heterogeneous stacks of active regions. Here, we report the demonstration of homogeneous spectral spanning of long-cavity terahertz semiconductor quantum cascade lasers based on a bound-to-continuum and resonant phonon design under radio frequency modulation. At a single drive current, the terahertz spectrum under radio frequency modulation continuously spans 330 GHz (~8% of the central frequency), which is the record for single plasmon waveguide terahertz lasers with a bound-to-continuum design. The homogeneous broadband terahertz sources can be used for spectroscopic applications, i.e., GaAs etalon transmission measurement and ammonia gas identification.
Pump and probe spectroscopy with continuous wave quantum cascade lasers.
Kirkbride, James M R; Causier, Sarah K; Dalton, Andrew R; Weidmann, Damien; Ritchie, Grant A D
2014-02-07
This paper details infra-red pump and probe studies on nitric oxide conducted with two continuous wave quantum cascade lasers both operating around 5 μm. The pump laser prepares a velocity selected population in a chosen rotational quantum state of the v = 1 level which is subsequently probed using a second laser tuned to a rotational transition within the v = 2 ← v = 1 hot band. The rapid frequency scan of the probe (with respect to the molecular collision rate) in combination with the velocity selective pumping allows observation of marked rapid passage signatures in the transient absorption profiles from the polarized vibrationally excited sample. These coherent transient signals are influenced by the underlying hyperfine structure of the pump and probe transitions, the sample pressure, and the coherent properties of the lasers. Pulsed pump and probe studies show that the transient absorption signals decay within 1 μs at 50 mTorr total pressure, reflecting both the polarization and population dephasing times of the vibrationally excited sample. The experimental observations are supported by simulation based upon solving the optical Bloch equations for a two level system.
Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation
Wan, W. J.; Li, H.; Zhou, T.; Cao, J. C.
2017-01-01
Homogeneous broadband and electrically pumped semiconductor radiation sources emitting in the terahertz regime are highly desirable for various applications, including spectroscopy, chemical sensing, and gas identification. In the frequency range between 1 and 5 THz, unipolar quantum cascade lasers employing electron inter-subband transitions in multiple-quantum-well structures are the most powerful semiconductor light sources. However, these devices are normally characterized by either a narrow emission spectrum due to the narrow gain bandwidth of the inter-subband optical transitions or an inhomogeneous broad terahertz spectrum from lasers with heterogeneous stacks of active regions. Here, we report the demonstration of homogeneous spectral spanning of long-cavity terahertz semiconductor quantum cascade lasers based on a bound-to-continuum and resonant phonon design under radio frequency modulation. At a single drive current, the terahertz spectrum under radio frequency modulation continuously spans 330 GHz (~8% of the central frequency), which is the record for single plasmon waveguide terahertz lasers with a bound-to-continuum design. The homogeneous broadband terahertz sources can be used for spectroscopic applications, i.e., GaAs etalon transmission measurement and ammonia gas identification. PMID:28272492
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Gangyi, E-mail: gangyi.xu@mail.sitp.ac.cn; Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083; Li, Lianhe
2014-03-03
We demonstrate efficient surface-emitting terahertz frequency quantum cascade lasers with continuous wave output powers of 20–25 mW at 15 K and maximum operating temperatures of 80–85 K. The devices employ a resonant-phonon depopulation active region design with injector, and surface emission is realized using resonators based on graded photonic heterostructures (GPHs). GPHs can be regarded as energy wells for photons and have recently been implemented through grading the period of the photonic structure. In this paper, we show that it is possible to keep the period constant and grade instead the lateral metal coverage across the GPH. This strategy ensures spectrally single-mode operationmore » across the whole laser dynamic range and represents an additional degree of freedom in the design of confining potentials for photons.« less
Thermal annealing of lattice-matched InGaAs/InAlAs Quantum-Cascade Lasers
NASA Astrophysics Data System (ADS)
Mathonnière, Sylvain; Semtsiv, M. P.; Ted Masselink, W.
2017-11-01
We describe the evolution of optical power, threshold current, and emission wavelength of a lattice-matched InGaAs/InAlAs Quantum-Cascade Laser (QCL) emitting at 13 μm grown by gas-source molecular-beam epitaxy under thermal annealing. Pieces from the same 2-in wafer were annealed at 600 °C, 650 °C, or 700 °C for 1 h; one control piece remained unannealed. No change in threshold current and emission wavelength was observed. The slope efficiency and maximum emission power increase for the 600 °C anneal, but higher annealing temperatures resulted in degraded performance. This result stands in contrast with the observation that strain-compensated structures cannot withstand annealing temperature of 600 °C. Useful information for post-growth processing steps and the role of interface roughness in QCL performance are obtained.
Sensitivity of heterointerfaces on emission wavelength of quantum cascade lasers
NASA Astrophysics Data System (ADS)
Wang, C. A.; Schwarz, B.; Siriani, D. F.; Connors, M. K.; Missaggia, L. J.; Calawa, D. R.; McNulty, D.; Akey, A.; Zheng, M. C.; Donnelly, J. P.; Mansuripur, T. S.; Capasso, F.
2017-04-01
The measured emission wavelengths of AlInAs/GaInAs/InP quantum cascade lasers (QCLs) grown by metal organic vapor phase epitaxy (MOVPE) have been reported to be 0.5-1 μm longer than the designed QCL wavelength. This work clarifies the origin of the red-shifted wavelength. It was found that AlInAs/GaInAs heterointerfaces are compositionally graded over 2.5-4.5 nm, and indium accumulates at the AlInAs-to-GaInAs interface. Thus, the as-grown QCLs are far from the ideal abrupt interfaces used in QCL modeling. When graded layers are incorporated in QCL band structure and wavefunction calculations, the emission wavelengths are red shifted. Furthermore, we demonstrate that QCLs with graded interfaces can be designed without compromising performance and show greatly improved correlation between designed and measured emission wavelength. QCLs were designed for emission between 7.5 and 8.5 μm. These structures were grown and wet-etched ridge devices were fabricated. The QCLs exhibit room temperature peak powers exceeding 900 mW and pulsed efficiencies of 8 to 10%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindskog, M., E-mail: martin.lindskog@teorfys.lu.se; Wacker, A.; Wolf, J. M.
2014-09-08
We study the operation of an 8.5 μm quantum cascade laser based on GaInAs/AlInAs lattice matched to InP using three different simulation models based on density matrix (DM) and non-equilibrium Green's function (NEGF) formulations. The latter advanced scheme serves as a validation for the simpler DM schemes and, at the same time, provides additional insight, such as the temperatures of the sub-band carrier distributions. We find that for the particular quantum cascade laser studied here, the behavior is well described by simple quantum mechanical estimates based on Fermi's golden rule. As a consequence, the DM model, which includes second order currents,more » agrees well with the NEGF results. Both these simulations are in accordance with previously reported data and a second regrown device.« less
Temperature independent infrared responsivity of a quantum dot quantum cascade photodetector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Feng-Jiao; Zhuo, Ning; Liu, Shu-Man, E-mail: liusm@semi.ac.cn
2016-06-20
We demonstrate a quantum dot quantum cascade photodetector with a hybrid active region of InAs quantum dots and an InGaAs quantum well, which exhibited a temperature independent response at 4.5 μm. The normal incident responsivity reached 10.3 mA/W at 120 K and maintained a value of 9 mA/W up to 260 K. It exhibited a specific detectivity above 10{sup 11} cm Hz{sup 1/2} W{sup −1} at 77 K, which remained at 10{sup 8} cm Hz{sup 1/2} W{sup −1} at 260 K. We ascribe the device's good thermal stability of infrared response to the three-dimensional quantum confinement of the InAs quantum dots incorporated in the active region.
Quantum cascade light emitting diodes based on type-2 quantum wells
NASA Technical Reports Server (NTRS)
Lin, C. H.; Yang, R. Q.; Zhang, D.; Murry, S. J.; Pei, S. S.; Allerman, A. A.; Kurtz, S. R.
1997-01-01
The authors have demonstrated room-temperature CW operation of type-2 quantum cascade (QC) light emitting diodes at 4.2 (micro)m using InAs/InGaSb/InAlSb type-2 quantum wells. The type-2 QC configuration utilizes sequential multiple photon emissions in a staircase of coupled type-2 quantum wells. The device was grown by molecular beam epitaxy on a p-type GaSb substrate and was compared of 20 periods of active regions separated by digitally graded quantum well injection regions. The maximum average output power is about 250 (micro)W at 80 K, and 140 (micro)W at 300 K at a repetition rate of 1 kHz with a duty cycle of 50%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, Mark C.; Taubman, Matthew S.; Kriesel, Jason M.
2015-02-08
We describe a prototype trace gas sensor designed for real-time detection of multiple chemicals. The sensor uses an external cavity quantum cascade laser (ECQCL) swept over its tuning range of 940-1075 cm-1 (9.30-10.7 µm) at a 10 Hz repetition rate.
Quantum cascade laser combs: effects of modulation and dispersion.
Villares, Gustavo; Faist, Jérôme
2015-01-26
Frequency comb formation in quantum cascade lasers is studied theoretically using a Maxwell-Bloch formalism based on a modal decomposition, where dispersion is considered. In the mid-infrared, comb formation persists in the presence of weak cavity dispersion (500 fs2 mm-1) but disappears when much larger values are used (30'000 fs2 mm-1). Active modulation at the round-trip frequency is found to induce mode-locking in THz devices, where the upper state lifetime is in the tens of picoseconds. Our results show that mode-locking based on four-wave mixing in broadband gain, low dispersion cavities is the most promising way of achieving broadband quantum cascade laser frequency combs.
Tradeoffs between oscillator strength and lifetime in terahertz quantum cascade lasers
Chan, Chun Wang I.; Albo, Asaf; Hu, Qing; ...
2016-11-14
Contemporary research into diagonal active region terahertz quantum cascade lasers for high temperature operation has yielded little success. We present evidence that the failure of high diagonality alone as a design strategy is due to a fundamental trade-off between large optical oscillator strength and long upper-level lifetime. Here, we hypothesize that diagonality needs to be paired with increased doping in order to succeed, and present evidence that highly diagonal designs can benefit from much higher doping than normally found in terahertz quantum cascade lasers. In assuming the benefits of high diagonality paired with high doping, we also highlight important challengesmore » that need to be overcome, specifically the increased importance of carrier induced band-bending and impurity scattering.« less
Density matrix Monte Carlo modeling of quantum cascade lasers
NASA Astrophysics Data System (ADS)
Jirauschek, Christian
2017-10-01
By including elements of the density matrix formalism, the semiclassical ensemble Monte Carlo method for carrier transport is extended to incorporate incoherent tunneling, known to play an important role in quantum cascade lasers (QCLs). In particular, this effect dominates electron transport across thick injection barriers, which are frequently used in terahertz QCL designs. A self-consistent model for quantum mechanical dephasing is implemented, eliminating the need for empirical simulation parameters. Our modeling approach is validated against available experimental data for different types of terahertz QCL designs.
A Terahertz VRT spectrometer employing quantum cascade lasers
NASA Astrophysics Data System (ADS)
Cole, William T. S.; Hlavacek, Nik C.; Lee, Alan W. M.; Kao, Tsung-Yu; Hu, Qing; Reno, John L.; Saykally, Richard J.
2015-10-01
The first application of a commercial Terahertz quantum cascade laser (QCL) system for high resolution spectroscopy of supersonic beams is presented. The QCLs exhibited continuous linear voltage tuning over a 2 GHz range about a center frequency of 3.762 THz with ∼1 ppm resolution. A sensitivity of ∼1 ppm fractional absorption was measured with a single pass optical system. Multipass operation at the quantum noise limit of the stressed photoconductor detector would produce a 100-fold improvement.
Pseudorandom dynamics of frequency combs in free-running quantum cascade lasers
NASA Astrophysics Data System (ADS)
Henry, Nathan; Burghoff, David; Yang, Yang; Hu, Qing; Khurgin, Jacob B.
2018-01-01
Recent research has shown that free-running quantum cascade lasers are capable of producing frequency combs in midinfrared and THz regions of the spectrum. Unlike familiar frequency combs originating from mode-locked lasers, these do not require any additional optical elements inside the cavity and have temporal characteristics that are dramatically different from the periodic pulse train of conventional combs. Frequency combs from quantum cascade lasers are characterized by the absence of sharp pulses and strong frequency modulation, periodic with the cavity round trip time but lacking any periodicity within that period. To explicate for this seemingly perplexing behavior, we develop a model of the gain medium using optical Bloch equations that account for hole burning in spectral, spatial, and temporal domains. With this model, we confirm that the most efficient mode of operation of a free-running quantum cascade laser is indeed a pseudorandom frequency-modulated field with nearly constant intensity. We show that the optimum modulation period is commensurate with the gain recovery time of the laser medium and the optimum modulation amplitude is comparable to the gain bandwidth, behavior that has been observed in the experiments.
Photoexcitation cascade and quantum-relativistic jet formation in graphene
NASA Astrophysics Data System (ADS)
Lewandowski, Cyprian; Levitov, Leonid
Interactions between ultra-relativistic particles can lead to striking behavior in which a high-energy particle creates showers of softer particles characterized by a collimated angular distribution aligned with the particle velocity. These showers, known as jets, are a generic phenomenon relevant for all quantum cascades of linearly dispersing particles. This talk will discuss jets formed upon photoexcitation in graphene, which due to its linear dispersion provides an appealing medium for exploring quantum-relativistic phenomena. We will study the cascade generated by carrier-carrier collisions in photon absorption, wherein a single photon creates an electron-hole (e-h) excitation that decays producing multiple near-collinear secondary e-h excitations. We will argue that the cascade can occur through an off-shell mechanism such that all the particles and holes involved reside outside the energy-momentum dispersion manifold, relieving the bottleneck arising in the on-shell process due to energy and momentum conservation. The characteristics of the jets such as the angular and energy distribution of the particles will be discussed. Photogenerated jets provide an interesting setting to investigate the carrier-carrier collision processes in graphene and other Dirac materials. We acknowledge support of the Center for Integrated Quantum Materials (CIQM) under NSF award DMR-1231319.
Quantum steering in cascaded four-wave mixing processes.
Wang, Li; Lv, Shuchao; Jing, Jietai
2017-07-24
Quantum steering is used to describe the "spooky action-at-a-distance" nonlocality raised in the Einstein-Podolsky-Rosen (EPR) paradox, which is important for understanding entanglement distribution and constructing quantum networks. Here, in this paper, we study an experimentally feasible scheme for generating quantum steering based on cascaded four-wave-mixing (FWM) processes in hot rubidium (Rb) vapor. Quantum steering, including bipartite steering and genuine tripartite steering among the output light fields, is theoretically analyzed. We find the corresponding gain regions in which the bipartite and tripartite steering exist. The results of bipartite steering can be used to establish a hierarchical steering model in which one beam can steer the other two beams in the whole gain region; however, the other two beams cannot steer the first beam simultaneously. Moreover, the other two beams cannot steer with each other in the whole gain region. More importantly, we investigate the gain dependence of the existence of the genuine tripartite steering and we find that the genuine tripartite steering exists in most of the whole gain region in the ideal case. Also we discuss the effect of losses on the genuine tripartite steering. Our results pave the way to experimental demonstration of quantum steering in cascaded FWM process.
High-power lightweight external-cavity quantum cascade lasers
NASA Astrophysics Data System (ADS)
Day, Timothy; Takeuchi, Eric B.; Weida, Miles; Arnone, David; Pushkarsky, Michael; Boyden, David; Caffey, David
2009-05-01
Commercially available quantum cascade gain media has been integrated with advanced coating and die attach technologies, mid-IR micro-optics and telecom-style assembly and packaging to yield cutting edge performance. When combined into Daylight's external-cavity quantum cascade laser (ECqcL) platform, multi-Watt output power has been obtained. Daylight will describe their most recent results obtained from this platform, including high cw power from compact hermetically sealed packages and narrow spectral linewidth devices. Fiber-coupling and direct amplitude modulation from such multi-Watt lasers will also be described. In addition, Daylight will present the most recent results from their compact, portable, battery-operated "thermal laser pointers" that are being used for illumination and aiming applications. When combined with thermal imaging technology, such devices provide significant benefits in contrast and identification.
Purified frequency modulation of a quantum cascade laser with an all-optical approach.
Peng, Chen; Zhou, Haijun; Zhu, Liguo; Chen, Tao; Liu, Qiao; Wang, Detian; Li, Jiang; Peng, Qixian; Chen, Gang; Li, Zeren
2017-11-01
Purified frequency modulation (FM) is demonstrated in a standard middle-infrared quantum cascade laser by illuminating its front facet with two near-infrared (NIR) lasers. A 2 mW laser at 1550 nm is utilized to modulate the amplitude and frequency of a quantum cascade laser, and the associated amplitude modulation (AM) is suppressed by a 1.85 mW laser at 850 nm. Due to the hot carrier effect and the increment of electron temperature, the AM has been decreased. In addition, the free carrier concentration increases in the active region due to the two NIR illuminations, which enhance the FM. Purified FM is beneficial in improving the signal fidelity for free-space optical communication and high-speed FM spectroscopy.
Wallis, R; Degl'Iinnocenti, R; Jessop, D S; Ren, Y; Klimont, A; Shah, Y D; Mitrofanov, O; Bledt, C M; Melzer, J E; Harrington, J A; Beere, H E; Ritchie, D A
2015-10-05
The growth in terahertz frequency applications utilising the quantum cascade laser is hampered by a lack of targeted power delivery solutions over large distances (>100 mm). Here we demonstrate the efficient coupling of double-metal quantum cascade lasers into flexible polystyrene lined hollow metallic waveguides via the use of a hollow copper waveguide integrated into the laser mounting block. Our approach exhibits low divergence, Gaussian-like emission, which is robust to misalignment error, at distances > 550 mm, with a coupling efficiency from the hollow copper waveguide into the flexible waveguide > 90%. We also demonstrate the ability to nitrogen purge the flexible waveguide, increasing the power transmission by up to 20% at 2.85 THz, which paves the way for future fibre based terahertz sensing and spectroscopy applications.
Hansen, Michael G; Ernsting, Ingo; Vasilyev, Sergey V; Grisard, Arnaud; Lallier, Eric; Gérard, Bruno; Schiller, Stephan
2013-11-04
We demonstrate a robust and simple method for measurement, stabilization and tuning of the frequency of cw mid-infrared (MIR) lasers, in particular of quantum cascade lasers. The proof of principle is performed with a quantum cascade laser at 5.4 µm, which is upconverted to 1.2 µm by sum-frequency generation in orientation-patterned GaAs with the output of a standard high-power cw 1.5 µm fiber laser. Both the 1.2 µm and the 1.5 µm waves are measured by a standard Er:fiber frequency comb. Frequency measurement at the 100 kHz-level, stabilization to sub-10 kHz level, controlled frequency tuning and long-term stability are demonstrated.
Delteil, Aymeric; Sun, Zhe; Fält, Stefan; Imamoğlu, Atac
2017-04-28
Photonic losses pose a major limitation for the implementation of a quantum state transfer between nodes of a quantum network. A measurement that heralds a successful transfer without revealing any information about the qubit may alleviate this limitation. Here, we demonstrate the heralded absorption of a single photonic qubit, generated by a single neutral quantum dot, by a single-electron charged quantum dot that is located 5 m away. The transfer of quantum information to the spin degree of freedom takes place upon the emission of a photon; for a properly chosen or prepared quantum dot, the detection of this photon yields no information about the qubit. We show that this process can be combined with local operations optically performed on the destination node by measuring classical correlations between the absorbed photon color and the final state of the electron spin. Our work suggests alternative avenues for the realization of quantum information protocols based on cascaded quantum systems.
Razeghi, Manijeh; Zhou, Wenjia; Slivken, Steven; Lu, Quan-Yong; Wu, Donghai; McClintock, Ryan
2017-11-01
The quantum cascade laser (QCL) is becoming the leading laser source in the mid-infrared (mid-IR) range, which contains two atmospheric transmission windows and many molecular fingerprint absorption features. Since its first demonstration in 1994, the QCL has undergone tremendous development in terms of the output power, wall plug efficiency, wavelength coverage, tunability and beam quality. At the Center for Quantum Devices, we have demonstrated high-power continuous wave operation of QCLs covering a wide wavelength range from 3 to 12 μm, with power output up to 5.1 W at room temperature. Recent research has resulted in power scaling in pulsed mode with up to 203 W output, electrically tunable QCLs based on monolithic sampled grating design, heterogeneous QCLs with a broad spectral gain, broadly tunable on-chip beam-combined QCLs, QCL-based mid-IR frequency combs, and fundamental mode surface emitting quantum cascade ring lasers. The developed QCLs will be the basis for a number of next-generation spectroscopy and sensing systems.
Danylov, Andriy; Erickson, Neal; Light, Alexander; Waldman, Jerry
2015-11-01
The 23rd and 31st harmonics of a microwave signal generated in a novel THz balanced Schottky diode mixer were used as a frequency stable reference source to phase lock solid-nitrogen-cooled 2.324 and 2.959 THz quantum cascade lasers. Hertz-level frequency stability was achieved, which was maintained for several hours.
Integrated patch and slot array antenna for terahertz quantum cascade lasers at 4.7 THz
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonzon, C., E-mail: bonzonc@phys.ethz.ch; Benea Chelmus, I. C.; Ohtani, K.
2014-04-21
Our work presents a slot and a patch array antenna at the front facet of a 4.7 THz quantum cascade laser as extractor, decreasing the facet reflectivity down to 2.6%. The resulting output power increases by a factor 2 and the slope efficiency by a factor 4. The simulated and the measured far-fields are in good agreement.
Realization of a Tunable Dissipation Scale in a Turbulent Cascade using a Quantum Gas
NASA Astrophysics Data System (ADS)
Navon, Nir; Eigen, Christoph; Zhang, Jinyi; Lopes, Raphael; Smith, Robert; Hadzibabic, Zoran
2017-04-01
Many turbulent flows form so-called cascades, where excitations injected at large length scales, are transported to gradually smaller scales until they reach a dissipation scale. We initiate a turbulent cascade in a dilute Bose fluid by pumping energy at the container scale of an optical box trap using an oscillating magnetic force. In contrast to classical fluids where the dissipation scale is set by the viscosity of the fluid, the turbulent cascade of our quantum gas finishes when the particles kinetic energy exceeds the laser-trap depth. This mechanism thus allows us to effectively tune the dissipation scale where particles (and energy) are lost, and measure the particle flux in the cascade at the dissipation scale. We observe a unit power-law decay of the particle-dissipation rate with trap depth, which confirms the surprising prediction that in a wave-turbulent direct energy cascade, the particle flux vanishes in the ideal limit where the dissipation length scale tends to zero.
High efficiency quantum cascade laser frequency comb.
Lu, Quanyong; Wu, Donghai; Slivken, Steven; Razeghi, Manijeh
2017-03-06
An efficient mid-infrared frequency comb source is of great interest to high speed, high resolution spectroscopy and metrology. Here we demonstrate a mid-IR quantum cascade laser frequency comb with a high power output and narrow beatnote linewidth at room temperature. The active region was designed with a strong-coupling between the injector and the upper lasing level for high internal quantum efficiency and a broadband gain. The group velocity dispersion was engineered for efficient, broadband mode-locking via four wave mixing. The comb device exhibits a narrow intermode beatnote linewidth of 50.5 Hz and a maximum wall-plug efficiency of 6.5% covering a spectral coverage of 110 cm -1 at λ ~ 8 μm. The efficiency is improved by a factor of 6 compared with previous demonstrations. The high power efficiency and narrow beatnote linewidth will greatly expand the applications of quantum cascade laser frequency combs including high-precision remote sensing and spectroscopy.
High efficiency quantum cascade laser frequency comb
Lu, Quanyong; Wu, Donghai; Slivken, Steven; Razeghi, Manijeh
2017-01-01
An efficient mid-infrared frequency comb source is of great interest to high speed, high resolution spectroscopy and metrology. Here we demonstrate a mid-IR quantum cascade laser frequency comb with a high power output and narrow beatnote linewidth at room temperature. The active region was designed with a strong-coupling between the injector and the upper lasing level for high internal quantum efficiency and a broadband gain. The group velocity dispersion was engineered for efficient, broadband mode-locking via four wave mixing. The comb device exhibits a narrow intermode beatnote linewidth of 50.5 Hz and a maximum wall-plug efficiency of 6.5% covering a spectral coverage of 110 cm−1 at λ ~ 8 μm. The efficiency is improved by a factor of 6 compared with previous demonstrations. The high power efficiency and narrow beatnote linewidth will greatly expand the applications of quantum cascade laser frequency combs including high-precision remote sensing and spectroscopy. PMID:28262834
Storage and retrieval of light pulse in coupled quantum wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jibing, E-mail: liu0328@foxmail.com; Liu, Na; Shan, Chuanjia
In this paper, we propose an effective scheme to create a frequency entangled states based on bound-to-bound inter-subband transitions in an asymmetric three-coupled quantum well structure. A four-subband cascade configuration quantum well structure is illuminated with a pulsed probe field and two continuous wave control laser fields to generate a mixing field. By properly adjusting the frequency detunings and the intensity of coupling fields, the conversion efficiency can reach 100%. A maximum entangled state can be achieved by selecting a proper length of the sample. We also numerically investigate the propagation dynamics of the probe pulse and mixing pulse, themore » results show that two frequency components are able to exchange energy through a four-wave mixing process. Moreover, by considering special coupling fields, the storage and retrieval of the probe pulse is also numerically simulated.« less
Dehghany, M; Michaelian, K H
2012-06-01
Quantum cascade laser-based instrumentation for dual beam photoacoustic (PA) spectroscopy is described in this article. Experimental equipment includes a 4.55 μm (2141-2265 cm(-1)) continuous wave external cavity quantum cascade laser (EC-QCL), two gas-microphone PA cells, and two lock-in amplifiers. Correction for the time and wavenumber dependence of the laser output is effected through real-time division of the PA signals derived from the sample and reference channels. Source-compensated mid-infrared absorption spectra of carbon black powder and aromatic hydrocarbon solids were obtained to confirm the reliability of the method. Absorption maxima in the EC-QCL PA spectra of hydrocarbons are better defined than those in Fourier transform infrared spectra acquired under similar conditions, enabling the detection of several previously unknown bands.
External cavity quantum cascade lasers with ultra rapid acousto-optic tuning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyakh, A., E-mail: alyakh@pranalytica.com; Barron-Jimenez, R.; Dunayevskiy, I.
2015-04-06
We report operation of tunable external cavity quantum cascade lasers with emission wavelength controlled by an acousto-optic modulator (AOM). A long-wave infrared quantum cascade laser wavelength tuned from ∼8.5 μm to ∼9.8 μm when the AOM frequency was changed from ∼41MHz to ∼49 MHz. The laser delivered over 350 mW of average power at the center of the tuning curve in a linewidth of ∼4.7 cm{sup −1}. Measured wavelength switching time between any two wavelengths within the tuning range of the QCL was less than 1 μs. Spectral measurements of infrared absorption features of Freon demonstrated a capability of obtaining complete spectral data in less thanmore » 20 μs.« less
Surface-emitting mid-infrared quantum cascade lasers with high-contrast photonic crystal resonators.
Xu, Gangyi; Colombelli, Raffaele; Braive, Remy; Beaudoin, Gregoire; Le Gratiet, Luc; Talneau, Anne; Ferlazzo, Laurence; Sagnes, Isabelle
2010-05-24
We have developed surface-emitting single-mode quantum cascade lasers which employ high-contrast photonic-crystal resonators. The devices operate on band-edge states of the photonic band-structure. The mode profile and polarization characteristics of the band-edge modes are calculated by three-dimensional finite-difference time-domain simulation. Experimentally, the spectral properties, the far-field patterns, and the polarization characteristics of the lasers are determined and compared with simulations. The good agreement between the simulations and the experiments confirms that the hexapolar mode at the Gamma-point band-edge gives rise to lasing. By using a novel and advanced fabrication method, deep and vertical PhC holes are fabricated with no metal redeposition on the sidewalls, which improves the laser performance with respect to the current status. The angular of the output beam is approximately 15 masculine, and the side mode suppression ratio of the single mode emission is about 25 dB. The threshold current density at 78 K and the maximum operation temperature are 7.6 kA/cm2 and 220 K, respectively. The performance is mainly limited by the loss induced by surface plasmon waveguide, which can be overcome by using an optimized dielectric waveguide structure.
New quantum cascade laser sources for sensing applications (Conference Presentation)
NASA Astrophysics Data System (ADS)
Troccoli, Mariano
2017-05-01
In this presentation we will review our most recent results on development of Quantum Cascade Lasers (QCLs) for analytical and industrial applications. QCLs have demonstrated the capability to cover the entire range of Mid-IR, Far-IR, and THz wavelengths by skillful tuning of the material design and composition and by use of intrinsic material properties via a set of techniques collectively called "bandgap engineering". The use of MOCVD, pioneered on industrial scale by AdTech Optics, has enabled the deployment of QCL devices into a diverse range of environments and applications. QCLs can be tailored to the specific application requirements due to their unprecedented flexibility in design and thanks to the leveraging of well-known III-V fabrication technologies inherited from the NIR domain. Nevertheless, several applications and new frontiers in R and D need the constant support of new developments in device features, capabilities, and performances. We have developed a wide range of devices, from high power, high efficiency multi-mode sources, to narrow-band, single mode devices with low-power consumption, and from non-linear, multi-wavelength generating devices to broadband sources and multi-emitter arrays. All our devices are grown and processed using MOCVD technology and allow us to attain competitive performances across the whole mid-IR spectral range. This talk will present an overview of our current achievements. References 1. M. Troccoli, "High power emission and single mode operation of quantum cascade lasers for industrial applications", J. Sel. Topics in Quantum Electron., 21 (6), 1-7 (2015). Invited Review. 2. Seungyong Jung, Aiting Jiang, Yifan Jiang, Karun Vijayraghavan, Xiaojun Wang, Mariano Troccoli, and Mikhail A. Belkin, "Broadly Tunable Monolithic Terahertz Quantum Cascade Laser Sources", Nature Comm. 5, 4267 (2014).. 3. Mariano Troccoli, Arkadiy Lyakh, Jenyu Fan, Xiaojun Wang, Richard Maulini, Alexei G Tsekoun, Rowel Go, C Kumar N Patel, "Long-Wave IR Quantum Cascade Lasers for emission in the λ = 8-12μm spectral region", Opt. Mat. Expr., 3 (9), 1546-1560 (2013).
Monolithically integrated mid-infrared sensor using narrow mode operation and temperature feedback
NASA Astrophysics Data System (ADS)
Ristanic, Daniela; Schwarz, Benedikt; Reininger, Peter; Detz, Hermann; Zederbauer, Tobias; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried
2015-01-01
A method to improve the sensitivity and selectivity of a monolithically integrated mid-infrared sensor using a distributed feedback laser (DFB) is presented in this paper. The sensor is based on a quantum cascade laser/detector system built from the same epitaxial structure and with the same fabrication approach. The devices are connected via a dielectric-loaded surface plasmon polariton waveguide with a twofold function: it provides high light coupling efficiency and a strong interaction of the light with the environment (e.g., a surrounding fluid). The weakly coupled DFB quantum cascade laser emits narrow mode light with a FWHM of 2 cm-1 at 1586 cm-1. The room temperature laser threshold current density is 3 kA/cm2 and a pulsed output power of around 200 mW was measured. With the superior laser noise performance, due to narrow mode emission and the compensation of thermal fluctuations, the lower limit of detection was expanded by one order of magnitude to the 10 ppm range.
NASA Astrophysics Data System (ADS)
Demir, Ilkay; Altuntas, Ismail; Bulut, Baris; Ezzedini, Maher; Ergun, Yuksel; Elagoz, Sezai
2018-05-01
We present growth and characterization studies of highly n-doped InGaAs epilayers on InP substrate by metal organic vapor phase epitaxy to use as an n-contact layer in quantum cascade laser applications. We have introduced quasi two-dimensional electrons between 10 s pulsed growth n-doped InGaAs epilayers to improve both carrier concentration and mobility of structure by applying pulsed growth and doping methods towards increasing the Si dopant concentration in InGaAs. Additionally, the V/III ratio optimization under fixed group III source flow has been investigated with this new method to understand the effects on both crystalline quality and electrical properties of n-InGaAs epilayers. Finally, we have obtained high crystalline quality of n-InGaAs epilayers grown by 10 s pulsed as a contact layer with 2.8 × 1019 cm‑3 carrier concentration and 1530 cm2 V‑1 s‑1 mobility.
Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures
Schwarz, Benedikt; Reininger, Peter; Ristanić, Daniela; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried
2014-01-01
The increasing demand of rapid sensing and diagnosis in remote areas requires the development of compact and cost-effective mid-infrared sensing devices. So far, all miniaturization concepts have been demonstrated with discrete optical components. Here we present a monolithically integrated sensor based on mid-infrared absorption spectroscopy. A bi-functional quantum cascade laser/detector is used, where, by changing the applied bias, the device switches between laser and detector operation. The interaction with chemicals in a liquid is resolved via a dielectric-loaded surface plasmon polariton waveguide. The thin dielectric layer enhances the confinement and enables efficient end-fire coupling from and to the laser and detector. The unamplified detector signal shows a slope of 1.8–7 μV per p.p.m., which demonstrates the capability to reach p.p.m. accuracy over a wide range of concentrations (0–60%). Without any hybrid integration or subwavelength patterning, our approach allows a straightforward and cost-saving fabrication. PMID:24905443
Han, Y J; Li, L H; Grier, A; Chen, L; Valavanis, A; Zhu, J; Freeman, J R; Isac, N; Colombelli, R; Dean, P; Davies, A G; Linfield, E H
2016-12-12
We report an extraction-controlled terahertz (THz)-frequency quantum cascade laser design in which a diagonal LO-phonon scattering process is used to achieve efficient current injection into the upper laser level of each period and simultaneously extract electrons from the adjacent period. The effects of the diagonality of the radiative transition are investigated, and a design with a scaled oscillator strength of 0.45 is shown experimentally to provide the highest temperature performance. A 3.3 THz device processed into a double-metal waveguide configuration operated up to 123 K in pulsed mode, with a threshold current density of 1.3 kA/cm2 at 10 K. The QCL structures are modeled using an extended density matrix approach, and the large threshold current is attributed to parasitic current paths associated with the upper laser levels. The simplicity of this design makes it an ideal platform to investigate the scattering injection process.
Tripartite correlations over two octaves from cascaded harmonic generation
NASA Astrophysics Data System (ADS)
Olsen, M. K.
2018-03-01
We analyse the output quantum tripartite correlations from an intracavity nonlinear optical system which uses cascaded nonlinearities to produce both second and fourth harmonic outputs from an input field at the fundamental frequency. Using fully quantum equations of motion, we investigate two parameter regimes and show that the system produces tripartite inseparability, entanglement and EPR steering, with the detection of these depending on the correlations being considered.
Widely tunable mid-infrared quantum cascade lasers using sampled grating reflectors.
Mansuripur, Tobias S; Menzel, Stefan; Blanchard, Romain; Diehl, Laurent; Pflügl, Christian; Huang, Yong; Ryou, Jae-Hyun; Dupuis, Russell D; Loncar, Marko; Capasso, Federico
2012-10-08
We demonstrate a three-section, electrically pulsed quantum cascade laser which consists of a Fabry-Pérot section placed between two sampled grating distributed Bragg reflectors. The device is current-tuned between ten single modes spanning a range of 0.46 μm (63 cm(-1)), from 8.32 to 8.78 μm. The peak optical output power exceeds 280 mW for nine of the modes.
Towards Scalable Entangled Photon Sources with Self-Assembled InAs /GaAs Quantum Dots
NASA Astrophysics Data System (ADS)
Wang, Jianping; Gong, Ming; Guo, G.-C.; He, Lixin
2015-08-01
The biexciton cascade process in self-assembled quantum dots (QDs) provides an ideal system for realizing deterministic entangled photon-pair sources, which are essential to quantum information science. The entangled photon pairs have recently been generated in experiments after eliminating the fine-structure splitting (FSS) of excitons using a number of different methods. Thus far, however, QD-based sources of entangled photons have not been scalable because the wavelengths of QDs differ from dot to dot. Here, we propose a wavelength-tunable entangled photon emitter mounted on a three-dimensional stressor, in which the FSS and exciton energy can be tuned independently, thereby enabling photon entanglement between dissimilar QDs. We confirm these results via atomistic pseudopotential calculations. This provides a first step towards future realization of scalable entangled photon generators for quantum information applications.
Semiconductor Lasers Containing Quantum Wells in Junctions
NASA Technical Reports Server (NTRS)
Yang, Rui Q.; Qiu, Yueming
2004-01-01
In a recent improvement upon In(x)Ga(1-x)As/InP semiconductor lasers of the bipolar cascade type, quantum wells are added to Esaki tunnel junctions, which are standard parts of such lasers. The energy depths and the geometric locations and thicknesses of the wells are tailored to exploit quantum tunneling such that, as described below, electrical resistances of junctions and concentrations of dopants can be reduced while laser performances can be improved. In(x)Ga(1-x)As/InP bipolar cascade lasers have been investigated as sources of near-infrared radiation (specifically, at wavelengths of about 980 and 1,550 nm) for photonic communication systems. The Esaki tunnel junctions in these lasers have been used to connect adjacent cascade stages and to enable transport of charge carriers between them. Typically, large concentrations of both n (electron-donor) and p (electron-acceptor) dopants have been necessary to impart low electrical resistances to Esaki tunnel junctions. Unfortunately, high doping contributes free-carrier absorption, thereby contributing to optical loss and thereby, further, degrading laser performance. In accordance with the present innovation, quantum wells are incorporated into the Esaki tunnel junctions so that the effective heights of barriers to quantum tunneling are reduced (see figure).
Emergence of a turbulent cascade in a quantum gas
NASA Astrophysics Data System (ADS)
Navon, Nir; Gaunt, Alexander L.; Smith, Robert P.; Hadzibabic, Zoran
2016-11-01
A central concept in the modern understanding of turbulence is the existence of cascades of excitations from large to small length scales, or vice versa. This concept was introduced in 1941 by Kolmogorov and Obukhov, and such cascades have since been observed in various systems, including interplanetary plasmas, supernovae, ocean waves and financial markets. Despite much progress, a quantitative understanding of turbulence remains a challenge, owing to the interplay between many length scales that makes theoretical simulations of realistic experimental conditions difficult. Here we observe the emergence of a turbulent cascade in a weakly interacting homogeneous Bose gas—a quantum fluid that can be theoretically described on all relevant length scales. We prepare a Bose-Einstein condensate in an optical box, drive it out of equilibrium with an oscillating force that pumps energy into the system at the largest length scale, study its nonlinear response to the periodic drive, and observe a gradual development of a cascade characterized by an isotropic power-law distribution in momentum space. We numerically model our experiments using the Gross-Pitaevskii equation and find excellent agreement with the measurements. Our experiments establish the uniform Bose gas as a promising new medium for investigating many aspects of turbulence, including the interplay between vortex and wave turbulence, and the relative importance of quantum and classical effects.
Predicting and Controlling Complex Networks
2015-06-22
vulnerability and to generate a global view of network security against attacks. By deploying network sensors at particular points in the Internet ...48006, 1-6 (2011). 2 13. L. Huang and Y.-C. Lai, “Cascading dynamics in complex quantum networks,” Chaos 21, 025107, 1-6 (2011). This work was selected...by July 2011 issue of Virtual Journal of Quantum Information (http://www.vjquantuminfo.org). 14. W.-X. Wang, Y.-C. Lai, and D. Armbruster, “Cascading
Lens Coupled Quantum Cascade Laser
NASA Technical Reports Server (NTRS)
Lee, Alan Wei Min (Inventor); Hu, Qing (Inventor)
2013-01-01
Terahertz quantum cascade (QC) devices are disclosed that can operate, e.g., in a range of about 1 THz to about 10 THz. In some embodiments, QC lasers are disclosed in which an optical element (e.g., a lens) is coupled to an output facet of the laser's active region to enhance coupling of the lasing radiation from the active region to an external environment. In other embodiments, terahertz amplifier and tunable terahertz QC lasers are disclosed.
Passive and hybrid mode locking in multi-section terahertz quantum cascade lasers
NASA Astrophysics Data System (ADS)
Tzenov, P.; Babushkin, I.; Arkhipov, R.; Arkhipov, M.; Rosanov, N.; Morgner, U.; Jirauschek, C.
2018-05-01
It is believed that passive mode locking is virtually impossible in quantum cascade lasers (QCLs) because of too fast carrier relaxation time. Here, we revisit this possibility and theoretically show that stable mode locking and pulse durations in the few cycle regime at terahertz (THz) frequencies are possible in suitably engineered bound-to-continuum QCLs. We achieve this by utilizing a multi-section cavity geometry with alternating gain and absorber sections. The critical ingredients are the very strong coupling of the absorber to both field and environment as well as a fast absorber carrier recovery dynamics. Under these conditions, even if the gain relaxation time is several times faster than the cavity round trip time, generation of few-cycle pulses is feasible. We investigate three different approaches for ultrashort pulse generation via THz quantum cascade lasers, namely passive, hybrid and colliding pulse mode locking.
High power cascade diode lasers emitting near 2 μm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosoda, Takashi; Feng, Tao; Shterengas, Leon, E-mail: leon.shterengas@stonybrook.edu
2016-03-28
High-power two-stage cascade GaSb-based type-I quantum well diode lasers emitting near 2 μm were designed and fabricated. Coated devices with cavity length of 3 mm generated about 2 W of continuous wave power from 100-μm-wide aperture at the current of 6 A. The power conversion efficiency peaked at 20%. Carrier recycling between quantum well gain stages was realized using band-to-band tunneling in GaSb/AlSb/InAs heterostructure complemented with optimized electron and hole injector regions. Design optimization eliminated parasitic optical absorption and thermionic emission, and included modification of the InAs quantum wells of electron and composition and doping profile of hole injectors. Utilization of the cascade pumpingmore » scheme yielded 2 μm lasers with improved output power and efficiency compared to existing state-of-the-art diodes.« less
Borri, Simone; Siciliani de Cumis, Mario; Insero, Giacomo; Bartalini, Saverio; Cancio Pastor, Pablo; Mazzotti, Davide; Galli, Iacopo; Giusfredi, Giovanni; Santambrogio, Gabriele; Savchenkov, Anatoliy; Eliyahu, Danny; Ilchenko, Vladimir; Akikusa, Naota; Matsko, Andrey; Maleki, Lute; De Natale, Paolo
2016-02-17
The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF₂ microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line.
Active mode locking of quantum cascade lasers in an external ring cavity.
Revin, D G; Hemingway, M; Wang, Y; Cockburn, J W; Belyanin, A
2016-05-05
Stable ultrashort light pulses and frequency combs generated by mode-locked lasers have many important applications including high-resolution spectroscopy, fast chemical detection and identification, studies of ultrafast processes, and laser metrology. While compact mode-locked lasers emitting in the visible and near infrared range have revolutionized photonic technologies, the systems operating in the mid-infrared range where most gases have their strong absorption lines, are bulky and expensive and rely on nonlinear frequency down-conversion. Quantum cascade lasers are the most powerful and versatile compact light sources in the mid-infrared range, yet achieving their mode-locked operation remains a challenge, despite dedicated effort. Here we report the demonstration of active mode locking of an external-cavity quantum cascade laser. The laser operates in the mode-locked regime at room temperature and over the full dynamic range of injection currents.
Active mode locking of quantum cascade lasers in an external ring cavity
Revin, D. G.; Hemingway, M.; Wang, Y.; Cockburn, J. W.; Belyanin, A.
2016-01-01
Stable ultrashort light pulses and frequency combs generated by mode-locked lasers have many important applications including high-resolution spectroscopy, fast chemical detection and identification, studies of ultrafast processes, and laser metrology. While compact mode-locked lasers emitting in the visible and near infrared range have revolutionized photonic technologies, the systems operating in the mid-infrared range where most gases have their strong absorption lines, are bulky and expensive and rely on nonlinear frequency down-conversion. Quantum cascade lasers are the most powerful and versatile compact light sources in the mid-infrared range, yet achieving their mode-locked operation remains a challenge, despite dedicated effort. Here we report the demonstration of active mode locking of an external-cavity quantum cascade laser. The laser operates in the mode-locked regime at room temperature and over the full dynamic range of injection currents. PMID:27147409
NASA Astrophysics Data System (ADS)
Dutta Banik, Gourab; Maity, Abhijit; Som, Suman; Pal, Mithun; Pradhan, Manik
2018-04-01
We report on the performance of a widely tunable continuous wave mode-hop-free external-cavity quantum cascade laser operating at λ ~ 5.2 µm combined with cavity ring-down spectroscopy (CRDS) technique for high-resolution molecular spectroscopy. The CRDS system has been utilized for simultaneous and molecule-specific detection of several environmentally and bio-medically important trace molecular species such as nitric oxide, nitrous oxide, carbonyl sulphide and acetylene (C2H2) at ultra-low concentrations by probing numerous rotationally resolved ro-vibrational transitions in the mid-IR spectral region within a relatively small spectral range of ~0.035 cm-1. This continuous wave external-cavity quantum cascade laser-based multi-component CRDS sensor with high sensitivity and molecular specificity promises applications in environmental sensing as well as non-invasive medical diagnosis through human breath analysis.
Piccardo, Marco; Chevalier, Paul; Mansuripur, Tobias S; Kazakov, Dmitry; Wang, Yongrui; Rubin, Noah A; Meadowcroft, Lauren; Belyanin, Alexey; Capasso, Federico
2018-04-16
The recently discovered ability of the quantum cascade laser to produce a harmonic frequency comb has attracted new interest in these devices for both applications and fundamental laser physics. In this review we present an extensive experimental phenomenology of the harmonic state, including its appearance in mid-infrared and terahertz quantum cascade lasers, studies of its destabilization induced by delayed optical feedback, and the assessment of its frequency comb nature. A theoretical model explaining its origin as due to the mutual interaction of population gratings and population pulsations inside the laser cavity will be described. We explore different approaches to control the spacing of the harmonic state, such as optical injection seeding and variation of the device temperature. Prospective applications of the harmonic state include microwave and terahertz generation, picosecond pulse generation in the mid-infrared, and broadband spectroscopy.
Wysocki, Gerard; Weidmann, Damien
2010-12-06
A spectroscopic method of molecular detection based on dispersion measurements using a frequency-chirped laser source is presented. An infrared quantum cascade laser emitting around 1912 cm(-1) is used as a tunable spectroscopic source to measure dispersion that occurs in the vicinity of molecular ro-vibrational transitions. The sample under study is a mixture of nitric oxide in dry nitrogen. Two experimental configurations based on a coherent detection scheme are investigated and discussed. The theoretical models, which describe the observed spectral signals, are developed and verified experimentally. The method is particularly relevant to optical sensing based on mid-infrared quantum cascade lasers as the high chirp rates available with those sources can significantly enhance the magnitude of the measured dispersion signals. The method relies on heterodyne beatnote frequency measurements and shows high immunity to variations in the optical power received by the photodetector.
Spectral gain profile of a multi-stack terahertz quantum cascade laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bachmann, D., E-mail: dominic.bachmann@tuwien.ac.at; Deutsch, C.; Krall, M.
2014-11-03
The spectral gain of a multi-stack terahertz quantum cascade laser, composed of three active regions with emission frequencies centered at 2.3, 2.7, and 3.0 THz, is studied as a function of driving current and temperature using terahertz time-domain spectroscopy. The optical gain associated with the particular quantum cascade stacks clamps at different driving currents and saturates to different values. We attribute these observations to varying pumping efficiencies of the respective upper laser states and to frequency dependent optical losses. The multi-stack active region exhibits a spectral gain full width at half-maximum of 1.1 THz. Bandwidth and spectral position of themore » measured gain match with the broadband laser emission. As the laser action ceases with increasing operating temperature, the gain at the dominant lasing frequency of 2.65 THz degrades sharply.« less
Recent progress on gas sensor based on quantum cascade lasers and hollow fiber waveguides
NASA Astrophysics Data System (ADS)
Liu, Ningwu; Sun, Juan; Deng, Hao; Ding, Junya; Zhang, Lei; Li, Jingsong
2017-02-01
Mid-infrared laser spectroscopy provides an ideal platform for trace gas sensing applications. Despite this potential, early MIR sensing applications were limited due to the size of the involved optical components, e.g. light sources and sample cells. A potential solution to this demand is the integration of hollow fiber waveguide with novelty quantum cascade lasers.Recently QCLs had great improvements in power, efficiency and wavelength range, which made the miniaturized platforms for gas sensing maintaining or even enhancing the achievable sensitivity conceivable. So that the miniaturization of QCLs and HWGs can be evolved into a mini sensor, which may be tailored to a variety of real-time and in situ applications ranging from environmental monitoring to workplace safety surveillance. In this article, we introduce QCLs and HWGs, display the applications of HWG based on QCL gas sensing and discuss future strategies for hollow fiber coupled quantum cascade laser gas sensor technology.
Dispersion compensated mid-infrared quantum cascade laser frequency comb with high power output
NASA Astrophysics Data System (ADS)
Lu, Q. Y.; Manna, S.; Slivken, S.; Wu, D. H.; Razeghi, M.
2017-04-01
Chromatic dispersion control plays an underlying role in optoelectronics and spectroscopy owing to its enhancement to nonlinear interactions by reducing the phase mismatching. This is particularly important to optical frequency combs based on quantum cascade lasers which require negligible dispersions for efficient mode locking of the dispersed modes into equally spaced comb modes. Here, we demonstrated a dispersion compensated mid-IR quantum cascade laser frequency comb with high power output at room temperature. A low-loss dispersive mirror has been engineered to compensate the device's dispersion residue for frequency comb generation. Narrow intermode beating linewidths of 40 Hz in the comb-working currents were identified with a high power output of 460 mW and a broad spectral coverage of 80 cm-1. This dispersion compensation technique will enable fast spectroscopy and high-resolution metrology based on QCL combs with controlled dispersion and suppressed noise.
A sulfur hexafluoride sensor using quantum cascade and CO2 laser-based photoacoustic spectroscopy.
Rocha, Mila; Sthel, Marcelo; Lima, Guilherme; da Silva, Marcelo; Schramm, Delson; Miklós, András; Vargas, Helion
2010-01-01
The increase in greenhouse gas emissions is a serious environmental problem and has stimulated the scientific community to pay attention to the need for detection and monitoring of gases released into the atmosphere. In this regard, the development of sensitive and selective gas sensors has been the subject of several research programs. An important greenhouse gas is sulphur hexafluoride, an almost non-reactive gas widely employed in industrial processes worldwide. Indeed it is estimated that it has a radiative forcing of 0.52 W/m(2). This work compares two photoacoustic spectrometers, one coupled to a CO(2) laser and another one coupled to a Quantum Cascade (QC) laser, for the detection of SF(6). The laser photoacoustic spectrometers described in this work have been developed for gas detection at small concentrations. Detection limits of 20 ppbv for CO(2) laser and 50 ppbv for quantum cascade laser were obtained.
Borri, Simone; Siciliani de Cumis, Mario; Insero, Giacomo; Bartalini, Saverio; Cancio Pastor, Pablo; Mazzotti, Davide; Galli, Iacopo; Giusfredi, Giovanni; Santambrogio, Gabriele; Savchenkov, Anatoliy; Eliyahu, Danny; Ilchenko, Vladimir; Akikusa, Naota; Matsko, Andrey; Maleki, Lute; De Natale, Paolo
2016-01-01
The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF2 microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line. PMID:26901199
Nano-scale engineering using lead chalcogenide nanocrystals for opto-electronic applications
NASA Astrophysics Data System (ADS)
Xu, Fan
Colloidal quantum dots (QDs) or nanocrystals of inorganic semiconductors exhibit exceptional optoelectronic properties such as tunable band-gap, high absorption cross-section and narrow emission spectra. This thesis discusses the characterizations and physical properties of lead-chalcogenide nanocrystals, their assembly into more complex nanostructures and applications in solar cells and near-infrared light-emitting devices. In the first part of this work, we demonstrate that the band edge emission of PbS quantum dots can be tuned from the visible to the mid-infrared region through size control, while the self-attachment of PbS nanocrystals can lead to the formation of 1-D nanowires, 2-D quantum dot monolayers and 3-D quantum dot solids. In particular, the assembly of closely-packed quantum dot solids has attracted enormous attention. A series of distinctive optoelectronic properties has been observed, such as superb multiple exciton generation efficiencies, efficient hot-electron transfer and cold-exciton recycling. Since the surfactant determines the quantum dot surface passivation and inter dot electronic coupling, we examine the influence of different cross-linking surfactants on the optoelectronic properties of the quantum dot solids. Then, we discuss the ability to tune the quantum dot band-gap combined with the controllable assembly of lead-chalcogenide quantum dots, which opens new possibilities to engineer the properties of quantum dot solids. The PbS and PbSe quantum dot cascade structures and PbS/PbSe quantum dot heterojunctions are assembled using the layer-by-layer deposition method. We show that exciton funnelling and trap state-bound exciton recycling in the quantum dot cascade structure dramatically enhances the quantum dots photoluminescence. Moreover, we show that both type-I and type-II PbS/PbSe quantum dot heterojunctions can be assembled by carefully choosing the quantum dot sizes. In type-I heterojunctions, the excited electron-hole pairs tend to localize in narrower band-gap quantum dots, leading to significant photoluminescence enhancement. In contrast, the staggered energy bands in type-II heterojunctions lead to rapid exciton separation at the junctions that considerably quenches the photoluminescence. As such, this strategy can be fruitfully employed to enhance performances in nanocrystal-based photovoltaic devices. Using this approach, we achieve efficient PbS nanocrystal-based solar cells using an ITO/ TiO2/ PbS QDs/Au architecture, where a porous TiO2 nanowire network is employed as electron transporting layer. Our best heterojunction solar cells exhibit a decent short circuit current of 2.5 mA/cm2, a large open circuit voltage of 0.6 V and a power converting efficiency of 5.4 % under 8.5 mW/cm2 low-light illumination. On the other hand, nanocrystal-based near infrared LED devices are fabricated using a simple ITO-PbS QDs-Al device structure. There, the active quantum dot layer serves as both the electron- and hole-transporting layer. With appropriate surface chemistry treatment on quantum dots, a high-brightness near-infrared LED device is achieved.
Terahertz Quantum Cascade Laser With Efficient Coupling and Beam Profile
NASA Technical Reports Server (NTRS)
Chattopadhyay, Goutam; Kawamura, Jonathan H.; Lin, Robert H.; Williams, Benjamin
2012-01-01
Quantum cascade lasers (QCLs) are unipolar semiconductor lasers, where the wavelength of emitted radiation is determined by the engineering of quantum states within the conduction band in coupled multiple-quantum-well heterostructures to have the desired energy separation. The recent development of terahertz QCLs has provided a new generation of solid-state sources for radiation in the terahertz frequency range. Terahertz QCLs have been demonstrated from 0.84 to 5.0 THz both in pulsed mode and continuous wave mode (CW mode). The approach employs a resonant-phonon depopulation concept. The metal-metal (MM) waveguide fabrication is performed using Cu-Cu thermo-compression bonding to bond the GaAs/AlGaAs epitaxial layer to a GaAs receptor wafer.
On the modified active region design of interband cascade lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motyka, M.; Ryczko, K.; Dyksik, M.
2015-02-28
Type II InAs/GaInSb quantum wells (QWs) grown on GaSb or InAs substrates and designed to be integrated in the active region of interband cascade lasers (ICLs) emitting in the mid infrared have been investigated. Optical spectroscopy, combined with band structure calculations, has been used to probe their electronic properties. A design with multiple InAs QWs has been compared with the more common double W-shaped QW and it has been demonstrated that it allows red shifting the emission wavelength and enhancing the transition oscillator strength. This can be beneficial for the improvements of the ICLs performances, especially when considering their long-wavelengthmore » operation.« less
Towards Silicon-Based Longwave Integrated Optoelectronics (LIO)
2008-01-21
circuitry. The photonics can use, for example, microbolometers and III-V photodetectors as well as III-V interband cascade and quantum cascade lasers...chips using inputs from several sensors. (4) imaging: focal - plane - array imager with integral readout, infrared-to-visible image converter chip, (5... photodetectors , type II interband cascades and QCLs. I would integrate the cascades in LIO using a technique similar to that developed by John Bower’s
Two-beam pumped cascaded four-wave-mixing process for producing multiple-beam quantum correlation
NASA Astrophysics Data System (ADS)
Liu, Shengshuai; Wang, Hailong; Jing, Jietai
2018-04-01
We propose a two-beam pumped cascaded four-wave-mixing (CFWM) scheme with a double-Λ energy-level configuration in 85Rb vapor cell and experimentally observe the emission of up to 10 quantum correlated beams from such CFWM scheme. During this process, the seed beam is amplified; four new signal beams and five idler beams are generated. The 10 beams show strong quantum correlation which is characterized by the intensity-difference squeezing of about -6.7 ±0.3 dB. Then, by altering the angle between the two pump beams, we observe the notable transition of the number of the output beams from 10 to eight, and even to six. We find that both the number of the output quantum correlated beams and their degree of quantum correlation from such two-beam pumped CFWM scheme increase with the decrease of the angle between the two pump beams. Such system may find potential applications in quantum information and quantum metrology.
Regimes of turbulence without an energy cascade
Barenghi, C. F.; Sergeev, Y. A.; Baggaley, A. W.
2016-01-01
Experiments and numerical simulations of turbulent 4He and 3He-B have established that, at hydrodynamic length scales larger than the average distance between quantum vortices, the energy spectrum obeys the same 5/3 Kolmogorov law which is observed in the homogeneous isotropic turbulence of ordinary fluids. The importance of the 5/3 law is that it points to the existence of a Richardson energy cascade from large eddies to small eddies. However, there is also evidence of quantum turbulent regimes without Kolmogorov scaling. This raises the important questions of why, in such regimes, the Kolmogorov spectrum fails to form, what is the physical nature of turbulence without energy cascade, and whether hydrodynamical models can account for the unusual behaviour of turbulent superfluid helium. In this work we describe simple physical mechanisms which prevent the formation of Kolmogorov scaling in the thermal counterflow, and analyze the conditions necessary for emergence of quasiclassical regime in quantum turbulence generated by injection of vortex rings at low temperatures. Our models justify the hydrodynamical description of quantum turbulence and shed light into an unexpected regime of vortex dynamics. PMID:27761005
Shi, Y. B.; Mei, S.; Jonasson, O.; ...
2016-12-28
Quantum cascade lasers (QCLs) are high-power coherent light sources in the midinfrared and terahertz parts of the electromagnetic spectrum. They are devices in which the electronic and lattice systems are far from equilibrium, strongly coupled to one another, and the problem bridges disparate spatial scales. Here, we present our ongoing work on the multiphysics and multiscale simulation of far-from-equilibrium transport of charge and heat in midinfrared QCLs.
Exploring Broad Area Quantum Cascade Lasers
2017-10-01
Research Laboratory AFRL /RDLTD 3550 Aberdeen Ave SE Kirtland AFB, NM 87117-5776 11. SPONSOR/MONITOR’S REPORT NUMBER(S) AFRL -RD-PS-TP-2017-0008 12...LIST DTIC/OCP 8725 John J. Kingman Rd, Suite 0944 Ft Belvoir, VA 22060-6218 1 cy AFRL /RVIL Kirtland AFB, NM 87117-5776 1 cy Chunte Lu... AFRL -RD-PS- AFRL -RD-PS- TP-2017-0008 TP-2017-0008 EXPLORING BROAD AREA QUANTUM CASCADE LASERS Tim Newell, et. al. 1 October 2017 Technical
Phase-locking of a 2.5 THz quantum cascade laser to a frequency comb using a GaAs photomixer.
Ravaro, M; Manquest, C; Sirtori, C; Barbieri, S; Santarelli, G; Blary, K; Lampin, J-F; Khanna, S P; Linfield, E H
2011-10-15
We report the heterodyne detection and phase locking of a 2.5 THz quantum cascade laser (QCL) using a terahertz frequency comb generated in a GaAs photomixer using a femtosecond fiber laser. With 10 mW emitted by the QCL, the phase-locked signal at the intermediate frequency yields 80 dB of signal-to-noise ratio in a bandwidth of 1 Hz.
Hot-phonon generation in THz quantum cascade lasers
NASA Astrophysics Data System (ADS)
Spagnolo, V.; Vitiello, M. S.; Scamarcio, G.; Williams, B. S.; Kumar, S.; Hu, Q.; Reno, J. L.
2007-12-01
Observation of non-equilibrium optical phonons population associated with electron transport in THz quantum cascade lasers is reported. The phonon occupation number was measured by using a combination of micro-probe photoluminescence and Stokes/Anti-Stokes Raman spectroscopy. Energy balance analysis allows us to estimate the phonon relaxation rate, that superlinearly increases with the electrical power in the range 1.5 W - 1.95 W, above laser threshold. This observation suggests the occurrence of stimulated emission of optical phonons.
Effects of magnetic field on electron-electron intersubband scattering rates in quantum wells.
NASA Astrophysics Data System (ADS)
Kempa, K.; Zhou, Y.; Engelbrecht, J.; Bakshi, P.
2001-03-01
Electron-electron scattering dominates the physics of carrier relaxation in quantum nano-structures used as active regions of THz radiation sources. This is the limiting mechanism in achieving population inversion, and reducing its deleterious effects could clear the way to a THz laser. We study here the inter-subband relaxation processes due to the electron-electron scattering in quantum well structures, in a magnetic field. We obtain the scattering rate from the imaginary part of the electron self-energy in the random phase approximation, extending our earlier studies [1] to nonzero magnetic fields. We find that the scattering rate is peaked at two possible sets of arrangements of the Landau levels (LL) of the two subbands of interest. The first set occurs when the LL of both subbands align, and the other when the LL misalign, so that the LL of one subband lie exactly in the middle between those of the other subband. Experiments on various quantum cascade structures show that the misaligned set of transitions is completely suppressed. >From our calculations this implies that there is no population inversion in those structures. Work supported by US Army Research Office. [1] K. Kempa, P. Bakshi, J. R. Engelbrecht, and Y. Zhou, Phys. Rev. B61, 11083 (2000).
Room-Temperature Quantum Cascade Laser: ZnO/Zn1- x Mg x O Versus GaN/Al x Ga1- x N
NASA Astrophysics Data System (ADS)
Chou, Hung Chi; Mazady, Anas; Zeller, John; Manzur, Tariq; Anwar, Mehdi
2013-05-01
A ZnO/Zn1- x Mg x O-based quantum cascade laser (QCL) is proposed as a candidate for generation of THz radiation at room temperature. The structural and material properties, field dependence of the THz lasing frequency, and generated power are reported for a resonant phonon ZnO/Zn0.95Mg0.05O QCL emitting at 5.27 THz. The theoretical results are compared with those from GaN/Al x Ga1- x N QCLs of similar geometry. Higher calculated optical output powers [ {P}_{{ZnMgO}} = 2.89 mW (nonpolar) at 5.27 THz and 2.75 mW (polar) at 4.93 THz] are obtained with the ZnO/Zn0.95Mg0.05O structure as compared with GaN/Al0.05Ga0.95N QCLs [ {P}_{{AlGaN}} = 2.37 mW (nonpolar) at 4.67 THz and 2.29 mW (polar) at 4.52 THz]. Furthermore, a higher wall-plug efficiency (WPE) is obtained for ZnO/ZnMgO QCLs [24.61% (nonpolar) and 23.12% (polar)] when compared with GaN/AlGaN structures [14.11% (nonpolar) and 13.87% (polar)]. These results show that ZnO/ZnMgO material is optimally suited for THz QCLs.
Novel Design of Type I High Power Mid-IR Diode Lasers for Spectral Region 3 - 4.2 Microns
2014-09-25
multifold improvement of the device characteristics. Cascade pumping was achieved utilizing efficient interband tunneling through "leaky" window in band...Initially cascade pumping scheme was applied to laser heterostructures utilizing gain sections based on either intersubband [1] or type-II interband ...active regions, metamorphic virtual substrate and cascade pumping scheme. Cascade pumping of type-I quantum well gain section opened the whole new
NASA Astrophysics Data System (ADS)
Santra, Siddhartha; Cruikshank, Benjamin; Balu, Radhakrishnan; Jacobs, Kurt
2017-10-01
Fermi’s golden rule applies to a situation in which a single quantum state \\vert \\psi> is coupled to a near-continuum. This ‘quasi-continuum coupling’ structure results in a rate equation for the population of \\vert \\psi> . Here we show that the coupling of a quantum system to the standard model of a thermal environment, a bath of harmonic oscillators, can be decomposed into a ‘cascade’ made up of the quasi-continuum coupling structures of Fermi’s golden rule. This clarifies the connection between the physics of the golden rule and that of a thermal bath, and provides a non-rigorous but physically intuitive derivation of the Markovian master equation directly from the former. The exact solution to the Hamiltonian of the golden rule, known as the Bixon-Jortner model, generalized for an asymmetric spectrum, provides a window on how the evolution induced by the bath deviates from the master equation as one moves outside the Markovian regime. Our analysis also reveals the relationship between the oscillator bath and the ‘random matrix model’ (RMT) of a thermal bath. We show that the cascade structure is the one essential difference between the two models, and the lack of it prevents the RMT from generating transition rates that are independent of the initial state of the system. We suggest that the cascade structure is one of the generic elements of thermalizing many-body systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan Luqi; Das, Sumanta
2011-06-15
We study the polarization-dependent second-order correlation of a pair of photons emitted in a four-level radiative cascade driven by an external field. It is found that the quantum correlations of the emitted photons, degraded by the energy splitting of the intermediate levels in the radiative cascade, can be efficiently revived by a far-detuned external field. The physics of this revival is linked to an induced Stark shift and the formation of dressed states in the system by the nonresonant external field. Furthermore, we investigated the competition between the effect of the coherent external field and incoherent dephasing of the intermediatemore » levels. We find that the degradation of quantum correlations due to the incoherent dephasing can be contained for small dephasing with the external field. We also studied the nonlocality of the correlations by evaluating the Bell inequality in the linear polarization basis for the radiative cascade. We find that the Bell parameter decreases rapidly with increase in the intermediate-level energy splitting or incoherent dephasing rate to the extent that there is no violation. However, the presence of an external field leads to control over the degrading mechanisms and preservation of nonlocal correlation among the photons. This in turn can induce a violation of Bell's inequality in the radiative cascade for arbitrary intermediate-level splitting and small incoherent dephasing.« less
Quantum funneling in blended multi-band gap core/shell colloidal quantum dot solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neo, Darren C. J.; Assender, Hazel E.; Watt, Andrew A. R., E-mail: Andrew.watt@materials.ox.ac.uk
2015-09-07
Multi-band gap heterojunction solar cells fabricated from a blend of 1.2 eV and 1.4 eV PbS colloidal quantum dots (CQDs) show poor device performance due to non-radiative recombination. To overcome this, a CdS shell is epitaxially formed around the PbS core using cation exchange. From steady state and transient photoluminescence measurements, we understand the nature of charge transfer between these quantum dots. Photoluminescence decay lifetimes are much longer in the PbS/CdS core/shell blend compared to PbS only, explained by a reduction in non-radiative recombination resulting from CdS surface passivation. PbS/CdS heterojunction devices sustain a higher open-circuit voltage and lower reverse saturation currentmore » as compared to PbS-only devices, implying lower recombination rates. Further device performance enhancement is attained by modifying the composition profile of the CQD species in the absorbing layer resulting in a three dimensional quantum cascade structure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeVetter, Brent M.; Kenkel, Seth; Mittal, Shachi
Spectral distortions caused by the electric field standing wave effect were investigated for two commonly used reflective substrates: low-emissivity glass and gold-coated glass. Our analytical calculations showed that spectral distortions may arise for both incoherent and coherent light sources when performing transflectance measurements. We experimentally confirmed our predictions using a commercial mid-infrared quantum cascade laser microscope and an interferometric infrared imaging system.
Terahertz quantum cascade laser with an X-valley-based injector
NASA Astrophysics Data System (ADS)
Roy, Mithun; Talukder, Muhammad Anisuzzaman
2017-04-01
We present a novel terahertz (THz) quantum cascade laser (QCL) design where Γ-valley states are used for lasing transition and X-valley states—in particular, Xz-states—are used as injector subbands. Since the lasing states in our proposed structure are populated and depopulated mainly through the interface roughness assisted Γ-Xz electron scattering, we present a model to describe this intervalley carrier transport. In the injector region of the proposed THz QCL, we use a quaternary AlGaAsP material to introduce tensile strain, which plays a crucial role in increasing the gain. To compensate the strain per period, we propose to grow the periodic heterostructure on a GaAs 0.94 P 0.06 virtual substrate. To simulate the carrier transport and hence calculate the gain and lasing performance of the proposed THz QCL, we use a simplified density matrix formalism that considers resonant tunneling, dephasing, and the important intersubband scattering mechanisms. Since electron temperature significantly varies from lattice temperature for QCLs, we take their difference into account using the kinetic energy balance method. We show that the proposed structure is capable of lasing up to a maximum lattice temperature of ˜119 K at 4.8 THz. For future improvements of the device, we identify major performance-degrading factors of the proposed design.
Fast continuous tuning of terahertz quantum-cascade lasers by rear-facet illumination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hempel, Martin, E-mail: hempel@pdi-berlin.de; Röben, Benjamin; Schrottke, Lutz
2016-05-09
GaAs-based terahertz quantum-cascade lasers (QCLs) are continuously tuned in their emission frequency by illuminating the rear facet with a near-infrared, high-power diode laser. For QCLs emitting around 3.1 THz, the maximum tuning range amounts to 2.8 GHz for continuous-wave operation at a heat sink temperature of 55 K, while in pulsed mode 9.1 and 8.0 GHz are achieved at 35 and 55 K, respectively.
Electrically controllable photonic molecule laser.
Fasching, G; Deutsch, Ch; Benz, A; Andrews, A M; Klang, P; Zobl, R; Schrenk, W; Strasser, G; Ragulis, P; Tamosiūnas, V; Unterrainer, K
2009-10-26
We have studied the coherent intercavity coupling of the evanescent fields of two microdisk terahertz quantum-cascade lasers. The electrically controllable optical coupling of the single-mode operating lasers has been observed for cavity spacings up to 30 mum. The strongest coupled photonic molecule with 2 mum intercavity spacing allows to conditionally switch the optical emission by the electrical modulation of only one microdisk. The lasing threshold characteristics demonstrate the linear dependence of the gain of a quantum-cascade laser on the applied electric field.
Lu, Feng; Belkin, Mikhail A
2011-10-10
We report a simple technique that allows obtaining mid-infrared absorption spectra with nanoscale spatial resolution under low-power illumination from tunable quantum cascade lasers. Light absorption is detected by measuring associated sample thermal expansion with an atomic force microscope. To detect minute thermal expansion we tune the repetition frequency of laser pulses in resonance with the mechanical frequency of the atomic force microscope cantilever. Spatial resolution of better than 50 nm is experimentally demonstrated.
Molecular dispersion spectroscopy based on Fabry-Perot quantum cascade lasers.
Sterczewski, Lukasz A; Westberg, Jonas; Wysocki, Gerard
2017-01-15
Two Fabry-Perot quantum cascade lasers are used in a differential dual comb configuration to perform rapidly swept dispersion spectroscopy of low-pressure nitrous oxide with <1 ms acquisition time. Active feedback control of the laser injection current enables simultaneous wavelength modulation of both lasers at kilohertz rates. The system demonstrates similar performance in both absorption and dispersion spectroscopy modes and achieves a noise-equivalent absorption figure of merit in the low 10-4/Hz range.
Real-time terahertz imaging through self-mixing in a quantum-cascade laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wienold, M., E-mail: martin.wienold@dlr.de; Rothbart, N.; Hübers, H.-W.
2016-07-04
We report on a fast self-mixing approach for real-time, coherent terahertz imaging based on a quantum-cascade laser and a scanning mirror. Due to a fast deflection of the terahertz beam, images with frame rates up to several Hz are obtained, eventually limited by the mechanical inertia of the employed scanning mirror. A phase modulation technique allows for the separation of the amplitude and phase information without the necessity of parameter fitting routines. We further demonstrate the potential for transmission imaging.
Integrated heterodyne terahertz transceiver
Lee, Mark [Albuquerque, NM; Wanke, Michael C [Albuquerque, NM
2009-06-23
A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. An antenna connected to the Schottky diode receives a terahertz signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.
Rao, Gottipaty N; Karpf, Andreas
2010-09-10
A trace gas sensor for the detection of nitrogen dioxide based on cavity ringdown spectroscopy (CRDS) and a continuous wave external cavity tunable quantum cascade laser operating at room temperature has been designed, and its features and performance characteristics are reported. By measuring the ringdown times of the cavity at different concentrations of NO(2), we report a sensitivity of 1.2 ppb for the detection of NO(2) in Zero Air.
Yi, Hongming; Wu, Tao; Lauraguais, Amélie; Semenov, Vladimir; Coeur, Cecile; Cassez, Andy; Fertein, Eric; Gao, Xiaoming; Chen, Weidong
2017-12-04
A spectroscopic instrument based on a mid-infrared external cavity quantum cascade laser (EC-QCL) was developed for high-accuracy measurements of dinitrogen pentoxide (N 2 O 5 ) at the ppbv-level. A specific concentration retrieval algorithm was developed to remove, from the broadband absorption spectrum of N 2 O 5 , both etalon fringes resulting from the EC-QCL intrinsic structure and spectral interference lines of H 2 O vapour absorption, which led to a significant improvement in measurement accuracy and detection sensitivity (by a factor of 10), compared to using a traditional algorithm for gas concentration retrieval. The developed EC-QCL-based N 2 O 5 sensing platform was evaluated by real-time tracking N 2 O 5 concentration in its most important nocturnal tropospheric chemical reaction of NO 3 + NO 2 ↔ N 2 O 5 in an atmospheric simulation chamber. Based on an optical absorption path-length of L eff = 70 m, a minimum detection limit of 15 ppbv was achieved with a 25 s integration time and it was down to 3 ppbv in 400 s. The equilibrium rate constant K eq involved in the above chemical reaction was determined with direct concentration measurements using the developed EC-QCL sensing platform, which was in good agreement with the theoretical value deduced from a referenced empirical formula under well controlled experimental conditions. The present work demonstrates the potential and the unique advantage of the use of a modern external cavity quantum cascade laser for applications in direct quantitative measurement of broadband absorption of key molecular species involved in chemical kinetic and climate-change related tropospheric chemistry.
Terahertz quantum cascade lasers based on resonant phonon scattering for depopulation.
Hu, Qing; Williams, Benjamin S; Kumar, Sushil; Callebaut, Hans; Reno, John L
2004-02-15
We report our development of terahertz (THz) quantum cascade lasers (QCLs), in which the depopulation of the lower radiative level is achieved through resonant longitudinal optical (LO) phonon scattering. This depopulation mechanism, similar to that implemented in all the QCLs operating at mid-infrared frequencies, is robust at high temperatures and high injection levels. The unique feature of resonant LO-phonon scattering in our THz QCL structures allows a highly selective depopulation of the lower radiative level with a sub-picosecond lifetime, while maintaining a relatively long upper level lifetime (more than 5 ps) that is due to upper-to-ground-state scattering. The first QCL based on this mechanism achieved lasing at 3.4 THz (lambda approximately 87 microm) up to 87 K for pulsed operations, with peak power levels exceeding 10 mW at ca. 40 K. Using a novel double-sided metal waveguide for mode confinement, which yields a unity mode confinement factor and therefore a low total cavity loss at THz frequencies, we have also achieved lasing at wavelengths longer than 100 microm.
Dynamics of a broad-band quantum cascade laser: from chaos to coherent dynamics and mode-locking
NASA Astrophysics Data System (ADS)
Columbo, L. L.; Barbieri, S.; Sirtori, C.; Brambilla, M.
2018-02-01
The dynamics of a multimode Quantum Cascade Laser, is studied in a model based on effective semiconductor Maxwell-Bloch equations, encompassing key features for the radiationmedium interaction such as an asymmetric, frequency dependent, gain and refractive index as well as the phase-amplitude coupling provided by the Henry factor. By considering the role of the free spectral range and Henry factor, we develop criteria suitable to identify the conditions which allow to destabilize, close to threshold, the traveling wave emitted by the laser and lead to chaotic or regular multimode dynamics. In the latter case our simulations show that the field oscillations are associated to self-confined structures which travel along the laser cavity, bridging mode-locking and solitary wave propagation. In addition, we show how a RF modulation of the bias current leads to active mode-locking yielding high-contrast, picosecond pulses. Our results compare well with recent experiments on broad-band THz-QCLs and may help understanding the conditions for the generation of ultrashort pulses and comb operation in Mid-IR and THz spectral regions
Monolithically integrated mid-infrared sensor using narrow mode operation and temperature feedback
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ristanic, Daniela; Schwarz, Benedikt, E-mail: benedikt.schwarz@tuwien.ac.at; Reininger, Peter
A method to improve the sensitivity and selectivity of a monolithically integrated mid-infrared sensor using a distributed feedback laser (DFB) is presented in this paper. The sensor is based on a quantum cascade laser/detector system built from the same epitaxial structure and with the same fabrication approach. The devices are connected via a dielectric-loaded surface plasmon polariton waveguide with a twofold function: it provides high light coupling efficiency and a strong interaction of the light with the environment (e.g., a surrounding fluid). The weakly coupled DFB quantum cascade laser emits narrow mode light with a FWHM of 2 cm{sup −1} atmore » 1586 cm{sup −1}. The room temperature laser threshold current density is 3 kA∕cm{sup 2} and a pulsed output power of around 200 mW was measured. With the superior laser noise performance, due to narrow mode emission and the compensation of thermal fluctuations, the lower limit of detection was expanded by one order of magnitude to the 10 ppm range.« less
Emission and Propagation Properties of Midinfrared Quantum Cascade Lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnaswami, Kannan; Bernacki, Bruce E.; Cannon, Bret D.
2008-02-15
We report divergence, astigmatism and M 2 measurements of quantum cascade lasers (QCL) with an emission wavelength of 8.77 mum. Emission profiles from the QCL facet showed divergence angles of 62° and 32° FWHM ± 2° for the fast and slow axes, respectively. The observation of far field structure superimposed on the fast axes profiles was attributed to the position of the QCL die with respect to the edge of the laser submount, emphasizing the need for careful placement. Two diffraction-limited Germanium aspheric microlenses were designed and fabricated to efficiently collect, collimate, and focus QCL emission. A confocal system comprisedmore » of these lenses was used to measure the beam propagation figure of merit (M2) yielding 1.8 and 1.2 for the fast and slow axes, respectively. Astigmatism at the exit facet was calculated to be about 3.4 mum, or less than half a wave. To the best of our knowledge, this is the first experimental measurement of astigmatism and M 2 reported for mid-IR QCLs.« less
MBE growth of strain-compensated InGaAs/InAlAs/InP quantum cascade lasers
NASA Astrophysics Data System (ADS)
Gutowski, P.; Sankowska, I.; Karbownik, P.; Pierścińska, D.; Serebrennikova, O.; Morawiec, M.; Pruszyńska-Karbownik, E.; Gołaszewska-Malec, K.; Pierściński, K.; Muszalski, J.; Bugajski, M.
2017-05-01
We investigate growth conditions for strain-compensated In0.67Ga0.33As/In0.36Al0.64As/InP quantum cascade lasers (QCLs) by solid-source molecular beam epitaxy (SSMBE). The extensive discussion of growth procedures is presented. The technology was first elaborated for In0.53Ga0.47As/In0.52Al0.48As material system lattice matched to InP. After that QCLs with lattice matched active region were grown for validation of design and obtained material quality. The next step was elaboration of growth process and especially growth preparation procedures for strain compensated active regions. The grown structures were examined by HRXRD, AFM, and TEM techniques. The on-line implementation of obtained results in subsequent growth runs was crucial for achieving room temperature operating 4.4-μm lasers. For uncoated devices with Fabry-Perrot resonator up to 250 mW of optical power per facet at 300 K was obtained under pulsed conditions. The paper focuses on MBE technology and presents developed algorithm for strain-compensated QCL growth.
NASA Astrophysics Data System (ADS)
Zeuner, Katharina D.; Paul, Matthias; Lettner, Thomas; Reuterskiöld Hedlund, Carl; Schweickert, Lucas; Steinhauer, Stephan; Yang, Lily; Zichi, Julien; Hammar, Mattias; Jöns, Klaus D.; Zwiller, Val
2018-04-01
The implementation of fiber-based long-range quantum communication requires tunable sources of single photons at the telecom C-band. Stable and easy-to-implement wavelength-tunability of individual sources is crucial to (i) bring remote sources into resonance, (ii) define a wavelength standard, and (iii) ensure scalability to operate a quantum repeater. So far, the most promising sources for true, telecom single photons are semiconductor quantum dots, due to their ability to deterministically and reliably emit single and entangled photons. However, the required wavelength-tunability is hard to attain. Here, we show a stable wavelength-tunable quantum light source by integrating strain-released InAs quantum dots on piezoelectric substrates. We present triggered single-photon emission at 1.55 μm with a multi-photon emission probability as low as 0.097, as well as photon pair emission from the radiative biexciton-exciton cascade. We achieve a tuning range of 0.25 nm which will allow us to spectrally overlap remote quantum dots or tuning distant quantum dots into resonance with quantum memories. This opens up realistic avenues for the implementation of photonic quantum information processing applications at telecom wavelengths.
Self-starting harmonic frequency comb generation in a quantum cascade laser
NASA Astrophysics Data System (ADS)
Kazakov, Dmitry; Piccardo, Marco; Wang, Yongrui; Chevalier, Paul; Mansuripur, Tobias S.; Xie, Feng; Zah, Chung-en; Lascola, Kevin; Belyanin, Alexey; Capasso, Federico
2017-12-01
Optical frequency combs1,2 establish a rigid phase-coherent link between microwave and optical domains and are emerging as high-precision tools in an increasing number of applications3. Frequency combs with large intermodal spacing are employed in the field of microwave photonics for radiofrequency arbitrary waveform synthesis4,5 and for the generation of terahertz tones of high spectral purity in future wireless communication networks6,7. Here, we demonstrate self-starting harmonic frequency comb generation with a terahertz repetition rate in a quantum cascade laser. The large intermodal spacing caused by the suppression of tens of adjacent cavity modes originates from a parametric contribution to the gain due to temporal modulations of population inversion in the laser8,9. Using multiheterodyne self-detection, the mode spacing of the harmonic comb is shown to be uniform to within 5 × 10-12 parts of the central frequency. This new harmonic comb state extends the range of applications of quantum cascade laser frequency combs10-13.
Kuepper, Claus; Kallenbach-Thieltges, Angela; Juette, Hendrik; Tannapfel, Andrea; Großerueschkamp, Frederik; Gerwert, Klaus
2018-05-16
A feasibility study using a quantum cascade laser-based infrared microscope for the rapid and label-free classification of colorectal cancer tissues is presented. Infrared imaging is a reliable, robust, automated, and operator-independent tissue classification method that has been used for differential classification of tissue thin sections identifying tumorous regions. However, long acquisition time by the so far used FT-IR-based microscopes hampered the clinical translation of this technique. Here, the used quantum cascade laser-based microscope provides now infrared images for precise tissue classification within few minutes. We analyzed 110 patients with UICC-Stage II and III colorectal cancer, showing 96% sensitivity and 100% specificity of this label-free method as compared to histopathology, the gold standard in routine clinical diagnostics. The main hurdle for the clinical translation of IR-Imaging is overcome now by the short acquisition time for high quality diagnostic images, which is in the same time range as frozen sections by pathologists.
A hybrid plasmonic waveguide terahertz quantum cascade laser
NASA Astrophysics Data System (ADS)
Degl'Innocenti, Riccardo; Shah, Yash D.; Wallis, Robert; Klimont, Adam; Ren, Yuan; Jessop, David S.; Beere, Harvey E.; Ritchie, David A.
2015-02-01
We present the realization of a quantum cascade laser emitting at around 2.85 THz, based on a hybrid plasmonic waveguide with a low refractive index dielectric cladding. This hybrid waveguide design allows the performance of a double-metal waveguide to be retained, while improving the emission far-field. A set of lasers based on the same active region material were fabricated with different metal layer thicknesses. A detailed characterization of the performance of these lasers revealed that there is an optimal trade-off that yields the best far-field emission and the maximum temperature of operation. By exploiting the pure plasmonic mode of these waveguides, the standard operation conditions of a double-metal quantum cascade laser were retrieved, such that the maximum operating temperature of these devices is not affected by the process. These results pave the way to realizing a class of integrated devices working in the terahertz range which could be further exploited to fabricate terahertz on-chip circuitry.
Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers.
Consolino, L; Taschin, A; Bartolini, P; Bartalini, S; Cancio, P; Tredicucci, A; Beere, H E; Ritchie, D A; Torre, R; Vitiello, M S; De Natale, P
2012-01-01
Optical frequency comb synthesizers have represented a revolutionary approach to frequency metrology, providing a grid of frequency references for any laser emitting within their spectral coverage. Extending the metrological features of optical frequency comb synthesizers to the terahertz domain would be a major breakthrough, due to the widespread range of accessible strategic applications and the availability of stable, high-power and widely tunable sources such as quantum cascade lasers. Here we demonstrate phase-locking of a 2.5 THz quantum cascade laser to a free-space comb, generated in a LiNbO(3) waveguide and covering the 0.1-6 THz frequency range. We show that even a small fraction (<100 nW) of the radiation emitted from the quantum cascade laser is sufficient to generate a beat note suitable for phase-locking to the comb, paving the way to novel metrological-grade terahertz applications, including high-resolution spectroscopy, manipulation of cold molecules, astronomy and telecommunications.
A hybrid plasmonic waveguide terahertz quantum cascade laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Degl'Innocenti, Riccardo, E-mail: rd448@cam.ac.uk; Shah, Yash D.; Wallis, Robert
2015-02-23
We present the realization of a quantum cascade laser emitting at around 2.85 THz, based on a hybrid plasmonic waveguide with a low refractive index dielectric cladding. This hybrid waveguide design allows the performance of a double-metal waveguide to be retained, while improving the emission far-field. A set of lasers based on the same active region material were fabricated with different metal layer thicknesses. A detailed characterization of the performance of these lasers revealed that there is an optimal trade-off that yields the best far-field emission and the maximum temperature of operation. By exploiting the pure plasmonic mode of thesemore » waveguides, the standard operation conditions of a double-metal quantum cascade laser were retrieved, such that the maximum operating temperature of these devices is not affected by the process. These results pave the way to realizing a class of integrated devices working in the terahertz range which could be further exploited to fabricate terahertz on-chip circuitry.« less
Applications of Quantum Cascade Laser Spectroscopy in the Analysis of Pharmaceutical Formulations.
Galán-Freyle, Nataly J; Pacheco-Londoño, Leonardo C; Román-Ospino, Andrés D; Hernandez-Rivera, Samuel P
2016-09-01
Quantum cascade laser spectroscopy was used to quantify active pharmaceutical ingredient content in a model formulation. The analyses were conducted in non-contact mode by mid-infrared diffuse reflectance. Measurements were carried out at a distance of 15 cm, covering the spectral range 1000-1600 cm(-1) Calibrations were generated by applying multivariate analysis using partial least squares models. Among the figures of merit of the proposed methodology are the high analytical sensitivity equivalent to 0.05% active pharmaceutical ingredient in the formulation, high repeatability (2.7%), high reproducibility (5.4%), and low limit of detection (1%). The relatively high power of the quantum-cascade-laser-based spectroscopic system resulted in the design of detection and quantification methodologies for pharmaceutical applications with high accuracy and precision that are comparable to those of methodologies based on near-infrared spectroscopy, attenuated total reflection mid-infrared Fourier transform infrared spectroscopy, and Raman spectroscopy. © The Author(s) 2016.
High-power terahertz quantum cascade lasers with ∼0.23 W in continuous wave mode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xuemin; Shen, Changle; Jiang, Tao
2016-07-15
Terahertz quantum cascade lasers with a record output power up to ∼0.23 W in continuous wave mode were obtained. We show that the optimal 2.9-mm-long device operating at 3.11 THz has a low threshold current density of 270 A/cm{sup 2} at ∼15 K. The maximum operating temperature arrived at ∼65 K in continuous wave mode and the internal quantum efficiencies decreased from 0.53 to 0.19 for the devices with different cavity lengths. By using one convex lens with the effective focal length of 13 mm, the beam profile was collimated to be a quasi Gaussian distribution.
Quantum-electrodynamic cascades in intense laser fields
NASA Astrophysics Data System (ADS)
Narozhny, N. B.; Fedotov, A. M.
2015-01-01
It is shown that in an intense laser field, along with cascades similar to extensive air showers, self-sustaining field-energized cascades can develop. For intensities of 1024~ \\text {W cm}-2 or higher, such cascades can even be initiated by a particle at rest in the focal area of a tightly focused laser pulse. The cascade appearance effect can considerably alter the progression of any process occurring in a high-intensity laser field. At very high intensities, the evolvement of such cascades can lead to the depletion of the laser field. This paper presents a design of an experiment to observe these two cascade types simultaneously already in next-generation laser facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Matthias, E-mail: m.paul@ihfg.uni-stuttgart.de; Kettler, Jan; Zeuner, Katharina
By metal-organic vapor-phase epitaxy, we have fabricated InGaAs quantum dots on GaAs substrate with an ultra-low lateral density (<10{sup 7} cm{sup −2}). The photoluminescence emission from the quantum dots is shifted to the telecom O-band at 1.31 μm by an InGaAs strain reducing layer. In time-resolved measurements, we find fast decay times for exciton (∼600 ps) and biexciton (∼300 ps). We demonstrate triggered single-photon emission (g{sup (2)}(0)=0.08) as well as cascaded emission from the biexciton decay. Our results suggest that these quantum dots can compete with their counterparts grown by state-of-the-art molecular beam epitaxy.
Diluted Magnetic Semiconductors for Magnetic Field Tunable Infrared Detectors
2005-06-30
significantly improved performance and technological advances of quantum well infrared photodetectors (QWIPs)14 and quantum cascade lasers (QCLs)15...NUMBER FA8655-04-1-3069 5b. GRANT NUMBER 4. TITLE AND SUBTITLE Magnetic Field Tunable Terahertz Quantum Well Infrared Photodetector 5c...fabrication in II-VI materials, quantum well infrared photodetector device design and magneto-optical characterisation are all well understood
Evaluating the coherence and time-domain profile of quantum cascade laser frequency combs
Burghoff, David; Yang, Yang; Hayton, Darren J.; ...
2015-01-01
Recently, much attention has been focused on the generation of optical frequency combs from quantum cascade lasers. We discuss how fast detectors can be used to demonstrate the mutual coherence of such combs, and present an inequality that can be used to quantitatively evaluate their performance. We discuss several technical issues related to shifted wave interference Fourier Transform spectroscopy (SWIFTS), and show how such measurements can be used to elucidate the time-domain properties of such combs, showing that they can possess signatures of both frequency-modulation and amplitude-modulation.
Distributed-feedback Terahertz Quantum-cascade Lasers with Laterally Corrugated Metal Waveguides
NASA Technical Reports Server (NTRS)
Williams, Benjamin S.; Kumar, Sushil; Hu, Qing; Reno, John L.
2005-01-01
We report the demonstration of distributed-feedback terahertz quantum-cascade lasers based on a first-order grating fabricated via a lateral corrugation in a double-sided metal ridge waveguide. The phase of the facet reflection was precisely set by lithographically defined facets by dry etching. Single-mode emission was observed at low to moderate injection currents, although multimode emission was observed far beyond threshold owing to spatial hole burning. Finite-element simulations were used to calculate the modal and threshold characteristics for these devices, with results in good agreement with experiments.
THz quantum cascade lasers with wafer bonded active regions.
Brandstetter, M; Deutsch, C; Benz, A; Cole, G D; Detz, H; Andrews, A M; Schrenk, W; Strasser, G; Unterrainer, K
2012-10-08
We demonstrate terahertz quantum-cascade lasers with a 30 μm thick double-metal waveguide, which are fabricated by stacking two 15 μm thick active regions using a wafer bonding process. By increasing the active region thickness more optical power is generated inside the cavity, the waveguide losses are decreased and the far-field is improved due to a larger facet aperture. In this way the output power is increased by significantly more than a factor of 2 without reducing the maximum operating temperature and without increasing the threshold current.
Modulation properties of optically injection-locked quantum cascade lasers.
Wang, Cheng; Grillot, Fédéric; Kovanis, Vassilios I; Bodyfelt, Joshua D; Even, Jacky
2013-06-01
A rate equation analysis on the modulation response of an optical injection-locked quantum cascade laser is outlined. It is found that the bifurcation diagram exhibits both bistable and unstable locked regions. In addition, the stable locked regime widens as the linewidth enhancement factor increases. It is also shown that both positive and negative optical detunings as well as strong injection strength enhance the 3 dB modulation bandwidth by as much as 30 GHz. Finally, the peak in the modulation response is significantly influenced by the optical frequency detuning.
High performance, low dissipation quantum cascade lasers across the mid-IR range.
Bismuto, Alfredo; Blaser, Stéphane; Terazzi, Romain; Gresch, Tobias; Muller, Antoine
2015-03-09
In this work, we present the development of low consumption quantum cascade lasers across the mid-IR range. In particular, short cavity single-mode lasers with optimised facet reflectivities have been fabricated from 4.5 to 9.2 μm. Threshold dissipated powers as low as 0.5 W were obtained in continuous wave operation at room temperature. In addition, the beneficial impact of reducing chip length on laser mounting yield is discussed. High power single-mode lasers from the same processed wafers are also presented.
Dual-wavelength quantum cascade laser for trace gas spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jágerská, J.; Tuzson, B.; Mangold, M.
2014-10-20
We demonstrate a sequentially operating dual-wavelength quantum cascade laser with electrically separated laser sections, emitting single-mode at 5.25 and 6.25 μm. Based on a single waveguide ridge, this laser represents a considerable asset to optical sensing and trace gas spectroscopy, as it allows probing multiple gas species with spectrally distant absorption features using conventional optical setups without any beam combining optics. The laser capability was demonstrated in simultaneous NO and NO{sub 2} detection, reaching sub-ppb detection limits and selectivity comparable to conventional high-end spectroscopic systems.
High-power arrays of quantum cascade laser master-oscillator power-amplifiers.
Rauter, Patrick; Menzel, Stefan; Goyal, Anish K; Wang, Christine A; Sanchez, Antonio; Turner, George; Capasso, Federico
2013-02-25
We report on multi-wavelength arrays of master-oscillator power-amplifier quantum cascade lasers operating at wavelengths between 9.2 and 9.8 μm. All elements of the high-performance array feature longitudinal (spectral) as well as transverse single-mode emission at peak powers between 2.7 and 10 W at room temperature. The performance of two arrays that are based on different seed-section designs is thoroughly studied and compared. High output power and excellent beam quality render the arrays highly suitable for stand-off spectroscopy applications.
Proton and gamma irradiation of Fabry-Perot quantum cascade lasers for space qualification
Myers, Tanya L.; Cannon, Bret D.; Brauer, Carolyn S.; ...
2015-01-20
Fabry-Perot quantum cascade lasers (QCLs) were characterized following irradiation by high energy (64 MeV) protons and Cobalt-60 gamma rays. Seven QCLs were exposed to radiation dosages that are typical for a space mission in which the total accumulated dosages from both radiation sources varied from 20 krad(Si) to 46.3 krad(Si). In conclusion, the QCLs did not show any measurable changes in threshold current or slope efficiency suggesting the suitability of QCLs for use in space-based missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Röben, B., E-mail: roeben@pdi-berlin.de; Wienold, M.; Schrottke, L.
2016-06-15
The far-field distribution of the emission intensity of terahertz (THz) quantum-cascade lasers (QCLs) frequently exhibits multiple lobes instead of a single-lobed Gaussian distribution. We show that such multiple lobes can result from self-interference related to the typically large beam divergence of THz QCLs and the presence of an inevitable cryogenic operation environment including optical windows. We develop a quantitative model to reproduce the multiple lobes. We also demonstrate how a single-lobed far-field distribution can be achieved.
Feedback stabilization of quantum cascade laser beams for stand-off applications
NASA Astrophysics Data System (ADS)
Müller, Reik; Kendziora, Christopher A.; Furstenberg, Robert
2017-05-01
Techniques which apply tunable quantum cascade lasers (QCLs) for target illumination suffer from fluctuations of the laser beam direction. This manuscript describes a method to stabilize the beam direction by using an active feedback loop. This approach corrects and stabilizes the laser pointing direction using the signal from a 4-element photo sensor as input to control an active 2 dimensional Galvo mirror system. Results are presented for measurements using known perturbations as well as actual mode hops intrinsic to external cavity QCL during wavelength tuning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saat, N. K.; Dean, P.; Khanna, S. P.
2015-04-24
We demonstrate new switching circuit for difference-intensity THz quantum cascade laser (QCL) imaging by amplitude modulation and lock in detection. The switching circuit is designed to improve the frequency modulation so that it can stably lock the amplitude modulation of the QCL and the detector output. The combination of a voltage divider and a buffer in switching circuit to quickly switch the amplitude of the QCL biases of 15.8 V and 17.2 V is successfully to increase the frequency modulation up to ∼100 Hz.
NASA Technical Reports Server (NTRS)
Williams, Benjamin S.; Kumar, Sushil; Hu, Qing; Reno, John L.
2005-01-01
We report the demonstration of a terahertz quantum-cascade laser that operates up to 164 K in pulsed mode and 117 K in continuous-wave mod e at approximately 3.0 THz. The active region was based on a resonant -phonon depopulation scheme and a metal-metal waveguide was used for modal confinement. Copper to copper thermocompression wafer bonding w as used to fabricate the waveguide, which displayed improved thermal properties compared to a previous indium-gold bonding method.
Savchenkov, Anatoliy A; Ilchenko, Vladimir S; Di Teodoro, Fabio; Belden, Paul M; Lotshaw, William T; Matsko, Andrey B; Maleki, Lute
2015-08-01
We report on the generation of mid-infrared Kerr frequency combs in high-finesse CaF2 and MgF2 whispering-gallery-mode resonators pumped with continuous-wave room-temperature quantum cascade lasers. The combs were centered at 4.5 μm, the longest wavelength to date. A frequency comb wider than one half of an octave was demonstrated when approximately 20 mW of pump power was coupled to an MgF2 resonator characterized with quality factor exceeding 10(8).
8.4% efficient fullerene-free organic solar cells exploiting long-range exciton energy transfer.
Cnops, Kjell; Rand, Barry P; Cheyns, David; Verreet, Bregt; Empl, Max A; Heremans, Paul
2014-03-07
In order to increase the power conversion efficiency of organic solar cells, their absorption spectrum should be broadened while maintaining efficient exciton harvesting. This requires the use of multiple complementary absorbers, usually incorporated in tandem cells or in cascaded exciton-dissociating heterojunctions. Here we present a simple three-layer architecture comprising two non-fullerene acceptors and a donor, in which an energy-relay cascade enables an efficient two-step exciton dissociation process. Excitons generated in the remote wide-bandgap acceptor are transferred by long-range Förster energy transfer to the smaller-bandgap acceptor, and subsequently dissociate at the donor interface. The photocurrent originates from all three complementary absorbing materials, resulting in a quantum efficiency above 75% between 400 and 720 nm. With an open-circuit voltage close to 1 V, this leads to a remarkable power conversion efficiency of 8.4%. These results confirm that multilayer cascade structures are a promising alternative to conventional donor-fullerene organic solar cells.
NASA Astrophysics Data System (ADS)
Giglio, Marilena; Patimisco, Pietro; Sampaolo, Angelo; Kriesel, Jason M.; Tittel, Frank K.; Spagnolo, Vincenzo
2018-01-01
We report single-mode midinfrared laser beam delivery through a 50-cm-long tapered hollow-core waveguide (HCW) having bore diameter linearly increasing from 200 to 260 μm. We performed theoretical calculations to identify the best HCW-laser coupling conditions in terms of optical losses and single-mode fiber output. To validate our modeling, we coupled the HCW with an interband cascade laser and four quantum cascade lasers with their emission wavelengths spanning 3.5 to 7.8 μm, using focusing lenses with different focal lengths. With the best coupling conditions, we achieved single-mode output in the investigated 3.5 to 7.8 μm spectral range, with minimum transmission losses of 1.27 dB at 6.2 μm.
1.9 THz Quantum-cascade Lasers with One-well Injector
NASA Technical Reports Server (NTRS)
Kumar, Sushil; Williams, Benjamin S.; Hu, Qing; Reno, John L.
2006-01-01
We report terahertz quantum-cascade lasers operating predominantly at 1.90 THz with side modes as low as 1.86 THz (lambda approx. equal to 161 micrometers, planck's constant omega approx. equal to 7.7 meV). This is the longest wavelength to date of any solid-state laser that operates without assistance of a magnetic field. Carriers are injected into the upper radiative state by using a single quantum-well injector, which resulted in a significant reduction of free-carrier losses. The laser operated up to a heat-sink temperature of 110 K in pulsed mode, 95 K in continuous wave (cw) mode, and the threshold current density at 5 K was approx. 140 A per square centimeters.
Investigations of the polarization behavior of quantum cascade lasers by Stokes parameters.
Janassek, Patrick; Hartmann, Sébastien; Molitor, Andreas; Michel, Florian; Elsäßer, Wolfgang
2016-01-15
We experimentally investigate the full polarization behavior of mid-infrared emitting quantum cascade lasers (QCLs) in terms of measuring the complete Stokes parameters, instead of only projecting them on a linear polarization basis. We demonstrate that besides the pre-dominant linear TM polarization of the emitted light as governed by the selection rules of the intersubband transition, small non-TM contributions, e.g., circularly polarized light, are present reflecting the birefringent behavior of the semiconductor quantum well waveguide. Surprisingly unique is the persistence of these polarization properties well below laser threshold. These investigations give further insight into understanding, manipulating, and exploiting the polarization properties of QCLs, both from a laser point of view and with respect toward applications.
Terahertz generation by difference frequency generation from a compact optical parametric oscillator
NASA Astrophysics Data System (ADS)
Li, Zhongyang; Wang, Silei; Wang, Mengtao; Wang, Weishu
2017-11-01
Terahertz (THz) generation by difference frequency generation (DFG) processes with dual idler waves is theoretically analyzed. The dual idler waves are generated by a compact optical parametric oscillator (OPO) with periodically poled lithium niobate (PPLN). The phase-matching conditions in a same PPLN for the optical parametric oscillation generating signal and idler waves and for the DFG generating THz waves can be simultaneously satisfied by selecting the poling period of PPLN. Moreover, 3-order cascaded DFG processes generating THz waves can be realized in the same PPLN. To take an example of 8.341 THz which locates in the vicinity of polariton resonances, THz intensities and quantum conversion efficiencies are calculated. Compared with non-cascaded DFG processes, THz intensities of 8.341 THz in 3-order cascaded DFG processes increase to 2.57 times. When the pump intensity equals to 20 MW/mm2, the quantum conversion efficiency of 106% in 3-order cascaded DFG processes can be realized, which exceeds the Manley-Rowe limit.
Mode stabilization in quantum cascade lasers via an intra-cavity cascaded nonlinearity.
St-Jean, M Renaudat; Amanti, M I; Bismuto, A; Beck, M; Faist, J; Sirtori, C
2017-02-06
We present self-stabilization of the inter-mode separation of a quantum cascade laser (QCL) emitting at 9 μm via cascaded second order nonlinearity. This effect has been observed in lasers that have the optical cavity embedded into a microwave strip-line. The intermodal beat note spectra narrow with increasing laser output power, up to less than 100 kHz. A flat frequency response to direct modulation up to 14 GHz is reported for these microstrip QCLs. The laser inter-mode spacing can be locked to an external RF signal and tuned by more than 1 MHz from the free-running spacing. A parallel study on the same laser material in a non-microstrip line waveguide shows superior performances of the microstrip QCL in terms of the intermodal spectral locking and stability. Finally by analyzing our results with the theory of the injection locking of coupled oscillators, we deduce that the microwave power injected in the microstrip QCL is 2 orders of magnitude higher than in the reference laser.
NASA Astrophysics Data System (ADS)
Li, Zhongyang; Wang, Silei; Wang, Mengtao; Yuan, Bin; Wang, Weishu
2017-10-01
Terahertz (THz) generation by difference frequency generation (DFG) processes with dual signal waves is theoretically analyzed. The dual signal waves are generated by an optical parametric oscillator (OPO) with periodically inverted KTiOPO4 (KTP) plates based on adhesive-free-bonded (AFB) technology. The phase-matching conditions in a same AFB KTP composite for the OPO generating signals and idlers and for the DFG generating THz wave can be simultaneously satisfied by selecting the thickness of each KTP plate. Moreover, 4-order cascaded DFG processes can be realized in the same AFB KTP composite. The cascaded Stokes interaction processes generating THz photons and the cascaded anti-Stokes interaction processes consuming THz photons are investigated from coupled wave equations. Take an example of 3.106 THz which locates in the vicinity of polariton resonances, THz intensities and quantum conversion efficiencies are calculated. Compared with non-cascaded DFG processes, THz intensities of 3.106 THz in 4-order cascaded DFG processes increase to 5.56 times. When the pump intensity equals 20 MW mm-2, the quantum conversion efficiency of 259% in 4-order cascaded DFG processes can be realized, which exceeds the Manley-Rowe limit.
NASA Astrophysics Data System (ADS)
Laurie, Jason; Baggaley, Andrew W.
2015-07-01
We investigate quantum vortex ring dynamics at scales smaller than the inter-vortex spacing in quantum turbulence. Through geometrical arguments and high-resolution numerical simulations, we examine the validity of simple estimates for the mean free path and the structure of vortex rings post-reconnection. We find that a large proportion of vortex rings remain coherent objects where approximately of their energy is preserved. This leads us to consider the effectiveness of energy transport in turbulent tangles. Moreover, we show that in low density tangles, appropriate for the ultra-quantum regime, ring emission cannot be ruled out as an important mechanism for energy dissipation. However at higher vortex line densities, typically associated with the quasi-classical regime, loop emission is expected to make a negligible contribution to energy dissipation, even allowing for the fact that our work shows rings can survive multiple reconnection events. Hence the Kelvin wave cascade seems the most plausible mechanism leading to energy dissipation.
Pemberton, Ryan P; Ho, Krystina C; Tantillo, Dean J
2015-04-01
The relative importance of preorganization, selective transition state stabilization and inherent reactivity are assessed through quantum chemical and docking calculations for a sesquiterpene synthase ( epi -isozizaene synthase, EIZS). Inherent reactivity of the bisabolyl cation, both static and dynamic, appears to determine the pathway to product, although preorganization and selective binding of the final transition state structure in the multi-step carbocation cascade that forms epi -isozizaene appear to play important roles.
Photoacoustic Spectroscopy with Quantum Cascade Lasers for Trace Gas Detection
Elia, Angela; Di Franco, Cinzia; Lugarà, Pietro Mario; Scamarcio, Gaetano
2006-01-01
Various applications, such as pollution monitoring, toxic-gas detection, non invasive medical diagnostics and industrial process control, require sensitive and selective detection of gas traces with concentrations in the parts in 109 (ppb) and sub-ppb range. The recent development of quantum-cascade lasers (QCLs) has given a new aspect to infrared laser-based trace gas sensors. In particular, single mode distributed feedback QCLs are attractive spectroscopic sources because of their excellent properties in terms of narrow linewidth, average power and room temperature operation. In combination with these laser sources, photoacoustic spectroscopy offers the advantage of high sensitivity and selectivity, compact sensor platform, fast time-response and user friendly operation. This paper reports recent developments on quantum cascade laser-based photoacoustic spectroscopy for trace gas detection. In particular, different applications of a photoacoustic trace gas sensor employing a longitudinal resonant cell with a detection limit on the order of hundred ppb of ozone and ammonia are discussed. We also report two QC laser-based photoacoustic sensors for the detection of nitric oxide, for environmental pollution monitoring and medical diagnostics, and hexamethyldisilazane, for applications in semiconductor manufacturing process.
Schultz, Bernd-Joachim; Mohrmann, Hendrik; Lorenz-Fonfria, Victor A; Heberle, Joachim
2018-01-05
We have developed a spectrometer based on tunable quantum cascade lasers (QCLs) for recording time-resolved absorption spectra of proteins in the mid-infrared range. We illustrate its performance by recording time-resolved difference spectra of bacteriorhodopsin in the carboxylic range (1800-1700cm -1 ) and on the CO rebinding reaction of myoglobin (1960-1840cm -1 ), at a spectral resolution of 1cm -1 . The spectrometric setup covers the time range from 4ns to nearly a second with a response time of 10-15ns. Absorption changes as low as 1×10 -4 are detected in single-shot experiments at t>1μs, and of 5×10 -6 in kinetics obtained after averaging 100 shots. While previous time-resolved IR experiments have mostly been conducted on hydrated films of proteins, we demonstrate here that the brilliance of tunable quantum cascade lasers is superior to perform ns time-resolved experiments even in aqueous solution (H 2 O). Copyright © 2017 Elsevier B.V. All rights reserved.
Quantum cascade lasers as metrological tools for space optics
NASA Astrophysics Data System (ADS)
Bartalini, S.; Borri, S.; Galli, I.; Mazzotti, D.; Cancio Pastor, P.; Giusfredi, G.; De Natale, P.
2017-11-01
A distributed-feedback quantum-cascade laser working in the 4.3÷4.4 mm range has been frequency stabilized to the Lamb-dip center of a CO2 ro-vibrational transition by means of first-derivative locking to the saturated absorption signal, and its absolute frequency counted with a kHz-level precision and an overall uncertainty of 75 kHz. This has been made possible by an optical link between the QCL and a near-IR Optical Frequency Comb Synthesizer, thanks to a non-linear sum-frequency generation process with a fiber-amplified Nd:YAG laser. The implementation of a new spectroscopic technique, known as polarization spectroscopy, provides an improved signal for the locking loop, and will lead to a narrower laser emission and a drastic improvement in the frequency stability, that in principle is limited only by the stability of the optical frequency comb synthesizer (few parts in 1013). These results confirm quantum cascade lasers as reliable sources not only for high-sensitivity, but also for highprecision measurements, ranking them as optimal laser sources for space applications.
Multi-excitonic emission from Stranski-Krastanov GaN/AlN quantum dots inside a nanoscale tip
NASA Astrophysics Data System (ADS)
Mancini, L.; Moyon, F.; Houard, J.; Blum, I.; Lefebvre, W.; Vurpillot, F.; Das, A.; Monroy, E.; Rigutti, L.
2017-12-01
Single-dot time-resolved micro-photoluminescence spectroscopy and correlated electron tomography (ET) have been performed on self-assembled GaN/AlN quantum dots isolated within a field-emission nanoscale tip by focused ion beam (FIB). Despite the effect of the FIB, the system conserves the capability of emitting light through multi-excitonic complexes. The optical spectroscopy data have then been correlated with the electronic structure and lifetime parameters that could be extracted using the structural parameters obtained by ET via a 6 band k.p model. A biexciton-exciton cascade could be identified and thoroughly analysed. The biexciton-exciton states exhibit a non-negligible polarization component along the [0001] polar crystal axis, indicating a significant valence band mixing, while the relationship between exciton energy and biexciton binding energy is consistent with a hybrid character of the biexciton.
Biomedical terahertz imaging with a quantum cascade laser
NASA Astrophysics Data System (ADS)
Kim, Seongsin M.; Hatami, Fariba; Harris, James S.; Kurian, Allison W.; Ford, James; King, Douglas; Scalari, Giacomo; Giovannini, Marcella; Hoyler, Nicolas; Faist, Jerome; Harris, Geoff
2006-04-01
We present biomedical imaging using a single frequency terahertz imaging system based on a low threshold quantum cascade laser emitting at 3.7THz (λ=81μm). With a peak output power of 4mW, coherent terahertz radiation and detection provide a relatively large dynamic range and high spatial resolution. We study image contrast based on water/fat content ratios in different tissues. Terahertz transmission imaging demonstrates a distinct anatomy in a rat brain slice. We also demonstrate malignant tissue contrast in an image of a mouse liver with developed tumors, indicating potential use of terahertz imaging for probing cancerous tissues.
Widely tunable quantum cascade laser-based terahertz source.
Danylov, Andriy A; Light, Alexander R; Waldman, Jerry; Erickson, Neal; Qian, Xifeng
2014-07-10
A compact, tunable, ultranarrowband terahertz source, Δν∼1 MHz, is demonstrated by upconversion of a 2.324 THz, free-running quantum cascade laser with a THz Schottky-diode-balanced mixer using a swept, synthesized microwave source to drive the nonlinearity. Continuously tunable radiation of 1 μW power is demonstrated in two frequency regions: ν(Laser) ± 0 to 50 GHz and ν(Laser) ± 70 to 115 GHz. The sideband spectra were characterized with a Fourier-transform spectrometer, and the radiation was tuned through CO, HDO, and D2O rotational transitions.
Pfeifer, Marcel; Ruf, Alexander; Fischer, Peer
2013-11-04
We record vibrational spectra with two indirect schemes that depend on the real part of the index of refraction: mid-infrared refractometry and photothermal spectroscopy. In the former, a quantum cascade laser (QCL) spot is imaged to determine the angles of total internal reflection, which yields the absorption line via a beam profile analysis. In the photothermal measurements, a tunable QCL excites vibrational resonances of a molecular monolayer, which heats the surrounding medium and changes its refractive index. This is observed with a probe laser in the visible. Sub-monolayer sensitivities are demonstrated.
Continuous wave operation of quantum cascade lasers with frequency-shifted feedback
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyakh, A., E-mail: arkadiy.lyakh@ucf.edu; NanoScience Technology Center, University of Central Florida, 12424 Research Pkwy, Orlando, FL 32826; College of Optics and Photonics, University of Central Florida, 304 Scorpius St, Orlando, FL 32826
2016-01-15
Operation of continuous wave quantum cascade lasers with a frequency-shifted feedback provided by an acousto-optic modulator is reported. Measured linewidth of 1.7 cm{sup −1} for these devices, under CW operating conditions, was in a good agreement with predictions of a model based on frequency-shifted feedback seeded by spontaneous emission. Linewidth broadening was observed for short sweep times, consistent with sound wave grating period variation across the illuminated area on the acousto-optic modulator. Standoff detection capability of the AOM-based QCL setup was demonstrated for several solid materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enobio, Eli Christopher I.; Ohtani, Keita; Ohno, Yuzo
2013-12-02
We demonstrate the use of a Fourier Transform Infrared microscope system to detect and measure electroreflectance (ER) from mid-infrared quantum cascade laser (QCL) device. To characterize intersubband transition (ISBT) energies in a functioning QCL device, a microscope is used to focus the probe on the QCL cleaved mirror. The measured ER spectra exhibit resonance features associated to ISBTs under applied electric field in agreement with the numerical calculations and comparable to observed photocurrent, and emission peaks. The method demonstrates the potential as a characterization tool for QCL devices.
Optical feedback in dfb quantum cascade laser for mid-infrared cavity ring-down spectroscopy
NASA Astrophysics Data System (ADS)
Terabayashi, Ryohei; Sonnenschein, Volker; Tomita, Hideki; Hayashi, Noriyoshi; Kato, Shusuke; Jin, Lei; Yamanaka, Masahito; Nishizawa, Norihiko; Sato, Atsushi; Nozawa, Kohei; Hashizume, Kenta; Oh-hara, Toshinari; Iguchi, Tetsuo
2017-11-01
A simple external optical feedback system has been applied to a distributed feedback quantum cascade laser (DFB QCL) for cavity ring-down spectroscopy (CRDS) and a clear effect of feedback was observed. A long external feedback path length of up to 4m can decrease the QCL linewidth to around 50kHz, which is of the order of the transmission linewidth of our high finesse ring-down cavity. The power spectral density of the transmission signal from high finesse cavity reveals that the noise at frequencies above 20kHz is reduced dramatically.
Performance and Reliability of Quantum Cascade Lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, Tanya L.; Cannon, Bret D.; Taubman, Matthew S.
2013-05-01
We present the burn-in behavior and power stability of multiple quantum cascade lasers (QCLs) that were measured to investigate their long-term performance. For these experiments, the current to the QCL was cycled every ten minutes, and the output power was monitored over time for durations as long as two months. A small increase in power for a given injection current is observed for almost all of the QCLs tested during the burn-in period. The data from these experiments will be presented along with the effects of packaging the QCLs to determine the impact on performance and reliability.
Coherent frequency combs produced by self frequency modulation in quantum cascade lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khurgin, J. B.; Dikmelik, Y.; Hugi, A.
2014-02-24
One salient characteristic of Quantum Cascade Laser (QCL) is its very short τ ∼ 1 ps gain recovery time that so far thwarted the attempts to achieve self-mode locking of the device into a train of single pulses. We show theoretically that four wave mixing, combined with the short gain recovery time causes QCL to operate in the self-frequency-modulated regime characterized by a constant power in time domain and stable coherent comb in the frequency domain. Coherent frequency comb may enable many potential applications of QCL's in sensing and measurement.
Real-time quantum cascade laser-based infrared microspectroscopy in-vivo
NASA Astrophysics Data System (ADS)
Kröger-Lui, N.; Haase, K.; Pucci, A.; Schönhals, A.; Petrich, W.
2016-03-01
Infrared microscopy can be performed to observe dynamic processes on a microscopic scale. Fourier-transform infrared spectroscopy-based microscopes are bound to limitations regarding time resolution, which hampers their potential for imaging fast moving systems. In this manuscript we present a quantum cascade laser-based infrared microscope which overcomes these limitations and readily achieves standard video frame rates. The capabilities of our setup are demonstrated by observing dynamical processes at their specific time scales: fermentation, slow moving Amoeba Proteus and fast moving Caenorhabditis elegans. Mid-infrared sampling rates between 30 min and 20 ms are demonstrated.
Fast gas spectroscopy using pulsed quantum cascade lasers
NASA Astrophysics Data System (ADS)
Beyer, T.; Braun, M.; Lambrecht, A.
2003-03-01
Laser spectroscopy has found many industrial applications, e.g., control of automotive exhaust and process monitoring. The midinfrared region is of special interest because it has stronger absorption lines compared to the near infrared (NIR). However, in the NIR high quality reliable laser sources, detectors, and passive optical components are available. A quantum cascade laser could change this situation if fundamental advantages can be exploited with compact and reliable systems. It will be shown that, using pulsed lasers and available fast detectors, lower residual sensitivity levels than in corresponding NIR systems can be achieved. The stability is sufficient for industrial applications.
Quantum cascade laser-based analyzer for hydrogen sulfide detection at sub-parts-per-million levels
NASA Astrophysics Data System (ADS)
Nikodem, Michal; Krzempek, Karol; Stachowiak, Dorota; Wysocki, Gerard
2018-01-01
Due to its high toxicity, monitoring of hydrogen sulfide (H2S) concentration is essential in many industrial sites (such as natural gas extraction sites, petroleum refineries, geothermal power plants, or waste water treatment facilities), which require sub-parts-per-million sensitivities. We report on a quantum cascade laser-based spectroscopic system for detection of H2S in the midinfrared at ˜7.2 μm. We present a sensor design utilizing Herriott multipass cell and a wavelength modulation spectroscopy to achieve a detection limit of 140 parts per billion for 1-s integration time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Hong; Liu, Sheng; Center for Advanced Studied in Photonics Research
2014-05-26
We temporally resolved the ultrafast mid-infrared transmission modulation of quantum cascade lasers (QCLs) using a near-infrared pump/mid-infrared probe technique at room temperature. Two different femtosecond wavelength pumps were used with photon energy above and below the quantum well (QW) bandgap. The shorter wavelength pump modulates the mid-infrared probe transmission through interband transition assisted mechanisms, resulting in a high transmission modulation depth and several nanoseconds recovery lifetime. In contrast, pumping with a photon energy below the QW bandgap induces a smaller transmission modulation depth but much faster (several picoseconds) recovery lifetime, attributed to intersubband transition assisted mechanisms. The latter ultrafast modulationmore » (>60 GHz) could provide a potential way to realize fast QCL based free space optical communication.« less
Temperature performance analysis of intersubband Raman laser in quantum cascade structures
NASA Astrophysics Data System (ADS)
Yousefvand, Hossein Reza
2017-06-01
In this paper we investigate the effects of temperature on the output characteristics of the intersubband Raman laser (RL) that integrated monolithically with a quantum cascade (QC) laser as an intracavity optical pump. The laser bandstructure is calculated by a self-consistent solution of Schrodinger-Poisson equations, and the employed physical model of carrier transport is based on a five-level carrier scattering rates; a two-level rate equations for the pump laser and a three-level scattering rates to include the stimulated Raman process in the RL. The temperature dependency of the relevant physical effects such as thermal broadening of the intersubband transitions (ISTs), thermally activated phonon emission lifetimes, and thermal backfilling of the final lasing state of the Raman process from the injector are included in the model. Using the presented model, the steady-state, small-signal modulation response and transient device characteristics are investigated for a range of sink temperatures (80-220 K). It is found that the main characteristics of the device such as output power, threshold current, Raman modal gain, turn-on delay time and 3-dB optical bandwidth are remarkably affected by the temperature.
Dynamics of a broad-band quantum cascade laser: from chaos to coherent dynamics and mode-locking.
Columbo, L L; Barbieri, S; Sirtori, C; Brambilla, M
2018-02-05
The dynamics of a multimode quantum cascade laser, are studied in a model based on effective semiconductor Maxwell-Bloch equations, encompassing key features for the radiation-medium interaction such as an asymmetric frequency dependent gain and refractive index as well as the phase-amplitude coupling provided by the linewidth enhancement factor. By considering its role and that of the free spectral range, we find the conditions in which the traveling wave emitted by the laser at the threshold can be destabilized by adjacent modes, thus leading the laser emission towards chaotic or regular multimode dynamics. In the latter case our simulations show that the field oscillations are associated to self-confined structures which travel along the laser cavity, bridging mode-locking and solitary wave propagation. In addition, we show how a RF modulation of the bias current leads to active mode-locking yielding high-contrast, picosecond pulses. Our results compare well with recent experiments on broad-band THz-QCLs and may help in the understanding of the conditions for the generation of ultrashort pulses and comb operation in mid-IR and THz spectral regions.
Hybrid polymer/ZnO solar cells sensitized by PbS quantum dots
2012-01-01
Poly[2-methoxy-5-(2-ethylhexyloxy-p-phenylenevinylene)]/ZnO nanorod hybrid solar cells consisting of PbS quantum dots [QDs] prepared by a chemical bath deposition method were fabricated. An optimum coating of the QDs on the ZnO nanorods could strongly improve the performance of the solar cells. A maximum power conversion efficiency of 0.42% was achieved for the PbS QDs' sensitive solar cell coated by 4 cycles, which was increased almost five times compared with the solar cell without using PbS QDs. The improved efficiency is attributed to the cascade structure formed by the PbS QD coating, which results in enhanced open-circuit voltage and exciton dissociation efficiency. PMID:22313746
High-Efficiency and High-Power Mid-Wave Infrared Cascade Lasers
2009-08-01
marked “*”, indicates the first barrier for the design sequence detailed in the main text. The calculation is for an applied electric field of 82 kV...injector regions, consisting of four quantum wells between each set of active regions. The calculation takes the free carrier density into account through a...28: Effective transit time as a function of the dimensionless coupling parameter ( uc ττ⊥Ω4 ) for the structure shown in Fig. 25. 41 Fig. 29: (a
1992-04-14
P.J. Restle, and S.S. Iyer SILICON-BASED LONG WAVELENGTH INFRARED DETECTORS FABRICATED BY MOLECULAR BEAM EPITAXY 477 T.L. Lin, E.W. Jones, T. George, A...behaviour was defect generation cause by cascade propagation by the Si+ ions. Two important questions arise in use of PED. Firstly, relying as it does...Avenue, Santa Clara, CA 95052 ABSTRACT Strong hole intersubband infrared absorption in 6-doped Si multiple quantum wells is observed. The structures
Quantum cascade lasers with Y2O3 insulation layer operating at 8.1 µm.
Kang, JoonHyun; Yang, Hyun-Duk; Joo, Beom Soo; Park, Joon-Suh; Lee, Song-Ee; Jeong, Shinyoung; Kyhm, Jihoon; Han, Moonsup; Song, Jin Dong; Han, Il Ki
2017-08-07
SiO 2 is a commonly used insulation layer for QCLs but has high absorption peak around 8 to 10 µm. Instead of SiO 2 , we used Y 2 O 3 as an insulation layer for DC-QCL and successfully demonstrated lasing operation at the wavelength around 8.1 µm. We also showed 2D numerical analysis on the absorption coefficient of our DC-QCL structure with various parameters such as insulating materials, waveguide width, and mesa angle.
Experimental and Theoretical Study of the Temperature Performance of Type-II Quantum Well Lasers
2007-05-31
performance of type-II Interband Cascade (IC) GaSb-based semiconductor lasers has been developed. The method includes comparing the temperature-concentration... dependence at the laser threshold with steady-state carrier heating characteristics. The number of cascades in prototype type-II IC lasers has been...Monroy, and R.L.Tober, "Wavelength Tuning of Interband Cascade Laser Based on the Stark Effect", in “Future Trends in Microelectronics” ed. by
Time-Resolved Electronic Relaxation Processes in Self-Organized Quantum Dots
2005-05-16
in a quantum dot infrared photodetector ,” paper CthM11, presented at CLEO, Baltimore, 2003. K. Kim, T. Norris, J. Singh, P. Bhattacharya...nanostructures have been equally spectacular. Following the development of quantum-well infrared photodetectors in the late 1980’s and early 90’s...4]. The quantum cascade laser is of course the best known of the new devices, as it constitutes an entirely new concept in semiconductor laser
High-Efficiency and High-Power Mid-Wave Infrared Cascade Lasers
2012-10-01
internal quantum efficiency () and factor (2) is usually called the optical extraction efficiency (). The optical extraction efficiency ... quantum efficiency involves more fundamental parameters corresponding to the microscopic processes of the device operation, nevertheless, it can be...deriving parameters such as the internal quantum efficiency of a QC laser, the entire injector miniband can be treated as a single virtual state
Bennett, Kochise; Mukamel, Shaul
2014-01-28
The semi-classical theory of radiation-matter coupling misses local-field effects that may alter the pulse time-ordering and cascading that leads to the generation of new signals. These are then introduced macroscopically by solving Maxwell's equations. This procedure is convenient and intuitive but ad hoc. We show that both effects emerge naturally by including coupling to quantum modes of the radiation field that are initially in the vacuum state to second order. This approach is systematic and suggests a more general class of corrections that only arise in a QED framework. In the semi-classical theory, which only includes classical field modes, the susceptibility of a collection of N non-interacting molecules is additive and scales as N. Second-order coupling to a vacuum mode generates an effective retarded interaction that leads to cascading and local field effects both of which scale as N(2).
Interband cascade lasers with >40% continuous-wave wallplug efficiency at cryogenic temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canedy, C. L.; Kim, C. S.; Merritt, C. D.
2015-09-21
Broad-area 10-stage interband cascade lasers (ICLs) emitting at λ = 3.0–3.2 μm are shown to maintain continuous-wave (cw) wallplug efficiencies exceeding 40% at temperatures up to 125 K, despite having a design optimized for operation at ambient and above. The cw threshold current density at 80 K is only 11 A/cm{sup 2} for a 2 mm cavity with anti-reflection/high-reflection coatings on the two facets. The external differential quantum efficiency for a 1-mm-long cavity with the same coatings is 70% per stage at 80 K, and still above 65% at 150 K. The results demonstrate that at cryogenic temperatures, where free carrier absorption losses are minimized, ICLs can convert electricalmore » to optical energy nearly as efficiently as the best specially designed intersubband-based quantum cascade lasers.« less
NASA Astrophysics Data System (ADS)
Seliverstov, S. V.; Anfertyev, V. A.; Tretyakov, I. V.; Ozheredov, I. A.; Solyankin, P. M.; Revin, L. S.; Vaks, V. L.; Rusova, A. A.; Goltsman, G. N.; Shkurinov, A. P.
2017-12-01
We study characteristics of the laboratory prototype of a terahertz heterodyne receiver with an electron-heating mixer and a heterodyne based on the quantum-cascade laser. The results obtained demonstrate the possibility to use this receiver as a basis for creation of a high-sensitivity terahertz spectrometer, which can be used in many basic and practical applications. A significant advantage of this receiver will be the possibility of placing the mixer and heterodyne in the same cryostat, which will reduce the device dimensions considerably. The obtained experimental results are analyzed, and methods of optimizing the parameters of the receiver are proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Mei C., E-mail: meizheng@princeton.edu; Gmachl, Claire F.; Liu, Peter Q.
2013-11-18
We report on the experimental demonstration of a widely tunable single mode quantum cascade laser with Asymmetric Mach-Zehnder (AMZ) interferometer type cavities with separately biased arms. Current and, consequently, temperature tuning of the two arms of the AMZ type cavity resulted in a single mode tuning range of 20 cm{sup −1} at 80 K in continuous-wave mode operation, a ten-fold improvement from the lasers under a single bias current. In addition, we also observed a five fold increase in the tuning rate as compared to the AMZ cavities controlled by one bias current.
Infrared near-field spectroscopy of trace explosives using an external cavity quantum cascade laser.
Craig, Ian M; Taubman, Matthew S; Lea, A Scott; Phillips, Mark C; Josberger, Erik E; Raschke, Markus B
2013-12-16
Utilizing a broadly-tunable external cavity quantum cascade laser for scattering-type scanning near-field optical microscopy (s-SNOM), we measure infrared spectra of particles of explosives by probing characteristic nitro-group resonances in the 7.1-7.9 µm wavelength range. Measurements are presented with spectral resolution of 0.25 cm(-1), spatial resolution of 25 nm, sensitivity better than 100 attomoles, and at a rapid acquisition time of 90 s per spectrum. We demonstrate high reproducibility of the acquired s-SNOM spectra with very high signal-to-noise ratios and relative noise of <0.02 in self-homodyne detection.
An optical system to transform the output beam of a quantum cascade laser to be uniform
NASA Astrophysics Data System (ADS)
Jacobson, Jordan M.
Quantum cascade lasers (QCLs) are a candidate for calibration sources in space-based remote sensing applications. However, the output beam from a QCL has some characteris- tics that are undesirable in a calibration source. The output beam from a QCL is polarized, both temporally and spatially coherent, and has a non-uniform bivariate Gaussian prole. These characteristics need to be mitigated before QCLs can be used as calibration sources. This study presents the design and implementation of an optical system that manipulates the output beam from a QCL so that it is spatially and angularly uniform with reduced coherence and polarization. (85 pages).
Two-step narrow ridge cascade diode lasers emitting near $$2~\\mu$$ m
Feng, Tao; Hosoda, Takashi; Shterengas, Leon; ...
2017-01-02
Nearly diffraction limited GaSb-based type-I quantum well cascade diode lasers emitting in the spectral region 1.95-2 μm were designed and fabricated. Two-step 5.5-μm-wide shallow and 14-μm-wide deep etched ridge waveguide design yielded devices generating stable single lobe beams with 250 mW of continuous wave output power at 20 °C. Quantum well radiative recombination current contributes about 13% to laser threshold as estimated from true spontaneous emission and modal gain analysis. Here, recombination at etched sidewalls of the 14-μmwide deep ridges controls about 30% of the threshold.
Integrated heterodyne terahertz transceiver
Wanke, Michael C [Albuquerque, NM; Lee, Mark [Albuquerque, NM; Nordquist, Christopher D [Albuquerque, NM; Cich, Michael J [Albuquerque, NM
2012-09-25
A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. A terahertz signal can be received by an antenna connected to the mixer, an end facet or sidewall of the laser, or through a separate active section that can amplify the incident signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.
Phase-locked, high power, mid-infrared quantum cascade laser arrays
NASA Astrophysics Data System (ADS)
Zhou, W.; Slivken, S.; Razeghi, M.
2018-04-01
We demonstrate phase-locked, high power quantum cascade laser arrays, which are combined using a monolithic, tree array multimode interferometer, with emission wavelengths around 4.8 μm. A maximum output power of 15 W was achieved from an eight-element laser array, which has only a slightly higher threshold current density and a similar slope efficiency compared to a Fabry-Perot laser of the same length. Calculated multimode interferometer splitting loss is on the order of 0.27 dB for the in-phase supermode. In-phase supermode operation with nearly ideal behavior is demonstrated over the working current range of the array.
NASA Astrophysics Data System (ADS)
Grahmann, Jan; Merten, André; Ostendorf, Ralf; Fontenot, Michael; Bleh, Daniela; Schenk, Harald; Wagner, Hans-Joachim
2014-03-01
In situ process information in the chemical, pharmaceutical or food industry as well as emission monitoring, sensitive trace detection and biological sensing applications would increasingly rely on MIR-spectroscopic analysis in the 3 μm - 12 μm wavelength range. However, cost effective, portable, low power consuming and fast spectrometers with a wide tuning range are not available so far. To provide these MIR-spectrometer properties, the combination of quantum cascade lasers with a MOEMS scanning grating as wavelength selective element in the external cavity is addressed to provide a very compact and fast tunable laser source for spectroscopic analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markmann, Sergej, E-mail: sergej.markmann@ruhr-uni-bochum.de; Nong, Hanond, E-mail: nong.hanond@ruhr-uni-bochum.de; Hekmat, Negar
2015-09-14
We demonstrate by injection seeding that the spectral emission of a terahertz (THz) quantum cascade laser (QCL) can be modified with broad-band THz pulses whose bandwidths are greater than the QCL bandwidth. Two broad-band THz pulses delayed in time imprint a modulation on the single THz pulse spectrum. The resulting spectrum is used to injection seed the THz QCL. By varying the time delay between the THz pulses, the amplitude distribution of the QCL longitudinal modes is modified. By applying this approach, the QCL emission is reversibly switched from multi-mode to single mode emission.
Chirped laser dispersion spectroscopy using a directly modulated quantum cascade laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hangauer, Andreas, E-mail: hangauer@princeton.edu; Nikodem, Michal; Wysocki, Gerard, E-mail: gwysocki@princeton.edu
2013-11-04
Chirped laser dispersion spectroscopy (CLaDS) utilizing direct modulation of a quantum cascade laser (QCL) is presented. By controlling the laser bias nearly single- and dual-sideband CLaDS operation can be realized in an extremely simplified optical setup with no external optical modulators. Capability of direct single-sideband modulation is a unique feature of QCLs that exhibit a low linewidth enhancement factor. The developed analytical model shows excellent agreement with the experimental, directly modulated CLaDS spectra. This method overcomes major technical limitations of mid-infrared CLaDS systems by allowing significantly higher modulation frequencies and eliminating optical fringes introduced by external modulators.
Sun, Greg; Khurgin, Jacob B; Tsai, Din Ping
2013-11-18
We propose and study the feasibility of a THz GaN/AlGaN quantum cascade laser (QCL) consisting of only five periods with confinement provided by a spoof surface plasmon (SSP) waveguide for room temperature operation. The QCL design takes advantages of the large optical phonon energy and the ultrafast phonon scattering in GaN that allow for engineering favorable laser state lifetimes. Our analysis has shown that the waveguide loss is sufficiently low for the QCL to reach its threshold at the injection current density around 6 kA/cm2 at room temperature.
External-cavity beam combining of 4-channel quantum cascade lasers
NASA Astrophysics Data System (ADS)
Zhao, Yue; Zhang, Jin-Chuan; Zhou, Yu-Hong; Jia, Zhi-Wei; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Liu, Feng-Qi; Wang, Zhan-Guo
2017-09-01
We demonstrate an external-cavity (EC) beam combining of 4-channel quantum cascade lasers (QCLs) with an output coupler which makes different QCL beams propagating coaxially. A beam combining efficiency of 35% (up to 75% near threshold) is obtained with a beam quality M2 of 5.5. A peak power of 0.64 W is achieved at a wavelength of 4.7 μm. The differences of spot characteristic between coupled and uncoupled are also showed in this letter. The QCLs in this EC system do not have heat crosstalk so that the system can be used for high power beam combining of QCLs.
Knabe, Kevin; Williams, Paul A; Giorgetta, Fabrizio R; Armacost, Chris M; Crivello, Sam; Radunsky, Michael B; Newbury, Nathan R
2012-05-21
The instantaneous optical frequency of an external-cavity quantum cascade laser (QCL) is characterized by comparison to a near-infrared frequency comb. Fluctuations in the instantaneous optical frequency are analyzed to determine the frequency-noise power spectral density for the external-cavity QCL both during fixed-wavelength and swept-wavelength operation. The noise performance of a near-infrared external-cavity diode laser is measured for comparison. In addition to providing basic frequency metrology of external-cavity QCLs, this comb-calibrated swept QCL system can be applied to rapid, precise broadband spectroscopy in the mid-infrared spectral region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sidler, Meinrad; Institute for Quantum Electronics, ETH Zurich, Wolfgang-Pauli-Strasse 16, 8093 Zurich; Rauter, Patrick
2014-02-03
We demonstrate a multi-wavelength distributed feedback (DFB) quantum cascade laser (QCL) operating in a lensless external micro-cavity and achieve switchable single-mode emission at three distinct wavelengths selected by the DFB grating, each with a side-mode suppression ratio larger than 30 dB. Discrete wavelength tuning is achieved by modulating the feedback experienced by each mode of the multi-wavelength DFB QCL, resulting from a variation of the external cavity length. This method also provides a post-fabrication control of the lasing modes to correct for fabrication inhomogeneities, in particular, related to the cleaved facets position.
The concept for realization of quantum-cascade lasers emitting at 7.5 μm wavelength
NASA Astrophysics Data System (ADS)
Novikov, I. I.; Babichev, A. V.; Bugrov, V. E.; Gladyshev, A. G.; Karachinsky, L. Ya; Kolodeznyi, E. S.; Kurochkin, A. S.; Savelyev, A. V.; Sokolovskii, G. S.; Egorov, A. Yu
2017-11-01
We consider the advantages and disadvantages of various designs of waveguide for heterostructures of quantum cascade lasers (QCL) in a spectral region of 7.5 μm. Based on a numerical calculation we make a comparison of light wave distribution in QCL waveguides with different designs. We demonstrate the benefits of practical QCL realization with an extended five-layered waveguide formed by introducing extra layers of InGaAs, which allows to modify the spatial distribution of the light wave and get the rectangular shape of the spatial distribution of light wave intensity in the laser active area.
NASA Astrophysics Data System (ADS)
Waldman, Jerry; Danylov, Andriy A.; Goyette, Thomas M.; Coulombe, Michael J.; Giles, Robert H.; Gatesman, Andrew J.; Goodhue, William D.; Li, Jin; Linden, Kurt J.; Nixon, William E.
2009-02-01
Coherent terahertz radar systems, using CO2 laser-pumped molecular lasers have been used during the past decade for radar scale modeling applications, as well as proof-of-principle demonstrations of remote detection of concealed weapons. The presentation will consider the potential for replacement of molecular laser sources by quantum cascade lasers. While the temporal and spatial characteristics of current THz QCLs limit their applicability, rapid progress is being made in resolving these issues. Specifications for satisfying the requirements of coherent short-range THz radars will be reviewed and the feasibility of incorporating existing QCL devices into such systems will be described.
On-chip, self-detected terahertz dual-comb source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rösch, Markus, E-mail: mroesch@phys.ethz.ch; Scalari, Giacomo, E-mail: scalari@phys.ethz.ch; Villares, Gustavo
2016-04-25
We present a directly generated on-chip dual-comb source at terahertz (THz) frequencies. The multi-heterodyne beating signal of two free-running THz quantum cascade laser frequency combs is measured electrically using one of the combs as a detector, fully exploiting the unique characteristics of quantum cascade active regions. Up to 30 modes can be detected corresponding to a spectral bandwidth of 630 GHz, being the available bandwidth of the dual comb configuration. The multi-heterodyne signal is used to investigate the equidistance of the comb modes showing an accuracy of 10{sup −12} at the carrier frequency of 2.5 THz.
Surface emitting ring quantum cascade lasers for chemical sensing
NASA Astrophysics Data System (ADS)
Szedlak, Rolf; Hayden, Jakob; Martín-Mateos, Pedro; Holzbauer, Martin; Harrer, Andreas; Schwarz, Benedikt; Hinkov, Borislav; MacFarland, Donald; Zederbauer, Tobias; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Acedo, Pablo; Lendl, Bernhard; Strasser, Gottfried
2018-01-01
We review recent advances in chemical sensing applications based on surface emitting ring quantum cascade lasers (QCLs). Such lasers can be implemented in monolithically integrated on-chip laser/detector devices forming compact gas sensors, which are based on direct absorption spectroscopy according to the Beer-Lambert law. Furthermore, we present experimental results on radio frequency modulation up to 150 MHz of surface emitting ring QCLs. This technique provides detailed insight into the modulation characteristics of such lasers. The gained knowledge facilitates the utilization of ring QCLs in combination with spectroscopic techniques, such as heterodyne phase-sensitive dispersion spectroscopy for gas detection and analysis.
Freedom from band-gap slavery: from diode lasers to quantum cascade lasers
NASA Astrophysics Data System (ADS)
Capasso, Federico
2010-02-01
Semiconductor heterostructure lasers, for which Alferov and Kromer received part of the Nobel Prize in Physics in 2000, are the workhorse of technologies such as optical communications, optical recording, supermarket scanners, laser printers and fax machines. They exhibit high performance in the visible and near infrared and rely for their operation on electrons and holes emitting photons across the semiconductor bandgap. This mechanism turns into a curse at longer wavelengths (mid-infrared) because as the bandgap, shrinks laser operation becomes much more sensitive to temperature, material defects and processing. Quantum Cascade Laser (QCL), invented in 1994, rely on a radically different process for light emission. QCLs are unipolar devices in which electrons undergo transitions between quantum well energy levels and are recycled through many stages emitting a cascade of photons. Thus by suitable tailoring of the layers' thickness, using the same heterostructure material, they can lase across the molecular fingerprint region from 3 to 25 microns and beyond into the far-infrared and submillimiter wave spectrum. High power cw room temperature QCLs and QCLs with large continuous single mode tuning range have found many applications (infrared countermeasures, spectroscopy, trace gas analysis and atmospheric chemistry) and are commercially available. )
NASA Astrophysics Data System (ADS)
Lang, Norbert; Hempel, Frank; Strämke, Siegfried; Röpcke, Jürgen
2011-08-01
In situ measurements are reported giving insight into the plasma chemical conversion of the precursor BCl3 in industrial applications of boriding plasmas. For the online monitoring of its ground state concentration, quantum cascade laser absorption spectroscopy (QCLAS) in the mid-infrared spectral range was applied in a plasma assisted chemical vapor deposition (PACVD) reactor. A compact quantum cascade laser measurement and control system (Q-MACS) was developed to allow a flexible and completely dust-sealed optical coupling to the reactor chamber of an industrial plasma surface modification system. The process under the study was a pulsed DC plasma with periodically injected BCl3 at 200 Pa. A synchronization of the Q-MACS with the process control unit enabled an insight into individual process cycles with a sensitivity of 10-6 cm-1·Hz-1/2. Different fragmentation rates of the precursor were found during an individual process cycle. The detected BCl3 concentrations were in the order of 1014 molecules·cm-3. The reported results of in situ monitoring with QCLAS demonstrate the potential for effective optimization procedures in industrial PACVD processes.
Kindness, S J; Jessop, D S; Wei, B; Wallis, R; Kamboj, V S; Xiao, L; Ren, Y; Braeuninger-Weimer, P; Aria, A I; Hofmann, S; Beere, H E; Ritchie, D A; Degl'Innocenti, R
2017-08-09
Active control of the amplitude and frequency of terahertz sources is an essential prerequisite for exploiting a myriad of terahertz applications in imaging, spectroscopy, and communications. Here we present a optoelectronic, external modulation technique applied to a terahertz quantum cascade laser which holds the promise of addressing a number of important challenges in this research area. A hybrid metamaterial/graphene device is implemented into an external cavity set-up allowing for optoelectronic tuning of feedback into a quantum cascade laser. We demonstrate powerful, all-electronic, control over the amplitude and frequency of the laser output. Full laser switching is performed by electrostatic gating of the metamaterial/graphene device, demonstrating a modulation depth of 100%. External control of the emission spectrum is also achieved, highlighting the flexibility of this feedback method. By taking advantage of the frequency dispersive reflectivity of the metamaterial array, different modes of the QCL output are selectively suppressed using lithographic tuning and single mode operation of the multi-mode laser is enforced. Side mode suppression is electrically modulated from ~6 dB to ~21 dB, demonstrating active, optoelectronic modulation of the laser frequency content between multi-mode and single mode operation.
Energy Cascade in Quantum Gases
NASA Astrophysics Data System (ADS)
Yin, X. Y.; Ho, Tin-Lun
Energy cascade is ubiquitous in systems far from equilibrium. Facilitated by particle interactions and external forces, it can lead to highly complex phenomena like fully developed turbulence, characterized by power law velocity correlation functions. Yet despite decades of research, how these power laws emerge from first principle remains unclear. Recently, experiments show that when a Bose condensate is subjected to periodic shaking, its momentum distribution exhibits a power law behavior. The flexibility of cold atom experiments has provided new opportunities to explore the emergence of these power laws, and to disentangle different sources of energy cascade. Here, we point out that recent experiments in cold atoms imply that classical turbulence is part of a larger family of scale invariant phenomena that include ideal gases. Moreover, the property of the entire family is contained in the structure of its Floquet states. For ideal gases, we show analytically that its momentum distribution acquires a 1 /q2 tail in each dimension when it is shaken periodically. We acknowledge NSF Grant DMR1309615, MURI Grant FP054294-D, and NASA Fundamental Physics Grant 1518233.
Purely wavelength- and amplitude-modulated quartz-enhanced photoacoustic spectroscopy.
Patimisco, Pietro; Sampaolo, Angelo; Bidaux, Yves; Bismuto, Alfredo; Scott, Marshall; Jiang, James; Muller, Antoine; Faist, Jerome; Tittel, Frank K; Spagnolo, Vincenzo
2016-11-14
We report here on a quartz-enhanced photoacoustic (QEPAS) sensor employing a quantum cascade laser (QCL) structure capable of operating in a pure amplitude or wavelength modulation configuration. The QCL structure is composed of three electrically independent sections: Gain, Phase (PS) and Master Oscillator (MO). Selective current pumping of these three sections allows obtaining laser wavelength tuning without changes in the optical power, and power modulation without emission wavelength shifts. A pure QEPAS amplitude modulation condition is obtained by modulating the PS current, while pure wavelength modulation is achieved by modulating simultaneously the MO and PS QCL sections and slowly scanning the DC current level injected in the PS section.
Physics of frequency-modulated comb generation in quantum-well diode lasers
NASA Astrophysics Data System (ADS)
Dong, Mark; Cundiff, Steven T.; Winful, Herbert G.
2018-05-01
We investigate the physical origin of frequency-modulated combs generated from single-section semiconductor diode lasers based on quantum wells, isolating the essential physics necessary for comb generation. We find that the two effects necessary for comb generation—spatial hole burning (leading to multimode operation) and four-wave mixing (leading to phase locking)—are indeed present in some quantum-well systems. The physics of comb generation in quantum wells is similar to that in quantum dot and quantum cascade lasers. We discuss the nature of the spectral phase and some important material parameters of these diode lasers.
Rocksalt nitride metal/semiconductor superlattices: A new class of artificially structured materials
NASA Astrophysics Data System (ADS)
Saha, Bivas; Shakouri, Ali; Sands, Timothy D.
2018-06-01
Artificially structured materials in the form of superlattice heterostructures enable the search for exotic new physics and novel device functionalities, and serve as tools to push the fundamentals of scientific and engineering knowledge. Semiconductor heterostructures are the most celebrated and widely studied artificially structured materials, having led to the development of quantum well lasers, quantum cascade lasers, measurements of the fractional quantum Hall effect, and numerous other scientific concepts and practical device technologies. However, combining metals with semiconductors at the atomic scale to develop metal/semiconductor superlattices and heterostructures has remained a profoundly difficult scientific and engineering challenge. Though the potential applications of metal/semiconductor heterostructures could range from energy conversion to photonic computing to high-temperature electronics, materials challenges primarily had severely limited progress in this pursuit until very recently. In this article, we detail the progress that has taken place over the last decade to overcome the materials engineering challenges to grow high quality epitaxial, nominally single crystalline metal/semiconductor superlattices based on transition metal nitrides (TMN). The epitaxial rocksalt TiN/(Al,Sc)N metamaterials are the first pseudomorphic metal/semiconductor superlattices to the best of our knowledge, and their physical properties promise a new era in superlattice physics and device engineering.
Emergent quasicrystals in strongly correlated systems
NASA Astrophysics Data System (ADS)
Sagi, Eran; Nussinov, Zohar
2016-07-01
Commensurability is of paramount importance in numerous strongly interacting electronic systems. In the fractional quantum Hall effect, a rich cascade of increasingly narrow plateaux appear at larger denominator filling fractions. Rich commensurate structures also emerge, at certain filling fractions, in high temperature superconductors and other electronic systems. A natural question concerns the character of these and other electronic systems at irrational filling fractions. Here we demonstrate that quasicrystalline structures naturally emerge in these situations, and trigger behaviors not typically expected of periodic systems. We first show that irrationally filled quantum Hall systems cross over into quasiperiodically ordered configuration in the thin-torus limit. Using known properties of quasicrystals, we argue that these states are unstable against the effects of disorder, in agreement with the existence of quantum Hall plateaux. We then study analogous physical situations in a system of cold Rydberg atoms placed on an optical lattice. Such an experimental setup is generally disorder free, and can therefore be used to detect the emergent quasicrystals we predict. We discuss similar situations in the Falicov-Kimball model, where known exact results can be used to establish quasicrystalline structures in one and two dimensions. We briefly speculate on possible relations between our theoretical findings and the existence of glassy dynamics and other features of strongly correlated electronic systems.
Cascaded analysis of signal and noise propagation through a heterogeneous breast model.
Mainprize, James G; Yaffe, Martin J
2010-10-01
The detectability of lesions in radiographic images can be impaired by patterns caused by the surrounding anatomic structures. The presence of such patterns is often referred to as anatomic noise. Others have previously extended signal and noise propagation theory to include variable background structure as an additional noise term and used in simulations for analysis by human and ideal observers. Here, the analytic forms of the signal and noise transfer are derived to obtain an exact expression for any input random distribution and the "power law" filter used to generate the texture of the tissue distribution. A cascaded analysis of propagation through a heterogeneous model is derived for x-ray projection through simulated heterogeneous backgrounds. This is achieved by considering transmission through the breast as a correlated amplification point process. The analytic forms of the cascaded analysis were compared to monoenergetic Monte Carlo simulations of x-ray propagation through power law structured backgrounds. As expected, it was found that although the quantum noise power component scales linearly with the x-ray signal, the anatomic noise will scale with the square of the x-ray signal. There was a good agreement between results obtained using analytic expressions for the noise power and those from Monte Carlo simulations for different background textures, random input functions, and x-ray fluence. Analytic equations for the signal and noise properties of heterogeneous backgrounds were derived. These may be used in direct analysis or as a tool to validate simulations in evaluating detectability.
Optical sideband generation up to room temperature with mid-infrared quantum cascade lasers.
Houver, S; Cavalié, P; St-Jean, M Renaudat; Amanti, M I; Sirtori, C; Li, L H; Davies, A G; Linfield, E H; Pereira, T A S; Lebreton, A; Tignon, J; Dhillon, S S
2015-02-23
Mid-infrared (MIR) sideband generation on a near infrared (NIR) optical carrier is demonstrated within a quantum cascade laser (QCL). By employing an externally injected NIR beam, E(NIR), that is resonant with the interband transitions of the quantum wells in the QCL, the nonlinear susceptibility is enhanced, leading to both frequency mixing and sideband generation. A GaAs-based MIR QCL (E(QCL) = 135 meV) with an aluminum-reinforced waveguide was utilized to overlap the NIR and MIR modes with the optical nonlinearity of the active region. The resulting difference sideband (E(NIR) - E(QCL)) shows a resonant behavior as a function of NIR pump wavelength and a maximum second order nonlinear susceptibility, χ((2)), of ~1 nm/V was obtained. Further, the sideband intensity showed little dependence with the operating temperature of the QCL, allowing sideband generation to be realized at room temperature.
Manipulating the Flow of Thermal Noise in Quantum Devices
NASA Astrophysics Data System (ADS)
Barzanjeh, Shabir; Aquilina, Matteo; Xuereb, André
2018-02-01
There has been significant interest recently in using complex quantum systems to create effective nonreciprocal dynamics. Proposals have been put forward for the realization of artificial magnetic fields for photons and phonons; experimental progress is fast making these proposals a reality. Much work has concentrated on the use of such systems for controlling the flow of signals, e.g., to create isolators or directional amplifiers for optical signals. In this Letter, we build on this work but move in a different direction. We develop the theory of and discuss a potential realization for the controllable flow of thermal noise in quantum systems. We demonstrate theoretically that the unidirectional flow of thermal noise is possible within quantum cascaded systems. Viewing an optomechanical platform as a cascaded system we show here that one can ultimately control the direction of the flow of thermal noise. By appropriately engineering the mechanical resonator, which acts as an artificial reservoir, the flow of thermal noise can be constrained to a desired direction, yielding a thermal rectifier. The proposed quantum thermal noise rectifier could potentially be used to develop devices such as a thermal modulator, a thermal router, and a thermal amplifier for nanoelectronic devices and superconducting circuits.
Manipulating the Flow of Thermal Noise in Quantum Devices.
Barzanjeh, Shabir; Aquilina, Matteo; Xuereb, André
2018-02-09
There has been significant interest recently in using complex quantum systems to create effective nonreciprocal dynamics. Proposals have been put forward for the realization of artificial magnetic fields for photons and phonons; experimental progress is fast making these proposals a reality. Much work has concentrated on the use of such systems for controlling the flow of signals, e.g., to create isolators or directional amplifiers for optical signals. In this Letter, we build on this work but move in a different direction. We develop the theory of and discuss a potential realization for the controllable flow of thermal noise in quantum systems. We demonstrate theoretically that the unidirectional flow of thermal noise is possible within quantum cascaded systems. Viewing an optomechanical platform as a cascaded system we show here that one can ultimately control the direction of the flow of thermal noise. By appropriately engineering the mechanical resonator, which acts as an artificial reservoir, the flow of thermal noise can be constrained to a desired direction, yielding a thermal rectifier. The proposed quantum thermal noise rectifier could potentially be used to develop devices such as a thermal modulator, a thermal router, and a thermal amplifier for nanoelectronic devices and superconducting circuits.
McKellar, A R W; Mizoguchi, Asao; Kanamori, Hideto
2011-09-28
Spectra of solid para-H(2) doped with CH(3)F at 1.8 K are studied in the ν(3) region (~1040 cm(-1)) using a quantum cascade laser source. As shown previously, residual ortho-H(2) in the sample (~1000 ppm) gives rise to distinct spectral features due to clusters of the form CH(3)F-(ortho-H(2))(N), with N = 0, 1, 2, 3, etc. Brief annealing at 7 K is found to give narrower spectral lines (≥0.006 cm(-1)) than conventional (5 K) annealing, and causes the N = 3 and 4 lines to fragment into two or more components. The N = 3 line is observed to be particularly stable and persistent. The N = 0 line (no ortho-H(2) neighbors) is resolved into two closely spaced (≈0.007 cm(-1)) components which are assigned to the K = 0 and 1 states of CH(3)F rotating around its C(3v) symmetry axis (ortho- and para-CH(3)F, respectively). Similar K-structure is also evident for other lines. Weak but persistent features ("N = 1/2 lines") are observed mid way between N = 0 and 1. © 2011 American Institute of Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hübner, M.; Lang, N.; Röpcke, J.
2015-01-19
Dielectric etching plasma processes for modern interlevel dielectrics become more and more complex by the introduction of new ultra low-k dielectrics. One challenge is the minimization of sidewall damage, while etching ultra low-k porous SiCOH by fluorocarbon plasmas. The optimization of this process requires a deeper understanding of the concentration of the CF{sub 2} radical, which acts as precursor in the polymerization of the etch sample surfaces. In an industrial dielectric etching plasma reactor, the CF{sub 2} radical was measured in situ using a continuous wave quantum cascade laser (cw-QCL) around 1106.2 cm{sup −1}. We measured Doppler-resolved ro-vibrational absorption lines andmore » determined absolute densities using transitions in the ν{sub 3} fundamental band of CF{sub 2} with the aid of an improved simulation of the line strengths. We found that the CF{sub 2} radical concentration during the etching plasma process directly correlates to the layer structure of the etched wafer. Hence, this correlation can serve as a diagnostic tool of dielectric etching plasma processes. Applying QCL based absorption spectroscopy opens up the way for advanced process monitoring and etching controlling in semiconductor manufacturing.« less
The detective quantum efficiency of photon-counting x-ray detectors using cascaded-systems analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanguay, Jesse; Yun, Seungman; School of Mechanical Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-735
Purpose: Single-photon counting (SPC) x-ray imaging has the potential to improve image quality and enable new advanced energy-dependent methods. The purpose of this study is to extend cascaded-systems analyses (CSA) to the description of image quality and the detective quantum efficiency (DQE) of SPC systems. Methods: Point-process theory is used to develop a method of propagating the mean signal and Wiener noise-power spectrum through a thresholding stage (required to identify x-ray interaction events). The new transfer relationships are used to describe the zero-frequency DQE of a hypothetical SPC detector including the effects of stochastic conversion of incident photons to secondarymore » quanta, secondary quantum sinks, additive noise, and threshold level. Theoretical results are compared with Monte Carlo calculations assuming the same detector model. Results: Under certain conditions, the CSA approach can be applied to SPC systems with the additional requirement of propagating the probability density function describing the total number of image-forming quanta through each stage of a cascaded model. Theoretical results including DQE show excellent agreement with Monte Carlo calculations under all conditions considered. Conclusions: Application of the CSA method shows that false counts due to additive electronic noise results in both a nonlinear image signal and increased image noise. There is a window of allowable threshold values to achieve a high DQE that depends on conversion gain, secondary quantum sinks, and additive noise.« less
High-power phase-locked quantum cascade laser array emitting at λ ∼ 4.6 μm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Fang-Liang; Zhang, Jin-Chuan, E-mail: zhangjinchuan@semi.ac.cn, E-mail: fqliu@semi.ac.cn; Jia, Zhi-Wei
2016-03-15
A phase-locked quantum cascade laser (QCL) array consisting of one hundred elements that were integrated in parallel was achieved at λ ∼ 4.6 μm. The proposed Fraunhofer’s multiple slits diffraction model predicted and explained the far-field pattern of the phase-locked laser array. A single-lobed far-field pattern, attributed to the emission of an in-phase-like supermode, is obtained near the threshold (I{sub th}). Even at 1.5 I{sub th}, greater than 73.3% of the laser output power is concentrated in a low-divergence beam with an optical power of up to 40 W.
NASA Astrophysics Data System (ADS)
Werth, Alexandra; Liakat, Sabbir; Dong, Anqi; Woods, Callie M.; Gmachl, Claire F.
2018-05-01
An integrating sphere is used to enhance the collection of backscattered light in a noninvasive glucose sensor based on quantum cascade laser spectroscopy. The sphere enhances signal stability by roughly an order of magnitude, allowing us to use a thermoelectrically (TE) cooled detector while maintaining comparable glucose prediction accuracy levels. Using a smaller TE-cooled detector reduces form factor, creating a mobile sensor. Principal component analysis has predicted principal components of spectra taken from human subjects that closely match the absorption peaks of glucose. These principal components are used as regressors in a linear regression algorithm to make glucose concentration predictions, over 75% of which are clinically accurate.
Surface plasmon quantum cascade lasers as terahertz local oscillators.
Hajenius, M; Khosropanah, P; Hovenier, J N; Gao, J R; Klapwijk, T M; Barbieri, S; Dhillon, S; Filloux, P; Sirtori, C; Ritchie, D A; Beere, H E
2008-02-15
We characterize a heterodyne receiver based on a surface-plasmon waveguide quantum cascade laser (QCL) emitting at 2.84 THz as a local oscillator, and an NbN hot electron bolometer as a mixer. We find that the envelope of the far-field pattern of the QCL is diffraction-limited and superimposed onto interference fringes, which are similar to those found in narrow double-metal waveguide QCLs. Compared to the latter, a more directional beam allows for better coupling of the radiation power to the mixer. We obtain a receiver noise temperature of 1050 K when the mixer is at 2 K, which, to our knowledge, is the highest sensitivity reported at frequencies beyond 2.5 THz.
NASA Astrophysics Data System (ADS)
Duxbury, Geoffrey; Hay, Kenneth G.; Langford, Nigel; Johnson, Mark P.; Black, John D.
2011-09-01
It has been demonstrated that an intra-pulse scanned quantum cascade laser spectrometer may be used to obtain real-time diagnostics of the amounts of carbon monoxide, carbon dioxide, and water, in the exhaust of an aero gas turbine (turbojet) engine operated in a sea level test cell. Measurements have been made of the rapid changes in composition following ignition, the composition under steady state operating conditions, and the composition changes across the exhaust plume. The minimum detection limit for CO in a double pass through a typical gas turbine plume of 50 cm in diameter, with 0.4 seconds integration time, is approximately 2 ppm.
Broadly tunable terahertz difference-frequency generation in quantum cascade lasers on silicon
NASA Astrophysics Data System (ADS)
Jung, Seungyong; Kim, Jae Hyun; Jiang, Yifan; Vijayraghavan, Karun; Belkin, Mikhail A.
2018-01-01
We report broadly tunable terahertz (THz) sources based on intracavity Cherenkov difference-frequency generation in quantum cascade lasers transfer-printed on high-resistivity silicon substrates. Spectral tuning from 1.3 to 4.3 THz was obtained from a 2-mm long laser chip using a modified Littrow external cavity setup. The THz power output and the midinfrared-to-THz conversion efficiency of the devices transferred on silicon are dramatically enhanced, compared with the devices on a native semi-insulating InP substrate. Enhancement is particularly significant at higher THz frequencies, where the tail of the Reststrahlen band results in a strong absorption of THz light in the InP substrate.
Injection-locking of terahertz quantum cascade lasers up to 35GHz using RF amplitude modulation.
Gellie, Pierre; Barbieri, Stefano; Lampin, Jean-François; Filloux, Pascal; Manquest, Christophe; Sirtori, Carlo; Sagnes, Isabelle; Khanna, Suraj P; Linfield, Edmund H; Davies, A Giles; Beere, Harvey; Ritchie, David
2010-09-27
We demonstrate that the cavity resonance frequency - the round-trip frequency - of Terahertz quantum cascade lasers can be injection-locked by direct modulation of the bias current using an RF source. Metal-metal and single-plasmon waveguide devices with roundtrip frequencies up to 35GHz have been studied, and show locking ranges above 200MHz. Inside this locking range the laser round-trip frequency is phase-locked, with a phase noise determined by the RF-synthesizer. We find a square-root dependence of the locking range with RF-power in agreement with classical injection-locking theory. These results are discussed in the context of mode-locking operation.
Phase locking of a 2.7 THz quantum cascade laser to a microwave reference.
Khosropanah, P; Baryshev, A; Zhang, W; Jellema, W; Hovenier, J N; Gao, J R; Klapwijk, T M; Paveliev, D G; Williams, B S; Kumar, S; Hu, Q; Reno, J L; Klein, B; Hesler, J L
2009-10-01
We demonstrate the phase locking of a 2.7 THz metal-metal waveguide quantum cascade laser (QCL) to an external microwave signal. The reference is the 15th harmonic, generated by a semiconductor superlattice nonlinear device, of a signal at 182 GHz, which itself is generated by a multiplier chain (x12) from a microwave synthesizer at approximately 15 GHz. Both laser and reference radiations are coupled into a bolometer mixer, resulting in a beat signal, which is fed into a phase-lock loop. The spectral analysis of the beat signal confirms that the QCL is phase locked. This result opens the possibility to extend heterodyne interferometers into the far-infrared range.
NASA Astrophysics Data System (ADS)
Butschek, Lorenz; Hugger, Stefan; Jarvis, Jan; Haertelt, Marko; Merten, André; Schwarzenberg, Markus; Grahmann, Jan; Stothard, David; Warden, Matthew; Carson, Christopher; Macarthur, John; Fuchs, Frank; Ostendorf, Ralf; Wagner, Joachim
2018-01-01
We report on mid-IR spectroscopic measurements performed with rapidly tunable external cavity quantum cascade lasers (EC-QCLs). Fast wavelength tuning in the external cavity is realized by a microoptoelectromechanical systems (MOEMS) grating oscillating at a resonance frequency of about 1 kHz with a deflection amplitude of up to 10 deg. The entire spectral range of the broadband QCL can therefore be covered in just 500 μs, paving the way for real-time spectroscopy in the mid-IR region. In addition to its use in spectroscopic measurements conducted in backscattering and transmission geometry, the MOEMS-based laser source is characterized regarding pulse intensity noise, wavelength reproducibility, and spectral resolution.
Rectified diode response of a multimode quantum cascade laser integrated terahertz transceiver.
Dyer, Gregory C; Norquist, Christopher D; Cich, Michael J; Grine, Albert D; Fuller, Charles T; Reno, John L; Wanke, Michael C
2013-02-25
We characterized the DC transport response of a diode embedded in a THz quantum cascade laser as the laser current was changed. The overall response is described by parallel contributions from the rectification of the laser field due to the non-linearity of the diode I-V and from thermally activated transport. Sudden jumps in the diode response when the laser changes from single mode to multi-mode operation, with no corresponding jumps in output power, suggest that the coupling between the diode and laser field depends on the spatial distribution of internal fields. The results demonstrate conclusively that the internal laser field couples directly to the integrated diode.
Baragwanath, Adam J; Freeman, Joshua R; Gallant, Andrew J; Zeitler, J Axel; Beere, Harvey E; Ritchie, David A; Chamberlain, J Martyn
2011-07-01
The first demonstration, to our knowledge, of near-field imaging using subwavelength plasmonic apertures with a terahertz quantum cascade laser source is presented. "Bull's-eye" apertures, featuring subwavelength circular apertures flanked by periodic annular corrugations were created using a novel fabrication method. A fivefold increase in intensity was observed for plasmonic apertures over plain apertures of the same diameter. Detailed studies of the transmitted beam profiles were undertaken for apertures with both planarized and corrugated exit facets, with the former producing spatially uniform intensity profiles and subwavelength spatial resolution. Finally, a proof-of-concept imaging experiment is presented, where an inhomogeneous pharmaceutical drug coating is investigated.
Cendejas, Richard A; Phillips, Mark C; Myers, Tanya L; Taubman, Matthew S
2010-12-06
An external-cavity (EC) quantum cascade (QC) laser using optical feedback from a partial-reflector is reported. With this configuration, the otherwise multi-mode emission of a Fabry-Perot QC laser was made single-mode with optical output powers exceeding 40 mW. A mode-hop free tuning range of 2.46 cm(-1) was achieved by synchronously tuning the EC length and QC laser current. The linewidth of the partial-reflector EC-QC laser was measured for integration times from 100 μs to 4 seconds, and compared to a distributed feedback QC laser. Linewidths as small as 480 kHz were recorded for the EC-QC laser.
Temperature-insensitive long-wavelength (λ ≈14 µm) Quantum Cascade lasers with low threshold.
Huang, Xue; Charles, William O; Gmachl, Claire
2011-04-25
We demonstrate high-performance, long-wavelength (λ ≈14 µm) Quantum Cascade (QC) lasers based on a diagonal optical transition and a "two-phonon-continuum" depletion scheme in which the lower laser level is depopulated by resonant longitudinal optical phonon scattering followed by scattering to a lower energy level continuum. A 2.8 mm long QC laser shows a low threshold current density of 2.0 kA/cm2, a peak output power of ~336 mW, and a slope efficiency of 375 mW/A, all at 300 K, with a high characteristic temperature T0 ~310 K over a wide temperature range from 240 K to 390 K.
Continuous wave room temperature external ring cavity quantum cascade laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Revin, D. G., E-mail: d.revin@sheffield.ac.uk; Hemingway, M.; Vaitiekus, D.
2015-06-29
An external ring cavity quantum cascade laser operating at ∼5.2 μm wavelength in a continuous-wave regime at the temperature of 15 °C is demonstrated. Out-coupled continuous-wave optical powers of up to 23 mW are observed for light of one propagation direction with an estimated total intra-cavity optical power flux in excess of 340 mW. The uni-directional regime characterized by the intensity ratio of more than 60 for the light propagating in the opposite directions was achieved. A single emission peak wavelength tuning range of 90 cm{sup −1} is realized by the incorporation of a diffraction grating into the cavity.
Yamanishi, Masamichi
2012-12-17
Intrinsic linewidth formula modified by taking account of fluctuation-dissipation balance for thermal photons in a THz quantum-cascade laser (QCL) is exhibited. The linewidth formula based on the model that counts explicitly the influence of noisy stimulated emissions due to thermal photons existing inside the laser cavity interprets experimental results on intrinsic linewidth, ~91.1 Hz reported recently with a 2.5 THz bound-to-continuum QCL. The line-broadening induced by thermal photons is estimated to be ~22.4 Hz, i.e., 34% broadening. The modified linewidth formula is utilized as a bench mark in engineering of THz thermal photons inside laser cavities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierściński, K., E-mail: kamil.pierscinski@ite.waw.pl; Pierścińska, D.; Pluska, M.
2015-10-07
Room temperature, single mode, pulsed emission from two-section coupled cavity InGaAs/AlGaAs/GaAs quantum cascade laser fabricated by focused ion beam processing is demonstrated and analyzed. The single mode emission is centered at 1059.4 cm{sup −1} (9.44 μm). A side mode suppression ratio of 43 dB was achieved. The laser exhibits a peak output power of 15 mW per facet at room temperature. The stable, single mode emission is observed within temperature tuning range, exhibiting shift at rate of 0.59 nm/K.
Quantum Cascade Laser-Based Photoacoustic Sensor for Trace Detection of Formaldehyde Gas
Elia, Angela; Di Franco, Cinzia; Spagnolo, Vincenzo; Lugarà, Pietro Mario; Scamarcio, Gaetano
2009-01-01
We report on the development of a photoacoustic sensor for the detection of formaldehyde (CH2O) using a thermoelectrically cooled distributed-feedback quantum cascade laser operating in pulsed mode at 5.6 μm. A resonant photoacoustic cell, equipped with four electret microphones, is excited in its first longitudinal mode at 1,380 Hz. The absorption line at 1,778.9 cm−1 is selected for CH2O detection. A detection limit of 150 parts per billion in volume in nitrogen is achieved using a 10 seconds time constant and 4 mW laser power. Measurements in ambient air will require water vapour filters. PMID:22574040
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brumfield, Brian E.; Taubman, Matthew S.; Phillips, Mark C.
2016-02-13
A rapidly-swept external cavity quantum cascade laser (ECQCL) system for fast open-path quantification of multiple chemicals and mixtures is presented. The ECQCL system is swept over its entire tuning range (>100 cm-1) at frequencies up to 200 Hz. At 200 Hz the wavelength tuning rate and spectral resolution are 2x104 cm-1/sec and < 0.2 cm-1, respectively. The capability of the current system to quantify changes in chemical concentrations on millesecond timescales is demonstrated at atmospheric pressure using an open-path multi-pass cell. The detection limits for chemicals ranged from ppb to ppm levels depending on the absorption cross-section.
NASA Astrophysics Data System (ADS)
Wu, Sheng; Deev, Andrei
2013-01-01
A field deployable Compound Specific Isotope Analyzer (CSIA) coupled with capillary chromatogrpahy based on Quantum Cascade (QC) lasers and Hollow Waveguide (HWG) with precision and chemical resolution matching mature Mass Spectroscopy has been achieved in our laboratory. The system could realize 0.3 per mil accuracy for 12C/13C for a Gas Chromatography (GC) peak lasting as short as 5 seconds with carbon molar concentration in the GC peak less than 0.5%. Spectroscopic advantages of HWG when working with QC lasers, i.e. single mode transmission, noiseless measurement and small sample volume, are compared with traditional free space and multipass spectroscopy methods.
Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dean, Paul, E-mail: p.dean@leeds.ac.uk; Keeley, James; Kundu, Iman
2016-02-29
We report two-dimensional apertureless near-field terahertz (THz) imaging using a quantum cascade laser (QCL) source and a scattering probe. A near-field enhancement of the scattered field amplitude is observed for small tip-sample separations, allowing image resolutions of ∼1 μm (∼λ/100) and ∼7 μm to be achieved along orthogonal directions on the sample surface. This represents the highest resolution demonstrated to date with a THz QCL. By employing a detection scheme based on self-mixing interferometry, our approach offers experimental simplicity by removing the need for an external detector and also provides sensitivity to the phase of the reinjected field.
High frequency modulation and injection locking of terahertz quantum cascade lasers
NASA Astrophysics Data System (ADS)
Gu, L.; Wan, W. J.; Zhu, Y. H.; Fu, Z. L.; Li, H.; Cao, J. C.
2017-06-01
Due to intersubband transitions, the quantum cascade laser (QCL) is free of relaxations and able to work under fast modulations. In this work, the authors investigate the fast modulation properties of a continuous wave (cw) terahertz QCL emitting around 3 THz (˜100 μm). Both simulation and experimental results show that the 3 dB modulation bandwidth for the device can reach 11.5 GHz and the modulation response curve is relatively flat upto ˜16 GHz. The radio frequency (RF) injection measurements verify that around the laser threshold the inter-mode beat note interacts strongly with the RF signal and the laser can be modulated at the round trip frequency of 15.5 GHz.
High-Q resonant cavities for terahertz quantum cascade lasers.
Campa, A; Consolino, L; Ravaro, M; Mazzotti, D; Vitiello, M S; Bartalini, S; De Natale, P
2015-02-09
We report on the realization and characterization of two different designs for resonant THz cavities, based on wire-grid polarizers as input/output couplers, and injected by a continuous-wave quantum cascade laser (QCL) emitting at 2.55 THz. A comparison between the measured resonators parameters and the expected theoretical values is reported. With achieved quality factor Q ≈ 2.5 × 10(5), these cavities show resonant peaks as narrow as few MHz, comparable with the typical Doppler linewidth of THz molecular transitions and slightly broader than the free-running QCL emission spectrum. The effects of the optical feedback from one cavity to the QCL are examined by using the other cavity as a frequency reference.
Low-Loss Hollow Waveguide Fibers for Mid-Infrared Quantum Cascade Laser Sensing Applications
Patimisco, Pietro; Spagnolo, Vincenzo; Vitiello, Miriam S.; Scamarcio, Gaetano; Bledt, Carlos M.; Harrington, James A.
2013-01-01
We report on single mode optical transmission of hollow core glass waveguides (HWG) coupled with an external cavity mid-IR quantum cascade lasers (QCLs). The QCL mode results perfectly matched to the hybrid HE11 waveguide mode and the higher losses TE-like modes have efficiently suppressed by the deposited inner dielectric coating. Optical losses down to 0.44 dB/m and output beam divergence of ∼5 mrad were measured. Using a HGW fiber with internal core size of 300 μm we obtained single mode laser transmission at 10.54 μm and successful employed it in a quartz enhanced photoacoustic gas sensor setup. PMID:23337336
QEPAS nitric oxide sensor based on a mid-infrared fiber-coupled quantum cascade laser
NASA Astrophysics Data System (ADS)
Ren, Wei; Shi, Chao; Wang, Zhen; Yao, Chenyu
2017-04-01
We report a quartz-enhanced photoacoustic sensor (QEPAS) for nitric oxide (NO) detection using a mid-infrared fibercoupled quantum cascade laser (QCL) near 5.2 μm. The QCL radiation was coupled into an InF3 fiber (100 μm core diameter) for light delivery to the quartz tuning fork, a tiny piezoelectric element converting the acoustic wave induced mechanical vibration to the gas-absorption associated electrical signal. This mid-infrared fiber can achieve nearly single-mode light delivery for the target wavelength. The off-beam configuration was adopted for the fiber-coupled detection considering its simpler installation, optical alignment and comparative sensitivity to the traditional on-beam setup.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sow, P. L. T.; Mejri, S.; Tokunaga, S. K.
2014-06-30
We report the coherent phase-locking of a quantum cascade laser (QCL) at 10-μm to the secondary frequency standard of this spectral region, a CO{sub 2} laser stabilized on a saturated absorption line of OsO{sub 4}. The stability and accuracy of the standard are transferred to the QCL resulting in a line width of the order of 10 Hz, and leading to the narrowest QCL to date. The locked QCL is then used to perform absorption spectroscopy spanning 6 GHz of NH{sub 3} and methyltrioxorhenium, two species of interest for applications in precision measurements.
Common mode frequency instability in internally phase-locked terahertz quantum cascade lasers.
Wanke, M C; Grine, A D; Fuller, C T; Nordquist, C D; Cich, M J; Reno, J L; Lee, Mark
2011-11-21
Feedback from a diode mixer integrated into a 2.8 THz quantum cascade laser (QCL) was used to phase lock the difference frequencies (DFs) among the Fabry-Perot (F-P) longitudinal modes of a QCL. Approximately 40% of the DF power was phase locked, consistent with feedback loop bandwidth of 10 kHz and phase noise bandwidth ~0.5 MHz. While the locked DF signal has ≤ 1 Hz linewidth and negligible drift over ~30 min, mixing measurements between two QCLs and between a QCL and molecular gas laser show that the common mode frequency stability is no better than a free-running QCL. © 2011 Optical Society of America
Tunable dispersion compensation of quantum cascade laser frequency combs.
Hillbrand, Johannes; Jouy, Pierre; Beck, Mattias; Faist, Jérôme
2018-04-15
Compensating for group velocity dispersion is an important challenge to achieve stable midinfrared quantum cascade laser (QCL) frequency combs with large spectral coverage. We present a tunable dispersion compensation scheme consisting of a planar mirror placed behind the back facet of the QCL. Dispersion can be either enhanced or decreased depending on the position of the mirror. We demonstrate that the fraction of the comb regime in the dynamic range of the laser increases considerably when the dispersion induced by the Gires-Tournois interferometer compensates the intrinsic dispersion of the laser. Furthermore, it is possible to tune to the offset frequency of the comb with the Gires-Tournois interferometer while the repetition frequency is almost unaffected.
Phase Locking of a 2.7 THz Quantum Cascade Laser to a Microwave Reference
NASA Technical Reports Server (NTRS)
Khosropanah, P.; Baryshev, A.; Zhang, W.; Jellema, W.; Hovenier, J. N.; Gao, J. R.; Klapwijk, T. M.; Paveliev, D. G.; Williams, B. S.; Hu, Q.;
2009-01-01
We demonstrate the phase locking of a 2.7 THz metal-metal waveguide quantum cascade laser (QCL) to an external microwave signal. The reference is the 15th harmonic, generated by a semiconductor superlattice nonlinear device, of a signal at 182 GHz, which itself is generated by a multiplier chain (x 12) from a microwave synthesizer at approx. 15 GHz. Both laser and reference radiations are coupled into a bolometer mixer, resulting in a beat signal, which is fed into a phase-lock loop. The spectral analysis of the beat signal confirms that the QCL is phase locked. This result opens the possibility to extend heterodyne interferometers into the far-infrared range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motyka, M.; Dyksik, M.; Ryczko, K.
Optical properties of modified type II W-shaped quantum wells have been investigated with the aim to be utilized in interband cascade lasers. The results show that introducing a tensely strained GaAsSb layer, instead of a commonly used compressively strained GaInSb, allows employing the active transition involving valence band states with a significant admixture of the light holes. Theoretical predictions of multiband k·p theory have been experimentally verified by using photoluminescence and polarization dependent photoreflectance measurements. These results open a pathway for practical realization of mid-infrared lasing devices with uncommon polarization properties including, for instance, polarization-independent midinfrared light emitters.
NASA Astrophysics Data System (ADS)
Dougakiuchi, Tatsuo; Kawada, Yoichi; Takebe, Gen
2018-03-01
We demonstrate the continuous multispectral imaging of surface phonon polaritons (SPhPs) on silicon carbide excited by an external cavity quantum cascade laser using scattering-type scanning near-field optical microscopy. The launched SPhPs were well characterized via the confirmation that the theoretical dispersion relation and measured in-plane wave vectors are in excellent agreement in the entire measurement range. The proposed scheme, which can excite and observe SPhPs with an arbitrary wavelength that effectively covers the spectral gap of CO2 lasers, is expected to be applicable for studies of near-field optics and for various applications based on SPhPs.
Basnar, Bernhard; Schartner, Stephan; Austerer, Maximilian; Andrews, Aaron Maxwell; Roch, Tomas; Schrenk, Werner; Strasser, Gottfried
2008-06-09
We present a novel approach for the reversible switching of the emission wavelength of a quantum cascade laser (QCL) using a halochromic cladding. An air-waveguide laser ridge is coated with a thin layer of polyacrylic acid. This cladding introduces losses corresponding to the absorption spectrum of the polymer. By changing the state of the polymer, the absorption spectrum and losses change, inducing a shift of 7 cm(-1) in the emission wavelength. This change is induced by exposure to acidic or alkaline vapors under ambient conditions and is fully reversible. Such lasers can be used as multi-color light source and as sensor for atmospheric pH.
High-resolution emission spectra of pulsed terahertz quantum-cascade lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikonnikov, A. V., E-mail: antikon@ipm.sci-nnov.ru; Antonov, A. V.; Lastovkin, A. A.
The spectra of pulsed terahertz quantum-cascade lasers were measured with high spectral resolution. The characteristic line width at half maximum was 0.01 cm{sup -1}; it is controlled by laser temperature variations during the supply voltage pulse. It was shown that an increase in the laser temperature leads to a decrease in the emission frequency, which is caused by an increase in the effective refractive index of the active region. It was also found that a decrease in the supply voltage results in a decrease in the emission frequency, which is caused by a change in the energy of diagonal transitionsmore » between lasing levels.« less
2015-07-28
up, g, IFR , E54 (or E43), and 54 (or 43) in STA-DPR, STA-SPR, and shallow-well QCL structures. 1 CHAPTER ONE INTRODUCTION 1.1 Introduction...much less transition diagonality than in shallow-well TA-QCL devices. To that effect, when calculating the IFR factor, summed over all transition...219 Å2 ps vs. 239 Å2 ps). However, when calculating the IFR factor, summed over all transition energies, affecting the EL linewidth [i.e., Eqn. (1
Alcaráz, Mirta R; Schwaighofer, Andreas; Kristament, Christian; Ramer, Georg; Brandstetter, Markus; Goicoechea, Héctor; Lendl, Bernhard
2015-07-07
In this work, we report mid-IR transmission measurements of the protein amide I band in aqueous solution at large optical paths. A tunable external-cavity quantum cascade laser (EC-QCL) operated in pulsed mode at room temperature allowed one to apply a path length of up to 38 μm, which is four times larger than that applicable with conventional FT-IR spectrometers. To minimize temperature-induced variations caused by background absorption of the ν2-vibration of water (HOH-bending) overlapping with the amide I region, a highly stable temperature control unit with relative temperature stability within 0.005 °C was developed. An advanced data processing protocol was established to overcome fluctuations in the fine structure of the emission curve that are inherent to the employed EC-QCL due to its mechanical instabilities. To allow for wavenumber accuracy, a spectral calibration method has been elaborated to reference the acquired IR spectra to the absolute positions of the water vapor absorption bands. Employing this setup, characteristic spectral features of five well-studied proteins exhibiting different secondary structures could be measured at concentrations as low as 2.5 mg mL(-1). This concentration range could previously only be accessed by IR measurements in D2O. Mathematical evaluation of the spectral overlap and comparison of second derivative spectra confirm excellent agreement of the QCL transmission measurements with protein spectra acquired by FT-IR spectroscopy. This proves the potential of the applied setup to monitor secondary structure changes of proteins in aqueous solution at extended optical path lengths, which allow experiments in flow through configuration.
NASA Astrophysics Data System (ADS)
Zhang, Wei
In this research project I have investigated AlGaN alloys and their quantum structures for applications in deep UV and terahertz optoelectronic devices. For the deep UV emitter applications the materials and devices were grown by rf plasma-assisted molecular beam epitaxy on 4H-SiC, 6H-SiC and c-plane sapphire substrates. In the growth of AlGaN/AlN multiple quantum wells on SiC substrates, the AlGaN wells were grown under excess Ga, far beyond than what is required for the growth of stoichiometric AlGaN films, which resulted in liquid phase epitaxy growth mode. Due to the statistical variations of the excess Ga on the growth front we found that this growth mode leads to films with lateral variations in the composition and thus, band structure potential fluctuations. Transmission electron microscopy shows that the wells in such structures are not homogeneous but have the appearance of quantum dots. We find by temperature dependent photoluminescence measurements that the multiple quantum wells with band structure potential fluctuations emit at 240 nm and have room temperature internal quantum efficiency as high as 68%. Furthermore, they were found to have a maximum net modal optical gain of 118 cm-1 at a transparency threshold corresponding to 1.4 x 1017 cm-3 excited carriers. We attribute this low transparency threshold to population inversion of only the regions of the potential fluctuations rather than of the entire matrix. Some prototype deep UV emitting LED structures were also grown by the same method on sapphire substrates. Optoelectronic devices for terahertz light emission and detection, based on intersubband transitions in III-nitride semiconductor quantum wells, were grown on single crystal c-plane GaN substrates. Growth conditions such the ratio of group III to active nitrogen fluxes, which determines the appropriate Ga-coverage for atomically smooth growth without requiring growth interruptions were employed. Emitters designed in the quantum cascade structure were fabricated into mesa-structure devices and the I-V characterization at 20 K indicates sequential tunneling with electroluminescence emission at about 10 THz. Similarly, Far-infrared photoconductive detectors were grown by the same method. Photocurrent spectra centered at 23 mum (13 THz) are resolved up to 50 K, with responsivity of approximately 7 mA/W.
NASA Astrophysics Data System (ADS)
Pereira, Mauro F.; Winge, David O.; Wacker, Andreas; Jumpertz, Louise; Michel, Florian; Pawlus, Robert; Elsaesser, Wolfgang E.; Schires, Kevin; Carras, Mathieu; Grillot, Frédéric
2016-10-01
The linewidth of a conventional laser is due to fluctuations in the laser field due to spontaneous emission and described by the Schalow-Townes formula. In addition to that, in a semiconductor laser there is a contribution arising from fluctuations in the refractive index induced by carrier density fluctuations. The later are quantitatively described by the linewidth enhancement or alpha factor [C. H. Henry, IEEE J. Quantum Electron. 18 (2), 259 (1982), W. W. Chow, S. W. Koch and M. Sargent III, Semiconductor-Laser Physics, Springer-Verlag (1994), M.F. Pereira Jr et al, J. Opt. Soc. Am. B10, 765 (1993). In this paper we investigate the alpha factor of quantum cascade lasers under actual operating conditions using the Nonequilibrium Greens Functions approach [A. Wacker et a, IEEE Journal of Sel. Top. in Quantum Electron.,19 1200611, (2013), T. Schmielau and M.F. Pereira, Appl. Phys. Lett. 95 231111, (2009)]. The simulations are compared with recent results obtained with different optical feedback techniques [L. Jumpertz et al, AIP ADVANCES 6, 015212 (2016)].
McCormack, E A; Lowth, H S; Bell, M T; Weidmann, D; Ritchie, G A D
2012-07-21
A continuous wave quantum cascade laser (cw-QCL) operating at 10 μm has been used to record absorption spectra of low pressure samples of OCS in an astigmatic Herriott cell. As a result of the frequency chirp of the laser, the spectra show clearly the effects of rapid passage on the absorption line shape. At the low chirp rates that can be obtained with the cw-QCL, population transfer between rovibrational quantum states is predicted to be much more efficient than in typical pulsed QCL experiments. This optical pumping is investigated by solving the Maxwell Bloch equations to simulate the propagation of the laser radiation through an inhomogeneously broadened two-level system. The calculated absorption profiles show good quantitative agreement with those measured experimentally over a range of chirp rates and optical thicknesses. It is predicted that at a low chirp rate of 0.13 MHz ns(-1), the population transfer between rovibrational quantum states is 12%, considerably more than that obtained at the higher chirp rates utilised in pulsed QCL experiments.
Corneal tissue ablation using 6.1 μm quantum cascade laser
NASA Astrophysics Data System (ADS)
Huang, Yong; Kang, Jin U.
2012-03-01
High absorption property of tissues in the IR range (λ> 2 μm) results in effective tissue ablation, especially near 3 μm. In the mid-infrared range, wavelengths of 6.1 μm and 6.45 μm fall into the absorption bands of the amide protein groups Amide-I and Amide-II, respectively. They also coincide with the deformation mode of water, which has an absorption peak at 6.1 μm. This coincidence makes 6.1 μm laser a better ablation tool that has promising effectiveness and minimum collateral damages than 3 μm lasers. In this work, we performed bovine corneal ablation test in-vitro using high-power 6.1μm quantum cascade laser (QCL) operated at pulse mode. Quantum cascade laser has the advantages of low cost, compact size and tunable wavelength, which makes it great alternative Mid-IR light source to conventional tunable free-electron lasers (FEL) for medical applications. Preliminary results show that effective corneal stroma craters were achieved with much less collateral damage in corneal tissue that contains less water. Future study will focus on optimizing the control parameters of QCL to attain neat and precise ablation of corneal tissue and development of high peak power QCL.
Advances in quantum cascade lasers for security and crime-fighting
NASA Astrophysics Data System (ADS)
Normand, Erwan L.; Stokes, Robert J.; Hay, Kenneth; Foulger, Brian; Lewis, Colin
2010-10-01
Advances in the application of Quantum Cascade Lasers (QCL) to trace gas detection will be presented. The solution is real time (~1 μsec per scan), is insensitive to turbulence and vibration, and performs multiple measurements in one sweep. The QCL provides a large dynamic range, which is a linear response from ppt to % level. The concentration can be derived with excellent immunity from cross interference. Point sensing sensors developed by Cascade for home made and commercial explosives operate by monitoring key constituents in real time and matching this to a spatial event (i.e. sniffer device placed close to an object or person walking through portal (overt or covert). Programmable signature detection capability allows for detection of multiple chemical compounds along the most likely array of explosive chemical formulation. The advantages of configuration as "point sensing" or "stand off" will be discussed. In addition to explosives this method is highly applicable to the detection of mobile drugs labs through volatile chemical release.
NASA Astrophysics Data System (ADS)
Yousefvand, Hossein Reza
2017-07-01
In this paper a self-consistent numerical approach to study the temperature and bias dependent characteristics of mid-infrared (mid-IR) quantum cascade lasers (QCLs) is presented which integrates a number of quantum mechanical models. The field-dependent laser parameters including the nonradiative scattering times, the detuning and energy levels, the escape activation energy, the backfilling excitation energy and dipole moment of the optical transition are calculated for a wide range of applied electric fields by a self-consistent solution of Schrodinger-Poisson equations. A detailed analysis of performance of the obtained structure is carried out within a self-consistent solution of the subband population rate equations coupled with carrier coherent transport equations through the sequential resonant tunneling, by taking into account the temperature and bias dependency of the relevant parameters. Furthermore, the heat transfer equation is included in order to calculate the carrier temperature inside the active region levels. This leads to a compact predictive model to analyze the temperature and electric field dependent characteristics of the mid-IR QCLs such as the light-current (L-I), electric field-current (F-I) and core temperature-electric field (T-F) curves. For a typical mid-IR QCL, a good agreement was found between the simulated temperature-dependent L-I characteristic and experimental data, which confirms validity of the model. It is found that the main characteristics of the device such as output power and turn-on delay time are degraded by interplay between the temperature and Stark effects.
Quantum Cascade Laser (QCL) based sensor for the detection of explosive compounds
NASA Astrophysics Data System (ADS)
Normand, Erwan; Howieson, Iain; McCulloch, Michael; Black, Paul
2006-09-01
Following Cascade Technologies first success at using Quantum Cascade Lasers (QCL) for trace gas detection in the continuous emission monitoring market, the core technology platform is now being developed towards homeland security applications. This paper will highlight the potential of QCL based trace gas sensor for detecting vapours of explosives. Furthermore we will present results that let foresee the use of such technologies at addressing security gaps for protection against terrorism in infrastructures where high throughput screening of individuals or items is required. Preliminary measurements have shown that rapid identification, or fingerprinting, of explosive is achievable in 10ms at extrapolated sensitivities in the sub-part per billion range. The experiments were carried out with support form the Home Office Scientific Development Branch (HOSDB) in the UK and were focused at selecting a variety of explosive compounds and showing their detection using a novel sniffer platform system based on the use of quantum cascade lasers. Preliminary studies on the technology have indicated that direct fingerprinting (detection - identification) of explosive compounds such as NG and tagging agents such as EGDN by sniffing surrounding ambient air is achievable. Furthermore these studies have also indicated that detection of such compounds on packaging used to ship the sealed compounds is possible, making this platform a strong contender for detection through cross contamination on material that have been in contact with each other. Additionally, it was also possible to detect breakdown products associated with sample material NG providing a further capability that could be exploited to enhance the detection and identification of explosive compounds.
Stochastic, adaptive sampling of information by microvilli in fly photoreceptors.
Song, Zhuoyi; Postma, Marten; Billings, Stephen A; Coca, Daniel; Hardie, Roger C; Juusola, Mikko
2012-08-07
In fly photoreceptors, light is focused onto a photosensitive waveguide, the rhabdomere, consisting of tens of thousands of microvilli. Each microvillus is capable of generating elementary responses, quantum bumps, in response to single photons using a stochastically operating phototransduction cascade. Whereas much is known about the cascade reactions, less is known about how the concerted action of the microvilli population encodes light changes into neural information and how the ultrastructure and biochemical machinery of photoreceptors of flies and other insects evolved in relation to the information sampling and processing they perform. We generated biophysically realistic fly photoreceptor models, which accurately simulate the encoding of visual information. By comparing stochastic simulations with single cell recordings from Drosophila photoreceptors, we show how adaptive sampling by 30,000 microvilli captures the temporal structure of natural contrast changes. Following each bump, individual microvilli are rendered briefly (~100-200 ms) refractory, thereby reducing quantum efficiency with increasing intensity. The refractory period opposes saturation, dynamically and stochastically adjusting availability of microvilli (bump production rate: sample rate), whereas intracellular calcium and voltage adapt bump amplitude and waveform (sample size). These adapting sampling principles result in robust encoding of natural light changes, which both approximates perceptual contrast constancy and enhances novel events under different light conditions, and predict information processing across a range of species with different visual ecologies. These results clarify why fly photoreceptors are structured the way they are and function as they do, linking sensory information to sensory evolution and revealing benefits of stochasticity for neural information processing. Copyright © 2012 Elsevier Ltd. All rights reserved.
Stochastic, Adaptive Sampling of Information by Microvilli in Fly Photoreceptors
Song, Zhuoyi; Postma, Marten; Billings, Stephen A.; Coca, Daniel; Hardie, Roger C.; Juusola, Mikko
2012-01-01
Summary Background In fly photoreceptors, light is focused onto a photosensitive waveguide, the rhabdomere, consisting of tens of thousands of microvilli. Each microvillus is capable of generating elementary responses, quantum bumps, in response to single photons using a stochastically operating phototransduction cascade. Whereas much is known about the cascade reactions, less is known about how the concerted action of the microvilli population encodes light changes into neural information and how the ultrastructure and biochemical machinery of photoreceptors of flies and other insects evolved in relation to the information sampling and processing they perform. Results We generated biophysically realistic fly photoreceptor models, which accurately simulate the encoding of visual information. By comparing stochastic simulations with single cell recordings from Drosophila photoreceptors, we show how adaptive sampling by 30,000 microvilli captures the temporal structure of natural contrast changes. Following each bump, individual microvilli are rendered briefly (∼100–200 ms) refractory, thereby reducing quantum efficiency with increasing intensity. The refractory period opposes saturation, dynamically and stochastically adjusting availability of microvilli (bump production rate: sample rate), whereas intracellular calcium and voltage adapt bump amplitude and waveform (sample size). These adapting sampling principles result in robust encoding of natural light changes, which both approximates perceptual contrast constancy and enhances novel events under different light conditions, and predict information processing across a range of species with different visual ecologies. Conclusions These results clarify why fly photoreceptors are structured the way they are and function as they do, linking sensory information to sensory evolution and revealing benefits of stochasticity for neural information processing. PMID:22704990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Centeno, R.; Marchenko, D.; Mandon, J.
We present a high power, widely tunable, continuous wave external cavity quantum cascade laser designed for infrared vibrational spectroscopy of molecules exhibiting broadband and single line absorption features. The laser source exhibits single mode operation with a tunability up to 303 cm{sup −1} (∼24% of the center wavelength) at 8 μm, with a maximum optical output power of 200 mW. In combination with off-axis integrated output spectroscopy, trace-gas detection of broadband absorption gases such as acetone was performed and a noise equivalent absorption sensitivity of 3.7 × 10{sup −8 }cm{sup −1 }Hz{sup −1/2} was obtained.
Broadband external cavity quantum cascade laser based sensor for gasoline detection
NASA Astrophysics Data System (ADS)
Ding, Junya; He, Tianbo; Zhou, Sheng; Li, Jinsong
2018-02-01
A new type of tunable diode spectroscopy sensor based on an external cavity quantum cascade laser (ECQCL) and a quartz crystal tuning fork (QCTF) were used for quantitative analysis of volatile organic compounds. In this work, the sensor system had been tested on different gasoline sample analysis. For signal processing, the self-established interpolation algorithm and multiple linear regression algorithm model were used for quantitative analysis of major volatile organic compounds in gasoline samples. The results were very consistent with that of the standard spectra taken from the Pacific Northwest National Laboratory (PNNL) database. In future, The ECQCL sensor will be used for trace explosive, chemical warfare agent, and toxic industrial chemical detection and spectroscopic analysis, etc.
NASA Astrophysics Data System (ADS)
Aksenov, V. N.; Angeluts, A. A.; Balakin, A. V.; Maksimov, E. M.; Ozheredov, I. A.; Shkurinov, A. P.
2018-05-01
We demonstrate the possibility of using a multi-frequency terahertz source to identify substances basing on the analysis of relative amplitudes of the terahertz waves scattered by the object. The results of studying experimentally the scattering of quasi-monochromatic radiation generated by a two-frequency terahertz quantum-cascade laser by the surface of the samples containing inclusions of absorbing substances are presented. It is shown that the spectral features of absorption of these substances within the terahertz frequency range manifest themselves in variations of the amplitudes of the waves at frequencies of 3.0 and 3.7 THz, which are scattered by the samples under consideration.
High-sensitivity detection of TNT
Pushkarsky, Michael B.; Dunayevskiy, Ilya G.; Prasanna, Manu; Tsekoun, Alexei G.; Go, Rowel; Patel, C. Kumar N.
2006-01-01
We report high-sensitivity detection of 2,4,6-trinitrotoluene (TNT) by using laser photoacoustic spectroscopy where the laser radiation is obtained from a continuous-wave room temperature high-power quantum cascade laser in an external grating cavity geometry. The external grating cavity quantum cascade laser is continuously tunable over ≈400 nm around 7.3 μm and produces a maximum continuous-wave power of ≈200 mW. The IR spectroscopic signature of TNT is sufficiently different from that of nitroglycerine so that unambiguous detection of TNT without false positives from traces of nitroglycerine is possible. We also report the results of spectroscopy of acetylene in the 7.3-μm region to demonstrate continuous tunability of the IR source. PMID:17164325
Spectral behavior of a terahertz quantum-cascade laser.
Hensley, J M; Montoya, Juan; Allen, M G; Xu, J; Mahler, L; Tredicucci, A; Beere, H E; Ritchie, D A
2009-10-26
In this paper, the spectral behavior of two terahertz (THz) quantum cascade lasers (QCLs) operating both pulsed and cw is characterized using a heterodyne technique. Both lasers emitting around 2.5 THz are combined onto a whisker contact Schottky diode mixer mounted in a corner cube reflector. The resulting difference frequency beatnote is recorded in both the time and frequency domain. From the frequency domain data, we measure the effective laser linewidth and the tuning rates as a function of both temperature and injection current and show that the current tuning behavior cannot be explained by temperature tuning mechanisms alone. From the time domain data, we characterize the intrapulse frequency tuning behavior, which limits the effective linewidth to approximately 5 MHz.
Alignment-stabilized interference filter-tuned external-cavity quantum cascade laser.
Kischkat, Jan; Semtsiv, Mykhaylo P; Elagin, Mikaela; Monastyrskyi, Grygorii; Flores, Yuri; Kurlov, Sergii; Peters, Sven; Masselink, W Ted
2014-12-01
A passively alignment-stabilized external cavity quantum cascade laser (EC-QCL) employing a "cat's eye"-type retroreflector and an ultra-narrowband transmissive interference filter for wavelength selection is demonstrated and experimentally investigated. Compared with conventional grating-tuned ECQCLs, the setup is nearly two orders of magnitude more stable against misalignment of the components, and spectral fluctuation is reduced by one order of magnitude, allowing for a simultaneously lightweight and fail-safe construction, suitable for applications outdoors and in space. It also allows for a substantially greater level of miniaturization and cost reduction. These advantages fit in well with the general properties of modern QCLs in the promise to deliver useful and affordable mid-infrared-light sources for a variety of spectroscopic and imaging applications.
Mid-infrared gas absorption sensor based on a broadband external cavity quantum cascade laser
NASA Astrophysics Data System (ADS)
Sun, Juan; Deng, Hao; Liu, Ningwu; Wang, Hongliang; Yu, Benli; Li, Jingsong
2016-12-01
We developed a laser absorption sensor based on a pulsed, broadband tunable external cavity quantum cascade laser (ECQCL) centered at 1285 cm-1. Unlike traditional infrared spectroscopy system, a quartz crystal tuning fork (QCTF) as a light detector was used for laser signal detection. Fast Fourier transform was applied to extract vibration intensity information of QCTF. The sensor system is successfully tested on nitrous oxide (N2O) spectroscopy measurements and compared with a standard infrared detector. The wide wavelength tunability of ECQCL will allow us to access the fundamental vibrational bands of many chemical agents, which are well-suited for trace explosive, chemical warfare agent, and toxic industrial chemical detection and spectroscopic analysis.
Detection of multiple chemicals based on external cavity quantum cascade laser spectroscopy
NASA Astrophysics Data System (ADS)
Sun, Juan; Ding, Junya; Liu, Ningwu; Yang, Guangxiang; Li, Jingsong
2018-02-01
A laser spectroscopy system based on a broadband tunable external cavity quantum cascade laser (ECQCL) and a mini quartz crystal tuning fork (QCTF) detector was developed for standoff detection of volatile organic compounds (VOCs). The self-established spectral analysis model based on multiple algorithms for quantitative and qualitative analysis of VOC components (i.e. ethanol and acetone) was detailedly investigated in both closed cell and open path configurations. A good agreement was obtained between the experimentally observed spectra and the standard reference spectra. For open path detection of VOCs, the sensor system was demonstrated at a distance of 30 m. The preliminary laboratory results show that standoff detection of VOCs at a distance of over 100 m is very promising.
Broadband standoff detection of large molecules by mid-infrared active coherent laser spectrometry.
Macleod, Neil A; Molero, Francisco; Weidmann, Damien
2015-01-26
A widely tunable active coherent laser spectrometer (ACLaS) has been demonstrated for standoff detection of broadband absorbers in the 1280 to 1318 cm-1 spectral region using an external cavity quantum cascade laser as a mid-infrared source. The broad tuning range allows detection and quantification of vapor phase molecules, such as dichloroethane, ethylene glycol dinitrate, and tetrafluoroethane. The level of confidence in molecular mixing ratios retrieved from interfering spectral measurements is assessed in a quantitative manner. A first qualitative demonstration of condensed phase chemical detection on nitroacetanilide has also been conducted. Detection performances of the broadband ACLaS have been placed in the context of explosive detection and compared to that obtained using distributed feedback quantum cascade lasers.
On metal contacts of terahertz quantum cascade lasers with a metal-metal waveguide
NASA Astrophysics Data System (ADS)
Fathololoumi, Saeed; Dupont, Emmanuel; Ghasem Razavipour, S.; Laframboise, Sylvain R.; Parent, Guy; Wasilewski, Zbigniew; Liu, H. C.; Ban, Dayan
2011-10-01
This paper reports an experimental study of the effects of different metal claddings on the performance of terahertz quantum cascade lasers. The experimental results show that by using a metal cladding made of Ta/Cu/Au to replace that of Pd/Ge/Ti/Pt/Au, the maximum lasing temperature of the devices is increased from 132 to 172 K, and the threshold current density of the devices at 10 K can be reduced from 0.74 to 0.68 kA cm-2. The improvement of the device performance is attributed to lower optical losses associated with the metal cladding layers. The different effects of the metal contacts on device optical properties and electrical properties are also discussed.
High power and single mode quantum cascade lasers.
Bismuto, Alfredo; Bidaux, Yves; Blaser, Stéphane; Terazzi, Romain; Gresch, Tobias; Rochat, Michel; Muller, Antoine; Bonzon, Christopher; Faist, Jerome
2016-05-16
We present a single mode quantum cascade laser with nearly 1 W optical power. A buried distributed feedback reflector is used on the back section for wavelength selection. The laser is 6 mm long, 3.5 μm wide, mounted episide-up and the laser facets are left uncoated. Laser emission is centered at 4.68 μm. Single-mode operation with a side mode suppression ratio of more than 30 dB is obtained in whole range of operation. Farfield measurements prove a symmetric, single transverse-mode emission in TM00-mode with typical divergences of 41° and 33° in the vertical and horizontal direction respectively. This work shows the potential for simple fabrication of high power lasers compatible with standard DFB processing.
Spectrally resolved far-fields of terahertz quantum cascade lasers.
Brandstetter, Martin; Schönhuber, Sebastian; Krall, Michael; Kainz, Martin A; Detz, Hermann; Zederbauer, Tobias; Andrews, Aaron M; Strasser, Gottfried; Unterrainer, Karl
2016-10-31
We demonstrate a convenient and fast method to measure the spectrally resolved far-fields of multimode terahertz quantum cascade lasers by combining a microbolometer focal plane array with an FTIR spectrometer. Far-fields of fundamental TM0 and higher lateral order TM1 modes of multimode Fabry-Pérot type lasers have been distinguished, which very well fit to the results obtained by a 3D finite-element simulation. Furthermore, multimode random laser cavities have been investigated, analyzing the contribution of each single laser mode to the total far-field. The presented method is thus an important tool to gain in-depth knowledge of the emission properties of multimode laser cavities at terahertz frequencies, which become increasingly important for future sensing applications.
Spectroscopic study of transparency current in mid-infrared quantum cascade lasers.
Revin, Dmitry G; Hassan, Randa S; Krysa, Andrey B; Wang, Yongrui; Belyanin, Alexey; Kennedy, Kenneth; Atkins, Chris N; Cockburn, John W
2012-08-13
We report measurements which give direct insight into the origins of the transparency current for λ ~5 µm In0.6Ga0.4As/In0.42Al0.58As quantum cascade lasers in the temperature range of 80-280 K. The transparency current values have been found from broadband transmission measurements through the laser waveguides under sub-threshold operating conditions. Two active region designs were compared. The active region of the first laser is based on double-LO-phonon relaxation approach, while the second device has only one lower level, without specially designed resonant LO-phonon assisted depopulation. It is shown that transparency current contributes more than 70% to the magnitude of threshold current at high temperatures for both designs.
Highly temperature insensitive quantum cascade lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Y.; Bandyopadhyay, N.; Tsao, S.
2010-12-20
An InP based quantum cascade laser (QCL) heterostructure emitting around 5 {mu}m is grown with gas-source molecular beam epitaxy. The QCL core design takes a shallow-well approach to maximize the characteristic temperatures, T{sub 0} and T{sub 1}, for operations above room temperature. A T{sub 0} value of 383 K and a T{sub 1} value of 645 K are obtained within a temperature range of 298-373 K. In room temperature continuous wave operation, this design gives a single facet output power of 3 W and a wall plug efficiency of 16% from a device with a cavity length of 5 mmmore » and a ridge width of 8 {mu}m.« less
Active linewidth-narrowing of a mid-infrared quantum cascade laser without optical reference.
Tombez, L; Schilt, S; Hofstetter, D; Südmeyer, T
2013-12-01
We report on a technique for frequency noise reduction and linewidth-narrowing of a distributed-feedback mid-IR quantum cascade laser (QCL) that does not involve any optical frequency reference. The voltage fluctuations across the QCL are sensed, amplified and fed back to the temperature of the QCL at a fast rate using a near-IR laser illuminating the top of the QCL chip. A locking bandwidth of 300 kHz and a reduction of the frequency noise power spectral density by a factor of 10 with respect to the free-running laser are achieved. From 2 MHz for the free-running QCL, the linewidth is narrowed below 700 kHz (10 ms observation time).
Saturated absorption in a rotational molecular transition at 2.5 THz using a quantum cascade laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Consolino, L., E-mail: luigi.consolino@ino.it; Campa, A.; Ravaro, M.
2015-01-12
We report on the evidence of saturation effects in a rotational transition of CH{sub 3}OH around 2.5 THz, induced by a free-running continuous-wave quantum cascade laser (QCL). The QCL emission is used for direct-absorption spectroscopy experiments, allowing to study the dependence of the absorption coefficient on gas pressure and laser intensity. A saturation intensity of 25 μW/mm{sup 2}, for a gas pressure of 17 μbar, is measured. This result represents the initial step towards the implementation of a QCL-based high-resolution sub-Doppler THz spectroscopy, which is expected to improve by orders of magnitude the precision of THz spectrometers.
NASA Astrophysics Data System (ADS)
Hempel, Martin; Röben, Benjamin; Niehle, Michael; Schrottke, Lutz; Trampert, Achim; Grahn, Holger T.
2017-05-01
The dynamical tuning due to rear facet illumination of single-mode, terahertz (THz) quantum-cascade lasers (QCLs) which employ distributed feedback gratings are compared to the tuning of single-mode QCLs based on two-section cavities. The THz QCLs under investigation emit in the range of 3 to 4.7 THz. The tuning is achieved by illuminating the rear facet of the QCL with a fiber-coupled light source emitting at 777 nm. Tuning ranges of 5.0 and 11.9 GHz under continuous-wave and pulsed operation, respectively, are demonstrated for a single-mode, two-section cavity QCL emitting at about 3.1 THz, which exhibits a side-mode suppression ratio better than -25 dB.
186 K Operation of Terahertz Quantum-Cascade Lasers Based on a Diagonal Design
NASA Technical Reports Server (NTRS)
Kumar, Sushil; Hu, Qing; Reno, John L.
2009-01-01
Resonant-phonon terahertz quantum-cascade lasers operating up to a heat-sink temperature of 186 K are demonstrated. This record temperature performance is achieved based on a diagonal design, with the objective to increase the upper-state lifetime and therefore the gain at elevated temperatures. The increased diagonality also lowers the operating current densities by limiting the flow of parasitic leakage current. Quantitatively, the diagonality is characterized by a radiative oscillator strength that is smaller by a factor of two from the least of any previously published designs. At the lasing frequency of 3.9 THz, 63 mW of peak optical power was measured at 5 K, and approximately 5 mW could still be detected at 180 K.
Phase-locking of a 2.7-THz Quantum Cascade Laser to a Microwave Reference
NASA Astrophysics Data System (ADS)
Baryshev, A. M.; Khosropanah, P.; Zhang, W.; Jellema, W.; Hovenier, J. N.; Gao, J. R.; Klapwijk, T. M.; Paveliev, D. G.; William, B. S.; Kumar, S.; Hu, Q.; Reno, J. L.; Klein, B.; Hesler, J. L.
2009-04-01
We demonstrate phase-locking of a 2.7-THz metal-metal waveguide quantum cascade laser (QCL) to an external microwave signal. The reference is the 15th harmonic, generated by a semiconductor superlattice nonlinear device, of a signal at 182 GHz, which itself is generated by a multiplier-chain (x2x3x2) from a microwave synthesizer at 15 GHz. Both laser and reference radiations are coupled into a hot electron bolometer mixer, resulting in a beat signal, which is fed into a phase-lock loop. Spectral analysis of the beat signal (see fig. 1) confirms that the QCL is phase locked. This result opens the possibility to extend heterodyne interferometers into the far-infrared range.
Qualification and Testing of Quantum Cascade Lasers for Harsh Environments
NASA Astrophysics Data System (ADS)
Brauer, C. S.; Myers, T. L.; Cannon, B. D.; Anderson, C. G.; Crowther, B. G.; Hansen, S.
2014-12-01
Quantum cascade lasers (QCLs) offer the potential for the development of novel, laser-based instruments for both terrestrial and space applications. In order to withstand harsh conditions encountered in these environments, lasers must be robust, and rigorous testing is required before new systems can be utilized. A particular concern for space applications is the potential damage to laser performance caused by radiation exposure. While the effects of radiation exposure in diode lasers have been studied extensively, the effect on QCLs, which are fundamentally different from diode lasers, is not well known. We thus present work to quantify the performance of QCLs after exposure to moderate and high levels of radiation from different sources, including protons and gamma rays, to determine the effects of radiation damage.
Mid-infrared gas absorption sensor based on a broadband external cavity quantum cascade laser.
Sun, Juan; Deng, Hao; Liu, Ningwu; Wang, Hongliang; Yu, Benli; Li, Jingsong
2016-12-01
We developed a laser absorption sensor based on a pulsed, broadband tunable external cavity quantum cascade laser (ECQCL) centered at 1285 cm -1 . Unlike traditional infrared spectroscopy system, a quartz crystal tuning fork (QCTF) as a light detector was used for laser signal detection. Fast Fourier transform was applied to extract vibration intensity information of QCTF. The sensor system is successfully tested on nitrous oxide (N 2 O) spectroscopy measurements and compared with a standard infrared detector. The wide wavelength tunability of ECQCL will allow us to access the fundamental vibrational bands of many chemical agents, which are well-suited for trace explosive, chemical warfare agent, and toxic industrial chemical detection and spectroscopic analysis.
Chhantyal-Pun, Rabi; Valavanis, Alexander; Keeley, James T; Rubino, Pierluigi; Kundu, Iman; Han, Yingjun; Dean, Paul; Li, Lianhe; Davies, A Giles; Linfield, Edmund H
2018-05-15
We demonstrate a gas spectroscopy technique, using self-mixing in a 3.4 terahertz quantum-cascade laser (QCL). All previous QCL spectroscopy techniques have required additional terahertz instrumentation (detectors, mixers, or spectrometers) for system pre-calibration or spectral analysis. By contrast, our system self-calibrates the laser frequency (i.e., with no external instrumentation) to a precision of 630 MHz (0.02%) by analyzing QCL voltage perturbations in response to optical feedback within a 0-800 mm round-trip delay line. We demonstrate methanol spectroscopy by introducing a gas cell into the feedback path and show that a limiting absorption coefficient of ∼1×10 -4 cm -1 is resolvable.
Frequency and Phase-lock Control of a 3 THz Quantum Cascade Laser
NASA Technical Reports Server (NTRS)
Betz, A. L.; Boreiko, R. T.; Williams, B. S.; Kumar, S.; Hu, Q.; Reno, J. L.
2005-01-01
We have locked the frequency of a 3 THz quantum cascade laser (QCL) to that of a far-infrared gas laser with a tunable microwave offset frequency. The locked QCL line shape is essentially Gaussian, with linewidths of 65 and 141 kHz at the -3 and -10 dB levels, respectively. The lock condition can be maintained indefinitely, without requiring temperature or bias current regulation of the QCL other than that provided by the lock error signal. The result demonstrates that a terahertz QCL can be frequency controlled with l-part-in-lO(exp 8) accuracy, which is a factor of 100 better than that needed for a local oscillator in a heterodyne receiver for atmospheric and astronomic spectroscopy.
High Power Quantum Cascade Laser for Terahertz Imaging
2012-03-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release, distribution is unlimited HIGH POWER QUANTUM...Second Reader: Fabio Alves THIS PAGE INTENTIONALLY LEFT BLANK i REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting...Department of Defense or the U.S. Government. IRB Protocol Number: N/A 12a. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release
Experimental demonstration of a quantum router
Yuan, X. X.; Ma, J.-J.; Hou, P.-Y.; Chang, X.-Y.; Zu, C.; Duan, L.-M.
2015-01-01
The router is a key element for a network. We describe a scheme to realize genuine quantum routing of single-photon pulses based on cascading of conditional quantum gates in a Mach-Zehnder interferometer and report a proof-of-principle experiment for its demonstration using linear optics quantum gates. The polarization of the control photon routes in a coherent way the path of the signal photon while preserving the qubit state of the signal photon represented by its polarization. We demonstrate quantum nature of this router by showing entanglement generated between the initially unentangled control and signal photons, and confirm that the qubit state of the signal photon is well preserved by the router through quantum process tomography. PMID:26197928
Mapping from multiple-control Toffoli circuits to linear nearest neighbor quantum circuits
NASA Astrophysics Data System (ADS)
Cheng, Xueyun; Guan, Zhijin; Ding, Weiping
2018-07-01
In recent years, quantum computing research has been attracting more and more attention, but few studies on the limited interaction distance between quantum bits (qubit) are deeply carried out. This paper presents a mapping method for transforming multiple-control Toffoli (MCT) circuits into linear nearest neighbor (LNN) quantum circuits instead of traditional decomposition-based methods. In order to reduce the number of inserted SWAP gates, a novel type of gate with the optimal LNN quantum realization was constructed, namely NNTS gate. The MCT gate with multiple control bits could be better cascaded by the NNTS gates, in which the arrangement of the input lines was LNN arrangement of the MCT gate. Then, the communication overhead measurement model on inserted SWAP gate count from the original arrangement to the new arrangement was put forward, and we selected one of the LNN arrangements with the minimum SWAP gate count. Moreover, the LNN arrangement-based mapping algorithm was given, and it dealt with the MCT gates in turn and mapped each MCT gate into its LNN form by inserting the minimum number of SWAP gates. Finally, some simplification rules were used, which can further reduce the final quantum cost of the LNN quantum circuit. Experiments on some benchmark MCT circuits indicate that the direct mapping algorithm results in fewer additional SWAP gates in about 50%, while the average improvement rate in quantum cost is 16.95% compared to the decomposition-based method. In addition, it has been verified that the proposed method has greater superiority for reversible circuits cascaded by MCT gates with more control bits.
Efficient prediction of terahertz quantum cascade laser dynamics from steady-state simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnew, G.; Lim, Y. L.; Nikolić, M.
2015-04-20
Terahertz-frequency quantum cascade lasers (THz QCLs) based on bound-to-continuum active regions are difficult to model owing to their large number of quantum states. We present a computationally efficient reduced rate equation (RE) model that reproduces the experimentally observed variation of THz power with respect to drive current and heat-sink temperature. We also present dynamic (time-domain) simulations under a range of drive currents and predict an increase in modulation bandwidth as the current approaches the peak of the light–current curve, as observed experimentally in mid-infrared QCLs. We account for temperature and bias dependence of the carrier lifetimes, gain, and injection efficiency,more » calculated from a full rate equation model. The temperature dependence of the simulated threshold current, emitted power, and cut-off current are thus all reproduced accurately with only one fitting parameter, the interface roughness, in the full REs. We propose that the model could therefore be used for rapid dynamical simulation of QCL designs.« less
Continuous wave power scaling in high power broad area quantum cascade lasers
NASA Astrophysics Data System (ADS)
Suttinger, M.; Leshin, J.; Go, R.; Figueiredo, P.; Shu, H.; Lyakh, A.
2018-02-01
Experimental and model results for high power broad area quantum cascade lasers are presented. Continuous wave power scaling from 1.62 W to 2.34 W has been experimentally demonstrated for 3.15 mm-long, high reflection-coated 5.6 μm quantum cascade lasers with 15 stage active region for active region width increased from 10 μm to 20 μm. A semi-empirical model for broad area devices operating in continuous wave mode is presented. The model uses measured pulsed transparency current, injection efficiency, waveguide losses, and differential gain as input parameters. It also takes into account active region self-heating and sub-linearity of pulsed power vs current laser characteristic. The model predicts that an 11% improvement in maximum CW power and increased wall plug efficiency can be achieved from 3.15 mm x 25 μm devices with 21 stages of the same design but half doping in the active region. For a 16-stage design with a reduced stage thickness of 300Å, pulsed roll-over current density of 6 kA/cm2 , and InGaAs waveguide layers; optical power increase of 41% is projected. Finally, the model projects that power level can be increased to 4.5 W from 3.15 mm × 31 μm devices with the baseline configuration with T0 increased from 140 K for the present design to 250 K.
Terahertz holography for imaging amplitude and phase objects.
Hack, Erwin; Zolliker, Peter
2014-06-30
A non-monochromatic THz Quantum Cascade Laser and an uncooled micro-bolometer array detector with VGA resolution are used in a beam-splitter free holographic set-up to measure amplitude and phase objects in transmission. Phase maps of the diffraction pattern are retrieved using the Fourier transform carrier fringe method; while a Fresnel-Kirchhoff back propagation algorithm is used to reconstruct the complex object image. A lateral resolution of 280 µm and a relative phase sensitivity of about 0.5 rad are estimated from reconstructed images of a metallic Siemens star and a polypropylene test structure, respectively. Simulations corroborate the experimental results.
Semiconductor light sources for near- and mid-infrared spectral ranges
NASA Astrophysics Data System (ADS)
Karachinsky, L. Ya; Babichev, A. V.; Gladyshev, A. G.; Denisov, D. V.; Filimonov, A. V.; Novikov, I. I.; Egorov, A. Yu
2017-11-01
1550 nm band wafer-fused vertical-cavity surface-emitting lasers (VCSELs) and 5-10 μm band multi-stages quantum-cascade lasers (QCL) grown by molecular beam epitaxy (MBE) were fabricated and studied. VCSELs show high output optical power up to 6 mW in single-mode regime (SMSR > 40 dB) and open-eye diagrams at 30 Gbps of standard NRZ at 20°C. QCL heterostructures show high structural quality (fluctuations of composition and thickness < 1%). 20-μm-stripe width QCLs mounted on copper heatsinks show lasing at ∼ 6, 7.5 and 9 μm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirch, J. D.; Chang, C.-C.; Boyle, C.
2015-02-09
Five, 8.36 μm-emitting quantum-cascade lasers (QCLs) have been monolithically phase-locked in the in-phase array mode via resonant leaky-wave coupling. The structure is fabricated by etch and regrowth which provides large index steps (Δn = 0.10) between antiguided-array elements and interelement regions. Such high index contrast photonic-crystal (PC) lasers have more than an order of magnitude higher index contrast than PC-distributed feedback lasers previously used for coherent beam combining in QCLs. Absorption loss to metal layers inserted in the interelement regions provides a wide (∼1.0 μm) range in interelement width over which the resonant in-phase mode is strongly favored to lase. Room-temperature, in-phase-mode operation withmore » ∼2.2 kA/cm{sup 2} threshold-current density is obtained from 105 μm-wide aperture devices. The far-field beam pattern has lobewidths 1.65× diffraction limit (D.L.) and 82% of the light in the main lobe, up to 1.8× threshold. Peak pulsed near-D.L. power of 5.5 W is obtained, with 4.5 W emitted in the main lobe. Means of how to increase the device internal efficiency are discussed.« less
NASA Astrophysics Data System (ADS)
Kristament, Christian; Schwaighofer, Andreas; Montemurro, Milagros; Lendl, Bernhard
2018-02-01
One of the advantages of mid-IR spectroscopy in biomedical research lies in its capability to provide direct information on the secondary structure of proteins in their natural, often aqueous, environment. One impediment of direct absorption measurements in the correspondent spectral region is the strong absorbance of the native solvent (H2O). In this regard, the advent of broadly-tunable external cavity quantum cascade lasers (EC-QCL) allowed to significantly increasing the optical path length employed in transmission measurements due to their high spectral power densities. Low measured S/N ratios were improved by elaborated data analysis protocols that corrected mechanical flaws in the tuning mechanism of ECQCLs and allow for S/N ratios comparable to research grade FTIR spectrometers. Recent development of new optical set-ups outpacing direct absorption measurements led to further advancements. We present a dedicated Mach-Zehnder interferometer for photothermal measurements in balanced detection mode. In this highly sensitive design, the interferometer is illuminated by a HeNe laser to detect the refractive index change induced by the heat insertion of the EC-QCL. Here, we present photothermal phase shift interferometry measurements of caffeine in ethanol as well as casein in water. Further, the dependency of the signal amplitude on varying modulation frequencies was investigated for different liquids.
Chang, Yuan-Pin; Merer, Anthony J; Chang, Hsun-Hui; Jhang, Li-Ji; Chao, Wen; Lin, Jim Jr-Min
2017-06-28
The region 1273-1290 cm -1 of the ν 4 fundamental of the simplest Criegee intermediate, CH 2 OO, has been measured using a quantum cascade laser transient absorption spectrometer, which offers greater sensitivity and spectral resolution (<0.004 cm -1 ) than previous works based on thermal light sources. Gas phase CH 2 OO was generated from the reaction of CH 2 I + O 2 at 298 K and 4 Torr. The analysis of the absorption spectrum has provided precise values for the vibrational frequency and the rotational constants, with fitting errors of a few MHz. The determined ratios of the rotational constants, A'/A″ = 0.9986, B'/B″ = 0.9974, and C'/C″ = 1.0010, and the relative intensities of the a- and b-type transitions, 90:10, are in good agreement with literature values from a theoretical calculation using the MULTIMODE approach, based on a high-level ab initio potential energy surface. The low-K (=K a ) lines can be fitted extremely well, but rotational perturbations by other vibrational modes disrupt the structure for K = 4 and K ≥ 6. Not only the spectral resolution but also the detection sensitivity of CH 2 OO IR transitions has been greatly improved in this work, allowing for unambiguous monitoring of CH 2 OO in kinetic studies at low concentrations.
Amplifiers of free-space terahertz radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kao, Tsung -Yu; Reno, John L.; Hu, Qing
Here, amplifiers of free-space radiation are quite useful, especially in spectral ranges where the radiation is weak and sensitive detectors are hard to come by. A preamplification of the said weak radiation signal will significantly boost the S/N ratio in remote sensing and imaging applications. This is especially true in the terahertz (THz) range where the radiation signal is often weak and sensitive detectors require the cooling of liquid helium. Although quantum cascade structures are promising for providing amplification in the terahertz band from 2 to 5 THz, a THz amplifier has been demonstrated in an integrated form, in whichmore » the source is in close proximity to the amplifier, which will not be suitable for the aforementioned applications. Here we demonstrate what we believe is a novel approach to achieve significant amplification of free-space THz radiation using an array of short-cavity, surface-emitting THz quantum cascade lasers operating marginally below the lasing threshold as a Fabry–Perot amplifier. This free-space “slow light” amplifier provides 7.5 dB(×5.6) overall gain at ~3.1 THz. The proposed devices are suitable for low-noise pre-amplifiers in heterodyne detection systems and for THz imaging systems. With the sub-wavelength pixel size of the array, the reflective amplifier can also be categorized as active metasurface, with the ability to amplify or absorb specific frequency components of the input THz signal.« less
Amplifiers of free-space terahertz radiation
Kao, Tsung -Yu; Reno, John L.; Hu, Qing
2017-07-20
Here, amplifiers of free-space radiation are quite useful, especially in spectral ranges where the radiation is weak and sensitive detectors are hard to come by. A preamplification of the said weak radiation signal will significantly boost the S/N ratio in remote sensing and imaging applications. This is especially true in the terahertz (THz) range where the radiation signal is often weak and sensitive detectors require the cooling of liquid helium. Although quantum cascade structures are promising for providing amplification in the terahertz band from 2 to 5 THz, a THz amplifier has been demonstrated in an integrated form, in whichmore » the source is in close proximity to the amplifier, which will not be suitable for the aforementioned applications. Here we demonstrate what we believe is a novel approach to achieve significant amplification of free-space THz radiation using an array of short-cavity, surface-emitting THz quantum cascade lasers operating marginally below the lasing threshold as a Fabry–Perot amplifier. This free-space “slow light” amplifier provides 7.5 dB(×5.6) overall gain at ~3.1 THz. The proposed devices are suitable for low-noise pre-amplifiers in heterodyne detection systems and for THz imaging systems. With the sub-wavelength pixel size of the array, the reflective amplifier can also be categorized as active metasurface, with the ability to amplify or absorb specific frequency components of the input THz signal.« less
De, Anulekha; Banik, Gourab Dutta; Maity, Abhijit; Pal, Mithun; Pradhan, Manik
2016-05-01
A high-resolution cavity ring-down spectroscopic (CRDS) system based on a continuous wave (cw) mode-hop-free (MHF) external-cavity quantum cascade laser (EC-QCL) operating at λ∼5.2 μm has been developed for ultrasensitive detection of nitric oxide (NO). We report the performance of the high-resolution EC-QCL based cw-CRDS instrument by measuring the rotationally resolved Λ-doublet e and f components of the P(7.5) line in the fundamental band of NO at 1850.169 cm-1 and 1850.179 cm-1. A noise-equivalent absorption coefficient of 1.01×10-9 cm-1 Hz-1/2 was achieved based on an empty cavity ring-down time of τ0=5.6 μs and standard deviation of 0.11% with averaging of six ring-down time determinations. The CRDS sensor demonstrates the advantages of measuring parts per billion NO concentrations in N2, as well as in human breath samples with ultrahigh sensitivity and specificity. The CRDS system could also be generalized to measure simultaneously many other trace molecular species within the broad tuning range of cw EC-QCL, as well as for studying the rotationally resolved hyperfine structures.
Roch, N; Schwartz, M E; Motzoi, F; Macklin, C; Vijay, R; Eddins, A W; Korotkov, A N; Whaley, K B; Sarovar, M; Siddiqi, I
2014-05-02
The creation of a quantum network requires the distribution of coherent information across macroscopic distances. We demonstrate the entanglement of two superconducting qubits, separated by more than a meter of coaxial cable, by designing a joint measurement that probabilistically projects onto an entangled state. By using a continuous measurement scheme, we are further able to observe single quantum trajectories of the joint two-qubit state, confirming the validity of the quantum Bayesian formalism for a cascaded system. Our results allow us to resolve the dynamics of continuous projection onto the entangled manifold, in quantitative agreement with theory.
Vurgaftman, I; Bewley, W W; Canedy, C L; Kim, C S; Kim, M; Merritt, C D; Abell, J; Lindle, J R; Meyer, J R
2011-12-13
The interband cascade laser differs from any other class of semiconductor laser, conventional or cascaded, in that most of the carriers producing population inversion are generated internally, at semimetallic interfaces within each stage of the active region. Here we present simulations demonstrating that all previous interband cascade laser performance has suffered from a significant imbalance of electron and hole densities in the active wells. We further confirm experimentally that correcting this imbalance with relatively heavy n-type doping in the electron injectors substantially reduces the threshold current and power densities relative to all earlier devices. At room temperature, the redesigned devices require nearly two orders of magnitude less input power to operate in continuous-wave mode than the quantum cascade laser. The interband cascade laser is consequently the most attractive option for gas sensing and other spectroscopic applications requiring low output power and minimum heat dissipation at wavelengths extending from 3 μm to beyond 6 μm.
NASA Astrophysics Data System (ADS)
Bennett, Kochise; Chernyak, Vladimir Y.; Mukamel, Shaul
2017-03-01
The nonlinear optical response of a system of molecules often contains contributions whereby the products of lower-order processes in two separate molecules give signals that appear on top of a genuine direct higher-order process with a single molecule. These many-body contributions are known as cascading and complicate the interpretation of multidimensional stimulated Raman and other nonlinear signals. In a quantum electrodynamic treatment, these cascading processes arise from second-order expansion in the molecular coupling to vacuum modes of the radiation field, i.e., single-photon exchange between molecules, which also gives rise to other collective effects. We predict the relative phase of the direct and cascading nonlinear signals and its dependence on the microscopic dynamics as well as the sample geometry. This phase may be used to identify experimental conditions for distinguishing the direct and cascading signals by their phase. Higher-order cascading processes involving the exchange of several photons between more than two molecules are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dallner, Matthias; Hau, Florian; Kamp, Martin
2015-01-26
Interband cascade lasers (ICLs) grown on InAs substrates with threshold current densities below 1 kA/cm{sup 2} are presented. Two cascade designs with different lengths of the electron injector were investigated. Using a cascade design with 3 InAs quantum wells (QWs) in the electron injector, a device incorporating 22 stages in the active region exhibited a threshold current density of 940 A/cm{sup 2} at a record wavelength of 7 μm for ICLs operating in pulsed mode at room temperature. By investigating the influence of the number of stages on the device performance for a cascade design with 2 QWs in the electron injector, amore » further reduction of the threshold current density to 800 A/cm{sup 2} was achieved for a 30 stage device.« less
Integrated logic circuits using single-atom transistors
Mol, J. A.; Verduijn, J.; Levine, R. D.; Remacle, F.
2011-01-01
Scaling down the size of computing circuits is about to reach the limitations imposed by the discrete atomic structure of matter. Reducing the power requirements and thereby dissipation of integrated circuits is also essential. New paradigms are needed to sustain the rate of progress that society has become used to. Single-atom transistors, SATs, cascaded in a circuit are proposed as a promising route that is compatible with existing technology. We demonstrate the use of quantum degrees of freedom to perform logic operations in a complementary-metal–oxide–semiconductor device. Each SAT performs multilevel logic by electrically addressing the electronic states of a dopant atom. A single electron transistor decodes the physical multivalued output into the conventional binary output. A robust scalable circuit of two concatenated full adders is reported, where by utilizing charge and quantum degrees of freedom, the functionality of the transistor is pushed far beyond that of a simple switch. PMID:21808050
NASA Astrophysics Data System (ADS)
Harrington, James A.; Bledt, Carlos M.; Kriesel, Jason M.
2011-03-01
Spectroscopy in the long-wave infrared (LWIR) wavelength region (8 to 12 μm) is useful for detecting trace chemical compounds, such as those indicative of weapons of mass destruction (WMD). To enable the development of field portable systems for anti-proliferation efforts, current spectroscopy systems need to be made more robust, convenient, and practical (e.g., miniaturized). Hollow glass waveguides have been used with a Quantum Cascade Laser source for the delivery of single-mode laser radiation from 9 to 10 μm. The lowest loss measured for a straight, 484 μm-bore guide was 0.44 dB/m at 10 μm. The smallest 300 μm-bore waveguide transmitted singlemode radiation even while bent to radii less than 30 cm.
Imaging standoff detection of explosives using widely tunable midinfrared quantum cascade lasers
NASA Astrophysics Data System (ADS)
Fuchs, Frank; Hugger, Stefan; Kinzer, Michel; Aidam, Rolf; Bronner, Wolfgang; Lösch, Rainer; Yang, Quankui; Degreif, Kai; Schnürer, Frank
2010-11-01
The use of a tunable midinfrared external cavity quantum cascade laser for the standoff detection of explosives at medium distances between 2 and 5 m is presented. For the collection of the diffusely backscattered light, a high-performance infrared imager was used. Illumination and wavelength tuning of the laser source was synchronized with the image acquisition, establishing a hyperspectral data cube. Sampling of the backscattered radiation from the test samples was performed in a noncooperative geometry at angles of incidence far away from specular reflection. We show sensitive detection of traces of trinitrotoluene and pentaerythritol tetranitrate on real-world materials, such as standard car paint, polyacrylics from backpacks, and jeans fabric. Concentrations corresponding to fingerprints were detected, while concepts for false alarm suppression due to cross-contaminations were presented.
Cascade of Quantum Transitions and Magnetocaloric Anomalies in an Open Nanowire
NASA Astrophysics Data System (ADS)
Val'kov, V. V.; Mitskan, V. A.; Shustin, M. S.
2017-12-01
A sequence of magnetocaloric anomalies occurring with the change in a magnetic field H is predicted for an open nanowire with the Rashba spin-orbit coupling and the induced superconducting pairing potential. The nature of such anomalies is due to the cascade of quantum transitions related to the successive changes in the fermion parity of the nanowire ground state with the growth of the magnetic field. It is shown that the critical H c values fall within the parameter range corresponding to the nontrivial values of the Z 2 topological invariant of the corresponding 1D band Hamiltonian characteristic of the D symmetry class. It is demonstrated that such features in the behavior of the open nanowire are retained even in the presence of Coulomb interactions.
Active mode-locking of mid-infrared quantum cascade lasers with short gain recovery time.
Wang, Yongrui; Belyanin, Alexey
2015-02-23
We investigate the dynamics of actively modulated mid-infrared quantum cascade lasers (QCLs) using space- and time-domain simulations of coupled density matrix and Maxwell equations with resonant tunneling current taken into account. We show that it is possible to achieve active mode locking and stable generation of picosecond pulses in high performance QCLs with a vertical laser transition and a short gain recovery time by bias modulation of a short section of a monolithic Fabry-Perot cavity. In fact, active mode locking in QCLs with a short gain recovery time turns out to be more robust to the variation of parameters as compared to previously studied lasers with a long gain recovery time. We investigate the effects of spatial hole burning and phase locking on the laser output.
Widely tunable quantum cascade lasers for spectroscopic sensing
NASA Astrophysics Data System (ADS)
Wagner, J.; Ostendorf, R.; Grahmann, J.; Merten, A.; Hugger, S.; Jarvis, J.-P.; Fuchs, F.; Boskovic, D.; Schenk, H.
2015-01-01
In this paper recent advances in broadband-tuneable mid-infrared (MIR) external-cavity quantum cascade lasers (EC-QCL) technology are reported as well as their use in spectroscopic process analysis and imaging stand-off detection of hazardous substances, such as explosive and related precursors. First results are presented on rapid scan EC-QCL, employing a custom-made MOEMS scanning grating in Littrow-configuration as wavelength-selective optical feedback element. This way, a scanning rate of 1 kHz was achieved, which corresponds to 2000 full wavelength scans per second. Furthermore, exemplary case studies of EC-QCL based MIR spectroscopy will be presented. These include timeresolved analysis of catalytic reactions in chemical process control, as well as imaging backscattering spectroscopy for the detection of residues of explosives and related precursors in a relevant environment.
NASA Astrophysics Data System (ADS)
Hayden, Jakob; Hugger, Stefan; Fuchs, Frank; Lendl, Bernhard
2018-02-01
We employ a novel spectroscopic setup based on an external cavity quantum cascade laser and a Mach-Zehnder interferometer to simultaneously record spectra of absorption and dispersion of liquid samples in the mid-infrared. We describe the theory underlying the interferometric measurement and discuss its implications for the experiment. The capability of simultaneously recording a refractive index and absorption spectrum is demonstrated for a sample of acetone in cyclohexane. The recording of absorption spectra is experimentally investigated in more detail to illustrate the method's capabilities as compared to direct absorption spectroscopy. We find that absorption signals are recorded with strongly suppressed background, but with smaller absolute sensitivity. A possibility of optimizing the setup's performance by unbalancing the interferometer is presented.
Fujita, Kazuue; Yamanishi, Masamichi; Furuta, Shinichi; Tanaka, Kazunori; Edamura, Tadataka; Kubis, Tillmann; Klimeck, Gerhard
2012-08-27
Device-performances of 3.7 THz indirect-pumping quantum-cascade lasers are demonstrated in an InGaAs/InAlAs material system grown by metal-organic vapor-phase epitaxy. The lasers show a low threshold-current-density of ~420 A/cm2 and a peak output power of ~8 mW at 7 K, no sign of parasitic currents with recourse to well-designed coupled-well injectors in the indirect pump scheme, and a maximum operating temperature of Tmax ~100 K. The observed roll-over of output intensities in current ranges below maximum currents and limitation of Tmax are discussed with a model for electron-gas heating in injectors. Possible ways toward elevation of Tmax are suggested.
Surface-plasmon distributed-feedback quantum cascade lasers operating pulsed, room temperature
NASA Astrophysics Data System (ADS)
Bousseksou, A.; Chassagneux, Y.; Coudevylle, J. R.; Colombelli, R.; Sirtori, C.; Patriarche, G.; Beaudoin, G.; Sagnes, I.
2009-08-01
We report distributed-feedback surface-plasmon quantum cascade lasers operating at λ ≈7.6μm. The distributed feedback is obtained by the sole patterning of the top metal contact on a surface plasmon waveguide. Single mode operation with more than 30dB side mode suppression ratio is obtained in pulsed mode and at room temperature. A careful experimental study confirms that by varying the grating duty cycle, one can reduce the waveguide losses with respect to standard, unpatterned surface-plasmon devices. This allows one to reduce the laser threshold current of more than a factor of 2 in the 200-300K temperature range. This approach may lead to a fabrication technology for midinfrared distributed-feedback lasers based on a very simple processing.
Integrated all-optical infrared switchable plasmonic quantum cascade laser.
Kohoutek, John; Bonakdar, Alireza; Gelfand, Ryan; Dey, Dibyendu; Nia, Iman Hassani; Fathipour, Vala; Memis, Omer Gokalp; Mohseni, Hooman
2012-05-09
We report a type of infrared switchable plasmonic quantum cascade laser, in which far field light in the midwave infrared (MWIR, 6.1 μm) is modulated by a near field interaction of light in the telecommunications wavelength (1.55 μm). To achieve this all-optical switch, we used cross-polarized bowtie antennas and a centrally located germanium nanoslab. The bowtie antenna squeezes the short wavelength light into the gap region, where the germanium is placed. The perturbation of refractive index of the germanium due to the free carrier absorption produced by short wavelength light changes the optical response of the antenna and the entire laser intensity at 6.1 μm significantly. This device shows a viable method to modulate the far field of a laser through a near field interaction.
Frequency modulation spectroscopy with a THz quantum-cascade laser.
Eichholz, R; Richter, H; Wienold, M; Schrottke, L; Hey, R; Grahn, H T; Hübers, H-W
2013-12-30
We report on a terahertz spectrometer for high-resolution molecular spectroscopy based on a quantum-cascade laser. High-frequency modulation (up to 50 MHz) of the laser driving current produces a simultaneous modulation of the frequency and amplitude of the laser output. The modulation generates sidebands, which are symmetrically positioned with respect to the laser carrier frequency. The molecular transition is probed by scanning the sidebands across it. In this way, the absorption and the dispersion caused by the molecular transition are measured. The signals are modeled by taking into account the simultaneous modulation of the frequency and amplitude of the laser emission. This allows for the determination of the strength of the frequency as well as amplitude modulation of the laser and of molecular parameters such as pressure broadening.
NASA Astrophysics Data System (ADS)
Wang, Dong-Bo; Zhang, Jin-Chuan; Cheng, Feng-Min; Zhao, Yue; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Liu, Feng-Qi; Wang, Zhan-Guo
2018-02-01
In this work, quantum cascade lasers (QCLs) based on strain compensation combined with two-phonon resonance design are presented. Distributed feedback (DFB) laser emitting at 4.76 μm was fabricated through a standard buried first-order grating and buried heterostructure (BH) processing. Stable single-mode emission is achieved under all injection currents and temperature conditions without any mode hop by the optimized antireflection (AR) coating on the front facet. The AR coating consists of a double layer dielectric of Al2O3 and Ge. For a 2-mm laser cavity, the maximum output power of the AR-coated DFB-QCL was more than 170 mW at 20 °C with a high wall-plug efficiency (WPE) of 4.7% in a continuous-wave (CW) mode.
Zhu, Huan; Zhu, Haiqing; Wang, Fangfang; Chang, Gaolei; Yu, Chenren; Yan, Quan; Chen, Jianxin; Li, Lianhe; Davies, A Giles; Linfield, Edmund H; Tang, Zhou; Chen, Pingping; Lu, Wei; Xu, Gangyi; He, Li
2018-01-22
A terahertz master-oscillation power-amplifier quantum cascade laser (THz-MOPA-QCL) is demonstrated where a grating coupler is employed to efficiently extract the THz radiation. By maximizing the group velocity and eliminating the scattering of THz wave in the grating coupler, the residue reflectivity is reduced down to the order of 10 -3 . A buried DFB grating and a tapered preamplifier are proposed to improve the seed power and to reduce the gain saturation, respectively. The THz-MOPA-QCL exhibits single-mode emission, a single-lobed beam with a narrow divergence angle of 18° × 16°, and a pulsed output power of 136 mW at 20 K, which is 36 times that of a second-order DFB laser from the same material.
Masaki, Noritaka; Okazaki, Shigetoshi
2018-01-01
The recent development of quantum cascade lasers (QCLs) has facilitated the irradiation of a mid-infrared laser beam that is specifically absorbed by a target molecular bond. Aiming for a selective delivery of laser energy to a specific absorption at 1,738 cm−1 by the ester bonds of triacylglycerol (TAG), a QCL beam with a wavenumber of 1,710 cm−1 was irradiated to 3T3–L1 adipocytes and preadipocytes. Neutral red staining, and FITC-labeled annexin V and ethidium homodimer-III assays revealed the occurrence of adipocyte-specific cell death 24 h after QCL irradiation. The selective delivery of laser energy to endogenous molecules can affect biological processes in a living organism. PMID:29760972
Quantum cascade laser based sensor for open path measurement of atmospheric trace gases
NASA Astrophysics Data System (ADS)
Deng, Hao; Sun, Juan; Liu, Ningwu; Ding, Junya; Chao, Zhou; Zhang, Lei; Li, Jingsong
2017-02-01
A sensitive open-path gas sensor employing a continuous-wave (CW) distributed feedback (DFB) quantum cascade laser (QCL) and direct absorption spectroscopy (DAS) was demonstrated for simultaneously measurements of atmospheric CO and N2O. Two interference free absorption lines located at 2190.0175 cm-1 and 2190.3498 cm-1 were selected for CO and N2O concentration measurements, respectively. The Allan variance analysis technique was performed to investigate the long-term performance of the QCL sensor system. The results indicate that a detection limit of 9.92 ppb for CO and 7.7 ppb for N2O with 1-s integration time were achieved, which can be further improved to 1.5 ppb and 1.1 ppb by increasing the average time up to 80 s.
Hansen, Michael G; Magoulakis, Evangelos; Chen, Qun-Feng; Ernsting, Ingo; Schiller, Stephan
2015-05-15
We demonstrate a powerful tool for high-resolution mid-IR spectroscopy and frequency metrology with quantum cascade lasers (QCLs). We have implemented frequency stabilization of a QCL to an ultra-low expansion (ULE) reference cavity, via upconversion to the near-IR spectral range, at a level of 1×10(-13). The absolute frequency of the QCL is measured relative to a hydrogen maser, with instability <1×10(-13) and inaccuracy 5×10(-13), using a frequency comb phase stabilized to an independent ultra-stable laser. The QCL linewidth is determined to be 60 Hz, dominated by fiber noise. Active suppression of fiber noise could result in sub-10 Hz linewidth.
Masaki, Noritaka; Okazaki, Shigetoshi
2018-05-01
The recent development of quantum cascade lasers (QCLs) has facilitated the irradiation of a mid-infrared laser beam that is specifically absorbed by a target molecular bond. Aiming for a selective delivery of laser energy to a specific absorption at 1,738 cm -1 by the ester bonds of triacylglycerol (TAG), a QCL beam with a wavenumber of 1,710 cm -1 was irradiated to 3T3-L1 adipocytes and preadipocytes. Neutral red staining, and FITC-labeled annexin V and ethidium homodimer-III assays revealed the occurrence of adipocyte-specific cell death 24 h after QCL irradiation. The selective delivery of laser energy to endogenous molecules can affect biological processes in a living organism.
Grier, Andrew; Dean, Paul; Valavanis, Alexander; Keeley, James; Kundu, Iman; Cooper, Jonathan D; Agnew, Gary; Taimre, Thomas; Lim, Yah Leng; Bertling, Karl; Rakić, Aleksandar D; Li, Lianhe H; Harrison, Paul; Linfield, Edmund H; Ikonić, Zoran; Davies, A Giles; Indjin, Dragan
2016-09-19
We explain the origin of voltage variations due to self-mixing in a terahertz (THz) frequency quantum cascade laser (QCL) using an extended density matrix (DM) approach. Our DM model allows calculation of both the current-voltage (I-V) and optical power characteristics of the QCL under optical feedback by changing the cavity loss, to which the gain of the active region is clamped. The variation of intra-cavity field strength necessary to achieve gain clamping, and the corresponding change in bias required to maintain a constant current density through the heterostructure is then calculated. Strong enhancement of the self-mixing voltage signal due to non-linearity of the (I-V) characteristics is predicted and confirmed experimentally in an exemplar 2.6 THz bound-to-continuum QCL.
High brightness angled cavity quantum cascade lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heydari, D.; Bai, Y.; Bandyopadhyay, N.
2015-03-02
A quantum cascade laser (QCL) with an output power of 203 W is demonstrated in pulsed mode at 283 K with an angled cavity. The device has a ridge width of 300 μm, a cavity length of 5.8 mm, and a tilt angle of 12°. The back facet is high reflection coated, and the front facet is anti-reflection coated. The emitting wavelength is around 4.8 μm. In distinct contrast to a straight cavity broad area QCL, the lateral far field is single lobed with a divergence angle of only 3°. An ultrahigh brightness value of 156 MW cm{sup −2 }sr{sup −1} is obtained, which marks the brightestmore » QCL to date.« less
On-chip dual-comb based on quantum cascade laser frequency combs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villares, G., E-mail: gustavo.villares@phys.ethz.ch; Wolf, J.; Kazakov, D.
2015-12-21
Dual-comb spectroscopy is emerging as an appealing application of mid-infrared frequency combs for high-resolution molecular spectroscopy, as it leverages on the unique coherence properties of frequency combs. Here, we present an on-chip dual-comb source based on mid-infrared quantum cascade laser frequency combs. Control of the combs repetition and offset frequencies is obtained by integrating micro-heaters next to each laser. We show that a full control of the dual-comb system is possible, by measuring a multi-heterodyne beating corresponding to an optical bandwidth of 32 cm{sup −1} centered at 1330 cm{sup −1} (7.52 μm), demonstrating that this device represents a critical step towards compact dual-combmore » systems.« less
Quantum cascade lasers, systems, and applications in Europe
NASA Astrophysics Data System (ADS)
Lambrecht, Armin
2005-03-01
Since the invention of the Quantum Cascade Laser (QCL) a decade ago an impressive progress has been achieved from first low temperature pulsed laser emission to continuous wave operation at room temperature. Distributed feedback (DFB) lasers working in pulsed mode at ambient temperatures and covering a broad spectral range in the mid infrared (MIR) are commercially available now. For many industrial applications e.g. automotive exhaust control and process monitoring, laser spectroscopy is an established technique, generally using near infrared (NIR) diode lasers. However, the mid infrared (MIR) spectral region is of special interest because of much stronger absorption lines compared to NIR. The status of QCL devices, system development and applications is reviewed. Special emphasis is given to the situation in Europe where a remarkable growth of QCL related R&D can be observed.
Bidaux, Yves; Bismuto, Alfredo; Patimisco, Pietro; Sampaolo, Angelo; Gresch, Tobias; Strubi, Gregory; Blaser, Stéphane; Tittel, Frank K; Spagnolo, Vincenzo; Muller, Antoine; Faist, Jérôme
2016-11-14
We present a single mode multi-section quantum cascade laser source composed of three different sections: master oscillator, gain and phase section. Non-uniform pumping of the QCL's gain reveals that the various laser sections are strongly coupled. Simulations of the electronic and optical properties of the laser (based on the density matrix and scattering matrix formalisms, respectively) were performed and a good agreement with measurements is obtained. In particular, a pure modulation of the laser output power can be achieved. This capability of the device is applied in tunable-laser spectroscopy of N2O where background-free quartz enhanced photo acoustic spectral scans with nearly perfect Voigt line shapes for the selected absorption line are obtained.
Alignment of CH3F in para-H2 crystal studied by IR quantum cascade laser polarization spectroscopy.
Kawasaki, Hiroyuki; Mizoguchi, Asao; Kanamori, Hideto
2016-05-14
In order to investigate the alignment of CH3F in para-H2 crystals, high resolution polarization spectroscopy of the ν3 vibrational band is studied using a quantum cascade laser at 1040 cm(-1). It is found that the main and satellite series of peaks in the ν3 vibrational band of CH3F have the same polarization dependence. This result supports the previously proposed cluster model with ortho-H2 in first and second nearest neighbor sites. The observed polarization dependence function is well described by a simple six-axis void model in which CH3F is not aligned along the c-axis of the crystal but tilted to 64.9(3)° from it.
Output limitations to single stage and cascaded 2-2.5 mum light emitting diodes
NASA Astrophysics Data System (ADS)
Hudson, Andrew Ian
Since the advent of precise semiconductor engineering techniques in the 1960s, considerable effort has been devoted both in academia and private industry to the fabrication and testing of complex structures. In addition to other techniques, molecular beam epitaxy (MBE) has made it possible to create devices with single mono-layer accuracy. This facilitates the design of precise band structures and the selection of specific spectroscopic properties for light source materials. The applications of such engineered structures have made solid state devices common commercial quantities. These applications include solid state lasers, light emitting diodes and light sensors. Band gap engineering has been used to design emitters for many wavelength bands, including the short wavelength (SWIR) infrared region which ranges from 1.5 to 2.5mum. Practical devices include sensors operating in the 2-2.5mum range. When designing such a device, necessary concerns include the required bias voltage, operating current, input impedance and especially for emitters, the wall-plug efficiency. Three types of engineered structures are considered in this thesis. These include GaInAsSb quaternary alloy bulk active regions, GaInAsSb multiple quantum well devices (MQW) and GaInAsSb cascaded light emitting diodes. The three structures are evaluated according to specific standards applied to emitters of infrared light. The spectral profiles are obtained with photo or electro-luminescence, for the purpose of locating the peak emission wavelength. The peak wavelength for these specimens is in the 2.2-2.5mum window. The emission efficiency is determined by employing three empirical techniques: current/voltage (IV), radiance/current (LI), and carrier lifetime measurements. The first verifies that the structure has the correct electrical properties, by measuring among other parameters the activation voltage. The second is used to determine the energy efficiency of the device, including the wall-plug and quantum efficiencies. The last provides estimates of the relative magnitude of the Shockley Read Hall, radiative and Auger coefficients. These constants illustrate the overall radiative efficiency of the material, by noting comparisons between radiative and non-radiative recombination rates.
NASA Astrophysics Data System (ADS)
Missous, M.; Mitchell, C.; Sly, J.; Lai, K. T.; Gupta, R.; Haywood, S. K.
2004-01-01
Highly strained quantum cascade laser (QCL) and quantum well infrared photodetector (QWIPs) structures based on InxGa(1-x)As-InyAl(1-y)As (x>0.8,y<0.3) layers have been grown by molecular beam epitaxy. Conditions of exact stoichiometric growth were used at a temperature of ∼420°C to produce structures that are suitable for both emission and detection in the 2- 5 μm mid-infrared regime. High structural integrity, as assessed by double crystal X-ray diffraction, room temperature photoluminescence and electrical characteristics were observed. Strong room temperature intersubband absorption in highly tensile strained and strain-compensated In 0.84Ga 0.16As/AlAs/In 0.52Al 0.48As double barrier quantum wells grown on InP substrates is demonstrated. Γ- Γ intersubband transitions have been observed across a wide range of the mid-infrared spectrum (2- 7 μm) in three structures of differing In 0.84Ga 0.16As well width (30, 45, and 80 Å). We demonstrate short-wavelength IR, intersubband operation in both detection and emission for application in QC and QWIP structures. By pushing the InGaAs-InAlAs system to its ultimate limit, we have obtained the highest band offsets that are theoretically possible in this system both for the Γ- Γ bands and the Γ-X bands, thereby opening up the way for both high power and high efficiency coupled with short-wavelength operation at room temperature. The versatility of this material system and technique in covering a wide range of the infrared spectrum is thus demonstrated.
Multi-species trace gas analysis with dual-wavelength quantum cascade laser
NASA Astrophysics Data System (ADS)
Jágerská, Jana; Tuzson, Béla; Looser, Herbert; Jouy, Pierre; Hugi, Andreas; Mangold, Markus; Soltic, Patrik; Faist, Jérôme; Emmenegger, Lukas
2015-04-01
Simultaneous detection of multiple gas species using mid-IR laser spectroscopy is highly appealing for a large variety of applications ranging from air quality monitoring, medical breath analysis to industrial process control. However, state-of-the-art distributed-feedback (DFB) mid-IR lasers are usually tunable only within a narrow spectral range, which generally leads to one-laser-one-compound measurement strategy. Thus, multi-species detection involves several lasers and elaborate beam combining solutions [1]. This makes them bulky, costly, and highly sensitive to optical alignment, which limits their field deployment. In this paper, we explore an alternative measurement concept based on a dual-wavelength quantum cascade laser (DW-QCL) [2]. Such a laser can emit at two spectrally distinct wavelengths using a succession of two DFB gratings with different periodicities and a common waveguide to produce one output beam. The laser design was optimized for NOx measurements and correspondingly emits single-mode at 5.26 and 6.25 μm. Electrical separation of the respective laser sections makes it possible to address each wavelength independently. Thereby, it is possible to detect NO and NO2 species with one laser using the same optical path, without any beam combining optics, i.e. in a compact and cost-efficient single-path optical setup. Operated in a time-division multiplexed mode, the spectrometer reaches detection limits at 100 s averaging of 0.5 and 1.5 ppb for NO2 and NO, respectively. The performance of the system was validated against the well-established chemiluminescence detection while measuring the NOx emissions on an automotive test-bench, as well as monitoring the pollution at a suburban site. [1] B. Tuzson, K. Zeyer, M. Steinbacher, J. B. McManus, D. D. Nelson, M. S. Zahniser, and L. Emmenegger, 'Selective measurements of NO, NO2 and NOy in the free troposphere using quantum cascade laser spectroscopy,' Atmospheric Measurement Techniques 6, 927-936 (2013). [2] J. Jágerská, P. Jouy, A. Hugi, B. Tuzson, H. Looser, M. Mangold, M. Beck, L. Emmenegger, and J. Faist, 'Dual-wavelength quantum cascade laser for trace gas spectroscopy,' Applied Physics Letters 105, 161109-161109-4 (2014).
Pleitez, Miguel; von Lilienfeld-Toal, Hermann; Mäntele, Werner
2012-01-01
Interstitial fluid, i.e. the liquid present in the outermost layer of living cells of the skin between the Stratum corneum and the Stratum spinosum, was analyzed by Fourier transform infrared spectroscopy and by infrared spectroscopy using pulsed quantum cascade infrared lasers with photoacoustic detection. IR spectra of simulated interstitial fluid samples and of real samples from volunteers in the 850-1800cm(-1) range revealed that the major components of interstitial fluid are albumin and glucose within the physiological range, with only traces of sodium lactate if at all. The IR absorbance of glucose in interstitial fluid in vivo was probed in healthy volunteers using a setup with quantum cascade lasers and photoacoustic detection previously described. A variation of blood glucose between approx. 80mg/dl and 250mg/dl in the volunteers was obtained using the standard oral glucose tolerance test (OGT). At two IR wavelengths, 1054cm(-1) and 1084cm(-1), a reasonable correlation between the photoacoustic signal from the skin and the blood glucose value as determined by conventional glucose test sticks using blood from the finger tip was obtained. The infrared photoacoustic glucose signal (PAGS) may serve as the key for a non-invasive glucose measurement, since the glucose content in interstitial fluid closely follows blood glucose in the time course and in the level (a delay of some minutes and a level of approx. 80-90% of the glucose level in blood). Interstitial fluid is present in skin layers at a depth of only 15-50μm and is thus within the reach of mid-IR energy in an absorbance measurement. A non-invasive glucose measurement for diabetes patients based on mid-infrared quantum cascade lasers and photoacoustic detection could replace the conventional measurement using enzymatic test stripes and a drop of blood from the finger tip, thus reducing pain and being a cost-efficient alternative for millions of diabetes patients. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pleitez, Miguel; von Lilienfeld-Toal, Hermann; Mäntele, Werner
2012-01-01
Interstitial fluid, i.e. the liquid present in the outermost layer of living cells of the skin between the Stratum corneum and the Stratum spinosum, was analyzed by Fourier transform infrared spectroscopy and by infrared spectroscopy using pulsed quantum cascade infrared lasers with photoacoustic detection. IR spectra of simulated interstitial fluid samples and of real samples from volunteers in the 850-1800 cm -1 range revealed that the major components of interstitial fluid are albumin and glucose within the physiological range, with only traces of sodium lactate if at all. The IR absorbance of glucose in interstitial fluid in vivo was probed in healthy volunteers using a setup with quantum cascade lasers and photoacoustic detection previously described [11]. A variation of blood glucose between approx. 80 mg/dl and 250 mg/dl in the volunteers was obtained using the standard oral glucose tolerance test (OGT). At two IR wavelengths, 1054 cm -1 and 1084 cm -1, a reasonable correlation between the photoacoustic signal from the skin and the blood glucose value as determined by conventional glucose test sticks using blood from the finger tip was obtained. The infrared photoacoustic glucose signal (PAGS) may serve as the key for a non-invasive glucose measurement, since the glucose content in interstitial fluid closely follows blood glucose in the time course and in the level (a delay of some minutes and a level of approx. 80-90% of the glucose level in blood). Interstitial fluid is present in skin layers at a depth of only 15-50 μm and is thus within the reach of mid-IR energy in an absorbance measurement. A non-invasive glucose measurement for diabetes patients based on mid-infrared quantum cascade lasers and photoacoustic detection could replace the conventional measurement using enzymatic test stripes and a drop of blood from the finger tip, thus reducing pain and being a cost-efficient alternative for millions of diabetes patients.
NASA Astrophysics Data System (ADS)
Hashimura, Keisuke; Ishii, Katsunori; Awazu, Kunio
2016-03-01
Cholesteryl esters are main components of atherosclerotic plaques and have an absorption peak at the wavelength of 5.75 μm originated from C=O stretching vibration mode of ester bond. Our group achieved the selective ablation of atherosclerotic lesions using a quantum cascade laser (QCL) in the 5.7 μm wavelength range. QCLs are relatively new types of semiconductor lasers that can emit mid-infrared range. They are sufficiently compact and considered to be useful for clinical application. However, large thermal effects were observed because the QCL worked as quasicontinuous wave (CW) lasers due to its short pulse interval. Then we tried macro pulse irradiation (irradiation of pulses at intervals) of the QCL and achieved effective ablation with less-thermal effects than conventional quasi-CW irradiation. However, lesion selectivity might be changed by changing pulse structure. Therefore, in this study, irradiation effects of the macro pulse irradiation to rabbit atherosclerotic plaque and normal vessel were compared. The macro pulse width and the macro pulse interval were set to 0.5 and 12 ms, respectively, because the thermal relaxation time of rabbit normal and atherosclerotic aortas in the oscillation wavelength of the QCL was 0.5-12 ms. As a result, cutting difference was achieved between rabbit atherosclerotic and normal aortas by the macro pulse irradiation. Therefore, macro pulse irradiation of a QCL in the 5.7 μm wavelength range is effective for reducing thermal effects and selective ablation of the atherosclerotic plaque. QCLs have the potential of realizing less-invasive laser angioplasty.
NASA Astrophysics Data System (ADS)
Murawski, Robert K.
Quantum Cascade Lasers (QCL) are unique unipolar conduction band devices designed to emit in the mid infrared region (MIR). They have been employed very successfully in spectroscopy and sensing applications. Motivated by predictions of modulation bandwidths above 100 GHz, communication links based on QCLs were recently demonstrated. However, the intrinsic device circuitry of the QCL limits its bandwidth. In this thesis a new All-Optical Modulation of the QCL is presented and investigated both theoretically and experimentally. This method of modulation allows for full access to the bandwidth as well as unique optical control of the MIR laser emission. For this purpose, conduction and valence band wave functions for the complex QCL structure are presented allowing for the first time calculations of their interband energy resonances. Based on this knowledge, a novel optical modulation scheme is developed utilizing interband transition for laser modulation. Using laser rate equations, more accurate predictions for the response function can be derived. Optical modulation is shown to be superior to direct modulation. In addition to this theoretical framework, first experiments are presented on the effects of illuminating a QCL with additional lasers at or above the interband gap. The first demonstration of All-Optical Modulation was achieved using time varying near infrared illumination and the complimentary signature in the MIR QCL emission was observed. In addition to extending the knowledge base of QCL research by a first calculation of its valence band structure, this work opens new possibilities in modulation and control of the QCL's MIR emission by interband transition. Application of this technique range from fundamental physics research (e.g. electron coherence) to ultrafast communication (e.g. free-space links) and high-resolution spectroscopy.
NASA Astrophysics Data System (ADS)
Xue, Fei; Bompard, Ettore; Huang, Tao; Jiang, Lin; Lu, Shaofeng; Zhu, Huaiying
2017-09-01
As the modern power system is expected to develop to a more intelligent and efficient version, i.e. the smart grid, or to be the central backbone of energy internet for free energy interactions, security concerns related to cascading failures have been raised with consideration of catastrophic results. The researches of topological analysis based on complex networks have made great contributions in revealing structural vulnerabilities of power grids including cascading failure analysis. However, existing literature with inappropriate assumptions in modeling still cannot distinguish the effects between the structure and operational state to give meaningful guidance for system operation. This paper is to reveal the interrelation between network structure and operational states in cascading failure and give quantitative evaluation by integrating both perspectives. For structure analysis, cascading paths will be identified by extended betweenness and quantitatively described by cascading drop and cascading gradient. Furthermore, the operational state for cascading paths will be described by loading level. Then, the risk of cascading failure along a specific cascading path can be quantitatively evaluated considering these two factors. The maximum cascading gradient of all possible cascading paths can be used as an overall metric to evaluate the entire power grid for its features related to cascading failure. The proposed method is tested and verified on IEEE30-bus system and IEEE118-bus system, simulation evidences presented in this paper suggests that the proposed model can identify the structural causes for cascading failure and is promising to give meaningful guidance for the protection of system operation in the future.
Entanglement and asymmetric steering over two octaves of frequency difference
NASA Astrophysics Data System (ADS)
Olsen, M. K.
2017-12-01
The development of quantum technologies which use quantum states of the light field interacting with other systems creates a demand for entangled states spanning wide frequency ranges. In this work we analyze a parametric scheme of cascaded harmonic generation which promises to deliver bipartite entangled states in which the two modes are separated by two octaves in frequency. This scheme is potentially very useful for applications in quantum communication and computation networks as well as providing for quantum interfaces between a wider range of light and atomic ensembles than is presently practicable. It doubles the frequency range over which entanglement is presently available.
Qualification of quantum cascade lasers for space environments
NASA Astrophysics Data System (ADS)
Myers, Tanya L.; Cannon, Bret D.; Brauer, Carolyn S.; Crowther, Blake G.; Hansen, Stewart
2014-06-01
Laser-based instruments are enabling a new generation of scientific instruments for space environments such as those used in the exploration of Mars. The lasers must be robust and able to withstand the harsh environment of space, including radiation exposure. Quantum cascade lasers (QCLs), which are semiconductor lasers that emit in the infrared spectral region, offer the potential for the development of novel laser-based instruments for space applications. The performance of QCLs after radiation exposure, however, has not been reported. We report on work to quantify the performance of QCLs after exposure to two different radiation sources, 64 MeV protons and Cobalt-60 gamma rays, at radiation levels likely to be encountered during a typical space flight mission. No significant degradation in threshold current or slope efficiency is observed for any of the seven Fabry-Perot QCLs that are tested.
Pulsed quantum cascade laser-based cavity ring-down spectroscopy for ammonia detection in breath.
Manne, Jagadeeshwari; Sukhorukov, Oleksandr; Jäger, Wolfgang; Tulip, John
2006-12-20
Breath analysis can be a valuable, noninvasive tool for the clinical diagnosis of a number of pathological conditions. The detection of ammonia in exhaled breath is of particular interest for it has been linked to kidney malfunction and peptic ulcers. Pulsed cavity ringdown spectroscopy in the mid-IR region has developed into a sensitive analytical technique for trace gas analysis. A gas analyzer based on a pulsed mid-IR quantum cascade laser operating near 970 cm(-1) has been developed for the detection of ammonia levels in breath. We report a sensitivity of approximately 50 parts per billion with a 20 s time resolution for ammonia detection in breath with this system. The challenges and possible solutions for the quantification of ammonia in human breath by the described technique are discussed.
Lewicki, Rafał; Doty, James H.; Curl, Robert F.; Tittel, Frank K.; Wysocki, Gerard
2009-01-01
A transportable prototype Faraday rotation spectroscopic system based on a tunable external cavity quantum cascade laser has been developed for ultrasensitive detection of nitric oxide (NO). A broadly tunable laser source allows targeting the optimum Q3/2(3/2) molecular transition at 1875.81 cm−1 of the NO fundamental band. For an active optical path of 44 cm and 1-s lock-in time constant minimum NO detection limits (1σ) of 4.3 parts per billion by volume (ppbv) and 0.38 ppbv are obtained by using a thermoelectrically cooled mercury–cadmium–telluride photodetector and liquid nitrogen-cooled indium–antimonide photodetector, respectively. Laboratory performance evaluation and results of continuous, unattended monitoring of atmospheric NO concentration levels are reported. PMID:19625625
2.32 THz quantum cascade laser frequency-locked to the harmonic of a microwave synthesizer source.
Danylov, Andriy A; Light, Alexander R; Waldman, Jerry; Erickson, Neal R; Qian, Xifeng; Goodhue, William D
2012-12-03
Frequency stabilization of a THz quantum cascade laser (QCL) to the harmonic of a microwave source has been accomplished using a Schottky diode waveguide mixer designed for harmonic mixing. The 2.32 THz, 1.0 milliwatt CW QCL is coupled into the signal port of the mixer and a 110 GHz signal, derived from a harmonic of a microwave synthesizer, is coupled into the IF port. The difference frequency between the 21st harmonic of 110 GHz and the QCL is used in a discriminator to adjust the QCL bias current to stabilize the frequency. The short-term frequency jitter is reduced from 550 kHz to 4.5 kHz (FWHM) and the long-term frequency drift is eliminated. This performance is compared to that of several other THz QCL frequency stabilization techniques.
NASA Astrophysics Data System (ADS)
Sigler, Chris; Gibson, Ricky; Boyle, Colin; Kirch, Jeremy D.; Lindberg, Donald; Earles, Thomas; Botez, Dan; Mawst, Luke J.; Bedford, Robert
2018-01-01
The modal characteristics of nonresonant five-element phase-locked arrays of 4.7-μm emitting quantum cascade lasers (QCLs) have been studied using spectrally resolved near- and far-field measurements and correlated with results of device simulation. Devices are fabricated by a two-step metal-organic chemical vapor deposition process and operate predominantly in an in-phase array mode near threshold, although become multimode at higher drive levels. The wide spectral bandwidth of the QCL's core region is found to be a factor in promoting multispatial-mode operation at high drive levels above threshold. An optimized resonant-array design is identified to allow sole in-phase array-mode operation to high drive levels above threshold, and indicates that for phase-locked laser arrays full spatial coherence to high output powers does not require full temporal coherence.
Optical feedback effects on terahertz quantum cascade lasers: modelling and applications
NASA Astrophysics Data System (ADS)
Rakić, Aleksandar D.; Lim, Yah Leng; Taimre, Thomas; Agnew, Gary; Qi, Xiaoqiong; Bertling, Karl; Han, She; Wilson, Stephen J.; Kundu, Iman; Grier, Andrew; Ikonić, Zoran; Valavanis, Alexander; Demić, Aleksandar; Keeley, James; Li, Lianhe H.; Linfield, Edmund H.; Davies, A. Giles; Harrison, Paul; Ferguson, Blake; Walker, Graeme; Prow, Tarl; Indjin, Dragan; Soyer, H. Peter
2016-11-01
Terahertz (THz) quantum cascade lasers (QCLs) are compact sources of radiation in the 1-5 THz range with significant potential for applications in sensing and imaging. Laser feedback interferometry (LFI) with THz QCLs is a technique utilizing the sensitivity of the QCL to the radiation reflected back into the laser cavity from an external target. We will discuss modelling techniques and explore the applications of LFI in biological tissue imaging and will show that the confocal nature of the QCL in LFI systems, with their innate capacity for depth sectioning, makes them suitable for skin diagnostics with the well-known advantages of more conventional confocal microscopes. A demonstration of discrimination of neoplasia from healthy tissue using a THz, LFI-based system in the context of melanoma is presented using a transgenic mouse model.
4.3 μm quantum cascade detector in pixel configuration.
Harrer, A; Schwarz, B; Schuler, S; Reininger, P; Wirthmüller, A; Detz, H; MacFarland, D; Zederbauer, T; Andrews, A M; Rothermund, M; Oppermann, H; Schrenk, W; Strasser, G
2016-07-25
We present the design simulation and characterization of a quantum cascade detector operating at 4.3μm wavelength. Array integration and packaging processes were investigated. The device operates in the 4.3μm CO2 absorption region and consists of 64 pixels. The detector is designed fully compatible to standard processing and material growth methods for scalability to large pixel counts. The detector design is optimized for a high device resistance at elevated temperatures. A QCD simulation model was enhanced for resistance and responsivity optimization. The substrate illuminated pixels utilize a two dimensional Au diffraction grating to couple the light to the active region. A single pixel responsivity of 16mA/W at room temperature with a specific detectivity D* of 5⋅107 cmHz/W was measured.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slivken, S.; Sengupta, S.; Razeghi, M., E-mail: razeghi@eecs.northwestern.edu
2015-12-21
Wide electrical tuning and high continuous output power is demonstrated from a single mode quantum cascade laser emitting at a wavelength near 4.8 μm. This is achieved in a space efficient manner by integrating an asymmetric sampled grating distributed feedback tunable laser with an optical amplifier. An initial demonstration of high peak power operation in pulsed mode is demonstrated first, with >5 W output over a 270 nm (113 cm{sup −1}) spectral range. Refinement of the geometry leads to continuous operation with a single mode spectral coverage of 300 nm (120 cm{sup −1}) and a maximum continuous power of 1.25 W. The output beam is shown tomore » be nearly diffraction-limited, even at high amplifier current.« less
Wang, Dong-Bo; Zhang, Jin-Chuan; Cheng, Feng-Min; Zhao, Yue; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Liu, Feng-Qi; Wang, Zhan-Guo
2018-02-02
In this work, quantum cascade lasers (QCLs) based on strain compensation combined with two-phonon resonance design are presented. Distributed feedback (DFB) laser emitting at ~ 4.76 μm was fabricated through a standard buried first-order grating and buried heterostructure (BH) processing. Stable single-mode emission is achieved under all injection currents and temperature conditions without any mode hop by the optimized antireflection (AR) coating on the front facet. The AR coating consists of a double layer dielectric of Al 2 O 3 and Ge. For a 2-mm laser cavity, the maximum output power of the AR-coated DFB-QCL was more than 170 mW at 20 °C with a high wall-plug efficiency (WPE) of 4.7% in a continuous-wave (CW) mode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bidaux, Yves, E-mail: yves.bidaux@alpeslasers.ch; Institute for Quantum Electronics, ETH-Zurich, CH-8093 Zurich; Bismuto, Alfredo, E-mail: alfredo.bismuto@alpeslasers.ch
2015-11-30
In this work, we demonstrate broad electrical tuning of quantum cascade lasers at 9.25 μm, 8.5 μm, and 4.4 μm in continuous wave operation using Vernier-effect distributed Bragg reflectors based on superstructure gratings. Integrated micro-heaters allow to switch from one Vernier channel to the other, while predictable and mode-hop free tuning can be obtained in each channel modulating the laser current with a side mode suppression ratio as high as 30 dB. The resulting device behaves effectively as a switchable multicolour tunable source. Tuning up to 6.5% of the central wavelength is observed. To prove the importance of the developed devices for high resolutionmore » molecular spectroscopy, a N{sub 2}O absorption spectrum has been measured.« less
Quartz-enhanced photoacoustic detection of ethylene using a 10.5 μm quantum cascade laser.
Wang, Zhen; Li, Zhili; Ren, Wei
2016-02-22
A quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor has been developed for the sensitive detection of ethylene (C2H4) at 10.5 µm using a continuous-wave distributed-feedback quantum cascade laser. At this long-wavelength infrared, the key acoustic elements of quartz tuning fork and micro-resonators were optimized to improve the detection signal-to-noise ratio by a factor of >4. The sensor calibration demonstrated an excellent linear response (R2>0.999) to C2H4 concentration at the selected operating pressure of 500 and 760 Torr. With a minimum detection limit of 50 parts per billion (ppb) achieved at an averaging time of 70 s, the sensor has been deployed for measuring the C2H4 efflux during the respiration of biological samples in an agronomic environment.
Contributed review: quantum cascade laser based photoacoustic detection of explosives.
Li, J S; Yu, B; Fischer, H; Chen, W; Yalin, A P
2015-03-01
Detecting trace explosives and explosive-related compounds has recently become a topic of utmost importance for increasing public security around the world. A wide variety of detection methods and an even wider range of physical chemistry issues are involved in this very challenging area. Optical sensing methods, in particular mid-infrared spectrometry techniques, have a great potential to become a more desirable tools for the detection of explosives. The small size, simplicity, high output power, long-term reliability make external cavity quantum cascade lasers (EC-QCLs) the promising spectroscopic sources for developing analytical instrumentation. This work reviews the current technical progress in EC-QCL-based photoacoustic spectroscopy for explosives detection. The potential for both close-contact and standoff configurations using this technique is completely presented over the course of approximately the last one decade.
NASA Astrophysics Data System (ADS)
Cui, Xiaojuan; Dong, Fengzhong; Sigrist, Markus W.; Zhang, Zhirong; Wu, Bian; Xia, Hua; Pang, Tao; Sun, Pengshuai; Fertein, Eric; Chen, Weidong
2016-10-01
Effective line intensities of P branch transitions of trans-nitrous acid (HONO) in the ν3 H-O-N bending mode near 1255 cm-1 have been determined by scaling measured HONO absorption intensities by continuous-wave quantum cascade laser absorption spectroscopy to reference values. Gaseous HONO samples were synthetized in the laboratory using the reaction of H2SO4 and NaNO2 solutions and the heterogeneous formation on surfaces in the presence of ambient water vapor and NO2 gas in a sealed gas sampling bag. The quantification of HONO was performed using a denuder associated with a NOx analyzer. Observed absorption line strengths for the trans conformer are found to be by a factor of approximately 1.17 higher than previously reported line strengths.
Markmann, Sergej; Nong, Hanond; Pal, Shovon; Fobbe, Tobias; Hekmat, Negar; Mohandas, Reshma A; Dean, Paul; Li, Lianhe; Linfield, Edmund H; Davies, A Giles; Wieck, Andreas D; Jukam, Nathan
2017-09-04
Two-dimensional spectroscopy is performed on a terahertz (THz) frequency quantum cascade laser (QCL) with two broadband THz pulses. Gain switching is used to amplify the first THz pulse and the second THz pulse is used to probe the system. Fourier transforms are taken with respect to the delay time between the two THz pulses and the sampling time of the THz probe pulse. The two-dimensional spectrum consists of three peaks at (ω τ = 0, ω t = ω 0 ), (ω τ = ω 0 , ω t = ω 0 ), and (ω τ = 2ω 0 , ω t = ω 0 ) where ω 0 denotes the lasing frequency. The peak at ω τ = 0 represents the response of the probe to the zero-frequency (rectified) component of the instantaneous intensity and can be used to measure the gain recovery.
Terahertz generation in mid-infrared quantum cascade lasers with a dual-upper-state active region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujita, Kazuue, E-mail: kfujita@crl.hpk.co.jp; Hitaka, Masahiro; Ito, Akio
2015-06-22
We report the performance of room temperature terahertz sources based on intracavity difference-frequency generation in mid-infrared quantum cascade lasers with a dual-upper-state (DAU) active region. DAU active region design is theoretically expected to produce larger optical nonlinearity for terahertz difference-frequency generation, compared to the active region designs of the bound-to-continuum type used previously. Fabricated buried heterostructure devices with a two-section buried distributed feedback grating and the waveguide designed for Cherenkov difference-frequency phase-matching scheme operate in two single-mode mid-infrared wavelengths at 10.7 μm and 9.7 μm and produce terahertz output at 2.9 THz with mid-infrared to terahertz conversion efficiency of 0.8 mW/W{sup 2}more » at room temperature.« less
Integration of quantum cascade lasers and passive waveguides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montoya, Juan, E-mail: juan.montoya@ll.mit.edu; Wang, Christine; Goyal, Anish
2015-07-20
We report on monolithic integration of active quantum cascade laser (QCL) materials with passive waveguides formed by using proton implantation. Proton implantation reduces the electron concentration in the QCL layers by creating deep levels that trap carriers. This strongly reduces the intersubband absorption and the free-carrier absorption in the gain region and surrounding layers, thus significantly reducing optical loss. We have measured loss as low as α = 0.33 cm{sup −1} in λ = 9.6 μm wavelength proton-implanted QCL material. We have also demonstrated lasing in active-passive integrated waveguides. This simple integration technique is anticipated to enable low-cost fabrication in infrared photonic integrated circuits in themore » mid-infrared (λ ∼ 3–16 μm)« less
Tan, Song; Liu, Wan-feng; Wang, Li-jun; Zhang, Jin-chuan; Li, Lu; Liu, Jun-qi; Liu, Feng-qi; Wang, Zhan-guo
2012-05-01
There have been considerable interests in methane detection based on infrared absorption spectroscopy for industrial and environment monitoring. The authors report on the realization of photoacoustic detection of methane (CH4) using mid-infrared distributed-feedback quantum cascade laser (DFB-QCL). The absorption line at 1316.83 cm(-1) was selected for CH4 detection, which can be reached by the self-manufactured DFB-QCL source operating in pulsed mode near 7.6 microm at room-temperature. The CH4 gas is filled to a Helmholtz resonant photoacoustic cell, which was equipped with a commercial electret microphone. The DFB-QCL was operated at 234 Hz with an 80 mW optical peak power. A detection limit of 189 parts per billion in volume was derived when the signal-to-noise ratio equaled 1.
Real-time gas sensing based on optical feedback in a terahertz quantum-cascade laser.
Hagelschuer, Till; Wienold, Martin; Richter, Heiko; Schrottke, Lutz; Grahn, Holger T; Hübers, Heinz-Wilhelm
2017-11-27
We report on real-time gas sensing with a terahertz quantum-cascade laser (QCL). The method is solely based on the modulation of the external cavity length, exploiting the intermediate optical feedback regime. While the QCL is operated in continuous-wave mode, optical feedback results in a change of the QCL frequency as well as its terminal voltage. The first effect is exploited to tune the lasing frequency across a molecular absorption line. The second effect is used for the detection of the self-mixing signal. This allows for fast measurement times on the order of 10 ms per spectrum and for real-time measurements of gas concentrations with a rate of 100 Hz. This technique is demonstrated with a mixture of D 2 O and CH 3 OD in an absorption cell.
Contributed Review: Quantum cascade laser based photoacoustic detection of explosives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J. S., E-mail: jingsong-li@ahu.edu.cn; Yu, B.; Fischer, H.
2015-03-15
Detecting trace explosives and explosive-related compounds has recently become a topic of utmost importance for increasing public security around the world. A wide variety of detection methods and an even wider range of physical chemistry issues are involved in this very challenging area. Optical sensing methods, in particular mid-infrared spectrometry techniques, have a great potential to become a more desirable tools for the detection of explosives. The small size, simplicity, high output power, long-term reliability make external cavity quantum cascade lasers (EC-QCLs) the promising spectroscopic sources for developing analytical instrumentation. This work reviews the current technical progress in EC-QCL-based photoacousticmore » spectroscopy for explosives detection. The potential for both close-contact and standoff configurations using this technique is completely presented over the course of approximately the last one decade.« less
Achieving comb formation over the entire lasing range of quantum cascade lasers.
Yang, Yang; Burghoff, David; Reno, John; Hu, Qing
2017-10-01
Frequency combs based on quantum cascade lasers (QCLs) are finding promising applications in high-speed broadband spectroscopy in the terahertz regime, where many molecules have their "fingerprints." To form stable combs in QCLs, an effective control of group velocity dispersion plays a critical role. The dispersion of the QCL cavity has two main parts: a static part from the material and a dynamic part from the intersubband transitions. Unlike the gain, which is clamped to a fixed value above the lasing threshold, dispersion associated with the intersubband transitions changes with bias, even above the threshold, and this reduces the dynamic range of comb formation. Here, by incorporating tunability into the dispersion compensator, we demonstrate a QCL device exhibiting comb operation from I th to I max , which greatly expands the operation range of the frequency combs.
NASA Astrophysics Data System (ADS)
Wu, Erheng; Cao, Qing; You, Jun; Liu, Chengpu
2017-06-01
The ultrafast dynamics in the few-cycle laser seeding of quantum cascade laser (QCL) is numerically investigated via the exact solution of the full-wave Maxwell-Bloch equations. It is found that, with or without taking permanent dipole moment (PDM) into account, the QCL emission is quite different: beyond the fundamental frequency band, additional high and low bands occur for that with PDM, which forms an ultra-broad quasi-comb. The origin for this is closely related to the generation of second order harmonic and direct-current components as a result of PDM breaking down the parity symmetry. Moreover, the carrier-envelope-phase (CEP) of laser seed is locked to the QCL output, no matter with or without PDM, and this phase controlled QCL maybe has more wide and convenient applications in related fields.
Photo-generated metamaterials induce modulation of CW terahertz quantum cascade lasers
Mezzapesa, Francesco P.; Columbo, Lorenzo L.; Rizza, Carlo; Brambilla, Massimo; Ciattoni, Alessardro; Dabbicco, Maurizio; Vitiello, Miriam S.; Scamarcio, Gaetano
2015-01-01
Periodic patterns of photo-excited carriers on a semiconductor surface profoundly modifies its effective permittivity, creating a stationary all-optical quasi-metallic metamaterial. Intriguingly, one can tailor its artificial birefringence to modulate with unprecedented degrees of freedom both the amplitude and phase of a quantum cascade laser (QCL) subject to optical feedback from such an anisotropic reflector. Here, we conceive and devise a reconfigurable photo-designed Terahertz (THz) modulator and exploit it in a proof-of-concept experiment to control the emission properties of THz QCLs. Photo-exciting sub-wavelength metastructures on silicon, we induce polarization-dependent changes in the intra-cavity THz field, that can be probed by monitoring the voltage across the QCL terminals. This inherently flexible approach promises groundbreaking impact on THz photonics applications, including THz phase modulators, fast switches, and active hyperbolic media. PMID:26549166
Pang, Xiaodan; Ozolins, Oskars; Schatz, Richard; Storck, Joakim; Udalcovs, Aleksejs; Navarro, Jaime Rodrigo; Kakkar, Aditya; Maisons, Gregory; Carras, Mathieu; Jacobsen, Gunnar; Popov, Sergei; Lourdudoss, Sebastian
2017-09-15
Gigabit free-space transmissions are experimentally demonstrated with a quantum cascaded laser (QCL) emitting at mid-wavelength infrared of 4.65 μm, and a commercial infrared photovoltaic detector. The QCL operating at room temperature is directly modulated using on-off keying and, for the first time, to the best of our knowledge, four- and eight-level pulse amplitude modulations (PAM-4, PAM-8). By applying pre- and post-digital equalizations, we achieve up to 3 Gbit/s line data rate in all three modulation configurations with a bit error rate performance of below the 7% overhead hard decision forward error correction limit of 3.8×10 -3 . The proposed transmission link also shows a stable operational performance in the lab environment.
NASA Technical Reports Server (NTRS)
Kosterev, A. A.; Curl, R. F.; Tittel, F. K.; Gmachl, C.; Capasso, F.; Sivco, D. L.; Baillargeon, J. N.; Hutchinson, A. L.; Cho, A. Y.
1999-01-01
A quantum-cascade laser operating at a wavelength of 8.1 micrometers was used for high-sensitivity absorption spectroscopy of methane (CH4). The laser frequency was continuously scanned with current over more than 3 cm-1, and absorption spectra of the CH4 nu 4 P branch were recorded. The measured laser linewidth was 50 MHz. A CH4 concentration of 15.6 parts in 10(6) ( ppm) in 50 Torr of air was measured in a 43-cm path length with +/- 0.5-ppm accuracy when the signal was averaged over 400 scans. The minimum detectable absorption in such direct absorption measurements is estimated to be 1.1 x 10(-4). The content of 13CH4 and CH3D species in a CH4 sample was determined.
NASA Astrophysics Data System (ADS)
Couto, F. M.; Sthel, M. S.; Castro, M. P. P.; da Silva, M. G.; Rocha, M. V.; Tavares, J. R.; Veiga, C. F. M.; Vargas, H.
2014-12-01
In order to investigate the generation of greenhouse gases in sugarcane ethanol production chain, a comparative study of N2O emission in artificially fertilized soils and soils free from fertilizers was carried out. Photoacoustic spectroscopy using quantum cascade laser with an emission ranging from 7.71 to 7.88 µm and differential photoacoustic cell were applied to detect nitrous oxide (N2O), an important greenhouse gas emitted from soils cultivated with sugar cane. Owing to calibrate the experimental setup, an initial N2O concentration was diluted with pure nitrogen and detection limit of 50 ppbv was achieved. The proposed methodology was selective and sensitive enough to detect N2O from no fertilized and artificially fertilized soils. The measured N2O concentration ranged from ppmv to ppbv.
Spectroscopic detection of biological NO with a quantum cascade laser
NASA Technical Reports Server (NTRS)
Menzel, L.; Kosterev, A. A.; Curl, R. F.; Tittel, F. K.; Gmachl, C.; Capasso, F.; Sivco, D. L.; Baillargeon, J. N.; Hutchinson, A. L.; Cho, A. Y.;
2001-01-01
Two configurations of a continuous wave quantum cascade distributed feedback laser-based gas sensor for the detection of NO at a parts per billion (ppb) concentration level, typical of biomedical applications, have been investigated. The laser was operated at liquid nitrogen temperature near lambda = 5.2 microns. In the first configuration, a 100 m optical path length multi-pass cell was employed to enhance the NO absorption. In the second configuration, a technique based on cavity-enhanced spectroscopy (CES) was utilized, with an effective path length of 670 m. Both sensors enabled simultaneous analysis of NO and CO2 concentrations in exhaled air. The minimum detectable NO concentration was found to be 3 ppb with a multi-pass cell and 16 ppb when using CES. The two techniques are compared, and potential future developments are discussed.
NASA Astrophysics Data System (ADS)
Liu, Xunchen; Kang, Cheolhwa; Xu, Yunjie
2009-06-01
Quantum cascade laser (QCL) is a new type of mid-infrared tunable diode lasers with superior output power and mode quality. Recent developments, such as room temperature operation, wide frequency tunability, and narrow line width, make QCLs an ideal light source for high resolution spectroscopy. Two slit jet infrared spectrometers, namely an off-axis cavity enhanced absorption (CEA) spectrometer and a rapid scan spectrometer with an astigmatic multi-pass cell assembly, have been coupled with a newly purchased room temperature tunable mod-hop-free QCL with a frequency coverage from 1592 cm^{-1} to 1698 cm^{-1} and a scan rate of 0.1 cm^{-1}/ms. Our aim is to utilize these two sensitive spectrometers, that are equipped with a molecular jet expansion, to investigate the chiral molecules-(water)_n clusters. To demonstrate the resolution and sensitivity achieved, the rovibrational transitions of the static N_2O gas and the bending rovibrational transitions of the Ar-water complex, a test system, at 1634 cm^{-1} have been measured. D. Hofstetter and J. Faist in High performance quantum cascade lasers and their applications, Vol.89 Springer-Verlag Berlin & Heidelberg, 2003, pp. 61-98. Y. Xu, X. Liu, Z. Su, R. M. Kulkarni, W. S. Tam, C. Kang, I. Leonov and L. D'Agostino, Proc. Spie, 2009, 722208 (1-11). M. J. Weida and D. J. Nesbitt, J. Chem. Phys. 1997, 106, 3078-3089.
Long-term reliability study and failure analysis of quantum cascade lasers
NASA Astrophysics Data System (ADS)
Xie, Feng; Nguyen, Hong-Ky; Leblanc, Herve; Hughes, Larry; Wang, Jie; Miller, Dean J.; Lascola, Kevin
2017-02-01
Here we present lifetime test results of 4 groups of quantum cascade lasers (QCL) under various aging conditions including an accelerated life test. The total accumulated life time exceeds 1.5 million device·hours, which is the largest QCL reliability study ever reported. The longest single device aging time was 46.5 thousand hours (without failure) in the room temperature test. Four failures were found in a group of 19 devices subjected to the accelerated life test with a heat-sink temperature of 60 °C and a continuous-wave current of 1 A. Visual inspection of the laser facets of failed devices revealed an astonishing phenomenon, which has never been reported before, which manifested as a dark belt of an unknown substance appearing on facets. Although initially assumed to be contamination from the environment, failure analysis revealed that the dark substance is a thermally induced oxide of InP in the buried heterostructure semiinsulating layer. When the oxidized material starts to cover the core and blocks the light emission, it begins to cause the failure of QCLs in the accelerated test. An activation energy of 1.2 eV is derived from the dependence of the failure rate on laser core temperature. With the activation energy, the mean time to failure of the quantum cascade lasers operating at a current density of 5 kA/cm2 and heat-sink temperature of 25°C is expected to be 809 thousand hours.
Time-bin entangled photons from a quantum dot
Jayakumar, Harishankar; Predojević, Ana; Kauten, Thomas; Huber, Tobias; Solomon, Glenn S.; Weihs, Gregor
2014-01-01
Long distance quantum communication is one of the prime goals in the field of quantum information science. With information encoded in the quantum state of photons, existing telecommunication fibre networks can be effectively used as a transport medium. To achieve this goal, a source of robust entangled single photon pairs is required. Here, we report the realization of a source of time-bin entangled photon pairs utilizing the biexciton-exciton cascade in a III/V self-assembled quantum dot. We analyse the generated photon pairs by an inherently phase-stable interferometry technique, facilitating uninterrupted long integration times. We confirm the entanglement by performing quantum state tomography of the emitted photons, which yields a fidelity of 0.69(3) and a concurrence of 0.41(6) for our realization of time-energy entanglement from a single quantum emitter. PMID:24968024
Time-bin entangled photons from a quantum dot.
Jayakumar, Harishankar; Predojević, Ana; Kauten, Thomas; Huber, Tobias; Solomon, Glenn S; Weihs, Gregor
2014-06-26
Long-distance quantum communication is one of the prime goals in the field of quantum information science. With information encoded in the quantum state of photons, existing telecommunication fibre networks can be effectively used as a transport medium. To achieve this goal, a source of robust entangled single-photon pairs is required. Here we report the realization of a source of time-bin entangled photon pairs utilizing the biexciton-exciton cascade in a III/V self-assembled quantum dot. We analyse the generated photon pairs by an inherently phase-stable interferometry technique, facilitating uninterrupted long integration times. We confirm the entanglement by performing quantum state tomography of the emitted photons, which yields a fidelity of 0.69(3) and a concurrence of 0.41(6) for our realization of time-energy entanglement from a single quantum emitter.
Electrical modulation of the complex refractive index in mid-infrared quantum cascade lasers.
Teissier, J; Laurent, S; Manquest, C; Sirtori, C; Bousseksou, A; Coudevylle, J R; Colombelli, R; Beaudoin, G; Sagnes, I
2012-01-16
We have demonstrated an integrated three terminal device for the modulation of the complex refractive index of a distributed feedback quantum cascade laser (QCL). The device comprises an active region to produce optical gain vertically stacked with a control region made of asymmetric coupled quantum wells (ACQW). The optical mode, centered on the gain region, has a small overlap also with the control region. Owing to the three terminals an electrical bias can be applied independently on both regions: on the laser for producing optical gain and on the ACQW for tuning the energy of the intersubband transition. This allows the control of the optical losses at the laser frequency as the absorption peak associated to the intersubband transition can be electrically brought in and out the laser transition. By using this function a laser modulation depth of about 400 mW can be achieved by injecting less than 1 mW in the control region. This is four orders of magnitude less than the electrical power needed using direct current modulation and set the basis for the realisation of electrical to optical transducers.
Resonant tunneling diodes based on ZnO for quantum cascade structures (Conference Presentation)
NASA Astrophysics Data System (ADS)
Hinkov, Borislav; Schwarz, Benedikt; Harrer, Andreas; Ristanic, Daniela; Schrenk, Werner; Hugues, Maxime; Chauveau, Jean-Michel; Strasser, Gottfried
2017-02-01
The terahertz (THz) spectral range (lambda 30µm - 300µm) is also known as the "THz-gap" because of the lack of compact semiconductor devices. Various real-world applications would strongly benefit from such sources like trace-gas spectroscopy or security-screening. A crucial step is the operation of THz-emitting lasers at room temperature. But this seems out of reach with current devices, of which GaAs-based quantum cascade lasers (QCLs) seem to be the most promising ones. They are limited by the parasitic, non-optical LO-phonon transitions (36meV in GaAs), being on the same order as the thermal energy at room temperature (kT = 26meV). This can be solved by using larger LO-phonon materials like ZnO (E_LO = 72meV). But to master the fabrication of ZnO-based QC structures, a high quality epitaxial growth is crucial followed by a well-controlled fabrication process including ZnO/ZnMgO etching. We use devices grown on m-plane ZnO-substrate by molecular beam epitaxy. They are patterned by reactive ion etching in a CH4-based chemistry (CH4:H2:Ar/30:3:3 sccm) into 50μm to 150μm square mesas. Resonant tunneling diode structures are investigated in this geometry and are presented including different barrier- and well-configurations. We extract contact resistances of 8e-5 Omega cm^2 for un-annealed Ti/Au contacts and an electron mobility of above 130cm^2/Vs, both in good agreement with literature. Proving that resonant electron tunneling can be achieved in ZnO is one of the crucial building blocks of a QCL. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 665107.
NASA Astrophysics Data System (ADS)
Olsen, M. K.
2018-03-01
The development of quantum technologies which use quantum states of the light field interacting with other systems creates a demand for such states over wide frequency ranges. In this work we compare the bipartite entanglement and Einstein-Podolsky-Rosen (EPR) -steering properties of the two different parametric schemes which produce third-harmonic optical fields from an input field at the fundamental frequency. The first scheme uses second harmonic cascaded with sum-frequency generation, while the second uses triply degenerate four- wave mixing, also known as direct third-harmonic generation. We find that both schemes produce continuous-variable bipartite entanglement and EPR steering over a frequency range which has previously been unobtainable. The direct scheme produces a greater degree of EPR steering, while the cascaded scheme allows for greater flexibility in having three available bipartitions, thus allowing for greater flexibility in the tailoring of light matter interfaces. There are also parameter regimes in both for which classical mean-field analyses fail to predict the mean-field solutions. Both schemes may be very useful for applications in quantum communication and computation networks, as well as providing for quantum interfaces between a wider range of light and atomic ensembles than is presently practicable.
Iii-V Compound Multiple Quantum Well Based Modulator and Switching Devices.
NASA Astrophysics Data System (ADS)
Hong, Songcheol
A general formalism to study the absorption and photocurrent in multiple quantum well is provided with detailed consideration of quantum confined Stark shift, exciton binding energy, line broadening, tunneling, polarization, and strain effects. Results on variation of exciton size, binding energies and transition energies as a function electric field and well size have been presented. Inhomogeneous line broadening of exciton lines due to interface roughness, alloy disorder and well to well size fluctuation is calculated. The potential of material tailoring by introducing strain for specific optical response is discussed. Theoretical and experimental results on excitonic and band-to-band absorption spectra in strained multi-quantum well structures are shown. I also report on polarization dependent optical absorption for excitonic and interband transitions in lattice matched and strained multiquantum well structures in presence of transverse electric field. Photocurrent in a p-i(MQW)-n diode with monochromatic light is examined with respect to different temperatures and intensities. The negative resistance of I-V characteristic of the p-i-n diode is based on the quantum confined Stark effect of the heavy hole excitonic transition in a multiquantum well. This exciton based photocurrent characteristic allows efficient switching. A general purpose low power optical logic device using the controller-modulator concept bas been proposed and realized. The controller is a heterojunction phototransistor with multiquantum wells in the base-collector depletion region. This allows an amplified photocurrent controlled voltage feedback with low light intensity levels. Detailed analysis of the sensitivity of this device in various modes of operation is studied. Studies are also presented on the cascadability of the device as well as its integrating -thresholding properties. A multiquantum well heterojunction bipolar transistor (MHBT), which has N^+ -p^+-i(MQW)-N structure has been fabricated to test the concept. Gain (>30) is obtained in the MBE grown devices and efficient switching occurs due to the amplification of the exciton based photocurrent. The level shift operation of the base contacted MHBT are demonstrated.
High-speed noise-free optical quantum memory
NASA Astrophysics Data System (ADS)
Kaczmarek, K. T.; Ledingham, P. M.; Brecht, B.; Thomas, S. E.; Thekkadath, G. S.; Lazo-Arjona, O.; Munns, J. H. D.; Poem, E.; Feizpour, A.; Saunders, D. J.; Nunn, J.; Walmsley, I. A.
2018-04-01
Optical quantum memories are devices that store and recall quantum light and are vital to the realization of future photonic quantum networks. To date, much effort has been put into improving storage times and efficiencies of such devices to enable long-distance communications. However, less attention has been devoted to building quantum memories which add zero noise to the output. Even small additional noise can render the memory classical by destroying the fragile quantum signatures of the stored light. Therefore, noise performance is a critical parameter for all quantum memories. Here we introduce an intrinsically noise-free quantum memory protocol based on two-photon off-resonant cascaded absorption (ORCA). We demonstrate successful storage of GHz-bandwidth heralded single photons in a warm atomic vapor with no added noise, confirmed by the unaltered photon-number statistics upon recall. Our ORCA memory meets the stringent noise requirements for quantum memories while combining high-speed and room-temperature operation with technical simplicity, and therefore is immediately applicable to low-latency quantum networks.
Feng, Tao; Hosoda, Takashi; Shterengas, Leon; Kipshidze, Gela; Stein, Aaron; Lu, Ming; Belenky, Gregory
2017-11-01
The laterally coupled distributed feedback (LC-DFB) GaSb-based type-I quantum well cascade diode lasers using the second- and the sixth-order gratings to stabilize the output spectrum near 3.22 μm were designed and fabricated. The laser heterostructure contained three cascades. The devices were manufactured using a single dry etching step defining the ∼5-μm-wide ridge with ∼5-μm-wide gratings sections adjacent to the ridge sides. The grating coupling coefficients were estimated to be about 1 cm -1 . The stability of the single-frequency operation was ensured by alignment of the DFB mode to the relatively wide gain peak. The 2-mm-long second-order LC-DFB lasers generated above 10 mW of continuous-wave (CW) output power at 20°C in epi-side-up configuration and demonstrated power conversion efficiency above 2%. The sixth-order LC-DFB lasers showed lower efficiency but still generated several milliwatts of CW output power. The devices demonstrated a CW current tuning range of about 3.5 nm at the temperature of 20°C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Tao; Hosoda, Takashi; Shterengas, Leon
The laterally coupled distributed feedback (LC-DFB) GaSb-based type-I quantum well cascade diode lasers using the second- and the sixth-order gratings to stabilize the output spectrum near 3.22 μm were designed and fabricated in this paper. The laser heterostructure contained three cascades. The devices were manufactured using a single dry etching step defining the ~5-μm-wide ridge with ~5-μm-wide gratings sections adjacent to the ridge sides. The grating coupling coefficients were estimated to be about 1 cm -1. The stability of the single-frequency operation was ensured by alignment of the DFB mode to the relatively wide gain peak. The 2-mm-long second-order LC-DFBmore » lasers generated above 10 mW of continuous-wave (CW) output power at 20°C in epi-side-up configuration and demonstrated power conversion efficiency above 2%. The sixth-order LC-DFB lasers showed lower efficiency but still generated several milliwatts of CW output power. Finally, the devices demonstrated a CW current tuning range of about 3.5 nm at the temperature of 20°C.« less
Feng, Tao; Hosoda, Takashi; Shterengas, Leon; ...
2017-10-18
The laterally coupled distributed feedback (LC-DFB) GaSb-based type-I quantum well cascade diode lasers using the second- and the sixth-order gratings to stabilize the output spectrum near 3.22 μm were designed and fabricated in this paper. The laser heterostructure contained three cascades. The devices were manufactured using a single dry etching step defining the ~5-μm-wide ridge with ~5-μm-wide gratings sections adjacent to the ridge sides. The grating coupling coefficients were estimated to be about 1 cm -1. The stability of the single-frequency operation was ensured by alignment of the DFB mode to the relatively wide gain peak. The 2-mm-long second-order LC-DFBmore » lasers generated above 10 mW of continuous-wave (CW) output power at 20°C in epi-side-up configuration and demonstrated power conversion efficiency above 2%. The sixth-order LC-DFB lasers showed lower efficiency but still generated several milliwatts of CW output power. Finally, the devices demonstrated a CW current tuning range of about 3.5 nm at the temperature of 20°C.« less
Qualification of quantum cascade lasers for space environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, Tanya L.; Cannon, Bret D.; Brauer, Carolyn S.
2014-06-11
Laser-based instruments are enabling a new generation of scientific instruments for space environments such as those used in the exploration of Mars. The lasers must be robust and able to withstand the harsh environment of space, including radiation exposure. Quantum cascade lasers (QCLs), which are semiconductor lasers that emit in the infrared spectral region, offer the potential for the development of novel laser-based instruments for space applications. The performance of QCLs after radiation exposure, however, has not been reported. We report on work to quantify the performance of QCLs after exposure to two different radiation sources, 64 MeV protons andmore » Cobalt-60 gamma rays, at radiation levels likely to be encountered during a typical space flight mission. No significant degradation in threshold current or slope efficiency is observed for any of the seven Fabry-Perot QCLs that are tested.« less
21 THz quantum-cascade laser operating up to 144 K based on a scattering-assisted injection design
Khanal, Sudeep; Reno, John L.; Kumar, Sushil
2015-07-22
A 2.1 THz quantum cascade laser (QCL) based on a scattering-assisted injection and resonant-phonon depopulation design scheme is demonstrated. The QCL is based on a four-well period implemented in the GaAs/Al 0.15Ga 0.85As material system. The QCL operates up to a heat-sink temperature of 144 K in pulsed-mode, which is considerably higher than that achieved for previously reported THz QCLs operating around the frequency of 2 THz. At 46 K, the threshold current-density was measured as ~745 A/cm 2 with a peak-power output of ~10 mW. Electrically stable operation in a positive differential-resistance regime is achieved by a careful choicemore » of design parameters. The results validate the robustness of scattering-assisted injection schemes for development of low-frequency (ν < 2.5 THz) QCLs.« less
Room temperature continuous wave operation of quantum cascade laser at λ ~ 9.4 μm
NASA Astrophysics Data System (ADS)
Hou, Chuncai; Zhao, Yue; Zhang, Jinchuan; Zhai, Shenqiang; Zhuo, Ning; Liu, Junqi; Wang, Lijun; Liu, Shuman; Liu, Fengqi; Wang, Zhanguo
2018-03-01
Continuous wave (CW) operation of long wave infrared (LWIR) quantum cascade lasers (QCLs) is achieved up to a temperature of 303 K. For room temperature CW operation, the wafer with 35 stages was processed into buried heterostructure lasers. For a 2-mm-long and 10-μm-wide laser with high-reflectivity (HR) coating on the rear facet, CW output power of 45 mW at 283 K and 9 mW at 303 K is obtained. The lasing wavelength is around 9.4 μm locating in the LWIR spectrum range. Project supported by the National Key Research And Development Program (No. 2016YFB0402303), the National Natural Science Foundation of China (Nos. 61435014, 61627822, 61574136, 61774146, 61674144, 61404131), the Key Projects of Chinese Academy of Sciences (Nos. ZDRW-XH-2016-4, QYZDJ-SSW-JSC027), and the Beijing Natural Science Foundation (No. 4162060, 4172060).
Temperature induced degradation mechanisms of AlInAs/InGaAs/InP quantum cascade lasers
NASA Astrophysics Data System (ADS)
Pierścińska, D.; Pierściński, K.; Płuska, M.; Sobczak, G.; Kuźmicz, A.; Gutowski, P.; Bugajski, M.
2018-01-01
In this paper, we report on the investigation of temperature induced degradation mode of quantum cascade lasers (QCLs) with an emphasis on the influence of different processing technology. We investigate and compare lattice matched AlInAs/InGaAs/InP QCLs of various constructions, i.e., double trench, buried heterostructure and ridge waveguide regarding thermal management, reliability and sources of degradation. The analysis was performed by CCD thermoreflectance spectroscopy, scanning electron microscope inspection and destructive analysis by focused ion beam etching, enabling determination of the source and mode of degradation for investigated lasers. Experimental temperature data relate temperature rise, arising from supply current, with device geometry. Results clearly indicate, that the buried heterostructure geometry, allows reaching the highest maximal operating current densities, before the degradation occurs. Microscopic images of degradation confirm that degradation includes the damage of the contact layer as well as damage of the active region layers.
Polarization entangled cluster state generation in a lithium niobate chip
NASA Astrophysics Data System (ADS)
Szep, Attila; Kim, Richard; Shin, Eunsung; Fanto, Michael L.; Osman, Joseph; Alsing, Paul M.
2016-10-01
We present a design of a quantum information processing C-phase (Controlled-phase) gate applicable for generating cluster states that has a form of integrated photonic circuits assembled with cascaded directional couplers on a Ti in-diffused Lithium Niobate (Ti-LN) platform where directional couplers as the integrated optical analogue of bulk beam splitters are used as fundamental building blocks. Based on experimentally optimized fabrication parameters of Ti-LN optical waveguides operating at an 810nm wavelength, an integrated Ti-LN quantum C-phase gate is designed and simulated. Our proposed C-phase gate consists of three tunable directional couplers cascaded together with having different weighted switching ratios for providing a tool of routing vertically- and horizontally-polarized photons independently. Its operation mechanism relies on selectively controlling the optical coupling of orthogonally polarized modes via the change in the index of refraction, and its operation is confirmed by the BPM simulation.
Quantum cascade lasers and the Kruse model in free space optical communication.
Corrigan, Paul; Martini, Rainer; Whittaker, Edward A; Bethea, Clyde
2009-03-16
Mid-infrared (MIR) free space optical communication has seen renewed interest in recent years due to advances in quantum cascade lasers. We present data from a multi-wavelength test-bed operated in the New York metropolitan area under realistic weather conditions. We show that a mid-infrared source (8.1 microm) provides enhanced link stability with 2x to 3x greater transmission over near infrared wavelengths (1.3 microm & 1.5 microm) during fog formation and up to 10x after a short scavenging rain event where fog developed and visibility reduced to approximately 1 km. We attribute the improvement to less Mie scattering at longer wavelengths. We confirm that this result is generally consistent with the empirical benchmark Kruse model at visibilities above 2.5 km, but towards the 1 km eye-seeing limit we measured the equivalent MIR visibility to be > 10 km. (c) 2008 Optical Society of America
Passive mode-locking of 3.25μm GaSb-based type-I quantum-well cascade diode lasers
NASA Astrophysics Data System (ADS)
Feng, Tao; Shterengas, Leon; Kipshidze, Gela; Hosoda, Takashi; Wang, Meng; Belenky, Gregory
2018-02-01
Passively mode-locked type-I quantum well cascade diode lasers emitting in the methane absorption band near 3.25 μm were designed, fabricated and characterized. The deep etched 5.5-μm-wide single spatial mode ridge waveguide design utilizing split-contact architecture was implemented. The devices with absorber to gain section length ratios of 11% and 5.5% were studied. Lasers with the longer absorber section ( 300 μm) generated smooth bell-shape-like emission spectrum with about 30 lasing modes at full-width-at-half-maximum level. Devices with reverse biased absorber section demonstrated stable radio frequency beat with nearly perfect Lorentzian shape over four orders of magnitude of intensity. The estimated pulse-to-pulse timing jitter was about 110 fs/cycle. Laser generated average power of more than 1 mW in mode-locked regime.
Absolute spectroscopy near 7.8 μm with a comb-locked extended-cavity quantum-cascade-laser.
Lamperti, Marco; AlSaif, Bidoor; Gatti, Davide; Fermann, Martin; Laporta, Paolo; Farooq, Aamir; Marangoni, Marco
2018-01-22
We report for the first time the frequency locking of an extended-cavity quantum-cascade-laser (EC-QCL) to a near-infrared frequency comb. The locked laser source is exploited to carry out molecular spectroscopy around 7.8 μm with a line-centre frequency combined uncertainty of ~63 kHz. The strength of the approach, in view of an accurate retrieval of line centre frequencies over a spectral range as large as 100 cm -1 , is demonstrated on the P(40), P(18) and R(31) lines of the fundamental rovibrational band of N 2 O covering the centre and edges of the P and R branches. The spectrometer has the potential to be straightforwardly extended to other spectral ranges, till 12 μm, which is the current wavelength limit for commercial cw EC-QCLs.
Intensity autocorrelation measurements of frequency combs in the terahertz range
NASA Astrophysics Data System (ADS)
Benea-Chelmus, Ileana-Cristina; Rösch, Markus; Scalari, Giacomo; Beck, Mattias; Faist, Jérôme
2017-09-01
We report on direct measurements of the emission character of quantum cascade laser based frequency combs, using intensity autocorrelation. Our implementation is based on fast electro-optic sampling, with a detection spectral bandwidth matching the emission bandwidth of the comb laser, around 2.5 THz. We find the output of these frequency combs to be continuous even in the locked regime, but accompanied by a strong intensity modulation. Moreover, with our record temporal resolution of only few hundreds of femtoseconds, we can resolve correlated intensity modulation occurring on time scales as short as the gain recovery time, about 4 ps. By direct comparison with pulsed terahertz light originating from a photoconductive emitter, we demonstrate the peculiar emission pattern of these lasers. The measurement technique is self-referenced and ultrafast, and requires no reconstruction. It will be of significant importance in future measurements of ultrashort pulses from quantum cascade lasers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawasaki, Hiroyuki; Mizoguchi, Asao; Kanamori, Hideto
In order to investigate the alignment of CH{sub 3}F in para-H{sub 2} crystals, high resolution polarization spectroscopy of the ν{sub 3} vibrational band is studied using a quantum cascade laser at 1040 cm{sup −1}. It is found that the main and satellite series of peaks in the ν{sub 3} vibrational band of CH{sub 3}F have the same polarization dependence. This result supports the previously proposed cluster model with ortho-H{sub 2} in first and second nearest neighbor sites. The observed polarization dependence function is well described by a simple six-axis void model in which CH{sub 3}F is not aligned along themore » c-axis of the crystal but tilted to 64.9(3)° from it.« less
Low Power Consumption Substrate-Emitting DFB Quantum Cascade Lasers.
Liu, Chuan-Wei; Zhang, Jin-Chuan; Jia, Zhi-Wei; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Liu, Feng-Qi; Wang, Zhan-Guo
2017-09-02
In the present work, an ultra-low power consumption substrate-emitting distributed feedback (DFB) quantum cascade laser (QCL) was developed. The continuous-wave (CW) threshold power dissipation is reduced to 0.43 W at 25 °C by shortening the cavity length to 0.5 mm and depositing high-reflectivity (HR) coating on both facets. As far as we know, this is the recorded threshold power dissipation of QCLs in the same conditions. Single-mode emission was achieved by employing a buried second-order grating. Mode-hop free emission can be observed within a wide temperature range from 15 to 105 °C in CW mode. The divergence angles are 22.5 o and 1.94 o in the ridge-width direction and cavity-length direction, respectively. The maximum optical power in CW operation was 2.4 mW at 25 °C, which is sufficient to spectroscopy applications.
Kim, Seonghwan; Lee, Dongkyu; Liu, Xunchen; Van Neste, Charles; Jeon, Sangmin; Thundat, Thomas
2013-01-01
Speciation of complex mixtures of trace explosives presents a formidable challenge for sensors that rely on chemoselective interfaces due to the unspecific nature of weak intermolecular interactions. Nanomechanical infrared (IR) spectroscopy provides higher selectivity in molecular detection without using chemoselective interfaces by measuring the photothermal effect of adsorbed molecules on a thermally sensitive microcantilever. In addition, unlike conventional IR spectroscopy, the detection sensitivity is drastically enhanced by increasing the IR laser power, since the photothermal signal comes from the absorption of IR photons and nonradiative decay processes. By using a broadly tunable quantum cascade laser for the resonant excitation of molecules, we increased the detection sensitivity by one order of magnitude compared to the use of a conventional IR monochromator. Here, we demonstrate the successful speciation and quantification of picogram levels of ternary mixtures of similar explosives (trinitrotoluene (TNT), cyclotrimethylene trinitramine (RDX), and pentaerythritol tetranitrate (PETN)) using nanomechanical IR spectroscopy. PMID:23346368
NASA Astrophysics Data System (ADS)
Yoxall, Edward; Navarro-Cía, Miguel; Rahmani, Mohsen; Maier, Stefan A.; Phillips, Chris C.
2013-11-01
We demonstrate the use of a pulsed quantum cascade laser, wavelength tuneable between 6 and 10 μm, with a scattering-type scanning near-field optical microscope (s-SNOM). A simple method for calculating the signal-to-noise ratio (SNR) of the s-SNOM measurement is presented. For pulsed lasers, the SNR is shown to be highly dependent on the degree of synchronization between the laser pulse and the sampling circuitry; in measurements on a gold sample, the SNR is 26 with good synchronization and less than 1 without. Simulations and experimental s-SNOM images, with a resolution of 100 nm, corresponding to λ/80, and an acquisition time of less than 90 s, are presented as proof of concept. They show the change in the field profile of plasmon-resonant broadband antennas when they are excited with wavelengths of 7.9 and 9.5 μm.
Rein, Keith D; Roy, Sukesh; Sanders, Scott T; Caswell, Andrew W; Schauer, Frederick R; Gord, James R
2016-08-10
A mid-infrared fiber-coupled laser system constructed around three time-division-multiplexed quantum-cascade lasers capable of measuring the absorption spectra of CO, CO2, and N2O at 100 kHz over a wide range of operating pressures and temperatures is demonstrated. This system is first demonstrated in a laboratory burner and then used to measure temperature, pressure, and concentrations of CO, CO2, and N2O as a function of time in a detonated mixture of N2O and C3H8. Both fuel-rich and fuel-lean detonation cases are outlined. High-temperature fluctuations during the blowdown are observed. Concentrations of CO are shown to decrease with time for fuel-lean conditions and increase for fuel-rich conditions.
Achieving comb formation over the entire lasing range of quantum cascade lasers
Yang, Yang; Burghoff, David; Reno, John; ...
2017-01-01
Frequency combs based on quantum cascade laser (QCL) are finding promising applications in highspeed broadband spectroscopy in the terahertz regime, where many molecules have their "fingerprints". To form stable combs in QCLs, an effective control of group velocity dispersion plays a critical role. The dispersion of the QCL cavity has two main parts: a static part from the material and a dynamic part from the intersubband transitions. Unlike the gain, which is clamped to a fixed value above the lasing threshold, dispersion associated with the intersubband transitions changes with bias even above the threshold, and this reduces the dynamic rangemore » of comb formation. Here, by incorporating tunability into the dispersion compensator, we demonstrate a QCL device exhibiting comb operation from I th to I max, which greatly expands the operation range of the frequency combs.« less
Precision control of multiple quantum cascade lasers for calibration systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taubman, Matthew S., E-mail: Matthew.Taubman@pnnl.gov; Myers, Tanya L.; Pratt, Richard M.
We present a precision, 1-A, digitally interfaced current controller for quantum cascade lasers, with demonstrated temperature coefficients for continuous and 40-kHz full-depth square-wave modulated operation, of 1–2 ppm/ °C and 15 ppm/ °C, respectively. High precision digital to analog converters (DACs) together with an ultra-precision voltage reference produce highly stable, precision voltages, which are selected by a multiplexer (MUX) chip to set output currents via a linear current regulator. The controller is operated in conjunction with a power multiplexing unit, allowing one of three lasers to be driven by the controller, while ensuring protection of controller and all lasers during operation, standby,more » and switching. Simple ASCII commands sent over a USB connection to a microprocessor located in the current controller operate both the controller (via the DACs and MUX chip) and the power multiplexer.« less
Precision Control of Multiple Quantum Cascade Lasers for Calibration Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taubman, Matthew S.; Myers, Tanya L.; Pratt, Richard M.
We present a precision, digitally interfaced current controller for quantum cascade lasers, with demonstrated DC and modulated temperature coefficients of 1- 2 ppm/ºC and 15 ppm/ºC respectively. High linearity digital to analog converters (DACs) together with an ultra-precision voltage reference, produce highly stable, precision voltages. These are in turn selected by a low charge-injection multiplexer (MUX) chip, which are then used to set output currents via a linear current regulator. The controller is operated in conjunction with a power multiplexing unit, allowing one of three lasers to be driven by the controller while ensuring protection of controller and all lasersmore » during operation, standby and switching. Simple ASCII commands sent over a USB connection to a microprocessor located in the current controller operate both the controller (via the DACs and MUX chip) and the power multiplexer.« less
Fast terahertz imaging using a quantum cascade amplifier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Yuan, E-mail: yr235@cam.ac.uk; Wallis, Robert; Jessop, David Stephen
2015-07-06
A terahertz (THz) imaging scheme based on the effect of self-mixing in a 2.9 THz quantum cascade (QC) amplifier has been demonstrated. By coupling an antireflective-coated silicon lens to the facet of a QC laser, with no external optical feedback, the laser mirror losses are enhanced to fully suppress lasing action, creating a THz QC amplifier. The addition of reflection from an external target to the amplifier creates enough optical feedback to initiate lasing action and the resulting emission enhances photon-assisted transport, which in turn reduces the voltage across the device. At the peak gain point, the maximum photon densitymore » coupled back leads to a prominent self-mixing effect in the QC amplifier, leading to a high sensitivity, with a signal to noise ratio up to 55 dB, along with a fast data acquisition speed of 20 000 points per second.« less
Nonlinear Midinfrared Photothermal Spectroscopy Using Zharov Splitting and Quantum Cascade Lasers.
Mertiri, Alket; Altug, Hatice; Hong, Mi K; Mehta, Pankaj; Mertz, Jerome; Ziegler, Lawrence D; Erramilli, Shyamsunder
2014-08-20
We report on the mid-infrared nonlinear photothermal spectrum of the neat liquid crystal 4-octyl-4'-cyanobiphenyl (8CB) using a tunable Quantum Cascade Laser (QCL). The nonequilibrium steady state characterized by the nonlinear photothermal infrared response undergoes a supercritical bifurcation. The bifurcation, observed in heterodyne two-color pump-probe detection, leads to ultrasharp nonlinear infrared spectra similar to those reported in the visible region. A systematic study of the peak splitting as a function of absorbed infrared power shows the bifurcation has a critical exponent of 0.5. The observation of an apparently universal critical exponent in a nonequilibrium state is explained using an analytical model analogous of mean field theory. Apart from the intrinsic interest for nonequilibrium studies, nonlinear photothermal methods lead to a dramatic narrowing of spectral lines, giving rise to a potential new contrast mechanism for the rapidly emerging new field of mid-infrared microspectroscopy using QCLs.